
Chapter 3
Exactly Solved Models

Mireille Bousquet-Mélou and Richard Brak

3.1 Introduction

3.1.1 Subclasses of Polygons and Polyominoes

This chapter deals with the exact enumeration of certain classes of (self-avoiding)
polygons and polyominoes. We restrict our attention to the square lattice. As the
interior of a polygon is a polyomino, we often consider polygons as special poly-
ominoes. The usual enumeration parameters are the area (the number of cells) and
the perimeter (the length of the border). The perimeter is always even, and often re-
fined into the horizontal and vertical perimeters (number of horizontal/vertical steps
in the border). Given a class C of polyominoes, the objective is to determine the
following complete generating function of C :

C(x,y,q) = ∑
P∈C

xhp(P)/2yvp(P)/2qa(P),

where hp(P), vp(P) and a(P) respectively denote the horizontal perimeter, the ver-
tical perimeter and the area of P. This means that the coefficient c(m,n,k) of xmynqk

in the series C(x,y,q) is the number of polyominoes in the class C having hor-
izontal perimeter 2m, vertical perimeter 2n and area k. Several specializations of
C(x,y,q) may be of interest, such as the perimeter generating function C(t,t,1), its
anisotropic version C(x,y,1), or the area generating function C(1,1,q). From such
exact results, one can usually derive many of the asymptotic properties of the poly-
ominoes of C : for instance the asymptotic number of polyominoes of perimeter n,
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or the (asymptotic) average area of these polyominoes, or even the limiting distribu-
tion of this area, as n tends to infinity (see Chapter 11). The techniques that are used
to derive asymptotic results from exact ones are often based on complex analysis.
A remarkable survey of these techniques is provided by Flajolet and Sedgewick’s
book [33].

The study of sub-classes of polyominoes is natural, given the immense difficulty
of the full problem (enumerate all polygons or all polyominoes). The objective is to
develop new techniques, and to push the border between solved and unsolved mod-
els further and further. However, several classes have an independent interest, other
than being an approximation of the full problem. For instance, the enumeration of
partitions (Fig. 3.2(e)) is relevant in number theory and in the study of the repre-
sentations of the symmetric group. The first enumerative results on partitions date
back, at least, to Euler. A full book is devoted to them, and is completely indepen-
dent of the enumeration of general polyominoes [2]. Another example is provided
by directed polyominoes, which are relevant for directed percolation, but also occur
in theoretical computer science as binary search networks [54].

All these classes will be systematically defined in Section 3.1.3. For the moment,
let us just say that most of them are obtained by combining conditions of convexity
and directedness.

From the perspective of subclasses as an approximation to the full problem, it is
natural to ask how good this approximation is expected to be. The answer is quite
crude: these approximations are terrible. For a start, all the classes that have been
counted so far are exponentially small in the class of all polygons (or polyominoes).
Hence we cannot expect their properties to reflect faithfully those of general poly-
gons/polyominoes. Why would the properties of a staircase polygon (Fig. 3.2(b))
be similar to those of a general self-avoiding polygon? Indeed, the number of stair-
case polygons of perimeter 2n grows like 22nn−3/2 (up to a multiplicative constant),
while the number of general polygons is believed to be asymptotically µ2nn−5/2,
with µ = 2.638 . . . [36]. The average width of a staircase polygon is clearly linear
in n, while the width of general polygons is conjectured to grow like n3/4 (see [42]).
And so on! In this context, it may be a pure coincidence that the average area of
polygons of perimeter 2n is conjectured to scale as n3/2 (see [27]), just as it does
for staircase polygons. But it is also conjectured that the limit distribution of the
area of 2n-step polygons (normalized by its average value) coincides with the cor-
responding distribution for staircase polygons, and for other exactly solved classes.
The universality of this distribution may not be a coincidence (see Chapter 11 for
more references and details).

3.1.2 Three General Approaches

In this chapter, we present three robust approaches that can be applied to count
many classes C of polyominoes. The common principle of all of them is to translate
a recursive description of the polyominoes of C into a functional equation satisfied
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by the generating function C(x,y,q). Some readers may prefer seeing a translation in
terms of the coefficients of C(x,y,q), namely the numbers c(m,n,k). This translation
is possible, but it is usually easier to work with a functional equation than with
a recurrence relation. The applicability of each of these three approaches depends
on whether the polyominoes of C have, or don’t have, a certain type of recursive
structure.

The most versatile approach is probably the third one, as it virtually applies to any
class of polyominoes having a convexity property. It was already used by Temperley
in 1956 [51] and is often called, in the physics literature, the Temperley approach.
However, it often produces functional equations that are non-trivial to solve, even
when the solution finally turns out to be a simple rational or algebraic series (these
terms will be defined in Section 3.1.3 below). From a combinatorics point of view,
it is important to get a better understanding of the simplicity of these series, and this
is what the first two approaches provide: the first one applies to classes C having
a linear structure, and gives rise to rational generating functions. The second ap-
plies to classes having an algebraic structure, and gives rise to algebraic generating
functions.

We have chosen to present these three approaches because, in our opinion, they
are the most robust ones, and we want to provide effective tools to the reader. To
our knowledge, almost all the classes that have been solved exactly can be solved
using one (or several) of these approaches. Still, certain results have been given a
beautiful combinatorial explanation via more specific techniques. Let us mention
two tools that are often involved in those alternative approaches. The first tool is
specific to the enumeration of polygons, and consists in studying classes of possibly
self-intersecting polygons, and then using an inclusion-exclusion principle to elimi-
nate the ones with self-intersections. This idea appears in an old paper of Pólya [43]
dealing with staircase polygons, and was further exploited to count more general
polygons [30, 31], including those in dimensions larger than two [35, 13]. The sec-
ond tool is the use of bijections and is of course not specific to polyomino enumer-
ation. The idea is to describe a one-to-one correspondence between the objects of
C and those of another class D , having a simpler recursive structure. In this chap-
ter, even though we often use encodings of polyominoes by words, these encodings
are usually very simple and do not use the full force of bijective methods, which is
clearly at work in papers like [16] or [20].

The structure of the chapter is simple: the three approaches we discuss are pre-
sented, and illustrated by examples, in Sections 3.2, 3.3 and 3.4 respectively. A few
open problems which we consider worth investigating are discussed in Section 3.5.

We conclude this introduction with definitions of various families of polyomi-
noes and formal power series.
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3.1.3 A Visit to the Zoo

All the classes studied in this chapter are obtained by combining several conditions
of convexity and directedness. Let us first recall that a polyomino P is a finite set of
square cells of the square lattice whose interior is connected. The set of centres of
the cells form an animal A (Fig. 3.1). The connectivity condition means that any two
points of A can be joined by a path made up of unit vertical and horizontal steps,
in such a way that every vertex of the path lies in A. The animal A is North-East
directed (or directed, for short) if it contains a point v0, called the source, such that
every other point of A can be reached from v0 by a path made of North and East
unit steps, having all its vertices in A. In this case, the polyomino corresponding to
A is also said to be NE-directed. One defines NW, SW and SE directed animals and
polyominoes similarly.

A polyomino P is column-convex if its intersection with every vertical line is con-
nected. This means that the intersection of every vertical line with the corresponding
animal A is formed by consecutive points. The border of P is then a polygon. Row-
convexity is defined similarly. Finally, P is d+-convex if the intersection of A with
every line of slope 1 is formed by consecutive points. One defines d−-convex poly-
ominoes similarly.

(b)(a) (c) (d)

Fig. 3.1 From left to right: (a) a polyomino and the corresponding animal, (b) a NE-directed
animal, (c) a column-convex polygon, (d) a d−-convex polyomino.

As discussed in [8], the combination of the four direction conditions and the
four connectivity conditions gives rise to 31 distinct (non-symmetric) classes of
polyominoes having at least one convexity property. To these 31 classes we must add
the 4 different classes satisfying at least one directional property. Some prominent
members of this zoo, which will occur in the forthcoming sections, are shown in
Fig. 3.2:

• convex polyominoes (or polygons): polyominoes that are both column- and row-
convex,

• staircase polyominoes (or polygons): convex polygons that are NE- and SW-
directed,

• bargraphs: column-convex polygons that are NE- and NW-directed,
• stacks: row-convex bargraphs,
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• partitions, a.k.a. Ferrers diagrams,: convex polygons that are NE-, NW- and SE-
directed.

