
Chapter 11
Limit Distributions and Scaling Functions

Christoph Richard

11.1 Introduction

For a given combinatorial class of objects, such as polygons or polyhedra, the most
basic question concerns the number of objects of a given size (always assumed to
be finite), or an asymptotic estimate thereof. Informally stated, in this overview we
will analyse the refined question:

What does a typical object look like?

In contrast to the combinatorial question about the number of objects of a given
size, the latter question is of a probabilistic nature. For counting parameters in addi-
tion to object size, one asks for their (asymptotic) probability law. To give this ques-
tion a meaning, an underlying ensemble has to be specified. The simplest choice
is the uniform ensemble, where each object of a given size occurs with equal prob-
ability.

For self-avoiding polygons on the square lattice, size may be the number of edges
of the polygon, and an additional counting parameter may be the area enclosed by
the polygon. We will call this ensemble the fixed perimeter ensemble. For the uni-
form fixed perimeter ensemble, one assumes that, for a fixed number of edges, each
polygon occurs with the same probability. Another ensemble, which we will call the
fixed area ensemble, is obtained with size being the polygon area, and the number of
edges being an additional counting parameter. For the uniform fixed area ensemble,
one assumes that, for fixed area, each polygon occurs with the same probability.

To be specific, let pm,n denote the number of square lattice self-avoiding polygons
of half-perimeter m and area n. Discrete random variables X̃m of area in the uniform
fixed perimeter ensemble and of perimeter Ỹn in the uniform fixed area ensemble are
defined by
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P(X̃m = n) =
pm,n

∑n pm,n
, P(Ỹn = m) =

pm,n

∑m pm,n
.

We are interested in an asymptotic description of these probability laws, in the limit
of infinite object size.

In statistical physics, certain non-uniform ensembles are important. For fixed
object size, the probability of an object with value n of the counting parameter (such
as the area of a polygon) may be proportional to an, for some non-negative parameter
a = e−β E of non-uniformity. Here E is the energy of the object, and β = 1/(kBT ),
where T is the temperature, and kB denotes Boltzmann’s constant. A qualitative
change in the behaviour of typical objects may then be reflected in a qualitative
change in the probability law of the counting parameter w.r.t. a. Such a change is
an indication of a phase transition, i.e., a non-analyticity in the free energy of the
corresponding ensemble.

For self-avoiding polygons in the fixed perimeter ensemble, let q denote the pa-
rameter of non-uniformity,

P(X̃m(q) = n) =
pm,nqn

∑n pm,nqn .

Polygons of large area are suppressed in probability for small values of q, such that
one expects a typical self-avoiding polygon to closely resemble a branched poly-
mer. Likewise, for large values of q, a typical polygon is expected to be inflated,
closely resembling a ball (or square) shape. Let us define the ball-shaped phase by
the condition that the mean area of a polygon grows quadratically with its perime-
ter. The ball-shaped phase occurs for q > 1 [31]. Linear growth of the mean area
w.r.t. perimeter is expected to occur for all values 0 < q < 1. This phase is called
the branched polymer phase. Of particular interest is the point q = 1, at which a
phase transition occurs [31]. This transition is called a collapse transition. Similar
considerations apply for self-avoiding polygons in the fixed area ensemble,

P(Ỹn(x) = m) =
pm,nxm

∑m pm,nxm ,

with parameter of non-uniformity x, where 0 < x < ∞.
For a given model, these effects may be studied using data from exact or Monte-

Carlo enumeration and series extrapolation techniques. Sometimes, the underlying
model is exactly solvable, i.e., it obeys a combinatorial decomposition, which leads
to a recursion for the counting parameter. In that case, its (asymptotic) behaviour
may be extracted from the recurrence.

A convenient tool is generating functions. The combinatorial information about
the number of objects of a given size is coded in a one-variable (ordinary) generating
function, typically of positive and finite radius of convergence. Given the generating
function of the counting problem, the asymptotic behaviour of its coefficients can
be inferred from the leading singular behaviour of the generating function. This is
determined by the location and nature of the singularity of the generating function
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closest to the origin. There are elaborate techniques for studying this behaviour
exactly [37] or numerically [43], see chapter 8.

The case of additional counting parameters leads to a multivariate generating
function. For self-avoiding polygons, the half-perimeter and area generating func-
tion is

P(x,q) = ∑
m,n

pm,nxmqn.

For a fixed value of a non-uniformity parameter q0, where 0 < q0 ≤ 1, let x0 be the
radius of convergence of P(x,q0). The asymptotic law of the counting parameter is
encoded in the singular behaviour of the generating function P(x,q) about (x0,q0).
If locally about (x0,q0) the nature of the singularity of P(x,q) does not change,
then distributions are expected to be concentrated, with a Gaussian limit law. This
corresponds to the physical intuition that fluctuations of macroscopic quantities are
asymptotically negligible away from phase transition points. If the nature of the
singularity does change locally, we expect non-concentrated distributions, resulting
in non-Gaussian limit laws. This is expected to be the case at phase transition points.

Qualitative information about the singularity structure is given by the singularity
diagram (also called the phase diagram), compare chapter 2. It displays the region
of convergence of the two-variable generating function, i.e., the set of points (x,q)
in the closed upper right quadrant of the plane, such that the generating function
P(x,q) converges. The set of boundary points with positive coordinates is a set of
singular points of P(x,q), called the critical curve. See Fig. 11.1 for a sketch of
the singularity diagram of a typical polygon model such as self-avoiding polygons,
counted by half-perimeter and area, with generating function P(x,q) as above. There

Fig. 11.1 Singularity diagram of a typical polygon model counted by half-perimeter and area,
with x conjugate to half-perimeter and q conjugate to area.

appear two lines of singularities, which intersect at the point (x,q) = (xc,1). Here xc

is the radius of convergence of the half-perimeter generating function P(x,1), also
called the critical point. The nature of a singularity does not change along each of
the two lines, and the intersection point (x,q) = (xc,1) of the two lines is a phase
transition point. For 0 < q < 1 fixed, denote by xc(q) the radius of convergence of
P(x,q). The branched polymer phase for the fixed perimeter ensemble 0 < q < 1
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(and also for the corresponding fixed area ensemble) is asymptotically described by
the singularity of P(x,q) about (xc(q),q). In the ball-shaped phase q > 1 of the fixed
perimeter ensemble, the (ordinary) generating function does not seem the right ob-
ject to study, since it has zero radius of convergence for fixed q > 1. The singularity
of P(x,q) about (x,1) describes, for 0 < x < xc, a ball-shaped phase in the fixed area
ensemble, with a finite average size of a ball.

For points (x,q) within the region of convergence, both x and y positive, the gen-
erating function P(x,q) is finite and positive. Thus, such points may be interpreted
as parameters in a mixed infinite ensemble

P(X̃(x,q) = (m,n)) =
pm,nxmqn

∑m,n pm,nxmqn .

The limiting law of the counting parameter in the fixed area or fixed perimeter
ensemble can be extracted from the leading singular behaviour of the two-variable
generating function. There are two different approaches to the problem. The first one
consists in analysing, for fixed non-uniformity parameter a, the singular behaviour
of the remaining one-parameter generating function and its derivatives w.r.t. a. This
method is also called the method of moments. It can be successfully applied in the
fixed perimeter ensemble at the phase transition point. Typically, this results in non-
concentrated distributions.

The second approach derives an asymptotic approximation of the two-variable
generating function. Away from a phase transition point, such an approximation can
be obtained for some classes of models, typically resulting in concentrated distribu-
tions, with a Gaussian law for the centred and normalised random variable. How-
ever, it is usually difficult to extract such information at a phase transition point.
The theory of tricritical scaling seeks to fill this gap, by suggesting and justifying
a particular ansatz for an approximation using scaling functions. Knowledge of the
approximation may imply knowledge of the quantities analysed in the first approach.

In the following, we give an overview of these two approaches. For the first ap-
proach, summarised by the title limit distributions, there are a number of rigorous
results, which we will discuss. The second approach, summarised by the title scaling
functions, is less developed. For that reason, our presentation will be more descrip-
tive, stating important open questions. We will stress connections between the two
approaches, thereby providing a probabilistic interpretation of scaling functions in
terms of limit distributions.

11.2 Polygon Models and Generating Functions

Models of polygons, polyominoes or polyhedra have been studied intensively on the
square and cubic lattices. It is believed that the leading asymptotic behaviour of such
models, such as the type of limit distribution or critical exponents, is independent of
the underlying lattice.



11 Limit Distributions and Scaling Functions 251

In two dimensions, a number of models of square lattice polygons have been
enumerated according to perimeter and area and other parameters, see chapter 3
and [7] for a review of models with an exact solution. The majority of such mod-
els has an algebraic perimeter generating function. We mention prudent polygons
[96, 22, 8] as a notable exception. Of particular importance for polygon models
is the fixed perimeter ensemble, since it models two-dimensional vesicle collapse.
Another important ensemble is the fixed area ensemble, which serves as a model of
ring polymers. The fixed area ensemble may also describe percolation and cluster
growth. For example, staircase polygons are models of directed compact percola-
tion [26, 28, 29, 27, 12, 57]. This may be compared to the exactly solvable case of
percolation on a tree [42]. The model of self-avoiding polygons is conjectured to
describe the hull of critical percolation clusters [60].

In addition to perimeter, other counting parameters have been studied, such as
width and height, generalisations of area [89], radius of gyration [53, 64], number
of nearest-neighbour interactions [4], last column height [7], and site perimeter [20,
11]. Also, motivated by applications in chemistry, symmetry subclasses of polygon
models have been analysed [63, 62, 40, 95]. Whereas this gives rise to a number of
different ensembles, only a few of them have been asymptotically studied. Not all
of them display phase transitions.

In three dimensions, models of polyhedra on the cubic lattice have been enu-
merated according to perimeter, surface area and volume, see [74, 102, 3] and the
discussion in section 11.3.9. Various ensembles may be defined, such as the fixed
surface area ensemble and the fixed volume ensemble. The fixed surface area en-
semble serves as a model of three-dimensional vesicle collapse [104].

In this chapter, we will consider models of square lattice polygons, counted by
half-perimeter and area. Let pm,n denote the (finite) number of such polygons of
half-perimeter m and area n. The numbers pm,n will always satisfy the following
assumption.

Assumption 1. For m,n ∈ N0, let non-negative integers pm,n ∈ N0 be given. The
numbers pm,n are assumed to satisfy the following properties.

i) There exist positive constants A,B > 0 such that pm,n = 0 if n≤Am or if n≥ Bm2.
ii) The sequence (∑n pm,n)m∈N0

has infinitely many positive elements and grows at
most exponentially.

Remarks. i) A sequence (an)n∈N0 is said to grow at most exponentially, if there are
positive constants C, µ such that |an| ≤Cµn for all n.
ii) Condition i) reflects the geometric constraint that the area of a polygon grows at
most quadratically and at least linearly with its perimeter. For self-avoiding poly-
gons, we have n ≥ m−1. Since pm,n = 0 if m < 2, we may choose A = 1/3. Since
n ≤ m2/4 for self-avoiding polygons, we may choose B = 1/3. Condition ii) is a
natural condition on the growth of the number of polygons of a given perimeter. For
self-avoiding polygons, we may choose C = 1 and µ = 16.
iii) For models with counting parameters different from area, or for models in higher
dimensions, a modified assumption holds, with the growth condition i) being re-
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placed by n ≤ Amk0 and n ≥ Bmk1 , for appropriate values of k0 and k1. Counting
parameters satisfying pm,n = 0 for n ≥ Bmk are called rank k parameters [25].

The above assumption imposes restrictions on the generating function of the
numbers pm,n. These explain the qualitative form of the singularity diagram Fig. 11.1.

Proposition 1. For numbers pm,n, let Assumption 1 be satisfied. Then, the generat-
ing function P(x,q) = ∑m,n pm,nxmqn has the following properties.

i) The generating function P(x,q) satisfies for k ∈ N

Ak
(

x
∂
∂x

)k

P(x,q) ≪
(

q
∂
∂q

)k

P(x,q) ≪ Bk
(

x
∂
∂x

)2k

P(x,q),

where ≪ denotes coefficient-wise domination.
ii) The evaluation P(x,1) is a power series with radius of convergence xc, where

0 < xc ≤ 1.
iii)The generating function P(x,q) diverges, if x 6= 0 and |q| > 1. It converges, if

|q| < 1 and |x| < xcq−A. In particular, for k ∈ N0, the evaluations

∂ k

∂xk P(x,q)

∣∣∣∣
x=xc

are power series with radius of convergence 1.
iv) For k ∈ N0, the evaluations

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

are power series with radius of convergence xc. They satisfy, for |x| < xc,

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

= lim
q→1

−1<q<1

∂ k

∂qk P(x,q).

Proof (sketch). The domination formula follows immediately from condition i). The
existence of the evaluations at q = 1 and x = xc as formal power series also follows
from condition i). Condition ii) ensures that 0 < xc ≤ 1 for the radius of convergence
of P(x,1). Equality of the radii of convergence for the derivatives follows from con-
dition i) by elementary estimates. The claimed analytic properties of P(x,q) follow
from conditions i) and ii) by elementary estimates. The claimed left-continuity of
the derivatives in iv) is implied by Abel’s continuity theorem for real power series.

⊓⊔
Remarks. i) Proposition 1 implies that the critical curve xc(q) satisfies for 0 < q < 1
the estimate xc(q) ≥ xcq−A. For self-avoiding polygons, the critical curve xc(q) is
continuous for 0 < q < 1. This follows from a certain supermultiplicative inequality
for the numbers pm,n by convexity arguments [48].
ii) Of central importance in the sequel will be the power series
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gk(x) =
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

. (11.1)

They are called factorial moment generating functions, for reasons which will be-
come clear later.

