
Chapter 10
Effect of Confinement: Polygons in Strips, Slabs
and Rectangles

Anthony J Guttmann and Iwan Jensen

10.1 Introduction

In this chapter we will be considering the effect of confining polygons to lie in
a bounded geometry. This has already been briefly discussed in Chapters 2 and
3, but here we give many more results. The simplest, non-trivial case is that of
SAP on the two-dimensional square lattice Z2, confined between two parallel lines,
say x = 0 and x = w. This problem is essentially 1-dimensional, and as such is in
principle solvable. As we shall show, the solution becomes increasingly unwieldy
as the distance w between the parallel lines increases. Stepping up a dimension to
the situation in which polygons in the simple-cubic lattice Z3 are confined between
two parallel planes, that is essentially a two-dimensional problem, and as such is not
amenable to exact solution.

Self-avoiding walks in slits were first treated theoretically by Daoud and de
Gennes [4] in 1977, and numerically by Wall et al. [14] the same year. Wall et
al. studied SAW on Z2, in particular the mean-square end-to-end distance. For a
slit of width one they obtained exact results, and also obtained asymptotic results
for a slit of width two. Around the same time, Wall and co-workers [13, 15] used
Monte Carlo methods to study the width dependence of the growth constant for
walks confined to strips of width w. In 1980 Klein [9] calculated the behaviour of
SAW and SAP confined to strips in Z2 of width up to six, based on a transfer matrix
formulation.

The interest in the problem arises from two separate aspects. Firstly, there is the
intrinsic interest in the effect of geometrical constraints. Secondly, this confined ge-
ometry is appropriate to model polymeric properties, such as sensitised flocculation
and steric stabilisation, again first discussed in this context by de Gennes [5] in 1979.
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The effect of confinement leads to a loss of configurational entropy, with the
consequence that there is a repulsion exerted by the polygon on the confining walls.
That this force is repulsive for all values of w was proved by Hammersley and Whit-
tington [7] in 1985, a result that was extended by Janse van Rensburg et al. [8] who
showed that the force remains repulsive despite a certain level of interaction with
the confining lines. If there is, in addition, an attractive interaction with the walls,
there is then a competition between entropic repulsion and the attractive polymer
adsorption.

In an earlier paper Di Marzio and Rubin [6] studied a random walk model of a
polymer confined between two planes in Z3. The model included wall–walk inter-
actions. In the absence of these interactions there is the expected loss of configu-
rational entropy, and the walls exert an effective repulsion. If there is an attraction
to only one of the two walls, this repulsion was found to persist. If however there
is an equal attraction at both walls, then the more interesting situation in which the
force is repulsive for weak wall–monomer interactions, but attractive for stronger
wall–monomer interactions was found.

In the bulk, it is known (see Chapter 1) that self-avoiding walks and self-avoiding
polygons have the same growth constant. However, this is not true for SAW and SAP
confined to a slit, as proved by Soteros and Whittington [11]. In fact they proved
that the growth constant for polygons in a slit of width w is strictly less than the
growth constant for SAW in a slit of the same (finite) width. This is a strictly two-
dimensional phenomenon. It is not true in higher dimensions. That is to say SAW
and SAP confined to lie between two parallel planes in Z3 have the same connective
constant.

In a thorough and detailed study of SAW in strips, Ahlberg and Janson [1] in
1990 gave a transfer matrix formalism. Denoting the generating function for walks

in a strip of width L, as usual, as CL(x) = ∑n c(L)
n xn, where c(L)

n is the number of

translationally distinct SAW, they proved (a) that c(L)
n = αµn

L +o(µn
L) as n → ∞, and

(b) c(L+1)
n+1 /c(L)

n → ∞, and (c) c(L)
n /µn

L converges exponentially. They proved similar
results for SAP in a slit, including the result of Soteros and Whittington that the
growth constant for SAP in a slit of finite width is strictly less than the corresponding
result for SAW. They obtained the growth constants for SAW in strips of width up
to 10 steps, and, for SAW on a cylinder, in a cylinder up to 10 links in the circular
direction. They also gave a detailed study of the properties of the transfer matrix,
and obtained a Central Limit Theorem for the endpoint.