Finally, a formal power series C(x) ≡ C(x1, . . . ,xk) with real coefficients is ra-
tional if it can be written as a ratio of polynomials in the xi’s. It is algebraic if it
satisfies a non-trivial polynomial equation

P(C(x),x1, . . . ,xk) = 0.

(e)(d)(c)(b)(a)

Fig. 3.2 A photo taken at the zoo: (a) a convex polygon, (b) a staircase polygon, (c) a bargraph,
(d) a stack, (e) a Ferrers diagram.

3.2 Linear Models and Rational Series

3.2.1 A Basic Example: Bargraphs Counted by Area

Let bn denote the number of bargraphs of area n. As there is a unique bargraph of
area 1, b1 = 1. For n ≥ 2, there are two types of bargraphs:

1. those in which the last (i.e., rightmost) column has height 1,
2. those in which the last column has height 2 or more.

Bargraphs of the first type are obtained by adding a column of height 1 to the right
of any bargraph of area n−1. Bargraphs of the second type are obtained by adding
one square cell to the top of the last column of a bargraph of area n− 1. Since a
bargraph cannot be simultaneously of type 1 and 2, this gives

b1 = 1 and for n ≥ 2, bn = 2bn−1,

which implies bn = 2n−1. The area generating function of bargraphs is thus a rational
series:

B(q) := ∑
n≥1

bnqn =
q

1−2q
.
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3.2.2 Linear Objects

The above enumeration of bargraphs is based on a very simple recursive description
of bargraphs. This description only involves the following two constructions:

1. taking disjoint unions of sets,
2. concatenating a new cell with an already constructed object.

In terms of generating functions (g.f.s), taking the disjoint union of sets means sum-
ming their g.f.s, while concatenating a new cell (of size 1) to all elements of a set
means multiplying its g.f. by q. Hence the above description of bargraphs translates
directly into a linear equation for the g.f. B(q):

B(q) = q + qB(q)+ qB(q).

This equation reflects the fact that the set of bargraphs is the union of three disjoint
subsets (the unique bargraph of area 1, bargraphs of type 1, bargraphs of type 2), and
that the second and third subsets are both obtained by adding a cell to any bargraph.

More generally, we will say that a class of objects, equipped with a size, is linear
if these objects can be obtained from a finite set of initial objects using disjoint union
and concatenation of one cell, or atom. It is assumed that the concatenation of an
atom increases the size by 1. The construction must be non-ambiguous, meaning that
each object of the class is obtained only once. The construction may involve several
classes of objects simultaneously. For instance, the class B̃ of bargraphs whose last
column has height 1 is linear: the objects of B̃, other than the one-cell bargraph, are
obtained by adding one cell to the right of any bargraph. The associated series B̃(q)
is defined by the linear system:

B̃(q) = q + qB(q),
B(q) = q + qB(q)+ qB(q).

.

In general, the generating function of a linear class of objects is the first component
of the solution of a system of k linear equations of the form

Bi(q) = Pi(q)+ q
k

∑
j=1

ai, jB j(q) 1 ≤ i ≤ k, (3.1)

where ai, j ∈ N and each Pi(q) is a polynomial in q with coefficients in N. The poly-
nomial Pi(q) counts the initial objects of type i, and there are ai, j ways to aggregate
an atom to an object of type j to form an object of type i. The system (3.1) uniquely
defines each series Bi(q), which is rational. The series obtained in this way are called
N-rational. Their study is closely related to the theory of regular languages [50].
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3.2.3 More Linear Models

In this section we present three typical problems that can be solved via a linear
recursive description. The first one is the perimeter enumeration of Ferrers dia-
grams (and stacks). The second one generalizes the study of bargraphs performed
in Section 3.2.1 to all column-convex polygons (and to the subclass of directed
column-convex polygons) counted by area. The third one illustrates the role of lin-
ear models in the approximation of hard problems, and deals with the enumeration
of self-avoiding polygons confined to a narrow strip. In passing, we illustrate the
two following facts:

1. it may be useful to begin by describing a size-preserving bijection between poly-
ominoes and other objects (having a linear structure),

2. linear constructions are conveniently described by a directed graph when they
become a bit involved.

3.2.3.1 Ferrers Diagrams by Perimeter

The set of Ferrers diagrams can be partitioned into three disjoint subsets: first, the
unique diagram of (half-)perimeter 2; then, diagrams of width at least 2 whose right-
most column has height 1; finally, diagrams with no column of height 1. The lat-
ter diagrams can be obtained by duplicating the bottom row of another diagram
(Fig. 3.3).

= ∪∪

Fig. 3.3 Recursive description of Ferrers diagrams.

From this description, it follows that the set of words that describe the North-East
boundary of Ferrers diagrams, from the NW corner to the SE one, admits a linear
construction. This boundary is formed by East and South steps, and will be encoded
by a word over the alphabet {e,s}. Any word over this alphabet that starts with an e
and ends with an s corresponds to a unique Ferrers diagram. Let F be this class of
words, and let L be the set of all non-empty prefixes of words of F . Then F and
L admit the following linear description:

F = L s and L = {e}∪L e∪L s.

In these equations, the notation L s means {us, u∈L }, and the unions are disjoint.
The series that count the words of these sets by their length (number of letters) are
thus given by the linear system
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F(t) = tL(t) and L(t) = t + 2tL(t).

Since the length of a coding word is the half-perimeter of the associated diagram,
this provides the length g.f.:

F(t) =
t2

1−2t
= ∑

n≥1

2n−2tn.

By separately counting East and South steps, we obtain the equations

F(x,y) = yL(x,y) and L(x,y) = x + xL(x,y)+ yL(x,y), (3.2)

and hence the anisotropic perimeter g.f. of these diagrams:

F(x,y) =
xy

1− x− y
= ∑

m,n≥1

(
m+ n−2

m−1

)
xmyn.

A similar treatment can be used to determine the perimeter g.f. of stack polygons:
the construction schematized in Fig. 3.4 gives:

S(x,y) = xy + xS(x,y)+ S+(x,y), S+(x,y) = yS(x,y)+ xS+(x,y)

which yields

S(x,y) =
xy(1− x)

(1− x)2 − y
.

=

=S+

S S+

S+

∪ ∪

∪

Fig. 3.4 Recursive description of stack polygons.

3.2.3.2 Column-Convex Polygons by Area

Consider a column-convex polygon P having n cells. Let us number these cells from
1 to n as illustrated in Fig. 3.5. The columns are visited from left to right. In the first
column, cells are numbered from bottom to top. In each of the other columns, the
lowest cell that has a left neighbour gets the smallest number; then the cells lying
below it are numbered from top to bottom, and finally the cells lying above it are
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Fig. 3.5 A column-convex polygon, with the numbering and encoding of the cells.

numbered from bottom to top. Note that for all i, the cells labelled 1,2, . . . , i form
a column-convex polygon. This labelling describes the order in which we are going
to aggregate the cells.

Associate with P the word u = u1 · · ·un over the alphabet {a,b,c} defined by
– ui = c (like Column) if the ith cell is the first to be visited in its column,
– ui = b (like Below) if the ith cell lies below the first visited cell of its column,
– ui = a (like Above) if the ith cell lies above the first visited cell of its column.

Then, add a bar on the letter ui if the ith cell of P has a South neighbour, an East
neighbour, but no South-East neighbour. (In other words, the barred letters indicate
where to start a new column, when the bottommost cell in this new column lies
above the bottommost cell of the previous column.) This gives a word v over the
alphabet {a,b,c, ā, b̄, c̄}, and P can be uniquely reconstructed from v.

