
Chapter 14
Conformal Field Theory Applied
to Loop Models

Jesper Lykke Jacobsen

14.1 Introduction

The application of methods of quantum field theory to problems of statistical me-
chanics can in some sense be traced back to Onsager’s 1944 solution [1] of the
two-dimensional Ising model. It does however appear fair to state that the 1970’s
witnessed a real gain of momentum for this approach, when Wilson’s ideas on scale
invariance [2] were applied to study critical phenomena, in the form of the cele-
brated renormalisation group [3]. In particular, the so-called ε expansion permitted
the systematic calculation of critical exponents [4], as formal power series in the
space dimensionality d, below the upper critical dimension dc. An important lesson
of these efforts was that critical exponents often do not depend on the precise de-
tails of the microscopic interactions, leading to the notion of a restricted number of
distinct universality classes.

Meanwhile, further exact knowledge on two-dimensional models had appeared
with Lieb’s 1967 solution [5] of the six-vertex model and Baxter’s subsequent 1971
generalisation [6] to the eight-vertex model. These solutions challenged the notion
of universality class, since they provided examples of situations where the critical
exponents depend continuously on the parameters of the underlying lattice model.
On the other hand, the techniques of integrability used relied crucially on certain ex-
act microscopic conservation laws, thus placing important restrictions on the models
which could be thus solved.

An important break-through occurred in 1984 when Belavin, Polyakov and
Zamolodchikov [7] applied ideas of conformal invariance to classify the possible
types of critical behaviour in two dimensions. These ideas had emerged earlier
in string theory and mathematics, and in fact go back to earlier (1970) work of
Polyakov [8] in which global conformal invariance is used to constrain the form
of correlation functions in d-dimensional theories. It is however only by imposing
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local conformal invariance in d = 2 that this approach becomes really powerful. In
particular, it immediately permitted a full classification of an infinite family of con-
formally invariant theories (the so-called “minimal models”) having a finite number
of fundamental (“primary”) fields, and the exact computation of the corresponding
critical exponents. In the aftermath of these developments, conformal field theory
(CFT) became for some years one of the most hectic research fields of theoretical
physics, and indeed has remained a very active area up to this date.

Despite the amazing classification powers of CFT, it remains a tricky question
to make the link between a given critical lattice model and the corresponding CFT.
This is particularly true for geometrically defined models, such as percolation and
self-avoiding polygons (SAP) and walks (SAW), since then typically the usual as-
sumptions of minimality and unitarity (roughly speaking, positive definite Boltz-
mann weights) fail. Such models are however well treated by the so-called Coulomb
gas (CG) approach, in which the geometric degrees of freedom are directly identi-
fied with the level lines of one or more free bosonic “height” fields. This approach
preceded [9, 10, 11] the break-through of CFT, but shortly thereafter it was used
(in a more formal and less geometrically inspired form) for the extensive computa-
tion of correlation functions in minimal models by Dotsenko and Fateev [12, 13]. A
large number of applications in polymer physics was developed by Duplantier and
Saleur [14].

The goal of this chapter is to present the application of CFT—with special em-
phasis on the CG approach—to two-dimensional models of self-avoiding loops,
each loop occurring with a fugacity n. Self-avoiding polygons and walks then ap-
pear as special cases in the limit n → 0. In section 14.2 we outline the key concepts
of CFT. The aim is to make the presentation self-contained while remaining rather
brief; the reader interested in more details should turn to the comprehensive textbook
[15] or the Les Houches volume [16]. The geometric CG approach is introduced in
section 14.3, and is shown to lead to a CFT of the Liouville type. The presence of
screening charges is linked to a marginality requirement [17, 18] that ensures the
exact solvability of the model.

The CG approach is subsequently applied in section 14.4 to the computation of
bulk critical properties of SAP’s and SAW’s. It should be emphasised that most of
the material is presented within the general framework of loop models, taking the
SAP limit (n → 0) only at the end of the computations. SAW’s are then obtained by
inserting appropriate defects before taking the limit. There are good reasons for this
manner of presentation: first, more general results are obtained at no extra expense;
second, a number of general concepts emerge more clearly; and third, the example of
the Θ -point collapse transition [19] shows that also n 6= 0 is of relevance to polymer
problems. In fact, loop models furnish a nice illustration of most of the key concepts
of two-dimensional CFT.

While section 14.3 focuses on loop models with a scalar height field, equivalent
to the standard O(n) and Q-state Potts models (with n =

√
Q), a new class of loop

models with vectorial target spaces is introduced in section 14.5. In these models,
first solved by Kondev and collaborators [20, 17, 21], the loops are fully packed on
the lattice, and become Hamiltonian circuits or walks in the n → 0 limit.
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In sections 14.6–14.7 we illustrate the importance of the topology of the space
in which the loops are embedded. The preceding discussion in fact pertained to the
geometry of the (punctured) plane. In contrast, section 14.6 is devoted to the half-
plane geometry, in which the loops undergo specific interactions with the surface.
The appropriate theoretical setup is that of boundary CFT, a subject pioneered by
Cardy [22]. Finally, in section 14.7 the loops are embedded in a torus and the funda-
mental requirement of modular invariance [23] is exploited to write down modular
invariant partition functions in the continuum limit. Using a similar approach, ex-
act continuum limit partition functions are written down in the annulus geometry
as well.

14.2 Basic Concepts of CFT

14.2.1 Global Conformal Invariance

A conformal transformation in d dimensions is an invertible mapping x → x′ which
multiplies the metric tensor gµν(x) by a space-dependent scale factor:

g′µν(x′) = Λ(x)gµν(x). (14.1)

Note that such a mapping preserves angles. Therefore, just as Wilson [2] suggested
using global scale invariance as the starting point for investigating a system at its
critical point, Polyakov [8] proposed imposing the local scale invariance (14.1) as
the fundamental requirement for studying a critical system in which the microscopic
interactions are short ranged. A priori, a geometrical model of self-avoiding objects
such as SAP’s and SAW’s does not seem to be governed by short-range interactions;
that this is nevertheless true will be shown in section 14.3.2 where we shall make
explicit the locality of such models.

The group of conformal transformations is easily shown to be generated by
translations, dilations, rotations, and the so-called special conformal transforma-
tions (which are just the composition of an inversion xµ → xµ/x2, a translation,
and another inversion). Writing down the commutation rules of the generators, one
establishes that the conformal group is isomorphic to the pseudo-orthogonal group
SO(d + 1,1) with 1

2 (d + 1)(d + 2) real parameters.
The connection between a statistical mechanics model and quantum field theory

is made as usual by writing the partition function and correlation functions of the
former as functional integrals in the latter:

Z =

∫
DΦ e−S[Φ ]

〈φ1(x1) . . .φk(xk)〉 = Z−1
∫

DΦ φ1(x1) . . .φk(xk)e
−S[Φ ] (14.2)
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Here S[Φ] is the euclidean action, Φ the collection of fields, and φi ∈ Φ . In other
words, Z−1e−S[Φ ]DΦ is the Gibbs measure in the continuum limit. Paradoxically, in
many cases the hypothesis of conformal invariance may permit one to classify and
precisely characterise the possible continuum theories without ever having to write
down explicitly the action S[Φ].

A field φ(x), here supposed spinless for simplicity, is called quasi-primary pro-
vided it transforms covariantly under the conformal transformation (14.1):

φ(x) → φ ′(x′) =

∣∣∣∣
∂x′

∂x

∣∣∣∣
−∆/d

φ(x). (14.3)

The number ∆ = ∆φ is a property of the field and is called its scaling dimension.
Using this, conformal invariance completely fixes [8] the form of the two- and three-
point correlation functions:

〈φ1(x1)φ2(x2)〉 =
δ∆1,∆2

x2∆1
12

, (14.4)

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(14.5)

where we have introduced xi j = |xi − x j|. The fields have here been normalised so
that the coefficient in (14.4) is unity. The structure constants C123 appearing in (14.5)
are then fundamental dynamical quantities characterising the theory at hand. With
four or more points, the correlation functions are no longer completely fixed, due to
the existence of conformally invariant functions of four points, η = x12x34/x13x24,
the so-called anharmonic ratios.

14.2.2 Two Dimensions and Local Conformal Invariance

Conformal invariance is especially powerful in two dimensions for reasons that we
shall expose presently. For the moment, we work in the geometry of the Riemann
sphere, i.e., the plane with a point at infinity, and we shall write the coordinates as
x = (x1,x2). Under a general coordinate transformation xµ → x′µ = wµ(x1,x2) ap-
plication of (14.1) implies the Cauchy-Riemann equations, ∂w2/∂x1 = ±∂w1/∂x2

and ∂w1/∂x1 = ∓∂w2/∂x2, i.e., w(x) is either a holomorphic or an antiholomor-
phic function. Important simplifications will therefore result upon introducing the
complex coordinates z ≡ x1 + ix2 and z̄ ≡ x1 − ix2. A conformal mapping then reads
simply z → z′ = w(z).

The identification of two-dimensional conformal transformations with analytic
maps w(z) could have been anticipated from the well-known fact that the latter are
angle-preserving. It should be noted that an analytic map is defined (via its Laurent
series) by an infinite number of parameters. This does not contradict the result of
section 14.2.1 that the set of global conformal transformations is defined by only
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1
2 (d +1)(d +2) = 6 real parameters, since analytic maps are not necessarily invert-
ible and defined in the whole complex plane. Global conformal transformations in
d = 2 take the form of the projective transformations

w(z) =
a11z+ a12

a21z+ a22
(14.6)

with ai j ∈ C and the constraint detai j = 1, i.e., they form the group SL(2,C) ≃
SO(3,1).

In complex coordinates, the transformation law (14.3) becomes

φ ′(w, w̄) =

(
dw
dz

)−h(dw̄
dz̄

)−h̄

φ(z, z̄) (14.7)

where the real parameters (h, h̄) are called the conformal weights. The combinations
∆ = h + h̄ and s = h− h̄ are called respectively the scaling dimension and the spin
of φ . A field φ satisfying (14.7) for any projective transformation (resp. any analytic
map) w(z) is called quasi-primary (resp. primary). An example of a quasi-primary
field which is not primary is furnished by the stress tensor (see below).

The expressions (14.4)–(14.5) for the two- and three-point correlation functions
still hold true with the obvious modification that the dependence in zi j ≡ zi − z j

(resp. in z̄i j) goes with the conformal weights h (resp. h̄).

14.2.3 Stress Tensor and Ward Identities

The stress tensor T µν is the conserved Noether current associated with the confor-
mal symmetry. It can be defined1 as the response of the partition function to a local
change in the metric:

T µν (x) = − 1
2π

δ logZ
δgµν(x)

(14.8)

Translational and rotational invariances imply the conservation law ∂µT µν = 0 as
well as the symmetry T µν = T νµ . Scale invariance further implies the traceless-
ness T µ

µ = 0; in general the trace would be proportional to the beta function, which
vanishes at a renormalisation group fixed point.

Rewriting this in complex coordinates, one finds that Tzz̄ = Tz̄z = 0, while the
conservation law takes the form ∂z̄T (z) = ∂zT̄ (z̄), where we have defined T (z)≡ Tzz

and T̄ (z̄) ≡ Tz̄z̄. So T (z) is analytic, while T̄ (z̄) is antianalytic. This is a very im-
portant element in the solvability of two-dimensional CFT. Following Fateev and
Zamolodchikov [24] it is even possible to go (much) further: CFT’s in which the
conformal symmetry is enhanced with other, so-called extended, symmetries (su-
perconformal, parafermionic, W algebra,. . . ) can be constructed by requiring more

1 Note the analogy with the theory of integrable systems, where the conserved charges are obtained
as derivatives of the transfer matrix with respect to the anisotropy (spectral parameter).
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analytic currents and making them coexist with T (z) by imposing certain associa-
tivity requirements.

Consider now the change in the metric induced by an infinitesimal conformal
transformation z′ = z + ε(z). Its effects on an arbitrary product of primary fields
X = ∏ j φ j(z j, z̄ j) can be written in terms of T (z) as

∮

C
〈T (z)X〉ε(z)dz = ∑

j

(
h jε ′(z j)+ ε(z j)∂z j

)
〈X〉, (14.9)

where C is any counterclockwise contour encircling {z j}. This is called the confor-
mal Ward identity. By the Cauchy theorem, this is equivalent to

T (z)φ j(z j, z̄ j) =
h j

(z− z j)2 φ j(z j, z̄ j)+
1

z− z j
∂z j φ(z j, z̄ j)+O(1) . (14.10)

This is our first example of an operator product expansion (OPE), i.e., a formal
power series in the coordinate difference that expresses the effect of bringing close
together two operators. Several remarks are in order. First, it is tacitly understood
that OPE’s only have a sense when placed between the brackets 〈· · · 〉 of a correla-
tion function. Second, we generically expect singularities to arise when approaching
two local operators in a quantum field theory; in particular the average of a field over
some small volume will have a variance that diverges when that volume is taken to
zero. Third, an OPE should be considered an exact identity rather than an approx-
imation, provided the formal expansion is written out to arbitrarily high order. In
our example, (14.9) only determines the first two terms in the OPE (14.10). Fourth,
contracting any field φ with T (z) and comparing with (14.10) is actually a useful
practical means of determining its primarity and its conformal dimension hφ .

It is not difficult to see from (14.8) that on dimensional grounds T itself is a quasi-
primary field of conformal dimension h = 2. However, the average 〈T (z1)T (z2)〉 ∼
(z1 − z2)

−4 has no reason to vanish, and so the OPE of T with itself takes the form

T (z1)T (z2) =
c/2

(z1 − z2)4 +
2T (z2)

(z1 − z2)2 +
∂T (z2)

z1 − z2
+O(1). (14.11)

In particular, T is not primary. The constant c appearing in (14.11) is called the
central charge. Considering two non-interacting CFT’s as a whole, one has from
(14.8) that their stress tensors, and hence their central charges, add up, and so c can
be considered as a measure of the number of quantum degrees of liberty in the CFT.
It is straightforward to establish that c = 1/2 for a free fermion and c = 1 for a free
boson. We shall see later that standard SAP’s have c = 0.

As T is not primary, it cannot transform like (14.7) under a finite conformal
transformation z → w(z). We can always write the modified transformation law as

T ′(w) =

(
dw
dz

)−2 [
T (z)− c

12
{w;z}

]
. (14.12)
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To determine what {w;z} represents, we use the constraint due to two successive
applications of (14.12) and the fact that {w;z} = 0 for projective conformal trans-
formations, since T is quasi-primary. The result is that {w;z} is the Schwarzian
derivative

{w;z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (14.13)

14.2.4 Finite-Size Scaling on a Cylinder

The central charge c is ubiquitous in situations where the CFT is placed in a finite
geometry, i.e., interacts with some boundary condition. An important example is
furnished by conformally mapping the plane to a cylinder of circumference L by
means of the transformation

w(z) =
L

2π
logz . (14.14)

This transformation can be visualised by viewing the cylinder in perspective, with
one rim contracting to the origin and the other expanding to form the point at infinity.
Taking the expectation value of (14.12), and using the fact that 〈T (z)〉 = 0 in the
plane on symmetry grounds, one finds that 〈T (w)〉 = −π2c/6L2 on the cylinder.
Applying (14.8) then implies that the free energy per unit area f0(L) satisfies [25]

f0(L) = f0(∞)− πc
6L2 + o(L−2) . (14.15)

This is a very useful result for obtaining c for a concrete statistical model, since
f (L) can usually be determined from the corresponding transfer matrix, either nu-
merically for small L by using exact diagonalisation techniques, or analytically in
the Bethe Ansatz context by using the Euler-McLauren formula.

It is also of interest to study such finite-size effects on the level of the two-point
correlation function of a primary field φ . Again using the mapping (14.14), the
covariance property (14.7) and the form (14.4) of the correlator in the plane can
be used to deduce its form on the cylinder. Assuming for simplicity h = h̄ = ∆/2,
and writing the coordinates on the cylinder as w = t + ix, with t ∈ R and x ∈ [0,L),
one arrives at

〈φ(t1,x1)φ(t2,x2)〉 =

(
2π
L

)2∆ [
2cosh

(
2πt12

L

)
−2cos

(
2πx12

L

)]−∆
, (14.16)

where t12 = t1 − t2 and x12 = x1 − x2. In the limit of a large separation of the fields,
t12 → ∞, this decays like e−t12/ξ with correlation length ξ = L/2π∆ . But this decay
can also be written (Λφ /Λ0)

−t12 , where Λ0 is the largest eigenvalue of the transfer
matrix, and Λφ is the largest eigenvalue compatible with the constraint that an op-
erator φ has been inserted at each extremity t = ±∞ of the cylinder. Denoting the
corresponding free energies per unit area f (L) = −L−1 logΛ , we conclude that [26]
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fφ (L)− f0(L) =
2π∆
L2 + o(L−2) . (14.17)

This is as useful as (14.15) in (numerical or analytical) transfer matrix studies, since
the constraint imposed by φ can usually be related explicitly to properties of the
transfer matrix spectrum.

14.2.5 Virasoro Algebra and Its Representation Theory

Up to this point, we have worked in a setup where the fields were seen as functionals
of the complex coordinates z, z̄. To obtain an operator formalism, one must impose a
quantisation scheme, i.e., single out a time and a space direction. The transfer matrix
then propagates the system from one time slice to the following and is written as the
exponential of the Hamiltonian H , i.e., the energy operator on a fixed-time surface.
In the continuum limit, one may freely choose the time direction. In CFT this is most
conveniently done by giving full honours to the scale invariance of the theory, viz.,
by using for H the dilatation operator (to be precise, H = (2π/L)(L0+ L̄0−c/12))

D =
1

2π i

∮

C
zT (z)dz− 1

2π i

∮

C
z̄ T̄ (z̄)dz̄ = L0 + L̄0 , (14.18)

where C is a counterclockwise contour enclosing the origin. This is called the radial
quantisation scheme: the constant-time surfaces are concentric circles around the
origin. Under the map (14.14) the time becomes simply the coordinate along the
cylinder axis. The usual time ordering of operators then becomes a prescription of
radial ordering.

In (14.18) we have anticipated the definition of the mode operators

Ln =
1

2π i

∮

C
zn+1T (z)dz, L̄n =

1
2π i

∮

C
z̄n+1T̄ (z̄)dz̄. (14.19)

Using the radial ordering, the OPE (14.11) becomes, after a deformation of contours,
the commutation relations

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2 −1)δn+m,0 (14.20)

with a similar expression for [L̄n, L̄m], whereas [Ln, L̄m] = 0. The algebra defined by
(14.20) is called the Virasoro algebra. Importantly, the decoupling into two isomor-
phic Virasoro algebras, one for Ln and another for L̄n, means that in the geometry
chosen we can focus exclusively on Ln. It should be stressed that in the geometry of
a torus, the two algebras couple non-trivially, in a way that is revealed by imposing
modular invariance (see section 14.2.7 below).

We now describe the structure of the Hilbert space in radial quantisation. The vac-
uum state |0〉 must be invariant under projective transformations, whence L±1|0〉 =
0, and we fix the ground state energy by L0|0〉= 0. Non-trivial eigenstates of H are
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created by action with a primary field, |h, h̄〉 = φ(0,0)|0〉. Translating (14.10) into
operator language implies then in particular L0|h, h̄〉 = h|h, h̄〉. We must also impose
the highest-weight condition Ln|h, h̄〉 = L̄n|h, h̄〉 = 0 for n > 0. Excited states with
respect to the primary φ then read

φ{n,n̄} ≡ L−n1L−n2 · · ·L−nk L̄−n̄1 L̄−n̄2 · · · L̄−n̄k̄
|h, h̄〉 (14.21)

with 1≤ n1 ≤ n2 ≤ ·· · ≤ nk and similarly for {n̄}. These states are called the descen-
dents of φ at level {N, N̄}, where N = ∑k

i=1 ni. A primary state and its descendents
form a highest weight representation (or Verma module) of the Virasoro algebra.

Correlation functions of descendent fields can be obtained by acting with ap-
propriate differential operators on the correlation functions of the corresponding
primary fields. To see this, consider first for n ≥ 1 the descendent

(
L−nφ

)
(w) of the

primary field φ(w), and let X = ∏ j φ j(wj) be an arbitrary product of other primaries
as in the conformal Ward identity (14.9). Using (14.19) and (14.10) we have then

〈(
L−nφ

)
(w)X

〉
=

1
2π i

∮

z
dz(z−w)1−n 〈T (z)φ(w)X〉 (14.22)

= − 1
2π i

∮

{w j}
dz(z−w)1−n ∑

j

{ ∂w j

z−wj
+

h j

(z−wj)2

}
〈φ(w)X〉

where the minus sign comes from turning the integration contour inside out, so
that it surrounds all the points {wj}. In other words, a descendent in a correlation
function may be replaced by the corresponding primary

〈(
L−nφ

)
(w)X

〉
= L−n 〈φ(w)X〉 (14.23)

provided that we act instead on the correlator with the linear differential operator

L−n ≡ ∑
j

{
(n−1)h j

(wj −w)n −
∂w j

(wj −w)n−1

}
(14.24)

It is readily seen that a general descendent (14.21) is similarly dealt with by replac-
ing each factor L−ni by the corresponding factor of L−ni in (14.23).

