
Chapter 13
Fully Packed Loop Models on Finite Geometries

Jan de Gier

13.1 Fully Packed Loop Models on the Square Lattice

A fully packed loop (FPL) model on the square lattice is the statistical ensemble of
all loop configurations, where loops are drawn on the bonds of the lattice, and each
loop visits every site once [4, 18]. On finite geometries, loops either connect exter-
nal terminals on the boundary, or form closed circuits, see for example Fig. 13.1. In
this chapter we shall be mainly concerned with FPL models on squares and rectan-
gles with an alternating boundary condition where every other boundary terminal is
covered by a loop segment, see Fig. 13.1.

An FPL model thus describes the statistics of closely packed polygons on a finite
geometry. Polygons may be nested, corresponding to punctures studied in Chapter
8. FPL models can be generalised to include weights. In particular we will study
FPL models where a weight τ is given to each straight local loop segment. The
partition function of an FPL model on various geometries can be computed exactly
using its relation to the solvable six-vertex lattice model. It is well known that the
model undergoes a bulk phase transition at τ = 2.

We furthermore study nests of polygons connected to the boundary. In the case
of FPL models with mirror or rotational symmetry, the probability distribution func-
tion of such nests is known analytically, albeit conjecturally. FPL models undergo
another phase transition as a function of the boundary nest fugacity. At criticality,
we derive a scaling form for the nest distribution function which displays an unusual
non-Gaussian cubic exponential behaviour.

The purpose of this chapter is to collect and discuss known results for FPL mod-
els which may be relevant to polygon models. For that reason we have not put an
emphasis on derivations, many of which are well-documented in the existing litera-
ture, but rather on interpretations of results.
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Fig. 13.1 Fully packed loops inside a square with alternating boundary condition.

13.1.1 Bijection with the Six-Vertex Model, Alternating-Sign
Matrices and Height Configurations

There is a well-known one-to-one correspondence between FPL, six-vertex and
alternating-sign configurations [69, 25]. In the six-vertex model, to each bond of
the square lattice is associated an arrow, such that at each vertex there are two in-
and two out-pointing arrows, see e.g. [7]. There are six local vertex configurations
which are given in the top row of Fig. 13.2. The six-vertex and FPL configurations
are related in the following way. The square lattice is divided into two sublattices,
even (A) and odd (B). For each arrow configuration we draw only those bonds on
which the arrow points to the even sublattice. If we choose the vertex in the upper

A

B

Fig. 13.2 Bijection between six-vertex and FPL vertices. The correspondence is different on the
two sublattices A and B.
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Fig. 13.3 An equivalent six-vertex and fully packed loop configuration.

left corner to belong to the even sublattice, the six-vertex and FPL configuration in
Fig. 13.3 are equivalent, as can be seen from the correspondence in Fig. 13.2.

Alternating sign matrices (ASMs) were introduced by Mills, Robbins and Rum-
sey [51, 52] and are matrices with entries in {−1,0,1} such that the entries in each
column and each row add up to 1 and the non-zero entries alternate in sign. A well-
known subclass of ASMs are the permutation matrices. Let us also introduce the
height interpretation of an ASM. Let A = (ai j)

n
i, j=1 be an ASM, then define the

heights hi j by
hi j = n− i− j + 2 ∑

i′≤i, j′≤ j

ai′ j′ . (13.1)

This rule ensures that neighbouring heights differ by one. The correspondence be-
tween the three objects is given in Fig. 13.4. An example of a six vertex and
its corresponding height configuration is given in Fig. 13.5 for the 3× 3 identity
matrix.
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Fig. 13.4 The six vertices and their corresponding heights and ASM entries.

13.1.2 Structure

As each external terminal, or outgoing bond, is connected to another terminal, FPL
diagrams can be naturally labeled by link patterns, or equivalently, two-row Young
tableaux or Dyck paths. For example, the diagram in Fig. 13.6 has link pattern
((()(())())) which is short hand for saying that 1 is connected to 12, 2 is connected
to 11, 3 to 4 etc. The information about connectivities can also be coded in two-row
standard Young tableaux. The entries of the first row of the Young tableau corre-
spond to the positions of opening parentheses ’(’ in a link pattern, and the entries of
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Fig. 13.5 Vertex and height interpretation corresponding to the 3×3 identity matrix.

2

3

6

11

1

4 5

7

8

9

1012

Fig. 13.6 An FPL diagram with link pattern ((()(())())).

the second row to the positions of the closing parentheses ’)’. The FPL diagram of
Fig. 13.6 carries as a label the standard Young tableau given in Fig. 13.7.

1 2 3 5 6 9

4 7 8 10 11 12

Fig. 13.7 Standard Young tableau corresponding to the FPL diagram in Fig. 13.6.

Yet another way of coding the same information uses Dyck paths. Each entry in
the first row of the standard Young tableau represents an up step, while those in the
second row represent down steps. The Dyck path corresponding to Fig. 13.7 is given
in Fig. 13.8.

In this section we collect some structural results regarding local update moves of
FPL models. Following Wieland [78], we define operators Gi j that act on the height
configurations as follows. They act as the identity on each square except on the
square at (i, j) where they either increase or lower the height by 2 if it is allowed.
A change of height is allowed if neighbouring heights still differ by one after the
change. If it is not allowed, Gi j acts as the identity. For future convenience we also
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Fig. 13.8 Dyck path corresponding to the FPL diagram in Fig. 13.6 and the standard Young tableau
in Fig. 13.7.

define the operators

G0 = ∏
(i, j)∈S0

Gi j, G1 = ∏
(i, j)∈S1

Gi j. (13.2)

where G0 and G1 denote the even and odd sublattice of the square lattice respec-
tively.

