


Lecture Notes in Physics
Founding Editors: W. Beiglböck, J. Ehlers, K. Hepp, H. Weidenmüller

Editorial Board

R. Beig, Vienna, Austria
W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
F. Guinea, Madrid, Spain
P. Hänggi, Augsburg, Germany
W. Hillebrandt, Garching, Germany
R. L. Jaffe, Cambridge, MA, USA
W. Janke, Leipzig, Germany
H. v. Löhneysen, Karlsruhe, Germany
M. Mangano, Geneva, Switzerland
J.-M. Raimond, Paris, France
D. Sornette, Zurich, Switzerland
S. Theisen, Potsdam, Germany
D. Vollhardt, Augsburg, Germany
W. Weise, Garching, Germany
J. Zittartz, Köln, Germany



The Lecture Notes in Physics
The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments 
in physics research and teaching – quickly and informally, but with a high quality and the 
explicit aim to summarize and communicate current knowledge in an accessible way. Books 
published in this series are conceived as bridging material between advanced graduate text-
books and the forefront of research and to serve three purposes:

•  to be a compact and modern up-to-date source of reference on a well-defined topic

•  to serve as an accessible introduction to the field to postgraduate students and non-
specialist researchers from related areas

•  to be a source of advanced teaching material for specialized seminars, courses and 
schools

Both monographs and multi-author volumes will be considered for publication. Edited 
 volumes should, however, consist of a very limited number of contributions only. Proceed-
ings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, 
the  electronic archive being available at springerlink.com. The series content is indexed, 
abstracted and referenced by many abstracting and information services, bibliographic 
 networks, subscription agencies, library networks, and consortia. 

Proposals should be sent to a member of the Editorial Board, or directly to the managing 
editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg / Germany
christian.caron@springer.com

For other titles published in this series, go to
www.springer.com/series/5304



Anthony J. Guttman (Ed.)

Polygons, Polyominoes 
and Polycubes



Professor Anthony J. Guttman
Department of Mathematics and Statistics,
The University of Melbourne,
Victoria, 3010
Australia
 

Library of Congress Control Number: 2009921794

ISSN 0075-8450
ISBN-13 978-1-4020-9926-7 (HB)
ISBN-13 978-1-4020-9927-4 (e-book)

Published by Springer Science + Business Media B.V.
P.O. Box 17, 3300 AA Dordrecht, The Netherlands
In association with
Canopus Academic Publishing Limited,
15 Nelson Parade, Bristol BS3 4HY, UK

www.springer.com and www.canopusbooks.com

All Rights Reserved
© 2009 Canopus Academic Publishing Limited
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any 
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written 
 permission from the Publisher, with the exception of any material supplied specifically for the purpose 
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.



To the memory of two distinguished scientists
and wonderful colleagues, Pierre Leroux and
Oded Schramm.



Preface

The problem of counting the number of self-avoiding polygons on a square grid, ei-
ther by their perimeter or their enclosed area, is a problem that is so easy to state that,
at first sight, it seems surprising that it hasn’t been solved. It is however perhaps the
simplest member of a large class of such problems that have resisted all attempts at
their exact solution. These are all problems that are easy to state and look as if they
should be solvable. They include percolation, in its various forms, the Ising model
of ferromagnetism, polyomino enumeration, Potts models and many others. These
models are of intrinsic interest to mathematicians and mathematical physicists, but
can also be applied to many other areas, including economics, the social sciences,
the biological sciences and even to traffic models. It is the widespread applicabil-
ity of these models to interesting phenomena that makes them so deserving of our
attention. Here however we restrict our attention to the mathematical aspects.

Here we are concerned with collecting together most of what is known about
polygons, and the closely related problems of polyominoes. We describe what is
known, taking care to distinguish between what has been proved, and what is cer-
tainly true, but has not been proved. The earlier chapters focus on what is known and
on why the problems have not been solved, culminating in a proof of unsolvability,
in a certain sense.

The next chapters describe a range of numerical and theoretical methods and
tools for extracting as much information about the problem as possible, in some
cases permitting exact conjectures to be made. Given that it is always easier to prove
something if one is confident that it is true, this gives some direction as to what one
should perhaps try to prove.

The subsequent chapters provide a range of numerical results, exact conjectures
and rigorous results for properties of the generating function of polygons, counted
by both area and perimeter, and a variant in which a number of polygons are placed
on the grid, filling it completely. The final two chapters are devoted to powerful tech-
niques of mathematical physics which can be used to tackle not just the properties
of polygons and polyominoes, but also a broad range of related phenomena. Indeed,
the earlier chapters on numerical and theoretical methods also have widespread ap-
plicability.
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viii Preface

This is indeed a golden age for studying such problems. With powerful com-
puters and new algorithms, unimaginable numerical precision in our estimates of
properties of many of these models is now possible. On the mathematical side, we
are developing tools for solving increasingly complex functional equations, while
the theory of conformal invariance, and the developments around stochastic Löwner
evolution have given us powerful tools to predict, and in some cases to prove, new
results. The scientific community in this field is divided into those who think we
will never solve the problem, of say the perimeter or area generating function of
self-avoiding polygons in two dimensions, and those who think that we will. I am
firmly in the latter camp, and hope that this book will trigger the imagination of
some individual or team who will achieve just that.

I would like to thank all the contributors for their co-operation, patience, and
above all the quality of their contributions. Many of my colleagues helped by pro-
viding diagrams, and I would particularly like to thank Jan de Gier, Iwan Jensen,
Boris Peytchev, Jim Propp, Andrew Rechnitzer and Stuart Whittington for permis-
sion to use their diagrams, and I am indebted to Ian Enting and Andrew Rechnitzer
for help with LATEX, including making 29 packages co-exist in adequate harmony. I
am also grateful to Yao-ban Chan, and Jason Doukas for reading some of the chap-
ters. Finally, to Tom Spicer at Canopus books and the editorial team at Springer
Verlag, my thanks for not giving up on me as one deadline after another slipped by.

Melbourne, November 2008 Anthony Guttmann
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Chapter 1
History and Introduction to Polygon Models and
Polyominoes

Anthony J Guttmann

1.1 Introduction

In this book we will primarily be concerned with the properties and applications of
self-avoiding polygons (SAP). Two closely related problems are those of polyomi-
noes, and the much broader one of tilings. We will describe and discuss polyominoes
and, in the context of a discussion of SAP, will briefly mention relevant aspects of
the subject of tilings. In passing we will also concern ourselves with a discussion
of some properties of polycubes. It will also turn out to be appropriate to discuss
self-avoiding walks (SAW), as SAP can be usefully and simply related to a proper
subset of SAW.

In all cases we shall be considering paths on a regular lattice. This will most often
be the two-dimensional square lattice Z2, or its three-dimensional counterpart, Z3,
called the simple-cubic (sc) lattice, or its higher dimensional analogue Zd , called
the (d-dimensional) hyper-cubic lattice. Other two-dimensional lattices, such as the
triangular (t) and hexagonal (h) lattices, and other three-dimensional lattices, such
as the body-centred cubic (bcc), face-centred cubic (fcc) and tetrahedral or diamond
(d) lattices will also be mentioned.

1.1.1 Definitions and Notation

Let L be some regular d-dimensional lattice. Then an n-step self-avoiding walk
(SAW) ω on L is a sequence of distinct points ω0,ω1, ...,ωn in L such that each
point is a nearest neighbour of its predecessor. We assume all walks to begin at

Anthony Guttmann
Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia, e-
mail: tonyg@ms.unimelb.edu.au

1



2 Anthony J Guttmann

the origin (ω0 = 0) unless stated otherwise. A typical SAW on the square lattice is
shown below.

Fig. 1.1 A self-avoiding walk
of 21 steps.

If the end-point of a SAW, x, is adjacent to the origin ω0, an additional step
joining the end-point to the origin will produce a self-avoiding circuit, which has
been referred to in earlier literature as a self-avoiding return. An example is shown
below:

Fig. 1.2 A self-avoiding
polygon of 14 steps.

The distinction between a self-avoiding circuit and a self-avoiding polygon is that
the former is both rooted and directed. An n-step SAP can have any of its n vertices
as the root, or starting point, and it can be traversed in two directions. Thus if there
are pn SAP of perimeter n, there are 2npn self-avoiding circuits of perimeter n. More
descriptively, a SAP is a closed, connected, non-intersecting, undirected path on a
lattice. We consider two given SAW (or SAP) to be equivalent if they are translates
of one another. Thus, on the square lattice, the first non-zero embedding of a SAP is
the unit square, of perimeter 4 and area 1. If we denote by pm the number of SAP of
perimeter m, by an the number of SAP of area n, and by pm,n the number of SAP of
perimeter m and area n, we can define two single variable generating functions, for
perimeter and area respectively, and a two-variable generating function, as follows:
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P(x) = ∑
m

pmxm, (1.1)

A(q) = ∑
n

anqn (1.2)

P(x,q) = ∑
m,n

pm,nxmqn. (1.3)

Turning briefly to SAW, let cn be the number of n-step SAW on a lattice L

starting at the origin and ending anywhere. Then the SAW generating function is
defined to be

C(x) = ∑
n

cnxn.

If one joins an n-step and an m-step SAW end-to-end, one will either obtain an n+m
step SAW, or a non-self-avoiding walk. A moment’s thought then yields the inequal-
ity cn+m ≤ cncm. This is a sub-multiplicative inequality, apparently first discussed
by Fekete [12], from which follows the existence of the growth constant1 µ > 0,
given by

µ = lim
n→∞

c1/n
n = inf

n
c1/n

n .

Kesten [30, 31] has proved the stronger result that µ2 = limn→∞ cn+2/cn, and
O’Brien [41] has proved that cn > cn−1 for all n, yet there is still no proof that
µ = limn→∞ cn+1/cn, for d = 2, 3, 4. We note in passing that a number of authors
have explicitly stated, or implicitly assumed, this to be true. While it probably is, it
must be remembered that no proof exists.

Hammersley [20] similarly proved that pm grows exponentially with m; more
precisely that

µ = lim
m→∞

p1/2m
2m .

While far from obvious, it is true that the growth constants µ that arise in the poly-
gon case and the walk case are identical [20]. While unproven, a much stronger
result is widely believed, notably that

pm ∼ const× µmmα−3, (1.4)

where α is a critical exponent2. (Note that p2m+1 = 0 for SAP on Zd , as only poly-
gons with even perimeter can exist on those lattices. For such lattices the above
asymptotic form is of course only expected to hold for even values of m. For so-
called close-packed lattices, such as the triangular or face-centred cubic lattices,
polygons of all perimeters greater than two are embeddable, so eqn. (1.4) stands as
stated.)

Another quantity of interest for SAW is cn(x), the number of n-step SAW on L

starting at the origin and ending at x. Then cn (defined above) and cn(x) are believed

1 Some authors refer to this quantity as the connective constant, but the term connective constant
originally referred to log µ . Contemporary usage seems to favour the former meaning.
2 The notation am ∼ bm means that limn→∞

am
bm

= 1.
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to have the asymptotic behaviour as n → ∞;

cn ∼ const× µnnγ−1 (1.5)

cn(x) ∼ const× µnnα−2 (x fixed 6= 0) (1.6)

where the growth constant µ is defined above, and γ and α are critical exponents 3.
The growth constant depends on the lattice, so changes as one changes from, say,
the square lattice to the triangular lattice. The critical exponents, by contrast, are
expected to depend only on dimensionality, and so do not change from lattice to
lattice (for lattices of the same dimensionality).

As shown above, the existence of the exponential growth term µn is known rig-
orously, while the existence of sub-dominant terms nγ−1 and nα−2 is believed by all
reasonable men (and women), but even the existence of the exponents remains un-
proved for lattices of dimensionality d < 5. Rigorous results concerning the asymp-
totic behaviour of the properties of SAW and SAP will be given in the next chapter
by Whittington.

Indeed, in two dimensions, it is widely accepted, due to the Coulomb gas calcu-
lations (see Chapter 14) of Nienhuis [39], that γ = 43/32 and α = 1/2 exactly. In
three dimensions only numerical estimates are available4, notably γ ≈ 1.156957 and
α ≈ 0.23721, and there is no reason to expect the exponents to be rational, while in
four dimensions and more mean-field exponents are expected. That is to say, α = 0
and γ = 1.

In exactly four dimensions there are also confluent logarithmic terms, which van-
ish in higher dimensions. In four dimensions, one expects cn ∼ const×µnnγ−1(logn)1/4.
Recently, for a hierarchical four-dimensional lattice, Brydges and Imbrie [3] proved
the presence of the confluent logarithmic term, though no proof is currently known
for SAW on a regular lattice. For d > 4, Hara and Slade [22, 23] have proved that
γ = 1.

This can be understood heuristically, as with increasing lattice dimensionality,
the self-avoiding constraint becomes less significant. If a direction is blocked, the
walker can escape to another dimension. Above four dimensions, the self-avoiding
constraint is sufficiently weakened that the walks behave like random walks, albeit
an exponentially small subset. In four dimensions, which is the so-called marginal
dimensionality, the self-avoiding constraint is just strong enough to modify the ran-
dom walk behaviour by the addition of confluent logarithmic terms in the singular
part of the generating function. These remarks will be quantified in Chapter 6.

To prove the existence and value of the critical exponents in two dimensions,
the most promising route appears to be based on recent beautiful work by Cardy,
Lawler, Schramm, Smirnov, Werner and others [35]. It will be necessary to prove
the existence and conformal invariance of the scaling limit (these terms will be sub-
sequently defined) for self-avoiding walks. If, as expected, the scaling limit is de-

3 This is the same α as appears in equation (1.4)
4 These estimates come from Monte Carlo estimates, series estimates and field theory estimates
[36, 2, 34]. The three techniques give results that typically agree up to variations in the last quoted
figure.
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scribed by stochastic Löwner evolution, parameterised by 8/3, known as SLE8/3,
the existence and value of γ for two-dimensional lattices would follow, as would a
number of other results. These remarks will be explained in detail in Chapter 15.

The exact value of µ is not generally known, but for the special case of the two-

dimensional hexagonal lattice, it is accepted [39] that µ =
√

(2 +
√

2). For other
two-dimensional lattices we have very accurate numerical estimates, notably µ =
2.63815853031.. for the square lattice, and µ = 4.150797226.. for the triangular
lattice. Indeed, for the square lattice, note that the estimate above is indistinguishable
from the root of the polynomial 581x4 + 7x2 − 13, an observation first made by
Conway et al. in 1993 [6]. For other lattices, in both two and three dimensions, see
the Appendix.

Next we define several measures of the size of n-step SAW and SAP. For SAW:

• The squared end-to-end distance is

R2,(saw)
e = ω2

n . (1.7)

• The squared radius of gyration is

R2,(saw)
g =

1
2(n + 1)2

n

∑
i, j=0

(ωi −ω j)
2 . (1.8)

• The squared distance of a monomer from the endpoints is

R2,(saw)
m =

1
2(n + 1)

n

∑
i=0

[
ω2

i + (ωi −ωn)
2] . (1.9)

For SAP only the second of these three quantities is analogously defined:

• The squared radius of gyration of a SAP of perimeter n is

R2
g =

1
2n2

n

∑
i, j=0

(ωi −ω j)
2 . (1.10)

The analogue of the end-to-end distance is usually taken to be the caliper span of
the polygon, which is defined to be the maximum Euclidean distance between any
two sites (monomers, in the language of polymers) of the polygon.

If one is considering rooted polygons (where one site is nominated as the origin),
one could readily define the mean-square distance of a monomer from the origin,
but this quantity has not been considered of much interest.

We then consider the mean values 〈R2
e〉n, 〈R2

g〉n and 〈R2
m〉n in the probability dis-

tribution that gives equal weight to each n-step SAW. Very little has been proven
rigorously about these mean values, but they are believed to have the leading asymp-
totic behaviour

〈R2,(saw)
e 〉n, 〈R2,(saw)

g 〉n, 〈R2,(saw)
m 〉n, 〈R2,(sap)

g 〉n ∼ const×n2ν (1.11)

as n → ∞, where ν is another (universal) critical exponent. Hyperscaling [44] pre-
dicts that
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dν = 2−α . (1.12)

For SAW in two dimensions, Coulomb-gas arguments [39, 40] as well as argu-
ments based on stochastic Löwner evolution (SLE) [35] predict that ν = 3/4. Note
that this result is not rigorous. In three dimensions we have only numerical esti-
mates ν ≈ 0.5876,5 a result which encompasses a variety of series, Monte Carlo
and field theory estimates [36, 2, 34], while at the upper critical dimension of 4,
it is believed (but not proved) that ν = 1/2 with logarithmic corrections, notably

〈R2,(saw)
e 〉n ∼ const.× n(logn)1/2 while for d > 4 the mean-field value ν = 1/2

holds. This is a rigorous result (see the chapter by Clisby and Slade).
As noted above, because polygons are closed, it is almost as natural to ask for

their enumeration by area, as by perimeter6. For specificity, consider polygons on
the square lattice. Recall that an denotes the number of polygons of area n. Then
by concatenation arguments, similar to those given above for SAW, it is possible to
prove that

κ = lim
n→∞

a1/n
n

exists. Further, it is universally believed that

an ∼ const×κnnτ . (1.13)

Only numerical estimates of κ and τ are available. For the hexagonal, square
and triangular latices respectively, the best current estimates7 of κ are κhexagonal =
5.16193016(3), κsquare = 3.970944(2), and κtriangular = 2.9446596(3), while τ is
believed to be −1, so that the generating function

A (x) = ∑anxn ∼ A log(1−κx).

Consequently,
an ∼ const.×κn/n.

Of great interest is the two-variable generating function

P(x,y) = ∑
m

∑
n

pm,nxmqn.

From this, we can define the free energy

κ(q) = lim
m→∞

1
m

log

(
∑
n

pm,nqn
)

.

It has been proved [13] that the free energy exists, is finite, log-convex and contin-
uous for 0 < q < 1. For q > 1 it is infinite. The radius of convergence of P(x,q),

5 A newly developed Monte Carlo algorithm by Clisby, briefly described in Chapter 9, is dramati-
cally more powerful, permitting him to estimate ν = 0.587597(7) and γ = 1.156957(9).
6 At least for polygons on two-dimensional lattices. The concept of area for higher dimensional
lattices is not straightforward
7 Kindly provided by Iwan Jensen, unpublished
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which we denote xc(q), is related to the free energy by xc(q) = e−κ(q). This is zero
for fixed q > 1. A plot of xc(q) in the x−q plane is shown (qualitatively) below. For
0 < q < 1, the line xc(q) is believed to be a line of logarithmic singularities of the
generating function P(x,q). The line q = 1, for 0 < x < xc(1), is believed to be a line
of finite essential singularities [13]. At the point (xc,1) we have more complicated
behaviour, and this point is called a tricritical point. For the simpler polygon model
of staircase polygons (see Chapter 3), the figure is qualitatively similar, though for
0 < q < 1, the line xc(q) is known to be a line of simple pole singularities of the
generating function P(x,q), rather than logarithmic, as in the case of SAP. The line
q = 1, for 0 < x < xc(1), is also known [43] to be a line of finite essential singulari-
ties. As for SAP, at the point (xc,1) we have more complicated tricritical behaviour,
and this is discussed in more detail in Chapter 11.

0

0

xc

qc q

x

Fig. 1.3 The phase diagram of self-avoiding polygons in the x−−q plane.

Around the point (xc,1) we expect tricritical scaling, so that

P
(sing)(x,q) ∼ (1−q)θ F((xc − x)(1−q)−φ) as (x,q) → (xc,1−).

Here the superscript (sing) means the singular part. There is an additional, additive
part that is regular in the neighbourhood of (xc,1), and so is not relevant to this
discussion. For staircase polygons, Prellberg [43] has proved that

F(s) =
1

16
d
ds

logAi
(

28/3s
)

,
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where s = (xc − x)(1 − q)−φ . For self-avoiding polygons, in a series of papers,
Richard and co-authors [49, 50, 48] have provided abundant evidence for the sur-
prisingly strong conjecture that

F(s) = − 1
2π

logAi

(
π
xc

(4A0)
2
3 s

)
+C(q).

Here C(q) is a function, independent of x, that arises as a constant of integration
when moving from the rooted to the unrooted SAP scaling function [50]. For both
models φ = 2/3, while θ = 1/3 for staircase polygons and θ = 1 for SAP. Here
A0 = 0.2811506(1) is the amplitude of the perimeter generating function, and xc

is the perimeter generating function critical point. This result is described in much
greater detail in Chapter 11 by Richard.

1.1.2 The Connection with Statistical Mechanics

Thus far we have discussed SAW and SAP as a combinatorial problem. However
there is an alternative description as a statistical mechanical model. This both sheds
light on some aspects of the behaviour of various quantities of interest, described
above, such as critical points, critical exponents and critical amplitudes, and also
gives us another way to tackle the problems that arise.

In statistical mechanics one starts with a Hamiltonian, which is the energy of
a given configuration, taking into account the interactions, and then constructs the
partition function. This assumes that configurations of a given energy and temper-
ature are distributed according to the Boltzmann distribution. The Ising model and
Heisenberg models of ferromagnetism have been known for decades, and were de-
fined by Hamiltonians in which each spin was a classical unit vector of dimension
1 in the case of the Ising model, dimension 2 in the case of the classical planar
Heisenberg model, and dimension 3 in the case of the classical Heisenberg model.

In 1968 Stanley [51] proposed the n-vector model, in which each spin was repre-
sented by a classical, n-dimensional vector. Clearly this reproduces the three cases
mentioned above when n = 1, 2, 3 respectively. Stanley pointed out that the suit-
ably defined limit as n → ∞ reproduces the so-called spherical model, introduced by
Berlin and Kac [4]. A more remarkable limit, n → 0, was proposed by de Gennes
[8], who showed that in this limit the model described was exactly self-avoiding
walks and polygons. This is not at all intuitive. What after all do we mean by the
interaction between two zero-component vectors? Nevertheless, proceeding with a
curious mixture of formality and non-rigorous argument, a connection can be estab-
lished. We will sketch the result. More details can be found in [7], and more recent,
and perhaps more accessible accounts can be found in Madras and Slade [37] and
Hughes [24].

One starts with a Hamiltonian
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H = − ∑
<i, j>

si · s j −H ∑
i

si(1), (1.14)

where s is an n-component vector, which is located at the vertices of a regular lattice
of arbitrary spatial dimension, and the subscript indexes a particular site on the
lattice. The first sum is taken over all pairs of sites (i, j) which are nearest neighbours
on the lattice. The second sum is a scalar product of a magnetic field H, assumed
w.l.o.g. to be in the ‘1’ direction, and so couples to spin components in that direction.
The vector is assumed to be of magnitude

√
n, so that |si|2 = n.

The partition function is obtained by the usual rules of statistical mechanics from

Z = ∑
all configurations

exp(−H /kT ). (1.15)

In the above equation, k is Boltzmann’s constant and T is the absolute temperature.
The Helmholtz free energy is defined by

F(T,H) = −kT logZ(T,H),

though we usually work in the thermodynamic limit,

f (T,H) = lim
N→∞

1
N

F(T,H). (1.16)

In the above equation, N refers to the number of spins in the lattice, and should
not be confused with the dimensionality of the spin vectors, denoted n, whereas
the underlying dimensionality of space is denoted d. Next, we need to define the
magnetic susceptibility,

χ(T ) = − ∂ 2 f
∂H2 |H=0 (1.17)

The Ising model corresponds to the case n = 1. The susceptibility then behaves as

χ(T ) ∼ const(1−Tc/T )−7/4

as T → T +
c . If one takes a formal series expansion of the susceptibility, after sub-

stituting equation (1.14) into equation (1.15) and then using equations (1.16) and
(1.17) to calculate the susceptibility, it can be seen that each term in the expan-
sion corresponds to sums over averages of dot products of the vector spins. These
can be interpreted as graphs on the underlying lattice. In the limit as n → 0, all
graphs vanish except non-intersecting lattice paths joining site i to site k. These are
just self-avoiding walks from site i to site k. Thus the susceptibility of the n vector
model in the n → 0 limit is precisely the generating function for SAW. By the same
token, the specific heat exponent for magnetic models can be related to the exponent
characterising the generating function for SAP, so that if the specific heat is written

C(T ) ∼ const(1−Tc/T )−α
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as T → T+
c , we have, for the corresponding polygon generating function,

P(x) = ∑ pnxn ∼ const(1− x/xc)
2−α .

The advantage of this formulation is that one can now bring to bear the full ma-
chinery of statistical mechanics to what would otherwise be a combinatorial prob-
lem. In statistical mechanics one has scaling arguments that link exponents. This is
one justification for the hyperscaling relation (1.12) given above. Other tools from
statistical mechanics are also available, such as the renormalisation group method,
and other methods developed by mathematical physicists working in field theory.
We won’t discuss these techniques in any detail—each would justify a volume on
its own—but will refer to some predictions made by these methods in later chapters.

1.1.3 Some History of the Problem

We conclude this section by a brief discussion of the chronological history of the
SAW and SAP problem. The problem of enumerating self-avoiding walks (SAW)
was initially proposed as a mathematical problem in a posthumously published pa-
per by Orr in 1947 [42], and shortly thereafter was proposed as a model of long-
chain polymers in dilute solution by Flory in 1949 [15]. Self-avoiding polygons
(SAP), on the other hand, were first enumerated by Wakefield in 1951 [57]. Wake-
field was not studying SAP in their own right, but rather enumerating them as part
of a different project, notably the behaviour of the three-dimensional Ising model.
In that study, SAP on the simple-cubic lattice contributed to the graphical expansion
of the Ising model partition function.

Somewhat later, in 1954 and 1955, Wall and co-workers [54, 55, 56] calculated
some properties of two- and three-dimensional SAP which arose as a by-product of
their Monte Carlo study of SAW. Some of the SAW configurations they generated
by Monte Carlo methods failed due to the coincidence of the end point of trial
walks they generated with the origin. Such failures led them to study the probability
of these occurrences, and hence they introduced the so-called probability of initial
ring closure. This is defined as the probability that a SAW ends at a site adjacent
to the origin, so that the addition of a single bond produces a self-avoiding circuit.
This probability is just 2mpm/((q− 1)cm), where q is the coordination number of
the lattice, or number of nearest-neighbour sites of a given site. For a d-dimensional
hypercubic lattice, q = 2d.

In terms of the notation given above, and assuming the existence of the con-
jectured sub-dominant terms containing the critical exponents, we have pm ∼
const× µmmα−3, and cm ∼ const× µmmγ−1. The probability of initial ring clo-
sure p0

m is p0
m = 2mpm/((q−1)cm)∼ const×mα−γ−1. In two dimensions, from the

above-quoted values of α and γ , we obtain p0
m ∼ const/m1.84375, while from the

best numerical estimates for the exponents in the three-dimensional case, we find
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p0
m ∼ const/m1.921. Wall and co-workers in 1955 estimated these exponents to be

around 2 in both two and three dimensions, by Monte Carlo methods.
In 1959 Rushbrooke and Eve [47] studied this problem by direct enumeration,

and ushered in the computer age of enumeration. They counted polygons up to
perimeter 18 on the square lattice, and, more impressively, to order 14 on the simple
cubic lattice. The coefficient p14 on the sc lattice was counted on the Pegasus com-
puter at Durham University, in a calculation that took 50 hours of CPU time. The
exponent estimates obtained from an analysis of these enumerations were 2.4±0.2
and 2.29 for the square and SC lattices respectively. At the same time, and quite in-
dependently, Fisher and Sykes [14] estimated these exponents to be 1.75±0.10 and
1.810± 0.007 respectively. These estimates were improved by Hiley and Sykes in
1961 [21] based on further enumerations, and they found exponents 1.805± 0.025
and 1.92±0.08 respectively. Remarkably, the estimate in the three-dimensional case
is in precise agreement with current estimates to all quoted digits.

1.2 Polyominoes

The modern era of polyominoes began in 1953 when Golomb discussed them in
a talk he gave to the Harvard Mathematics Club, which was subsequently pub-
lished [17]. Martin Gardner added to the popularity of the subject when he dis-
cussed Golomb’s article in his column in Scientific American. Polyominoes became
a favourite topic of Gardner, and one he often returned to. As Golomb points out
in the preface to the first edition of his book on the subject [16], there are many
antecedents, either in the form of particular puzzles, or in discussions of the number
of allowable patterns of a particular type in board games, such as Go. One notable
antecedent appeared in 1907, when a puzzle involving 5-celled polyominoes, (of
which there are twelve), was posed in the book Canterbury Puzzles [9]. In his book
on polyomino puzzles, G. E. Martin [38] also points out that a variety of polyomino
puzzle problems appeared in the British journal Fairy Chess Review in the 1930s.
At that time, they were called dissection problems.

Formally, a polyomino (or, as they are sometimes known, a square lattice site
animal8) of n cells on the square lattice with origin 0 is a connected section graph9

of the lattice containing the origin and having n vertices. More intuitively, a poly-
omino is comprised of n connected squares, which must be joined at an edge, and
not just at a vertex. A domino is an example—indeed, the only example—of a 2-
celled polyomino. Polyominoes may be similarly defined on other two-dimensional
lattices, such as the triangular or honeycomb lattice. We will assume that we are
referring to square lattice polyominoes in the following, unless stated otherwise.

8 Other types of animals are discussed in the next chapter.
9 A section graph G∗ of a graph G is obtained from G by deleting one or more of its vertices and
any incident edges.
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The difference between polyominoes and polygons is that a polyomino may have
an internal hole. For example, see Fig. 1.4. So all polygons are polyominoes, but not
vice-versa.

Fig. 1.4 A polyomino. The
presence of holes means that
this is a polyomino, rather
than a polygon.

Polyominoes are usually enumerated by area—or number of cells. While, like
polygons, they can also be enumerated by perimeter, we will see below that this
is less easily characterised, as the perimeter generating function has zero radius
of convergence. Thus the more common asymptotic form (1.13) for lattice objects
enumerated by perimeter does not hold when discussing the enumeration of poly-
ominoes by perimeter.

The sort of results one can prove for polyominoes are not too different to those
that can be proved for polygons. If an denotes the number of polyominoes of area n
(or, if one prefers, of n cells), then Klarner [32] proved that the growth constant α ,
defined by

α = lim
n→∞

a1/n
n = sup

n
a1/n

n ,

exists and is non-zero. The proof follows standard concatenation arguments, whereby
polyominoes are uniquely concatenated to produce a subset of polyominoes of a size
given by the sum of the sizes of the two individual polyominoes. Even before the
existence of this limit was proved, it was widely assumed to exist, and indeed Eden,
in 1961 [11], undertook a numerical analysis to estimate its value.

Such estimates rely on the enumeration of an, a computational problem of ex-
ponential complexity. As for polygons, the most effective method to date is the
finite-lattice method (discussed in Chapter 7), which permits enumeration by finite-
dimensional transfer matrices. The method was implemented for polyominoes by
Conway and Guttmann in 1995 [5], giving rise to an for n ≤ 25, which was dramat-
ically improved by Jensen and Guttmann in 2000 [26], who obtained an for n ≤ 46,
then Knuth and Jensen played leap-frog for a few years, extending the series, with
Jensen [28] currently holding the record with a56 = 69,150,714,562,532,896,936,
574,425,480,218.

Polyominoes are frequently referred to as free or fixed. Fixed polyominoes are
considered distinct up to a translation. That is to say, fixed polyominoes means
“an equivalence class of polyominoes under translation”, whereas free polyominoes
refers to “an equivalence class of polyominoes under translations, rotations and re-
flections”. Asymptotically, the number of fixed polyominoes of n cells, denoted Bn
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on the square lattice is 8 times the corresponding number of free polyominoes of
n cells, denoted bn. While the same distinction can be made for SAP, this is rarely
done, and one usually considers fixed SAP, without explicitly saying so.

As for SAW and SAP, it is widely believed, but not proved, that bn ∼ Aαnnθ as
n → ∞, or, equivalently, that Bn ∼ 8Aαnnθ as n → ∞.

Like polygons, polyominoes on other two-dimensional lattices can be consid-
ered. Hexagonal and triangular lattice polyominoes were first introduced by Lunnon
[33], and have also been exhaustively enumerated by Jensen [27], who has obtained
the counts up to 75-celled animals on the triangular lattice and 46-celled animals on
the hexagonal lattice.

As is the case for polygons, the growth constant α will change from lattice to lat-
tice, while the critical exponent θ is expected to be the same for all two-dimensional
lattices, and its value has been predicted by powerful, but non-rigorous, physical
arguments [45] to be θ = −1, corresponding to a logarithmic singularity in the gen-
erating function for polyominoes, while α ≈ 4.062570 [26].

1.3 Polycubes

A three-dimensional analogue of a polyomino on the square lattice is called a poly-
cube on the simple-cubic lattice. Polycubes are composed of unit cubes joined at
their faces. Many topologies are formed by this rule, including spheres, toroids and
objects of higher genus. They are usually counted as free polycubes.That is to say,
a particular polycube is counted only once irrespective of its orientation. Those that
are mirror images of one another (so-called chiral twins) are usually (but not always)
distinct.

Consideration of chiral twins is a slightly subtle distinction from the analogous
two-dimensional case, where chirality is accommodated by reflection. But the re-
flection takes place by flipping the object through the third dimension. By conven-
tion, since one can’t “see” the fourth dimension, the analogous reflection is forbid-
den, and that is why chiral twin polycubes are considered distinct.

As with polyominoes, it is customary to distinguish between fixed and free poly-
cubes. To make this distinction clear, a tower of three cubes counts 1 as a free poly-
cube, but counts 3 as a fixed polycube, as it may be oriented parallel to the x, y or z
axis. Asymptotically, the number of fixed polycubes is 24 times the number of free
polycubes.

In three dimensions, the longest series is due to Aleksandrowicz and Barequet
[1], who give the first 18 series coefficients. We again have an exact prediction
for the critical exponent from the powerful but non-rigorous physical arguments of
Parisi and Sourlas [45], which is θ = −1.5. We have analysed the available series
coefficients, using the techniques described in Chapter 8, and find α ≈ 8.3479. (In
1978 Guttmann and Gaunt [19] predicted θ = −1.5 and α = 8.34±0.02, based on
much less data.)
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1.4 Tilings

The theory of tilings is a fascinating topic in its own right. Many books have been
written on this subject, and we will have little to say about it, except to point out
some of the more remarkable results, and indicate some of the open questions. An
interesting, and still unanswered question is the necessary and sufficient conditions
for a polyomino (or actually a polygon, as we don’t want internal holes) to tile the
plane. It is unknown if the tiling problem is decidable [46], and it is known that the
problem of tiling a finite region is NP-complete [52].

To be more precise, by a tiling of the plane, we mean a covering of the Euclidean
plane by a countable family of elementary tiles. The tiles may not overlap. If a single
tile is used, we refer to the tiling as a monohedral tiling. The tile used is called a
prototile. As a trivial example, it is clear that a 1×1 cell—indeed, a k× k cell—can
tile Z2. For a discussion of tilings of the entire plane, the reader is referred to the
discussion by Grünbaum and Shephard [18].

It is easy to see that any triangle or rectangle can tile the Euclidean plane, and
with a bit more effort one can see that any quadrilateral can tile the plane. Conway
[46] has a powerful method that provides a sufficient, but not necessary, condition
for a prototile to tile the plane. Conway’s method requires that if one can divide
the boundary up into six segments, labelled sequentially as A, B, C, D, E and F ,
such that:
(i) A and D are translates of one another,
(ii) the remaining four segments each possess a 180◦ rotational symmetry about
their mid-point, and
(iii) while some segments may be empty, each pair B–C and E–F must be non-
empty. Also, A and D can both be empty if at least three of the remaining four
segments are non empty.

An example is shown in Fig. 1.5. Note that segments A and D are translates of
one another, while the remaining segments each possess a 180◦ rotational symmetry
about their respective mid-points. To tile the plane with this tile involves using both
translates and rotated versions of the basic prototile, as can be seen in Fig. 1.6,
illustrating the tiling.

If one restricts the movement of tiles to translations only, (that is to say, one
forbids rotations and reflections), then there is a necessary and sufficient condition
for a prototile to tile the plane. If the boundary can be divided into six consecutive
segments, sequentially labeled A–F as above, such that each element of the pairs A–
D, B–E and C–F are translates of each other, the prototile tiles the plane. (One such
pair may be empty, in which case the tiling forms a rectangular lattice, otherwise it
forms a hexagonal lattice.) See [46] for a proof.

Rhoads [46] has made an interesting study of the effectiveness of Conway’s crite-
rion. He shows, among other results, that one needs to go to 9-cell polygons before
one finds a polygon that does not satisfy the Conway criterion, but still tiles the
plane. More precisely, apart from two 9-cell polygons, all polygons up to order 9
that tile the plane either satisfy the Conway criterion, or two copies form a patch
that satisfies the Conway criterion.
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A

B

C

D

E

F

Fig. 1.5 A tile that satisfies the Conway criterion for tiling the plane.

Fig. 1.6 A tiling of the plane using the above tile. Notice that alternate tiles are rotated a half-turn.
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A second question that is asked about tilings, once it has been established that
a prototile can tile the plane is: In how many ways can the plane be tiled? One of
the earliest non-trivial results in this direction is due to Kasteleyn [29], who used
a Pfaffian to express the number of ways 2 jk dominoes (or 2× 1 tiles) can tile a
2 j × 2k rectangle. The same problem was treated by transfer matrix techniques,
discussed in Chapter 7, by Fisher and Temperley [53]. The result is

4 jk
j

∏
l=1

k

∏
m=1

(
cos2 lπ

2 j + 1
+ cos2 mπ

2k + 1

)
.

It is far from obvious that this double product should even produce integers! The
reader is invited to try it out for small values of j and k and confirm results by direct
enumeration.

We will mention just one other remarkable exact result, the enumeration of Aztec
diamonds. An Aztec diamond AZ(k) is constructed by reflecting a pyramidal stack
about its base. The stack base contains 2k cells, the next row 2k− 2 cells, the sub-
sequent row 2k − 4 cells, and the top of the stack contains two cells. The Aztec
diamond AZ(10) is shown in the Fig. 1.7.

Fig. 1.7 An Aztec diamond AZ(10).

The number of domino tilings of AZ(n) was found by Elkies, Kuperberg, Larsen
and Propp [10], and is just

2(n2+n)/2.
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This relatively simple result might suggest that there is a simple proof. Unfortu-
nately that is not yet the case, despite the fact that the number of different proofs
now runs to double figures.

Another typical question that is asked is: What is the typical shape of an object?
Some tilings, or objects, display no particular structure, whereas others show quite
remarkable properties. For example, the typical large Aztec diamond displays a sur-
prising regularity at its corners, where, as can be seen from Fig. 1.9, it is tiled in
a regular brickwork pattern, switching abruptly to apparent randomness in a circu-
lar region, corresponding to the largest possible circle that can be drawn inside the
boundary. This geometry is sketched in Fig. 1.8.

Fig. 1.8 An Aztec diamond showing the so called Arctic circle.

Jokush, Propp and Shor [25] proved this result in probability. It is known as the
Arctic circle theorem, The inscribed circle is the Arctic circle, the region at the poles,
(and, perhaps disturbingly, at the equator), is “frozen”. Hence the name. A typical
such tiling is shown in Fig. 1.9.

1.5 The Rest of the Story

In the next chapter, Whittington describes the rigorous results that can be proved for
SAP. While the SAP model remains unsolved, a number of simpler polygon models
can be exactly solved, and methods for solving these are described in Chapter 3 by
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Fig. 1.9 A typical tiling of the Aztec diamond, showing the occurrence of Arctic circle.

Bousquet-Mélou and Brak. In recent years we have gained a better understanding of
just why the SAP model is so hard, and these ideas are described in Chapter 4. The
key idea is that the solution is not holonomic, and in Chapter 5 Rechnitzer proves
this, along the way developing tools that are useful for similar proofs. In Chapter 6
Clisby and Slade develop the lace expansion method that has proved such a powerful
tool for both rigorous results and numerical results in higher dimensions (d ≥ 3).

Much of our knowledge of SAP comes from numerical methods. In two dimen-
sions the finite-lattice method (FLM) is, for most applications, the most powerful
method, and it is described in Chapter 7 by Enting and Jensen. The result of the ap-
plication of this method is a series expansion for the generating functions we have
defined. Analysing this data to extract critical properties, such as critical exponents,
critical points and critical amplitudes is the subject of Chapter 8 by Guttmann and
Jensen, while the alternative numerical method, Monte Carlo, is described by Janse
van Rensburg in Chapter 9. The advantage of Monte Carlo methods is that much
larger systems can be sampled than is possible by direct enumeration. As an exam-
ple, we show in Fig. 1.10 a SAP on the simple cubic lattice of size 92678 steps,
produced by Clisby’s new Monte Carlo algorithm, described in Chapter 9.

Interesting phenomena occur if SAW and SAP are restricted to confined geome-
tries, such as polygons in strips, in slabs and in rectangles. These are described in
Chapter 10 by Jensen and Guttmann. The underlying limit distributions of the area
of SAP is the subject of Chapter 11 by Richard. Many physical, chemical and bio-
logical properties of polymers can be modelled by including monomer-monomer or
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Fig. 1.10 A typical self-avoiding polygon on the simple cubic lattice of 92678 steps.

monomer-surface interactions, and these are the subject of Chapter 12 by Owczarek
and Whittington.

Recent developments that combine powerful physical concepts with advances in
probability are the subject of the last three chapters. In chapter 13 de Gier describes
fully packed loop models, in which the lattice is filled with polygons. These models
impact on a variety of combinatorial and physical problems. In Chapter 14 Jacobsen
describes the theory of conformal invariance, how it can be used to produce critical
exponents, exact continuum limit partition functions, and many other powerful re-
sults, while in Chapter 15 Nienhuis and Kager describe the ideas behind stochastic
Löwner evolution, which is believed to describe the scaling limit of a number of
processes, including SAP and SAW.
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Chapter 2
Lattice Polygons and Related Objects

Stuart G Whittington

2.1 Introduction

Self-avoiding lattice polygons, i.e. embeddings of simple closed curves in a lattice,
have been studied for more than fifty years. They are interesting as models of ring
polymers in solution in good solvents and they appear in graphical expansions in,
for instance, the Ising problem. They have been counted exactly (see e.g. [17]) and
studied by Monte Carlo methods (see e.g. [22]). We understand many of their prop-
erties but rigorous results are scarce. In 1961 Hammersley [11] showed that they
grow exponentially at the same rate as self-avoiding walks—a result which was by
no means obvious at the time—but we still know very little about the sub-dominant
asymptotic behaviour, except in dimensions higher than four where lace expansion
techniques are useful.

This chapter will review some of the results which have been established rigor-
ously. Apart from results about the numbers of polygons we also discuss counting
polygons by both perimeter and area, which gives an interesting model of vesicles
and how they respond to an osmotic force. This is closely related to the problem
of self-avoiding surfaces. In three dimensions polygons can be knotted, and we in-
vestigate what is known rigorously about knot probabilities. There are many open
questions in this area and we mention some of these. We then turn to polygons with
a geometrical constraint and consider polygons confined to a wedge or to a slit or
slab. The main interest has focussed on whether the constraint changes the exponen-
tial growth rate of the number of polygons. Finally we give a brief account of some
results on lattice trees and lattice animals.

Stuart G Whittington
Department of Chemistry, University of Toronto, Ontario, Canada, e-mail: swhit-
tin@chem.utoronto.ca
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2.2 Counting Polygons

There are several different ways to think of and to define lattice polygons. To illus-
trate this we first consider a particular lattice, say the square lattice Z2. This is the
lattice whose vertices are the integer points in Euclidean 2-space and whose edges
join pairs of vertices which are unit distance apart. A lattice polygon is a connected
subgraph of the lattice with all vertices of degree two. Alternatively we can think
of a lattice polygon as an embedding of the circle graph. (We shall often drop the
adjective lattice when the meaning is clear by the context.) If we stratify lattice
polygons by the number (n) of edges in the embedding then the smallest polygon
has four edges and there are no lattice polygons with an odd number of edges. We
count polygons up to translation, i.e. we consider two polygons as identical if one
can be superimposed on the other by a translation. This means that there is just one
polygon with four edges, the unit square. If we write pn for the number of polygons
with n edges we have p4 = 1. There are two polygons with six edges and seven with
eight edges, so p6 = 2 and p8 = 7. See Fig. 2.1 for a sketch of the polygons with
eight edges. Notice that these polygons are neither directed nor rooted. An alterna-

Fig. 2.1 Polygons with eight edges on the square lattice.

tive approach is to think of a walk starting at the origin which is self-avoiding (i.e.
it never revisits a vertex) except that it returns to the origin at its nth step. We call
these objects self-avoiding circuits to distinguish them from the lattice polygons in-
troduced above. Self-avoiding circuits are both directed and rooted (in this case they
are rooted at the origin). We write un for the number of self-avoiding circuits with
n edges. When n = 4 the first step can be taken in four ways and the second in two
ways (since we are forming a unit square) and the third and fourth steps are then
determined, so u4 = 8. In fact un and pn are closely related. Each n-edge polygon
can be rooted in n ways (i.e. at any vertex) and directed in two ways so

un = 2npn. (2.1)

Almost everything works in the same way for other lattices. An obvious exten-
sion is to the d-dimensional hypercubic lattice Zd , whose vertices are the integer
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points in d-dimensional Euclidean space. When d = 3 this is the simple cubic lat-
tice. Again there are no polygons with an odd number of edges and the smallest
polygon has four edges (since the girth of the lattice is 4). When d = 3 p4 = 3 since
the unit square can be in any one of the three coordinate planes. Similarly it is not
difficult to see that p6 = 3× 2 + 3× 4 + 4 = 22. The first term counts polygons
which lie in a plane, the second counts bent polygons (pairs of unit squares in dif-
ferent planes which share a common edge) and the third counts skew polygons (six
edges of a unit cube such that an opposite pair of vertices of the cube are not vertices
of the polygon).

2.3 Asymptotic Behaviour

The values of pn are known exactly up to remarkably large values of n in two [17]
and three dimensions [3]. In two dimensions the results are obtained by methods
described in Chapter 7, and in three dimensions the results are obtained from lace
expansion ideas, as described in Chapter 6. Unfortunately knowing pn for a par-
ticular value of n tells us nothing in principle about the value for larger values of
n. Consequently we need some information about how pn grows for n large. The
main result is due to John Hammersley and dates back to 1961. Hammersley [11]
used a concatenation argument to show that pn = exp[κn + o(n)] where κ is a con-
stant which depends on the lattice and where κ is neither zero nor infinity. κ is the
connective constant of the lattice.

Theorem 1. For the d-dimensional hypercubic lattice the limit

lim
n→∞

n−1 log pn = κ

exists and 0 < κ < ∞.

Proof: The proof relies on two observations. Since the coordination number of
Zd is 2d it is clear that pn ≤ (2d)n so

limsup
n→∞

n−1 log pn ≤ log(2d) < ∞. (2.2)

Attach a coordinate system (x,y, . . . ,z) to Zd . Consider a polygon whose vertices
have coordinates (xi,yi, . . . ,zi), i = 1 . . .n. Using these coordinates we can construct
a lexicographic order for the vertices. Call the vertex which is lexicographically first
the bottom vertex of the polygon and the vertex which is lexicographically last the
top vertex of the polygon. (In particular no vertex has smaller x-coordinate than the
bottom vertex or larger x-coordinate than the top vertex.) Let the x-coordinate of the
bottom vertex be xb and the x-coordinate of the top vertex be xt . We call the plane
x = xb the bottom plane of the polygon and the plane x = xt the top plane of the
polygon. Each polygon has either one or two edges in the bottom plane, incident on
the bottom vertex, and either one of two edges in the top plane, incident on the top



26 Stuart G Whittington

vertex. If there is only one such edge we call it the bottom edge or top edge. If there
are two we choose which one to call the bottom or top edge by the lexicographic
order of the other vertex incident on the edge. Consider two polygons, π1 with n1

edges and π2 with n2 edges. π1 has the top plane x = xt(π1). If necessary rotate π2 so
that the bottom edge of π2 is parallel to the top edge of π1. With π1 fixed, translate
π2 so that its bottom plane is x = xt(π1)+ 1 and so that the bottom vertex of π2 has
all other coordinates equal to the corresponding coordinates of the top vertex of π1.
By deleting the top edge of π1 and the bottom edge of π2 and adding two edges
to connect the two walks to produce a polygon, we obtain a polygon with n1 + n2

edges. See Fig. 2.2 for a sketch of the construction in two dimensions. This implies
the inequality

pn1

pn2

d−1
≤ pn1+n2 (2.3)

where the factor of d−1 comes from the possible rotation of π2. Dividing both sides
by d−1 gives the supermultiplicative inequality

(
pn1

d−1

)(
pn2

d−1

)
≤ pn1+n2

d −1
, (2.4)

so we see that log(pn/(d −1)) is a superadditive function. Together with (2.2) this
implies that the limit limn→∞ n−1 log(pn/(d−1)) exists and that

lim
n→∞

n−1 log(pn/(d−1)) = sup
n>0

n−1 log(pn/(d−1)). (2.5)

This proves the theorem and, in addition, gives the bound

κ ≥ n−1 log(pn/(d −1)) (2.6)

for every n.

Fig. 2.2 Concatenation of two polygons on the square lattice. The two thick edges (the top edge
of one polygon and the bottom edge of the other) are deleted and the two dashed edges are added
to connect and form a polygon.
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2.4 Connection to Self-Avoiding Walks

In this section we consider self-avoiding walks, which are closely connected to lat-
tice polygons. A self-avoiding walk is a walk on a lattice which never returns to
a vertex already visited. If the walk has n edges it is a sequence of n + 1 vertices,
i = 0,1, . . . ,n, such that

1. the vertices are distinct, and
2. the (i−1)th and ith vertices are unit distance apart, i = 1,2, . . .n.

It is convenient to think of walks starting at the origin (although this is equivalent
to counting walks up to translation). If we write cn for the number of n-edge self-
avoiding walks then, for the square lattice, it is easy to see that c1 = 4, c2 = 12 and
c3 = 36. The first interesting event is at n = 4. Since the walk must be self-avoiding
it cannot form a square so we have

c4 = 3c3 −u4 = 3×36−8 = 100.

As for polygons, self-avoiding walks can be counted exactly for modest values of n
and again there is a natural question about how cn grows for large n. If we concate-
nate a self-avoiding walk with m edges and a self-avoiding walk with n edges (by
translating so that the zero’th vertex of the second walk coincides with the mth ver-
tex of the first walk) we produce a set of objects which includes all the self-avoiding
walks with m+ n edges. Hence

cmcn ≥ cm+n (2.7)

and we see that logcn is a sub-additive function. Since there is at least one n-edge
self-avoiding walk (a straight line) liminfn→∞ n−1 logcn ≥ 0 and these two observa-
tions imply that the limit

lim
n→∞

n−1 logcn ≡ κ̂ (2.8)

exists. Moreover κ̂ ≤ n−1 logcn for every n > 0.
We can obtain upper and lower bounds on κ̂ by counting sets of walks which

include the self-avoiding walks, and by counting subsets of self-avoiding walks.
If we consider walks on Zd which have no immediate reverse steps this includes
all walks which are self-avoiding so cn ≤ 2d(2d − 1)n−1. This immediately shows
that κ̂ ≤ log(2d − 1). If we count the subset of walks which only have steps in
the positive coordinate directions we see that these are necessarily self-avoiding so
cn ≥ dn and κ̂ ≥ logd. For a brief review of methods for deriving upper and lower
bounds on κ̂ see [23].

A natural question is how κ and κ̂ are related. If we delete the final edge of
an n-edge self-avoiding circuit we obtain a self-avoiding walk with n− 1 edges so
cn−1 ≥ un. From (2.1) we see that limn→∞ n−1 logun = κ so it follows immediately
that κ̂ ≥ κ .

To get an inequality in the other direction requires rather more work. We in-
troduce a new class of walks [12] which we call x-unfolded walks. These are n-
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edge self-avoiding walks which satisfy the additional constraint that x0 < xi ≤ xn,
i = 1,2, . . .n− 1. We write c†

n for the number of n-edge x-unfolded walks. By in-
clusion c†

n ≤ cn. x-unfolded walks can be obtained from self-avoiding walks by a
processive reflection of subwalks in the top and bottom planes and from this proce-
dure one can show that [12]

cn ≤ c†
neO(

√
n). (2.9)

Hence limn→∞ n−1 logc†
n = κ̂ and x-unfolded walks grow at the same exponential

rate as self-avoiding walks.
The point of introducing unfolded walks is that they can be used to construct

a subset of polygons. We shall explain the idea in two dimensions though the ex-
tension to higher dimensions isn’t difficult. Consider x-unfolded walks in two di-
mensions. These walks can be unfolded again in the y-direction to produce doubly
unfolded walks which satisfy the conditions that

1. x0 < xi ≤ xn and
2. y0 ≤ yi < yn, 1 ≤ i ≤ n−1.

If the number of n-edge doubly unfolded walks is c‡
n then c‡

n ≤ cn ≤ c‡
neO(

√
n) so that

limn→∞ n−1 logc‡
n = κ̂ .

We define a loop with n edges to be an n-edge self-avoiding walk with the addi-
tional constraints that

1. x0 = xn < xi, 1 ≤ i ≤ n−1, and
2. y0 ≤ yi ≤ yn, 1 ≤ i ≤ n−1.

We can construct a subset of loops from doubly unfolded walks as follows. Consider
doubly unfolded walks with n edges. Stratify these according to their span in the x-
direction, and write c‡

n(h) for the number with x-span equal to h. Suppose that h0 is
the smallest value of h such that

c‡
n(h0) = max

h
[c‡

n(h)]. (2.10)

Then c‡
n(h0)≥ c‡

n/n. If we concatenate a doubly unfolded walk with x-span equal to
h0 with another such walk reflected in the line y = y0 we get a loop with 2n edges
and hence

l2n ≥ c‡
n(h0)

2 ≥ [c‡
n/n]2 (2.11)

and since ln ≤ cn we see that

lim
n→∞

n−1 log ln = κ̂. (2.12)

Finally we construct a subset of polygons by concatenating two loops. Stratify
loops according to their span in the y-direction and write ln(h) for the number of
n-loops with y-span equal to h. Define h0 to be the smallest value of h such that

ln(h0) = max
h

[ln(h)] (2.13)
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and concatenate two loops (more precisely a loop and a loop reflected in the line
x = x0) each with n edges and with y-span equal to h0. This yields the inequality

p2n ≥ ln(h0)
2 ≥ [ln/n]2 (2.14)

from which we can see that κ = κ̂ . Self-avoiding walks and polygons grow at the
same exponential rate.

Although the value of κ is not known rigorously for any lattice it is possible
to obtain quite good upper and lower bounds. A lower bound can be obtained by
enumerating polygons since we know that

sup
n>0

n−1 log[pn/(d−1)] = κ . (2.15)

That is, if we know the number of polygons with N edges then

κ ≥ N−1 log[pN/(d−1)]. (2.16)

Similarly, since cn is a sub-multiplicative function,

κ ≤ N−1 logcN (2.17)

for any N ≥ 1.
An alternative scheme is to count exactly a subset of self-avoiding walks or poly-

gons. For instance, on the square lattice, we can get a lower bound on κ by enu-
merating partially directed walks. These are self-avoiding walks with no steps in
the negative x-direction. Suppose that the number of such walks with n edges is bn.
Clearly bn ≤ cn so

lim
n→∞

n−1 logbn ≤ κ . (2.18)

It is easy to see that
bn = bn−1 + 2[bn−2 + bn−3 + . . .] (2.19)

from which we can derive the difference equation

bn+1 −2bn −bn−1 = 0 (2.20)

from which it immediately follows that

lim
n→∞

n−1 logbn = log(1 +
√

2). (2.21)

2.5 Subdominant Asymptotic Behaviour

The results of Section 2.3 say that pn = exp[κn + o(n)] but say nothing about the
o(n) term. There is good reason to believe that
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pn ∼ Anα−3µn (2.22)

where µ = eκ . α is a critical exponent and critical exponents will play a major role in
this book. The value of α is expected to be dependent on d but not on the particular
lattice of dimension d. That is, for instance, one expects α to be the same for the
square, triangular and hexagonal lattices in two dimensions, whereas µ depends on
the lattice. The fact that pn satisfies (2.4) implies that

pn ≤ (d −1)µn (2.23)

which is a useful upper bound on pn for general d. For Z2 this has been improved
by Madras [19] who used an ingenious concatenation argument with the Loomis-
Whitney inequality to show that

pn ≤ An−1/2µn (2.24)

for some positive constant A. Results about the sub-dominant asymptotic behaviour
for d > 4 are given in Chapter 6.

2.6 Counting Polygons by Perimeter and by Area

If we confine our attention to polygons in two dimensions we can stratify by both
perimeter (the number of edges in the polygon) and by the enclosed area. Let pm(n)
be the number of polygons with m edges enclosing area n. Define the three generat-
ing functions [1, 7]

Pm(y) = ∑
n

pm(n)yn, (2.25)

An(x) = ∑
m

pm(n)xm (2.26)

and
P(x,y) = ∑

m,n
pm(n)xmyn = ∑

m
Pm(y)xm = ∑

n
An(x)y

n. (2.27)

One can equally well work in the constant perimeter or the constant area ensemble
but we shall focus on the constant perimeter case [7]. This has a direct applica-
tion as a two-dimensional model of a vesicle [1, 7] where y > 1 corresponds to the
situation where large area is favoured (i.e. fluid flows from the surroundings into
the vesicle under an osmotic pressure gradient and the vesicle swells) and where
y < 1 corresponds to the situation where small area is favoured (i.e. fluid flows to
the surroundings from the vesicle and the vesicle collapses).

For y > 1 the behaviour is dominated by polygons with maximum area. If m
is divisible by 4 the maximum area is m2/16 and if m is not divisible by 4 it is
(m2 −4)/16. By taking the maximum area term in the partition function as a lower
bound we have
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non−physical regime

y

x

finite vesicles

Fig. 2.3 The phase diagram for square lattice polygons with perimeter fugacity x and area fugacity
y. The phase boundary is the boundary of convergence of P(x,y). Below this phase boundary we
have finite vesicles while on the phase boundary the vesicles are infinite.

Pm(y) ≥ y(m2−4)/16 (2.28)

and it is clear that
Pm(y) ≤ pmym2/16. (2.29)

This implies that, for y > 1,

lim
m→∞

m−2 logPm(y) =
logy
16

(2.30)

and that the average area is m2/16+o(m2), so the vesicle is expanded. It also implies
that, for y > 1, the partition function P(x,y) converges only when x = 0. See Fig. 2.3
for a sketch of the boundary of convergence and the resulting phase diagram. The
result in (2.30) is equivalent to

Pm(y) = ym2/16+o(m2). (2.31)

This has been refined [26] to show that

Pm(y) = A(y)ym2/16(1 + O(ρm)) (2.32)

for some 0 < ρ < 1, where A(y) is Ao(y) or Ae(y) depending whether n→∞ through
the odd or even integers. Explicit expressions are available for Ao and Ae, both of
which have an essential singularity at y = 1.

For y < 1 standard concatenation arguments can be used to prove the existence
of the limit

lim
m→∞

m−1 logPm(y) ≡ κ(y) (2.33)
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and it can be shown (using Cauchy’s inequality) that κ(y) is a convex function of
logy. At fixed m the minimum area is (m−2)/2 so, for y < 1,

Pm(y) ≤ pmy(m−2)/2 (2.34)

and

κ(y) ≤ κ +
1
2

logy. (2.35)

As a lower bound one can pick out the polygons with minimum area and write

Pm(y) ≥ pmin
m y(m−2)/2 (2.36)

and one can show that the number of polygons with minimum area (which is the
number of a class of site trees, see Section 2.10, on the dual lattice with (m−2)/2

vertices) satisfies pmin
m = exp[κminn + o(n)] so

κ(y) ≥ κmin +
1
2

logy. (2.37)

The two inequalities (2.35) and (2.37) give bounds on the boundary of convergence
of P(x,y) for y < 1. One can show that the boundary of convergence is continuous
for 0 < y ≤ 1 and the behaviour is consistent with the sketch in Fig. 2.3.

For y < 1 it can be shown that the average area 〈n〉 ∼ m so the vesicles are highly
ramified. This is sometimes called the branched polymer phase [6, 27]. The shape
of the phase boundary as y → 1− is interesting since the behaviour is expected to
be tricritical. This has been investigated by Richard and coworkers [27, 28]. Some
simpler models such as staircase polygons can be solved exactly and this led to a
conjecture [28] for the scaling form for self-avoiding polygons. See also [2]. This
conjectured scaling form is in excellent agreement with numerical results [29].

2.7 Self-Avoiding Surfaces

A closely related problem is counting self-avoiding surfaces [9, 10, 15, 16]. First
consider the two-dimensional case and the square lattice, Z2. Polygons embedded
in the lattice enclose an area and it is only a small switch in our point of view if
we stratify by area. The polygon and the area it encloses is an embedding of a disc
in Z2, and the polygon is the boundary of the disc. We write sn(1) for the number
of embeddings of discs with area n, where the argument 1 is to remind us that we
have one boundary curve. It’s easy to see that s1(1) = 1, s2(1) = 2 and s3(1) = 6.
Concatenation arguments can be used to show the existence of the limit

lim
n→∞

n−1 logsn(1) ≡ logβ1. (2.38)
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The idea can be extended to embeddings of k-punctured discs with area n. These
have k + 1 boundary curves and we write sn(k + 1) for the number of embeddings.
It can be shown that

lim
n→∞

n−1 logsn(k + 1) = logβ1 (2.39)

for any fixed k ≥ 1 so that the numbers of embeddings of punctured discs with any
fixed number of punctures grow at the same exponential rate. If we consider discs
with any number of punctures sn = ∑k≥0 sn(k + 1) then

lim
n→∞

n−1 logsn ≡ logβ (2.40)

and β > β1.
The sub-dominant asymptotic behaviour is more difficult but Janse van Rensburg

[15] proved bounds which, under the assumption that

sn(k) ∼ An−φkβ n
1 , (2.41)

imply that φk+1 = φ1 − k. Roughly speaking this means that an additional puncture
can be added to a k-punctured disc in of order n ways.

Similar but weaker results are available in three (and higher) dimensions [15].
When we consider punctured surfaces embedded in Z3 we need to keep track of the
genus of the surface as well as the number of punctures. We write sn(k,g) for the
number of embeddings, with area n, of a k-punctured surface of genus g, k ≥ 1. The
limit

lim
n→∞

n−1 logsn(k,g) ≡ logβk(g) (2.42)

exists and βk(g) is independent of k and g for all k ≥ 1 and g ≥ 0. Rather less is
known about the sub-dominant behaviour than in two dimensions [15].

Guttmann et al. [9, 10] have considered embeddings of punctured discs in Z2

where the embeddings are stratified by the total number of edges in the boundary

curves, i.e. by the total perimeter. If we write p̂(k)
n for the number of embeddings (in

Z2) of k-punctured discs with a total perimeter of n we can write

p̂n = ∑
k

p̂(k)
n (2.43)

for the number of embeddings of discs with an arbitrary number of punctures and
total perimeter n. Guttmann et al. [10] show that

lim
n→∞

log p̂n

n logn
= 1/4. (2.44)

This means that p̂n grows faster than exponentially in n.
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2.8 Knotted Polygons in Three Dimensions

In three dimensions there is the possibility that the polygon can be knotted. For the
simple cubic lattice it is known that all polygons with less than 24 edges are un-
knotted and that polygons with 24 edges are either unknots or trefoils [5]. However,
it is clear that other knots can occur on longer polygons and the possibility exists
that polygons can be badly knotted (i.e. have high knot complexity according to
some appropriate measure) when the polygons are large. Frisch and Wasserman [8]
and, independently, Delbruck [4], conjectured that most sufficiently long polygons
would be knotted, i.e. that unknots are rare in long polygons. This is known as the
Frisch-Wasserman-Delbruck conjecture. The validity of this conjecture was estab-
lished for lattice polygons in 1988, more than twenty years after the conjecture first
appeared.

We confine our attention to the simple cubic lattice though similar results can
be established for other three-dimensional lattices. Let p0

n be the number of unknot-
ted polygons with n edges. Diao [5] showed that p0

n = pn for n < 24. The Frisch-
Wasserman-Delbruck conjecture says that p0

n/pn → 0 as n → ∞. The following,
somewhat stronger result has been proved [25, 34].

Theorem 2. The limit
lim
n→∞

n−1 log p0
n ≡ κ0 (2.45)

exists and
κ0 < κ . (2.46)

This means that the number of unknotted polygons, p0
n, can be written as p0

n =
exp[κ0n + o(n)] and that the probability that a polygon is unknotted, Pn( /0) is given
by

Pn( /0) =
p0

n

pn
= exp[(κ0 −κ)n + o(n)] (2.47)

so, since κ0 < κ , the probability of an unknot goes to zero exponentially rapidly as
n goes to infinity.

We shall not give a formal proof of Theorem 2 but we explain the three ideas
which go into the proof. See [25, 30, 34] for details.

The first is that there is no antiknot. That is, if a simple closed curve is knotted
it cannot be unknotted by adding an additional knot to cancel the first knot. Tech-
nically, if k1 is a non-trivial knot type then there does not exist a knot type k2 such
that the connect sum of k1 and k2 is the unknot. This result follows directly from the
additivity of genus.

The second component of the proof is the idea of a knotted ball pair. Consider a
particular self-avoiding walk, ω , with m edges and vertices labelled i = 0,1,2, . . .m.
Associated with the ith vertex is a dual unit 3-cube, centred at the vertex, which we
call Ci. Suppose that the union of these dual 3-cubes
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C = ∪m
i=0Ci (2.48)

is a 3-ball. In that case, for the zero’th and mth vertices, extend the walk ω by
adding a half-edge to form a walk ω̂. Then the walk ω̂ and C form a ball-pair in
which the 1-ball is properly embedded in the 3-ball. This ball pair can be knotted,
i.e. not ambient isotopic the standard ball pair (the unit 3-ball with the 1-ball as a
diameter). See Fig. 2.4 for an example. If the ball pair is knotted we say that ω is a
knotted arc. The 3-ball is determined by the subwalk and no other part of the walk
can enter the 3-ball. This means that any polygon which contains a knotted arc as a
subwalk is necessarily knotted.

Fig. 2.4 A knotted ball pair whose knotted arc is a trefoil.

It remains to show that all except exponentially few sufficiently long polygons
contain at least one knotted arc. The key here is to use a pattern theorem. In 1963
Kesten considered the frequency of occurrence of certain patterns on self-avoiding
walks. We say that a subwalk ω is a Kesten pattern if there exists a self-avoiding
walk on which ω occurs three times. Kesten [18] proved the following theorem:

Theorem 3. Suppose that ω is a Kesten pattern. Let cn(ω̄) be the number of self-
avoiding walks with n edges on which ω does not occur as a subwalk. Then

lim
n→∞

n−1 logcn(ω̄) ≡ κ(ω̄) < κ . (2.49)

From this it is easy to prove the corresponding theorem for polygons [34]:

Theorem 4. Suppose that ω is a Kesten pattern. Let pn(ω̄) be the number of self-
avoiding walks with n edges on which ω does not occur as an (undirected) subwalk.
Then

lim
n→∞

n−1 log pn(ω̄) < κ . (2.50)

Now we are ready to put the three components together. Suppose that ω is a
knotted arc which is also a Kesten pattern. It is straightforward to construct a knotted
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arc whose knot type is a trefoil which is also a Kesten pattern, and Soteros et al. [30]
show how this can be accomplished for any given knot type. Then

p0
n ≤ pn(ω̄) (2.51)

and hence
κ0 ≤ κ(ω̄) < κ (2.52)

which completes the proof.
The argument that we just gave says that unknotted polygons are exponentially

rare but it can be extended to say rather more.

1. It is easy to construct a Kesten pattern which is also a knotted arc whose knot
type is the connect sum of two trefoils. The argument given above says that this
pattern appears on all except exponentially few sufficiently long polygons and
this knot is composite. Hence prime knots are exponentially rare.

2. Since one can construct a Kesten pattern which is a knotted arc for any given
(tame) knot type, every fixed knot type occurs on all except exponentially few
sufficiently long polygons [30].

3. Kesten’s theorem can be extended to show that Kesten patterns occur with pos-
itive density on all except exponentially few sufficiently long polygons and this
implies that typical polygons are very badly knotted. For instance the crossing
number (or span of the Alexander or Jones polynomial, etc.) all increase at least
linearly with the length of the polygon [30].

There are some interesting open questions in this area. Although we know that
most polygons are badly knotted we know very little about polygons with a fixed
knot type. Suppose that pn(31) is the number of n-edge polygons whose knot type
is the trefoil. (That is, the polygon contains exactly one trefoil and no other knots.)
Then we know that

κ0 ≤ liminf
n→∞

n−1 log pn(31) ≤ limsup
n→∞

n−1 log pn(31) < κ . (2.53)

Does the appropriate limit exist for a fixed knot type? Is the connective constant of
the (fixed) knot type equal to κ0? These questions are open.

Polygons in three dimensions can be linked and one can ask similar questions
about the numbers of embeddings in Z3 of links of various types. Suppose that Lk is
an unsplittable link of k circles in which each circle is unknotted. Let pn(Lk) be the
number of embeddings of this link in Z3 where each of the k polygons has n edges.
Then Soteros et al. [31] showed that

lim
n→∞

(kn)−1 log pn(Lk) = κ0. (2.54)

This detailed information on embeddings of particular links contrasts with the open
question discussed above for knots.
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2.9 Polygons in Confined Geometries

In this section we examine the problem of polygons in confined geometries. We
look at a relatively mild geometrical constraint, where the polygon is confined to
a wedge, and a more severe constraint where the polygon is confined to a slab (in
three or more dimensions), to a slit (in two dimensions) or to prism.

2.9.1 Polygons in Wedges

Consider the square lattice Z2 and define a wedge W (α) to be the set of integer
points {(x,y)|x ≥ 0,0 ≤ y ≤ αx + 1} where α > 0. Let pn(W ) be the number of n-
edge polygons with one vertex at (0,0) and with all n vertices in W (α). See Fig. 2.5.

Fig. 2.5 A polygon confined to a wedge on the square lattice.

We can ask if the limit limn→∞ n−1 log pn(W ) exists and how it depends on α .
The result is at first surprising. It turns out that

lim
n→∞

n−1 log pn(W ) ≡ κ(W ) (2.55)

exists and κ(W) = κ , for any positive α [13]. In fact the definition of a wedge can
be generalized to

W ( f ) = {(x,y)|x ≥ 0,0 ≤ y ≤ f (x)} (2.56)

where f (x) is a function of x such that f (0) = 1 and f (x) ≥ 1 for all x > 0. We call
this an f -wedge. If pn(W ) is the number of n-edge polygons with a vertex at (0,0)
and all other vertices in W we have the following theorem:

Theorem 5. The limit limn→∞ n−1 log pn(W ) ≡ κ(W ) exists for all functions f sat-
isfying limx→∞ f (x) = ∞, and κ(W ) = κ , independent of f .

The existence of the limit is important in that one can construct functions which are
unbounded but for which the exponential growth rate is strictly less than κ [13].
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This theorem also works for Zd with suitably defined wedges. It has been ex-
tended to a more general definition of wedge by Soteros et al. [31].

2.9.2 Polygons in Slabs, Slits and Prisms

We first consider the d-dimensional hypercubic lattice Zd , d ≥ 3, with coordinate
system (x,y, . . . ,z). Lattice vertices have integer coordinates. Consider polygons
confined between the two parallel hyperplanes z = 0 and z = L, which we call a
slab. Polygons are counted up to translation in all directions except the z-direction.
Let pn(L) be the number of n-edge polygons constrained in this way. The limit
defining the connective constant exists [13],

lim
n→∞

n−1 log pn(L) ≡ κ(L) (2.57)

and

1. κ(L) < κ(L+ 1) and
2. limL→∞ κ(L) = κ .

slit of width L

Fig. 2.6 A pattern of width L+1 does not fit in a slit of width L.

The strict monotonicity comes from a pattern theorem argument, by considering
the pattern shown in Fig. 2.6 which can occur on polygons in a slab of width L+ 1
but not on polygons in a slab of width L.

In two dimensions where we have the slit 0 ≤ y ≤ L the situation is somewhat
different [32, 33]. For polygons in a slit of width L there is a connective constant
i.e. the appropriate limit exists) but the connective constant is strictly less than the
corresponding connective constant for self-avoiding walks in the same slit. This also
comes from a pattern theorem argument. One considers a pattern which “fills” the
slit, which can occur on a walk but not on a polygon. The same result is true for
polygons and walks in a prism in Z3.
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2.10 Lattice Animals

In this section we give a brief account of some rigorous results about the numbers
of lattice trees and lattice animals. The language used in the literature is rather cum-
bersome. A bond animal is a connected subgraph of the lattice. Bond animals are
also called weakly embedded animals. In general bond animals can have cycles and
the subset with no cycles are bond trees. Site animals are connected section graphs
of the lattice and site trees are site animals with no cycles. Site animals and site trees
are often called strong embeddings. The distinction between bond animals and site
animals is that if two vertices of the lattice which are neighbours (i.e. are incident
on a common edge of the lattice) are members of the vertex set of an animal then
the edge is a member of the edge set for a site animal but this is not necessarily so
for a bond animal. To add to the confusion, bond animals are sometimes counted by
vertices and sometimes by edges, while site animals are essentially always counted
by vertices. We write an for the number (up to translation) of bond animals with
n vertices, An for the number of site animals with n vertices, tn for the number of
bond trees with n vertices and Tn for the number of site trees with n vertices. Clearly
Tn ≤ tn, tn ≤ an, Tn ≤ An and An ≤ an.

Concatenation arguments can be used to prove that the following limits exist:

lim
n→∞

n−1 logan ≡ logλ , (2.58)

lim
n→∞

n−1 logtn ≡ logλ0, (2.59)

lim
n→∞

n−1 logAn ≡ logΛ , (2.60)

and
lim
n→∞

n−1 logTn ≡ logΛ0. (2.61)

The obvious bounds given above show that Λ0 ≤ λ0, λ0 ≤ λ , Λ0 ≤Λ and Λ ≤ λ .
By using a pattern theorem due to Madras [20], these inequalities can be shown to
be strict. In fact we know that

Λ0 < Λ < λ0 < λ . (2.62)

There is a quite different proof that λ0 < λ due to Madras et al. [24].
One can also define bond animals with a prescribed cyclomatic index and ask

how the number of animals depends on the number of cycles. Let bn(c) be the num-
ber of bond animals with n edges and cyclomatic index c. Clearly bn(0) = tn. It is
known that

lim
n→∞

n−1 logbn(c) = logλ0 (2.63)

for every c, so bond animals with any fixed cyclomatic index are exponentially rare
in the set of all bond animals.

Concatenation arguments also give upper bounds of the form
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tn ≤ λ n
0 (2.64)

and these bounds have been improved by Madras [19, 21], using the Loomis-
Whitney inequality, to give

tn ≤ An−(d−1)/dλ n
0 (2.65)

for a positive constant A, for any d ≥ 2, with similar bounds for bond and site ani-
mals. Janse van Rensburg [14] gave a lower bound for tn showing that

tn ≥ Aexp[−δ (logn)2]λ n
0 (2.66)

for positive constants A and δ .
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Chapter 3
Exactly Solved Models

Mireille Bousquet-Mélou and Richard Brak

3.1 Introduction

3.1.1 Subclasses of Polygons and Polyominoes

This chapter deals with the exact enumeration of certain classes of (self-avoiding)
polygons and polyominoes. We restrict our attention to the square lattice. As the
interior of a polygon is a polyomino, we often consider polygons as special poly-
ominoes. The usual enumeration parameters are the area (the number of cells) and
the perimeter (the length of the border). The perimeter is always even, and often re-
fined into the horizontal and vertical perimeters (number of horizontal/vertical steps
in the border). Given a class C of polyominoes, the objective is to determine the
following complete generating function of C :

C(x,y,q) = ∑
P∈C

xhp(P)/2yvp(P)/2qa(P),

where hp(P), vp(P) and a(P) respectively denote the horizontal perimeter, the ver-
tical perimeter and the area of P. This means that the coefficient c(m,n,k) of xmynqk

in the series C(x,y,q) is the number of polyominoes in the class C having hor-
izontal perimeter 2m, vertical perimeter 2n and area k. Several specializations of
C(x,y,q) may be of interest, such as the perimeter generating function C(t,t,1), its
anisotropic version C(x,y,1), or the area generating function C(1,1,q). From such
exact results, one can usually derive many of the asymptotic properties of the poly-
ominoes of C : for instance the asymptotic number of polyominoes of perimeter n,
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or the (asymptotic) average area of these polyominoes, or even the limiting distribu-
tion of this area, as n tends to infinity (see Chapter 11). The techniques that are used
to derive asymptotic results from exact ones are often based on complex analysis.
A remarkable survey of these techniques is provided by Flajolet and Sedgewick’s
book [33].

