
Chapter 6
Polygons and the Lace Expansion

Nathan Clisby and Gordon Slade

6.1 Introduction

The lace expansion was introduced by Brydges and Spencer in 1985 [7] to analyse
weakly self-avoiding walks in dimensions d > 4. Subsequently it has been gener-
alised and greatly extended, so that it now applies to a variety of problems of interest
in probability theory, statistical physics, and combinatorics, including the strictly
self-avoiding walk, lattice trees, lattice animals, percolation, oriented percolation,
the contact process, random graphs, and the Ising model. A recent survey is [42].

In this chapter, we give an introduction to the lace expansion for self-avoiding
walks, with emphasis on self-avoiding polygons. We focus on combinatorial rather
than analytical aspects.

The chapter is organised as follows. In Sec. 6.2, we briefly introduce the ran-
dom walk model underlying our self-avoiding walk models. In Sec. 6.3, we discuss
several examples of taking the reciprocal of a generating function, as this is what
the lace expansion succeeds in doing for the self-avoiding walk. The lace expan-
sion for self-avoiding walks is derived in Sec. 6.4. Some of the rigorous results for
self-avoiding walks and polygons in dimensions d > 4, obtained using the lace ex-
pansion, are stated without proof in Sec. 6.5. In Sec. 6.6, we indicate how the lace
expansion can be used to enumerate self-avoiding walks in all dimensions, as well
as to compute coefficients in the 1/d expansion for the connective constant µ and
certain critical amplitudes. Some heuristic ideas and numerical results concerning
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the series analysis of the lace expansion and its relevance for the antiferromagnetic
singularity of the susceptibility are provided in Sec. 6.7. Finally, in Sec. 6.8, we
give a brief indication of an extension to a different model, by discussing some of
the results for high-dimensional lattice trees that have been obtained using the lace
expansion.

6.2 Preliminaries

The self-avoiding walk models we study are based on underlying random walk mod-
els. To define the latter, we fix a finite set N ⊂ Zd that is invariant under the sym-
metry group of Zd , i.e., under permutation of coordinates or replacement of any
coordinate xi by −xi. Our two basic examples are the nearest-neighbour model

N = {x ∈ Zd : ‖x‖1 = 1} (6.1)

and the spread-out model

N = {x ∈ Zd : 0 < ‖x‖∞ ≤ L}, (6.2)

where L is a fixed (usually large) constant. The norms are defined, for x = (x1, . . . ,xd)∈
Zd , by ‖x‖1 = ∑d

j=1 |x j| and ‖x‖∞ = max1≤ j≤d |x j|.
An n-step walk with steps in N is a sequence ω = (ω(0),ω(1), . . . ,ω(n)) of

points in Zd , with ω( j + 1)−ω( j) ∈ N for j = 0,1, . . . ,n− 1. The walk ω is a
self-avoiding walk if ω(i) 6= ω( j) for all i 6= j. We will be interested in generating
functions for certain classes of walks. These generating functions have the form
G(z) = ∑ω∈C z|ω|, where C is some specific class of walks (e.g., all walks with
ω(0) = 0), z ∈C is a parameter, and |ω | denotes the number of steps in the walk ω .

We denote the cardinality of N by Ω , so that Ω = 2d for the nearest-neighbour
model and Ω = (2L+ 1)d −1 for the spread-out model. We also define

D(x) =

{
1/Ω (x ∈ N )
0 (x 6∈ N ).

(6.3)

Thus D(x) is the probability for a random walk on Zd , which chooses steps uni-
formly from N , to move from 0 to x in a single step.

The Fourier transform of an absolutely summable function f : Zd →R is defined
by

f̂ (k) = ∑
x∈Zd

f (x)eik·x, (k ∈ [−π ,π ]d). (6.4)

For the nearest-neighbour model, direct calculation gives

D̂(k) = d−1
d

∑
j=1

cosk j (nearest-neighbour model).
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The convolution of two absolutely summable functions on Zd is defined by

( f ∗g)(x) = ∑
y∈Zd

f (y)g(x− y). (6.5)

The Fourier transform has the convenient property that f̂ ∗g = f̂ ĝ. The original
function f (x) can be recovered from its Fourier transform via the inversion formula

f (x) =

∫

[−π ,π ]d
f̂ (k)e−ik·x ddk

(2π)d . (6.6)

6.3 Generating Functions and Their Reciprocals

In its simplest setting, the lace expansion can be understood as a way to take the
reciprocal of the generating function for the number of self-avoiding walks. In this
section, we consider four examples of generating functions and their reciprocals.

Suppose that the power series G(z) = ∑∞
n=0 gnzn has a non-zero radius of con-

vergence, and suppose for simplicity that g0 = 1. Then G(z) is non-zero in a neigh-
bourhood of the origin, so its reciprocal F(z) = 1/G(z) has a power series expansion
F(z) = ∑∞

m=0 fmzm with a non-zero radius of convergence. Knowledge of f0, . . . , fn

uniquely determines g0, . . . ,gn, and vice versa. The identity F(z)G(z) = 1 implies
that f0 = 1, and, for n ≥ 1,

n

∑
m=0

fmgn−m = 0. (6.7)

This can be regarded as the recursion relation

gn = −( f1gn−1 + f2gn−2 + · · ·+ fn) . (6.8)

Example 1. Let G(z) = ∑ω:0→· z
|ω| be the generating function for all random walks

on Zd that take steps in the set N and start at 0. There are Ω n n-step walks, so

G(z) =
∞

∑
n=0

Ω nzn =
1

1−Ωz
=

1
F(z)

. (6.9)

In this example, the reciprocal F(z) = 1−Ωz takes the very simple form of a linear
function.

Example 2. Let g0(x) = δ0,x, and, for n ≥ 1, let gn(x) be the number of n-step
walks that take steps in N , start at ω(0) = 0, and end at ω(n) = x. Let G(x;z) =

∑∞
n=0 gn(x)zn be the generating function for such walks. By conditioning on the first

step, we see that for n ≥ 1,

gn(x) = ∑
y∈Zd

ΩD(y)gn−1(x− y) = (ΩD∗gn−1)(x), (6.10)
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where we have used the convolution defined in (6.5). The Fourier transform of (6.10)
is

ĝn(k) = Ω D̂(k)ĝn−1(k). (6.11)

It follows that
ĝn(k) = (Ω D̂(k))n, (6.12)

and hence the Fourier transform of G(x;z) is given by

Ĝ(k;z) =
∞

∑
n=0

(Ω D̂(k))nzn =
1

1−ΩzD̂(k)
. (6.13)

Thus the reciprocal of the Fourier transform of the generating function takes the
simple form of a linear function. The generating function G(x;z) can then be re-
covered as an integral using (6.6). Note that the generating function 1/(1−Ωz) of
Example 1 is just Ĝ(0;z) since setting k = 0 corresponds to summation over x in
(6.4), which counts all n-step walks regardless of their endpoint.

Example 3. Let G(z) be the generating function for nearest-neighbour self-avoiding
walks started from the root of an infinite regular tree of degree Ω ≥ 2. The self-
avoidance constraint merely eliminates immediate reversals, so there are Ω(Ω −
1)n−1 n-step walks when n ≥ 1, and therefore

G(z) = 1 +
∞

∑
n=1

Ω(Ω −1)n−1zn =
1 + z

1− (Ω −1)z
=

1
1−Ωz−Π(z)

(6.14)

with

Π(z) =
−Ωz2

1 + z
. (6.15)

For |z| < 1, Π(z) has the power series representation

Π(z) = −Ω
∞

∑
m=2

(−z)m. (6.16)

In particular, the case Ω = 2 is just the nearest-neighbour self-avoiding walk on the
1-dimensional lattice Z, for which

G(z) =
1 + z
1− z

. (6.17)

In a manner that is not immediately apparent from the formula, the subtracted term
Π(z) = Ωz2

1+z in the reciprocal F(z) = 1−Ωz−Π(z) serves to eliminate the imme-
diate reversals that are allowed in the generating function 1/(1−Ωz) for simple
random walks on the tree. We will see how the lace expansion leads to (6.16) in
Sec. 6.4.4.