We continue studying analytic properties of the factorial moment generating
functions. In the following, the notation x ր x0 denotes the limit x → x0 for se-
quences (xn) satisfying |xn| < x0. The notation f (x) ∼ g(x) as x ր x0 means that
g(x) 6= 0 in a left neighbourhood of x0 and that limxրx0 f (x)/g(x) = 1. Likewise,
am ∼ bm as m → ∞ for sequences (am),(bm) means that bm 6= 0 for almost all m and
limm→∞ am/bm = 1. The following lemma is a standard result.

Lemma 1. Let (am)m∈N0 be a sequence of real numbers, which asymptotically sat-
isfy

am ∼ Ax−m
c mγ−1 (m → ∞), (11.2)

for real numbers A,xc,γ , where A 6= 0 and xc > 0.
Then, the generating function g(x) = ∑∞

m=0 amxm has radius of convergence xc. If
γ /∈ {0,−1,−2, . . .}, then there exists a power series g(reg)(x) with radius of conver-
gence strictly larger than xc, such that g(x) satisfies

(
g(x)−g(reg)(x)

)
∼ AΓ (γ)

(1− x/xc)γ (x ր xc), (11.3)

where Γ (z) denotes the Gamma function.

Remarks. i) The above lemma can be proved using the analytic properties of
the polylog function [32]. If γ ∈ {0,−1,−2, . . .}, an asymptotic form similar to
Eq. (11.3) is valid, which involves logarithms.
ii) The function g(reg)(x) in the above lemma is not unique. For example, if γ > 0,
any polynomial in x may be chosen. We demand g(reg)(x) ≡ 0 in that case. If γ < 0
and g(reg)(x) is restricted to be a polynomial, it is uniquely defined. If −1 < γ < 0,
we have g(reg)(x) ≡ g(xc). In the general case, the polynomial has degree ⌊−γ⌋,
compare [32]. In the following, we will demand uniqueness by the above choice.

The power series g(sing)(x) :=
(

g(x)−g(reg)(x)
)

is then called the singular part of

g(x).

Conversely, let a power series g(x) with radius of convergence xc be given. In or-
der to conclude from Eq. (11.3) the behaviour Eq. (11.2), certain additional analyt-
icity assumptions on g(x) have to be satisfied. To this end, a function g(x) is called
∆(xc,η ,φ)-regular (or simply ∆ -regular) [30], if there is a positive real number
xc > 0, such that g(x) is analytic in the indented disc ∆(xc,η ,φ) := {z ∈ C : |z| ≤
xc + η , |Arg(z− xc)| ≥ φ}, for some η > 0 and some φ , where 0 < φ < π/2. Note
that xc /∈ ∆ , where we adopt the convention Arg(0) = 0. The point x = xc is the only
point for |x| ≤ xc, where g(x) may possess a singularity.

Lemma 2 ([35]). Let the function g(x) be ∆ -regular and assume that
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g(x) ∼ 1

(1− x/xc)
γ (x → xc in ∆).

If γ /∈ {0,−1,−2, . . .}, we then have

[xm]g(x) ∼ 1
Γ (γ)

x−m
c mγ−1 (m → ∞),

where [xm]g(x) denotes the Taylor coefficient of g(x) of order m about x = 0.

Remarks. i) Note that the coefficients of the function f (x) = (1−x/xc)
−γ with real

exponent γ /∈ {0,−1,−2, . . .} satisfy

[xm] f (x) ∼ 1
Γ (γ)

x−m
c mγ−1 (m → ∞). (11.4)

This may be seen by an application of the binomial series and Stirling’s formula.
For functions g(x) ∼ f (x), the assumption of ∆ -regularity for g(x) ensures that the
same asymptotic estimate holds for the coefficients of g(x).
ii) Theorems of the above type are called transfer theorems [35, 37]. The set of
∆ -regular functions with singularities of the above form is closed under addition,
multiplication, differentiation, and integration [30].
iii) The case of a finite number of singularities on the circle of convergence can be
treated by a straightforward extension of the above result [35, 37].

Lemma 1 implies a particular singular behaviour of the factorial moment gener-
ating functions, if the numbers pm,n satisfy certain typical asymptotic estimates. We
write (a)k = a · (a−1) · . . . · (a− k + 1) to denote the lower factorial.

Proposition 2. For m,n ∈ N0, let real numbers pm,n be given. Assume that the num-
bers pm,n asymptotically satisfy, for k ∈ N0,

1
k! ∑

n
(n)k pm,n ∼ Akx−m

c mγk−1 (m → ∞), (11.5)

for real numbers Ak,xc,γk, where Ak > 0, xc > 0, and γk /∈ {0,−1,−2, . . .}.
Then, the factorial moment generating functions gk(x) satisfy

g(sing)
k (x) ∼ fk

(1− x/xc)γk
(x ր xc), (11.6)

where fk = Ak Γ (γk).

Remarks. i) The above assumption on the growth of the coefficients in Eq. (11.5)
is typical for polygon models, with γk = (k−θ )/φ , and φ > 0.
ii) If the numbers pm,n satisfy, in addition to Eq.(11.5), Condition i) of Assumption
1, this implies for exponents of the form γk = (k−θ )/φ , where φ > 0, the estimate
1/2 ≤ φ ≤ 1.
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iii) The proposition implies that the singular part of the factorial moment generat-
ing function gk(x) is asymptotically equal to the singular part of the corresponding
(ordinary) moment generating function,

(
∂ k

∂qk P(x,q)

∣∣∣∣
q=1

)(sing)

∼



(

q
∂
∂q

)k

P(x,q)

∣∣∣∣∣
q=1




(sing)

(x ր xc).

We give a list of exponents and area limit distributions for a number of polygon
models. An asterisk denotes that corresponding results rely on a numerical analysis.
It appears that the value (θ ,φ) = (1/3,2/3) arises for a large number of models.
Furthermore, the exponent γ0 seems to determine the area limit law. These two ob-
servations will be explained in the following section.

Table 11.1 Exponents and area limit laws for prominent polygon models. An asterisk denotes a
numerical analysis.

Model φ θ γ0 Area limit law

rectangles
convex polygons

1
2 −1 2 β1,1/2

Ferrers diagrams
stacks

1
2 − 1

2 1 Gaussian

staircase polygons
bargraph polygons

column-convex polygons
directed column-convex polygons

2
3

1
3 − 1

2 Airy

diagonally convex directed polygons
rooted self-avoiding polygons∗

directed convex polygons 2
3 − 1

3
1
2 meander

diagonally convex polygons∗ − 1
2

three-choice polygons 0

11.3 Limit Distributions

In this section, we will concentrate on models of square lattice polygons in the
fixed perimeter ensemble, and analyse their area law. The uniform ensemble is of
particular interest, since non-Gaussian limit laws usually appear, due to expected
phase transitions at q = 1. For non-uniform ensembles q 6= 1, Gaussian limit laws
are expected, due to the absence of phase transitions.

There are effective techniques for the uniform ensemble, since the relevant gen-
erating functions are typically algebraic. This is different from the fixed area en-
semble, where singularities are more difficult to analyse. It will turn out that the
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dominant singularity of the perimeter generating function determines the limiting
area law of the model. We will first discuss several examples with different type
of singularity. Then, we will describe a general result, by analysing classes of q-
difference equations (see e.g. [103]), which exactly solvable polygon models obey.
Whereas in the case q 6= 1 their theory is developed to some extent, the case q = 1
is more difficult to analyse. Motivated by the typical behaviour of polygon mod-
els, we assume that a q-difference equation reduces to an algebraic equation as q
approaches unity, and then analyse the behaviour of its solution about q = 1.

Useful background concerning a probabilistic analysis of counting parameters of
combinatorial structures can be found in [37, Ch IX]. See [80, Ch 1] and [5, Ch 1]
for background about asymptotic expansions. For properties of formal power series,
see [39, Ch 1.1]. A useful reference on the Laplace transform, which will appear
below, is [23].

11.3.1 An Illustrative Example: Rectangles

11.3.1.1 Limit Law of Area

Let pm,n denote the number of rectangles of half-perimeter m and area n. Consider
the uniform fixed perimeter ensemble, with a discrete random variable of area X̃m

defined by

P(X̃m = n) =
pm,n

∑n pm,n
. (11.7)

The k-th moments of X̃m are given explicitly by

E[X̃ k
m] =

m−1

∑
l=1

(l(m− l))k 1
m−1

∼ m2k
∫ 1

0
(x(1− x))kdx =

(k!)2

(2k + 1)!
m2k (m → ∞),

where we approximated the Riemann sum by an integral, using the Euler-MacLaurin
summation formula. Thus, the random variable X̃m has mean µm ∼ m2/6 and vari-
ance σ2

m ∼ m4/180. Since the sequence of random variables (X̃m) does not satisfy
the concentration property limm→∞ σm/µm = 0, we expect a non-trivial limiting dis-
tribution. Consider the normalised random variable

Xm =
2
3

X̃m

µm
= 4

X̃m

m2 . (11.8)

Since the moments of Xm converge as m → ∞, and the limit sequence Mk :=
limm→∞ E[Xk

m] satisfies the Carleman condition ∑k(M2k)
−1/(2k) = ∞, they define [17,

Ch 4.5] a unique random variable X with moments Mk. Its moment generating func-
tion M(t) = E[e−tX ] is readily obtained as
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M(t) =
∞

∑
k=0

E[Xk]

k!
(−t)k =

1
2

√
π
t

et erf
(√

t
)
.

The corresponding probability distribution p(x) is obtained by an inverse Laplace
transform, and is given by

p(x) =

{
1

2
√

1−x
0 ≤ x ≤ 1

0 x > 1
. (11.9)

This distribution is known as the beta distribution β1,1/2. Together with [17, Thm 4.5.5],
we arrive at the following result.

Theorem 1. The area random variable X̃m of rectangles Eq. (11.7) has mean
µm ∼ m2/6 and variance σ2

m ∼ m4/180. The normalised random variables Xm

Eq. (11.8) converge in distribution to a continuous random variable with limit law
β1,1/2 Eq. (11.9). We also have moment convergence.

11.3.1.2 Limit Law via Generating Functions

We now extract the limit distribution using generating functions. Whereas the
derivation is less direct than the previous approach, the method applies to a number
of other cases, where a direct approach fails. Consider the half-perimeter and area
generating function P(x,q) for rectangles,

P(x,q) = ∑
m,n

pm,nxmqn.

The factorial moments of the area random variable X̃m Eq. (11.7) are obtained from
the generating function via

E[(X̃m)k] =
∑n(n)k pm,n

∑n pm,n
=

[xm] ∂ k

∂qk P(x,q)
∣∣∣
q=1

[xm]P(x,1)
,

where (a)k = a · (a−1) · . . . · (a− k +1) is the lower factorial. The generating func-
tion P(x,q) satisfies [87, Eq. 5.1] the linear q-difference equation [103]

P(x,q) = x2qP(qx,q)+
x2q(1 + qx)

1−qx
. (11.10)

Due to the particular structure of the functional equation, the area moment generat-
ing functions

gk(x) =
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1
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are rational functions and can be computed recursively from the functional equation,
by repeated differentiation w.r.t. q and then setting q=1. (Such calculations are easily
performed with a computer algebra system.) This gives, in particular,

g0(x) =
x2

(1− x)2 , g1(x) =
x2

(1− x)4 ,

g2(x) =
2x3

(1− x)6 , g3(x) =
6x4

(1− x)8 ,

g4(x) =
x4(1 + 22x + x2)

(1− x)10 , g5(x) =
12x5(1 + 8x + x2)

(1− x)12 .

Whereas the exact expressions get messy for increasing k, their asymptotic form
about their singularity xc = 1 is simply given by

gk(x) ∼
k!

(1− x)2k+2 (x → 1). (11.11)

The above result can be inferred from the functional equation, which induces a
recursion for the functions gk(x), which in turn can be asymptotically analysed. This
method is called moment pumping [36]. Below, we will extract the above asymptotic
behaviour by the method of dominant balance.

The asymptotic behaviour of the moments of X̃m can be obtained from singularity
analysis of generating functions, as described in Lemma 2. Using the functional
equation, it can be shown that all functions gk(x) are Laurent series about x = 1,
with a finite number of terms. Hence the remark following Lemma 2 implies for the
(factorial) moments of the random variable Xm Eq. (11.8) the expression

E[(Xm)k]

k!
∼ E[(Xm)k]

k!
∼ k!

Γ (2k + 2)
=

k!
(2k + 1)!

(m → ∞),

in accordance with the previous derivation.
On the level of the moment generating function, an application of Watson’s

lemma [5, Sec 4.1] shows that the coefficients k! in Eq. (11.11) appear in the asymp-
totic expansion of a certain Laplace transform of the (entire) moment generating
function E[e−tX ],

∫ ∞

0
e−st

(
∑
k≥0

E[Xk]

k!
(−t2)k

)
t dt ∼ ∑

k≥0

(−1)kk!s−(2k+2) (s → ∞).

Note that the r.h.s. is formally obtained by term-by-term integration of the l.h.s..
Using the arguments of [46, Ch 8.11], one concludes that there exists an s0 > 0,

such that there is a unique function F(s) analytic for ℜ(s) ≥ s0 with the above
asymptotic expansion. It is given by

F(s) = Ei(s2)es2
, (11.12)
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where Ei(z) =
∫ ∞

1 e−tz /t dt is the exponential integral. The moment generating func-
tion M(t) = E[e−tX ] of the random variable X is given by an inverse Laplace trans-
form of F(s), ∫ ∞

0
e−st M(t2)t dt = F(s).

Since there are effective methods for computing inverse Laplace transforms [23],
the question arises whether the function F(s) can be easily obtained. It turns out
that the functional equation Eq. (11.10) induces a differential equation for F(s).
This equation can be obtained in a mechanical way, using the method of dominant
balance.