We can now write the general form of the OPE of two primary fields φ1 and φ2.
It reads

φ1(z, z̄)φ2(0,0) = ∑
p

C12p ∑
{n,n̄}∪{ /0, /0}

C{n,n̄}
12p zhp−h1−h2+Nz̄h̄p−h̄1−h̄2+N̄φ{n,n̄}

p (0,0) ,

(14.25)
where the summation is over a certain set of primaries φp ≡ φ{ /0, /0}

p as well as their

descendents. The coefficients C{n,n̄}
12p (we have set C{ /0, /0}

12p = 1) can be determined
by acting with all combinations of positive-index mode operators on both sides of
(14.25) and solving the resulting set of linear equations. In contradistinction, the
coefficients C12p are fundamental quantities, easily shown to coincide with those
appearing in the three-point functions (14.5). They can be computed by the so-called
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conformal bootstrap method, i.e., by assuming crossing symmetry of the four-point
functions.

14.2.6 Minimal Models

Denote by V (c,h) the highest weight representation (Verma module) generated by
the mode operators {Ln} acting on a highest weight state |h〉 in a CFT of central
charge c. The Hilbert space of the CFT can then be written

⊕

h,h̄

nh,h̄V (c,h)⊗V (c, h̄) (14.26)

where the multiplicities nh,h̄ indicate the number of distinct primaries of conformal
weights (h, h̄) that are present in the theory. A minimal model is a CFT for which
the sum in (14.26) is finite.

The Hermitian conjugate of a mode operator is defined by L†
n = L−n; this induces

an inner product on the Verma module. The character χ(c,h) of the module V (c,h)
can then be defined as

χ(c,h)(τ) = TrqL0−c/24 , (14.27)

where τ ∈ C is the so-called modular parameter (see section 14.2.7 below) and
q = e2π iτ . Since the number of descendents of |h〉 at level N is just the number p(N)
of integer partitions of N, cf. (14.21), we have simply

χ(c,h)(τ) =
qh−c/24

P(q)
, (14.28)

where
1

P(q)
≡

∞

∏
n=1

1
1−qn =

∞

∑
n=0

p(n)qn (14.29)

is the generating function of partition numbers; this is also often expressed in terms
of the Dedekind function

η(τ) = q1/24P(q) . (14.30)

However, the generic Verma module is not necessarily irreducible, so further work
is needed.

For certain values of h, it may happen that a specific linear combination |χ〉 of
the descendents of |h〉 at level N is itself primary, i.e., Ln|χ〉 = 0 for n > 0. In other
words, |χ〉 is primary and descendent at the same time, and it generates its own
Verma module Vχ(c,h) ⊂ V (c,h). One easily shows that the states in Vχ(c,h) are
orthogonal to those in V (c,h), and so in particular they have zero norm. A Verma
module V (c,h) containing one or more such null fields |χ〉 is called reducible, and
can be turned into an irreducible Verma module M (c,h) by quotienting out the null
fields, i.e., by setting |χ〉 = 0. The Hilbert space is then given by (14.26) with V
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replaced by M ; since it contains fewer states the corresponding characters (14.27)
are not given by the simple result (14.28).

The concept of null states is instrumental in constructing unitary representations
of the Virasoro algebra (14.20), i.e., representations in which no state of nega-
tive norm occurs. An important first step is the calculation of the Kac determinant
detM(N) of inner products between descendents at level N. Its roots can be expressed
through the following parameterisation:

c(m) = 1− 6
m(m+ 1)

h(m) = hr,s(m) ≡ [(m+ 1)r−ms]2 −1
4m(m+ 1)

(14.31)

where r,s ≥ 1 are integers with rs ≤ N. The condition for unitarity of models with
c < 1, first found by Friedan, Qiu and Shenker [27] reads: m,r,s ∈ Z with m ≥ 2,
and (r,s) must satisfy 1 ≤ r < m and 1 ≤ s ≤ m.

According to (14.23) the presence of a descendent field in a correlation function
can be replaced by the action of a differential operator (14.24). Now let

χ(w) = ∑
Y,|Y |=N

αY L−Y φ(w) (14.32)

be an arbitrary null state. Here, αY are some coefficients, and we have introduced
the abbreviations

Y = {r1,r2, . . . ,rk}
|Y | = r1 + r2 + . . .+ rk (14.33)

L−Y = L−r1L−r2 · · ·L−rk

with 1 ≤ r1 ≤ r2 ≤ ·· · ≤ rk. A correlation function involving χ must vanish (since
we have in fact set χ = 0), and so

〈χ(w)X〉 = ∑
Y,|Y |=N

αY L−Y (w)〈φ(w)X〉 = 0 (14.34)

Solving this Nth order linear differential equation is a very useful practical means
of computing the four-point correlation functions of a given CFT, provided that the
level of degeneracy N is not too large. Indeed, since the coordinate dependence is
through a single anharmonic ratio η , one has simply an ordinary linear differential
equation.

Moreover, requiring consistency with (14.25) places restrictions on the primaries
that can occur on the right-hand side of the OPE. One can then study the conditions
under which this so-called fusion algebra closes over a finite number of primaries.
The end result is that the minimal models are given by
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c = 1− 6(m−m′)2

mm′

hr,s =
(mr−m′s)2 − (m−m′)2

4mm′ (14.35)

with m,m′,r,s ∈ Z, and the allowed values of (r,s) are restricted by 1 ≤ r < m′

and 1 ≤ s < m. The corresponding hr,s are referred to as the Kac table of conformal
weights. The corresponding fusion algebra reads (for clarity we omit scaling factors,
structure constants, and descendents):

φ(r1,s1)φ(r2,s2) = ∑
r,s

φ(r,s) (14.36)

where r runs from 1 + |r1 − r2| to min(r1 + r2 − 1,2m′ − 1− r1 − r2) in steps of 2,
and s runs from 1 + |s1− s2| to min(s1 + s2 −1,2m−1− s1− s2) in steps of 2.

The Kac table (14.35) is the starting point for elucidating the structure of the
reducible Verma modules Vr,s for minimal models, and for constructing the proper
irreducible modules Mr,s. The fundamental observation is that

hr,s + rs = hr,−s . (14.37)

Using the symmetry property hr,s = hm′−r,m−s and the periodicity property hr,s =
hr+m′,s+m it is seen that hr,s +rs = hm′+r,m−s and that hr,s +(m′−r)(m−s) = hr,2m−s.
This means that Vr,s contains two submodules, Vm′+r,m−s and Vr,2m−s, at levels rs and
(m′ −r)(m−s) respectively, and these must correspond to null vectors. To construct
the irreducible module Mr,s one might at first think that it suffices to quotient out
these two submodules. However, iterating the above observations, the two submod-
ules are seen to share two sub-submodules, and so on. So Mr,s is constructed from
Vr,s by an infinite series of inclusions-exclusions of pairs of submodules. This allows
us in particular to compute the irreducible characters of minimal models as

χ(r,s)(τ) = K(m,m′)
r,s (q)−K(m,m′)

r,−s (q) , (14.38)

where the infinite addition-subtraction scheme has been tucked away in the func-
tions

K(m,m′)
r,s (q) =

q−1/24

P(q) ∑
n∈Z

q(2mm′n+mr−m′s)2/4mm′
. (14.39)

This should be compared with the generic character (14.28). Note also the similarity
between (14.37) and (14.38) on the level of the indices.

It is truly remarkable that the above classification of minimal models has been
achieved without ever writing down the action S appearing in (14.2). In fact, an
effective Landau-Ginzburg Lagrangian description for the unitary minimal models
(m′ = m+1) has been suggested a posteriori by Zamolodchikov [28]. It suggests that
the minimal models can be interpreted physically as an infinite series of multicritical
versions of the Ising model. Indeed, the Ising model can be identified with the first
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non-trivial member in the series, m = 3, and the following, m = 4, with the tricritical
Ising model.

To finish this section, we comment on the relation with SAP’s. In section 14.3
we shall see that these (to be precise, the dilute O(n → 0) model) can be identified
with the minimal model m = 2, m′ = 3. Note that this is not a unitary theory. The
central charge is c = 0, and the only field in the Kac table—modulo the symmetry
property given after (14.37)—is the identity operator with conformal weight h1,1 =
0. Seemingly we have learnt nothing more than the trivial statement Z = 1. However,
the operators of interest are of a non-local nature, and it is a pleasant surprise to
find that their dimensions fit perfectly well into the Kac formula, although they
are situated outside the “allowed” range of (r,s) values, and sometimes require the
indices r,s to be half-integer. So the Kac formula, and the surrounding theoretical
framework, is still a most useful tool for investigating these types of models.

14.2.7 Modular Invariance

In section 14.2.3 we have seen that conformal symmetry makes the stress tensor
decouple into its holomorphic and antiholomorphic components, T (z) and T̄ (z̄),
implying in particular that the corresponding mode operators, Ln and L̄n, form two
non-interacting Virasoro algebras (14.20). As a consequence, the key results of sec-
tion 14.2.6 could be derived by considering only the holomorphic sector of the CFT.
There are however constraints on the ways in which the two sectors may ultimately
couple, the diagonal coupling (14.26) being just the simplest example in the con-
text of minimal models. As first pointed out by Cardy [23], a powerful tool for
examining which couplings are allowed—and for placing constraints on the opera-
tor content and the conformal weights—is obtained by defining the CFT on a torus
and imposing the constraint of modular invariance.

In this section we expose the principles of modular invariance and apply them
to a CFT known as the compactified boson, which is going to play a central role
in the Coulomb gas approach of section 14.3. Many other applications, including a
detailed study of the minimal models, can be found in Ref. [15].

Let ω1,ω2 ∈ C \ {0} such that τ ≡ ω2/ω1 /∈ R. A torus is then defined as
C/(ω1Z + ω2Z), i.e., by identifying points in the complex plane that differ by an
element in the lattice spanned by ω1,ω2. The numbers ω1,ω2 are called the peri-
ods of the lattice, and τ the modular parameter. Without loss of generality we can
assume ω1 ∈ R and ℑτ > 0.

Instead of using the radial quantisation scheme of section 14.2.5 we now define
the time (resp. space) direction to be the imaginary (resp. real) axis in C. The parti-
tion function on the torus may then be written Z(τ)= Tr exp [−(ℑω2)H − (ℜω2)P],
where H = (2π/ω1)(L0 + L̄0 − c/12) is the Hamiltonian and P = (2π/iω1)(L0 −
L̄0 − c/12) the momentum operator. This gives

Z(τ) = Tr
(

qL0−c/24q̄L̄0−c/24
)

, (14.40)
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where we have defined q = exp(2π iτ). Comparing with (14.26)–(14.27) we have
also

Z(τ) = ∑
h,h̄

nh,h̄ χ(c,h)(τ)χ̄(c,h̄)(τ) . (14.41)

An explicit computation of Z(τ) will therefore give information on the coupling nh,h̄
between the holomorphic and antiholomorphic sectors. In many cases, but not all,
the coupling turns out to be simply diagonal, nh,h̄ = δh,h̄.

The fundamental remark is now that Z(τ) is invariant upon making a different
choice ω ′

1,ω ′
2 of the periods, inasmuch as they span the same lattice as ω1,ω2. Any

two set of equivalent periods must therefore be related by ω ′
i = ∑ j ai jω j, where

{ai j} ∈ Mat(2,Z) with detai j = 1. Moreover, an overall sign change, ai j → −ai j

is immaterial, so the relevant symmetry group is the so-called modular group
SL(2,Z)/Z2 ≃ PSL(2,Z).

The remainder of this section is concerned with the construction of modular in-
variant partition functions for certain bosonic systems on the torus. As a warmup
we consider the free boson, defined by the action

S[φ ] =
g
2

∫
d2x(∇φ)2 (14.42)

and φ(x) ∈ R. Comparing (14.40) with (14.27)–(14.29), and bearing in mind that
c = 1, we would expect the corresponding partition function to be of the form
Z0(τ) ∝ 1/|η(τ)|2. Fixing the proportionality constant is somewhat tricky [29]. In a
first step, φ is decomposed on the normalised eigenfunctions of the Laplacian, and
Z0(τ) is expressed as a product over the eigenvalues. This product however diverges,
due to the presence of a zero-mode, and must be regularised. A sensible result is
obtained by a shrewd analytic continuation, the so-called ζ -function regularisation
technique [29]:

Z0(τ) =

√
4πg√

ℑτ |η(τ)|2
(14.43)

The CFT which is of main interest for the CG technique is the so-called compact-
ified boson in which φ(x) ∈ R/(2πaRZ). In other words, the field lives on a circle
of radius aR (the reason for the appearance of two parameters, a and R, will become
clear shortly). In this context, suitable periodic boundary conditions are specified by
a pair of numbers, m,m′ ∈ aZ, so that for any k,k′ ∈ Z

φ(z+ kω1 + k′ω2) = φ(z)+ 2πR(km+ k′m′) (14.44)

It is convenient to decompose φ = φm,m′ + φ0, where

φm,m′ =
2πR
τ̄ − τ

[
z

ω1
(mτ̄ −m′)− z̄

ω̄1
(mτ −m′)

]
(14.45)
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is the classical solution satisfying the topological constraint, and φ0 represents the
quantum fluctuations, i.e., is a standard free boson satisfying standard periodic
boundary conditions.

Integrating over φ0 as before, and keeping m,m′ fixed, gives the partition function

Zm,m′(τ) = Z0(τ) exp

(
−2π2gR2 |mτ −m′|2

ℑτ

)
. (14.46)

It is easy to see that this is not modular invariant. A modular invariant is however
obtained by summing over all possible values of m,m′:

Z(τ) ≡ R√
2

Z0(τ) ∑
m,m′∈aZ

exp

(
−2π2gR2 |mτ −m′|2

ℑτ

)
(14.47)

The prefactor R/
√

2 is again a subtle effect of the zero-mode integration. It is ac-
tually most easily justified a posteriori by requiring the correct normalisation of the
identity operator in (14.48) below.

A more useful, and more physically revealing, form of (14.47) is obtained by
using the Poisson resummation formula to replace the sum over m′ ∈ aZ by a sum
over the dual variable e ∈ Z/a. The result is

Z(τ) =
1

|η(τ)|2 ∑
e∈Z/a, m∈aZ

qhe,mq̄h̄e,m , (14.48)

with

he,m =
1
2

(
e

R
√

4πg
+

mR
2

√
4πg

)2

, h̄e,m =
1
2

(
e

R
√

4πg
− mR

2

√
4πg

)2

.

(14.49)
Comparing now with (14.40) and (14.27)–(14.29) we see that (14.49) is nothing else
than the conformal weights of the CFT at hand.

The requirement of modular invariance has therefore completely specified the
operator content of the compactified boson system. An operator is characterised by
two numbers, e∈Z/a and m∈ aZ, living on mutually dual lattices. A physical inter-
pretation will be furnished by the CG formalism of section 14.3: e is the “electric”
charge of a vertex operator (spin wave), and m is the “magnetic” charge of a topo-
logical defect (screw dislocation in the field φ ). Let us write for later reference the
corresponding scaling dimension and spin:

∆e,m =
e2

4πgR2 + m2πgR2, se,m = em (14.50)

Observe in particular that the spin is integer, as expected for a bosonic system.
The reader will notice that the three constants R, a and g are related by the fact

that they always appear in the dimensionless combination R2a2g. Field-theoretic lit-
erature often makes the choice a = 1 and g = 1/4π in order to simplify formulae
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such as (14.49). In the CG approach—the subject of section 14.3—one starts from
a geometrical construction (mapping to a height model) in which a convention for
a must be chosen. The compactification radius aR then follows from a “geometri-
cal” computation (identification of the ideal state lattice), and the correct coupling
constant g is only fixed in the end by a field-theoretic argument (marginality re-
quirement of the Liouville potential). Needless to say, the results, such as (14.50)
for the dimensions of physical operators, need (and will) be independent of the ini-
tial choice made for a.

To conclude, note that the roles of e and m in (14.49) are interchanged under
the transformation Ra

√
2πg → (Ra

√
2πg)−1, which leaves (14.48) invariant. This

is another manifestation of the electro-magnetic duality. Ultimately, the distinction
between e and m comes down to the choice of transfer direction. In the geometry
of the torus this choice is immaterial, of course. In sections 14.3.4–14.3.5 we shall
compare the geometries of the cylinder and the annulus; these are related by inter-
changing the space and time directions, and accordingly the electric and magnetic
charges switch role when going from one to the other.

14.2.8 Boundary CFT

The aspects of CFT exposed to this point pertain to unbounded geometries, either
that of the infinite plane (Riemann sphere) or, in section 14.2.7, that of the torus
(which is really a finite geometry made unbounded through the periodic boundary
conditions). In contrast, boundary conformal field theory (BCFT) describes surface
critical behaviour, i.e., a critical system confined to a bounded geometry. The sim-
plest such geometry, and probably the most relevant from the point of view of poly-
mer physics, is that of the upper half plane {z |ℑz ≥ 0}, where the real axis R acts
as the boundary (one-dimensional “surface”).

The foundations of BCFT were set by Cardy [22] who also initiated many of
the subsequent developments and applications (see [15, 30] for reviews). A useful
review of the status of boundary critical phenomena before the advent of CFT was
given by Binder [31].

To convey an idea of which phase transitions may result from the interplay be-
tween bulk and boundary degrees of freedom, and what may be the corresponding
boundary conditions, we begin by a qualitative discussion of a simple magnetic spin
system. We denote the local order parameter (magnetisation) by φ . When the bound-
ary spins enjoy free boundary conditions, they interact more weekly than the bulk
spins, since microscopically they are coupled to fewer neighbouring spins. Upon
lowering the temperature, the bulk will therefore order before the surface: this is the
so-called ordinary transition. Now consider placing the system slightly below the
bulk critical temperature. Then φ is non-zero deep inside the bulk, and will decrease
upon approaching the boundary. One can argue that in the continuum limit φ will
vanish exactly on the boundary. Thus, the Dirichlet boundary condition φ |R = 0 is
the appropriate choice for describing the ordinary transition.
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Let us now introduce a coupling Js between nearest-neighbour spins on the
boundary which may be different from the usual bulk coupling constant J. Taking
Js > J one may “help” the boundary to order more easily.2 When Js takes a certain
critical value we are at the special transition, at which the bulk and the boundary or-
der simultaneously. Finally, when Js → ∞ the boundary spins are always completely
ordered3, a fact which changes the nature of the ordering transition of the bulk,
now referred to as the extraordinary transition. This corresponds to the Dirichlet
boundary condition φ |R = ∞ in the continuum limit. Note that in the application
of boundary CFT to loop models (see section 14.6) the meaning of Js is to give a
specific fugacity to monomers on the boundary.

The control parameter Js can be thought of in a renormalisation group sense,
and is readily seen to be irrelevant at the ordinary and extraordinary transitions.
Accordingly we expect a boundary RG flow to go from the special to either of the
two other transitions. (In the case of the Ising model, the special and extraordinary
transitions actually coincide.)

In our subsequent application to loop models (see section 14.6) we rather think
of φ as a height field which is dual to the system of oriented loops (this is the
so-called Coulomb gas approach, see section 14.3). In other words, the loops are
level lines of φ . Dirichlet boundary conditions then describe a situation in which
loops are reflected off the boundary, and adjoining two different Dirichlet conditions
forces one or more “loop ends” to emanate from the boundary. One may also impose
Neumann boundary conditions, ∂φ/∂y|R = 0, meaning that the “loops” coming
close to the boundary must in fact terminate perpendicular to it. Clearly the non-
local aspects of these situations call for a more detailed discussion, which will be
postponed to section 14.6.

The allowed conformal mappings in BCFT must keep invariant both the bound-
ary itself and the boundary conditions imposed along it. For the global conformal
transformations (14.6) the invariance of the real axis forces ai j ∈ R, i.e., they form
the group SL(2,R) and the number of parameters is halved from 6 to 3. For an
infinitesimal local conformal transformation z → w(z) = z + ε(z) the requirement
reads ε(z̄) = ε̄(z). This property can be used to eliminate the ε̄(z) part altogether,
since it is just the analytic continuation of ε(z̄) into the lower half plane. It follows
that L̄n = L−n, and so one half of the conformal generators has been eliminated.