Starting from an initial height configuration, such as the one in Fig. 13.5, the
operators Gi j generate all height configurations. Put in other words, if we denote the
height configuration corresponding to the unit matrix by Z1, all other allowed height
configurations correspond to a word in the operators Gi j acting on Z1.

On a plaquette of an FPL configuration, the involution G acts as

G : ↔ (13.3)

while on other types of plaquettes G acts as the identity. Wieland [78] observed that
the operator G0 ◦G1 “gyrates” a link pattern and that the number of FPL configura-
tions is an invariant under gyration.

We define two other operations on the FPL diagrams, Ui j and Oi j, that leave the
link pattern invariant but that generate all diagrams belonging to a fixed link pattern.
The operator U acts on two plaquettes, either horizontally or vertically. Where it
acts non-trivially it is given by,

U :

↔

↔

(13.4)

The operator O acts on three plaquettes, either horizontally or vertically. Where
it acts non-trivially, it is given by,
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O :

↔

↔

(13.5)

It is easy to see that both U and O leave the link pattern external to the plaquettes
on which they act invariant. It is also not difficult to see that on a horizontal strip of
arbitrary length, such that only the leftmost and rightmost edge are connected to the
outside world, the operators U and O generate all possible FPL diagrams leaving
the link pattern invariant. A similar argument holds for vertical strips. This proves
that acting with U and O on an FPL diagram with given link pattern, one generates
all FPL diagrams corresponding to that link pattern, and no more.

Fig. 13.9 An isolated row inside an FPL configuration: only the leftmost and rightmost edge are
connected to the rest of the FPL configuration. The operators U and O generate all possible con-
figurations within the row.

13.2 Partition Function

To each local FPL vertex we assign a weight wi and define the statistical mechanical
partition function Zn as the sum over all FPL configurations of the product of the
vertex weights,

Zn = ∑
configurations

6

∏
i=1

wki
i , (13.6)

where ki is the number of vertices of type i. We will consider only the case where
the weights on the two sublattices are the same, i.e. in the six-vertex representation
the weights are invariant under arrow reversal. Using standard six-vertex notation
we write w1 = w2 = a, w3 = w4 = b and w5 = w6 = c, see Fig. 13.10.

It is convenient to parametrise a, b and c in the following way,
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a a b b c c
Fig. 13.10 Weights of the six local FPL vertices.

a = sin(γ −u), b = sin(γ + u), c = sin(2γ), (13.7)

and to introduce the u-independent quantity τ by

τ2 =
c2 − (a−b)2

ab
= 2(1−∆) = 4cos2 γ, (13.8)

where ∆ is the standard notation for the anisotropy parameter of the six-vertex
model defined by

∆ =
a2 + b2 − c2

2ab
= −cos(2γ). (13.9)

When a = b, τ = c/a gives a weight to straight loop segments. It is therefore ex-
pected that for some critical value of τ there is an ordering transition in the FPL
model from a disorder phase to a phase where the vertex with weight c dominates
and the polygons are elongated. We will see below that this transition takes place at
τ = 2. For a > b+ c or b > a+ c there is another ordering transition at τ = 0 where
the vertices with weight a or b, respectively, dominate.

The partition function Zn can be computed exactly for finite n applying meth-
ods of solvable lattice models to the six-vertex model with domain wall boundary
conditions. This was first done by Korepin and Izergin [39, 36, 37] who derived the
following determinant expression for Zn,

Zn =
(sin(γ + u)sin(γ −u))n2

(
∏n−1

k=0 k!
)2 σn, (13.10)

where σn is the Hankel determinant

σn = det

(
di+k−2 φ
dui+k−2

)

1≤i,k≤n

, (13.11)

and

φ(u) =
sin(2γ)

sin(γ + u)sin(γ −u)
. (13.12)

Using the height representation (13.1) it is possible to introduce elliptic weights,
rather than the trigonometric weights (13.7). The partition function in that case has
been computed by Rosengren [70].
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13.2.1 Another Form of the Partition Function

Independent of Izergin and Korepin, in the case a = b (i.e. u = 0), another form
of Zn was discovered conjecturally by Robbins in the context of alternating-sign
matrices (ASMs) and symmetry classes thereof, see [68]. As can be easily seen
from Figures 13.2 and 13.4, a τ weighted FPL configuration, where each straight
loop segment is assigned a weight τ , is equal to the generating of weighted ASMs
where each nonzero entry is assigned a weight τ . Up to a simple factor, this is also
the generating function An(τ2) of τ2-weighted ASMs of size n×n where each −1 is
assigned a weight τ2 (each additional −1 in an ASM also introduces an additional
+1). The latter was conjectured by Robbins [68] to equal

A2n(τ2) = 2Tn(τ2)Rn−1(τ2), A2n+1(τ2) = Tn(τ2)Rn(τ2). (13.13)

where

Tn(τ2) = det
1≤i, j≤n

(
2n

∑
r=0

(
i−1
r− i

)(
j

2 j− r

)
τ2(2 j−r)

)
, (13.14)

and

Rn(τ2) = det
0≤i, j≤n−1

(
2n−1

∑
r=0

Yi,r,µYj,r,0 τ2(2 j+1−r)

)
, (13.15)

where

Yi,r,µ =

(
i+ µ

2i+ 1 + µ− r

)
+

(
i+ 1 + µ

2i+ 1 + µ− r

)
. (13.16)

The precise correspondence using the notation of the previous section is

Z2n = (sinγ)2n(2n−1) A2n(4cos2 γ), (13.17a)

Z2n+1 = 2cosγ (sin γ)2n(2n+1)A2n+1(4cos2 γ). (13.17b)

In fact, Robbins’ conjecture was slightly more general and gave a generating
function for refined ASMs. The generating functions R and T appear naturally in
weighted enumerations of cyclically symmetric plane partitions [53].