Example 4. Now comes the example of most interest. Fix d ≥ 2, and let cn(x) denote
the number of n-step self-avoiding walks that take steps in N , start at 0, and end
at x. Let cn = ∑x∈Zd cn(x) denote the number of n-step self-avoiding walks that take
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steps in N , start at 0, and end anywhere. It is a well-known consequence of the

simple inequality cm+n ≤ cmcn that the limit µ = limn→∞ c1/n
n exists, as discussed at

greater length in Chapter 2. The limit µ is known as the connective constant.
Let χ(z) = ∑∞

n=0 cnzn be the generating function for self-avoiding walks that start
at 0, and let G(x;z) = ∑∞

n=0 cn(x)zn be the generating function for those which end at
x. It is clear that χ(z) has radius of convergence zc = 1/µ . The radius of convergence
of G(x;z) cannot be smaller, and it was shown by Hammersley [17] also to be zc,
for any x.

The first two terms of χ(z) are χ(z) = 1 + Ωz + · · · , and hence its reciprocal is
of the form

χ(z) =
1

1−Ωz−Π(z)
, (6.18)

with Π(z) = ∑∞
m=2 πmzm for some coefficients πm. Similarly,

Ĝ(k;z) =
1

1−ΩzD̂(k)− Π̂(k;z)
, (6.19)

with Π̂(k;z) = ∑∞
m=2 π̂m(k)zm for some coefficients π̂m(k). By definition, Ĝ(0;z) =

χ(z), so (6.18) is a special case of (6.19).
In this example, the problem of determining the coefficients π̂m(k) or πm = π̂m(0)

is more difficult. The purpose of the lace expansion is to find a convenient repre-
sentation for πm and π̂m(k), which can then be used to better understand χ(z) and
Ĝ(k;z). As we explain in the next section, πm can be expressed in terms of the num-
ber of self-avoiding polygons and other so-called lace graphs. According to (6.8),

ĉn(k) = Ω D̂(k)ĉn−1(k)+
n

∑
m=2

π̂m(k)ĉn−m(k), (6.20)

or, equivalently,

cn(x) = (ΩD∗ cn−1)(x)+
n

∑
m=2

(πm ∗ cn−m)(x). (6.21)

The first term on the right-hand side of (6.20) is familiar from (6.11), and by itself
would give all random walks, not just the self-avoiding ones. The second term on
the right-hand side serves to eliminate self-intersecting walks from the count.

Setting k = 0 in (6.20) gives

cn = Ωcn−1 +
n

∑
m=2

πmcn−m, (6.22)

and knowledge of the coefficients πm for 2 ≤ m ≤ n would allow for the recur-
sive determination of cn (and vice-versa). This approach to the enumeration of self-
avoiding walks has proved fruitful, and is discussed further in Sec. 6.6.
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6.4 The Lace Expansion

In this section, we give a quick sketch of the derivation of the lace expansion. We
follow the original approach of Brydges and Spencer [7]; an alternate approach
based on inclusion-exclusion is discussed e.g. in [42]. Further details can be found
in [7] or, for a more recent account, [42]. Our presentation is closely based on [42].

The derivation is essentially unchanged when the setting is generalised to self-
avoiding walks on an arbitrary graph G = (V,E) with vertex set V and edge set E,
and we work in this more general setting. For example, G might be the hypercubic
lattice or the honeycomb lattice, but we make no assumption that G is regular, and
it could be finite or infinite. For simplicity, we assume that G does not contain loops
(edges of the form {x,x}), but it would be easy to relax this assumption.

We set c0(x,y) = δx,y, and, for n≥ 1, let cn(x,y) denote the number of n-step self-
avoiding walks in G that take steps in E, begin at x∈V, and end at y∈V. With a little
notational effort, it is also possible to include the case of walks which are weighted
according to the specific steps they take. We do not work in such generality here,
although in the literature it is common to consider weighted steps (see e.g. [23]).

6.4.1 The Recursion Relation

The lace expansion gives rise to a function πm(x,y), defined below, such that for
n ≥ 1,

cn(x,y) = ∑
v∈V

c1(x,v)cn−1(v,y)+
n

∑
m=2

∑
v∈V

πm(x,v)cn−m(v,y). (6.23)

In the translation invariant case, e.g. V = Zd , we have cn(x,y) = cn(0,y − x) ≡
cn(y− x) and similarly for πm, the sums over v on the right-hand side reduce to
convolutions, and we recover (6.21). All the formulae of Example 4 then also ap-
ply. In particular, the lace expansion gives an expression for the reciprocal of the
generating functions χ(z) and Ĝ(k;z) via (6.18) and (6.19).

6.4.2 Definition of πm(x,y)

In this section, we define πm(x,y) and sketch the derivation of (6.23). Let Wm(x,y)
denote the set of all m-step random walk paths (possibly self-intersecting) that start
at x ∈ V and end at y ∈ V. Given ω ∈ Wm(x,y), let

Ust(ω) =

{
−1 if ω(s) = ω(t)

0 if ω(s) 6= ω(t).
(6.24)
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Then

cn(x,y) = ∑
ω∈Wn(x,y)

∏
0≤s<t≤n

(1 +Ust(ω)), (6.25)

since the product is equal to 1 if ω is a self-avoiding walk and is equal to 0 otherwise.
We call any set of pairs st, with s < t chosen from {0,1,2, . . . ,n}, a graph. Let Bn

denote the set of all graphs. Expansion of the product in (6.25) gives

cn(x,y) = ∑
ω∈Wn(x,y)

∑
Γ∈Bn

∏
st∈Γ

Ust(ω). (6.26)

We call a graph Γ ∈ Bn connected1 if both 0 and n are endpoints of edges in Γ ,
and if in addition, for any integer c ∈ (0,n), there are s,t ∈ [0,n] such that s < c < t
and st ∈Γ . In other words, Γ is connected if, as intervals of real numbers,∪st∈Γ (s,t)
is equal to the connected interval (0,n). The set of all connected graphs on [0,n] is
denoted Gn. See Fig. 6.1.

a b

a b

a b

a b

(a)

(b)

Fig. 6.1 Graphs in which an edge st is represented by an arc joining s and t . The graphs in (a) are
not connected, whereas the graphs in (b) are connected.

If we partition the sum over all graphs according to whether: (a) 0 does not occur
in an edge in the graph, or (b) 0 does occur in an edge, then we are led to the identity
(6.23) with

πm(x,y) = ∑
ω∈Wm(x,y)

∑
Γ∈Gm

∏
st∈Γ

Ust(ω). (6.27)

Case (a) gives rise to the first term on the right-hand side of (6.23): the graphs not
containing 0 produce a self-avoidance constraint that omits the requirement that

1 This is not the standard graph-theory definition of a connected graph.
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the initial vertex at the origin be avoided subsequently. Case (b) gives rise to the
second term on the right-hand side of (6.23), with [0,m] the extent of the connected
component containing 0: the lack of an edge that passes over m means that the walk
segments before and after time m are independent, and the arbitrary graphs on the
interval [m,n] produce a self-avoidance constraint during that interval.