At the level of the stress tensor, the requirement is T (z̄) = T̄ (z). In Cartesian
coordinates this reads Txy = 0 on the real axis, the so-called conformal boundary
conditions. Its physical meaning is that there is no energy-momentum flow across
R. This has important consequences on the conformal Ward identity (14.9) where
T (z) is applied to a product of primary fields X = ∏ j φ j(z j, z̄ j) situated in the upper
half plane. The contour C surrounding all z j can then be taken as a large semicircle
with the diameter parallel to the real axis. However, writing the same identity for

2 A similar effect could be obtained by adding a surface magnetic field, but here we do not wish to
break the symmetry of the model [typically O(n) in applications to loop models].
3 This should not (as is sometimes seen in the literature) be confused with imposing fixed boundary
conditions, which would rather correspond to an infinite symmetry-breaking field applied on the
boundary.
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T̄ (z̄) yields another Ward identity involving the conjugate semicircle contour C̄,
and since T̄ = T when z ∈ R, the two contours can be fused into a complete circle
surrounding both z j and z̄ j. The end result, cf. (14.10), is thus

T (z)X = ∑
j

(
h j

(z− z j)2 +
∂z j

z− z j
+

h̄ j

(z̄− z̄ j)2 +
∂z̄ j

z̄− z̄ j

)
X . (14.51)

In conclusion, everything happens as if each primary field in the upper half plane
were accompanied by a mirror field in the lower half plane. This means that com-
putations in the BCFT can be done using a method of images similar to that used in
electrostatics when solving the Laplace equation with boundary conditions. Corre-
lation functions are computed as if the theory were defined on the whole complex
plane, and governed by a single Virasoro algebra (14.20): the physical fields are then
situated in the upper half plane, and their unphysical mirror images in the lower half
plane. The simplification of getting rid of L̄n has thus been achieved at the price
of doubling the number of points in correlation functions. In practice, the former
simplification largely outweighs the latter complication.

In particular, the n-point boundary correlation functions satisfy the very same dif-
ferential equations (14.34) as 2n-point bulk correlation functions, but with different
boundary conditions. The most interesting cases are n = 1 and n = 2, both tractable
in the bulk picture in several situations of practical importance. As examples of the
physical information which can be extracted from these cases we should mention,
for n = 1, the probability profile of finding a monomer of a loop at a certain distance
from the boundary, and for n = 2, the probability that a polymer comes close to the
boundary at two prescribed points [32]. A particularly celebrated application of the
n = 2 case is Cardy’s computation [33] of the crossing probability that a percolation
cluster traverses a large rectangle, as a function of the aspect ration of the latter.

The radial quantisation scheme of section 14.2.5 still makes sense in BCFT. The
associated conformal mapping

w(z) =
L
π

logz (14.52)

transforms the upper half plane into a semi-infinite strip of width L with non-
periodic transverse boundary conditions. The two rims of the strip are then the im-
ages of the positive and the negative real axis, and the time (resp. space) direction
is parallel (resp. perpendicular) to the axis of the strip. The dilatation operator reads
D = L0 and the Hamiltonian H = (π/L)(L0 −c/24). Non-trivial eigenstates of H

are formed by a boundary operator φ j(0) acting on the vacuum state, |h〉= φ j(0)|0〉.
In general, we expect boundary operators to have different scaling dimensions

than bulk operators. This can be understood from the method of images: when a
primary field approaches the boundary it interacts with its mirror image and, by the
OPE (14.25), produces a series of other primaries which then describe the boundary
critical behaviour.
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Likewise, a field φ(r,s) with a given interpretation in the bulk will typically have
a different interpretation when situated on the boundary. Examples pertinent to loop
models will be given in section 14.6.

The finite-size formulae (14.15) and (14.17) can be adapted to the case of a strip
of width L. For this, one uses the method of images and the mapping (14.52). The
end results read:

f0(L) = f0(∞)+
f S
0

L
− πc

24L2 + o(L−2) ,

fφ (L)− f0(L) =
f S
φ − f S

0

L
+

π∆
L2 + o(L−2) . (14.53)

where there is now a non-universal 1/L dependence due to the presence of surface
free energies f S. For some (but not all) choices of excited levels fφ (L) it can be
argued that f S

φ = f S
0 , thus simplifying the second of these formulae.

Note that (14.7) applied to a boundary operator is the reason why we have not
discussed finite Dirichlet boundary conditions at the beginning of this section. More
generally, any uniform boundary condition is expected to flow under the renormal-
isation group towards a conformally invariant boundary condition. It is one of the
goals of BCFT to classify such boundary conditions. One of the main results ob-
tained is the following [30]: For diagonal models (i.e., nh,h̄ = δh,h̄ in (14.26)) there
is a bijection between the primary fields in the bulk CFT and the conformally invari-
ant boundary conditions in the BCFT. For example, for the Ising model (m = 3 and
m′ = 4 in (14.35)) the three different bulk primary operators (the identity I = φ(1,1),
the spin σ = φ(1,2), and the energy ε = φ(2,1)) correspond to three types of uniform
boundary conditions in the lattice model of spins (fixed s = +1 and s =−1, and free
boundary conditions).

To this point we have discussed only uniform boundary conditions. It is important
to realise that the radial quantisation picture with a boundary operator φ j(0) situated
at the origin is compatible also with mixed boundary conditions, i.e., one boundary
condition on the negative real half-axis and another on the positive half-axis. In this
case, φ j(0) is called a boundary condition changing operator. One then needs a
second operator φ j(∞) situated at infinity to change back the boundary condition.
A more symmetric picture is obtained by mapping the upper half plane to the strip,
through (14.52). There are then different boundary conditions on the two sides of
the strip, and a boundary condition changing operators is located at either end of the
strip. More generally, one may study a BCFT on any simply connected domain with
a variety of different boundary conditions along the boundary, each separated by a
boundary condition changing operator.

For bulk CFT, crucial insight was gained by considering the theory on a torus.
The analogous tool for BCFT is to consider the theory on an annulus.4 In analogy

4 It makes sense to think of this in the radial quantisation, or transfer matrix, picture. The theories
are initially considered on a semi-infinite cylinder (resp. a strip) with specified transverse boundary
conditions (periodic, resp. non-periodic) and unspecified longitudinal boundary conditions. This
gives access to the transfer matrix eigenvalues. To access the fine structure, such as amplitudes of
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with the torus case, we denote by ω1 ∈ R the width of the annulus and by ω2 ∈
iR its length (in the periodic direction), defining τ = ω2/ω1 ∈ iR. The boundary
conditions on the two rims are denoted, symbolically, a and b. Then

Zab(τ) = Tr
(

qL0−c/24
)

(14.54)

with q = exp(π iτ). This should be compared with (14.40). The analogue of (14.41),

Zab(τ) = ∑
h

n(ab)
h χ(c,h)(τ) , (14.55)

then becomes linear in the characters. Equivalently, one might exchange the space
and time direction and view the annulus as a cylinder of circumference ω2 and finite
length ω1, with boundary conditions a (resp. b) in the initial (resp. final) state. This
leads to

Zab(τ) =
〈

b
∣∣∣eτ−1Hbulk

∣∣∣a
〉

, (14.56)

where now Hbulk is the Hamiltonian of the bulk CFT propagating between boundary
states |a〉 and 〈b|. The links between bulk and boundary CFT result from a detailed
study of the equivalence between (14.54) and (14.56).

14.3 Coulomb Gas Construction

It has been known since the 1970’s [34] that the critical point of many two-
dimensional models of statistical physics can be identified with a Gaussian free-
field theory. A general framework for the computation of critical exponents was
first given in 1977 by José et al. in the so-called spin wave picture [9]. This was fur-
ther elaborated in the early 1980’s by den Nijs [10] and Nienhuis [11] into what has
become known as the Coulomb gas (CG) construction. These developments have
been reviewed by Nienhuis [35].

The CG approach is particularly suited to deal with the continuum limit of lattice
models of closed loops, in which each loop carries a Boltzmann weight n. Such
loop models arise as the diagrammatic expansion of spin systems in which the spins
take values in Rn and the interactions possess an O(n) symmetry. Depending on
the normalisation constraint imposed on the spins, and on the underlying lattice
structure, the loops may or may not admit self-intersections. The former case can
be treated by supersymmetric techniques [36], within the framework of the non-
linear sigma model, but does not admit a CG representation. In the present review
we are however only concerned with cases without self-intersections, for which the
CG approach does apply. A particularly elegant and useful example was given by
Nienhuis [37]. Another important model, the Q-state Potts model, can be formulated

the eigenvalues, one must impose periodic longitudinal boundary conditions and take the length of
the cylinder (resp. strip) to be finite.
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as a model of self-avoiding loops with n =
√

Q, as first shown by Baxter, Kelland
and Wu [38]. We shall review the relevant mappings in section 14.3.1.

The marriage between the CG and conformal field theory (CFT) happened in
1986–87, when Di Francesco, Saleur and Zuber [39, 40] made the loop model ↔
CG correspondence more precise and showed how the ideas of modular invariance
[23, 29] can be put to good use in the study of loop models (see section 14.7 below).
At the same time, Duplantier and Saleur developed a range of applications to SAW’s
and SAP’s (see in particular [14]).

In section 14.3.2 we show how the loop models can be transformed into height
models with local (albeit complex) Boltzmann weights. It is the continuum limit of
this height which acts as the conformally invariant free field. The underlying lattice
model implies that this height field is compactified, thus making contact with the
modular invariance results of section 14.2.7.

The naive free field action however needs to be modified with extra terms, tra-
ditionally known as background and screening electric charges [35]. The resulting
CFT, known as a Liouville field theory, is written down in section 14.3.3.

The requirement that the Liouville potential be RG marginal determines the cou-
pling constant of the free field as a function of n, as first pointed out by Kondev [17].
This is an important ingredient, since otherwise one would have to rely on an inde-
pendent exact solution to fix the coupling. The analogous marginality requirement
for the case of surface critical behaviour has been established recently by Cardy
[18]. We discuss these developments in sections 14.3.4–14.3.5.

14.3.1 From Potts and O(n) Models to Loops

In this section we show how to transform the Q-state Potts model and the O(n)
model into loop models. There are several mappings of this type, depending on the
lattice structure, the types of (local) interactions, and so on, but for simplicity we
shall concentrate here on the simplest cases in which the Potts model is defined on
a square lattice [38] and the O(n) model on a hexagonal lattice [37].

odd siteeven site

Fig. 14.1 Relation between the clusters E ′ (solid lines) on L (filled circles) and the transition
system T (E ′) (broken lines) on SL . Note that the rules differ for the two sublattices of SL .

Consider first the Potts model, defined initially by assigning spins σi = 1,2, . . . ,Q
to each of the vertices of the square lattice L . A pair of nearest-neighbour spins has
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the interaction energy −Kδσi,σ j , and we set J = K/kBT . The partition function then
becomes that of the so-called random cluster model [41]:

Z = ∑
{σ}

∏
(i j)∈E

eJδσi ,σ j = ∑
E ′⊆E

(eJ −1)|E
′|Qc(E ′) , (14.57)

where E is the set of lattice edges, E ′ runs through all 2|E| subsets thereof, and
c(E ′) is the number of connected components in the graph induced by E ′. Define
now the surrounding lattice SL with vertices which are the midpoints of edges in
L , here a rotated square lattice. On SL we define for each E ′ ⊆ E a transition
system T (E ′) system according to the rule in Fig. 14.1; then T (E ′) constitutes a set
of cycles (loops5) that separate the connected components in the edge set E ′ from
those dual to the complement E \E ′. (In other words, the loops form the boundaries
of connected components in either set.) Using the Euler relation for a planar lattice
with N vertices this results in

Z = QN/2 ∑
E ′⊆E

(
eJ −1√

Q

)|E ′|
Ql(T (E ′))/2 , (14.58)

where l(T (E ′)) is the number of loops in the transition system T (E ′). On a non-
planar graph, (14.58) would be slightly modified (see section 14.7 below).

The local weights of the transition system in (14.58) are in general inhomoge-
neous, due to the first factor inside the sum, since vertices on the even (resp. odd)
sublattice of SL stand on horizontal (resp. vertical) edges of L . This inhomogene-
ity can be directly read off from Fig. 14.1. Even though critical (and even integrable)
points of the inhomogeneous model do exist [42, 43] we are here interested in homo-
geneous solutions only. Indeed, for eJ − 1 = ±√

Q and 0 ≤ Q ≤ 4 the Potts model
(14.57) is at its self-dual critical point [44, 45]. With the plus sign, (14.58) then
becomes simply

Z = QN/2 ∑
E ′⊆E

nl(T (E ′)) (14.59)

with n ≡ √
Q. With the minus sign, (14.59) still holds true provided we take the

other determination of the square root, n = −√
Q, since N + |E ′|+ l(T (E ′)) is even

for any E ′. In conclusion, (14.59) describes a selfdual critical Q = n2 state Potts
model for −2 ≤ n ≤ 2, and it takes the form of a simple loop model in which each
loop carries the weight n.

The limit n→ 0 is of special interest here. The dominant contribution to (14.59) is
such that each E ′ in the sum represents an (unrooted) spanning tree, and its contour
is a so-called osculating SAP.

We now turn to the O(n) model, which is defined initially by assigning vector
spins Si ∈ Rn to each of the vertices of the hexagonal lattice L . A pair of nearest-
neighbour spins has the interaction energy −J Si · S j. The integration measure is

5 The use of the word loop as a synonym of cycle is common in the physics literature, and should
not be confused with its different meaning in graph theory.
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defined such that
∫

dSidS j Sα
i Sβ

j = δα ,β and odd moments of Si vanish by the sym-
metry Si →−Si. Expanding out the Boltzmann weights w̃i j = exp(J Si ·S j/kBT ) and
forming the partition function, the contributing configurations are in bijection with
systems of loops for which each loop carries a weight n. These loops are in general
rather complicated. Namely, on a general lattice containing vertices of degree ≥ 4
the loops may cross; and for any lattice they may cover each edge more than once.
The choice of the hexagonal lattice overcomes the first complication. To overcome
the second we follow Nienhuis [37] and redefine the weights as wi j ≡ 1 + K Si ·S j,
i.e, by truncating the formal high-temperature expansion of the original weights. The
effect of these simplifications on the critical behaviour may be judged a posteriori,
in section 14.4.

1 11 T

Fig. 14.2 Vertices in the O(n) loop model at temperature T = 1/K.

The partition function then reads

Z = ∑
G

K|G |nl(G ) , (14.60)

where G are edge subsets of L with the property that every vertex is adjacent to
an even number (zero or two) of edges in G , as shown in Fig. 14.2. So G forms a
system of l(G ) self-avoiding, mutually avoiding loops drawn on L . Nienhuis [37]
has argued that the loop model (14.60) is critical for −2 ≤ n ≤ 2 and

1/K2 = 2±
√

2−n . (14.61)

The high-temperature solution [plus sign in (14.61)] is supposed to correctly de-
scribe the critical point of the original O(n) model. The loops described by it are
commonly referred to as dilute, as they fill a vanishing fraction of the lattice in
the thermodynamic limit. The low-temperature solution [minus sign in (14.61)] de-
scribes dense loops which cover a finite fraction of the lattice. One would expect
these to be intimately related to the osculating SAP’s of the Potts model, and this is
indeed the case. Their critical behaviour is however not coincident with that of the
original, unmodified O(n) model. These remarks will be clarified further below, and
in section 14.4.
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14.3.2 Transformation to a Height Model

In the definition of the Q-state Potts and the O(n) models, the parameters Q and
n were originally positive integers. However, in the corresponding loop models,
(14.59) and (14.60), they appear as formal parameters and may thus take arbitrary
complex values. The price to pay for this generalisation is the appearance of a non-
locally defined quantity, the number of loops l. The locality of the models may
be recovered (though not completely, see section 14.3.3) by transforming them to
height models with complex Boltzmann weights [38], as we now show.

In a first step, each loop is independently decorated by a global orientation
s = ±1, which by planarity and self-avoidance can be described as either counter-
clockwise (s = 1) or clockwise (s =−1). Each oriented loop must be given a weight
w(s), so that n = ∑s w(s). An obvious possibility, sometimes referred to as the real
loop ensemble, is w(1) = w(−1) = n/2. This can be interpreted as an O(n/2) model
of complex spins.

We are however more interested in the complex loop ensemble with w(s) = eisγ .
Note that in the expected critical regime,

n = 2cosγ ∈ [−2,2] , (14.62)

the parameter γ ∈ [0,π ] is real. Locality is retrieved by remarking that the weights
w(±1) are equivalent to assigning a local weight w(α/2π) to each vertex where a
loop turns an angle α (counted positive for left turns). If a vertex is traversed by
more than one loop, it gets weighted by the product of w(α/2π) over all traversals.

e λ/6+i e λ/6+i e λ/6+ie λ/6−i e λ/6−i e λ/6−i

Fig. 14.3 Local redistribution of the loop weight n in the O(n) loop model on the hexagonal lattice.

The models (14.59) and (14.60) are now transformed into local vertex models
by assigning to each edge traversed by a loop the orientation of that loop. An edge
not traversed by any loop is assigned no orientation. The total vertex weight is de-
termined from the configuration of its incident oriented edges, as the above local
loop weights summed over the oriented transition systems compatible with edge
orientations; this is illustrated for the hexagonal-lattice O(n) model in Fig. 14.3. In
addition, one must multiply this by any loop-independent local weights, such as K
in (14.60).

As a result, (14.59) is transformed into a six-vertex model on the square lattice,
each vertex being incident on two outgoing and two ingoing edges [44], as shown in
Fig. 14.4. The weights ωi (resp. ω ′

i ) on the even (resp. odd) sublattice read explicitly
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ωω ω ω ω ω1 3 4 5 62

Fig. 14.4 Weights in the six-vertex model.

ω1, . . . ,ω6 = 1,1,x,x,eiγ/2 + xe−iγ/2,e−iγ/2 + xeiγ/2 (14.63)

ω ′
1, . . . ,ω

′
6 = x,x,1,1,e−iγ/2 + xeiγ/2,eiγ/2 + xe−iγ/2 (14.64)

where we have defined x = (eJ − 1)/
√

Q. Note that the anisotropy parameter ∆ =
−cosγ of the equivalent XXZ spin chain is independent of x and of the sublattice.

Similarly, (14.60) becomes a seven-vertex model on the hexagonal lattice, each
vertex being either empty, or incident on one outgoing, one ingoing, and one empty
edge. The six non-empty vertices are shown in Fig. 14.3.

Finally, the vertex models are turned into height models. For this, assign a scalar
variable h(x) to each lattice face x (i.e., to each vertex of the lattice dual to the one
on which the loop model has been defined), so that h increases (resp. decreases)
by a each time one traverses a left-going (resp. right-going) edge. This definition
of the height h is consistent, since each vertex is incident on as many ingoing as
outgoing edges. Since this defines only height differences, one may imagine fixing
h completely by arbitrarily fixing h(0) = 0.

In the continuum limit, we expect the local height field h to converge to a free
bosonic field φ(x), whose entropic fluctuations are described by an action of the
form (14.42), with coupling g = g(n) which is a monotonically increasing function
of n. In particular, for n → ∞ the lattice model is dominated by the configuration
where loops of the minimal possible length cover the lattice densely; the height
field is then flat, φ(x) = constant, and the correlation length ξ is of the order of the
lattice spacing. For finite but large n, φ will start fluctuating, loop lengths will be
exponentially distributed, and ξ will be of the order of the linear size of the largest
loop. When n → n+

c , for some critical nc (we shall see that nc = 2), this size will
diverge, and for n ≤ nc the loop model will be conformally invariant with critical
exponents that depend on g(n). The interface described by φ(x) is then in a rough
phase. The remainder of this section is devoted to making this intuitive picture more
precise, and to refine the free bosonic description of the critical phase.

As a first step towards greater precision, we now argue that φ(x) is in fact a
compactified boson, cf. section 14.2.7. To see this, it is convenient to consider the
oriented loop configurations that give rise to a maximally flat microscopic height
h; following Henley and Kondev [61] we shall refer to them as ideal states. For the
Potts model (14.59), an ideal state is a dense packing of length-four loops, all having
the same orientation. There are four such states, corresponding to two choices of
orientation and two choices of the sublattice of lattice faces surrounded by the loops.
An ideal state can be gradually changed into another by means of ∼ N local changes
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of the transition system and/or the edge orientations. As a result, the mean height
will change, φ → φ ± a. Iterating this, one sees that one may return to the initial
ideal state whilst having φ → φ ± 2a. For consistency, we must therefore require
φ(x) ∈ R/(2aZ), i.e., the field is compactified with radius R = 1/π , cf. (14.44).

h+a

h+a

h h+2a h+a

h+a

h+2a

h+2a

h+a h+2a

h+2a

h+3a h+2a h+3a

h+3a

Fig. 14.5 Ideal states of the O(n) model on the hexagonal lattice. For each of the five panels, the
state of the complete infinite lattice is obtained by tiling the plane with three faces shown, while
respecting the three-sublattice structure. The different panels are related, from left to right, by the
construction explained in the main text, under which one ideal state is gradually changed into
another. The leftmost and rightmost panels represent the same ideal state, but with a global height
change φ → φ +2a that determines the compactification radius.

The same construction applied to the O(n) model (14.61) yields six ideal states of
oriented length-six loops (resulting from a choice of three sublattices and two orien-
tations). Changing the ideal state in four steps, as shown in Fig. 14.5, produces the
initial state but with a height change of ±2a. So one has the same compactification
radius, φ(x) ∈ R/(2aZ), as in the case of the Potts model.

Before we go on, a few remarks are in order:

1. In section 14.2.7 we have seen in detail that the normalisation constant a drops
out from the final physical results. We shall therefore follow standard conventions
and set a = π in what follows.

2. While the complex loop ensemble is geometrically appealing, it is difficult to
make quite rigorous a setup which is based on complex Boltzmann weights.