The equivalence of the homogeneous limit of Izergin’s determinant and Robbins’
conjecture, i.e. equation (13.17), is only proved for τ = 1 [81, 42]. Kuperberg and
Robbins [43, 68] noticed several other such equivalences between homogeneous Iz-
ergin or Tsuchiya1 type determinants and generating functions of the form (13.14) or
(13.15). Some of these were recently proved in [34] using a technique which seems
immediately applicable to all the cases considered by Kuperberg and Robbins.

1 The Tsuchiya determinant is the generating function of horizontally or vertically symmetric FPL
diagrams [77]
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L=8

Fig. 13.11 Bond percolation clusters and O(1) cluster boundaries on a semi-infinite strip. Con-
figurations are generated by repeated concatenation of double rows using the double-row transfer
matrix. The particular boundary conditions chosen here are called closed or reflecting.

13.3 Bond Percolation, the O(n = 1) Model and the
Razumov-Stroganov Conjecture

In this section we mention a (partially conjectural) relation between FPL diagrams
and the O(1) loop model. We will use this relation to generate FPL statistics in a
relatively easy way, without having to explicitly enumerate FPL diagrams.

Imagine that each site of the square lattice is a reservoir of water. With proba-
bility p, water percolates between reservoirs along a bond of the square lattice. At
p = 1/2, the model is critical, and equivalent to the dense O(n = 1) loop model
[12] on a square lattice. The loops of the O(1) model describe the boundaries of
the percolation clusters, see Fig. 13.11. Many asymptotic properties such as criti-
cal exponents of correlation functions can be computed for the O(n) model using
Coulomb gas techniques and conformal field theory, see Chapter 14 for an exhaus-
tive overview. More recently, geometric properties of conformally invariant loops
have been analysed using the stochastic Loewner evolution (SLE), see Chapter 15
of this book.

Configurations of the O(1) loop model can be generated using a transfer matrix,
see Fig. 13.11 for the particular case of closed or reflecting boundary conditions.
Schematically, the local blocks of the O(1) transfer matrix are given by
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1
2 2

1 . (13.18)

The closed loops of the O(1) loop model have weight n = 1. Loops ending on the
boundary of the strip define a link pattern. For example, the link pattern correspond-
ing to the bottom side of Fig. 13.11 has link pattern ()()()(). The transfer matrix T
of the O(1) loop model therefore acts on states indexed by a link pattern.

13.3.1 The Razumov-Stroganov Conjecture

The largest eigenvalue of the transfer matrix of the O(1) has eigenvalue 1. It was
found in [5, 64, 65, 32, 59] that the corresponding groundstate eigenvector sur-
prisingly is related to the statistics of FPL models. Denoting a link pattern by α and
forming a vector space with basis elements |α〉, the groundstate eigenvector satisfies

T |ψ〉 = |ψ〉, |Ψ〉 = ∑
α

ψα |α〉. (13.19)

In the case of periodic boundary conditions, Razumov and Stroganov formulated
the following important conjecture:

The coefficient ψα equals the number of FPL diagrams with link pattern α .

The RS conjecture generalises to other boundary conditions, in which case the
eigenvector coefficient ψα of the corresponding transfer matrix enumerates symme-
try classes of FPL diagrams, to be discussed below. This is explained in detail in
[30]. The case that will be treated in most detail here is the O(1) model on a strip, as
in Fig. 13.11, for which ψα conjecturally enumerates horizontally symmetric FPL
diagrams.

Assuming the RS conjecture, we will use the O(1) loop model to generate FPL
statistics by solving (13.19), and variants thereof for other boundary conditions. The
particular boundary conditions we will use are periodic, cylindrical and closed. See
e.g. [54, 30, 24, 62, 84, 85, 76] for examples and other types of boundary conditions
not considered here.

Let us define the norm NL of |Ψ 〉 by

NL = ∑
α

ψα , (13.20)

and denote the largest element of |Ψ 〉 by ψmax. The result of solving (13.19) for
various boundary conditions is shown in Table 13.1, where the numbers A, AHT and
AV are defined by:

• The number of n×n ASMs,
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A(n) =
n−1

∏
k=0

(3k + 1)!
(n + k)!

= 1,2,7,42, . . . (13.21)

• The number of n×n half turn symmetric ASMs,

AHT(2n) = A(n)2
n−1

∏
k=0

3k + 2
3k + 1

= 2,10,140,5544, . . .

AHT(2n−1) =
n−1

∏
k=1

4
3

(
(3k)!(k!)
(2k)!2

)2

= 1,3,25,588, . . .

(13.22)

• The number of (2n−1)× (2n−1) horizontally (or vertically) symmetric ASMs,

AV(2n−1) =
n−1

∏
k=1

(3k−1)
(6k−3)!(2k−1)!
(4k−2)!(4k−1)!

= 1,1,3,26,646, . . . . (13.23)

and its related version for even sizes (also denoted by N8 in [13]),

AV(2n) =
n−1

∏
k=1

(3k + 1)
(6k)!(2k)!

(4k)!(4k + 1)!
= 1,2,11,170, . . . (13.24)

Table 13.1 The norm and largest eigenvalue of transfer matrices of various types.