11.3.1.3 Dominant Balance

For a given functional equation, the method of dominant balance consists of a cer-
tain rescaling of the variables, such that the quantity of interest appears in the ex-
pansion of a rescaled variable to leading order. The method was originally used as
a heuristic tool in order to extract the scaling function of a polygon model [84] (see
the following section). In the present framework, it is a rigorous method.

Consider the half-perimeter and area generating function P(x,q) as a formal
power series. The substitution q = 1− ε̃ is valid, since the coefficients of the power
series P(x,q) in x are polynomials in q. We get the power series in ε̃ ,

H(x, ε̃) = ∑
k≥0

(−1)kgk(x)ε̃k.

whose coefficients (−1)kgk(x) are power series in x. The functional equation Eq. (11.10)
induces an equation for H(x, ε̃), from which the factorial area moment generating
functions gk(x) may be computed recursively.

Now replace gk(x) by its expansion about x = 1,

gk(x) = ∑
l≥0

fk,l

(1− x)2k+2−l .

Introducing s̃ = 1− x, this leads to a power series E(s̃, ε̃) in ε̃ ,

E(s̃, ε̃) = ∑
k≥0

(−1)k

(
∑
l≥0

fk,l

s̃2k+2−l

)
ε̃k,

whose coefficients are Laurent series in s̃. As above, the functional equation induces
an equation for the power series E(s̃, ε̃) in ε̃ , from which the expansion coefficients
may be computed recursively.

We infer from the previous equation that
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E(sε,ε2) =
1
ε2 ∑

l≥0

(
∑
k≥0

(−1)k fk,l

s2k+2−l

)
ε l =

1
ε2 F(s,ε). (11.13)

Write F(s,ε) = ∑l≥0 Fl(s)ε l . By construction, the (formal) series F0(s) = F(s,0)
coincides with the asymptotic expansion of the desired function F(s) Eq. (11.12)
about infinity.

The above example suggests a technique for computing F0(s). The functional
equation Eq. (11.10) for P(x,q) induces, after reparametrisation, differential equa-
tions for the functions Fl(s), from which F0(s) may be obtained explicitly. These
may be computed by first writing

P(x,q) =
1

1−q
F

(
1− x

(1−q)1/2
,(1−q)1/2

)
, (11.14)

and then introducing variables s and ε , by setting x = 1− sε and q = 1−ε2. Expand
the equation to leading order in ε . This yields, to order ε0, the first order differential
equation

sF ′
0(s)+ 2−2s2F0(s) = 0.

The above equation translates into a recursion for the coefficients fk,0, from which
fk,0 = k! can be deduced. In addition, the equation has a unique solution with the

prescribed asymptotic behaviour Eq. (11.13), which is given by F0(s) = Ei(s2)es2
.

As we will argue in the next section, Eq. (11.14) is sometimes referred to as
a scaling Ansatz, the function F(s,0) appears as a scaling function, the functions
Fl(s), for l ≥ 1, appear as correction-to-scaling functions. In our formal framework,
where the series Fl(s) are rescaled generating functions for the coefficients fk,l , their
derivation is rigorous.

11.3.2 A General Method

In the preceding two subsections, we described a method for obtaining limit laws of
counting parameters, via a generating function approach. Since this method will be
important in the remainder of this section, we summarise it here. Its first ingredient
is based on the so-called method of moments [17, Thm 4.5.5].

Proposition 3. For m,n ∈ N0, let real numbers pm,n be given. Assume that the num-
bers pm,n asymptotically satisfy, for k ∈ N0,

1
k! ∑

n
(n)k pm,n ∼ Akx−m

c mγk−1 (m → ∞), (11.15)

where Ak are positive numbers, and γk = (k−θ )/φ , with real constants θ and φ > 0.
Assume that the numbers Mk := Ak/A0 satisfy the Carleman condition



11 Limit Distributions and Scaling Functions 261

∞

∑
k=1

(M2k)
−1/(2k) = +∞. (11.16)

Then the following conclusions hold.

i) For almost all m, the random variables X̃m

P(X̃m = n) =
pm,n

∑n pm,n
(11.17)

are well defined. We have

Xm :=
X̃m

m1/φ
d→ X , (11.18)

for a unique random variable X with moments Mk, where d denotes convergence
in distribution. We also have moment convergence.

ii) If the numbers Mk satisfy for all t ∈ R the estimate

lim
k→∞

Mktk

k!
= 0, (11.19)

then the moment generating function M(t) = E[e−tX ] of X is an entire function.
The coefficients AkΓ (γk) are related to M(t) by a Laplace transform which has,
for θ > 0, the asymptotic expansion

∫ ∞

0
e−st

(
∑
k≥0

E[Xk]

k!
(−t1/φ )k

)
1

t1−γ0
dt

∼ 1
A0

∑
k≥0

(−1)kAkΓ (γk)s
−γk (s → ∞).

(11.20)

Proof (sketch). A straightforward calculation using Eq. (11.15) leads to

E[(X̃m)k]

k!
∼ Ak

A0
mk/φ (m → ∞).

This implies that the same asymptotic form holds for the (ordinary) moments
E[(X̃m)k]. Due to the growth condition Eq. (11.16), the sequence (Mk) defines a
unique random variable X with moments Mk. Also, moment convergence of the se-
quence (Xm) to X implies convergence in distribution, see [17, Thm 4.5.5]. Due to
the growth condition Eq. (11.19), the function M(t) is entire. Hence the conditions
of Watson’s Lemma [5, Sec 4.1] are satisfied, and we obtain Eq. (11.20). ⊓⊔

Remarks. i) The growth condition Eq. (11.19) implies the Carleman condition
Eq. (11.16). All examples below have entire moment generating functions M(t).
ii) If γ0 < 0, a modified version of Eq. (11.20) can be given, see for example staircase
polygons below.
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Proposition 2 states that assumption Eq. (11.15) translates, at the level of the
half-perimeter and area generating function P(x,q) = ∑m,n pm,nxmqn, to a certain
asymptotic expression for the factorial moment generating functions

gk(x) =
1
k!

∂ k

∂qk
P(x,q)

∣∣∣∣
q=1

.

Their asymptotic behaviour follows from Eq. (11.15), and is

g(sing)
k (x) ∼ fk

(1− x/xc)γk
(x ր xc),

where fk = AkΓ (γk). Adopting the generating function viewpoint, the amplitudes fk

determine the numbers Ak, hence the moments Mk = Ak/A0 of the limit distribution.
The series F(s) = ∑k≥0(−1)k fks−γk will be of central importance in the sequel.

Definition 1 (Area amplitude series). Let Assumption 1 be satisfied. Assume that
the generating function P(x,q) = ∑m,n pm,nxmqn satisfies asymptotically

(
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

)(sing)

∼ fk

(1− x/xc)γk
(x ր xc),

with exponents γk /∈ {0,−1,−2, . . .}. Then, the formal series

F(s) = ∑
k≥0

(−1)k fk

sγk

is called the area amplitude series.

Remarks. i) Proposition 3 states that the area amplitude series appears in the asymp-
totic expansion about infinity of a Laplace transform of the moment generating func-
tion of the area limit distribution. The probability distribution of the limiting area
distribution is related to F(s) by a double Laplace transform.
ii) For typical polygon models, all derivatives of P(x,q) w.r.t. q, evaluated at q = 1,
exist and have the same radius of convergence, see Proposition 1. Typical polygon
models do have factorial moment generating functions of the above form, see the
examples below.

The second ingredient of the method consists in applying the method of domi-
nant balance. As described above, this may result in a differential equation (or in a
difference equation [90]) for the function F(s). Its applicability has to be tested for
each given type of functional equation. Typically, it can be applied if the factorial
area moment generating functions gk(x) Eq. (11.1) have, for values x < xc, a local
expansion about x = xc of the form

g(sing)
k (x) = ∑

l≥0

fk,l

(1− x/xc)
γk,l

,



11 Limit Distributions and Scaling Functions 263

where γk,l = (k− θl)/φ and θl+1 > θl . If a transfer theorem such as Lemma 2 ap-
plies, then the differential equation for F(s) induces a recurrence for the moments
of the limit distribution. If the differential equation can be solved in closed form,
inverse Laplace transform techniques may be applied in order to obtain explicit
expressions for the moment generating function and the probability density. Also,
higher order corrections to the limiting behaviour may be analysed, by studying the
functions Fl(s), for l ≥ 1. See [87] for examples.

11.3.3 Further Examples

Using the general method as described above, area limit laws for the other exactly
solved polygon models can be derived. A model with the same area limit law as rect-
angles is convex polygons, compare [87]. We will discuss some classes of polygon
models with different area limit laws.

11.3.3.1 Ferrers Diagrams

In contrast to the previous example, the limit distribution of area of Ferrers diagrams
is concentrated.

Proposition 4. The area random variable X̃m of Ferrers diagrams has mean µm ∼
m2/8. The normalised random variables Xm Eq. (11.18) converge in distribution to
a random variable with density p(x) = δ (x−1/8).

Remark. It should be noted that the above convergence statement already follows
from the concentration property limm→∞ σm/µm = 0, with σ2

m ∼ m3/48 the variance
of Xm, by an explicit analysis of the first three factorial moment generating func-
tions. (By Chebyshev’s inequality, the concentration property implies convergence
in probability, which in turn implies convergence in distribution.) We will give a
proof via the moment method in the following proof. This will serve as a trans-
parent example for the methodology introduced above. Moreover, it explains the
occurrence of the particular “scaling function” F(s) in Eq. (11.21) below.

Proof. Ferrers diagrams, counted by half-perimeter and area, satisfy the linear q-
difference equation [87, Eq (5.4)]

P(x,q) =
qx2

(1−qx)2 P(qx,q)+
qx2

(1−qx)2 .

The perimeter generating function g0(x) = x2/(1−2x) is obtained by setting q = 1
in the above equation. Hence xc = 1/2. Using the functional equation, it can be
shown by induction on k that all area moment generating functions gk(x) are rational
in g0(x) and its derivatives. Hence all gk(x) are rational functions. Since the area of
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a polygon grows at most quadratically with the perimeter, we have a bound on the
exponent, γk ≤ 2k + 1, of the leading singular part of gk(x). Given this bound, the
method of dominant balance can be applied. We set

P(x,q) =
1

(1−q)
1
2

F

(
1−2x

(1−q)
1
2

,(1−q)
1
2

)
,

and introduce new variables s and ε by q = 1 − ε2 and 2x = 1 − sε . Then an
expansion of the functional equation yields, to order ε0, the ODE of first order
F ′(s) = 4sF(s)−1, whose unique solution with the prescribed asymptotic behaviour
is

F(s) =

√
π
8

erfc
(√

2s
)

e2s2
. (11.21)

It can be inferred from the differential equation that all coefficients in the asymptotic
expansion of F(s) at infinity are nonzero. Hence, the above exponent bound is tight.
It can be inferred from the functional equation by induction on k that each gk(x) is
a Laurent polynomial about xc = 1/2. Thus, Lemma 2 applies, and we obtain the
moment generating function of the corresponding random variable Eq. (11.18) as
M(s) = exp(−s/8). This is readily recognised as the moment generating function
of a probability distribution concentrated at x = 1/8. ⊓⊔

A sequence of random variables, which satisfies the concentration property, often
leads to a Gaussian limit law, after centring and suitable normalisation. This is also
the case for Ferrers diagrams.

Theorem 2 ([97]). The area random variable X̃m of Ferrers diagrams has mean
µm ∼ m2/8 and variance σ2

m ∼ m3/48. The centred and normalised random vari-
ables

Xm =
X̃m − µm

σm
(11.22)

converge in distribution to a Gaussian random variable.

Remarks. i) It is possible to prove this result by the moment method, combined with
the method of dominant balance. The idea of proof consists in studying the func-
tional equation of the generating function for the “centred coefficients” pm,n − µm.
ii) The above arguments can also be applied to stack polygons to yield the concen-
tration property and a central limit theorem.

11.3.3.2 Staircase Polygons

The limit law of area of staircase polygons is the Airy distribution. This distribution
(see [34] and the survey [52]) is conveniently defined via its moments.

Definition 2 (Airy distribution [34]). The random variable Y is said to be Airy
distributed if



11 Limit Distributions and Scaling Functions 265

E[Y k]

k!
=

Γ (γ0)

Γ (γk)

φk

φ0
,

where γk = 3k/2− 1/2, and the numbers φk satisfy, for k ≥ 1, the quadratic recur-
rence

γk−1φk−1 +
1
2

k

∑
l=0

φlφk−l = 0,

with initial condition φ0 = −1.

Remarks ([34, 58]). i) The first moment is E[Y ] =
√

π . The sequence of moments
can be shown to satisfy the Carleman condition. Hence the distribution is uniquely
determined by its moments.
ii) The numbers φk appear in the asymptotic expansion of the logarithmic derivative
of the Airy function at infinity,

d
ds

logAi(s) ∼ ∑
k≥0

(−1)k φk

2k s−γk (s → ∞),

where Ai(x) = 1
π
∫ ∞

0 cos(t3/3 + tx)dt is the Airy function.
iii) Explicit expressions for the numbers φk are known [58]. They are, for k ≥ 1,
given by

φk = 2k+1 3
4π2

∫ ∞

0

x3(k−1)/2

Ai(x)2 + Bi(x)2 dx,

where Bi(z) is the second standard solution of the Airy differential equation f ′′(z)−
z f (z) = 0.
iv) The Airy distribution appears in a variety of contexts [34]. In particular, the
random variable Y/

√
8 describes the law of the area of a Brownian excursion. See

also [76] for an overview from a physical perspective.

Explicit expressions have been derived for the moment generating function of
the Airy distribution and for its density.