The study of sub-classes of polyominoes is natural, given the immense difficulty
of the full problem (enumerate all polygons or all polyominoes). The objective is to
develop new techniques, and to push the border between solved and unsolved mod-
els further and further. However, several classes have an independent interest, other
than being an approximation of the full problem. For instance, the enumeration of
partitions (Fig. 3.2(e)) is relevant in number theory and in the study of the repre-
sentations of the symmetric group. The first enumerative results on partitions date
back, at least, to Euler. A full book is devoted to them, and is completely indepen-
dent of the enumeration of general polyominoes [2]. Another example is provided
by directed polyominoes, which are relevant for directed percolation, but also occur
in theoretical computer science as binary search networks [54].

All these classes will be systematically defined in Section 3.1.3. For the moment,
let us just say that most of them are obtained by combining conditions of convexity
and directedness.

From the perspective of subclasses as an approximation to the full problem, it is
natural to ask how good this approximation is expected to be. The answer is quite
crude: these approximations are terrible. For a start, all the classes that have been
counted so far are exponentially small in the class of all polygons (or polyominoes).
Hence we cannot expect their properties to reflect faithfully those of general poly-
gons/polyominoes. Why would the properties of a staircase polygon (Fig. 3.2(b))
be similar to those of a general self-avoiding polygon? Indeed, the number of stair-
case polygons of perimeter 2n grows like 22nn−3/2 (up to a multiplicative constant),
while the number of general polygons is believed to be asymptotically µ2nn−5/2,
with µ = 2.638 . . . [36]. The average width of a staircase polygon is clearly linear
in n, while the width of general polygons is conjectured to grow like n3/4 (see [42]).
And so on! In this context, it may be a pure coincidence that the average area of
polygons of perimeter 2n is conjectured to scale as n3/2 (see [27]), just as it does
for staircase polygons. But it is also conjectured that the limit distribution of the
area of 2n-step polygons (normalized by its average value) coincides with the cor-
responding distribution for staircase polygons, and for other exactly solved classes.
The universality of this distribution may not be a coincidence (see Chapter 11 for
more references and details).

3.1.2 Three General Approaches

In this chapter, we present three robust approaches that can be applied to count
many classes C of polyominoes. The common principle of all of them is to translate
a recursive description of the polyominoes of C into a functional equation satisfied
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by the generating function C(x,y,q). Some readers may prefer seeing a translation in
terms of the coefficients of C(x,y,q), namely the numbers c(m,n,k). This translation
is possible, but it is usually easier to work with a functional equation than with
a recurrence relation. The applicability of each of these three approaches depends
on whether the polyominoes of C have, or don’t have, a certain type of recursive
structure.

The most versatile approach is probably the third one, as it virtually applies to any
class of polyominoes having a convexity property. It was already used by Temperley
in 1956 [51] and is often called, in the physics literature, the Temperley approach.
However, it often produces functional equations that are non-trivial to solve, even
when the solution finally turns out to be a simple rational or algebraic series (these
terms will be defined in Section 3.1.3 below). From a combinatorics point of view,
it is important to get a better understanding of the simplicity of these series, and this
is what the first two approaches provide: the first one applies to classes C having
a linear structure, and gives rise to rational generating functions. The second ap-
plies to classes having an algebraic structure, and gives rise to algebraic generating
functions.

We have chosen to present these three approaches because, in our opinion, they
are the most robust ones, and we want to provide effective tools to the reader. To
our knowledge, almost all the classes that have been solved exactly can be solved
using one (or several) of these approaches. Still, certain results have been given a
beautiful combinatorial explanation via more specific techniques. Let us mention
two tools that are often involved in those alternative approaches. The first tool is
specific to the enumeration of polygons, and consists in studying classes of possibly
self-intersecting polygons, and then using an inclusion-exclusion principle to elimi-
nate the ones with self-intersections. This idea appears in an old paper of Pólya [43]
dealing with staircase polygons, and was further exploited to count more general
polygons [30, 31], including those in dimensions larger than two [35, 13]. The sec-
ond tool is the use of bijections and is of course not specific to polyomino enumer-
ation. The idea is to describe a one-to-one correspondence between the objects of
C and those of another class D , having a simpler recursive structure. In this chap-
ter, even though we often use encodings of polyominoes by words, these encodings
are usually very simple and do not use the full force of bijective methods, which is
clearly at work in papers like [16] or [20].

The structure of the chapter is simple: the three approaches we discuss are pre-
sented, and illustrated by examples, in Sections 3.2, 3.3 and 3.4 respectively. A few
open problems which we consider worth investigating are discussed in Section 3.5.

We conclude this introduction with definitions of various families of polyomi-
noes and formal power series.
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3.1.3 A Visit to the Zoo

All the classes studied in this chapter are obtained by combining several conditions
of convexity and directedness. Let us first recall that a polyomino P is a finite set of
square cells of the square lattice whose interior is connected. The set of centres of
the cells form an animal A (Fig. 3.1). The connectivity condition means that any two
points of A can be joined by a path made up of unit vertical and horizontal steps,
in such a way that every vertex of the path lies in A. The animal A is North-East
directed (or directed, for short) if it contains a point v0, called the source, such that
every other point of A can be reached from v0 by a path made of North and East
unit steps, having all its vertices in A. In this case, the polyomino corresponding to
A is also said to be NE-directed. One defines NW, SW and SE directed animals and
polyominoes similarly.

A polyomino P is column-convex if its intersection with every vertical line is con-
nected. This means that the intersection of every vertical line with the corresponding
animal A is formed by consecutive points. The border of P is then a polygon. Row-
convexity is defined similarly. Finally, P is d+-convex if the intersection of A with
every line of slope 1 is formed by consecutive points. One defines d−-convex poly-
ominoes similarly.

(b)(a) (c) (d)

Fig. 3.1 From left to right: (a) a polyomino and the corresponding animal, (b) a NE-directed
animal, (c) a column-convex polygon, (d) a d−-convex polyomino.

As discussed in [8], the combination of the four direction conditions and the
four connectivity conditions gives rise to 31 distinct (non-symmetric) classes of
polyominoes having at least one convexity property. To these 31 classes we must add
the 4 different classes satisfying at least one directional property. Some prominent
members of this zoo, which will occur in the forthcoming sections, are shown in
Fig. 3.2:

• convex polyominoes (or polygons): polyominoes that are both column- and row-
convex,

• staircase polyominoes (or polygons): convex polygons that are NE- and SW-
directed,

• bargraphs: column-convex polygons that are NE- and NW-directed,
• stacks: row-convex bargraphs,
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• partitions, a.k.a. Ferrers diagrams,: convex polygons that are NE-, NW- and SE-
directed.

Finally, a formal power series C(x) ≡ C(x1, . . . ,xk) with real coefficients is ra-
tional if it can be written as a ratio of polynomials in the xi’s. It is algebraic if it
satisfies a non-trivial polynomial equation

P(C(x),x1, . . . ,xk) = 0.

(e)(d)(c)(b)(a)

Fig. 3.2 A photo taken at the zoo: (a) a convex polygon, (b) a staircase polygon, (c) a bargraph,
(d) a stack, (e) a Ferrers diagram.

3.2 Linear Models and Rational Series

3.2.1 A Basic Example: Bargraphs Counted by Area

Let bn denote the number of bargraphs of area n. As there is a unique bargraph of
area 1, b1 = 1. For n ≥ 2, there are two types of bargraphs:

1. those in which the last (i.e., rightmost) column has height 1,
2. those in which the last column has height 2 or more.

Bargraphs of the first type are obtained by adding a column of height 1 to the right
of any bargraph of area n−1. Bargraphs of the second type are obtained by adding
one square cell to the top of the last column of a bargraph of area n− 1. Since a
bargraph cannot be simultaneously of type 1 and 2, this gives

b1 = 1 and for n ≥ 2, bn = 2bn−1,

which implies bn = 2n−1. The area generating function of bargraphs is thus a rational
series:

B(q) := ∑
n≥1

bnqn =
q

1−2q
.
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3.2.2 Linear Objects

The above enumeration of bargraphs is based on a very simple recursive description
of bargraphs. This description only involves the following two constructions:

1. taking disjoint unions of sets,
2. concatenating a new cell with an already constructed object.

In terms of generating functions (g.f.s), taking the disjoint union of sets means sum-
ming their g.f.s, while concatenating a new cell (of size 1) to all elements of a set
means multiplying its g.f. by q. Hence the above description of bargraphs translates
directly into a linear equation for the g.f. B(q):

B(q) = q + qB(q)+ qB(q).

This equation reflects the fact that the set of bargraphs is the union of three disjoint
subsets (the unique bargraph of area 1, bargraphs of type 1, bargraphs of type 2), and
that the second and third subsets are both obtained by adding a cell to any bargraph.

More generally, we will say that a class of objects, equipped with a size, is linear
if these objects can be obtained from a finite set of initial objects using disjoint union
and concatenation of one cell, or atom. It is assumed that the concatenation of an
atom increases the size by 1. The construction must be non-ambiguous, meaning that
each object of the class is obtained only once. The construction may involve several
classes of objects simultaneously. For instance, the class B̃ of bargraphs whose last
column has height 1 is linear: the objects of B̃, other than the one-cell bargraph, are
obtained by adding one cell to the right of any bargraph. The associated series B̃(q)
is defined by the linear system:

B̃(q) = q + qB(q),
B(q) = q + qB(q)+ qB(q).

.

In general, the generating function of a linear class of objects is the first component
of the solution of a system of k linear equations of the form

Bi(q) = Pi(q)+ q
k

∑
j=1

ai, jB j(q) 1 ≤ i ≤ k, (3.1)

where ai, j ∈ N and each Pi(q) is a polynomial in q with coefficients in N. The poly-
nomial Pi(q) counts the initial objects of type i, and there are ai, j ways to aggregate
an atom to an object of type j to form an object of type i. The system (3.1) uniquely
defines each series Bi(q), which is rational. The series obtained in this way are called
N-rational. Their study is closely related to the theory of regular languages [50].
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3.2.3 More Linear Models

In this section we present three typical problems that can be solved via a linear
recursive description. The first one is the perimeter enumeration of Ferrers dia-
grams (and stacks). The second one generalizes the study of bargraphs performed
in Section 3.2.1 to all column-convex polygons (and to the subclass of directed
column-convex polygons) counted by area. The third one illustrates the role of lin-
ear models in the approximation of hard problems, and deals with the enumeration
of self-avoiding polygons confined to a narrow strip. In passing, we illustrate the
two following facts:

1. it may be useful to begin by describing a size-preserving bijection between poly-
ominoes and other objects (having a linear structure),

2. linear constructions are conveniently described by a directed graph when they
become a bit involved.

3.2.3.1 Ferrers Diagrams by Perimeter

The set of Ferrers diagrams can be partitioned into three disjoint subsets: first, the
unique diagram of (half-)perimeter 2; then, diagrams of width at least 2 whose right-
most column has height 1; finally, diagrams with no column of height 1. The lat-
ter diagrams can be obtained by duplicating the bottom row of another diagram
(Fig. 3.3).

= ∪∪

Fig. 3.3 Recursive description of Ferrers diagrams.

From this description, it follows that the set of words that describe the North-East
boundary of Ferrers diagrams, from the NW corner to the SE one, admits a linear
construction. This boundary is formed by East and South steps, and will be encoded
by a word over the alphabet {e,s}. Any word over this alphabet that starts with an e
and ends with an s corresponds to a unique Ferrers diagram. Let F be this class of
words, and let L be the set of all non-empty prefixes of words of F . Then F and
L admit the following linear description:

F = L s and L = {e}∪L e∪L s.

In these equations, the notation L s means {us, u∈L }, and the unions are disjoint.
The series that count the words of these sets by their length (number of letters) are
thus given by the linear system
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F(t) = tL(t) and L(t) = t + 2tL(t).

Since the length of a coding word is the half-perimeter of the associated diagram,
this provides the length g.f.:

F(t) =
t2

1−2t
= ∑

n≥1

2n−2tn.

By separately counting East and South steps, we obtain the equations

F(x,y) = yL(x,y) and L(x,y) = x + xL(x,y)+ yL(x,y), (3.2)

and hence the anisotropic perimeter g.f. of these diagrams:

F(x,y) =
xy

1− x− y
= ∑

m,n≥1

(
m+ n−2

m−1

)
xmyn.

A similar treatment can be used to determine the perimeter g.f. of stack polygons:
the construction schematized in Fig. 3.4 gives:

S(x,y) = xy + xS(x,y)+ S+(x,y), S+(x,y) = yS(x,y)+ xS+(x,y)

which yields

S(x,y) =
xy(1− x)

(1− x)2 − y
.

=

=S+

S S+

S+

∪ ∪

∪

Fig. 3.4 Recursive description of stack polygons.

3.2.3.2 Column-Convex Polygons by Area

Consider a column-convex polygon P having n cells. Let us number these cells from
1 to n as illustrated in Fig. 3.5. The columns are visited from left to right. In the first
column, cells are numbered from bottom to top. In each of the other columns, the
lowest cell that has a left neighbour gets the smallest number; then the cells lying
below it are numbered from top to bottom, and finally the cells lying above it are
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Fig. 3.5 A column-convex polygon, with the numbering and encoding of the cells.

numbered from bottom to top. Note that for all i, the cells labelled 1,2, . . . , i form
a column-convex polygon. This labelling describes the order in which we are going
to aggregate the cells.

Associate with P the word u = u1 · · ·un over the alphabet {a,b,c} defined by
– ui = c (like Column) if the ith cell is the first to be visited in its column,
– ui = b (like Below) if the ith cell lies below the first visited cell of its column,
– ui = a (like Above) if the ith cell lies above the first visited cell of its column.

Then, add a bar on the letter ui if the ith cell of P has a South neighbour, an East
neighbour, but no South-East neighbour. (In other words, the barred letters indicate
where to start a new column, when the bottommost cell in this new column lies
above the bottommost cell of the previous column.) This gives a word v over the
alphabet {a,b,c, ā, b̄, c̄}, and P can be uniquely reconstructed from v.

We now focus on the enumeration of these coding words. Let L be the set of all
prefixes of these words, including the empty prefix ε . By considering which letter
can be added to the right of which prefix, we are led to partition L into five disjoint
subsets L1, . . . ,L5, subject to the following linear recursive description:

L1 = {ε},
L2 = L1c∪L2a∪L3a∪L4c, L4 = L2ā∪L3ā∪L4a∪L5b,
L3 = L2c∪L3b∪L3c, L5 = L2c̄∪L3b̄∪L3c̄∪L5b.

(3.3)

The words of L4 and L5 are those in which a barred letter (the rightmost one) still
waits to be “matched” by a letter c creating a new column. The words of L2 ∪L3

are those that encode column-convex polygons. This construction is illustrated by a
directed graph in Fig. 3.6: every path starting from 1 and ending at i corresponds to
a word of Li, obtained by reading edge labels. The series counting the words of Li

by their length satisfy:

L1 = 1,
L2 = q(L1 + L2 + L3 + L4) , L4 = q(L2 + L3 + L4 + L5) ,
L3 = q(L2 + L3 + L3) , L5 = q(L2 + L3 + L3 + L5) .

The area g.f. of column-convex polygons is C(q)= L2(q)+L3(q). Solving the above
system gives:

C(q) =
q(1−q)3

1−5q + 7q2−4q3 .



52 Mireille Bousquet-Mélou and Richard Brak

c̄

c̄
b

bā
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Fig. 3.6 Linear construction of the words of L . The words of Li encode the paths starting from 1
and ending at i.

We believe that this result was first published by Temperley [51].
A column-convex polygon is directed if and only if its coding word does not

use the letter b. We obtain a linear description of the prefixes of these words by
deleting all terms of the form Lib in the description (3.3). The class L5 becomes
irrelevant. Solving the associated system of linear equations gives the area g.f. of
directed column-convex polygons:

DC(q) =
q(1−q)

1−3q + q2 .

As far as we know, this result was first published by Klarner [38].

3.2.3.3 Polygons Confined to a Strip

Constraining polyominoes or polygons to lie in a strip of fixed height endows them
with a linear structure. This observation gives a handle to attack difficult problems,
like the enumeration of general self-avoiding polygons (SAP), self-avoiding walks,
or polyominoes [1, 5, 48, 55, 56]. As the size of the strip increases, the approxi-
mation of the confined problem to the general one becomes better and better. This
widely applied principle gives, for instance, lower bounds on growth constants that
are difficult to determine. We illustrate it here with the perimeter enumeration of
SAP confined to a strip.

Before we describe this calculation, let us mention a closely related idea, which
consists of considering anisotropic models (for instance, SAP counted by vertical
and horizontal perimeters), and fixing the number of atoms lying in one direction,
for instance the number of horizontal edges. Again, this endows the constrained ob-
jects with a linear structure. The denominators of the rational generating functions
that count them often factor in terms (1− yi). The number of exponents i that occur
can be seen as a measure of the complexity of the class. This is often observed only
at an experimental level, and is further discussed in Chapter 4. However, this obser-
vation has been pushed in some cases to a proof that the corresponding generating
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function is not D-finite and in particular not algebraic (see for instance [49], and
Chapter 5).

But let us return to SAP in a strip of height k (a k-strip). A first observation is that
a polygon is completely determined by the position of its horizontal edges. Consider
the intersection of the polygon with a vertical line lying at a half-integer abscissa
(a cut): the strip constraint implies that only finitely many configurations (or states)
can occur. The number of such states is the number of even subsets of {0,1, . . . ,k}.
This implies that SAP in a strip can be encoded by a word over a finite alphabet. For
instance, the polygon of Fig. 3.7 is encoded by the word b̃b̃b̃aabaab̃a.

a b b̃

Fig. 3.7 A self-avoiding polygon in a strip of height 2, encoded over a 3-letter alphabet.

It is not hard to see that for all k, the set of words encoding SAP confined to a
strip of height k has a linear structure. To make this structure clearer, we refine our
encoding: for every vertical cut, we not only keep track of its intersection with the
polygon, but also of the way the horizontal edges that meet the cut are connected to
the left of the cut. This does not change the size of the alphabet for k = 2, as there
is a unique way of coupling two edges. However, if k = 3, the configuration where
4 edges are met by the cut gives rise to 2 states, depending on how these 4 edges
are connected (Fig. 3.8). The number of states is now the number of non-crossing
couplings on {0,1, . . . ,k}. This is also the size of our encoding alphabet A.

a b b̃ c c̃ e fd

Fig. 3.8 A self-avoiding polygon in a strip of height 3, encoded by the word
db̃a f c̃c̃eaa f c̃aceeabcc.

Fix k, and let S be the set of words encoding SAP confined to a k-strip. The
set L of prefixes of words of S describes incomplete SAP, and has a simple linear
structure: for every such prefix w, the set of letters a such that wa lies in L only
depends on the last letter of w. In other words, these prefixes are Markovian with
memory 1. For every letter a in the encoding alphabet, we denote by La the set of
prefixes ending with the letter a. The linear structure can be encoded by a graph,
from which the equations defining the sets La can automatically be written. This
graph is shown in Fig. 3.9 (left) for k = 2. Every path in this graph starting from the
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initial vertex 0 corresponds to a word of L , obtained by reading vertex labels. The
linear structure of prefixes reads:

La = (ε +La +Lb +Lb̃)a, Lb = (ε +La +Lb)b, Lb̃ = (ε +La +Lb̃)b̃.

From this we derive linear equations for incomplete SAP, where every horizontal
edge is counted by

√
x, and every vertical edge by

√
y = z:

La = (z2 + La + zLb + zLb̃)x, Lb = (z+ zLa + Lb)x, Lb̃ = (z+ zLa + Lb̃)x.

These equations keep track of how many edges are added when a new letter is
appended to a word of L . They can be schematized by a weighted graph (Fig. 3.9,
middle). Now the (multiplicative) weight of a path starting at 0 is the weight of the
corresponding incomplete polygon. Finally, the completed polygons are obtained by
adding vertical edges to the right of incomplete polygons. This gives the generating
function of SAP in a strip of height 2 as:

S2(x,y) = z2La + zLb + zLb̃.

0

b

a 0

x

xz2
xa

β

2xz
2xzxz

0

xz

x

x

xz2

xz xz

x

xz

xz

b

a

xz

b̃b̃

Fig. 3.9 The linear structure of SAP in a 2-strip.

Clearly, we should exploit the horizontal symmetry of the model to obtain a
smaller set of equations. The letters b and b̃ playing symmetric roles, we replace
them in the graph of Fig. 3.9 by a unique vertex β , such that the generating function
of paths ending at β is the sum of the g.f.s of paths ending at b and b̃ in the first
version of the graph (Fig. 3.9, right). Introducing the series Lβ = Lb + Lb̃, we have
thus replaced the previous system of four equations by

La = x(z2 + La + zLβ ), Lβ = x(2z+ 2zLa + Lβ ), S2(x,y) = z2La + zLβ ,

from which we obtain
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S2(x,y) =
xy(2−2x + y + 3xy)

(1− x)2 −2x2y
.

Note that this series counts polygons of height 1 twice, so that we should subtract
S1(x,y) = xy/(1− x) to obtain the g.f. of SAP of height at most 2, defined up to
translation.

0 a
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2xz
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x(1+ z2)

2xz

Fig. 3.10 The linear structure of SAP in a 3-strip.

For k = 3, the original alphabet, shown in Fig. 3.8, has 8 letters, but two pairs of
them play symmetric roles. After merging the vertices b and b̃ on the one hand, c
and c̃ on the other, the condensed graph, with its x,z weights, is shown in Fig. 3.10.
The corresponding equations read

La = x
(
z3 + La + zLβ + z2Lγ + z2Ld + zLe

)
,

Lβ = x
(
2z2 + 2zLa +(1 + z2)Lβ + zLγ + 2zLd

)
,

Lγ = x
(
2z+ 2z2La + zLβ + Lγ + 2zL f

)
,

Ld = x
(
z+ z2La + zLβ + Ld

)
,

Le = x2
(
z2 + zLγ + Le

)
,

Lf = x2
(
zLa + Lf

)
,

and the generating function of completed polygons is

S3(x,y) = z3La + z2Lβ + zLγ + zLd + z2Lf =
xyN(x,y)
D(x,y)

where

N(x,y) = 3(x + 1)2 (1− x)5 +(5x + 2)(2x−1)(x + 1)2 (x−1)3 y

− (x−1)
(

6x6 + 4x5 −18x4 −6x3 + 11x2 + 8x + 1
)

y2

− x(x + 1)
(
2x4 + 6x3 −8x2 + 4x + 1

)
y3

and
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D(x,y) = (x + 1)2 (x−1)6 − x(1 + 4x)(x + 1)2 (x−1)4 y

+ x2 (3x4 + 4x3 −6x2 −8x−3
)
(x−1)2 y2

+ x3 (x + 1)
(
x3 + 3x2 −5x + 3

)
y3.

By setting x = y = t, we obtain the half-perimeter generating function of SAP in a
3-strip,

S3(t) =
t2
(
−8 t9 + 4 t8 + 10 t7 −20 t6− t5 − t4 + 7 t3 + 3 t2 −7 t + 3

)

4 t10 −2 t9 −5 t8 + 8 t7 − t6 + 2 t5 −4 t4 + 2 t3 + 3 t2 −4 t + 1

and, by looking at the smallest pole of this series, we also obtain the (very weak)
lower bound 1.68 . . . on the growth constant of square lattice self-avoiding polygons.

The above method has been automated by Zeilberger [55]. It is not hard to see
that the number of states required to count polygons in a k-strip grows like 3k, up
to a power of k. This prevents one from applying this method for large values of
k. Better bounds for growth constants may be obtained via the finite lattice method
described in Chapter 7, and implemented in Chapter 10. A further improvement is
obtained by looking at a cylinder rather than a strip [5].

3.2.4 q-Analogues

By looking at the height of the rightmost column of Ferrers diagrams, we have
described a linear construction of these polygons that proves the rationality of their
perimeter g.f. (Fig. 3.3). Let us examine what happens when we try to keep track of
the area in this construction.

They key point is that the area increases by the width of the polygon when we
duplicate the bottom row. (In contrast, the half-perimeter simply increases by 1 dur-
ing this operation.) This observation gives the following functional equation for the
complete g.f. of Ferrers diagrams:

F(x,y,q) = xyq + xqF(x,y,q)+ yF(xq,y,q).

This is a q-analogue of the equation defining F(x,y,1), derived from (3.2). This
equation is no longer linear, but it can be solved easily by iteration:

F(x,y,q) =
xyq

1− xq
+

y
1− xq

F(xq,y,q)

=
xyq

1− xq
+

y
1− xq

xyq2

1− xq2 +
y

1− xq
y

1− xq2 F(xq2,y,q) (3.4)

= ∑
n≥1

xynqn

(xq)n

with
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(xq)0 = 1 and (xq)n = (1− xq)(1− xq2) · · · (1− xqn).

Similarly, for the stack polygons of Fig. 3.4, one obtains:

S(x,y,q) = xyq + xqS(x,y,q)+ S+(x,y,q),
S+(x,y,q) = yS(xq,y,q)+ xqS+(x,y,q).

Eliminating the series S+ gives

S(x,y,q) =
xyq

1− xq
+

y
(1− xq)2 S(xq,y,q)

= ∑
n≥1

xynqn

(xq)n−1(xq)n
.

In Section 3.4 we present a systematic approach for counting classes of column-
convex polygons by perimeter and area.

3.3 Algebraic Models and Algebraic Series

3.3.1 A Basic Example: Bargraphs Counted by Perimeter

Let us return to bargraphs. The linear description used in Section 3.2.1 to count them
by area cannot be directly recycled to count them by perimeter: indeed, when we add
a cell at the top of the last column, how do we know if we increase the perimeter, or
not? Instead, we are going to scan the polygon from left to right, and factor it into
two smaller bargraphs as soon as we meet a column of height 1 (if any). If there is
no such column, deleting the bottom row of the polygon leaves another bargraph.
This description is schematized in Fig 3.11.

∪ ∪ ∪= ∪

Fig. 3.11 A second recursive construction of bargraphs.

Let B be the set of words over the alphabet {n,s,e} that naturally encode the top
boundary of bargraphs, from the SW to the SE corner. Fig. 3.11 translates into the
following recursive description, where the unions are disjoint:

B = nL s with L = nL s∪{e}∪ eL ∪nL se∪nL seL . (3.5)

This implies that the anisotropic perimeter g.f. of bargraphs satisfies
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{
B(x,y) = yL(x,y),
L(x,y) = yL(x,y)+ x + xL(x,y)+ xyL(x,y)+ xyL(x,y)2.

These equations are readily solved and yield:

B(x,y) =
1− x− y− xy−

√
(1− y)((1− x)2− y(1 + x)2)

2x
. (3.6)

Thus the perimeter g.f. of bargraphs is algebraic, and its algebraicity is explained
combinatorially by the recursive description of Fig. 3.11.

Note that one can directly translate this description into an algebraic equation
satisfied by B(x,y), without using the language B. This language is largely a con-
venient tool to highlight the algebraic structure of bargraphs. The translation of
Fig. 3.11 into an equation proceeds as follows: there are two types of bargraphs,
those that have at least one column of height 1, and the others, which we call thick
bargraphs. Thick bargraphs are obtained by duplicating the bottom row of a general
bargraph, and are thus counted by yB(x,y). Among bargraphs having a column of
height 1, we find the single cell bargraph (g.f. xy), and then those of width at least
2. The latter class can be split into 3 disjoint classes:

– the first column has height 1. These bargraphs are obtained by adding a cell to
the left of any general bargraph, and are thus counted by xB(x,y),

– the last column is the only column of height 1. These bargraphs are obtained by
adding a cell to the right of a thick bargraph, and are thus counted by xyB(x,y),

– the first column of height 1 is neither the first column, nor the last column. Such
bargraphs are obtained by concatenating a thick bargraph, a cell, and a general
bargraph; they are counted by xB(x,y)2.

This discussion directly results in the equation

B(x,y) = yB(x,y)+ xy + xB(x,y)+ xyB(x,y)+ xB(x,y)2. (3.7)

3.3.2 Algebraic Objects

The above description of bargraphs involved two constructions:

1. taking disjoint unions of sets,
2. taking Cartesian products of sets.

For two classes A1 and A2, the element (a1,a2) of the product A1 ×A2 is seen
as the concatenation of the objects a1 and a2. We will say that a class of objects
is algebraic if it admits a non-ambiguous recursive description based on disjoint
unions and Cartesian products. It is assumed that the size of the objects is additive
for the concatenation. For instance, (3.5) gives an algebraic description of the words
of L and B.
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In the case of linear constructions, the only concatenations that were allowed
were between one object and a single atom. As we can now concatenate two ob-
jects, algebraic constructions generalize linear constructions. In terms of g.f.s, con-
catenating objects of two classes means taking the product of the corresponding
g.f.s. Hence the g.f. of an algebraic class will always be the first component of the
solution of a polynomial system of the form:

Ai = Pi(t,A1, . . . ,Ak) for 1 ≤ i ≤ k,

where Pi is a polynomial with coefficients in N. Such series are called N-algebraic,
and are closely related to the theory of context-free languages. We refer to [50]
for details on these languages, and to [12] for a discussion of N-algebraic series in
enumeration.

3.3.3 More Algebraic Models

In this section we present three problems that can be solved via an algebraic decom-
position: staircase polygons, then column-convex polygons counted by perimeter
(and the subclass of directed column-convex polygons), and finally directed poly-
ominoes counted by area.

3.3.3.1 Staircase Polygons by Perimeter

In Section 3.1.3 we defined staircase polygons through their directed and convexity
properties. See Fig. 3.2(b) for an example. We describe here a recursive construction
of these polygons, illustrated in Fig. 3.12. It is analogous to the construction of
bargraphs described at the end of Section 3.3.1 and illustrated in Fig. 3.11. Denote
by S(x,y) the anisotropic perimeter generating function of staircase polygons.

∪∪∪=

Fig. 3.12 A recursive construction of staircase polygons.
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We say that a staircase polygon is thick if deleting the bottom cell of each column
gives a staircase polygon of the same width. These thick polygons are obtained
by duplicating the bottom cell in each column of a staircase polygon, so that their
generating function is yS(x,y).

Among non-thick staircase polygons, we find the single cell polygon (g.f. xy),
and then those of width at least 2. Let P be in the latter class, and denote its columns
C1, . . . ,Ck, from left to right. The fact that P is not thick means that there exist two
consecutive columns, Ci and Ci+1, that overlap by one edge only. Let i be minimal
for this property. Two cases occur:

– the first column has height 1. In particular, i = 1. These polygons are obtained
by adding a cell to the bottom left of any general staircase polygon, and are thus
counted by xS(x,y).

– otherwise, the columns C1, . . . ,Ci form a thick staircase polygon, and Ci+1, . . . ,Ck

form a general staircase polygon. Concatenating these two polygons in such a
way that they share only one edge gives the original polygon P. Hence the g.f.
for this case is S(x,y)2.

This discussion gives the equation

S(x,y) = yS(x,y)+ xy + xS(x,y)+ S(x,y)2

so that

S(x,y) =
1
2

(
1− x− y−

√
1−2x−2y−2xy+ x2+ y2

)

= ∑
p,q≥1

1
p + q−1

(
p + q−1

p

)(
p + q−1

q

)
xpyq.

This expansion can be obtained using the Lagrange inversion formula [9]. The
isotropic semi-perimeter g.f. is obtained by setting t = x = y:

S(t,t) =
1
2

(
1−2t−

√
1−4t

)
= ∑

n≥1

Cntn+1

where Cn =
(2n

n

)
/(n + 1) is the nth Catalan number. The same approach can be ap-

plied to more general classes of convex polygons, like directed convex polygons and
general convex polygons. See for instance [9, 23].

3.3.3.2 Column-Convex Polygons by Perimeter

We now apply a similar treatment to the perimeter enumeration of column-convex
polygons (cc-polygons for short). Their area g.f. was found in Section 3.2.3. Let C

denote the set of these polygons, and C(x,y) their anisotropic perimeter generating
function. Our recursive construction requires us to introduce two additional classes
of polygons. The first one, C1, is the set of cc-polygons in which one cell of the
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last column is marked. The corresponding g.f. is denoted C1(x,y). Note that, by
symmetry, this series also counts cc-polygons where one cell of the first column
is marked. Then, C2 denotes the set of cc-polygons in which one cell of the first
column is marked (say, with a dot), and one cell of the last column is marked as
well (say, with a cross). The corresponding g.f. is denoted C2(x,y). Our recursive
construction of the polygons of C is illustrated in Fig. 3.13.

∪= ∪ ∪

∪

∪ ∪

Fig. 3.13 A recursive construction of column-convex polygons.

We say that a cc-polygon is thick if deleting the bottom cell of each column gives
a cc-polygon of the same width. These thick polygons are obtained by duplicating
the bottom cell in each column of a cc-polygon, so that their generating function is
yC(x,y).

Among non-thick cc-polygons, we find the single cell polygon (g.f. xy), and
then those of width at least 2. Let P be in the latter class, and denote its columns
C1, . . . ,Ck, from left to right. The fact that P is not thick means that there exist two
consecutive columns Ci and Ci+1 that overlap by one edge only. Let i be minimal
for this property. Two cases occur:

– the first column has height 1. In particular, i = 1. These polygons are obtained
by adding a cell to the left of any cc-polygon having a marked cell in its first
column, next to the marked cell. They are thus counted by xC1(x,y).

– otherwise, the columns C1, . . . ,Ci form a thick cc-polygon P1, and the columns
Ci+1, . . . ,Ck form a general cc-polygon P2. There are several ways of concatenat-
ing these two polygons in such a way they share only one edge:
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– either the shared edge is at the bottom of Ci and at the top of Ci+1. Such
polygons are counted by C(x,y)2.

– or the shared edge is at the top of Ci and at the bottom of Ci+1. Such polygons
are also counted by C(x,y)2.

– if Ci+1 has height at least 2, there are no other possibilities. However, if Ci+1

consists of one cell only, this cell may be adjacent to any cell of Ci, not only
to the bottom or top ones. The case where Ci+1 is the last column of P is
counted by xy(C1(x,y)−C(x,y)). The case where i + 1 < k is counted by
x(C1(x,y)2 −C(x,y)C1(x,y)).

Let us drop the variables x and y in the series C, C1 and C2. The above discussion
gives the equation:

C = yC + xy + xC1 + 2C2 + xy(C1 −C)+ x(C2
1 −CC1).

The construction of Fig. 3.13 can now be recycled to obtain an equation for the
series C1, counting cc-polygons with a marked cell in the last column. Note that
the first case of the figure (thick polygons) gives rise to two terms, depending on
whether the marked cell is one of the duplicated cells, or not:

C1 = y(C +C1)+ xy + xC2 + 2CC1 + xy(C1 −C)+ x(C1C2 −CC2).

We need a third equation, as three series (namely C, C1 and C2) are now involved.
There are two ways to obtain a third equation:

– either we interpret C1 as the g.f. of cc-polygons where one cell is marked in the
first column. The construction of Fig. 3.13 gives:

C1 = y(C +C1)+ xy + xC1 + 2(C+C1)C + xy
(
(C1 −C)+ (C2−C1)

)

+ x
(
(C2

1 −CC1)+ (C2C1 −C2
1)
)
.

Note that now many cases give rise to two terms in the equation.
– or we work out an equation for C2 using the decomposition of Fig. 3.13. Again,

many of the cases schematized in this figure give rise to several terms. In partic-
ular, the first case (thick polygons) gives rise to 4 terms:

C2 = y(C + 2C1 +C2)+ xy + xC2 + 2(C+C1)C1 + xy
(
(C1 −C)+ (C2−C1)

)

+ x
(
(C1C2 −CC2)+ (C2

2 −C1C2)
)
.

Both strategies of course give the same equation for C ≡ C(x,y), after the elimina-
tion of C1 and C2:
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(
−5xy−18 + 2xy2−18y2 + 36y + 2x

)
C4

+(y−1)
(
5xy2 −21y2 + 42y−14xy + 5x−21

)
C3

+ 2 (y−1)2 (−4y2 + 2xy2 + 8y−7xy−4 + 2x
)
C2

+(y−1)3 (xy2 − y2 + 2y−6xy + x−1
)
C− xy(y−1)4 = 0.

This quartic has 4 roots, among which the g.f. of cc-polygons can be identified by
checking the first few coefficients. This series turns out to be unexpectedly simple:

C(x,y) = (1− y)


1− 2

√
2

3
√

2−
√

1 + x +
√

(1− x)2 −16 xy
(1−y)2


 .

Feretić has provided direct combinatorial explanations for this formula [28, 29].
The algebraic equation satisfied by C(t,t) was first1 obtained (via a context-free
language) in [22]. The method we have used is detailed in [26].

3.3.3.3 Directed Column-Convex Polygons by Perimeter

It is not hard to restrict the construction of Fig. 3.13 to directed cc-polygons. This is
illustrated in Fig. 3.14. Note that the case where the columns Ci and Ci+1 share the
bottom edge of Ci (the fourth case in Fig. 3.13) is only possible if Ci+1 has height 1.
Moreover, only one additional series is needed, namely that of directed cc-polygons
marked in the last column (D1).

One obtains the following equations:

D = yD+ xy + xD+ xD2 + xyD+ D2 + xy(D1 −D)+ x(D1 −D)D,

D1 = y(D+ D1)+ xy + xD1 + xDD1 + xyD+ DD1 + xy(D1 −D)+ x(D1−D)D1.

Eliminating D1 gives a cubic equation for the series D ≡ D(x,y):

D3 + 2(y−1)D2 +(y−1)(x + y−1)D+ xy(y−1) = 0.

This equation was first obtained in [21]. The first few terms of the semi-perimeter
generating function are

D(t,t) = t2 + 2t3 + 6t4 + 20t5 + 71t6 + 263t7 + 1005t8 + 3933t9 + · · ·

1 Eq. (32) in [22] has an error: the coefficient of t5c3 in p2 should be −40 instead of +40.
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∪ ∪

∪ ∪

∪

∪∪=

Fig. 3.14 A recursive construction of directed column-convex polygons.

3.3.3.4 Directed Polyominoes by Area

Let us move to a class that admits a neat, but non-obvious, algebraic structure: di-
rected polyominoes counted by area. This structure was discovered when Viennot
developed the theory of heaps [52]. Intuitively, a heap is obtained by dropping ver-
tically some solid pieces, one after the other. Thus, a piece lies either on the “floor”
(when it is said to be minimal), or at least partially covers another piece.

Directed polyominoes are, in essence, heaps. To see this, replace every cell of the
polyomino by a dimer, after a 45 degree rotation (Fig. 3.15). This gives a heap with
a unique minimal piece. Such heaps are called pyramids. If the columns to the left
of the minimal piece contain no dimer, we say we have a half-pyramid (Fig. 3.15,
right).

Fig. 3.15 Left: A directed polyomino and the associated pyramid. Right: a half-pyramid.
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The interest in heaps lies in the existence of a product of heaps: The product of
two heaps is obtained by putting one heap above the other and dropping its pieces.
Conversely, one can factor a heap by pushing upwards one or several pieces. See an
example in Fig. 3.16. This product is the key in our algebraic description of directed
polyominoes, or, equivalently, of pyramids of dimers, as we now explain.

Fig. 3.16 A factorization of a pyramid into a pyramid and a half-pyramid. Observe that the highest
dimer of the pyramid moves up as we lift the white dimer.

A pyramid is either a half-pyramid, or the product of a half-pyramid and a pyra-
mid (Fig. 3.17, top). Let D(q) denote the g.f. of pyramids counted by the number of
dimers, and H(q) denote the g.f. of half-pyramids. Then D(q) = H(q)(1 + D(q)).

Now, a half-pyramid can be a single dimer. If it has several dimers, it is the
product of a single dimer and of one or two half-pyramids (Fig. 3.17, bottom), which
implies H(q) = q+qH(q)+qH2(q). Note that D(q) is also the area g.f. of directed
polyominoes. A straightforward computation gives:

D(q) =
1
2

(√
1 + q

1−3q
−1

)
(3.8)

H HD

D

∪=

= ∪∪

Fig. 3.17 Decomposition of pyramids (top) and half-pyramids (bottom).
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This was first proved by Dhar [24]. The above proof is adapted from [7].

3.3.4 q-Analogues

By looking for the first column of height 1 in a bargraph, we have described an
algebraic construction of these polygons (Fig. 3.11) that proves that their perimeter
g.f. is algebraic (Section 3.3.1). Let us now examine what happens when we try to
keep track of the area of these polygons.

As in Section 3.2.4, the key observation is that the area behaves additively when
one concatenates two bargraphs, but increases by the width of the polygon when we
duplicate the bottom row. (In contrast, the half-perimeter simply increases by 1 dur-
ing this operation.) This observation gives rise to the following functional equation
for the complete g.f. of bargraphs:

B(x,y,q) = yB(xq,y,q)+ xyq + xqB(x,y,q)+ xyqB(xq,y,q)

+ xqB(xq,y,q)B(x,y,q). (3.9)

This is a q-analogue of Equation (3.7) defining B(x,y,1). This equation is no longer
algebraic, and it is not clear how to solve it. It has been shown in [44] that it can be
linearized and solved using a certain Ansatz. We will show in Section 3.4.1 a more
systematic way to obtain B(x,y,q), which does not require any Ansatz.

3.4 Adding a New Layer: a Versatile Approach

In this section we describe a systematic construction that can be used to find the
complete g.f. of many classes of polygons having a convexity property [10]. The
cost of this higher generalization is twofold:

• it is not always clear how to solve the functional equations obtained in this way,
• in contrast with the constructions developed in Sections 3.2 and 3.3, this ap-

proach does not provide combinatorial explanations for the rationality/algebraicity
of the corresponding g.f.s.

This type of construction is sometimes called Temperley’s approach since Tem-
perley used it to write functional equations for the generating function of column-
convex polygons counted by perimeter [51]. But it also occurs, in a more compli-
cated form, in other “old” papers [6, 40]. We would prefer to see a more precise
terminology, like layered approach.
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3.4.1 A Basic Example: Bargraphs by Perimeter and Area

We return to our favourite example of bargraphs, and we now aim to find the com-
plete g.f. B(x,y,q) of this class of polygons. We have just seen that the algebraic
description of Fig. 3.11 leads to the q-algebraic equation (3.9), which is not obvi-
ous to solve. The linear description of Section 3.2.1 cannot be directly exploited
either: in order to decide whether the addition of a cell at the top of the last column
increases the perimeter or not, we need to know which of the last two columns is
higher.

We present here a variation of this linear construction that allows us to count
bargraphs by area and perimeter, provided we also take into account the right height
by a new variable s. By right height, we mean the height of the rightmost column.
The g.f. we are interested in is now

B(x,y,q,s) = ∑
h≥1

Bh(x,y,q)sh,

where Bh(x,y,q) is the complete g.f. of bargraphs of right height h.

ℓ h
= ∪ ∪

Fig. 3.18 A third recursive construction of bargraphs.

Our new construction is illustrated in Fig. 3.18. The class B of bargraphs is split
into three disjoint subsets:

1. bargraphs of width 1 (columns). The g.f. of this class is xysq/(1− ysq),
2. bargraphs in which the last column is at least as high as the next-to-last column.

These bargraphs are obtained by duplicating the last column of a bargraph (which
boils down to replacing s by sq in the series B(x,y,q,s)), and adding a (possibly
empty) column at the top of the newly created column. The corresponding g.f. is
thus x

1− ysq
B(x,y,q,sq).

3. bargraphs in which the last column is lower than the next-to-last column. To
obtain these, we start from a bargraph, say of right height h, and add a new
column of height ℓ < h to the right. The g.f. of this third class is:

x ∑
h≥1

(
Bh(x,y,q)

h−1

∑
ℓ=1

(sq)ℓ

)
= x ∑

h≥1

(
Bh(x,y,q)

sq− (sq)h

1− sq

)

= x
sqB(x,y,q,1)−B(x,y,q,sq)

1− sq
. (3.10)
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Writing B(s) ≡ B(x,y,q,s), and putting together the three cases, we obtain:

B(s) =
xysq

1− ysq
+

xsq
1− sq

B(1)+
xsq(y−1)

(1− sq)(1− ysq)
B(sq). (3.11)

This equation is solved in two steps: first, an iteration, similar to what we did for
Ferrers diagrams in (3.4) (Section 3.2.4), provides an expression for B(s) in terms
of B(1):

B(s) = ∑
n≥1

(xs(y−1))n−1q(n
2)

(sq)n−1(ysq)n−1

(
xysqn

1− ysqn +
xsqn

1− sqn B(1)

)
.

Then, one sets s = 1 to obtain the complete g.f. B(1) ≡ B(x,y,q,1) of bargraphs:

B(x,y,q,1) =
I+

1− I−
(3.12)

with

I+ = ∑
n≥1

xn(y−1)n−1q(n+1
2 )

(q)n−1(yq)n
and I− = ∑

n≥1

xn(y−1)n−1q(n+1
2 )

(q)n(yq)n−1
.

3.4.2 More Examples

In this section, we describe how to apply the layered approach to two other classes of
polygons: staircase and column-convex polygons, counted by perimeters and area
simultaneously. In passing we show how the difference of g.f.s resulting from a
geometric summation like (3.10) can be explained combinatorially by an inclusion-
exclusion argument.

3.4.2.1 Staircase polygons

As with the bargraph example above, we define an extended generating function
which tracks the height of the rightmost column of the staircase polygon,

S(x,y,q,s) = ∑
h≥1

Sh(x,y,q)sh,

where Sh(x,y,q) is the generating function of staircase polygons with right height h.
The set of all staircase polygons can be partitioned into two parts (Fig. 3.19):

1. those which have only one column. The g.f. for this class is xyqs/(1− yqs).
2. those which have more than one column. Their g.f. is obtained as the difference

of the g.f. of two sets as follows.
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Fig. 3.19 The two types of staircase polygons.

Staircase polygons of width ℓ ≥ 2 can be split into two objects: a staircase poly-
gon formed of the ℓ− 1 first columns, and the rightmost column. The left part has
generating function S(x,y,q,1) (ignoring the rightmost height), to which we then
attach a column of cells. The attached column is constrained in that it must not ex-
tend below the bottom of the rightmost column of the left part. It is generated (see
Fig. 3.19) by gluing a descending column (with g.f. 1/(1− qs)) and an ascending
column (with g.f. 1/(1− yqs)) to a single square (with g.f. xyqs). The single square
is required to ensure that the column is not empty and is glued to the immediate
right of the topmost square of the left part. An important observation is that only the
ascending column contributes in the increase of the vertical perimeter. This gives
the generating function

S(x,y,q,1) · xyqs · 1
1−qs

· 1
1− yqs

.

This construction however results in configurations which might have the rightmost
column extending below the rightmost column of the left part. We must thus subtract
the contribution of these “bad” configurations from the above g.f. We claim that they
are generated by

S(x,y,q,sq) · xyqs · 1
1−qs

· 1
1− yqs

.

The replacement of s with sq in S(x,y,q,sq) is interpreted as adding a copy of the
last column of the left part, as illustrated in Fig. 3.20. The xyqs factor is interpreted
as attaching a new cell to the bottom of the duplicated column (thus ensuring the
rightmost column is strictly below the rightmost column of the left part). Finally, we
add a descending and an ascending column. Again, the height of the latter must not
be taken into account in the vertical perimeter.

Thus the final equation for the generating function is

S(x,y,q,s) =
xyqs

1− yqs
+
(
S(x,y,q,1)−S(x,y,q,sq)

) xyqs
(1−qs)(1− yqs)

.

It can also be obtained via geometric sums, as was done for (3.10). The equation is
solved with the same two step process as for bargraphs. First we iterate it to obtain
S(x,y,q,s) in terms of S(x,y,q,1), and then we set s to 1, obtaining
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Fig. 3.20 a) Replacing s by sq in S(x,y,q, s) duplicates the last column of the polygon. b) Gener-
ating function of “bad” configurations.

S(x,y,q,1) = y
J1

J0
,

where J0 and J1 are two q-Bessel functions [34]:

J1(x,y,q) = ∑
k≥1

(−1)k+1 xkq(k+1
2 )

(q)k−1(yq)k

and

J0(x,y,q) = ∑
k≥0

(−1)k xkq(k+1
2 )

(q)k(yq)k
.

Note, the appropriate limit as q → 1 leads to standard Bessel functions which are
related to the generating function for semi-continuous staircase polygons—see [18]
for details.

3.4.2.2 Column-Convex Polygons

The case of column-convex polygons is more complex and we will not give all
the details but discuss only the primary additional complication. We refer to [10]
for a complete solution. As in the case of staircase polygons, a functional equation
for column-convex polygons can be obtained by considering the rightmost (last)
column. The position of the last column compared with the second last column
must be carefully considered. Again there are several cases depending on whether
the top (resp. bottom) of the last column is strictly above, at the same level or below
the top (resp. bottom) of the second-last column. The case that leads to a type of
term that does not appear in the equation for staircase polygons is the case where
the top (resp. bottom) of the last column cannot be above (resp. below) the top (resp.
bottom) of the second-last column. Thus we will only explain this case which we
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will refer to as the contained case, as the last column is somehow contained in the
previous one.

If the generating function for the column-convex polygons is C(s) = C(x,y,q,s)
then we claim that the polygons falling into the contained case are counted by the
generating function

xsq
1− sq

∂C
∂ s

(1)− xs2q2

(1− sq)2

(
C(1)−C(sq)

)
. (3.13)

Thus we see we now need a derivative of the generating function. As a polygon of
right height h contributes h times to the series ∂C/∂ s(1), this series counts polygons
with a marked cell in the rightmost column.

Fig. 3.21 A schematic representation of the equation for the case where the rightmost column does
not extend above or below the second-last column.

Let us now explain this expression, which is illustrated in Fig. 3.21. We consider
a polygon as the concatenation of a left part with a new (rightmost) column C. In
the left part, we mark the cell of the rightmost column that is at the same level as the
bottom cell of C. So, starting from a marked polygon, we first add a single square
to the right of the marked cell—this gives a factor xsq. Above this square we then
add an ascending column which is generated by 1/(1− sq). However, as with the
staircase polygons, the resulting series counts “bad” configurations, where the last
column ends strictly higher than the second last column. We subtract the contribu-
tion of these bad configurations by generating them as shown on the second picture
of Fig. 3.21. This results in subtracting the term xq2s2C(1)/(1− sq)2. However, we
have now subtracted too much! Indeed, some configurations counted by the latter se-
ries have a rightmost column that ends below the second last column. We correct this
by adding the contribution of these configurations, which is xq2s2C(sq)/(1− sq)2

(Fig. 3.21, right). This establishes (3.13) for the g.f. of the contained case.
The other cases are simpler, and in the same vein as what was needed for staircase

polygons. Considering all cases gives
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C(s) =
xsyq

1− syq
+

xsq
1− sq

∂C
∂ s

(1)+
xs2q2(2y− syq−1)

(1− sq)2(1− syq)
C(1)

+
xs2q2(1− y)2

(1− sq)2(1− syq)2C(sq). (3.14)

In order to solve this equation, we first iterate it to obtain C(s) in terms of C(1)
and C′(1) = ∂C/∂ s(1). Setting s = 1 gives a linear equation between C(1) and
C′(1). Setting s = 1 after having differentiated with respect to s gives a second linear
equation between C(1) and C′(1). We end up solving a linear system of size 2, and
obtain C(1) as a ratio of two 2×2 determinants. The products of series that appear
in these determinants can be simplified, and the final expression reads

C(x,y,q,1) = y
(1− y)X

1 +W + yX

where

X =
xq

(1− y)(1− yq)
+ ∑

n≥2

(−1)n+1xn(1− y)2n−4q(n+1
2 )(y2q)2n−2

(q)n−1 (yq)n−2 (yq)2
n−1 (yq)n (y2q)n−1

and

W = ∑
n≥1

(−1)nxn(1− y)2n−3q(n+1
2 )(y2q)2n−1

(q)n (yq)3
n−1 (yq)n (y2q)n−1

.

The first solution, involving a more complicated expression, was given in [17]. The
one above appears as Theorem 4.8 in [10].

3.4.3 The Kernel Method

In Sections 3.2 and 3.3, we have explained combinatorially why the area g.f. of
bargraphs, B(1,1,q), and the perimeter g.f. of bargraphs, B(x,y,1), are respectively
rational and algebraic. It is natural to examine whether these properties can be re-
covered from the construction of Fig. 3.18 and the functional equation (3.11).

As soon as we set y = 1 in this equation, the main difficulty, that is, the term
B(sq), disappears. We can then substitute 1 for s and solve for B(x,1,q,1), the width
and area g.f. of bargraphs. This series is found to be

B(x,1,q,1) =
xq

1−q− xq
.

From this, one also obtains a rational expression for the series B(x,1,q,s). The ratio-
nality of B(x,1,q,1) also follows directly from the expression (3.12): setting y = 1
shrinks the series I+ and I− to simple rational functions.



3 Exactly Solved Models 73

How the perimeter g.f. of bargraphs can be derived from the functional equa-
tion (3.11) is a more challenging question. Setting q = 1 gives

B(s) =
xys

1− ys
+

xs
1− s

B(1)+
xs(y−1)

(1− s)(1− ys)
B(s). (3.15)

This equation cannot be simply solved by setting s = 1. Instead, the solution uses
the so-called kernel method, which has proved useful in a rather large variety of
enumerative problems in the past 10 years [3, 4, 14, 19, 32, 47]. This method solves,
in a systematic way, equations of the form:

K(s,x)A(s,x) = P(x,s,A1(x), . . . ,Ak(x))

where K(s,x) is a polynomial in s and the other indeterminates x = (x1, . . . ,xn), P
is a polynomial, A(s,x) is an unknown series in s and the xi’s, while the series Ai(x)
only depend on the xi’s. (It is assumed that the equation uniquely defines all these
unknown series.) We refer to [14] for a general presentation, and simply illustrate
the method on (3.15). We group the terms involving B(s), and multiply the equation
by (1− s) to obtain:

(
1− s− xs(y−1)

1− ys

)
B(s) =

xys(1− s)
1− ys

+ xsB(1). (3.16)

Let S ≡ S(x,y) be the only formal power series in x and y that satisfies

S = 1− xS(y−1)

1− yS
.

That is,

S =
1− x + y + xy−

√
(1− y)((1− x)2− y(1 + x)2)

2y
.

Replacing s by S in (3.16) gives an identity between series in x and y. By construc-
tion, the left-hand side of this identity vanishes. This gives

B(1) ≡ B(x,y,1,1) =
y(S−1)

1− yS

=
1− x− y− xy−

√
(1− y)((1− x)2− y(1 + x)2)

2x
,

and we have recovered the algebraic expression (3.6) of the perimeter g.f. of bar-
graphs.
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3.5 Some Open Questions

We conclude this chapter with a list of open questions. As mentioned in the introduc-
tion, the combination of convexity and direction conditions gives rise to 35 classes
of polyominoes, not all solved. But all these classes are certainly not equally inter-
esting. The few problems we present below have two important qualities: they do not
seem completely out of reach (we do not ask about the enumeration of all polyomi-
noes) and they have some special interest: they deal either with large classes of poly-
ominoes, or with mysterious classes (that have been solved in a non-combinatorial
fashion), or they seem to lie just at the border of what the available techniques can
achieve at the moment.

3.5.1 The Quasi-Largest Class of Quasi-Solved Polyominoes

Let us recall that the growth constant of n-cell polyominoes is conjectured to be a bit
more than 4. More precisely, it is believed that pn, the number of such polyominoes,
is equivalent to µnn−1, up to a multiplicative constant, with µ = 4.06 . . . [37]. The
techniques that provide lower bounds on µ involve looking at bounded polyominoes
(for instance polyominoes lying in a strip of fixed height k) and a concatenation ar-
gument. See [5] for a recent survey and the best published lower bound, 3.98 . . .. It is
not hard to see that for k fixed, these bounded polyominoes have a linear structure,
and a rational generating function. This series is obtained either by adding recur-
sively a whole “layer” to the polyomino (as we did for self-avoiding polygons in
Section 3.2.3.3), or by adding one cell at a time. The latter approach is usually more
efficient (Chapter 6).

What about solved classes of polyominoes that do not depend on a parameter k,
and often have a more subtle structure? We have seen in Section 3.3.3 that the g.f.
of directed polyominoes is algebraic, with growth constant 3. This is “beaten” by
the growth constant 3.20. . . derived from the rational g.f. of column-convex poly-
ominoes (Section 3.2.3). A generalization of directed polyominoes (called multi-
directed polyominoes) was introduced in [15] and proved to have a fairly compli-
cated g.f., with growth constant about 3.58. To our knowledge, this is the largest
growth constant reached from exact enumeration (again, apart from the rational
classes obtained by bounding column heights).

However, in 1967, Klarner introduced a “large” class of polyominoes that seems
interesting and would warrant a better understanding [39]. His definition is a bit
unclear, and his solution is only partial, but the estimate he obtains of the growth
constant is definitely appealing: about 3.72. Let us mention that the triangular lattice
version of this mysterious class is solved in [15]. The growth constant is found to
be about 4.58 (the growth constant of triangular lattice animals is estimated to be
about 5.18, see [53]).
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3.5.2 Partially Directed Polyominoes

This is another generalization of directed polyominoes, with a very natural defini-
tion: the corresponding animal A contains a source point v0 from which every other
point can be reached by a path formed of North, East and West steps, only visiting
points of A (Fig. 3.22(a)). This model has a slight flavour of heaps of pieces, a no-
tion that has already proved useful in the solution of several polyomino models (see
Section 3.3.3 and [7, 16, 15]). The growth constant is estimated to be around 3.6,
and, if proved, would thus improve that of multi-directed animals [45].

(a) (b) (c)

Fig. 3.22 (a) A partially directed animal. The source can be any point on the bottom row. (b) A
directed animal on the square lattice, with the right neighbours indicated in white. (c) A directed
animal A on the triangular lattice. The distinguished points are those having (only) their South
neighbour in A.

3.5.3 The Right Site-Perimeter of Directed Animals

We wrote in the introduction that almost all solved classes of polyominoes can be
solved by one of the three main approaches we present in this chapter. Here is one
simple-looking result that we do not know how to prove via these approaches (and
not via any combinatorial approach, to be honest).

Take a directed animal A, and call a neighbour of A any point that does not
lie in A, but could be added to A to form a new directed animal. The number of
neighbours is the site-perimeter of A. The right site-perimeter of A is the number of
neighbours that lie one step to the right of a point of A. It was proved in [11] that the
g.f. of directed animals, counted by area and right site-perimeter, is a very simple
extension of (3.8):

D(q,x) =
x
2

(√
(1 + q)(1 + q−qx)

1−q(2 + x)+ q2(1− x)
−1

)
.

The proof is based on an equivalence with a one-dimensional gas model, inspired
by [25]. It is easy to see that the right site-perimeter is also the number of vertices v
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of A whose West neighbour is not in A. (By the West neighbour, we mean the point
at coordinates (i−1, j) if v = (i, j)).

Described in these terms, this result has a remarkable counterpart for triangular
lattice animals (Fig. 3.22). Let us say that a point (i, j) of the animal has a West (resp.
South, South-West) neighbour in A if the point (i−1, j) (resp. (i, j−1), (i−1, j−1))
is also in A. Then the g.f. that counts these animals by the area and the number of
points having a SW-neighbour (but no W- or S-neighbour) is easy to obtain using
heaps of dimers and the ideas presented in Section 3.3.3:

D̃(q,x) =
1
2

(√
1 + q−qx

1−3q−qx

)
.

What is less easy, and is so far only proved via a correspondence with a gas model,
is that D̃(q,x) also counts directed animals (on the triangular lattice) by the area and
the number of points having a South neighbour (but no SW- or W-neighbour). Any
combinatorial proof of this result would give a better understanding of these objects.
One possible starting point may be found in the recent paper [41], which sheds some
combinatorial light on the gas models involved in the proof of the above identities.

3.5.4 Diagonally-Convex Polyominoes

Let us conclude with a problem that seems to lie at the border of the applicability
of the third approach presented here (the layered approach). In the enumeration of,
say, column-convex polyominoes (Section 3.4.2), we have used the fact that delet-
ing the last column of such a polyomino gives another column-convex polyomino.
This is no longer true of a d−-convex polyomino from which we would delete the
last diagonal (Fig. 3.1(d)). Still, it seems that this class is sufficiently well struc-
tured to be exactly enumerable. Note that this difficulty vanishes when studying the
restricted class of directed diagonally-convex polyominoes [8, 46], which behave
approximately like column-convex polyominoes.
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variables partiellement commutatives. ArXiv:math.CO/0106210.
8. M. Bousquet-Mélou. Rapport scientifique d’habilitation. Report 1154-96, LaBRI, Université
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Chapter 4
Why Are So Many Problems Unsolved?

Anthony J Guttmann

4.1 Introduction

The problems discussed in this book, particularly that of counting the number of
polygons and polyominoes in two dimensions, either by perimeter or area, seems
so simple to state that it seems surprising that they haven’t been exactly solved.
The counting problem is so simple in concept that it can be fully explained to any
schoolchild, yet it seems impossible to solve. In this chapter we develop what is es-
sentially a numerical method that provides, at worst, strong evidence that a problem
has no solution within a large class of functions, including algebraic, differentiably
finite (D-finite) [27, 26] and at least a sub-class [7] of differentiably algebraic func-
tions, called constructible differentiably algebraic (CDA) functions. Since many of
the special functions of mathematical physics—in terms of which most known so-
lutions are given—are differentiably finite, this exclusion renders the problem un-
solvable within this class. Throughout this chapter the term D-unsolvable means
that the problem has no solution within the class of D-finite functions as well as the
sub-class of differentiably algebraic functions described above. In the next chap-
ter, Rechnitzer shows how these ideas may be refined into a proof, in the case of
polygons in two dimensions.

In fact, the exclusion is wider than D-finite functions, as we show that the so-
lutions possess a natural boundary on the unit circle in an appropriately defined
complex plane. This excludes not only D-finite functions, but a number of others as
well—though we have no simple way to describe this excluded class.

We’ll first give some definitions. Let KI be a field with characteristic zero. A
series f (z) ∈ KI [[z]] is said to be differentiably finite if there exists an integer k and
polynomials P0(z), · · · ,Pk(z) with coefficients in KI such that Pk(z) is not the null
polynomial and
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P0(z) f (z)+ P1(z) f ′(z)+ · · ·+ Pk(z) f (k)(z) = 0.

A series f (z) ∈ KI [[z]] is said to be differentiably algebraic if there exists an integer
k and a polynomial P in k + 2 variables with coefficients in KI , such that

P(z, f (z), f ′(z), · · · , f (k)(z)) = 0.

A series f (z) ∈ KI [[z]] is said to be constructible differentiably algebraic if there
exists both series f1(z), f2(z), · · · , fk(z) with f = f1, and polynomials P1,P2, · · · ,Pk

in k variables, with coefficients in KI , such that

f ′1 = P1( f1, f2, · · · , fk), (4.1)

f ′2 = P2( f1, f2, · · · , fk),

· · ·
f ′k = Pk( f1, f2, · · · , fk).

A simpler, but non-constructive definition is that a function is CDA if it belongs to
some finitely generated ring which is closed under differentiation [7]. Differentiably
finite functions in several variables are discussed in [26].

A consequence of these definitions is that if a series in z, f = ∑n an(x)zn with
coefficients in the field KI = C(x) is algebraic, D-finite or CDA, then the poles of
an(x) lying on the unit circle cannot become dense on this circle as n increases. This
is because the poles must lie in a finite set, independent of n, which in turn is a con-
sequence of the recurrence relations on an(x) that follow from the above definitions.
We make extensive use of this observation in the remainder of the chapter.

Note that algebraic, D-finite and CDA functions are all subsets of differentiably
algebraic functions, and of course algebraic functions are both D-finite and CDA.
However, D-finite functions are not necessarily CDA. For example the function (et −
1)/t is not CDA as it fails to satisfy the Eisenstein criterion [7] though it is D-finite.
Other functions, such as 1/cost are CDA but not D-finite.

The method which we shall describe and which can, in favourable circumstances,
be sharpened into a formal proof, as in the next chapter, has been applied to a wide
variety of problems in both statistical mechanics and combinatorics. Typically, the
solution of the problem will require the calculation of the graph generating function
in terms of some parameter, such as perimeter, area, number of bonds or sites. A key
first step is to anisotropise the generating function. For example, if counting graphs,
such as polygons, by the number of bonds on, say, an underlying square lattice, one
distinguishes between horizontal and vertical bonds. In this way, one can construct
a two-variable generating function, G(x,y) = ∑m,n gm,nxmyn where gm,n denotes the
number of graphs with m horizontal and n vertical bonds. Summing over one of the
variables, we may write

G(x,y) = ∑
m,n

gm,nxmyn = ∑
n

Hn(x)y
n (4.2)
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where Hn(x) is the generating function for the relevant graphs with n vertical bonds.
It can be proved [28] that these generating functions are rational, with denominators
given as products of cyclotomic polynomials (see the next Chapter).

In some cases one finds only a small finite number (typically one or two) of
denominator zeros on the unit circle. Loosely speaking, this is the hallmark of a
solvable problem. This remark is very loose. It does not mean that the solution is
necessarily D-finite, though that is often the case, but rather that such problems
seem to be solvable (we know of no counter-example, even though some of the
solutions involve q-generalisations of standard functions). If, as is often observed,
the denominator zeros become dense on the unit circle as n increases, so that in
the limit a natural boundary is formed, then this is the hallmark of a D-unsolvable
problem.

The significance of this observation is substantial. It is observed in these cases
that, as n increases, the denominators of the rational functions Hn(x) contain zeros
given by steadily higher roots of unity. Hence the structure of the functions Hn(x)
is that of a rational function whose poles all lie on the unit circle in the complex
x-plane, such that the poles become dense on the unit circle as n gets large. This
behaviour of the functions Hn(x) implies that G(x,y) (a) has a natural boundary
(b) as a formal power series in y with coefficients in the field KI = C(x) is neither
algebraic nor D-finite, nor CDA. Further, provided that G(x,c) is well-defined for a
given complex value c, then, in the absence of miraculous cancellations, it follows
that G(x,c) also is neither D-finite nor CDA.

Of course, we are primarily interested in the solution of the isotropic case, when
x = y, and it is clear that the anisotropic case can behave quite differently from the
isotropic case. This is most easily seen by construction. Consider the function

f (x,y) = f1(x,y)+ (x− y) f2(x,y), (4.3)

where f1(x,y) is D-finite and f2(x,y) is not. Clearly, the function f (x,y) is not D-
finite, while f (x,x) is D-finite. However, in all the cases we have studied where
the solutions are known, the effect of anisotropisation does not change the analytic
structure of the solution. Rather, it simply moves singularities around in the complex
plane, at most causing the bifurcation of a real singularity into a complex pair. This
can readily be seen from equation (4.4), given below, for the magnetisation of the
square-lattice anisotropic Ising model [9].

M(x,y) =

[
1− 16xy

(1− x)2(1− y)2

]1/8

. (4.4)

Replacing y by λ x and varying λ merely causes the singularities to move smoothly,
and indeed initially linearly, with λ in the complex plane. Further, for unsolved
problems, numerical procedures indicate that similar behaviour prevails. Neverthe-
less, this remains an observation, rather than an established fact, and needs to be
explicitly established for each new problem.
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That being said, not all problems with a small number of denominator zeros have
been solved, while some D-unsolvable problems have been solved. In the former
case however we believe that it is only a matter of time before a solution is found
for these problems, while in the latter case the solutions have usually been expressed
in terms of modular functions or q-generalisations of the standard functions, which
are of course not D-finite. As examples consider first the hard hexagon model [3].
Baxter’s original solution was expressed in terms of a natural, but non-physical pa-
rameter x, with −1 < x < 1. In terms of this parameter, the following product form
was derived for the order-parameter R :

R(x) =
∞

∏
n=1

(1− xn)(1− x5n)

(1− x3n)2 . (4.5)

Subsequently Joyce [25] showed that, when expressed in terms of another product
form that defined the reciprocal activity z′, R(z′) satisfied an algebraic equation of
degree 4 in R3.

An example with a different flavour is provided by the generating function for
the number of staircase polygons given in terms of the area (q), horizontal semi-
perimeter (x) and vertical semi-perimeter (y), equivalent up to a translation. It is [6]

G(x,y,q) = y
J1

J0
where (4.6)

J1(x,y,q) = ∑
n≥1

(−1)n−1xnq(n+1
2 )

(q)n−1(yq)n
and (4.7)

J0(x,y,q) = ∑
n≥0

(−1)nxnq(n+1
2 )

(q)n(yq)n
, (4.8)

where (a)n = ∏n−1
i=0 (1−aqi).

In this case, it is clear that if we look at G(x,1,q) in the complex q-plane with x
held fixed, the solution possesses a natural boundary on the unit circle.

The procedure which we have outlined in the discussion around eqn. (2) is a
particularly useful first step in the study of such problems. One anisotropises, gen-
erates enough terms in the generating function to be able to construct the first few
functions Hn, then studies the denominator pattern. If it appears that the zeros are
becoming dense on the unit circle, one has good reason to suspect that the problem
is D-unsolvable. If on the other hand there are only one or two zeros, one is in an
excellent position to seek the solution in terms of the D-finite or CDA functions of
mathematical physics—many of which are defined in [1]. In some cases one may
be able to prove that the observed denominator pattern persists. In that case, one has
proved the observed results.

The construction of the functions Hn deserves some comment. At very low order
this can often be done exactly, by combinatorial arguments based on the allowed
graphs. Beyond this, our method is to generate the coefficients in the expansion,
assume it is rational, then by essentially constructing the Padé approximant one
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conjectures the solution. Typically, one might generate 50–100 terms in the expan-
sion and find a rational function with numerator and denominator of perhaps degree
5 or 10. Thus the first 10 or 20 terms of the series are used to identify the rational
function, the remainder are used to confirm it. Hence while this is not a derivation
that proves that this is the required rational function, the chance of it not being so is
extraordinarily small.

It should be said explicitly that this technique is computationally demanding.
That is to say, the generation of sufficient terms in the generating function is usually
quite difficult. Only with improved algorithms—most notably the combination of
the finite lattice method [13, 16] with a transfer matrix formulation, as discussed in
Chapter 7 —and computers with large physical memory that are needed for the ef-
ficient implementation of such algorithms, has it been possible to obtain expansions
of the required length in a reasonable time. The technique is still far from routine,
with each problem requiring a significant calculational effort. .

An additional, and exceptionally valuable feature of the method comes when the
numerical work, described above, is combined with certain functional relations that
the anisotropised generating functions must satisfy. In the language of statistical
mechanics, these key functional relations are called inversion relations and imply
a connection between the generating function and its analytic continuation, usually
involving the reciprocal of one or more of the expansion variable(s). As we show
below, the existence of these inversion relations, coupled with any obvious sym-
metries (usually a symmetry with respect to the interchange of x and y), coupled
with the observed behaviour of the functions Hn (described above) can yield an im-
plicit solution to the underlying problem with no further calculation. An example
of this is the solution [2] of the zero-field free energy of the two-dimensional Ising
model. A more detailed discussion of this aspect, and its extension to problems in
combinatorics, is given in [5].

In the remainder of this chapter, we describe the method in some detail in a few
cases, then go on to apply it to a range of problems in statistical mechanics and
combinatorics. We also take the first steps in extending the inversion relation idea
from its natural home in statistical mechanics to the arena of combinatorics—where
it sits less naturally due to the absence of an underlying Hamiltonian, the symme-
tries of which give rise to the inversion relation. It is in one sense comforting to
discover that, without exception, the long-standing unsolved problems of statistical
mechanics that we discuss are all found to be D-unsolvable.

Other important aspects of the method, such as the connection of these ideas with
concepts of integrability, and with the existence of a Yang-Baxter equation, are not
explored here.

4.2 Staircase Polygons

The enumeration of staircase polygons by perimeter is one of the simpler combina-
torial exercises, and is addressed elsewhere in Chapter 3, but is nevertheless useful
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pedagogically, as so many distinct methods can be demonstrated by its solution.
To this long list we add the experimental approach of studying the early terms of
the two variable series expansion of the perimeter generating function and observ-
ing a functional relation, in this case called an inversion relation, it expresses the
generating function in terms of the generating function with the arguments inverted.

We first write the perimeter generating function as

P(x,y) =
1− x2− y2

2
−
√

x4 −2x2y2 −2x2 + y4 −2y2 + 1
2

(4.9)

= ∑
m,n

pm,nx2my2n = ∑
n

Hn(x
2)y2n (4.10)

where pm,n is the number of staircase polygons with horizontal perimeter 2m and
vertical perimeter 2n, defined up to a translation. Then Hn(x2) is the generating
function for staircase polygons with 2n vertical bonds.

From observation of the early terms, it is clear that

Hn(x
2) = x2Sn(x

2)/(1− x2)2n−1

for n > 1, where Sn(x2) is a symmetric, unimodal polynomial with non-negative
coefficients, of degree (n−2). This observed symmetry can be expressed formally
as

x2nHn(x
2)+ x2Hn(1/x2) = 0, n > 1.

This in turn translates into the functional relation

P(x,y)+ x2P(1/x,y/x) = −y2.

There is also an obvious symmetry relation P(x,y) = P(y,x), and these observations
are sufficient to implicitly solve the problem by calculating the functions Hn order
by order in polynomial time.

Of course, this must rank as one of the least impressive ways of solving this fairly
simple model. However the purpose of this example is twofold. Firstly to show that
this essentially experimental method can be applied to combinatorial structures in
order to discover an inversion relation. Secondly, to show that once one has such
an inversion relation, then this, coupled with symmetry and the structure of the
functions Hn (plus certain analyticity assumptions), provides an alternative method
for obtaining a solution (albeit experimentally). Once one has such a conjectured
solution, it is a comparatively easy task to prove that it is correct.

Numerous other polygon problems can also be tackled similarly [5].
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4.3 Three-Choice Polygons

The problem of three-choice polygons [12] is an interesting one, as for nearly 10
years we knew everything about this model except a closed form solution! We had
a polynomial time algorithm to generate the coefficients in its series expansion—
which is tantamount to a solution—and detailed knowledge of its asymptotic be-
haviour. Then in 2006 Guttmann and Jensen [21] found the Fuchsian ODE satisfied
by the generating function. It was found to be an 8th order ODE with polynomial
coefficients of degree 35 to 37, so it is not surprising that the solution was not easily
found!

They are self-avoiding polygons on a square lattice, defined up to a translation,
and constructed according to the following rules: After a step in the y direction,
one may take a step in either the same direction or in the ±x direction. However
after a step in the +x direction, one may only make steps +x or +y, while after a
step in the −x direction, one may only make steps −x or −y. In unpublished work,
A R Conway and Rechnitzer anisotropised the model in order to see whether the
methods discussed here give insight into the solution.

Let P3(x,y) = ∑m,n am,nxmyn be the perimeter generating function, where am,n

gives the number of 3-choice polygons, distinct up to translation, with 2m horizontal
bonds and 2n vertical bonds. Then

P3(x,y) = ∑
n

Hn(x)y
n,

where
Hn(x) = Pn(x)/Qn(x)

is a rational function of x. The degree of the numerator polynomial increases like 3n
while the denominators are observed to be

Qn(x) = (1− x)2n−1(1 + x)2n−7, n even,

= (1− x)2n−1(1 + x)2n−8, n odd,

where there are no terms in (1+ x) for n < 5. It is not difficult to construct a combi-
natorial argument, based on the way the polygon can “grow”, that is consistent with
this behaviour. This argument has recently been sharpened to a proof [4]. It has also
been proved [4] that the solution is D-finite, and it clearly cannot be algebraic as
the asymptotic behaviour of the number of coefficients [12] includes a logarithmic
term.

An inversion relation for this model can be found experimentally [5], and the so-
lution possesses (x,y) symmetry. Nevertheless, because the degree of the numerator
polynomial grows like 3n we do not have enough constraints to implicitly solve the
model, as we did for staircase polygons above.
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4.4 Hexagonal Directed Animals

A directed site animal A on an acyclic lattice is defined to be a set of vertices
such that all vertices p ∈ A are either the (unique) origin vertex or may be reached
from the origin by a connected path, containing bonds only in the allowed lattice
directions, through sites of A .

In [14, 10] it was found that the number of such animals of perimeter n grew
asymptotically like µn/

√
n, where µ = 4 for the triangular lattice, and µ = 3 for the

square lattice. Furthermore, the generating function was given by the solution of a
simple algebraic equation. For the hexagonal lattice however we [10] found similar
asymptotic growth but with µ = 2.025131±0.000005, and we were unable to solve
for the generating function.