3. We may already suspect—and we shall see below in more detail—that the O(n)
model in the dense phase and the Q-state Potts model give identical critical the-
ories in the continuum limit, for n =

√
Q. However, the correspondence between

operators in the microscopic model and the continuum limit is not necessarily
identical, leading to subtle differences. For instance, the energy operators of the
two models become different objects in the continuum limit (see section 14.4).

14.3.3 Liouville Field Theory

The essence of the above discussion is that the critical properties of the loop models
under consideration can be described by a continuum-limit partition function that
takes the form of a functional integral
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Z =

∫
Dφ(x) exp(−S[φ(x)]) . (14.65)

Here S[φ(x)] is the Euclidean action of the compactified scalar field φ(x)∈R/(2πZ).
The hypothesis that the critical phase is described by bounded elastic fluctuations
around the ideal states means that S must contain a term

SE =
g

4π

∫
d2x(∇φ)2 (14.66)

with coupling constant g > 0. Higher derivative terms that one may think of adding
to (14.66) can be ruled out by the φ →−φ symmetry, or by arguing a posteriori that
they are RG irrelevant in the full field theory that we are about to construct.

Note that the partition function (14.65) does not purport to coincide with (14.59)
or (14.60) on the scale of the lattice constant. (A similar remark holds true for the
correlation functions that one may similarly write down.) We do however claim that
their long-distance properties are the same. In that sense, the CG approach is an
exact, albeit by no means rigorous, method for computing critical exponents and
related quantities. A more precise equivalence between discrete and continuum-
limit partition functions can however be achieved on a torus; see section 14.7.

The action (14.66) coincides with (14.42) for the compactified boson. To obtain
the full physics of the loop model one however needs to add two more terms to the
action, as we now shall see.

To proceed, we consider the underlying lattice model as being defined on a cylin-
der, x = (x,t). This has the advantage of making direct contact with the radial quan-
tisation formalism of section 14.2.5 used in both numerical (transfer matrix) and
analytical (Bethe Ansatz) studies. The boundary conditions are thus periodic in the
space direction, x = x + L, and free in the time (t) direction. Ultimately, the results
obtained on the cylinder can always be transformed into other geometries by means
of a conformal mapping.

With this geometry, the equivalence between the loop model and a local height
model with complex weights, established in section 14.3.2, must be revisited. While
loops homotopic to a point still acquire their correct global weight n from the local
angle-dependent weights w(α/2π), this is no longer true for loops that wind around
the cylinder. Summing over loop orientations, their weight would be n = 1+1 = 2.
Consider now adding a term

SB =
ie0

4π

∫
d2xφ(x)R(x) (14.67)

to the effective action S, where R is the scalar curvature6 of the space x. The param-
eter e0 is known in CG language as the background electric charge. On the cylinder,
one has simply SB = ie0 (φ(x,∞)−φ(x,−∞)), meaning that in the partition function
(14.65) an oriented loop with winding number q = 0,±1 (all other winding numbers
are forbidden by the self-avoidance of the loops) can equivalently be assigned an ex-

6 We consider the scalar curvature in a generalised sense, so that delta function contributions may
be located at the boundaries. Implicitly, we are just applying the Gauss-Bonnet theorem.
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tra weight of exp(iπqe0). For non-winding loops (q = 0) this does not change the
reasoning of section 14.3.2, whilst summing over the two orientations (q = ±1) of
a winding loop produces the weight n ≡ 2cos(πe0). The choice e0 = γ/π will thus
assign to a winding loop the same weight n = n [see (14.62)] as to a non-winding
one (but note that other choices leading to n 6= n may be useful in some applications
of the CG technique).

The object eieφ (or more precisely, its normal ordered product : eieφ :) is known
in field theory as a vertex operator of (electric) charge e. The boundary term (14.67)
thus corresponds to the insertion of two oppositely charged vertex operators at either
end of the cylinder.

At this stage two problems remain: the field theory does not yet take account
of the weight n of contractible loops, and the coupling constant g has not yet been
determined. These two problems are closely linked, and allow [17] us to fix exactly
g = g(n). The idea is to add a further Liouville term

SL =

∫
d2xw[φ(x)] (14.68)

to the action, which then reads in full

S[φ(x)] = SE + SB + SL . (14.69)

In (14.68), e−w[φ(x)] is the scaling limit of the microscopic vertex weights wi. To
identify it we show the argument for the O(n) model, the Potts case being similar.

Due to the compactification, SL[φ ] is a periodic functional of the field, and as
such it can be developed as a Fourier sum over vertex operators

w[φ ] = ∑
e∈Lw

w̃e eieφ , (14.70)

where Lw is some sublattice of L0 ≡ Z. Note that Lw may be a proper sublattice
of L0 if w[φ ] has a higher periodicity than that trivially conferred by the compact-
ification of φ . By inspecting Fig. 14.5 we see that this is indeed the case here: the
(geometric) averages of the microscopic weights coincide on the first, third, and
fifth panels, indicating that the correct choice is Lw = 2L0. This intuitive deriva-
tion of Lw (which can easily be corroborated by considering more complicated
microscopic configurations) demonstrates the utility of the ideal state construction.

Some important properties of the compactified boson with action SE have al-
ready been derived in section 14.2.7. In particular, its central charge is c = 1 and
the dimension ∆e,m of an operator with electromagnetic charge (e,m) is given by
(14.50). Having now identified the electric charge e with that of the vertex operator
eieφ , one could alternatively rederive (14.50) by computing the two-point function〈

eieφ(x)e−ieφ(y)
〉

by standard Gaussian integration.

The physical interpretation of the magnetic charge m is already obvious from
(14.44): it corresponds to dislocations in the height field φ due to the presence of
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defect lines. In section 14.4 we shall see how to identify these defect lines with
SAW’s and compute the related critical exponents.

It remains to assess how the properties of the compactified boson are modified
by the inclusion of the term SB. Physical reasoning consists in arguing that the ver-
tex operators e±ie0φ will create a “floating” electric charge of magnitude 2e0 that
“screens” that of the other fields in any given correlation function. We infer that
(14.50) must be changed into

∆e,m =
1
2

[
e(e−2e0)

g
+ gm2

]
. (14.71)

Note that to obtain (14.71) we have changed our normalisation so that both e and
m are integers. This is consistent with the normalisation (14.66) of the coupling
constant, rather than (14.42), which is the standard choice in the CG literature.

14.3.4 Marginality Requirement

Following Kondev [17] we now claim that the Liouville potential SL must be exactly
marginal. This follows from the fact that all loops carry the same weight n, indepen-
dently of their size, and so the term SL in the action that enforces the loop weight
must not renormalise under a scale transformation. The most relevant vertex opera-
tor appearing in (14.70) has charge ew = 2π/a = 2, and so ∆ew,0 = 2. Using (14.71),
this fixes the coupling constant as g = 1− e0. In other words, the loop weight has
been related to the CG coupling as

n = ±
√

Q = −2cos(πg) (14.72)

with 0 < g ≤ 1 for the Potts model or the dense O(n) model.
The term SB shifts the ground state energy with respect to the c = 1 theory de-

scribed by SE alone. The corrected central charge is then c = 1+12∆e0,0, where the
factor of 12 comes from comparing (14.15) and (14.17). This gives

c = 1− 6(1−g)2

g
. (14.73)

It should be noted that the choice ew = 2 is not the only one possible. Namely,
the coefficient w̃ew of the corresponding vertex operator in (14.70) may be made to
vanish, either by tuning the temperature T in the O(n) model, or by introducing non-
magnetic vacancies in the Potts model. The former case corresponds to taking the
high-temperature solution [plus sign] in (14.61), while the latter amounts to being
at the tricritical point of the Potts model. The next-most relevant choice is then
ẽw = −2, and going through the same steps as above we see that one can simply
maintain (14.72), but take the coupling in the interval 1 ≤ g ≤ 2 for the dilute O(n)
model or the tricritical Potts model.
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The electric charge ew whose vertex operator is required to be exactly marginal
is known as the screening charge in standard CG terminology.

The central charge (14.73) can now be formally identified with that of the Kac
table (14.35), with m′ = m+ 1. The result is a formal relation between the minimal
model index m and the CG coupling g, valid for integer m. We have

m =

{
g

1−g for the dense O(n) model, or the critical Potts model
1

g−1 for the dilute O(n) model
(14.74)

The special cases n → 0 are related to self-avoiding walks and polygons. This
gives g = 1/2 for dense polymers (with c = −2 and m = 1), and g = 3/2 for dilute
ones (with c = 0 and m = 2).

14.3.5 Annular Geometry

Consider now instead the loop model defined on an annulus which we shall take as
an L×M rectangle with coordinates x ∈ [0,L] and y ∈ [0,M]. The boundary con-
ditions are free (f) in the x-direction and periodic in the y-direction. Very recently,
Cardy [18] has shown how to impose the correct marginality requirement for this
geometry.

Consider first the continuum-limit partition function Z = Zff(τ) from (14.54) in
the limit M/L ≫ 1 of a very long and narrow annulus. The modular parameters
τ = iM/L and q = exp(iπτ) = exp(−πM/L). We expect in this limit that only the
identity operator contributes to Z, and so

Z ∼ q−c/24 ∼ exp

(
πcM
24L

)
. (14.75)

The central charge c is (14.73) from the bulk theory, and in particular is known to
vary with the coupling constant g.

The question then arises how (14.75) is compatible with the continuum-limit
action (14.66). According to Cardy [18] the answer is that there is a background
magnetic flux m0, a sort of electromagnetic dual of the background electric charge
e0 present in the cylinder geometry. Thus, in the continuum limit there is effectively
a number (in general fractional) m0 of oriented loops running along the rims of
the annulus, giving rise to a height difference between the left and the right rim.
Accepting this hypothesis, we can write

φ(x,y) = φ̃(x,y)+
πm0x

L
(14.76)

where φ̃ is a “gauged” height field that still contains the elastic fluctuations but obeys
identical Dirichlet boundary conditions on both rims, say φ̃ (0,y) = φ̃ (L,y) = 0.
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According to the functional integrations in section 14.2.7, the field φ̃ contributes
q−1/24 to Z, corresponding to c = 1. The last term in (14.76) modifies the action
(14.66) by ∆S = g

4π (πm0)
2 M

L and thus multiplies Z by a factor e−∆S = qgm2
0/4, which

correctly reproduces the contribution of the last term in (14.73) to (14.75) provided
that we set

m0 = ± (1−g)

πg
. (14.77)

This value of m0 can be retrieved from a marginality requirement which has
the double advantage of being more physically appealing and of not invoking the
formula (14.73) for c. Indeed, if m0 is too large a pair of oriented loop strands will
shed from the rims, corresponding to a vortex pair of strength m = ±2 situated
at the top and the bottom of the annulus. This vortex pair can then annihilate in
order to reduce the free energy. And if m0 is too small the opposite will occur. The
equilibrium requirement is then that inserting such a vortex pair must be an exactly
marginal perturbation in the RG sense, i.e., the corresponding boundary scaling
dimension is ∆v = 1.

The free energy increase for creating the vortex pair is, by the same gauge argu-
ment as before,

∆S =
g

4π
(
(m0 + 2)2 −m2

0

)(π
L

)2
ML (14.78)

and noting the factor of 24 between c and the scaling dimension ∆v in (14.53), we
now have e−∆S = q−∆v from (14.75), so that

∆v =
g
4

(
(m0 + 2)2 −m2

0

)
= 1 (14.79)

and we recover (14.77).

14.4 Bulk Critical Exponents

We shall now see how to use the Coulomb gas (CG) technology of section 14.3 to
compute a variety of critical exponents in loop models.

The watermelon exponents were derived by Nienhuis [35] and by Duplantier and
Saleur (see [14] and references therein). The issues of their relation to the standard
exponents of polymer physics [46], and to the Kac table (14.31), were discussed
in [14].

Although the watermelon exponents are essentially magnetic-type exponents in
the CG, they do not produce the standard magnetic exponent of the Potts model.
The latter was derived by den Nijs [10], but we present here a somewhat different
argument.

We have seen above that the dense O(n) model and the critical Potts model co-
incide on the level of the central charge, but their thermal exponents are different.
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These are electric-type exponents in the CG, and were first computed by Nienhuis
[37] and den Nijs [10].

Duplantier and Saleur have developed a range of geometrical applications of the
exponents mentioned above. In [47, 14] they have generalised the configurational
exponent γ to arbitrary polymer network conformations. From these a family of
physically relevant contact exponents can be derived. They have also obtained the
probability distribution of the winding angle of a SAW around one of its end points
[48]. Finally, they have derived the exponents for a polymer at the collapse transition
(theta point) from a specific model [19].

14.4.1 Watermelon Exponents

An important object in loop models is the operator Oℓ(x1) that inserts ℓ oriented
lines at a given point x1. Microscopically, this can be achieved by violating the arrow
conservation constraint at x1. For instance, in the O(n) model one can allow a vertex
which is adjacent to one outgoing and two empty edges. Doing so at ℓ vertices in
a small region around x1 yields a microscopic realisation of the composite operator
Oℓ(x1).

x1 x2

Fig. 14.6 Watermelon configuration with ℓ = 4 legs.

If one had strict arrow conservation at all other vertices, the insertion of Oℓ(x1)
would not lead to a consistent configuration. However, also inserting O−ℓ(x2), the
operator that absorbs ℓ oriented lines in a small region around y, will lead to consis-
tent configurations (see Fig. 14.6) in which ℓ defect lines propagate from x1 to x2.
Let Zℓ(x1,x2) be the corresponding constrained partition function. One then expects

〈Oℓ(x1)O−ℓ(x2)〉 ≡
Zℓ(x1,x2)

Z
∼ 1

|x1 −x2|2∆ℓ
for |x1 −x2| ≫ 1 . (14.80)

The corresponding critical exponents ∆ℓ are known as watermelon (or fuseau,
or ℓ-leg) exponents. To compute them we first notice that the sum of the height
differences around a closed contour encircling x1 but not x2 will be aℓ. Equiva-
lently, one could place the two defects at the extremities of a cylinder [i.e., taking
x1 = (x,−∞) and x2 = (x,∞)], and the height difference would be picked up by any



14 Conformal Field Theory Applied to Loop Models 379

non-contractible loop separating x1 and x2. This latter formulation makes contact
with the defect lines (14.44) introduced when studying the compactified boson, the
equivalent magnetic charge being mℓ = ℓa

2π = ℓ
2 .

A little care is needed to interpret the configurations of Zℓ(x1,x2) in the model
of un-oriented loops. The fact that all ℓ lines are oriented away from x1 prevents
them from annihilating at any other vertex than x2. One should therefore like to
think about them as ℓ marked lines linking x1 and x2, where each line carries the
Boltzmann weight 1. This is consistent with not summing over the orientations of
the defect lines in the oriented loop model. However, each oriented line can also pick
up spurious phase factors w(α/2π), due to the local redistribution of loop weights,
whenever it turns around the end points x1 and x2. These factors are however exactly
cancelled if we insert in addition a vertex operator eie0φ (resp. e−ie0φ ) at x1 (resp. x2)
[11]. Note that these vertex operators do not modify the weighting of closed loops,
since these must encircle either none of both of x1, x2. We conclude that ∆ℓ = ∆e0,mℓ

,
and using (14.71) this gives

∆ℓ =
1
8

gℓ2 − (1−g)2

2g
. (14.81)

Interestingly, these exponents can be attributed to the Kac table under the identi-
fication (14.74). One has

∆ℓ =

{
2h0,ℓ/2 for the dense O(n) model
2hℓ/2,0 for the dilute O(n) model

(14.82)

The appearance of half-integer indices [12, 14] is somewhat puzzling, whereas the
fact that these exponents are located outside the fundamental domain of the Kac
table reflects the non-local nature of the watermelon operators.

It should be noticed [49] that ∆4 is irrelevant (resp. relevant) in the dilute (resp.
dense) phase of the O(n) model, i.e., for 1 < g < 2 (resp. 0 < g < 1). This means
that on lattices with vertices of degree ≥ 4, loop self-intersections are irrelevant in
the dilute phase. On the other hand, for the dense phase such self-intersections are
relevant and will induce a flow to a supersymmetric Goldstone phase [49] that is not
described by the CG approach. In other words, Nienhuis’ original approximation of
the true O(n) model that led to (14.60) is exact in the continuum limit, but only in
the dilute phase.

14.4.2 Standard Exponents of Polymer Physics

The relation of the standard exponents of critical phenomena (usually denoted α , β ,
γ , δ , ν , and η) to polymer physics has been discussed in details by de Gennes [46].
The end-to-end distance R of a SAW (and also the radius of gyration of a SAP) of
chain length l ≫ 1 behaves as

R2 ∼ l2ν (14.83)
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whereas the number of such objects in d dimensions (here both are supposed to have
one monomer attached to a fixed point) scales like

NSAW ∼ µ l lγ−1

NSAP ∼ µ l l−νd (14.84)

where the connectivity constant µ can be related to the inverse of the critical tem-
perature. There is a more detailed relation where the end-to-end distance R of the
SAW has been fixed, valid for R ≫ 1:

NSAW(R)

NSAP
= R(γ−1)/ν H

(
R
lν

)
(14.85)

defining the scaling function H(u), which obeys H(u) → const as u → 0.
Standard scaling theory applied to the O(n) model then leads to the exponent

relations

∆1 = 1− γ
2ν

∆2 = 2− 1
ν

(14.86)

In view of (14.81) this gives ν = 1
2 , γ = 19

16 for dense polymers (g = 1
2 ) and ν =

3
4 , γ = 43

32 for dilute ones (g = 3
2 ). The remaining critical exponents follow from

standard scaling relations.

14.4.3 Magnetic Exponent in the Potts Model

The watermelon exponents can be said to be of the “magnetic” type, since they
induce a magnetic type defect charge mℓ in the CG. The standard magnetic exponent,
describing the decay of the spin-spin correlation function in the Potts model, is
however not of the watermelon type. It can nevertheless be inferred from (14.71) as
follows:

The probability that two spins situated at x1 and x2 are in the same Potts state is
proportional, in the random cluster picture, to the probability that they belong to the
same cluster. In the cylinder geometry this means that no winding loop separates
x1 from x2. This can be attained in the CG by giving a weight n̄ = 0 to such loops.
We have seen that inserting a pair of vertex operators with charge ±e at x1 and x2

leads exactly to this situation with n̄ = 2cos(πe), and so we need e = 1
2 . The scaling

dimension of this excitation, with respect to the ground state which has e = e0, is
then

∆m = ∆ 1
2 ,0 −∆e0,0 =

1−4(1−g)2

8g
. (14.87)
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In particular we verify that for the Ising model, g = 3
4 , this yields ∆m = 1

8 as it
should.

The location in the Kac table (14.31), using (14.74), is

∆m = 2h1/2,0 . (14.88)

Note that this differs from the lowest possible watermelon excitation ∆1 = 2h0,1/2,
corresponding to one loop strand propagating along the length direction of the cylin-
der.7 Indeed, the dominant configurations participating in the magnetic correlation
function have no propagating strands, since the cluster containing x1 and x2 will
typically wrap around the cylinder.

14.4.4 Thermal Exponents

As discussed in section 14.3.1, the Potts model at the critical temperature can be
identified with the loop model (14.59) with homogeneous weights, (eJ −1)/

√
Q =

1. A deviation from the critical temperature will make the weights inhomogeneous,
i.e., give different weights to the two possible states of the transition system in
Fig. 14.1. Comparing this observation with the discussion of the marginality require-
ment in section 14.3.4, we see that the result is the appearance of electric charges
e = ±1. Determining the correct sign of the charge requires a more careful micro-
scopic analysis, which was first carried out by den Nijs [10] (see also [11, 35]). The
end result for the thermal exponent is then

∆ Potts
t = ∆−1,0 =

3
2g

−1 (14.89)

where we have used (14.71).
Under the identification (14.74), the location of this operator in terms of the Kac

table (14.31) becomes [50]

∆ Potts
t = 2h2,1 =

m+ 3
2m

. (14.90)

Note that this is an RG relevant operator for m > 1 [i.e., for coupling 1
2 < g ≤ 1, or

loop weight 0 <
√

Q ≤ 2], meaning that the critical point is unstable to a deviation
from the critical temperature. On the other hand, for 0 < m < 1 [i.e., for coupling
0 < g < 1

2 , or loop weight −2 <
√

Q < 0] the thermal operator is irrelevant, implying
the existence of a Berker-Kadanoff phase [51].

For the O(n) model, the microscopic derivation of the CG is different (see section
14.3.1), and by construction the sublattice symmetry can no longer be broken. Ac-

7 Naively, the relation to the six-vertex model shows that in the Potts model these strands neces-
sarily come in pairs, but this can be arranged by a suitable generalisation of the periodic boundary
conditions, such that the six-vertex model is defined on an odd number of strands.
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cordingly, a deviation in K from the critical values (14.61) must now couple to the
next most relevant electrical charges e = ±2. Of these two, e = 2 has already been
used for the marginality requirement ∆2,0 = 2, and we expect in contrast a thermal
exponent that depends on g. We are therefore led to

∆t = ∆−2,0 =
4
g
−2 . (14.91)

A detailed derivation was first given by Nienhuis [37]. Note that the thermal operator
is relevant for the dilute case (1 < g < 2), and irrelevant for the dense case (0 < g <
1). The entire low-temperature phase of the O(n) model will therefore renormalise
towards the dense case. Exactly at zero temperature, a new critical theory emerges
(see section 14.5).

