
Chapter 5
The Anisotropic Generating Function of
Self-Avoiding Polygons is not D-Finite

Andrew Rechnitzer

5.1 Introduction

The enumeration of self-avoiding polygons, and other families of lattice animals, is
one of the most famous problems in enumerative combinatorics, and despite many
years of intensive study these problems remain completely open.

Let pn be the number of self-avoiding polygons on the square lattice of perimeter
2n and let G(z) = ∑ pnzn be the corresponding generating function. Neither an ex-
plicit nor a useful implicit expression is known for either the G(z) or pn. The most
efficient means of computing pn is the finite-lattice method (see Chapter 7). This
method is exponentially faster than brute-force enumeration (and considerably so!),
but still requires exponential time and space.

One of the most fruitful approaches has been the study of simpler combinatorial
models in which extra conditions such as directedness or convexity are imposed (see
Chapter 3). Almost all these models when enumerated by their number of bonds,
however, share the property that their generating functions are the solutions of ordi-
nary linear differential equations with polynomial coefficients—differentiably finite
or D-finite functions.

Definition 1. Let F(z) be a formal power series in z with coefficients in C. It is said
to be differentiably finite or D-finite if there exists a non-trivial differential equation:

Pd(z)
dd

dzd F(z)+ · · ·+ P1(z)
d
dz

F(z)+ P0(z)F(z) = 0, (5.1)

with Pj a polynomial in z with complex coefficients [12].

D-finite functions have many nice properties including having a finite number of
singularities [22]. Additionally a knowledge of the differential equation is sufficient
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to compute the coefficients of the generating function in linear time and also their
asymptotic behaviour.

In this work we seek to show that the generating function of self-avoiding poly-
gons is distinctly different from those of models that have been solved to date, in that
it is not D-finite, and so give some explanation why the problem remains unsolved.
One way of doing this would be show that it has an infinite number of singularities;
while there is strong numerical data for the location of the dominant singularity (see
[2, 10] for example), very little is known about subdominant singularities.

Guttmann and Enting [8] devised a numerical method for examining the sin-
gularity structure of solved and unsolved lattice models based on their anisotropic
generating function. Their survey of these generating functions demonstrated a dis-
tinct difference between solved and unsolved bond animal problems. They observed
a similar difference for thermodynamic functions of lattice models of magnets such
as the Ising model free-energy and susceptibility. They proposed that this could be
used as a test of “solvability”; it provides compelling evidence that the anisotropic
generating functions of many unsolved problems are not D-finite. In this article we
prove that this is indeed the case for self-avoiding polygons.

To form this generating function we distinguish between vertical and horizontal
bonds, and so count according to the vertical and horizontal half-perimeters

G(x,y) = ∑
P∈G

x|P|↔y|P|l , (5.2)

where G is the set of all self-avoiding polygons, |P|↔ and |P|l respectively denote
the horizontal and vertical half-perimeters of a polygon P. By partitioning G ac-
cording to the vertical half-perimeter we may resum the above generating function
as

G(x,y) = ∑
n≥1

yn ∑
P∈Gn

x|P|↔ = ∑
n≥1

Hn(x)y
n, (5.3)

where Gn is the set of SAPs with 2n vertical bonds, and Hn(x) is its horizontal half-
perimeter generating function.

In some sense, the anisotropic generating function is a more manageable object
than the isotropic. Splitting the set of animals, G , into separate simpler subsets, Gn,
breaks the problem into smaller pieces, each of which is easier to study than the
whole. If one seeks to compute the isotropic generating function then one must ex-
amine all possible configurations that can occur in G . Arguably, this is the reason
that the only families of bond animals that have been solved are those with severe
topological restrictions (such as directedness or convexity). On the other hand, if we
examine the generating function of Gn, then the number of different shapes that can
occur is always finite (this idea will be made more precise below). Similarly, instead
of trying to study the properties of the whole (possibly unknown) generating func-
tion, the anisotropy separates the generating function into separate simpler pieces,
Hn(x), that can be calculated exactly (for small n). By studying the properties of
these coefficients, particularly their singularities, we can obtain some idea of the
properties of the generating function as a whole.
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While no solution is known for G(x,y), the first few coefficients of y may be
computed exactly 1 . This was done for self-avoiding polygons (and a range of other
problems) by Guttmann and Enting [8] and they observed the following:

• Hn(x) is a rational function of x,
• the degree of the numerator of Hn(x) is equal to the degree of its denominator,
• the denominators of Hn(x) (we denote them Dn(x)) are products of cyclotomic

polynomials 2 and the first few are:

D1(x) = (1− x)

D2(x) = (1− x)3

D3(x) = (1− x)5

D4(x) = (1− x)7

D5(x) = (1− x)9(1 + x)2

D6(x) = (1− x)11(1 + x)4

D7(x) = (1− x)13(1 + x)6(1 + x + x2)

D8(x) = (1− x)15(1 + x)8(1 + x + x2)3

D9(x) = (1− x)17(1 + x)10(1 + x + x2)5

D10(x) = (1− x)19(1 + x)12(1 + x + x2)7(1 + x2). (5.4)

The singularities of the Hn(x), if this pattern persists will become dense on |x| = 1.
A similar pattern was observed for many unsolved models and is absent in solved
models such as staircase or convex polygons. Guttmann and Enting suggested that
this pattern of singularities becoming dense on |x| = 1 was the hallmark of an un-
solvable problem, and that it could be used as a test of solvability; D-finite functions
of two variables do not display this behaviour.

Then definition of D-finite can be extended to encompass multivariate functions
[12] and so cover the anisotropic generating functions considered here.

