
Chapter 12
Interacting Lattice Polygons

Aleks L Owczarek and Stuart G Whittington

12.1 Introduction

A polymer is a long chain molecule of repeated chemical units, monomers. A ring
polymer is simply a polymer whose ends have been joined so that topologically the
molecule forms a circle. Lattice polygons are useful models of the configurational
properties of flexible ring polymers in dilute solution in so-called “good” solvents.
Good solvents are those where any attractive interactions between parts of the poly-
mer have been effectively screened by the solvent molecules, leaving only entropic
repulsion. The model of ring polymers as lattice polygons then can be modified by
adding interactions to mimic phenomena such as ring polymer adsorption and col-
lapse . Lattice polygons play the same role for ring polymers as self-avoiding walks
do for linear polymers.

Polymers in dilute solution interacting with an impenetrable surface to which the
monomers are attracted can undergo a phase transition, known as the adsorption
transition. At high temperatures the polymer is repelled entropically from the wall
and has very few monomers in contact with the wall: this is known as the desorbed
phase. There is a phase transition at some particular temperature and at low tem-
peratures the system behaves differently: in this adsorbed phase there is a positive
density of monomers in contact with the wall. See Fig. 12.1. The lattice polygon
model of ring polymer adsorption will be discussed in Section 12.2.

When a polymer is in dilute solution in a good solvent the polymer forms an
open random coil and its root-mean-square radius of gyration scales like nν where
n is the degree of polymerization and ν is about 0.588 (in three dimensions). In so-
called “poor” solvent conditions the monomer–solvent contacts are energetically
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Fig. 12.1 A schematic picture of a ring polymer in the desorbed (left-hand side) and adsorbed
phases (right-hand side).

unfavourable and the polymer collapses to a compact ball to favour monomer–
monomer contacts rather than monomer–solvent contacts. See Fig. 12.2. This col-
lapse phenomenon has been observed for linear polymers by light scattering mea-
surements. A useful model of the collapse transition for ring polymers is a lattice
polygon with an additional vertex-vertex interaction which can be varied to favour
or disfavour the collapse. In a sense this vertex-vertex interaction can be thought of
as a potential of mean force which takes account of solvent–monomer interactions.
The model will be discussed in Section 12.3.

‘Good’ solvents ‘Poor’ solvents

Fig. 12.2 A schematic picture of a ring polymer in a good solvent as an open coil (left-hand side)
and in a poor solvent as a compact globule (right-hand side).

In principle the phenomena of adsorption and collapse can both occur and the
situation then results in a rich phase diagram which is discussed in Section 12.4.

An interesting question which occurs in each of these three cases is whether the
free energies of the walk and polygon models are identical in the infinite size limit.
This will be a particular focus of this chapter and we shall say something both about
what is known rigorously and about some numerical studies of this question.
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visit

Wall

Fig. 12.3 A polygon on the square lattice with v = 5 visits to the surface (wall).

12.2 The Adsorption Transition

Polymer molecules in dilute solution in a good solvent can adsorb at an impenetra-
ble surface. This phenomenon plays an important role in such phenomena as steric
stabilisation of dispersions [11]. At high temperatures the polymer will be desorbed
and will have only a vanishingly small fraction of its monomers near the wall while
at low temperatures it will adsorb and have a positive density of its monomers near
the wall.

A natural model of this phenomenon is a self-avoiding walk (for linear polymers)
or a lattice polygon (for ring polymers) with an interaction with the wall. We shall
describe both models. Consider the simple cubic lattice Z3, though most things go
through to Zd , d > 3, with no real difficulty. The d = 2 case turns out to have some
special features and we consider this case separately. Attach a coordinate system
(x,y,z) to the vertices so that x, y and z are integers. Suppose that the impenetrable
adsorbing surface is the plane z = 0 and that the solvent corresponds to the half-
space z > 0. Suppose that c+

n (v) is the number of self-avoiding walks with n edges,
starting at the origin, having no vertices with negative z-coordinate and having v+1
vertices in the plane z = 0. We say that such a walk visits the plane z = 0 v times
or that it has v visits. Similarly let pn(v) be the number of lattice polygons with n
edges, having no vertices with negative z-coordinate and having v ≥ 2 vertices in
z = 0. See Fig. 12.3. We shall be interested in the partition functions

Cn(α) =
n

∑
v=0

cn(v)e
αv (12.1)

and

Pn(α) =
n

∑
v=2

pn(v)e
αv. (12.2)