Very recently Alvarez et al. [2] studied SAW and SAP in a slit, with wall interac-
tions. For SAP they found that, for any finite value of the wall–monomer interaction
term, there is an infinite number of slit widths where a polygon will induce a repul-
sion between the confining lines.

In Chapter 3 we saw how SAP in a strip are completely encodable by the position
of their horizontal edges. Indeed, it was shown that they could be encoded by a finite
alphabet, and that alphabet was given for both a strip of width 2 and a strip of width
3. The number of states required to count polygons in a strip of width w grows as 3w,
which prevents this calculation from being pushed to very high values of w. More
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precisely, Klein [9] has shown that the number of states is given by

w(w+ 1)

2 2F3

(
1,

2−w
2

,
1−w

2
;2,3;4

)
.

This gives a sequence 2,5,12,30,76,196,512,1353, . . . which is growing exponen-
tially, proportional to 3w. As we saw in Chapter 3 this can be reduced by symmetry.
By judicious use of the transfer matrix method, as discussed in Chapter 7, we have
extended these encodings to strips of width w = 17 for square lattice polygons and
for honeycomb lattice polygons (in both lattice directions1), and for triangular lat-
tice polygons in strips of width up to 14.

The generating function in each case is rational, and the nature of the singularity
at the radius of convergence, which we identify with the critical point, is just a
simple pole. For square lattice polygons, we find the degree of the numerator, N
and denominator D to be (N,D) = (0,1), (2,4), (10,14), (34,40) for widths w =
1,2,3,4 respectively. The value of the smallest real positive zero of the denominator
polynomial gives the radius of convergence, and also the reciprocal of the growth
constant for polygons, µw, and this is a monotone increasing function of w. In this
way we obtained the lower bounds µ(square) > 2.4537, µ(honey) > 1.7759 and
µ(tri) > 3.7272. (This isn’t a particularly efficient way to obtain lower bounds, but
is, rather, an additional outcome of the study.)

Daoud and de Gennes [4] developed the scaling theory that predicts how µw is
expected to scale with width w. Their result was for SAW in a strip, but can be
expected to hold mutatis mutandis for polygons in a strip. They find that

log µ − logµw ∼ const.×w−φ ,

where φ = 1/ν = 4/3. Recall that ν = 3/4 is the mean-square end-to-end distance
scaling exponent. For walks confined between planes in Z3, the same result is ex-
pected to hold, except now the value of ν is not known exactly, but to a good approx-
imation is ν(3d) ≈ 0.57... Recall that we have very precise estimates of µ for all
lattices (these are more precise in 2d than in 3d). Indeed, for the honeycomb lattice

in 2d we believe the exact value to be µ(honey) =
√

2 +
√

2.
In Table 10.1 we give the results for the growth constant for strips of width d =

w + 1 sites, (w is the width in bonds), for the square, triangular and honeycomb
lattices. The monotone increasing values of µd can be readily seen. In Fig. 10.1 we
plot log µ − log µd against logd for the square lattice, and show the solid line of
gradient −4/3. It can be seen that quite large values of w are required before we
reach the asymptotic regime, but that the scaling predictions are well supported by
the data. That is to say, the later points do indeed seem to have a locus of the same
gradient as the line drawn. The figures for the other lattices are qualitatively similar.

1 We draw the honeycomb lattice as a brickwork lattice, so the lattice is not symmetrical in the two
lattice directions.
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Fig. 10.1 Plot of log µ − logµd vs. d on a logarithmic scale for the square lattice data. The straight
line corresponds to the theoretical prediction of gradient −4/3.