The identification of ∆t with the Kac table (14.31), via (14.74), is now

∆t =

{
2h3,1 for the dense O(n) model
2h1,3 for the dilute O(n) model

(14.92)

As a check, note that the critical Ising model is a special case of both the Potts
model (Q = 2, or g = 3

4 ) and of the O(n) model (dilute n = 1, or g = 4
3 ). In both

cases, the above formulae give ∆t = 1 as they should.

14.4.5 Network Exponents

Duplantier and Saleur [47, 14] have shown how to generalise the exponent γ of
(14.84) to more complicated network geometries. In the notation of section 14.4.1,
consider a multi-point correlation function

CG =
〈
Oℓ1(x1)Oℓ2(x2) · · ·OℓV

(xV )
〉

(14.93)

involving V watermelon operators, where the k’th operator inserts an ℓk leg ver-
tex at position xk. The orientations of the loop segments inserted do not matter in
the following discussion, but must be chosen so that CG describes a well-defined
network G (see Fig. 14.7). Accordingly we can assume that the indices ℓk are all
positive.

Let nℓ be the number of ℓ-leg operators in G , and let E be the total number of
edges in G . We then have the topological relations ∑ℓ nℓℓ = 2E and ∑ℓ nℓ = V .

Consider the case of a monodisperse network, where each of the E edges is
constrained to have the same length l (with l ≫ 1). Laplace transform and some
scaling analysis then generalises (14.84) into

NG

NSAP
∼ lγG −1+νd (14.94)

with the network exponent
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Fig. 14.7 A network G made of E = 10 chains and V = 9 vertices, with n1 = 5, n3 = 3, and n4 = 2.

γG = ν

[
2(V −1)−∑

ℓ

nℓ∆L

]
− (E −1) (14.95)

Note that for the ordinary SAW topology (nℓ = 2δℓ,1), we retrieve γG = 2ν(1−∆1),
in agreement with (14.86).

For a polydisperse network, the total length l is freely distributed among the E

edges in the network, and so one has simply to omit the last term (E −1) in (14.95).
Special cases of (14.95) yield contact exponents, describing e.g. the probability

that one of the end points of a SAW comes close to the midpoint of the walk.

14.4.6 Winding Angle Distribution

In section 14.4.1 we have seen that when computing the conformal weights of the
watermelon operators, it was necessary to insert vertex operators e±ie0φ at the chain
ends in order to cancel the spurious phase factors that occur in the oriented loop
model due to the winding of the SAW around its end points. By a generalisation of
this argument, Duplantier and Saleur [48] have shown how to actually compute the
winding angle distribution of a SAW.

Consider an O(n) model with an arbitrary number of closed loops, each of fugac-
ity

n = 2cos(πe0) = −2cos(πg) , (14.96)

and a single open walk (the SAW, for n → 0) with end points x1 and x2. In the ori-
ented loop picture, the walk is taken to be oriented from x1 to x2. To count precisely
its number of windings around each xi, these two points are connected to infinity
through parallel half lines Li, as shown in Fig. 14.8. Then let the winding number
ni be the signed number of times the walk crosses Li, the sign being positive for an
anti-clockwise crossing. In the scaling limit we expect ni ≫ 1, and so even though
ni has been defined as an integer it can be used to deduce the winding angle.

One now compares on one hand the correlation function
〈

exp(iπe1n1 + iπe2n2)
〉

in the O(n) model, and on the other hand
〈

exp(ie′1φ(x1)+ ie′2φ(x2))
〉

in the equiva-
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x1 x2

1

L2

L

Fig. 14.8 SAW oriented from x1 to x2 with winding numbers n1 = 2 and n2 = −1.

lent height model, where we recall that φ is the height function. These will in general
give incorrect weights (i.e., 6= n) to loops that surround both x1 and x2. A careful
study of the complex phase factors arising in these correlators, and in the oriented
loop/height model shows that the two correlators are identical, and the surrounding
loops are weighted correctly, provided that we satisfy the conditions

e′1 = e1 − e0, e′2 = e2 − e0, e1 + e2 = 0 or 2e0 . (14.97)

We shall take e1 = −e2 ≡ e in the last condition.
This deals with the electric charges in the CG picture. The magnetic charges

needed to insert the walk are m1 = −m2 ≡ m with m = 1 as usual. The joint value
of the correlators is then, from (14.50),

∼ |x1 −x2|−2∆ (e) with ∆(e) =
1
2

(
e2

2g
+ g

)
(14.98)

valid in the scaling limit |x1 −x2| ≫ 1. This result can be written

〈
eiπe(n1−n2)

〉
= e−

e2
g log |x1−x2| (14.99)

where we have normalised with respect to the same correlator with e = 0 (but still
m = 1). Noting that this is Gaussian in e, the distribution of the winding angle θ =
θ1 −θ2 = 2π(n1 −n2) itself is also Gaussian, and after a Fourier transformation we
obtain finally the normalised distribution

P(θ ) =

(
16π log |x1 −x2|

g

)−1/2

exp

(
− gθ 2

16 log |x1 −x2|

)
(14.100)

Usually we are interested in the fixed-length rather than the fixed-extremities
ensemble, in which case it suffices to replace |x1 −x2| by lν in (14.100), for a walk
of length l. Another remark is that the winding numbers n1 and n2 can be argued to
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be independent in the scaling limit, and so if one is interested in just one of them it
suffices to replace (14.100) by a distribution of half the width.

The above argument was shown for a SAW (as in [48]), but can easily be adapted
to the windings of a SAP constrained to go through two fixed points x1 and x2.
The relevant magnetic charge is then m = 2, but the remainder of the argument is
essentially unchanged.

The issue of winding angle distribution for a SAW, and its relation with that of
Brownian walks, was studied further by Saleur [52].

14.4.7 Polymer Collapse: the Theta Point

The dilute SAW is a model of a polymer in a good solvent. When this assumption
fails, e.g., upon lowering the temperature of the solvent, the effective attraction be-
tween the monomers increases, and eventually the polymer undergoes a collapse
transition, first described by Flory [53]. The corresponding critical temperature is
traditionally called Θ , or the theta point. It was argued by de Gennes [54, 46] that
this is a tricritical point: intuitively this means that with respect to the critical, or
dilute, SAW—obtained in our framework by tuning the monomer fugacity to a par-
ticular value—one additional parameter, viz. the effective monomer-monomer in-
teraction, has to be adjusted to its critical value.

Duplantier and Saleur [19] have proposed a particularly simple model of the
monomer-monomer interaction that is capable of capturing the physics of the theta
point. Their argument shows that the corresponding universality class is that of the
dense O(n = 1) model, i.e., of critical percolation, and the exponents follow readily.
The argument runs as follows.

Consider a SAW on the usual hexagonal lattice, but in the presence of annealed
dilution. To be specific, each lattice face contains a “defective solvent” with proba-
bility p, and an “ideal solvent” with probability 1− p, independently for each face.
The SAW is constrained to touch only lattice faces containing an ideal solvent, as
shown in Fig. 14.9.

In the partition function, one may first sum over the configurations of the solvent
consistent with a fixed configuration of the SAW, and then over those of the SAW
itself. In the first sum, any face not touching the SAW contributes a trivial factor
of one, whereas each of the remaining faces yields a weight (1− p). Let N2 (resp.
N3) be the number of faces which are adjacent to two (resp. three) successions of
monomers which are non-subsequent along the SAW. [In other words, let Nk be the
number of hexagons having 2k occupied external legs.] The total face weight is then
simply

(1− p)l+1−N2−2N3 (14.101)

where l is the length (number of edges) of the SAW. Clearly this is a kind of short-
range attraction between the monomers in the SAW, albeit a somewhat peculiar one.
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Fig. 14.9 Model of a polymer at the theta point. The SAW lives on a hexagonal lattice, but is not
allowed to share an edge with any of the faces containing a defective solvent, here shown shaded
in grey.

One now argues that the parameter p has a critical value pc. If p < pc the system
should renormalise towards the standard dilute SAW, and if p > pc the solvent de-
ficiencies will percolate and the SAW will be in the dense phase. The threshold pc

must be that of site percolation on the triangular lattice, and so pc = 1
2 exactly. But

exactly at pc, defective and ideal faces are equiprobable and so form clusters which
may equally well be described in terms of their contours, as an O(n) model of loops
(14.60) with trivial parameters, n = 1 and K = 1. The latter value is precisely8 the
dense loop solution of (14.61).

We conclude that polymers at the theta point are described by the CG of the
dense O(n = 1) model, with coupling constant g = 2

3 . In particular, the watermelon
exponents (14.81) read

∆ℓ =
ℓ2 −1

12
. (14.102)

The standard polymer exponents (14.84) describing the theta point are related to
these through the scaling relations (14.86):

η = 2∆1 = 0 , ν =
1

2−∆2
=

4
7

, γ = (2−η)ν =
8
7

. (14.103)

Finally, the thermal exponent ν ′ describing how the size of defective solvent clusters
diverges, ξ ∼ |p−pc|−ν ′

as p ↑ pc is given by ν ′ = 1/(2−∆4) = 4
3 , and so the so-

called crossover exponent is

φ =
ν
ν ′ =

3
7

. (14.104)

8 Even if this had not precisely been the case, the outcome of the argument would be the same, since
the dense loop solution of (14.61) is RG attractive in K by (14.91). This observation is certainly
part of the explanation that the variant models explored in [55] yield unchanged critical exponents.



14 Conformal Field Theory Applied to Loop Models 387

Although the theta point exponents (14.103)–(14.104) are in very good agree-
ment with those of numerical simulations, and even experiments, the original pa-
per [19] was subsequently challenged by a number of authors. Indeed, the inter-
action between monomers employed is quite peculiar—it corresponds to attrac-
tions between nearest neighbour vertices and a subset of the next-nearest neighbour
vertices—and one may fear that the universality class described is not the required
tricritical point, but an even higher multicritical point.

To meet this criticism, Duplantier and Saleur produced a second paper [55] in
which they examined numerically a certain number of variant models, involving
different local monomer interactions, anisotropy, and using different lattices. In all
cases the exponents (14.103)–(14.104) were shown to be unchanged, and far from
the values of any variant proposal. We can therefore conclude that in spite of its
simplicity the original model captures the correct theta point physics and produces
the exact values of the corresponding critical exponents.

14.5 Fully Packed Loop Models

In section 14.3 we have seen how to solve loop models by writing a Liouville field
theory for their associated height model. We have discussed in detail two models,
the Q-state Potts and the O(n) model. In both cases, we exploited a bijection between
the configurations of oriented loops and those of a scalar (one-component) height
variable h(x) defined on the lattice faces x. There does however exist geometric
models whose microscopic formulation allows for the definition of a vector height
h(x) ∈ RD with D > 1. A necessary (but not sufficient) condition for this to happen
seems to be that the objects (loops, tiles, colours, . . . ) be maximally packed on the
lattice.

Tiling models are nice examples of statistical models possessing vector height
mappings, provided that the shapes of the tiles and the lattice are chosen carefully.
For example, one obtains D = 2 dimensional heights by tiling the square lattice
with two different types of dimers [56], or by linear trimers [57], or by tiling the
triangular lattice with triangular trimers [58]. In general, such models are either
non-critical, or described in the continuum by D free bosons. For example, all of the
tiling problems just mentioned have been shown (analytically and/or numerically)
to have central charge c = 2.

In this section we are rather interested in models of fully packed loops (FPL)
possessing a vector height. When critical, such models can be described in terms of a
vectorial Coulomb gas (CG), generalising the working of section 14.3. In particular,
the non-local nature of the loops allows for the existence of a background electric
charge, and so one or more control parameters (typically the loop weights) permit
one to change c and the critical exponents continuously. This amounts to a rather
more interesting continuum limit than that of the tiling problems.

In section 14.5.1 we give some examples of FPL models and establish their height
mappings. These models turn out to be highly non-universal, in the sense that D—
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and hence ultimately the values of the critical exponents—depends on the underly-
ing lattice. A necessary condition for the existence of a non-trivial continuum limit
seems to be that the underlying lattice is bipartite [59].

The CG construction for these models is presented in some detail (see sec-
tion 14.5.2), as it sheds further light both on the ideal state construction and on
the marginality requirement. Bulk critical exponents are derived in section 14.5.3.
We conclude by a few further remarks on the underlying quantum group symme-
tries of the FPL models, and the possibility of coupling them to two-dimensional
quantum gravity.

14.5.1 Three Loop Models with a Vector Height Mapping

The loop model based on the Q-state Potts model is an example of an FPL model,
since its loops jointly visit every vertex of the lattice (twice). But since its height
mapping is one-dimensional (see section 14.3.2) this is not what were are interested
in here.

Let us instead revisit the O(n) model (14.60) on the hexagonal lattice. The al-
lowed vertices are shown in Fig. 14.2. It is easy to see that on a lattice with periodic
boundary conditions respecting the three-sublattice structure of the lattice faces, the
number of voids (of weight T ≡ 1/K) must be even, whence the model is symmet-
ric under T → −T . The fact (14.91) that the low-temperature branch of (14.61) is
RG attractive in T then implies that the T = 0 manifold is a line of repulsive fixed
points [60]. A numerical study [60] further reveals that these fixed points are critical
for |n| ≤ 2. For brevity we shall refer to this O(n) model at T = 0 simply as the
FPL model in the remainder of this section. In the polymer limit n → 0 it describes
Hamiltonian circuits (SAP’s) and paths (SAW’s) on the hexagonal lattice.

In the oriented loop model corresponding to the FPL model there are three types
of edges: A) empty edges, B) occupied edges pointing from an even to an odd vertex,
and C) occupied edges pointing from odd to even. We shall often refer to these edge
labels as colours. Denoting the height change when traversing any one of these edges
by A, B, or C, occupied vertices lead to the consistency requirement

A+ B+ C = 0 , (14.105)

whereas empty vertices require A = 0. By symmetry, one must then choose B =
+a and C = −a for some scalar a, as was indeed done in section 14.3.2. But if
T = 0, empty vertices are forbidden, and the only requirement is (14.105). The
height differences can then be taken as two-dimensional vectors pointing from the
centre to the vertices of an equilateral triangle. Since we have shown carefully in
section 14.2.7 that the normalisation of the heights drops out from the final results
for the critical exponents, we henceforth adopt the choice

A =

(
1√
3
,0

)
, B =

(
− 1

2
√

3
,

1
2

)
, C =

(
− 1

2
√

3
,−1

2

)
. (14.106)
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Kondev, de Gier and Nienhuis [20] used the height mapping (14.106) as the starting
point for solving the FPL model exactly.

Fig. 14.10 The six vertices defining the FPL2 model.

Another model that we shall consider is the so-called FPL2 model on the square
lattice, which was defined by Kondev and Henley [61] and solved by Jacobsen and
Kondev [21]. This is a model of two different types of fully packed loops (whence
the superscript in the denomination FPL2), henceforth referred to as black and grey.
The allowed vertices are shown in Fig. 14.10. The partition function is defined by
assigning independent fugacities, nb and ng, to the two types of loops,

Z = ∑
G

nNb
b n

Ng
g , (14.107)

where Nb (resp. Ng) is the number of black (resp. grey) loops, and G is the set of all
allowed loop configurations.

A number of special cases of the FPL2 model are of special interest: suffice it
here to say that the limit ng = 1, nb → 0 describes Hamiltonian circuits and paths on
the square lattice.

The two types of loops can be oriented independently, giving rise to four types of
edges: A) black edges oriented from the even to the odd sublattice, B) black edges
oriented from the odd to the even sublattice, C) grey even-to-odd edges, and D) grey
odd-to-even edges. These define the height differences for the height model on the
dual lattice, with the consistency requirement

A+ B+ C+ D = 0 (14.108)

that the total height change when encircling any vertex be zero. We have then a D =
3 dimensional height model, and by symmetry we can take the height differences to
point from the centre to the vertices of a regular tetrahedron:

A = (−1,1,1) , B = (1,1,−1) , C = (−1,−1,−1) , D = (1,−1,1) .
(14.109)

The last model to be discussed in this section is obtained from the FPL2 model by
attributing local vertex weights in addition to the loop weights. By rotational sym-
metry, it suffices to give a special weight wX to the last two vertices in Fig. 14.10,

Z = ∑
G

nNb
b n

Ng
g wV

X , (14.110)
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where V is the number of vertices where the two types of loops cross, and G has the
same meaning as in (14.107). We shall refer to this as the semi-flexible loop (SFL)
model. It was first solved by Jacobsen and Kondev [62].

The polymer limit (ng = 1, nb → 0) of the SFL model has been proposed as a
model of protein melting by Flory half a century ago [63].

14.5.2 Coulomb Gas Construction

We now discuss how to dress the Coulomb gas (CG) for the three models of oriented
loops (FPL, FPL2, and SFL) just introduced. As in section 14.3 the CG will even-
tually take the form of a Liouville field theory, but with electromagnetic charges
which are D-dimensional vectors. The construction for the FPL2 and SFL models
will only start differing when imposing the marginality requirement.
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D
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B
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B
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A+D-B -B A+D
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-B A+D -B A+D

0

a) b)

c) d)

Fig. 14.11 An ideal state in the FPL2 model shown in terms of a) loops, b) oriented loops, c) edge
colourings, and d) the height mapping.

The first issue is to determine the analogue of the compactification radius, which
now takes the form of a D-dimensional lattice. To this end, the ideal state construc-
tion [61] is a very convenient tool.

We define first the ideal states as periodic arrangements of the colours, such that
the microscopic height is maximally flat. An example of an FPL2 ideal state is shown
in Fig. 14.11. In general, an ideal state is obtained by selecting a permutation of the
edge labels around a fixed vertex; the arrangement is then extended to the whole
lattice in such a way that alternations of any pair of colours form as many short
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cycles as possible. For the FPL model there are 6 ideal states; in these all 3 colour
pairs form short cycles (of length 6); and the colour pair BC defines the loops. In
the FPL2 model there are 24 ideal states; in these 4 out of 6 colour pairs form short
cycles (of length 4); and the colour pairs AB and CD define black and grey loops
respectively.

We construct next the ideal state graph I . For this, we define a transition be-
tween two ideal states as a transposition of a colour pair forming a short cycle. To
each transition we associate a vector in RD equal to the difference between the av-
erage height in the two concerned ideal states. By definition, a transition changes
only the heights on the faces surrounded by transposed short cycles. In I , each
vertex represents an ideal state, and each edge represents a transition. The graph I

is embedded into RD by letting each edge correspond to the vector associated with
the transition between ideal states.

Fig. 14.12 The ideal state graph of the FPL2 model.

For the FPL model, I turns out to be a hexagonal lattice [20], and for the
FPL2 model it is a tiling of R3 with truncated octahedra [61] (also known as
the Wigner-Seitz cell of a body-centered cubic lattice). The latter I is shown in
Fig. 14.12. Crucially, any fixed ideal state is represented infinitely many times in
I and forms a lattice which we shall call the repeat lattice R. It turns out that R

is spanned by the vectors A−B, B−C (and C−D for the FPL2 model). In other
words, for the FPL model R is a triangular lattice of edge length 1 in the normal-
isation (14.105), and for the FPL2 model R is a face-centered cubic lattice with a
conventional cubic cell of edge length 4 in the normalisation (14.108).

In the CG construction, the height is then compactified with respect to R, i.e.,

h(x) ∈ RD/R . (14.111)

In particular, the magnetic charges m ∈ R, and the electric charges e ∈ R∗, where
R∗ denotes the reciprocal lattice of R.
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The Liouville field theory is again described by the action (14.69), consisting
of an elastic term SE, a boundary term SB, and the Liouville potential SL. We now
describe these three terms in turn.