We now focus on the enumeration of these coding words. Let L be the set of all
prefixes of these words, including the empty prefix ε . By considering which letter
can be added to the right of which prefix, we are led to partition L into five disjoint
subsets L1, . . . ,L5, subject to the following linear recursive description:

L1 = {ε},
L2 = L1c∪L2a∪L3a∪L4c, L4 = L2ā∪L3ā∪L4a∪L5b,
L3 = L2c∪L3b∪L3c, L5 = L2c̄∪L3b̄∪L3c̄∪L5b.

(3.3)

The words of L4 and L5 are those in which a barred letter (the rightmost one) still
waits to be “matched” by a letter c creating a new column. The words of L2 ∪L3

are those that encode column-convex polygons. This construction is illustrated by a
directed graph in Fig. 3.6: every path starting from 1 and ending at i corresponds to
a word of Li, obtained by reading edge labels. The series counting the words of Li

by their length satisfy:

L1 = 1,
L2 = q(L1 + L2 + L3 + L4) , L4 = q(L2 + L3 + L4 + L5) ,
L3 = q(L2 + L3 + L3) , L5 = q(L2 + L3 + L3 + L5) .

The area g.f. of column-convex polygons is C(q)= L2(q)+L3(q). Solving the above
system gives:

C(q) =
q(1−q)3

1−5q + 7q2−4q3 .
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Fig. 3.6 Linear construction of the words of L . The words of Li encode the paths starting from 1
and ending at i.

We believe that this result was first published by Temperley [51].
A column-convex polygon is directed if and only if its coding word does not

use the letter b. We obtain a linear description of the prefixes of these words by
deleting all terms of the form Lib in the description (3.3). The class L5 becomes
irrelevant. Solving the associated system of linear equations gives the area g.f. of
directed column-convex polygons:

DC(q) =
q(1−q)

1−3q + q2 .

As far as we know, this result was first published by Klarner [38].

3.2.3.3 Polygons Confined to a Strip

Constraining polyominoes or polygons to lie in a strip of fixed height endows them
with a linear structure. This observation gives a handle to attack difficult problems,
like the enumeration of general self-avoiding polygons (SAP), self-avoiding walks,
or polyominoes [1, 5, 48, 55, 56]. As the size of the strip increases, the approxi-
mation of the confined problem to the general one becomes better and better. This
widely applied principle gives, for instance, lower bounds on growth constants that
are difficult to determine. We illustrate it here with the perimeter enumeration of
SAP confined to a strip.

Before we describe this calculation, let us mention a closely related idea, which
consists of considering anisotropic models (for instance, SAP counted by vertical
and horizontal perimeters), and fixing the number of atoms lying in one direction,
for instance the number of horizontal edges. Again, this endows the constrained ob-
jects with a linear structure. The denominators of the rational generating functions
that count them often factor in terms (1− yi). The number of exponents i that occur
can be seen as a measure of the complexity of the class. This is often observed only
at an experimental level, and is further discussed in Chapter 4. However, this obser-
vation has been pushed in some cases to a proof that the corresponding generating
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function is not D-finite and in particular not algebraic (see for instance [49], and
Chapter 5).

But let us return to SAP in a strip of height k (a k-strip). A first observation is that
a polygon is completely determined by the position of its horizontal edges. Consider
the intersection of the polygon with a vertical line lying at a half-integer abscissa
(a cut): the strip constraint implies that only finitely many configurations (or states)
can occur. The number of such states is the number of even subsets of {0,1, . . . ,k}.
This implies that SAP in a strip can be encoded by a word over a finite alphabet. For
instance, the polygon of Fig. 3.7 is encoded by the word b̃b̃b̃aabaab̃a.

a b b̃

Fig. 3.7 A self-avoiding polygon in a strip of height 2, encoded over a 3-letter alphabet.

It is not hard to see that for all k, the set of words encoding SAP confined to a
strip of height k has a linear structure. To make this structure clearer, we refine our
encoding: for every vertical cut, we not only keep track of its intersection with the
polygon, but also of the way the horizontal edges that meet the cut are connected to
the left of the cut. This does not change the size of the alphabet for k = 2, as there
is a unique way of coupling two edges. However, if k = 3, the configuration where
4 edges are met by the cut gives rise to 2 states, depending on how these 4 edges
are connected (Fig. 3.8). The number of states is now the number of non-crossing
couplings on {0,1, . . . ,k}. This is also the size of our encoding alphabet A.

a b b̃ c c̃ e fd

Fig. 3.8 A self-avoiding polygon in a strip of height 3, encoded by the word
db̃a f c̃c̃eaa f c̃aceeabcc.

Fix k, and let S be the set of words encoding SAP confined to a k-strip. The
set L of prefixes of words of S describes incomplete SAP, and has a simple linear
structure: for every such prefix w, the set of letters a such that wa lies in L only
depends on the last letter of w. In other words, these prefixes are Markovian with
memory 1. For every letter a in the encoding alphabet, we denote by La the set of
prefixes ending with the letter a. The linear structure can be encoded by a graph,
from which the equations defining the sets La can automatically be written. This
graph is shown in Fig. 3.9 (left) for k = 2. Every path in this graph starting from the
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initial vertex 0 corresponds to a word of L , obtained by reading vertex labels. The
linear structure of prefixes reads:

La = (ε +La +Lb +Lb̃)a, Lb = (ε +La +Lb)b, Lb̃ = (ε +La +Lb̃)b̃.

From this we derive linear equations for incomplete SAP, where every horizontal
edge is counted by

√
x, and every vertical edge by

√
y = z:

La = (z2 + La + zLb + zLb̃)x, Lb = (z+ zLa + Lb)x, Lb̃ = (z+ zLa + Lb̃)x.

These equations keep track of how many edges are added when a new letter is
appended to a word of L . They can be schematized by a weighted graph (Fig. 3.9,
middle). Now the (multiplicative) weight of a path starting at 0 is the weight of the
corresponding incomplete polygon. Finally, the completed polygons are obtained by
adding vertical edges to the right of incomplete polygons. This gives the generating
function of SAP in a strip of height 2 as:

S2(x,y) = z2La + zLb + zLb̃.

0

b

a 0

x

xz2
xa

β

2xz
2xzxz

0

xz

x

x

xz2

xz xz

x

xz

xz

b

a

xz

b̃b̃

Fig. 3.9 The linear structure of SAP in a 2-strip.

Clearly, we should exploit the horizontal symmetry of the model to obtain a
smaller set of equations. The letters b and b̃ playing symmetric roles, we replace
them in the graph of Fig. 3.9 by a unique vertex β , such that the generating function
of paths ending at β is the sum of the g.f.s of paths ending at b and b̃ in the first
version of the graph (Fig. 3.9, right). Introducing the series Lβ = Lb + Lb̃, we have
thus replaced the previous system of four equations by

La = x(z2 + La + zLβ ), Lβ = x(2z+ 2zLa + Lβ ), S2(x,y) = z2La + zLβ ,

from which we obtain
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S2(x,y) =
xy(2−2x + y + 3xy)

(1− x)2 −2x2y
.

Note that this series counts polygons of height 1 twice, so that we should subtract
S1(x,y) = xy/(1− x) to obtain the g.f. of SAP of height at most 2, defined up to
translation.

0 a

d β

γ

e

f
xz

x

xz3

xz

2xz

2xz

xz
2xz2

x2z

2xz

xz
xz

x

2xz2

xz
xz2

xz2

xz2

x2

x2zx2

x2z2

x

x(1+ z2)

2xz

Fig. 3.10 The linear structure of SAP in a 3-strip.