Definition 2. Let G(x,y) be a formal power series in y with coefficients that are
rational functions of x. Such a series is said to be D-finite if there exists a non-trivial
differential equation:

1 More precisely, the first hundred (or so) terms of the expansion of Hn(x) can be computed using
either brute force or the finite-lattice method. The first few tens of these can then be fitted using
Padé approximants. and the remaining terms can be used to “verify” the conjectured form. We also
note that one can show that Hn(x) is rational using transfer matrix arguments and bounds are given
for the numerator and denominator degrees in [15, 16], and so the conjectured forms are exact.
2 The cyclotomic polynomials Ψk(x) are the factors of the polynomials (1− xn). More precisely

(1− xn) = ∏
k|n

Ψk(x).

If k is a prime number then Ψk(x) = 1+ x+ x2 + · · ·xk−1.
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Qd(x,y)
∂ d

∂yd G(x,y)+ · · ·+ Q1(x,y)
∂
∂y

G(x,y)+ Q0(x,y)G(x,y) = 0, (5.5)

with Q j a polynomial in x and y with complex coefficients

One can show that such functions cannot have a dense set of singularities.

Theorem 1 (from [5]). Let f (x,y) = ∑
n≥0

Hn(x)y
n be a D-finite series in y with coef-

ficients Hn(x) that are rational functions of x. Let Sn be the set of poles of Hn(x) and
S = ∪nSn. Then S has only a finite number of singularities.

Ideally we would like to determine all of the singularities of the coefficients,
Hn(x), but unfortunately we have not been able to do so. Instead, we are able to
prove that the first occurrence of each cyclotomic factor in the denominators of
Hn(x) does not cancel with the corresponding numerator.

Theorem 2. Write G(x,y) = ∑Hn(x)yn. The function H3k−2(x) has simple poles at
the zeros of Ψk(x) except when k = 2.

This then implies that the set of singularities of the Hn(x) form a dense set on |x|= 1
and so we have the corollary and our main result:

Corollary 1. Let Sn be the set of singularities of the coefficient Hn(x). The set S =⋃
n≥1 Sn is dense on the unit circle |x| = 1. Consequently the self-avoiding polygon

anisotropic half-perimeter generating function is not a D-finite function of y.

In Section 5.2 we describe the “haruspicy” techniques that are used to define
equivalence classes on the set of polygons. Each equivalence class has a simple ra-
tional generating function. Adding these generating functions together proves that
Hn(x) is rational and that its denominator is a product of cyclotomic polynomials
(see Theorem 3). In Section 5.3 we determine which of these equivalence classes
cause the first appearance of Ψk(x) as a denominator factor. It turns out that these
equivalence classes have a simple description and we can use this to find a functional
equation satisfied by their generating function. Analysing this functional equation
then completes the proof of Theorem 2. Finally in Section 5.4 we describe exten-
sions of this work to other problems.

5.2 Haruspicy

In [15], the author developed techniques which allow us to determine properties
of the coefficients, Hn(x), whether or not they are known in some nice form. The
central idea is to reduce the set of polygons to some sort of minimal set; various
properties of the Hn(x) may be inferred by examining the bond configurations of
those minimal polygons. Since polygons are a type of bond animal, we refer to this
approach as haruspicy; the word refers to techniques of divination based on the
examination of the forms and shapes of the organs of animals.
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5.2.1 Sections, Squashing and Posets

We start by describing how polygons may be cut up into simpler pieces that can be
reduced in a consistent way. In particular we cannot violate self-avoidance, and we
also need to conserve enough information to recover the original polygon. We cut
the polygon into pages each of which may be expanded or reduced independently
from the rest of the polygon.

Fig. 5.1 Section lines, indicated by the grey dashed lines in the left-hand figure, split the polygon
into pages. The pages are shown in right-hand figure. Each column in a page is a section. This
polygon is split into three pages, each containing two sections; a 1-section is highlighted. Ten
vertical bonds lie between pages and four vertical bonds lie within the pages.

Definition 3. We construct the section lines of a polygon in the following way. Draw
horizontal lines from the extreme left and the extreme right of the lattice towards the
polygon so that the lines run through the middle of each lattice cell. The lines are
terminated when they first touch a vertical bond (see Fig. 5.1).

Cut the lattice along each section line from infinity until it terminates at a vertical
bond. Then from this vertical bond cut vertically in both directions until another
section line is reached. In this way the polygon is split into pages (see Fig. 5.1); we
consider the vertical bonds along these vertical cuts to lie between pages, while the
other vertical bonds lie within the pages.

We cannot stretch or expand the horizontal bonds within a page independently
of each other without violating self-avoidance. Instead we can expand or delete the
horizontal bonds in a given column of a page together.

Definition 4. We call a section the set of horizontal bonds within a single column of
a given page. Equivalently, it is the set of horizontal bonds of a column of a polygon
between two neighbouring section lines. A section with 2k horizontal bonds is a
k-section. The number of k-sections in a polygon, A, is denoted by σk(A).

A polygon can now be encoded as a list of pages and sections within those pages.
Many of these sections, however, are not really needed to encode the shape (in some
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loose sense of the word) of the polygon. If two neighbouring sections are the same
we can remove one of them and still leave the shape of the polygon unchanged.

Definition 5. We say that a section is a duplicate section if the section immediately
on its left (without loss of generality) is identical and there are no vertical bonds
between them (see Fig. 5.2).

One can squash or reduce polygons by deletion of duplicate sections by slicing
the polygon on either side of the duplicate section, removing the section and re-
combining the polygon, as illustrated in Fig. 5.2. By reversing the section deletion
process we define duplication of a section.

Fig. 5.2 The two indicated sections are duplicates. We can delete the duplicate by slicing on either
side separating the polygon into three pieces. The middle piece, being the duplicate, is removed and
the remainder of the polygon is recombined. Reversing the steps duplicates the section duplication.
Also indicated is a section line which separates the duplicate sections from the rest of the columns
in which they lie.

Section-deletion defines a partial order, �, on the set of polygons (see Fig. 5.2).
Hence polygons together with this partial order form a partially ordered set, or poset.