The elastic term is constrained by rotational invariance in real d = 2 dimensional
space to take the form

SE =
1
2

∫
d2xKαβ ∂hα ·∂hβ , (14.112)

where ∂ = (∂1,∂2) is the usual gradient. The D-dimensional tensor Kαβ is further
constrained by the loop reversal symmetries: B ↔ C for the FPL model, while for
the FPL2 model one has both A ↔ B and C ↔ D. The result for the FPL model is
simply

SE =
1
2

∫
d2xgα(∂ hα)2 . (14.113)

with coupling constants g1 ≡ K11, g2 ≡ K22, and g1 = g2. For the FPL2 model one
obtains first a more complicated result

SE =
1
2

∫
d2x
{

K11[(∂h1)2 +(∂h3)2]+ 2K13(∂ h1 ·∂h3)+ K22(∂h2)2} , (14.114)

which can however be diagonalised by a change of coordinates in height space,

h̃1 =
h1 −h3

2
, h̃2 = h2 , h̃3 =

h1 + h3

2
(14.115)

yielding once again (14.113) for h̃α , but now with three unrelated coupling con-
stants g1 ≡ 2(K11 −K13), g2 ≡ K22, and g3 ≡ 2(K11 + K13). Note that magnetic
charges m transform as (14.115), whereas electric charges e transform according to
the reciprocal transformation (swap tilded and untilded quantities). Henceforth we
shall write everything in terms of the new heights h̃α and electromagnetic charges
(ẽ,m̃), but drop the tildes to lighten the notation.9

Let us now parametrise the loop weights as

n = 2cos(πe0) (14.116)

for the FPL model, and

nb = 2cos(πeb) , ng = 2cos(πeg) (14.117)

for the FPL2 model. The boundary term SB in (14.69) reads in vector notation

9 It would seem tempting in a review like this to impose the transformation (14.115) right from
the beginning and choose A = (−1,1,0), B = (1,1,0), C = (0,−1,−1), D = (0,−1,1) instead of
(14.108). But note that (14.108) respects the full permutation symmetry of the four colours: the
scalar product of any two vectors in (14.108) is −1. With (14.115) this symmetry is broken in a
very particular way that could not have been guessed from the outset, and which reflects the choice
of defining the loops from the colour pairs AB and CD.
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SB =
i

4π

∫
d2x(e0 ·h)R(x) (14.118)

and e0 is determined as in section 14.3 by requiring that wrapping loops of each
type be weighted correctly. For instance, for the FPL2 model we must have

e0 ·A = πeb , e0 ·B = −πeb , e0 ·C = πeg , e0 ·D = −πeg , (14.119)

which fixes the background electric charge as

e0 = −π(eb,0,eg) (14.120)

The analogous result for the FPL model is

e0 = 2π(0,e0) . (14.121)

The sceptical reader may object that the ideal state graph I is not really neces-
sary to determine the repeat lattice R. Indeed, it suffices to notice that the funda-
mental height dislocations (magnetic charges) allowed by the microscopic model is
the difference between two of the colour vectors (14.105) or (14.108). However, the
real use of I is for determining the Liouville term

SL =
∫

d2x w[h(x)] , (14.122)

where exp(−w[h(x)]) is the scaling limit of the (complex) microscopic vertex
weights in the oriented loop representation. To this end, we focus for a while on
the FPL2 model.

Denoting by (σ1,σ2,σ3,σ4) the configuration of colours when going anticlock-
wise around an even vertex, the microscopic weights may be written compactly as

w(h) =
i

16
e0 · [(σ1 −σ3)× (σ2 −σ4)] . (14.123)

Fourier analysing this formula, i.e., writing it as a sum of vertex operators, one
arrives at

w(h) = ∑
e∈R∗

w

w̃e exp(ie ·h) . (14.124)

where R∗
w is a proper sublattice of R∗ whose shortest vectors are the twelve next

shortest vectors in the bcc-lattice R∗.
Coming back to the FPL model one finds similarly that R∗

w is spanned by the
next shortest vectors in R∗.

To impose the marginality requirement and extract critical exponents we need to
know the dimension of electromagnetic operators. In the basis where the coupling
constant tensor gα is diagonal, as in (14.113), this is a straightforward generalisation
of the usual CG formula (14.71), which reads in the normalisation of the present
section
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∆e,m =
1

4π

[
1

gα
eα(eα −2e0α)+ gα(mα)2

]
. (14.125)

The FPL model is now solved by noting that e(0) = (0,4π) is the most relevant
electric charge in R∗

w. Solving the marginality requirement ∆e(0),0 = 2 then fixes the
CG coupling in terms of the loop weight:

g = 2π(1− e0) . (14.126)

The case of the FPL2 model is considerably more intricate. Moreover, determin-
ing the correct marginality requirement is the one and only point where the analysis
differs from that of the SFL model. Referring to [21, 62] for a detailed discussion,
the outcome is that the vectors

e(1) = (−2π ,0,0) , e(2) = (0,0,−2π) (14.127)

act as screening charges in both the FPL2 and the SFL models, whereas an additional
symmetry of the FPL2 model implies that it possesses two extra screening charges

e(3) = (−π ,π ,−π) , e(4) = (−π ,π ,−π) . (14.128)

The marginality requirement then fixes

g1 =
π
2

(1− eb) , g3 =
π
2

(1− eg) (14.129)

for both models. The extra screening charges in the FPL2 model imply a third rela-
tion

1
g2

=
1
g1

+
1
g3

, (14.130)

whereas in the SFL model g2 remains a non-universal function of the parameter wX

appearing in (14.110).
In the critical regime |nb|, |ng| ≤ 2 we have g1,g3 ≤ π

2 from (14.129), and so
g2 ≤ π

4 when wX = 1 (i.e., in the FPL2 model). It is easy to see that increasing
wX will make the height interface stiffer in the 2-direction, and so will increase g2.
When g2 > π

2 the operator that discretises the height in the 2-direction becomes
relevant, and so the height profile becomes flat in the continuum limit, meaning that
the model is no longer critical. We deduce that precisely at g2 = π

2 the model stands
at a Kosterlitz-Thouless transition; in the polymer limit this is the protein melting
transition [62] that Flory [63] originally aimed at describing. Exact exponents can
therefore be computed at this KT transition.

However, the CG method does not permit us to solve the SFL model for generic
values of wX, the relation to g2 being unknown. However, note that all critical ex-
ponents can be expressed in terms of just one unknown parameter g2. Furthermore,
for any given values of nb, ng and wX, numerical transfer matrix methods allow us
to determine g2 to very high precision [62].
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14.5.3 Bulk Critical Exponents

In a D-dimensional CG the central charge is c = D+ 12∆e0,0, giving

c =





2− 6e2
0

1−e0
for the FPL model

3−6

(
e2

b
1−eb

+
e2

g
1−eg

)
for the FPL2 and the SFL models.

(14.131)

Watermelon configurations are obtained by violating the colouring constraint at
two vertices x1 and x2. For example, in the FPL model a vertex whose adjacent edges
are coloured (A,A,B) will insert a 1-leg operator of magnetic charge m1 = A−C,
whereas the vertex (A,B,B) gives a 2-leg operator of charge m2 = B−C. Higher-
leg operators are obtained by taking multiples of these basic charges. In all cases,
a further electric charge e0 is needed to correct the spurious phase factors due to
the polymer strands winding around their insertion point. The ℓ-leg watermelon
exponents are then found from (14.125):

∆ℓ =

{
1
8 gℓ2 − (1−g)2

2g for ℓ even
1
8 gℓ2 − (1−g)2

2g + 3g
8 for ℓ odd

(14.132)

where we have set g = 1− e0 to facilitate the comparison with (14.81).
Similar results can be obtained for the FPL2 [21] and SFL [62] models. Note that

the watermelon strands can now be either black or grey, and the parity of the number
of black strands must equal the parity of the number of grey strands. We here state
the results only for the simplest case of the FPL2 model where grey strands are
ignored and grey loops are assigned a trivial fugacity, ng = 1. This gives for the
black ℓ-leg watermelon exponents

∆ℓ =

{
1
8 gℓ2 − (1−g)2

2g for ℓ even
1
8 gℓ2 − (1−g)2

2g + g
3g+2 for ℓ odd

(14.133)

where again we have set g = 1− eb for easy comparison.
With the watermelon exponents (14.132)–(14.133) many of the exponents dis-

cussed in section 14.4 (e.g., network and contact exponents) follow as before. We
focus here on the conformational exponents for Hamiltonian circuits and paths on
the hexagonal and square lattices, obtained from taking the polymer limit in the FPL
and FPL2 models and using the scaling relations (14.86). On both lattices ν = 1

2 , a
trivial result which however serves as a check of the above CG construction. More
interestingly, we have

γhex = 1 , γsq =
117
112

. (14.134)

This means that the end points of a Hamiltonian SAW on the hexagonal lattice do
not interact in the continuum limit, whereas they repel each other weakly on the
square lattice.
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Finally, one can compute the thermal exponent associated with breaking the T =
0 constraint that all lattice vertices be visited by a loop. For the FPL model the
corresponding defect vertex is (A,A,A) of magnetic charge mt = 3A, yielding

∆t = ∆0,mt =
3g
2

. (14.135)

Note that this is always RG relevant, confirming the result of section 14.5.1 that the
T = 0 manifold is a line of repulsive fixed points.

For the FPL2 model the defect (C,D,C,D) of magnetic charge mt = 2(C + D)
excludes black loops from visiting the defect vertex. Again we specialise the general
result [21] to the case where grey loops are weighted trivially (ng = 1):

∆t = ∆0,mt =
4g

3g + 2
. (14.136)

Once again this is always RG relevant.

14.5.4 Further Remarks

We conclude this section with a few further remarks about the fully packed loop
models.

The FPL model [64] and the FPL2 model with equal fugacities nb = ng [65] are
also solvable by the Bethe Ansatz (BA) technique. The FPL2 model with nb 6= ng, or
the SFL model with wX 6= 1, do however not appear to be BA solvable. The critical
exponents computed from the BA [64, 65, 66] confirm those of the CG, giving the
above results a more rigorous status. Defining n = q+q−1, there are even underlying
quantum group symmetries, viz., SU(3)q for the FPL model [67] and SU(4)q for the
equally weighted FPL2 model [66]. The corresponding quantum group symmetry
for the Potts and usual O(n) model discussed in section 14.3 is SU(2)q [68].

The FPL model has also been solved on random lattices using matrix integra-
tion techniques [69]. To be more precise, the loops in [69] were required to live on
planar random graphs where each vertex is adjacent to three edges. However, while
the loops on the regular hexagonal lattice automatically have even length (due to
the bipartiteness), this restriction was not imposed in [69]. Since this is crucial for
constructing the two-dimensional height model, the critical exponents on such un-
restricted random lattices are not directly related to those on a regular lattice [20] by
means of the KPZ equation.

A slightly modified version of the FPL2 model [70] coupled to two-dimensional
quantum gravity provides the exact asymptotic behaviour of meanders [71] and their
multi-component generalisation [72].

Research on the surface critical behaviour of the fully packed loop models dis-
cussed in this section appears to have begun only very recently. This issue will be
further discussed in section 14.6.5.
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14.6 Surface Critical Behaviour

14.6.1 Ordinary, Special and Extraordinary Surface Transitions

The O(n) model with suitably modified surface couplings permits one to realise
the ordinary, special, and extraordinary surface transitions described qualitatively in
section 14.2.8. To this end, one studies the model defined in the annular geometry
of section 14.3.5.

To be precise, the special transition requires the loops to be in the dilute phase,
and so we shall assume this to be the case throughout section 14.6.1. The results for
the ordinary and extraordinary transitions hold true in the dense phase as well.

Fig. 14.13 Hexagonal lattice in an annular geometry. The top and the bottom of the figure are
identified. Boundary edges on the left are shown in grey.

A well-studied case is the hexagonal-lattice loop model (14.60). The lattice is
oriented such that one third of the lattice bonds are parallel to the x-axis, as shown
in Fig. 14.13. The fugacity of a monomer is still denoted K in the bulk, but we now
take a different weight Ks for a monomer touching the left rim of the annulus, x = 0.
In contrast, the right rim of the annulus, x = L, enjoys free boundary conditions,
meaning that its surface monomers still carry the usual weight K.

In this section we wish to limit the discussion to the case where only the left
boundary sustains particular ( 6= free) boundary conditions; this is sometimes re-
ferred to as mixed boundary conditions. The case where both boundaries are distin-
guished is also of interest and will be discussed in section 14.6.8.

The loop model described above has been thoroughly studied by Batchelor and
coworkers [73, 74, 75, 76], in particular using Bethe Ansatz analysis. They find in
particular that when Ks = K the model is integrable and belongs to the universality
class of the ordinary transition, while for

Ks = KS
s ≡ (2−n)−1/4 (14.137)
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it is also integrable and describes the special transition. 10 This is consistent with a
boundary RG scenario, where KS

s is a repulsive fixed point that flows towards either
of the attractive fixed points KO

s < K and KE
s = ∞, the former (resp. latter) point

describing the ordinary (resp. the extraordinary) transition.
This scenario is corroborated by a detailed analysis [76] showing that a pertur-

bation to the fixed point KE
s is RG irrelevant. Moreover, the operator conjugate to

Ks is obviously the energy density on the boundary. At the special transition, this
operator can be identified [77] with φ(1,3) of weight h1,3 = 2

g − 1, and so this is a
relevant perturbation (i.e., h1,3 < 1) only for g > 1 (i.e., in the dilute phase). On the
other hand, the surface energy density has weight h = 2 at the ordinary transition
[78], and so is always irrelevant.

The flow between the ordinary and special transitions has been further studied by
Fendley and Saleur [79], from the point of view of boundary S matrices.

14.6.2 Watermelon Exponents

Surface watermelon exponents can be defined as in section 14.4.1, the only dif-
ference being that the ℓ legs are inserted at the boundary. We shall denote these
exponents by ∆ O

ℓ , ∆ S
ℓ , ∆ E

ℓ at the ordinary, special, extraordinary surface transition
respectively. Whenever a result applies to any of these transitions, we use the generic
notation ∆ ′

ℓ, where the prime indicates a surface rather than a bulk exponent.
For the ordinary transition, ∆ O

ℓ can be derived by a slight refinement of the
marginality argument given in section 14.3.5. First recall that in the continuum limit
there is a background flux m0 given by (14.77), corresponding to a (fractional) num-
ber of oriented loop strands running along the rims of the annulus. Suppose now
that we wish to evaluate the scaling dimension ∆ O

ℓ corresponding to having ℓ > 0
non-contractible oriented loop strands running around the periodic direction of the
annulus. This can be done by evaluating the free energy increase ∆S = Sℓ −S0 due
to these strands, as in (14.78)

∆S =
g

4π
(
(ℓ+ m0)

2 −m2
0

)(π
L

)2
ML (14.138)

and using e−∆S = q−∆ O
ℓ from (14.75).

The question now arises which sign for m0 to pick in (14.77). With the plus sign
we would have ∆2 = 1 independently of g, in clear contradiction with numerical
results [47]. Taking therefore the minus sign leads to the result

∆ O
ℓ =

1
4

gℓ2 − 1
2
(1−g)ℓ . (14.139)

10 Technically speaking this is the mixed ordinary-special transition, but we have simplified the
terminology according to the above remarks.
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The derivation just presented follows the argument of Cardy [18], but in fact
(14.139) was found a long time before by other means. Duplantier and Saleur [47]
were the first to propose (14.139) for any ℓ, by noting that their numerical transfer
matrix results were in excellent agreement with the following locations in the Kac
table (14.31)

∆ O
ℓ =

{
h1,1+ℓ for the dense O(n) model
h1+ℓ,1 for the dilute O(n) model

(14.140)

from which (14.139) follows by the identification (14.74). On a more rigorous level,
(14.139) has been established by Bethe Ansatz (BA) techniques [80, 73, 74].

For the special transition, ∆ S
ℓ does not seem to permit a CG derivation. It is

however known from the BA analysis [75, 74] that one has

∆ S
ℓ =

1
4

g(1 + ℓ)2− (1 + ℓ)+
4− (1−g)2

4g

= h1+ℓ,2 for the dilute O(n) model (14.141)

in this case.
Alternatively, one may imagine producing the special ℓ-leg operator OS

ℓ by fu-
sion of the ordinary ℓ-leg operator OO

ℓ and an ordinary-to-special boundary condi-
tion changing operator φOS. The scaling dimension (14.141) pertains to the insertion
of this composite operator at either strip end. Comparing the Kac indices in (14.140)
and (14.141), and using the CFT fusion rules (14.36), immediately leads to the iden-
tification φOS = φ1,2. If one wants special boundary conditions on both the left and
the right rim, two insertions of φOS are needed (to change from special to ordinary
and back again). One would then expect h1+ℓ,3, as is indeed confirmed by the BA
analysis [75, 74].

Finally, the extraordinary transition is rather trivially related to the ordinary tran-
sition. Indeed, for Ks = ∞ the entire left rim of the annulus will be coated by a
straight polymer strand, so that the remaining system (of width L− 1) effectively
sees free boundary conditions—this is dubbed the teflon effect in [76]. Thus, for
ℓ = 0 the coating strand will be the left half of a long stretched-out loop, whose
right half will act as a one-leg operator, and one effectively observes the exponent
∆ O

1 . For ℓ > 0, one of the legs will act as the coating strand, and one observes ∆ O
ℓ−1.

14.6.3 Network Exponents

The network exponents discussed in section 14.4.5 can be generalised [81] to the
case where at least one vertex of the network G is constrained to stay close to the
surface. Let G consist of nℓ (resp. n′ℓ) bulk (resp. surface) ℓ-leg vertices, E edges,
and let V = ∑ℓ nℓ (resp. V ′ = ∑ℓ n′ℓ) be the total number of bulk (resp. surface)
vertices. The derivation then goes through with straightforward modifications.

For the case of a monodisperse network, where each of the E edges is constrained
to have the same length l (with l ≫ 1), the end result for the network exponent is



400 Jesper Lykke Jacobsen

γG = ν

[
2V +V

′ −1−∑
ℓ

(nℓ∆L + n′ℓ∆
′
ℓ)

]
− (E −1) . (14.142)

For a polydisperse network of total length l, the last term (E −1) has to be omitted
as before.

Note that (14.142) does not reduce to (14.95) upon setting all n′ℓ = 0 (there is one
excess ν). This is because of the initial hypothesis that at least one vertex of G is
attached to the surface.

Instead of having G grafted to a linear surface, one may consider tying the net-
work in a wedge of opening angle α 6= π by means of an extra ℓ̂-leg vertex. Since
the wedge can be transformed back on the half plane through the conformal map-
ping w(z) = zπ/α [22], this geometry leads only to a minor modification [81] of the
previous result (14.142):

γG (α) = γG (π)−ν
(π

α
−1
)

∆ ′
ℓ̂

(14.143)

Special cases of these formulae were obtained prior to [81] by Cardy [22], and
yet others were conjectured by Guttmann and Torrie [82].

14.6.4 Standard Exponents of Polymer Physics

Standard exponents describing surface critical behaviour can be defined in analogy
with those valid in the bulk. However, these can all be derived from the watermelon
exponents (14.139) by using the network relation (14.142) and standard scaling re-
lations. We focus here on the ordinary transition.

Consider as an example the exponent η‖ describing the decay of the spin-spin
correlation function along the surface. This is related to the conformational exponent
γ1 of a chain with one extremity tied to the surface and the other belonging to the
bulk, through the scaling relation [31]

2γ1 = γ + ν(2−η‖) (14.144)

Now, γ1 is a special case of (14.142) with nℓ = n′ℓ = δℓ,1, giving γ1 = ν(2−∆1−∆ ′
1).

Isolating η‖ reveals that it belongs to the Kac table:

η‖ =





2h1,2 for the dense O(n) model
2h2,1 for the dilute O(n) model
2h1,3 for the Potts model

(14.145)

as first conjectured by Cardy [22].
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14.6.5 Ordinary Transition in Fully Packed Loop Models

As mentioned in section 14.6.1, the special surface transition is absent in the dense
O(n) model. This agrees with physical intuition: since each edge has a finite prob-
ability of being covered by a monomer, it is redundant to try to attract the loops to
the surface by enhancing the fugacity of surface monomers. In analogy, one would
expect that fully packed loops are unable to sustain a special transition.

On the other hand, the ordinary transition for fully packed loop models does exist.
It can be investigated [83] by adapting the Coulomb gas analysis of sections 14.3.5
and 14.6.2 to the vectorial setup of section 14.5. To this end, we focus on the FPL
model on the hexagonal lattice and the FPL2 model on the square lattice.

Fig. 14.14 Appropriate modifications of the hexagonal (left panel) and square (right panel) lattices
for the definition of the surface versions of the FPL and FPL2 models. The top and bottom of the
figures are identified to make an annular geometry.

The vectorial Coulomb gas treatment of section 14.5 depended crucially on the
lattice being bipartite and of constant coordination number. These features must
therefore be maintained when defining the surface geometry of the FPL and FPL2

models. In particular, the FPL model cannot be defined on the lattice shown in
Fig. 14.13. The appropriate choices of lattices are shown in Fig. 14.14. Note that
in both cases, the corresponding transfer matrix adds two rows of vertices at a time.

For simplicity, we henceforth limit the discussion to the boundary FPL2 model,
defined on an annulus of even width L. The case L = 4 is shown in Fig. 14.14.