10.2 Polygons in a Square

Consider now SAW confined to an L×L square. This problem has a long history,
and a detailed discussion can be found in [3]. In that paper it was shown, among

Table 10.1 d = w + 1 is the strip width, µd is the growth constant for square, triangular and
honeycomb (direction 1 and 2) lattice polygons in the strip.

d µd(square) µd(tri) µd(honey1) µd(honey2)
2 1.000000000 1.000000000 1.000000000 1.000000000
3 1.414213562 1.795088688 1.229990405 1.229990405
4 1.681759003 2.328493240 1.374333111 1.411814730
5 1.863069582 2.684771831 1.470190448 1.506504156
6 1.992445913 2.936411124 1.537116598 1.570592201
7 2.088633483 3.121963721 1.585935359 1.616386758
8 2.162502131 3.263502052 1.622845444 1.650489362
9 2.220732353 3.374453146 1.651575171 1.676722086

10 2.267631888 3.463397284 1.674476550 1.697434531
11 2.306090565 3.536045068 1.693096661 1.714142575
12 2.338112184 3.596328876 1.708490122 1.727863827
13 2.365125683 3.647036006 1.721398098 1.739304455
14 2.388174882 3.690191779 1.732355266 1.748968490
15 2.408038380 3.727299874 1.741756176 1.757224477
16 2.425307673 1.749897782 1.764347596
17 2.440439441 1.757007495 1.770547115
18 2.453791386 1.763262171 1.775984775
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other things, that the number of SAW starting at (0,0) and ending at (L,L) and
never leaving the square, grows as λ L2

. That is to say, if CL is the number of such

walks, then limL→∞ C1/L2

L = λ . It was estimated that λ = 1.744550± 0.000005. A
related problem consists of estimating the number of transverse walks, defined as
SAW that cross the square from any vertex on the left edge of the square (hence the
x co-ordinate is 0), to any vertex on the right edge (with x co-ordinate L). In [3] it
was proved that if TL denotes the number of such walks in an L× L square, then

limL→∞ T 1/L2

L = λ , with the same value of λ as for CL.
We now consider SAP that span the square. That is to say, one or more edges

of the polygon must lie on each edge of the square. As far as we are aware, this
problem has not previously been considered. Let PL denote the number of such
polygons. A moment’s reflection shows that PL < TL, and PL+1 > CL, as one can
readily construct a unique SAP occupying an (L+ 1)× (L+ 1) lattice from a SAW
going from (0,0) to (L,L), by the addition of a step from (L,L) to (L,L + 1), then
another from (L+1,L+1), then a ray from (L+1,L+1), to (L+1,−1), followed
by a further ray from (L + 1,−1) to (0− 1), and then a final step to the origin. In

this way we can prove that limL→∞ P1/L2

L = λ .

Table 10.2 The number of self-avoiding polygons PL in a square of size L×L.

L PL

1 1
2 5
3 106
4 6074
5 943340
6 419355340
7 554485727288
8 2208574156731474
9 26609978139626497670
10 973224195603423767343946
11 108342096917091380628767818812
12 36763211016528549310068224122368860
13 38044287043749436284594644308861499605492
14 120080993887856855992693253821542678777528272944
15 1155964922833172664443974642986506946314409762614495586
16 33934880416462899814285781006397200200998294954062388898965682

Several refinements or extensions of this problem remain to be considered. The
number of steps (the perimeter) of a SAP in a square varies from a minimum of
4L to a maximum of (L + 1)2. It would be interesting to study the distribution of
perimeters with L. A second aspect amenable to study would be to include an in-
teraction between adjacent monomers of the polygon, and/or with the edges of the
square. From the discussion in Chapter 12, and the section below, we have some
understanding of what to expect in these cases, but it would still be of interest to see
the details.



240 Anthony J Guttmann and Iwan Jensen

10.3 Polygons in a Strip Interacting with Walls

In the previous two sections we considered SAP in confined geometries, but apart
from confinement, there was no additional constraint imposed by the walls. In this
section we consider the situation where there is an interaction associated with edges
of the polygon in, or adjacent to, a wall.