We can define corresponding (reduced, intensive) free energies
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κn(α) = n−1 logCn(α) (12.3)

and
κ0

n (α) = n−1 logPn(α) (12.4)

and we shall be interested in quantities such as

ρn(α) =
∂κn(α)

∂α
=

1
n

∑v vcn(v)eαv

∑v cn(v)eαv (12.5)

and

ρ0
n (α) =

∂κ0
n (α)

∂α
=

1
n

∑v vpn(v)eαv

∑v pn(v)eαv . (12.6)

These are the mean fractions of visits for the two models and we expect that these
will be small (in fact zero in the infinite n limit) when the polymer is desorbed. For
the infinite n case we expect behaviour similar to that sketched in Fig. 12.4.

α

ρ(α)

Fig. 12.4 The expected dependence of the mean fraction of visits on α .

Rigorous results are available [5, 15] about the existence of the limits in (12.3)
and (12.4). It is known rigorously that these two free energies are equal for d ≥ 3
for all α [15] and that they are non-analytic functions of α . This means that the two
models have a phase transition (corresponding to adsorption) and that this transition
is at the same place for the two models. Bounds are available on the location of
the transition [5, 7] but these are weak and one must turn to numerical methods
for estimates of the location of the transition [3, 6, 8]. Similarly the order of the
transition is not known rigorously but numerical results are available, though there
is some disagreement [3, 6, 8] about the value of the crossover exponent φ , defined
below, see eqn. (12.14).

Other interesting properties include the n-dependence of the mean span of the
polygon or walk in the z-direction and in the x- (or y-) direction as a function of α .
Equivalently one could look at the various components of the radius of gyration. All
of these can act as signals that the walk or polygon is desorbed or adsorbed. These
quantities can be estimated by Monte Carlo methods [6, 8] or by exact enumeration
techniques.
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12.2.1 Rigorous Results

We focus on the results for polygons though the theorems were originally proved
for self-avoiding walks [5]. At first we confine ourselves to d = 3 though the results
go over in a straightforward way to d > 3. Concatenation arguments can be used to
prove the existence of the limit

lim
n→∞

κ0
n (α) ≡ κ0(α) (12.7)

for all α < ∞. Similarly it is possible to prove that κ0(α) is a convex function of α
and is therefore continuous. Moreover κ0(α) is differentiable almost everywhere.

For α ≥ 0 it is easy to see that Pn(α)≤ pneαn where pn = ∑v pn(v) is the number
of n-edge polygons on Z3. Writing limn→∞ n−1 log pn = κ3 we have

κ0(α) ≤ κ3 + α, α ≥ 0. (12.8)

By picking out a particular term we have

Pn(α) ≥ pn(n)eαn (12.9)

and, by monotonicity in α , Pn(α) ≥ Pn(0) = pn. Note that pn(n) counts polygons
on Z2. If we write limn→∞ n−1 log pn(n) = κ2 we then obtain

κ0(α) ≥ max[κ3,κ2 + α], α ≥ 0. (12.10)

α

κ0(α)

Fig. 12.5 The dependence of the reduced limiting free energy, κ0(α) on α . The straight lines are
bounds and the filled circle shows the location of the adsorption transition.

For α ≤ 0 we have Pn(α) ≤ Pn(0) = pn by monotonicity and hence κ0(α) ≤ κ3.
Again we can pick out a particular term to give

Pn(α) ≥ pn(2)e2α (12.11)
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and, since pn(2) ≥ pn−2, we have κ0(α) ≥ κ3. This means that the free energy is
equal to κ3, independent of α , for α ≤ 0 but strictly greater than κ3 for α > κ3−κ2.
Hence κ0(α) has a singular point at α = α0 with 0≤α0 ≤ κ3−κ2. With a little more
work these two inequalities can be made strict [5, 7]. In addition it can be shown
that κ0(α) is asymptotic to the line κ2 + α as α → ∞. The behaviour is sketched in
Fig. 12.5.

Soteros [15] showed that κ(α) = κ0(α) so the two limiting free energies are
equal and, in particular, the adsorption points are the same for the two models.