For k = 3, the original alphabet, shown in Fig. 3.8, has 8 letters, but two pairs of
them play symmetric roles. After merging the vertices b and b̃ on the one hand, c
and c̃ on the other, the condensed graph, with its x,z weights, is shown in Fig. 3.10.
The corresponding equations read

La = x
(
z3 + La + zLβ + z2Lγ + z2Ld + zLe

)
,

Lβ = x
(
2z2 + 2zLa +(1 + z2)Lβ + zLγ + 2zLd

)
,

Lγ = x
(
2z+ 2z2La + zLβ + Lγ + 2zL f

)
,

Ld = x
(
z+ z2La + zLβ + Ld

)
,

Le = x2
(
z2 + zLγ + Le

)
,

Lf = x2
(
zLa + Lf

)
,

and the generating function of completed polygons is

S3(x,y) = z3La + z2Lβ + zLγ + zLd + z2Lf =
xyN(x,y)
D(x,y)

where

N(x,y) = 3(x + 1)2 (1− x)5 +(5x + 2)(2x−1)(x + 1)2 (x−1)3 y

− (x−1)
(

6x6 + 4x5 −18x4 −6x3 + 11x2 + 8x + 1
)

y2

− x(x + 1)
(
2x4 + 6x3 −8x2 + 4x + 1

)
y3

and
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D(x,y) = (x + 1)2 (x−1)6 − x(1 + 4x)(x + 1)2 (x−1)4 y

+ x2 (3x4 + 4x3 −6x2 −8x−3
)
(x−1)2 y2

+ x3 (x + 1)
(
x3 + 3x2 −5x + 3

)
y3.

By setting x = y = t, we obtain the half-perimeter generating function of SAP in a
3-strip,

S3(t) =
t2
(
−8 t9 + 4 t8 + 10 t7 −20 t6− t5 − t4 + 7 t3 + 3 t2 −7 t + 3

)

4 t10 −2 t9 −5 t8 + 8 t7 − t6 + 2 t5 −4 t4 + 2 t3 + 3 t2 −4 t + 1

and, by looking at the smallest pole of this series, we also obtain the (very weak)
lower bound 1.68 . . . on the growth constant of square lattice self-avoiding polygons.

The above method has been automated by Zeilberger [55]. It is not hard to see
that the number of states required to count polygons in a k-strip grows like 3k, up
to a power of k. This prevents one from applying this method for large values of
k. Better bounds for growth constants may be obtained via the finite lattice method
described in Chapter 7, and implemented in Chapter 10. A further improvement is
obtained by looking at a cylinder rather than a strip [5].

3.2.4 q-Analogues

By looking at the height of the rightmost column of Ferrers diagrams, we have
described a linear construction of these polygons that proves the rationality of their
perimeter g.f. (Fig. 3.3). Let us examine what happens when we try to keep track of
the area in this construction.

They key point is that the area increases by the width of the polygon when we
duplicate the bottom row. (In contrast, the half-perimeter simply increases by 1 dur-
ing this operation.) This observation gives the following functional equation for the
complete g.f. of Ferrers diagrams:

F(x,y,q) = xyq + xqF(x,y,q)+ yF(xq,y,q).

This is a q-analogue of the equation defining F(x,y,1), derived from (3.2). This
equation is no longer linear, but it can be solved easily by iteration:

F(x,y,q) =
xyq

1− xq
+

y
1− xq

F(xq,y,q)

=
xyq

1− xq
+

y
1− xq

xyq2

1− xq2 +
y

1− xq
y

1− xq2 F(xq2,y,q) (3.4)

= ∑
n≥1

xynqn

(xq)n

with
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(xq)0 = 1 and (xq)n = (1− xq)(1− xq2) · · · (1− xqn).

Similarly, for the stack polygons of Fig. 3.4, one obtains:

S(x,y,q) = xyq + xqS(x,y,q)+ S+(x,y,q),
S+(x,y,q) = yS(xq,y,q)+ xqS+(x,y,q).

Eliminating the series S+ gives

S(x,y,q) =
xyq

1− xq
+

y
(1− xq)2 S(xq,y,q)

= ∑
n≥1

xynqn

(xq)n−1(xq)n
.

In Section 3.4 we present a systematic approach for counting classes of column-
convex polygons by perimeter and area.

3.3 Algebraic Models and Algebraic Series

3.3.1 A Basic Example: Bargraphs Counted by Perimeter

Let us return to bargraphs. The linear description used in Section 3.2.1 to count them
by area cannot be directly recycled to count them by perimeter: indeed, when we add
a cell at the top of the last column, how do we know if we increase the perimeter, or
not? Instead, we are going to scan the polygon from left to right, and factor it into
two smaller bargraphs as soon as we meet a column of height 1 (if any). If there is
no such column, deleting the bottom row of the polygon leaves another bargraph.
This description is schematized in Fig 3.11.

∪ ∪ ∪= ∪

Fig. 3.11 A second recursive construction of bargraphs.

Let B be the set of words over the alphabet {n,s,e} that naturally encode the top
boundary of bargraphs, from the SW to the SE corner. Fig. 3.11 translates into the
following recursive description, where the unions are disjoint:

B = nL s with L = nL s∪{e}∪ eL ∪nL se∪nL seL . (3.5)

This implies that the anisotropic perimeter g.f. of bargraphs satisfies
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{
B(x,y) = yL(x,y),
L(x,y) = yL(x,y)+ x + xL(x,y)+ xyL(x,y)+ xyL(x,y)2.

These equations are readily solved and yield:

B(x,y) =
1− x− y− xy−

√
(1− y)((1− x)2− y(1 + x)2)

2x
. (3.6)

Thus the perimeter g.f. of bargraphs is algebraic, and its algebraicity is explained
combinatorially by the recursive description of Fig. 3.11.

Note that one can directly translate this description into an algebraic equation
satisfied by B(x,y), without using the language B. This language is largely a con-
venient tool to highlight the algebraic structure of bargraphs. The translation of
Fig. 3.11 into an equation proceeds as follows: there are two types of bargraphs,
those that have at least one column of height 1, and the others, which we call thick
bargraphs. Thick bargraphs are obtained by duplicating the bottom row of a general
bargraph, and are thus counted by yB(x,y). Among bargraphs having a column of
height 1, we find the single cell bargraph (g.f. xy), and then those of width at least
2. The latter class can be split into 3 disjoint classes:

– the first column has height 1. These bargraphs are obtained by adding a cell to
the left of any general bargraph, and are thus counted by xB(x,y),

– the last column is the only column of height 1. These bargraphs are obtained by
adding a cell to the right of a thick bargraph, and are thus counted by xyB(x,y),

– the first column of height 1 is neither the first column, nor the last column. Such
bargraphs are obtained by concatenating a thick bargraph, a cell, and a general
bargraph; they are counted by xB(x,y)2.

This discussion directly results in the equation

B(x,y) = yB(x,y)+ xy + xB(x,y)+ xyB(x,y)+ xB(x,y)2. (3.7)

3.3.2 Algebraic Objects

The above description of bargraphs involved two constructions:

1. taking disjoint unions of sets,
2. taking Cartesian products of sets.

For two classes A1 and A2, the element (a1,a2) of the product A1 ×A2 is seen
as the concatenation of the objects a1 and a2. We will say that a class of objects
is algebraic if it admits a non-ambiguous recursive description based on disjoint
unions and Cartesian products. It is assumed that the size of the objects is additive
for the concatenation. For instance, (3.5) gives an algebraic description of the words
of L and B.
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In the case of linear constructions, the only concatenations that were allowed
were between one object and a single atom. As we can now concatenate two ob-
jects, algebraic constructions generalize linear constructions. In terms of g.f.s, con-
catenating objects of two classes means taking the product of the corresponding
g.f.s. Hence the g.f. of an algebraic class will always be the first component of the
solution of a polynomial system of the form:

Ai = Pi(t,A1, . . . ,Ak) for 1 ≤ i ≤ k,

where Pi is a polynomial with coefficients in N. Such series are called N-algebraic,
and are closely related to the theory of context-free languages. We refer to [50]
for details on these languages, and to [12] for a discussion of N-algebraic series in
enumeration.

3.3.3 More Algebraic Models

In this section we present three problems that can be solved via an algebraic decom-
position: staircase polygons, then column-convex polygons counted by perimeter
(and the subclass of directed column-convex polygons), and finally directed poly-
ominoes counted by area.

3.3.3.1 Staircase Polygons by Perimeter

In Section 3.1.3 we defined staircase polygons through their directed and convexity
properties. See Fig. 3.2(b) for an example. We describe here a recursive construction
of these polygons, illustrated in Fig. 3.12. It is analogous to the construction of
bargraphs described at the end of Section 3.3.1 and illustrated in Fig. 3.11. Denote
by S(x,y) the anisotropic perimeter generating function of staircase polygons.