Type NL ψmax

Periodic, L even A(L/2) A(L/2−1)

Cylindrical, L even AHT(L) AHT(L−1)

Cylindrical, L odd AHT(L) A((L−1)/2)2

Closed, L even AV(L+1) AV(L)

Closed, L odd AV(L+1) AV(L)

Mills et al. conjectured the number of ASMs to be A(n), which was proved more
than a decade later by Zeilberger [81] and in an entirely different way by Kuperberg
[42]. Kuperberg made essential use of the connection to the six-vertex model and its
integrability. Conjectured enumerations of symmetry classes were given by Robbins
[68], many of which were subsequently proved by Kuperberg [43]. The properties
and history of ASMs are reviewed in the book by Bressoud [13], as well as by
Robbins [67] and Propp [61].
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13.3.2 Proofs and Other Developments

The sum rules listed in Table 13.1, relating the norms (13.20) of |Ψ〉 for different
boundary conditions to symmetry classes of alternating-sign matrices, were origi-
nally obtained conjecturally. These sum rules have been proved algebraically using
an inhomogeneous extension of the transfer matrix, a method initiated and devel-
oped by Di Francesco and Zinn-Justin [21, 19]. This has led to further interesting
directions, not pursued here, such as the connections between weighted FPL dia-
grams (or ASMs), plane partitions and the q-deformed Knizhnik-Zamolodchikov
equation [57, 19, 22, 20, 23, 34].

In an alternative interpretation, the O(1) model is equivalent to a stochastic model
defined on link patterns, the so called raise and peel model [33]. It is an open ques-
tion how to define a stochastic model directly on FPL diagrams, by say the Wieland
involutions G describe in Section 13.1.2, such that it has an equipartite stationary
state and reduces to the raise and peel model when the action of the operators O and
U of Section 13.1.2 is divided out. Such a process would result in a direct proof of
the Razumov-Stroganov conjecture.

13.4 Symmetry Classes of FPL Diagrams

We will now focus on FPL models defined on rectangular grids, corresponding to
certain symmetry classes of square FPL diagrams. The two main reasons are that
for such FPL models there is a natural boundary giving rise to additional structure,
and that at the time of writing, for these models more results are known which are
relevant to polygon models.

13.4.1 Horizontally Symmetric FPL Diagrams

For horizontally symmetric FPL diagrams (HSFPLs) one only has to consider the
lower half of an FPL diagram. As explained in [30], due to geometric constraints one
can further reduce the size of such half diagrams. Therefore, for L even, the reduced
lower half of a horizontally symmetric FPL diagram of size (L+ 1)× (L+ 1) is an
FPL diagram of size (L− 1)×L/2. The total number ZHSFPL(2n) of horizontally
(or vertically) symmetric FPL diagrams of size (2n− 1)× n is known, and can be
computed from the Tsuchiya determinant [77, 43],

ZHSFPL(2n) = AV(2n + 1) =
n

∏
k=1

(3k−1)
(6k−3)!(2k−1)!
(4k−2)!(4k−1)!

. (13.25)

As can be seen from Table 13.1, this number is equal to the norm N2n for the
O(1) model with closed boundary conditions and L = 2n. For odd system sizes,
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L −1=7

Fig. 13.12 Boundary conditions for an HSFPL diagram of size (2n−1)×n = 7×4. The number
of external terminals equals 2n = 8, hence the statistics of this diagram is generated from the O(1)
model with L = 8.

L −1=13

Fig. 13.13 An FPL diagram of size (L−1)×L/2 = 13×7 with four nests.

L = 2n+1, the norm NL equals the number of FPL diagrams of size L× (L−1)/2,
which we will denote by ZHSFPL(2n + 1).

There are two interesting and natural statistics on HSFPLs which we will explain
now. As noted above, to each FPL diagram is associated a link pattern. Each link
pattern factorises in sets of completed links where, in terms of the parenthesis nota-
tion, the number of closing parentheses equals the number of opening parentheses.
For example,

(()())(((())())() = (()()) · (((())()) · ().
Such completed links are called nests , and they provide a statistic for HSFPLs. An
example of an HSFPL diagram of size 13×7 with four nests is given in Fig. 13.13.

Another natural statistic is the number d∗ of loops connecting the leftmost loop
terminals with the rightmost ones, i.e. loops connecting terminal i with 2⌊L/2⌋−
i+ 1 for i = 1, . . . ,d∗. It will be convenient to define d by
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d =

⌊
L−1

2

⌋
−d∗, (13.26)

where d is called the depth of an HSFPL diagram. An example of an HSFPL dia-
gram of size (L− 1)× L/2 = 13× 7 with three nests and depth d = 4 (d∗ = 2) is
given in Fig. 13.14.

d*=2

L−1=13

Fig. 13.14 An FPL diagram of size (L − 1)× L/2 = 13 × 7 with three nests and depth d = 4
(d∗ = 2).