In order to gain more insight into this seemingly anomalous situation, the model
was anisotropised [20]. Let Ah(x,s) = ∑m,n am,nxmsn be the site generating function,
where am,n gives the number of hexagonal lattice site animals, with n sites supported
[8] one particular way and m sites in total. Then

Ah(x,s) = ∑
n

Hn(x)s
n,

where
Hn(x) = Pn(x)/Qn(x)

is a rational function of x.
For the square (and triangular) lattices, the corresponding result has been ob-

tained exactly [8]. For the square lattice, it is

Asq(x,s) =
1
2

(
(1− 4x

(1 + x)(1 + x− sx)
)−

1
2 −1

)
. (4.11)

Writing this as
Asq(x,s) = ∑

n
Hn(x)s

n, (4.12)

expansion readily yields

H0(x) = x/(1− x),

H1(x) = x2/(1− x)3,

H2(x) = x3(1 + x + x2)/(1− x)5(1 + x),

H3(x) = x4(1 + 2x + 4x2x + 2x3 + x4)/(1− x)7(1 + x)2,

H4(x) = x5(1 + 3x + 9x2 + 9x3 + 9x4 + 3x5 + x6)/(1− x)9(1 + x)3,

H5(x) = x6[1,4,16,24,36,24,16,4,1]/(1− x)11(1 + x)4.

Here it can be seen that the functions Hn(x) have just two denominator zeros, at
x = 1 and x = −1. As discussed above, this is the hallmark of a solvable model.
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However for the hexagonal lattice generating function, the denominator pattern,
while regular, contains terms of the form (1− xk) where k is an increasing func-
tion of n. In fact, the first occurrence of the factor (1− x2k) is in Hk. The first few
functions Hn(x) for the hexagonal lattice are:

H0(x) = x/(1− x),

H1(x) = x/(1− x)3(1 + x),

H2(x) = x2(1 + x + x3)/(1− x)5(1 + x)2(1 + x2),

H3(x) = x3(1 + x)(1 + x + 3x3− x4 + x5)/(1− x)7(1 + x)3(1 + x2)2,

H4(x) = x4[1,3,4,10,12,14,16,13,14,7,6,4,0,1]/

(1− x)9(1 + x)4(1 + x2)3(1− x− x2)(1 + x + x2).

The enumerations in [20] are complete up to H9(x).
The degree of the numerator also increases faster than linearly, so using any in-

version relation (and we don’t yet have one), would not provide a solution. We con-
clude that this is evidence for the existence of a natural boundary in the appropriate
complex plane, and hence that the solution is likely to be D-unsolvable.

This is then consistent with the seemingly anomalous value of the growth con-
stant µ .

4.5 Self-Avoiding Walks and Polygons

We turn now to our main topic, that of self-avoiding polygons and walks.
A study of anisotropic square lattice SAW has been reported in [11]. Writing the

SAW generating function C(x) in the now familiar form as

C(x,y) = ∑
m,n≥0

cm,nxmyn = ∑
n≥0

Hn(x)y
n, (4.13)

the first eleven functions, H0(x), · · · ,H10(x) were found [11].
The first few are:

H0(x) = (1 + x)/(1− x),

H1(x) = 2(1 + x)2/(1− x)2,

H2(x) = 2(1 + 7x + 14x2 + 16x3 + 9x4 + 3x5)/(1− x)3(1 + x)2 and

H3(x) = 2(1 + 10x + 29x2+ 44x3 + 41x4 + 22x5 + 7x6)/(1− x)4(1 + x)2.

The first occurrence of the term (1− x3) appears in H5(x) and the term (1+ x2) first
appears in H7. Higher order cyclotomic polynomials then systematically occur as
n increases. The denominator pattern appears to be predictable, though this has not
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been proved. The degree of the numerator is equal to the degree of the denominator
in all cases observed.

Again we see the characteristic hallmark of a D-unsolvable problem. Similar
behaviour is observed for SAP. We can write the SAP generating function P(x) as

P(x,y) = ∑
m,n≥1

pm,nx2my2n = ∑
n≥1

Hn(x)y
2n,

where pm,n is the number of square lattice polygons, equivalent up to a transla-
tion, with 2n horizontal steps and 2m vertical steps. In [15] the first nine functions,
H1(x), · · · ,H9(x), were calculated, and these were found to behave in a manner char-
acteristic of D-unsolvable problems—that is, the zeros appear to build up on the unit
circle. The first few are:

H1(x) = x/(1− x),

H2(x) = x(1 + x)2/(1− x)3,

H3(x) = x(1 + 8x + 17x2 + 12x3 + 3x4)/(1− x)5,

H4(x) = x(1 + 18x + 98x2 + 204x3 + 178x4 + 70x5 + 11x6)/(1− x)7,

H5(x) = xP9(x)/(1− x)9(1 + x)2,

H6(x) = xP15(x)/(1− x)11(1 + x)4,

H7(x) = xP20(x)/(1− x)13(1 + x)6(1 + x2 + x4).

In the above equations, Pk(x) denotes a polynomial of degree k. As was the case
for 3-choice polygons, a combinatorial argument can be given for the form of the
denominators, and this can be found in the next chapter. In the case of 3-choice
polygons there were only two roots of unity in the denominator, whereas here the
degree of the roots of unity steadily increases. The occurrence of new terms in the
denominator, corresponding to higher roots of unity, can be identified with the first
occurrence of specific graphs. In this way the denominator pattern can be predicted
(as shown in the next chapter) though rather more work is required to refine this
observation into a proof.

A similar study of hexagonal lattice polygons, in unpublished work by Enting
and Guttmann, led to similar conclusions. Furthermore, it was observed that the
denominators of the functions Hn for the square and hexagonal lattice polygons are
simply related.

4.6 The 8-Vertex Model

As a test of the idea that “solvable” models should, when anisotropised, have func-
tions Hn with only one or two denominator zeros, Tsukahara and Inami [29] studied
the 8-vertex model—which is one of the most difficult statistical mechanics models
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that has been exactly solved [2]. While it might be thought straightforward to expand
the solution in the desired form, this turns out not to be so. According to Tsukahara
and Inami [29], the exact solution in terms of elliptic parameters is very implicit,
and they have been unable to obtain an expansion directly from the solution.

The model can be described as two interpenetrating planar Ising models, coupled
by a four-spin coupling, two spins in each of the sub-lattices. Let the coupling in
one sub-lattice be L, that in the other be K, and the four-spin coupling be M. Then
the usual high-temperature expansion variables are t1 = tanhK, t2 = tanhL, t3 =
tanhM. New high temperature variables may be defined as follows:

z1 =
t1 + t2t3
1 + t1t2t3

, (4.14)

z2 =
t2 + t1t3
1 + t1t2t3

, (4.15)

z3 =
t3 + t1t2
t1 + t2t3

. (4.16)

Then it has recently been shown [29] that the logarithm of the reduced partition
function per face

logΛ(z1,z2,z3) = ∑
l,m,n

al,m,nz2l
1 z2m

2 z2n
3

satisfies

logΛ(z1,z2,z3)+ logΛ(
1− z2

2

z1(1− z2
3)

,−z2,−z3) = log(1− z2
2). (4.17)

A summation over l allows the reduced partition function to be written as

logΛ(z1,z2,z3) = ∑
m,n

Rm,n(z
2
1)z

2m
2 z2n

3 . (4.18)

After a complicated graphical calculation [29], it was found that

R1,0(z
2) = z2/(1− z2), (4.19)

R1,1(z
2) = 2z4/(1− z2)3, (4.20)

R2,0(z
2) = z2(2−5z2 + z4)/(1− z2) (4.21)

R1,2(z
2) = 3z6(1 + z2)/(1− z2)5. (4.22)

It is then argued [29] that the general form of the coefficients is

Rm,n(z
2) = Pm,n(z

2)/(1− z2)2m+2n−1.

This behaviour then accords with the expected behaviour of solvable models.
That is to say, there is only a finite number—in this case 1—of denominator singu-
larities.
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4.7 Conclusion

In this chapter we have described a powerful numerical technique capable of indi-
cating whether a problem is likely to be readily D-solvable or not. The hallmark
of unsolvability, which is the build up of zeros on the unit circle in the complex
x-plane in the functions Hn(x) of the anisotropised models, can, in favourable cases,
be refined into a proof.

In the most favourable cases, where in addition an inversion relation can be
obtained—as in the case of staircase polygons— and if in addition the functions
Hn are sufficiently simple, and with only a pole at 1 on the unit circle, an exact
solution can be implicitly obtained.

The prospect of solving hitherto unsolved problems by predicting the numerator
and denominator of the functions Hn by a combination of combinatorial and sym-
metry based arguments remains open.

Other methods for conjecturing solutions from the available terms in a series ex-
pansion include the computer program NEWGRQD [19], the Maple package GFUN
and its multivariate generalisation MGFUN [22], which all search for D-finite solu-
tions.

The concept of a natural boundary an indicator or proof of unsolvability in some
sense has been seen earlier in other areas. Flajolet [17] has shown that certain
context-free languages are ambiguous because their generating function has the unit
circle as a natural boundary. In a study of the ice model, which includes various
models of ice and ferro-electrics [18] it was found that the parameterised solution
had the entire negative real axis as a natural boundary, except for two special values
of the parameter, which coincided with the two cases, KDP and IKDP, that had been
solved.

Much work remains to be done in classifying precisely what class of functions is
excluded by certain observed behaviour, and in developing methods to solve prob-
lems which are identifiable as D-unsolvable.
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Chapter 5
The Anisotropic Generating Function of
Self-Avoiding Polygons is not D-Finite

Andrew Rechnitzer

5.1 Introduction

The enumeration of self-avoiding polygons, and other families of lattice animals, is
one of the most famous problems in enumerative combinatorics, and despite many
years of intensive study these problems remain completely open.

Let pn be the number of self-avoiding polygons on the square lattice of perimeter
2n and let G(z) = ∑ pnzn be the corresponding generating function. Neither an ex-
plicit nor a useful implicit expression is known for either the G(z) or pn. The most
efficient means of computing pn is the finite-lattice method (see Chapter 7). This
method is exponentially faster than brute-force enumeration (and considerably so!),
but still requires exponential time and space.

One of the most fruitful approaches has been the study of simpler combinatorial
models in which extra conditions such as directedness or convexity are imposed (see
Chapter 3). Almost all these models when enumerated by their number of bonds,
however, share the property that their generating functions are the solutions of ordi-
nary linear differential equations with polynomial coefficients—differentiably finite
or D-finite functions.

Definition 1. Let F(z) be a formal power series in z with coefficients in C. It is said
to be differentiably finite or D-finite if there exists a non-trivial differential equation:

Pd(z)
dd

dzd F(z)+ · · ·+ P1(z)
d
dz

F(z)+ P0(z)F(z) = 0, (5.1)

with Pj a polynomial in z with complex coefficients [12].

D-finite functions have many nice properties including having a finite number of
singularities [22]. Additionally a knowledge of the differential equation is sufficient
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Department of Mathematics, University of British Columbia, Vancouver, Canada, e-mail: an-
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to compute the coefficients of the generating function in linear time and also their
asymptotic behaviour.

In this work we seek to show that the generating function of self-avoiding poly-
gons is distinctly different from those of models that have been solved to date, in that
it is not D-finite, and so give some explanation why the problem remains unsolved.
One way of doing this would be show that it has an infinite number of singularities;
while there is strong numerical data for the location of the dominant singularity (see
[2, 10] for example), very little is known about subdominant singularities.

Guttmann and Enting [8] devised a numerical method for examining the sin-
gularity structure of solved and unsolved lattice models based on their anisotropic
generating function. Their survey of these generating functions demonstrated a dis-
tinct difference between solved and unsolved bond animal problems. They observed
a similar difference for thermodynamic functions of lattice models of magnets such
as the Ising model free-energy and susceptibility. They proposed that this could be
used as a test of “solvability”; it provides compelling evidence that the anisotropic
generating functions of many unsolved problems are not D-finite. In this article we
prove that this is indeed the case for self-avoiding polygons.

To form this generating function we distinguish between vertical and horizontal
bonds, and so count according to the vertical and horizontal half-perimeters

G(x,y) = ∑
P∈G

x|P|↔y|P|l , (5.2)

where G is the set of all self-avoiding polygons, |P|↔ and |P|l respectively denote
the horizontal and vertical half-perimeters of a polygon P. By partitioning G ac-
cording to the vertical half-perimeter we may resum the above generating function
as

G(x,y) = ∑
n≥1

yn ∑
P∈Gn

x|P|↔ = ∑
n≥1

Hn(x)y
n, (5.3)

where Gn is the set of SAPs with 2n vertical bonds, and Hn(x) is its horizontal half-
perimeter generating function.

In some sense, the anisotropic generating function is a more manageable object
than the isotropic. Splitting the set of animals, G , into separate simpler subsets, Gn,
breaks the problem into smaller pieces, each of which is easier to study than the
whole. If one seeks to compute the isotropic generating function then one must ex-
amine all possible configurations that can occur in G . Arguably, this is the reason
that the only families of bond animals that have been solved are those with severe
topological restrictions (such as directedness or convexity). On the other hand, if we
examine the generating function of Gn, then the number of different shapes that can
occur is always finite (this idea will be made more precise below). Similarly, instead
of trying to study the properties of the whole (possibly unknown) generating func-
tion, the anisotropy separates the generating function into separate simpler pieces,
Hn(x), that can be calculated exactly (for small n). By studying the properties of
these coefficients, particularly their singularities, we can obtain some idea of the
properties of the generating function as a whole.
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While no solution is known for G(x,y), the first few coefficients of y may be
computed exactly 1 . This was done for self-avoiding polygons (and a range of other
problems) by Guttmann and Enting [8] and they observed the following:

• Hn(x) is a rational function of x,
• the degree of the numerator of Hn(x) is equal to the degree of its denominator,
• the denominators of Hn(x) (we denote them Dn(x)) are products of cyclotomic

polynomials 2 and the first few are:

D1(x) = (1− x)

D2(x) = (1− x)3

D3(x) = (1− x)5

D4(x) = (1− x)7

D5(x) = (1− x)9(1 + x)2

D6(x) = (1− x)11(1 + x)4

D7(x) = (1− x)13(1 + x)6(1 + x + x2)

D8(x) = (1− x)15(1 + x)8(1 + x + x2)3

D9(x) = (1− x)17(1 + x)10(1 + x + x2)5

D10(x) = (1− x)19(1 + x)12(1 + x + x2)7(1 + x2). (5.4)

The singularities of the Hn(x), if this pattern persists will become dense on |x| = 1.
A similar pattern was observed for many unsolved models and is absent in solved
models such as staircase or convex polygons. Guttmann and Enting suggested that
this pattern of singularities becoming dense on |x| = 1 was the hallmark of an un-
solvable problem, and that it could be used as a test of solvability; D-finite functions
of two variables do not display this behaviour.

Then definition of D-finite can be extended to encompass multivariate functions
[12] and so cover the anisotropic generating functions considered here.

Definition 2. Let G(x,y) be a formal power series in y with coefficients that are
rational functions of x. Such a series is said to be D-finite if there exists a non-trivial
differential equation:

1 More precisely, the first hundred (or so) terms of the expansion of Hn(x) can be computed using
either brute force or the finite-lattice method. The first few tens of these can then be fitted using
Padé approximants. and the remaining terms can be used to “verify” the conjectured form. We also
note that one can show that Hn(x) is rational using transfer matrix arguments and bounds are given
for the numerator and denominator degrees in [15, 16], and so the conjectured forms are exact.
2 The cyclotomic polynomials Ψk(x) are the factors of the polynomials (1− xn). More precisely

(1− xn) = ∏
k|n

Ψk(x).

If k is a prime number then Ψk(x) = 1+ x+ x2 + · · ·xk−1.
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Qd(x,y)
∂ d

∂yd G(x,y)+ · · ·+ Q1(x,y)
∂
∂y

G(x,y)+ Q0(x,y)G(x,y) = 0, (5.5)

with Q j a polynomial in x and y with complex coefficients

One can show that such functions cannot have a dense set of singularities.

Theorem 1 (from [5]). Let f (x,y) = ∑
n≥0

Hn(x)y
n be a D-finite series in y with coef-

ficients Hn(x) that are rational functions of x. Let Sn be the set of poles of Hn(x) and
S = ∪nSn. Then S has only a finite number of singularities.

Ideally we would like to determine all of the singularities of the coefficients,
Hn(x), but unfortunately we have not been able to do so. Instead, we are able to
prove that the first occurrence of each cyclotomic factor in the denominators of
Hn(x) does not cancel with the corresponding numerator.

Theorem 2. Write G(x,y) = ∑Hn(x)yn. The function H3k−2(x) has simple poles at
the zeros of Ψk(x) except when k = 2.

This then implies that the set of singularities of the Hn(x) form a dense set on |x|= 1
and so we have the corollary and our main result:

Corollary 1. Let Sn be the set of singularities of the coefficient Hn(x). The set S =⋃
n≥1 Sn is dense on the unit circle |x| = 1. Consequently the self-avoiding polygon

anisotropic half-perimeter generating function is not a D-finite function of y.

In Section 5.2 we describe the “haruspicy” techniques that are used to define
equivalence classes on the set of polygons. Each equivalence class has a simple ra-
tional generating function. Adding these generating functions together proves that
Hn(x) is rational and that its denominator is a product of cyclotomic polynomials
(see Theorem 3). In Section 5.3 we determine which of these equivalence classes
cause the first appearance of Ψk(x) as a denominator factor. It turns out that these
equivalence classes have a simple description and we can use this to find a functional
equation satisfied by their generating function. Analysing this functional equation
then completes the proof of Theorem 2. Finally in Section 5.4 we describe exten-
sions of this work to other problems.

5.2 Haruspicy

In [15], the author developed techniques which allow us to determine properties
of the coefficients, Hn(x), whether or not they are known in some nice form. The
central idea is to reduce the set of polygons to some sort of minimal set; various
properties of the Hn(x) may be inferred by examining the bond configurations of
those minimal polygons. Since polygons are a type of bond animal, we refer to this
approach as haruspicy; the word refers to techniques of divination based on the
examination of the forms and shapes of the organs of animals.
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5.2.1 Sections, Squashing and Posets

We start by describing how polygons may be cut up into simpler pieces that can be
reduced in a consistent way. In particular we cannot violate self-avoidance, and we
also need to conserve enough information to recover the original polygon. We cut
the polygon into pages each of which may be expanded or reduced independently
from the rest of the polygon.

Fig. 5.1 Section lines, indicated by the grey dashed lines in the left-hand figure, split the polygon
into pages. The pages are shown in right-hand figure. Each column in a page is a section. This
polygon is split into three pages, each containing two sections; a 1-section is highlighted. Ten
vertical bonds lie between pages and four vertical bonds lie within the pages.

Definition 3. We construct the section lines of a polygon in the following way. Draw
horizontal lines from the extreme left and the extreme right of the lattice towards the
polygon so that the lines run through the middle of each lattice cell. The lines are
terminated when they first touch a vertical bond (see Fig. 5.1).

Cut the lattice along each section line from infinity until it terminates at a vertical
bond. Then from this vertical bond cut vertically in both directions until another
section line is reached. In this way the polygon is split into pages (see Fig. 5.1); we
consider the vertical bonds along these vertical cuts to lie between pages, while the
other vertical bonds lie within the pages.

We cannot stretch or expand the horizontal bonds within a page independently
of each other without violating self-avoidance. Instead we can expand or delete the
horizontal bonds in a given column of a page together.

Definition 4. We call a section the set of horizontal bonds within a single column of
a given page. Equivalently, it is the set of horizontal bonds of a column of a polygon
between two neighbouring section lines. A section with 2k horizontal bonds is a
k-section. The number of k-sections in a polygon, A, is denoted by σk(A).

A polygon can now be encoded as a list of pages and sections within those pages.
Many of these sections, however, are not really needed to encode the shape (in some
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loose sense of the word) of the polygon. If two neighbouring sections are the same
we can remove one of them and still leave the shape of the polygon unchanged.

Definition 5. We say that a section is a duplicate section if the section immediately
on its left (without loss of generality) is identical and there are no vertical bonds
between them (see Fig. 5.2).

One can squash or reduce polygons by deletion of duplicate sections by slicing
the polygon on either side of the duplicate section, removing the section and re-
combining the polygon, as illustrated in Fig. 5.2. By reversing the section deletion
process we define duplication of a section.

Fig. 5.2 The two indicated sections are duplicates. We can delete the duplicate by slicing on either
side separating the polygon into three pieces. The middle piece, being the duplicate, is removed and
the remainder of the polygon is recombined. Reversing the steps duplicates the section duplication.
Also indicated is a section line which separates the duplicate sections from the rest of the columns
in which they lie.

Section-deletion defines a partial order, �, on the set of polygons (see Fig. 5.2).
Hence polygons together with this partial order form a partially ordered set, or poset.

Lemma 1. Let P and Q be two polygons in Gn. Write P � Q if P can be obtained
from Q by a sequence of section-deletions. This relation is a partial order on the set
of polygons.

Proof. Let A, B and C be polygons. A partial order must be reflexive, anti-symmetric
and transitive.

• reflexive—By definition A � A.
• anti-symmetric—If A � B, then either A = B or A can be obtained from B by a

sequence of deletions. This implies that either A = B or |A|↔ < |B|↔. Similarly
if B � A then either B = A or |B|↔ < |A|↔. Hence if A � B and B � A then A = B.

• transitive—If A � B then there exists a sequence of section-deletions that takes B
to A. Similarly if B �C, then there exists another sequence of section-deletions
that takes C to B. Concatenating these gives a sequence of deletions that takes C
to A, and hence A �C.

⊓⊔
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Fig. 5.3 Polygons A and B can be reduced by section-deletions to C, so C � A,B. However A
cannot be reduced to B or vice-versa. Also C does not contain any duplicate sections and so is
section-minimal. Since all three polygons reduce to the same minimal polygon, they are all section-
equivalent.

5.2.2 Minimal Polygons, Equivalence Classes and Generating
Functions

It is clear that a polygon cannot be reduced to nothing. We quickly reach a poly-
gon without duplicate sections—an example is given in Fig. 5.3. These minimal
elements of the self-avoiding polygon poset can be used to reconstruct any poly-
gon by duplicating sections; a knowledge of the minimal polygons is sufficient to
reconstruct the entire set and its generating function.

Definition 6. A section-minimal polygon, A, is a polygon such that for all polygons,
B, satisfying B � A, then B = A. i.e. A cannot be reduced any further.

Lemma 2. Every polygon C reduces by section-deletions to a unique section-
minimal polygon.

Proof. Number the pages of a given polygon B from 1,2, . . . (from left to right, top
to bottom). Consider, without loss of generality, the first page. We can encode the
sections that lie within this page as a sequence (sα1

1 ,sα2
2 , . . .s

α j
j ), where sαi

i denotes
αi repetitions of the section si. If we enforce the condition that si 6= si+1 then the
αi are unique. Deleting all the duplicate sections within this page reduces it to the
unique sequence (s1

1,s
2
2, . . . ,s

1
j ).

Note that section-deletion does not delete pages, nor does it move sections be-
tween pages, and so repeating this process for each page will reduce B to a unique
minimal polygon. ⊓⊔

If two polygons reduce to the same minimal polygon then they have (roughly
speaking) similar shapes (see Fig. 5.3). We use this idea to define an equivalence
relation.
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Lemma 3. If two polygons, A and B reduce to the same minimal polygon then we
say that they are section-equivalent and write A ≈ B. Section-equivalence is an
equivalence relation.

Proof. It follows almost directly from the definition that section-equivalence is re-
flexive, symmetric and transitive. ⊓⊔

This equivalence relation induces equivalence classes each of which has a simple
rational generating function whose denominator is a product of cyclotomic poly-
nomials. This shows the link between the minimal polygons and the structure of
Hn(x).

Definition 7. Section-equivalence partitions the set of polygons into equivalence
classes each of which can be characterised by the minimal polygon within the class.
We refer to the equivalence class of a section-minimal polygon, A, as the section-
expansion of A. We write:

X (A) = {B ∈ G | A � B}. (5.6)

Note that all the elements in such an expansion must have the same number of
vertical bonds. We write the horizontal bond generating function of the expansion
of a minimal element, A, as

G(A) = ∑
B∈X (A)

x|B|↔ if A is section-minimal. (5.7)

Lemma 4. Let P be a section-minimal polygon; its expansion has the following gen-
erating function:

G(P) = ∏
k

(
xk

1− xk

)σk(P)

(5.8)

Proof. Let P be a section-minimal polygon. Each page of the polygon can be en-
coded as a sequence of sections (s1, . . . ,s j), with si 6= si+1. Since we can dupli-

cate any section in P any number of times, given any (α1, . . . ,α j) ∈ Z+ j there ex-
ists a polygon Q whose corresponding page is encoded by a sequence of sections
(cα1

1 , . . .c
α j
j ). So

G(P) = ∏
pages

∏
i

∑
αi

|xk|↔(x|si|↔)αi

= ∏
pages

∏
i

x|si|↔

1− x|si|↔
(5.9)

where |si|↔ is the number of horizontal bonds in si. The result follows. ⊓⊔

Lemma 5. If Gn is a set of polygons with n vertical bonds, then the set of section-
minimal elements in Gn is finite.
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Proof. Let A be a section-minimal polygon in Gn. It is clear that A cannot contain
more than n rows. Between any two columns of A there must be at least a single
vertical bond. If there is no vertical bond between two columns, then the horizontal
bond configuration in each column must be the same and so they will be duplicates
of each other and so A is not minimal. Hence A contains at most 2n + 1 columns.
Since there are a finite number of bond configurations containing at most n rows and
2n + 1 columns there are only a finite number of section-minimal polygons. ⊓⊔

We can now prove two theorems about the coefficients yn in the polygon gener-
ating function.

Theorem 3. If G(x,y) = ∑n≥0 Hn(x)yn is the anisotropic generating function of self-
avoiding polygons, G , then

• Hn(x) is a rational function,
• the degree of the numerator of Hn(x) cannot be greater than the degree of its

denominator, and
• the denominator of Hn(x) is a product of cyclotomic polynomials.

Proof. Let M be the set of section-minimal polygons of Gn. Since each polygon in
Gn is an element in the expansion of exactly one element in M we can write

Hn(x) = ∑
B∈Gn

x|B|↔ = ∑
A∈M

G(A) (5.10)

Lemmas 5 and 4 imply that this sum is a finite sum of rational functions with the
desired properties. The result follows. ⊓⊔

Looking a little more carefully at the number of k-sections present in minimal
polygons gives the following theorem.

Theorem 4. If Hn(x) has a denominator factor Ψk(x), then Gn must contain a
section-minimal polygon containing a K-section for some K ∈ Z+ divisible by k.
Further if Hn(x) has a denominator factor Ψk(x)α , then Gn must contain a section-
minimal polygon that contains α sections that are K-sections for some (possibly
different) K ∈ Z+ divisible by k.

Proof. Let M = {Mi} be the set of section-minimal polygons ∈ Gn.

Hn(x) = ∑
i

GMi

= ∑
i

∏
K

(
xK

1− xK

)σK(Mi)

= ∑
i

x|Mi |↔ ∏
k

Ψk(x)
−∑d σkd(Mi)

=
< some polynomial in x >

∏kΨk(x)µk
(5.11)
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where µk ≤ maxi{∑d σkd(Mi)}—this is an inequality since the numerator and de-
nominator could share common cyclotomic factors. Consequently if there is no min-
imal element Mi containing a K-section (for some K divisible by k) then µk = 0, and
the denominator cannot contain Ψk(x). ⊓⊔

The above theorems can be generalised to most interesting sets of bond animals—
such as self-avoiding walks, bond animals, bond trees and directed bond animals
(see [15, 16]).

By determining how many vertical bonds are required to construct a section-
minimal polygon with α k-sections, one can use the above theorems to show that

The denominator of Hn(x) divides
⌈n/3⌉
∏
k=1

Ψk(x)
2n−6k+5. (5.12)

In fact the denominator of Hn(x) appears (as far as available data permits us to
observe) to be exactly the right hand side of the above expression divided by a
single power of Ψ2(x).

There is a similar result [15] for the corresponding generating function of general
bond animals (in which x is conjugate to the total number of horizontal bonds),
namely

The denominator of Hn(x) divides Ψ1(x)
3n+1

⌊n/2⌋
∏
k=2

Ψk(x)
2n−3k+4. (5.13)

The denominator of Hn(x) appears to be exactly equal to the right-hand side of the
above expression.

These results can be considered upper bounds on the exponents of Ψk(x) in the
denominator of Hn(x). These are bounds, rather than equalities, since denominator
factors might cancel with terms in the numerator. Demonstrating that a given factor
does or does not cancel is considerably more difficult and we have only been able
to do so in the case of the first occurrence of Ψk(x). This is what we do below.

5.3 Analysing 2-4-2 Polygons

In this section we study the first occurrence of a given cyclotomic factor in the de-
nominators of the Hn(x). We start by characterising the section-minimal polygons
that give rise to them. These polygons turn out to be significantly easier to con-
struct than general self-avoiding polygons and we can find a functional equation for
their generating function. The singularities of the solution of this equation give the
singularities of the Hn(x) and so lead us to Theorem 2.
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5.3.1 The First k-Section

Examining the denominators (see (5.4)) of the first few Hn(x) we see that Ψk(x)
first appears in the denominator of H3k−2(x) (with the exception of Ψ2 which first
appears in H5(x)). We start by showing that it takes 6k−4 vertical bonds to build a
polygon that contains a k-section, and so Ψk(x) cannot occur in the denominators of
Hn(x) for n < 3k−2.

Lemma 6. To the left (without loss of generality) of a k-section there are at least
3k − 2 vertical bonds, of which at least 2k − 1 obstruct section lines. Hence no
polygon with fewer than 6k− 4 vertical bonds may contain a k-section. Further, it
is always possible to construct a polygon with 6k− 4 vertical bonds and a single
k-section.

Proof. Consider a vertical line drawn through a k-section (as depicted in the left-
hand side of Fig. 5.4). The line starts outside the polygon and then as it crosses
horizontal bonds it alternates between the inside and outside of the polygon. More
precisely, there are k + 1 segments of the line that lie outside the polygon and k
segments that lie inside the polygon. Call the segments that lie within the polygon
“inside gaps” and those that lie outside “outside gaps”.

Draw a horizontal line through an inside gap (as depicted in the top-right of
Fig. 5.4). This line must cross at least one vertical bond to the left of the gap (since
it is inside the polygon) and then another to the right of the gap. Hence to the left of
any inside gap there must be at least one vertical bond. Similarly there must be at
least one vertical bond to the right of any inside gap.

Draw a horizontal line through the topmost of the k + 1 outside gaps. Since the
line need not intersect the polygon it need not cross any vertical bonds at all. Simi-
larly for the bottommost outside gap.

Now consider a horizontal line through one of the other outside gaps (as depicted
in the bottom-right of Fig. 5.4). Traverse this line from the left towards the outside
gap. If no vertical bonds are crossed then a section line may be drawn from the
left into the outside gap. This splits the k-section into two smaller sections and so
contradicts our assumptions. Hence the line must cross at least one vertical bond to
block section lines. If only a single vertical bond is crossed before reaching the gap
then the gap would lie inside the polygon. Hence the line must cross at least two (or
any even number) vertical bonds before reaching the gap. Similar reasoning shows
that it must also cross an even number of vertical bonds to the right of the gap.

Since any k-section contains k inside gaps, a topmost outside gap, a bottommost
outside gap and k−1 other outside gaps, there must be at least k×1 + 2×0 + 2×
(k−1) = 3k−2 vertical bonds to its left and 3k−2 vertical bonds to its right. The
polygons depicted in Fig. 5.5 are constructed by adding “hooks”. In this way it is
possible to construct a section-minimal polygon with (6k− 4) vertical bonds and
exactly one k-section. ⊓⊔

Now that we have established that Ψk cannot occur before H3k−2, we bound the
exponent with which it occurs in H3k−2 by bounding the number of k-sections that
a section-minimal polygon can have.
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Fig. 5.4 Vertical and horizontal lines drawn through a k-section show the minimum number of
vertical bonds required in their construction.

Fig. 5.5 Section-minimal polygons with 6k−4 vertical bonds and a single k-section may be con-
structed by concatenating such “hook” configurations.

Lemma 7. A section-minimal polygon with 6k − 4 vertical bonds cannot contain
more than one k-section. Hence the factor Ψk(x) in the denominator of H3k−2(x)
cannot occur with exponent greater than 1.

Proof. Let A be a section-minimal polygon with 6k−4 vertical bonds and more than
one k-section. We show that A cannot exist. The second statement of the lemma then
follows from the first by Theorem 4.

Assume that A has only a single k-section in each column. By Lemma 6, there are
3k− 2 vertical bonds to the left of the leftmost k-section and 3k− 2 vertical bonds
to the right of the rightmost k-section. Between any two k-sections there must be at
least one vertical bond (or they would be duplicates). Hence A contains more than
6k−4 vertical bonds. If, on the other hand, A contains a column with two or more
k-sections, then to the left of this column there must be at least 6k−4 vertical bonds
and similarly to its right. Hence A contains at least 12k−8 vertical bonds. Hence A
cannot exist. ⊓⊔

In order to proceed we need to split the set of polygons with 6k − 4 vertical
bonds into those that contain a k-section and those which do not. While we can, in
principle define these sets of polygons, it is much easier to define a superset of those
that contain a k-section, and this does not significantly alter the subsequent analysis.
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Fig. 5.6 Four section-minimal 2-4-2 polygons. The first three contain a 2-, 3- and 4-section re-
spectively, while the rightmost only contains 1-sections.

Definition 8. Number the rows of a polygon P starting from the topmost row (row
1) to the bottommost (row r). Let vi(P) be the number of vertical bonds in the ith

row of P. If (v1(P), . . . ,vr(P)) = (2,4,2, . . . ,4,2) then we call P a 2-4-2 polygon.
We denote the set of such 2-4-2 polygons with 2n vertical bonds by P242

n . Note that
this set is empty unless 2n = 6k−4.

Lemma 8. A section-minimal polygon with (6k − 4) vertical bonds that contains
one k-section must be a 2-4-2 polygon. On the other hand, a section-minimal 2-4-2
polygon need not contain a k-section.

Proof. The first statement follows by arguments given in the proof of Lemma 6.
The rightmost polygon in Fig. 5.6 shows that a 2-4-2 polygon need not contain a
k-section. ⊓⊔

Now that we have isolated the polygons that contain a k-section, the following
lemma shows that we can ignore the effect of the remaining polygons.

Lemma 9. The factor Ψk(x) appears in the denominator of the generating function
∑P∈P242

3k−2
x|P|↔ with exponent exactly equal to 1 if and only if it appears in the

denominator of H3k−2(x) with exponent exactly equal to one.

Proof. The set of 2-4-2 polygons is closed under section-deletion (since it does not
move vertical bonds between rows). Similarly the complement of this set is closed
under section-deletion. One can then prove that similar results to Theorems 3 and 4
hold for these sets.

Hence the horizontal half-perimeter generating functions of these sets are rational
and their denominators are products of cyclotomic factors. Since P3k−2 \P242

3k−2
does not contain a polygon with k-section (or indeed, by Lemma 6, any section with
more than 2k horizontal bonds), it follows (by similar results to Theorem 4) that
the denominator of the horizontal half-perimeter generating function of this set is
a product of cyclotomic polynomials Ψj(x) for j < k. Consequently this generating
function is not singular at the zeros of Ψk(x).

By Lemma 7 every section-minimal polygon in P242
3k−2 contains at most one k-

section, and so the exponent of Ψk(x) in the denominator of the horizontal half-
perimeter generating function of P242

3k−2 is either one or zero (due to cancellations
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with the numerator). The result follows since this denominator factor may not be
cancelled by adding the other generating function. ⊓⊔

5.3.2 Hadamard Products and Functional Equations

Lemma 9 tells us that in order to prove that the denominator of H3k−2(x) has a
factor of Ψk(x) it suffices to examine the generating function of P242

3k−2. Since 2-4-
2 polygons have simpler structure than general self-avoiding polygons, this task is
much easier. The technique we use is a variation of the Temperley method [21] and
leads to functional equations very similar to those in [3]. It also appears in [4].

We construct 2-4-2 polygons by cutting them into smaller 2-4-2 polygons (see
Fig. 5.7). In particular we decompose them into a rectangle of unit height and a
sequence of 2-4-2 polygons each of height 3. Call these 2-4-2 polygons of height
three “building blocks”. We then glue these pieces back together. A functional equa-
tion for the generating function of all 2-4-2 polygons can then be obtained from the
generating function of the building blocks.

Fig. 5.7 Decomposing 2-4-2 polygons into a sequence of building blocks (2-4-2 polygons of height
three). Highlight each row with 2 vertical bonds. Then duplicate each of these rows excepting the
bottommost. By cutting along each of the duplicated rows, the polygon is then uniquely decom-
posed into a rectangle of unit height and a sequence of building blocks.

Lemma 10. Let T (t,s;x,y) be the generating function of 2-4-2 polygon building
blocks, where t and s are conjugate to the length of top and bottom rows (respec-
tively). Then T may be expressed as

T (t,s;x,y) = 2
(
T̂ (t,s;x,y)+ T̂ (s,t;x,y)

)
, (5.14)

where the generating function T̂ (t,s;x,y) is given by
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Fig. 5.8 Constructing a 2-4-2 polygon from a (shorter) 2-4-2 polygon and a building block. When
the building block and the polygon are squashed together, the total vertical perimeter is reduced by
2, and the total horizontal perimeter is reduced by twice the width of the joining row.

T̂ (t,s;x,y) = y4 (A(s,t;x) · JstxKJtxK2 ·B(s,t;x)

+ A(s,t;x) · JstxKJstx2 KJtxK2 ·B(s,t;x)

+ A(s,t;x) · JstxKJtxK3 ·B(s,t;x)

+C(s,t;x) · JsxKJtxK3 ·B(s,t;x)

+ C(s,t;x) · JsxKJxKJtxK3 ·B(s,t;x)
)
. (5.15)

We have used J f K as shorthand for f
1− f , and the generating functions A, B and C

are:

A(s,t;x) = 1 + JxK+ 2JsxK+ 2JtxK+ JsxKJtxK+

JsxK2 + JsxKJxK+ JtxK2 + JtxKJxK (5.16a)

B(s,t;x) = 1 + JtxK+ JxK (5.16b)

C(s,t;x) = 1 + JsxK+ JxK. (5.16c)

Proof. Figures 5.9 and 5.10 show how to construct the generating function T̂ of
building blocks in one orientation; each building block can be placed in one of four
orientations.To obtain all building blocks we must reflect the blocks counted by T̂
about both horizontal and vertical lines. Reflecting about a vertical line multiplies T̂
by 2. Reflecting about a horizontal line interchanges the roles of s and t. This proves
the first equation.

We compute T̂ by considering all the section-minimal polygons that contribute to
it. This is done in detail in [16]. One can decompose each section-minimal polygon
into one of the five polygons given in Fig. 5.9. The left and right ends of these
polygons are made up of the frills given in Fig. 5.10. This calculation can be (and
has been) verified using the P-partition techniques in [20].

The above equation for T̂ (t,s;x,y) follows by expanding each of the sections in
the minimal polygons. ⊓⊔

Larger 2-4-2 polygons can be constructed by gluing a building block onto a
smaller 2-4-2 polygon as illustrated in Fig. 5.8. Gluing combinatorial objects to-
gether usually corresponds to multiplying their generating functions. However,
when we glue together these objects we require that the top row of the building
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Fig. 5.9 The section-minimal building blocks of 2-4-2 polygons. The “frills”, denoted A, B and C
are given in Fig. 5.10.

Fig. 5.10 The “frills” of the building blocks in Fig. 5.9.

block has the same length as the bottom row of the 2-4-2 polygon. The correspond-
ing operation on their generating functions is a type of Hadamard product.

Definition 9. Let f (t) = ∑t≥0 fntn and g(t) = ∑t≥0 gntn be two power series in t. We
define the (restricted) Hadamard product f (t)⊙ t g(t) to be

f (t)⊙ t g(t) = ∑
n≥0

fngn. (5.17)

It is generally quite difficult to (explicitly) calculate the Hadamard product of two
functions. However when one of the functions is rational the problem is much
simpler.

Lemma 11. Let f (t) = ∑t≥0 fntn be a power series, then

f (t)⊙ t
1

1−αt
= f (α) (5.18a)

f (t)⊙ t
k!tk

(1−αt)k+1 =
∂ k f
∂ tk

∣∣∣∣
t=α

. (5.18b)

Proof. The second equation follows from the first by differentiating with respect to
α . The first equation follows because



5 The Anisotropic Generating Function of Self-Avoiding Polygons is not D-Finite 109

f (t)⊙ t
1

1−αt
= f (t)⊙ t ∑

n≥0

αntn = ∑
n≥0

fnαn = f (α). (5.19)

⊓⊔

We can now use the building block generating function and the above Hadamard
product to find an equation (though not yet in a usable form) for the generating
function of 2-4-2 polygons.

Lemma 12. Let f (s;x,y) be the generating function of 2-4-2 polygons, where s is
conjugate to the length of the bottom row of the polygon. This generating function
satisfies the following equation

f (s;x,y) =
ysx

1− sx
+ f (t;x,y)⊙ t

(
1
y

T (t/x,s;x,y)

)
, (5.20)

where T (t,s;x,y) is the generating function of the 2-4-2 building blocks.

Proof. Write f (s;x,y) = ∑n fn(x,y)sn and T (t,s;x,y) = ∑n Tn(s;x,y), where fn(x,y)
is the generating function of 2-4-2 polygons whose bottom row has length n, and
Tn(s;x,y) is the generating function of 2-4-2 building blocks, whose top row has
length n. The above recurrence becomes:

f (s;x,y) =
ysx

1− sx
+ ∑

n≥1
fn(x,y)Tn(s;x,y)/(yxn). (5.21)

This follows because a 2-4-2 polygon is either a rectangle of unit height (counted by
ysx

1−sx ) or may be constructed by gluing a 2-4-2 polygon, whose last row is of length
n (counted by fn(x,y)) to a 2-4-2 polygon whose top row is of length n (counted by
Tn(s;x,y)).

To explain the factor of 1/(yxn) see Fig. 5.8; when the building block is joined
to the polygon (centre) and the duplicated row is “squashed” (right), the total ver-
tical half-perimeter is reduced by 1 (two vertical bonds are removed) and the total
horizontal half-perimeter is reduced by the length of the join (two horizontal bonds
are removed for each cell in the join). Hence if the join is of length n, the perimeter
weight needs to be reduced by a factor of (yxn). ⊓⊔

In order to turn the Hadamard equation in the above lemma into a more stan-
dard functional equation we use Lemma 11, and rewrite T (t/x,s;x,y)/y in (a non-
standard) partial fraction form:

y3

[
c0 · t0 +

5

∑
k=0

ck+1
k!tk

(1− t)k+1 + c7
1

1− st
+ c8

1
1− stx

]
, (5.22)

where the ci are (large and ugly) rational functions of s and x. We will need c8:

c8 = −2sx2(s2x2 + sx− s+ 1)

(1− sx)4(1− x)2 . (5.23)
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We do not require the other coefficients in the analysis that follows. We note that
their denominators are products of (1− x),(1− s) and (1− sx). When s = 1 some
singularities of T coalesce and we have

T (t/x,1;x,y)/y = y3

[
ĉ0 · t0 +

6

∑
k=0

ĉk+1
k!tk

(1− t)k+1 + ĉ8
1

1− tx

]
, (5.24)

where the ĉi are (slightly simpler) rational functions of x. Again, we will need ĉ8:

ĉ8 = −2
x3(1 + x)
(1− x)6 = c8|s=1. (5.25)

We note that the denominators of the ĉi are products of (1−x). Applying Lemma 11,
we find:

f (t;x,y)⊙ t T (t/x,s;x,y)/y =

y3

[
5

∑
k=0

ck+1
∂ k f
∂ tk (1;x,y)+ c7 f (s;x,y)+ c8 f (sx;x,y)

]
, (5.26)

where we have made use of the fact that [t0] f (t;x,y) = 0 (there are no rows of zero
length). When s = 1 the coalescing poles change equation (5.26) to:

f (t;x,y)⊙ t T (t/x,1;x,y)/y =

y3

[
6

∑
k=0

ĉk+1
∂ k f
∂ tk (1;x,y)+ ĉ8 f (x;x,y)

]
(5.27)

These equations give the following lemma:

Lemma 13. Let f (s;x,y) be the generating function for 2-4-2 polygons enumerated
by bottom row-width, half-horizontal perimeter and half-vertical perimeter (s,x and
y respectively). Write f (s;x,y) = ∑n≥1 fn(s;x)y3n−2, where the coefficient fn(s;x) is
the generating function for P242

3n−2. These coefficients satisfy the following equa-
tions:

f1(s;x) =
sx

1− sx
(5.28a)

fn+1(s;x) =
5

∑
k=0

ck+1
∂ k fn

∂ sk (1;x)+ c7 fn(s;x)+ c8 fn(sx;x) (5.28b)

fn+1(1;x) =
6

∑
k=0

ĉk+1
∂ k fn

∂ sk (1;x)+ ĉ8 fn(x;x). (5.28c)

The second of these is only valid when s 6= 1; when s = 1 it reduces to the last.
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Proof. Apply Lemma 11 to the partial fraction form of T (t,s;x,y) for general s,
and when s = 1. Extracting the coefficients of y3n+1 from these equations gives the
above recurrences. ⊓⊔

5.3.3 Proof of Theorem 2

We complete the proof of Theorem 2 by showing that fn(1;x) is singular at the ze-
ros of Ψn(x). We are able to do this by induction on the recurrences in the previous
lemma. It turns out that we are able to disregard most of these recurrences except
for the terms involving fn(sx;x) and fn(x;x); these are the only terms that introduce
new denominator factors. We will require the following lemma to show that the co-
efficients c8 and ĉ8 cannot cancel these factors since they do not contain cyclotomic
factors (except Ψ2(x)).

Lemma 14. Consider the coefficient c8(s;x) defined above. When s = xk, c8(xk,x)
has a single zero on the unit circle at x =−1 when k is even. When k is odd c8(xk,x)
has no zeros on the unit circle.

Proof. When s = xk, the coefficient c8 is

c8(x
k,x) =

2xk+2(k2k+2 + xk+1 − xk + 1)

(1− xk+1)4(1− x)2 . (5.29)

Let ξ be a zero of c8(xk,x) that lies on the unit circle; ξ must be a solution of
x2k+2 + xk+1 − xk + 1 = 0. Hence:

ξ k − ξ k+1 = ξ 2k+2 + 1

1/ξ −1 = ξ k+1 + ξ−k−1. (5.30)

Since ξ lies on the unit circle we may write ξ = eiθ :

e−iθ −1 = ei(k+1)θ + e−i(k+1)θ

= 2cos((k + 1)θ ). (5.31)

Since the right hand-side of the above expression is real the left-hand side must also
be real. Therefore θ = 0,π and ξ =±1. If ξ = 1 then pk(ξ ) = 2. On the other hand,
if ξ = −1 then pk(ξ ) = 4 if k is odd and is zero if k is even.

Since the denominator of c8(xk,x) is not zero when k is even and x =−1 the result
follows. One can verify that there are no multiple zeros at x = −1 by examining the
derivative of the numerator.

⊓⊔

Proof of Theorem 2 :
Consider the recurrence given in Lemma 13. This implies that fn(s;x) is a rational
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function of s and x. Further, since fn(1;x) is a well-defined (and rational) function,
the denominator of fn(s;x) does not contain any factors of (1− s).

Let Cn(s;x) be the set of polynomials of the form

n

∏
k=1

Ψk(x)
ak(1− sxk)bk , (5.32)

where ak and bk are non-negative integers. We define Cn(x) = Cn(0;x) (i.e. polyno-
mials which are products of cyclotomic polynomials). We first prove by induction
on n that fn may be written as

fn(s;x) =
Nn(s;x)

(1− sxn)Dn(s;x)
, (5.33)

where Nn(s;x) and Dn(s;x) are polynomials in s and x with the restriction that
Dn(s;x) ∈ Cn−1(s;x). Then we consider what happens when s = 1 and x is a zero of
Ψk.

For n = 1, equation (5.33) is true, since f1(s;x) = sx
1−sx . Now assume equa-

tion (5.33) is true up to n and apply the recurrence. The only term that may intro-
duce a new zero into the denominator is c8(s;x) fn(sx;x). By assumption fn(s;x) =

Nn(sx;x)
(1−sxn+1)Dn(sx;x)

, and Dn(sx;x)∈Cn(s;x). Hence equation (5.33) is true for n+1, and

so is also true for all n ≥ 1.
Let ξ be a zero of Ψk(x). We wish to prove that fn(1;x) is singular at x = ξ

and we do so by proving that for k = 1, . . . ,n, the generating function fk(xn−k;x) is
singular at x = ξ , and then setting k = n. We proceed by induction on k for fixed n.

If we set k = 1, then we see that

f1(x
n−1;x) =

xn

1− xn , (5.34)

and so the result is true. Now let k ≥ 2 and assume that the result is true for k− 1,
i.e. fk−1(xn−k+1;x) is singular at x = ξ . The recurrence relation and equation (5.33)
together imply

fk(s;x) =
N(s;x)
D(s;x)

+ c8(s;x) fk−1(sx;x), (5.35)

where N and D are polynomials in s and x and D(s;x) ∈Ck−1(s;x). Setting s = xn−k

yields

fk(x
n−k;x) =

N(xn−k;x)
D(xn−k;x)

+ c8(x
n−k;x) fk−1(x

n−k+1;x), (5.36)

and we note that D(xn−k;x) ∈ Cn−1(x). In the case k = n the above equation is still
true, since ĉ8 = c8|s=1.
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Equation (5.36) shows that fk(xn−k) is singular at x = ξ only if the contribution
from c8(xn−k;x) fk−1(xn−k+1;x) is singular at x = ξ . This is true (by assumption)
unless c8(xn−k;x) = 0 at x = ξ . By Lemma 14, c8(xn−k;x) is non-zero at x = ξ ,
except when n = k = 2.

In the case n = k = 2 this proof breaks down, and indeed we see that H4(x) is
not singular at x = −1. Excluding this case, fk(xn−k;x) is singular at x = ξ and so
fn(1;x) is also singular at x = ξ . By Lemma 9, H3k−2(x) is singular at x = ξ . ⊓⊔

This theorem then allows us to prove the main aim of this chapter; the anisotropic
generating function of self-avoiding polygons is not a D-finite function.

Corollary 1. Let Sn be the set of singularities of the coefficient Hn(x). The set S =⋃
n≥1 Sn is dense on the unit circle |x| = 1. Consequently the self-avoiding polygon

anisotropic half-perimeter generating function is not a D-finite function of y.

Proof. For any q ∈ Q, there exists k, such that Ψk(e2π iq) = 0. By Theorem 2,
H3k−2(x) is singular at x = e2π iq, excepting x =−1. The set S is dense on |x|= 1 and
so has an infinite number of accumulation points. By Theorem 1 G(x,y) = ∑Hn(x)yn

is not a D-finite power series in y. ⊓⊔

Since the specialisation of a D-finite power series is D-finite, the above result
extends to self-avoiding polygons on hypercubic lattices.

Corollary 2. Let Gd be the generating function of self-avoiding polygons on the
d-dimensional hyper-cubic lattice defined by:

Gd(x1, . . . ,xd−1,y) = ∑
P

y|P|d
d−1

∏
i=1

x|P|ii ,

where |P|i is half the number of bonds in parallel to the unit vector ẽi. If d = 1, then
this generating function is zero, and otherwise is a non-D-finite power series in y.

Proof. When d = 1 then there are no self-avoiding polygons and so the generating
function is zero. Now consider d ≥ 2. The square lattice generating function G(x,y)
can be recovered from Gd by setting x2 = · · · = xd−1 = 0. Since any well-defined
specialisation of a D-finite power series is itself D-finite [12], it follows that if Gd

were D-finite, then so would G(x,y). This contradicts Corollary 1 and so Gd is not
D-finite. ⊓⊔

5.4 Discussion

We have shown above that the anisotropic generating function of self-avoiding poly-
gons on the square lattice, G(x,y), is not a D-finite function of y. This result then
extends to prove that the anisotropic generating function of self-avoiding polygons
on any hypercubic lattice is either trivial (in one dimension) or a non-D-finite func-
tion (in dimensions 2 and higher). Similar results hold for directed-bond animals
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[17], general bond animals and bond trees [14]. Unfortunately, work on a similar re-
sult for self-avoiding walks appears to be beyond the scope of these techniques. The
self-avoiding walk analogue of 2-4-2 polygons appear to be quite complicated [18]
and it is at all not clear that one can find recurrences such as those in Lemma 13.

There are several non-D-finiteness results for generating functions of other com-
binatorial problems, such as bargraphs enumerated by their site-perimeter [6], a
number of lattice animal models related to heaps of dimers [5] and certain types of
matchings [11]; these results rely upon a knowledge of the generating function—
either in closed form or via some sort of recurrence. The result for self-avoiding
polygons is, as far as we are aware, the first result on the D-finiteness of a com-
pletely unsolved model.

Unfortunately we are not able to use this result to obtain information about the
nature of the isotropic generating function G(z,z); one can easily construct a two-
variable function that is not D-finite, that reduces to a single variable D-finite func-
tion. Consider, for example, the following function

F(x,y) = ∑
n≥1

yn

(1− xn)(1− xn+1)
(5.37)

By Theorem 1 this is not a D-finite function of y. However, setting x = y = z reduces
F to a simple rational, and hence D-finite, function:

F(z,z) =
1

1− z ∑
n≥1

(
zn

1− zn −
zn+1

1− zn+1

)

=
z

(1− z)2 . (5.38)

On the other hand, the anisotropisation of solvable lattice models does not alter the
nature of the generating function. Unfortunately we are unable to determine how far
this phenomenon extends since we know so little about the nature of the generating
functions of unsolved models.

We note that if the isotropic generating function is indeed not D-finite then it will
not be found using computer packages such as GFUN [19] or differential approx-
imants [7] which can only find D-finite solutions. At best one might hope that the
solution may satisfy some sort of q-linear equation.

As noted above, the techniques developed for self-avoiding polygons have been
successfully applied to other families of bond animals. Recent series expansion
work by I. Jensen [9] shows that there is some possibility that these techniques can
be extended to families of site animals (such as self-avoiding polygons enumerated
by their area).

It would also be very interesting to apply these ideas to pattern-avoiding permutations—
though it is not entirely clear how to “anisotropise” a permutation. Noonan and
Zeilberger conjecture that the generating function of permutations avoiding a given
pattern is D-finite [13]. This conjecture has helped drive developments in this field
and any progress towards its resolution would constitute a major advance.
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Chapter 6
Polygons and the Lace Expansion

Nathan Clisby and Gordon Slade

6.1 Introduction

The lace expansion was introduced by Brydges and Spencer in 1985 [7] to analyse
weakly self-avoiding walks in dimensions d > 4. Subsequently it has been gener-
alised and greatly extended, so that it now applies to a variety of problems of interest
in probability theory, statistical physics, and combinatorics, including the strictly
self-avoiding walk, lattice trees, lattice animals, percolation, oriented percolation,
the contact process, random graphs, and the Ising model. A recent survey is [42].

In this chapter, we give an introduction to the lace expansion for self-avoiding
walks, with emphasis on self-avoiding polygons. We focus on combinatorial rather
than analytical aspects.

The chapter is organised as follows. In Sec. 6.2, we briefly introduce the ran-
dom walk model underlying our self-avoiding walk models. In Sec. 6.3, we discuss
several examples of taking the reciprocal of a generating function, as this is what
the lace expansion succeeds in doing for the self-avoiding walk. The lace expan-
sion for self-avoiding walks is derived in Sec. 6.4. Some of the rigorous results for
self-avoiding walks and polygons in dimensions d > 4, obtained using the lace ex-
pansion, are stated without proof in Sec. 6.5. In Sec. 6.6, we indicate how the lace
expansion can be used to enumerate self-avoiding walks in all dimensions, as well
as to compute coefficients in the 1/d expansion for the connective constant µ and
certain critical amplitudes. Some heuristic ideas and numerical results concerning

Nathan Clisby
Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia, e-
mail: N.Clisby@ms.unimelb.edu.au

Gordon Slade
Department of Mathematics, University of British Columbia, Vancouver, Canada, e-mail:
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the series analysis of the lace expansion and its relevance for the antiferromagnetic
singularity of the susceptibility are provided in Sec. 6.7. Finally, in Sec. 6.8, we
give a brief indication of an extension to a different model, by discussing some of
the results for high-dimensional lattice trees that have been obtained using the lace
expansion.

6.2 Preliminaries

The self-avoiding walk models we study are based on underlying random walk mod-
els. To define the latter, we fix a finite set N ⊂ Zd that is invariant under the sym-
metry group of Zd , i.e., under permutation of coordinates or replacement of any
coordinate xi by −xi. Our two basic examples are the nearest-neighbour model

N = {x ∈ Zd : ‖x‖1 = 1} (6.1)

and the spread-out model

N = {x ∈ Zd : 0 < ‖x‖∞ ≤ L}, (6.2)

where L is a fixed (usually large) constant. The norms are defined, for x = (x1, . . . ,xd)∈
Zd , by ‖x‖1 = ∑d

j=1 |x j| and ‖x‖∞ = max1≤ j≤d |x j|.
An n-step walk with steps in N is a sequence ω = (ω(0),ω(1), . . . ,ω(n)) of

points in Zd , with ω( j + 1)−ω( j) ∈ N for j = 0,1, . . . ,n− 1. The walk ω is a
self-avoiding walk if ω(i) 6= ω( j) for all i 6= j. We will be interested in generating
functions for certain classes of walks. These generating functions have the form
G(z) = ∑ω∈C z|ω|, where C is some specific class of walks (e.g., all walks with
ω(0) = 0), z ∈C is a parameter, and |ω | denotes the number of steps in the walk ω .

We denote the cardinality of N by Ω , so that Ω = 2d for the nearest-neighbour
model and Ω = (2L+ 1)d −1 for the spread-out model. We also define

D(x) =

{
1/Ω (x ∈ N )
0 (x 6∈ N ).

(6.3)

Thus D(x) is the probability for a random walk on Zd , which chooses steps uni-
formly from N , to move from 0 to x in a single step.

The Fourier transform of an absolutely summable function f : Zd →R is defined
by

f̂ (k) = ∑
x∈Zd

f (x)eik·x, (k ∈ [−π ,π ]d). (6.4)

For the nearest-neighbour model, direct calculation gives

D̂(k) = d−1
d

∑
j=1

cosk j (nearest-neighbour model).
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The convolution of two absolutely summable functions on Zd is defined by

( f ∗g)(x) = ∑
y∈Zd

f (y)g(x− y). (6.5)

The Fourier transform has the convenient property that f̂ ∗g = f̂ ĝ. The original
function f (x) can be recovered from its Fourier transform via the inversion formula

f (x) =

∫

[−π ,π ]d
f̂ (k)e−ik·x ddk

(2π)d . (6.6)

6.3 Generating Functions and Their Reciprocals

In its simplest setting, the lace expansion can be understood as a way to take the
reciprocal of the generating function for the number of self-avoiding walks. In this
section, we consider four examples of generating functions and their reciprocals.

Suppose that the power series G(z) = ∑∞
n=0 gnzn has a non-zero radius of con-

vergence, and suppose for simplicity that g0 = 1. Then G(z) is non-zero in a neigh-
bourhood of the origin, so its reciprocal F(z) = 1/G(z) has a power series expansion
F(z) = ∑∞

m=0 fmzm with a non-zero radius of convergence. Knowledge of f0, . . . , fn

uniquely determines g0, . . . ,gn, and vice versa. The identity F(z)G(z) = 1 implies
that f0 = 1, and, for n ≥ 1,

n

∑
m=0

fmgn−m = 0. (6.7)

This can be regarded as the recursion relation

gn = −( f1gn−1 + f2gn−2 + · · ·+ fn) . (6.8)

Example 1. Let G(z) = ∑ω:0→· z
|ω| be the generating function for all random walks

on Zd that take steps in the set N and start at 0. There are Ω n n-step walks, so

G(z) =
∞

∑
n=0

Ω nzn =
1

1−Ωz
=

1
F(z)

. (6.9)

In this example, the reciprocal F(z) = 1−Ωz takes the very simple form of a linear
function.

Example 2. Let g0(x) = δ0,x, and, for n ≥ 1, let gn(x) be the number of n-step
walks that take steps in N , start at ω(0) = 0, and end at ω(n) = x. Let G(x;z) =

∑∞
n=0 gn(x)zn be the generating function for such walks. By conditioning on the first

step, we see that for n ≥ 1,

gn(x) = ∑
y∈Zd

ΩD(y)gn−1(x− y) = (ΩD∗gn−1)(x), (6.10)
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where we have used the convolution defined in (6.5). The Fourier transform of (6.10)
is

ĝn(k) = Ω D̂(k)ĝn−1(k). (6.11)

It follows that
ĝn(k) = (Ω D̂(k))n, (6.12)

and hence the Fourier transform of G(x;z) is given by

Ĝ(k;z) =
∞

∑
n=0

(Ω D̂(k))nzn =
1

1−ΩzD̂(k)
. (6.13)

Thus the reciprocal of the Fourier transform of the generating function takes the
simple form of a linear function. The generating function G(x;z) can then be re-
covered as an integral using (6.6). Note that the generating function 1/(1−Ωz) of
Example 1 is just Ĝ(0;z) since setting k = 0 corresponds to summation over x in
(6.4), which counts all n-step walks regardless of their endpoint.

Example 3. Let G(z) be the generating function for nearest-neighbour self-avoiding
walks started from the root of an infinite regular tree of degree Ω ≥ 2. The self-
avoidance constraint merely eliminates immediate reversals, so there are Ω(Ω −
1)n−1 n-step walks when n ≥ 1, and therefore

G(z) = 1 +
∞

∑
n=1

Ω(Ω −1)n−1zn =
1 + z

1− (Ω −1)z
=

1
1−Ωz−Π(z)

(6.14)

with

Π(z) =
−Ωz2

1 + z
. (6.15)

For |z| < 1, Π(z) has the power series representation

Π(z) = −Ω
∞

∑
m=2

(−z)m. (6.16)

In particular, the case Ω = 2 is just the nearest-neighbour self-avoiding walk on the
1-dimensional lattice Z, for which

G(z) =
1 + z
1− z

. (6.17)

In a manner that is not immediately apparent from the formula, the subtracted term
Π(z) = Ωz2

1+z in the reciprocal F(z) = 1−Ωz−Π(z) serves to eliminate the imme-
diate reversals that are allowed in the generating function 1/(1−Ωz) for simple
random walks on the tree. We will see how the lace expansion leads to (6.16) in
Sec. 6.4.4.

Example 4. Now comes the example of most interest. Fix d ≥ 2, and let cn(x) denote
the number of n-step self-avoiding walks that take steps in N , start at 0, and end
at x. Let cn = ∑x∈Zd cn(x) denote the number of n-step self-avoiding walks that take
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steps in N , start at 0, and end anywhere. It is a well-known consequence of the

simple inequality cm+n ≤ cmcn that the limit µ = limn→∞ c1/n
n exists, as discussed at

greater length in Chapter 2. The limit µ is known as the connective constant.
Let χ(z) = ∑∞

n=0 cnzn be the generating function for self-avoiding walks that start
at 0, and let G(x;z) = ∑∞

n=0 cn(x)zn be the generating function for those which end at
x. It is clear that χ(z) has radius of convergence zc = 1/µ . The radius of convergence
of G(x;z) cannot be smaller, and it was shown by Hammersley [17] also to be zc,
for any x.

The first two terms of χ(z) are χ(z) = 1 + Ωz + · · · , and hence its reciprocal is
of the form

χ(z) =
1

1−Ωz−Π(z)
, (6.18)

with Π(z) = ∑∞
m=2 πmzm for some coefficients πm. Similarly,

Ĝ(k;z) =
1

1−ΩzD̂(k)− Π̂(k;z)
, (6.19)

with Π̂(k;z) = ∑∞
m=2 π̂m(k)zm for some coefficients π̂m(k). By definition, Ĝ(0;z) =

χ(z), so (6.18) is a special case of (6.19).
In this example, the problem of determining the coefficients π̂m(k) or πm = π̂m(0)

is more difficult. The purpose of the lace expansion is to find a convenient repre-
sentation for πm and π̂m(k), which can then be used to better understand χ(z) and
Ĝ(k;z). As we explain in the next section, πm can be expressed in terms of the num-
ber of self-avoiding polygons and other so-called lace graphs. According to (6.8),

ĉn(k) = Ω D̂(k)ĉn−1(k)+
n

∑
m=2

π̂m(k)ĉn−m(k), (6.20)

or, equivalently,

cn(x) = (ΩD∗ cn−1)(x)+
n

∑
m=2

(πm ∗ cn−m)(x). (6.21)

The first term on the right-hand side of (6.20) is familiar from (6.11), and by itself
would give all random walks, not just the self-avoiding ones. The second term on
the right-hand side serves to eliminate self-intersecting walks from the count.

Setting k = 0 in (6.20) gives

cn = Ωcn−1 +
n

∑
m=2

πmcn−m, (6.22)

and knowledge of the coefficients πm for 2 ≤ m ≤ n would allow for the recur-
sive determination of cn (and vice-versa). This approach to the enumeration of self-
avoiding walks has proved fruitful, and is discussed further in Sec. 6.6.
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6.4 The Lace Expansion

In this section, we give a quick sketch of the derivation of the lace expansion. We
follow the original approach of Brydges and Spencer [7]; an alternate approach
based on inclusion-exclusion is discussed e.g. in [42]. Further details can be found
in [7] or, for a more recent account, [42]. Our presentation is closely based on [42].

The derivation is essentially unchanged when the setting is generalised to self-
avoiding walks on an arbitrary graph G = (V,E) with vertex set V and edge set E,
and we work in this more general setting. For example, G might be the hypercubic
lattice or the honeycomb lattice, but we make no assumption that G is regular, and
it could be finite or infinite. For simplicity, we assume that G does not contain loops
(edges of the form {x,x}), but it would be easy to relax this assumption.

We set c0(x,y) = δx,y, and, for n≥ 1, let cn(x,y) denote the number of n-step self-
avoiding walks in G that take steps in E, begin at x∈V, and end at y∈V. With a little
notational effort, it is also possible to include the case of walks which are weighted
according to the specific steps they take. We do not work in such generality here,
although in the literature it is common to consider weighted steps (see e.g. [23]).

6.4.1 The Recursion Relation

The lace expansion gives rise to a function πm(x,y), defined below, such that for
n ≥ 1,

cn(x,y) = ∑
v∈V

c1(x,v)cn−1(v,y)+
n

∑
m=2

∑
v∈V

πm(x,v)cn−m(v,y). (6.23)

In the translation invariant case, e.g. V = Zd , we have cn(x,y) = cn(0,y − x) ≡
cn(y− x) and similarly for πm, the sums over v on the right-hand side reduce to
convolutions, and we recover (6.21). All the formulae of Example 4 then also ap-
ply. In particular, the lace expansion gives an expression for the reciprocal of the
generating functions χ(z) and Ĝ(k;z) via (6.18) and (6.19).

6.4.2 Definition of πm(x,y)

In this section, we define πm(x,y) and sketch the derivation of (6.23). Let Wm(x,y)
denote the set of all m-step random walk paths (possibly self-intersecting) that start
at x ∈ V and end at y ∈ V. Given ω ∈ Wm(x,y), let

Ust(ω) =

{
−1 if ω(s) = ω(t)

0 if ω(s) 6= ω(t).
(6.24)
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Then

cn(x,y) = ∑
ω∈Wn(x,y)

∏
0≤s<t≤n

(1 +Ust(ω)), (6.25)

since the product is equal to 1 if ω is a self-avoiding walk and is equal to 0 otherwise.
We call any set of pairs st, with s < t chosen from {0,1,2, . . . ,n}, a graph. Let Bn

denote the set of all graphs. Expansion of the product in (6.25) gives

cn(x,y) = ∑
ω∈Wn(x,y)

∑
Γ∈Bn

∏
st∈Γ

Ust(ω). (6.26)

We call a graph Γ ∈ Bn connected1 if both 0 and n are endpoints of edges in Γ ,
and if in addition, for any integer c ∈ (0,n), there are s,t ∈ [0,n] such that s < c < t
and st ∈Γ . In other words, Γ is connected if, as intervals of real numbers,∪st∈Γ (s,t)
is equal to the connected interval (0,n). The set of all connected graphs on [0,n] is
denoted Gn. See Fig. 6.1.

a b

a b

a b

a b

(a)

(b)

Fig. 6.1 Graphs in which an edge st is represented by an arc joining s and t . The graphs in (a) are
not connected, whereas the graphs in (b) are connected.

If we partition the sum over all graphs according to whether: (a) 0 does not occur
in an edge in the graph, or (b) 0 does occur in an edge, then we are led to the identity
(6.23) with

πm(x,y) = ∑
ω∈Wm(x,y)

∑
Γ∈Gm

∏
st∈Γ

Ust(ω). (6.27)

Case (a) gives rise to the first term on the right-hand side of (6.23): the graphs not
containing 0 produce a self-avoidance constraint that omits the requirement that

1 This is not the standard graph-theory definition of a connected graph.
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the initial vertex at the origin be avoided subsequently. Case (b) gives rise to the
second term on the right-hand side of (6.23), with [0,m] the extent of the connected
component containing 0: the lack of an edge that passes over m means that the walk
segments before and after time m are independent, and the arbitrary graphs on the
interval [m,n] produce a self-avoidance constraint during that interval.

6.4.3 Representation of πm(x,y) via Laces

An important alternate representation for πm(x,y) can be obtained in terms of laces.
A lace is a minimally connected graph, i.e., a connected graph for which the re-
moval of any edge would result in a disconnected graph. The set of laces on [0,m]
is denoted by Lm, and the set of laces in Lm which consist of exactly N edges is

denoted L
(N)
m . See Fig. 6.2.

s1 t1 s1 s2 t1 t2

s1 s2 t1 s3 t2 t3 s1 s2 t1 s3 t2 s4 t3 t4

Fig. 6.2 Laces in L
(N)
m for N = 1,2,3,4, with s1 = 0 and tN = m.

Given a connected graph Γ ∈ Gm, the following prescription associates to Γ a
unique lace LΓ ⊂ Γ : The lace LΓ consists of edges s1t1,s2t2, . . ., with t1,s1,t2,s2, . . .
determined, in that order, by

t1 = max{t : 0t ∈ Γ }, s1 = 0,

ti+1 = max{t : ∃s < ti such that st ∈ Γ }, si+1 = min{s : sti+1 ∈ Γ }.
Given a lace L, the set of all edges st 6∈ L such that LL∪{st} = L is denoted C (L).
Edges in C (L) are said to be compatible with L. See Fig. 6.3.

We write L ∈ L
(N)

m as L = {s1t1, . . . ,sNtN}, with sl < tl for each l. The fact that
L is a lace is equivalent to a certain ordering of the sl and tl . For N = 1, we simply

have 0 = s1 < t1 = m. For N ≥ 2, L ∈ L
(N)
m if and only if

0 = s1 < s2, sl+1 < tl ≤ sl+2 (l = 1, . . . ,N −2), sN < tN−1 < tN = m
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(a)

(b)

(c)

Γ

LΓ

L

L

Fig. 6.3 (a) A connected graph Γ and its associated lace L = LΓ . (b) The dotted edges are com-
patible with the lace L. (c) The dotted edge is not compatible with the lace L.

(for N = 2 the vacuous middle inequalities play no role); see Fig. 6.2. Thus L divides
[0,m] into 2N −1 subintervals:

[s1,s2], [s2,t1], [t1,s3], [s3,t2], . . . , [sN ,tN−1], [tN−1,tN ]. (6.28)

Of these, intervals of the form [ti,si+2] can have zero length, whereas all others have
length at least 1.

The sum over connected graphs in (6.27) can be converted to a double sum, first
over all laces L, and then over connected graphs for which the above prescription
produces L. This gives

∑
Γ∈Gm

∏
st∈Γ

Ust = ∑
L∈Lm

∏
st∈L

Ust ∑
Γ∈Gm:LΓ =L

∏
s′t′∈Γ \L

Us′t′ . (6.29)

The sum over Γ on the right-hand side can then be resummed explicitly (for details,
see [7] or [42]) to obtain the formula

πm(x,y) = ∑
ω∈Wm(x,y)

∑
L∈Lm

∏
st∈L

Ust(ω) ∏
s′t′∈C (L)

(1 +Us′t′(ω)). (6.30)

We restrict the sum in (6.30) to laces with N edges, and introduce a minus sign to
obtain a non-negative integer, to define

π (N)
m (x,y) = ∑

ω∈Wm(x,y)
∑

L∈L
(N)
m

∏
st∈L

(−Ust(ω)) ∏
s′t′∈C (L)

(1 +Us′t′(ω)). (6.31)

The right hand side of (6.31) is zero unless N < m (since otherwise L
(N)
m is empty),

and hence
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x = y x

y

x y x

y

x y

Fig. 6.4 Self-intersections required for a walk ω with ∏st∈LUst (ω) 6= 0, for the laces with N =
1,2,3,4 bonds depicted in Fig. 6.2. The picture for N = 11 is also shown. A slashed subwalk may
have length zero .

πm(x,y) =
m−1

∑
N=1

(−1)Nπ (N)
m (x,y). (6.32)

Note that each term in the sum (6.31) is either 0 or 1. The first product in (6.31) is
equal to 1 precisely when ω(s) = ω(t) for each edge st ∈ L. The second product is
equal to 1 precisely when ω(s′) 6= ω(t ′) for each s′t ′ ∈ C (L). Thus the edges in the
lace require ω to have certain self-intersections, while the compatible edges enforce
certain self-avoidance conditions. The self-intersections required are illustrated in
Fig. 6.4. We refer to the walk configurations of Fig. 6.4 as lace graphs.

The simplest term is π (1)
m (x,y), which is zero if y 6= x, and which is the num-

ber of m-step self-avoiding returns to x when y = x. In the translation invariant

case, π (1)
m (x,y) can be expressed in terms of the number pm of m-step unrooted

unoriented self-avoiding polygons, by π (1)
m (x,y) = 2mpmδx,y when m > 2 (by con-

vention, p2 = 0).
For N ≥ 2, π (N)

m (x,y) counts m-step walk configurations as indicated in Fig. 6.4.
The number of loops in a diagram is equal to the number of edges in the correspond-
ing lace. In these diagrams, each line represents a self-avoiding walk, and the overall
walk begins at x and ends at y. The lines which are slashed correspond to subwalks
which may consist of zero steps, but the others correspond to subwalks consisting
of at least one step. The combined number of steps taken by all the subwalks is m. If
the 2N−1 subwalks in the N-loop diagram are sequentially labeled 1,2, . . . ,2N−1,
then the subwalks are mutually avoiding (apart from the required intersections) due
to the effect of the compatible edges, with the following patterns: [123] for N = 2;
[1234], [345] for N = 3; [1234], [3456], [567] for N = 4; [1234], [3456], [5678], [789]
for N = 5; and so on for larger N. In the above, e.g., for N = 4, the meaning is that
subwalks 1,2,3,4 are mutually avoiding apart from the enforced intersections ex-
plicitly depicted, as are subwalks 3,4,5,6 and subwalks 5,6,7. However, subwalks
not grouped together are permitted to freely intersect, e.g., for N = 4, subwalks
1,2 are permitted to intersect subwalks 5,6,7, and subwalks 3 and 4 can intersect
subwalk 7.
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6.4.4 Walks Without Immediate Reversals

The algebra used in deriving the lace expansion does not depend on the precise
form of the interaction Ust(ω), and other choices are possible. For example, we
could instead take

Ust(ω) =

{
−1 if ω(s) = ω(t) and t = s+ 2

0 otherwise.
(6.33)

With this choice, cn(x,y) of (6.25) simply counts the number of walks from x to y
that do not make any immediate reversals. For a non-zero contribution to πm(x,y) in
(6.30), laces must have all edges of length 2, and thus there is a unique lace on the
interval [0,m] and this lace contains m−1 edges. In this case, the lace graphs con-
sist of successive immediate reversals. For a vertex transitive (translation invariant)
graph with vertices of degree Ω , an examination of (6.31) shows that

∑
v∈V

π (N)
m (v) =

{
Ω if N = m−1
0 otherwise.

(6.34)

This reproduces the formula (6.16) of Example 3, with Π(z) = ∑∞
m=2 πmzm and πm =

∑m−1
N=1(−1)N ∑u∈V π (N)

m (v) = (−1)m−1Ω , as it leads to

Π(z) =
∞

∑
m=2

πmzm = −Ω
∞

∑
m=2

(−z)m. (6.35)

6.5 Self-Avoiding Walks and Polygons in Dimensions d > 4

The major mathematical problem for self-avoiding walks on Zd is to prove the exis-
tence and compute the values of the universal critical exponents γ,ν,α which appear
in the predicted asymptotic formulas

cn ∼ Aµnnγ−1, 〈|ω(n)|2〉n ∼ Dn2ν , cn(e) ∼ Bµnnα−2. (6.36)

Here 〈·〉n denotes expectation with respect to the uniform measure on the set of n-
step self-avoiding walks started from the origin. In the last formula, n is required to
be odd for the nearest-neighbour model, and e represents a neighbour of the origin.