∪∪∪=

Fig. 3.12 A recursive construction of staircase polygons.
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We say that a staircase polygon is thick if deleting the bottom cell of each column
gives a staircase polygon of the same width. These thick polygons are obtained
by duplicating the bottom cell in each column of a staircase polygon, so that their
generating function is yS(x,y).

Among non-thick staircase polygons, we find the single cell polygon (g.f. xy),
and then those of width at least 2. Let P be in the latter class, and denote its columns
C1, . . . ,Ck, from left to right. The fact that P is not thick means that there exist two
consecutive columns, Ci and Ci+1, that overlap by one edge only. Let i be minimal
for this property. Two cases occur:

– the first column has height 1. In particular, i = 1. These polygons are obtained
by adding a cell to the bottom left of any general staircase polygon, and are thus
counted by xS(x,y).

– otherwise, the columns C1, . . . ,Ci form a thick staircase polygon, and Ci+1, . . . ,Ck

form a general staircase polygon. Concatenating these two polygons in such a
way that they share only one edge gives the original polygon P. Hence the g.f.
for this case is S(x,y)2.

This discussion gives the equation

S(x,y) = yS(x,y)+ xy + xS(x,y)+ S(x,y)2

so that

S(x,y) =
1
2

(
1− x− y−

√
1−2x−2y−2xy+ x2+ y2

)

= ∑
p,q≥1

1
p + q−1

(
p + q−1

p

)(
p + q−1

q

)
xpyq.

This expansion can be obtained using the Lagrange inversion formula [9]. The
isotropic semi-perimeter g.f. is obtained by setting t = x = y:

S(t,t) =
1
2

(
1−2t−

√
1−4t

)
= ∑

n≥1

Cntn+1

where Cn =
(2n

n

)
/(n + 1) is the nth Catalan number. The same approach can be ap-

plied to more general classes of convex polygons, like directed convex polygons and
general convex polygons. See for instance [9, 23].

3.3.3.2 Column-Convex Polygons by Perimeter

We now apply a similar treatment to the perimeter enumeration of column-convex
polygons (cc-polygons for short). Their area g.f. was found in Section 3.2.3. Let C

denote the set of these polygons, and C(x,y) their anisotropic perimeter generating
function. Our recursive construction requires us to introduce two additional classes
of polygons. The first one, C1, is the set of cc-polygons in which one cell of the
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last column is marked. The corresponding g.f. is denoted C1(x,y). Note that, by
symmetry, this series also counts cc-polygons where one cell of the first column
is marked. Then, C2 denotes the set of cc-polygons in which one cell of the first
column is marked (say, with a dot), and one cell of the last column is marked as
well (say, with a cross). The corresponding g.f. is denoted C2(x,y). Our recursive
construction of the polygons of C is illustrated in Fig. 3.13.

∪= ∪ ∪

∪

∪ ∪

Fig. 3.13 A recursive construction of column-convex polygons.

We say that a cc-polygon is thick if deleting the bottom cell of each column gives
a cc-polygon of the same width. These thick polygons are obtained by duplicating
the bottom cell in each column of a cc-polygon, so that their generating function is
yC(x,y).

Among non-thick cc-polygons, we find the single cell polygon (g.f. xy), and
then those of width at least 2. Let P be in the latter class, and denote its columns
C1, . . . ,Ck, from left to right. The fact that P is not thick means that there exist two
consecutive columns Ci and Ci+1 that overlap by one edge only. Let i be minimal
for this property. Two cases occur:

– the first column has height 1. In particular, i = 1. These polygons are obtained
by adding a cell to the left of any cc-polygon having a marked cell in its first
column, next to the marked cell. They are thus counted by xC1(x,y).

– otherwise, the columns C1, . . . ,Ci form a thick cc-polygon P1, and the columns
Ci+1, . . . ,Ck form a general cc-polygon P2. There are several ways of concatenat-
ing these two polygons in such a way they share only one edge:
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– either the shared edge is at the bottom of Ci and at the top of Ci+1. Such
polygons are counted by C(x,y)2.

– or the shared edge is at the top of Ci and at the bottom of Ci+1. Such polygons
are also counted by C(x,y)2.

– if Ci+1 has height at least 2, there are no other possibilities. However, if Ci+1

consists of one cell only, this cell may be adjacent to any cell of Ci, not only
to the bottom or top ones. The case where Ci+1 is the last column of P is
counted by xy(C1(x,y)−C(x,y)). The case where i + 1 < k is counted by
x(C1(x,y)2 −C(x,y)C1(x,y)).

Let us drop the variables x and y in the series C, C1 and C2. The above discussion
gives the equation:

C = yC + xy + xC1 + 2C2 + xy(C1 −C)+ x(C2
1 −CC1).

The construction of Fig. 3.13 can now be recycled to obtain an equation for the
series C1, counting cc-polygons with a marked cell in the last column. Note that
the first case of the figure (thick polygons) gives rise to two terms, depending on
whether the marked cell is one of the duplicated cells, or not:

C1 = y(C +C1)+ xy + xC2 + 2CC1 + xy(C1 −C)+ x(C1C2 −CC2).

We need a third equation, as three series (namely C, C1 and C2) are now involved.
There are two ways to obtain a third equation:

– either we interpret C1 as the g.f. of cc-polygons where one cell is marked in the
first column. The construction of Fig. 3.13 gives:

C1 = y(C +C1)+ xy + xC1 + 2(C+C1)C + xy
(
(C1 −C)+ (C2−C1)

)

+ x
(
(C2

1 −CC1)+ (C2C1 −C2
1)
)
.

Note that now many cases give rise to two terms in the equation.
– or we work out an equation for C2 using the decomposition of Fig. 3.13. Again,

many of the cases schematized in this figure give rise to several terms. In partic-
ular, the first case (thick polygons) gives rise to 4 terms:

C2 = y(C + 2C1 +C2)+ xy + xC2 + 2(C+C1)C1 + xy
(
(C1 −C)+ (C2−C1)

)

+ x
(
(C1C2 −CC2)+ (C2

2 −C1C2)
)
.

Both strategies of course give the same equation for C ≡ C(x,y), after the elimina-
tion of C1 and C2:
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(
−5xy−18 + 2xy2−18y2 + 36y + 2x

)
C4

+(y−1)
(
5xy2 −21y2 + 42y−14xy + 5x−21

)
C3

+ 2 (y−1)2 (−4y2 + 2xy2 + 8y−7xy−4 + 2x
)
C2

+(y−1)3 (xy2 − y2 + 2y−6xy + x−1
)
C− xy(y−1)4 = 0.

This quartic has 4 roots, among which the g.f. of cc-polygons can be identified by
checking the first few coefficients. This series turns out to be unexpectedly simple:

C(x,y) = (1− y)


1− 2

√
2

3
√

2−
√

1 + x +
√

(1− x)2 −16 xy
(1−y)2


 .

Feretić has provided direct combinatorial explanations for this formula [28, 29].
The algebraic equation satisfied by C(t,t) was first1 obtained (via a context-free
language) in [22]. The method we have used is detailed in [26].

3.3.3.3 Directed Column-Convex Polygons by Perimeter

It is not hard to restrict the construction of Fig. 3.13 to directed cc-polygons. This is
illustrated in Fig. 3.14. Note that the case where the columns Ci and Ci+1 share the
bottom edge of Ci (the fourth case in Fig. 3.13) is only possible if Ci+1 has height 1.
Moreover, only one additional series is needed, namely that of directed cc-polygons
marked in the last column (D1).

One obtains the following equations:

D = yD+ xy + xD+ xD2 + xyD+ D2 + xy(D1 −D)+ x(D1 −D)D,

D1 = y(D+ D1)+ xy + xD1 + xDD1 + xyD+ DD1 + xy(D1 −D)+ x(D1−D)D1.