If we are interested in the mean fraction of visits in the infinite n limit we need
to look at

ρ0(α) = lim
n→∞

ρ0
n (α) = lim

n→∞

∂κ0
n (α)

∂α
. (12.12)

κ0
n (α) is a convex function of α so the order of the limit and derivative can be

interchanged so that

ρ0(α) =
∂κ0(α)

∂α
(12.13)

and hence ρ0(α) is zero for α < α0. This is the desorbed phase where the mean
fraction of visits vanishes in the infinite n limit. When α > α0 ρ0(α) > 0 and we are
in the adsorbed phase. It is not known rigorously whether or not ρ0(α) is continuous
at α = α0.

The behaviour of the free energy near α = α0 is governed by the crossover ex-
ponent, φ . Formally this is defined as

1
φ

= lim
α→α0+

κ0(α)−κ0(α0)

α −α0
. (12.14)

It is not known rigorously that the limit exists but, if it does, the above result of
Soteros [15] means that the crossover exponent has the same value for the walk and
polygon models, for d ≥ 3.

When we turn to examine the situation for d = 2 there are some important differ-
ences. One can prove that the limiting free energies κ0(α) and κ(α) exist and both
functions are convex in α . For the walk problem we have

max[κ2,α] ≤ κ(α) ≤ κ2 + α, α ≥ 0 (12.15)

and
κ(α) = κ2, α ≤ 0 (12.16)

which is analogous to the results for d ≥ 3 for walks. For polygons in Z2 we have
κ0(α) = κ2 for α ≤ 0. However, for α ≥ 0 the maximum number of vertices of the
polygon which can be in the line y = 0 is n/2. Hence

max[κ2,α/2] ≤ κ0(α) ≤ κ2 + α/2, α ≥ 0. (12.17)

This means that κ0(α) has an asymptote with slope 1/2 as α → ∞ (cf walks which
have an asymptote with unit slope). Therefore κ(α) > κ0(α) for large enough val-
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ues of α and the two free energies are not identical. Both κ(α) and κ0(α) have
singular points (at αw and α0 respectively) and α0 ≥ αw. Whether these are distinct
is not known.

12.2.2 Numerical Results

The two primary numerical methods which have been used to investigate this prob-
lem are exact enumeration coupled with series analysis and Monte Carlo methods.
In addition there are some transfer matrix calculations in two dimensions. The main
quantities of interest are:

1. The temperature dependence of the free energy.
2. The location of the phase transition.
3. The shape of the free energy curve close to the phase transition, in the low tem-

perature (adsorbed) phase, characterized by the crossover exponent φ , and hence
the value of φ .

4. Various metric quantities such as the mean-square radius of gyration or the mean
distance of a vertex from the surface, as a function of temperature.

It isn’t too difficult to use exact enumeration methods to calculate the values
of κn(α) and κ0

n (α), defined by (12.3) and (12.4), for modest values of n. Series
analysis techniques, discussed in Chapter 8, such as ratio methods, can then be used
to estimate κ(α) and κ0(α), which we know to be identical in three and higher
dimensions. The difficulty is to extract a reliable estimate of the critical value of α
since one is asking where a function stops being constant. It is easy enough to get a
reasonable upper bound on α0 (or on αw in two dimensions where α0 and αw may
be different) but it is extraordinarily difficult to estimate a reliable lower bound.
One might hope to examine the corresponding fluctuation quantity ∂ 2κn(α)/∂α2

but this doesn’t behave well for small n and is difficult to extrapolate. As a result the
most reliable estimates of α0 (and αw) come from Monte Carlo calculations.

We are not aware of any Monte Carlo calculations for adsorption of ring poly-
mers (i.e. polygons) but there are many studies of the adsorption of linear polymers
(i.e. self-avoiding walks) both in two and in three dimensions. In three dimensions
we know, vide supra, that polygons and walks have the same limiting free energies
so calculations for walks give useful information for polygons, in the thermody-
namic limit. We shall not attempt to give a systematic survey of the literature on
Monte Carlo studies for walks but we content ourselves with mentioning some re-
cent papers and pointing to an interesting open question.