Lemma 1. Let P and Q be two polygons in Gn. Write P � Q if P can be obtained
from Q by a sequence of section-deletions. This relation is a partial order on the set
of polygons.

Proof. Let A, B and C be polygons. A partial order must be reflexive, anti-symmetric
and transitive.

• reflexive—By definition A � A.
• anti-symmetric—If A � B, then either A = B or A can be obtained from B by a

sequence of deletions. This implies that either A = B or |A|↔ < |B|↔. Similarly
if B � A then either B = A or |B|↔ < |A|↔. Hence if A � B and B � A then A = B.

• transitive—If A � B then there exists a sequence of section-deletions that takes B
to A. Similarly if B �C, then there exists another sequence of section-deletions
that takes C to B. Concatenating these gives a sequence of deletions that takes C
to A, and hence A �C.

⊓⊔
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Fig. 5.3 Polygons A and B can be reduced by section-deletions to C, so C � A,B. However A
cannot be reduced to B or vice-versa. Also C does not contain any duplicate sections and so is
section-minimal. Since all three polygons reduce to the same minimal polygon, they are all section-
equivalent.

5.2.2 Minimal Polygons, Equivalence Classes and Generating
Functions

It is clear that a polygon cannot be reduced to nothing. We quickly reach a poly-
gon without duplicate sections—an example is given in Fig. 5.3. These minimal
elements of the self-avoiding polygon poset can be used to reconstruct any poly-
gon by duplicating sections; a knowledge of the minimal polygons is sufficient to
reconstruct the entire set and its generating function.

Definition 6. A section-minimal polygon, A, is a polygon such that for all polygons,
B, satisfying B � A, then B = A. i.e. A cannot be reduced any further.

Lemma 2. Every polygon C reduces by section-deletions to a unique section-
minimal polygon.

Proof. Number the pages of a given polygon B from 1,2, . . . (from left to right, top
to bottom). Consider, without loss of generality, the first page. We can encode the
sections that lie within this page as a sequence (sα1

1 ,sα2
2 , . . .s

α j
j ), where sαi

i denotes
αi repetitions of the section si. If we enforce the condition that si 6= si+1 then the
αi are unique. Deleting all the duplicate sections within this page reduces it to the
unique sequence (s1

1,s
2
2, . . . ,s

1
j ).

Note that section-deletion does not delete pages, nor does it move sections be-
tween pages, and so repeating this process for each page will reduce B to a unique
minimal polygon. ⊓⊔

If two polygons reduce to the same minimal polygon then they have (roughly
speaking) similar shapes (see Fig. 5.3). We use this idea to define an equivalence
relation.
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Lemma 3. If two polygons, A and B reduce to the same minimal polygon then we
say that they are section-equivalent and write A ≈ B. Section-equivalence is an
equivalence relation.

Proof. It follows almost directly from the definition that section-equivalence is re-
flexive, symmetric and transitive. ⊓⊔

This equivalence relation induces equivalence classes each of which has a simple
rational generating function whose denominator is a product of cyclotomic poly-
nomials. This shows the link between the minimal polygons and the structure of
Hn(x).

Definition 7. Section-equivalence partitions the set of polygons into equivalence
classes each of which can be characterised by the minimal polygon within the class.
We refer to the equivalence class of a section-minimal polygon, A, as the section-
expansion of A. We write:

X (A) = {B ∈ G | A � B}. (5.6)

Note that all the elements in such an expansion must have the same number of
vertical bonds. We write the horizontal bond generating function of the expansion
of a minimal element, A, as

G(A) = ∑
B∈X (A)

x|B|↔ if A is section-minimal. (5.7)

Lemma 4. Let P be a section-minimal polygon; its expansion has the following gen-
erating function:

G(P) = ∏
k

(
xk

1− xk

)σk(P)

(5.8)

Proof. Let P be a section-minimal polygon. Each page of the polygon can be en-
coded as a sequence of sections (s1, . . . ,s j), with si 6= si+1. Since we can dupli-

cate any section in P any number of times, given any (α1, . . . ,α j) ∈ Z+ j there ex-
ists a polygon Q whose corresponding page is encoded by a sequence of sections
(cα1

1 , . . .c
α j
j ). So

G(P) = ∏
pages

∏
i

∑
αi

|xk|↔(x|si|↔)αi

= ∏
pages

∏
i

x|si|↔

1− x|si|↔
(5.9)

where |si|↔ is the number of horizontal bonds in si. The result follows. ⊓⊔

Lemma 5. If Gn is a set of polygons with n vertical bonds, then the set of section-
minimal elements in Gn is finite.
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Proof. Let A be a section-minimal polygon in Gn. It is clear that A cannot contain
more than n rows. Between any two columns of A there must be at least a single
vertical bond. If there is no vertical bond between two columns, then the horizontal
bond configuration in each column must be the same and so they will be duplicates
of each other and so A is not minimal. Hence A contains at most 2n + 1 columns.
Since there are a finite number of bond configurations containing at most n rows and
2n + 1 columns there are only a finite number of section-minimal polygons. ⊓⊔

We can now prove two theorems about the coefficients yn in the polygon gener-
ating function.

Theorem 3. If G(x,y) = ∑n≥0 Hn(x)yn is the anisotropic generating function of self-
avoiding polygons, G , then

• Hn(x) is a rational function,
• the degree of the numerator of Hn(x) cannot be greater than the degree of its

denominator, and
• the denominator of Hn(x) is a product of cyclotomic polynomials.

Proof. Let M be the set of section-minimal polygons of Gn. Since each polygon in
Gn is an element in the expansion of exactly one element in M we can write

Hn(x) = ∑
B∈Gn

x|B|↔ = ∑
A∈M

G(A) (5.10)

Lemmas 5 and 4 imply that this sum is a finite sum of rational functions with the
desired properties. The result follows. ⊓⊔

Looking a little more carefully at the number of k-sections present in minimal
polygons gives the following theorem.