6.4.3 Representation of πm(x,y) via Laces

An important alternate representation for πm(x,y) can be obtained in terms of laces.
A lace is a minimally connected graph, i.e., a connected graph for which the re-
moval of any edge would result in a disconnected graph. The set of laces on [0,m]
is denoted by Lm, and the set of laces in Lm which consist of exactly N edges is

denoted L
(N)
m . See Fig. 6.2.

s1 t1 s1 s2 t1 t2

s1 s2 t1 s3 t2 t3 s1 s2 t1 s3 t2 s4 t3 t4

Fig. 6.2 Laces in L
(N)
m for N = 1,2,3,4, with s1 = 0 and tN = m.

Given a connected graph Γ ∈ Gm, the following prescription associates to Γ a
unique lace LΓ ⊂ Γ : The lace LΓ consists of edges s1t1,s2t2, . . ., with t1,s1,t2,s2, . . .
determined, in that order, by

t1 = max{t : 0t ∈ Γ }, s1 = 0,

ti+1 = max{t : ∃s < ti such that st ∈ Γ }, si+1 = min{s : sti+1 ∈ Γ }.
Given a lace L, the set of all edges st 6∈ L such that LL∪{st} = L is denoted C (L).
Edges in C (L) are said to be compatible with L. See Fig. 6.3.

We write L ∈ L
(N)

m as L = {s1t1, . . . ,sNtN}, with sl < tl for each l. The fact that
L is a lace is equivalent to a certain ordering of the sl and tl . For N = 1, we simply

have 0 = s1 < t1 = m. For N ≥ 2, L ∈ L
(N)
m if and only if

0 = s1 < s2, sl+1 < tl ≤ sl+2 (l = 1, . . . ,N −2), sN < tN−1 < tN = m
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(a)

(b)

(c)

Γ

LΓ

L

L

Fig. 6.3 (a) A connected graph Γ and its associated lace L = LΓ . (b) The dotted edges are com-
patible with the lace L. (c) The dotted edge is not compatible with the lace L.

(for N = 2 the vacuous middle inequalities play no role); see Fig. 6.2. Thus L divides
[0,m] into 2N −1 subintervals:

[s1,s2], [s2,t1], [t1,s3], [s3,t2], . . . , [sN ,tN−1], [tN−1,tN ]. (6.28)

Of these, intervals of the form [ti,si+2] can have zero length, whereas all others have
length at least 1.

The sum over connected graphs in (6.27) can be converted to a double sum, first
over all laces L, and then over connected graphs for which the above prescription
produces L. This gives

∑
Γ∈Gm

∏
st∈Γ

Ust = ∑
L∈Lm

∏
st∈L

Ust ∑
Γ∈Gm:LΓ =L

∏
s′t′∈Γ \L

Us′t′ . (6.29)

The sum over Γ on the right-hand side can then be resummed explicitly (for details,
see [7] or [42]) to obtain the formula

πm(x,y) = ∑
ω∈Wm(x,y)

∑
L∈Lm

∏
st∈L

Ust(ω) ∏
s′t′∈C (L)

(1 +Us′t′(ω)). (6.30)

We restrict the sum in (6.30) to laces with N edges, and introduce a minus sign to
obtain a non-negative integer, to define

π (N)
m (x,y) = ∑

ω∈Wm(x,y)
∑

L∈L
(N)
m

∏
st∈L

(−Ust(ω)) ∏
s′t′∈C (L)

(1 +Us′t′(ω)). (6.31)

The right hand side of (6.31) is zero unless N < m (since otherwise L
(N)
m is empty),

and hence
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x = y x

y

x y x

y

x y

Fig. 6.4 Self-intersections required for a walk ω with ∏st∈LUst (ω) 6= 0, for the laces with N =
1,2,3,4 bonds depicted in Fig. 6.2. The picture for N = 11 is also shown. A slashed subwalk may
have length zero .

πm(x,y) =
m−1

∑
N=1

(−1)Nπ (N)
m (x,y). (6.32)

Note that each term in the sum (6.31) is either 0 or 1. The first product in (6.31) is
equal to 1 precisely when ω(s) = ω(t) for each edge st ∈ L. The second product is
equal to 1 precisely when ω(s′) 6= ω(t ′) for each s′t ′ ∈ C (L). Thus the edges in the
lace require ω to have certain self-intersections, while the compatible edges enforce
certain self-avoidance conditions. The self-intersections required are illustrated in
Fig. 6.4. We refer to the walk configurations of Fig. 6.4 as lace graphs.

The simplest term is π (1)
m (x,y), which is zero if y 6= x, and which is the num-

ber of m-step self-avoiding returns to x when y = x. In the translation invariant

case, π (1)
m (x,y) can be expressed in terms of the number pm of m-step unrooted

unoriented self-avoiding polygons, by π (1)
m (x,y) = 2mpmδx,y when m > 2 (by con-

vention, p2 = 0).
For N ≥ 2, π (N)

m (x,y) counts m-step walk configurations as indicated in Fig. 6.4.
The number of loops in a diagram is equal to the number of edges in the correspond-
ing lace. In these diagrams, each line represents a self-avoiding walk, and the overall
walk begins at x and ends at y. The lines which are slashed correspond to subwalks
which may consist of zero steps, but the others correspond to subwalks consisting
of at least one step. The combined number of steps taken by all the subwalks is m. If
the 2N−1 subwalks in the N-loop diagram are sequentially labeled 1,2, . . . ,2N−1,
then the subwalks are mutually avoiding (apart from the required intersections) due
to the effect of the compatible edges, with the following patterns: [123] for N = 2;
[1234], [345] for N = 3; [1234], [3456], [567] for N = 4; [1234], [3456], [5678], [789]
for N = 5; and so on for larger N. In the above, e.g., for N = 4, the meaning is that
subwalks 1,2,3,4 are mutually avoiding apart from the enforced intersections ex-
plicitly depicted, as are subwalks 3,4,5,6 and subwalks 5,6,7. However, subwalks
not grouped together are permitted to freely intersect, e.g., for N = 4, subwalks
1,2 are permitted to intersect subwalks 5,6,7, and subwalks 3 and 4 can intersect
subwalk 7.
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6.4.4 Walks Without Immediate Reversals

The algebra used in deriving the lace expansion does not depend on the precise
form of the interaction Ust(ω), and other choices are possible. For example, we
could instead take

Ust(ω) =

{
−1 if ω(s) = ω(t) and t = s+ 2

0 otherwise.
(6.33)

With this choice, cn(x,y) of (6.25) simply counts the number of walks from x to y
that do not make any immediate reversals. For a non-zero contribution to πm(x,y) in
(6.30), laces must have all edges of length 2, and thus there is a unique lace on the
interval [0,m] and this lace contains m−1 edges. In this case, the lace graphs con-
sist of successive immediate reversals. For a vertex transitive (translation invariant)
graph with vertices of degree Ω , an examination of (6.31) shows that

∑
v∈V

π (N)
m (v) =

{
Ω if N = m−1
0 otherwise.

(6.34)

This reproduces the formula (6.16) of Example 3, with Π(z) = ∑∞
m=2 πmzm and πm =

∑m−1
N=1(−1)N ∑u∈V π (N)

m (v) = (−1)m−1Ω , as it leads to

Π(z) =
∞

∑
m=2

πmzm = −Ω
∞

∑
m=2

(−z)m. (6.35)

6.5 Self-Avoiding Walks and Polygons in Dimensions d > 4

The major mathematical problem for self-avoiding walks on Zd is to prove the exis-
tence and compute the values of the universal critical exponents γ,ν,α which appear
in the predicted asymptotic formulas

cn ∼ Aµnnγ−1, 〈|ω(n)|2〉n ∼ Dn2ν , cn(e) ∼ Bµnnα−2. (6.36)

Here 〈·〉n denotes expectation with respect to the uniform measure on the set of n-
step self-avoiding walks started from the origin. In the last formula, n is required to
be odd for the nearest-neighbour model, and e represents a neighbour of the origin.