13.4.2 Depth-Nest Enumeration of HSFPLs

In this section we will say that an FPL diagram is of size L, if it is of size (L−1)×
L/2 if L is even, or of size L× (L−1)/2 if L is odd. Let P(L,d,m) be the number of
such FPL diagrams of size L, depth d and having m + 1 nests. The nest generating
function for diagrams of size L and depth d is defined by

P(L,d;z) =
d

∑
m=0

P(L,d,m)zm. (13.27)

Let S(L,d) be the total number of HSFPL diagrams at a given size L and depth d.
Obviously we have

S(L,d) = P(L,d;1) = P(L,d + 1,0), (13.28)

and
ZHSFPL(L) = S(L,⌊ L−1

2 ⌋) = P(L,⌊L−1
2 ⌋;1). (13.29)
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Based on the RS conjecture, Mitra et al. and Pyatov have conjectured the exact form
of S(L,d) [54, 62]. Here we give this conjecture in the following form:

Conjecture 1 The total number of HSFPL diagrams at a given size L and depth d
is given by

S(L,d) =
d

∏
k=0

Γ (L− k + 1)

2k(1/2)kΓ (L−2k + 1)

Γ ( 2L+2k+3
6 )Γ (L−2k+3

3 )

Γ ( 2L−k+3
6 )Γ ( 2L−k+6

6 )
. (13.30)

Assuming the RS conjecture, the formula for S(L,d) has recently been proved [34].
Pyatov also found an exact formula for P(L,d,m) [62] which fits exact data for

small system sizes (L ≤ 18). He conjectured that this formula holds for all L, d and
m. In terms of the nest generating function this conjecture can be stated as follows.

Conjecture 2 The nest generating function is given by

P(L,d;z) = S(L,d −1) 3F2

(
−d,L−2d,L−d + 1

2
−2d,2L−2d + 1

;4z

)
. (13.31)

Note that Conjecture 1 follows from Conjecture 2 due to the evaluation

3F2

(
−d,L−2d,L−d + 1

2
−2d,2L−2d + 1

;4

)
=

S(L,d)

S(L,d−1)
, (13.32)

which is a consequence of one of the strange evaluations of Gessel and Stanton
[28]. For d = ⌊(L − 1)/2⌋, the formulas in Conjecture 1 and Conjecture 2 were
given in [30].

By convention, P(L,d,m) have the following boundary values:

P(L,d,m = −1) = P(L,d,m = −2) = P(L,d,m = d + 1) = 0 , (13.33)

and we also note the boundary condition

P(L,d,m = 1) = (L−2d)S(L,d−1) . (13.34)

It was found in [1] that the function P(L,d,m) is completely determined by these
boundary conditions and the following interesting bilinear relation called the split
hexagon relation,

P(L+ 1,d + 1,m)S(L−1,d−1)

= P(L−1,d,m)S(L+ 1,d)+ P(L,d−1,m−2)S(L,d + 1).
(13.35)

Summing up over m = 0,1, . . .d + 1 in (13.35) reproduces the hexagon relation, or
discrete Boussinesq equation, for S(L,d), see [62].
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13.4.2.1 Cyclically Symmetric Transpose Complement Plane Partitions

Somewhat outside the scope of this book, we note the following interesting fact
observed in [34]. The total number of nests at a given depth, S(L,d), is equal to the
number of punctured cyclically symmetric transpose complement plane partitions
[14], see Fig. 13.15. This can be seen by enumerating the number of non-intersecting
lattice paths in the South-East fundamental domain of the plane partition. Using the
Gessel-Viennot-Lindström method [29, 49] one obtains a determinant of the type
(13.14) with τ = 1, which can be evaluated in factorised form [14]. This form equals
the expression in (13.30).

*

*

*L+ d +1=18

L− d +1=10

=4

2

2

2d

Fig. 13.15 A punctured cyclically symmetric transpose complement plane partition for L = 13 and
d∗ = 2.

13.4.3 Average Number of Nests in HSFPL Diagrams

The average number of nests in HSFPL diagrams at depth d and size L, denoted by,
〈1 + m〉d∗ , is defined as
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〈1 + m〉d∗ =
1

ZHSFPL(L)

d

∑
m=0

(1 + m)P(L,d,m)

≡ S(L,d)

ZHSFPL(L)
(1 + 〈m〉c

d∗) . (13.36)

For notational clarity we will suppress the dependence of 〈1 + m〉d∗ on L and recall
that

d =

⌊
L−1

2

⌋
−d∗.

With the data P(L,d,m) we can calculate 〈m〉c
d∗ :

〈m〉c
d∗ =

1
S(L,d)

d

∑
m=1

mP(L,d,m)

=
d
dz

∣∣∣∣
z=1

logP(L,d;z). (13.37)

The Mathematica implementation of the Gosper-Zeilberger algorithm [35,
79, 80] by Paule and Schorn [58], is able to recognise 〈m〉d∗ in an almost factorised
form. Let L = 2n, then define µn(d∗) by

µn(d
∗) =

n−1−d∗

∑
m=0

(
3m+ 4(d∗+ 1)

)P(2n,n−1−d∗,m)

P(2n,n−1−d∗,0)

=
(

3〈m〉c
d∗ + 4(d∗+ 1)

)S(2n,n−1−d∗)
S(2n,n−2−d∗)

.

(13.38)

The expression µn(d∗) turns out to be summable in factorised form, giving rise to

〈m〉c
d∗ = −2

3
(L−2d)+ 22/3Γ

( 2L+2d+5
6

)
Γ
( 2L−d+3

3

)
Γ
(

L−2d+1
3

)

Γ
(

2L+2d+3
6

)
Γ
(

2L−d+2
3

)
Γ
(

L−2d
3

) . (13.39)

This formula also holds for odd values of L.

13.4.4 Half-Turn Symmetric FPL Diagrams

In the case of half turn symmetric FPL diagrams (HTSFPLs) it also suffices to con-
sider only the lower half of an FPL diagram, but the boundary conditions on the
top row of the half diagram are different from HSFPLs, see Fig. 13.16. The total
number of HTSFPL diagrams is given by [43]

ZHT(2n) = AHT(2n) = 2
n−1

∏
k=1

3(3k + 2)!(3k−1)!k!(k−1)!
4(2k + 1)!2(2k−1)!2 . (13.40)
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L −1=7

Fig. 13.16 Boundary conditions for an HTSFPL diagram of size (2n−1)×n = 7×4. The arcs at
the top are additional edges which may contain loop segments. The number of external terminals
equals 2n = 8, hence the statistics of this diagram is generated from the periodic O(1) model with
L = 8.