Fact 1 ([19, 66, 99, 34]). The moment generating function M(t) = E[e−tY ] of the
Airy distribution satisfies the modified Laplace transform

1√
2π

∫ ∞

0
(e−st −1)M(2−3/2t3/2)

1

t3/2
dt = 21/3

(
Ai′(21/3s)

Ai(21/3s)
− Ai′(0)

Ai(0)

)
. (11.23)

The moment generating function M(t) is given explicitly by

M(2−3/2t) =
√

2πt
∞

∑
k=1

exp
(
−βkt2/32−1/3

)
,

where the numbers −βk are the zeros of the Airy function. Its density p(x) is given
explicitly by
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23/2 p(23/2x) =
2
√

6
x2

∞

∑
k=1

e−vk v2/3
k U

(
−5

6
,

4
3

;vk

)
,

where vk = 2β 3
k /(27x2) and U(a,b,z) is the confluent hypergeometric function.

Remarks. i) The confluent hypergeometric function U(a,b;z) is defined as [1]

U(a,b;z) =
π

sinπb

(
1F1[a,b;z]

Γ (1 + a−b)Γ(b)
− z1−b

1F1[1 + a−b,2−b;z]
Γ (a)Γ (2−b)

)
,

where 1F1[a;b;z] is the hypergeometric function

1F1[a;b;z] = 1 +
a
b

z
1!

+
a(a + 1)

b(b + 1)

z2

2!
+ . . .

ii) The moment generating function and its density are obtained by two consecutive
inverse Laplace transforms of Eq. (11.23), see [67, 68] and [99, 54].
iii) In the proof of the following theorem, we will derive Eq. (11.23) using the model
of staircase polygons. This shows, in particular, that the coefficients φk appear in the
asymptotic expansion of the Airy function.

Theorem 3. The normalised area random variables Xm of staircase polygons Eq. (11.18)
satisfy

Xm√
π/4

d−→ Y√
π

(m → ∞),

where Y is Airy distributed according to Definition 2. We also have moment conver-
gence.

Remark. Given the functional equation of the half-perimeter and area generating
function of staircase polygons,

P(x,q) =
x2q

1−2xq−P(qx,q)
(11.24)

(see [88] for a recent derivation), this result is a special case of Theorem 4 below,
which is stated in [25].

Proof. We use the method of dominant balance. From the functional equation
Eq. (11.24), we infer g0(x) = 1/4 +

√
1−4x/2 +(1−4x)/4. Hence xc = 1/4. The

structure of the functional equation implies that all functions gk(x) can be written
as Laurent series in s =

√
1−4x, see also Proposition 7 below. Explicitly, we get

g1(x) = x2/(1− 4x). This suggests γk = (3k− 1)/2. An upper bound of this form
on the exponent γk can be derived without too much effort from the functional equa-
tion, by an application of Faa di Bruno’s formula, see also [89, Prop (4.4)]. Thus,
the method of dominant balance can be applied. We set

P(x,q) =
1
4

+(1−q)1/3F

(
1−4x

(1−q)2/3
,(1−q)1/3

)
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and introduce variables s,ε by 4x = 1− sε2 and q = 1− ε3. In the above equation,
we excluded the constant 1/4 =: P(reg)(x,q), since it does not contribute to the mo-
ment asymptotics. Expanding the functional equation to order ε2 gives the Riccati
equation

F ′(s)+ 4F(s)2 − s = 0. (11.25)

It follows that the coefficients fk of F(s) satisfy, for k ≥ 1, the quadratic recursion

γk−1 fk−1 + 4
k

∑
l=0

fl fk−l = 0,

with initial condition f0 =−1/2. A comparison with the definition of the Airy distri-
bution shows that φk = 22k+1 fk. Using the closure properties of ∆ -regular functions,
it can be inferred from the functional equation that (the analytic continuation of)
each factorial moment generating function gk(x) is ∆ -regular, with xc = 1/4, see
also Proposition 7 below. Hence the transfer theorem Lemma 2 can be applied. We

obtain 4Xm
d→ Y in distribution and for moments, where Y is Airy distributed. ⊓⊔

Remarks. i) The unique solution F(s) of the differential equation in the above proof
Eq. (11.25), satisfying the prescribed asymptotic behaviour, is given by

F(s) =
1
4

d
ds

logAi(41/3s). (11.26)

The moment generating function M(t) of the limiting random variable X = limm→∞ Xm

is related to the function F(s) via the modified Laplace transform

∫ ∞

0
(e−st −1)M(t3/2)

1

t3/2
dt = 4

√
π(F(s)−F(0)),

where the modification has been introduced in order to ensure a finite integral about
the origin. This result relates the above proof to Fact 1.
ii) The method of dominant balance can be used to obtain corrections Fl(s) to the
limiting behaviour [87].

The fact that the area law of staircase polygons is, up to normalisation, the same
as that of the area under a Brownian excursion, suggests that there might be a combi-
natorial explanation. Indeed, as is well known, there is a bijection [21, 98] between
staircase polygons and Dyck paths, a discrete version of Brownian excursions [2],
see Fig. 11.2 [88]. Within this bijection, the polygon area corresponds to the sum of
peak heights of the Dyck path, but not to the area below the Dyck path. For more
about this connection, see the remark at the end of the following subsection.



268 Christoph Richard

Fig. 11.2 [88] A combinatorial bijection between staircase polygons and Dyck paths [21, 98].
Column heights of a polygon correspond to peak heights of a path.

11.3.4 q-Difference Equations

All polygon models discussed above have an algebraic perimeter generating func-
tion. Moreover, their half-perimeter and area generating function satisfies a func-
tional equation of the form

P(x,q) = G(x,q,P(x,q),P(qx,q)),

for a real polynomial G(x,q,y0,y1). Since, under mild assumptions on G, the equa-
tion reduces to an algebraic equation for P(x,1) in the limit q → 1, it may be viewed
as a “deformation” of an algebraic equation. In this subsection, we will analyse
equations of this type at the special point (x,q) = (xc,1), where xc is the radius of
convergence of P(x,1). It will appear that the methods used in the above examples
also can be applied to this more general case.

The above equation falls into the class of q-difference equations [103]. While
particular examples appear in combinatorics in a number of places, see e.g. [37], the
asymptotic behaviour of equations of the above form seems to have been systemat-
ically studied initially in [25, 87]. The study can be done in some generality, e.g.,
also for non-polynomial power series G, for replacements more general than x 7→ qx,
and for multivariate generalisations, see [89] and [25]. For simplicity, we will con-
centrate on polynomial G, and then briefly discuss generalisations. Our exposition
closely follows [89, 87].

11.3.4.1 Algebraic q-Difference Equations

Definition 3 (Algebraic q-difference equation [25, 87]). An algebraic q-difference
equation is an equation of the form

P(x,q) = G(x,q,P(x,q),P(qx,q), . . . ,P(qNx,q)), (11.27)

where G(x,q,y0,y1, . . . ,yN) is a complex polynomial. We require that

G(0,q,0,0, . . . ,0) ≡ 0,
∂G
∂yk

(0,q,0,0, . . . ,0) ≡ 0 (k = 0,1, . . . ,N).
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Remarks. i) See [103] for an overview of the theory of q-difference equations. As
q approaches unity, the above equation reduces to an algebraic equation.
ii) Asymptotics for solutions of algebraic q-difference equations have been con-
sidered in [25]. The above definition is a special case of [89, Def 2.4], where a
multivariate extension is considered, and where G may be non-polynomial. Also,
replacements more general than x 7→ f (q)x are allowed. Such equations are called
q-functional equations in [89]. The results presented below apply mutatis mutandis
also to q-functional equations.

The algebraic q-difference equation in Definition 3 uniquely defines a (formal)
power series P(x,q) satisfying P(0,q) ≡ 0. This is shown by analysing the im-
plied recurrence for the coefficients pm(q) of P(x,q) = ∑m>0 pm(q)xm, see also [89,
Prop 2.5]. In fact, pm(q) is a polynomial in q. The growth of its degree in m is not
larger than cm2 for some positive constant c, hence the counting parameters are rank
2 parameters [25]. In our situation, such a bound holds, since the area of a polygon
grows at most quadratically with its perimeter.

From the preceding discussion, it follows that the factorial moment generating
functions

gk(x) =
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

are well-defined as formal power series. In fact, they can be recursively determined
from the q-difference equation by implicit differentiation, as a consequence of the
following proposition.

Proposition 5 ([87, 89]). Consider the derivative of order k > 0 of an algebraic q-
difference equation Eq. (11.27) w.r.t. q, evaluated at q = 1. It is linear in gk(x), and
its r.h.s. is a complex polynomial in the power series gl(x) and its derivatives up to
order k− l, where l = 0, . . . ,k.

Remarks. i) This statement can be shown by analysing the k-th derivative of the
q-difference equation, using Faa di Bruno’s formula [18].
ii) It follows that every function gk(x) is rational in gl(x) and its derivatives up to
order k− l, where 0 ≤ l < k. Since G is a polynomial, gk(x) is algebraic, by the
closure properties of algebraic functions.

We discuss analytic properties of the (analytic continuations of the) factorial mo-
ment generating functions gk(x). These are determined by the analytic properties of
g0(x) = P(x,1). We discuss the case of a square-root singularity of P(x,1), which
often occurs for combinatorial structures, and which is well studied, see e.g. [79,
Thm 10.6] or [37, Ch VII.4]. Other cases may be treated similarly. We make the
following assumption:

Assumption 2. The q-difference equation in Definition 3 has the following proper-
ties:

i) All coefficients of the polynomial G(x,q,y0,y1, . . . ,yN) are non-negative.
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ii) The polynomial Q(x,y) := G(x,1,y,y, . . . ,y) satisfies Q(x,0) 6≡ 0 and has degree
at least two in y.

iii)P(x,1) = ∑m≥1 pmxm is aperiodic, i.e., there exist indices 1 ≤ i < j < k such that
pi p j pk 6= 0, while gcd( j− i,k− i) = 1.

Remarks. i) The positivity assumption is natural for combinatorial constructions.
There are, however, q-difference equations with negative coefficients, which arise
from systems of q-difference equations with non-negative coefficients by reduction.
Examples are convex polygons [87, Sec 5.4] and directed convex polygons, see
below.
ii) Assumptions i) and ii) result in a square-root singularity as the dominant singu-
larity of P(x,1).
iii) Assumption iii) implies that there is only one singularity of P(x,1) on its circle
of convergence. Since P(x,1) has non-negative coefficients only, it occurs on the
positive real half-line. The periodic case can be treated by a straightforward exten-
sion [37].

An application of the (complex) implicit function theorem ensures that P(x,1)
is analytic at the origin. It can be analytically continued, as long as the defining
algebraic equation remains invertible. Together with the positivity assumption, one
can conclude that there is a number 0 < xc < ∞, such that the analytic continuation
of P(x,1) satisfies yc = limxրxc P(x,1) < ∞, with

Q(xc,yc) = yc,
∂
∂y

Q(xc,y)

∣∣∣∣
y=yc

= 1.

With the positivity assumption on the coefficients, it follows that

B :=
1
2

∂ 2

∂y2 Q(xc,y)

∣∣∣∣
y=yc

> 0, C :=
∂
∂x

Q(x,yc)

∣∣∣∣
x=xc

> 0. (11.28)

These conditions characterise the singularity of P(x,1) at x = xc as a square-root.
It can be shown that there exists a locally convergent expansion of P(x,1) about
x = xc, and that P(x,1) is analytic for |x| < xc. We have the following result. Recall
that a function f (z) is ∆ -regular if it is analytic in the indented disc ∆ = {z : |z| ≤
xc + η , |Arg(z− xc)| ≥ φ} for some η > 0 and some φ , where 0 < φ < π/2.

Proposition 6 ([79, 37, 89]). Given Assumption 2, the power series P(x,1) is ana-
lytic at x = 0, with radius of convergence xc. Its analytic continuation is ∆ -regular,
with a square-root singularity at x = xc and a local Puiseux expansion

P(x,1) = yc +
∞

∑
l=0

f0,l(1− x/xc)
1/2+l/2,

where yc = limxրxc P(x,1) < ∞ and f0,0 = −
√

xcC/B, for constants B > 0 and
C > 0 as in Eq. (11.28). The numbers f0,l can be recursively determined from the
q-difference equation.
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The asymptotic behaviour of P(x,1) = g0(x) carries over to the factorial moment
generating functions gk(x).

Proposition 7 ([89]). Given Assumption 2, all factorial moment generating func-
tions gk(x) are, for k ≥ 1, analytic at x = 0, with radius of convergence xc. Their
analytic continuations are ∆ -regular, with local Puiseux expansions

gk(x) =
∞

∑
l=0

fk,l(1− x/xc)
−γk+l/2,

where γk = 3k/2−1/2. The numbers fk,0 = fk are, for k ≥ 2, characterised by the
recursion

γk−1 fk−1 +
1

4 f1

k

∑
l=0

fl fk−l = 0,

and the numbers f0 < 0 and f1 > 0 are given by

f0 = −
√

Cxc

B
, 4 f1 =

∑N
k=1 k ∂G

∂yk
(xc,1,yc,yc, . . . ,yc)

B
, (11.29)

for constants B > 0 and C > 0 as in Eq. (11.28).

Remarks. i) This result can be obtained by a direct analysis of the q-difference
equation, applying Faa di Bruno’s formula, see also [87, Sec 2.2].
ii) Alternatively, it can be obtained by applying the method of dominant balance to
the q-difference equation. To this end, one notes that all functions gk(x) are Laurent
series in

√
1− x/xc, and that their leading exponents are bounded from above by

γk. (An upper bound on an exponent is usually easier to obtain than its exact value,
since cancellations can be ignored.) With these two ingredients, the method of dom-
inant balance, as described above, can be applied. The differential equation of the
function F(s) then translates, via a transfer theorem, into the above recursion for the
coefficients. See [89, Sec 5].

The above result can be used to infer the limit distribution of area, along the lines
of Section 11.3.2.