In this section, we describe some of the results that have been obtained in this
direction using the lace expansion, for self-avoiding walks in dimensions d > 4.
The hypothesis d > 4 is used to ensure convergence of the lace expansion, e.g., in
the sense that ∑∞

m=2 m|πm|zm
c < ∞, where zc = 1/µ . There are now several different

approaches to proving convergence of the lace expansion, and we make no attempt
here to explain them. Perhaps the simplest approach, and many references to other
approaches, can be found in [42].
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All known convergence proofs require a small parameter to ensure conver-
gence. To prove that the critical exponent γ is equal to 1 amounts to proving
that d

dz [1/χ(z)]|z=zc is finite and non-zero, since cn ∼ Aµn corresponds to χ(z) ∼
A(1− µz)−1 as z ր zc. This, in turn, amounts to analysing zc

d
dz Π(zc) or, equiva-

lently, ∑∞
m=2 mπmzm

c . The m = 2 term in this sum is equal to 2Ωz2
c , and assuming

that zc is close to (Ω − 1)−1 and that Ω is large, this is close to 2Ω−1. For the
nearest-neighbour model with d large, or for the spread-out model with d > 4 and
L large, this approximation turns out to be reasonably accurate and ∑∞

m=2 m|πm|zm
c

is O(d−1) or O(L−d). In [19, 21], Hara and Slade used a computer assisted proof to
show that even for the nearest-neighbour model when d = 5 the small parameter is
small enough to allow for a proof of convergence of the lace expansion.

In particular, the following three theorems were proved in [19, 21].

Theorem 1. For the nearest-neighbour model in dimensions d ≥ 5, there are posi-
tive constants A,D such that the following hold:

(a) cn = Aµn[1 + O(n−ε)] as n → ∞, for any ε < 1/2.
(b) 〈|ω(n)|2〉n = Dn[1 + O(n−ε)] as n → ∞, for any ε < 1/4.

For d = 5, A ∈ [1,1.493] and D ∈ [1.098,1.803].

Theorem 1 is alluded to in the general discussion of the asymptotic behavior
of cn in Chapter 1, and additionally provides explicit bounds on the error terms.
A corollary of (a) is that limn→∞ cn+1/cn = µ . This is believed to be true in all
dimensions, but remains unproved for d = 2,3,4. It was proved by Kesten [32] that
limn→∞ cn+2/cn = µ2 in all dimensions.

Let Cd [0,1] denote the set of continuous functions f : [0,1]→ Rd , equipped with
the supremum norm. Given an n-step self-avoiding walk ω , we define a rescaled
version Xn ∈Cd [0,1] of the self-avoiding walk by setting Xn(k/n) = (Dn)−1/2ω(k)
for k = 0,1,2, . . . ,n, and taking Xn(t) to be the linear interpolation of this. We denote
by dW the Wiener measure on Cd [0,1]. The following theorem shows that for d ≥ 5
the scaling limit of the self-avoiding walk is Brownian motion.

Theorem 2. For the nearest-neighbour model in dimensions d ≥ 5, Xn converges
in distribution to Brownian motion, i.e., for any bounded continuous function f :
Cd [0,1] → C,

lim
n→∞

〈 f (Xn)〉n =
∫

f dW.

Perhaps the most basic application of the above theorem is to the case f (X) =
eik·X(1). In this case, Theorem 2 gives

lim
n→∞

〈eik·ω(n)/
√

Dn〉n = e−|k|2/2d , (6.37)

i.e., the scaling limit of the endpoint of the self-avoiding walk has a Gaussian dis-
tribution. Note that the expression under the limit in the above equation can also be
written as ĉn(k/

√
Dn)/cn; this shows the relevance of the Fourier transform of cn(x)

in understanding the scaling limit.
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The results for self-avoiding polygons in dimensions d ≥ 5 are less complete than
those above. Since pn = 1

2n ∑e∈N cn−1(e), the study of cn(x) is more general than
the study of self-avoiding polygons. Ideally one would like a result which states that
cn−1(e)∼ Bµnn−d/2 for d > 4, but this has not been proved. The following theorem
from [21] proves an upper bound on the generating function for cn(x) which is
consistent with this asymptotic behaviour. Madras [36] has proved bounds valid for
general d, believed not to be sharp.

Theorem 3. For the nearest-neighbour model in dimensions d ≥ 5, for any a <
(d −2)/2,

sup
x∈Zd

∞

∑
n=0

nacn(x)µ−n < ∞.

Stronger results for cn(x) have been obtained for the spread-out model in dimen-
sions d > 4. The best results can be found in [24], and include the following as a
very special case. In the statement of the theorem, µ denotes the connective constant
for the spread-out model.

Theorem 4. Consider the spread-out model in dimensions d > 4. Let 0 < δ <
min{1, d−4

2 }. There is an L0 such that for L ≥ L0 the following statements hold:
(a) There exist positive constants a and b (depending on d and L), such that for all
k ∈ Rd with |k|2 bounded by a constant, as n → ∞,

ĉn(k/
√

bn) = aµne−|k|2/2d[1 + O(n−(d−4)/2)+ O(|k|2n−δ )
]
. (6.38)

(b) There are constants C1,C2 (depending on d but not L) such that

C1µnL−dn−d/2 ≤ sup
x∈Zd

cn(x) ≤C2µnL−dn−d/2. (6.39)

Note that for k = 0, Theorem 4(a) gives

cn = aµn[1 + O(n−(d−4)/2)
]
, (6.40)

which is a better error bound than that proved for the nearest-neighbour model in
Theorem 1. It was predicted in [15] that the O(n−(d−4)/2) is sharp, and by univer-
sality we expect it to hold also for the nearest-neighbour model (this is confirmed
numerically in [8]). In [24], a version of Theorem 4 is obtained in the much more
general setting of cycle-free networks of mutually-avoiding self-avoiding walks. For
arbitrary networks, possibly with cycles, see [26].

Theorem 4(a) provides a central limit theorem for the endpoint of the spread-
out self-avoiding walk in dimensions d > 4. It is natural to wonder if Theorem 4(b)
extends to a local central limit theorem, i.e., a statement that c−1

n cn(x
√

bn) is asymp-
totically Gaussian (when x has the same parity as n). Such an extension follows from
the results of [23, 24]. Some care is needed with such a statement, since cn(0) = 0
for all n ≥ 1, and to eliminate this local effect we average over a region that grows
with n. For the averaging, we denote the cube of radius R centred at x ∈ Zd by
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CR(x) = {y ∈ Zd : ‖x− y‖∞ ≤ R}, (6.41)

with cardinality |CR(x)|. Let ⌊x⌋ denote the closest lattice point in Zd to x∈Rd (with
some arbitrary rule to break ties).

Theorem 5. Consider the spread-out model in dimensions d > 4. Let Rn be any
sequence with limn→∞ Rn = ∞ and limn→∞ n−1/2Rn = 0. There is an L0 such that for
L ≥ L0, and for any x ∈ Rd with |x|2[logRn]

−1 sufficiently small, as n → ∞,

1

|CRn(⌊x
√

bn⌋)| ∑
y∈CRn (⌊x

√
bn⌋)

cn(y)
cn

∼
(

d
2πbn

)d/2

e−d|x|2/2, (6.42)

in the sense that the limit of the ratio of the two sides is 1.

The Gaussian limit (6.42) does not follow directly from the convergence of the
Fourier transform in Theorem 4. The latter implies that sums over cubes of side√

n converge to integrals of the Gaussian density, whereas (6.42) permits arbitrarily
slow growth of Rn.

Finally, we mention that rigorous results have been proved for the scaling of the
weakly self-avoiding walk on a 4-dimensional hierarchical lattice, using renormal-
isation group methods [5, 6]. The 3-dimensional cubic lattice appears to be well
beyond the reach of any currently known methods. For d = 2, there is very strong
evidence [34] that the scaling limit is given by SLE8/3, but the problem of proving
existence of the scaling limit remains open.

6.6 Self-Avoiding Walk Enumeration and 1/d Expansions

6.6.1 Self-Avoiding Walk Enumeration via the Lace Expansion

For the nearest-neighbour model on Zd , (6.22) states that

cn = 2dcn−1 +
n

∑
m=2

πmcn−m. (6.43)

Let
π (N)

m = ∑
x∈Zd

π (N)
m (x) (6.44)

denote the number of N-loop lace graphs of length m, so that πm = ∑m−1
N=1(−1)Nπ (N)

m .
Equation (6.43) recursively expresses the number of self-avoiding walks of length n
in terms of πm, and thus allows for the determination of cn from the number of lace
graphs with m ≤ n and N ≤ n−1. The lace graph trajectories, shown in Fig. 6.4, are
less spatially extended than SAWs of the same length, and are hence less numerous.
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In [8], nearest-neighbour self-avoiding walks on Zd were enumerated in dimen-
sions d ≥ 3 by enumeration of lace graphs together with (6.43). The value of cn was
determined for n ≤ 30 for d = 3 and for n ≤ 24 for all d ≥ 4 (knowledge of πm for
m ≤ 24 and d ≤ 12 determines πm also for d > 12, since lace graphs with at most
24 steps can occupy at most 12 dimensions). In practice, for the cubic lattice it was
found that there are approximately 525 times as many 30-step self-avoiding walks
as compared to 30-step lace graphs. This factor was found to get much larger as
the dimension is increased: the factor for d = 4, n = 24 is approximately 1700, for
d = 5, n = 24, it is approximately 6200, while for d = 6, n = 24, it is approximately
20000.

The simplest lace graphs are the self-avoiding returns counted by π (1)
m , and their

enumeration is equivalent to the enumeration of self-avoiding polygons. Polygons
were counted in [8] using the so-called two-step method. The two-step method is
an innovation for the direct enumeration of self-avoiding walks and reduces the
exponential complexity of the enumeration problem. For details, we refer to [8].
In [8], the two-step method was used to count polygons and, more generally, to
enumerate lace graphs needed to determine πm. For polygons, the results of [8] are
slightly better than those for general lace graphs: p32 is determined for d = 3, and
p26 is determined for d = 4.

6.6.2 1/d Expansions via the Lace Expansion

Next, we indicate how knowledge of the values of πm for the d-dimensional nearest-
neighbour model can be combined with estimates on the lace expansion to derive
1/d expansions for the connective constant µ and for the amplitudes A and D of
Theorem 1.

Let zc = 1/µ denote the radius of convergence of the susceptibility χ(z) =

∑∞
n=0 cnzn. It is a consequence of the simple inequality cn+m ≤ cncm that cn ≥ µn

for all n, and from this it follows that χ(z) ր ∞ as z ր zc. Therefore 1/χ(z) =
1−2dz−Π(z)ց 0 as z ր zc. In particular, limzրzc Π(z) = 1−2dzc. It is proved in
[21] that, for d ≥ 5, limzրzc Π(z) = Π(zc), and therefore zc obeys the equation

zc =
1

2d

[
1−

∞

∑
m=2

πmzm
c

]
. (6.45)

This equation was used recursively in [22] to prove that zc has an asymptotic expan-
sion zc ∼ ∑∞

i=1 ai(2d)−i, to all orders, with integer coefficients ai.
Well-developed lace expansion methods (see [8]) show that for each N ≥ 1 and

j ≥ 2 there are constants CN ,CN, j , independent of sufficiently large d, such that

∞

∑
m=2

m−1

∑
M=N

π (M)
m zm

c ≤CNd−N ,
∞

∑
m= j

π (N)
m zm

c ≤CN, jd
− j/2. (6.46)
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It then follows from (6.45) and (6.46) that

zc =
1

2d

[
1−

2N

∑
m=2

N

∑
M=1

(−1)Mπ (M)
m zm

c

]
+ O(d−N−2), (6.47)

where we have used the fact that zc has an asymptotic expansion in powers of d−1,
to replace an error term of order d−N−3/2 by one of order d−N−2. Knowledge of the

coefficients π (M)
m (as polynomials in d) for m ≤ 2N and M ≤ N permits the recursive

calculation of the terms in the 1/d expansion for zc up to and including order d−N−1.
The enumerations of [8] with m ≤ 24, M ≤ 12 give

zc = 1
2d + 1

(2d)2 + 2
(2d)3 + 6

(2d)4 + 27
(2d)5 + 157

(2d)6 + 1065
(2d)7 + 7865

(2d)8 + 59665
(2d)9

+ 422421
(2d)10 + 1991163

(2d)11 − 16122550
(2d)12 − 805887918

(2d)13 + O
(

1
(2d)14

)
. (6.48)

Taking the reciprocal gives

µ = 2d−1− 1
2d − 3

(2d)2 − 16
(2d)3 − 102

(2d)4 − 729
(2d)5 − 5533

(2d)6 − 42229
(2d)7

− 288761
(2d)8 − 1026328

(2d)9 + 21070667
(2d)10 + 780280468

(2d)11 + O
(

1
(2d)12

)
. (6.49)

Equations (6.48) and (6.49) more than double the length of the previously known
series [10, 22, 39], which were known up to and including the term −102(2d)−4

in (6.49). The error estimates are rigorous. The above expansions would appear to
have radius of convergence zero, but there is no proof of this; it would be of interest
to study their Borel summability. The critical temperature of the spherical model is
known to have an asymptotic 1/d expansion with radius of convergence zero [13],
and the suggestion that this is true rather generally for 1/d expansions of critical
points was made in [11]. Note the change in sign at the term (2d)−10; a similar sign
change is observed in [13] for the critical temperature of the spherical model.

It is proved in [21] that for d ≥ 5 the amplitudes A and D of Theorem 1 are given
by the formulas

1
A

= 2dzc +
∞

∑
m=2

mπmzm
c , D = A

[
2dzc +

∞

∑
m=2

rmzm
c

]
, (6.50)

where rm = ∑x∈Zd |x|2πm(x). The formula for A can be understood from the fact that
γ = 1 for d ≥ 5 and hence the susceptibility χ(z) = 1/F(z) should be given approxi-
mately by [F ′(zc)(z− zc)]

−1, according to Taylor’s theorem. The coefficient cn of zn

is given in this approximation to be [−zcF ′(zc)]
−1z−n

c . This gives A−1 = −zcF ′(zc),
and using the formula F(z) = 1− 2dz−Π(z) from (6.18) gives the above formula
for A. The formula for D can be found similarly, using the fact that ∑x |x|2cn(x) is
the coefficient of zn in −∇2Ĝ(k;z)|k=0, where ∇ represents the gradient with respect
to the vector k. To leading order, if we write Ĝ(k;z) = 1/F̂(k;z), this is given by
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−∇2Ĝ(0;z) =
∇2F̂(0;z)

F̂(0;z)2
≈ ∇2F̂(0;zc)

[F ′(zc)(z− zc)]2
, (6.51)

where we have used F̂(0;z) = F(z). Expansion of the right-hand side in powers of
z then gives the desired formula for D.

It can be argued from (6.50) using an extension of (6.46) (see [8]) that

1
A

= 2dzc +
2N

∑
m=2

N

∑
M=1

(−1)Mmπ (M)
m zm

c + O(d−N−1) (6.52)

and

D = A

[
2dzc +

2N

∑
m=2

N

∑
M=1

(−1)Mr(M)
m zm

c

]
+ O(d−N−1), (6.53)

with r(M)
m = ∑x∈Zd |x|2π (M)

m (x). Insertion of (6.48) and the enumerations of [8] for
m ≤ 24, M ≤ 12 into (6.52) and (6.53) then give

A = 1 + 1
2d + 4

(2d)2 + 23
(2d)3 + 178

(2d)4 + 1591
(2d)5 + 15647

(2d)6 + 164766
(2d)7 + 1825071

(2d)8

+ 20875838
(2d)9 + 240634600

(2d)10 + 2684759873
(2d)11 + 26450261391

(2d)12 + O
(

1
(2d)13

)
, (6.54)

D = 1 + 2
2d + 8

(2d)2 + 42
(2d)3 + 284

(2d)4 + 2296
(2d)5 + 21024

(2d)6 + 210306
(2d)7 + 2242084

(2d)8

+ 24909542
(2d)9 + 280764914

(2d)10 + 3079111998
(2d)11 + 29964810674

(2d)12 + O
(

1
(2d)13

)
. (6.55)

This extends the series up to and including order (2d)−5 that were reported in [12,
39] and [38] for A and D, respectively, and also provides rigorous error estimates.

6.7 The Antiferromagnetic Singularity

There is strong numerical evidence that the number of self-avoiding walks on the
lattice Zd for d = 2 is given asymptotically by

cn ∼ µnnγ−1
(

A +
a1

n
+

a2

n3/2
· · ·
)

+(−µ)nnα−2
(

b0 +
b1

n
+ · · ·

)
(6.56)

and for d ≥ 3 by

cn ∼ µnnγ−1
(

A +
a1

nθ + · · ·
)

+(−µ)nnα−2
(

b0 +
b1

nθ + · · ·
)

(6.57)
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(with a log correction when d = 4); see [28] for d = 2 and [8] for d ≥ 3. Similar
asymptotic behaviour applies also for the honeycomb lattice [30]. The µnnγ−1 term
is the familiar leading asymptotic form for cn, but the (−µ)nnα−2 term also appears,
with the polygon exponent α . These two terms are reflections of singularities of the
generating function χ(z): one of the form (1− z/zc)

−γ at z = zc, and another of
the form (1 + z/zc)

1−α at z = −zc. The latter is referred to as the antiferromagnetic
singularity.

The direct theoretical evidence for existence of the antiferromagnetic singular-
ity seems to be rather thin, despite the fact that its existence has been recognised
for decades [14]. The bipartite nature of Zd and the honeycomb lattice plays an
important role in the existence of the antiferromagnetic singularity: for example,
numerical evidence shows that the antiferromagnetic singularity does not occur for
the triangular lattice [29].

The hyperscaling relation 2−α = dν allows the leading behaviour in the second
term of (6.57) to be rewritten as (−µ)nn−dν , and the predicted value of ν implies
that dν > 1 for all d ≥ 2. This corresponds to a finite value for χ(−zc), but indicates
that derivatives of χ of order dν −1 = 1−α or higher will diverge at −zc.

In this section, we first make a connection between the numerically observed
sign alternation in the sequence πm and the existence of the antiferromagnetic sin-
gularity. We then draw parallels between the role of the polygon exponent α in the
asymptotic behaviour of πm and in the asymptotic behaviour of the susceptibility
near the antiferromagnetic singularity. Finally, we report the results of series anal-
ysis of 1/χ(z) (equivalent to an analysis of Π(z)) via differential approximants,
which provides the locations of the zeroes of the susceptibility.

This section is not devoted to rigorous results, but is a combination of heuristic
arguments and numerical observations.

6.7.1 Sign Alternation of πm

There is now significant numerical evidence that πm alternates in sign for nearest-
neighbour self-avoiding walks on Zd (d ≥ 1) and on the honeycomb lattice, which
are all bipartite lattices. For d = 1, the sign alternation is immediate from Example 3
of Section 6.3, where Π(z) =−2∑∞

m=2(−z)m. The values of πm can be computed for
m ≤ 71 on the square lattice and for m ≤ 105 on the honeycomb lattice using (6.22)
and the enumeration of cn given in [28, 30]. In both cases, the signs are strictly
alternating. For d ≥ 3, the values of πm are known for m ≤ 30 when d = 3 and for
m ≤ 24 for all d ≥ 4, due to the lace graph enumerations of [8]. In all these cases,
the signs are strictly alternating.

On the other hand, for the triangular lattice direct enumeration shows that π2 =
π3 = −6, and the strict sign alternation fails. A similar result is observed for the fcc
lattice. The triangular and fcc lattices are not bipartite.

A bipartite graph is characterised by the absence of odd cycles, which in the

translation invariant case is equivalent to the vanishing of π (1)
m for all odd m. This
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means that we can write (recall (6.32) and (6.44)) for integer m

π2m = −
m

∑
M=1

(
π (2M−1)

2m −π (2M)
2m

)
(6.58)

π2m−1 =
m−1

∑
M=1

(
π (2M)

2m−1 −π (2M+1)
2m−1

)
. (6.59)

For Zd , the values of π (N)
m are enumerated in [8] for m ≤ 30, d = 2,3, and m ≤

24, d ≥ 4. For this range of parameters, we have explicitly verified that π (2M−1)
m −

π (2M)
m > 0 for even m, and that π (2M)

m − π (2M+1)
m > 0 for odd m. With (6.58) and

(6.59), this gives rise to sign alternation for πm. (It also raises the question of whether

π (N)
m −π (N+1)

m has a combinatorial interpretation.) The enumerations of [8] actually
give a more refined version of the above two inequalities: they are obeyed also if

π (N)
m is replaced by π (N)

m,δ , which counts the number of lace graphs which occupy
exactly δ dimensions.

If the sequence πm does indeed strictly alternate in sign for sufficiently large m,
then its generating function Π(z) = ∑∞

m=2 πmzm will have its dominant singularity on
the negative real axis. We expect that on lattices such as Zd , the honeycomb lattice
and the triangular lattice, the singularity of χ(z) at zc is not merely a pole, so that
Π(z) will also be singular at zc. (Note, however, that for self-avoiding walks on a tree
of degree Ω ≥ 3, Example 3 shows that χ(z) has a simple pole at zc = 1/(Ω −1)< 1
while Π(z) has its closest singularity at −1.) A singularity of Π(z) at −xc with
0 < xc < zc is possible a priori, but since χ(z) is analytic in the disk of radius zc

such a singularity of Π(z) could only be a pole, corresponding to a zero of χ(z).
We find no numerical evidence for this possibility on Zd or the honeycomb lattice,
as we discuss below. Assuming the absence of such a pole, we conclude that sign
alternation of πm corresponds to a singularity of Π(z) at −zc, and that this is the
origin of the antiferromagnetic singularity.

There is currently no proof that πm remains strictly alternating on the honeycomb
lattice or on Zd for any d ≥ 2. It is an appealing though perhaps difficult problem to
prove this.

6.7.2 πm and the Polygon Exponent α

The asymptotic form (6.57) implies that 1/χ(z) should vanish like (1 − z/zc)
γ

near +zc, while near −zc its singular part should behave like (1 + z/zc)
1−α =

(1 + z/zc)
dν−1. Consider first the dimensions d = 2,3. For d = 2,3, the numeri-

cal values of γ and ν are such that the antiferromagnetic singularity is the dominant
one, i.e., dν − 1 < γ . Since πm is the mth coefficient in the series for 1/χ(z), this
suggests that

πm ∼ c(−µ)mmα−2 (d = 2,3). (6.60)
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Recall that πm = ∑∞
N=1(−1)Nπ (N)

m is the alternating sum of lace graph counts. The

term π (1)
m just counts self-avoiding returns, whose asymptotic behaviour is predicted

to be given by µmmα−2, again with the polygon exponent. It is tempting to guess that

π (N)
m has this same asymptotic form for all N, but we have insufficient data to verify

this numerically. If it does, then the form (6.60) would arise from an alternating sum
of counts of objects which are each governed by the polygon exponent α .

The case d = 4 is delicate due to logarithmic corrections, but dimensions d > 4
are also more subtle. For d > 4, the error term in (6.40) can be expected to be
sharp, and to be the source of a singularity (1− z/zc)

(d−2)/2 in the susceptibility.
Since the power 1−α is also equal to d−2

2 , this indicates that the ferromagnetic
and antiferromagnetic singularities are of equal strength, so that (6.60) should be
replaced by

πm ∼ [c+ + c−(−1)m]µmm−d/2 (d > 4). (6.61)

The observed fact that the sequence πm does alternate in sign for m ≤ 24 suggests
that the antiferromagnetic singularity still dominates, in the sense that |c−| > |c+|.

For dimensions d > 4, it is proved in [23, 24] that for spread-out models with

d > 4 and L large (see (6.2)), π (N)
m ≤ (cL−d)N µmm−d/2 and therefore |πm| ≤

∑∞
N=1 π (N)

m ≤CL−d µmm−d/2. This verifies (6.61) as a one-sided bound, and supports

the belief that π (N)
m may have the same asymptotic form for all N. In particular, it

proves that Π(z) cannot have a singularity inside the disk of radius zc. Universality
suggests that the same behaviour should apply also for the nearest-neighbour model.

For dimensions d = 2,3, there are no rigorous results to help verify (6.60), so
it is useful to turn to series analysis. The extensive methodology that has been de-
veloped for series analysis is discussed in Chapter 8 by Guttmann and Jensen (a
classic earlier reference is [16]). An important method of series analysis is that of
differential approximants, a powerful technique which is quite generally applicable
and often (although not always) more effective than any other known method. The
method of differential approximants can provide information about the singularities
of a generating function for which we know a finite number of series coefficients,
including poles, power law singularities and their confluent corrections.

We have applied the method of differential approximants to analyse the recip-
rocal series 1/χ(z) for the square, honeycomb and triangular lattices, and for Zd

with 3 ≤ d ≤ 8 (the susceptibility series itself was analysed in the original papers
[8, 28, 29, 30]). Long series which are approaching the asymptotic regime are the
most amenable to series analysis, and we obtain our most accurate results for the
2-dimensional lattices. Information for Zd with d ≥ 3 is far more difficult to ex-
tract owing to the availability of only relatively short series [8], and the existence of
strong corrections to scaling for d = 3.

In all cases, we find that Π(z) clearly has radius of convergence zc with leading
singularity at the ferromagnetic singularity −zc. This confirms the leading exponen-
tial growth (−µ)m of (6.60). However, we find that information about critical expo-
nents is degraded with reciprocal series, and more accurate estimates for the power
law correction to the leading exponential behaviour (−µ)n for πm are obtained from
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the prior analyses of χ(z) than we find via analysis of 1/χ(z). (Dlog Padé approxi-
mants give the same results for χ(z) and 1/χ(z), but the dlog Padé method is not as
accurate as more general differential approximants, which give different results.)

6.7.3 Zeroes of the Susceptibility

Although the analysis of 1/χ(z) via differential approximants did not prove to be
fruitful for an accurate determination of the exponent α , such analysis does yield
the location of susceptibility zeroes, which correspond to poles of 1/χ(z). In this
section, we report the location of zeroes of χ(z) found in this manner.

Square lattice. For the square lattice, the analysis of χ(z) in [28] clearly confirms the
existence of the antiferromagnetic singularity at −zc =−0.379052 . . . with the poly-
gon exponent α = 1

2 . We find that the differential approximants for 1/χ(z), most
clearly the first-order inhomogeneous approximants, detect a pole at z∗ ≈ −0.3758.
This would seem to imply the unexpected result that the radius of convergence of
Π(z) is strictly less than zc. However, direct integration of the differential equations
of the differential approximant method to determine the amplitude of χ(z) at this
point shows that χ(z∗) > 0. The apparent contradiction can be resolved as follows:

Let us assume that

χ(z) ∼ A(z)(1 + z/zc)
1/2 + B(z) (6.62)

near z = −zc (with the critical amplitude A(z) and background amplitude B(z) an-
alytic at −zc), and also assume that χ(z) > 0 for z ∈ (−zc,0]. If we integrate the
differential equation from the differential approximant for χ(z) along the negative
axis to a point z = −zc + ε , we obtain a function of the form (6.62), with approx-
imate values for the exponent and zc. If we then integrate the differential equation
around the circle |z + zc| = ε , starting and ending at z = −zc + ε , the non-analytic
part will pick up a factor of exp(π i) = −1. We are now on a different Riemann
sheet, and it is possible for χ(z) to have a zero provided that there is a solution of
−A(z)(1+ z/zc)

1/2 +B(z) = 0. We confirm this numerically by using the procedure
of Velgakis et al. [45] to find A(z) and B(z) in the vicinity of z = −zc, and observe
that there is a zero at a value close to z∗ = −0.3758. Thus the pole observed in the
analysis of 1/χ(z) in fact corresponds to a zero of χ(z) in the Riemann sheet vis-
ited by circling around the singularity at −zc. We do not detect any other poles in
1/χ(z).

Honeycomb lattice. For the honeycomb lattice, the antiferromagnetic singularity is
clearly seen in [30]. Without performing a careful error analysis we find, via differ-
ential approximant analysis, a complex conjugate pair of simple poles of 1/χ(z) at
z = −0.262426± 0.676916i, with the error likely to be confined to the final digit.
These poles lie outside the circle |z| = zc. We confirm that these are genuine zeroes
of χ(z) by integrating the differential equations obtained via the differential approx-
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imant method to obtain a representation of χ(z), and confirming that the amplitude
of χ(z) is very small in the vicinity of these points.

Triangular lattice. For the triangular lattice there is, as expected, no sign of the an-
tiferromagnetic singularity [28]. Analysis of 1/χ(z) reveals two complex conjugate
pairs of poles at z =−0.464±0.331i, and z = −0.204±0.611i, well outside the ra-
dius of convergence determined by zc = 0.24091 . . .. We have again confirmed that
these poles correspond to zeroes of the susceptibility.

Dimensions 3≤ d ≤ 8. Using differential approximants and the enumerations of [8],
we clearly observe the antiferromagnetic singularity at −zc, but we find no evidence
of any poles for 1/χ(z) anywhere in the complex plane, and thus no evidence of
zeroes of the susceptibility.

As a technical point, we find that the first-order inhomogeneous approximants
seem to be much more effective than higher order approximants at pinpointing the
location of the poles of 1/χ(z). This is probably due to the fact that the more re-
strictive functional form, which does not allow for confluent corrections, is more
appropriate for fitting the function in the immediate vicinity of the pole.

6.8 Lattice Trees

The lace expansion has been applied to a wide range of models [42]. The simplest
extension beyond self-avoiding walks is to lattice trees. In this section we discuss
some results for lattice trees in dimensions d > 8, without entering into details about
the methods of proof.

A lattice tree on Zd is defined to be a finite connected2 set of bonds which
contains no cycles (closed loops). Bonds are pairs {x,y} of vertices of Zd , with
y−x∈N , where N is given either by the nearest-neighbour set (6.1) or the spread-
out set (6.2). Although a lattice tree T is defined as a set of bonds, we will write x∈T
if x is an element of a bond in T . The number of bonds in T is denoted |T |, and the
number of vertices in T is thus |T |+ 1.

A basic combinatorial problem is to count the number of lattice trees of fixed

size. Let t(1)
n denote the number of n-bond lattice trees that contain the origin. It is

customary to count lattice trees modulo translation, namely to consider tn defined
by

tn =
1

n + 1
t(1)
n . (6.63)

A sub-additivity argument [33] shows that there is a positive constant λ such that

limn→∞ t1/n
n = λ . The precise asymptotic behaviour of tn as n → ∞ is believed to be

given by
tn ∼ Aλ nn−θ , (6.64)

where θ is a universal critical exponent. The bounds

2 This is the standard graph-theory definition of a connected graph.
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c1λ nn−c2 logn ≤ tn ≤ c3λ nn−(d−1)/d, (6.65)

were proved respectively in [27] and [37] for general dimensions d ≥ 2. The upper
bound does provide a power law correction, but it is predicted that θ > (d − 1)/d
for all d ≥ 2.

Let x̄T = (|T |+ 1)−1 ∑x∈T x denote the centre of mass of T (considered as a set
of equal masses at the vertices of T ), and let

R(T )2 =
1

|T |+ 1 ∑
x∈T

|x− x̄T |2 (6.66)

denote the squared radius of gyration of T . The typical length scale of a lattice tree
is characterized by the average radius of gyration Rn, defined by

R2
n =

1

t(1)
n

∑
T :|T |=n,T∋0

R(T )2. (6.67)

It is predicted that there is a universal critical exponent ν such that

Rn ∼ Dnν . (6.68)

Based on a field theoretic representation, it was argued in [35] that the upper
critical dimension for lattice trees is 8. Further evidence for this was given in [2,
43, 44]. The mean-field values of the exponents are θ = 5

2 and ν = 1
4 . The value

ν = 1
4 corresponds in (6.68) to n being asymptotic to a multiple of R4

n, which is a
statement of 4-dimensionality. The fact that two 4-dimensional objects generically
do not intersect above eight dimensions gives a quick prediction that d = 8 is the
upper critical dimension for lattice trees.

The lace expansion has been used to prove a number of results for lattice trees in
dimensions d > 8. The following theorem from [20] proves that θ = 5

2 and ν = 1
4

in high dimensions.

Theorem 6. For nearest-neighbour lattice trees with d sufficiently large, or for
spread-out lattice trees with d > 8 and L sufficiently large, there are positive con-
stants A and D (depending on d,L) such that for every ε < min{ 1

2 , d−8
4 },

tn = Aλ nn−5/2[1 + O(n−ε)], (6.69)

Rn = Dn1/4[1 + O(n−ε)]. (6.70)

A lattice animal is a finite connected set of bonds which may contain closed
loops. It is believed that lattice animals belong to the same universality class as
lattice trees, so that both models have the same critical exponents and scaling limits.
Results related to Theorem 6 have been obtained for lattice animals, in terms of
generating functions [18].

Information about the spatial distribution of lattice trees is contained in the num-
ber tn(x) of n-bond lattice trees containing the vertices 0,x ∈ Zd . The scaling be-



140 Nathan Clisby and Gordon Slade

haviour of the Fourier transform of tn(x) in high dimensions is given in the following
theorem from [9].

Theorem 7. For nearest-neighbour lattice trees with d sufficiently large, or for
spread-out lattice trees with d > 8 and L sufficiently large, as n → ∞,

t̂(2)
n (kD−1

1 n−1/4) ∼ Aλ nn−1/2
∫ ∞

0
dt t e−t2/2e−|k|2t/2d , (6.71)

where D1 = 23/4π−1/4D, and where A and D are the constants of Theorem 6.

The scaling of the Fourier variable k by kn−1/4 = kn−ν in (6.71) corresponds
to rescaling the lattice Zd to n−1/4Zd , and (6.71) is a statement about the scaling

limit of t(2)
n (x) in Fourier language. Theorem 7 provides a first step in understand-

ing the scaling limit of lattice trees in dimensions d > 8—the full scaling limit has
been obtained by proving corresponding statements for the number of n-bond lattice
trees containing vertices x1, . . . ,xl for all l ≥ 1. Under the hypotheses of Theorem 7,
the scaling limit for d > 8 has been shown to be given by the random measure on
Rd known as integrated super-Brownian excursion (ISE) [9, 42], as was first con-
jectured by Aldous [1]. In a somewhat different formulation, the scaling limit can
also be interpreted as the measure-valued stochastic process known as the canonical
measure of super-Brownian motion [25]. This is part of a larger story in which the
scaling limit of various high-dimensional critical branching models can be under-
stood in terms of super-Brownian motion [41, 42].

A mathematically rigorous analysis of critical exponents for lattice trees in low
dimensions appears to be beyond the reach of current methods. However, there has
been recent progress by Brydges and Imbrie [3, 4] on a very natural model of con-
tinuous branched polymers in Rd , which is expected to be in the same universality
class as lattice trees. Inspired by ideas of Parisi and Sourlas [40], in their remarkable
paper [3] Brydges and Imbrie proved existence of critical exponents for their con-
tinuum model in dimensions d = 2 and 3 (with partial results for d = 4), with values
θ = 1 for d = 2, and θ = 3

2 , ν = 1
2 for d = 3. An alternate approach to the results of

Brydges and Imbrie has recently been obtained by Kenyon and Winkler [31].
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in Mathematics Vol. 1879. Ecole d’Eté de Probabilités de Saint–Flour XXXIV–2004.

43. H. Tasaki. Stochastic geometric methods in Statistical Physics and Field Theories. PhD thesis,
University of Tokyo, (1986).

44. H. Tasaki and T. Hara. Critical behaviour in a system of branched polymers. Prog. Theor.
Phys. Suppl., 92:14–25, (1987).

45. M.J. Velgakis, G.A. Baker, Jr., and J. Oitmaa. Integral approximants. Comput. Phys. Commun.,
99:307–322, (1997).



Chapter 7
Exact Enumerations

Ian G. Enting and Iwan Jensen

7.1 Generating Functions and Enumeration

Apart from the intrinsic combinatorial interest of the problem, enumerations of poly-
gons and polyominoes play an important role in enumerative approaches to lattice
statistics systems such as percolation and the Ising/Potts models. Consequently, the
history of enumeration techniques for polygons and polyominoes is intertwined with
the more general developments in enumerative techniques in statistical mechanics.
Two accounts of techniques [21, 23], almost 30 years apart, span much of this devel-
opment. As with expansions in statistical physics, the development of combinatorial
enumeration of polygons and polyominoes has reflected the trend, noted in statisti-
cal mechanics by Wortis [39], of replacing combinatorial complexity by algebraic
complexity. In the later sections of this chapter we describe some key steps in the
evolution of enumeration techniques. The bulk of this chapter describes transfer
matrix techniques, which represent a continuation of the trend towards increasingly
algebraic techniques. These are introduced using staircase and convex polygons as
examples in Section 3. Sections 4 and 5 consider the application of transfer ma-
trix techniques to self-avoiding polygons and polyominoes respectively. Technical
issues of implementation are described in Section 6.

As noted in Chapter 1, early interest in self-avoiding polygons arose from their
role in series expansions for the Ising model [38]. High-temperature expansions for
the Ising model free energy, in terms of the variable tanh(J/kBT ), involve sums
over graphs with all vertices of even degree. On planar lattices, duality relations
imply that the same class of graphs (on the dual lattice) is also required for low-
temperature expansions of Ising models.

The thermodynamic analogy, defined by restricting the Ising sum to include only
polygons, immediately suggests the investigation of the generating function

Ian G. Enting and Iwan Jensen
Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia, e-
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P(x) = ∑
n

pn xn, (7.1)

where pn is the number of polygons (per site) that can be embedded on a lattice. The
Ising model sum for the free energy has a singularity with critical exponent 2−α .
The same exponent notation is used for the restricted sum defining the polygon
generating function leading to the expression

P(x) ∼ B(1− x/xc)
2−α with 1/xc = µ , (7.2)

where B is a constant also known as a critical amplitude. The relation between the
asymptotic behaviour of the pn and the singularity in P(x) is discussed in Chapter
1. In a magnetic field the graphs contributing to the low-temperature expansion of
the planar Ising model have a field dependent weighting proportional to the area
enclosed by the graph. This analogy suggests an interest in area-weighting of planar
polygons. Spatial moments for polygons also have analogues in spin systems and
the notation for the exponents reflects this analogy. Polyomino enumerations are by
contrast more closely related to expansions of the statistics of various percolation
models.

Exact enumeration of polygons and polyominoes is limited by the rate of growth
in computing requirements. In direct enumeration techniques that effectively enu-
merate each polygon individually, a growth of at least µn is inevitable. In contrast,
the ‘transfer matrix’ techniques described below, perform sums over classes of poly-
gon segments. For direct enumerations, the primary issue is the rate of growth
in CPU time. For transfer matrix techniques, the growth in memory requirements
can also be a significant constraint. Another constraint on indirect techniques arises
when additional information is required—properties such as area, spatial moments
and interaction counts. In direct enumerations that create a representation of each
object, such information can generally be extracted with only a cost in time. For
indirect enumerations there will be a similar time penalty for dealing with more in-
formation and maybe an additional penalty in both time and memory space, through
having to deal with more classes.

While the main focus of this chapter is on the enumeration of self-avoiding poly-
gons that are otherwise unrestricted, a number of special cases are of interest, includ-
ing various forms of convex polygons. Many restricted cases turn out to be exactly
solvable, as described in Chapter 3. Convex polygons are related to the work in the
present chapter because they appear as ‘correction terms’ in the transfer matrix tech-
niques described later in the present chapter. Indeed a number of the exact solutions
were first obtained, without proof, by fitting differential approximants [11] to such
‘correction series’. Consideration of these correction relations led to the develop-
ment of the ‘pruning algorithm’ [18], described below, which has led to the most
extensive enumerations of polygons. In the present chapter, we also use some of
the special cases to provide tutorial examples for our description of transfer matrix
methods.

Polygons have been enumerated for the various regular crystal lattices in two
and three dimensions, by perimeter, area and both. Other enumerations have been
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performed for hyper-cubic lattices and two-dimensional directed lattices. In addi-
tion, enumerations weighted by properties such as spatial moments and interaction
count have been performed in a number of cases, particularly in two dimensions.
Such auxiliary information can be counted as part of the enumeration, with varying
degrees of difficulty. Direct enumerations and indirect approaches such as transfer
matrix techniques differ in the relative difficulty of particular generalisations.

7.2 Cluster-Based Enumeration Techniques

7.2.1 General Principles

Martin [22] has noted that the first few terms of a series such as polygon enumera-
tions are typically calculated simply by drawing the graphs. Often one counts as a
single case only graphs that differ under all translational and rotational symmetries—
‘space types’ in the terminology of Domb [5]. The counts for each type must be
multiplied by the appropriate symmetry factor in order to give a count for ‘ori-
ented space types’. Figure 7.1 uses the triangular lattice case to illustrate the is-
sues showing that the sum over space types × orientations leads to the series
PTRI(x) = 2x3 + 3x4 + 6x5 + 15x6 + . . .

2 = 6/3 3 = 6/2 6 = 6/1 

n = 3 n = 4 n = 5

n = 6

6 = 6/1 3 = 6/2 3 = 6/2 2 = 6/3 1 = 6/6 

Fig. 7.1 Space types for self-avoiding polygons of various sizes on the triangular lattice, with
the integers giving the number of rotations that give translationally distinct cases. The number
of distinct rotational cases is equal to 6 divided by the number of vertices in each class that is
equivalent under rotations. The solid dots indicate one such equivalence class in each case shown.

The choice of enumerating such ‘oriented space types’ corresponds to analogous
enumerations in lattice statistical mechanics. An alternative case, where the requisite
statistic is the sum over space types, (i.e. without the rotational symmetry factor)
occurs in studies of chemical isomers and has been considered by Vöge et al. [36].
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7.2.2 Polyominoes

General issues of computer enumeration of clusters have been reviewed by Martin
[22]. His account is more general than is mostly relevant for the polygon case. The
most important point is the need for an easily-computed canonical labeling to ensure
that each distinct object is counted exactly once.

In Ising model expansions, an important technique which is applicable to bipar-
tite lattices is the method of partial generating functions [28]. This transforms the
model by performing a summation over all possible states of one sublattice. The
original series expansion is recovered by algebraic transformation of a multivari-
ate series expansion on the remaining sublattice. This approach was extended to
various forms of cluster expansion in a series of papers by Sykes and co-workers
[29, 30, 31, 32, 33, 34]. An alternative approach to using sublattice expansions to
enumerate percolation statistics was given by Enting [7]. This approach was based
on the expression of bond percolation clusters as the q → 1 limit of the q-state Potts
model. In principle, a similar limit for loop expansions may be able to give a sublat-
tice expansion for polygons, but it seems that this possibility has not been exploited.

7.2.3 Polygons

Rushbrooke and Eve [25] gave the enumeration of polygons on square and sim-
ple cubic lattices to 18 and 12 steps, respectively, all counted by hand, duplicating
results of Wakefield [38] and unpublished results by Sykes. They also reported the
count of 14-step simple cubic polygons obtained by 50 hours of machine time. They
later [26] reported the count of 16-step simple cubic polygons, with a description of
the algorithm:

• take an algorithm for counting self-avoiding walks, e.g. as described by Martin
[21], and count the cases that return to the origin;

• exploit the symmetry by forcing the first step to be in the +X direction;
• terminate construction whenever the end-point gets too far from the origin to be

able to return within the requisite number of steps;
• note that what is being counted is 2n pn/z where z is the lattice coordination

number.

In addition, a number of ‘counting theorems’ were developed relating enumera-
tions of various classes of graph. These were mainly applied to the enumeration of
self-avoiding walks and are not considered here.

A ‘dimerisation’ approach, building paths from pairs of pre-computed walks, has
been described by Torrie and Whittington [35]. Macdonald et al. [20] described an
extension involving building paths from three pre-computed components.

An alternative form of enumeration was to extend walks and polygons by adding
k steps at a time. Algorithms of this type have recently been described by Clisby et
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al [2]. As with the finite lattice expansions described below, one of the key compu-
tational trade-offs is between execution time and storage requirements.

7.3 Transfer Matrix Techniques

We start by describing transfer matrix techniques for the enumeration of staircase
polygons. We have already seen in Chapter 3 that this model can be solved exactly
by both perimeter and area. However, the model serves perfectly as a gentle intro-
duction to transfer matrix techniques.

7.3.1 Staircase Polygons

Recall that a staircase polygon can be seen as consisting of two directed walks start-
ing at the origin, moving only to the right and up, and terminating once the walks
join at a vertex. If we look at a diagonal line x + y = k + 1/2 then for any integer
k this line will intersect a polygon at 0 (miss the polygon) or 2 edges (intersect the
polygon), see Fig. 7.2. We start with k = 0 such that the line intersects the first two
edges of the staircase polygon. We then move the line upward (increase k by 1) and
as we do this we add an edge to each walk. There are only four new configurations
corresponding to the four possible steps. We need only keep track of the gap be-
tween the two walks, where the gap is the minimal number of iterations required in
order to join the two walks. As we move the line, the gap is either increased by a
unit (the upper walk moves up and the lower walk moves right), decreased by a unit
(the upper walk moves right and the lower walk moves up) or remains constant in
two possible ways (both walks move up or right). These moves are illustrated in the
right-most panel of Fig. 7.2.

Fig. 7.2 The left panel shows a typical staircase polygon bisected in two place by a boundary line
(dashed line). On the right we show the four possible new configuration arising as the boundary
line is moved one step forwards.
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Let C(k)
j be the number of configurations with a gap of j after k iterations. We

then have the following very simple algorithm: Set C(0)
1 = x (where x is a variable

conjugate to the half-perimeter of the polygon). Run through all the possible val-

ues of the new gap j = 1, . . . ,k + 1 and do the following updates: C(k+1)
j+1 :

+
=xC(k)

j ,

C(k+1)
j−1 :

+
=xC(k)

j and C(k+1)
j :

+
=2xC(k)

j . Here a :
+
=b is short-hand for assign to a the

value a + b. The coefficient of the term xC(k)
1 is the number of staircase polygons

of half-perimeter k + 2. Note that the use of the variable x is somewhat superfluous
in the case of staircase polygons since the generating function at iteration k is just

xk+1C(k)
j , but it is included here for reasons of generality and in most other cases the

generating function will be a (non-trivial) polynomial in x. Naturally we need not

actually keep all the entries C(k)
j since only the current and subsequent values are

needed for the calculation so we can replace C(k)
j with C(k′)

j , where k′ = k mod 2.
We just have to initially set to zero all entries in the next step and keep a running
total S(k) of the number of staircase polygons. In almost all applications of enumer-
ation algorithms we are only interested in calculation up to a certain pre-set maximal

order n. This means that we can ignore some further entries in C(k)
j because they cor-

respond to counting staircase polygons larger than n. More precisely we have that
the half-perimeter is increased by 1 in each iteration and a gap of size j requires a

further j iterations to close so that the entry in C(k)
j contributes to staircase polygons

of size at least k + j. Thus if k + j > n we can ignore this entry (in particular we
always require that the gap j ≤ n/2). This is an example of what we shall refer to as
pruning, that is to say the discarding of any superfluous configurations.

Formally we can view the transformation from the set of states C(k)
j to C(k+1)

j as a
matrix multiplication (hence our use of the nomenclature transfer matrix algorithm)
with k counting the number of iterations of the transfer matrix algorithm. However,
as can be readily seen from the algorithm the transfer matrix is extremely sparse and
there is generally no reason to list it explicitly (it is given implicitly by the updating
rules). However, to illustrate the point we shall list the transition (or transfer) matrix
TTT , which has entries

ti, j =





2 i = j
1 |i− j| = 1,
0 otherwise,

explicitly

TTT =




2 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
0 1 2 1 0 0 0 . . .
0 0 1 2 1 0 0 . . .
0 0 0 1 2 1 0 . . .
...

...
...

. . .




The number of staircase polygons of perimeter 2n is the (1,1) element t(n−1)
1,1 in

TTT n−1. In this way we find the series Pstair(x) = x2 + 2x3 + 5x4 + 14x5 + · · · .
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7.3.1.1 Enumeration by Area

The use of generating functions when counting staircase polygons by perimeter is
trivial. A less trivial and therefore more illuminating case is the enumeration of
staircase polygons by area. A configuration with gap j contributes an addition of j
units of area. So with q the variable conjugate to area we get the following algorithm:

Set C(0)
1 = 1. Run through all possible gaps j = 1, . . . ,k + 1 and do the following

updates: C(k+1)
j+1 :

+
=q jC(k)

j , C(k+1)
j−1 :

+
=q jC(k)

j and C(k+1)
j :

+
=2q jC(k)

j . The result after
the first few iterations is:

C(0)
1 = 1

C(1)
1 = 2qC(0)

1 = 2q

C(1)
2 = qC(0)

1 = q

C(2)
1 = 2qC(1)

1 + q2C(1)
2 = 4q2 + q3

C(2)
2 = qC(1)

1 + 2q2C(1)
2 = 2q2 + 2q3

C(2)
3 = q2C(1)

2 = q3

C(3)
1 = 2qC(2)

1 + q2C(2)
2 = 8q3 + 4q4 + 2q5

C(3)
2 = qC(2)

1 + 2q2C(2)
2 + q3C(2)

3 = 4q3 + 5q4 + 4q5 + q6

C(3)
3 = q2C(2)

2 + 2q3C(2)
3 = 2q4 + 2q5 + 2q6

C(3)
4 = q3C(2)

3 = q6

Notice that in this case (unlike in the enumeration by perimeter) the entries C(k)
j

are non-trivial polynomials in q. The term qC(k)
1 counts the contribution to the area

generating function of staircase polygons of half-perimeter k + 1

A (q) = ∑
k

qC(k)
1 .

In matrix form we have

TTT =




2q q 0 0 0 0 0 . . .
q2 2q2 q2 0 0 0 0 . . .
0 q3 2q3 q3 0 0 0 . . .
0 0 q4 2q4 q4 0 0 . . .
0 0 0 q5 2q5 q5 0 . . .
...

...
...

. . .




In this case pruning is a little more interesting. The creation of a gap j involves
inserting at least ∑ j−1

i=1 i units of area and closing the gap takes at least ∑ j
i=1 i units of
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area for a total of at least j2. If k ≥ j a further k + 1− j must have been used. So if
j2 + k + 1− j > n we can discard this entry.

In this way we find the series A (q) = q + 2q3 + 4q3 + · · · .

7.3.2 Convex Polygons

Convex polygons have been enumerated by Guttmann and Enting using transfer
matrix techniques [12]. Here we briefly describe their algorithm. The number of
convex polygons can be counted by considering bounding rectangles of width w
and length l. Let Cw,l denote the number of convex polygons with minimal bound-
ing rectangle w× l. The convexity constraint implies that all such convex polygons
have half-perimeter w+ l. Due to the symmetry of the square lattice Cw,l = Cl,w we
need consider only rectangles with l ≥ w. The half-perimeter generating function
for convex polygons is

C(x) =
∞

∑
w=1

Cw,wx2w + 2
∞

∑
w=1

∞

∑
l=w+1

Cw,lx
w+l

?

6

?

?

6

?

Fig. 7.3 Examples of the types of configurations counted by NNNl
i, j, UUUl

i, j and BBBl
i, j respectively. The

arrows indicate the directions in which the edges must move.

A vertical boundary line at position k − 1
2 , k > 0, along the x-axis intersects a

partially completed convex polygon at 2 edges, as indicated by the dashed lines in
Fig. 7.3. The edges are connected forming a loop which extends to the left border
(column 0) of the rectangle. The upper edge can be extended upwards and to the
right until it hits the upper border (at row w) of the rectangle. It then turns around and
can be extended downwards and to the right. Similarly, the lower edge is extended
downwards (and to the right) until it hits the lower border (at row 0) where it turns
before being extended upwards and to the right. By moving the boundary to the
right we can ‘build’ up the rectangle column by column. It suffices to keep track
of the positions i and j of the two edges. Due to the nature of the problem we
have that 0 ≤ i < j ≤ w. For each pair (i, j) there are four possible scenarios: The
polygon has touched none of the borders, only the upper border, only the lower
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0
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=

j < w

n > m,≤ j

m ≥ i, < j

i > 0

0

w

=
j < w

n ≥ j,≤ w

m ≥ i, < j

i > 0

0

w

=

j < w

n > i,≤ j

m ≥ 0,≤ i

i > 0

0

w

=

j < w

n ≥ j,≤ w

m ≥ 0,≤ i

i > 0

0

w

=

j, n = w

m ≥ i, < w

i > 0

0

w

+

j = w

n > m, < w

m ≥ i

i > 0

0

w

=

i, m = 0

n > 0,≤ j

j < w

0

w

+

j < w

n > m,≤ j

m > 0, < j

i = 0

0

w

=

j, n = w

m ≥ 0,≤ i

i > 0

0

w

+

j = w

n > i, < w

m ≥ 0,≤ i

i > 0

0

w

=

i, m = 0

n ≥ j,≤ w

j < w

0

w

+
j < w

n ≥ j,≤ w

m > 0, < j

i = 0

0

w

=

i, m = 0

j, n = w

0

w

+

j, n = w

m > 0, < j

i = 0
0

w

+

i, m = 0

n > 0, < w

j = w

0

w

+

j = w

n > m, < w

m > 0

i = 0

(7.4a)

(7.4b)

(7.4d)

(7.4f)

(7.4c)

(7.4e)

(7.4g)

(7.4h)

(7.4i)

Fig. 7.4 Graphical representation of the transfer matrix equations for convex polygons of width w.
The thick solid lines shows the moves of the edges associated with the sums in Eqs. (7.4a)–(7.4i)
as we move the boundary line (not shown) from position k to position k+1. The thin lines between
the edges shows (schematically) how they are connected to the left of column k and whether or not
the upper and/or lower border has been touched. The horizontal steps are indexed i, j,m,n as in the
equations and the corresponding limits of summation are also indicated.
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border or both borders. To enumerate convex polygons of width w we therefore
introduce four families of matrices NNNk

i, j, UUUk
i, j, LLLk

i, j , and BBBk
i, j, corresponding to the four

scenarios above. Here NNNk
i, j is the number of partially completed convex polygons

after k iterations with edges at positions i and j such that neither the lower nor
the upper border of the rectangle has been touched. Similarly for the other three
matrices. The number of convex polygons in a w× l rectangle is then Cw,l = ∑i, j BBBl

i, j.
Initially all entries in the matrices are set to 0 except:

NNN1
i, j = 1 0 < i < j < w (7.3a)

UUU1
i,w = 1 0 < i < w (7.3b)

LLL1
0, j = 1 0 < j < w (7.3c)

BBB1
0,w = 1 (7.3d)

The updating rules for the matrices are:

NNNk+1
i, j =

j−1

∑
m=i

j

∑
n=m+1

NNNk
m,n 0 < i < j < w (7.4a)

UUUk+1
i, j =

j−1

∑
m=i

w

∑
n= j

UUUk
m,n 0 < i < j < w (7.4b)

UUUk+1
i,w =

w−1

∑
m=i

UUUk
m,w +

w−2

∑
m=i

w−1

∑
n=m+1

NNNk
m,n 0 < i < w (7.4c)

LLLk+1
i, j =

i

∑
m=0

j

∑
n=i+1

LLLk
m,n 0 < i < j < w (7.4d)

LLLk+1
0, j =

j

∑
n=1

LLLk
0,n +

j−1

∑
m=1

j

∑
n=m+1

NNNk
m,n 0 < j < w (7.4e)

BBBk+1
i, j =

i

∑
m=0

w

∑
n= j

BBBk
m,n 0 < i < j < w (7.4f)

BBBk+1
i,w =

i

∑
m=0

BBBk
m,w +

i

∑
m=0

w−1

∑
n=i+1

LLLk
m,n 0 < i < w (7.4g)

BBBk+1
0, j =

w

∑
n= j

BBBk
0,n +

j−1

∑
m=1

w

∑
n= j

UUUk
m,n 0 < j < w (7.4h)

BBBk+1
0,w =BBBk

0,w +
w−1

∑
m=1

UUUk
m,w +

w−1

∑
n=1

LLLk
0,n +

w−2

∑
m=1

w−1

∑
n=m+1

NNNk
m,n (7.4i)

The updating of the matrix NNNk
i, j is given in eq. (7.4a) and illustrated graphically

in Fig. 7.4. In this case neither the top nor the bottom border of the rectangle has
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been touched yet. The final positions i and j of the lower and upper edges must
therefore satisfy 0 < i < j < w. Let m and n be the position of the lower and upper
edge, respectively, before moving the boundary a step forwards. The lower edge
must move downwards while the upper edge must move upwards (before taking a
step to the right). Hence m can range from i to j−1 while n can range from m+ 1
to j. This ensures that the edges move in the prescribed direction and don’t cross
(n > m) and of course they are not allowed to ‘over-shoot’ and hence m ≥ i and
n ≤ j. The updating rules for the other matrices can be derived similarly. In general
there is a formula for how the matrices are updated in the ‘interior’ of the rectangle
when 0 < i < j < w, see equations (7.4b), (7.4d) and (7.4f). In addition for UUUk

i,w,

eq. (7.4c), (and LLLk
0, j, eq. (7.4e)) there is a formula for updating at the upper (lower)

border where contributions from NNNk
m,n have to be added. Finally for BBBk

i, j there are

the three special cases: firstly BBBk
i,w, eq. (7.4g), where the top border is touched (but

the bottom is not), secondly BBBk
0, j, eq. (7.4h), where the bottom border is touched,

and thirdly BBBk
0,w, eq. (7.4i), where both borders are touched.

7.4 Transfer Matrix Algorithms for Self-Avoiding Polygons

Enting [6] was the first to use transfer matrix techniques to enumerate self-avoiding
polygons. The original application was to square lattice SAPs counted by perime-
ter. Following this initial work the method was generalised to other lattices and to
enumeration by area. The next qualitative advance was the use of pruning by Jensen
and Guttmann [18] to produce an exponentially faster algorithm. Jensen [16] has
also implemented efficient parallel versions of the algorithm.

Below we briefly review the common features of the finite-lattice method and
transfer matrix techniques. We then give a detailed description of the square lattice
algorithm and a brief outline of the honeycomb and triangular lattice algorithms.

The first terms in the series for the polygon generating function can be calcu-
lated by using transfer matrix techniques to count the number of polygons in finite
sub-lattices. The generating function for the number of SAPs per vertex of the in-
finite lattice is obtained by combining the contributions from these sub-lattices. On
the square lattice the obvious and natural choice is rectangles w cells wide and l
cells long. Due to the symmetry of the square lattice one need consider only rect-
angles with l ≥ w. For other lattices there may be many ‘natural’ choices for the
finite sub-lattices. However, for regular lattices one can generally always choose an
implementation using w× l rectangles and in practice this is what we have always
chosen to do.

In implementations of the finite lattice method two types of finite lattice gen-
erating functions have been widely used. The first of these is Lwl(x) which counts
the number of polygons of length exactly l fitting within a w × l rectangle, that
is polygons which touch the left and right side of the rectangle. The second type
of generation function is Gwl(x) which counts the number of polygons of length
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exactly l and width exactly w, that is polygons which touch all the sides of the rect-
angle. Lwl(x) counts polygons of width w′ < w several times, w−w′ +1 times to be
precise, so that

Lwl(x) =
w

∑
k=1

(w− k + 1)Gwl(x)

In applying the transfer matrix technique to the enumeration of polygons we
regard them as sets of edges on the finite lattice with the properties:

(1) A weight x is associated with each occupied edge.
(2) All vertices are of degree 0 or 2.
(3) Apart from isolated sites, the graph has a single connected component.
(4a) In implementations using Lwl(x) each graph must span the rectangle from left

to right.
(4b) In implementations using Gwl(x) each graph must span the rectangle from left

to right and from bottom to top.

The most important change to the transfer matrix algorithm from the implemen-
tations in the previous section is that rather than adding a whole column at a time,
we build up each column by adding a single lattice cell at a time (details will be
given below). We shall refer to the boundary line configuration prior to a move
as the ‘source’ and after the move as the ‘target’. There are two major advantages
to this approach. Firstly, the boundary line can intersect a generic SAP in many
places (not just a few as in the previous simple examples) and the loops bisected
by the boundary line can be nested within one another in a complicated fashion.
This would make adding a column at a time quite complicated. By building up each
column cell by cell the possible updates and transformations of the configurations
along the boundary line become much simpler. Secondly, and more importantly, this
implementation of the transfer matrix algorithm is much more efficient. The number
of possible configurations along the boundary line grows exponentially with w, say
as NConf ∝ λ w. If we add a whole column at once then each configuration can give
rise to a sub-set of the total number of configurations of a size proportional to NConf.
This means that the total number of operations required to add a column grows like
N2

Conf ∝ λ 2w. However, when adding a single cell at a time a given source configura-
tion gives rise to only a few (one or two on the square lattice) target configurations.
So the total number of operations grows like wNConf ∝ wλ w.

7.4.1 Square Lattice

In the original application [6], valid polygons were required to span the enclosing
rectangle in the lengthwise direction. Clearly polygons with projection on the y-axis
< w, that is polygons which are narrower than the width of the rectangle, are counted
many times. As described above, it is easy to obtain the polygons of width exactly
w and length exactly l from this enumeration. Any polygon spanning such a rectan-
gle has a perimeter of length at least 2(w+ l). By adding the contributions from all
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rectangles of width w ≤ wmax (where the choice of wmax depends on available com-
putational resources, as discussed below) and length w ≤ l ≤ 2wmax −w + 1 (with
contributions from rectangles with l > w counted twice) the number of polygons per
vertex of an infinite lattice is obtained correctly up to perimeter 4wmax + 2.

0

1

1

2

1

2

2

Fig. 7.5 A snapshot of the boundary line (dashed line) during the transfer matrix calculation on
the square lattice. Polygons are enumerated by successive moves of the kink in the boundary line,
as exemplified by the position given by the dotted line, so that one vertex at a time is added to
the rectangle. To the left of the boundary line we have drawn an example of a partially completed
polygon. The numbers along the boundary line is the encoding of the edge states of the loops
intersected by the boundary line.

The transfer matrix technique involves drawing a boundary line through the rect-
angle intersecting a set of up to w + 2 edges. Polygons in a given rectangle are
enumerated by moving the boundary line so as to add one vertex or lattice cell at
a time, as shown in Fig. 7.5. In this fashion we build up the rectangle column by
column with each column built up vertex by vertex. As we move the boundary line
it intersects partially completed polygons consisting of disjoint loops. Eventually
all the loops must be connected to form a single polygon. For each configuration
of occupied or empty edges along the intersection we maintain a (perimeter) gen-
erating function for open loops to the left of the line cutting the intersection in that
particular pattern. The updating of the generating functions depends primarily on
the states of the two edges at the kink in the boundary line prior to the move (we
shall refer to these edges as the kink edges). As the boundary line is moved the two
new edges intersected by the boundary line can be either empty or occupied. We
shall now briefly outline how the constraints (1)–(4) can be satisfied.

Constraint (1) is trivial to satisfy. We just multiply the generating function of the
source configuration by x j, where j is the number of newly added steps, and add the
result to the generating function of the target configuration.

Constraint (2) is easy to satisfy. If both kink edges were empty we can leave
both new edges empty or insert a partial new loop by occupying both of the new
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edges. If one of the kink edges was occupied then one of the new edges must also
be occupied. If both of the kink edges are occupied both of the new edges must be
empty. It is easy to see that these rules leads to graphs satisfying constraint (2).

Fig. 7.6 Three ways in which graphs with separate components could occur.

Constraint (3) is the most difficult to satisfy. We have shown some examples of
two-component graphs in Fig. 7.6. Graphs of the type shown in the left-most panel,
where separate components occur side by side, are quite easy to avoid by never
allowing the insertion of a new loop into the totally empty configuration except
while building up the first column. This also ensures that all polygons touch the
left-most border of the rectangle. There are only two distinct ways in which a pair
of loops can be placed relative to one another—side by side or nested—as shown in
the left-most panels of Fig. 7.7.
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Fig. 7.7 Illustration of how two partial loops can be placed relative to one another (left-most
panels), how they can be connected to form a single loop (middle panels), and connections leading
to graphs with more than one component (right-most panels). The numbers along the boundary line
show how the configurations can be uniquely encoded in a computer program (see text for details).
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The way to avoid situations leading to graphs with more than a single component,
such as shown at the top right of Fig. 7.7, is to forbid a loop to close on itself if the
boundary line intersects any other loops. So two loop ends can only be joined if they
belong to different loops or all other edges are empty. To exclude loops which close
on themselves we need to label the occupied edges in such a way that we can easily
determine whether or not two loop ends belong to the same loop. The most obvious
choice would be to give each loop a unique label. However, on two-dimensional
lattices there is a more compact scheme relying on the fact that two loops can never
intertwine. Each end of a loop is assigned one of two labels depending on whether it
is the lower end or the upper end of a loop. Each configuration along the boundary
line can thus be represented by a set of edge states {σi}, where

σi =





0 empty edge,
1 lower end of a loop,
2 upper end of a loop.

(7.5)

Configurations are read from the bottom to the top. The configuration along the in-
tersection of the partially completed polygon in Fig. 7.5 is {0112122} and further
examples of this encoding are given in Fig. 7.7. It is easy to see that this encod-
ing uniquely describes which loop-ends are connected. In order to find the upper
loop-end, matching a given lower end, we start at the lower end and work upwards
in the configuration counting the number of ‘1’s and ‘2’s we pass (the ‘1’ of the
initial lower end is not included in the count). We stop when the number of ‘2’s
exceeds the number of ‘1’s. This ‘2’ marks the matching upper end of the loop. It is
worth noting that there are some restrictions on the possible configurations. Firstly,
every lower loop-end must have a corresponding upper end, and it is therefore clear
that the total number of ‘1’s is equal to the total number of ‘2’s. Secondly, as we
look through the configuration starting from the bottom, the number of ‘1’s is never
smaller than the number of ‘2’s. Ignoring the ‘0’s, the ‘1’s and ‘2’s can be viewed
as perfectly balanced parentheses. Those familiar with algebraic languages will im-
mediately recognize that each configuration of labeled loop-ends forms a Motzkin
word [4].

Constraint (4a) is automatically satisfied by the rules described above to satisfy
constraint (3). In order to satisfy constraint (4b) we need to add more informa-
tion to a configuration. In addition to the usual labeling of the intersection with the
boundary line, we also have to indicate whether the partially completed polygon has
reached neither, the lower, the upper or both borders of the rectangle.

In order to represent a given partial polygon we have to add some information
to the usual set of edge states {σi}. We add two extra ‘virtual’ edge states σb and
σt , where σb is 0 or 1 if the bottom of the rectangle hasn’t or has been touched
and similarly σt is 0 or 1 if the top of rectangle hasn’t or has been touched. A
boundary state is denoted as {σ0 . . .σw+1;σbσt}. Note that when the boundary line
is completely vertical it intersects only w edges (rather than the usual w + 1 edges
when it has a kink) and σw+1 is thus unassigned. We mark this by a ∗ (though we
encode it by a 0 in the actual program). Thus the set of edge states of the partial
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polygon in Fig. 7.5 is {0112122;11}, since the polygon has touched both borders of
the rectangle.

At first glance it would appear to be inefficient to calculate Gwl(x) directly rather
than use Lwl(x) since for many boundary line configurations we now have to keep 4
distinct generating functions depending on which borders have been touched. How-
ever, as demonstrated in practice [18], it actually leads to an algorithm which is
both exponentially faster and whose memory requirement is exponentially smaller.
Realizing the full savings in time and memory usage require enhancements to the
original algorithm. The most important is that of pruning. This procedure, details of
which are given below, allows us to discard most of the possible configurations for
large w because they contribute only to polygons of length greater than 4wmax + 2.
Briefly this works as follows. Firstly, for each configuration we keep track of the cur-
rent minimum number of steps ncur already inserted to the left of the boundary line
in order to build up that particular configuration. Secondly, we calculate the mini-
mum number of additional steps nadd required to produce a valid polygon. There are
three contributions, namely the number of steps required to close the polygon, the
number of steps needed (if any) to ensure that the polygon touches both the lower
and upper border, and finally the number of steps needed (if any) to extend at least w
edges in the length-wise direction (remember we only need rectangles with l ≥ w).
If the sum ncur +nadd > 4wmax +2 we can discard the partial generating function for
that configuration, and of course the configuration itself, because it won’t make a
contribution to the polygon count up to the perimeter lengths we are trying to obtain.
For instance, polygons spanning a rectangle with a width close to wmax have to be
almost convex, so very convoluted polygons are not possible. Thus configurations
with many loop ends (non-zero entries) make no contribution at perimeter length
≤ 4wmax + 2.

7.4.1.1 Derivation of Updating Rules

In this section we give a detailed description of how one derives the updating rules
for the generating functions for partially completed polygons. Table 7.1 lists the
possible local ‘input’ states as well as the ‘output’ states which arise as the kink in
the boundary is propagated by one step, so as to include a vertex not situated at the
top- or bottom-most borders of the rectangle. The most important boundary edges
are the vertical edge intersecting the horizontal part of the boundary line and the
horizontal edges immediately below and to the left. This is the position in which the
lattice is being extended and the state of these edges determines the possible states
of the newly added edges (the horizontal edge to the right and the vertical edge
below the kink) intersected in Fig. 7.5 by the dotted line. In addition the state of
an edge further afield may have to be changed if two loops of a partially completed
polygon are joined at the kink.

00: Both kink edges in the input state are empty. We can leave the new edges
empty or occupy both by inserting a new loop leading to the two output states
‘00’ (weight 1) and ‘12’ (weight x2), respectively. These are the only possibilities
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Table 7.1 The various ‘input’ states and the ‘output’ states which arise as the boundary line
(dashed line) is moved in order to include a vertex. Full lines indicate the four local edges involved
in the update. Thick edges are occupied by a part of the polygon and the loops indicate how these
edges are connected to other edges intersected by the boundary line.

‘00’ ‘00’ ‘12’ ‘01’ ‘10’ ‘01’ ‘02’ ‘20’ ‘02’

‘10’ ‘10’ ‘01’ ‘11’

2

2

‘0̂0’

2

1

‘12’ Add

‘20’ ‘20’ ‘02’ ‘21’

2

1

‘00’

2

1

‘22’

1

1

‘0̂0’

2

1

because the added vertex must have degree 0 or 2 according to constraint (2).
Only the boundary states in the kink are changed in this update and all other
edge states remain fixed.
01: The vertical edge is occupied by a lower loop end while the horizontal edge
is empty. Constraint (2) forces us to occupy one and only one of the new edges.
So we either continue straight down to output state ‘10’ or make a 90◦ turn to
output state ‘01’. Each of these updates picks up a weight x.
02: Same as above except the vertical edge intersects an upper loop end.
10: Similar to input ‘01’ except it is the horizontal edge which is occupied.
20: Similar to input ‘02’ except it is the horizontal edge which is occupied.
11: Both edges in the input state are occupied by lower loop ends. Constraint (2)
forces us to leave both new edges empty. We are joining two loops so in addition
to setting the output states to ‘0’ we have to change the matching upper end of
the inner-most loop to a lower end in the new boundary state. This relabeling is
indicated in table 7.1 by putting a ‘hat’ over the output states.
22: Same as for ‘11’ except we are joining two upper loop ends and we have to
relabel the matching lower loop end as an upper end (see the middle lower panel
of Fig. 7.7).
21: The horizontal edge in the input state is occupied by an upper loop end while
the vertical edge is a lower loop end. Constraint (2) forces us to leave both new
edges empty. We set the output states to ‘0’ and no further changes are required.
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12: The horizontal edge in the input state is occupied by a lower loop end while
the vertical edge is an upper loop end. This means that we are closing a loop
on itself (note that the two loop ends must belong to the same loop because a
polygon has no self-intersections). This is only allowed if all other boundary
states are empty. The generating function is accumulated into the running total
for the given length.

The updating at the top border uses the same rules as above but with the addi-
tional restriction that σw+1 = 0 while σw 6= 1. The only additional rule is that if we
are calculating Gwl(x) we need to set σt = 1 when inserting a new loop in the ‘00’
input state.

The updating at the bottom border also uses the same rules as above but these are
restricted in that σ0 = 0 in the output state. Since the first non-zero state must be a ‘1’
we get the updating rules: ‘00’→ ‘00’; ‘10’ or ‘01’→ ‘01’; ‘11’→ ‘0̂0’; and ‘12’→
‘accum’. After applying these rules we shift the whole boundary line configuration
by one unit, e.g., we set σi = σi+1 for i from 0 to w and we set σw+1 = 0. In this case,
if we are calculating Gwl(x), we need to set σb = 1 if the input state had any non-zero
entries. Finally, we may apply the symmetry transformation described below.

7.4.1.2 Symmetry

Symmetries of the underlying lattice can be used to reduce the number of configura-
tions we need to retain in any given calculation. We have already seen how the basic
symmetry of the square lattice allows us to reduce the computational complexity,
since we need only consider rectangles with l ≥ w because Gwl(x) = Glw(x). We
note here that there is a further symmetry which we can use. After a column has
been completed (and the boundary line is completely vertical) configurations are
symmetric with respect to reflections. That is, configurations such as {010200∗;11}
and {001020∗;11} have the same generating function. The first configuration is a
single loop whose lower end is 1 unit from the bottom of the rectangle with the upper
end 2 units from the top of the rectangle while both borders have been touched. The
second configuration is a single loop with the lower end 2 units from the bottom of
the rectangle, the upper end 1 unit from the top of the rectangle while having touched
both borders. Given the symmetry of the square lattice it is clear that any partially
completed polygon resulting in the first configuration must have a matching sym-
metric polygon leading to the second configuration. So their generating functions
must be identical and we can discard one of them while multiplying the other gener-
ating function by 2. Similarly the configurations {010200∗;10} and {001020∗;01}
have the same loop ends as before but the first has touched only the bottom of the
rectangle while the second has touched only the top of the rectangle. Again symme-
try dictates that they must have the same generating function.
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7.4.1.3 Pruning

Fig. 7.8 Examples of partially generated polygons (thick solid lines) to the left of the intersection
(dashed line) and how to close them in a valid way (thick wavy line). Upper left panel shows how
to close the configuration {12112212}. The upper middle and right panels show the two possible
closures of the configuration {11112222}. The lower panels show the three possible closures of
the configuration {11121222}.

The number of steps needed to ensure a spanning polygon is straightforward to
calculate. The complicated part of the pruning approach is the algorithm to calculate
the number of steps required to close the polygon. There are very many special
cases depending on the position of the kink in the intersection and whether or not
the partially completed polygon has reached the bottom and/or top of the bounding
rectangle. So in the following we will only briefly describe some of the simple
contributions to the closing of a polygon.

Firstly, if the partial polygon contains separate pieces these have to be connected
as illustrated in Fig. 7.8. Separate pieces are easy to locate since all we have to do is
start at the bottom of the intersection and as we move upwards we count the number
of ‘1’s and ‘2’s in the configuration. Whenever these numbers are equal a separate
piece has been found and (provided one is not at the last edge in the configuration)
the currently encountered 2-edge can be connected to the next 1-edge above. nadd is
incremented by the number of steps (the distance) between the edges and the two
edge-states are removed from the configuration before further processing. It is a little
less obvious that if the configuration starts (ends) as {112 . . .2} ({1 . . .122}) the two
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lower (upper) edges can safely be connected (note that there can be any number of
‘0’s interspersed between the occupied edges). Again nadd is incremented by the
number of steps between the edges, and the two edge-states are removed from the
configuration—leading to the new configuration {001 . . .2} ({1 . . .200})—before
further processing. After these operations we may be left with a configuration which
has just a single 1-edge and a single 2-edge. We are almost done since these two
edges can be connected to form a valid polygon. This is illustrated in Fig. 7.8 where
the upper left panel shows how to close the partial polygon with the intersection
{12112212}, which contain three separate pieces. After connecting these pieces we
are left with the configuration {10012002}. We now connect the two 1-edges and
note that the first two-edge is relabeled to a 1-edge (it has become the new lower end
of the loop). Thus we get the configuration {00001002} and we can now connect
the remaining two edges and end up with a valid completed polygon. Note that in
the last two cases, in addition to the steps spanning the distance between the edges,
an additional two horizontal steps had to be added in order to form a valid loop
around the intervening edges. If the transformation above doesn’t result in a closed
polygon we must have a configuration of the form {111 . . .222}. The difficulty lies
in finding the way to close such configurations with the smallest possible number
of additional steps. Suffice to say that if the number of non-zero entries is small one
can easily devise an algorithm to try all possible valid ways of closing a polygon
and thus find the minimum number of additional steps.

In Fig. 7.8 we show all possible ways of closing polygons with 8 non-zero entries.
Note that we have shown the generic cases here. In actual cases there could be
any number of 0-edges interspersed in the configurations and this would determine
which way of closing would require the least number of additional steps.