Eliminating D1 gives a cubic equation for the series D ≡ D(x,y):

D3 + 2(y−1)D2 +(y−1)(x + y−1)D+ xy(y−1) = 0.

This equation was first obtained in [21]. The first few terms of the semi-perimeter
generating function are

D(t,t) = t2 + 2t3 + 6t4 + 20t5 + 71t6 + 263t7 + 1005t8 + 3933t9 + · · ·

1 Eq. (32) in [22] has an error: the coefficient of t5c3 in p2 should be −40 instead of +40.
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∪ ∪

∪ ∪

∪

∪∪=

Fig. 3.14 A recursive construction of directed column-convex polygons.

3.3.3.4 Directed Polyominoes by Area

Let us move to a class that admits a neat, but non-obvious, algebraic structure: di-
rected polyominoes counted by area. This structure was discovered when Viennot
developed the theory of heaps [52]. Intuitively, a heap is obtained by dropping ver-
tically some solid pieces, one after the other. Thus, a piece lies either on the “floor”
(when it is said to be minimal), or at least partially covers another piece.

Directed polyominoes are, in essence, heaps. To see this, replace every cell of the
polyomino by a dimer, after a 45 degree rotation (Fig. 3.15). This gives a heap with
a unique minimal piece. Such heaps are called pyramids. If the columns to the left
of the minimal piece contain no dimer, we say we have a half-pyramid (Fig. 3.15,
right).

Fig. 3.15 Left: A directed polyomino and the associated pyramid. Right: a half-pyramid.
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The interest in heaps lies in the existence of a product of heaps: The product of
two heaps is obtained by putting one heap above the other and dropping its pieces.
Conversely, one can factor a heap by pushing upwards one or several pieces. See an
example in Fig. 3.16. This product is the key in our algebraic description of directed
polyominoes, or, equivalently, of pyramids of dimers, as we now explain.

Fig. 3.16 A factorization of a pyramid into a pyramid and a half-pyramid. Observe that the highest
dimer of the pyramid moves up as we lift the white dimer.

A pyramid is either a half-pyramid, or the product of a half-pyramid and a pyra-
mid (Fig. 3.17, top). Let D(q) denote the g.f. of pyramids counted by the number of
dimers, and H(q) denote the g.f. of half-pyramids. Then D(q) = H(q)(1 + D(q)).

Now, a half-pyramid can be a single dimer. If it has several dimers, it is the
product of a single dimer and of one or two half-pyramids (Fig. 3.17, bottom), which
implies H(q) = q+qH(q)+qH2(q). Note that D(q) is also the area g.f. of directed
polyominoes. A straightforward computation gives:

D(q) =
1
2

(√
1 + q

1−3q
−1

)
(3.8)

H HD

D

∪=

= ∪∪

Fig. 3.17 Decomposition of pyramids (top) and half-pyramids (bottom).
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This was first proved by Dhar [24]. The above proof is adapted from [7].

3.3.4 q-Analogues

By looking for the first column of height 1 in a bargraph, we have described an
algebraic construction of these polygons (Fig. 3.11) that proves that their perimeter
g.f. is algebraic (Section 3.3.1). Let us now examine what happens when we try to
keep track of the area of these polygons.

As in Section 3.2.4, the key observation is that the area behaves additively when
one concatenates two bargraphs, but increases by the width of the polygon when we
duplicate the bottom row. (In contrast, the half-perimeter simply increases by 1 dur-
ing this operation.) This observation gives rise to the following functional equation
for the complete g.f. of bargraphs:

B(x,y,q) = yB(xq,y,q)+ xyq + xqB(x,y,q)+ xyqB(xq,y,q)

+ xqB(xq,y,q)B(x,y,q). (3.9)

This is a q-analogue of Equation (3.7) defining B(x,y,1). This equation is no longer
algebraic, and it is not clear how to solve it. It has been shown in [44] that it can be
linearized and solved using a certain Ansatz. We will show in Section 3.4.1 a more
systematic way to obtain B(x,y,q), which does not require any Ansatz.

3.4 Adding a New Layer: a Versatile Approach

In this section we describe a systematic construction that can be used to find the
complete g.f. of many classes of polygons having a convexity property [10]. The
cost of this higher generalization is twofold:

• it is not always clear how to solve the functional equations obtained in this way,
• in contrast with the constructions developed in Sections 3.2 and 3.3, this ap-

proach does not provide combinatorial explanations for the rationality/algebraicity
of the corresponding g.f.s.

This type of construction is sometimes called Temperley’s approach since Tem-
perley used it to write functional equations for the generating function of column-
convex polygons counted by perimeter [51]. But it also occurs, in a more compli-
cated form, in other “old” papers [6, 40]. We would prefer to see a more precise
terminology, like layered approach.
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3.4.1 A Basic Example: Bargraphs by Perimeter and Area

We return to our favourite example of bargraphs, and we now aim to find the com-
plete g.f. B(x,y,q) of this class of polygons. We have just seen that the algebraic
description of Fig. 3.11 leads to the q-algebraic equation (3.9), which is not obvi-
ous to solve. The linear description of Section 3.2.1 cannot be directly exploited
either: in order to decide whether the addition of a cell at the top of the last column
increases the perimeter or not, we need to know which of the last two columns is
higher.

We present here a variation of this linear construction that allows us to count
bargraphs by area and perimeter, provided we also take into account the right height
by a new variable s. By right height, we mean the height of the rightmost column.
The g.f. we are interested in is now

B(x,y,q,s) = ∑
h≥1

Bh(x,y,q)sh,

where Bh(x,y,q) is the complete g.f. of bargraphs of right height h.

ℓ h
= ∪ ∪

Fig. 3.18 A third recursive construction of bargraphs.

Our new construction is illustrated in Fig. 3.18. The class B of bargraphs is split
into three disjoint subsets:

1. bargraphs of width 1 (columns). The g.f. of this class is xysq/(1− ysq),
2. bargraphs in which the last column is at least as high as the next-to-last column.

These bargraphs are obtained by duplicating the last column of a bargraph (which
boils down to replacing s by sq in the series B(x,y,q,s)), and adding a (possibly
empty) column at the top of the newly created column. The corresponding g.f. is
thus x

1− ysq
B(x,y,q,sq).

3. bargraphs in which the last column is lower than the next-to-last column. To
obtain these, we start from a bargraph, say of right height h, and add a new
column of height ℓ < h to the right. The g.f. of this third class is:

x ∑
h≥1

(
Bh(x,y,q)

h−1

∑
ℓ=1

(sq)ℓ

)
= x ∑

h≥1

(
Bh(x,y,q)

sq− (sq)h

1− sq

)

= x
sqB(x,y,q,1)−B(x,y,q,sq)

1− sq
. (3.10)



68 Mireille Bousquet-Mélou and Richard Brak

Writing B(s) ≡ B(x,y,q,s), and putting together the three cases, we obtain:

B(s) =
xysq

1− ysq
+

xsq
1− sq

B(1)+
xsq(y−1)

(1− sq)(1− ysq)
B(sq). (3.11)

This equation is solved in two steps: first, an iteration, similar to what we did for
Ferrers diagrams in (3.4) (Section 3.2.4), provides an expression for B(s) in terms
of B(1):

B(s) = ∑
n≥1

(xs(y−1))n−1q(n
2)

(sq)n−1(ysq)n−1

(
xysqn

1− ysqn +
xsqn

1− sqn B(1)

)
.

Then, one sets s = 1 to obtain the complete g.f. B(1) ≡ B(x,y,q,1) of bargraphs:

B(x,y,q,1) =
I+

1− I−
(3.12)

with

I+ = ∑
n≥1

xn(y−1)n−1q(n+1
2 )

(q)n−1(yq)n
and I− = ∑

n≥1

xn(y−1)n−1q(n+1
2 )

(q)n(yq)n−1
.

3.4.2 More Examples

In this section, we describe how to apply the layered approach to two other classes of
polygons: staircase and column-convex polygons, counted by perimeters and area
simultaneously. In passing we show how the difference of g.f.s resulting from a
geometric summation like (3.10) can be explained combinatorially by an inclusion-
exclusion argument.