Theorem 4 ([25, 89]). Let Assumption 2 be satisfied. For the solution of an alge-
braic q-difference equation P(x,q) = ∑m,n pm,nxmqn, let X̃m denote the random vari-
able

P(X̃m = n) =
pm,n

∑n pm,n

(which is well-defined for almost all m). The mean of X̃m is given by

E[X̃m] ∼ 2
√

π
f1

| f0|
m3/2 (m → ∞),

where the numbers f0 and f1 are given in Eq. (11.29). The sequence of normalised
random variables Xm converges in distribution,
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Xm =
X̃m

E[X̃m]

d−→ Y√
π

(m → ∞),

where Y is Airy distributed according to Definition 2. We also have moment conver-
gence.

Remarks. i) An explicit calculation shows that φk = | f0|−1
(
| f0|
2 f1

)k
fk. Together with

Proposition 7, the claim of the proof follows by standard reasoning, as in the exam-
ples above.
ii) The above theorem appears in [25, Thm 3.1], together with an indication of the
arguments of a proof. [There is a misprint in the definition of γ in [25, Thm 3.1].
In our notation γ = 4B f1.] Within the more general setup of q-functional equations,
the theorem is a special case of [89, Thm 1.5].
iii) The above theorem is a kind of central limit theorem for combinatorial con-
structions, since the Airy distribution arises under natural assumptions for a large
class of combinatorial constructions. For a connection to certain Brownian motion
functionals, see below.

11.3.4.2 q-Functional Equations and Other Extensions

We discuss extensions of the above result. Generically, the dominant singularity of
P(x,1) is a square-root. The case of a simple pole as dominant singularity, which
generalises the example of Ferrers diagrams, has been discussed in [87]. Under weak
assumptions, the resulting limit distribution of area is concentrated. Other singular-
ities can also be analysed, as shown in the examples of rectangles above and of
directed convex polygons in the following subsection. Compare also [90].

The case of non-polynomial G can be discussed along the same lines, with certain
assumptions on the analyticity properties of the series G. In the undeformed case
q = 1, it is a classical result [37, Ch VII.3] that the generating function has a square-
root as dominant singularity, as in the polynomial case. One can then argue along
the above lines that an Airy distribution emerges as the limit law of the deformation
variable [89, Thm 1.5]. Such an extension is relevant, since prominent combinatorial
models, such as the Cayley tree generating function, fall into that class. See also the
discussion of self-avoiding polygons below.

The above statements also remain valid for more general classes of replacements
x 7→ qx, e.g., for replacements x 7→ f (q)x, where f (q) is analytic for 0 ≤ q ≤ 1,
with non-negative series coefficients about q = 0. More interestingly, the idea of
introducing a q-deformation may be iterated [25], leading to equations such as

P(x,q1, . . . ,qM) = G(x,P(xq1 · . . . ·qM,q1q2 · . . . ·qM,q2q3 · . . . ·qM, . . . ,qM)).
(11.30)

The counting parameters corresponding to qk are rank k + 1 parameters, and limit
distributions for such quantities have been derived for some types of singularities
[77, 78, 88]. There is a central limit result for the generic case of a square-root sin-
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gularity [89]. This generalisation applies to counting parameters, which decompose
linearly under a combinatorial construction. These results can also be obtained by
an alternative method, which generalises to non-linear parameters, see [51].

The case where the limit q to unity in a q-difference equation is not algebraic,
has not been discussed. For example, if G(x,q,P(x,q),P(qx,q)) = 0 for some poly-
nomial G, the limit q to unity might lead to an algebraic differential equation for
P(x,1). This may be seen by noting that

lim
q→1

f (x)− f (qx)
(1−q)

= x f ′(x),

for f (x) differentiable at x. Such equations are possibly related to polygon mod-
els such as three-choice polygons [44] or punctured staircase polygons [45]. Their
perimeter generating function is not algebraic, hence the models do not satisfy an
algebraic q-difference equation as in Definition 3.

11.3.4.3 A Stochastic Connection

Lastly, we indicate a link to Brownian motion, which appears in [99, 100] and was
further developed in [77, 78, 89, 88]. As we saw in Section 11.3.2, limit distribu-
tions can, under certain conditions, be characterised by a certain Laplace transform
of their moment generating functions. This approach, which arises naturally from
the viewpoint of generating functions, can be applied to discrete versions of Brow-
nian motion, excursions, bridges or meanders. Asymptotic results are results for the
corresponding stochastic objects. In fact, distributions of some functionals of Brow-
nian motion have apparently first been obtained using this approach [99, 100].

Interestingly, a similar characterisation appears in stochastics for functionals of
Brownian motion, via the Feynman-Kac formula. For example, Louchard’s formula
[66] relates the logarithmic derivate of the Airy function to a certain Laplace trans-
form of the moment generating function of the law of the Brownian excursion area.
Distributions of functionals of Brownian motion can also be obtained by a path in-
tegral approach, see [75] for a recent overview.

The discrete approach provides an alternative method for obtaining information
about distributions of certain functionals of Brownian motion. For such function-
als, it provides an alternative proof of Louchard’s formula [77, 78]. It leads, via the
method of dominant balance, quite directly to moment recurrences for the underly-
ing distribution. These have been studied in the case of rank k parameters for discrete
models of Brownian motion. In particular, they characterise the distributions of inte-
grals over (k−1)-th powers of the corresponding stochastic objects [77, 78, 89, 88].
Such results have apparently not been previously derived using stochastic meth-
ods. The generating function approach can also be applied to classes of q-functional
equations with singularities different from those connected to Brownian motion. For
a related generalisation, see [10].
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Vice versa, results and techniques from stochastics can be (and have been) anal-
ysed in order to study asymptotic properties of polygons. An example is the contour
process of simply generated trees [38], which asymptotically describes the area of a
staircase polygon. See also [69, 70, 71, 59].

11.3.5 Directed Convex Polygons

We show that the limit law of area of directed convex polygons in the uniform fixed
perimeter ensemble is that of the area of the Brownian meander.

Fact 2 ([100, Thm 2]). The random variable Z of area of the Brownian meander is
characterised by

E[Zk]

k!
=

Γ (α0)

Γ (αk)

ωk

ω0

1

2k/2
,

where αk = 3k/2 + 1/2. The numbers ωk satisfy for k ≥ 1 the quadratic recurrence

αk−1ωk−1 +
k

∑
l=0

φl2
−lωk−l = 0,

with initial condition ω0 = 1, where the numbers φk appear in the Airy distribution
as in Definition 2.

Remarks. i) This result has been derived using a discrete meander, whose length
and area generating function is described by a system of two algebraic q-difference
equations, see [77, Prop 1].
ii) We have E[Z] = 3

√
2π/8 for the mean of Z. The random variable Z is uniquely

determined by its moments. The numbers ωk appear in the asymptotic expansion
[100, Thm 3]

Ω(s) =
1−3

∫ s
0 Ai(t)dt

3Ai(s)
∼ ∑

k≥0

(−1)kωks−αk (s → ∞),

where Ai(x) = 1
π
∫ ∞

0 cos(t3/3 + tx)dt is the Airy function.

Explicit expressions have been derived for the moment generating function and
for the distribution function of Z.

Fact 3 ([100, Thm 5]). The moment generating function M(t) = E[e−tZ ] of Z satis-
fies the Laplace transform

∫ ∞

0
e−st M(

√
2 t3/2)

1

t1/2
dt =

√
π Ω(s). (11.31)

It is explicitly given by
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M(t) = 2−1/6t1/3
∞

∑
k=1

Rk exp(−βkt2/32−1/3)

for ℜ(t) > 0, where the numbers −βk are the zeroes of the Airy function, and where

Rk =
βk(1 + 3

∫ βk
0 Ai(−t)dt)

3Ai′(−βk)
.

The random variable Z has a continuous density p(y), with distribution function
R(x) =

∫ x
0 p(y)dy given by

R(x) =

√
π

(18)1/6x

∞

∑
k=1

Rk e−vk v−1/3
k Ai((3vk/2)2/3),

where vk = (βk)
3/(27x2).

Remark. The moment generating function and the distribution function are ob-
tained by two consecutive inverse Laplace transforms of Eq. (11.31).

Theorem 5. The normalised area random variables Xm of directed convex polygons
Eq. (11.18) satisfy

Xm
d−→ 1

2
Z (m → ∞),

where Z is the area random variable of the Brownian meander as in Fact 2. We also
have moment convergence.

Proof. A system of q-difference equations for the generating function Q(x,y,q) of
directed convex polygons, counted by width, height and area, has been given in [9,
Lemma 1.1]. It can be reduced to a single equation,

q(qx−1)Q(x,y,q)+ ((1 + q)(P(x,y,q)+ y))Q(qx,y,q)+
(
xyq− y2 + P(x,y,q)(qx− y−1)

)
Q(q2x,y,q)

−q2xy(y + P(x,y,q)−1) = 0,

(11.32)

where P(x,y,q) is the width, height and area generating function of staircase poly-
gons. Setting q=1 and x = y yields the half-perimeter generating function

g0(x) =
x2

√
1−4x

.

Hence xc = 1/4 for the radius of convergence of Q(x,x,1).
It is possible to derive from Eq. (11.32) a q-difference equation for the (isotropic)

half-perimeter and area generating function Q(x,q) = Q(x,x,q) of directed convex
polygons. This is due to the symmetry Q(x,y,q) = Q(y,x,q), which results from
invariance of the set of directed convex polygons under reflection along the nega-
tive diagonal y = −x. Since this equation is quite long, we do not give it here. By
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arguments analogous to those of the previous subsection, it can be deduced from
this equation that all area moment generating functions gk(x) of Q(x,1) are Laurent
series in s =

√
1−4x, see also [89, Prop (4.3)]. The leading singular exponent of

gk(x), defined by gk(x)∼ hk(1−x/xc)
−αk as x ր xc, can be bounded from above by

αk ≤ 3k/2+1/2, see also [89, Prop (4.4)] for the argument. We apply the method of
dominant balance, in order to prove that αk = 3k/2 + 1/2 and to yield recurrences
for the coefficients hk. We define

P(x,q) =
1
4

+(1−q)1/3F

(
1−4x

(1−q)2/3
,(1−q)1/3

)
,

Q(x,q) = (1−q)−1/3H

(
1−4x

(1−q)2/3
,(1−q)1/3

)
,

where F(s) = F(s,0) has already been determined in Eq. (11.26). We set 4x = 1−
sε2, q = 1− ε3, and expand the q-difference equation to leading order in ε . We get
for H(s) := H(s,0) the inhomogeneous linear differential equation of first order

H ′(s)+ 4H(s)F(s)+
1
8

= 0.

This implies for the coefficients hk of H(s) = ∑k≥0 hks−αk and fk of F(s) =

∑k≥0 fks−γk for k ≥ 1 the quadratic recursion

αk−1hk−1 + 4
k

∑
l=0

flhk−l = 0,

where h0 = 1/16. Using fk = 2−2k−1φk, we obtain the meander recursion in Fact 2
by setting hk = 2−k−4ωk. It can be inferred from the functional equation that (the
analytic continuations of) all factorial moment generating functions are ∆ -regular,

with xc = 1/4. Thus Lemma 2 applies, and we conclude Xm
d→ Z/2. ⊓⊔

Remarks. i) The above theorem states that the limit distribution of area of directed
convex polygons coincides, up to normalisation, with the area distribution of the
Brownian meander [100]. This suggests that there might exist a combinatorial bijec-
tion to discrete meanders, in analogy to that between staircase polygons and Dyck
paths. Up to now, a “nice” bijection has not been found, see however [6, 72] for
combinatorial bijections to discrete bridges.
ii) The above proof relies on a q-difference equation for the isotropic generating
function Q(x,x,q). Up to normalisation, the meander distribution also appears for
the anisotropic model Q(x,y,q), where 0 < y < 1/2 is fixed, as can be shown by a
considerably simpler calculation. The normalisation constant coincides with that of
the isotropic model for y = 1/2. The latter statement is also a consequence of the
fact that the height random variable of directed polygons is asymptotically Gaussian,
after centring and normalisation. Analogous considerations apply to the relation be-
tween isotropic and anisotropic versions of the other polygon classes.
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11.3.6 Limit Laws Away From (xc,1)

As indicated in the introduction, limit laws in the fixed perimeter ensemble for q 6= 1
are expected to be Gaussian. The same remark holds for the fixed area ensemble
for x 6= xc. There are partial results for the model of staircase polygons. The fixed
area ensemble can, for x < xc and q near unity, be analysed using Fact 7 of the
following section. For staircase polygons in the uniform fixed area ensemble x = 1,
the following result holds.

Fact 4 ([37, Prop IX.11]). Consider the perimeter random variable of staircase
polygons in the uniform fixed area ensemble,

P(Ỹn = m) =
pm,n

∑m pm,n
.

The variable Ỹn has mean µn ∼ µ ·n and standard deviation σn ∼ σ
√

n, where the
numbers µ and σ satisfy

µ = 0.8417620156 . . ., σ = 0.4242065326 . . .

The centred and normalised random variables

Yn =
Ỹn − µn

σn
,

converge in distribution to a Gaussian random variable.

Remark. The above result is proved using an explicit expression for the half-
perimeter and area generating function, as a ratio of two q-Bessel functions. It can
be shown that this expression is meromorphic about (x,q) = (1,qc) with a simple
pole, where qc is the radius of convergence of the generating function P(1,q). The
explicit form of the singularity about (1,qc) yields a Gaussian limit law.

There are a number of results for classes of column-convex polygons in the uni-
form fixed area ensemble, typically leading to Gaussian limit laws. The upper and
lower shape of a polygon can be described by Brownian motions. See [69, 70, 71] for
details. It would be interesting to prove convergence to a Gaussian limit law within
a more general framework, such as q-difference equations. Analogous questions for
other functional equations, describing counting parameters such as horizontal width,
have been studied in [24].