In this section, we describe some of the results that have been obtained in this
direction using the lace expansion, for self-avoiding walks in dimensions d > 4.
The hypothesis d > 4 is used to ensure convergence of the lace expansion, e.g., in
the sense that ∑∞

m=2 m|πm|zm
c < ∞, where zc = 1/µ . There are now several different

approaches to proving convergence of the lace expansion, and we make no attempt
here to explain them. Perhaps the simplest approach, and many references to other
approaches, can be found in [42].
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All known convergence proofs require a small parameter to ensure conver-
gence. To prove that the critical exponent γ is equal to 1 amounts to proving
that d

dz [1/χ(z)]|z=zc is finite and non-zero, since cn ∼ Aµn corresponds to χ(z) ∼
A(1− µz)−1 as z ր zc. This, in turn, amounts to analysing zc

d
dz Π(zc) or, equiva-

lently, ∑∞
m=2 mπmzm

c . The m = 2 term in this sum is equal to 2Ωz2
c , and assuming

that zc is close to (Ω − 1)−1 and that Ω is large, this is close to 2Ω−1. For the
nearest-neighbour model with d large, or for the spread-out model with d > 4 and
L large, this approximation turns out to be reasonably accurate and ∑∞

m=2 m|πm|zm
c

is O(d−1) or O(L−d). In [19, 21], Hara and Slade used a computer assisted proof to
show that even for the nearest-neighbour model when d = 5 the small parameter is
small enough to allow for a proof of convergence of the lace expansion.

In particular, the following three theorems were proved in [19, 21].

Theorem 1. For the nearest-neighbour model in dimensions d ≥ 5, there are posi-
tive constants A,D such that the following hold:

(a) cn = Aµn[1 + O(n−ε)] as n → ∞, for any ε < 1/2.
(b) 〈|ω(n)|2〉n = Dn[1 + O(n−ε)] as n → ∞, for any ε < 1/4.

For d = 5, A ∈ [1,1.493] and D ∈ [1.098,1.803].

Theorem 1 is alluded to in the general discussion of the asymptotic behavior
of cn in Chapter 1, and additionally provides explicit bounds on the error terms.
A corollary of (a) is that limn→∞ cn+1/cn = µ . This is believed to be true in all
dimensions, but remains unproved for d = 2,3,4. It was proved by Kesten [32] that
limn→∞ cn+2/cn = µ2 in all dimensions.

Let Cd [0,1] denote the set of continuous functions f : [0,1]→ Rd , equipped with
the supremum norm. Given an n-step self-avoiding walk ω , we define a rescaled
version Xn ∈Cd [0,1] of the self-avoiding walk by setting Xn(k/n) = (Dn)−1/2ω(k)
for k = 0,1,2, . . . ,n, and taking Xn(t) to be the linear interpolation of this. We denote
by dW the Wiener measure on Cd [0,1]. The following theorem shows that for d ≥ 5
the scaling limit of the self-avoiding walk is Brownian motion.

Theorem 2. For the nearest-neighbour model in dimensions d ≥ 5, Xn converges
in distribution to Brownian motion, i.e., for any bounded continuous function f :
Cd [0,1] → C,

lim
n→∞

〈 f (Xn)〉n =
∫

f dW.

Perhaps the most basic application of the above theorem is to the case f (X) =
eik·X(1). In this case, Theorem 2 gives

lim
n→∞

〈eik·ω(n)/
√

Dn〉n = e−|k|2/2d , (6.37)

i.e., the scaling limit of the endpoint of the self-avoiding walk has a Gaussian dis-
tribution. Note that the expression under the limit in the above equation can also be
written as ĉn(k/

√
Dn)/cn; this shows the relevance of the Fourier transform of cn(x)

in understanding the scaling limit.
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The results for self-avoiding polygons in dimensions d ≥ 5 are less complete than
those above. Since pn = 1

2n ∑e∈N cn−1(e), the study of cn(x) is more general than
the study of self-avoiding polygons. Ideally one would like a result which states that
cn−1(e)∼ Bµnn−d/2 for d > 4, but this has not been proved. The following theorem
from [21] proves an upper bound on the generating function for cn(x) which is
consistent with this asymptotic behaviour. Madras [36] has proved bounds valid for
general d, believed not to be sharp.

Theorem 3. For the nearest-neighbour model in dimensions d ≥ 5, for any a <
(d −2)/2,

sup
x∈Zd

∞

∑
n=0

nacn(x)µ−n < ∞.

Stronger results for cn(x) have been obtained for the spread-out model in dimen-
sions d > 4. The best results can be found in [24], and include the following as a
very special case. In the statement of the theorem, µ denotes the connective constant
for the spread-out model.

Theorem 4. Consider the spread-out model in dimensions d > 4. Let 0 < δ <
min{1, d−4

2 }. There is an L0 such that for L ≥ L0 the following statements hold:
(a) There exist positive constants a and b (depending on d and L), such that for all
k ∈ Rd with |k|2 bounded by a constant, as n → ∞,

ĉn(k/
√

bn) = aµne−|k|2/2d[1 + O(n−(d−4)/2)+ O(|k|2n−δ )
]
. (6.38)

(b) There are constants C1,C2 (depending on d but not L) such that

C1µnL−dn−d/2 ≤ sup
x∈Zd

cn(x) ≤C2µnL−dn−d/2. (6.39)

Note that for k = 0, Theorem 4(a) gives

cn = aµn[1 + O(n−(d−4)/2)
]
, (6.40)

which is a better error bound than that proved for the nearest-neighbour model in
Theorem 1. It was predicted in [15] that the O(n−(d−4)/2) is sharp, and by univer-
sality we expect it to hold also for the nearest-neighbour model (this is confirmed
numerically in [8]). In [24], a version of Theorem 4 is obtained in the much more
general setting of cycle-free networks of mutually-avoiding self-avoiding walks. For
arbitrary networks, possibly with cycles, see [26].

Theorem 4(a) provides a central limit theorem for the endpoint of the spread-
out self-avoiding walk in dimensions d > 4. It is natural to wonder if Theorem 4(b)
extends to a local central limit theorem, i.e., a statement that c−1

n cn(x
√

bn) is asymp-
totically Gaussian (when x has the same parity as n). Such an extension follows from
the results of [23, 24]. Some care is needed with such a statement, since cn(0) = 0
for all n ≥ 1, and to eliminate this local effect we average over a region that grows
with n. For the averaging, we denote the cube of radius R centred at x ∈ Zd by
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CR(x) = {y ∈ Zd : ‖x− y‖∞ ≤ R}, (6.41)

with cardinality |CR(x)|. Let ⌊x⌋ denote the closest lattice point in Zd to x∈Rd (with
some arbitrary rule to break ties).

Theorem 5. Consider the spread-out model in dimensions d > 4. Let Rn be any
sequence with limn→∞ Rn = ∞ and limn→∞ n−1/2Rn = 0. There is an L0 such that for
L ≥ L0, and for any x ∈ Rd with |x|2[logRn]

−1 sufficiently small, as n → ∞,

1

|CRn(⌊x
√

bn⌋)| ∑
y∈CRn (⌊x

√
bn⌋)

cn(y)
cn

∼
(

d
2πbn

)d/2

e−d|x|2/2, (6.42)

in the sense that the limit of the ratio of the two sides is 1.