Hegger and Grassberger [6] carried out a very thorough Monte Carlo study of
adsorption of self-avoiding walks in three dimensions (on the simple cubic lattice),
obtaining data for values of n up to about 2000. At the time of their work the value
of α0 was not known very precisely but the balance of evidence suggested a value
around 0.285. Hegger and Grassberger examined a variety of different properties
and concluded that α0 was probably between 0.2857 and 0.2861, with a preferred
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value of about 0.2859. They also noticed strong corrections to scaling which make
it difficult to extrapolate from data for short walks. There were several previous
attempts to estimate the value of φ in three dimensions and they estimated

φ = 0.496±0.004 (12.18)

which was somewhat smaller than previous estimates.
Janse van Rensburg and Rechnitzer [8] attacked the problem somewhat differ-

ently by producing very high quality Monte Carlo data on shorter walks (with n val-
ues up to 120) and then doing a careful statistical analysis in which they attempted
to incorporate correction to scaling terms. They estimated α0 = 0.288± 0.020 for
the simple cubic lattice and

φ = 0.5005±0.0036. (12.19)

The two approaches give values of α0 which are in reasonable agreement and both
studies are consistent with a value of φ = 1/2. Since there is good evidence that
φ = 1/2 also in two dimensions this would imply a super-universality for φ in
dimensions 2 to 4 [6]. However, Grassberger [3] returned to the problem using a
somewhat different algorithm and obtained data for walks with n up to 8000. He
gave the very precise estimate

α0 = 0.28567±0.00008 (12.20)

but gave a lower estimate for φ , namely

φ = 0.484±0.002. (12.21)

If this value is correct then φ is not super-universal.
In two dimensions we know that walks and polygons do not have the same lim-

iting free energy and we do not know of any Monte Carlo calculations for polygons
in two dimensions.

12.3 The Collapse Transition

In dilute solution in a good solvent, polymers are typically expanded coils. In these
conditions the monomer–solvent contacts are favourable and monomers tend to
be surrounded by solvent. In a poor solvent monomer–solvent contacts become
less favourable and the polymer collapses to a compact ball producing monomer–
monomer contacts at the expense of monomer–solvent contacts. Typically the sol-
vent becomes worse as the temperature decreases and there is a temperature, the
θ -temperature, at which the polymer collapses.

This situation for a ring polymer can be modelled by considering polygons with n
edges where we keep track of the number of pairs of vertices which are unit distance
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apart but are not joined by an edge of the polygon. We call these contacts. See
Fig. 12.6 for an example on the square lattice. We can weight polygons according to
the number of contacts. Suppose that pn(k) is the number of n-edge polygons with
k contacts. For example, on the square lattice p8(2) = 6 and p8(0) = 1.

Fig. 12.6 A polygon with 13 contacts. The contacts are indicated by dashed lines.

Define the partition function

Z0
n(β ) = ∑

k

pn(k)e
β k (12.22)

and the corresponding free energy

F0
n (β ) = n−1 logZ0

n(β ). (12.23)

We expect that the limit F0(β ) = limn→∞ F0
n (β ) will exist and that F0(β ) will have

a singularity at β = β 0
c corresponding to the θ -point.

One can define a similar model for self-avoiding walks. Let cn(k) be the number
of n-edge self-avoiding walks with k contacts. Define the partition function

Zn(β ) = ∑
k

cn(k)e
β k (12.24)

and the corresponding free energy

Fn(β ) = n−1 logZn(β ). (12.25)

Again we expect that the limit F(β ) = limn→∞ Fn(β ) will exist and that F(β ) will be
singular at some β = βc. Some natural questions which arise are whether F0(β ) =
F(β ). If not is β 0

c different from βc?
If we write Sn(β ) and S0

n(β ) for the mean-square radius of gyration of n-edge
walks and polygons at parameter β , it is natural to expect that Sn(β ) ∼ Anν for
β < βc, where ν is the exponent corresponding to a good solvent. For β > βc (i.e. at
low temperatures) Sn(β )∼ Bn1/d, with similar expressions for the polygon problem.
That is, the transition is associated with a change in the radius of gyration exponent.
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12.3.1 Rigorous Results

Remarkably little is known rigorously about this problem, either for the polygon
model or for the self-avoiding walk model. Concatenation arguments [16] can be
used to prove the existence of the limit

F0(β ) = lim
n→∞

n−1 logZ0
n(β ). (12.26)

In addition it can be shown that F0(β ) is a convex function of β and hence is
continuous. Tesi et al. [16] also showed that, if β ≤ 0, the limiting free energy
F(β ) = limn→∞ Fn(β ) exists and that F(β ) = F0(β ). So the polygon and walk mod-
els have the same free energy for β ≤ 0, i.e. for repulsive interactions. To get a bound
in one direction one deletes an edge from a polygon giving

cn−1(k + 1)≥ pn(k) (12.27)

since the edge deletion creates a contact. This immediately gives

liminf
n→∞

Fn(β ) ≥ F0(β ) (12.28)

and this bound works for all β . The idea behind the bound in the other direction is
to relate polygons and walks to unfolded walks and to use a theorem about unfolded
walks due to Hammersley and Welsh [4]. This does not work for β > 0 because
unfolding can destroy contacts. The existence of the thermodynamic limit for the
walk model is an open question.