Care has to be taken when defining link patterns and nests for HTSFPL diagrams.
External terminals can be connected in two distinct ways depending on whether the
corresponding loop runs over an odd or even number of the arcs on the top of the
diagram. In the case of an odd number of arcs, we exchange the parentheses denot-
ing the connection of a pair of sites. For example, the connectivity of the HTSFPL
diagram in Fig. 13.17 is denoted by

) · () · () · ((),

where the dots again denote the factorisation of link pattern into nests. Figure 13.17
thus denotes an HTSFPL diagram with three nests.

As in the case of horizontal symmetry, there exists a conjecture for the nest distri-
bution function [30], but in this case only for L = 2n and d∗ = 0. Let P(L,m) denote
the number of half-turn symmetric FPL diagrams with m + 1 nests, and define the
nest generating function by

P(L;z) =
n−1

∑
m=0

P(L,m)zm. (13.41)

Conjecture 3 The nest generating function for half-turn symmetric FPL diagrams
is given by

P(2n;z) = ZHTSFPL(2n)
3n

4n2 −1 3F2

(
3/2,1−n,1 + n
2−2n,2 + 2n

;4z

)
.

The average number of nests in HTSFPL diagrams of size L = 2n having 1 + m
nests, denoted by 〈1 + m〉, is defined as
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L −1=7

Fig. 13.17 An HTSFPL diagram of size (2n−1)×n = 7×4 with link pattern ) · () · () · ((), having
three nests.

〈1 + m〉=
1

ZHTSFPL(L)

n−1

∑
m=0

(1 + m)P(L,d,m) = 1 + z
d
dz

logP(L;z) (13.42)

Knowing the nest generating function we may compute 〈1 + m〉, which turns out to
be summable [30].

Conjecture 4 The average number of nests in HTSFPL diagrams of size L, is given
by

〈1 + m〉= n
n−1

∏
j=1

3 j + 1
3 j + 2

.

13.5 Phase Transitions

13.5.1 Bulk Asymptotics and Phase Diagram

The phase diagram of the FPL model can be derived from the asymptotics of the
partition function Zn defined in (13.10). The leading asymptotics of Zn for general
values of τ has been computed by Korepin and Zinn-Justin [41] using the Toda
equation satisfied by σn [74],

σn
d2 σn

du2 −
(

dσn

du

)2

= σn+1σn−1. (13.43)

Writing σn as a matrix model integral [83], further subleading asymptotics were
computed by Bleher and Fokin [10] and Bleher and Liechty [11] using orthogonal
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polynomials. For special values of γ this method was first employed by Colomo and
Pronko [17]. The final result for 0 < τ2 = 4cos2 γ < 4 (1 > ∆ >−1) is that for some
ε > 0,

Zn = Cnκ exp
[

f n2(1 +O(n−ε))
]
, (13.44)

where C is a constant and

f =
π sin(γ + u)sin(γ −u)

2γ cos(πu/2γ)
, (13.45)

κ =
1

12
− 2γ2

3π(π −2γ)
. (13.46)

The result (13.44) is valid in the so-called disordered (D) phase 0 < τ2 < 4.
There is a phase transition to an ordered phase at τ2 = 4 where the vertices with
weight c are favoured and the perimeters of the polygons in the FPL model consist
of elongated straight lines. In terms of the six-vertex model this is called the anti-
ferromagnetic (AF) phase. At τ = 0, i.e. a = b + c or b = a + c, there is another
phase transition to a so-called ferromagnetic phase, where, respectively, the a- or
b-type vertices dominate. The complete phase diagram is given in Fig. 13.18.

a/c

b/c

D

AF F

F

1

1

Fig. 13.18 Bulk phase diagram of the FPL model. The phases are traditionally called disordered
(D), ferro-electric (F) and anti-ferro-electric (AF), cf. the six-vertex model. The arc corresponds to
the free-fermion condition ∆ = 0 (τ2 = 2), and the line a = b corresponds to τ2-enumerations of
ASMs. On this line τ2 = c2/a2 = 2(1−∆), and the D-AF phase transition takes place at τ2 = 4.

The phase diagram and the Bethe-Ansatz solution of the six-vertex model for pe-
riodic and anti-periodic boundary conditions are thoroughly discussed in the works
of Lieb [45, 46, 47], Lieb and Wu [48], Sutherland [73], Baxter [7], and Batchelor
et al. [3].
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13.5.2 Asymptotics for Symmetry Classes at τ = 1

In this section we determine the asymptotics of equally weighted horizontally and
half-turn symmetric FPL diagrams for τ = 1 or γ = 2π/3, corresponding to the
numbers given in Table 13.1. The leading asymptotic form of these numbers, which
are all products over factorials, can be computed using the Euler-Maclaurin approx-
imation. Full asymptotics can easily be derived using Barnes’ G-function [2], which
satisfies

G(z+ 1) = Γ (z)G(z), G(1) = 1, (13.47)

and whose leading asymptotic behaviour is given by (see e.g. [56]),

log(G(z+ 1)) = z2
(

1
2

logz− 3
4

)
+

1
2

z log2π − 1
12

logz+O(1). (13.48)