3.4.2.1 Staircase polygons

As with the bargraph example above, we define an extended generating function
which tracks the height of the rightmost column of the staircase polygon,

S(x,y,q,s) = ∑
h≥1

Sh(x,y,q)sh,

where Sh(x,y,q) is the generating function of staircase polygons with right height h.
The set of all staircase polygons can be partitioned into two parts (Fig. 3.19):

1. those which have only one column. The g.f. for this class is xyqs/(1− yqs).
2. those which have more than one column. Their g.f. is obtained as the difference

of the g.f. of two sets as follows.
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Fig. 3.19 The two types of staircase polygons.

Staircase polygons of width ℓ ≥ 2 can be split into two objects: a staircase poly-
gon formed of the ℓ− 1 first columns, and the rightmost column. The left part has
generating function S(x,y,q,1) (ignoring the rightmost height), to which we then
attach a column of cells. The attached column is constrained in that it must not ex-
tend below the bottom of the rightmost column of the left part. It is generated (see
Fig. 3.19) by gluing a descending column (with g.f. 1/(1− qs)) and an ascending
column (with g.f. 1/(1− yqs)) to a single square (with g.f. xyqs). The single square
is required to ensure that the column is not empty and is glued to the immediate
right of the topmost square of the left part. An important observation is that only the
ascending column contributes in the increase of the vertical perimeter. This gives
the generating function

S(x,y,q,1) · xyqs · 1
1−qs

· 1
1− yqs

.

This construction however results in configurations which might have the rightmost
column extending below the rightmost column of the left part. We must thus subtract
the contribution of these “bad” configurations from the above g.f. We claim that they
are generated by

S(x,y,q,sq) · xyqs · 1
1−qs

· 1
1− yqs

.

The replacement of s with sq in S(x,y,q,sq) is interpreted as adding a copy of the
last column of the left part, as illustrated in Fig. 3.20. The xyqs factor is interpreted
as attaching a new cell to the bottom of the duplicated column (thus ensuring the
rightmost column is strictly below the rightmost column of the left part). Finally, we
add a descending and an ascending column. Again, the height of the latter must not
be taken into account in the vertical perimeter.

Thus the final equation for the generating function is

S(x,y,q,s) =
xyqs

1− yqs
+
(
S(x,y,q,1)−S(x,y,q,sq)

) xyqs
(1−qs)(1− yqs)

.

It can also be obtained via geometric sums, as was done for (3.10). The equation is
solved with the same two step process as for bargraphs. First we iterate it to obtain
S(x,y,q,s) in terms of S(x,y,q,1), and then we set s to 1, obtaining
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Fig. 3.20 a) Replacing s by sq in S(x,y,q, s) duplicates the last column of the polygon. b) Gener-
ating function of “bad” configurations.

S(x,y,q,1) = y
J1

J0
,

where J0 and J1 are two q-Bessel functions [34]:

J1(x,y,q) = ∑
k≥1

(−1)k+1 xkq(k+1
2 )

(q)k−1(yq)k

and

J0(x,y,q) = ∑
k≥0

(−1)k xkq(k+1
2 )

(q)k(yq)k
.

Note, the appropriate limit as q → 1 leads to standard Bessel functions which are
related to the generating function for semi-continuous staircase polygons—see [18]
for details.

3.4.2.2 Column-Convex Polygons

The case of column-convex polygons is more complex and we will not give all
the details but discuss only the primary additional complication. We refer to [10]
for a complete solution. As in the case of staircase polygons, a functional equation
for column-convex polygons can be obtained by considering the rightmost (last)
column. The position of the last column compared with the second last column
must be carefully considered. Again there are several cases depending on whether
the top (resp. bottom) of the last column is strictly above, at the same level or below
the top (resp. bottom) of the second-last column. The case that leads to a type of
term that does not appear in the equation for staircase polygons is the case where
the top (resp. bottom) of the last column cannot be above (resp. below) the top (resp.
bottom) of the second-last column. Thus we will only explain this case which we
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will refer to as the contained case, as the last column is somehow contained in the
previous one.

If the generating function for the column-convex polygons is C(s) = C(x,y,q,s)
then we claim that the polygons falling into the contained case are counted by the
generating function

xsq
1− sq

∂C
∂ s

(1)− xs2q2

(1− sq)2

(
C(1)−C(sq)

)
. (3.13)

Thus we see we now need a derivative of the generating function. As a polygon of
right height h contributes h times to the series ∂C/∂ s(1), this series counts polygons
with a marked cell in the rightmost column.

Fig. 3.21 A schematic representation of the equation for the case where the rightmost column does
not extend above or below the second-last column.

Let us now explain this expression, which is illustrated in Fig. 3.21. We consider
a polygon as the concatenation of a left part with a new (rightmost) column C. In
the left part, we mark the cell of the rightmost column that is at the same level as the
bottom cell of C. So, starting from a marked polygon, we first add a single square
to the right of the marked cell—this gives a factor xsq. Above this square we then
add an ascending column which is generated by 1/(1− sq). However, as with the
staircase polygons, the resulting series counts “bad” configurations, where the last
column ends strictly higher than the second last column. We subtract the contribu-
tion of these bad configurations by generating them as shown on the second picture
of Fig. 3.21. This results in subtracting the term xq2s2C(1)/(1− sq)2. However, we
have now subtracted too much! Indeed, some configurations counted by the latter se-
ries have a rightmost column that ends below the second last column. We correct this
by adding the contribution of these configurations, which is xq2s2C(sq)/(1− sq)2

(Fig. 3.21, right). This establishes (3.13) for the g.f. of the contained case.
The other cases are simpler, and in the same vein as what was needed for staircase

polygons. Considering all cases gives
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C(s) =
xsyq

1− syq
+

xsq
1− sq

∂C
∂ s

(1)+
xs2q2(2y− syq−1)

(1− sq)2(1− syq)
C(1)

+
xs2q2(1− y)2

(1− sq)2(1− syq)2C(sq). (3.14)

In order to solve this equation, we first iterate it to obtain C(s) in terms of C(1)
and C′(1) = ∂C/∂ s(1). Setting s = 1 gives a linear equation between C(1) and
C′(1). Setting s = 1 after having differentiated with respect to s gives a second linear
equation between C(1) and C′(1). We end up solving a linear system of size 2, and
obtain C(1) as a ratio of two 2×2 determinants. The products of series that appear
in these determinants can be simplified, and the final expression reads

C(x,y,q,1) = y
(1− y)X

1 +W + yX

where

X =
xq

(1− y)(1− yq)
+ ∑

n≥2

(−1)n+1xn(1− y)2n−4q(n+1
2 )(y2q)2n−2

(q)n−1 (yq)n−2 (yq)2
n−1 (yq)n (y2q)n−1

and

W = ∑
n≥1

(−1)nxn(1− y)2n−3q(n+1
2 )(y2q)2n−1

(q)n (yq)3
n−1 (yq)n (y2q)n−1

.

The first solution, involving a more complicated expression, was given in [17]. The
one above appears as Theorem 4.8 in [10].

3.4.3 The Kernel Method

In Sections 3.2 and 3.3, we have explained combinatorially why the area g.f. of
bargraphs, B(1,1,q), and the perimeter g.f. of bargraphs, B(x,y,1), are respectively
rational and algebraic. It is natural to examine whether these properties can be re-
covered from the construction of Fig. 3.18 and the functional equation (3.11).

As soon as we set y = 1 in this equation, the main difficulty, that is, the term
B(sq), disappears. We can then substitute 1 for s and solve for B(x,1,q,1), the width
and area g.f. of bargraphs. This series is found to be

B(x,1,q,1) =
xq

1−q− xq
.

From this, one also obtains a rational expression for the series B(x,1,q,s). The ratio-
nality of B(x,1,q,1) also follows directly from the expression (3.12): setting y = 1
shrinks the series I+ and I− to simple rational functions.