Note that if the vertical edges of a given time-slice are labelled alternatingly as
even and odd, the following quantity is strictly conserved by the transfer matrix:

Q =
1
2

[
(evenb −oddb)− (eveng −oddg)

]
(14.146)

where, e.g., evenb means the number of even-labelled vertical edges covered by
black loops. Accordingly, critical exponents are labelled by three indices, viz., Q
and the number of watermelon strands of each colour (ℓb and ℓg). For L even, all
three indices must have the same parity (even or odd).
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Using again the argument of section 14.3.5, the spontaneous vector magnetic flux
m0 is obtained by matching the known central charge (14.131) to (14.75). After the
change of basis (14.115) which makes the action diagonal, the result reads

m̃0 =

(
eb

1− eb
,0,

eg

1− eg

)
(14.147)

where we have used the usual parameterisation (14.117).
Consider first the case Q = 0 and ℓb, ℓg even. Then the flux is increased by the

magnetic charges of the watermelon strands

mℓb,ℓg =
ℓb

2
(A−B)+

ℓg

2
(C−D) (14.148)

which reads in coordinates m̃ℓb,ℓg = (−ℓb,0,−ℓg). This excitation multiplies the

partition function by q−∆c/24 and we can identify the critical exponent ∆ℓb,ℓg;0 =

−∆c
24 . Recalling the one-colour boundary exponents ∆ O

ℓ of (14.139), this result can
be expressed as

∆ℓb,ℓg;0(eb,eg) = ∆ O
ℓb

(eb)+ ∆ O
ℓg

(eg) . (14.149)

Thus, in this sector the two loop species do not interact in the continuum limit.
Consider next the case Q = 1 and ℓb, ℓg odd. The defect magnetic charge is now

mℓb,ℓg =
ℓb −1

2
(A−B)+

ℓg −1
2

(C−D)+ (C−B) (14.150)

which reads in coordinates m̃ℓb,ℓg = (−ℓb,−2,−ℓg). The critical exponent is then

∆ℓb,ℓg;1(eb,eg) = ∆ O
ℓb

(eb)+ ∆ O
ℓg

(eg)+ δ (eb,eg) (14.151)

where the additional contribution

δ (eb,eg) =
2g2

π
=

(1− eb)(1− eg)

(1− eb)+ (1− eg)
(14.152)

comes from the second height component.
To settle the general case, we note that to obtain sectors with higher charge, Q

can be increased by two units by a succession of four consecutive vertical edges
with alternating loop colors. This corresponds to a height defect m = −2(A+B) =
(0,−4,0) = m̃, and in general for even Q mQ = m̃Q = (0,−2Q,0). The final result
for any values of (s1,s2;Q) can thus be written succintly as

∆ℓb,ℓg;Q(eb,eg) = ∆ O
ℓb

(eb)+ ∆ O
ℓg

(eg)+ Q2δ (eb,eg) . (14.153)

This expression has been checked numerically to a very good precision [83].
Finally, let us consider the special case where grey strands are ignored and grey

loops are assigned a trivial fugacity, ng = 1. This gives for the black ℓ-leg boundary
watermelon exponents (with Q = ℓ mod 2)
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∆ℓ =

{
1
4 gℓ2 − 1

2(1−g)ℓ for ℓ even
1
4 gℓ2 − 1

2(1−g)ℓ+ 2g
3g+2 for ℓ odd

(14.154)

where g = 1− eb. This should be compared with (14.133) and (14.139).

14.6.6 Conformal Boundary Loop Model

Very recently, Jacobsen and Saleur [84] have studied a so-called conformal bound-
ary loop (CBL) model in which a continuous parameter n1 permits one to vary the
boundary condition. In sharp contrast with the model of section 14.6.1 this bound-
ary condition remains conformal for any real value of n1, i.e., any n1 constitutes a
boundary RG fixed point and gives rise to a distinct critical exponent of the associ-
ated boundary condition changing operator.

For definiteness, consider the loop model (14.59) based on the critical Potts
model, with each loop having the fugacity n, and defined on the annulus. Now as-
sign to each loop touching at least once the left rim a different fugacity n1. Alge-
braically this situation is closely related to the so-called blob algebra—subsequently
often known as the one-boundary Temperley-Lieb algebra—originally introduced
by Martin and Saleur [85]. Obviously it is possible to apply this boundary condition
also to other types of loop models.

Physically one can consider the CBL model as an O(n)-type model in which the
bulk spins belong to Rn, while the boundary spins have been constrained to live in
a smaller space Rn1 (this makes sense also for n1 > n, by analytic continuation).
Alternatively, the same developments which led to (14.59) establish the equivalence
with a Potts model in which bulk spins can take Q = n2 states, and boundary spins
Q1 = nn1 states.

One central claim of [84] is that the operator that changes the boundary condi-
tions from free (n = n1) to the CBL boundary conditions just described (n 6= n1) has
conformal weight hr1,r1 , where we have parameterised

n = 2cosγ

n1 =
sin[(r1 + 1)γ]

sin(r1γ)
(14.155)

and γ = π
m+1 defines the central charge and the conformal weights through (14.31).

The parameter r1 ∈ (0,m+ 1) is in general a real number. When r1 and m are inte-
gers, the above statement can be rigorously derived from the representation theory
of the corresponding XXZ spin chain with boundary terms. Another check is when
Q1 = 1 (i.e., n = 1/n1, or r1 = m− 1); indeed it is a well-known result by Cardy
[33] that the operator that changes the Potts model boundary conditions from free
to fixed is φm−1,m−1 = φ1,2. Finally, the statement for arbitrary r1 and m has been
subjected to extensive numerical tests in [84].
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The above result can be generalised to the watermelon topology where ℓ non-
contractible loops wrap around the periodic direction of the annulus. A careful
study of the transfer matrix structure reveals that in this case one needs to distin-
guish two possible situations, or sectors: either the leftmost non-contractible loop is
constrained to touch the left rim at least one (blobbed sector), or it is constrained to
never touching it (unblobbed sector). The corresponding conformal weight is then

∆ O
ℓ (n,n1) = hr1,r1±ℓ (14.156)

where the upper (resp. lower) sign is for the blobbed (resp. unblobbed) sector.
The formula (14.156) has subsequently been derived for the O(n) model on ran-

dom lattices by Kostov [86].

Fig. 14.15 Configuration of loops (in green) on the annulus, with Neumann (resp. Dirichlet)
boundary conditions on the left (resp. right) rim. The original Potts spins and their duals live on
the black lattice.

Obviously, the result (14.156) has many applications. One of these is to iden-
tify the operator that changes the O(n) model boundary condition from Dirichlet to
Neumann. By definition, these names refer to the equivalent height model. There-
fore, Dirichlet boundary conditions mean that loops are reflected off the boundary,
while Neumann conditions mean that loop strands terminate perpendicularly on the
boundary. A configuration with Neumann boundary conditions on the left rim of
the annulus is shown in Fig. 14.15. Note that it involves half loops beginning and
ending on the left rim, and by definition these must have unit weight. By connecting
the termination points of these half loops two by two, it is seen that this situation
is actually equivalent to the CBL model with parameter n1 = 1. Thus, the required
operator is φDN = φm/2,m/2 of weight

hDN = hm/2,m/2 =
m2 −4

16m(m+ 1)
. (14.157)
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The result (14.156) holds true also for the hexagonal-lattice model (14.60), pro-
vided that one performs the usual swap of the indices when going from the dense to
the dilute phase [87].

Note that when n1 = n, we have r1 = 1 from (14.155), and so (14.156) reproduces
(14.140) for the ordinary transition, as it should.

14.6.7 Generalised Special Transition

The hexagonal-lattice loop model (14.60) that admitted us to access the special tran-
sition in section 14.6.1 can be modified in a natural way so as to accommodate the
CBL type boundary conditions of section 14.6.6. To this end, we consider again the
annular geometry of Fig. 14.13 with the left boundary being distinguished. A pair
of consecutive boundary edges can be either empty, or carry a surface monomer, or
carry a marked surface monomer.

Loops containing only bulk and surface monomers are called bulk loops, while
loops containing at least one marked surface monomer are referred to as boundary
loops. Note that this terminology differs slightly from that used in section 1.6.6,
since it is now possible for a bulk loop to touch the surface, provided that it contains
only unmarked surface monomers. While this may appear physically slightly unnat-
ural, it is necessary in order to make contact with the relevant algebraic framework,
viz., the dilute one-boundary Temperley-Lieb algebra.

The weight of a bulk (resp. boundary) loop is n (resp. n1). An unmarked (resp.
marked) surface monomer comes with a weight Ks (resp. Ks,1). The physically nat-
ural situation, in which boundary loops are simply those that touch the surface, is
recovered upon setting Ks = 0. Depending on the parameters, this may renormalise
towards any of the fixed points to be discussed below.

The following parameterisation turns out useful:

n = −2cos(4Φ)

n1 = − sin[4(κ −1)Φ]

sin(4κΦ)
. (14.158)

The dilute critical point (14.61) is then obtained by setting 1/K = 2cos(Φ). One
can show [88] that the model defined above admits two new integrable points, that
we shall refer to as the generalised ordinary transition and the generalised special
transition. For the former (Ks,Ks,1) = (KO

s ,KO
s,1) with

(KO
s )2 =

sin[(2κ −1)Φ]

2cos(Φ)sin(2κΦ)
(KO

s,1)
2 =

cos(2κΦ) tan(Φ)

sin(2κΦ)
, (14.159)

and for the latter (Ks,Ks,1) = (KS
s ,KS

s,1) with
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(KS
s )2 =

cos[(2κ −1)Φ]

2cos(Φ)cos(2κΦ)
(KS

s,1)
2 = − sin(2κΦ) tan(Φ)

cos(2κΦ)
. (14.160)

It is interesting to examine a few special cases of (14.159)–(14.160). For n1 = n,
we have κ = −1, and boundary loops are indistinguishable from bulk loops. The
weight of a pair of boundary monomers is therefore y2 ≡ (Ks)

2 + (Ks,1)
2. Using

(14.159) this gives y2 = K2, which is the usual ordinary transition. Meanwhile,
(14.160) gives y2 = (2−n)−1/2 as in (14.137), which is the usual special transition.

The case n1 = 1, or κ = 1
2 , corresponds to Neumann boundary conditions. Indeed,

when boundary loops are weighted trivially, they might as well be transformed into
half loops, as in Fig. 14.15. The generalised ordinary transition (14.159) then corre-
sponds to KO

s = 0 and KO
s,1 = 1, i.e., only boundary loops are allowed at the surface,

and are weighted trivially.
Finally, for n1 = 0, or κ = 1, boundary loops are forbidden, and the weight of

marked surface monomers is therefore immaterial. As expected one has then KO
s =

K, and KS
s = (2−n)−1/4 in agreement with (14.137).

The critical exponents corresponding to these generalised surface transitions can
be identified from numerical diagonalisation of the transfer matrix [88]. To state the
results, it is convenient to go back to the parameterisation (14.155). For the ordinary
case (14.159) one finds

∆ O
ℓ (n,n1) = hr1±ℓ,r1 (14.161)

where we recall that the upper (resp. lower) sign refers to the blobbed (resp. un-
blobbed) sector. This agrees as expected with (14.156) after swapping the indices
(since we are here in the dilute phase of the O(n) model). For the special case
(14.160) one finds instead

∆ S
ℓ (n,n1) = hr1±ℓ,1+r1 (14.162)

which is a nice generalisation of (14.141).

14.6.8 Two-Boundary CBL Model

The conformal boundary loop (CBL) model of section 14.6.6 can be generalised
to the case where both boundaries of the annulus are distinguished. In this two-
boundary CBL model, bulk loops have a weight n, while boundary loops touching
only the left (resp. right) boundary have weight n1 (resp. n2), and loops touching
both boundaries have weight n12.

This model—which is related to the so-called two-boundary Temperley-Lieb
algebra—has been the subject of several recent studies (see [89, 90, 91, 92] and
references therein). It is equivalent to a Potts model in which bulk spins have
Q = n2 states, while spins on the left (resp. right) boundary are constrained to a
smaller number Q1 = nn1 (resp. Q2 = nn2) of states, of which there are Q12 = nn12

common states.
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The following parameterisation turns out to be instrumental for further study:

n = 2cosγ

n1 =
sin[(r1 + 1)γ]

sin(r1γ)

n2 =
sin[(r2 + 1)γ]

sin(r2γ)

n12 =
sin[(r1 + r2 + 1− r12)

γ
2 ]sin[(r1 + r2 + 1 + r12)

γ
2 ]

sin(r1γ)sin(r2γ)
(14.163)

The full meaning of this parameterisation only becomes clear within the represen-
tation theory of the underlying algebra.

From a CFT point of view, distinguishing both rims of the annulus is expected
to be described by the fusion (OPE) of the “free to one-boundary CBL” boundary
condition changing operators which are responsible for the weights n1 and n2 on
either rim. However, a detailed study [92] unravels a number of technical subtleties,
mainly having to do with the possibility of a loop of weight n12 touching both rims.

Critical exponents ∆ α1α2
ℓ depend on all the weights (14.163), on the number of

non-contractible loops ℓ, and on the sector labels α1 and α2. The label α1 = b (resp.
α1 = u) if the leftmost non-contractible loop is constrained to touching (resp. to
never touching) the left rim; these two possibilities are referred to as the blobbed
(resp. unblobbed) sector. The label α2 similarly constrains the behaviour of the
rightmost non-contractible loop. Note that we have supposed that the system size
L is even (and so the number of non-contractible loops is always even).

We give here only the final results for the leading critical exponents in each sec-
tor [92]:

∆0 = hr12,r12

∆ bb
ℓ = hr1+r2−1,r1+r2−1+ℓ

∆ bu
ℓ = hr1−r2−1,r1−r2−1+ℓ

∆ ub
ℓ = h−r1+r2−1,−r1+r2−1+ℓ

∆ uu
ℓ = h−r1−r2−1,−r1−r2−1+ℓ (14.164)

Note that changing the sector label αk simply results in changing the sign of the
parameter rk (for k = 1,2).

We refer the reader to [92] for details on how these expressions are derived.

14.7 Exact Partition Functions

Writing down exact partition functions Z in the continuum limit is a very strong tool
for revealing the complete operator content of the underlying theory. This was first
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pointed out by Cardy [23] who worked on the torus, where the possible forms of Z
are very strongly constrained by modular invariance. Thus, for the three-state Potts
model, Cardy was able to determine Z and the complete operator content from a
prior knowledge of just the central charge and a few scaling dimensions.

Most of the early efforts [23, 29] concentrated on extending this approach to
all the unitary minimal models, and an extensive set of modular invariant Z on the
torus were unravelled. The question however soon arose how to adapt this approach
to non-minimal models [39], and in particular how to make the connection [40] with
the Potts and O(n) model in their loop model formulation, reviewed in section 14.3.

In section 14.2.7 we have already seen how a modular invariant Z of the free
boson (14.42) is constructed by summing over all possible frustrations (magnetic
charges) m. This led to the form (14.48) that revealed the electromagnetic operator
content (14.50). However, this is valid only for a truly free field, with Gaussian
action (14.42) and central charge c = 1. It does not apply to the Potts and O(n)
models whose CG action (14.69) also contains the boundary term (14.67), linked to
the background electric charge e0 and the modification (14.73) of c.

In section 14.7.1 we show how to remedy this shortcoming on a torus, following
the original work of Di Francesco, Saleur and Zuber [40], with a few subsequent
improvements [93, 94]. We also present some applications to polymers, following
Duplantier and Saleur [14].

Exact continuum limit partition functions on the annulus are given in sec-
tion 14.7.2. Due to the two possible ways of orienting the annulus, these give ac-
cess to both the bulk and the boundary operator content. The multiplicities with
which the various terms appear in Z are derived from a combinatorial argument by
Richard and Jacobsen [95], which has the advantage of being readily generalisable
to more complicated geometries [94, 84, 91]. The applications to polymers are due
to Cardy [18].

Finally, we treat the CBL model in section 14.7.3, its two-boundary extension in
section 14.7.4, and the fully packed loop model FPL2 in section 14.7.5.

14.7.1 Toroidal Geometry

Recall first the expression (14.46) for the free boson partition function Zm,m′(g) at
coupling g and fixed frustrations m,m′. Summing this over frustrations which are
multiples of 2π f defines the coulombic partition function

Zc[g, f ] = f ∑
m,m′∈ f Z

Zm,m′(g) =
1

ηη̄ ∑
e∈Z/ f , m∈ f Z

q∆e,mq̄∆̄e,m . (14.165)

where we denote by ∆e,m the conformal weights with respect to the c = 1 theory,
i.e., without the correction coming from the background electric charge e0:
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∆e,m + ∆̄e,m =
e2

2g
+

g
2

m2

∆e,m − ∆̄e,m = em . (14.166)

The free field admits a duality transformation that exchanges electric and mag-
netic charges

g → 4
g

, e → 2m , m → e
2

(14.167)

leading to the following symmetries

Zc[g, f ] = Zc[g
−1, f−1] = Zc[g f 2,1] . (14.168)

Consider now the O(n) model on a torus in its formulation as an oriented loop
model, or a height model. When n is distributed locally as complex Boltzmann
weights in the usual way, the partition function is simply Zc[g,1/2] = Zc[g/4,1].
This however assigns a wrong weight n̄ = 2 to any loop which is non-homotopic to
a point, since by self-avoidance each of its oriented versions makes as many left as
right turns.

We therefore consider more carefully oriented loops of non-trivial homotopy. Let
there be N such loops. Clearly, they all belong to the same homotopy class, up to
the choice of their global orientation which can be described by a sign εi = ±1. The
homotopy class can be defined by giving the (signed) winding numbers n1 and n2

with respect to the two principal cycles of the torus. One then has |n1| ∧ |n2| = 1.
Using this and a trigonometric identity yields

(
2cos(πe0)

)N
= ∏

i
∑

εi=±1

eiπe0εi = ∑
{εi=±1}

cos

(
πe0 ∑

i
εi

)
(14.169)

from which one deduces that the correctly weighted modular invariant partition
function is

Ẑ[g,e0] = ∑
m,m′∈Z

Zm,m′
(g

4

)
cos(πe0m∧m′) . (14.170)

Computing this term by term in the m summation leads to the central result

Ẑ[g,e0] =
1

ηη̄

{
∑
p∈Z

(qq̄)∆e0+2p,0 + ∑
p∈Z

∑
m>0

′
∑
k>0

Λ(m,k)q∆2p/k,m/2 q̄∆̄2p/k,m/2

}

(14.171)
where we have singled out the m = 0 term. The prime on the sum over k indicates
the constraints k|m and p∧ k = 1. Note that (14.171) has the correct form to enable
a physical interpretation. Clearly, m is the magnetic charge corresponding to the
number of non-contractible polymer strands that propagate along the time direction.
The indices k and p control how fast the strands wind around the space direction,
and give access to subdominant operators. Finally, the coefficients Λ(m,k) count the
multiplicities of each operator with m > 0.
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The original paper [40] provides an operational way of computing the Λ(m,k)
from the prime decomposition of m and k. Unfortunately, this is quite cumbersome
to apply, even for moderately small values of m,k. An elegant closed-form expres-
sion which brings out the number theoretical content of Λ(m,k) was derived much
later by Read and Saleur [93]:

Λ(m,k) = 2 ∑
d>0 :d|m

µ
(

k
k∧d

)
φ
(

m
d

)

mφ
(

k
k∧d

) cos(2πde0) . (14.172)

Here, k∧ d denotes the greatest common divisor of k and d, and µ and φ are re-
spectively the Möbius and Euler’s totient function. The Möbius function µ is de-
fined by µ(x) = (−1)r, if x is an integer that is a product x = ∏r

i=1 pi of r distinct
primes, µ(1) = 1, and µ(x) = 0 otherwise or if x is not an integer. Similarly, Eu-
ler’s totient function φ(x) is defined for positive integers x as the number of integers
x′ such that 1 ≤ x′ ≤ x and x ∧ x′ = 1. Note that in (14.172) we may also write
cos(2πde0) = T2d(n̄), where Tℓ is the ℓ’th order Chebyshev polynomial of the first
kind, and n̄ is the weight of a non-contractible loop as usual.

The expression (14.172) has been rederived by Richard and Jacobsen [94] follow-
ing a completely different route. Indeed, these authors view Λ(m,k) as eigenvalue
amplitudes with respect to a suitably defined transfer matrix for the O(n) model on
a torus of width and length which are a finite number of lattice spacings (but wide
enough to accommodate m non-contractible strands), on an arbitrary regular lattice,
and at an arbitrary temperature. By an intricate, but completely rigorous, combina-
torial argument they arrive at the same formula (14.172). We shall illustrate their
method for a much simpler case in section 14.7.2.

Very recently, a more concise and equally rigorous derivation of (14.172) was
provided by Dubail et al. [92] through the construction of the Jones-Wenzl projec-
tors of the periodic Temperley-Lieb algebra.

Note that the ∆(m,k) are not integers for general values of the loop fugacity n.
This was to be expected in view of the non-minimality of the underlying CFT.

The operator content of (14.171) is readily extracted [40]. We state the results in
terms of the true (c < 1) conformal weights

h = ∆ − e2
0

4g
= ∆ +

c−1
24

(14.173)

and their Kac table values

hr,s =
(gr− s)2 − (1−g)2

4g
(14.174)

where we have taken the notation appropriate for the dilute phase of the O(n) model.
The terms with m = 0 contain the thermal series

∆t(ℓ) = 2h1,1+2ℓ =
2ℓ(ℓ+ 1)

g
−2ℓ (14.175)
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of which the principal member ℓ = 1 is (14.91). Similarly, the terms with m > 0
contain precisely the ℓ-leg watermelon exponents (14.81).

Note also that (14.171) can be rewritten in the form (14.41). Once again, the
coupling constants nh,h̄ need not be integers in general.

When g and/or e0 is rational, (14.171) simplifies due to multiple cancellations,
and one can in some cases derive simpler expressions. These can in turn be com-
pared to those derived for the minimal models [23, 29].