The Gaussian limit (6.42) does not follow directly from the convergence of the
Fourier transform in Theorem 4. The latter implies that sums over cubes of side√

n converge to integrals of the Gaussian density, whereas (6.42) permits arbitrarily
slow growth of Rn.

Finally, we mention that rigorous results have been proved for the scaling of the
weakly self-avoiding walk on a 4-dimensional hierarchical lattice, using renormal-
isation group methods [5, 6]. The 3-dimensional cubic lattice appears to be well
beyond the reach of any currently known methods. For d = 2, there is very strong
evidence [34] that the scaling limit is given by SLE8/3, but the problem of proving
existence of the scaling limit remains open.

6.6 Self-Avoiding Walk Enumeration and 1/d Expansions

6.6.1 Self-Avoiding Walk Enumeration via the Lace Expansion

For the nearest-neighbour model on Zd , (6.22) states that

cn = 2dcn−1 +
n

∑
m=2

πmcn−m. (6.43)

Let
π (N)

m = ∑
x∈Zd

π (N)
m (x) (6.44)

denote the number of N-loop lace graphs of length m, so that πm = ∑m−1
N=1(−1)Nπ (N)

m .
Equation (6.43) recursively expresses the number of self-avoiding walks of length n
in terms of πm, and thus allows for the determination of cn from the number of lace
graphs with m ≤ n and N ≤ n−1. The lace graph trajectories, shown in Fig. 6.4, are
less spatially extended than SAWs of the same length, and are hence less numerous.
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In [8], nearest-neighbour self-avoiding walks on Zd were enumerated in dimen-
sions d ≥ 3 by enumeration of lace graphs together with (6.43). The value of cn was
determined for n ≤ 30 for d = 3 and for n ≤ 24 for all d ≥ 4 (knowledge of πm for
m ≤ 24 and d ≤ 12 determines πm also for d > 12, since lace graphs with at most
24 steps can occupy at most 12 dimensions). In practice, for the cubic lattice it was
found that there are approximately 525 times as many 30-step self-avoiding walks
as compared to 30-step lace graphs. This factor was found to get much larger as
the dimension is increased: the factor for d = 4, n = 24 is approximately 1700, for
d = 5, n = 24, it is approximately 6200, while for d = 6, n = 24, it is approximately
20000.

The simplest lace graphs are the self-avoiding returns counted by π (1)
m , and their

enumeration is equivalent to the enumeration of self-avoiding polygons. Polygons
were counted in [8] using the so-called two-step method. The two-step method is
an innovation for the direct enumeration of self-avoiding walks and reduces the
exponential complexity of the enumeration problem. For details, we refer to [8].
In [8], the two-step method was used to count polygons and, more generally, to
enumerate lace graphs needed to determine πm. For polygons, the results of [8] are
slightly better than those for general lace graphs: p32 is determined for d = 3, and
p26 is determined for d = 4.

6.6.2 1/d Expansions via the Lace Expansion

Next, we indicate how knowledge of the values of πm for the d-dimensional nearest-
neighbour model can be combined with estimates on the lace expansion to derive
1/d expansions for the connective constant µ and for the amplitudes A and D of
Theorem 1.

Let zc = 1/µ denote the radius of convergence of the susceptibility χ(z) =

∑∞
n=0 cnzn. It is a consequence of the simple inequality cn+m ≤ cncm that cn ≥ µn

for all n, and from this it follows that χ(z) ր ∞ as z ր zc. Therefore 1/χ(z) =
1−2dz−Π(z)ց 0 as z ր zc. In particular, limzրzc Π(z) = 1−2dzc. It is proved in
[21] that, for d ≥ 5, limzրzc Π(z) = Π(zc), and therefore zc obeys the equation

zc =
1

2d

[
1−

∞

∑
m=2

πmzm
c

]
. (6.45)

This equation was used recursively in [22] to prove that zc has an asymptotic expan-
sion zc ∼ ∑∞

i=1 ai(2d)−i, to all orders, with integer coefficients ai.
Well-developed lace expansion methods (see [8]) show that for each N ≥ 1 and

j ≥ 2 there are constants CN ,CN, j , independent of sufficiently large d, such that

∞

∑
m=2

m−1

∑
M=N

π (M)
m zm

c ≤CNd−N ,
∞

∑
m= j

π (N)
m zm

c ≤CN, jd
− j/2. (6.46)
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It then follows from (6.45) and (6.46) that

zc =
1

2d

[
1−

2N

∑
m=2

N

∑
M=1

(−1)Mπ (M)
m zm

c

]
+ O(d−N−2), (6.47)

where we have used the fact that zc has an asymptotic expansion in powers of d−1,
to replace an error term of order d−N−3/2 by one of order d−N−2. Knowledge of the

coefficients π (M)
m (as polynomials in d) for m ≤ 2N and M ≤ N permits the recursive

calculation of the terms in the 1/d expansion for zc up to and including order d−N−1.
The enumerations of [8] with m ≤ 24, M ≤ 12 give

zc = 1
2d + 1

(2d)2 + 2
(2d)3 + 6

(2d)4 + 27
(2d)5 + 157

(2d)6 + 1065
(2d)7 + 7865

(2d)8 + 59665
(2d)9

+ 422421
(2d)10 + 1991163

(2d)11 − 16122550
(2d)12 − 805887918

(2d)13 + O
(

1
(2d)14

)
. (6.48)

Taking the reciprocal gives

µ = 2d−1− 1
2d − 3

(2d)2 − 16
(2d)3 − 102

(2d)4 − 729
(2d)5 − 5533

(2d)6 − 42229
(2d)7

− 288761
(2d)8 − 1026328

(2d)9 + 21070667
(2d)10 + 780280468

(2d)11 + O
(

1
(2d)12

)
. (6.49)

Equations (6.48) and (6.49) more than double the length of the previously known
series [10, 22, 39], which were known up to and including the term −102(2d)−4

in (6.49). The error estimates are rigorous. The above expansions would appear to
have radius of convergence zero, but there is no proof of this; it would be of interest
to study their Borel summability. The critical temperature of the spherical model is
known to have an asymptotic 1/d expansion with radius of convergence zero [13],
and the suggestion that this is true rather generally for 1/d expansions of critical
points was made in [11]. Note the change in sign at the term (2d)−10; a similar sign
change is observed in [13] for the critical temperature of the spherical model.

It is proved in [21] that for d ≥ 5 the amplitudes A and D of Theorem 1 are given
by the formulas

1
A

= 2dzc +
∞

∑
m=2

mπmzm
c , D = A

[
2dzc +

∞

∑
m=2

rmzm
c

]
, (6.50)

where rm = ∑x∈Zd |x|2πm(x). The formula for A can be understood from the fact that
γ = 1 for d ≥ 5 and hence the susceptibility χ(z) = 1/F(z) should be given approxi-
mately by [F ′(zc)(z− zc)]

−1, according to Taylor’s theorem. The coefficient cn of zn

is given in this approximation to be [−zcF ′(zc)]
−1z−n

c . This gives A−1 = −zcF ′(zc),
and using the formula F(z) = 1− 2dz−Π(z) from (6.18) gives the above formula
for A. The formula for D can be found similarly, using the fact that ∑x |x|2cn(x) is
the coefficient of zn in −∇2Ĝ(k;z)|k=0, where ∇ represents the gradient with respect
to the vector k. To leading order, if we write Ĝ(k;z) = 1/F̂(k;z), this is given by
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−∇2Ĝ(0;z) =
∇2F̂(0;z)

F̂(0;z)2
≈ ∇2F̂(0;zc)

[F ′(zc)(z− zc)]2
, (6.51)

where we have used F̂(0;z) = F(z). Expansion of the right-hand side in powers of
z then gives the desired formula for D.