11.3.7 Self-Avoiding Polygons

A numerical analysis of self-avoiding polygons, using data from exact enumeration
[91, 92], supports the conjecture that the limit law of area is, up to normalisation,
the Airy distribution.
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Let pm,n denote the number of square lattice self-avoiding polygons of half-
perimeter m and area n. Exact enumeration techniques have been applied to obtain
the numbers pm,n for all values of n for given m ≤ 50. Numerical extrapolation tech-
niques yield very accurate estimates of the asymptotic behaviour of the coefficients
of the factorial moment generating functions. To leading order, these are given by

[xm]gk(x) =
1
k! ∑

n
(n)k pm,n ∼ Akx−m

c m3k/2−3/2−1 (m → ∞), (11.33)

for positive amplitudes Ak. The above form has been numerically checked [91, 92]
for values k ≤ 10 and is conjectured to hold for arbitrary k. The value xc is the radius
of convergence of the half-perimeter generating function of self-avoiding polygons.
The amplitudes Ak have been extrapolated to at least five significant digits. In par-
ticular, we have

xc = 0.14368062927(2), A0 = 0.09940174(4), A1 = 0.0397886(1),

where the numbers in brackets denote the uncertainty in the last digit. An exact
value of the amplitude A1 = 1/(8π) has been predicted [15] using field-theoretic
arguments.

The particular form of the exponent implies that the model of rooted self-
avoiding polygons p̃m,n = mpm,n has the same exponents φ = 2/3 and θ = 1/3
as staircase polygons. In particular, it implies a square-root as dominant singular-
ity of the half-perimeter generating function. Together with the above result for q-
functional equations, this suggests that (rooted) self-avoiding polygons might obey
the Airy distribution as a limit law of area.

A natural method to test this conjecture consists in analysing ratios of moments,
such that a normalisation constant is eliminated. Such ratios are also called universal
amplitude ratios. If the conjecture were true, we would have asymptotically

E[X̃ k
m]

E[X̃m]k
∼ k!

Γ (γ1)
k

Γ (γk)Γ (γ0)k−1

φkφ k−1
0

φ k
1

(m → ∞),

for the area random variables X̃m as in Eq. (11.17). The numbers φk and exponents
γk are those of the Airy distribution as in Definition 2. The above form was numer-
ically confirmed for values of k ≤ 10 to a high level of numerical accuracy. The
normalisation constant is obtained by noting that E[Y ] =

√
π .

Conjecture 1 (cf [91, 92]). Let pm,n denote the number of square lattice self-
avoiding polygons of half-perimeter m and area n. Let X̃m denote the random vari-
able of area in the uniform fixed perimeter ensemble,

P(X̃m = n) =
pm,n

∑n pm,n
.

We conjecture that
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X̃m

E[X̃m]

d−→ Y√
π

,

where Y is Airy distributed according to Definition 2.

Remarks. i) Field theoretic arguments [15] yield A1 = 1/(8π).
ii) References [91, 92] contain conjectures for the scaling function of self-avoiding
polygons and rooted self-avoiding polygons, see the following section. In fact, the
numerical analysis in [91, 92] mainly concerns the area amplitudes Ak, which deter-
mine the limit distribution of area.
iii) The area law of self-avoiding polygons has also been studied [91, 92] on the tri-
angular and hexagonal lattices. As for the square lattice, the area limit law appears
to be the Airy distribution, up to normalisation.
iv) It is an open question whether there are non-trivial counting parameters other
than the area, whose limit law (in the fixed perimeter ensembles) coincides between
self-avoiding polygons and staircase polygons. See [88] for a negative example. This
indicates that underlying stochastic processes must be quite different.
v) A proof of the above conjecture is an outstanding open problem. It would be in-
teresting to analyse the emergence of the Airy distribution using stochastic Loewner
evolution [60]. Self-avoiding polygons at criticality are conjectured to describe
the hull of critical percolation clusters and the outer boundary of two-dimensional
Brownian motion [60].

A numerical analysis of the fixed area ensemble along the above lines again
shows behaviour similar to that of staircase polygons. This supports the following
conjecture.

Conjecture 2. Consider the perimeter random variable of self-avoiding polygons
in the uniform fixed area ensemble,

P(Ỹn = m) =
pm,n

∑m pm,n
.

The random variable Ỹn is conjectured to have mean µn ∼ µ ·n and standard devi-
ation σn ∼ σ

√
n, where the numbers µ and σ satisfy

µ = 1.855217(1), σ2 = 0.3259(1),

where the number in brackets denotes the uncertainty in the last digit. The centred
and normalised random variables

Yn =
Ỹn − µn

σn
,

are conjectured to converge in distribution to a Gaussian random variable.

The above conjectures, together with the results of the previous subsection, also
raise the question whether rooted square-lattice self-avoiding polygons, counted by
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half-perimeter and area, might satisfy a q-functional equation. In particular, it would
be interesting to consider whether rooted self-avoiding polygons might satisfy

P(x) = G(x,P(x)), (11.34)

for some power series G(x,y) in x,y. If the perimeter generating function P(x) is
not algebraic, this excludes polynomials G(x,y) in x and y. Note that the anisotropic
perimeter generating function of self-avoiding polygons is not D-finite [86]. It is
thus unlikely that the isotropic perimeter generating function is D-finite and, in par-
ticular, algebraic. On the other hand, solutions of Eq. (11.34) need not be alge-
braic or D-finite. An example is the Cayley tree generating function T (x) satisfying
T (x) = xexp(T (x)), see [33].

11.3.8 Punctured Polygons

Punctured polygons are self-avoiding polygons with internal holes, which are also
self-avoiding polygons. The polygons are also mutually avoiding. The perimeter of
a punctured polygon is the sum of the lengths of its boundary curves, the area of
a punctured polygon is the area of the outer polygon minus the area of the holes.
Apart from intrinsic combinatorial interest, models of punctured polygons may be
viewed as arising from two-dimensional sections of three-dimensional self-avoiding
vesicles. Counted by area, they may serve as an approximation to the polyomino
model.

We consider, for a given subclass of self-avoiding polygons, punctured polygons
with holes from the same subclass. The case of a bounded number of punctures
of bounded size can be analysed in some generality. The case of a bounded num-
ber of punctures of unbounded size leads to simple results if the critical perimeter
generating function of the model without punctures is finite.

For a given subclass of self-avoiding polygons, the number pm,n denotes the num-

ber of polygons with half-perimeter m and area n. Let p(r,s)
m,n denote the number of

polygons with r ≥ 1 punctures whose half-perimeter sum equals s. Let p(r)
m,n denote

the number of polygons with r ≥ 1 punctures of arbitrary size.

Theorem 6 ([94, Thms 1,2]). Assume that, for a class of self-avoiding polygons

without punctures, the area moment coefficients p(k)
m = ∑n≥0 nk pm,n have, for k ∈N0,

the asymptotic form

p(k)
m ∼ Akx−m

c mγk−1 (m → ∞),

for numbers Ak > 0, for 0 < xc ≤ 1 and for γk = (k− θ )/φ , where 0 < φ < 1. Let

g0(x) = ∑m≥0 p(0)
m xm denote the half-perimeter generating function.

Then, the area moment coefficient p(r,k,s)
m = ∑n nk p(r,s)

m,n of the polygon class with
r ≥ 1 punctures whose half-perimeter sum equals s is, for k ∈ N0, asymptotically
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given by

p(r,k,s)
m ∼ A(r,s)

k x−m
c mγk+r−1 (m → ∞),

where A(r,s)
k =

Ak+r
r! xs

c[x
s](g0(x))r.

If θ > 0, the area moment coefficient p(r,k)
m = ∑n nk p(r)

m,n of the polygon class with
r ≥ 1 punctures of arbitrary size satisfies, for k ∈ N0, asymptotically

p(r,k)
m ∼ A(r)

k x−m
c mγk+r−1 (m → ∞),

where the amplitudes A(r)
k are given by

A(r)
k =

Ak+r(g0(xc))
r

r!
.

Remarks. i) The basic argument in the proof of the preceding result involves an es-
timate of interactions of hole polygons with one another or with the boundary of the
external polygon, which are shown to be asymptotically irrelevant. This argument
also applies in higher dimensions, as long as the exponent φ satisfies 0 < φ < 1.
ii) In the case of an infinite critical perimeter generating function, such as for sub-
classes of convex polygons, boundary effects are asymptotically relevant, if punc-
tures of unbounded size are considered. The case of an unbounded number of punc-
tures, which approximates the polyomino problem, is unsolved.
iii) The above result leads to new area limit distributions. For rectangles with r punc-
tures of bounded size, we get βr+1,1/2 as the limit distribution of area. For staircase
polygons with punctures, we obtain generalisations of the Airy distribution, which
are discussed in [94]. In contrast, for Ferrers diagrams with punctures of bounded
size, the limit distribution of area stays concentrated.
iv) The theorem also applies to models of punctured polygons, which do not sat-
isfy an algebraic q-difference equation. An example is given by staircase polygons
with a staircase hole of unbounded size, whose perimeter generating function is not
algebraic [45].

11.3.9 Models in Three Dimensions

There are very few results for models in higher dimensions, notably for models on
the cubic lattice. There are a number of natural counting parameters for such ob-
jects. We restrict consideration to area and volume, which is the three-dimensional
analogue of perimeter and area of two-dimensional models.

One prominent model is self-avoiding surfaces on the cubic lattice, also studied
as a model of three-dimensional vesicle collapse. We follow the review in [102] (see
also the references therein) and consider closed orientable surfaces of genus zero,
i.e., surfaces homeomorphic to a sphere. Numerical studies indicate that the surface
generating function displays a square-root γ = −1/2 as the dominant singularity.
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Consider the fixed surface area ensemble with weights proportional to qn, with n
the volume of the surface. One expects a deflated phase (branched polymer phase)
for small values of q and an inflated phase (spherical phase) for large values of q. In
the deflated phase, the mean volume of a surface should grow proportionally to the
area m of the surface, in the inflated phase the mean volume should grow like m3/2

with the surface. Numerical simulations suggest a phase transition at q = 1 with
exponent φ = 1. This indicates that a typical surface resembles a branched poly-
mer, and a concentrated distribution of volume is expected. Note that this behaviour
differs from that of the two-dimensional model of self-avoiding polygons.

Even relatively simple subclasses of self-avoiding surfaces such as rectangular
boxes [73] and plane partition vesicles [50], generalising the two-dimensional mod-
els of rectangles and Ferrers diagrams, display complicated behaviour. Let pm,n de-
note the number of surfaces of area m and volume n and consider the generating
function P(x,q) = ∑m,n pm,nxmqn. For rectangular box vesicles, we apparently have
P(x,1)∼A| log(1−x)|/(1−x)3/2 as x→ 1−, some constant A > 0, see [73, Eq (35)].
In the fixed surface area ensemble, a linear polymer phase 0 < q < 1 is separated
from a cubic phase q > 1. At q = 1, we have φ = 2/3, such that typical rectangular
boxes are expected to attain a cubic shape. We expect a limit distribution which is
concentrated. For plane partition vesicles, it is conjectured on the basis of numeri-
cal simulations [50, Sec 4.1.1] that P(x,1)∼ Aexp(α/(xc − x)1/3)/(xc − x)γ , where
γ ≈ 1.7 at xc = 0.8467(3), for non-vanishing constants A and α . It is expected that
φ = 1/2.

As in the previous subsection, three-dimensional models of punctured vesicles
may be considered. The above arguments hold, if the exponent φ satisfies 0 < φ < 1.
A corresponding result for punctures of unbounded size can be stated if the critical
surface area generating function is finite.

11.3.10 Summary

In this section, we described methods to extract asymptotic area laws for polygon
models on the square lattice, and we applied these to various classes of polygons.
Some of the laws were found to coincide with those of the (absolute) area under
a Brownian excursion and a Brownian meander. A combinatorial explanation for
the latter result has not been given. Is there a simple polygon model with the same
area limit law as the area under a Brownian bridge? The connection to stochas-
tics deserves further investigation. In particular, it would be interesting to identify
underlying stochastic processes. For an approach to a number of different random
combinatorial structures starting from a probabilistic viewpoint, see [82].

Area laws of polygon models in the uniform fixed perimeter ensemble q = 1
have been understood in some generality, by an analysis of the singular behaviour
of q-functional equations about the point (x,q) = (xc,1). Essentially, the type of sin-
gularity of the half-perimeter generating function determines the limit law. A refined
analysis can be done, leading to local limit laws and providing convergence rates.
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Also, limit distributions describing corrections to the asymptotic behaviour can be
derived. They seem to coincide with distributions arising in models of punctured
polygons, see [94].

For non-uniform ensembles, concentrated distributions are expected, but general
results, e.g. for q-functional equations, are lacking. These may be obtained by mul-
tivariate singularity analysis, see also [24, 65].

The underlying structure of q-functional equations appears in a number of other
combinatorial models, such as models of two-dimensional directed walks, counted
by length and area between the walk and the x-axis, models of simply generated
trees, counted by the number of nodes and path length, and models which appear
in the average case analysis of algorithms, see [34, 37]. Thus, the above methods
and results can be applied to such models. In statistical physics, this mainly con-
cerns models of (interacting) directed walks, see [48] for a review. There is also an
approach to the behaviour of such walks from a stochastic viewpoint, see e.g. the
review [101].

There are exactly solvable polygon models, which do not satisfy an algebraic
q-difference equation, such as three-choice polygons [44], punctured staircase poly-
gons [45], prudent polygon subclasses [96], and possibly diagonally convex poly-
gons. For a rigorous analysis of the above models, it may be necessary to understand
q-difference equations with more general holonomic solutions, as q approaches
unity.

Focussing on self-avoiding polygons, it might be interesting to analyse whether
the perimeter generating function of rooted self-avoiding polygons might satisfy an
implicit equation Eq. (11.34). Asymptotic properties of the area can possibly be
studied using stochastic Loewner evolution [60]. Another open question concerns
the area limit law for q 6= 1 or the perimeter limit law for x 6= xc, where Gaussian
behaviour is expected. At present, even the simpler question of analyticity of the
critical curve xc(q) for 0 < q < 1 is open.