In the case of A(n) and AHT(n), a detailed asymptotic analysis including the lower
order terms was carried out by Mitra and Nienhuis [55]. Here we list only the lead-
ing asymptotics of the FPL numbers relevant to the current context. The generic
asymptotic form of the numbers is

logZL = s0 Area+ f0 Surface+ x log(Length)+O(1), (13.49)

where the bulk and boundary entropies are given by

s0 = log

(
3
√

3
4

)
, f0 = log

(
3
√

3

4
√

2

)
. (13.50)

The critical exponent x is a universal quantity. In detail, the cases relevant for this
chapter are

• FPL diagrams, L even
The number A(L/2) counts FPL configurations on an L/2×L/2 square grid, the
area of which is 1

4 L2. We thus find,

logZ(L) = logA(L/2) =
1
4

s0L2 − 5
36

logL+ O(1). (13.51)

• Half turn symmetric FPL diagrams, L even
AHT(L) counts the number of FPL configurations on half an L×L square grid,
the area of which is 1

2 L2. We thus find for L even,

logZHT(L) = logAHT(L) =
1
2

s0L2 +
1

18
logL+ O(1). (13.52)

• Half turn symmetric FPL diagrams, L odd
AHT(L) counts the number of FPL configurations on a square grid of dimension
L× (L−1)/2, the area of which is 1

2 L(L−1). We thus find for L odd,
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logZHT(L) = logAHT(L) =
1
2

s0L(L−1)+
1

36
logL2 + O(1). (13.53)

• Horizontally symmetric FPL diagrams, L even
AV(L+ 1) counts the number of FPL configurations on an (L−1)×L/2 rectan-
gular grid. We find,

logZHSFPL(L) = logAV(L+1) =
1
2

s0L(L−1)+ f0L− 5
72

logL+O(1). (13.54)

• Horizontally symmetric FPL diagrams, L odd
For L odd, AV(L+1) counts the number of FPL configurations on a L×(L−1)/2
rectangular grid. We find,

logZHSFPL(L) = logAV(L+1) =
1
2

s0L(L−1)+ f0L+
7

72
logL+O(1). (13.55)

Note that because the upper boundary for FPL diagrams corresponding to HSFPLs is
not fixed, see e.g. Fig. 13.12, there is a nonzero boundary entropy in logZHSFPL(L).

13.5.3 Nest Phase Transitions

From Section 13.4.3 we recall that the average number of nests is given by S(L,d)
ZHSFPL(L)

(1+

〈m〉c
d∗) where

〈m〉c
d∗ = z

d
dz

logP(L,d;z), (13.56)

with P(L,d;z) given in Conjecture 2. The asymptotics for 〈m〉c
d∗ as L → ∞ can be

derived from the hypergeometric equation satisfied by P(L,d;z). Taking L = 2n
this gives

θ (θ + 1 + 2d∗−2n)(θ + 2 + 2d∗+ 2n)P(2n,d;z) =

4z(θ + 2 + d∗)(θ + 1 + d∗−n)(θ + 3/2 + n)P(2n,d;z), (13.57)

where θ = zd/dz and

d =

⌊
L−1

2

⌋
−d∗ = n−1−d∗. (13.58)

Assuming that d∗ = O(1), we discriminate the cases z < 1, z = 1 and z > 1.

• z < 1
In this case, up to an overall constant factor, the leading asymptotics of P(2n,d;z)
will be polynomial in n. Neglecting lower order terms, equation (13.57) reduces
to,

θP(2n,d;z) = z(θ + 2 + d∗)P(2n,d;z). (13.59)
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We thus we find (1− z)P ′(2n,d;z) = (2 + d∗)P(2n,d;z) and

〈m〉c
d∗ = (2 + d∗)

z
1− z

(n → ∞). (13.60)

• z = 1
In (13.39) an exact expression was given for 〈m〉c

d∗ at z = 1. Asymptotically we
find that for L−2d = O(1),

〈m〉c
d∗ ≈

Γ (L−2d+1
3 )

Γ (L−2d
3 )

L2/3 +O(1), (13.61)

which for L = 2n can be written as

〈m〉c
d∗ ≈

Γ ( 2d∗+3
3 )

Γ ( 2d∗+2
3 )

(2n)2/3 +O(1), (13.62)

• z > 1
In this case, and when d is of order n, the leading asymptotics of P(2n,d;z)
will be of the form p(n)zn, where p(n) is a polynomial in n. This means that
θP(2n,d;z) is of the same order as nP(2n,d;z) and (13.57) reduces in leading
order to

(θ 3 −4n2θ )P(2n,d;z) = 4z(θ 3 −n2θ )P(2n,d;z). (13.63)

Using (13.56) one can derive the following equation for 〈m〉c
d∗ ,

4n2(z−1)〈m〉c
d∗ = (4z−1)

(
θ 2〈m〉d∗ + 3〈m〉c

d∗θ 〈m〉c
d∗ +(〈m〉c

d∗)
3) , (13.64)

which in leading order when 〈m〉c
d∗ ∼ n reduces to (4z−1)(〈m〉c

d∗)
2 = 4n2(z−1)

and thus

〈m〉c
d∗ ≈

√
z−1
4z−1

L+O(1). (13.65)

The scaling behaviour near the phase transition at z = 1 is governed by a single
exponent, the cross-over exponent φ [9]. On general grounds one expects,

〈m〉c
d∗ ∼





L(z−1)1/φ−1 (z > 1)

Lφ (z = 1)

(1− z)−1 (z < 1)

. (13.66)

Indeed, we find such scaling behaviour for 〈m〉c
d∗ with φ = 2/3.
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13.5.3.1 Scaling Function