It can be argued from (6.50) using an extension of (6.46) (see [8]) that

1
A

= 2dzc +
2N

∑
m=2

N

∑
M=1

(−1)Mmπ (M)
m zm

c + O(d−N−1) (6.52)

and

D = A

[
2dzc +

2N

∑
m=2

N

∑
M=1

(−1)Mr(M)
m zm

c

]
+ O(d−N−1), (6.53)

with r(M)
m = ∑x∈Zd |x|2π (M)

m (x). Insertion of (6.48) and the enumerations of [8] for
m ≤ 24, M ≤ 12 into (6.52) and (6.53) then give

A = 1 + 1
2d + 4

(2d)2 + 23
(2d)3 + 178

(2d)4 + 1591
(2d)5 + 15647

(2d)6 + 164766
(2d)7 + 1825071

(2d)8

+ 20875838
(2d)9 + 240634600

(2d)10 + 2684759873
(2d)11 + 26450261391

(2d)12 + O
(

1
(2d)13

)
, (6.54)

D = 1 + 2
2d + 8

(2d)2 + 42
(2d)3 + 284

(2d)4 + 2296
(2d)5 + 21024

(2d)6 + 210306
(2d)7 + 2242084

(2d)8

+ 24909542
(2d)9 + 280764914

(2d)10 + 3079111998
(2d)11 + 29964810674

(2d)12 + O
(

1
(2d)13

)
. (6.55)

This extends the series up to and including order (2d)−5 that were reported in [12,
39] and [38] for A and D, respectively, and also provides rigorous error estimates.

6.7 The Antiferromagnetic Singularity

There is strong numerical evidence that the number of self-avoiding walks on the
lattice Zd for d = 2 is given asymptotically by

cn ∼ µnnγ−1
(

A +
a1

n
+

a2

n3/2
· · ·
)

+(−µ)nnα−2
(

b0 +
b1

n
+ · · ·

)
(6.56)

and for d ≥ 3 by

cn ∼ µnnγ−1
(

A +
a1

nθ + · · ·
)

+(−µ)nnα−2
(

b0 +
b1

nθ + · · ·
)

(6.57)
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(with a log correction when d = 4); see [28] for d = 2 and [8] for d ≥ 3. Similar
asymptotic behaviour applies also for the honeycomb lattice [30]. The µnnγ−1 term
is the familiar leading asymptotic form for cn, but the (−µ)nnα−2 term also appears,
with the polygon exponent α . These two terms are reflections of singularities of the
generating function χ(z): one of the form (1− z/zc)

−γ at z = zc, and another of
the form (1 + z/zc)

1−α at z = −zc. The latter is referred to as the antiferromagnetic
singularity.

The direct theoretical evidence for existence of the antiferromagnetic singular-
ity seems to be rather thin, despite the fact that its existence has been recognised
for decades [14]. The bipartite nature of Zd and the honeycomb lattice plays an
important role in the existence of the antiferromagnetic singularity: for example,
numerical evidence shows that the antiferromagnetic singularity does not occur for
the triangular lattice [29].

The hyperscaling relation 2−α = dν allows the leading behaviour in the second
term of (6.57) to be rewritten as (−µ)nn−dν , and the predicted value of ν implies
that dν > 1 for all d ≥ 2. This corresponds to a finite value for χ(−zc), but indicates
that derivatives of χ of order dν −1 = 1−α or higher will diverge at −zc.

In this section, we first make a connection between the numerically observed
sign alternation in the sequence πm and the existence of the antiferromagnetic sin-
gularity. We then draw parallels between the role of the polygon exponent α in the
asymptotic behaviour of πm and in the asymptotic behaviour of the susceptibility
near the antiferromagnetic singularity. Finally, we report the results of series anal-
ysis of 1/χ(z) (equivalent to an analysis of Π(z)) via differential approximants,
which provides the locations of the zeroes of the susceptibility.

This section is not devoted to rigorous results, but is a combination of heuristic
arguments and numerical observations.

6.7.1 Sign Alternation of πm

There is now significant numerical evidence that πm alternates in sign for nearest-
neighbour self-avoiding walks on Zd (d ≥ 1) and on the honeycomb lattice, which
are all bipartite lattices. For d = 1, the sign alternation is immediate from Example 3
of Section 6.3, where Π(z) =−2∑∞

m=2(−z)m. The values of πm can be computed for
m ≤ 71 on the square lattice and for m ≤ 105 on the honeycomb lattice using (6.22)
and the enumeration of cn given in [28, 30]. In both cases, the signs are strictly
alternating. For d ≥ 3, the values of πm are known for m ≤ 30 when d = 3 and for
m ≤ 24 for all d ≥ 4, due to the lace graph enumerations of [8]. In all these cases,
the signs are strictly alternating.

On the other hand, for the triangular lattice direct enumeration shows that π2 =
π3 = −6, and the strict sign alternation fails. A similar result is observed for the fcc
lattice. The triangular and fcc lattices are not bipartite.

A bipartite graph is characterised by the absence of odd cycles, which in the

translation invariant case is equivalent to the vanishing of π (1)
m for all odd m. This
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means that we can write (recall (6.32) and (6.44)) for integer m

π2m = −
m

∑
M=1

(
π (2M−1)

2m −π (2M)
2m

)
(6.58)

π2m−1 =
m−1

∑
M=1

(
π (2M)

2m−1 −π (2M+1)
2m−1

)
. (6.59)

For Zd , the values of π (N)
m are enumerated in [8] for m ≤ 30, d = 2,3, and m ≤

24, d ≥ 4. For this range of parameters, we have explicitly verified that π (2M−1)
m −

π (2M)
m > 0 for even m, and that π (2M)

m − π (2M+1)
m > 0 for odd m. With (6.58) and

(6.59), this gives rise to sign alternation for πm. (It also raises the question of whether

π (N)
m −π (N+1)

m has a combinatorial interpretation.) The enumerations of [8] actually
give a more refined version of the above two inequalities: they are obeyed also if

π (N)
m is replaced by π (N)

m,δ , which counts the number of lace graphs which occupy
exactly δ dimensions.

If the sequence πm does indeed strictly alternate in sign for sufficiently large m,
then its generating function Π(z) = ∑∞

m=2 πmzm will have its dominant singularity on
the negative real axis. We expect that on lattices such as Zd , the honeycomb lattice
and the triangular lattice, the singularity of χ(z) at zc is not merely a pole, so that
Π(z) will also be singular at zc. (Note, however, that for self-avoiding walks on a tree
of degree Ω ≥ 3, Example 3 shows that χ(z) has a simple pole at zc = 1/(Ω −1)< 1
while Π(z) has its closest singularity at −1.) A singularity of Π(z) at −xc with
0 < xc < zc is possible a priori, but since χ(z) is analytic in the disk of radius zc

such a singularity of Π(z) could only be a pole, corresponding to a zero of χ(z).
We find no numerical evidence for this possibility on Zd or the honeycomb lattice,
as we discuss below. Assuming the absence of such a pole, we conclude that sign
alternation of πm corresponds to a singularity of Π(z) at −zc, and that this is the
origin of the antiferromagnetic singularity.

There is currently no proof that πm remains strictly alternating on the honeycomb
lattice or on Zd for any d ≥ 2. It is an appealing though perhaps difficult problem to
prove this.