Theorem 4. If Hn(x) has a denominator factor Ψk(x), then Gn must contain a
section-minimal polygon containing a K-section for some K ∈ Z+ divisible by k.
Further if Hn(x) has a denominator factor Ψk(x)α , then Gn must contain a section-
minimal polygon that contains α sections that are K-sections for some (possibly
different) K ∈ Z+ divisible by k.

Proof. Let M = {Mi} be the set of section-minimal polygons ∈ Gn.

Hn(x) = ∑
i

GMi

= ∑
i

∏
K

(
xK

1− xK

)σK(Mi)

= ∑
i

x|Mi |↔ ∏
k

Ψk(x)
−∑d σkd(Mi)

=
< some polynomial in x >

∏kΨk(x)µk
(5.11)
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where µk ≤ maxi{∑d σkd(Mi)}—this is an inequality since the numerator and de-
nominator could share common cyclotomic factors. Consequently if there is no min-
imal element Mi containing a K-section (for some K divisible by k) then µk = 0, and
the denominator cannot contain Ψk(x). ⊓⊔

The above theorems can be generalised to most interesting sets of bond animals—
such as self-avoiding walks, bond animals, bond trees and directed bond animals
(see [15, 16]).

By determining how many vertical bonds are required to construct a section-
minimal polygon with α k-sections, one can use the above theorems to show that

The denominator of Hn(x) divides
⌈n/3⌉
∏
k=1

Ψk(x)
2n−6k+5. (5.12)

In fact the denominator of Hn(x) appears (as far as available data permits us to
observe) to be exactly the right hand side of the above expression divided by a
single power of Ψ2(x).

There is a similar result [15] for the corresponding generating function of general
bond animals (in which x is conjugate to the total number of horizontal bonds),
namely

The denominator of Hn(x) divides Ψ1(x)
3n+1

⌊n/2⌋
∏
k=2

Ψk(x)
2n−3k+4. (5.13)

The denominator of Hn(x) appears to be exactly equal to the right-hand side of the
above expression.

These results can be considered upper bounds on the exponents of Ψk(x) in the
denominator of Hn(x). These are bounds, rather than equalities, since denominator
factors might cancel with terms in the numerator. Demonstrating that a given factor
does or does not cancel is considerably more difficult and we have only been able
to do so in the case of the first occurrence of Ψk(x). This is what we do below.

5.3 Analysing 2-4-2 Polygons

In this section we study the first occurrence of a given cyclotomic factor in the de-
nominators of the Hn(x). We start by characterising the section-minimal polygons
that give rise to them. These polygons turn out to be significantly easier to con-
struct than general self-avoiding polygons and we can find a functional equation for
their generating function. The singularities of the solution of this equation give the
singularities of the Hn(x) and so lead us to Theorem 2.
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5.3.1 The First k-Section

Examining the denominators (see (5.4)) of the first few Hn(x) we see that Ψk(x)
first appears in the denominator of H3k−2(x) (with the exception of Ψ2 which first
appears in H5(x)). We start by showing that it takes 6k−4 vertical bonds to build a
polygon that contains a k-section, and so Ψk(x) cannot occur in the denominators of
Hn(x) for n < 3k−2.

Lemma 6. To the left (without loss of generality) of a k-section there are at least
3k − 2 vertical bonds, of which at least 2k − 1 obstruct section lines. Hence no
polygon with fewer than 6k− 4 vertical bonds may contain a k-section. Further, it
is always possible to construct a polygon with 6k− 4 vertical bonds and a single
k-section.

Proof. Consider a vertical line drawn through a k-section (as depicted in the left-
hand side of Fig. 5.4). The line starts outside the polygon and then as it crosses
horizontal bonds it alternates between the inside and outside of the polygon. More
precisely, there are k + 1 segments of the line that lie outside the polygon and k
segments that lie inside the polygon. Call the segments that lie within the polygon
“inside gaps” and those that lie outside “outside gaps”.

Draw a horizontal line through an inside gap (as depicted in the top-right of
Fig. 5.4). This line must cross at least one vertical bond to the left of the gap (since
it is inside the polygon) and then another to the right of the gap. Hence to the left of
any inside gap there must be at least one vertical bond. Similarly there must be at
least one vertical bond to the right of any inside gap.

Draw a horizontal line through the topmost of the k + 1 outside gaps. Since the
line need not intersect the polygon it need not cross any vertical bonds at all. Simi-
larly for the bottommost outside gap.

Now consider a horizontal line through one of the other outside gaps (as depicted
in the bottom-right of Fig. 5.4). Traverse this line from the left towards the outside
gap. If no vertical bonds are crossed then a section line may be drawn from the
left into the outside gap. This splits the k-section into two smaller sections and so
contradicts our assumptions. Hence the line must cross at least one vertical bond to
block section lines. If only a single vertical bond is crossed before reaching the gap
then the gap would lie inside the polygon. Hence the line must cross at least two (or
any even number) vertical bonds before reaching the gap. Similar reasoning shows
that it must also cross an even number of vertical bonds to the right of the gap.

Since any k-section contains k inside gaps, a topmost outside gap, a bottommost
outside gap and k−1 other outside gaps, there must be at least k×1 + 2×0 + 2×
(k−1) = 3k−2 vertical bonds to its left and 3k−2 vertical bonds to its right. The
polygons depicted in Fig. 5.5 are constructed by adding “hooks”. In this way it is
possible to construct a section-minimal polygon with (6k− 4) vertical bonds and
exactly one k-section. ⊓⊔

Now that we have established that Ψk cannot occur before H3k−2, we bound the
exponent with which it occurs in H3k−2 by bounding the number of k-sections that
a section-minimal polygon can have.
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Fig. 5.4 Vertical and horizontal lines drawn through a k-section show the minimum number of
vertical bonds required in their construction.