Turning now to the Potts model, the derivation is almost identical, with one im-
portant modification. As we have already remarked in section 14.4.3 it may happen
that Potts clusters wrap around (at least) two independent non-contractible cycles
on the torus; this is closely linked to the magnetic exponent ∆m. Care must be taken
to give such clusters their correct weight Q, rather than 1. The result is simply that
(14.171) must be replaced by

Ẑ[g,e0]+
1
2
(Q−1)Ẑ

[
g,

1
2

]
. (14.176)

We end this subsection by giving some applications to polymers, following
Duplantier and Saleur [14]. First note that (14.170) still permits one to distin-
guish the weights of contractible and non-contractible loops, which are respectively
n = −2cos(πg) and n̄ = 2cos(πe0). In other words, we need not take e0 = 1−g.

There are obviously several interesting ways of taking the polymer (SAP) limit.
To obtain polymers of indeterminate homotopy, one first sets n̄ = n and then lets
n → 0. To have contractible polymers only, one first sets n̄ = 0 and then lets n → 0.
Finally, to have non-contractible polymers only, one first sets n = 0 and then lets
n̄ → 0. In all cases, a derivative with respect to the fugacity is needed before taking
the last limit, in order to single out configurations having a single loop—otherwise,
the surviving configuration will have zero loops and give rise to a trivial partition
function, just as in the discrete model (14.60).

To illustrate this, consider the case of contractible polymers. Setting n̄ = 0 in
(14.170) gives

Ẑ

[
g,

1
2

]
= 2 ∑

m,m′∈4Z

Zm,m′
(g

4

)
− ∑

m,m′∈2Z

Zm,m′
(g

4

)
=

1
2

(Zc[4g,1]−Zc[g,1]) ,

(14.177)
where we have used (14.165) and (14.168). If we now set simply n = 0, one recovers
in the dilute (resp. dense) case g = 3

2 (resp. g = 1
2 ), by using Euler’s pentagonal

identity (resp. (14.168))

Ẑ

[
3
2
,

1
2

]
= 1 , Ẑ

[
1
2
,

1
2

]
= 0 . (14.178)

Both these results are trivial, as expected. By contrast, if one takes the derivative
∂/∂n before setting n = 0, a non-trivial result is obtained. For dense polymers this
reads explicitly, after some algebra,
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∂
∂n

Ẑ

[
g,

1
2

]∣∣∣∣
g= 1

2

= − 1
4π

η2(q)η2(q̄) log(qq̄) . (14.179)

14.7.2 Annular Geometry

We now consider instead the geometry of an L×M annulus with free × periodic
boundary conditions, as defined in section 14.3.5. Recall that in the preceding sub-
section we have constructed the continuum limit partition function Z starting from
the explicit weights of the microscopic model—and invoking modular invariance—
and extracted the operator content as a corollary at the end of the calculation. Let us
instead now work the other way around, starting from the known operator content,
viz., the watermelon exponents (14.139) at the ordinary surface transition.

According to (14.55) we have

Z ≡ Zff(q) = ∑
h

nhχ(c,h)(q) (14.180)

where the sum is over the boundary scaling dimensions h, χ(c,h)(q) is the generic
character (14.28), and the modular parameter q = exp(iπτ) = exp(−πM/L). The
degeneracy factor nh states how many times a given character appears in the parti-
tion function, and as usual for non-minimal theories it needs not in general be an
integer. We omit in the following the subscript ff which reminds us that the boundary
conditions on both rims of the annulus are free.

As the watermelon operators are indexed by their number of legs ℓ, we may
replace the sum over h by one over ℓ. Below we shall give a combinatorial argument
that the correct degeneracy factor is

nℓ =
sin
(
(1 + ℓ)πe0

)

sin(πe0)
= Uℓ

(
n̄
2

)
, (14.181)

where Uℓ(x) is the ℓ’th order Chebyshev polynomial of the second kind. Note that nℓ

depends only on the weight n̄ = 2cos(πe0) of a non-contractible loop, which may
in general be different from that of a contractible loop, n = −2cos(πg).

Accepting for the moment (14.181), we then have the central result

Z[g,e0] =
q−c/24

P(q) ∑
ℓ∈Z

sin
(
(1 + ℓ)πe0

)

sin(πe0)
q

gℓ2
4 − (1−g)ℓ

2 (14.182)

which is the analogue of (14.171) on the torus. The attentive reader may object that
1) the expansion (14.180) should not be over generic characters, but the degenerate
ones

Kr,s =
qhr,s −qhr,−s

qc/24P(q)
, (14.183)
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and 2) the sum in (14.182) should be over ℓ ≥ 0 and not ℓ ∈ Z. While these obser-
vations are certainly correct, a little analysis shows that taking into account 1) and
2) leads to exactly the same result (14.182).

The expression (14.182) was first obtained by Saleur and Bauer [80], using tech-
niques of integrability and quantum groups. It has later been rederived and discussed
by Cardy from a Coulomb gas point of view [18].

We now turn to the derivation of (14.181). One line of reasoning is to invoke the
correspondence between the oriented loop model and an SU(2) spin chain Hamilto-
nian, as in [80]. The number of non-contractible loop strands ℓ is then the conserved
spin S of the chain. For each value S = ℓ there is a degeneracy corresponding to the
(2ℓ+ 1) corresponding values of Sz. To be more precise, the symmetry of the spin
chain is not classical SU(2) but the quantum algebra SU(2)q, with deformation pa-
rameter11 given by n̄ = q + q−1. The degeneracy factor is therefore the q-deformed
number (2ℓ+ 1)q, by definition equal to nℓ in (14.181).

Fig. 14.16 Construction of compatible states (see text).

A very different argument was given by Richard and Jacobsen [95] who used
elementary combinatorics. The lattice partition function can be constructed from a
transfer matrix T that acts on connectivity states between two time slices at t = 0
and t = t0. An example of a state is shown in Fig. 14.16.a; it consists of arcs that
connect pairs of points within one time slice, and ℓ strings that connect one point
on either time slice. Upon cutting all the strings, a state is transformed into a pair
of reduced states. T transforms a state from time t0 to t0 + 1 by acting on the upper
time slice. One may write

Z = 〈v|T M|u〉 = ∑
i

niλ M
i (14.184)

11 This q should not be confused with the modular parameter q used elsewhere in the text.
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where |u〉 is an initial state that identifies the two time slices, and 〈v| is a final
state that reglues the two time slices and imposes the correct powers of n and n̄
according to the loops thus formed. As Z is not a trace, each eigenvalue λi of T has
a corresponding amplitude ni.

Note that ℓ cannot increase under the action by T , whence T is upper block-
triangular with respect to ℓ. Therefore, each eigenvalue of T is an eigenvalue of one
of the blocks on the diagonal denoted Tℓ. Furthermore, T cannot change the reduced
state corresponding to the lower time slice, so each Tℓ is block-diagonal with a
number of identical blocks given by the number of reduced states with ℓ strings. In
particular, ni = nℓ(i) and the eigenvalues can be labeled by ℓ, so we may write

Z =
L

∑
ℓ=0

nℓ∑
k

λ M
ℓ,k . (14.185)

Define now Kℓ = Tr(T M
ℓ ) as a trace over reduced states, and Zj as the partition

function constrained to having exactly j non-contractible loops. To determine nℓ

we must determine how many times each Kℓ contributes to Z. Consider instead the
inverse problem

Kℓ =
L

∑
j=ℓ

n( j, ℓ)Zjn̄
− j . (14.186)

where n( j, ℓ) is the number of times a configuration with j non-contractible loops
occurs in the trace Kℓ. To determine it we depict a configuration contributing to
Zj as a state S j, i.e., we suppress all internal loops and empty sites in the time
slices; see Fig. 14.16.a. Then n( j, ℓ) is the number of ℓ-string reduced states Rℓ

that are compatible with S j, i.e., that are invariant when propagated through S j.
A necessary condition is that Rℓ contains the same arcs as the upper time slice of
S j; see Fig. 14.16.b. What remains is topologically equivalent to just j strings; see
Fig. 14.16.c. To ensure compatibility, these must be linked up by arcs so as to leave
exactly ℓ non-enclosed strings. This is an easy counting problem with solution

n(L, ℓ) =

(
L

(L− ℓ)/2

)
−
(

L
(L− ℓ)/2−1

)
. (14.187)

Finally inverting (14.186) gives the number of times Kℓ appears in each Zj, and
since by definition each eigenvalue appears with unit amplitude in Kℓ, we can sum
this over j to obtain nℓ = Uℓ(n̄/2) proving (14.181).

Once again, an alternative to this combinatorial method is furnished by the study
of Jonez-Wenzl projectors of the Temperley-Lieb algebra. The degeneracy factors
(or eigenvalue amplitudes) nℓ then appear as the Markov traces of the ℓ-strand pro-
jectors. The reader is referred to [92] for further details.

We now return to the result (14.182). It may be rewritten [18] in terms of the
conjugate modulus q̃ = exp(−2πL/M), giving
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Z[g,e0] =

√
2
g

q̃−c/12

P(q̃2) ∑
m∈Z

sin
(

π(e0+2m)
g

)

sin(πe0)
q̃

(e0+2m)2

2g − (1−g)2

2g . (14.188)

Note that when going from q to q̃, the time and space directions have effectively
been swapped, and so (14.188) pertains to a cylinder geometry (with free boundary
conditions on the rims), meaning that the expansion is in terms of the bulk theory.
More precisely, in view of the decomposition (14.41) for a diagonal theory, (14.180)
is now replaced by

Z = ∑
h

|bh|2χ(c,h)(q̃
2) , (14.189)

where the sum is over the bulk conformal weights h, χ(c,h)(q) is a bulk character,
and bh is a matrix element with the boundary state corresponding to free boundary
conditions at the rim. Note that there is no multiplicity Λ(m,k), as in the first term
of (14.171), since the free boundary conditions do not allow loops to wrap around
the system in the time-like direction.

In particular setting h = 0 in (14.188) we can read off [18]

b2
0 = −

√
2
g

sin(π/g)

sin(πg)
(14.190)

for n̄ = n, from which the boundary entropy [96] can be determined as logb0.
As in the toroidal case, we end by giving some applications to polymers, follow-

ing Cardy [18]. For n̄ = n, simply setting n = 0, one recovers in the dilute (resp.
dense) case g = 3

2 (resp. g = 1
2 ), by using Euler’s pentagonal identity (resp. simple

algebra), that

Z

[
3
2
,

1
2

]
= 1 , Z

[
1
2
,

1
2

]
= 0 . (14.191)

This should be compared with (14.178). Non-trivial results are obtained by singling
out the O(n̄) term, i.e., by taking a derivative before going to the limit. This gives
for the dilute case

Z1 =
∞

∏
r=1

(1−qr)−1 ∑
k∈Z

k(−1)k−1q
3
2 k2−k+ 1

8 ∼ q5/8 (14.192)

and since Z = 1 this can be interpreted as the probability of having a single non-
contractible loop. For the dense case the O(n̄) term in Z is similarly

Z1 = q−1/24
∞

∏
m=1

(
1−qm− 1

2

)2
∼ q−1/24 . (14.193)
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Fig. 14.17 Continuum-limit view of the four different types of loops in the CBL model. In this
figure the annulus has been conformally mapped to the plane, and the “left rim” referred to in the
text has become the outer rim.

14.7.3 Conformal Boundary Loop Model

Continuum limit partition functions for the CBL model defined in section 14.6.6
have been written down by Jacobsen and Saleur [84]. In this context it is convenient
to define a more general model in which bulk loops have fugacity n or n, and loops
touching the left boundary have weight n1 or n1, where in all cases the overline
refers to non-contractible loops (i.e., loops that are not homotopic to a point). This
is illustrated in Fig. 14.17.

We have seen above how the transfer matrix T of any loop model on the annu-
lus can be decomposed into blocks Tℓ labeled by the number of non-contractible
loops ℓ. For the CBL model one may further decompose Tℓ into the blobbed (resp.
unblobbed) sector T b

ℓ (resp. T u
ℓ ) in which the leftmost non-contractible loop is

required (resp. forbidden) to touch the left rim of the annulus. Indeed, since a non-
contractible loop is conserved by definition, once it has been blobbed (i.e., touched
the boundary) it cannot subsequently be unblobbed. Therefore, Tℓ is upper block-
triangular in the basis

{
|b〉, |u〉

}
and the previous argument applies mutatis mu-

tandis.
The CBL model contains the ordinary O(n) loop model as the special case n1 =

n, but it is clear that its transfer matrix must contain many more states in order
to produce the correct weights for n1 6= n. Therefore, the conformal towers must
be more densely filled, and the spectrum generating functions must contain fewer
degeneracies. Since the loop model characters (14.183) contain just one subtraction,
it seems reasonable that the CBL characters for generic n1 6= n will not involve
any subtractions, i.e., they must be the generic characters (14.28). This is indeed
confirmed by numerical diagonalisation of the transfer matrix [84]. Combining this
with the result for the conformal weights (14.156), we conclude that the spectrum
generating functions for the blobbed and unblobbed sectors read

Zb
ℓ =

qhr,r+ℓ−c/24

P(q)
, Zu

ℓ =
qhr,r−ℓ−c/24

P(q)
. (14.194)
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To find out how to combine these sectors to obtain the complete partition func-
tion Z, one needs to know the multiplicities (eigenvalue amplitudes) of each sector.
These can be derived combinatorially [84], by using the line of reasoning [95, 94]
that we illustrated in section 14.7.2 for a simpler case. Parametrising the weights of
non-contractible loops as

n = 2coshα , n1 =
sinh(α + β )

sinhβ
(14.195)

the result reads

nb
ℓ =

sinh(ℓα + β )

sinhβ
, nu

ℓ =
sinh(ℓα −β )

sinh(−β )
. (14.196)

Supposing L is even, and setting ℓ = 2 j, the results (14.194) and (14.196) lead to

Z = q−c/24

[
∞

∑
j=0

sinh(2 jα + β )

sinhβ
qhr,r+2 j

P(q)
−

∞

∑
j=1

sinh(2 jα −β )

sinhβ
qhr,r−2 j

P(q)

]
(14.197)

If one further supposes β = rα with r integer this can be rewritten as

Z =
∞

∑
j=−[r/2]

sinh(2 j + r)α
sinhrα

Kr,r+2 j (14.198)

where ⌊. . .⌋ denotes the integer part, and Kr,s is given by (14.183).
As an example of an application to dense polymers (c = −2), we consider the

case n = n = 0 and n1 = n1 = 1 where only loops touching the boundary are allowed.
Then (14.197) can be cast in the form

Z =
q−1/24

P(q)

∞

∑
j=−∞

(−1) jq(4 j−1)2/32 . (14.199)

14.7.4 Two-Boundary CBL Model

The two-boundary extension of the CBL model was defined in section 14.6.8. In
particular, we recall the four different weights (14.163) of contractible loops. Since
we have constrained the width of the annulus L to be even, a non-contractible loop
cannot touch both rims of the annulus. We thus need only the following additional
three weights for non-contractible loops:
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n = 2cosχ

n1 =
sin[(u1 + 1)χ ]

sin(u1χ)

n2 =
sin[(u2 + 1)χ ]

sin(u2χ)
(14.200)

The exact continuum limit partition function, expressed in terms of all these
seven weights, has been derived by Dubail et al. [92]:

Z =
q−c/24

P(q) ∑
n∈Z

qhr12−2n,r12 (14.201)

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(u1 + u2 −1 + 2 j)χ ]sinχ
sin(u1χ)sin(u2χ)

qhr1+r2−1−2n,r1+r2−1+2 j

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(−u1 + u2 −1 + 2 j)χ ]sinχ
sin(−u1χ)sin(u2χ)

qh−r1+r2−1−2n,−r1+r2−1+2 j

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(u1 −u2 −1 + 2 j)χ ]sinχ
sin(u1χ)sin(−u2χ)

qhr1−r2−1−2n,r1−r2−1+2 j

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(−u1 −u2 −1 + 2 j)χ ]sinχ
sin(−u1χ)sin(−u2χ)

qh−r1−r2−1−2n,−r1−r2−1+2 j

The five-term structure of this expression mirrors that of the principal critical ex-
ponents (14.164). The trigonometric factors inside the four last terms are the eigen-
value amplitudes, which can be derived using combinatorial [91] or algebraic [92]
means.

Obviously, an expression like (14.202) contains a wealth of exact probabilis-
tic information, which can be extracted explicitly for any special case of interest
(such as percolation). Moreover, it determines the complete operator content of the
two-boundary model, and the precise fusion rules of two one-boundary CBL type
boundary condition changing operators.

14.7.5 Fully Packed Loop Models

To write the exact continuum limit partition function of the FPL2 model of sec-
tion 14.5, we need the sector labels (ℓb, ℓg;Q) identified in section 14.6.5 as well
as the corresponding critical exponents ∆ℓb,ℓg;Q(eb,eg) of (14.153). The remaining
ingredients are the corresponding eigenvalue amplitudes Dℓb,ℓg;Q and the structure
of descendent states within each sector.

These can be obtained by noting [83] that the two Temperley-Lieb like structures
associated with each of the loop flavours (black and grey), with corresponding semi-
conserved quantum numbers ℓb and ℓg, decouple on the algebraic level. The last
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field, related to the conserved quantum number Q, essentially behaves as a free
boson. One has therefore a simple product form of (14.181)

Dℓb,ℓg;Q =
sin[(1 + ℓb)π fb]

sin(π fb)

sin[(1 + ℓg)π fg]

sin(π fg)
(14.202)

independently of Q. We have here as usual given different weights to non-contractible
loops:

nb = 2cos(π fb)

ng = 2cos(π fg) . (14.203)

A further consequence of this algebraic decoupling is that the characters describ-
ing the structure of descendent states factorise. The factors corresponding to quan-
tum numbers ℓb and ℓg are degenerate characters of the K type, while the last factor
corresponding to quantum number Q is just that of a free boson.

Assembling all this information we thus arrive at

Z =
q−c/24

P(q)3

∞

∑
Q=−∞

∞

∑
ℓb=0

∞

∑
ℓg=0

Dℓb,ℓg;Q(1−qℓb+1)(1−qℓg+1)q∆ℓb,ℓg;Q(eb,eg) (14.204)

where the sums over ℓb and ℓg are constrained so that all three labels (ℓb, ℓg;Q) have
the same parity.

It should be possible to endow one or both loop flavours of the FPL2 model with
(one- or two-boundary) CBL type boundary conditions, and work out the corre-
sponding partition function using the methods of sections 14.7.3–14.7.4.

14.8 Epilogue

We hope to have convinced the reader that loop models are a useful tool for deriv-
ing exact results about two-dimensional self-avoiding polygons and walks, and that
these models offer a fruitful testing ground for many, if not most, of the concepts
developed in two-dimensional conformal field theory.

There are many relevant issues about loop models that we have omitted in order
to keep this review to a reasonable length. Most importantly, we have focused here
mainly on the application of the Coulomb gas approach, and only mentioned very
briefly the results obtainable from integrability, combinatorics, quantum groups, etc.
Also, several exact results—often due to Cardy—are known about universal ampli-
tude ratios in loop models, such as the ratio between the mean area of a loop and its
squared ratio of gyration [97]. Other issues have been omitted because we feel that
they have not yet been sufficiently elucidated. This is the case for loop models in the
presence of quenched disorder, and for certain aspects of surface critical behaviour
in which the two sides of the annulus both sustain non-trivial boundary conditions.
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Another promising field of future research is that of several coupled loop models
(see [98] for an example).

Another limitation of this review resides of course in the number of loop mod-
els that we have treated. Roughly speaking, we have included here only models of
self-avoiding loops whose bulk critical properties are more-or-less fully understood,
and amenable to Coulomb gas analysis. Some interesting examples of loop models
which fall outside this criterion have been discussed by Fendley [99]. One important
model that we could actually have chosen to include is the dilute O(n) model on the
square lattice [100], which is related to the integrable Izergin-Korepin model [101],
and its two-loop generalisation, which is referred to as the DPL2 model in [70].

In any case, despite the effort dedicated to understanding two-dimensional loop
models, they remain a very active area of research to this date.

Acknowledgments

The author warmly thanks the Bannier family for hospitality at Les Loges where
the present review was written. He is very much indebted to J.L. Cardy, J. Dubail,
Y. Ikhlef, J. Kondev, B. Nienhuis, J.-F. Richard, H. Saleur, and P. Zinn-Justin who
have helped shaping his understanding of the subject over the years. This work was
supported through the European Community Network ENRAGE (grant MRTN-CT-
2004-005616)and by the Agence Nationale de la Recherche (grant ANR-06-BLAN-
0124-03).

References

1. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,
Phys. Rev. 65, 117 (1944).

2. K.G. Wilson, Non Lagrangian models of current algebra, Phys. Rev. 179, 1499 (1969).
3. K.G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Rep. C 12,

75 (1974).
4. J. Zinn-Justin, Quantum field theory and critical phenomena (Oxford Science Publications,

Oxford, 1989).
5. E.H. Lieb, Residual entropy of square ice, Phys. Rev. 162, 162 (1967).
6. R.J. Baxter, Eight-vertex model in lattice statistics, Phys. Rev. Lett. 26, 832 (1971).
7. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-

dimensional quantum field theory, Nucl. Phys. B 241, 333 (1984).
8. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12, 381 (1970).
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