6.7.2 πm and the Polygon Exponent α

The asymptotic form (6.57) implies that 1/χ(z) should vanish like (1 − z/zc)
γ

near +zc, while near −zc its singular part should behave like (1 + z/zc)
1−α =

(1 + z/zc)
dν−1. Consider first the dimensions d = 2,3. For d = 2,3, the numeri-

cal values of γ and ν are such that the antiferromagnetic singularity is the dominant
one, i.e., dν − 1 < γ . Since πm is the mth coefficient in the series for 1/χ(z), this
suggests that

πm ∼ c(−µ)mmα−2 (d = 2,3). (6.60)
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Recall that πm = ∑∞
N=1(−1)Nπ (N)

m is the alternating sum of lace graph counts. The

term π (1)
m just counts self-avoiding returns, whose asymptotic behaviour is predicted

to be given by µmmα−2, again with the polygon exponent. It is tempting to guess that

π (N)
m has this same asymptotic form for all N, but we have insufficient data to verify

this numerically. If it does, then the form (6.60) would arise from an alternating sum
of counts of objects which are each governed by the polygon exponent α .

The case d = 4 is delicate due to logarithmic corrections, but dimensions d > 4
are also more subtle. For d > 4, the error term in (6.40) can be expected to be
sharp, and to be the source of a singularity (1− z/zc)

(d−2)/2 in the susceptibility.
Since the power 1−α is also equal to d−2

2 , this indicates that the ferromagnetic
and antiferromagnetic singularities are of equal strength, so that (6.60) should be
replaced by

πm ∼ [c+ + c−(−1)m]µmm−d/2 (d > 4). (6.61)

The observed fact that the sequence πm does alternate in sign for m ≤ 24 suggests
that the antiferromagnetic singularity still dominates, in the sense that |c−| > |c+|.

For dimensions d > 4, it is proved in [23, 24] that for spread-out models with

d > 4 and L large (see (6.2)), π (N)
m ≤ (cL−d)N µmm−d/2 and therefore |πm| ≤

∑∞
N=1 π (N)

m ≤CL−d µmm−d/2. This verifies (6.61) as a one-sided bound, and supports

the belief that π (N)
m may have the same asymptotic form for all N. In particular, it

proves that Π(z) cannot have a singularity inside the disk of radius zc. Universality
suggests that the same behaviour should apply also for the nearest-neighbour model.

For dimensions d = 2,3, there are no rigorous results to help verify (6.60), so
it is useful to turn to series analysis. The extensive methodology that has been de-
veloped for series analysis is discussed in Chapter 8 by Guttmann and Jensen (a
classic earlier reference is [16]). An important method of series analysis is that of
differential approximants, a powerful technique which is quite generally applicable
and often (although not always) more effective than any other known method. The
method of differential approximants can provide information about the singularities
of a generating function for which we know a finite number of series coefficients,
including poles, power law singularities and their confluent corrections.

We have applied the method of differential approximants to analyse the recip-
rocal series 1/χ(z) for the square, honeycomb and triangular lattices, and for Zd

with 3 ≤ d ≤ 8 (the susceptibility series itself was analysed in the original papers
[8, 28, 29, 30]). Long series which are approaching the asymptotic regime are the
most amenable to series analysis, and we obtain our most accurate results for the
2-dimensional lattices. Information for Zd with d ≥ 3 is far more difficult to ex-
tract owing to the availability of only relatively short series [8], and the existence of
strong corrections to scaling for d = 3.

In all cases, we find that Π(z) clearly has radius of convergence zc with leading
singularity at the ferromagnetic singularity −zc. This confirms the leading exponen-
tial growth (−µ)m of (6.60). However, we find that information about critical expo-
nents is degraded with reciprocal series, and more accurate estimates for the power
law correction to the leading exponential behaviour (−µ)n for πm are obtained from
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the prior analyses of χ(z) than we find via analysis of 1/χ(z). (Dlog Padé approxi-
mants give the same results for χ(z) and 1/χ(z), but the dlog Padé method is not as
accurate as more general differential approximants, which give different results.)

6.7.3 Zeroes of the Susceptibility

Although the analysis of 1/χ(z) via differential approximants did not prove to be
fruitful for an accurate determination of the exponent α , such analysis does yield
the location of susceptibility zeroes, which correspond to poles of 1/χ(z). In this
section, we report the location of zeroes of χ(z) found in this manner.

Square lattice. For the square lattice, the analysis of χ(z) in [28] clearly confirms the
existence of the antiferromagnetic singularity at −zc =−0.379052 . . . with the poly-
gon exponent α = 1

2 . We find that the differential approximants for 1/χ(z), most
clearly the first-order inhomogeneous approximants, detect a pole at z∗ ≈ −0.3758.
This would seem to imply the unexpected result that the radius of convergence of
Π(z) is strictly less than zc. However, direct integration of the differential equations
of the differential approximant method to determine the amplitude of χ(z) at this
point shows that χ(z∗) > 0. The apparent contradiction can be resolved as follows:

Let us assume that

χ(z) ∼ A(z)(1 + z/zc)
1/2 + B(z) (6.62)

near z = −zc (with the critical amplitude A(z) and background amplitude B(z) an-
alytic at −zc), and also assume that χ(z) > 0 for z ∈ (−zc,0]. If we integrate the
differential equation from the differential approximant for χ(z) along the negative
axis to a point z = −zc + ε , we obtain a function of the form (6.62), with approx-
imate values for the exponent and zc. If we then integrate the differential equation
around the circle |z + zc| = ε , starting and ending at z = −zc + ε , the non-analytic
part will pick up a factor of exp(π i) = −1. We are now on a different Riemann
sheet, and it is possible for χ(z) to have a zero provided that there is a solution of
−A(z)(1+ z/zc)

1/2 +B(z) = 0. We confirm this numerically by using the procedure
of Velgakis et al. [45] to find A(z) and B(z) in the vicinity of z = −zc, and observe
that there is a zero at a value close to z∗ = −0.3758. Thus the pole observed in the
analysis of 1/χ(z) in fact corresponds to a zero of χ(z) in the Riemann sheet vis-
ited by circling around the singularity at −zc. We do not detect any other poles in
1/χ(z).

Honeycomb lattice. For the honeycomb lattice, the antiferromagnetic singularity is
clearly seen in [30]. Without performing a careful error analysis we find, via differ-
ential approximant analysis, a complex conjugate pair of simple poles of 1/χ(z) at
z = −0.262426± 0.676916i, with the error likely to be confined to the final digit.
These poles lie outside the circle |z| = zc. We confirm that these are genuine zeroes
of χ(z) by integrating the differential equations obtained via the differential approx-
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imant method to obtain a representation of χ(z), and confirming that the amplitude
of χ(z) is very small in the vicinity of these points.

Triangular lattice. For the triangular lattice there is, as expected, no sign of the an-
tiferromagnetic singularity [28]. Analysis of 1/χ(z) reveals two complex conjugate
pairs of poles at z =−0.464±0.331i, and z = −0.204±0.611i, well outside the ra-
dius of convergence determined by zc = 0.24091 . . .. We have again confirmed that
these poles correspond to zeroes of the susceptibility.

Dimensions 3≤ d ≤ 8. Using differential approximants and the enumerations of [8],
we clearly observe the antiferromagnetic singularity at −zc, but we find no evidence
of any poles for 1/χ(z) anywhere in the complex plane, and thus no evidence of
zeroes of the susceptibility.

As a technical point, we find that the first-order inhomogeneous approximants
seem to be much more effective than higher order approximants at pinpointing the
location of the poles of 1/χ(z). This is probably due to the fact that the more re-
strictive functional form, which does not allow for confluent corrections, is more
appropriate for fitting the function in the immediate vicinity of the pole.

6.8 Lattice Trees

The lace expansion has been applied to a wide range of models [42]. The simplest
extension beyond self-avoiding walks is to lattice trees. In this section we discuss
some results for lattice trees in dimensions d > 8, without entering into details about
the methods of proof.