Very recently, Alvarez et al [2] have investigated the situation of SAP (and SAW)
in strips of width w, interacting with the walls. It is necessary to consider not just the
situation at the surfaces, but also immediately adjacent to the surfaces if a full range
of behaviour is to be observed. This is because polygons are topologically circular.
So that if they span a strip, the top edge can never reach the bottom of the strip
(this phenomenon is particular to polygons in two dimensions). More precisely, if
we define the top edge of the polygon as that part of the polygon between the first
vertex lying in the top of the slit and the last vertex lying in the top of the slit,
then no vertex in the top edge can lie in the bottom of the slit. This topological
constraint has been overcome by considering interactions with the second row. This
means the top (bottom) can interact with the second layer of the bottom (top). We
shall adopt the notation of Alvarez et al. [2], and point out a six-dimensional vector
v = (v0,v0,1,v1,vw−1,vw−1,w,vw) is required in order to keep track of the number
of bonds v0 lying in the slit edge at y = 0, v1 lying in the row y = 1 (which is the
row immediately above the bottom of the slit), vw lying in the slit edge at y = w,
vw−1 lying in the row y = w− 1 (which is the row immediately below the top of
the slit). Finally v0,1 is the number of vertical bonds between y = 0 and y = 1,
and vw−1,w is the number of vertical bonds between y = w− 1 and y = w. We also
introduce two corresponding vectors of Boltzmann factors, a = (a0,a0,1,a1) and
b = (bt−1,bt−1,t ,bt). Then if pn(v,w) is the number of SAP in a slit of width w
with n edges and restricted by having edges in various places as specified by v, the
partition function is

Zn(a,b,w) = ∑
v

cn(v,w)av0
0 a

v0,1
0,1 av1

1 bvw−1
t−1 b

vw−1,w
t−1,t bvw

t . (10.1)

The grand canonical partition function is then given by

H(a,b,w) =
∞

∑
n=0

Zn(a,b,w)zn, (10.2)

and the corresponding free energy is

κ(a,b,w) = lim
n→∞

n−1 logZn(a,b,w), (10.3)

while the force exerted by the polygon on the confining walls is

f (a,b,w) :=
∂

∂w
κ(a,b,w). (10.4)
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Alvarez et al. considered four special cases, which were:
(a) a0,1 = a1 = bt−1 = bt−1,t = 1, corresponding to a single layer at both walls. Here
we have switched off interactions in the second layer, both at the top and at the bot-
tom, and only interactions in the surfaces take place.
(b) a0,1 = a1 = bt−1,t = 1, and bt−1 = bt = b corresponding to a double layer at
the top wall. Here the interactions occur with the top and next-to-top layer, and also
with the bottom layer. All other interactions are switched off.
(c) a0,1 = bt−1,t = 1, a0 = a1 = a and bt−1 = bt = b corresponding to a double layer
at both walls. Here the interactions occur with the top and next-to-top layer, and
also with the bottom and next-to-bottom layer. All other interactions (between the
two top and between the two bottom layers) are switched off.
(d) a0 = a0,1 = a1 = a, and bt−1 = bt−1,t = bt = b corresponding to fully interacting
double layers. Here all interactions are on. The only restriction is that the interac-
tions are all equal at the top, and all equal at the bottom.

Series expansions by use of the transfer matrix method (see Chapter 7) were
obtained for strips up to width 9. Two useful lemmas were also proved. They are:

Lemma 1 For SAP in a slit in case (a), we have for any width w > 0 that the
free energy difference produced by increasing the width by at least w units is non-
negative. That is to say

κ(a,b,w+ i)−κ(a,b,w) ≥ 0

for any integer i > w.

Lemma 2 There are infinitely many values of w for which the force for SAP in a
slit of width w in case (a) is always non-negative.

In Fig. 10.2 we show a plot of the force with a = b line for SAP in slits of various
widths in the single layer case (a). It is clear that the forces are always positive,
corresponding to a purely repulsive regime. This observation is consistent with the
above lemma. The result may indeed be true for all w, but this has not been proved.
Also note that the force quickly drops off as a increases.