3 Exactly Solved Models 73

How the perimeter g.f. of bargraphs can be derived from the functional equa-
tion (3.11) is a more challenging question. Setting q = 1 gives

B(s) =
xys

1− ys
+

xs
1− s

B(1)+
xs(y−1)

(1− s)(1− ys)
B(s). (3.15)

This equation cannot be simply solved by setting s = 1. Instead, the solution uses
the so-called kernel method, which has proved useful in a rather large variety of
enumerative problems in the past 10 years [3, 4, 14, 19, 32, 47]. This method solves,
in a systematic way, equations of the form:

K(s,x)A(s,x) = P(x,s,A1(x), . . . ,Ak(x))

where K(s,x) is a polynomial in s and the other indeterminates x = (x1, . . . ,xn), P
is a polynomial, A(s,x) is an unknown series in s and the xi’s, while the series Ai(x)
only depend on the xi’s. (It is assumed that the equation uniquely defines all these
unknown series.) We refer to [14] for a general presentation, and simply illustrate
the method on (3.15). We group the terms involving B(s), and multiply the equation
by (1− s) to obtain:

(
1− s− xs(y−1)

1− ys

)
B(s) =

xys(1− s)
1− ys

+ xsB(1). (3.16)

Let S ≡ S(x,y) be the only formal power series in x and y that satisfies

S = 1− xS(y−1)

1− yS
.

That is,

S =
1− x + y + xy−

√
(1− y)((1− x)2− y(1 + x)2)

2y
.

Replacing s by S in (3.16) gives an identity between series in x and y. By construc-
tion, the left-hand side of this identity vanishes. This gives

B(1) ≡ B(x,y,1,1) =
y(S−1)

1− yS

=
1− x− y− xy−

√
(1− y)((1− x)2− y(1 + x)2)

2x
,

and we have recovered the algebraic expression (3.6) of the perimeter g.f. of bar-
graphs.
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3.5 Some Open Questions

We conclude this chapter with a list of open questions. As mentioned in the introduc-
tion, the combination of convexity and direction conditions gives rise to 35 classes
of polyominoes, not all solved. But all these classes are certainly not equally inter-
esting. The few problems we present below have two important qualities: they do not
seem completely out of reach (we do not ask about the enumeration of all polyomi-
noes) and they have some special interest: they deal either with large classes of poly-
ominoes, or with mysterious classes (that have been solved in a non-combinatorial
fashion), or they seem to lie just at the border of what the available techniques can
achieve at the moment.

3.5.1 The Quasi-Largest Class of Quasi-Solved Polyominoes

Let us recall that the growth constant of n-cell polyominoes is conjectured to be a bit
more than 4. More precisely, it is believed that pn, the number of such polyominoes,
is equivalent to µnn−1, up to a multiplicative constant, with µ = 4.06 . . . [37]. The
techniques that provide lower bounds on µ involve looking at bounded polyominoes
(for instance polyominoes lying in a strip of fixed height k) and a concatenation ar-
gument. See [5] for a recent survey and the best published lower bound, 3.98 . . .. It is
not hard to see that for k fixed, these bounded polyominoes have a linear structure,
and a rational generating function. This series is obtained either by adding recur-
sively a whole “layer” to the polyomino (as we did for self-avoiding polygons in
Section 3.2.3.3), or by adding one cell at a time. The latter approach is usually more
efficient (Chapter 6).

What about solved classes of polyominoes that do not depend on a parameter k,
and often have a more subtle structure? We have seen in Section 3.3.3 that the g.f.
of directed polyominoes is algebraic, with growth constant 3. This is “beaten” by
the growth constant 3.20. . . derived from the rational g.f. of column-convex poly-
ominoes (Section 3.2.3). A generalization of directed polyominoes (called multi-
directed polyominoes) was introduced in [15] and proved to have a fairly compli-
cated g.f., with growth constant about 3.58. To our knowledge, this is the largest
growth constant reached from exact enumeration (again, apart from the rational
classes obtained by bounding column heights).

However, in 1967, Klarner introduced a “large” class of polyominoes that seems
interesting and would warrant a better understanding [39]. His definition is a bit
unclear, and his solution is only partial, but the estimate he obtains of the growth
constant is definitely appealing: about 3.72. Let us mention that the triangular lattice
version of this mysterious class is solved in [15]. The growth constant is found to
be about 4.58 (the growth constant of triangular lattice animals is estimated to be
about 5.18, see [53]).
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3.5.2 Partially Directed Polyominoes

This is another generalization of directed polyominoes, with a very natural defini-
tion: the corresponding animal A contains a source point v0 from which every other
point can be reached by a path formed of North, East and West steps, only visiting
points of A (Fig. 3.22(a)). This model has a slight flavour of heaps of pieces, a no-
tion that has already proved useful in the solution of several polyomino models (see
Section 3.3.3 and [7, 16, 15]). The growth constant is estimated to be around 3.6,
and, if proved, would thus improve that of multi-directed animals [45].

(a) (b) (c)

Fig. 3.22 (a) A partially directed animal. The source can be any point on the bottom row. (b) A
directed animal on the square lattice, with the right neighbours indicated in white. (c) A directed
animal A on the triangular lattice. The distinguished points are those having (only) their South
neighbour in A.

3.5.3 The Right Site-Perimeter of Directed Animals

We wrote in the introduction that almost all solved classes of polyominoes can be
solved by one of the three main approaches we present in this chapter. Here is one
simple-looking result that we do not know how to prove via these approaches (and
not via any combinatorial approach, to be honest).

Take a directed animal A, and call a neighbour of A any point that does not
lie in A, but could be added to A to form a new directed animal. The number of
neighbours is the site-perimeter of A. The right site-perimeter of A is the number of
neighbours that lie one step to the right of a point of A. It was proved in [11] that the
g.f. of directed animals, counted by area and right site-perimeter, is a very simple
extension of (3.8):

D(q,x) =
x
2

(√
(1 + q)(1 + q−qx)

1−q(2 + x)+ q2(1− x)
−1

)
.

The proof is based on an equivalence with a one-dimensional gas model, inspired
by [25]. It is easy to see that the right site-perimeter is also the number of vertices v
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of A whose West neighbour is not in A. (By the West neighbour, we mean the point
at coordinates (i−1, j) if v = (i, j)).

Described in these terms, this result has a remarkable counterpart for triangular
lattice animals (Fig. 3.22). Let us say that a point (i, j) of the animal has a West (resp.
South, South-West) neighbour in A if the point (i−1, j) (resp. (i, j−1), (i−1, j−1))
is also in A. Then the g.f. that counts these animals by the area and the number of
points having a SW-neighbour (but no W- or S-neighbour) is easy to obtain using
heaps of dimers and the ideas presented in Section 3.3.3:

D̃(q,x) =
1
2

(√
1 + q−qx

1−3q−qx

)
.

What is less easy, and is so far only proved via a correspondence with a gas model,
is that D̃(q,x) also counts directed animals (on the triangular lattice) by the area and
the number of points having a South neighbour (but no SW- or W-neighbour). Any
combinatorial proof of this result would give a better understanding of these objects.
One possible starting point may be found in the recent paper [41], which sheds some
combinatorial light on the gas models involved in the proof of the above identities.

3.5.4 Diagonally-Convex Polyominoes

Let us conclude with a problem that seems to lie at the border of the applicability
of the third approach presented here (the layered approach). In the enumeration of,
say, column-convex polyominoes (Section 3.4.2), we have used the fact that delet-
ing the last column of such a polyomino gives another column-convex polyomino.
This is no longer true of a d−-convex polyomino from which we would delete the
last diagonal (Fig. 3.1(d)). Still, it seems that this class is sufficiently well struc-
tured to be exactly enumerable. Note that this difficulty vanishes when studying the
restricted class of directed diagonally-convex polyominoes [8, 46], which behave
approximately like column-convex polyominoes.
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7. J. Bétréma and J.-G. Penaud. Modèles avec particules dures, animaux dirigés et séries en
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31. S. Feretić. A q-enumeration of convex polyominoes by the festoon approach. Theoret. Com-
put. Sci., 319(1-3):333–356, 2004.
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Boston Inc., Boston, MA, 1993.
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