7.4.1.4 Computational Complexity

The time required to obtain the number of polygons on w× l rectangles grows ex-
ponentially with w. Time and memory requirements are basically proportional to
the maximal number of distinct configurations along the boundary line. When there
is no kink in the intersection (a column has just been completed) we can calculate
this number, Nconf(w), exactly. Each boundary line configuration consists of ‘0’s
and an equal number of ‘1’s and ‘2’s with the latter forming a perfectly balanced
parenthesis system. This corresponds to a Motzkin path [27, Ch. 6] (just map 0 to
a horizontal step, 1 to a north-east step, and 2 to a south-east step). The number
of Motzkin paths Mn with n steps is easily derived from the generating function
M (x) = ∑n Mnxn, which satisfies, M (x) = 1 + xM (x)+ x2M 2(x), so that

M (x) = [1− x−
√

(1 + x)(1−3x)]/2x2. (7.6)

When the boundary line has a kink the number of configurations exceeds Nconf(w)
but clearly is less than Nconf(w+1). From (7.6) we see that asymptotically Nconf(w)
grows like 3w (up to a power of w). So the same is true for the maximal number
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of boundary line configurations and hence for the computational complexity of the
algorithm. Note that the total number of SAPs grows like µ2n (where µ ≃ 2.638 on
the square lattice), while the complexity of the transfer matrix algorithm grows as
3n/4. Since 4

√
3 ≃ 1.316 we see that even the basic algorithm without pruning leads

to a very substantial exponential improvement over direct enumeration.
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Fig. 7.9 The maximal number of configurations (circles) and terms (squares) required in order
to count the number of SAPs up to perimeter n. The solid line is drawn as a guide to the eye and
would correspond to a growth rate of exactly 2.061/4 = 1.198 . . ..

Pruning results in a further exponential improvement to the algorithm. In this
case the algorithm is too complicated to be analysed exactly. Instead we simply run
the algorithm with different cut-offs n and monitor the maximal number of config-
urations required during the calculation of the number of polygons of size up to n.
In Fig. 7.9 we plot the maximal number of configurations and terms required as a
function of n. We clearly see an exponential growth with n and we find a growth
constant λ ≈ 2.061/4 ≃ 1.198 . . . which is a vast improvement on the unpruned al-
gorithm where λ = 31/4 ≃ 1.316 . . ..

7.4.2 Honeycomb Lattice

Enting and Guttmann [9] were the first to use transfer matrix techniques to enumer-
ate SAPs on the honeycomb lattice. They implemented the honeycomb lattice as a
square lattice with some edges removed, resulting in a brickwork lattice (Fig. 7.10).
The basic transfer matrix algorithm is essentially identical to the square lattice case
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and we shall provide no further details here. The only major point of difference
to notice is that the honeycomb lattice lacks the usual rotational symmetry of the
square lattice so the generating functions of w× l and l×w rectangles are no longer
identical. Efficiency therefore dictates that the cases w ≤ l and w > l be treated sep-
arately and an algorithm has to be written for each case. However, the differences
between the two cases are minor and relate predominantly to effects at the borders
of the rectangle.

Enting and Guttmann [9] obtained the perimeter generating function to perimeter
82. Jensen [17] implemented pruning and used a parallel version to enumerate SAPs
to length 158. Vöge, Guttmann and Jensen [36] enumerated honeycomb SAPs by
area up to 35. As mentioned in Chapter 1 they are studied in theoretical chemistry
where they are know as models of benzenoid hydrocarbons.

Fig. 7.10 In the left-most panel we show a section of the honeycomb lattice and two rectangular
shaped regions used in the finite lattice method. The right-most panels show how these regions are
mapped to the brickwork lattice.

7.4.3 Triangular Lattice

Self-avoiding polygons on the triangular lattice were first enumerated using the
finite-lattice method by Enting and Guttmann [10]. They implemented the trian-
gular lattice as a square lattice with additional edges connecting the top-left and
bottom-right vertices of each unit cell (see Fig. 7.11). Rectangles of size w× l can
be used as our finite lattices. Due to the symmetry of the triangular lattice we need
consider only rectangles with l ≥ w. As usual with the transfer matrix technique we
intersect the rectangle with a boundary line. In most cases it is most efficient to let
the boundary line cut through the edges of the lattice. However, on the triangular
lattice it is more efficient to let the boundary line cut through the vertices [10]. Es-
sentially this variation leads to only half as many intersected vertices (as opposed
to edges) along the boundary line. As we show below there is a small price to pay



7 Exact Enumerations 165

since we have to introduce a new type of vertex state (in addition to the usual three
edge states empty, lower and upper). But obviously 4w < 32w so we are clearly better
off using this approach. SAPs in rectangles of a given width w are enumerated by
moving the intersection so as to add one vertex at a time, as shown in Fig. 7.11. If
we draw a SAP and then cut it by a line we observe that the partial SAP to the left
of this line consists of a number of loops connecting two vertices. In addition it is
possible that the SAP touches a vertex (that is the SAP comes in along one edge and
exits along another edge but without crossing the boundary line). All these cases are
illustrated in Fig. 7.11.
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Fig. 7.11 A snapshot of the boundary line (dashed line) during the transfer matrix calculation on
the triangular lattice. SAPs are enumerated by successive moves of the kink in the boundary line
so that one vertex (shaded) at a time is added to the rectangle. To the left of the boundary line we
have drawn an example of a partially completed SAP.

Each configuration along the boundary line can thus be represented by a set of
states {σi}, where

σi =





0 empty vertex,
1 vertex is a lower loop-end,
2 vertex is an upper loop-end,
3 touched (degree 2) vertex,

(7.7)

If we read from the bottom to the top, the configuration along the intersection of the
partial SAP in Fig. 7.11 is {311321022}.
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7.4.3.1 Updating Rules

a

b d

c

-

Fig. 7.12 The four possible outputs from a single iteration of the TM algorithm. Depending on
the states of the three vertices a, b, and d in the input, some of the outputs cannot occur.

In Fig. 7.12 we have illustrated what can happen locally as the boundary line is
moved. Before the move, the boundary line intersects the vertices a, b and d and
after the move the vertices a, c and d are intersected by the boundary line. In a basic
iteration step we can insert steps along the edges emanating from vertex b. Since
vertex b can’t have degree greater than 2 we can insert at most two new steps. How-
ever, depending on the states of vertices a and d in the source, some of the edge
configurations in Fig. 7.12 may be forbidden. The updating of the partial generating
function depends most crucially on the state of vertex b and to a somewhat lesser
extent on the states of the vertices a and d. The basic limitation on the allowed out-
puts are that conditions (2)–(4) must be enforced. In the following we shall briefly
describe how the updating rules are derived.

State of vertex bbb is 0. Since vertex b is empty, all the outputs in Fig. 7.12 are
possible. In the first output we insert no steps. This is always allowed and no
changes are made to the configuration.
In the other three outputs we insert a partial loop. There are restrictions on the
insertion of steps to vertices a and d. We cannot insert a step to a vertex in state
3. Otherwise the first two outputs are always allowed. The last output is a little
more complicated. If vertex a is in state 1 and vertex d is in state 2 we cannot
join the two vertices since this would result in a closed loop.
After the insertion of new steps we have to assign a state to vertex c and quite
possibly change the states of vertices a and d (and perhaps the states of some
other vertices in the target configuration). The state of vertex c will be 0 (no
step), 1 (lower loop-end) or 2 (upper loop-end). Next we consider what happens
to vertices a and d. When these vertices are empty in the source they can take
the values just listed above in the target. If they are occupied in the source they
either retain their state in the target (no steps inserted) or change to state 3 (a step
is inserted). In the latter case we may have to change the state of other vertices
in the target. We may join two lower (upper) loop-ends and then we must change
the matching upper (lower) loop-end of the inner-most loop to the lower (upper)
loop-end of the new joined loop.
State of vertex bbb is 1. A lower end of a loop enters vertex b and it has to be
continued by inserting a single step (partial loops cannot be inserted since this
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would make vertex b of degree 3) either to vertex c which becomes a state 1
vertex; to vertex a if not in state 3 or state 2 (a closed loop would be formed); or
to vertex d if not in state 3. Again we have to change the states of vertices a and
d when a step is inserted on these vertices. If the source state of the vertices was
0 the target state becomes 1, otherwise the target state becomes 3 and as above
we may need to change the state of other vertices as well.
State of vertex bbb is 2. An upper end of a loop enters vertex b. The upper end can
always be continued to vertex c; to vertex d if it is not in state 3; and to vertex a
provided it is not in state 3 or 1 (this would result in a closed loop). The states of
the target vertices are changed as described above.
State of vertex bbb is 3. This is the simplest situation. Vertex b is of degree 2 so
no steps can be inserted and only the output with all empty edges is allowed. The
state of vertex c is 0 and the states of all other vertices are unchanged.

7.4.4 Enumerations by Area

Enumeration by area uses essentially the same transfer matrix algorithm. The up-
dating rules as described above are practically unchanged. The only difference is of
course that we need to count the number of enclosed unit cells rather that the perime-
ter. This is easily accomplished. When the kink in the boundary line is moved we
simply need to determine whether of not the new cell lies inside or outside the poly-
gon. Notice that as we run along the boundary line and pass an occupied edge we
change from the inside to the outside and vice versa. We naturally start by being
outside the polygon. As we move from row 0 to row w and encounter the first oc-
cupied edge we move to the inside, passing the second occupied edge takes us to
the outside again and so on. In other words if there is an odd number of occupied
edges below the new cell, it is on the inside of the polygon and we must multiply
the source generating function by q before adding it to the target generating func-
tion. If on the other hand there is an even number of edges below the new cell it lies
outside the polygon and we merely add the source generating function to the target
generating function.

7.4.4.1 Area-Weighted Moments

The area-weighted moments are quantities of particular interest and they can be
calculated easily from the full perimeter and area generating function

P(x,q) = ∑
n,m

pn,mxnqm, (7.8)

where pn,m is the number of polygons with perimeter n and area m. From this we
get the area-weighted generating functions,
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Pk(x) = (q
∂
∂q

)k
P(x,q)

∣∣∣∣
q=1

= ∑
n

∑
m

mk pn,mxn = ∑
n

p(k)
n xn, (7.9)

and we define the average moments of area for a polygon with perimeter n

〈ak〉n = p(k)
n /pn = ∑

m
mk pn,m/pn. (7.10)

In order to calculate the moments of area through this approach we need to calcu-
late a full two-parameter generating function, which generally will require a lot of
computer memory. If we are only interested in the first few moments there is a much
more efficient approach [3]. We simply replace the variable q by 1+v thus obtaining
the function

F(x,v) = ∑
n,m

pn,mxn(1 + v)m = ∑
n,m

m

∑
k=0

(
m
k

)
pn,mxnvm. (7.11)

Let Fi(x) be the coefficient of vi in F(x,v). Then we see that

F0(x) = ∑
n,m

pn,mxn = P(x),

F1(x) = ∑
n,m

mpn,mxn = P1(x),

F2(x) = ∑
n,m

m(m−1)/2pn,mxn = [P2(x)−P1(x)]/2,

and so on. Thus if we are only interested in the first and second moments of area we
can truncate the series F(x,v) at second order in v and find the relevant moments as
P1(x) = F1(x) and P2(x) = 2F2(x)+F1(x). The growth in memory requirements is
still dominated by the exponential growth in the number of configurations. However,
we have managed to turn the calculation of these moments from a problem with a
prefactor cubic in Wmax (the area is proportional to W 2

max) into a problem with a
prefactor linear in Wmax.

7.4.5 Metric Properties

Here we shall briefly describe how one can obtain information about the metric
properties of SAPs, that is how one can calculate quantities describing the typical
size of SAPs of a given length.

7.4.5.1 Caliper Size

The simplest size measure for a SAP is the caliper size. The caliper size is simply
[24] the average sum of the spans of the polygons in a given direction. First let
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dn = ∑w,l w[xn]Gw,l(x), where as usual Gw,l(x) is the generating function of SAPs
with minimal bounding rectangle w× l. One can also look at higher moments dk

n =

∑w,l wk[xn]Gw,l(x). Then the caliper size is simply 〈Dn〉 = dn/pn, and likewise for
the higher moments. One expects that 〈Dk

n〉≃ nkν . Guttmann and Enting [13] studied
the first two moments of the caliper size for SAPs on the square lattice for n up to
56.

7.4.5.2 Radius of Gyration

The caliper size is trivial to compute and comes essentially for free in our transfer
matrix calculations. However, the series are often not very well behaved and the
estimates for the size exponent ν are therefore not very accurate. It is therefore
important to study other size measures. The obvious choice is to study the mean-
squared radius of gyration. When counting by perimeter this is measured using the
vertices along the perimeter, while in enumeration by area it is more natural to use
the centre-points of the enclosed lattice cells.

In the following we show how the definition of the radius of gyration can be
expressed in a form suitable for a transfer matrix calculation. We use the enumera-
tion by perimeter as our example. Note again that we define the radius of gyration
according to the vertices of the SAP and that the number of vertices equals the
perimeter length. The radius of gyration of n points at positions ri is

n2R2
n = ∑

i> j
(ri − r j)

2 = (n−1)∑
i
(x2

i + y2
i )−2 ∑

i> j
(xix j + yiy j). (7.12)

This last expression is suitable for a transfer matrix calculation. As usual [24] we
actually calculate the generating function, R2

g(x) = ∑n pn〈R2〉nn2xn, because the
coefficients in this series are integer valued. Note that 〈R2〉n is the average radius
of gyration of SAPs with perimeter n. In order to do this we have to maintain five
partial generating functions for each possible boundary configuration σ , namely

• P(x), the number of (partially completed) polygons.
• R2(x), the sum of the squared components of the distance vectors.
• X(x), the sum of the x-component of the distance vectors.
• Y (x), the sum of the y-component of the distance vectors.
• XY (x), the sum of the ‘cross’ product of the components of the distance vectors,

e.g., ∑i> j(xix j + yiy j).

As the boundary line is moved to a new position each target configuration σ
might be generated from source configurations σ ′ in the previous boundary position.
If we again regard our lattice as embedded in a square lattice then the position of a
new added vertex is given by the column number i and row number j. The partial
generation functions are updated as follows
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Fig. 7.13 The transformation from the co-ordinates of the vertices on the honeycomb and trian-
gular lattices to their brickwork and square lattice embeddings.

P(x,σ) = ∑
σ ′

xδ (σ ′)P(x,σ ′),

R2(x,σ) = ∑
σ ′

xδ (σ ′)[R2(x,σ ′)+WR(i, j)P(x,σ ′)],

X(x,σ) = ∑
σ ′

xδ (σ ′)[X(x,σ ′)+WX(i, j)P(x,σ ′)], (7.13)

Y (x,σ) = ∑
σ ′

xδ (σ ′)[Y (x,σ ′)+WY(i, j)P(x,σ ′)],

XY (x,σ) = ∑
σ ′

xδ (σ ′)[XY (x,σ ′)+UX(i, j)X(x,σ ′)+UY(i, j)Y (x,σ ′)]

where δ (σ ′) is the number of steps added to the source configuration σ ′ in order to
produce the target configuration σ . The W ’s and U’s are lattice dependent weights.
In all cases these weights are 0 if the newly added vertex isn’t part of the perimeter
of the polygon. In the case of the square lattice the non-zero weights are quite obvi-
ous. The weights for the honeycomb and triangular lattices can be worked out from
Fig. 7.13.

If the new vertex is part of the perimeter the weights are:
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Square :

{
WX = i
UX = i

WY = j
UY = j

WR = i2 + j2

Triangular :

{
WX = 2i+ j
UX = 2i+ j

WY = j
UY = 3 j

WR = (2i+ j)2 + 3 j2

Honeycomb :

{
WX = i
UX = 3i

WY = 3 j−di, j

UY = 3 j−di, j

WR = 3i2 +(3 j−di, j)
2

di, j = mod(i+ j,2)

7.5 Polyominoes or Lattice Animals

7.5.1 The Square Lattice

The method we use to enumerate polyominoes on the square lattice is based on the
method used by Conway [3] for the calculation of series expansions for percolation
problems, and is similar to the methods for the enumeration of self-avoiding poly-
gons. In the following we give a brief description of the algorithm used to count
polyominoes.

As for SAPs, the number of fixed polyominoes that span rectangles of width w
and length l are counted using a transfer matrix algorithm. By combining the results
for all w × l rectangles with w ≤ wmax and w + l ≤ 2wmax + 1 we can count all
polyominoes up to nmax = 2wmax. Due to symmetry we consider only rectangles
with l ≥ w while counting the contributions from rectangles with l > w twice.

We draw our boundary line through a set of W cells. Polyominoes in rectangles
of a given width are counted by moving the intersection so as to add one cell at a
time, as shown in Fig. 7.14. Each configuration can be represented by a set of states
S = {σi}, where the value of the state σi at position i must indicate first of all if the
cell is occupied or empty. An empty cell is simply indicated by σi = 0. Since we
have to ensure that we count only connected graphs more information is required
if a cell is occupied. We need a way of describing which occupied cells along the
intersection are connected to one another via a set of occupied cells to the left of the
intersection. The most compact encoding of this connectivity is [3]

σi =





0 empty cell,
1 occupied cell not connected to others,
2 first among a set of connected cells,
3 intermediate among a set of connected cells,
4 last among a set of connected cells.

(7.14)

Configurations are read from the bottom to the top. As an example, the configu-
ration along the intersection of the partially completed polyomino in Fig. 7.14 is
S = {201023404}.
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Fig. 7.14 A snapshot of the intersection (solid line) during the transfer matrix calculation on the
square lattice. Polyominoes are enumerated by successive moves of the kink in the intersection,
as exemplified by the position given by the dashed line, so that one cell at a time is added to
the rectangle. To the left of the intersection we have drawn, using shaded squares, an example
of a partially completed polyomino. Numbers along the intersection indicate the encoding of this
particular configuration.

7.5.1.1 The Updating Rules

In Table 7.2 we have listed the possible local ‘input’ states and the ‘output’ states
which arise as the kink in the intersection is propagated by one step. The most
important cell on the intersection is the ‘lower’ one situated at the bottom of the
kink (the cell marked with the second ‘2’ (counting from the bottom) in Fig. 7.14).
This is the position in which the lattice is being extended. Obviously the new cell
can be either empty or occupied. The state of the upper cell (the cell marked ‘3’
in Fig. 7.14) is likely to be changed as a result of the move. In addition the state
of a cell further afield may have to be changed if a branch of a partially completed
polyomino terminates at the new cell or if two independent sections of a partially
completed polyomino join at the new cell.

Details of how these updating rules are derived can be found in [15]. Here a few
comments will have to suffice.

10: The lower cell is an isolated occupied cell and the new cell can be empty
only if there are no other occupied cells on the intersection (otherwise we gen-
erate graphs with separate components) and if both the lower and upper borders
have been touched. The result enumerates valid polyominoes and the partial gen-
erating function is added to the total polyomino generating function.
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Table 7.2 The various ‘input’ states and the ‘output’ states which arise as the intersection is moved
in order to include one more cell of the lattice. Each panel contains two ‘output’ states where the
left (right) most is the configuration in which the new cell is empty (occupied).

Lower\Upper 0 1 2 3 4

0 00 10 01 24 02 23 03 33 04 34

1 add 10 − 24 − 23 − 33

2 00 20 01 23 02 2̂3 02 23 01 24

3 00 30 01 33 02 3̂3 03 33 04 34

4 00 40 01 34 02 33 03 3̂3

14: This situation never occurs. The upper cell is last among a set of occupied
cells, so the cell immediately to its left is also occupied. This in turn is connected
to the lower cell, which therefore cannot be an isolated cell.
20: The lower cell is first among a set of occupied cells, so if the new cell is
empty, another cell in the set changes its state. Either the first intermediate cell
becomes the new first cell, and its state is changed from 3 to 2, or, if there are no
intermediate cells, the last cell becomes an isolated cell, and its state is changed
from 4 to 1. This relabeling of a matching cell is indicated in Table 7.2 by over-
lining.
22: When the new cell is occupied, two separate pieces of the polyomino are
joined. The new cell remains the first cell in the joined piece while the upper
cell becomes an intermediate cell. The last cell in the innermost set of connected
cells also becomes an intermediate cell in the joined piece. We indicate this type
of transformation by putting a hat over the string.

7.5.2 The Honeycomb Lattice

Polyominoes on the honeycomb lattice have been enumerated by transfer matrix
methods [37]. The algorithm is based on the observation that since the honeycomb
lattice has vertices of degree 3 a polyomino is just a SAP (enumerated of course by
area) with an arbitrary number of punctures.

7.5.3 The Triangular Lattice

Polyominoes on the triangular lattice (triominoes) have been enumerated by trans-
fer matrix methods. In this case it is convenient to regard triominoes as site lattice
animals on the hexagonal lattice.
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7.6 Implementation Details

7.6.1 Modular Arithmetic

The integer coefficients of the generating functions can be very large and in partic-
ular much larger than the limit allowed by most computers (264 −1 on 64-bit com-
puters). Furthermore some calculations may involve multiplication further reducing
the size of the largest coefficients one can handle without overflow. The solution
is to do the calculations using modular arithmetic [19]. This involves performing
the calculation modulo various integers mi, so that in a run using mi we calculate
the residues ri,n = pn (mod mi). The Chinese remainder theorem ensures that any
integer has a unique representation in terms of residues. The mi are called moduli
and must be chosen so they are mutually prime, e.g., none of the mi have a common
divisor. If the largest absolute values occurring in the final expansion is N, then we
have to use a number of moduli k such that p1 p2 · · · pk/2 > N.

The calculations for the perimeter (or area) generating functions involve only ad-
ditions so we can use moduli close to the upper limit permitted by the specific com-
puter, say prime numbers of the form 262 − ti on 64-bit machines. The calculation
of the area-weighted moments and the radius of gyration require a lot more memory
for the generating functions (plus the radius of gyration calculation involves multi-
plication with quite large integers) so in this case we normally use prime numbers
of the form 230 − ti for the moduli mi.

7.6.2 Data Management

For fast access the generating functions must be stored in main memory using a data
array. The main task is to find an efficient way of storing this data, that is to say, we
don’t want to waste precious resources so we want to store only what we absolutely
need, and in addition require that access to this stored data must be easy and fast.
Fortunately this is a well-developed area of programming and suitable approaches
are readily available in the literature.

The representation, organisation and management of the data structures required
to perform the calculations efficiently are often matters of personal preference and
should be left to the individual. For this reason we shall only very briefly touch on
two issues. One, that of hashing, is indispensable for efficiency and the other, related
to storage, is useful.

7.6.2.1 Hashing

First we need to transform a state into a ‘key’ which uniquely identifies the state. Re-
call that on the square lattice a boundary state is denoted as σ = {σ0 . . .σw+1;σbσt},
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where σi = 0, 1 or 2 while σb and σt equal 0 or 1. The integer key, S = ∑w+1
j=0 σ j3 j +

σb3w+2 + σt3w+3, is unique. We could use this key as the entry in a large array of
generating functions. However, not every integer in the range 3w+3 + 2× 3w+2 of
all possible key values encodes a configuration. We have already seen that the num-
ber of encoding configurations is bounded between the number of Motzkin paths
of length w + 1 and w + 2. At w = 25 this would mean that less than 0.2% of the
integer keys in the range are actually encoding and with pruning this becomes fewer
still. So using an array over the possible key values would be extremely wasteful
and using some sort of lexicographically ordered list of Motzkin paths would also
be inefficient when pruning is used.

The solution to this problem is the use of hashing. The general idea is that in
cases such as this where the number of realised keys is sparse within the range of
possible key values, we should map the keys to the entries of an array only a little
larger than the number of realised keys. This is done using a so-called hash function.
Ideally one would like the hash function to be injective so that no two occurring keys
are mapped to the same entry. This is known as perfect hashing. In practice this is
very difficult to achieve and we thus generally have to settle for a hash function
which can lead to a small number of keys being mapped to the same entry. These
“collisions” are then treated separately. The most efficient way is generally through
the use of linked lists. Probably the most commonly used type of hash functions
(and the ones we use) are essentially a kind of random number generator, i.e., the
keys are mapped (uniformly) onto the array entries. This can be achieved by using
hash functions of the type:

fhash(S) = ((S×hm mod hp) mod M)

where hm is an integer called the hash multiplier, hp is a prime number and M is
size of the array. Generally hp exceeds the largest possible key value. By varying
hm and hp it should almost always be possible to find a well behaved hash function,
i.e., almost uniform and with few collisions.

Notice that by using linked lists collisions can be managed quite efficiently and
one need not really have M greater than the number of occurring keys.

7.6.2.2 Storage of Generating Functions

In a calculation of the number of polygons up to size n, the terms in the generat-
ing functions for partially completed polygons associated with the configuration σ
could simply be stored in arrays of length n (say using an M×n array). However, this
is quite wasteful. Notice first of all that often (such as on the square or honeycomb
lattices) polygons are of even length. This means that in any occurring generating
function half the terms (either all even or all odd terms) are zero. Furthermore, since
we use pruning for any configuration σ , we know that the smallest polygon we can
construct from σ has perimeter nc = ncur + nadd so we only need store the n− nc

non-zero terms (on the square or honeycomb lattice this number is further reduced
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by a factor of 2). The average number of terms one needs to store grows much more
slowly than n.

In order to manage this data, we use an array H of size M onto which we map
the keys S using our hash function. H is simply pointing to entries in an array C,
with a size greater than the number of occurring keys, where we store information
about the configurations σ . Essentially we keep track of the keys S using linked lists
and H[ fhash(S)] points to the entry in the array C where we start the linked list of
keys mapped to fhash(S). Stored in C is: the key S; information about the generating
function (namely ncur and ns = n−nc, that is the minimum number of steps already
inserted and the number of terms stored in the generating function); a pointer to the
next key entry in the linked list; and a pointer to the entry in an array G at which we
start the storage of the terms in the generating function.

7.6.3 Parallel Algorithms

The computational complexity of the FLM grows exponentially with the number of
terms one wishes to calculate. It is therefore little wonder that implementations of
the algorithms have always been geared towards using the most powerful computers
available. In the past decade or so parallel computing has become the paradigm for
high performance computing. The early machines were largely dedicated massively
parallel processing machines which more recently have been superseded by clusters.

The transfer matrix algorithms used in the calculations of the finite lattice contri-
butions are perfectly suited to parallel computations.

The most basic concerns in any efficient parallel algorithm is to minimise the
communication between processors and to ensure that each processor does the same
amount of work and uses the same amount of memory. In practice one naturally
has to strike some compromise and accept a certain degree of variation across the
processors.

One of the main ways of achieving a good parallel algorithm using data de-
composition is to try to find an invariant under the operation of the updating rules.
That is, we seek to find some property about the configurations along the boundary
line which does not alter in a single iteration. The algorithm for the enumeration
of polygons is quite complicated since not all possible configurations occur due to
pruning, and an update at a given set of edges might change the state of an edge far
removed, e.g., when two lower loop-ends are joined we have to relabel one of the
associated upper loop-ends as a lower loop-end in the new configuration. However,
there still is an invariant since any edge not directly involved in the update cannot
change from being empty to being occupied and vice versa. That is, only the kink
edges can change their occupation status. This invariant allows us to parallelise the
algorithm in such a way that we can do the calculation completely independently
on each processor with just two redistributions of the data set each time an extra
column is added to the lattice.

The main points of the algorithm are summarized below:
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1. With the boundary line straight (having no kinks), distribute the data across pro-
cessors so that configurations with the same occupation pattern along the lower
half of the boundary line are placed on the same processor.

2. Do the TM update inserting the top half of a new column. This can be done
independently by each processor because the occupation pattern in the lower half
remains unchanged.

3. Upon reaching the half-way mark redistribute the data so that configurations with
the same occupation pattern along the upper half of the boundary line are placed
on the same processor.

4. Do the TM update inserting the bottom-half of a new column.
5. Go back to step 1.

The redistribution among processors can be done as follows:

1. On each processor run through the configurations to establish the configuration
pattern c of each configuration and calculate n(c), the number of configurations
with a given pattern.

2. On processor 0 calculate the global sum of n(c).
3. Sort the array n(c) in descending order on processor 0.
4. On processor 0 assign each pattern to a processor p(c) such that:

a. Set pid = 0.
b. Assign the most frequent unassigned pattern c to processor pid .
c. If the number of configurations assigned to pid is less than the number of con-

figurations assigned to processor 0 then assign the least frequent unassigned
patterns to pid until the desired inequality is achieved.

d. set pid = (pid + 1) mod Np, where Np is the number of processors.
e. Repeat from (b) until all patterns have been assigned.

5. Send p(c) to all processors.
6. On each processor run through the configurations sending each configuration to

its assigned processor.

A simple timing of the various subroutines of the parallel algorithm shows that
the typical time to do a redistribution is the same as the average time taken per
iteration in order to move the kink once. Since the maximal time use at nmax = 110,
when enumerating square lattice SAPs by perimeter, occurs at W = 24 there are 24
iterations and just 2 redistributions per added column, so the overall cost of parallel
execution is less than 10%.

7.7 Concluding Remarks

As noted in the introduction, techniques of polygon enumeration have shown a
general trend towards replacing geometric combinatorial complexity with algebraic
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complexity. In two dimensions, this is particularly true of the transfer matrix meth-
ods. As well as the generalisations that we have described in detail, a number of
other cases have been considered. These include interacting polygons [1], punctured
polygons and polyominoes [14], and directed lattices [8]. Furthermore, a number of
these special cases, directed lattices, interactions and ‘holes’ can in principle be
combined with each other and with other generalisations such as areas and spatial
moments described above. Current indications are that there is little to be learnt
from such complications.

Hopefully, the detailed descriptions of this chapter will allow the readers to de-
vise their own FLM algorithms for other enumeration problems, or devise further
improvements to existing FLM algorithms.
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Chapter 8
Series Analysis

Anthony J. Guttmann and Iwan Jensen

8.1 Objective and General Principles

As we have seen in earlier chapters, the problem of determining the critical be-
haviour of various generating functions, such as that for SAP and polyominoes is an
unsolved problem. One is thus forced to resort to numerical methods, of which the
most successful for determining the precise behaviour of a given model on a given
lattice, is the method of exact series expansions. In this method, one generates as
many terms as possible in the generating function, so that if the generating function
is written

F(x) = ∑
n≥0

fnxn,

the coefficient fn which counts the number of objects with some measure of size
indexed by n—typically the perimeter or area—is known for n ≤ N.

The fundamental problem of series analysis is this: Given a finite number of terms
in the series expansion of a function F(x) what can one say about the asymptotic
and in general singular behaviour of F(x) or fn? This after all is a property of the
infinite series. The problem is thus mathematically ill-posed, as given the first N
coefficients of a power series expansion, one can add to it the function xN+1H(x),
for any function H(x). The behaviour of the modified function is then not reflected
in the known series coefficients.

It is thus a (usually) unstated assumption that the coefficients to hand are indeed
representative of the underlying function, so that a careful analysis can then reveal
something of the true large-n behaviour. For the same reason, quoting error bars
in any method of series analysis is fraught with difficulty. It must be understood
that quoted error bars are in no sense rigorous. Often unfortunately they reflect the
optimism of the investigator in the quality of his/her investigations! Usually the best
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one can do is to calculate some mean and variance of a range of estimates, and try
and present evidence that there is no systematic drift of estimates. If there is drift,
one can try and estimate that too.

We will show examples of this type of error analysis, which can, in favourable
cases, give rise to surprisingly accurate critical parameters. Most of the generating
functions pertaining to polygons, polyominoes and polyhedra are believed to have
algebraic singularities, though in most cases this has not been proved. That is to say,
the generating function above is believed to behave as

F(x) ∼ A(1− x/xc)
θ as x → x−c . (8.1)

Hence it follows that

fn = [xn]F(x) ∼ An−θ−1

Γ (θ )xn
c
. (8.2)

Here A is referred to as the critical amplitude, xc as the critical point, and θ as the
critical exponent.

A more comprehensive review of various methods used to analyse and estimate
the asymptotic behaviour of series can be found in [7].

8.2 Ratio Method

The ratio method was perhaps the earliest systematic method of series analysis em-
ployed, and is still a useful starting point, prior to the application of more sophisti-
cated methods. It was first used by M F Sykes in his 1951 D Phil studies, under the
supervision of C Domb. From equation (8.2), it follows that the ratio of successive
terms

rn =
fn

fn−1
=

1
xc

(
1− θ + 1

n
+ O(

1
n
)

)
. (8.3)

From this idea, it is then natural to plot the successive ratios {rn} against 1/n. If the
correction term O( 1

n ) can be ignored, such a plot will be linear, with gradient− θ+1
xc

,

and intercept 1/xc at 1/n = 0.
We show this method in action by considering the application of the ratio method

to the polygon generating function for SAP on the triangular lattice. The first few
terms in the generating function (in fact from p3 to p26) are: 2, 3, 6, 15, 42, 123,
380, 1212, 3966, 13265, 45144, 155955, 545690, 1930635, 6897210, 24852576,
90237582, 329896569, 1213528736, 4489041219, 16690581534, 62346895571,
233893503330, 880918093866. Plotting successive ratios against 1/n results in the
plot shown in Fig. 8.1. The critical point is known [16] to be at xc ≈ 0.240917574 . . .
= 1/4.15079722 . . .. From Fig. 8.1, one sees that the locus of points, after some
initial (low n) curvature becomes linear to the naked eye for n > 15 or so, (corre-
sponding to 1/n < 0.067). Visual extrapolation to 1/xc is quite obvious. A straight
line drawn through the last 4− 6 data points intercepts the horizontal axis around
1/n ≈ 0.13. Thus the gradient is approximately 4.1508−2.8

−0.13 ≈ −10.39, from which
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we conclude that the exponent θ + 1 = −2.50. It is known [19] that the exact value
is θ = −7/2, which is in complete agreement with this simple graphical analysis.

Various refinements of the method can be readily derived. If the critical point is
known exactly, it follows from equation (8.3) that estimators of the exponent θ are
given by

θ = n(1− xc · rn)−1 + O(1).

Similarly, if the exponent θ is known, estimators of the critical point xc are given by

xc =
1
rn

(
1− θ + 1

n
+ O(

1
n
)

)
.

One problem with the ratio method is that if the singularity closest to the origin
is not the singularity of interest (the so-called physical singularity), then the ratio
method will not give information about the physical singularity. Worse still, if the
closest singularity to the origin is a conjugate pair of singularities, lying in the com-
plex plane and off the real axis, the ratios will vary dramatically in both sign and
magnitude. To overcome this difficulty G A Baker Jr [1] proposed the use of Padé
approximants applied to the logarithmic derivative of the series expansion.
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Fig. 8.1 Plot of ratios against 1/n for triangular lattice polygons. A straight line through the last
few data points intercepts the Ratios axis at 1/xc.
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8.3 Padé Approximants

The basic idea of Padé approximation is very simple. Given a function F(x) with a
simple pole at some point xc we then use the series expansion of F(x) to form an
approximation to F(x) as a ratio of two polynomials,

F(x) =
Pi(x)
Q j(x)

(8.4)

where Pi(x) and Q j(x) are polynomials of degree i and j, respectively, whose coef-
ficients are chosen such that the first i+ j +1 terms in the series expansion for F(x)
are identical to those of the expansion for Pi(x)/Q j(x). It is a convention to impose
the normalisation condition Q j(0) = 1.

In order to use this basic Padé approximation scheme for polygon problems we
must first transform the series into a suitable form, which brings us to the classic
method called Dlog-Padé approximation [1]. If we have a function with the expected
critical behaviour typical of regular singular points, as given by equation (8.1), then
taking the derivative of the log of F(x) gives

F̂(x) =
d
dx

logF(x) ≃ θ
x− xc

+C. (8.5)

This form is perfectly suited for Padé analysis and we see that an estimate x∗c of
the critical point xc can be obtained from the roots of the denominator polynomial
Q j(x), while an estimate of the critical exponent θ is given by the residue at the pole
found at x = x∗c . Such an estimate of the exponent is known as an unbiased estimate.
If xc is exactly known, as is sometimes the case, a biased estimate of the critical
exponent θ can be obtained from the residue of the Padé approximant to F̂(x) at xc,
that is

θ = lim
x→xc

(x− xc)
Pi(x)
Q j(x)

. (8.6)

Finally, if F(x) ∼ A(1− x/xc)
θ as x → x−c , then once estimates x∗c and θ ∗ of the

critical point and critical exponent, respectively, have been obtained, one can then
estimate the critical amplitude A by forming Padé approximants to

(x∗c − x)F(x)1/θ∗ |x=x∗c ,

which should approximate x∗cA1/θ∗
, from which estimates of A follow.

Noting that the Dlog-Padé function F̂(x) = F ′(x)/F(x), we see that forming a
Dlog-Padé approximant is simply equivalent to seeking an approximation to F(x)
by solving the first order homogeneous differential equation.

F ′(x)Q j(x)−F(x)Pi(x) = 0.

This observation leads us straight into the more powerful and more general method
of differential approximants by noting that we can approximate F(x) by a solution
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to a higher order ODE (possibly inhomogeneous). This method was first proposed
and developed by Guttmann and Joyce [11] in 1972, and was subsequently extended
to the inhomogeneous case by Au-Yang and Fisher [5] and Hunter and Baker [13]
in 1979.

8.4 Differential Approximants

As we have seen in earlier chapters the majority of polygon and polyomino models
in statistical mechanics and combinatorics have generating functions with regular
singular points. From the known exact solutions it is clear that the generating func-
tions are often algebraic, or otherwise are given by the solution of simple linear
ordinary differential equations. This observation (originally made in the context of
the Ising model) forms the nucleus of the method of differential approximants. The
basic idea is to approximate the function F(x) by solutions to differential equations
with polynomial coefficients. The singular behaviour of such ODEs is a well-known
classical mathematics problem (see e.g. [6, 14]) and the singular points and expo-
nents are easily calculated. Even if the function globally is not a solution of such a
linear ODE (as is the case for SAP, as proved in Chapter 6) one hopes that locally in
the vicinity of the (physical) critical points the generating function can still be well
approximated by a solution to a linear ODE.

An Mth-order differential approximant (DA) to a function F(x) is formed by
matching the coefficients in the polynomials Qk(x) and P(x) of degree Nk and L,
respectively, so that (one) of the formal solutions to the inhomogeneous differential
equation

M

∑
k=0

Qk(x)

(
x

d
dx

)k

F̃(x) = P(x) (8.7)

agrees with the first N = L + ∑k(Nk + 1) series coefficients of F(x). The function
F̃(x) thus agrees with the power series expansion of the (generally unknown) func-
tion F(x) up to the first N series expansion coefficients. We normalise the DA by
setting QM(0) = 1 thus leaving us with N rather than N + 1 unknown coefficients
to find, in order to specify the ODE. From the theory of ODEs, the singularities of
F(x) are approximated by zeros xi, i = 1, . . . ,NM of QM(x), and the associated crit-
ical exponent λi is estimated from the indicial equation. If there is only a single root
at xi this is just

λi = M−1− QM−1(xi)

xiQ′
M(xi)

. (8.8)

The physical critical point is the first singularity on the positive real axis.
In order to locate the singularities of the series in a systematic fashion we often

use the following procedure: We calculate all [L;N0,N1,N2] and [L;N0,N1,N2,N3]
second- and third-order inhomogeneous differential approximants with |Ni −Nj| ≤
2, that is the degrees of the polynomials Qk differ by at most 2. In addition we
demand that the total number of terms used by the DA is at least Nmax −10, where
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Nmax is the total number of terms available in the series. Each approximant yields
NM possible singularities and associated exponents from the NM zeroes of QM(x)
(most of these are not singularities of the series but merely spurious zeros). Next
these zeros are sorted into equivalence classes by the requirement that they lie at
most a distance 1/2 j apart, where we typically start with j = 35. An equivalence
class is accepted as a singularity if an associated zero appears in more than 75% of
the total number of approximants, and an estimate for the singularity and exponent
is obtained by averaging over the included approximants (the spread among the
approximants is also calculated). The calculation is then repeated for j−1, j−2, . . .
until a minimum value of 8 or 10. To avoid outputting well-converged singularities
at every level, once an equivalence class has been accepted, the data used in the
estimate is discarded, and the subsequent analysis is carried out on the remaining
data only.

One advantage of this method is that spurious outliers, some of which will almost
always be present when so many approximants are generated, are discarded system-
atically and automatically. Unfortunately, it is not possible to provide rigorous error
bounds for differential approximant estimates. In quoting errors we have adopted
the following general procedure: For typical individual estimates with a fixed value
of L the error is calculated from the spread (basically one or two standard devia-
tions) among the approximants used in obtaining the estimate. Note that these error
bounds should not be viewed as a measure of the true error as they cannot include
possible systematic sources of error. The final estimates (and error bounds) take into
account the individual estimates and their error bounds. Note that DA estimates are
not statistically independent so the true error may exceed the estimated error-bars.
This is frequently accommodated by doubling or tripling the calculated error.

8.4.1 The Honeycomb SAP Generating Function

As a first example we apply the differential approximant analysis to the generating
function for SAP on the honeycomb lattice. On this lattice the critical point, criti-
cal exponent and some universal amplitude ratios are known exactly, so this model
provides us with a perfect test-bed for series analysis. In Table 8.1 we have listed
the estimates for the critical point x2

c and exponent 2−α obtained from second- and
third-order DAs. We note that all the estimates are in perfect agreement (surely a
best case scenario) in that within ‘error-bars’ they take the same value. From this
we arrive at the estimate x2

c = 0.2928932186(5) and 2−α = 1.5000004(10). The
final estimates are in perfect agreement with the conjectured [19, 20] exact values
x2

c = 1/µ2 = 1/(2 +
√

2) = 0.292893218813 . . . and 2−α = 3/2.
Before proceeding we will consider possible sources of systematic errors. First

and foremost is the possibility that the estimates might display a systematic drift
as the number of terms used is increased, and secondly there is the possibility of
numerical errors. The latter possibility is quickly dismissed. The calculations were
performed using 128-bit real numbers. The estimates from a few approximants were
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Table 8.1 Critical point and exponent estimates for self-avoiding polygons.

L Second order DA Third order DA
x2

c 2−α x2
c 2−α

0 0.29289321854(19) 1.50000065(41) 0.29289321865(12) 1.50000040(28)
5 0.29289321875(21) 1.50000010(59) 0.29289321852(48) 1.50000041(99)
10 0.29289321855(23) 1.50000060(48) 0.29289321878(32) 1.49999999(97)
15 0.29289321859(19) 1.50000054(43) 0.29289321861(37) 1.50000035(67)
20 0.29289321866(15) 1.50000038(33) 0.29289321860(21) 1.50000049(43)

compared to values obtained using MAPLE with 100 digits accuracy and this clearly
showed that the program was numerically stable and rounding errors were negligi-
ble. In order to address the possibility of systematic drift and lack of convergence to
the true critical values we refer to Fig. 8.2 (this is probably not really necessary in
this case but we include the analysis here in order to present the general method).

In the left panel of Fig. 8.2 we have plotted the estimates from third-order DAs
for x2

c vs. the highest order coefficient index N < Nmax used by the DA. Each dot
in the figure is an estimate obtained from a specific approximant. As can be seen
the estimates clearly settle down to the conjectured exact value (solid line) as N is
increased and there is little to no evidence of any systematic drift at large N. One
curious aspect though is the widening of the spread in the estimates around N = 140.
We have no explanation for this behaviour but it could quite possibly be caused by
just a few ‘spurious’ approximants. In the right panel we show the variation in the
exponent estimates with the critical point estimates. The ‘curve’ traced out by the
estimates passes through the intersection of the lines given by the exact values. We
have not been able to determine the reason for the apparent branching into two parts.
However, the lower ‘branch’ contains many more approximants than the upper one,
and is therefore the selected branch.
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Fig. 8.2 Plot of estimates from third order differential approximants for x2
c vs. the highest order

term used, and the right panel shows 2−α vs. x2
c . The straight lines are the exact predictions.
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The differential approximant analysis can also be used to find possible non-
physical singularities of the generating function. Averaging over the estimates from
the DAs shows that there is an additional non-physical singularity on the negative
x-axis at x = x− = −1/µ2

− = −0.41230(2), where the estimates of the associated
critical exponent α− are consistent with the exact value α− = 3/2. In the left panel
of Fig. 8.3 we have plotted α− vs. the highest order term used by the DAs and we
clearly see the convergence to α− = 3/2. If we take this value as being exact we can
get a refined estimate of x− from the plot in the right panel of Fig. 8.3, where we
notice that the estimates for α− cross the value 3/2 for x− = −0.412305(5) which
we take as our final estimate. From this we then get µ− = 1.557366(10).
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Fig. 8.3 Plot of estimates from third order differential approximants for the location x− of the
non-physical singularity and the associated exponent α−. The left panel shows α− vs. the highest
order term used, and the right panel shows α− vs. x−.

8.5 Amplitude Estimates

Now that the exact values of µ and the exponents have been confirmed we turn
our attention to the “fine structure” of the asymptotic form of the coefficients. In
particular we are interested in obtaining accurate estimates for the leading critical
amplitudes. The method of analysis consists in fitting the coefficients to an assumed
asymptotic form. Generally one must include a number of asymptotic terms in or-
der to account for the behaviour of the generating function at both the physical sin-
gularity and the non-physical singularities as well as accounting for sub-dominant
corrections to the leading order behaviour. As we hope to demonstrate, this method
of analysis can not only yield accurate amplitude estimates, but it is often possible
to clearly demonstrate which corrections to scaling are present.
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Before proceeding with the analysis we briefly consider the kind of terms which
occur in the generating functions, and how they influence the asymptotic behaviour
of the series coefficients. At the most basic level a function G(x) with a power-law
singularity1

G(x) = ∑
n

gnxn ∼ A(x)(1− µx)−ξ , (8.9)

where A(x) is analytic in the vicinity of x = xc = 1/µ , gives rise to the following
asymptotic form of the coefficients:

gn ∼ µnnξ−1

[
Ã+ ∑

i≥1

ai/ni

]
, (8.10)

that is, we get the dominant exponential growth given by the term µn, modified
by a sub-dominant term given by the term nξ−1, involving the critical exponent ξ ,
followed by analytic corrections. The amplitude Ã is related to the function A(x) in
(8.9) via the relation Ã = A(1/µ)/Γ (ξ ). If G(x) has a non-analytic correction to
scaling such as

G(x) = ∑
n

gnxn ∼ (1− µx)−ξ
[
A(x)+ B(x)(1− µx)∆

]
, (8.11)

we get the more complicated form,

gn ∼ µnnξ−1

[
Ã + ∑

i≥1

ai/ni + ∑
i≥0

bi/n∆+i

]
. (8.12)

A singularity on the negative x-axis ∝ (1 + µ−x)−η leads to additional corrections
of the form

∼ (−1)nµn
−nη−1 ∑

i≥0
ci/ni. (8.13)

Singularities in the complex plane are still more complicated. However, a pair of
singularities on the imaginary axis at ±i/τ , that is a term of the form D(x)(1 +
τ2x2)−η , generally results in coefficients that change sign according to a ++−−
pattern. This can be accommodated by terms of the form

∼ (−1)⌊n/2⌋τnnη−1 ∑
i≥0

di/ni. (8.14)

All of these possible contributions must then be put together in an assumed
asymptotic expansion for the coefficients gn and we obtain estimates for the un-
known amplitudes by directly fitting gn to the assumed form. That is, we take a
sub-sequence of terms {gn,gn−1, . . . ,gn−k}, plug into the assumed form and solve

1 We have rewritten equation (8.1) in a more convenient form for this analysis.
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the k + 1 linear equations to obtain estimates for the first few amplitudes. As we
shall demonstrate below this allows us to probe the asymptotic form.

8.5.1 Estimating the Polygon Amplitude Ã

Here we illustrate the method by analysing the coefficients of the generating func-
tion for honeycomb lattice polygons,

P(x) = ∑
n=0

p2nxn.

As well as the physical singularity of interest at x = x2
c , there is a non-physical

singularity at x = x−, where |x−| > x2
c . The asymptotic form of the coefficients

pn of the generating function of square and triangular lattice SAP has been pre-
viously studied in detail [3, 17, 15]. There is now clear numerical evidence that
the leading correction-to-scaling exponent for SAPs is ∆1 = 3/2, as predicted by
Nienhuis [19, 20]. As argued in [3] this leading correction term combined with the
2−α = 3/2 term of the SAP generating function produces an analytic background
term as can be seen from equation (8.11). Indeed, in the previous analysis of SAPs
there was no sign of non-analytic corrections-to-scaling to the generating function
(a strong indirect argument that the leading correction-to-scaling exponent must be
half-integer valued). At first we ignore the singularity at x− (since |x−| > x2

c it is
exponentially suppressed) and obtain estimates for Ã by fitting pn to the form

pn = µnn−5/2

[
Ã+

k

∑
i=1

ai/ni

]
. (8.15)

That is, we take a sub-sequence of terms {pn, pn−2, . . . , pn−2k} (n even), plug into
the formula above and solve the k + 1 linear equations to obtain estimates for the
amplitudes. It is then advantageous to plot estimates for the leading amplitude Ã
against 1/n for several values of k. The results are plotted in the left panel of Fig. 8.4.
Obviously the amplitude estimates are not well behaved and display clear parity
effects. So clearly we can’t just ignore the singularity at x− (which gives rise to
such effects) and we thus try fitting to the more general form

pn = µnn−5/2

[
Ã +

k

∑
i=1

ai/ni

]
+(−1)n/2µn

−n−5/2
k

∑
i=0

bi/ni. (8.16)

The results from these fits are shown in the middle panel of Fig. 8.4. Now we clearly
have very well-behaved estimates (note the significant change of scale along the y-
axis from the left to the middle panel). In the right panel we take a more detailed
look at the data and from the plot we estimate that Ã = 1.2719299(1). We notice
that as more and more correction terms are added (k is increased) the plots of the
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amplitude estimates exhibit less curvature and the slope become less steep. This is
very strong evidence that (8.16) indeed is the correct asymptotic form of pn.
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Fig. 8.4 Plots of fits for the self-avoiding polygon amplitude Ã using in the left panel the asymp-
totic form (8.15) which ignores the singularity at x = x−, and in the middle panel the asymptotic
form (8.16) which includes the singularity at x = x−. The right panel gives a closer look at the data
from the middle panel.

8.5.2 The Correction-to-Scaling Exponent

In this section we shall briefly show how the method of direct fitting can be used to
differentiate between various possible values for the leading correction-to-scaling
exponent ∆1. There are two competing theoretical predictions, ∆1 = 3/2 by Nien-
huis [19] and ∆1 = 11/16 by Saleur [21]. As already stated there is now firm evi-
dence from previous work that the Nienhuis result is correct. Here we shall present
further evidence. Different values for ∆1 lead to different assumed asymptotic forms
for the coefficients. For the SAP series we argued that a value ∆1 = 3/2 (or indeed
any half-integer value) would result only in analytic corrections to the generating
function and thus that pn asymptotically would be given by (8.16). If we have a
generic value for ∆1 we would get

pn = µnn−5/2

[
Ã+

k

∑
i=1

ai/ni +
k

∑
i=0

bi/n∆1+i

]
+(−1)n/2µn

−n−5/2
k

∑
i=0

ci/ni. (8.17)

Fitting to this form we can then estimate the amplitude b0 of the term 1/n∆1. We
would expect that if we used a manifestly incorrect value for ∆1 then b0 should
vanish asymptotically thus demonstrating that this term is really absent from (8.17).
So let us fit to this form using the value ∆1 = 11/16. More precisely we fit to the
generic form

pn = µnn−5/2
k

∑
i=0

ai/nαi +(−1)n/2µn
−n−5/2

k

∑
i=0

bi/ni. (8.18)
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First we include only the leading term arising from ∆1 using the sequence of ex-
ponents αi = {0,11/16,1,2,3, . . .}. Next we fit to a form including additional an-
alytical corrections arising from ∆1 leading to the sequence of exponents αi =
{0,11/16,1,27/16,2,33/16,3,49/16, . . .}. More generally one also expects terms
of the form 1/nm∆1+i with m a non-negative integer. This leads to fits to the form
above but with αi = {0,11/16,1,11/8,27/16,2,33/16,19/8,43/16,11/4,3 . . .}.
The estimates of the amplitude of the term 1/n∆1 obtained from fits to these forms
are shown in Fig. 8.5. As can be seen from the left panel, where we fit to the first
scenario, the amplitude clearly seems to converge to 0, which would indicate the
absence of this term in the asymptotic expansion for pn. In the middle and right
panels we show the results from fits to the more general forms. The estimates are
consistent with the amplitude being identically zero, though the evidence is not quite
as convincing. This is however not really surprising given that the incorrect value
∆1 = 11/16 gives rise to a plethora of absent terms which will tend to greatly ob-
scure the true asymptotic behaviour.
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Fig. 8.5 Plots of estimates for the amplitude of the term 1/n∆1 . The left panel shows results from
fits to the form (8.18) where only the leading order term 1/n∆1 is included (as well as analytical
corrections). In the middle panel additional terms of the form 1/n∆1+i are included and in the right
panel terms like 1/nm∆1+i are included.

8.6 Exact Fuchsian ODEs for Polygon Models

In recent work Zenine et al. [22, 23, 24] obtained, by experimental computer search,
the linear differential equations whose solutions give some quantities of interest in
the study of the Ising model of ferromagnetism. Adopting their methods, Guttmann
and Jensen [8, 9] used the same ideas to find linear differential equations which have
as a solution the generating function T (x) for three-choice polygons and P(x) for
punctured staircase polygons.

Punctured staircase polygons [10] are staircase polygons with internal holes
which are also staircase polygons (the polygons are mutually- as well as self-
avoiding). Here we will study only the case with a single hole (see Fig. 8.6), and
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Imperfect staircasePunctured staircase

Fig. 8.6 A punctured staircase polygon and an imperfect staircase polygon.

we will refer to these objects as punctured staircase polygons. The perimeter length
of staircase polygons is even and thus the total perimeter (the outer perimeter plus
the perimeter of the hole) is also even. We denote by pn the number of punctured
staircase polygons of perimeter 2n.

Three-choice self-avoiding walks on the square lattice were introduced by Manna
[18] and can be defined as follows: Starting from the origin one can step in any di-
rection; after a step upward or downward one can head in any direction (except
backward); after a step to the left one can only step forward or head downward, and
similarly after a step to the right one can continue forward or turn upward. As usual
one can define a polygon version of the walk model by requiring the walk to return
to the origin. So a three-choice polygon [12] is simply a three-choice self-avoiding
walk which returns to the origin, but has no other self-intersections. There are two
distinct classes of three-choice polygons. The three-choice rule either leads to stair-
case polygons or imperfect staircase polygons [4] (see Fig. 8.6). The three-choice
rules produce imperfect staircase polygons in two ways and staircase polygons of
perimeter n in n ways. We denote by tn the number of three-choice polygons of
perimeter 2n.

Here we briefly outline the method used to find the exact ODE, which we will
illustrate by looking at the perimeter generating function of three-choice polygons.
Assume we have a function F(x) with a singularity at x = xc = 1/µ . Starting from
a (long) series expansion for the function F(x) we look for a linear differential
equation of order M of the form

M

∑
k=0

Pk(x)
dk

dxk F(x) = 0, (8.19)

such that F(x) is a solution of this homogeneous linear differential equation, where
the Pk(x) are polynomials. In order to make it as simple as possible we start by
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searching for a Fuchsian [14] equation. Such equations have only regular singular
points. There are several reasons for searching for a Fuchsian equation, rather than
a more general D-finite equation. Computationally the Fuchsian assumption simpli-
fies the search for a solution. One may also argue, less precisely, that for “sensible”
combinatorial models one would expect Fuchsian equations, as non-Fuchsian equa-
tions are characterized by explosive, super-exponential behaviour. Such behaviour is
not normally characteristic of combinatorial problems. (The point at infinity may be
an exception to this somewhat imprecise observation.) One may also ask the ques-
tion whether most of the problems in combinatorics with D-finite solutions have
Fuchsian solutions? While we have not made an exhaustive study, we know of no
counter-example to this suggestion.

From the general theory of Fuchsian [14] equations it follows that the degree of
Pk(x) is at most NM −M + k where NM is the degree of PM(x). To simplify matters
(reduce the order of the unknown polynomials) it is often advantageous to explicitly
assume that the origin and x = xc are regular singular points and to set Pk(x) =
Qk(x)S(x)k, where S(x) = xR(x) and R(x) is a polynomial of minimal degree having
xc as a root (in our case we have R(x) = 1−4x). S(x) could be generalised to include
more regular singular points if some were known from other methods of analysis,
but we have not found this to be particularly advantageous. Thus when searching
for a solution of Fuchsian type there are only two parameters: namely the order
M of the differential equation and the degree qM of the polynomial QM(x). Let
ρ be the degree of S(x) (2 in our case), then for given M and qM there are L =
(M+1)(qM +1)+ρM(M+1)/2−1 unknown coefficients, where we have assumed
without loss of generality that the leading order coefficient in PM(x) = QM(x)S(x)M

is 1. We can then search systematically for solutions by varying M and qM.
In this way we first found a solution with M = 10 and qM = 12, which required

the determination of L = 206 unknown coefficients. We have 260 terms in the half-
perimeter series and thus have more than 50 additional terms with which to check the
correctness of our solution. Having found this conjectured solution we then turned
the ODE into a recurrence relation and used this to generate more series terms in
order to search for a lower order Fuchsian equation. The lowest order equation we
found was eighth order (M = 8) and with qM = 30, which requires the determination
of L = 321 unknown coefficients. Thus from our original 260 term series we could
not have found this 8th order solution since we did not have enough terms to deter-
mine all the unknown coefficients in the ODE. This raises the question as to whether
perhaps there is an ODE of lower order than 8 that generates the coefficients? The
short answer to this is no. Further study of our differential operator revealed that it
can be factorised. In fact we found a factorization into three first-order linear oper-
ators, a second order and a third order. The generating function is a solution of the
8th order operator, not of any of the smaller factors.

So the (half)-perimeter generating function T (x) for three-choice polygons is
conjectured to be a solution of the linear differential equation of order 8,

8

∑
k=0

Pk(x)
dk

dxk F(x) = 0 (8.20)
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with

P8(x) = x3(1−4x)4(1 + 4x)(1 + 4x2)(1 + x + 7x2)Q8(x),

P7(x) = x2(1−4x)3Q7(x), P6(x) = 2x(1−4x)2Q6(x),

P5(x) = 6(1−4x)Q5(x), P4(x) = 24Q4(x), (8.21)

P3(x) = 24Q3(x), P2(x) = 144x(1−2x)Q2(x),

P1(x) = 144(1−4x)Q1(x), P0(x) = 576Q0(x),

where Q8(x), Q7(x), . . ., Q0(x), are polynomials of degree 25, 31, 32, 33, 33, 32, 29,
29, and 29, respectively. See [8] for further details.

The singular points of the differential equation are given by the roots of P8(x).
One can easily check that all the singularities (including x = ∞) are regular singular
points so equation (8.20) is indeed of the Fuchsian type. It is thus possible, using
the method of Frobenius, to obtain from the indicial equation the critical exponents
at the singular points. These are listed in Table 8.2.

Table 8.2 Critical exponents for the regular singular points of the Fuchsian differential equation
satisfied by T (x).

Singularity Exponents
x = 0 −1, 0, 0, 0, 1, 2, 3, 4
x = 1/4 −1/2, −1/2, 0, 1/2, 1, 3/2, 2, 3
x = −1/4 0, 1, 2, 3, 4, 5, 6, 13/2
x = ± i/2 0, 1, 2, 3, 4, 5, 6, 13/2
1+ x+7x2 = 0 0, 1, 2, 2, 3, 4, 5, 6
x = ∞ −2, −3/2, −1, −1, −1/2, 1/2, 3/2, 5/2
Q8(x) = 0 0, 1, 2, 3, 4, 5, 6, 8

We shall now consider the local solutions of the differential equation around each
singularity. Recall that in general it is known [6, 14] that if the indicial equation
yields k critical exponents which differ by an integer, then the local solutions may
contain logarithmic terms up to logk−1. However, for the Fuchsian equation (8.20)
only multiple roots of the indicial equation give rise to logarithmic terms in the
local solution around a given singularity, so that a root of multiplicity k gives rise to
logarithmic terms up to logk−1.

In particular this means that near any of the 25 roots of Q8(x) the local solutions
have no logarithmic terms and the solutions are thus analytic since all the exponents
are positive integers. The roots of Q8(x) are thus apparent singularities [6, 14] of
the Fuchsian equation (8.20). There are methods for distinguishing real and appar-
ent singularities (see, e.g, [6] §45) and in principle one should check that the roots
of Q8(x) satisfy the conditions for being apparent singularities. However, this theo-
retical method is quite cumbersome. An easier numerical way to see that the roots
of Q8(x) must be apparent singularities is as follows: We already found a 10th order
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Fuchsian equation for which the polynomial P10(x) was of a form similar to P8(x) as
listed in equation (8.21), but with the degree of Q10(x) being only 7. That is all the
singularities as tabulated in Table 8.2 also appear in this higher order equation with
the exception of the 25 roots of Q8(x) (at most 7 of these could appear in the order
10 Fuchsian equation). In fact we can find a solution of order 14 of the same form
as above but with Q14(x) being just a constant. So at this order none of the roots of
Q8(x) appear. Clearly any real singularity of the system cannot be made to vanish
and we conclude that the 25 roots of Q8(x) must indeed be apparent singularities.

Assuming that only repeated roots give rise to logarithmic terms, and thus that
a sequence of positive integers give rise to analytic terms, then near the physical
critical point x = xc = 1/4 we expect the singular behaviour

T (x) ∼ A(x)(1−4x)−1/2 + B(x)(1−4x)−1/2 log(1−4x), (8.22)

where A(x) and B(x) are analytic in the neighbourhood of xc. Note that the terms
associated with the exponents 1/2 and 3/2 become part of the analytic correction to
the (1− 4x)−1/2 term. Near the singularity on the negative x-axis, x = x− = −1/4
we expect the singular behaviour

T (x) ∼C(x)(1 + 4x)13/2, (8.23)

where again C(x) is analytic near x−. We expect similar behaviour near the pair of
singularities x =±i/2, and finally at the roots of 1+x+7x2 we expect the behaviour
T (x) ∼ D(x)(1 + x + 7x2)2 log(1 + x + 7x2).

Next we turn our attention to the asymptotic behaviour of the coefficients of
T (x). To standardise our analysis, we assume that the critical point is at 1. The
growth constant of three-choice polygons is 4, so we normalise the series by consid-
ering a new series with coefficients rn, defined by rn = tn+2/4n. Thus the generating
function we study is R(y) = ∑n≥0 rnyn = 4 + 3y + 2.625y2 + · · · . From equations
(8.22) and (8.23) it follows that the asymptotic form of the coefficients is

[yn]R(y) = rn =
1√
n ∑

i≥0

(
ai logn + bi

ni +(−1)n
( ci

n7+i

))
+ O(λ−n). (8.24)

The last term includes the effect of other singularities, further from the origin than
the dominant singularities. These will decay exponentially since λ > 1 in the scaled
variable y = x/4.

Using the recurrence relations for tn (derived from the ODE) it is easy and fast to
generate many more terms rn. We generated the first 100000 terms and saved them
as floats with 500 digit accuracy (this calculation took less than 15 minutes). With
such a long series it is possible to obtain accurate numerical estimates of the first
20 amplitudes ai, bi, ci for i ≤ 19 with precision of more than 100 digits for the
dominant amplitudes, shrinking to 10–20 digits for the the case when i = 18 or 19.
In making these estimates we have ignored the exponentially decaying term, which
is the last term in equation (8.23). In this way we confirmed an earlier conjecture [4]

that a0 = 3
√

3
π3/2 , (where we have taken into account the different normalisation used
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in that paper). We also find that b0 = 3.173275384589898481765 . . . and c0 = −24
π3/2 ,

though we have not been able to identify b0. However, we have successfully iden-
tified further sub-dominant amplitudes, and find a1 = −89

8
√

3π3/2 , a2 = 1019
384

√
3π3/2 , and

a3 = −10484935
248832

√
3π3/2 , and c1 = 225

π3/2 , c2 = −16575
16π3/2 , and c3 = 389295

128π3/2 . It seems possible

that the amplitudes π3/2
√

3ai and π3/2ci are rational.
Estimates for the amplitudes were obtained by fitting rn to the form given above

using an increasing number of amplitudes. ‘Experimentally’ we find we need about
the same total number of terms at xc and −xc = x−.

So in the fits we used the terms with amplitudes ai, and bi, i = 0, . . . ,K and ci,
i = 0, . . . ,2K. Going only to i = K with the ci amplitudes results in much poorer
convergence and going beyond 2K leads to no improvement. For a given K we thus
have to estimate 4K + 3 unknown amplitudes. So we use the last 4K + 3 terms rn

with n ranging from 100000 to 100000− 4K− 2 and solve the resulting system of
4K + 3 linear equations. We find that the amplitudes are fairly stable up to around
2K/3. We observed this by doing the calculation with K = 30 and K = 40 and then
looking at the difference in the amplitude estimates. For a0 and b0 the difference
is less than 10−131, while for c0 the difference is less than 10−123. Each time we
increase the amplitude index by 1 we lose around 106 in accuracy. With i = 20 the
differences are respectively around 10−16 and 10−8.

The excellent convergence is solid evidence (though naturally not a proof) that
the assumptions leading to equation (8.24) are correct. Further evidence was ob-
tained as follows: We can add extra terms to the asymptotic form and check what
happens to the amplitudes of the new terms. If the amplitudes are very small it is
highly likely that the terms are not truly present (if the calculation could be done ex-
actly these amplitudes would be zero). One possibility is that our assumption about
integer exponents leading only to analytic terms is incorrect. To test this we fitted to
the form

1√
n ∑

i≥0

(
ãi logn + b̃i

ni/2
+(−1)n

(
c̃i

n7+i

))
+ O(λ−n)

(as above, in making these estimates we have ignored the exponentially decaying
term, which is the last term in the above equation). With K = 30 we found that
the amplitudes ã1 and b̃1 of the terms logn/n and 1/n, respectively, were less than
10−60, while the amplitudes ã3 and b̃3 were less than 10−50. We think we can safely
say that all the additional terms we just added are not present. We found similar
results if we added terms like log2 n or additional logn terms at y = −1. That is,
we found that those terms were not present. So this fitting procedure provides con-
vincing evidence that the asymptotic form (8.24), and thus the assumption leading
to this formula, is correct.
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8.6.1 Exact ODEs Modulo a Prime

In the above calculations we searched for the ODE using the full series. However, if
the size of the ODE is large then this is very time consuming both in terms of gener-
ating the actual series and then searching through values of M and D looking for the
ODE. In very recent work [2] we have adopted a different and much more efficient
strategy. Rather than perform the search on the full series we search only for a solu-
tion modulo a specific prime (in practice we used the prime p0 = 32749 = 215−19).
The advantages of this approach are obvious. Firstly we only need generate a long
series for a single prime (at least initially) and secondly solving the system deter-
mined by (8.25) amounts to finding whether or not the system of linear equations has
a zero determinant. This is easily done using Gaussian elimination, and if a zero-
determinant is found one can then proceed to solve the system, which yields the
ODE modulo the prime p0. In theory one has to worry about possible false positive
results, but in widespread use we have never encountered this situation in practice
(and in most cases one can check the result using a different prime). Below we give
a brief outline of the procedure developed in [2]. Further details can be found there.

Here we illustrate the method by looking at a different generating function for
punctured and imperfect staircase polygons. We study the case where the count-
ing variable is the ‘length’ (extent along the main diagonal) of the polygons. The
‘length’ is equal to the sum of the coordinates of the point of the polygon furthest
from the origin. For punctured staircase polygons this is also equivalent to counting
according to the half-perimeter of the outer staircase polygon (rather than the to-
tal perimeter of the outer and inner polygons combined). We denote the associated
generating functions as L (x) in the punctured case and I (x) in the imperfect case.

Starting from a (long) series expansion for some function F(x) we look for a
linear differential equation of order M satisfied by F(x). An essential constraint on
the ODE of the type we shall consider here is that it be Fuchsian. In particular this
means that x = 0 and x = ∞ are regular singular points. A form for the ODE that
automatically satisfies this constraint is

M

∑
k=0

Qk(x)

(
x

d
dx

)k

F(x) = 0, (8.25)

where the Qk(x) = ∑D
j=0 qk, jx j are polynomials of degree D. The condition aM,0 6= 0

makes x = 0 a regular singular point and the use of the operator (xd/dx) rather than
just d/dx makes analysis around x = ∞ simple. Finding the ODE (if it exists) then
essentially amounts to solving a system of (M + 1)× (D+ 1) linear equations.

To determine the coefficients qk, j of the polynomials in (8.25) we arrange the
set of linear equations in a well-defined order. There exists a non-trivial solution if
the determinant of the matrix of the system of (M + 1)× (D + 1) linear equations
vanishes. We test this by standard Gaussian elimination, creating an upper triangular
matrix U in the process. If we find that a diagonal element U(N,N) = 0 for some
N, then a non-trivial solution exists. If N < NMD = (M + 1)× (D + 1) we set to
zero all qk, j in the ordered list beyond N. Of the remaining qk, j we set qM,0 = 1,
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Table 8.3 M is the order of the ODE, D is the degree of each polynomial multiplying each deriva-
tive, NMD = (M + 1)(D + 1), N is the actual number of terms predicted by (8.26) as necessary to
find an ODE of the given order M, and ∆ is the difference NMD −N. The first five columns gives
this data for L (x) while the next five columns gives this data for I (x).

Terms needed to find L (x) Terms needed to find I (x)
M D NMD N ∆ M D NMD N ∆
11 53 648 648 0 14 92 1395 1395 0
12 31 416 415 1 15 52 848 848 0
13 23 336 336 0 16 39 680 679 1
14 20 315 312 3 17 32 594 594 0
15 17 288 288 0 18 28 551 551 0
16 16 289 286 3 19 26 540 536 4
17 15 288 284 4 20 24 525 521 4
18 14 285 280 5 21 22 506 506 0
19 13 280 280 0 22 21 506 505 1
20 13 294 289 5 23 20 504 504 0
21 13 308 298 10 24 20 525 517 8
22 12 299 296 3 25 19 520 516 4

thus guaranteeing that x = 0 is a regular singular point and determine the remaining
coefficients by back substitution. The N for which U(N,N) = 0 is the minimum
number of series coefficients needed to find the ODE within the constraint of a given
M and D. Obviously, N ≤ NMD = (M + 1) · (D + 1). Henceforth, D will always
refer to the minimum D for which a solution can be found for a given M. Then, for
example, we can define a unique non-negative deviation ∆ by N = NMD −∆ =
(M + 1) · (D+ 1) −∆ . Examples of such constants are given in Table 8.3 based on
our analysis of L (x) and I (x). A very striking empirical observation was made in
[2], namely that the numbers N in Table 8.3 are given by a simple linear relation

N = A ·M + B ·D −C = (M + 1) · (D+ 1)−∆ (8.26)

where A, B and C are constants depending on the particular series. For L (x) they
are A = 9, B = 11, C = −34 and for I (x) they are A = 13, B = 14, C = −75 as
can be verified from Table 8.3. Note that (8.26) has no (positive) solution for D if
M < B. Thus B = M0 is the minimum order possible for the ODE. Similarly, A = D0

is the minimum possible degree and thus we can rewrite (8.26) in the more definitive
form

N = D0 ·M + M0 ·D −C = (M + 1) · (D+ 1)−∆ . (8.27)

The minimum order M0 and degree D0 can be inferred directly from the ODE inde-
pendently of (8.27). The head polynomial QM(x) in (8.25) can be factored modulo
a prime and the greatest common divisor of these from several different orders M is
the polynomial Q(x) whose zeros are the true singularities of the linear ODE. In all
cases we have tested, the degree of this polynomial factor is the D0 in (8.27).
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8.6.2 Reconstructing the Exact ODE from Modular Results

Finding the minimal exact ODE for I (x) using the exact series coefficients would
be a difficult task since the size of the coefficients grow as 24n, so we would have to
handle integers of some 1700 digits using an array of size 13962 in order to solve
the set of linear equations arising out of equation (8.25). This would be stretching
the capacity of our current algorithms. So instead we decided to use a different and
as we shall see much more efficient approach. It is possible to reconstruct the exact
ODE using the results from several modulo prime calculations (actually as we shall
show only 10 primes are needed). Here we schematically outline the procedure for
finding the exact minimum order ODE.

Procedure for ODE reconstruction:

1. Generate a long series modulo a single prime.
2. Find ODEs at different orders and identify the constants A, B, and C of (8.26).
3. Then use this formula to identify both the minimal order ODE and the ODE

requiring the least number of terms.
4. Generate series for more primes pi long enough to find the minimal term

ODEs.
5. Turn these ODEs into recurrences and generate longer series.
6. Use these series to find the minimal order ODE mod pi.
7. Combine to find the exact minimal order ODE:

(a)Use the Chinese Remainder Theorem to get coefficients ai j.
This gives us bi j = ai j modulo P, where P = ∏ pi.

(b)Find the exact rational coefficients say by using the Maple call ai j =
iratrecon(bi j,P).

We managed to reconstruct the exact ODE for I (x) using 18 primes of the form
p j = 230− r j. Reconstructing the exact series coefficients up to the length needed to
find the exact ODE by the more traditional approach would require at least 10 times
as many primes. We note that it takes only a few minutes to find the ODEs mod
the primes and then reconstruct the exact ODE coefficient. Even fewer primes are
actually needed. In general the numerators are much smaller than the denominators
so we can modify the call to read r/s = ai j = iratrecon(bi j,P,R,S), where R and S
are positive integers such that |r| ≤ R and 0 < s ≤ S with 2RS ≤ P. If we assume
that s <

√
r then we may choose S = 4

√
P and R = P/(2S) and we can then find the

ai j using only 12 primes.
A further refinement is possible by generating the ai j starting from aMD. We

then multiply all the residues by the denominator of aMD modulo the respective
primes. We then run through the remaining coefficients by decreasing first j so as
to generate all aM j. Whenever a fraction is encountered we multiply all residues by
its denominator (after this we found that the only remaining denominator was 9).
We then repeat for i = M −1 and so on until all ai j have been exhausted. After this
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the modified residues for the ai j are representations of integer coefficients which we
then reconstruct. This procedure can generate the exact integer coefficients of the
ODE using only 10 primes. We note that for this problem the new procedure is at
least 1000 times faster than the original one described above in Section 8.6.1.

For completeness and comparison to the results for three-choice polygons we list
in Table 8.4 the critical points and exponents of I (x).

Table 8.4 Critical exponents at the regular singular points of the Fuchsian differential equation
satisfied by I (x) as obtained from the exact ODE.

Singularity Exponents
x = 0 0, 1, 2, 2, 7/3, 8/3, 3, 3, 3, 4, 5, 6, 7, 8
x = 1/16 0, 1, 2, 3, 4, 4, 5, 6, 13/2, 7, 8, 9, 10, 11
x = 1/5 0, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
x = 1/4 −1, −1/2, 0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 5, 6, 7
x = 1 −2, −3/2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
x = −1/4 0, 1, 2, 3, 4, 5, 6, 13/2, 7, 8, 9, 10, 11, 12
x = ∞ −2, −3/2, −7/6, −1, −1, −5/6, −1/4, 0, 0, 1/4, 1, 2, 3, 4
P14(x) = 0 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14

8.7 Conclusion

In this chapter we have given an outline of the principal methods used for the analy-
sis of series. The method of series analysis was originally developed as a numerical
tool, designed to estimate the various constants and exponents that appear in asymp-
totic estimates. More recently, with the enhancement of both algorithms and com-
putational hardware, it has been possible in some cases to obtain very long series
expansions. Then by use of the techniques outlined in Section 8.6, it is sometimes
possible to actually obtain the exact ODE whose solution gives the generating func-
tion. In such cases the method becomes not just an approximate tool, but an exact
one. This development is quite recent, and is likely to enable us to solve hitherto
unsolvable problems.
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Chapter 9
Monte Carlo Methods for Lattice Polygons

E.J. Janse van Rensburg

9.1 Introduction

It is frequently claimed that Monte Carlo simulation is a method of last resort. This
may be true in the most general sense, but it remains surprising that a fairly simple
statistical technique could, when applied appropriately, produce high quality data
by sampling states randomly in a given model.

Models of lattice polygons, which are related to the self-avoiding walk, are
notoriously resistant to exact solutions or to rigorous analysis. These difficulties
arise from the non-Markovian nature of polygon models, and significant rigorous
progress has only been made in a number of special circumstances, such as in two
dimensions where conformal invariance techniques led to the prediction of the nu-
merical values of certain exponents associated with these models [13], as discussed
in Chapter 14.

More generally, only scaling arguments are available for the analysis of these
models [11, 14], and such arguments have produced scaling relations between crit-
ical exponents, or in some cases, to predicted values for scaling exponents. The
calculation of critical exponents, and the testing of scaling relations, is a numerical
affair, and this is where Monte Carlo methods play a key role.

The earliest incarnation of the Monte Carlo method was during the Manhattan
project, and Ulam is usually given credit for its invention [49]. A popular implemen-
tation is due to Metropolis and others [50]. In this chapter, a Monte Carlo simula-
tion is understood to consist essentially of the sampling of states in a given polymer
model from a given distribution along a Markov chain. This implementation is often
referred to as “Markov chain Monte Carlo” (for a review see reference [3]).