The case of a double layer at the top wall, case (b) above, overcomes the shielding
effect of case (a), in which topology prevents the top of the polygon reaching the
bottom wall (and vice versa). SAPs now exhibit both an attractive and a repulsive
regime. In Fig. 10.3 we show the zero-force curve for SAP in slits of various widths.
The positive force regime (repulsive) is to the S-W of the curves, while the attractive
regime is to the N-E. The minimum we observe means we have re-entrant behaviour.
For wall interaction parameter b = 3 say, as we increase the value of a, the force
changes from repulsive for small a, then to attractive for intermediate values of a,
then back to repulsive for large values of a.

Figure 10.4 shows the force along the a = b line for SAP in slits of various widths
in case (b). Again we see that for small values of the wall interaction parameters,
the force is repulsive, but as the interaction strength increases, it becomes attractive.
This double layer model overcomes the screening that prevents the formation of an
attractive regime in the single layer case.
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Fig. 10.2 Force along the a = b line for SAP in slits of various widths in the single layer case.
Note the absence of any attractive regime (corresponding to a negative force).
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Fig. 10.3 Zero-force curve for SAP in slits of various widths in the case of a double layer at the
top wall and a single layer at the bottom wall. The two intersections with the line b = 3 signals
re-entrant behaviour.
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Fig. 10.4 Force along the a = b line for SAP in slits of various widths in the case of a double
layer at the top wall and a single layer at the bottom wall. Both attractive and repulsive regimes are
evident.

The next situation considered is that of a double layer at both walls. In Fig. 10.5
we show the zero-force curve for SAP in slits of various widths. Unlike the previous
case, we observe an expected symmetry about the line a = b. As in the previous
case, the positive force regime (repulsive) is to the S-W of the curves, while the
attractive regime is to the N-E. It is unclear whether the zero-force point along the
line a = b diverges as the strip width increases.

The next figure, Fig. 10.6, plots the force along the a = b line for SAP in slits of
various widths. Again, both attractive and repulsive regimes are seen. As the width
increases, the attractive force is seen to become rather weak.

The final case considered has all interactions switched on, but with the restric-
tion that all the interactions at the top wall are equal, as are all the interactions at
the bottom wall. In Fig. 10.7 we plot the zero-force curve for SAP in slits of var-
ious widths. The picture looks qualitatively the same as Fig. 10.5, with re-entrant
behaviour evident in some regions of the phase diagram.

In Fig. 10.8 the force along the a = b line for SAP of various widths is shown.
Again, we see qualitative similarity to the previous double layer case, and the re-
marks made about that situation apply here too.

In [2] Alvarez et al. give a similar analysis for SAW in strips. They observe some
significant differences between SAW and SAP. These differences are beyond the
scope of this chapter, and are also likely to be confined to the two-dimensional case,
so we refer the interested reader to their article.
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Fig. 10.5 Zero-force curve for SAP in slits of various widths in the case of double layers at both
walls. Both re-entrant behaviour and symmetry about the line a = b are evident.
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Fig. 10.6 Force along the a = b line for SAP in slits of various widths in the case of double layers
at both walls. Both attractive and repulsive regimes are evident.
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Fig. 10.7 Zero-force curve for SAP in slits of various widths in the case of fully interacting double
layers at both walls. Both re-entrant behaviour and symmetry about the line a = b are evident.
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Fig. 10.8 Force along the a = b line for SAP in slits of various widths in the case of fully inter-
acting double layers at both walls. Both attractive and repulsive regimes are evident, though the
attractive regime declines with increasing width.
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10.4 Conclusion

The consequences of confining SAP (and SAW) to strips/slabs/prisms clearly pro-
duces a rich set of both combinatorial results and models of physical, and indeed
biological interest. The fact that regimes can change from attractive to repulsive,
and back, opens up the possibility of constructing simple models with quite com-
plex behaviour. More significantly perhaps, it means that it is not necessary to pos-
tulate complex models to explain complex behaviour. The extension of the study of
Alvarez et al. [2], discussed above, to three dimensions, would be extremely inter-
esting, but is probably beyond current computational resources.
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