Fig. 5.5 Section-minimal polygons with 6k−4 vertical bonds and a single k-section may be con-
structed by concatenating such “hook” configurations.

Lemma 7. A section-minimal polygon with 6k − 4 vertical bonds cannot contain
more than one k-section. Hence the factor Ψk(x) in the denominator of H3k−2(x)
cannot occur with exponent greater than 1.

Proof. Let A be a section-minimal polygon with 6k−4 vertical bonds and more than
one k-section. We show that A cannot exist. The second statement of the lemma then
follows from the first by Theorem 4.

Assume that A has only a single k-section in each column. By Lemma 6, there are
3k− 2 vertical bonds to the left of the leftmost k-section and 3k− 2 vertical bonds
to the right of the rightmost k-section. Between any two k-sections there must be at
least one vertical bond (or they would be duplicates). Hence A contains more than
6k−4 vertical bonds. If, on the other hand, A contains a column with two or more
k-sections, then to the left of this column there must be at least 6k−4 vertical bonds
and similarly to its right. Hence A contains at least 12k−8 vertical bonds. Hence A
cannot exist. ⊓⊔

In order to proceed we need to split the set of polygons with 6k − 4 vertical
bonds into those that contain a k-section and those which do not. While we can, in
principle define these sets of polygons, it is much easier to define a superset of those
that contain a k-section, and this does not significantly alter the subsequent analysis.
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Fig. 5.6 Four section-minimal 2-4-2 polygons. The first three contain a 2-, 3- and 4-section re-
spectively, while the rightmost only contains 1-sections.

Definition 8. Number the rows of a polygon P starting from the topmost row (row
1) to the bottommost (row r). Let vi(P) be the number of vertical bonds in the ith

row of P. If (v1(P), . . . ,vr(P)) = (2,4,2, . . . ,4,2) then we call P a 2-4-2 polygon.
We denote the set of such 2-4-2 polygons with 2n vertical bonds by P242

n . Note that
this set is empty unless 2n = 6k−4.

Lemma 8. A section-minimal polygon with (6k − 4) vertical bonds that contains
one k-section must be a 2-4-2 polygon. On the other hand, a section-minimal 2-4-2
polygon need not contain a k-section.

Proof. The first statement follows by arguments given in the proof of Lemma 6.
The rightmost polygon in Fig. 5.6 shows that a 2-4-2 polygon need not contain a
k-section. ⊓⊔

Now that we have isolated the polygons that contain a k-section, the following
lemma shows that we can ignore the effect of the remaining polygons.

Lemma 9. The factor Ψk(x) appears in the denominator of the generating function
∑P∈P242

3k−2
x|P|↔ with exponent exactly equal to 1 if and only if it appears in the

denominator of H3k−2(x) with exponent exactly equal to one.

Proof. The set of 2-4-2 polygons is closed under section-deletion (since it does not
move vertical bonds between rows). Similarly the complement of this set is closed
under section-deletion. One can then prove that similar results to Theorems 3 and 4
hold for these sets.

Hence the horizontal half-perimeter generating functions of these sets are rational
and their denominators are products of cyclotomic factors. Since P3k−2 \P242

3k−2
does not contain a polygon with k-section (or indeed, by Lemma 6, any section with
more than 2k horizontal bonds), it follows (by similar results to Theorem 4) that
the denominator of the horizontal half-perimeter generating function of this set is
a product of cyclotomic polynomials Ψj(x) for j < k. Consequently this generating
function is not singular at the zeros of Ψk(x).

By Lemma 7 every section-minimal polygon in P242
3k−2 contains at most one k-

section, and so the exponent of Ψk(x) in the denominator of the horizontal half-
perimeter generating function of P242

3k−2 is either one or zero (due to cancellations
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with the numerator). The result follows since this denominator factor may not be
cancelled by adding the other generating function. ⊓⊔

5.3.2 Hadamard Products and Functional Equations

Lemma 9 tells us that in order to prove that the denominator of H3k−2(x) has a
factor of Ψk(x) it suffices to examine the generating function of P242

3k−2. Since 2-4-
2 polygons have simpler structure than general self-avoiding polygons, this task is
much easier. The technique we use is a variation of the Temperley method [21] and
leads to functional equations very similar to those in [3]. It also appears in [4].

We construct 2-4-2 polygons by cutting them into smaller 2-4-2 polygons (see
Fig. 5.7). In particular we decompose them into a rectangle of unit height and a
sequence of 2-4-2 polygons each of height 3. Call these 2-4-2 polygons of height
three “building blocks”. We then glue these pieces back together. A functional equa-
tion for the generating function of all 2-4-2 polygons can then be obtained from the
generating function of the building blocks.

Fig. 5.7 Decomposing 2-4-2 polygons into a sequence of building blocks (2-4-2 polygons of height
three). Highlight each row with 2 vertical bonds. Then duplicate each of these rows excepting the
bottommost. By cutting along each of the duplicated rows, the polygon is then uniquely decom-
posed into a rectangle of unit height and a sequence of building blocks.

Lemma 10. Let T (t,s;x,y) be the generating function of 2-4-2 polygon building
blocks, where t and s are conjugate to the length of top and bottom rows (respec-
tively). Then T may be expressed as

T (t,s;x,y) = 2
(
T̂ (t,s;x,y)+ T̂ (s,t;x,y)

)
, (5.14)

where the generating function T̂ (t,s;x,y) is given by
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Fig. 5.8 Constructing a 2-4-2 polygon from a (shorter) 2-4-2 polygon and a building block. When
the building block and the polygon are squashed together, the total vertical perimeter is reduced by
2, and the total horizontal perimeter is reduced by twice the width of the joining row.