Perhaps the first implementation of Monte Carlo techniques for models of poly-
mers is due to Rosenbluth and Rosenbluth, who sampled lattice self-avoiding walk
models of polymers up to length 64 steps [62]. A number of alternative approaches

E.J. Janse van Rensburg
Mathematics and Statistics, York University, Toronto, Ontario, Canada, e-mail: rensburg@yorku.ca
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Fig. 9.1 A lattice polygon of length 500. This polygon was obtained by sampling uniformly in the
set of polygons of length 500 edges using the pivot algorithm [45].

have since been invented for the simulation of self-avoiding walks. Some of these
methods can be implemented in a Metropolis-style simulation to sample self-
avoiding walks from a given distribution (this is usually the uniform distribution
on walks of given fixed length, or the Boltzmann distribution on walks of variable
length). Examples of Monte Carlo algorithms for self-avoiding walk models of poly-
mers include the Beretti-Sokal algorithm [2], the pivot algorithm [47, 48] as well as
“static algorithms” such as dimerisation [60]. Generally, there are today a number
of useful algorithms available for the sampling of walks, which includes PERM, an
efficient generalization of the Rosenbluth algorithm [58].

In the case of lattice polygons, which are models of ring polymers, similar algo-
rithms have been designed for efficient sampling, although the topological constraint
imposed by ring closure has made it more difficult to design algorithms. Monte
Carlo algorithms for fixed length polygons exist [6, 26] as well as an algorithm for
sampling polygons of variable length [1, 4] which is called the BFACF-algorithm.
The ergodicity properties of this last algorithm are rather interesting, and will be
considered in this chapter.

The basic definitions for sampling of lattice polygons are as follows: The hy-
percubic lattice Zd is composed of the points with integer coordinates in Rd ; these
points are called vertices in Zd . Usually, Zd is decorated by the addition of unit
length line segments or edges between its vertices which are unit distance apart.
This turns Zd into an (undirected) graph, and polygons may be thought of as un-
rooted and unlabeled cycles in this graph. Two polygons are considered equivalent
if one is a translate of the other in Zd . This equivalence defines a set of equivalence
classes which we shall call lattice polygons, or simply polygons. An example of a
lattice polygon is given in Fig. 9.1.

Define pn to be the number of lattice polygons of length n. Then, as we have seen
in more detail in earlier chapters, p4 = 1 and p6 = 2 in Z2. The function pn is the
most basic quantity in the study of lattice polygons.

Two polygons in Zd can be concatenated (see figure 9.2) by translating and rotat-
ing the second polygon until its left-most bottom edge is parallel to the right-most
top edges of the first polygon. As discussed in more detail in Chapter 2, by deleting
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at most pn+m

Fig. 9.2 Concatenating two polygons in the hypercubic lattice. Bottom vertices are denoted by ◦s,
and top vertices are denoted by •s.

these top and bottom edges, and inserting two edges to reconnect the two polygons
into a single polygon, the polygons are concatenated to form a unique new polygon.
If the first and second polygons had lengths n and m, then there were pn choices
for the first polygon, and pm−1/(d − 1) choices for the second polygon (since the
bottom edge of the second polygon must have the same orientation as the top edge
of the first polygon), and the number of distinct polygons of lengths n + m which
can be obtained in this construction is at most pn+m. Thus,

pn pm/(d−1)≤ pn+m. (9.1)

A basic theorem on sub-additive functions can be applied to this super-multiplicative
inequality [20, 18] by taking logarithms. The result is that the limit

lim
n→∞

1
n

log pn = log µ (9.2)

exists. The growth constant µ determines the exponential rate at which pn increases
with n. In particular, since pn ≤ (2d)n, µ is finite, and existence of the above limit
implies that pn = µn+o(n) and pn ≤ (d−1)µn. It can be shown that κ = log µ is the
connective constant of the self-avoiding walk [18].

More is known about pn and about lattice polygons. In particular, a pattern theo-
rem for lattice polygons has been proved [38, 39] (see [23] for a proof for polygons
using a method due to D J A Welsh). This result was a key ingredient in settling
the Frisch-Wasserman-Delbruck conjecture [12, 15] in the cubic lattice [66]. This
conjecture states that the probability that a ring polymer is non-trivially knotted
increases to one as its length increases without bound.

The growth constant µ has been estimated from self-avoiding walk enumeration
data in two dimensions by the finite lattice method [34], and in three dimensions by
using lace expansions [10], see reference [19]. These best (current) estimates are

µ =

{
2.63815853031(2), in 2 dimensions;

4.684043(12), in 3 dimensions.
(9.3)
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and these estimates are many orders of magnitude better than can be obtained by
current Markov chain Monte Carlo techniques. Corresponding results for other lat-
tices can be found in the Appendix.

A theoretical (but not rigorous) interpretation of polygons as arising in the N → 0
limit of an O(N) model [54, 55], discussed in Chapter 1, suggests the asymptotic
form

pn = Anα−3µn
(

1 + Bn−∆ +C n−1 + . . .
)

(9.4)

for pn, with a power law correction to the pure exponential growth term where α
is often called the entropic or specific heat exponent. Corrections to this are both
analytic (as in the terms C n−1) and non-analytic (as in the terms Bn−∆ ), where the
confluent correction exponent ∆ is the first in a hierarchy of higher order corrections
and there is strong evidence that ∆ = 3/2 in two dimensions [7, 5]. In the analysis of
numerical data these corrections are often ignored or modified, and the assumption
that pn ≈ Anα−3µn may be made for large values of n. Alternatively, the series of
correction terms is truncated to include only the first non-analytic and analytic terms
in linear least squares models for analysing collected data.

It is thought that α − 3 = −2.5 in two dimensions [7, 5] (a numerical estimate
gives α = 0.5000005± 0.0000010 [35, 36]) and that α − 3 ≈ −2.763 in three di-
mensions [43, 44]. Thus, the generating function of polygons, defined by

P(t) =
∞

∑
n=0

pntn, (9.5)

is finite at its radius of convergence, which is given by t = 1/µ in equation (9.2).
Simulations give the values α = 0.237± 0.005 and ∆ = 0.56± 0.03 [41] in three
dimensions. The singular behaviour of P(t) suggested by equation (9.4) is

Psing(t) ∼ |log(µt)|2−α ≈ (1− µt)2−α as t ր 1/µ, (9.6)

where Psing(t) is the singular part in P(t). The singularity in P(t) is at t = 1/µ , and
since α −3 < −1 [44], Psing(1/µ) is finite. Hence, one would expect that

P(t) ≈ P(1/µ)
(

1−C |log(µt)|2−α
)

(9.7)

as t → 1/µ from below.
The average length of polygons in this (grand canonical) ensemble (with P(t)

playing the role of a grand partition function) is given by

〈n〉 =
d

d logt
logP(t) ≈ Const.+

C(2−α)| log(tµ)|1−α

1−C | log(tµ)|2−α . (9.8)

By putting t = 1/µ in the above, one obtains the result that

〈n〉|t=1/µ = Const. (9.9)
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In other words, the expected length of polygons at the critical point t = 1/µ is finite,
provided that α ≤ 1.

The mean-square radius of gyration of polygons of length, 〈R2〉n, has also been
computed. Since C1n2/d ≤ 〈R2〉n ≤ C2n2 in d dimensions, for some non-zero con-
stants C1 and C2, it is assumed that

〈R2〉n = Dn2ν (1 + o(1)) (9.10)

where ν is the metric exponent. Conformal invariance arguments show that ν =
3/4 in two dimensions [54], and in three dimensions the best estimate is ν =
0.5877± 0.0006 [41], obtained by analysing self-avoiding walk data obtained by
Monte Carlo simulation using the pivot algorithm1. The combination of amplitudes
in equations (9.4) and (9.10) gives the remarkable expression AD = 5σ/32π2 where
σ = 2 for the square lattice [8]. This has been tested using exact enumeration data:
A = 0.5623012(1) and D = 0.05630944(1) for the square lattice [33, 34].

In this chapter a short review of the Monte Carlo simulation of lattice polygons
is presented. The general framework of Markov chain Monte Carlo in the context of
sampling lattice polygons is examined in section 2. The general implementation of
Monte Carlo sampling, irreducibility, aperiodicity and detailed balance is explained.
In addition, more advanced implementations of Monte Carlo algorithms via multi-
ple Markov chain sampling and umbrella sampling are reviewed. The calculation of
sample averages is explained, and in the context of umbrella sampling, the calcula-
tion of weighted averages. Statistical considerations are also briefly reviewed.

In section 3 a review of the two most common algorithms for sampling lattice
polygons are given. These are the BFACF algorithm and the pivot algorithm and
its variants. The free energies of polygon models of polymers can be estimated as
well, and we explain how this can be done in section 4. We conclude this chapter in
section 5 with a few final comments.

9.2 Monte Carlo Simulations and Polygons

Let Zd be the d-dimensional hypercubic lattice consisting of all the vertices with in-
teger Cartesian coordinates. A vertex v ∈ Zd has coordinates (X(v),Y (v), . . . ,Z(v)),
with X(v) always denoting the first coordinate, and Z(v) always denoting the last
coordinate. Two vertices in Zd are said to be adjacent if they are a unit distance
apart.

A sequence of vertices {x j}n
j=0 is said to be an n-step walk if they are pairwise

adjacent: xi−1 is adjacent to xi for i = 1,2, . . . ,n. If these vertices are also distinct,
then the walk is said to be self-avoiding. An edge ei in a walk is the unit length
line segment joining a pair of adjacent vertices (xi−1,xi) in the lattice which are also
adjacent in the walk. We say that ei is incident with xi−1 and with xi, the vertices

1 See the end of section 9.3 for details of an improved algorithm, and see footnote 5 of Chapter 1
for more precise exponent estimates.
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which are its endpoints. The definition of a walk is broadened by adding to a walk
all the edges joining its adjacent vertices; this makes it possible to treat a walk as
either a sequence of vertices, or a sequence of edges (or steps).

A walk ω = {x j}n
j=0 is closed if its first vertex x0 and its last vertex xn coincide.

The closed walk is self-avoiding if the vertices x1, x2, . . ., xn are distinct, and in this
case it is a polygon.

Define equivalence classes of polygons by saying that two polygons are equiv-
alent if (1) a permutation of the vertices will make them identical, or (2) if one
can be translated in the lattice to become identical to the other, or (3) both these
operations. The resulting equivalence classes of polygons will simply be refered to
as polygons, and we may think of these as undirected and unlabeled sequences of
distinct adjacent vertices which are equivalent up to translations in the lattice.

Consider a set S of lattice polygons. S may be endowed with a probability dis-
tribution Π , where for each ω ∈ S we call Π(ω) the weight of ω . A Markov chain
Monte Carlo algorithm consists of a scheme which samples polygons from (S,Π)
in such a way that a Markov chain of polygons {ωi} is obtained. The polygons in
the Markov Chain must have the correct weight in a sense that will be explained
below. The set S is the state space of the algorithm.

Suppose ω ∈ S is a polygon, and suppose that a procedure or construction has
been defined which operates on ω to produce a state ν , also in S. If the probability
that ν is obtained from ω is denoted by p(ω → ν), then p(ω → ν) is the transition
probability matrix of the algorithm. The procedures or constructions which update
a polygon ω to propose a new state ν are the elementary moves of the algorithm.

The Monte Carlo algorithm defined by the transition probability matrix p(ω →
ν) is said to be reversible if p(ω → ν) satisfies the condition

Π(ω) p(ω → ν) = Π(ν) p(ν → ω) (9.11)

if Π is the uniform distribution. In general, Π is not uniform, in which case this is
a condition of detailed balance.

A Monte Carlo algorithm A is defined by its state space and by its condition
of detailed balance (there are numerous resources explaining the basics of Monte
Carlo simulation, see for example reference [63]). We say that the algorithm A is
irreducible if there is a sequence of elementary moves which will take a given state
ω to any other state ν in the state space. The algorithm is aperiodic if it can visit
states in state space at any step with non-zero probability. Commonly, a Monte Carlo
algorithm that is both aperiodic and irreducible is said to be ergodic.

By summing equation (9.11) over ν , one obtains

Π(ω) = ∑
ν∈S

Π(ν) p(ν → ω). (9.12)

In other words, the transition probability matrix has eigenvalue 1, and associated
eigenvector Π(ω). In these circumstances, it follows from the fundamental theorem
of Markov chain Monte Carlo that the unique stationary distribution of the algorithm
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is Π(ω), provided that the chain is both ergodic and satisfies a condition of detailed
balance [49, 50].

The implication of the fundamental theorem is that spatial averages of functions
over S may be estimated by time series averages taken over a realization of a Markov
chain by the algorithm. In particular, for a function f (ω) the average is defined by

〈 f 〉S = ∑
ω∈S

f (ω)Π(ω). (9.13)

On the other hand, if {ωi}N
i=1 is a realization of a Markov chain in S using a Monte

Carlo algorithm with stationary distribution Π(ω), then

〈 f 〉S ≈ 〈 f (ωi)〉N =
1
N

N

∑
i=1

f (ωi) (9.14)

and this becomes an equality as N → ∞.
Normally, a confidence interval can be estimated by examining the variance of f ,

defined by VarN( f ) = 〈 f (ωi)
2〉N −〈 f (ωi)〉2

N . For large N, one may estimate a 67%
confidence interval σN on 〈 f (ωi)〉N by computing σ2

N = 1
N VarN( f ). Under normal

circumstances, this would be sufficient. However, it may be the case that the states
generated along the realization of a Markov chain are correlated, and σN would be
an underestimate of the confidence interval.

Statistical analysis of an observable f along a realized Markov chain proceeds
instead by the computation of the autocorrelation time. The covariance Cf (k) of f
along a Markov chain is defined by

Cf (k) = 〈 f (ωi) f (ωi+k)〉N −〈 f (ωi)〉2
N (9.15)

and the autocorrelation function of f is defined by Cf (k)/Cf (0). This function
depends on the dynamics of the Monte Carlo algorithm, and is influenced by the
choice of elementary moves and state space. Typically the autocorrelation function
decreases at an exponential rate 2τe with increasing k. τe is the exponential autocor-
relation time of the algorithm. An alternative measure of the autocorrelation time is
obtained by assuming that Cf (k) decays exponentially with k, and to integrate it to
determine the integrated autocorrelation time τint :

τint =
∞

∑
k=−∞

Cf (k)

2Cf (0)
=

1
2

+
∞

∑
k=1

Cf (k)

Cf (0)
. (9.16)

As the length N of the realized Markov chain in the state space S increases to infin-
ity, measurements of the integrated autocorrelation time allows one to estimate the
variance of f along the Markov chain by the asymptotic result

VarN( f ) ∼ 2τint

N

(
〈 f (ωi)

2〉N −〈 f (ωi)〉2) . (9.17)
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This modifies the estimate of the variance by taking into account correlations along
the realized Markov Chain, and a 67% confidence interval σN on 〈 f (ωi)〉N is given
by
√

VarN( f ), while 2σN is the 95% confidence interval. The effect of the auto-
correlation time is to reduce the number of states sampled along the chain (N) to
N/2τint “effectively independent” samples. For more details, see for example chap-
ter 9 in [46], and in particular section 9.2.2.

9.2.1 Multiple Markov Chain Monte Carlo Simulations

In many applications the condition of detailed balance in equation (9.11) is a func-
tion of a parameter β . This implies that the probability distribution Πβ on the state
space S is a function of β . In addition, the transition probabilities pβ (ω → ν) are
functions of β , which is set at a certain value before the simulation. In this event the
condition of detailed balance becomes

Πβ (ω) pβ (ω → ν) = Πβ (ν) pβ (ν → ω) (9.18)

and sampling along realizations of Markov chains is performed by fixing the value
of β and implementing the algorithm.

Computing averages at fixed values of β may be an inefficient use of compu-
tational resources, since one is often interested in sampling states for values of β
varying over an interval [βm,βM]. This will require the calculation of averages of
observables as a function of β . One effective way in which this can be done is to
implement a multiple Markov chain Monte Carlo [17, 67] version of the (existing)
Markov chain Monte Carlo algorithm.

The implementation is as follows: Realize N Markov Chains in parallel at a se-
quence of values of the parameter β : say at βm = β1 < β2 < β3 < .. . < βN = βM.
Normally, these chains could be allowed to evolve in parallel with no interactions
amongst them, and averages can be computed at values of β ∈ [βm,βM] by reweight-
ing the observations (see for example [53] for details) and using importance sam-
pling. The expected value of an observable is then estimated by the ratio estimator

〈 f 〉β ,N ≈ 〈Πβ f/Πβ ′ 〉β ′,N

〈Πβ /Πβ ′ 〉β ′,N
(9.19)

where sampling is done at β ′ and we estimate the observable f at β , and where one
may choose β ′ = β j as a convenient value of j among the parallel Markov chains
in the simulation. In applications, choosing β ′ = β j for β j close to β is usually
sufficient to provide a good estimate of the observable f at β .

In a multiple Markov chain Monte Carlo implementation one allows the parallel
Markov chains to interact with one another [16, 17]. The normal implementation is
to attempt the switching of the current states in two selected chains at a given time
step. If the current state in chain i is ωi and the current state in chain j is ω j, then
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the two states are swapped with probability

q(ωi,ω j) = min

{
1,

Πβi
(ω j)Πβ j

(ωi)

Πβi
(ωi)Πβ j

(ω j)

}
. (9.20)

This whole process, implemented on the underlying N parallel chains, is itself a
Markov chain which is called the composite Markov chain. It can be verified explic-
itly that the swapping of states in the composite Markov chain satisfies a condition
of detailed balance

[Πβ1
(ω1) . . .Πβi

(ωi) . . .Πβ j
(ω j) . . .ΠβN

(ωN)]qβ (ωi,ω j)

= [Πβ1
(ω1) . . .Πβi

(ω j) . . .Πβ j
(ωi) . . .ΠβN

(ωN)]qβ (ω j,ωi) (9.21)

so that the invariant stationary distribution of the composite chain is the product
distribution given by Π [β1,β2, . . . ,βN ] = ∏N

i=1 Πβi
, see for example reference [68].

Sample means can be computed using any of the chains in the simulation. If β
coincides with one of the βi, then the sample mean is given by equation (9.14) using
data only sampled along chain i. If β does not coincide with one of the βi, then the
nearest chain can be selected, and a ratio estimator as in equation (9.19) will give
the calculated mean.

9.2.2 Umbrella Sampling

This is a generalization of the idea of importance sampling [69], and may be useful
in applications where the weights of polygons in the state space S vary over many
orders of magnitude. To implement this method, assume at first that an estimate of
the observable f over S with a given probability distribution Πβ is required. Instead
of sampling directly from (S,Πβ ), Markov chain Monte Carlo is performed from a
different distribution, say P, and the expected value of f is estimated over Πβ by
reweighting the data

〈 f 〉Πβ =
〈 f Πβ /P〉P

〈Πβ /P〉P
, (9.22)

where 〈·〉P is the time series average of the realized Markov chain with states sam-
pled from distribution P.

Normally, Πβ is a Boltzmann distribution, and if the energy of a polygon ω ∈ S
is given by E(ω), then the distribution is given by

Πβ (ω) =
e−β E(ω)

Φβ
(9.23)

where Φβ is a normalising factor given by
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Φβ = ∑
ω∈S

e−β E(ω). (9.24)

Umbrella sampling can be implemented by choosing a suitable umbrella distribution
P. Practical experience shows that P may be chosen as a sum of Boltzmann factors

P(ω) =
N

∑
j=1

wje
−β jE(ω) (9.25)

for a set β1 < β2 < .. . < βN . The coefficients wj can be chosen to fix a suitable
umbrella over the interval [β1,βN ]. There are several schemes for determining the
wj, the most important criterion being a “flatness criterion” which requires that the
binning of polygons by energy should give a nearly flat histogram. This requires that
the {β j} are spaced closely together to allow sufficient overlap between the adjacent
distributions composing the umbrella.

The flatness criterion ensures sufficient mobility for the Markov chain to sample
polygons over the entire range of energies, and this allows for accurate estimates
from the ratio estimator in equation (9.22). If the algorithm realizes a Markov chain
C in S by sampling from the umbrella distribution P(ω), then

〈 f 〉β ≈ ∑ω∈C f (ω)e−β E(ω)/P(ω)

∑ω∈C e−β E(ω)/P(ω)
(9.26)

is the ratio estimator of f with respect to the Boltzmann distribution at β .
Important considerations in this implementation are the following: (1) Determin-

ing a suitable umbrella distribution P may be difficult. There are adaptive schemes
which may be used to grow an umbrella [51]. (2) The weight factors wj and the
exponential factors in equation (9.26) involve very large numbers, or involve calcu-
lations with sets of numbers which may be many orders of magnitude different from
one another. Implementing this requires careful programming to avoid overflows or
problems with rounding which may skew numerical results.

9.3 Algorithms for Lattice Polygons

There are only two widely used Metropolis-style Monte Carlo algorithms for sam-
pling lattice polygons along a Markov Chain. These are the BFACF algorithm [1, 4],
and the pivot algorithm [45, 48]. Any one of these algorithms may be implemented
in a multiple Markov chain algorithm, or in an umbrella sampling implementation.
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9.3.1 The BFACF Algorithm

This simple algorithm has interesting properties [4]. It operates by sampling poly-
gons of variable length along a Markov chain, using a simple elementary move (see
figure 9.3) to generate new states along the chain.
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Fig. 9.3 The elementary transitions of the BFACF algorithm.

Let ω j be the current state of length |ω j| sampled by the algorithm in a given re-
alization of the Markov chain. To generate a next state ω j+1, the simple construction
illustrated in Fig. 9.3 is implemented: Choose, with uniform probability, an edge in
ω j, and translate this edge normal to itself in one of 2(d − 1) possible directions a
distance of one lattice step, while inserting or deleting adjacent edges to keep the
polygon connected. Let ω ′ be the resulting object. We choose ω ′ as the next state
ω j+1 in the Markov chain by implementing a (Metropolis-style) rejection technique.

If ω ′ is not self-avoiding (then it is also not a polygon), then the attempt fails,
and ω j+1 = ω j is the next state in the Markov chain.

If ω ′ is a polygon, then there are three possible outcomes (as illustrated in
Fig. 9.3). Either ω ′ has length |ω j|+2, or it has length |ω j|, or it has length |ω j|−2.
Choose ω j+1 = ω ′ with probabilities

Pr(ω j → ω j+1) =





|ω j+1|q−1

|ω j |q−1 β 2, if |ω j+1| = |ω j|+ 2;

1, if |ω j+1| ≤ |ω j|,
(9.27)

where q and β are two parameters of this implementation. If the move is rejected,
then put ω j+1 = ω j.

Since the a priori probability of choosing an edge in ω j to implement the ele-
mentary moves in Fig. 9.3 is 1/|ω j|, it follows that the probability of obtaining a
given ω j+1 as the next state is

p(ω j → ω j+1) =
1

|ω j|

( |ω j+1|q−1

|ω j|q−1 β 2
)

(9.28)

if |ω j+1|= |ω j|+2. In this case p(ω j+1 → ω j) = 1
|ω j+1| and this gives the condition

of detailed balance
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|ω j|qβ |ω j | p(ω j → ω j+1) = |ω j+1|qβ |ω j+1| p(ω j+1 → ω j). (9.29)

One may explicitly check that the same condition holds if the proposed move con-
serves the length of the polygon.

By summing equation (9.29) over ω j+1, one obtains for any ω

|ω |qβ |ω| = ∑
ν

p(ν → ω) |ν|qβ |ν|, (9.30)

which is the specific case of equation (9.12) for this algorithm. Normally, this result
would have been enough to determine the invariant stationary distribution. In this
case, however, the algorithm is not known to be irreducible (it is aperiodic in this
implementation because the rejection technique destroys any periodic cycles in the
underlying Markov chain). The irreducibility of the algorithm has been determined
in two dimensions [42, 47] (or in the square lattice). Thus, in the square lattice the
algorithm is ergodic and obeys the condition of detailed balance in equation (9.29).
The invariant stationary distribution of the algorithm in the square lattice is

Π2(ω ;β ,q) =
|ω |qβ |ω|

∑ν |ν|qβ |ν| . (9.31)

The state space of the algorithm in this case is the set of all unrooted polygons
(which are equivalent under translations) on the square lattice. The parameters q
and β can be chosen to simulate polygons of convenient average length. Observe
that

∑
ν
|ν|qβ |ν| = ∑

n>0

nq pnβ n. (9.32)

where pn is the number of unrooted polygons of length n, counted modulo transla-
tions. The expected length of polygons sampled along a Markov chain at β is given
by

〈|ω |〉 =
∑ω |ω |q+1β |ω|

∑ν |ν|qβ |ν| . (9.33)

To leading order,
pn = Anα−3µn (1 + o(1)) (9.34)

where α = 1/2 is the specific heat or entropic exponent of polygons. Substitution of
equation (9.34) into equation (9.33) and estimating the series shows that βc = 1/µ
is the critical point of the parameter β in this algorithm. If β < βc, then the expected
length of polygons sampled by the algorithm is

〈|ω |〉 ∼ Const.+
C(2−α −q)| log(β µ)|1−q−α

1−C | log(β µ)|2−q−α . (9.35)

Since the algorithm is ergodic in two dimensions, this sample mean will esti-
mate the expected value of |ω | over the state space of all lattice polygons in two
dimensions. The algorithm is not ergodic in three dimensions since polygons have
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Fig. 9.4 A knotted lattice polygon with 24 steps in the cubic lattice.

well-defined knot types here, and the elementary moves cannot change the knot type
of a polygon. In what follows, the relation between lattice knots and the BFACF al-
gorithm is examined.

9.3.1.1 The BFACF Algorithm and Lattice Knots

The ergodicity properties of the BFACF algorithm can only be understood in three
dimensions in terms of lattice knots [31, 32]. A knot is an embedding of the circle in
three space. Two knots are said to belong to the same knot type if there is an ambient
orientation preserving homeomorphism of three space onto itself which takes one
knot to the other. Since lattice polygons are (piecewise linear) embeddings of the
circle in three space, they have well-defined knot types. Lattice knots are polygons
in the cubic lattice, but with knot type determined by examining the polygon as an
embedding of the circle in three space.

Define pn(K) to be the number of lattice polygons of length n and of knot type
K, counted up to equivalence under translations in the cubic lattice. Concatenation
of two polygons of knot types K and L can still be done as illustrated in Fig. 9.2,
and the result is a polygon with compound knot type K#L. In particular, this implies
that

pn(K) pm(L) ≤ 2 pn+m(K#L). (9.36)

If K = L = /0, where /0 denote the unknot, then this implies that

pn( /0) pm( /0) ≤ 2 pn+m( /0) (9.37)

with the result that the limit

lim
n→∞

1
n

log pn( /0) = µ /0 (9.38)

exists, where µ /0 is the growth constant of unknotted lattice polygons.
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The Frisch-Wasserman-Delbruck conjecture in this context implies that µ /0 < µ .
In polymer chemistry, this conjecture states that almost all ring polymers of suffi-
cient length will be knotted. Numerical simulations [30, 70] indicate that

log µ − log µ /0 = (4.15±0.32)×10−6. (9.39)

In other words, µ = 4.6840 . . . and µ /0 = 4.6840 . . ., and there is a difference in the
next one or two digits. Current computational technology could determine the next
couple of digits in µ and µ /0 (µ is known at least to the accuracy in equation (9.3)),
but this remains a tremendous computational challenge. The Frisch-Wasserman-
Delbruck conjecture was settled by Sumners and Whittington in 1988 [66] and by
Pippenger in 1989 [59] for a cubic lattice polygon model of ring polymers.

The existence of µ /0 as a limit in equation (9.38) is a special case. For non-trivial
knot types, it is not known that a similar limit exists. Instead one defines the lim sup

log µK = limsup
n→∞

1
n

log pn(K). (9.40)

The existence of µK as a limit is a major open problem in the study of lattice knots.
It is known that [65]

µ /0 ≤ µK < µ . (9.41)

Settling the first inequality is an open problem. Generally, it is believe that µ /0 = µK

for arbitrary and fixed non-trivial knot types K.
In analogy with pn it is expected that the asymptotic form for pn(K) should be

pn(K) = AKnαK−3µn
K(1 + o(1)). (9.42)

There is a tremendous amount of numerical data which supports this assumption
[56, 57]. Numerical simulations in reference [57] indicate the rather surprising fact
that AK is independent of K (if the assumption that µ /0 = µK is made). The entropic
exponent of lattice knots, αK , appears to be related to the entropic exponent α /0 of
unknotted polygons by

αK = α /0 + NK (9.43)

where NK is the number of prime components in the knot type K. For example,
α31 = α /0 + 1, while α31#31 = α /0 + 2. However, unlike pn, the asymptotic formula
for pn(K) in equation (9.42) does not rest on a theoretical foundation such as an
O(N) model. Settling this is unlikely to be a rigorous result, but this remains an
open problem.

The ergodicity properties of the BFACF algorithm have also been resolved in
three dimensions [31, 21]. In particular, the algorithm is not irreducible for lattice
polygons on the cubic lattice. Sampling polygons along a Markov chain on the cubic
lattice is not from a unique stationary distribution. Instead, the chain samples from
a stationary distribution that depends on the initial state of the polygon. This fixes
the ergodicity class of the algorithm for every simulation. The ergodicity classes are
described by the following theorem:
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Fig. 9.5 A realization of the knot 3+
1 in L1.

Theorem 1. The ergodicity classes of the BFACF algorithm, when applied to un-
rooted lattice polygons in the cubic lattice, are the classes of polygons with the
same knot types.

In other words, the ergodicity classes coincide with the knot-types of lattice poly-
gons. For the proof of this theorem, see reference [31], and in particular theorem
3.11 therein.

A slab Lw is the subset of the cubic lattice defined by

Lw = {x ∈ Z3 |0 ≤ Z(x) ≤ w}. (9.44)

The BFACF algorithm has similarly been studied in a slab in the cubic lattice. In
this case, the irreducibility of the algorithm is described by the following theorems
[25]:

Theorem 2. The ergodicity classes of the BFACF algorithm in the set of all unrooted
lattice polygons in L2 are the classes of polygons with the same knot types.

This theorem generalizes to other slabs:

Theorem 3. Suppose that w ≥ 2. Then the ergodicity classes of the BFACF algo-
rithm in the set of all unrooted lattice polygons in Lw are the classes of polygons
with the same knot types.

There are several open problems which remain unresolved. In particular, the
properties of the BFACF algorithm in L1 in three dimensions are not understood.

9.3.1.2 Implementation and Data Analysis

Suppose that the numerical values of an observable A(ω) are tracked along a
Markov chain M = {wi} realized by the BFACF algorithm. Then the sample aver-
age of A(ω) along the chain is

≪A≫N =
1
N

N

∑
i=1

A(ωi) (9.45)
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if the chain has length N. Since the chain is ergodic in its ergodicity class K (which
is the set of polygons with knot type K, where K is determined by the knot type of
the first state ω1 in the Markov chain of sampled polygons) by theorem 3 in three
dimensions, the sample average of the chain in three dimensions converges to

lim
N→∞

≪A≫N = ∑
ω∈K

A(ω) |ω |qt |ω| (9.46)

by the fundamental theorem of Markov chains and where it is assumed that the
Markov chain is generated by setting the activity parameter of edges equal to t, and
where the summation is over all polygons of knot type K. In two dimensions the
algorithm is ergodic, and the sample average converges to expected values taken
over all polygons.

The expected value of A measured over a Boltzmann distribution is given by

〈A〉 = ∑
ω∈K

A(ω)t |ω|/ ∑
ω∈K

t |ω|, (9.47)

and comparison with equation (9.46) shows that the ratio-estimator

〈A〉 =
limN→∞ ≪A/|ω |q≫N

limN→∞≪1/|ω |q≫N
≈ ≪A/|ω |q≫N

≪1/|ω |q≫N
(9.48)

approximates 〈A〉 for large values of N.
In Fig. 9.6 the measured average lengths of cubic lattice polygons of fixed knot

types are plotted against t in a simulation of the BFACF algorithm. For small val-
ues of t, the observed average length is small, but it increases dramatically as t
approaches a critical point given by t = 1/µK . The parameter q was put equal to 3
in this simulation. This biased the simulation to longer polygons.

In analogy with equation (9.4) the number of polygons of knot type K and length
n may be expected to be given by

pn(K) = AKnαK−3µn
K

(
1 + BKn−∆K + . . .

)
. (9.49)

The expected length of polygons of knot type K in the BFACF algorithm is given by

〈nK〉 ≈
[αK + q−2]µKt

1− tµK

(
1− BK∆K [1− tµK]∆K

αK + q−2

)
. (9.50)

The growth constant µK can be estimated by considering the asymptotic behaviour
of 〈nK〉 as z = (1− tµK) → 0 (or t → 1/µK). In particular, to leading order, we can
use (9.50) to approximate 1/〈nK〉:

〈nK〉−1 ≈ 1− tµK

[αK + q−2]µKt
=

1
(αK + q−2)µKt

− 1
αK + q−2

. (9.51)

An estimate of µK can be obtained by extrapolating to that value of K for which
1/〈nK〉 is zero. Such an analysis [57] gives the following estimates:
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Fig. 9.6 Data generated by the BFACF algorithm in three dimensions for polygons of fixed knot
types. These data are taken from [56, 57], and measured the mean length of knotted polygons as
a function of t and of knot type. This data strongly supports the assumptions in equation (9.42)
with αK related to α /0 by αK = α /0 + NK where NK is the number of prime components in K, see
equation (9.43). In this simulation, the parameter q was set equal to 3, biasing the sampling to
longer polygons.

µ( /0) = 4.6852,

µ(31) = 4.6832,

µ(41) = 4.6833, (9.52)

µ(31#31) = 4.6800,

µ(31#41) = 4.6841.

This may be interpreted as strong evidence that µK = µ /0 in equation (9.41).
To determine the entropic exponent, assume that µK = µ /0 and consider the ap-

proximation
〈nK〉
〈nL〉

≈ αK + q−2
αL + q−2

[
1 + c(1− tµ /0)

∆
]

(9.53)

for two knots of types K and L. A plot of 〈nK〉/〈nL〉 against (1− tµ /0)
∆ should give

a curve which will be linear for t close to 1/µ /0 and will have intercept [αK + q−
2]/[αL + q− 2] from which we can estimate αK in terms of αL. For the set of all
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polygons, the confluent exponent ∆ has a value close to 1/2. Putting q = 3 and
assuming that the confluent exponent ∆K = ∆ is independent of the knot type, then
shows that

〈nK〉
〈nL〉

=
αK + 1
αL + 1

+ c1(1− tµ /0)
∆ . (9.54)

If we assume that ∆ = 1/2 in each case, then these fits will produce a ratio ρ(K,L) =
(αK + 1)/(αL + 1) for q = 3. Analysing data collected in reference [57] gave the
following estimates:

α31 + 1
α /0 + 1

= 1.69±0.11 (9.55)

α41 + 1
α /0 + 1

= 1.67±0.11 (9.56)

α31 + 1
α41 + 1

= 1.01±0.11 (9.57)

α31#31 + 1
α31 + 1

= 1.25±0.16 (9.58)

If we assume that α /0 ≈ 0.25, then these results are consistent with equation (9.43).

9.3.2 The Pivot Algorithm

The BFACF algorithm samples polygons from the grand canonical ensemble by
making small local and length-changing changes to a polygon, and accepting it as
the next state using a probability distribution which is related to the Boltzmann
distribution. The philosophy underlying the pivot algorithm is radically different.
Instead, it samples polygons of fixed lengths (in the canonical ensemble) along a
Markov Chain by making relatively large changes to it (these are called “pivot”
moves).

The pivot algorithm was first invented for self-avoiding walks in the hypercubic
lattice [40]; see for example also references [48, 64]. While first used as an algo-
rithm for self-avoiding walks, the pivot algorithm was also shown to be useful in
simulating polygons [45, 26].

Implementing the pivot algorithm involves a “global move” in the polygon: Se-
lect two distinct vertices or pivots v1 and v2 on a polygon ω . These vertices cut ω
into two self-avoiding walks, one of which is the shorter, ω1. The remaining part of
the polygon is ω2, is also a self-avoiding walk, and has length at least equal to that
of ω1. The shorter segment ω1 can be changed by the algorithm provided that its
endpoints remains fixed in the lattice. This will leave open the possibility that the
updated object is still a polygon.

The possible operations on ω1 can be chosen from the symmetry group of the
underlying lattice. For example, a point reflection through the centre-of-mass of the
pivots will leave the endpoints of ω1 unchanged. This operation is commonly called
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(b)

Fig. 9.7 Two examples of pivot moves. On the left hand side (a) is an inversion or a point reflection
through the midpoint (centre of mass) of the line joining the pivots is shown. In (b) a reflection
through the bisector of the line joining the pivots is illustrated. This move is only possible if the
pivots lie on the same line which is in one lattice plane but inclined at 45◦ to the other lattice axes.

an inversion, and it can be attempted on any polygon and any set of pivots. While
it leaves the endpoints unchanged, the walk itself may be changed to a different
conformation. In other words, for any two choices of the pivots, there is at least one
move that can be made to attempt an update of the polygon.

More generally, the endpoints of ω1 (the pivots) may be on the same lattice axis,
or in the same lattice plane, or may even be on the same diagonal line or plane.
In each case there would be a selection of possible pivot moves that can be used
to update the polygon and to select the next state. These moves are elements of the
symmetry group of the underlying lattice. For example, if the two pivots v1 and v2 lie
on the same lattice axis, then the following set of operations are possible: Rotations
about the axis in multiples of 90◦, a reflection through the midpoint (centre of mass)
of the line joining v1 and v2, followed by a rotation about the axis in multiples of 90◦.
Further, first a reflection through the lattice planes containing the pivots, or through
the lattice plane bisecting the axis, or through planes containing the lattice axis, but
at a 45◦ angle to the lattice planes, among many other possibilities (the symmetry
group of the cubic lattice has 48 elements). In the case of the square or cubic lattice,
the algorithm is irreducible if enough of the group elements have been selected as
possible pivot moves.

In normal implementations the entire symmetry group of the lattice is used to
generate a new polygon. However, to show that the algorithm is irreducible requires
only some of the elements in the symmetry group. The requirements are understood
in the square and cubic lattice. In figure 9.7 some pivot moves are illustrated.

Theorem 4. The pivot algorithm for lattice polygons in the square lattice is irre-
ducible if inversions, and if reflections through bisectors of the lines joining the piv-
ots, making a 45◦ angle with the lattice axes, are included in the set of elementary
moves.

In other words, the two moves illustrated in Fig. 9.7 are enough to generate an
ergodic pivot algorithm in the square lattice. The proof of this fact is quite simple:
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Select pivots in the convex hull of the polygon and perform inversions. Each such
inversion increases the area included inside the polygon. Since the area is bounded,
this must fail after a finite number of moves (each inversion increases the area by at
least one half unit square). This occurs when the polygon is equal to its convex hull,
that is, when it is a rectangle. Finally, it is possible to collapse any rectangular lattice
polygon into a horizontally oriented rectangle with minimal area (vertical height
equal to 1) using an inversion, and a move of the type illustrated in Fig. 9.7(b).

A representative polygon of length 5000 edges, sampled uniformly from the set
of polygons of length 5000, is illustrated in Fig. 9.8.
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Fig. 9.8 A lattice polygon of length 5000. This polygon was obtained by sampling uniformly in the
set of polygons of length 5000 edges using the pivot algorithm [45].

The situation is somewhat more complex in three dimensions [45], but it has
also been resolved. The following theorem states the necessary conditions for an
irreducible pivot algorithm in three dimensions.

Theorem 5. The pivot algorithm for lattice polygons in the cubic lattice is irre-
ducible if inversions, ±π/2 rotations about lines parallel to the lattice axes, and
reflections through bisectors of lines joining the pivots and parallel to Y = ±X,
Z = ±Y and X = ±Z, are included in the set of possible elementary Monte Carlo
moves.

For the methods of proof of theorems 4 and 5, see for example references
[45, 26].

The pivot algorithm on the cubic lattice gives an ergodic algorithm with state
space being the set of all lattice polygons of fixed length (sometimes refered to as
the canonical ensemble). This is in contrast to the BFACF algorithm which samples
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Fig. 9.9 Measurements of the probability that a polygon is the unknot as a function of n. These data
were generated using the pivot algorithm in three dimensions on three lattices: the cubic lattice
(⊙), the face-centered cubic lattice (•) and the body-centered cubic lattice (⋄).

ergodically on the state space of lattice polygons with the same knot type in the
grand canonical ensemble.

The pivot algorithm has been used extensively to examine polygon models of
ring polymers. A particularly interesting example involves the detection of knots in
lattice polygons. A study of this kind was first performed by Michels and Wiegels in
1982 [52]. The general idea here is to estimate the difference in equation (9.39), and
that result was obtained by analysing the lattice data in figure 9.9. The face-centered
cubic lattice and the body-centered cubic lattice data can similarly be analysed to
estimate log µ − log µ /0. In the case of the face-centered cubic lattice the result is
(5.91± 0.32)× 10−6 and in case of the body-centered cubic lattice the result is
(5.82±0.37)×10−6. See references [30, 24] for more details.

Madras and Sokal [48] showed that the pivot algorithm was much faster than any
local move algorithm in the simulation of self-avoiding walks. For walks of n steps
their implementation of the pivot algorithm had an integrated autocorrelation time
of O(n) in CPU units. They argued that this could not be improved upon as it takes
time O(n) to even write down an n-step self-avoiding walk. Kennedy [37] showed
that it is possible to overcome the O(n) barrier, by utilising geometric information
to reduce the number of intersection tests, and only updating the data structure every
so often. In CPU units, the integrated autocorrelation time was estimated to be of
O(n0.57) on the square lattice, and O(n0.85) on the simple cubic lattice.

In recent work [9], a version of the pivot algorithm for self-avoiding walks has
been implemented that is dramatically faster still. The basic pivot move, whether
accepted or not, can be performed in CPU time O(logn), which leads to an in-
tegrated autocorrelation time of approximately O(n0.19 logn) on the square lattice
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and O(n0.11 logn) on the simple cubic lattice. For a walk of one million steps on
the simple cubic lattice, this leads to an improvement of approximately a factor
of 200 over Kennedy’s method, and 1400 over the implementation of Madras and
Sokal.2 It is possible to obtain good statistics on walks of up to one billion steps
on current generation machines using this technique!3 The key insight of [9] is the
recognition that the self-avoiding walk can be represented as a binary tree, where
each walk is represented as the concatenation of two sub-walks of roughly equal
length. This version of the pivot algorithm can be straightforwardly implemented
for self-avoiding polygons, and in the future will enable accurate simulations of ex-
tremely long self-avoiding polygons. Note, the CPU time per attempted pivot for
the proposed implementation for self-avoiding polygons would be O(logn), as it is
for walks, while the integrated autocorrelation time for self-avoiding polygons will
certainly be different, as this depends on the autocorrelation function of the Markov
chain.

9.4 Computing Free Energies of Lattice Polygons

It is possible to estimate the growth constant µ (defined by equation (9.2)) of a
model of polygons, using a Monte Carlo simulation. In this section two methods are
given, the first a “binning” method whereby relative free energies can be determined,
and the second a method using atmospheres which is a generalisation of a method
first developed for self-avoiding walks [61].

9.4.1 Free Energies by Binning

Traditionally estimates of the free energy were made by sampling polygons of vari-
able length weighted by length from a Boltzmann distribution. Consider first the
non-interacting case.

The partition function in these models is given by

Zβ = ∑
ω

e−β |ω| =
∞

∑
n=0

pne−β n (9.59)

where the summation runs over all polygons, and where pn is the number of poly-
gons of length n edges. The (intensive) free energy of this model is given by

Fβ = logZβ . (9.60)

2 These numbers are highly dependent on compiler and machine details, and should be taken as a
rough guide only.
3 The upper bound is due to memory limitations in current generation machines.
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The partition function is also the normalising factor of the expected value first en-
countered in equation (9.13). With a Boltzmann distribution this becomes explicitly

〈 f 〉β =
∑ω f (ω)e−β |ω|

∑ω e−β |ω| (9.61)

In a simulation the data can be binned according to increasing length |ω | of the
polygons. Since we are sampling from the distribution Πβ (n) = pne−β n/Zβ , the
number of samples of length n will be proportional to pne−β n. Thus, if rn is the
observed number of samples in the bin for polygons of length n, then

rn+2

rn
≈ pn+2e−2β

pn
. (9.62)

By repeatedly estimating the ratio of the bins, an average can be computed and the
ratio pn+2/pn can be estimated:

pn+2

pn
=

〈
rn+2

rne−2β

〉

β
. (9.63)

The ratio pn+2/pn may be interpreted as the relative free energy of non-interacting
polygons. If n → ∞, this is believed to approach µ2, where µ is the growth con-
stant of polygons (or self-avoiding walks) and where logµ can be interpreted as the
partition function.

The above can be generalized to weighted polygons in an interacting model with
partition function

Zβ (β ) = ∑
ω

e−β E(ω) = ∑
i

p(Ei)e
−β Ei (9.64)

where E(ω) is the energy of polygon ω and where p(Ei) is the number of polygons
of energy Ei. Binning data again, this time in bins for each E(ω), shows that the
ratio of the observed number of samples at two different energies E1 and E2 will be

r(E1)

r(E2)
=

p(E1)e−β E1

p(E2)e−β E2
. (9.65)

From this, one may estimate the ratio

p(E2)

p(E1)
=

〈
r(E1)

r(E2)
e−β (E2−E1)

〉

β
. (9.66)

If these ratios are known to sufficient accuracy, then the sum in equation (9.64) can
be estimated up to a constant multiplier, and thus the relative free energy can be
estimated.

In general, the estimation of free energies by binning is a noisy and numerically
difficult process, and free energy data obtained this way tend to be difficult to inter-
pret.
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II:

Fig. 9.10 Atmospheres of a polygon. In (I) a unit square is outlined on the polygon. By removing
the edge on one side of the unit square, and adding three edges around its other three sides, the
conformation on the right is obtained. If the resulting object is a polygon, then the unit square
contributes to the positive atmosphere of the polygon. The size of the positive atmosphere is the
total number of such unit squares on a polygon. In (II) a U-shaped conformation composed of three
edges is removed and replaced by a single edge. The resulting object is always a polygon. The
collection of U-shaped conformations on a polygon composes its negative atmosphere. The size of
the negative atmosphere is the number of such U-conformations in the polygon. These definitions
can obviously be generalised. Observe that the addition of edges on a positive atmospheric square
creates a negative atmospheric U-shape conformation, and vice versa.

9.4.2 Free Energies by Atmospheres

It is possible to estimate the ratio pn+2/pn by using a technique inspired by the orig-
inal method used to estimate the free energies of self-avoiding walk and tree models
of branched polymers [61, 27, 28]. The generalisation of this idea to polygons is ap-
parently not immediate, and is best explained by first considering a non-interacting
model.

The atmosphere of a given lattice polygon can be defined by using Fig. 9.10. Con-
sider first Fig. 9.10(I). On the left hand side one may replace one edge by three edges
to create the conformation on the right hand side. This construction can be marked
by placing a unit square, outlined in dotted lines on the left, on the edge. The total
collection of unit squares which can be placed on a polygon where this construc-
tion can be performed, forms the positive atmosphere of the polygon. Choosing one
such square from the positive atmosphere, and performing the construction, gives a
polygon of length two longer than the original.

Next consider Fig. 9.10(II). On the left hand side three edges in a U-conformation
can be replaced by a single edge to find a shorter polygon. The total collection
of such U-conformations forms the negative atmosphere of the polygon. Choosing
such a U-conformation and removing it gives a polygon of length two shorter than
the original.

Consider next the sets of polygons of length n and of length n + 2, illustrated
schematically in Fig. 9.11. Polygons of length n are mapped to polygons of length
n+2 by the construction in Fig. 9.10(I). Since a polygon has more than one positive
atmospheric square, it is mapped to more than one polygon of length n+2, depend-
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ing on which atmospheric square is chosen to add the edges. This is illustrated by
moving along the arrows in the figure.

Similarly, by removing two edges as in Fig. 9.10(II) to reduce the length of a
polygon of length n + 2, a polygon of length n is obtained. This is illustrated by
moving against the arrows in Fig. 9.11.

Observe that each move on a positive atmospheric square can be reversed, since
adding edges as in Fig. 9.10(I) creates a negative atmospheric U-conformation. Sim-
ilarly, when removing a U-conformation which contributed to the negative atmo-
sphere, a unit square contributing to the positive atmosphere is obtained.

.........................................................................................................................................................................................................................................................................................................................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..........................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pn
• • • • •

.........................................................................................................................................................................................................................................................................................................................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..........................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pn+2
◦ ◦ ◦ ◦ ◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

...
...
........

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...
...
.................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

..

...
...
........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
...
...
........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

..
...
...
........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 9.11 Adding edges on the positive atmospheric squares of a polygon gives a polygon of length
increased by two. Since any given polygon has a number of positive atmospheric squares, each at-
mospheric square may produce a different polygon. Each such construction results in the creation
of a negative atmospheric U-shaped conformation. By reversing this, the original polygon is re-
covered. By counting the number of arrows in this diagram, and relating this number to pn and
pn+2, equation (9.69) is obtained.

We proceed now by counting the number of arrows in figure 9.11. Let pn(a+,a−)
be the number of polygons of length n, counted up to translations in the hypercubic
lattice, and with positive atmosphere of size a+ and negative atmosphere of size a−.
Then the number of arrows in figure 9.11 is given by

Number of arrows = ∑
a+≥0
a−≥0

a+pn(a+,a−) = ∑
a+≥0
a−≥0

a−pn+2(a+,a−). (9.67)

Thus, if 〈a+〉n is the average size of the positive atmosphere for polygons of length
n, and 〈a−〉n+2 is the average size of the negative atmosphere for polygons of length
n + 2, then the last equation implies that
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〈a+〉n =
∑ a+≥0

a−≥0
(a+pn(a+,a−))

pn

=
∑ a+≥0

a−≥0
(a−pn+2(a+,a−))

pn+2

(
pn+2

pn

)

= 〈a−〉n+2

(
pn+2

pn

)
. (9.68)

In other words, the ratio of the average sizes of the atmospheres gives

pn+2

pn
=

〈a+〉n

〈a−〉n+2
. (9.69)

To implement this, assume that polygons of length n have been sampled uni-
formly along a Markov chain by a Monte Carlo algorithm (for example, by the pivot
algorithm). Assume similarly, that in a second simulation, polygons of length n + 2
have been sampled. By computing estimates of the average atmospheres for length
n and n+2 in these simulations, independent estimates are obtained, and their ratio
is an estimate of pn+2/pn, which should converge to µ2 with increasing n.

An alternative implementation would be to estimate atmospheres at a selected set
of values of n, and then extrapolate by fitting as follows:

〈a+〉n = A+n + B+ +C+/n + . . . ,

〈a−〉n = A−n + B−+C−/n + . . . (9.70)

where we observed that the atmospheres are extensive quantities that grow propor-
tional to n. In the n → ∞ limit the ratio 〈a+〉n/〈a−〉n+2 approaches A+/A−, and
this is an estimate of µ2. Evidently, the above implies that 〈a+〉n/〈a−〉n should ap-
proach µ2 as n → ∞. In addition, one may analyse other ratios, including 〈a−/a+〉n.
In Fig. 9.12 the ratio 〈a+〉n/〈a−〉n is plotted against n on data collected by the pivot
algorithm in two dimensions.

Implementing this procedure for interacting models is a straightforward gener-
alisation of the above. Assume that a polygon ω has Boltzmann weight e−β E(ω).
If adding the edges on a positive atmospheric square on ω produces the polygon
ω ′ of Boltzmann weight e−β E(ω ′), then the atmospheric arrow is weighted by the
ratio e−β (E(ω ′)−E(ω)). Sampling canonically from the Boltzmann distribution and
computing averages of the weighted atmospheres then shows that

Zn+2(β )

Zn(β )
=

〈a+(β )〉n

〈a−(β )〉n+2
. (9.71)

Assuming that

lim
n→∞

(
Zn+2(β )

Zn(β )

)
= e2F (β ) (9.72)
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Fig. 9.12 The ratio 〈a+〉n/〈a−〉n for two-dimensional lattice polygons computed by using the pivot
algorithm. As n → ∞, this ratio should approach µ2.

then shows that one may obtain an estimate of the free energy. Of course, it is not
known that the above limit exists in any given model, but the ratio Zn+2(β )/Zn(β )
is nevertheless expected to give a good approximation to e2F (β ), for large n, where
F (β ) is the limiting free energy in the model.

In Fig. 9.12 estimates of pn+2/pn using atmospheric data by using the pivot al-
gorithm is given. By extrapolating the data to n → ∞ using least squares analysis
and the four parameter model logµ2(n) = 2log µ +C1 log(1+2/n)+C2/n+C3/n2

gives acceptable fits at the 95% level if n ≥ nmin = 10. If nmin = 10, then the re-
gression gives the estimate 2.63735± 0.00012 and if nmin = 16, then the estimate
is 2.63763± 0.00011, where the error bars are one standard deviation. A system-
atic error may be estimated by comparing these results. Taking the absolute dif-
ference suggests that the systematic error is 0.00028. Taking our final error bar
to be a 95% statistical confidence interval plus the systematic error then gives
µ = 2.63763±0.00022±0.00028 = 2.63763±0.00050. This compares well with
the estimate from exact enumeration data 2.63815 . . . in reference [34]. While this
estimate cannot be considered highly accurate compared to other known techniques
for determining µ , it can be improved with more computer resources, and this shows
that the determination of the free energies using this technique should produce
good data.
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9.5 Conclusions

The two Monte Carlo algorithms discussed in this chapter are the main numerical
techniques for sampling polygons. The BFACF algorithm, which is a grand canon-
ical algorithm sampling polygons (usually) from a Boltzmann distribution over
length at a given temperature, may suffer from long autocorrelation times which
pose some difficulties in data analysis, but it can be used in three dimensions to
sample lattice knots of fixed knot type. This algorithm has been used extensively for
the sampling of knotted polygons, and in a few instances, also for the sampling of
linked polygons [29].

The BFACF algorithm can be implemented in a number of ways. The simplest
implementation is a Metropolis-style implementation involving the sampling of
polygons along a Markov chain from a Boltzmann distribution, but this can be gen-
eralized to umbrella sampling by generalising the Boltzmann distribution to be an
umbrella distribution spanning a range of temperatures or other parameters in the
model. Finally, multiple Markov chain Monte Carlo implementation of the BFACF
algorithm can also be done—the advantage with this implementation is that it typi-
cally shortens autocorrelation times while at the same time allowing the analysis of
data over a range of values of the temperature and other parameters.

The pivot algorithm may also be implemented using an umbrella sampling tech-
nique, or as a multiple Markov chain Monte Carlo algorithm. The shorter autocorre-
lation times in the time series produced by this algorithm gives it an inherent advan-
tage over the BFACF algorithm. However, the ergodicity properties of this algorithm
for polygons of fixed knot types are not known, and since knotted conformations are
rare in the state space of polygons of lengths up to millions of edges, it is not easily
possible to sample knotted polygons of a given knot type using a pivot algorithm.
However, the algorithm has been used effectively in sampling polygons in a variety
of models, including models of ring polymer adsorption and collapse [22].

Some generalisation of the pivot algorithm is possible, but still unexplored. For
example, an elementary move may be implemented which cuts a polygon into (say)
N sub-walks, then performing pivot moves on each, and reconnecting them in ran-
dom order back into a polygon. Such moves will radically reorder the vertices in a
given polygon with each successful attempt, and potential reductions in correlation
times along the time series of sampled polygons may be achieved.
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Chapter 10
Effect of Confinement: Polygons in Strips, Slabs
and Rectangles

Anthony J Guttmann and Iwan Jensen

10.1 Introduction

In this chapter we will be considering the effect of confining polygons to lie in
a bounded geometry. This has already been briefly discussed in Chapters 2 and
3, but here we give many more results. The simplest, non-trivial case is that of
SAP on the two-dimensional square lattice Z2, confined between two parallel lines,
say x = 0 and x = w. This problem is essentially 1-dimensional, and as such is in
principle solvable. As we shall show, the solution becomes increasingly unwieldy
as the distance w between the parallel lines increases. Stepping up a dimension to
the situation in which polygons in the simple-cubic lattice Z3 are confined between
two parallel planes, that is essentially a two-dimensional problem, and as such is not
amenable to exact solution.

Self-avoiding walks in slits were first treated theoretically by Daoud and de
Gennes [4] in 1977, and numerically by Wall et al. [14] the same year. Wall et
al. studied SAW on Z2, in particular the mean-square end-to-end distance. For a
slit of width one they obtained exact results, and also obtained asymptotic results
for a slit of width two. Around the same time, Wall and co-workers [13, 15] used
Monte Carlo methods to study the width dependence of the growth constant for
walks confined to strips of width w. In 1980 Klein [9] calculated the behaviour of
SAW and SAP confined to strips in Z2 of width up to six, based on a transfer matrix
formulation.

The interest in the problem arises from two separate aspects. Firstly, there is the
intrinsic interest in the effect of geometrical constraints. Secondly, this confined ge-
ometry is appropriate to model polymeric properties, such as sensitised flocculation
and steric stabilisation, again first discussed in this context by de Gennes [5] in 1979.
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The effect of confinement leads to a loss of configurational entropy, with the
consequence that there is a repulsion exerted by the polygon on the confining walls.
That this force is repulsive for all values of w was proved by Hammersley and Whit-
tington [7] in 1985, a result that was extended by Janse van Rensburg et al. [8] who
showed that the force remains repulsive despite a certain level of interaction with
the confining lines. If there is, in addition, an attractive interaction with the walls,
there is then a competition between entropic repulsion and the attractive polymer
adsorption.

In an earlier paper Di Marzio and Rubin [6] studied a random walk model of a
polymer confined between two planes in Z3. The model included wall–walk inter-
actions. In the absence of these interactions there is the expected loss of configu-
rational entropy, and the walls exert an effective repulsion. If there is an attraction
to only one of the two walls, this repulsion was found to persist. If however there
is an equal attraction at both walls, then the more interesting situation in which the
force is repulsive for weak wall–monomer interactions, but attractive for stronger
wall–monomer interactions was found.

In the bulk, it is known (see Chapter 1) that self-avoiding walks and self-avoiding
polygons have the same growth constant. However, this is not true for SAW and SAP
confined to a slit, as proved by Soteros and Whittington [11]. In fact they proved
that the growth constant for polygons in a slit of width w is strictly less than the
growth constant for SAW in a slit of the same (finite) width. This is a strictly two-
dimensional phenomenon. It is not true in higher dimensions. That is to say SAW
and SAP confined to lie between two parallel planes in Z3 have the same connective
constant.

In a thorough and detailed study of SAW in strips, Ahlberg and Janson [1] in
1990 gave a transfer matrix formalism. Denoting the generating function for walks

in a strip of width L, as usual, as CL(x) = ∑n c(L)
n xn, where c(L)

n is the number of

translationally distinct SAW, they proved (a) that c(L)
n = αµn

L +o(µn
L) as n → ∞, and

(b) c(L+1)
n+1 /c(L)

n → ∞, and (c) c(L)
n /µn

L converges exponentially. They proved similar
results for SAP in a slit, including the result of Soteros and Whittington that the
growth constant for SAP in a slit of finite width is strictly less than the corresponding
result for SAW. They obtained the growth constants for SAW in strips of width up
to 10 steps, and, for SAW on a cylinder, in a cylinder up to 10 links in the circular
direction. They also gave a detailed study of the properties of the transfer matrix,
and obtained a Central Limit Theorem for the endpoint.

Very recently Alvarez et al. [2] studied SAW and SAP in a slit, with wall interac-
tions. For SAP they found that, for any finite value of the wall–monomer interaction
term, there is an infinite number of slit widths where a polygon will induce a repul-
sion between the confining lines.

In Chapter 3 we saw how SAP in a strip are completely encodable by the position
of their horizontal edges. Indeed, it was shown that they could be encoded by a finite
alphabet, and that alphabet was given for both a strip of width 2 and a strip of width
3. The number of states required to count polygons in a strip of width w grows as 3w,
which prevents this calculation from being pushed to very high values of w. More
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precisely, Klein [9] has shown that the number of states is given by

w(w+ 1)

2 2F3

(
1,

2−w
2

,
1−w

2
;2,3;4

)
.

This gives a sequence 2,5,12,30,76,196,512,1353, . . . which is growing exponen-
tially, proportional to 3w. As we saw in Chapter 3 this can be reduced by symmetry.
By judicious use of the transfer matrix method, as discussed in Chapter 7, we have
extended these encodings to strips of width w = 17 for square lattice polygons and
for honeycomb lattice polygons (in both lattice directions1), and for triangular lat-
tice polygons in strips of width up to 14.

The generating function in each case is rational, and the nature of the singularity
at the radius of convergence, which we identify with the critical point, is just a
simple pole. For square lattice polygons, we find the degree of the numerator, N
and denominator D to be (N,D) = (0,1), (2,4), (10,14), (34,40) for widths w =
1,2,3,4 respectively. The value of the smallest real positive zero of the denominator
polynomial gives the radius of convergence, and also the reciprocal of the growth
constant for polygons, µw, and this is a monotone increasing function of w. In this
way we obtained the lower bounds µ(square) > 2.4537, µ(honey) > 1.7759 and
µ(tri) > 3.7272. (This isn’t a particularly efficient way to obtain lower bounds, but
is, rather, an additional outcome of the study.)

Daoud and de Gennes [4] developed the scaling theory that predicts how µw is
expected to scale with width w. Their result was for SAW in a strip, but can be
expected to hold mutatis mutandis for polygons in a strip. They find that

log µ − logµw ∼ const.×w−φ ,

where φ = 1/ν = 4/3. Recall that ν = 3/4 is the mean-square end-to-end distance
scaling exponent. For walks confined between planes in Z3, the same result is ex-
pected to hold, except now the value of ν is not known exactly, but to a good approx-
imation is ν(3d) ≈ 0.57... Recall that we have very precise estimates of µ for all
lattices (these are more precise in 2d than in 3d). Indeed, for the honeycomb lattice

in 2d we believe the exact value to be µ(honey) =
√

2 +
√

2.
In Table 10.1 we give the results for the growth constant for strips of width d =

w + 1 sites, (w is the width in bonds), for the square, triangular and honeycomb
lattices. The monotone increasing values of µd can be readily seen. In Fig. 10.1 we
plot log µ − log µd against logd for the square lattice, and show the solid line of
gradient −4/3. It can be seen that quite large values of w are required before we
reach the asymptotic regime, but that the scaling predictions are well supported by
the data. That is to say, the later points do indeed seem to have a locus of the same
gradient as the line drawn. The figures for the other lattices are qualitatively similar.

1 We draw the honeycomb lattice as a brickwork lattice, so the lattice is not symmetrical in the two
lattice directions.
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Fig. 10.1 Plot of log µ − logµd vs. d on a logarithmic scale for the square lattice data. The straight
line corresponds to the theoretical prediction of gradient −4/3.

10.2 Polygons in a Square

Consider now SAW confined to an L×L square. This problem has a long history,
and a detailed discussion can be found in [3]. In that paper it was shown, among

Table 10.1 d = w + 1 is the strip width, µd is the growth constant for square, triangular and
honeycomb (direction 1 and 2) lattice polygons in the strip.

d µd(square) µd(tri) µd(honey1) µd(honey2)
2 1.000000000 1.000000000 1.000000000 1.000000000
3 1.414213562 1.795088688 1.229990405 1.229990405
4 1.681759003 2.328493240 1.374333111 1.411814730
5 1.863069582 2.684771831 1.470190448 1.506504156
6 1.992445913 2.936411124 1.537116598 1.570592201
7 2.088633483 3.121963721 1.585935359 1.616386758
8 2.162502131 3.263502052 1.622845444 1.650489362
9 2.220732353 3.374453146 1.651575171 1.676722086

10 2.267631888 3.463397284 1.674476550 1.697434531
11 2.306090565 3.536045068 1.693096661 1.714142575
12 2.338112184 3.596328876 1.708490122 1.727863827
13 2.365125683 3.647036006 1.721398098 1.739304455
14 2.388174882 3.690191779 1.732355266 1.748968490
15 2.408038380 3.727299874 1.741756176 1.757224477
16 2.425307673 1.749897782 1.764347596
17 2.440439441 1.757007495 1.770547115
18 2.453791386 1.763262171 1.775984775
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other things, that the number of SAW starting at (0,0) and ending at (L,L) and
never leaving the square, grows as λ L2

. That is to say, if CL is the number of such

walks, then limL→∞ C1/L2

L = λ . It was estimated that λ = 1.744550± 0.000005. A
related problem consists of estimating the number of transverse walks, defined as
SAW that cross the square from any vertex on the left edge of the square (hence the
x co-ordinate is 0), to any vertex on the right edge (with x co-ordinate L). In [3] it
was proved that if TL denotes the number of such walks in an L× L square, then

limL→∞ T 1/L2

L = λ , with the same value of λ as for CL.
We now consider SAP that span the square. That is to say, one or more edges

of the polygon must lie on each edge of the square. As far as we are aware, this
problem has not previously been considered. Let PL denote the number of such
polygons. A moment’s reflection shows that PL < TL, and PL+1 > CL, as one can
readily construct a unique SAP occupying an (L+ 1)× (L+ 1) lattice from a SAW
going from (0,0) to (L,L), by the addition of a step from (L,L) to (L,L + 1), then
another from (L+1,L+1), then a ray from (L+1,L+1), to (L+1,−1), followed
by a further ray from (L + 1,−1) to (0− 1), and then a final step to the origin. In

this way we can prove that limL→∞ P1/L2

L = λ .

Table 10.2 The number of self-avoiding polygons PL in a square of size L×L.

L PL

1 1
2 5
3 106
4 6074
5 943340
6 419355340
7 554485727288
8 2208574156731474
9 26609978139626497670
10 973224195603423767343946
11 108342096917091380628767818812
12 36763211016528549310068224122368860
13 38044287043749436284594644308861499605492
14 120080993887856855992693253821542678777528272944
15 1155964922833172664443974642986506946314409762614495586
16 33934880416462899814285781006397200200998294954062388898965682

Several refinements or extensions of this problem remain to be considered. The
number of steps (the perimeter) of a SAP in a square varies from a minimum of
4L to a maximum of (L + 1)2. It would be interesting to study the distribution of
perimeters with L. A second aspect amenable to study would be to include an in-
teraction between adjacent monomers of the polygon, and/or with the edges of the
square. From the discussion in Chapter 12, and the section below, we have some
understanding of what to expect in these cases, but it would still be of interest to see
the details.
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10.3 Polygons in a Strip Interacting with Walls

In the previous two sections we considered SAP in confined geometries, but apart
from confinement, there was no additional constraint imposed by the walls. In this
section we consider the situation where there is an interaction associated with edges
of the polygon in, or adjacent to, a wall.

Very recently, Alvarez et al [2] have investigated the situation of SAP (and SAW)
in strips of width w, interacting with the walls. It is necessary to consider not just the
situation at the surfaces, but also immediately adjacent to the surfaces if a full range
of behaviour is to be observed. This is because polygons are topologically circular.
So that if they span a strip, the top edge can never reach the bottom of the strip
(this phenomenon is particular to polygons in two dimensions). More precisely, if
we define the top edge of the polygon as that part of the polygon between the first
vertex lying in the top of the slit and the last vertex lying in the top of the slit,
then no vertex in the top edge can lie in the bottom of the slit. This topological
constraint has been overcome by considering interactions with the second row. This
means the top (bottom) can interact with the second layer of the bottom (top). We
shall adopt the notation of Alvarez et al. [2], and point out a six-dimensional vector
v = (v0,v0,1,v1,vw−1,vw−1,w,vw) is required in order to keep track of the number
of bonds v0 lying in the slit edge at y = 0, v1 lying in the row y = 1 (which is the
row immediately above the bottom of the slit), vw lying in the slit edge at y = w,
vw−1 lying in the row y = w− 1 (which is the row immediately below the top of
the slit). Finally v0,1 is the number of vertical bonds between y = 0 and y = 1,
and vw−1,w is the number of vertical bonds between y = w− 1 and y = w. We also
introduce two corresponding vectors of Boltzmann factors, a = (a0,a0,1,a1) and
b = (bt−1,bt−1,t ,bt). Then if pn(v,w) is the number of SAP in a slit of width w
with n edges and restricted by having edges in various places as specified by v, the
partition function is

Zn(a,b,w) = ∑
v

cn(v,w)av0
0 a

v0,1
0,1 av1

1 bvw−1
t−1 b

vw−1,w
t−1,t bvw

t . (10.1)

The grand canonical partition function is then given by

H(a,b,w) =
∞

∑
n=0

Zn(a,b,w)zn, (10.2)

and the corresponding free energy is

κ(a,b,w) = lim
n→∞

n−1 logZn(a,b,w), (10.3)

while the force exerted by the polygon on the confining walls is

f (a,b,w) :=
∂

∂w
κ(a,b,w). (10.4)
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Alvarez et al. considered four special cases, which were:
(a) a0,1 = a1 = bt−1 = bt−1,t = 1, corresponding to a single layer at both walls. Here
we have switched off interactions in the second layer, both at the top and at the bot-
tom, and only interactions in the surfaces take place.
(b) a0,1 = a1 = bt−1,t = 1, and bt−1 = bt = b corresponding to a double layer at
the top wall. Here the interactions occur with the top and next-to-top layer, and also
with the bottom layer. All other interactions are switched off.
(c) a0,1 = bt−1,t = 1, a0 = a1 = a and bt−1 = bt = b corresponding to a double layer
at both walls. Here the interactions occur with the top and next-to-top layer, and
also with the bottom and next-to-bottom layer. All other interactions (between the
two top and between the two bottom layers) are switched off.
(d) a0 = a0,1 = a1 = a, and bt−1 = bt−1,t = bt = b corresponding to fully interacting
double layers. Here all interactions are on. The only restriction is that the interac-
tions are all equal at the top, and all equal at the bottom.

Series expansions by use of the transfer matrix method (see Chapter 7) were
obtained for strips up to width 9. Two useful lemmas were also proved. They are:

Lemma 1 For SAP in a slit in case (a), we have for any width w > 0 that the
free energy difference produced by increasing the width by at least w units is non-
negative. That is to say

κ(a,b,w+ i)−κ(a,b,w) ≥ 0

for any integer i > w.

Lemma 2 There are infinitely many values of w for which the force for SAP in a
slit of width w in case (a) is always non-negative.

In Fig. 10.2 we show a plot of the force with a = b line for SAP in slits of various
widths in the single layer case (a). It is clear that the forces are always positive,
corresponding to a purely repulsive regime. This observation is consistent with the
above lemma. The result may indeed be true for all w, but this has not been proved.
Also note that the force quickly drops off as a increases.

The case of a double layer at the top wall, case (b) above, overcomes the shielding
effect of case (a), in which topology prevents the top of the polygon reaching the
bottom wall (and vice versa). SAPs now exhibit both an attractive and a repulsive
regime. In Fig. 10.3 we show the zero-force curve for SAP in slits of various widths.
The positive force regime (repulsive) is to the S-W of the curves, while the attractive
regime is to the N-E. The minimum we observe means we have re-entrant behaviour.
For wall interaction parameter b = 3 say, as we increase the value of a, the force
changes from repulsive for small a, then to attractive for intermediate values of a,
then back to repulsive for large values of a.

Figure 10.4 shows the force along the a = b line for SAP in slits of various widths
in case (b). Again we see that for small values of the wall interaction parameters,
the force is repulsive, but as the interaction strength increases, it becomes attractive.
This double layer model overcomes the screening that prevents the formation of an
attractive regime in the single layer case.
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Fig. 10.2 Force along the a = b line for SAP in slits of various widths in the single layer case.
Note the absence of any attractive regime (corresponding to a negative force).
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Fig. 10.3 Zero-force curve for SAP in slits of various widths in the case of a double layer at the
top wall and a single layer at the bottom wall. The two intersections with the line b = 3 signals
re-entrant behaviour.
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Fig. 10.4 Force along the a = b line for SAP in slits of various widths in the case of a double
layer at the top wall and a single layer at the bottom wall. Both attractive and repulsive regimes are
evident.

The next situation considered is that of a double layer at both walls. In Fig. 10.5
we show the zero-force curve for SAP in slits of various widths. Unlike the previous
case, we observe an expected symmetry about the line a = b. As in the previous
case, the positive force regime (repulsive) is to the S-W of the curves, while the
attractive regime is to the N-E. It is unclear whether the zero-force point along the
line a = b diverges as the strip width increases.

The next figure, Fig. 10.6, plots the force along the a = b line for SAP in slits of
various widths. Again, both attractive and repulsive regimes are seen. As the width
increases, the attractive force is seen to become rather weak.

The final case considered has all interactions switched on, but with the restric-
tion that all the interactions at the top wall are equal, as are all the interactions at
the bottom wall. In Fig. 10.7 we plot the zero-force curve for SAP in slits of var-
ious widths. The picture looks qualitatively the same as Fig. 10.5, with re-entrant
behaviour evident in some regions of the phase diagram.

In Fig. 10.8 the force along the a = b line for SAP of various widths is shown.
Again, we see qualitative similarity to the previous double layer case, and the re-
marks made about that situation apply here too.

In [2] Alvarez et al. give a similar analysis for SAW in strips. They observe some
significant differences between SAW and SAP. These differences are beyond the
scope of this chapter, and are also likely to be confined to the two-dimensional case,
so we refer the interested reader to their article.
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Fig. 10.5 Zero-force curve for SAP in slits of various widths in the case of double layers at both
walls. Both re-entrant behaviour and symmetry about the line a = b are evident.
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Fig. 10.6 Force along the a = b line for SAP in slits of various widths in the case of double layers
at both walls. Both attractive and repulsive regimes are evident.
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Fig. 10.7 Zero-force curve for SAP in slits of various widths in the case of fully interacting double
layers at both walls. Both re-entrant behaviour and symmetry about the line a = b are evident.
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Fig. 10.8 Force along the a = b line for SAP in slits of various widths in the case of fully inter-
acting double layers at both walls. Both attractive and repulsive regimes are evident, though the
attractive regime declines with increasing width.
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10.4 Conclusion

The consequences of confining SAP (and SAW) to strips/slabs/prisms clearly pro-
duces a rich set of both combinatorial results and models of physical, and indeed
biological interest. The fact that regimes can change from attractive to repulsive,
and back, opens up the possibility of constructing simple models with quite com-
plex behaviour. More significantly perhaps, it means that it is not necessary to pos-
tulate complex models to explain complex behaviour. The extension of the study of
Alvarez et al. [2], discussed above, to three dimensions, would be extremely inter-
esting, but is probably beyond current computational resources.
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Chapter 11
Limit Distributions and Scaling Functions

Christoph Richard

11.1 Introduction

For a given combinatorial class of objects, such as polygons or polyhedra, the most
basic question concerns the number of objects of a given size (always assumed to
be finite), or an asymptotic estimate thereof. Informally stated, in this overview we
will analyse the refined question:

What does a typical object look like?

In contrast to the combinatorial question about the number of objects of a given
size, the latter question is of a probabilistic nature. For counting parameters in addi-
tion to object size, one asks for their (asymptotic) probability law. To give this ques-
tion a meaning, an underlying ensemble has to be specified. The simplest choice
is the uniform ensemble, where each object of a given size occurs with equal prob-
ability.

For self-avoiding polygons on the square lattice, size may be the number of edges
of the polygon, and an additional counting parameter may be the area enclosed by
the polygon. We will call this ensemble the fixed perimeter ensemble. For the uni-
form fixed perimeter ensemble, one assumes that, for a fixed number of edges, each
polygon occurs with the same probability. Another ensemble, which we will call the
fixed area ensemble, is obtained with size being the polygon area, and the number of
edges being an additional counting parameter. For the uniform fixed area ensemble,
one assumes that, for fixed area, each polygon occurs with the same probability.

To be specific, let pm,n denote the number of square lattice self-avoiding polygons
of half-perimeter m and area n. Discrete random variables X̃m of area in the uniform
fixed perimeter ensemble and of perimeter Ỹn in the uniform fixed area ensemble are
defined by
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Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany, e-
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P(X̃m = n) =
pm,n

∑n pm,n
, P(Ỹn = m) =

pm,n

∑m pm,n
.

We are interested in an asymptotic description of these probability laws, in the limit
of infinite object size.

In statistical physics, certain non-uniform ensembles are important. For fixed
object size, the probability of an object with value n of the counting parameter (such
as the area of a polygon) may be proportional to an, for some non-negative parameter
a = e−β E of non-uniformity. Here E is the energy of the object, and β = 1/(kBT ),
where T is the temperature, and kB denotes Boltzmann’s constant. A qualitative
change in the behaviour of typical objects may then be reflected in a qualitative
change in the probability law of the counting parameter w.r.t. a. Such a change is
an indication of a phase transition, i.e., a non-analyticity in the free energy of the
corresponding ensemble.

For self-avoiding polygons in the fixed perimeter ensemble, let q denote the pa-
rameter of non-uniformity,

P(X̃m(q) = n) =
pm,nqn

∑n pm,nqn .