In [33] an analysis has been carried out to obtain the nest scaling function for L = 2n
and d = n−1, i.e. d∗ = 0. Following Polyakov [60], we expect the following scaling
form of the nest distribution function at the critical point,

P(2n,n−1,m)

S(2n,n−1)
∼ 1

〈1 + m〉0
f

(
1 + m

〈1 + m〉0

)
(n → ∞), (13.67)

where 〈1+m〉0 = 1+ 〈m〉c
0. The large x behaviour of f (x) is related to the exponent

φ [15],

lim
x→∞

f (x) ∼ xs e−axδ
, δ =

1
1−φ

, (13.68)

where a and s are constants. The behaviour of f (x) for small x is related to the large
n behaviour of the probability P(2n,n−1,m)/S(2n,n−1),

lim
x→0

f (x) = bxϑ ⇒ b = lim
m→0

lim
n→∞

(1 + 〈m〉0)
1+ϑ P(2n,n−1,m)

S(2n,n−1)
, (13.69)

from which we find

ϑ = 1, b =
3

Γ (2/3)3 . (13.70)

Assuming that the full scaling function is of the form xϑ e−axδ
, for all values of x,

and using the normalisation condition
∫ ∞

0
f (x)d x = 1, (13.71)

we find that
f (x) = bx e−bx3/3 . (13.72)

In Fig. 13.19 we compare the scaling function (13.72) with a numerical evaluation
of (13.67) for n = 300. When δ ∗ > 0, the value of φ , and hence that of δ , is not
changed, but it follows from (13.69) that the value of the exponent ϑ changes to

ϑ = 1 + 2d∗. (13.73)

The full scaling function is not known in this case.

13.5.4 Half Turn Symmetry

The following analysis closely follows that of the previous section. We are interested
in the asymptotics as n → ∞ of the average number of nests defined in (13.56). This
can be inferred from the hypergeometric equation for P(2n;z),
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

1.0f (x)

x

Fig. 13.19 The scaling function f (x) defined in (13.72) compared to a numerical evaluation (dots)
of (13.67) for L = 2n = 600. It can be seen that these are indistinguishable.

θ (θ +1+2n)(θ +1−2n)P(2n;z) = 4z(θ +3/2)(θ +1−n)(θ +1+n)P(2n;z).
(13.74)

Again we discriminate the cases z < 1, z = 1 and z > 1 and remind the reader that
L = 2n.

• z < 1
In this case, up to an overall constant prefactor, P(2n;z) will grow as a polyno-
mial in n and, neglecting lower order terms, (13.74) reduces to,

θP(2n;z) = z(θ + 3/2)P(2n;z), (13.75)

so that we find (1− z)P ′(2n;z) = 3
2P(2n;z) and thus

〈1 + m〉 ≈ 2 + z
2(1− z)

+O(1). (13.76)

• z = 1
For this case, and exact expression was given for 〈m+1〉 in Conjecture 4. Asymp-
totically we find

〈1 + m〉= n
n−1

∏
j=1

3 j + 1
3 j + 2

≈ Γ (5/6)√
π

L2/3 +O(1). (13.77)

• z > 1
Here,up to an overall constant prefactor, P(2n;z) will grow as p(n)zn where
p(n) is a polynomial in n. This means that θP(2n;z) will be of the same order
as nP(2n;z) and (13.74) reduces in leading order to
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(θ 3 −4n2θ )P(2n;z) = 4z(θ 3 −n2θ )P(2n;z), (13.78)

which is the same as (13.63). We thus find that

〈1 + m〉 ≈
√

z−1
4z−1

L+O(1). (13.79)

For half-turn symmetric FPL diagrams we find the same cross-over exponent φ =
2/3 as for horizontally symmetric FPL diagrams.

13.6 Conclusion

We have described a model of tightly packed, nested polygons on the square lattice.
We hope that the study of such tightly packed polygons is relevant to other poly-
gon models described in this book. The advantage of the model described in this
chapter is that many exact results can be obtained, even on finite geometries, due
to its relation with the exactly solvable six-vertex and O(n = 1) lattice models. In
particular, the statistical mechanical partition function can be obtained rigorously on
finite square patches of the square lattice. The free energy can then be obtained an-
alytically and in the thermodynamic limit. The fully packed loop model undergoes
a well-known bulk order–disorder phase transition as a function of an anisotropy
parameter associated to the straight segments of the polygon boundary.

We have furthermore shown that it is possible to obtain closed-form expressions
for partition functions of important subsets of fully packed loop configurations. Two
examples of such subsets are horizontally symmetric fully packed loop models of
depth d, and half-turn symmetric fully packed loop models of depth d. These closed-
form expressions have been obtained experimentally, and remain conjectures at the
time of this writing. In addition, using hypergeometric summation identities, we
were able to compute the average number of polygon nests at the boundary in closed
form. Asymptotic analyses allowed us to study a boundary phase transition as a
function of the nest fugacity, and we obtained a crossover exponent φ = 2/3. At
criticality, we derive a scaling form for the nest distribution function which displays
an unusual non-Gaussian cubic exponential behaviour.

To conclude, it should be said that while some of the exact results presented in
this chapter are more than what one would hope for from a physicist’s perspective,
where numerical techniques are often all what is available, they are just the starting
point for a mathematician. Although great progress has been made in recent years
in understanding fully packed loop models, proving conjectures such as the nest
distribution function and many related combinatorial results, remains a fascinating
and completely open problem. It is for reasons such as these that polygon models in
all shapes and sizes will continue to inspire future research.
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