Tesi et al. proved another potentially useful lemma [16]. Suppose that Kn(β ) is
the mean number of contacts for n-edge self-avoiding walks at parameter β , i.e.

Kn(β ) =
∑k kcn(k)eβ k

∑k cn(k)eβ k
(12.29)

and that K0
n (β ) is the corresponding quantity for the polygon model. Tesi et al.

showed that if K0
n (β )≥ Kn(β ) for all sufficiently large even n and for all β > 0 then

limn→∞ Fn(β ) exists and F(β ) = F0(β ) for all β .

12.3.2 Numerical Results

The question of whether or not the limiting free energies of walks and polygons are
equal for β > 0 has been addressed numerically [2, 16]. Tesi et al. [16] used Monte
Carlo methods (in fact umbrella sampling and multiple Markov chain methods, as
described in Chapter 9) to study self-interacting polygons on the simple cubic lat-
tice. They estimated the heat capacity ∂ 2F0

n (β )/∂β 2 as a function of n and β and
observed peaks in the heat capacity (as a function of β ) which increase in height
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as n increases, consistent with a second order phase transition at a critical value
of β which they estimated to be 0.2782± 0.0070. The corresponding estimate for
the walk problem is 0.2779± 0.0041, so the results are consistent with walks and
polygons collapsing at the same temperature.

Tesi et al. [16] also estimated the free energy difference

∆Fn(β ) = [F0
n (β )−F0

n (0)]− [Fn(β )−Fn(0)] (12.30)

(recall that F(0) = F0(0)). They observed that ∆Fn(β ) is positive for β > 0 but
decreases as n increases, again consistent with the free energies being equal in the
infinite n limit.

To test this further they estimated the ratio K0
n (β )/Kn(β ) as a function of n and β .

The ratio is greater than unity for the range of β and n values studied, going through
a maximum at fixed n and decreasing towards unity as β increases. The height of
the maximum decreases as n increases. Using the result discussed in Section 12.3.1,
this is strong evidence that the two models have the same limiting free energy for all
values of β . Incidentally, this implies that they have the same value for the crossover
exponent, φ .

For the square lattice in two dimensions the critical value of β has been estimated
for the walk and polygon problems and the results are consistent with a common
value βc = 0.663±0.016. The evidence is reviewed briefly in [2].

Bennett-Wood et al. [2] derived exact enumeration data for the square lattice
for n ≤ 29 for the walk model and for n ≤ 42 for the polygon model, enabling
them to calculate Zn(β ) and Z0

n(β ) for these values of n. They computed Kn(β ) and
K0

n (β ). For β < 0.6 (i.e. at high temperature) they observed that K0
n (β ) > Kn(β )

at the largest values of n considered, and gave evidence that K0
n (β )−Kn(β ) → 0

as n → ∞, for β < 0.663. For larger values of β (beyond the collapse transition)
Kn(β ) > K0

n (β ) for the values of n considered so the Lemma of Tesi et al. [16] does
not apply.

To investigate the situation at low temperatures (β > 0.663) Bennett-Wood et al.
[2] defined

Qn =

√
Z0

n+1Z0
n−1

Zn
(12.31)

for n odd and Qn = Z0
n/Zn for n even. They used series analysis techniques to es-

timate limn→∞ Q1/n
n for various values of β . For 0 < β < 1.5 (so well into the col-

lapsed phase) they estimated that limn→∞ Q1/n
n is unity within the estimated error

bars. This is consistent with the equality of the limiting free energies for the walk
and polygon models for all values of β which were considered.
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12.4 Adsorption and Collapse

One can also consider the situation where a polymer can adsorb at a surface and
collapse into a compact ball. This involves having two different energy terms, one
corresponding to the attraction of a monomer to the surface at which adsorption can
occur, and another corresponding to the monomer–monomer attraction which can
lead to collapse.