Polygons of large area are suppressed in probability for small values of q, such that
one expects a typical self-avoiding polygon to closely resemble a branched poly-
mer. Likewise, for large values of q, a typical polygon is expected to be inflated,
closely resembling a ball (or square) shape. Let us define the ball-shaped phase by
the condition that the mean area of a polygon grows quadratically with its perime-
ter. The ball-shaped phase occurs for q > 1 [31]. Linear growth of the mean area
w.r.t. perimeter is expected to occur for all values 0 < q < 1. This phase is called
the branched polymer phase. Of particular interest is the point q = 1, at which a
phase transition occurs [31]. This transition is called a collapse transition. Similar
considerations apply for self-avoiding polygons in the fixed area ensemble,

P(Ỹn(x) = m) =
pm,nxm

∑m pm,nxm ,

with parameter of non-uniformity x, where 0 < x < ∞.
For a given model, these effects may be studied using data from exact or Monte-

Carlo enumeration and series extrapolation techniques. Sometimes, the underlying
model is exactly solvable, i.e., it obeys a combinatorial decomposition, which leads
to a recursion for the counting parameter. In that case, its (asymptotic) behaviour
may be extracted from the recurrence.

A convenient tool is generating functions. The combinatorial information about
the number of objects of a given size is coded in a one-variable (ordinary) generating
function, typically of positive and finite radius of convergence. Given the generating
function of the counting problem, the asymptotic behaviour of its coefficients can
be inferred from the leading singular behaviour of the generating function. This is
determined by the location and nature of the singularity of the generating function
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closest to the origin. There are elaborate techniques for studying this behaviour
exactly [37] or numerically [43], see chapter 8.

The case of additional counting parameters leads to a multivariate generating
function. For self-avoiding polygons, the half-perimeter and area generating func-
tion is

P(x,q) = ∑
m,n

pm,nxmqn.

For a fixed value of a non-uniformity parameter q0, where 0 < q0 ≤ 1, let x0 be the
radius of convergence of P(x,q0). The asymptotic law of the counting parameter is
encoded in the singular behaviour of the generating function P(x,q) about (x0,q0).
If locally about (x0,q0) the nature of the singularity of P(x,q) does not change,
then distributions are expected to be concentrated, with a Gaussian limit law. This
corresponds to the physical intuition that fluctuations of macroscopic quantities are
asymptotically negligible away from phase transition points. If the nature of the
singularity does change locally, we expect non-concentrated distributions, resulting
in non-Gaussian limit laws. This is expected to be the case at phase transition points.

Qualitative information about the singularity structure is given by the singularity
diagram (also called the phase diagram), compare chapter 2. It displays the region
of convergence of the two-variable generating function, i.e., the set of points (x,q)
in the closed upper right quadrant of the plane, such that the generating function
P(x,q) converges. The set of boundary points with positive coordinates is a set of
singular points of P(x,q), called the critical curve. See Fig. 11.1 for a sketch of
the singularity diagram of a typical polygon model such as self-avoiding polygons,
counted by half-perimeter and area, with generating function P(x,q) as above. There

Fig. 11.1 Singularity diagram of a typical polygon model counted by half-perimeter and area,
with x conjugate to half-perimeter and q conjugate to area.

appear two lines of singularities, which intersect at the point (x,q) = (xc,1). Here xc

is the radius of convergence of the half-perimeter generating function P(x,1), also
called the critical point. The nature of a singularity does not change along each of
the two lines, and the intersection point (x,q) = (xc,1) of the two lines is a phase
transition point. For 0 < q < 1 fixed, denote by xc(q) the radius of convergence of
P(x,q). The branched polymer phase for the fixed perimeter ensemble 0 < q < 1
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(and also for the corresponding fixed area ensemble) is asymptotically described by
the singularity of P(x,q) about (xc(q),q). In the ball-shaped phase q > 1 of the fixed
perimeter ensemble, the (ordinary) generating function does not seem the right ob-
ject to study, since it has zero radius of convergence for fixed q > 1. The singularity
of P(x,q) about (x,1) describes, for 0 < x < xc, a ball-shaped phase in the fixed area
ensemble, with a finite average size of a ball.

For points (x,q) within the region of convergence, both x and y positive, the gen-
erating function P(x,q) is finite and positive. Thus, such points may be interpreted
as parameters in a mixed infinite ensemble

P(X̃(x,q) = (m,n)) =
pm,nxmqn

∑m,n pm,nxmqn .

The limiting law of the counting parameter in the fixed area or fixed perimeter
ensemble can be extracted from the leading singular behaviour of the two-variable
generating function. There are two different approaches to the problem. The first one
consists in analysing, for fixed non-uniformity parameter a, the singular behaviour
of the remaining one-parameter generating function and its derivatives w.r.t. a. This
method is also called the method of moments. It can be successfully applied in the
fixed perimeter ensemble at the phase transition point. Typically, this results in non-
concentrated distributions.

The second approach derives an asymptotic approximation of the two-variable
generating function. Away from a phase transition point, such an approximation can
be obtained for some classes of models, typically resulting in concentrated distribu-
tions, with a Gaussian law for the centred and normalised random variable. How-
ever, it is usually difficult to extract such information at a phase transition point.
The theory of tricritical scaling seeks to fill this gap, by suggesting and justifying
a particular ansatz for an approximation using scaling functions. Knowledge of the
approximation may imply knowledge of the quantities analysed in the first approach.

In the following, we give an overview of these two approaches. For the first ap-
proach, summarised by the title limit distributions, there are a number of rigorous
results, which we will discuss. The second approach, summarised by the title scaling
functions, is less developed. For that reason, our presentation will be more descrip-
tive, stating important open questions. We will stress connections between the two
approaches, thereby providing a probabilistic interpretation of scaling functions in
terms of limit distributions.

11.2 Polygon Models and Generating Functions

Models of polygons, polyominoes or polyhedra have been studied intensively on the
square and cubic lattices. It is believed that the leading asymptotic behaviour of such
models, such as the type of limit distribution or critical exponents, is independent of
the underlying lattice.



11 Limit Distributions and Scaling Functions 251

In two dimensions, a number of models of square lattice polygons have been
enumerated according to perimeter and area and other parameters, see chapter 3
and [7] for a review of models with an exact solution. The majority of such mod-
els has an algebraic perimeter generating function. We mention prudent polygons
[96, 22, 8] as a notable exception. Of particular importance for polygon models
is the fixed perimeter ensemble, since it models two-dimensional vesicle collapse.
Another important ensemble is the fixed area ensemble, which serves as a model of
ring polymers. The fixed area ensemble may also describe percolation and cluster
growth. For example, staircase polygons are models of directed compact percola-
tion [26, 28, 29, 27, 12, 57]. This may be compared to the exactly solvable case of
percolation on a tree [42]. The model of self-avoiding polygons is conjectured to
describe the hull of critical percolation clusters [60].

In addition to perimeter, other counting parameters have been studied, such as
width and height, generalisations of area [89], radius of gyration [53, 64], number
of nearest-neighbour interactions [4], last column height [7], and site perimeter [20,
11]. Also, motivated by applications in chemistry, symmetry subclasses of polygon
models have been analysed [63, 62, 40, 95]. Whereas this gives rise to a number of
different ensembles, only a few of them have been asymptotically studied. Not all
of them display phase transitions.

In three dimensions, models of polyhedra on the cubic lattice have been enu-
merated according to perimeter, surface area and volume, see [74, 102, 3] and the
discussion in section 11.3.9. Various ensembles may be defined, such as the fixed
surface area ensemble and the fixed volume ensemble. The fixed surface area en-
semble serves as a model of three-dimensional vesicle collapse [104].

In this chapter, we will consider models of square lattice polygons, counted by
half-perimeter and area. Let pm,n denote the (finite) number of such polygons of
half-perimeter m and area n. The numbers pm,n will always satisfy the following
assumption.

Assumption 1. For m,n ∈ N0, let non-negative integers pm,n ∈ N0 be given. The
numbers pm,n are assumed to satisfy the following properties.

i) There exist positive constants A,B > 0 such that pm,n = 0 if n≤Am or if n≥ Bm2.
ii) The sequence (∑n pm,n)m∈N0

has infinitely many positive elements and grows at
most exponentially.

Remarks. i) A sequence (an)n∈N0 is said to grow at most exponentially, if there are
positive constants C, µ such that |an| ≤Cµn for all n.
ii) Condition i) reflects the geometric constraint that the area of a polygon grows at
most quadratically and at least linearly with its perimeter. For self-avoiding poly-
gons, we have n ≥ m−1. Since pm,n = 0 if m < 2, we may choose A = 1/3. Since
n ≤ m2/4 for self-avoiding polygons, we may choose B = 1/3. Condition ii) is a
natural condition on the growth of the number of polygons of a given perimeter. For
self-avoiding polygons, we may choose C = 1 and µ = 16.
iii) For models with counting parameters different from area, or for models in higher
dimensions, a modified assumption holds, with the growth condition i) being re-
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placed by n ≤ Amk0 and n ≥ Bmk1 , for appropriate values of k0 and k1. Counting
parameters satisfying pm,n = 0 for n ≥ Bmk are called rank k parameters [25].

The above assumption imposes restrictions on the generating function of the
numbers pm,n. These explain the qualitative form of the singularity diagram Fig. 11.1.

Proposition 1. For numbers pm,n, let Assumption 1 be satisfied. Then, the generat-
ing function P(x,q) = ∑m,n pm,nxmqn has the following properties.

i) The generating function P(x,q) satisfies for k ∈ N

Ak
(

x
∂
∂x

)k

P(x,q) ≪
(

q
∂
∂q

)k

P(x,q) ≪ Bk
(

x
∂
∂x

)2k

P(x,q),

where ≪ denotes coefficient-wise domination.
ii) The evaluation P(x,1) is a power series with radius of convergence xc, where

0 < xc ≤ 1.
iii)The generating function P(x,q) diverges, if x 6= 0 and |q| > 1. It converges, if

|q| < 1 and |x| < xcq−A. In particular, for k ∈ N0, the evaluations

∂ k

∂xk P(x,q)

∣∣∣∣
x=xc

are power series with radius of convergence 1.
iv) For k ∈ N0, the evaluations

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

are power series with radius of convergence xc. They satisfy, for |x| < xc,

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

= lim
q→1

−1<q<1

∂ k

∂qk P(x,q).

Proof (sketch). The domination formula follows immediately from condition i). The
existence of the evaluations at q = 1 and x = xc as formal power series also follows
from condition i). Condition ii) ensures that 0 < xc ≤ 1 for the radius of convergence
of P(x,1). Equality of the radii of convergence for the derivatives follows from con-
dition i) by elementary estimates. The claimed analytic properties of P(x,q) follow
from conditions i) and ii) by elementary estimates. The claimed left-continuity of
the derivatives in iv) is implied by Abel’s continuity theorem for real power series.

⊓⊔
Remarks. i) Proposition 1 implies that the critical curve xc(q) satisfies for 0 < q < 1
the estimate xc(q) ≥ xcq−A. For self-avoiding polygons, the critical curve xc(q) is
continuous for 0 < q < 1. This follows from a certain supermultiplicative inequality
for the numbers pm,n by convexity arguments [48].
ii) Of central importance in the sequel will be the power series
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gk(x) =
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

. (11.1)

They are called factorial moment generating functions, for reasons which will be-
come clear later.

We continue studying analytic properties of the factorial moment generating
functions. In the following, the notation x ր x0 denotes the limit x → x0 for se-
quences (xn) satisfying |xn| < x0. The notation f (x) ∼ g(x) as x ր x0 means that
g(x) 6= 0 in a left neighbourhood of x0 and that limxրx0 f (x)/g(x) = 1. Likewise,
am ∼ bm as m → ∞ for sequences (am),(bm) means that bm 6= 0 for almost all m and
limm→∞ am/bm = 1. The following lemma is a standard result.

Lemma 1. Let (am)m∈N0 be a sequence of real numbers, which asymptotically sat-
isfy

am ∼ Ax−m
c mγ−1 (m → ∞), (11.2)

for real numbers A,xc,γ , where A 6= 0 and xc > 0.
Then, the generating function g(x) = ∑∞

m=0 amxm has radius of convergence xc. If
γ /∈ {0,−1,−2, . . .}, then there exists a power series g(reg)(x) with radius of conver-
gence strictly larger than xc, such that g(x) satisfies

(
g(x)−g(reg)(x)

)
∼ AΓ (γ)

(1− x/xc)γ (x ր xc), (11.3)

where Γ (z) denotes the Gamma function.

Remarks. i) The above lemma can be proved using the analytic properties of
the polylog function [32]. If γ ∈ {0,−1,−2, . . .}, an asymptotic form similar to
Eq. (11.3) is valid, which involves logarithms.
ii) The function g(reg)(x) in the above lemma is not unique. For example, if γ > 0,
any polynomial in x may be chosen. We demand g(reg)(x) ≡ 0 in that case. If γ < 0
and g(reg)(x) is restricted to be a polynomial, it is uniquely defined. If −1 < γ < 0,
we have g(reg)(x) ≡ g(xc). In the general case, the polynomial has degree ⌊−γ⌋,
compare [32]. In the following, we will demand uniqueness by the above choice.

The power series g(sing)(x) :=
(

g(x)−g(reg)(x)
)

is then called the singular part of

g(x).

Conversely, let a power series g(x) with radius of convergence xc be given. In or-
der to conclude from Eq. (11.3) the behaviour Eq. (11.2), certain additional analyt-
icity assumptions on g(x) have to be satisfied. To this end, a function g(x) is called
∆(xc,η ,φ)-regular (or simply ∆ -regular) [30], if there is a positive real number
xc > 0, such that g(x) is analytic in the indented disc ∆(xc,η ,φ) := {z ∈ C : |z| ≤
xc + η , |Arg(z− xc)| ≥ φ}, for some η > 0 and some φ , where 0 < φ < π/2. Note
that xc /∈ ∆ , where we adopt the convention Arg(0) = 0. The point x = xc is the only
point for |x| ≤ xc, where g(x) may possess a singularity.

Lemma 2 ([35]). Let the function g(x) be ∆ -regular and assume that
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g(x) ∼ 1

(1− x/xc)
γ (x → xc in ∆).

If γ /∈ {0,−1,−2, . . .}, we then have

[xm]g(x) ∼ 1
Γ (γ)

x−m
c mγ−1 (m → ∞),

where [xm]g(x) denotes the Taylor coefficient of g(x) of order m about x = 0.

Remarks. i) Note that the coefficients of the function f (x) = (1−x/xc)
−γ with real

exponent γ /∈ {0,−1,−2, . . .} satisfy

[xm] f (x) ∼ 1
Γ (γ)

x−m
c mγ−1 (m → ∞). (11.4)

This may be seen by an application of the binomial series and Stirling’s formula.
For functions g(x) ∼ f (x), the assumption of ∆ -regularity for g(x) ensures that the
same asymptotic estimate holds for the coefficients of g(x).
ii) Theorems of the above type are called transfer theorems [35, 37]. The set of
∆ -regular functions with singularities of the above form is closed under addition,
multiplication, differentiation, and integration [30].
iii) The case of a finite number of singularities on the circle of convergence can be
treated by a straightforward extension of the above result [35, 37].

Lemma 1 implies a particular singular behaviour of the factorial moment gener-
ating functions, if the numbers pm,n satisfy certain typical asymptotic estimates. We
write (a)k = a · (a−1) · . . . · (a− k + 1) to denote the lower factorial.

Proposition 2. For m,n ∈ N0, let real numbers pm,n be given. Assume that the num-
bers pm,n asymptotically satisfy, for k ∈ N0,

1
k! ∑

n
(n)k pm,n ∼ Akx−m

c mγk−1 (m → ∞), (11.5)

for real numbers Ak,xc,γk, where Ak > 0, xc > 0, and γk /∈ {0,−1,−2, . . .}.
Then, the factorial moment generating functions gk(x) satisfy

g(sing)
k (x) ∼ fk

(1− x/xc)γk
(x ր xc), (11.6)

where fk = Ak Γ (γk).

Remarks. i) The above assumption on the growth of the coefficients in Eq. (11.5)
is typical for polygon models, with γk = (k−θ )/φ , and φ > 0.
ii) If the numbers pm,n satisfy, in addition to Eq.(11.5), Condition i) of Assumption
1, this implies for exponents of the form γk = (k−θ )/φ , where φ > 0, the estimate
1/2 ≤ φ ≤ 1.
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iii) The proposition implies that the singular part of the factorial moment generat-
ing function gk(x) is asymptotically equal to the singular part of the corresponding
(ordinary) moment generating function,

(
∂ k

∂qk P(x,q)

∣∣∣∣
q=1

)(sing)

∼



(

q
∂
∂q

)k

P(x,q)

∣∣∣∣∣
q=1




(sing)

(x ր xc).

We give a list of exponents and area limit distributions for a number of polygon
models. An asterisk denotes that corresponding results rely on a numerical analysis.
It appears that the value (θ ,φ) = (1/3,2/3) arises for a large number of models.
Furthermore, the exponent γ0 seems to determine the area limit law. These two ob-
servations will be explained in the following section.

Table 11.1 Exponents and area limit laws for prominent polygon models. An asterisk denotes a
numerical analysis.

Model φ θ γ0 Area limit law

rectangles
convex polygons

1
2 −1 2 β1,1/2

Ferrers diagrams
stacks

1
2 − 1

2 1 Gaussian

staircase polygons
bargraph polygons

column-convex polygons
directed column-convex polygons

2
3

1
3 − 1

2 Airy

diagonally convex directed polygons
rooted self-avoiding polygons∗

directed convex polygons 2
3 − 1

3
1
2 meander

diagonally convex polygons∗ − 1
2

three-choice polygons 0

11.3 Limit Distributions

In this section, we will concentrate on models of square lattice polygons in the
fixed perimeter ensemble, and analyse their area law. The uniform ensemble is of
particular interest, since non-Gaussian limit laws usually appear, due to expected
phase transitions at q = 1. For non-uniform ensembles q 6= 1, Gaussian limit laws
are expected, due to the absence of phase transitions.

There are effective techniques for the uniform ensemble, since the relevant gen-
erating functions are typically algebraic. This is different from the fixed area en-
semble, where singularities are more difficult to analyse. It will turn out that the
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dominant singularity of the perimeter generating function determines the limiting
area law of the model. We will first discuss several examples with different type
of singularity. Then, we will describe a general result, by analysing classes of q-
difference equations (see e.g. [103]), which exactly solvable polygon models obey.
Whereas in the case q 6= 1 their theory is developed to some extent, the case q = 1
is more difficult to analyse. Motivated by the typical behaviour of polygon mod-
els, we assume that a q-difference equation reduces to an algebraic equation as q
approaches unity, and then analyse the behaviour of its solution about q = 1.

Useful background concerning a probabilistic analysis of counting parameters of
combinatorial structures can be found in [37, Ch IX]. See [80, Ch 1] and [5, Ch 1]
for background about asymptotic expansions. For properties of formal power series,
see [39, Ch 1.1]. A useful reference on the Laplace transform, which will appear
below, is [23].

11.3.1 An Illustrative Example: Rectangles

11.3.1.1 Limit Law of Area

Let pm,n denote the number of rectangles of half-perimeter m and area n. Consider
the uniform fixed perimeter ensemble, with a discrete random variable of area X̃m

defined by

P(X̃m = n) =
pm,n

∑n pm,n
. (11.7)

The k-th moments of X̃m are given explicitly by

E[X̃ k
m] =

m−1

∑
l=1

(l(m− l))k 1
m−1

∼ m2k
∫ 1

0
(x(1− x))kdx =

(k!)2

(2k + 1)!
m2k (m → ∞),

where we approximated the Riemann sum by an integral, using the Euler-MacLaurin
summation formula. Thus, the random variable X̃m has mean µm ∼ m2/6 and vari-
ance σ2

m ∼ m4/180. Since the sequence of random variables (X̃m) does not satisfy
the concentration property limm→∞ σm/µm = 0, we expect a non-trivial limiting dis-
tribution. Consider the normalised random variable

Xm =
2
3

X̃m

µm
= 4

X̃m

m2 . (11.8)

Since the moments of Xm converge as m → ∞, and the limit sequence Mk :=
limm→∞ E[Xk

m] satisfies the Carleman condition ∑k(M2k)
−1/(2k) = ∞, they define [17,

Ch 4.5] a unique random variable X with moments Mk. Its moment generating func-
tion M(t) = E[e−tX ] is readily obtained as
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M(t) =
∞

∑
k=0

E[Xk]

k!
(−t)k =

1
2

√
π
t

et erf
(√

t
)
.

The corresponding probability distribution p(x) is obtained by an inverse Laplace
transform, and is given by

p(x) =

{
1

2
√

1−x
0 ≤ x ≤ 1

0 x > 1
. (11.9)

This distribution is known as the beta distribution β1,1/2. Together with [17, Thm 4.5.5],
we arrive at the following result.

Theorem 1. The area random variable X̃m of rectangles Eq. (11.7) has mean
µm ∼ m2/6 and variance σ2

m ∼ m4/180. The normalised random variables Xm

Eq. (11.8) converge in distribution to a continuous random variable with limit law
β1,1/2 Eq. (11.9). We also have moment convergence.

11.3.1.2 Limit Law via Generating Functions

We now extract the limit distribution using generating functions. Whereas the
derivation is less direct than the previous approach, the method applies to a number
of other cases, where a direct approach fails. Consider the half-perimeter and area
generating function P(x,q) for rectangles,

P(x,q) = ∑
m,n

pm,nxmqn.

The factorial moments of the area random variable X̃m Eq. (11.7) are obtained from
the generating function via

E[(X̃m)k] =
∑n(n)k pm,n

∑n pm,n
=

[xm] ∂ k

∂qk P(x,q)
∣∣∣
q=1

[xm]P(x,1)
,

where (a)k = a · (a−1) · . . . · (a− k +1) is the lower factorial. The generating func-
tion P(x,q) satisfies [87, Eq. 5.1] the linear q-difference equation [103]

P(x,q) = x2qP(qx,q)+
x2q(1 + qx)

1−qx
. (11.10)

Due to the particular structure of the functional equation, the area moment generat-
ing functions

gk(x) =
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1
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are rational functions and can be computed recursively from the functional equation,
by repeated differentiation w.r.t. q and then setting q=1. (Such calculations are easily
performed with a computer algebra system.) This gives, in particular,

g0(x) =
x2

(1− x)2 , g1(x) =
x2

(1− x)4 ,

g2(x) =
2x3

(1− x)6 , g3(x) =
6x4

(1− x)8 ,

g4(x) =
x4(1 + 22x + x2)

(1− x)10 , g5(x) =
12x5(1 + 8x + x2)

(1− x)12 .

Whereas the exact expressions get messy for increasing k, their asymptotic form
about their singularity xc = 1 is simply given by

gk(x) ∼
k!

(1− x)2k+2 (x → 1). (11.11)

The above result can be inferred from the functional equation, which induces a
recursion for the functions gk(x), which in turn can be asymptotically analysed. This
method is called moment pumping [36]. Below, we will extract the above asymptotic
behaviour by the method of dominant balance.

The asymptotic behaviour of the moments of X̃m can be obtained from singularity
analysis of generating functions, as described in Lemma 2. Using the functional
equation, it can be shown that all functions gk(x) are Laurent series about x = 1,
with a finite number of terms. Hence the remark following Lemma 2 implies for the
(factorial) moments of the random variable Xm Eq. (11.8) the expression

E[(Xm)k]

k!
∼ E[(Xm)k]

k!
∼ k!

Γ (2k + 2)
=

k!
(2k + 1)!

(m → ∞),

in accordance with the previous derivation.
On the level of the moment generating function, an application of Watson’s

lemma [5, Sec 4.1] shows that the coefficients k! in Eq. (11.11) appear in the asymp-
totic expansion of a certain Laplace transform of the (entire) moment generating
function E[e−tX ],

∫ ∞

0
e−st

(
∑
k≥0

E[Xk]

k!
(−t2)k

)
t dt ∼ ∑

k≥0

(−1)kk!s−(2k+2) (s → ∞).

Note that the r.h.s. is formally obtained by term-by-term integration of the l.h.s..
Using the arguments of [46, Ch 8.11], one concludes that there exists an s0 > 0,

such that there is a unique function F(s) analytic for ℜ(s) ≥ s0 with the above
asymptotic expansion. It is given by

F(s) = Ei(s2)es2
, (11.12)
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where Ei(z) =
∫ ∞

1 e−tz /t dt is the exponential integral. The moment generating func-
tion M(t) = E[e−tX ] of the random variable X is given by an inverse Laplace trans-
form of F(s), ∫ ∞

0
e−st M(t2)t dt = F(s).

Since there are effective methods for computing inverse Laplace transforms [23],
the question arises whether the function F(s) can be easily obtained. It turns out
that the functional equation Eq. (11.10) induces a differential equation for F(s).
This equation can be obtained in a mechanical way, using the method of dominant
balance.

11.3.1.3 Dominant Balance

For a given functional equation, the method of dominant balance consists of a cer-
tain rescaling of the variables, such that the quantity of interest appears in the ex-
pansion of a rescaled variable to leading order. The method was originally used as
a heuristic tool in order to extract the scaling function of a polygon model [84] (see
the following section). In the present framework, it is a rigorous method.

Consider the half-perimeter and area generating function P(x,q) as a formal
power series. The substitution q = 1− ε̃ is valid, since the coefficients of the power
series P(x,q) in x are polynomials in q. We get the power series in ε̃ ,

H(x, ε̃) = ∑
k≥0

(−1)kgk(x)ε̃k.

whose coefficients (−1)kgk(x) are power series in x. The functional equation Eq. (11.10)
induces an equation for H(x, ε̃), from which the factorial area moment generating
functions gk(x) may be computed recursively.

Now replace gk(x) by its expansion about x = 1,

gk(x) = ∑
l≥0

fk,l

(1− x)2k+2−l .

Introducing s̃ = 1− x, this leads to a power series E(s̃, ε̃) in ε̃ ,

E(s̃, ε̃) = ∑
k≥0

(−1)k

(
∑
l≥0

fk,l

s̃2k+2−l

)
ε̃k,

whose coefficients are Laurent series in s̃. As above, the functional equation induces
an equation for the power series E(s̃, ε̃) in ε̃ , from which the expansion coefficients
may be computed recursively.

We infer from the previous equation that



260 Christoph Richard

E(sε,ε2) =
1
ε2 ∑

l≥0

(
∑
k≥0

(−1)k fk,l

s2k+2−l

)
ε l =

1
ε2 F(s,ε). (11.13)

Write F(s,ε) = ∑l≥0 Fl(s)ε l . By construction, the (formal) series F0(s) = F(s,0)
coincides with the asymptotic expansion of the desired function F(s) Eq. (11.12)
about infinity.

The above example suggests a technique for computing F0(s). The functional
equation Eq. (11.10) for P(x,q) induces, after reparametrisation, differential equa-
tions for the functions Fl(s), from which F0(s) may be obtained explicitly. These
may be computed by first writing

P(x,q) =
1

1−q
F

(
1− x

(1−q)1/2
,(1−q)1/2

)
, (11.14)

and then introducing variables s and ε , by setting x = 1− sε and q = 1−ε2. Expand
the equation to leading order in ε . This yields, to order ε0, the first order differential
equation

sF ′
0(s)+ 2−2s2F0(s) = 0.

The above equation translates into a recursion for the coefficients fk,0, from which
fk,0 = k! can be deduced. In addition, the equation has a unique solution with the

prescribed asymptotic behaviour Eq. (11.13), which is given by F0(s) = Ei(s2)es2
.

As we will argue in the next section, Eq. (11.14) is sometimes referred to as
a scaling Ansatz, the function F(s,0) appears as a scaling function, the functions
Fl(s), for l ≥ 1, appear as correction-to-scaling functions. In our formal framework,
where the series Fl(s) are rescaled generating functions for the coefficients fk,l , their
derivation is rigorous.

11.3.2 A General Method

In the preceding two subsections, we described a method for obtaining limit laws of
counting parameters, via a generating function approach. Since this method will be
important in the remainder of this section, we summarise it here. Its first ingredient
is based on the so-called method of moments [17, Thm 4.5.5].

Proposition 3. For m,n ∈ N0, let real numbers pm,n be given. Assume that the num-
bers pm,n asymptotically satisfy, for k ∈ N0,

1
k! ∑

n
(n)k pm,n ∼ Akx−m

c mγk−1 (m → ∞), (11.15)

where Ak are positive numbers, and γk = (k−θ )/φ , with real constants θ and φ > 0.
Assume that the numbers Mk := Ak/A0 satisfy the Carleman condition
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∞

∑
k=1

(M2k)
−1/(2k) = +∞. (11.16)

Then the following conclusions hold.

i) For almost all m, the random variables X̃m

P(X̃m = n) =
pm,n

∑n pm,n
(11.17)

are well defined. We have

Xm :=
X̃m

m1/φ
d→ X , (11.18)

for a unique random variable X with moments Mk, where d denotes convergence
in distribution. We also have moment convergence.

ii) If the numbers Mk satisfy for all t ∈ R the estimate

lim
k→∞

Mktk

k!
= 0, (11.19)

then the moment generating function M(t) = E[e−tX ] of X is an entire function.
The coefficients AkΓ (γk) are related to M(t) by a Laplace transform which has,
for θ > 0, the asymptotic expansion

∫ ∞

0
e−st

(
∑
k≥0

E[Xk]

k!
(−t1/φ )k

)
1

t1−γ0
dt

∼ 1
A0

∑
k≥0

(−1)kAkΓ (γk)s
−γk (s → ∞).

(11.20)

Proof (sketch). A straightforward calculation using Eq. (11.15) leads to

E[(X̃m)k]

k!
∼ Ak

A0
mk/φ (m → ∞).

This implies that the same asymptotic form holds for the (ordinary) moments
E[(X̃m)k]. Due to the growth condition Eq. (11.16), the sequence (Mk) defines a
unique random variable X with moments Mk. Also, moment convergence of the se-
quence (Xm) to X implies convergence in distribution, see [17, Thm 4.5.5]. Due to
the growth condition Eq. (11.19), the function M(t) is entire. Hence the conditions
of Watson’s Lemma [5, Sec 4.1] are satisfied, and we obtain Eq. (11.20). ⊓⊔

Remarks. i) The growth condition Eq. (11.19) implies the Carleman condition
Eq. (11.16). All examples below have entire moment generating functions M(t).
ii) If γ0 < 0, a modified version of Eq. (11.20) can be given, see for example staircase
polygons below.
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Proposition 2 states that assumption Eq. (11.15) translates, at the level of the
half-perimeter and area generating function P(x,q) = ∑m,n pm,nxmqn, to a certain
asymptotic expression for the factorial moment generating functions

gk(x) =
1
k!

∂ k

∂qk
P(x,q)

∣∣∣∣
q=1

.

Their asymptotic behaviour follows from Eq. (11.15), and is

g(sing)
k (x) ∼ fk

(1− x/xc)γk
(x ր xc),

where fk = AkΓ (γk). Adopting the generating function viewpoint, the amplitudes fk

determine the numbers Ak, hence the moments Mk = Ak/A0 of the limit distribution.
The series F(s) = ∑k≥0(−1)k fks−γk will be of central importance in the sequel.

Definition 1 (Area amplitude series). Let Assumption 1 be satisfied. Assume that
the generating function P(x,q) = ∑m,n pm,nxmqn satisfies asymptotically

(
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

)(sing)

∼ fk

(1− x/xc)γk
(x ր xc),

with exponents γk /∈ {0,−1,−2, . . .}. Then, the formal series

F(s) = ∑
k≥0

(−1)k fk

sγk

is called the area amplitude series.

Remarks. i) Proposition 3 states that the area amplitude series appears in the asymp-
totic expansion about infinity of a Laplace transform of the moment generating func-
tion of the area limit distribution. The probability distribution of the limiting area
distribution is related to F(s) by a double Laplace transform.
ii) For typical polygon models, all derivatives of P(x,q) w.r.t. q, evaluated at q = 1,
exist and have the same radius of convergence, see Proposition 1. Typical polygon
models do have factorial moment generating functions of the above form, see the
examples below.

The second ingredient of the method consists in applying the method of domi-
nant balance. As described above, this may result in a differential equation (or in a
difference equation [90]) for the function F(s). Its applicability has to be tested for
each given type of functional equation. Typically, it can be applied if the factorial
area moment generating functions gk(x) Eq. (11.1) have, for values x < xc, a local
expansion about x = xc of the form

g(sing)
k (x) = ∑

l≥0

fk,l

(1− x/xc)
γk,l

,
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where γk,l = (k− θl)/φ and θl+1 > θl . If a transfer theorem such as Lemma 2 ap-
plies, then the differential equation for F(s) induces a recurrence for the moments
of the limit distribution. If the differential equation can be solved in closed form,
inverse Laplace transform techniques may be applied in order to obtain explicit
expressions for the moment generating function and the probability density. Also,
higher order corrections to the limiting behaviour may be analysed, by studying the
functions Fl(s), for l ≥ 1. See [87] for examples.

11.3.3 Further Examples

Using the general method as described above, area limit laws for the other exactly
solved polygon models can be derived. A model with the same area limit law as rect-
angles is convex polygons, compare [87]. We will discuss some classes of polygon
models with different area limit laws.

11.3.3.1 Ferrers Diagrams

In contrast to the previous example, the limit distribution of area of Ferrers diagrams
is concentrated.

Proposition 4. The area random variable X̃m of Ferrers diagrams has mean µm ∼
m2/8. The normalised random variables Xm Eq. (11.18) converge in distribution to
a random variable with density p(x) = δ (x−1/8).

Remark. It should be noted that the above convergence statement already follows
from the concentration property limm→∞ σm/µm = 0, with σ2

m ∼ m3/48 the variance
of Xm, by an explicit analysis of the first three factorial moment generating func-
tions. (By Chebyshev’s inequality, the concentration property implies convergence
in probability, which in turn implies convergence in distribution.) We will give a
proof via the moment method in the following proof. This will serve as a trans-
parent example for the methodology introduced above. Moreover, it explains the
occurrence of the particular “scaling function” F(s) in Eq. (11.21) below.

Proof. Ferrers diagrams, counted by half-perimeter and area, satisfy the linear q-
difference equation [87, Eq (5.4)]

P(x,q) =
qx2

(1−qx)2 P(qx,q)+
qx2

(1−qx)2 .

The perimeter generating function g0(x) = x2/(1−2x) is obtained by setting q = 1
in the above equation. Hence xc = 1/2. Using the functional equation, it can be
shown by induction on k that all area moment generating functions gk(x) are rational
in g0(x) and its derivatives. Hence all gk(x) are rational functions. Since the area of
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a polygon grows at most quadratically with the perimeter, we have a bound on the
exponent, γk ≤ 2k + 1, of the leading singular part of gk(x). Given this bound, the
method of dominant balance can be applied. We set

P(x,q) =
1

(1−q)
1
2

F

(
1−2x

(1−q)
1
2

,(1−q)
1
2

)
,

and introduce new variables s and ε by q = 1 − ε2 and 2x = 1 − sε . Then an
expansion of the functional equation yields, to order ε0, the ODE of first order
F ′(s) = 4sF(s)−1, whose unique solution with the prescribed asymptotic behaviour
is

F(s) =

√
π
8

erfc
(√

2s
)

e2s2
. (11.21)

It can be inferred from the differential equation that all coefficients in the asymptotic
expansion of F(s) at infinity are nonzero. Hence, the above exponent bound is tight.
It can be inferred from the functional equation by induction on k that each gk(x) is
a Laurent polynomial about xc = 1/2. Thus, Lemma 2 applies, and we obtain the
moment generating function of the corresponding random variable Eq. (11.18) as
M(s) = exp(−s/8). This is readily recognised as the moment generating function
of a probability distribution concentrated at x = 1/8. ⊓⊔

A sequence of random variables, which satisfies the concentration property, often
leads to a Gaussian limit law, after centring and suitable normalisation. This is also
the case for Ferrers diagrams.

Theorem 2 ([97]). The area random variable X̃m of Ferrers diagrams has mean
µm ∼ m2/8 and variance σ2

m ∼ m3/48. The centred and normalised random vari-
ables

Xm =
X̃m − µm

σm
(11.22)

converge in distribution to a Gaussian random variable.

Remarks. i) It is possible to prove this result by the moment method, combined with
the method of dominant balance. The idea of proof consists in studying the func-
tional equation of the generating function for the “centred coefficients” pm,n − µm.
ii) The above arguments can also be applied to stack polygons to yield the concen-
tration property and a central limit theorem.

11.3.3.2 Staircase Polygons

The limit law of area of staircase polygons is the Airy distribution. This distribution
(see [34] and the survey [52]) is conveniently defined via its moments.

Definition 2 (Airy distribution [34]). The random variable Y is said to be Airy
distributed if



11 Limit Distributions and Scaling Functions 265

E[Y k]

k!
=

Γ (γ0)

Γ (γk)

φk

φ0
,

where γk = 3k/2− 1/2, and the numbers φk satisfy, for k ≥ 1, the quadratic recur-
rence

γk−1φk−1 +
1
2

k

∑
l=0

φlφk−l = 0,

with initial condition φ0 = −1.

Remarks ([34, 58]). i) The first moment is E[Y ] =
√

π . The sequence of moments
can be shown to satisfy the Carleman condition. Hence the distribution is uniquely
determined by its moments.
ii) The numbers φk appear in the asymptotic expansion of the logarithmic derivative
of the Airy function at infinity,

d
ds

logAi(s) ∼ ∑
k≥0

(−1)k φk

2k s−γk (s → ∞),

where Ai(x) = 1
π
∫ ∞

0 cos(t3/3 + tx)dt is the Airy function.
iii) Explicit expressions for the numbers φk are known [58]. They are, for k ≥ 1,
given by

φk = 2k+1 3
4π2

∫ ∞

0

x3(k−1)/2

Ai(x)2 + Bi(x)2 dx,

where Bi(z) is the second standard solution of the Airy differential equation f ′′(z)−
z f (z) = 0.
iv) The Airy distribution appears in a variety of contexts [34]. In particular, the
random variable Y/

√
8 describes the law of the area of a Brownian excursion. See

also [76] for an overview from a physical perspective.

Explicit expressions have been derived for the moment generating function of
the Airy distribution and for its density.

Fact 1 ([19, 66, 99, 34]). The moment generating function M(t) = E[e−tY ] of the
Airy distribution satisfies the modified Laplace transform

1√
2π

∫ ∞

0
(e−st −1)M(2−3/2t3/2)

1

t3/2
dt = 21/3

(
Ai′(21/3s)

Ai(21/3s)
− Ai′(0)

Ai(0)

)
. (11.23)

The moment generating function M(t) is given explicitly by

M(2−3/2t) =
√

2πt
∞

∑
k=1

exp
(
−βkt2/32−1/3

)
,

where the numbers −βk are the zeros of the Airy function. Its density p(x) is given
explicitly by
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23/2 p(23/2x) =
2
√

6
x2

∞

∑
k=1

e−vk v2/3
k U

(
−5

6
,

4
3

;vk

)
,

where vk = 2β 3
k /(27x2) and U(a,b,z) is the confluent hypergeometric function.

Remarks. i) The confluent hypergeometric function U(a,b;z) is defined as [1]

U(a,b;z) =
π

sinπb

(
1F1[a,b;z]

Γ (1 + a−b)Γ(b)
− z1−b

1F1[1 + a−b,2−b;z]
Γ (a)Γ (2−b)

)
,

where 1F1[a;b;z] is the hypergeometric function

1F1[a;b;z] = 1 +
a
b

z
1!

+
a(a + 1)

b(b + 1)

z2

2!
+ . . .

ii) The moment generating function and its density are obtained by two consecutive
inverse Laplace transforms of Eq. (11.23), see [67, 68] and [99, 54].
iii) In the proof of the following theorem, we will derive Eq. (11.23) using the model
of staircase polygons. This shows, in particular, that the coefficients φk appear in the
asymptotic expansion of the Airy function.

Theorem 3. The normalised area random variables Xm of staircase polygons Eq. (11.18)
satisfy

Xm√
π/4

d−→ Y√
π

(m → ∞),

where Y is Airy distributed according to Definition 2. We also have moment conver-
gence.

Remark. Given the functional equation of the half-perimeter and area generating
function of staircase polygons,

P(x,q) =
x2q

1−2xq−P(qx,q)
(11.24)

(see [88] for a recent derivation), this result is a special case of Theorem 4 below,
which is stated in [25].

Proof. We use the method of dominant balance. From the functional equation
Eq. (11.24), we infer g0(x) = 1/4 +

√
1−4x/2 +(1−4x)/4. Hence xc = 1/4. The

structure of the functional equation implies that all functions gk(x) can be written
as Laurent series in s =

√
1−4x, see also Proposition 7 below. Explicitly, we get

g1(x) = x2/(1− 4x). This suggests γk = (3k− 1)/2. An upper bound of this form
on the exponent γk can be derived without too much effort from the functional equa-
tion, by an application of Faa di Bruno’s formula, see also [89, Prop (4.4)]. Thus,
the method of dominant balance can be applied. We set

P(x,q) =
1
4

+(1−q)1/3F

(
1−4x

(1−q)2/3
,(1−q)1/3

)
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and introduce variables s,ε by 4x = 1− sε2 and q = 1− ε3. In the above equation,
we excluded the constant 1/4 =: P(reg)(x,q), since it does not contribute to the mo-
ment asymptotics. Expanding the functional equation to order ε2 gives the Riccati
equation

F ′(s)+ 4F(s)2 − s = 0. (11.25)

It follows that the coefficients fk of F(s) satisfy, for k ≥ 1, the quadratic recursion

γk−1 fk−1 + 4
k

∑
l=0

fl fk−l = 0,

with initial condition f0 =−1/2. A comparison with the definition of the Airy distri-
bution shows that φk = 22k+1 fk. Using the closure properties of ∆ -regular functions,
it can be inferred from the functional equation that (the analytic continuation of)
each factorial moment generating function gk(x) is ∆ -regular, with xc = 1/4, see
also Proposition 7 below. Hence the transfer theorem Lemma 2 can be applied. We

obtain 4Xm
d→ Y in distribution and for moments, where Y is Airy distributed. ⊓⊔

Remarks. i) The unique solution F(s) of the differential equation in the above proof
Eq. (11.25), satisfying the prescribed asymptotic behaviour, is given by

F(s) =
1
4

d
ds

logAi(41/3s). (11.26)

The moment generating function M(t) of the limiting random variable X = limm→∞ Xm

is related to the function F(s) via the modified Laplace transform

∫ ∞

0
(e−st −1)M(t3/2)

1

t3/2
dt = 4

√
π(F(s)−F(0)),

where the modification has been introduced in order to ensure a finite integral about
the origin. This result relates the above proof to Fact 1.
ii) The method of dominant balance can be used to obtain corrections Fl(s) to the
limiting behaviour [87].

The fact that the area law of staircase polygons is, up to normalisation, the same
as that of the area under a Brownian excursion, suggests that there might be a combi-
natorial explanation. Indeed, as is well known, there is a bijection [21, 98] between
staircase polygons and Dyck paths, a discrete version of Brownian excursions [2],
see Fig. 11.2 [88]. Within this bijection, the polygon area corresponds to the sum of
peak heights of the Dyck path, but not to the area below the Dyck path. For more
about this connection, see the remark at the end of the following subsection.
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Fig. 11.2 [88] A combinatorial bijection between staircase polygons and Dyck paths [21, 98].
Column heights of a polygon correspond to peak heights of a path.

11.3.4 q-Difference Equations

All polygon models discussed above have an algebraic perimeter generating func-
tion. Moreover, their half-perimeter and area generating function satisfies a func-
tional equation of the form

P(x,q) = G(x,q,P(x,q),P(qx,q)),

for a real polynomial G(x,q,y0,y1). Since, under mild assumptions on G, the equa-
tion reduces to an algebraic equation for P(x,1) in the limit q → 1, it may be viewed
as a “deformation” of an algebraic equation. In this subsection, we will analyse
equations of this type at the special point (x,q) = (xc,1), where xc is the radius of
convergence of P(x,1). It will appear that the methods used in the above examples
also can be applied to this more general case.

The above equation falls into the class of q-difference equations [103]. While
particular examples appear in combinatorics in a number of places, see e.g. [37], the
asymptotic behaviour of equations of the above form seems to have been systemat-
ically studied initially in [25, 87]. The study can be done in some generality, e.g.,
also for non-polynomial power series G, for replacements more general than x 7→ qx,
and for multivariate generalisations, see [89] and [25]. For simplicity, we will con-
centrate on polynomial G, and then briefly discuss generalisations. Our exposition
closely follows [89, 87].

11.3.4.1 Algebraic q-Difference Equations

Definition 3 (Algebraic q-difference equation [25, 87]). An algebraic q-difference
equation is an equation of the form

P(x,q) = G(x,q,P(x,q),P(qx,q), . . . ,P(qNx,q)), (11.27)

where G(x,q,y0,y1, . . . ,yN) is a complex polynomial. We require that

G(0,q,0,0, . . . ,0) ≡ 0,
∂G
∂yk

(0,q,0,0, . . . ,0) ≡ 0 (k = 0,1, . . . ,N).
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Remarks. i) See [103] for an overview of the theory of q-difference equations. As
q approaches unity, the above equation reduces to an algebraic equation.
ii) Asymptotics for solutions of algebraic q-difference equations have been con-
sidered in [25]. The above definition is a special case of [89, Def 2.4], where a
multivariate extension is considered, and where G may be non-polynomial. Also,
replacements more general than x 7→ f (q)x are allowed. Such equations are called
q-functional equations in [89]. The results presented below apply mutatis mutandis
also to q-functional equations.

The algebraic q-difference equation in Definition 3 uniquely defines a (formal)
power series P(x,q) satisfying P(0,q) ≡ 0. This is shown by analysing the im-
plied recurrence for the coefficients pm(q) of P(x,q) = ∑m>0 pm(q)xm, see also [89,
Prop 2.5]. In fact, pm(q) is a polynomial in q. The growth of its degree in m is not
larger than cm2 for some positive constant c, hence the counting parameters are rank
2 parameters [25]. In our situation, such a bound holds, since the area of a polygon
grows at most quadratically with its perimeter.

From the preceding discussion, it follows that the factorial moment generating
functions

gk(x) =
1
k!

∂ k

∂qk P(x,q)

∣∣∣∣
q=1

are well-defined as formal power series. In fact, they can be recursively determined
from the q-difference equation by implicit differentiation, as a consequence of the
following proposition.

Proposition 5 ([87, 89]). Consider the derivative of order k > 0 of an algebraic q-
difference equation Eq. (11.27) w.r.t. q, evaluated at q = 1. It is linear in gk(x), and
its r.h.s. is a complex polynomial in the power series gl(x) and its derivatives up to
order k− l, where l = 0, . . . ,k.

Remarks. i) This statement can be shown by analysing the k-th derivative of the
q-difference equation, using Faa di Bruno’s formula [18].
ii) It follows that every function gk(x) is rational in gl(x) and its derivatives up to
order k− l, where 0 ≤ l < k. Since G is a polynomial, gk(x) is algebraic, by the
closure properties of algebraic functions.

We discuss analytic properties of the (analytic continuations of the) factorial mo-
ment generating functions gk(x). These are determined by the analytic properties of
g0(x) = P(x,1). We discuss the case of a square-root singularity of P(x,1), which
often occurs for combinatorial structures, and which is well studied, see e.g. [79,
Thm 10.6] or [37, Ch VII.4]. Other cases may be treated similarly. We make the
following assumption:

Assumption 2. The q-difference equation in Definition 3 has the following proper-
ties:

i) All coefficients of the polynomial G(x,q,y0,y1, . . . ,yN) are non-negative.
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ii) The polynomial Q(x,y) := G(x,1,y,y, . . . ,y) satisfies Q(x,0) 6≡ 0 and has degree
at least two in y.

iii)P(x,1) = ∑m≥1 pmxm is aperiodic, i.e., there exist indices 1 ≤ i < j < k such that
pi p j pk 6= 0, while gcd( j− i,k− i) = 1.

Remarks. i) The positivity assumption is natural for combinatorial constructions.
There are, however, q-difference equations with negative coefficients, which arise
from systems of q-difference equations with non-negative coefficients by reduction.
Examples are convex polygons [87, Sec 5.4] and directed convex polygons, see
below.
ii) Assumptions i) and ii) result in a square-root singularity as the dominant singu-
larity of P(x,1).
iii) Assumption iii) implies that there is only one singularity of P(x,1) on its circle
of convergence. Since P(x,1) has non-negative coefficients only, it occurs on the
positive real half-line. The periodic case can be treated by a straightforward exten-
sion [37].

An application of the (complex) implicit function theorem ensures that P(x,1)
is analytic at the origin. It can be analytically continued, as long as the defining
algebraic equation remains invertible. Together with the positivity assumption, one
can conclude that there is a number 0 < xc < ∞, such that the analytic continuation
of P(x,1) satisfies yc = limxրxc P(x,1) < ∞, with

Q(xc,yc) = yc,
∂
∂y

Q(xc,y)

∣∣∣∣
y=yc

= 1.

With the positivity assumption on the coefficients, it follows that

B :=
1
2

∂ 2

∂y2 Q(xc,y)

∣∣∣∣
y=yc

> 0, C :=
∂
∂x

Q(x,yc)

∣∣∣∣
x=xc

> 0. (11.28)

These conditions characterise the singularity of P(x,1) at x = xc as a square-root.
It can be shown that there exists a locally convergent expansion of P(x,1) about
x = xc, and that P(x,1) is analytic for |x| < xc. We have the following result. Recall
that a function f (z) is ∆ -regular if it is analytic in the indented disc ∆ = {z : |z| ≤
xc + η , |Arg(z− xc)| ≥ φ} for some η > 0 and some φ , where 0 < φ < π/2.

Proposition 6 ([79, 37, 89]). Given Assumption 2, the power series P(x,1) is ana-
lytic at x = 0, with radius of convergence xc. Its analytic continuation is ∆ -regular,
with a square-root singularity at x = xc and a local Puiseux expansion

P(x,1) = yc +
∞

∑
l=0

f0,l(1− x/xc)
1/2+l/2,

where yc = limxրxc P(x,1) < ∞ and f0,0 = −
√

xcC/B, for constants B > 0 and
C > 0 as in Eq. (11.28). The numbers f0,l can be recursively determined from the
q-difference equation.
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The asymptotic behaviour of P(x,1) = g0(x) carries over to the factorial moment
generating functions gk(x).

Proposition 7 ([89]). Given Assumption 2, all factorial moment generating func-
tions gk(x) are, for k ≥ 1, analytic at x = 0, with radius of convergence xc. Their
analytic continuations are ∆ -regular, with local Puiseux expansions

gk(x) =
∞

∑
l=0

fk,l(1− x/xc)
−γk+l/2,

where γk = 3k/2−1/2. The numbers fk,0 = fk are, for k ≥ 2, characterised by the
recursion

γk−1 fk−1 +
1

4 f1

k

∑
l=0

fl fk−l = 0,

and the numbers f0 < 0 and f1 > 0 are given by

f0 = −
√

Cxc

B
, 4 f1 =

∑N
k=1 k ∂G

∂yk
(xc,1,yc,yc, . . . ,yc)

B
, (11.29)

for constants B > 0 and C > 0 as in Eq. (11.28).

Remarks. i) This result can be obtained by a direct analysis of the q-difference
equation, applying Faa di Bruno’s formula, see also [87, Sec 2.2].
ii) Alternatively, it can be obtained by applying the method of dominant balance to
the q-difference equation. To this end, one notes that all functions gk(x) are Laurent
series in

√
1− x/xc, and that their leading exponents are bounded from above by

γk. (An upper bound on an exponent is usually easier to obtain than its exact value,
since cancellations can be ignored.) With these two ingredients, the method of dom-
inant balance, as described above, can be applied. The differential equation of the
function F(s) then translates, via a transfer theorem, into the above recursion for the
coefficients. See [89, Sec 5].

The above result can be used to infer the limit distribution of area, along the lines
of Section 11.3.2.

Theorem 4 ([25, 89]). Let Assumption 2 be satisfied. For the solution of an alge-
braic q-difference equation P(x,q) = ∑m,n pm,nxmqn, let X̃m denote the random vari-
able

P(X̃m = n) =
pm,n

∑n pm,n

(which is well-defined for almost all m). The mean of X̃m is given by

E[X̃m] ∼ 2
√

π
f1

| f0|
m3/2 (m → ∞),

where the numbers f0 and f1 are given in Eq. (11.29). The sequence of normalised
random variables Xm converges in distribution,
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Xm =
X̃m

E[X̃m]

d−→ Y√
π

(m → ∞),

where Y is Airy distributed according to Definition 2. We also have moment conver-
gence.

Remarks. i) An explicit calculation shows that φk = | f0|−1
(
| f0|
2 f1

)k
fk. Together with

Proposition 7, the claim of the proof follows by standard reasoning, as in the exam-
ples above.
ii) The above theorem appears in [25, Thm 3.1], together with an indication of the
arguments of a proof. [There is a misprint in the definition of γ in [25, Thm 3.1].
In our notation γ = 4B f1.] Within the more general setup of q-functional equations,
the theorem is a special case of [89, Thm 1.5].
iii) The above theorem is a kind of central limit theorem for combinatorial con-
structions, since the Airy distribution arises under natural assumptions for a large
class of combinatorial constructions. For a connection to certain Brownian motion
functionals, see below.

11.3.4.2 q-Functional Equations and Other Extensions

We discuss extensions of the above result. Generically, the dominant singularity of
P(x,1) is a square-root. The case of a simple pole as dominant singularity, which
generalises the example of Ferrers diagrams, has been discussed in [87]. Under weak
assumptions, the resulting limit distribution of area is concentrated. Other singular-
ities can also be analysed, as shown in the examples of rectangles above and of
directed convex polygons in the following subsection. Compare also [90].

The case of non-polynomial G can be discussed along the same lines, with certain
assumptions on the analyticity properties of the series G. In the undeformed case
q = 1, it is a classical result [37, Ch VII.3] that the generating function has a square-
root as dominant singularity, as in the polynomial case. One can then argue along
the above lines that an Airy distribution emerges as the limit law of the deformation
variable [89, Thm 1.5]. Such an extension is relevant, since prominent combinatorial
models, such as the Cayley tree generating function, fall into that class. See also the
discussion of self-avoiding polygons below.

The above statements also remain valid for more general classes of replacements
x 7→ qx, e.g., for replacements x 7→ f (q)x, where f (q) is analytic for 0 ≤ q ≤ 1,
with non-negative series coefficients about q = 0. More interestingly, the idea of
introducing a q-deformation may be iterated [25], leading to equations such as

P(x,q1, . . . ,qM) = G(x,P(xq1 · . . . ·qM,q1q2 · . . . ·qM,q2q3 · . . . ·qM, . . . ,qM)).
(11.30)

The counting parameters corresponding to qk are rank k + 1 parameters, and limit
distributions for such quantities have been derived for some types of singularities
[77, 78, 88]. There is a central limit result for the generic case of a square-root sin-
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gularity [89]. This generalisation applies to counting parameters, which decompose
linearly under a combinatorial construction. These results can also be obtained by
an alternative method, which generalises to non-linear parameters, see [51].

The case where the limit q to unity in a q-difference equation is not algebraic,
has not been discussed. For example, if G(x,q,P(x,q),P(qx,q)) = 0 for some poly-
nomial G, the limit q to unity might lead to an algebraic differential equation for
P(x,1). This may be seen by noting that

lim
q→1

f (x)− f (qx)
(1−q)

= x f ′(x),

for f (x) differentiable at x. Such equations are possibly related to polygon mod-
els such as three-choice polygons [44] or punctured staircase polygons [45]. Their
perimeter generating function is not algebraic, hence the models do not satisfy an
algebraic q-difference equation as in Definition 3.

11.3.4.3 A Stochastic Connection

Lastly, we indicate a link to Brownian motion, which appears in [99, 100] and was
further developed in [77, 78, 89, 88]. As we saw in Section 11.3.2, limit distribu-
tions can, under certain conditions, be characterised by a certain Laplace transform
of their moment generating functions. This approach, which arises naturally from
the viewpoint of generating functions, can be applied to discrete versions of Brow-
nian motion, excursions, bridges or meanders. Asymptotic results are results for the
corresponding stochastic objects. In fact, distributions of some functionals of Brow-
nian motion have apparently first been obtained using this approach [99, 100].

Interestingly, a similar characterisation appears in stochastics for functionals of
Brownian motion, via the Feynman-Kac formula. For example, Louchard’s formula
[66] relates the logarithmic derivate of the Airy function to a certain Laplace trans-
form of the moment generating function of the law of the Brownian excursion area.
Distributions of functionals of Brownian motion can also be obtained by a path in-
tegral approach, see [75] for a recent overview.

The discrete approach provides an alternative method for obtaining information
about distributions of certain functionals of Brownian motion. For such function-
als, it provides an alternative proof of Louchard’s formula [77, 78]. It leads, via the
method of dominant balance, quite directly to moment recurrences for the underly-
ing distribution. These have been studied in the case of rank k parameters for discrete
models of Brownian motion. In particular, they characterise the distributions of inte-
grals over (k−1)-th powers of the corresponding stochastic objects [77, 78, 89, 88].
Such results have apparently not been previously derived using stochastic meth-
ods. The generating function approach can also be applied to classes of q-functional
equations with singularities different from those connected to Brownian motion. For
a related generalisation, see [10].
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Vice versa, results and techniques from stochastics can be (and have been) anal-
ysed in order to study asymptotic properties of polygons. An example is the contour
process of simply generated trees [38], which asymptotically describes the area of a
staircase polygon. See also [69, 70, 71, 59].

11.3.5 Directed Convex Polygons

We show that the limit law of area of directed convex polygons in the uniform fixed
perimeter ensemble is that of the area of the Brownian meander.

Fact 2 ([100, Thm 2]). The random variable Z of area of the Brownian meander is
characterised by

E[Zk]

k!
=

Γ (α0)

Γ (αk)

ωk

ω0

1

2k/2
,

where αk = 3k/2 + 1/2. The numbers ωk satisfy for k ≥ 1 the quadratic recurrence

αk−1ωk−1 +
k

∑
l=0

φl2
−lωk−l = 0,

with initial condition ω0 = 1, where the numbers φk appear in the Airy distribution
as in Definition 2.

Remarks. i) This result has been derived using a discrete meander, whose length
and area generating function is described by a system of two algebraic q-difference
equations, see [77, Prop 1].
ii) We have E[Z] = 3

√
2π/8 for the mean of Z. The random variable Z is uniquely

determined by its moments. The numbers ωk appear in the asymptotic expansion
[100, Thm 3]

Ω(s) =
1−3

∫ s
0 Ai(t)dt

3Ai(s)
∼ ∑

k≥0

(−1)kωks−αk (s → ∞),

where Ai(x) = 1
π
∫ ∞

0 cos(t3/3 + tx)dt is the Airy function.

Explicit expressions have been derived for the moment generating function and
for the distribution function of Z.

Fact 3 ([100, Thm 5]). The moment generating function M(t) = E[e−tZ ] of Z satis-
fies the Laplace transform

∫ ∞

0
e−st M(

√
2 t3/2)

1

t1/2
dt =

√
π Ω(s). (11.31)

It is explicitly given by
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M(t) = 2−1/6t1/3
∞

∑
k=1

Rk exp(−βkt2/32−1/3)

for ℜ(t) > 0, where the numbers −βk are the zeroes of the Airy function, and where

Rk =
βk(1 + 3

∫ βk
0 Ai(−t)dt)

3Ai′(−βk)
.

The random variable Z has a continuous density p(y), with distribution function
R(x) =

∫ x
0 p(y)dy given by

R(x) =

√
π

(18)1/6x

∞

∑
k=1

Rk e−vk v−1/3
k Ai((3vk/2)2/3),

where vk = (βk)
3/(27x2).

Remark. The moment generating function and the distribution function are ob-
tained by two consecutive inverse Laplace transforms of Eq. (11.31).

Theorem 5. The normalised area random variables Xm of directed convex polygons
Eq. (11.18) satisfy

Xm
d−→ 1

2
Z (m → ∞),

where Z is the area random variable of the Brownian meander as in Fact 2. We also
have moment convergence.

Proof. A system of q-difference equations for the generating function Q(x,y,q) of
directed convex polygons, counted by width, height and area, has been given in [9,
Lemma 1.1]. It can be reduced to a single equation,

q(qx−1)Q(x,y,q)+ ((1 + q)(P(x,y,q)+ y))Q(qx,y,q)+
(
xyq− y2 + P(x,y,q)(qx− y−1)

)
Q(q2x,y,q)

−q2xy(y + P(x,y,q)−1) = 0,

(11.32)

where P(x,y,q) is the width, height and area generating function of staircase poly-
gons. Setting q=1 and x = y yields the half-perimeter generating function

g0(x) =
x2

√
1−4x

.

Hence xc = 1/4 for the radius of convergence of Q(x,x,1).
It is possible to derive from Eq. (11.32) a q-difference equation for the (isotropic)

half-perimeter and area generating function Q(x,q) = Q(x,x,q) of directed convex
polygons. This is due to the symmetry Q(x,y,q) = Q(y,x,q), which results from
invariance of the set of directed convex polygons under reflection along the nega-
tive diagonal y = −x. Since this equation is quite long, we do not give it here. By
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arguments analogous to those of the previous subsection, it can be deduced from
this equation that all area moment generating functions gk(x) of Q(x,1) are Laurent
series in s =

√
1−4x, see also [89, Prop (4.3)]. The leading singular exponent of

gk(x), defined by gk(x)∼ hk(1−x/xc)
−αk as x ր xc, can be bounded from above by

αk ≤ 3k/2+1/2, see also [89, Prop (4.4)] for the argument. We apply the method of
dominant balance, in order to prove that αk = 3k/2 + 1/2 and to yield recurrences
for the coefficients hk. We define

P(x,q) =
1
4

+(1−q)1/3F

(
1−4x

(1−q)2/3
,(1−q)1/3

)
,

Q(x,q) = (1−q)−1/3H

(
1−4x

(1−q)2/3
,(1−q)1/3

)
,

where F(s) = F(s,0) has already been determined in Eq. (11.26). We set 4x = 1−
sε2, q = 1− ε3, and expand the q-difference equation to leading order in ε . We get
for H(s) := H(s,0) the inhomogeneous linear differential equation of first order

H ′(s)+ 4H(s)F(s)+
1
8

= 0.

This implies for the coefficients hk of H(s) = ∑k≥0 hks−αk and fk of F(s) =

∑k≥0 fks−γk for k ≥ 1 the quadratic recursion

αk−1hk−1 + 4
k

∑
l=0

flhk−l = 0,

where h0 = 1/16. Using fk = 2−2k−1φk, we obtain the meander recursion in Fact 2
by setting hk = 2−k−4ωk. It can be inferred from the functional equation that (the
analytic continuations of) all factorial moment generating functions are ∆ -regular,

with xc = 1/4. Thus Lemma 2 applies, and we conclude Xm
d→ Z/2. ⊓⊔

Remarks. i) The above theorem states that the limit distribution of area of directed
convex polygons coincides, up to normalisation, with the area distribution of the
Brownian meander [100]. This suggests that there might exist a combinatorial bijec-
tion to discrete meanders, in analogy to that between staircase polygons and Dyck
paths. Up to now, a “nice” bijection has not been found, see however [6, 72] for
combinatorial bijections to discrete bridges.
ii) The above proof relies on a q-difference equation for the isotropic generating
function Q(x,x,q). Up to normalisation, the meander distribution also appears for
the anisotropic model Q(x,y,q), where 0 < y < 1/2 is fixed, as can be shown by a
considerably simpler calculation. The normalisation constant coincides with that of
the isotropic model for y = 1/2. The latter statement is also a consequence of the
fact that the height random variable of directed polygons is asymptotically Gaussian,
after centring and normalisation. Analogous considerations apply to the relation be-
tween isotropic and anisotropic versions of the other polygon classes.
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11.3.6 Limit Laws Away From (xc,1)

As indicated in the introduction, limit laws in the fixed perimeter ensemble for q 6= 1
are expected to be Gaussian. The same remark holds for the fixed area ensemble
for x 6= xc. There are partial results for the model of staircase polygons. The fixed
area ensemble can, for x < xc and q near unity, be analysed using Fact 7 of the
following section. For staircase polygons in the uniform fixed area ensemble x = 1,
the following result holds.

Fact 4 ([37, Prop IX.11]). Consider the perimeter random variable of staircase
polygons in the uniform fixed area ensemble,

P(Ỹn = m) =
pm,n

∑m pm,n
.

The variable Ỹn has mean µn ∼ µ ·n and standard deviation σn ∼ σ
√

n, where the
numbers µ and σ satisfy

µ = 0.8417620156 . . ., σ = 0.4242065326 . . .

The centred and normalised random variables

Yn =
Ỹn − µn

σn
,

converge in distribution to a Gaussian random variable.

Remark. The above result is proved using an explicit expression for the half-
perimeter and area generating function, as a ratio of two q-Bessel functions. It can
be shown that this expression is meromorphic about (x,q) = (1,qc) with a simple
pole, where qc is the radius of convergence of the generating function P(1,q). The
explicit form of the singularity about (1,qc) yields a Gaussian limit law.

There are a number of results for classes of column-convex polygons in the uni-
form fixed area ensemble, typically leading to Gaussian limit laws. The upper and
lower shape of a polygon can be described by Brownian motions. See [69, 70, 71] for
details. It would be interesting to prove convergence to a Gaussian limit law within
a more general framework, such as q-difference equations. Analogous questions for
other functional equations, describing counting parameters such as horizontal width,
have been studied in [24].

11.3.7 Self-Avoiding Polygons

A numerical analysis of self-avoiding polygons, using data from exact enumeration
[91, 92], supports the conjecture that the limit law of area is, up to normalisation,
the Airy distribution.
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Let pm,n denote the number of square lattice self-avoiding polygons of half-
perimeter m and area n. Exact enumeration techniques have been applied to obtain
the numbers pm,n for all values of n for given m ≤ 50. Numerical extrapolation tech-
niques yield very accurate estimates of the asymptotic behaviour of the coefficients
of the factorial moment generating functions. To leading order, these are given by

[xm]gk(x) =
1
k! ∑

n
(n)k pm,n ∼ Akx−m

c m3k/2−3/2−1 (m → ∞), (11.33)

for positive amplitudes Ak. The above form has been numerically checked [91, 92]
for values k ≤ 10 and is conjectured to hold for arbitrary k. The value xc is the radius
of convergence of the half-perimeter generating function of self-avoiding polygons.
The amplitudes Ak have been extrapolated to at least five significant digits. In par-
ticular, we have

xc = 0.14368062927(2), A0 = 0.09940174(4), A1 = 0.0397886(1),

where the numbers in brackets denote the uncertainty in the last digit. An exact
value of the amplitude A1 = 1/(8π) has been predicted [15] using field-theoretic
arguments.

The particular form of the exponent implies that the model of rooted self-
avoiding polygons p̃m,n = mpm,n has the same exponents φ = 2/3 and θ = 1/3
as staircase polygons. In particular, it implies a square-root as dominant singular-
ity of the half-perimeter generating function. Together with the above result for q-
functional equations, this suggests that (rooted) self-avoiding polygons might obey
the Airy distribution as a limit law of area.

A natural method to test this conjecture consists in analysing ratios of moments,
such that a normalisation constant is eliminated. Such ratios are also called universal
amplitude ratios. If the conjecture were true, we would have asymptotically

E[X̃ k
m]

E[X̃m]k
∼ k!

Γ (γ1)
k

Γ (γk)Γ (γ0)k−1

φkφ k−1
0

φ k
1

(m → ∞),

for the area random variables X̃m as in Eq. (11.17). The numbers φk and exponents
γk are those of the Airy distribution as in Definition 2. The above form was numer-
ically confirmed for values of k ≤ 10 to a high level of numerical accuracy. The
normalisation constant is obtained by noting that E[Y ] =

√
π .

Conjecture 1 (cf [91, 92]). Let pm,n denote the number of square lattice self-
avoiding polygons of half-perimeter m and area n. Let X̃m denote the random vari-
able of area in the uniform fixed perimeter ensemble,

P(X̃m = n) =
pm,n

∑n pm,n
.

We conjecture that
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X̃m

E[X̃m]

d−→ Y√
π

,

where Y is Airy distributed according to Definition 2.

Remarks. i) Field theoretic arguments [15] yield A1 = 1/(8π).
ii) References [91, 92] contain conjectures for the scaling function of self-avoiding
polygons and rooted self-avoiding polygons, see the following section. In fact, the
numerical analysis in [91, 92] mainly concerns the area amplitudes Ak, which deter-
mine the limit distribution of area.
iii) The area law of self-avoiding polygons has also been studied [91, 92] on the tri-
angular and hexagonal lattices. As for the square lattice, the area limit law appears
to be the Airy distribution, up to normalisation.
iv) It is an open question whether there are non-trivial counting parameters other
than the area, whose limit law (in the fixed perimeter ensembles) coincides between
self-avoiding polygons and staircase polygons. See [88] for a negative example. This
indicates that underlying stochastic processes must be quite different.
v) A proof of the above conjecture is an outstanding open problem. It would be in-
teresting to analyse the emergence of the Airy distribution using stochastic Loewner
evolution [60]. Self-avoiding polygons at criticality are conjectured to describe
the hull of critical percolation clusters and the outer boundary of two-dimensional
Brownian motion [60].

A numerical analysis of the fixed area ensemble along the above lines again
shows behaviour similar to that of staircase polygons. This supports the following
conjecture.

Conjecture 2. Consider the perimeter random variable of self-avoiding polygons
in the uniform fixed area ensemble,

P(Ỹn = m) =
pm,n

∑m pm,n
.

The random variable Ỹn is conjectured to have mean µn ∼ µ ·n and standard devi-
ation σn ∼ σ

√
n, where the numbers µ and σ satisfy

µ = 1.855217(1), σ2 = 0.3259(1),

where the number in brackets denotes the uncertainty in the last digit. The centred
and normalised random variables

Yn =
Ỹn − µn

σn
,

are conjectured to converge in distribution to a Gaussian random variable.

The above conjectures, together with the results of the previous subsection, also
raise the question whether rooted square-lattice self-avoiding polygons, counted by
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half-perimeter and area, might satisfy a q-functional equation. In particular, it would
be interesting to consider whether rooted self-avoiding polygons might satisfy

P(x) = G(x,P(x)), (11.34)

for some power series G(x,y) in x,y. If the perimeter generating function P(x) is
not algebraic, this excludes polynomials G(x,y) in x and y. Note that the anisotropic
perimeter generating function of self-avoiding polygons is not D-finite [86]. It is
thus unlikely that the isotropic perimeter generating function is D-finite and, in par-
ticular, algebraic. On the other hand, solutions of Eq. (11.34) need not be alge-
braic or D-finite. An example is the Cayley tree generating function T (x) satisfying
T (x) = xexp(T (x)), see [33].

11.3.8 Punctured Polygons

Punctured polygons are self-avoiding polygons with internal holes, which are also
self-avoiding polygons. The polygons are also mutually avoiding. The perimeter of
a punctured polygon is the sum of the lengths of its boundary curves, the area of
a punctured polygon is the area of the outer polygon minus the area of the holes.
Apart from intrinsic combinatorial interest, models of punctured polygons may be
viewed as arising from two-dimensional sections of three-dimensional self-avoiding
vesicles. Counted by area, they may serve as an approximation to the polyomino
model.

We consider, for a given subclass of self-avoiding polygons, punctured polygons
with holes from the same subclass. The case of a bounded number of punctures
of bounded size can be analysed in some generality. The case of a bounded num-
ber of punctures of unbounded size leads to simple results if the critical perimeter
generating function of the model without punctures is finite.

For a given subclass of self-avoiding polygons, the number pm,n denotes the num-

ber of polygons with half-perimeter m and area n. Let p(r,s)
m,n denote the number of

polygons with r ≥ 1 punctures whose half-perimeter sum equals s. Let p(r)
m,n denote

the number of polygons with r ≥ 1 punctures of arbitrary size.

Theorem 6 ([94, Thms 1,2]). Assume that, for a class of self-avoiding polygons

without punctures, the area moment coefficients p(k)
m = ∑n≥0 nk pm,n have, for k ∈N0,

the asymptotic form

p(k)
m ∼ Akx−m

c mγk−1 (m → ∞),

for numbers Ak > 0, for 0 < xc ≤ 1 and for γk = (k− θ )/φ , where 0 < φ < 1. Let

g0(x) = ∑m≥0 p(0)
m xm denote the half-perimeter generating function.

Then, the area moment coefficient p(r,k,s)
m = ∑n nk p(r,s)

m,n of the polygon class with
r ≥ 1 punctures whose half-perimeter sum equals s is, for k ∈ N0, asymptotically
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given by

p(r,k,s)
m ∼ A(r,s)

k x−m
c mγk+r−1 (m → ∞),

where A(r,s)
k =

Ak+r
r! xs

c[x
s](g0(x))r.

If θ > 0, the area moment coefficient p(r,k)
m = ∑n nk p(r)

m,n of the polygon class with
r ≥ 1 punctures of arbitrary size satisfies, for k ∈ N0, asymptotically

p(r,k)
m ∼ A(r)

k x−m
c mγk+r−1 (m → ∞),

where the amplitudes A(r)
k are given by

A(r)
k =

Ak+r(g0(xc))
r

r!
.

Remarks. i) The basic argument in the proof of the preceding result involves an es-
timate of interactions of hole polygons with one another or with the boundary of the
external polygon, which are shown to be asymptotically irrelevant. This argument
also applies in higher dimensions, as long as the exponent φ satisfies 0 < φ < 1.
ii) In the case of an infinite critical perimeter generating function, such as for sub-
classes of convex polygons, boundary effects are asymptotically relevant, if punc-
tures of unbounded size are considered. The case of an unbounded number of punc-
tures, which approximates the polyomino problem, is unsolved.
iii) The above result leads to new area limit distributions. For rectangles with r punc-
tures of bounded size, we get βr+1,1/2 as the limit distribution of area. For staircase
polygons with punctures, we obtain generalisations of the Airy distribution, which
are discussed in [94]. In contrast, for Ferrers diagrams with punctures of bounded
size, the limit distribution of area stays concentrated.
iv) The theorem also applies to models of punctured polygons, which do not sat-
isfy an algebraic q-difference equation. An example is given by staircase polygons
with a staircase hole of unbounded size, whose perimeter generating function is not
algebraic [45].

11.3.9 Models in Three Dimensions

There are very few results for models in higher dimensions, notably for models on
the cubic lattice. There are a number of natural counting parameters for such ob-
jects. We restrict consideration to area and volume, which is the three-dimensional
analogue of perimeter and area of two-dimensional models.

One prominent model is self-avoiding surfaces on the cubic lattice, also studied
as a model of three-dimensional vesicle collapse. We follow the review in [102] (see
also the references therein) and consider closed orientable surfaces of genus zero,
i.e., surfaces homeomorphic to a sphere. Numerical studies indicate that the surface
generating function displays a square-root γ = −1/2 as the dominant singularity.
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Consider the fixed surface area ensemble with weights proportional to qn, with n
the volume of the surface. One expects a deflated phase (branched polymer phase)
for small values of q and an inflated phase (spherical phase) for large values of q. In
the deflated phase, the mean volume of a surface should grow proportionally to the
area m of the surface, in the inflated phase the mean volume should grow like m3/2

with the surface. Numerical simulations suggest a phase transition at q = 1 with
exponent φ = 1. This indicates that a typical surface resembles a branched poly-
mer, and a concentrated distribution of volume is expected. Note that this behaviour
differs from that of the two-dimensional model of self-avoiding polygons.

Even relatively simple subclasses of self-avoiding surfaces such as rectangular
boxes [73] and plane partition vesicles [50], generalising the two-dimensional mod-
els of rectangles and Ferrers diagrams, display complicated behaviour. Let pm,n de-
note the number of surfaces of area m and volume n and consider the generating
function P(x,q) = ∑m,n pm,nxmqn. For rectangular box vesicles, we apparently have
P(x,1)∼A| log(1−x)|/(1−x)3/2 as x→ 1−, some constant A > 0, see [73, Eq (35)].
In the fixed surface area ensemble, a linear polymer phase 0 < q < 1 is separated
from a cubic phase q > 1. At q = 1, we have φ = 2/3, such that typical rectangular
boxes are expected to attain a cubic shape. We expect a limit distribution which is
concentrated. For plane partition vesicles, it is conjectured on the basis of numeri-
cal simulations [50, Sec 4.1.1] that P(x,1)∼ Aexp(α/(xc − x)1/3)/(xc − x)γ , where
γ ≈ 1.7 at xc = 0.8467(3), for non-vanishing constants A and α . It is expected that
φ = 1/2.

As in the previous subsection, three-dimensional models of punctured vesicles
may be considered. The above arguments hold, if the exponent φ satisfies 0 < φ < 1.
A corresponding result for punctures of unbounded size can be stated if the critical
surface area generating function is finite.