Most results of this section concerned area limit laws of polygon models. Simi-
larly, one can ask for perimeter laws in the fixed area ensemble. Results have been
given for the uniform ensemble. Generally, Gaussian limit laws are expected away
from criticality, i.e., away from x = xc. Perimeter laws are more difficult to extract
from a q-functional equation than area laws. We will however see in the following
section that, surprisingly, under certain conditions, knowledge of the area limit law
can be used to infer the perimeter limit law at criticality.

11.4 Scaling Functions

From a technical perspective, the focus in the previous section was on the sin-
gular behaviour of the single-variable factorial moment generating function gk(x)
Eq. (11.1), and on the associated asymptotic behaviour of their coefficients. This
yielded the limiting area distribution of some polygon models.
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In this section, we discuss the more general problem of the singular behaviour
of the two-variable perimeter and area generating function of a polygon model.
Near the special point (x,q) = (xc,1), the perimeter and area generating function
P(x,q)= ∑m≥0 pm(q)xm = ∑n≥0 an(x)qn is expected to be approximated by a scaling
function, and the corresponding coefficient functions pm(q) and an(x) are expected
to be approximated by finite size scaling functions. As we will see, scaling func-
tions encapsulate information about the limit distributions discussed in the previous
section, and thus have a probabilistic interpretation.

We will give a focussed review, guided by exactly solvable examples, since
singularity analysis of multivariate generating functions is, in contrast to the one-
variable case, not very well developed, see [81] for a recent overview. Methods of
particular interest to polygon models concern asymptotic expansions about multi-
critical points, which are discussed for special examples in [80, 5]. Conjectures for
the behaviour of polygon models about multicritical points arise from the physi-
cal theory of tricritical scaling [41], see the review [61], which has been adapted
to polygon models [14, 13]. There are few rigorous results about scaling behaviour
of polygon models, which we will discuss. This will complement the exposition in
[47]. See also [42, Ch 9] for the related subject of scaling in percolation.

11.4.1 Scaling and Finite Size Scaling

The half-perimeter and area generating function of a polygon model P(x,q) about
(x,q) = (xc,1) is expected to be approximated by a scaling function. This is moti-
vated by the following heuristic argument. Assume that the factorial area moment
generating functions gk(x) Eq. (11.1) have, for values x < xc, a local expansion about
x = xc of the form

gk(x) = ∑
l≥0

fk,l

(1− x/xc)
γk,l

,

where γk,l = (k − θl)/φ and θl+1 > θl . Disregarding questions of analyticity, we
argue

P(x,q) ≈ ∑
k≥0

(−1)k

(
∑
l≥0

fk,l

(1− x/xc)
γk,l

)
(1−q)k

≈ ∑
l≥0

(1−q)θl

(
∑
k≥0

(−1)k fk,l

(
1− x/xc

(1−q)φ

)−γk,l
)

.

In the above calculation, we replaced P(x,q) by its Taylor series about q = 1, and
then replaced the Taylor coefficients by their expansion about x = xc. The preceding
heuristic calculation has, for some polygon models and on a formal level, a rigorous
counterpart, see the previous section. In the above expression, the r.h.s. depends
on series Fl(s) = ∑k≥0(−1)k fk,l s

−γk,l of a single variable of combined argument
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s = (1− x/xc)/(1− q)φ . Restricting to the leading term l = 0, this motivates the
following definition. For φ > 0 and xc > 0, we define for numbers s−,s+ ∈ [−∞,+∞]
the domain

D(s−,s+) = {(x,q) ∈ (0,∞)× (0,1) : s− < (1− x/xc)/(1−q)φ < s+)}.

Definition 4 (Scaling function). For numbers pm,n with generating function P(x,q)=

∑m,n pm,nxmqn, let Assumption 1 be satisfied. Let 0 < xc ≤ 1 be the radius of con-
vergence of P(x,1). Assume that there exist constants s−,s+ ∈ [−∞,+∞] satisfying
s− < s+ and a function F : (s−,s+) → R, such that P(x,q) satisfies, for real con-
stants θ and φ > 0,

P(sing)(x,q) ∼ (1−q)θ
F

(
1− x/xc

(1−q)φ

)
(x,q) → (xc,1) in D(s−,s+). (11.35)

Then, the function F (s) is called an (area) scaling function, and θ and φ are called
critical exponents.

Remarks. i) In analogy to the one-variable case, the above asymptotic equal-
ity means that there exists a power series P(reg)(x,q) convergent for |x| < x1 and
|q| < q1, where x1 > xc and q1 > 1, such that the function P(sing)(x,q) := P(x,q)−
P(reg)(x,q) is asymptotically equal to the r.h.s..
ii) Due to the region D(s−,s+) where the limit (x,q) → (xc,1) is taken, admissible
values (x,q) satisfy 0 < q < 1 and 0 < x < x0(q), where x0(q) = xc(1− s−(1−q)φ ),
if s− 6= −∞. Thus, in this case, the critical curve xc(q) satisfies xc(q) ≥ x0(q) as q
approaches unity. Note that equality need not hold in general.
iii) The method of dominant balance was originally applied in order to obtain a
defining equation for a scaling function F (s) from a given functional equation of
a polygon model. This assumes the existence of a scaling function, together with
additional analyticity properties. See [84, 91, 87].
iv) For particular examples, an analytic scaling function F (s) exists, with an asymp-
totic expansion about infinity, and the area amplitude series F(s) agrees with the
asymptotic series, see below.
v) There is an alternative definition of a scaling function [31] by demanding

P(sing)(x,q) ∼ 1

(1− x/xc)−θ/φ H

(
1−q

(1− x/xc)1/φ

)
(x,q) → (xc,1) (11.36)

in a suited domain, for a function H (t) of argument t = (1−q)/(1−x/xc)
1/φ . Such

a scaling form is also motivated by the above argument. One may then call such a
function H (t) a perimeter scaling function. If F (s) is a scaling function, then a
function H (t), satisfying Eq. (11.36) in a suited domain, is given by

H (t) = tθ
F (t−φ ).

If s− ≤ 0 and s+ = ∞, the particular scaling form Eq. (11.35) implies a cer-
tain asymptotic behaviour of the critical area generating function and of the half-
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perimeter generating function. The following lemma is a consequence of Defini-
tion 4.

Lemma 3. Let the assumptions of Definition 4 be satisfied.

i) If s+ = ∞ and if the scaling function F (s) has the asymptotic behaviour

F (s) ∼ f0s−γ0 (s → ∞),

then γ0 = − θ
φ , and the half-perimeter generating function P(x,1) satisfies

P(sing)(x,1) ∼ f0(1− x/xc)
θ/φ (x ր xc).

ii) If s− ≤ 0 and if the scaling function F (s) has the asymptotic behaviour

F (s) ∼ h0sα0 (s ց 0),

then α0 = 0, and the critical area generating function P(xc,q) satisfies

P(sing)(xc,q) ∼ h0(1−q)θ (q ր 1).

A sufficient condition for equality of the area amplitude series and the scaling
function is stated in the following lemma, which is an extension of Lemma 3.

Lemma 4. Let the assumptions of Definition 4 be satisfied.

i) Assume that the relation Eq. (11.35) remains valid under arbitrary differentiation
w.r.t. q. If s+ = ∞, if the scaling function F (s) has an asymptotic expansion

F (s) ∼ ∑
k≥0

(−1)k fks−γk (s → ∞),

and if an according asymptotic expansion is true for arbitrary derivatives, then
the following statements hold.

a) The exponent γk is, for k ∈ N0, given by

γk =
k−θ

φ
.

b) The scaling function F (s) determines the asymptotic behaviour of the facto-
rial area moment generating functions via

(
1
k!

∂ k

∂qk
P(x,q)

∣∣∣∣
q=1

)(sing)

∼ fk

(1− x/xc)γk
(x ր xc).

ii) Assume that the relation Eq. (11.35) remains valid under arbitrary differentiation
w.r. to x. If s− ≤ 0, and if the scaling function F (s) has an asymptotic expansion
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F (s) ∼ ∑
k≥0

(−1)khksαk (s ց 0),

and if an according asymptotic expansion is true for arbitrary derivatives, then
the following statements hold.

a) The exponent αk is, for k ∈ N0, given by αk = k.
b) The scaling function determines the asymptotic behaviour of the factorial

perimeter moment generating functions at x = xc via

(
1
k!

∂ k

∂xk P(x,q)

∣∣∣∣
x=xc

)(sing)

∼ x−k
c hk

(1−q)βk
(q ր 1),

where βk = kφ −θ .

Remarks. Lemma 4 states conditions under which the area amplitude series coin-
cides with the scaling function. Given these conditions, the scaling function also
determines the perimeter law of the polygon model at criticality.

In the one-variable case, the singular behaviour of a generating function trans-
lates, under suitable assumptions, to the asymptotic behaviour of its coefficients. We
sketch the analogous situation for the asymptotic behaviour of a generating function
involving a scaling function.

Definition 5 (Finite size scaling function). For numbers pm,n with generating func-
tion P(x,q) = ∑m,n pm,nxmqn, let Assumption 1 be satisfied. Let 0 < xc ≤ 1 be the
radius of convergence of the generating function P(x,1).

i) Assume that there exist a number t+ ∈ (0,∞] and a function f : [0,t+] → R, such
that the perimeter coefficient function asymptotically satisfies, for real constants
γ0 and φ > 0,

[xm]P(x,q) ∼ x−m
c mγ0−1 f (m1/φ (1−q)) (q,m) → (1,∞),

where the limit is taken for m a positive integer and for real q, such that m1/φ (1−
q) ∈ [0,t+]. Then, the function f (t) is called a finite size (perimeter) scaling
function.

ii) Assume that there exist constants t− ∈ [−∞,0), t+ ∈ (0,∞], and a function h :
[t−,t+] → R, such that the area coefficient function asymptotically satisfies, for
real constants β0 and φ > 0,

[qn]P(x,q) ∼ nβ0−1h(nφ (1− x/xc)) (x,n) → (xc,∞),

where the limit is taken for n a positive integer and real x, such that nφ (1−x/xc)∈
[t−,t+]. Then, the function h(t) is called a finite size (area) scaling function.

Remarks. i) The following heuristic calculation motivates the expectation that a
finite size scaling function approximates the coefficient function. For the perime-
ter coefficient function, assume that the exponents γk of the factorial area moment



288 Christoph Richard

generating functions are of the special form γk = (k−θ )/φ . We argue

[xm]P(x,q) ≈ [xm]
∞

∑
k=0

(−1)k fk

(1− x/xc)γk
(1−q)k

≈ x−m
c mγ0−1

∞

∑
k=0

(−1)k fk

Γ (γk)

(
m1/φ (1−q)

)k
.

In the above expression, the r.h.s. depends on a function f (t) of a single variable of
combined argument t = m1/φ (1−q).

For the area coefficient function, we assume that βk = kφ −θ and argue as above,

[qn]P(x,q) ≈ [qn]
∞

∑
k=0

(−1)k hk

(1−q)βk
(1− x/xc)

k

≈ nβ0−1
∞

∑
k=0

(−1)k hk

Γ (βk)

(
nφ (1− x/xc)

)k
.

In the above expression, the r.h.s. depends on a function h(t) of a single variable of
combined argument t = nφ (1− x/xc).
ii) The above argument suggests that a scaling function and a finite size scaling
function may be related by a Laplace transformation. A comparison with Eq.(11.20)
leads one to expect that finite size scaling functions are moment generating functions
of the limit laws of area and perimeter.
iii) Sufficient conditions under which knowledge of a scaling function implies the
existence of a finite size scaling function have been given for the finite size area
scaling function [13] using Darboux’s theorem.

A scaling function describes the leading singular behaviour of the generating
function P(x,q) in some region about (x,q) = (xc,1). A particular form of subse-
quent correction terms has been argued for at the beginning of the section.

Definition 6 (Correction-to-scaling functions). For numbers pm,n with generating
function P(x,q) = ∑m,n pm,nxmqn, let Assumption 1 be satisfied. Let 0 < xc ≤ 1 be
the radius of convergence of the generating function P(x,1). Assume that there exist
constants s−,s+ ∈ [−∞,+∞] satisfying s− < s+, and functions Fl : (s−,s+)→R for
l ∈ N0, such that the generating function P(x,q) satisfies, for real constants φ > 0
and θl , where θl+1 > θl ,

P(sing)(x,q) ∼ ∑
l≥0

(1−q)θlFl

(
1− x/xc

(1−q)φ

)
(x,q) → (xc,1) in D(s−,s+).

Then, the function F0(s) is a scaling function, and for l ≤ 1, the functions Fl(s)
are called correction-to-scaling functions.

Remarks. i) In the above context, the symbol ∼ denotes a (generalised) asymptotic
expansion (see also [80, Ch 1]): Let (Gk(xxx))k∈N0 be a sequence of (multivariate)
functions satisfying for all k the estimate Gk+1(xxx) = o(Gk(xxx)) as xxx → xxxc in some
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prescribed region. For a function G(xxx), we then write G(xxx)∼ ∑∞
k=0 Gk(xxx) as xxx → xxxc,

if for all n we have G(xxx) = ∑n−1
k=0 Gk(xxx)+O(Gn(xxx)) as xxx → xxxc.

ii) The previous section yielded effective methods for obtaining area amplitude func-
tions. These are candidates for correction-to-scaling functions, see also [87].

11.4.2 Squares and Rectangles

We consider the models of squares and rectangles, whose scaling behaviour can
be explicitly computed. Their half-perimeter and area generating function can be
written as a single sum, to which the Euler-MacLaurin summation formula [80,
Ch 8] can be applied. We first discuss squares.