T̂ (t,s;x,y) = y4 (A(s,t;x) · JstxKJtxK2 ·B(s,t;x)

+ A(s,t;x) · JstxKJstx2 KJtxK2 ·B(s,t;x)

+ A(s,t;x) · JstxKJtxK3 ·B(s,t;x)

+C(s,t;x) · JsxKJtxK3 ·B(s,t;x)

+ C(s,t;x) · JsxKJxKJtxK3 ·B(s,t;x)
)
. (5.15)

We have used J f K as shorthand for f
1− f , and the generating functions A, B and C

are:

A(s,t;x) = 1 + JxK+ 2JsxK+ 2JtxK+ JsxKJtxK+

JsxK2 + JsxKJxK+ JtxK2 + JtxKJxK (5.16a)

B(s,t;x) = 1 + JtxK+ JxK (5.16b)

C(s,t;x) = 1 + JsxK+ JxK. (5.16c)

Proof. Figures 5.9 and 5.10 show how to construct the generating function T̂ of
building blocks in one orientation; each building block can be placed in one of four
orientations.To obtain all building blocks we must reflect the blocks counted by T̂
about both horizontal and vertical lines. Reflecting about a vertical line multiplies T̂
by 2. Reflecting about a horizontal line interchanges the roles of s and t. This proves
the first equation.

We compute T̂ by considering all the section-minimal polygons that contribute to
it. This is done in detail in [16]. One can decompose each section-minimal polygon
into one of the five polygons given in Fig. 5.9. The left and right ends of these
polygons are made up of the frills given in Fig. 5.10. This calculation can be (and
has been) verified using the P-partition techniques in [20].

The above equation for T̂ (t,s;x,y) follows by expanding each of the sections in
the minimal polygons. ⊓⊔

Larger 2-4-2 polygons can be constructed by gluing a building block onto a
smaller 2-4-2 polygon as illustrated in Fig. 5.8. Gluing combinatorial objects to-
gether usually corresponds to multiplying their generating functions. However,
when we glue together these objects we require that the top row of the building
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Fig. 5.9 The section-minimal building blocks of 2-4-2 polygons. The “frills”, denoted A, B and C
are given in Fig. 5.10.

Fig. 5.10 The “frills” of the building blocks in Fig. 5.9.

block has the same length as the bottom row of the 2-4-2 polygon. The correspond-
ing operation on their generating functions is a type of Hadamard product.

Definition 9. Let f (t) = ∑t≥0 fntn and g(t) = ∑t≥0 gntn be two power series in t. We
define the (restricted) Hadamard product f (t)⊙ t g(t) to be

f (t)⊙ t g(t) = ∑
n≥0

fngn. (5.17)

It is generally quite difficult to (explicitly) calculate the Hadamard product of two
functions. However when one of the functions is rational the problem is much
simpler.

Lemma 11. Let f (t) = ∑t≥0 fntn be a power series, then

f (t)⊙ t
1

1−αt
= f (α) (5.18a)

f (t)⊙ t
k!tk

(1−αt)k+1 =
∂ k f
∂ tk

∣∣∣∣
t=α

. (5.18b)

Proof. The second equation follows from the first by differentiating with respect to
α . The first equation follows because
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f (t)⊙ t
1

1−αt
= f (t)⊙ t ∑

n≥0

αntn = ∑
n≥0

fnαn = f (α). (5.19)

⊓⊔

We can now use the building block generating function and the above Hadamard
product to find an equation (though not yet in a usable form) for the generating
function of 2-4-2 polygons.

Lemma 12. Let f (s;x,y) be the generating function of 2-4-2 polygons, where s is
conjugate to the length of the bottom row of the polygon. This generating function
satisfies the following equation

f (s;x,y) =
ysx

1− sx
+ f (t;x,y)⊙ t

(
1
y

T (t/x,s;x,y)

)
, (5.20)

where T (t,s;x,y) is the generating function of the 2-4-2 building blocks.

Proof. Write f (s;x,y) = ∑n fn(x,y)sn and T (t,s;x,y) = ∑n Tn(s;x,y), where fn(x,y)
is the generating function of 2-4-2 polygons whose bottom row has length n, and
Tn(s;x,y) is the generating function of 2-4-2 building blocks, whose top row has
length n. The above recurrence becomes:

f (s;x,y) =
ysx

1− sx
+ ∑

n≥1
fn(x,y)Tn(s;x,y)/(yxn). (5.21)

This follows because a 2-4-2 polygon is either a rectangle of unit height (counted by
ysx

1−sx ) or may be constructed by gluing a 2-4-2 polygon, whose last row is of length
n (counted by fn(x,y)) to a 2-4-2 polygon whose top row is of length n (counted by
Tn(s;x,y)).

To explain the factor of 1/(yxn) see Fig. 5.8; when the building block is joined
to the polygon (centre) and the duplicated row is “squashed” (right), the total ver-
tical half-perimeter is reduced by 1 (two vertical bonds are removed) and the total
horizontal half-perimeter is reduced by the length of the join (two horizontal bonds
are removed for each cell in the join). Hence if the join is of length n, the perimeter
weight needs to be reduced by a factor of (yxn). ⊓⊔

In order to turn the Hadamard equation in the above lemma into a more stan-
dard functional equation we use Lemma 11, and rewrite T (t/x,s;x,y)/y in (a non-
standard) partial fraction form:

y3

[
c0 · t0 +

5

∑
k=0

ck+1
k!tk

(1− t)k+1 + c7
1

1− st
+ c8

1
1− stx

]
, (5.22)

where the ci are (large and ugly) rational functions of s and x. We will need c8:

c8 = −2sx2(s2x2 + sx− s+ 1)

(1− sx)4(1− x)2 . (5.23)
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We do not require the other coefficients in the analysis that follows. We note that
their denominators are products of (1− x),(1− s) and (1− sx). When s = 1 some
singularities of T coalesce and we have

T (t/x,1;x,y)/y = y3

[
ĉ0 · t0 +

6

∑
k=0

ĉk+1
k!tk

(1− t)k+1 + ĉ8
1

1− tx

]
, (5.24)

where the ĉi are (slightly simpler) rational functions of x. Again, we will need ĉ8:

ĉ8 = −2
x3(1 + x)
(1− x)6 = c8|s=1. (5.25)

We note that the denominators of the ĉi are products of (1−x). Applying Lemma 11,
we find:

f (t;x,y)⊙ t T (t/x,s;x,y)/y =

y3

[
5

∑
k=0

ck+1
∂ k f
∂ tk (1;x,y)+ c7 f (s;x,y)+ c8 f (sx;x,y)

]
, (5.26)

where we have made use of the fact that [t0] f (t;x,y) = 0 (there are no rows of zero
length). When s = 1 the coalescing poles change equation (5.26) to:

f (t;x,y)⊙ t T (t/x,1;x,y)/y =

y3

[
6

∑
k=0

ĉk+1
∂ k f
∂ tk (1;x,y)+ ĉ8 f (x;x,y)

]
(5.27)

These equations give the following lemma:

Lemma 13. Let f (s;x,y) be the generating function for 2-4-2 polygons enumerated
by bottom row-width, half-horizontal perimeter and half-vertical perimeter (s,x and
y respectively). Write f (s;x,y) = ∑n≥1 fn(s;x)y3n−2, where the coefficient fn(s;x) is
the generating function for P242

3n−2. These coefficients satisfy the following equa-
tions:

f1(s;x) =
sx

1− sx
(5.28a)

fn+1(s;x) =
5

∑
k=0

ck+1
∂ k fn

∂ sk (1;x)+ c7 fn(s;x)+ c8 fn(sx;x) (5.28b)

fn+1(1;x) =
6

∑
k=0

ĉk+1
∂ k fn

∂ sk (1;x)+ ĉ8 fn(x;x). (5.28c)

The second of these is only valid when s 6= 1; when s = 1 it reduces to the last.
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Proof. Apply Lemma 11 to the partial fraction form of T (t,s;x,y) for general s,
and when s = 1. Extracting the coefficients of y3n+1 from these equations gives the
above recurrences. ⊓⊔

5.3.3 Proof of Theorem 2

We complete the proof of Theorem 2 by showing that fn(1;x) is singular at the ze-
ros of Ψn(x). We are able to do this by induction on the recurrences in the previous
lemma. It turns out that we are able to disregard most of these recurrences except
for the terms involving fn(sx;x) and fn(x;x); these are the only terms that introduce
new denominator factors. We will require the following lemma to show that the co-
efficients c8 and ĉ8 cannot cancel these factors since they do not contain cyclotomic
factors (except Ψ2(x)).

Lemma 14. Consider the coefficient c8(s;x) defined above. When s = xk, c8(xk,x)
has a single zero on the unit circle at x =−1 when k is even. When k is odd c8(xk,x)
has no zeros on the unit circle.

Proof. When s = xk, the coefficient c8 is

c8(x
k,x) =

2xk+2(k2k+2 + xk+1 − xk + 1)

(1− xk+1)4(1− x)2 . (5.29)

Let ξ be a zero of c8(xk,x) that lies on the unit circle; ξ must be a solution of
x2k+2 + xk+1 − xk + 1 = 0. Hence:

ξ k − ξ k+1 = ξ 2k+2 + 1

1/ξ −1 = ξ k+1 + ξ−k−1. (5.30)

Since ξ lies on the unit circle we may write ξ = eiθ :

e−iθ −1 = ei(k+1)θ + e−i(k+1)θ

= 2cos((k + 1)θ ). (5.31)

Since the right hand-side of the above expression is real the left-hand side must also
be real. Therefore θ = 0,π and ξ =±1. If ξ = 1 then pk(ξ ) = 2. On the other hand,
if ξ = −1 then pk(ξ ) = 4 if k is odd and is zero if k is even.

Since the denominator of c8(xk,x) is not zero when k is even and x =−1 the result
follows. One can verify that there are no multiple zeros at x = −1 by examining the
derivative of the numerator.

⊓⊔

Proof of Theorem 2 :
Consider the recurrence given in Lemma 13. This implies that fn(s;x) is a rational
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function of s and x. Further, since fn(1;x) is a well-defined (and rational) function,
the denominator of fn(s;x) does not contain any factors of (1− s).

Let Cn(s;x) be the set of polynomials of the form

n

∏
k=1

Ψk(x)
ak(1− sxk)bk , (5.32)

where ak and bk are non-negative integers. We define Cn(x) = Cn(0;x) (i.e. polyno-
mials which are products of cyclotomic polynomials). We first prove by induction
on n that fn may be written as

fn(s;x) =
Nn(s;x)

(1− sxn)Dn(s;x)
, (5.33)

where Nn(s;x) and Dn(s;x) are polynomials in s and x with the restriction that
Dn(s;x) ∈ Cn−1(s;x). Then we consider what happens when s = 1 and x is a zero of
Ψk.

For n = 1, equation (5.33) is true, since f1(s;x) = sx
1−sx . Now assume equa-

tion (5.33) is true up to n and apply the recurrence. The only term that may intro-
duce a new zero into the denominator is c8(s;x) fn(sx;x). By assumption fn(s;x) =

Nn(sx;x)
(1−sxn+1)Dn(sx;x)

, and Dn(sx;x)∈Cn(s;x). Hence equation (5.33) is true for n+1, and

so is also true for all n ≥ 1.
Let ξ be a zero of Ψk(x). We wish to prove that fn(1;x) is singular at x = ξ

and we do so by proving that for k = 1, . . . ,n, the generating function fk(xn−k;x) is
singular at x = ξ , and then setting k = n. We proceed by induction on k for fixed n.