A lattice tree on Zd is defined to be a finite connected2 set of bonds which
contains no cycles (closed loops). Bonds are pairs {x,y} of vertices of Zd , with
y−x∈N , where N is given either by the nearest-neighbour set (6.1) or the spread-
out set (6.2). Although a lattice tree T is defined as a set of bonds, we will write x∈T
if x is an element of a bond in T . The number of bonds in T is denoted |T |, and the
number of vertices in T is thus |T |+ 1.

A basic combinatorial problem is to count the number of lattice trees of fixed

size. Let t(1)
n denote the number of n-bond lattice trees that contain the origin. It is

customary to count lattice trees modulo translation, namely to consider tn defined
by

tn =
1

n + 1
t(1)
n . (6.63)

A sub-additivity argument [33] shows that there is a positive constant λ such that

limn→∞ t1/n
n = λ . The precise asymptotic behaviour of tn as n → ∞ is believed to be

given by
tn ∼ Aλ nn−θ , (6.64)

where θ is a universal critical exponent. The bounds

2 This is the standard graph-theory definition of a connected graph.
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c1λ nn−c2 logn ≤ tn ≤ c3λ nn−(d−1)/d, (6.65)

were proved respectively in [27] and [37] for general dimensions d ≥ 2. The upper
bound does provide a power law correction, but it is predicted that θ > (d − 1)/d
for all d ≥ 2.

Let x̄T = (|T |+ 1)−1 ∑x∈T x denote the centre of mass of T (considered as a set
of equal masses at the vertices of T ), and let

R(T )2 =
1

|T |+ 1 ∑
x∈T

|x− x̄T |2 (6.66)

denote the squared radius of gyration of T . The typical length scale of a lattice tree
is characterized by the average radius of gyration Rn, defined by

R2
n =

1

t(1)
n

∑
T :|T |=n,T∋0

R(T )2. (6.67)

It is predicted that there is a universal critical exponent ν such that

Rn ∼ Dnν . (6.68)

Based on a field theoretic representation, it was argued in [35] that the upper
critical dimension for lattice trees is 8. Further evidence for this was given in [2,
43, 44]. The mean-field values of the exponents are θ = 5

2 and ν = 1
4 . The value

ν = 1
4 corresponds in (6.68) to n being asymptotic to a multiple of R4

n, which is a
statement of 4-dimensionality. The fact that two 4-dimensional objects generically
do not intersect above eight dimensions gives a quick prediction that d = 8 is the
upper critical dimension for lattice trees.

The lace expansion has been used to prove a number of results for lattice trees in
dimensions d > 8. The following theorem from [20] proves that θ = 5

2 and ν = 1
4

in high dimensions.

Theorem 6. For nearest-neighbour lattice trees with d sufficiently large, or for
spread-out lattice trees with d > 8 and L sufficiently large, there are positive con-
stants A and D (depending on d,L) such that for every ε < min{ 1

2 , d−8
4 },

tn = Aλ nn−5/2[1 + O(n−ε)], (6.69)

Rn = Dn1/4[1 + O(n−ε)]. (6.70)

A lattice animal is a finite connected set of bonds which may contain closed
loops. It is believed that lattice animals belong to the same universality class as
lattice trees, so that both models have the same critical exponents and scaling limits.
Results related to Theorem 6 have been obtained for lattice animals, in terms of
generating functions [18].

Information about the spatial distribution of lattice trees is contained in the num-
ber tn(x) of n-bond lattice trees containing the vertices 0,x ∈ Zd . The scaling be-
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haviour of the Fourier transform of tn(x) in high dimensions is given in the following
theorem from [9].

Theorem 7. For nearest-neighbour lattice trees with d sufficiently large, or for
spread-out lattice trees with d > 8 and L sufficiently large, as n → ∞,

t̂(2)
n (kD−1

1 n−1/4) ∼ Aλ nn−1/2
∫ ∞

0
dt t e−t2/2e−|k|2t/2d , (6.71)

where D1 = 23/4π−1/4D, and where A and D are the constants of Theorem 6.

The scaling of the Fourier variable k by kn−1/4 = kn−ν in (6.71) corresponds
to rescaling the lattice Zd to n−1/4Zd , and (6.71) is a statement about the scaling

limit of t(2)
n (x) in Fourier language. Theorem 7 provides a first step in understand-

ing the scaling limit of lattice trees in dimensions d > 8—the full scaling limit has
been obtained by proving corresponding statements for the number of n-bond lattice
trees containing vertices x1, . . . ,xl for all l ≥ 1. Under the hypotheses of Theorem 7,
the scaling limit for d > 8 has been shown to be given by the random measure on
Rd known as integrated super-Brownian excursion (ISE) [9, 42], as was first con-
jectured by Aldous [1]. In a somewhat different formulation, the scaling limit can
also be interpreted as the measure-valued stochastic process known as the canonical
measure of super-Brownian motion [25]. This is part of a larger story in which the
scaling limit of various high-dimensional critical branching models can be under-
stood in terms of super-Brownian motion [41, 42].

A mathematically rigorous analysis of critical exponents for lattice trees in low
dimensions appears to be beyond the reach of current methods. However, there has
been recent progress by Brydges and Imbrie [3, 4] on a very natural model of con-
tinuous branched polymers in Rd , which is expected to be in the same universality
class as lattice trees. Inspired by ideas of Parisi and Sourlas [40], in their remarkable
paper [3] Brydges and Imbrie proved existence of critical exponents for their con-
tinuum model in dimensions d = 2 and 3 (with partial results for d = 4), with values
θ = 1 for d = 2, and θ = 3

2 , ν = 1
2 for d = 3. An alternate approach to the results of

Brydges and Imbrie has recently been obtained by Kenyon and Winkler [31].
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26. M. Holmes, A.A. Járai, A. Sakai, and G. Slade. High-dimensional graphical networks of
self-avoiding walks. Canad. J. Math., 56:77–114, (2004).

27. E.J. Janse van Rensburg. On the number of trees in Z d . J. Phys. A: Math. Gen., 25:3523–
3528, (1992).

28. I. Jensen. Enumeration of self-avoiding walks on the square lattice. J. Phys. A: Math. Gen.,
37:5503–5524, (2004).

29. I. Jensen. Self-avoiding walks and polygons on the triangular lattice. J. Stat. Mech., P10008,
(2004).

30. I. Jensen. Honeycomb lattice polygons and walks as a test of series analysis techniques. J.
Phys.: Conf. Series, 42:163–178, (2006).

31. R. Kenyon and P. Winkler. Branched polymers in 2 and 3 dimensions. To appear in Amer.
Math. Monthly.

32. H. Kesten. On the number of self-avoiding walks. J. Math. Phys., 4:960–969, (1963).
33. D.J. Klein. Rigorous results for branched polymer models with excluded volume. J. Chem.

Phys., 75:5186–5189, (1981).
34. G.F. Lawler, O. Schramm, and W. Werner. On the scaling limit of planar self-avoiding walk.

In Fractal geometry and applications: a jubilee of Benoı̂t Mandelbrot, Part 2, pages 339–364,
Proc. Sympos. Pure Math., 72, Part 2. Amer. Math. Soc., Providence, RI, (2004).

35. T.C. Lubensky and J. Isaacson. Statistics of lattice animals and dilute branched polymers.
Phys. Rev., A20:2130–2146, (1979).

36. N. Madras. Bounds on the critical exponent of self-avoiding polygons. In R. Durrett
and H. Kesten, editors, Random Walks, Brownian Motion and Interacting Particle Systems,
Boston, (1991). Birkhäuser.
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