Fact 5 (cf [49, Thm 2.4]). For 0 < x,q < 1, the generating function P(x,q) =

∑∞
m=0 xmqm2/4 of squares, counted by half-perimeter and area, is given by

P(x,q) =
1√

| logq|
F

(
| logx|√
| logq|

)
+

1
2

+ R(x,q),

with F (s) =
√

π es2
erfc(s), where the remainder term R(x,q) is bounded by

|R(x,q)| ≤ 1
6
| logx|.

Remarks. i) The remainder term differs from that in [49, Thm 2.4], where it was
estimated by an integral with lower bound one instead of zero [49, Eq. (46)].
ii) With xc = 1, s− = 0 and s+ = ∞, the function F (s) is a scaling function ac-
cording to the above definition. The remainder term is uniformly bounded in any
rectangle [x0,1)× [q0,1) for 0 < x0,q0 < 1, and so the approximation is uniform in
this rectangle.
iii) The generating function P(x,q) satisfies the quadratic q-difference equation
P(x,q) = 1 + xq1/4P(q1/2x,q). Using the methods of the previous section, the area
amplitude series of the model can be derived. It coincides with the above scaling
function F (s). This particular form is expected, since the distribution of area is
concentrated, p(x) = δ (x−1/4), compare also with Ferrers diagrams.
iv) It has not been studied whether the scaling region can be extended to values x > 1
near (x,q) = (1,1). It can be checked that the scaling function F (s) also determines
the asymptotic behaviour of the perimeter moment generating functions, via its ex-
pansion about the origin. As expected, they indicate a concentrated distribution.

The half-perimeter and area generating function of rectangles is given by

P(x,q) =
∞

∑
r=1

∞

∑
s=1

xr+sqrs =
∞

∑
r=1

x(qx)r

1−qrx
.
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We have P(x,1) = x2/(1− x)2, and it can be shown that P(1,q) ∼ − log(1−q)
1−q as

q ր 1, see [85, 49]. The latter result implies that a scaling form as in Definition 4,
with s− ≤ 0, does not exist for rectangles. We have the following result.

Fact 6 ([49, Thm 3.4]). For 0 < q < 1 and 0 < qx < 1, the generating function
P(x,q) of rectangles satisfies

P(x,q) =
x

| logq|

( | logq|
| logx| −LerchPhi

(
qx,1,

| logx|
| logq|

))
+ R(x,q),

with the Lerch Phi-function LerchPhi(z,a,v) = ∑∞
n=0

zn

(v+n)a , where the remainder

term R(x,q) is bounded by

|R(x,q)| ≤ x2q
1−qx

(
1
2

+
| logx|

6

)
+

x2q
(1−qx)2

| logq|
6

.

Remarks. i) The theorem implies that, for every q0 ∈ (0,1), the function (1 −
qx)2P(x,q) is uniformly approximated for points (x,q) satisfying q0 < q < 1 and
0 < x < xc(q), where xc(q) = 1/q is the critical curve.
ii) Rectangles cannot have a scaling function F (s) as in Definition 4 with s− ≤ 0,
since the area generating function diverges with a logarithmic singularity. This is
reflected in the above approximation.
iii) It has not been studied whether the area moments or the perimeter moments at
criticality can be extracted from the above approximation.
iv) The relation of the above approximation to the area amplitude series of rectan-
gles of the previous section, F(s) = Ei(s2)es2

, is not understood. Interestingly, the
expansion of F(s) about s = 0 resembles a logarithmic divergence. It is not clear
whether its expansion at the origin is related to the asymptotic behaviour of the
perimeter moment generating functions.

11.4.3 Ferrers Diagrams

The singularity diagram of Ferrers diagrams is special, since the value xc(1) :=
limqր1 xc(q) does not coincide with the radius of convergence xc of the half-
perimeter generating function P(x,1). (The function q 7→ xc(q) is continuous on
(0,1], as may be inferred from the exact solution.) Thus, there are two special points
in the singularity diagram, namely (x,q) = (xc,1) and (x,q) = (xc(1),1). Scaling be-
haviour about the latter point has apparently not been studied, see also [85].

About the former point (x,q) = (xc,1), scaling behaviour is expected. The area
amplitude series F(s) of Ferrers diagrams is given by the entire function

F(s) =

√
π
8

erfc
(√

2s
)

e2s2
.
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A numerical analysis indicates that its Taylor coefficients about s = 0 coincide with
the perimeter moment amplitudes at criticality, which characterise a concentrated
distribution. There is no singularity of F(s) on the negative real axis at any finite
value of s, in accordance with the fact that the critical line at q = 1 extends above
x = xc.

It is not known whether a scaling function exists for Ferrers diagrams, or whether
it would coincide with the amplitude generating function, see also the recent discus-
sion [50, Sec 2.3]. A rigorous study may be possible, by first rewriting the half-
perimeter and area generating function as a contour integral. A further analysis then
reveals a saddle point coalescing with the integration boundary at criticality. For
such phenomena, uniform asymptotic expansions can be obtained by Bleistein’s
method [80, Ch 9.9]. The approach proposed above is similar to that for the stair-
case model [83] in the following subsection.

11.4.4 Staircase Polygons

For staircase polygons, counted by width, height, and area with associated variables
x,y,q, the existence of an area scaling function has been proved. The derivation
starts from an exact expression for the generating function, which has then been
written as a complex contour integral. About the point (x,q) = (xc,1), this led to a
saddle-point evaluation with the effect of two coalescing saddles.

Fact 7 (cf [83, Thm 5.3]). Consider 0 < x,y,q < 1 such that the generating function
P(x,y,q) of staircase polygons, counted by width, height and area, is convergent. Set
q = e−ε for ε > 0. Then, as ε ց 0, we have

P(x,y,q) =

(
1− x− y

2
+

+α−1/2ε1/3 Ai′(αε−2/3)

Ai(αε−2/3)

√(
1− x− y

2

)2

− xy


(1 +O(ε))

uniformly in x,y, where α = α(x,y) satisfies the implicit equation

4
3

α3/2 = log(x)
log(zm −

√
d)

log(zm +
√

d)
+ 2Li2(zm −

√
d)−2Li2(zm +

√
d),

where zm = (1 + y− x)/2 and d = z2
m − y, and Li2(t) = −∫ t

0
log(1−u)

u du is the Euler
dilogarithm.

Remarks. i) The characterisation of α3/2 given in [83, Eq (4.21)] has been used.
ii) The above approximation defines an area scaling function. For x = y and xc = 1/4,
we obtain the approximation [83, Eq (1.14)]
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P(x,q) ∼ 1
4

+ 4−2/3ε1/3 Ai′(44/3(1/4− x)ε−2/3)

Ai(44/3(1/4− x)ε−2/3)

as (x,q) → (xc,1) within the region of convergence of P(x,q). It follows by com-
parison that the area amplitude series coincides with the area scaling function.
iii) An area amplitude series for the anisotropic model has been given in [56], by a
suitable refinement of the method of dominant balance.
iv) It is expected that the perimeter law at x = xc may be inferred from the Taylor
expansion of the scaling function F (s) at s = 0. A closed form for the moment
generating function or the probability density has not been given. The right tail of
the distribution has been analysed via the asymptotic behaviour of the moments
[57, 55]. See also the next subsection.
v) The above expression gives the singular behaviour of P(x,q) as q approaches
unity, uniformly in x,y. Restricting to x = y, it describes the singular behaviour along
the line q = 1 for 0 < x < xc. In the compact percolation picture, this line describes
compact percolation below criticality. Perimeter limit laws away from criticality
may be inferred along the above lines. (Asymptotic expansions which are uniform
in an additional parameter appear also for solutions of differential equations near
singular points [80].)
vi) By analytic continuation, it follows that the critical curve xc(q) for P(x,x,q) co-
incides near q = 1 with the upper boundary curve x0(q) = (1− s−(1− q)2/3)/4 of
the scaling domain, where the value s− is determined by the singularity of smallest
modulus of the scaling function on the negative real axis, hence by the first zero of
the Airy function. This leads to a simple pole singularity in the generating function,
which describes the branched polymer phase close to q = 1.

11.4.5 Self-Avoiding Polygons

In the previous section, a conjecture for the limit distribution of area for self-
avoiding polygons and rooted self-avoiding polygons was stated. We further ex-
plain the underlying numerical analysis, following [91, 92, 93]. The numerically
established form Eq. (11.33) implies for the area moment generating functions for
k 6= 1 singular behaviour of the form

g(sing)
k (x) ∼ fk

(1− x/xc)γk
(x ր xc),

with critical point xc = 0.14368062927(2) and γk = 3k/2−3/2, where the numbers
fk are related to the amplitudes Ak in Eq. (11.33) by

Ak =
fk

Γ (γk)
.
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For k = 1, we have γk = 0, and a logarithmic singularity is expected, g1(x) ∼
f1 log(1− x/xc), with f1 = A1. Similar to Conjecture 1, this leads to a correspond-
ing conjecture for the area amplitude series of self-avoiding polygons. If the area
amplitude series was a scaling function, we would expect that it also describes the
limit law of perimeter at criticality x = xc, via its expansion about the origin. (In-
terestingly, these moments are related to the moments of the Airy distribution of
negative order, see [93, 34].) This prediction was confirmed in [93], up to numer-
ical accuracy, for the first ten perimeter moments. Also, the crossover behaviour
to the branched polymer phase has been found to be consistent with the corre-
sponding scaling function prediction. As was argued in the previous subsection, the
critical curve xc(q) close to unity should coincide with the upper boundary curve
x0(q) = xc(1− s−(1− q)2/3), where the point s− is related to the first zero of the
Airy function on the negative real axis, s− = −0.2608637(5). The latter two obser-
vations support the following conjecture.

Conjecture 3 ([87, 93]). Let pm,n denote the number of self-avoiding polygons of
half-perimeter m and area n, with generating function P(x,q) = ∑m,n pm,nxmqn. Let
xc = 0.14368062927(2) be the radius of convergence of the half-perimeter generat-
ing function P(x,1). Assume that

∑
n

pm,n ∼ A0x−m
c m−5/2 (m → ∞),

where A0 is estimated by A0 = 0.09940174(4). Let the number s− be such that

(4A0)
2
3 πs− coincides with the zero of the Airy function on the negative real axis of

smallest modulus. We have s− = −0.2608637(5).

i) For rooted self-avoiding polygons with half-perimeter and area generating func-
tion P(r)(x,q) = x d

dx P(x,q), the conjectured form of a scaling function F (r)(s) :
(s−,∞) → R as in Definition 4 is

F
(r)(s) =

xc

2π
d
ds

logAi
(
(4A0)

2
3 πs

)
,

with critical exponents θ = 1/3 and φ = 2/3.
ii) The conjectured scaling behaviour of (unrooted) self-avoiding polygons is

(
P(sing)(x,q)− 1

12π
(1−q) log(1−q)

)
∼ (1−q)θ

F

(
1− x/xc

(1−q)φ

)

(x,q) → (xc,1) in D(s−,∞),

(11.37)

with scaling function F (s) : (s−,∞) → R obtained by integration,

F (s) = − 1
2π

logAi
(
(4A0)

2
3 πs

)
,

and with critical exponents θ = 1 and φ = 2/3.
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Remarks. i) The above conjecture is essentially based on the conjecture of the pre-
vious section that both staircase polygons and rooted self-avoiding polygons have,
up to normalisation constants, the same limiting distribution of area in the uniform
ensemble q = 1. For a numerical investigation of the implications of the scaling
function conjecture, see the preceding discussion.
ii) A field-theoretical justification of the above conjecture has been proposed [16].
Also, the values of A1 = 1/(8π) and the prefactor 1/(12π) in Eq. (11.37) have been
predicted using field-theoretic methods [15], see also the discussion in [93].

11.4.6 Models in Higher Dimensions

Only very few models of vesicles have been studied in three dimensions. For the
simple model of cubes, the scaling behaviour in the perimeter-area ensemble is the
same as for squares [49, Thm 2.4]. The scaling form in the area-volume ensemble
has been given [49, Thm 2.8]. The asymptotic behaviour of rectangular box vesicles
has been studied to some extent [73]. Explicit expressions for scaling functions have
not been derived.

11.4.7 Open Questions

The mathematical problem of this section concerns the local behaviour of multi-
variate generating functions about non-isolated singularities. If such behaviour is
known, it may, under appropriate conditions, be used to infer asymptotic properties
such as limit distributions. Along lines of the same singular behaviour in the singu-
larity diagram, expressions uniform in the parameters are expected. This may lead
to Gaussian limit laws [37]. Parts of the theory of such asymptotic expansions have
been developed using methods of several complex variables [81]. The case of sev-
eral coalescing lines of different singularities is more difficult. Non-Gaussian limit
laws are expected, and this case is subject to recent mathematical research [81].

Our approach is motivated by certain models of statistical physics. It relies on
the observation that the singular behaviour of their generating function is described
by a scaling function. There are major open questions concerning scaling functions.
On a conceptual level, the transfer problem [35] should be studied in more detail,
i.e., conditions under which the existence of a scaling function implies the existence
of the finite-size scaling function. Also, conditions have to be derived such that limit
laws can be extracted from scaling functions. This is related to the question when
can an asymptotic relation be differentiated. Real analytic methods, in conjunction
with monotonicity properties of the generating function, might prove useful [80].

For particular examples, such as models satisfying a linear q-difference equation
or directed convex polygons, scaling functions may be extracted explicitly. It would
be interesting to prove scaling behaviour for classes of polygon models from their
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defining functional equation. Furthermore, the staircase polygon result indicates that
some generating functions may have in fact asymptotic expansions for qր 1, which
are valid uniformly in the perimeter variable (i.e., not only in the limit x ր xc).
Such expansions would yield scaling functions and correction-to-scaling functions,
thereby extending the formal results of the previous section. This might be worked
out for specific models, at least in the relevant example of staircase polygons.
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