If we set k = 1, then we see that

f1(x
n−1;x) =

xn

1− xn , (5.34)

and so the result is true. Now let k ≥ 2 and assume that the result is true for k− 1,
i.e. fk−1(xn−k+1;x) is singular at x = ξ . The recurrence relation and equation (5.33)
together imply

fk(s;x) =
N(s;x)
D(s;x)

+ c8(s;x) fk−1(sx;x), (5.35)

where N and D are polynomials in s and x and D(s;x) ∈Ck−1(s;x). Setting s = xn−k

yields

fk(x
n−k;x) =

N(xn−k;x)
D(xn−k;x)

+ c8(x
n−k;x) fk−1(x

n−k+1;x), (5.36)

and we note that D(xn−k;x) ∈ Cn−1(x). In the case k = n the above equation is still
true, since ĉ8 = c8|s=1.
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Equation (5.36) shows that fk(xn−k) is singular at x = ξ only if the contribution
from c8(xn−k;x) fk−1(xn−k+1;x) is singular at x = ξ . This is true (by assumption)
unless c8(xn−k;x) = 0 at x = ξ . By Lemma 14, c8(xn−k;x) is non-zero at x = ξ ,
except when n = k = 2.

In the case n = k = 2 this proof breaks down, and indeed we see that H4(x) is
not singular at x = −1. Excluding this case, fk(xn−k;x) is singular at x = ξ and so
fn(1;x) is also singular at x = ξ . By Lemma 9, H3k−2(x) is singular at x = ξ . ⊓⊔

This theorem then allows us to prove the main aim of this chapter; the anisotropic
generating function of self-avoiding polygons is not a D-finite function.

Corollary 1. Let Sn be the set of singularities of the coefficient Hn(x). The set S =⋃
n≥1 Sn is dense on the unit circle |x| = 1. Consequently the self-avoiding polygon

anisotropic half-perimeter generating function is not a D-finite function of y.

Proof. For any q ∈ Q, there exists k, such that Ψk(e2π iq) = 0. By Theorem 2,
H3k−2(x) is singular at x = e2π iq, excepting x =−1. The set S is dense on |x|= 1 and
so has an infinite number of accumulation points. By Theorem 1 G(x,y) = ∑Hn(x)yn

is not a D-finite power series in y. ⊓⊔

Since the specialisation of a D-finite power series is D-finite, the above result
extends to self-avoiding polygons on hypercubic lattices.

Corollary 2. Let Gd be the generating function of self-avoiding polygons on the
d-dimensional hyper-cubic lattice defined by:

Gd(x1, . . . ,xd−1,y) = ∑
P

y|P|d
d−1

∏
i=1

x|P|ii ,

where |P|i is half the number of bonds in parallel to the unit vector ẽi. If d = 1, then
this generating function is zero, and otherwise is a non-D-finite power series in y.

Proof. When d = 1 then there are no self-avoiding polygons and so the generating
function is zero. Now consider d ≥ 2. The square lattice generating function G(x,y)
can be recovered from Gd by setting x2 = · · · = xd−1 = 0. Since any well-defined
specialisation of a D-finite power series is itself D-finite [12], it follows that if Gd

were D-finite, then so would G(x,y). This contradicts Corollary 1 and so Gd is not
D-finite. ⊓⊔

5.4 Discussion

We have shown above that the anisotropic generating function of self-avoiding poly-
gons on the square lattice, G(x,y), is not a D-finite function of y. This result then
extends to prove that the anisotropic generating function of self-avoiding polygons
on any hypercubic lattice is either trivial (in one dimension) or a non-D-finite func-
tion (in dimensions 2 and higher). Similar results hold for directed-bond animals
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[17], general bond animals and bond trees [14]. Unfortunately, work on a similar re-
sult for self-avoiding walks appears to be beyond the scope of these techniques. The
self-avoiding walk analogue of 2-4-2 polygons appear to be quite complicated [18]
and it is at all not clear that one can find recurrences such as those in Lemma 13.

There are several non-D-finiteness results for generating functions of other com-
binatorial problems, such as bargraphs enumerated by their site-perimeter [6], a
number of lattice animal models related to heaps of dimers [5] and certain types of
matchings [11]; these results rely upon a knowledge of the generating function—
either in closed form or via some sort of recurrence. The result for self-avoiding
polygons is, as far as we are aware, the first result on the D-finiteness of a com-
pletely unsolved model.

Unfortunately we are not able to use this result to obtain information about the
nature of the isotropic generating function G(z,z); one can easily construct a two-
variable function that is not D-finite, that reduces to a single variable D-finite func-
tion. Consider, for example, the following function

F(x,y) = ∑
n≥1

yn

(1− xn)(1− xn+1)
(5.37)

By Theorem 1 this is not a D-finite function of y. However, setting x = y = z reduces
F to a simple rational, and hence D-finite, function:

F(z,z) =
1

1− z ∑
n≥1

(
zn

1− zn −
zn+1

1− zn+1

)

=
z

(1− z)2 . (5.38)

On the other hand, the anisotropisation of solvable lattice models does not alter the
nature of the generating function. Unfortunately we are unable to determine how far
this phenomenon extends since we know so little about the nature of the generating
functions of unsolved models.

We note that if the isotropic generating function is indeed not D-finite then it will
not be found using computer packages such as GFUN [19] or differential approx-
imants [7] which can only find D-finite solutions. At best one might hope that the
solution may satisfy some sort of q-linear equation.

As noted above, the techniques developed for self-avoiding polygons have been
successfully applied to other families of bond animals. Recent series expansion
work by I. Jensen [9] shows that there is some possibility that these techniques can
be extended to families of site animals (such as self-avoiding polygons enumerated
by their area).

It would also be very interesting to apply these ideas to pattern-avoiding permutations—
though it is not entirely clear how to “anisotropise” a permutation. Noonan and
Zeilberger conjecture that the generating function of permutations avoiding a given
pattern is D-finite [13]. This conjecture has helped drive developments in this field
and any progress towards its resolution would constitute a major advance.
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