Consider the simple cubic lattice and the half-space z ≥ 0. Suppose that pn(v,k)
is the number of n-edge polygons with v vertices in the plane z = 0 (v ≥ 2) and with
k contacts. The appropriate partition function is now

Z0
n(α,β ) = ∑

v,k

pn(v,k)e
αv+β k (12.32)

and the corresponding (intensive) free energy is

F0
n (α,β ) = n−1 logZ0

n(α,β ). (12.33)

I II

III IV
α

β

Fig. 12.7 The phase diagram for polygons which can both adsorb at a surface and collapse. The
four phases are I: desorbed and expanded, II: desorbed and collapsed, III: adsorbed and expanded,
and IV: adsorbed and collapsed.

One might expect four different phases in the (α,β )-plane. At small α and small
β the polymer should be desorbed and expanded. As α increases at small fixed β the
polymer should adsorb to give a phase where the polymer is adsorbed and expanded.
Increasing β at fixed small α should give a desorbed and collapsed phase. From the
interior of the adsorbed and expanded phase increasing β should lead to collapse
in the adsorbed phase, to give a collapsed phase at the surface. See Fig. 12.7 for a
sketch of a possible phase diagram.
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12.4.1 Rigorous Results

A few rigorous results for this model have been obtained by Vrbovà and Whittington
[18]. They used concatenation arguments to prove the existence of the limit

lim
n→∞

F0
n (α,β ) ≡ F0(α,β ) (12.34)

for all α < ∞ and β < ∞. They also showed that F0(α,β ) is doubly convex (i.e.
convex as a surface, which is a stronger statement than being convex in both argu-
ments), and hence a continuous function of α and β .

The arguments of Section 12.2.1 can be extended to show that polygons exhibit
an adsorption transition at some critical value of α = αc(β ) for all β < ∞. This
establishes the existence of the phase boundary between the desorbed phases (I and
II) and the adsorbed phases (III and IV) in Figure 12.7. It is not known if the phase
boundary α = αc(β ) is a continuous function of β . It is also not known rigorously
that there is a collapse transition at some β = βo when α = 0. However, if these two
conditions are met then the phase boundary between the desorbed and expanded
phase (I) and the desorbed and collapsed phase (II) is a straight line and the critical
value of β is independent of α .

12.4.2 Numerical Results

The polygon problem does not seem to have been studied numerically but one
would expect the same phase diagram for walks and for polygons so we discuss
some numerical results for the corresponding walk problem. Vrbovà and Whit-
tington [19] used Monte Carlo methods to investigate this problem for a self-
avoiding walk model on the simple cubic lattice. They found clear evidence for four
phases: desorbed-expanded, desorbed-collapsed, adsorbed-expanded and adsorbed-
collapsed, with a phase diagram qualitatively similar to that shown in Figure
12.7. In particular they found evidence for two triple points and a phase bound-
ary between the adsorbed-expanded and desorbed-collapsed phases. Vrbovà and
Procházka [17] found evidence from Monte Carlo data that the phase boundary be-
tween the desorbed-expanded and adsorbed-expanded phases is a horizontal line in
Fig. 12.7. That is, the adsorption critical point doesn’t depend on β until the collapse
point is reached.

Singh and coworkers [12, 14] studied the same problem in three dimensions,
using exact enumeration techniques. Although there was some initial disagreement
as to whether the phase diagram had two triple points or a quadruple point (where
four phases coexist) there now seems to be general agreement that there are two
triple points, as sketched in Fig. 12.7. Vrbovà and Whittington [20] also studied
a similar model with adsorption at a penetrable surface and found a similar phase
diagram.
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Krawczyk et al. [9] have investigated the problem in three dimensions also with
a Monte Carlo technique known as flatPERM, which allowed the consideration of
a large part of the phase space at once. Walks attached to the surface up to length
256 were considered. While unusual features appear at low temperatures for finite
lengths they find a phase diagram in agreement with that in Fig. 12.7 from Vrbovà
and Whittington [19].

Singh et al. [13] (see also [10]) suggested the existence of an additional surface
attached globule phase though it seems [9] that this doesn’t correspond to a bulk
phase transition. That is, its phase boundary does not correspond to singularities in
the limiting free energy defined in (12.34) but to singularities in a suitably defined
surface free energy.

Bachmann and Janke [1] have simulated a variant of the problem where the walk
is not attached to the attractive surface. As a consequence they need to place a sec-
ond wall some distance from the first. Walks of length 100 were simulated and the
pseudo phase diagram suggests extra phases. It will be interesting for future work
to delineate the exact difference between the tethered and non-tethered cases.
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