11.3.10 Summary

In this section, we described methods to extract asymptotic area laws for polygon
models on the square lattice, and we applied these to various classes of polygons.
Some of the laws were found to coincide with those of the (absolute) area under
a Brownian excursion and a Brownian meander. A combinatorial explanation for
the latter result has not been given. Is there a simple polygon model with the same
area limit law as the area under a Brownian bridge? The connection to stochas-
tics deserves further investigation. In particular, it would be interesting to identify
underlying stochastic processes. For an approach to a number of different random
combinatorial structures starting from a probabilistic viewpoint, see [82].

Area laws of polygon models in the uniform fixed perimeter ensemble q = 1
have been understood in some generality, by an analysis of the singular behaviour
of q-functional equations about the point (x,q) = (xc,1). Essentially, the type of sin-
gularity of the half-perimeter generating function determines the limit law. A refined
analysis can be done, leading to local limit laws and providing convergence rates.
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Also, limit distributions describing corrections to the asymptotic behaviour can be
derived. They seem to coincide with distributions arising in models of punctured
polygons, see [94].

For non-uniform ensembles, concentrated distributions are expected, but general
results, e.g. for q-functional equations, are lacking. These may be obtained by mul-
tivariate singularity analysis, see also [24, 65].

The underlying structure of q-functional equations appears in a number of other
combinatorial models, such as models of two-dimensional directed walks, counted
by length and area between the walk and the x-axis, models of simply generated
trees, counted by the number of nodes and path length, and models which appear
in the average case analysis of algorithms, see [34, 37]. Thus, the above methods
and results can be applied to such models. In statistical physics, this mainly con-
cerns models of (interacting) directed walks, see [48] for a review. There is also an
approach to the behaviour of such walks from a stochastic viewpoint, see e.g. the
review [101].

There are exactly solvable polygon models, which do not satisfy an algebraic
q-difference equation, such as three-choice polygons [44], punctured staircase poly-
gons [45], prudent polygon subclasses [96], and possibly diagonally convex poly-
gons. For a rigorous analysis of the above models, it may be necessary to understand
q-difference equations with more general holonomic solutions, as q approaches
unity.

Focussing on self-avoiding polygons, it might be interesting to analyse whether
the perimeter generating function of rooted self-avoiding polygons might satisfy an
implicit equation Eq. (11.34). Asymptotic properties of the area can possibly be
studied using stochastic Loewner evolution [60]. Another open question concerns
the area limit law for q 6= 1 or the perimeter limit law for x 6= xc, where Gaussian
behaviour is expected. At present, even the simpler question of analyticity of the
critical curve xc(q) for 0 < q < 1 is open.

Most results of this section concerned area limit laws of polygon models. Simi-
larly, one can ask for perimeter laws in the fixed area ensemble. Results have been
given for the uniform ensemble. Generally, Gaussian limit laws are expected away
from criticality, i.e., away from x = xc. Perimeter laws are more difficult to extract
from a q-functional equation than area laws. We will however see in the following
section that, surprisingly, under certain conditions, knowledge of the area limit law
can be used to infer the perimeter limit law at criticality.

11.4 Scaling Functions

From a technical perspective, the focus in the previous section was on the sin-
gular behaviour of the single-variable factorial moment generating function gk(x)
Eq. (11.1), and on the associated asymptotic behaviour of their coefficients. This
yielded the limiting area distribution of some polygon models.
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In this section, we discuss the more general problem of the singular behaviour
of the two-variable perimeter and area generating function of a polygon model.
Near the special point (x,q) = (xc,1), the perimeter and area generating function
P(x,q)= ∑m≥0 pm(q)xm = ∑n≥0 an(x)qn is expected to be approximated by a scaling
function, and the corresponding coefficient functions pm(q) and an(x) are expected
to be approximated by finite size scaling functions. As we will see, scaling func-
tions encapsulate information about the limit distributions discussed in the previous
section, and thus have a probabilistic interpretation.

We will give a focussed review, guided by exactly solvable examples, since
singularity analysis of multivariate generating functions is, in contrast to the one-
variable case, not very well developed, see [81] for a recent overview. Methods of
particular interest to polygon models concern asymptotic expansions about multi-
critical points, which are discussed for special examples in [80, 5]. Conjectures for
the behaviour of polygon models about multicritical points arise from the physi-
cal theory of tricritical scaling [41], see the review [61], which has been adapted
to polygon models [14, 13]. There are few rigorous results about scaling behaviour
of polygon models, which we will discuss. This will complement the exposition in
[47]. See also [42, Ch 9] for the related subject of scaling in percolation.

11.4.1 Scaling and Finite Size Scaling

The half-perimeter and area generating function of a polygon model P(x,q) about
(x,q) = (xc,1) is expected to be approximated by a scaling function. This is moti-
vated by the following heuristic argument. Assume that the factorial area moment
generating functions gk(x) Eq. (11.1) have, for values x < xc, a local expansion about
x = xc of the form

gk(x) = ∑
l≥0

fk,l

(1− x/xc)
γk,l

,

where γk,l = (k − θl)/φ and θl+1 > θl . Disregarding questions of analyticity, we
argue

P(x,q) ≈ ∑
k≥0

(−1)k

(
∑
l≥0

fk,l

(1− x/xc)
γk,l

)
(1−q)k

≈ ∑
l≥0

(1−q)θl

(
∑
k≥0

(−1)k fk,l

(
1− x/xc

(1−q)φ

)−γk,l
)

.

In the above calculation, we replaced P(x,q) by its Taylor series about q = 1, and
then replaced the Taylor coefficients by their expansion about x = xc. The preceding
heuristic calculation has, for some polygon models and on a formal level, a rigorous
counterpart, see the previous section. In the above expression, the r.h.s. depends
on series Fl(s) = ∑k≥0(−1)k fk,l s

−γk,l of a single variable of combined argument
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s = (1− x/xc)/(1− q)φ . Restricting to the leading term l = 0, this motivates the
following definition. For φ > 0 and xc > 0, we define for numbers s−,s+ ∈ [−∞,+∞]
the domain

D(s−,s+) = {(x,q) ∈ (0,∞)× (0,1) : s− < (1− x/xc)/(1−q)φ < s+)}.

Definition 4 (Scaling function). For numbers pm,n with generating function P(x,q)=

∑m,n pm,nxmqn, let Assumption 1 be satisfied. Let 0 < xc ≤ 1 be the radius of con-
vergence of P(x,1). Assume that there exist constants s−,s+ ∈ [−∞,+∞] satisfying
s− < s+ and a function F : (s−,s+) → R, such that P(x,q) satisfies, for real con-
stants θ and φ > 0,

P(sing)(x,q) ∼ (1−q)θ
F

(
1− x/xc

(1−q)φ

)
(x,q) → (xc,1) in D(s−,s+). (11.35)

Then, the function F (s) is called an (area) scaling function, and θ and φ are called
critical exponents.

Remarks. i) In analogy to the one-variable case, the above asymptotic equal-
ity means that there exists a power series P(reg)(x,q) convergent for |x| < x1 and
|q| < q1, where x1 > xc and q1 > 1, such that the function P(sing)(x,q) := P(x,q)−
P(reg)(x,q) is asymptotically equal to the r.h.s..
ii) Due to the region D(s−,s+) where the limit (x,q) → (xc,1) is taken, admissible
values (x,q) satisfy 0 < q < 1 and 0 < x < x0(q), where x0(q) = xc(1− s−(1−q)φ ),
if s− 6= −∞. Thus, in this case, the critical curve xc(q) satisfies xc(q) ≥ x0(q) as q
approaches unity. Note that equality need not hold in general.
iii) The method of dominant balance was originally applied in order to obtain a
defining equation for a scaling function F (s) from a given functional equation of
a polygon model. This assumes the existence of a scaling function, together with
additional analyticity properties. See [84, 91, 87].
iv) For particular examples, an analytic scaling function F (s) exists, with an asymp-
totic expansion about infinity, and the area amplitude series F(s) agrees with the
asymptotic series, see below.
v) There is an alternative definition of a scaling function [31] by demanding

P(sing)(x,q) ∼ 1

(1− x/xc)−θ/φ H

(
1−q

(1− x/xc)1/φ

)
(x,q) → (xc,1) (11.36)

in a suited domain, for a function H (t) of argument t = (1−q)/(1−x/xc)
1/φ . Such

a scaling form is also motivated by the above argument. One may then call such a
function H (t) a perimeter scaling function. If F (s) is a scaling function, then a
function H (t), satisfying Eq. (11.36) in a suited domain, is given by

H (t) = tθ
F (t−φ ).

If s− ≤ 0 and s+ = ∞, the particular scaling form Eq. (11.35) implies a cer-
tain asymptotic behaviour of the critical area generating function and of the half-
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perimeter generating function. The following lemma is a consequence of Defini-
tion 4.

Lemma 3. Let the assumptions of Definition 4 be satisfied.

i) If s+ = ∞ and if the scaling function F (s) has the asymptotic behaviour

F (s) ∼ f0s−γ0 (s → ∞),

then γ0 = − θ
φ , and the half-perimeter generating function P(x,1) satisfies

P(sing)(x,1) ∼ f0(1− x/xc)
θ/φ (x ր xc).

ii) If s− ≤ 0 and if the scaling function F (s) has the asymptotic behaviour

F (s) ∼ h0sα0 (s ց 0),

then α0 = 0, and the critical area generating function P(xc,q) satisfies

P(sing)(xc,q) ∼ h0(1−q)θ (q ր 1).

A sufficient condition for equality of the area amplitude series and the scaling
function is stated in the following lemma, which is an extension of Lemma 3.

Lemma 4. Let the assumptions of Definition 4 be satisfied.

i) Assume that the relation Eq. (11.35) remains valid under arbitrary differentiation
w.r.t. q. If s+ = ∞, if the scaling function F (s) has an asymptotic expansion

F (s) ∼ ∑
k≥0

(−1)k fks−γk (s → ∞),

and if an according asymptotic expansion is true for arbitrary derivatives, then
the following statements hold.

a) The exponent γk is, for k ∈ N0, given by

γk =
k−θ

φ
.

b) The scaling function F (s) determines the asymptotic behaviour of the facto-
rial area moment generating functions via

(
1
k!

∂ k

∂qk
P(x,q)

∣∣∣∣
q=1

)(sing)

∼ fk

(1− x/xc)γk
(x ր xc).

ii) Assume that the relation Eq. (11.35) remains valid under arbitrary differentiation
w.r. to x. If s− ≤ 0, and if the scaling function F (s) has an asymptotic expansion
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F (s) ∼ ∑
k≥0

(−1)khksαk (s ց 0),

and if an according asymptotic expansion is true for arbitrary derivatives, then
the following statements hold.

a) The exponent αk is, for k ∈ N0, given by αk = k.
b) The scaling function determines the asymptotic behaviour of the factorial

perimeter moment generating functions at x = xc via

(
1
k!

∂ k

∂xk P(x,q)

∣∣∣∣
x=xc

)(sing)

∼ x−k
c hk

(1−q)βk
(q ր 1),

where βk = kφ −θ .

Remarks. Lemma 4 states conditions under which the area amplitude series coin-
cides with the scaling function. Given these conditions, the scaling function also
determines the perimeter law of the polygon model at criticality.

In the one-variable case, the singular behaviour of a generating function trans-
lates, under suitable assumptions, to the asymptotic behaviour of its coefficients. We
sketch the analogous situation for the asymptotic behaviour of a generating function
involving a scaling function.

Definition 5 (Finite size scaling function). For numbers pm,n with generating func-
tion P(x,q) = ∑m,n pm,nxmqn, let Assumption 1 be satisfied. Let 0 < xc ≤ 1 be the
radius of convergence of the generating function P(x,1).

i) Assume that there exist a number t+ ∈ (0,∞] and a function f : [0,t+] → R, such
that the perimeter coefficient function asymptotically satisfies, for real constants
γ0 and φ > 0,

[xm]P(x,q) ∼ x−m
c mγ0−1 f (m1/φ (1−q)) (q,m) → (1,∞),

where the limit is taken for m a positive integer and for real q, such that m1/φ (1−
q) ∈ [0,t+]. Then, the function f (t) is called a finite size (perimeter) scaling
function.

ii) Assume that there exist constants t− ∈ [−∞,0), t+ ∈ (0,∞], and a function h :
[t−,t+] → R, such that the area coefficient function asymptotically satisfies, for
real constants β0 and φ > 0,

[qn]P(x,q) ∼ nβ0−1h(nφ (1− x/xc)) (x,n) → (xc,∞),

where the limit is taken for n a positive integer and real x, such that nφ (1−x/xc)∈
[t−,t+]. Then, the function h(t) is called a finite size (area) scaling function.

Remarks. i) The following heuristic calculation motivates the expectation that a
finite size scaling function approximates the coefficient function. For the perime-
ter coefficient function, assume that the exponents γk of the factorial area moment
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generating functions are of the special form γk = (k−θ )/φ . We argue

[xm]P(x,q) ≈ [xm]
∞

∑
k=0

(−1)k fk

(1− x/xc)γk
(1−q)k

≈ x−m
c mγ0−1

∞

∑
k=0

(−1)k fk

Γ (γk)

(
m1/φ (1−q)

)k
.

In the above expression, the r.h.s. depends on a function f (t) of a single variable of
combined argument t = m1/φ (1−q).

For the area coefficient function, we assume that βk = kφ −θ and argue as above,

[qn]P(x,q) ≈ [qn]
∞

∑
k=0

(−1)k hk

(1−q)βk
(1− x/xc)

k

≈ nβ0−1
∞

∑
k=0

(−1)k hk

Γ (βk)

(
nφ (1− x/xc)

)k
.

In the above expression, the r.h.s. depends on a function h(t) of a single variable of
combined argument t = nφ (1− x/xc).
ii) The above argument suggests that a scaling function and a finite size scaling
function may be related by a Laplace transformation. A comparison with Eq.(11.20)
leads one to expect that finite size scaling functions are moment generating functions
of the limit laws of area and perimeter.
iii) Sufficient conditions under which knowledge of a scaling function implies the
existence of a finite size scaling function have been given for the finite size area
scaling function [13] using Darboux’s theorem.

A scaling function describes the leading singular behaviour of the generating
function P(x,q) in some region about (x,q) = (xc,1). A particular form of subse-
quent correction terms has been argued for at the beginning of the section.

Definition 6 (Correction-to-scaling functions). For numbers pm,n with generating
function P(x,q) = ∑m,n pm,nxmqn, let Assumption 1 be satisfied. Let 0 < xc ≤ 1 be
the radius of convergence of the generating function P(x,1). Assume that there exist
constants s−,s+ ∈ [−∞,+∞] satisfying s− < s+, and functions Fl : (s−,s+)→R for
l ∈ N0, such that the generating function P(x,q) satisfies, for real constants φ > 0
and θl , where θl+1 > θl ,

P(sing)(x,q) ∼ ∑
l≥0

(1−q)θlFl

(
1− x/xc

(1−q)φ

)
(x,q) → (xc,1) in D(s−,s+).

Then, the function F0(s) is a scaling function, and for l ≤ 1, the functions Fl(s)
are called correction-to-scaling functions.

Remarks. i) In the above context, the symbol ∼ denotes a (generalised) asymptotic
expansion (see also [80, Ch 1]): Let (Gk(xxx))k∈N0 be a sequence of (multivariate)
functions satisfying for all k the estimate Gk+1(xxx) = o(Gk(xxx)) as xxx → xxxc in some
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prescribed region. For a function G(xxx), we then write G(xxx)∼ ∑∞
k=0 Gk(xxx) as xxx → xxxc,

if for all n we have G(xxx) = ∑n−1
k=0 Gk(xxx)+O(Gn(xxx)) as xxx → xxxc.

ii) The previous section yielded effective methods for obtaining area amplitude func-
tions. These are candidates for correction-to-scaling functions, see also [87].

11.4.2 Squares and Rectangles

We consider the models of squares and rectangles, whose scaling behaviour can
be explicitly computed. Their half-perimeter and area generating function can be
written as a single sum, to which the Euler-MacLaurin summation formula [80,
Ch 8] can be applied. We first discuss squares.

Fact 5 (cf [49, Thm 2.4]). For 0 < x,q < 1, the generating function P(x,q) =

∑∞
m=0 xmqm2/4 of squares, counted by half-perimeter and area, is given by

P(x,q) =
1√

| logq|
F

(
| logx|√
| logq|

)
+

1
2

+ R(x,q),

with F (s) =
√

π es2
erfc(s), where the remainder term R(x,q) is bounded by

|R(x,q)| ≤ 1
6
| logx|.

Remarks. i) The remainder term differs from that in [49, Thm 2.4], where it was
estimated by an integral with lower bound one instead of zero [49, Eq. (46)].
ii) With xc = 1, s− = 0 and s+ = ∞, the function F (s) is a scaling function ac-
cording to the above definition. The remainder term is uniformly bounded in any
rectangle [x0,1)× [q0,1) for 0 < x0,q0 < 1, and so the approximation is uniform in
this rectangle.
iii) The generating function P(x,q) satisfies the quadratic q-difference equation
P(x,q) = 1 + xq1/4P(q1/2x,q). Using the methods of the previous section, the area
amplitude series of the model can be derived. It coincides with the above scaling
function F (s). This particular form is expected, since the distribution of area is
concentrated, p(x) = δ (x−1/4), compare also with Ferrers diagrams.
iv) It has not been studied whether the scaling region can be extended to values x > 1
near (x,q) = (1,1). It can be checked that the scaling function F (s) also determines
the asymptotic behaviour of the perimeter moment generating functions, via its ex-
pansion about the origin. As expected, they indicate a concentrated distribution.

The half-perimeter and area generating function of rectangles is given by

P(x,q) =
∞

∑
r=1

∞

∑
s=1

xr+sqrs =
∞

∑
r=1

x(qx)r

1−qrx
.
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We have P(x,1) = x2/(1− x)2, and it can be shown that P(1,q) ∼ − log(1−q)
1−q as

q ր 1, see [85, 49]. The latter result implies that a scaling form as in Definition 4,
with s− ≤ 0, does not exist for rectangles. We have the following result.

Fact 6 ([49, Thm 3.4]). For 0 < q < 1 and 0 < qx < 1, the generating function
P(x,q) of rectangles satisfies

P(x,q) =
x

| logq|

( | logq|
| logx| −LerchPhi

(
qx,1,

| logx|
| logq|

))
+ R(x,q),

with the Lerch Phi-function LerchPhi(z,a,v) = ∑∞
n=0

zn

(v+n)a , where the remainder

term R(x,q) is bounded by

|R(x,q)| ≤ x2q
1−qx

(
1
2

+
| logx|

6

)
+

x2q
(1−qx)2

| logq|
6

.

Remarks. i) The theorem implies that, for every q0 ∈ (0,1), the function (1 −
qx)2P(x,q) is uniformly approximated for points (x,q) satisfying q0 < q < 1 and
0 < x < xc(q), where xc(q) = 1/q is the critical curve.
ii) Rectangles cannot have a scaling function F (s) as in Definition 4 with s− ≤ 0,
since the area generating function diverges with a logarithmic singularity. This is
reflected in the above approximation.
iii) It has not been studied whether the area moments or the perimeter moments at
criticality can be extracted from the above approximation.
iv) The relation of the above approximation to the area amplitude series of rectan-
gles of the previous section, F(s) = Ei(s2)es2

, is not understood. Interestingly, the
expansion of F(s) about s = 0 resembles a logarithmic divergence. It is not clear
whether its expansion at the origin is related to the asymptotic behaviour of the
perimeter moment generating functions.

11.4.3 Ferrers Diagrams

The singularity diagram of Ferrers diagrams is special, since the value xc(1) :=
limqր1 xc(q) does not coincide with the radius of convergence xc of the half-
perimeter generating function P(x,1). (The function q 7→ xc(q) is continuous on
(0,1], as may be inferred from the exact solution.) Thus, there are two special points
in the singularity diagram, namely (x,q) = (xc,1) and (x,q) = (xc(1),1). Scaling be-
haviour about the latter point has apparently not been studied, see also [85].

About the former point (x,q) = (xc,1), scaling behaviour is expected. The area
amplitude series F(s) of Ferrers diagrams is given by the entire function

F(s) =

√
π
8

erfc
(√

2s
)

e2s2
.
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A numerical analysis indicates that its Taylor coefficients about s = 0 coincide with
the perimeter moment amplitudes at criticality, which characterise a concentrated
distribution. There is no singularity of F(s) on the negative real axis at any finite
value of s, in accordance with the fact that the critical line at q = 1 extends above
x = xc.

It is not known whether a scaling function exists for Ferrers diagrams, or whether
it would coincide with the amplitude generating function, see also the recent discus-
sion [50, Sec 2.3]. A rigorous study may be possible, by first rewriting the half-
perimeter and area generating function as a contour integral. A further analysis then
reveals a saddle point coalescing with the integration boundary at criticality. For
such phenomena, uniform asymptotic expansions can be obtained by Bleistein’s
method [80, Ch 9.9]. The approach proposed above is similar to that for the stair-
case model [83] in the following subsection.

11.4.4 Staircase Polygons

For staircase polygons, counted by width, height, and area with associated variables
x,y,q, the existence of an area scaling function has been proved. The derivation
starts from an exact expression for the generating function, which has then been
written as a complex contour integral. About the point (x,q) = (xc,1), this led to a
saddle-point evaluation with the effect of two coalescing saddles.

Fact 7 (cf [83, Thm 5.3]). Consider 0 < x,y,q < 1 such that the generating function
P(x,y,q) of staircase polygons, counted by width, height and area, is convergent. Set
q = e−ε for ε > 0. Then, as ε ց 0, we have

P(x,y,q) =

(
1− x− y

2
+

+α−1/2ε1/3 Ai′(αε−2/3)

Ai(αε−2/3)

√(
1− x− y

2

)2

− xy


(1 +O(ε))

uniformly in x,y, where α = α(x,y) satisfies the implicit equation

4
3

α3/2 = log(x)
log(zm −

√
d)

log(zm +
√

d)
+ 2Li2(zm −

√
d)−2Li2(zm +

√
d),

where zm = (1 + y− x)/2 and d = z2
m − y, and Li2(t) = −∫ t

0
log(1−u)

u du is the Euler
dilogarithm.

Remarks. i) The characterisation of α3/2 given in [83, Eq (4.21)] has been used.
ii) The above approximation defines an area scaling function. For x = y and xc = 1/4,
we obtain the approximation [83, Eq (1.14)]
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P(x,q) ∼ 1
4

+ 4−2/3ε1/3 Ai′(44/3(1/4− x)ε−2/3)

Ai(44/3(1/4− x)ε−2/3)

as (x,q) → (xc,1) within the region of convergence of P(x,q). It follows by com-
parison that the area amplitude series coincides with the area scaling function.
iii) An area amplitude series for the anisotropic model has been given in [56], by a
suitable refinement of the method of dominant balance.
iv) It is expected that the perimeter law at x = xc may be inferred from the Taylor
expansion of the scaling function F (s) at s = 0. A closed form for the moment
generating function or the probability density has not been given. The right tail of
the distribution has been analysed via the asymptotic behaviour of the moments
[57, 55]. See also the next subsection.
v) The above expression gives the singular behaviour of P(x,q) as q approaches
unity, uniformly in x,y. Restricting to x = y, it describes the singular behaviour along
the line q = 1 for 0 < x < xc. In the compact percolation picture, this line describes
compact percolation below criticality. Perimeter limit laws away from criticality
may be inferred along the above lines. (Asymptotic expansions which are uniform
in an additional parameter appear also for solutions of differential equations near
singular points [80].)
vi) By analytic continuation, it follows that the critical curve xc(q) for P(x,x,q) co-
incides near q = 1 with the upper boundary curve x0(q) = (1− s−(1− q)2/3)/4 of
the scaling domain, where the value s− is determined by the singularity of smallest
modulus of the scaling function on the negative real axis, hence by the first zero of
the Airy function. This leads to a simple pole singularity in the generating function,
which describes the branched polymer phase close to q = 1.

11.4.5 Self-Avoiding Polygons

In the previous section, a conjecture for the limit distribution of area for self-
avoiding polygons and rooted self-avoiding polygons was stated. We further ex-
plain the underlying numerical analysis, following [91, 92, 93]. The numerically
established form Eq. (11.33) implies for the area moment generating functions for
k 6= 1 singular behaviour of the form

g(sing)
k (x) ∼ fk

(1− x/xc)γk
(x ր xc),

with critical point xc = 0.14368062927(2) and γk = 3k/2−3/2, where the numbers
fk are related to the amplitudes Ak in Eq. (11.33) by

Ak =
fk

Γ (γk)
.
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For k = 1, we have γk = 0, and a logarithmic singularity is expected, g1(x) ∼
f1 log(1− x/xc), with f1 = A1. Similar to Conjecture 1, this leads to a correspond-
ing conjecture for the area amplitude series of self-avoiding polygons. If the area
amplitude series was a scaling function, we would expect that it also describes the
limit law of perimeter at criticality x = xc, via its expansion about the origin. (In-
terestingly, these moments are related to the moments of the Airy distribution of
negative order, see [93, 34].) This prediction was confirmed in [93], up to numer-
ical accuracy, for the first ten perimeter moments. Also, the crossover behaviour
to the branched polymer phase has been found to be consistent with the corre-
sponding scaling function prediction. As was argued in the previous subsection, the
critical curve xc(q) close to unity should coincide with the upper boundary curve
x0(q) = xc(1− s−(1− q)2/3), where the point s− is related to the first zero of the
Airy function on the negative real axis, s− = −0.2608637(5). The latter two obser-
vations support the following conjecture.

Conjecture 3 ([87, 93]). Let pm,n denote the number of self-avoiding polygons of
half-perimeter m and area n, with generating function P(x,q) = ∑m,n pm,nxmqn. Let
xc = 0.14368062927(2) be the radius of convergence of the half-perimeter generat-
ing function P(x,1). Assume that

∑
n

pm,n ∼ A0x−m
c m−5/2 (m → ∞),

where A0 is estimated by A0 = 0.09940174(4). Let the number s− be such that

(4A0)
2
3 πs− coincides with the zero of the Airy function on the negative real axis of

smallest modulus. We have s− = −0.2608637(5).

i) For rooted self-avoiding polygons with half-perimeter and area generating func-
tion P(r)(x,q) = x d

dx P(x,q), the conjectured form of a scaling function F (r)(s) :
(s−,∞) → R as in Definition 4 is

F
(r)(s) =

xc

2π
d
ds

logAi
(
(4A0)

2
3 πs

)
,

with critical exponents θ = 1/3 and φ = 2/3.
ii) The conjectured scaling behaviour of (unrooted) self-avoiding polygons is

(
P(sing)(x,q)− 1

12π
(1−q) log(1−q)

)
∼ (1−q)θ

F

(
1− x/xc

(1−q)φ

)

(x,q) → (xc,1) in D(s−,∞),

(11.37)

with scaling function F (s) : (s−,∞) → R obtained by integration,

F (s) = − 1
2π

logAi
(
(4A0)

2
3 πs

)
,

and with critical exponents θ = 1 and φ = 2/3.
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Remarks. i) The above conjecture is essentially based on the conjecture of the pre-
vious section that both staircase polygons and rooted self-avoiding polygons have,
up to normalisation constants, the same limiting distribution of area in the uniform
ensemble q = 1. For a numerical investigation of the implications of the scaling
function conjecture, see the preceding discussion.
ii) A field-theoretical justification of the above conjecture has been proposed [16].
Also, the values of A1 = 1/(8π) and the prefactor 1/(12π) in Eq. (11.37) have been
predicted using field-theoretic methods [15], see also the discussion in [93].

11.4.6 Models in Higher Dimensions

Only very few models of vesicles have been studied in three dimensions. For the
simple model of cubes, the scaling behaviour in the perimeter-area ensemble is the
same as for squares [49, Thm 2.4]. The scaling form in the area-volume ensemble
has been given [49, Thm 2.8]. The asymptotic behaviour of rectangular box vesicles
has been studied to some extent [73]. Explicit expressions for scaling functions have
not been derived.

11.4.7 Open Questions

The mathematical problem of this section concerns the local behaviour of multi-
variate generating functions about non-isolated singularities. If such behaviour is
known, it may, under appropriate conditions, be used to infer asymptotic properties
such as limit distributions. Along lines of the same singular behaviour in the singu-
larity diagram, expressions uniform in the parameters are expected. This may lead
to Gaussian limit laws [37]. Parts of the theory of such asymptotic expansions have
been developed using methods of several complex variables [81]. The case of sev-
eral coalescing lines of different singularities is more difficult. Non-Gaussian limit
laws are expected, and this case is subject to recent mathematical research [81].

Our approach is motivated by certain models of statistical physics. It relies on
the observation that the singular behaviour of their generating function is described
by a scaling function. There are major open questions concerning scaling functions.
On a conceptual level, the transfer problem [35] should be studied in more detail,
i.e., conditions under which the existence of a scaling function implies the existence
of the finite-size scaling function. Also, conditions have to be derived such that limit
laws can be extracted from scaling functions. This is related to the question when
can an asymptotic relation be differentiated. Real analytic methods, in conjunction
with monotonicity properties of the generating function, might prove useful [80].

For particular examples, such as models satisfying a linear q-difference equation
or directed convex polygons, scaling functions may be extracted explicitly. It would
be interesting to prove scaling behaviour for classes of polygon models from their
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defining functional equation. Furthermore, the staircase polygon result indicates that
some generating functions may have in fact asymptotic expansions for qր 1, which
are valid uniformly in the perimeter variable (i.e., not only in the limit x ր xc).
Such expansions would yield scaling functions and correction-to-scaling functions,
thereby extending the formal results of the previous section. This might be worked
out for specific models, at least in the relevant example of staircase polygons.

Acknowledgements

The author would like to thank Tony Guttmann and Iwan Jensen for comments on
the manuscript, and Nadine Eisner, Thomas Prellberg and Uwe Schwerdtfeger for
helpful discussions.

References

1. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, volume 18. National Bureau of Standards Applied Mathe-
matics Series, 1964. Reprint Dover 1973.

2. D.J. Aldous. The continuum random tree II: An overview. In M.T. Barlow and N.H. Bingham,
editors, Stochastic Analysis, pages 23–70. Cambridge University Press, Cambridge, 1991.

3. G. Aleksandrowicz and G. Barequet. Counting d-dimensional polycubes and nonrectangular
planar polyominoes. In Proc. 12th Ann. Int. Computing and Combinatorics Conf. (COCOON),
Taipei, Taiwan, volume 4112 of Springer Lecture Notes in Computer Science, pages 418–427.
Springer, 2006.

4. D. Bennett-Wood, I.G. Enting, D.S. Gaunt, A.J. Guttmann, J.L. Leask, A.L. Owczarek, and
S.G. Whittington. Exact enumeration study of free energies of interacting polygons and walks
in two dimensions. J. Phys. A: Math. Gen, 31:4725–4741, 1998.

5. N. Bleistein and R.A. Handelsman. Asymptotic Expansions of Integrals. Holt, Rinehart and
Winston, New York, 1975.

6. M. Bousquet-Mélou. Une bijection entre les polyominos convexes dirigés et les mots de Dyck
bilatéres. RAIRO Inform. Théor. Appl., 26:205–219, 1992.
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Chapter 12
Interacting Lattice Polygons

Aleks L Owczarek and Stuart G Whittington

12.1 Introduction

A polymer is a long chain molecule of repeated chemical units, monomers. A ring
polymer is simply a polymer whose ends have been joined so that topologically the
molecule forms a circle. Lattice polygons are useful models of the configurational
properties of flexible ring polymers in dilute solution in so-called “good” solvents.
Good solvents are those where any attractive interactions between parts of the poly-
mer have been effectively screened by the solvent molecules, leaving only entropic
repulsion. The model of ring polymers as lattice polygons then can be modified by
adding interactions to mimic phenomena such as ring polymer adsorption and col-
lapse . Lattice polygons play the same role for ring polymers as self-avoiding walks
do for linear polymers.

Polymers in dilute solution interacting with an impenetrable surface to which the
monomers are attracted can undergo a phase transition, known as the adsorption
transition. At high temperatures the polymer is repelled entropically from the wall
and has very few monomers in contact with the wall: this is known as the desorbed
phase. There is a phase transition at some particular temperature and at low tem-
peratures the system behaves differently: in this adsorbed phase there is a positive
density of monomers in contact with the wall. See Fig. 12.1. The lattice polygon
model of ring polymer adsorption will be discussed in Section 12.2.

When a polymer is in dilute solution in a good solvent the polymer forms an
open random coil and its root-mean-square radius of gyration scales like nν where
n is the degree of polymerization and ν is about 0.588 (in three dimensions). In so-
called “poor” solvent conditions the monomer–solvent contacts are energetically

Aleks Owczarek
Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia, e-
mail: A.Owczarek@ms.unimelb.edu.au

Stuart Whittington
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, e-mail: swhit-
tin@chem.utoronto.ca

301



302 Aleks L Owczarek and Stuart G Whittington

Absorbed PhaseDesorbed Phase

Wall Wall

Fig. 12.1 A schematic picture of a ring polymer in the desorbed (left-hand side) and adsorbed
phases (right-hand side).

unfavourable and the polymer collapses to a compact ball to favour monomer–
monomer contacts rather than monomer–solvent contacts. See Fig. 12.2. This col-
lapse phenomenon has been observed for linear polymers by light scattering mea-
surements. A useful model of the collapse transition for ring polymers is a lattice
polygon with an additional vertex-vertex interaction which can be varied to favour
or disfavour the collapse. In a sense this vertex-vertex interaction can be thought of
as a potential of mean force which takes account of solvent–monomer interactions.
The model will be discussed in Section 12.3.

‘Good’ solvents ‘Poor’ solvents

Fig. 12.2 A schematic picture of a ring polymer in a good solvent as an open coil (left-hand side)
and in a poor solvent as a compact globule (right-hand side).

In principle the phenomena of adsorption and collapse can both occur and the
situation then results in a rich phase diagram which is discussed in Section 12.4.

An interesting question which occurs in each of these three cases is whether the
free energies of the walk and polygon models are identical in the infinite size limit.
This will be a particular focus of this chapter and we shall say something both about
what is known rigorously and about some numerical studies of this question.
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visit

Wall

Fig. 12.3 A polygon on the square lattice with v = 5 visits to the surface (wall).

12.2 The Adsorption Transition

Polymer molecules in dilute solution in a good solvent can adsorb at an impenetra-
ble surface. This phenomenon plays an important role in such phenomena as steric
stabilisation of dispersions [11]. At high temperatures the polymer will be desorbed
and will have only a vanishingly small fraction of its monomers near the wall while
at low temperatures it will adsorb and have a positive density of its monomers near
the wall.

A natural model of this phenomenon is a self-avoiding walk (for linear polymers)
or a lattice polygon (for ring polymers) with an interaction with the wall. We shall
describe both models. Consider the simple cubic lattice Z3, though most things go
through to Zd , d > 3, with no real difficulty. The d = 2 case turns out to have some
special features and we consider this case separately. Attach a coordinate system
(x,y,z) to the vertices so that x, y and z are integers. Suppose that the impenetrable
adsorbing surface is the plane z = 0 and that the solvent corresponds to the half-
space z > 0. Suppose that c+

n (v) is the number of self-avoiding walks with n edges,
starting at the origin, having no vertices with negative z-coordinate and having v+1
vertices in the plane z = 0. We say that such a walk visits the plane z = 0 v times
or that it has v visits. Similarly let pn(v) be the number of lattice polygons with n
edges, having no vertices with negative z-coordinate and having v ≥ 2 vertices in
z = 0. See Fig. 12.3. We shall be interested in the partition functions

Cn(α) =
n

∑
v=0

cn(v)e
αv (12.1)

and

Pn(α) =
n

∑
v=2

pn(v)e
αv. (12.2)

We can define corresponding (reduced, intensive) free energies
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κn(α) = n−1 logCn(α) (12.3)

and
κ0

n (α) = n−1 logPn(α) (12.4)

and we shall be interested in quantities such as

ρn(α) =
∂κn(α)

∂α
=

1
n

∑v vcn(v)eαv

∑v cn(v)eαv (12.5)

and

ρ0
n (α) =

∂κ0
n (α)

∂α
=

1
n

∑v vpn(v)eαv

∑v pn(v)eαv . (12.6)

These are the mean fractions of visits for the two models and we expect that these
will be small (in fact zero in the infinite n limit) when the polymer is desorbed. For
the infinite n case we expect behaviour similar to that sketched in Fig. 12.4.

α

ρ(α)

Fig. 12.4 The expected dependence of the mean fraction of visits on α .

Rigorous results are available [5, 15] about the existence of the limits in (12.3)
and (12.4). It is known rigorously that these two free energies are equal for d ≥ 3
for all α [15] and that they are non-analytic functions of α . This means that the two
models have a phase transition (corresponding to adsorption) and that this transition
is at the same place for the two models. Bounds are available on the location of
the transition [5, 7] but these are weak and one must turn to numerical methods
for estimates of the location of the transition [3, 6, 8]. Similarly the order of the
transition is not known rigorously but numerical results are available, though there
is some disagreement [3, 6, 8] about the value of the crossover exponent φ , defined
below, see eqn. (12.14).

Other interesting properties include the n-dependence of the mean span of the
polygon or walk in the z-direction and in the x- (or y-) direction as a function of α .
Equivalently one could look at the various components of the radius of gyration. All
of these can act as signals that the walk or polygon is desorbed or adsorbed. These
quantities can be estimated by Monte Carlo methods [6, 8] or by exact enumeration
techniques.
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12.2.1 Rigorous Results

We focus on the results for polygons though the theorems were originally proved
for self-avoiding walks [5]. At first we confine ourselves to d = 3 though the results
go over in a straightforward way to d > 3. Concatenation arguments can be used to
prove the existence of the limit

lim
n→∞

κ0
n (α) ≡ κ0(α) (12.7)

for all α < ∞. Similarly it is possible to prove that κ0(α) is a convex function of α
and is therefore continuous. Moreover κ0(α) is differentiable almost everywhere.

For α ≥ 0 it is easy to see that Pn(α)≤ pneαn where pn = ∑v pn(v) is the number
of n-edge polygons on Z3. Writing limn→∞ n−1 log pn = κ3 we have

κ0(α) ≤ κ3 + α, α ≥ 0. (12.8)

By picking out a particular term we have

Pn(α) ≥ pn(n)eαn (12.9)

and, by monotonicity in α , Pn(α) ≥ Pn(0) = pn. Note that pn(n) counts polygons
on Z2. If we write limn→∞ n−1 log pn(n) = κ2 we then obtain

κ0(α) ≥ max[κ3,κ2 + α], α ≥ 0. (12.10)

α

κ0(α)

Fig. 12.5 The dependence of the reduced limiting free energy, κ0(α) on α . The straight lines are
bounds and the filled circle shows the location of the adsorption transition.

For α ≤ 0 we have Pn(α) ≤ Pn(0) = pn by monotonicity and hence κ0(α) ≤ κ3.
Again we can pick out a particular term to give

Pn(α) ≥ pn(2)e2α (12.11)
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and, since pn(2) ≥ pn−2, we have κ0(α) ≥ κ3. This means that the free energy is
equal to κ3, independent of α , for α ≤ 0 but strictly greater than κ3 for α > κ3−κ2.
Hence κ0(α) has a singular point at α = α0 with 0≤α0 ≤ κ3−κ2. With a little more
work these two inequalities can be made strict [5, 7]. In addition it can be shown
that κ0(α) is asymptotic to the line κ2 + α as α → ∞. The behaviour is sketched in
Fig. 12.5.

Soteros [15] showed that κ(α) = κ0(α) so the two limiting free energies are
equal and, in particular, the adsorption points are the same for the two models.

If we are interested in the mean fraction of visits in the infinite n limit we need
to look at

ρ0(α) = lim
n→∞

ρ0
n (α) = lim

n→∞

∂κ0
n (α)

∂α
. (12.12)

κ0
n (α) is a convex function of α so the order of the limit and derivative can be

interchanged so that

ρ0(α) =
∂κ0(α)

∂α
(12.13)

and hence ρ0(α) is zero for α < α0. This is the desorbed phase where the mean
fraction of visits vanishes in the infinite n limit. When α > α0 ρ0(α) > 0 and we are
in the adsorbed phase. It is not known rigorously whether or not ρ0(α) is continuous
at α = α0.

The behaviour of the free energy near α = α0 is governed by the crossover ex-
ponent, φ . Formally this is defined as

1
φ

= lim
α→α0+

κ0(α)−κ0(α0)

α −α0
. (12.14)

It is not known rigorously that the limit exists but, if it does, the above result of
Soteros [15] means that the crossover exponent has the same value for the walk and
polygon models, for d ≥ 3.

When we turn to examine the situation for d = 2 there are some important differ-
ences. One can prove that the limiting free energies κ0(α) and κ(α) exist and both
functions are convex in α . For the walk problem we have

max[κ2,α] ≤ κ(α) ≤ κ2 + α, α ≥ 0 (12.15)

and
κ(α) = κ2, α ≤ 0 (12.16)

which is analogous to the results for d ≥ 3 for walks. For polygons in Z2 we have
κ0(α) = κ2 for α ≤ 0. However, for α ≥ 0 the maximum number of vertices of the
polygon which can be in the line y = 0 is n/2. Hence

max[κ2,α/2] ≤ κ0(α) ≤ κ2 + α/2, α ≥ 0. (12.17)

This means that κ0(α) has an asymptote with slope 1/2 as α → ∞ (cf walks which
have an asymptote with unit slope). Therefore κ(α) > κ0(α) for large enough val-
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ues of α and the two free energies are not identical. Both κ(α) and κ0(α) have
singular points (at αw and α0 respectively) and α0 ≥ αw. Whether these are distinct
is not known.

12.2.2 Numerical Results

The two primary numerical methods which have been used to investigate this prob-
lem are exact enumeration coupled with series analysis and Monte Carlo methods.
In addition there are some transfer matrix calculations in two dimensions. The main
quantities of interest are:

1. The temperature dependence of the free energy.
2. The location of the phase transition.
3. The shape of the free energy curve close to the phase transition, in the low tem-

perature (adsorbed) phase, characterized by the crossover exponent φ , and hence
the value of φ .

4. Various metric quantities such as the mean-square radius of gyration or the mean
distance of a vertex from the surface, as a function of temperature.

It isn’t too difficult to use exact enumeration methods to calculate the values
of κn(α) and κ0

n (α), defined by (12.3) and (12.4), for modest values of n. Series
analysis techniques, discussed in Chapter 8, such as ratio methods, can then be used
to estimate κ(α) and κ0(α), which we know to be identical in three and higher
dimensions. The difficulty is to extract a reliable estimate of the critical value of α
since one is asking where a function stops being constant. It is easy enough to get a
reasonable upper bound on α0 (or on αw in two dimensions where α0 and αw may
be different) but it is extraordinarily difficult to estimate a reliable lower bound.
One might hope to examine the corresponding fluctuation quantity ∂ 2κn(α)/∂α2

but this doesn’t behave well for small n and is difficult to extrapolate. As a result the
most reliable estimates of α0 (and αw) come from Monte Carlo calculations.

We are not aware of any Monte Carlo calculations for adsorption of ring poly-
mers (i.e. polygons) but there are many studies of the adsorption of linear polymers
(i.e. self-avoiding walks) both in two and in three dimensions. In three dimensions
we know, vide supra, that polygons and walks have the same limiting free energies
so calculations for walks give useful information for polygons, in the thermody-
namic limit. We shall not attempt to give a systematic survey of the literature on
Monte Carlo studies for walks but we content ourselves with mentioning some re-
cent papers and pointing to an interesting open question.

Hegger and Grassberger [6] carried out a very thorough Monte Carlo study of
adsorption of self-avoiding walks in three dimensions (on the simple cubic lattice),
obtaining data for values of n up to about 2000. At the time of their work the value
of α0 was not known very precisely but the balance of evidence suggested a value
around 0.285. Hegger and Grassberger examined a variety of different properties
and concluded that α0 was probably between 0.2857 and 0.2861, with a preferred
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value of about 0.2859. They also noticed strong corrections to scaling which make
it difficult to extrapolate from data for short walks. There were several previous
attempts to estimate the value of φ in three dimensions and they estimated

φ = 0.496±0.004 (12.18)

which was somewhat smaller than previous estimates.
Janse van Rensburg and Rechnitzer [8] attacked the problem somewhat differ-

ently by producing very high quality Monte Carlo data on shorter walks (with n val-
ues up to 120) and then doing a careful statistical analysis in which they attempted
to incorporate correction to scaling terms. They estimated α0 = 0.288± 0.020 for
the simple cubic lattice and

φ = 0.5005±0.0036. (12.19)

The two approaches give values of α0 which are in reasonable agreement and both
studies are consistent with a value of φ = 1/2. Since there is good evidence that
φ = 1/2 also in two dimensions this would imply a super-universality for φ in
dimensions 2 to 4 [6]. However, Grassberger [3] returned to the problem using a
somewhat different algorithm and obtained data for walks with n up to 8000. He
gave the very precise estimate

α0 = 0.28567±0.00008 (12.20)

but gave a lower estimate for φ , namely

φ = 0.484±0.002. (12.21)

If this value is correct then φ is not super-universal.
In two dimensions we know that walks and polygons do not have the same lim-

iting free energy and we do not know of any Monte Carlo calculations for polygons
in two dimensions.

12.3 The Collapse Transition

In dilute solution in a good solvent, polymers are typically expanded coils. In these
conditions the monomer–solvent contacts are favourable and monomers tend to
be surrounded by solvent. In a poor solvent monomer–solvent contacts become
less favourable and the polymer collapses to a compact ball producing monomer–
monomer contacts at the expense of monomer–solvent contacts. Typically the sol-
vent becomes worse as the temperature decreases and there is a temperature, the
θ -temperature, at which the polymer collapses.

This situation for a ring polymer can be modelled by considering polygons with n
edges where we keep track of the number of pairs of vertices which are unit distance
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apart but are not joined by an edge of the polygon. We call these contacts. See
Fig. 12.6 for an example on the square lattice. We can weight polygons according to
the number of contacts. Suppose that pn(k) is the number of n-edge polygons with
k contacts. For example, on the square lattice p8(2) = 6 and p8(0) = 1.

Fig. 12.6 A polygon with 13 contacts. The contacts are indicated by dashed lines.

Define the partition function

Z0
n(β ) = ∑

k

pn(k)e
β k (12.22)

and the corresponding free energy

F0
n (β ) = n−1 logZ0

n(β ). (12.23)

We expect that the limit F0(β ) = limn→∞ F0
n (β ) will exist and that F0(β ) will have

a singularity at β = β 0
c corresponding to the θ -point.

One can define a similar model for self-avoiding walks. Let cn(k) be the number
of n-edge self-avoiding walks with k contacts. Define the partition function

Zn(β ) = ∑
k

cn(k)e
β k (12.24)

and the corresponding free energy

Fn(β ) = n−1 logZn(β ). (12.25)

Again we expect that the limit F(β ) = limn→∞ Fn(β ) will exist and that F(β ) will be
singular at some β = βc. Some natural questions which arise are whether F0(β ) =
F(β ). If not is β 0

c different from βc?
If we write Sn(β ) and S0

n(β ) for the mean-square radius of gyration of n-edge
walks and polygons at parameter β , it is natural to expect that Sn(β ) ∼ Anν for
β < βc, where ν is the exponent corresponding to a good solvent. For β > βc (i.e. at
low temperatures) Sn(β )∼ Bn1/d, with similar expressions for the polygon problem.
That is, the transition is associated with a change in the radius of gyration exponent.
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12.3.1 Rigorous Results

Remarkably little is known rigorously about this problem, either for the polygon
model or for the self-avoiding walk model. Concatenation arguments [16] can be
used to prove the existence of the limit

F0(β ) = lim
n→∞

n−1 logZ0
n(β ). (12.26)

In addition it can be shown that F0(β ) is a convex function of β and hence is
continuous. Tesi et al. [16] also showed that, if β ≤ 0, the limiting free energy
F(β ) = limn→∞ Fn(β ) exists and that F(β ) = F0(β ). So the polygon and walk mod-
els have the same free energy for β ≤ 0, i.e. for repulsive interactions. To get a bound
in one direction one deletes an edge from a polygon giving

cn−1(k + 1)≥ pn(k) (12.27)

since the edge deletion creates a contact. This immediately gives

liminf
n→∞

Fn(β ) ≥ F0(β ) (12.28)

and this bound works for all β . The idea behind the bound in the other direction is
to relate polygons and walks to unfolded walks and to use a theorem about unfolded
walks due to Hammersley and Welsh [4]. This does not work for β > 0 because
unfolding can destroy contacts. The existence of the thermodynamic limit for the
walk model is an open question.

Tesi et al. proved another potentially useful lemma [16]. Suppose that Kn(β ) is
the mean number of contacts for n-edge self-avoiding walks at parameter β , i.e.

Kn(β ) =
∑k kcn(k)eβ k

∑k cn(k)eβ k
(12.29)

and that K0
n (β ) is the corresponding quantity for the polygon model. Tesi et al.

showed that if K0
n (β )≥ Kn(β ) for all sufficiently large even n and for all β > 0 then

limn→∞ Fn(β ) exists and F(β ) = F0(β ) for all β .

12.3.2 Numerical Results

The question of whether or not the limiting free energies of walks and polygons are
equal for β > 0 has been addressed numerically [2, 16]. Tesi et al. [16] used Monte
Carlo methods (in fact umbrella sampling and multiple Markov chain methods, as
described in Chapter 9) to study self-interacting polygons on the simple cubic lat-
tice. They estimated the heat capacity ∂ 2F0

n (β )/∂β 2 as a function of n and β and
observed peaks in the heat capacity (as a function of β ) which increase in height
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as n increases, consistent with a second order phase transition at a critical value
of β which they estimated to be 0.2782± 0.0070. The corresponding estimate for
the walk problem is 0.2779± 0.0041, so the results are consistent with walks and
polygons collapsing at the same temperature.

Tesi et al. [16] also estimated the free energy difference

∆Fn(β ) = [F0
n (β )−F0

n (0)]− [Fn(β )−Fn(0)] (12.30)

(recall that F(0) = F0(0)). They observed that ∆Fn(β ) is positive for β > 0 but
decreases as n increases, again consistent with the free energies being equal in the
infinite n limit.

To test this further they estimated the ratio K0
n (β )/Kn(β ) as a function of n and β .

The ratio is greater than unity for the range of β and n values studied, going through
a maximum at fixed n and decreasing towards unity as β increases. The height of
the maximum decreases as n increases. Using the result discussed in Section 12.3.1,
this is strong evidence that the two models have the same limiting free energy for all
values of β . Incidentally, this implies that they have the same value for the crossover
exponent, φ .

For the square lattice in two dimensions the critical value of β has been estimated
for the walk and polygon problems and the results are consistent with a common
value βc = 0.663±0.016. The evidence is reviewed briefly in [2].

Bennett-Wood et al. [2] derived exact enumeration data for the square lattice
for n ≤ 29 for the walk model and for n ≤ 42 for the polygon model, enabling
them to calculate Zn(β ) and Z0

n(β ) for these values of n. They computed Kn(β ) and
K0

n (β ). For β < 0.6 (i.e. at high temperature) they observed that K0
n (β ) > Kn(β )

at the largest values of n considered, and gave evidence that K0
n (β )−Kn(β ) → 0

as n → ∞, for β < 0.663. For larger values of β (beyond the collapse transition)
Kn(β ) > K0

n (β ) for the values of n considered so the Lemma of Tesi et al. [16] does
not apply.

To investigate the situation at low temperatures (β > 0.663) Bennett-Wood et al.
[2] defined

Qn =

√
Z0

n+1Z0
n−1

Zn
(12.31)

for n odd and Qn = Z0
n/Zn for n even. They used series analysis techniques to es-

timate limn→∞ Q1/n
n for various values of β . For 0 < β < 1.5 (so well into the col-

lapsed phase) they estimated that limn→∞ Q1/n
n is unity within the estimated error

bars. This is consistent with the equality of the limiting free energies for the walk
and polygon models for all values of β which were considered.
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12.4 Adsorption and Collapse

One can also consider the situation where a polymer can adsorb at a surface and
collapse into a compact ball. This involves having two different energy terms, one
corresponding to the attraction of a monomer to the surface at which adsorption can
occur, and another corresponding to the monomer–monomer attraction which can
lead to collapse.

Consider the simple cubic lattice and the half-space z ≥ 0. Suppose that pn(v,k)
is the number of n-edge polygons with v vertices in the plane z = 0 (v ≥ 2) and with
k contacts. The appropriate partition function is now

Z0
n(α,β ) = ∑

v,k

pn(v,k)e
αv+β k (12.32)

and the corresponding (intensive) free energy is

F0
n (α,β ) = n−1 logZ0

n(α,β ). (12.33)

I II

III IV
α

β

Fig. 12.7 The phase diagram for polygons which can both adsorb at a surface and collapse. The
four phases are I: desorbed and expanded, II: desorbed and collapsed, III: adsorbed and expanded,
and IV: adsorbed and collapsed.

One might expect four different phases in the (α,β )-plane. At small α and small
β the polymer should be desorbed and expanded. As α increases at small fixed β the
polymer should adsorb to give a phase where the polymer is adsorbed and expanded.
Increasing β at fixed small α should give a desorbed and collapsed phase. From the
interior of the adsorbed and expanded phase increasing β should lead to collapse
in the adsorbed phase, to give a collapsed phase at the surface. See Fig. 12.7 for a
sketch of a possible phase diagram.
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12.4.1 Rigorous Results

A few rigorous results for this model have been obtained by Vrbovà and Whittington
[18]. They used concatenation arguments to prove the existence of the limit

lim
n→∞

F0
n (α,β ) ≡ F0(α,β ) (12.34)

for all α < ∞ and β < ∞. They also showed that F0(α,β ) is doubly convex (i.e.
convex as a surface, which is a stronger statement than being convex in both argu-
ments), and hence a continuous function of α and β .

The arguments of Section 12.2.1 can be extended to show that polygons exhibit
an adsorption transition at some critical value of α = αc(β ) for all β < ∞. This
establishes the existence of the phase boundary between the desorbed phases (I and
II) and the adsorbed phases (III and IV) in Figure 12.7. It is not known if the phase
boundary α = αc(β ) is a continuous function of β . It is also not known rigorously
that there is a collapse transition at some β = βo when α = 0. However, if these two
conditions are met then the phase boundary between the desorbed and expanded
phase (I) and the desorbed and collapsed phase (II) is a straight line and the critical
value of β is independent of α .

12.4.2 Numerical Results

The polygon problem does not seem to have been studied numerically but one
would expect the same phase diagram for walks and for polygons so we discuss
some numerical results for the corresponding walk problem. Vrbovà and Whit-
tington [19] used Monte Carlo methods to investigate this problem for a self-
avoiding walk model on the simple cubic lattice. They found clear evidence for four
phases: desorbed-expanded, desorbed-collapsed, adsorbed-expanded and adsorbed-
collapsed, with a phase diagram qualitatively similar to that shown in Figure
12.7. In particular they found evidence for two triple points and a phase bound-
ary between the adsorbed-expanded and desorbed-collapsed phases. Vrbovà and
Procházka [17] found evidence from Monte Carlo data that the phase boundary be-
tween the desorbed-expanded and adsorbed-expanded phases is a horizontal line in
Fig. 12.7. That is, the adsorption critical point doesn’t depend on β until the collapse
point is reached.

Singh and coworkers [12, 14] studied the same problem in three dimensions,
using exact enumeration techniques. Although there was some initial disagreement
as to whether the phase diagram had two triple points or a quadruple point (where
four phases coexist) there now seems to be general agreement that there are two
triple points, as sketched in Fig. 12.7. Vrbovà and Whittington [20] also studied
a similar model with adsorption at a penetrable surface and found a similar phase
diagram.
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Krawczyk et al. [9] have investigated the problem in three dimensions also with
a Monte Carlo technique known as flatPERM, which allowed the consideration of
a large part of the phase space at once. Walks attached to the surface up to length
256 were considered. While unusual features appear at low temperatures for finite
lengths they find a phase diagram in agreement with that in Fig. 12.7 from Vrbovà
and Whittington [19].

Singh et al. [13] (see also [10]) suggested the existence of an additional surface
attached globule phase though it seems [9] that this doesn’t correspond to a bulk
phase transition. That is, its phase boundary does not correspond to singularities in
the limiting free energy defined in (12.34) but to singularities in a suitably defined
surface free energy.

Bachmann and Janke [1] have simulated a variant of the problem where the walk
is not attached to the attractive surface. As a consequence they need to place a sec-
ond wall some distance from the first. Walks of length 100 were simulated and the
pseudo phase diagram suggests extra phases. It will be interesting for future work
to delineate the exact difference between the tethered and non-tethered cases.
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Chapter 13
Fully Packed Loop Models on Finite Geometries

Jan de Gier

13.1 Fully Packed Loop Models on the Square Lattice

A fully packed loop (FPL) model on the square lattice is the statistical ensemble of
all loop configurations, where loops are drawn on the bonds of the lattice, and each
loop visits every site once [4, 18]. On finite geometries, loops either connect exter-
nal terminals on the boundary, or form closed circuits, see for example Fig. 13.1. In
this chapter we shall be mainly concerned with FPL models on squares and rectan-
gles with an alternating boundary condition where every other boundary terminal is
covered by a loop segment, see Fig. 13.1.

An FPL model thus describes the statistics of closely packed polygons on a finite
geometry. Polygons may be nested, corresponding to punctures studied in Chapter
8. FPL models can be generalised to include weights. In particular we will study
FPL models where a weight τ is given to each straight local loop segment. The
partition function of an FPL model on various geometries can be computed exactly
using its relation to the solvable six-vertex lattice model. It is well known that the
model undergoes a bulk phase transition at τ = 2.

We furthermore study nests of polygons connected to the boundary. In the case
of FPL models with mirror or rotational symmetry, the probability distribution func-
tion of such nests is known analytically, albeit conjecturally. FPL models undergo
another phase transition as a function of the boundary nest fugacity. At criticality,
we derive a scaling form for the nest distribution function which displays an unusual
non-Gaussian cubic exponential behaviour.

The purpose of this chapter is to collect and discuss known results for FPL mod-
els which may be relevant to polygon models. For that reason we have not put an
emphasis on derivations, many of which are well-documented in the existing litera-
ture, but rather on interpretations of results.

Jan de Gier
Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia, e-
mail: degier@ms.unimelb.edu.au
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Fig. 13.1 Fully packed loops inside a square with alternating boundary condition.

13.1.1 Bijection with the Six-Vertex Model, Alternating-Sign
Matrices and Height Configurations

There is a well-known one-to-one correspondence between FPL, six-vertex and
alternating-sign configurations [69, 25]. In the six-vertex model, to each bond of
the square lattice is associated an arrow, such that at each vertex there are two in-
and two out-pointing arrows, see e.g. [7]. There are six local vertex configurations
which are given in the top row of Fig. 13.2. The six-vertex and FPL configurations
are related in the following way. The square lattice is divided into two sublattices,
even (A) and odd (B). For each arrow configuration we draw only those bonds on
which the arrow points to the even sublattice. If we choose the vertex in the upper

A

B

Fig. 13.2 Bijection between six-vertex and FPL vertices. The correspondence is different on the
two sublattices A and B.
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Fig. 13.3 An equivalent six-vertex and fully packed loop configuration.

left corner to belong to the even sublattice, the six-vertex and FPL configuration in
Fig. 13.3 are equivalent, as can be seen from the correspondence in Fig. 13.2.

Alternating sign matrices (ASMs) were introduced by Mills, Robbins and Rum-
sey [51, 52] and are matrices with entries in {−1,0,1} such that the entries in each
column and each row add up to 1 and the non-zero entries alternate in sign. A well-
known subclass of ASMs are the permutation matrices. Let us also introduce the
height interpretation of an ASM. Let A = (ai j)

n
i, j=1 be an ASM, then define the

heights hi j by
hi j = n− i− j + 2 ∑

i′≤i, j′≤ j

ai′ j′ . (13.1)

This rule ensures that neighbouring heights differ by one. The correspondence be-
tween the three objects is given in Fig. 13.4. An example of a six vertex and
its corresponding height configuration is given in Fig. 13.5 for the 3× 3 identity
matrix.

0 0 0 0 −1 1

h−1 h

h h+1

h+1 h

h h−1

h h−1

h+1 h

h h+1

h−1 h

h h−1

h−1 h

h h+1

h+1 h

Fig. 13.4 The six vertices and their corresponding heights and ASM entries.

13.1.2 Structure

As each external terminal, or outgoing bond, is connected to another terminal, FPL
diagrams can be naturally labeled by link patterns, or equivalently, two-row Young
tableaux or Dyck paths. For example, the diagram in Fig. 13.6 has link pattern
((()(())())) which is short hand for saying that 1 is connected to 12, 2 is connected
to 11, 3 to 4 etc. The information about connectivities can also be coded in two-row
standard Young tableaux. The entries of the first row of the Young tableau corre-
spond to the positions of opening parentheses ’(’ in a link pattern, and the entries of
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3

2

1

0

2

1

0

1

1

0

1

2

0

1

2

3

Fig. 13.5 Vertex and height interpretation corresponding to the 3×3 identity matrix.

2

3

6

11

1

4 5

7

8

9

1012

Fig. 13.6 An FPL diagram with link pattern ((()(())())).

the second row to the positions of the closing parentheses ’)’. The FPL diagram of
Fig. 13.6 carries as a label the standard Young tableau given in Fig. 13.7.

1 2 3 5 6 9

4 7 8 10 11 12

Fig. 13.7 Standard Young tableau corresponding to the FPL diagram in Fig. 13.6.

Yet another way of coding the same information uses Dyck paths. Each entry in
the first row of the standard Young tableau represents an up step, while those in the
second row represent down steps. The Dyck path corresponding to Fig. 13.7 is given
in Fig. 13.8.

In this section we collect some structural results regarding local update moves of
FPL models. Following Wieland [78], we define operators Gi j that act on the height
configurations as follows. They act as the identity on each square except on the
square at (i, j) where they either increase or lower the height by 2 if it is allowed.
A change of height is allowed if neighbouring heights still differ by one after the
change. If it is not allowed, Gi j acts as the identity. For future convenience we also
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Fig. 13.8 Dyck path corresponding to the FPL diagram in Fig. 13.6 and the standard Young tableau
in Fig. 13.7.

define the operators

G0 = ∏
(i, j)∈S0

Gi j, G1 = ∏
(i, j)∈S1

Gi j. (13.2)

where G0 and G1 denote the even and odd sublattice of the square lattice respec-
tively.

Starting from an initial height configuration, such as the one in Fig. 13.5, the
operators Gi j generate all height configurations. Put in other words, if we denote the
height configuration corresponding to the unit matrix by Z1, all other allowed height
configurations correspond to a word in the operators Gi j acting on Z1.

On a plaquette of an FPL configuration, the involution G acts as

G : ↔ (13.3)

while on other types of plaquettes G acts as the identity. Wieland [78] observed that
the operator G0 ◦G1 “gyrates” a link pattern and that the number of FPL configura-
tions is an invariant under gyration.

We define two other operations on the FPL diagrams, Ui j and Oi j, that leave the
link pattern invariant but that generate all diagrams belonging to a fixed link pattern.
The operator U acts on two plaquettes, either horizontally or vertically. Where it
acts non-trivially it is given by,

U :

↔

↔

(13.4)

The operator O acts on three plaquettes, either horizontally or vertically. Where
it acts non-trivially, it is given by,
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O :

↔

↔

(13.5)

It is easy to see that both U and O leave the link pattern external to the plaquettes
on which they act invariant. It is also not difficult to see that on a horizontal strip of
arbitrary length, such that only the leftmost and rightmost edge are connected to the
outside world, the operators U and O generate all possible FPL diagrams leaving
the link pattern invariant. A similar argument holds for vertical strips. This proves
that acting with U and O on an FPL diagram with given link pattern, one generates
all FPL diagrams corresponding to that link pattern, and no more.

Fig. 13.9 An isolated row inside an FPL configuration: only the leftmost and rightmost edge are
connected to the rest of the FPL configuration. The operators U and O generate all possible con-
figurations within the row.

13.2 Partition Function

To each local FPL vertex we assign a weight wi and define the statistical mechanical
partition function Zn as the sum over all FPL configurations of the product of the
vertex weights,

Zn = ∑
configurations

6

∏
i=1

wki
i , (13.6)

where ki is the number of vertices of type i. We will consider only the case where
the weights on the two sublattices are the same, i.e. in the six-vertex representation
the weights are invariant under arrow reversal. Using standard six-vertex notation
we write w1 = w2 = a, w3 = w4 = b and w5 = w6 = c, see Fig. 13.10.

It is convenient to parametrise a, b and c in the following way,
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a a b b c c
Fig. 13.10 Weights of the six local FPL vertices.

a = sin(γ −u), b = sin(γ + u), c = sin(2γ), (13.7)

and to introduce the u-independent quantity τ by

τ2 =
c2 − (a−b)2

ab
= 2(1−∆) = 4cos2 γ, (13.8)

where ∆ is the standard notation for the anisotropy parameter of the six-vertex
model defined by

∆ =
a2 + b2 − c2

2ab
= −cos(2γ). (13.9)

When a = b, τ = c/a gives a weight to straight loop segments. It is therefore ex-
pected that for some critical value of τ there is an ordering transition in the FPL
model from a disorder phase to a phase where the vertex with weight c dominates
and the polygons are elongated. We will see below that this transition takes place at
τ = 2. For a > b+ c or b > a+ c there is another ordering transition at τ = 0 where
the vertices with weight a or b, respectively, dominate.

The partition function Zn can be computed exactly for finite n applying meth-
ods of solvable lattice models to the six-vertex model with domain wall boundary
conditions. This was first done by Korepin and Izergin [39, 36, 37] who derived the
following determinant expression for Zn,

Zn =
(sin(γ + u)sin(γ −u))n2

(
∏n−1

k=0 k!
)2 σn, (13.10)

where σn is the Hankel determinant

σn = det

(
di+k−2 φ
dui+k−2

)

1≤i,k≤n

, (13.11)

and

φ(u) =
sin(2γ)

sin(γ + u)sin(γ −u)
. (13.12)

Using the height representation (13.1) it is possible to introduce elliptic weights,
rather than the trigonometric weights (13.7). The partition function in that case has
been computed by Rosengren [70].
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13.2.1 Another Form of the Partition Function

Independent of Izergin and Korepin, in the case a = b (i.e. u = 0), another form
of Zn was discovered conjecturally by Robbins in the context of alternating-sign
matrices (ASMs) and symmetry classes thereof, see [68]. As can be easily seen
from Figures 13.2 and 13.4, a τ weighted FPL configuration, where each straight
loop segment is assigned a weight τ , is equal to the generating of weighted ASMs
where each nonzero entry is assigned a weight τ . Up to a simple factor, this is also
the generating function An(τ2) of τ2-weighted ASMs of size n×n where each −1 is
assigned a weight τ2 (each additional −1 in an ASM also introduces an additional
+1). The latter was conjectured by Robbins [68] to equal

A2n(τ2) = 2Tn(τ2)Rn−1(τ2), A2n+1(τ2) = Tn(τ2)Rn(τ2). (13.13)

where

Tn(τ2) = det
1≤i, j≤n

(
2n

∑
r=0

(
i−1
r− i

)(
j

2 j− r

)
τ2(2 j−r)

)
, (13.14)

and

Rn(τ2) = det
0≤i, j≤n−1

(
2n−1

∑
r=0

Yi,r,µYj,r,0 τ2(2 j+1−r)

)
, (13.15)

where

Yi,r,µ =

(
i+ µ

2i+ 1 + µ− r

)
+

(
i+ 1 + µ

2i+ 1 + µ− r

)
. (13.16)

The precise correspondence using the notation of the previous section is

Z2n = (sinγ)2n(2n−1) A2n(4cos2 γ), (13.17a)

Z2n+1 = 2cosγ (sin γ)2n(2n+1)A2n+1(4cos2 γ). (13.17b)

In fact, Robbins’ conjecture was slightly more general and gave a generating
function for refined ASMs. The generating functions R and T appear naturally in
weighted enumerations of cyclically symmetric plane partitions [53].

The equivalence of the homogeneous limit of Izergin’s determinant and Robbins’
conjecture, i.e. equation (13.17), is only proved for τ = 1 [81, 42]. Kuperberg and
Robbins [43, 68] noticed several other such equivalences between homogeneous Iz-
ergin or Tsuchiya1 type determinants and generating functions of the form (13.14) or
(13.15). Some of these were recently proved in [34] using a technique which seems
immediately applicable to all the cases considered by Kuperberg and Robbins.

1 The Tsuchiya determinant is the generating function of horizontally or vertically symmetric FPL
diagrams [77]
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L=8

Fig. 13.11 Bond percolation clusters and O(1) cluster boundaries on a semi-infinite strip. Con-
figurations are generated by repeated concatenation of double rows using the double-row transfer
matrix. The particular boundary conditions chosen here are called closed or reflecting.

13.3 Bond Percolation, the O(n = 1) Model and the
Razumov-Stroganov Conjecture

In this section we mention a (partially conjectural) relation between FPL diagrams
and the O(1) loop model. We will use this relation to generate FPL statistics in a
relatively easy way, without having to explicitly enumerate FPL diagrams.

Imagine that each site of the square lattice is a reservoir of water. With proba-
bility p, water percolates between reservoirs along a bond of the square lattice. At
p = 1/2, the model is critical, and equivalent to the dense O(n = 1) loop model
[12] on a square lattice. The loops of the O(1) model describe the boundaries of
the percolation clusters, see Fig. 13.11. Many asymptotic properties such as criti-
cal exponents of correlation functions can be computed for the O(n) model using
Coulomb gas techniques and conformal field theory, see Chapter 14 for an exhaus-
tive overview. More recently, geometric properties of conformally invariant loops
have been analysed using the stochastic Loewner evolution (SLE), see Chapter 15
of this book.

Configurations of the O(1) loop model can be generated using a transfer matrix,
see Fig. 13.11 for the particular case of closed or reflecting boundary conditions.
Schematically, the local blocks of the O(1) transfer matrix are given by
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1
2 2

1 . (13.18)

The closed loops of the O(1) loop model have weight n = 1. Loops ending on the
boundary of the strip define a link pattern. For example, the link pattern correspond-
ing to the bottom side of Fig. 13.11 has link pattern ()()()(). The transfer matrix T
of the O(1) loop model therefore acts on states indexed by a link pattern.

13.3.1 The Razumov-Stroganov Conjecture

The largest eigenvalue of the transfer matrix of the O(1) has eigenvalue 1. It was
found in [5, 64, 65, 32, 59] that the corresponding groundstate eigenvector sur-
prisingly is related to the statistics of FPL models. Denoting a link pattern by α and
forming a vector space with basis elements |α〉, the groundstate eigenvector satisfies

T |ψ〉 = |ψ〉, |Ψ〉 = ∑
α

ψα |α〉. (13.19)

In the case of periodic boundary conditions, Razumov and Stroganov formulated
the following important conjecture:

The coefficient ψα equals the number of FPL diagrams with link pattern α .

The RS conjecture generalises to other boundary conditions, in which case the
eigenvector coefficient ψα of the corresponding transfer matrix enumerates symme-
try classes of FPL diagrams, to be discussed below. This is explained in detail in
[30]. The case that will be treated in most detail here is the O(1) model on a strip, as
in Fig. 13.11, for which ψα conjecturally enumerates horizontally symmetric FPL
diagrams.

Assuming the RS conjecture, we will use the O(1) loop model to generate FPL
statistics by solving (13.19), and variants thereof for other boundary conditions. The
particular boundary conditions we will use are periodic, cylindrical and closed. See
e.g. [54, 30, 24, 62, 84, 85, 76] for examples and other types of boundary conditions
not considered here.

Let us define the norm NL of |Ψ 〉 by

NL = ∑
α

ψα , (13.20)

and denote the largest element of |Ψ 〉 by ψmax. The result of solving (13.19) for
various boundary conditions is shown in Table 13.1, where the numbers A, AHT and
AV are defined by:

• The number of n×n ASMs,
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A(n) =
n−1

∏
k=0

(3k + 1)!
(n + k)!

= 1,2,7,42, . . . (13.21)

• The number of n×n half turn symmetric ASMs,

AHT(2n) = A(n)2
n−1

∏
k=0

3k + 2
3k + 1

= 2,10,140,5544, . . .

AHT(2n−1) =
n−1

∏
k=1

4
3

(
(3k)!(k!)
(2k)!2

)2

= 1,3,25,588, . . .

(13.22)

• The number of (2n−1)× (2n−1) horizontally (or vertically) symmetric ASMs,

AV(2n−1) =
n−1

∏
k=1

(3k−1)
(6k−3)!(2k−1)!
(4k−2)!(4k−1)!

= 1,1,3,26,646, . . . . (13.23)

and its related version for even sizes (also denoted by N8 in [13]),

AV(2n) =
n−1

∏
k=1

(3k + 1)
(6k)!(2k)!

(4k)!(4k + 1)!
= 1,2,11,170, . . . (13.24)

Table 13.1 The norm and largest eigenvalue of transfer matrices of various types.

Type NL ψmax

Periodic, L even A(L/2) A(L/2−1)

Cylindrical, L even AHT(L) AHT(L−1)

Cylindrical, L odd AHT(L) A((L−1)/2)2

Closed, L even AV(L+1) AV(L)

Closed, L odd AV(L+1) AV(L)

Mills et al. conjectured the number of ASMs to be A(n), which was proved more
than a decade later by Zeilberger [81] and in an entirely different way by Kuperberg
[42]. Kuperberg made essential use of the connection to the six-vertex model and its
integrability. Conjectured enumerations of symmetry classes were given by Robbins
[68], many of which were subsequently proved by Kuperberg [43]. The properties
and history of ASMs are reviewed in the book by Bressoud [13], as well as by
Robbins [67] and Propp [61].
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13.3.2 Proofs and Other Developments

The sum rules listed in Table 13.1, relating the norms (13.20) of |Ψ〉 for different
boundary conditions to symmetry classes of alternating-sign matrices, were origi-
nally obtained conjecturally. These sum rules have been proved algebraically using
an inhomogeneous extension of the transfer matrix, a method initiated and devel-
oped by Di Francesco and Zinn-Justin [21, 19]. This has led to further interesting
directions, not pursued here, such as the connections between weighted FPL dia-
grams (or ASMs), plane partitions and the q-deformed Knizhnik-Zamolodchikov
equation [57, 19, 22, 20, 23, 34].

In an alternative interpretation, the O(1) model is equivalent to a stochastic model
defined on link patterns, the so called raise and peel model [33]. It is an open ques-
tion how to define a stochastic model directly on FPL diagrams, by say the Wieland
involutions G describe in Section 13.1.2, such that it has an equipartite stationary
state and reduces to the raise and peel model when the action of the operators O and
U of Section 13.1.2 is divided out. Such a process would result in a direct proof of
the Razumov-Stroganov conjecture.

13.4 Symmetry Classes of FPL Diagrams

We will now focus on FPL models defined on rectangular grids, corresponding to
certain symmetry classes of square FPL diagrams. The two main reasons are that
for such FPL models there is a natural boundary giving rise to additional structure,
and that at the time of writing, for these models more results are known which are
relevant to polygon models.

13.4.1 Horizontally Symmetric FPL Diagrams

For horizontally symmetric FPL diagrams (HSFPLs) one only has to consider the
lower half of an FPL diagram. As explained in [30], due to geometric constraints one
can further reduce the size of such half diagrams. Therefore, for L even, the reduced
lower half of a horizontally symmetric FPL diagram of size (L+ 1)× (L+ 1) is an
FPL diagram of size (L− 1)×L/2. The total number ZHSFPL(2n) of horizontally
(or vertically) symmetric FPL diagrams of size (2n− 1)× n is known, and can be
computed from the Tsuchiya determinant [77, 43],

ZHSFPL(2n) = AV(2n + 1) =
n

∏
k=1

(3k−1)
(6k−3)!(2k−1)!
(4k−2)!(4k−1)!

. (13.25)

As can be seen from Table 13.1, this number is equal to the norm N2n for the
O(1) model with closed boundary conditions and L = 2n. For odd system sizes,
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L −1=7

Fig. 13.12 Boundary conditions for an HSFPL diagram of size (2n−1)×n = 7×4. The number
of external terminals equals 2n = 8, hence the statistics of this diagram is generated from the O(1)
model with L = 8.

L −1=13

Fig. 13.13 An FPL diagram of size (L−1)×L/2 = 13×7 with four nests.

L = 2n+1, the norm NL equals the number of FPL diagrams of size L× (L−1)/2,
which we will denote by ZHSFPL(2n + 1).

There are two interesting and natural statistics on HSFPLs which we will explain
now. As noted above, to each FPL diagram is associated a link pattern. Each link
pattern factorises in sets of completed links where, in terms of the parenthesis nota-
tion, the number of closing parentheses equals the number of opening parentheses.
For example,

(()())(((())())() = (()()) · (((())()) · ().
Such completed links are called nests , and they provide a statistic for HSFPLs. An
example of an HSFPL diagram of size 13×7 with four nests is given in Fig. 13.13.

Another natural statistic is the number d∗ of loops connecting the leftmost loop
terminals with the rightmost ones, i.e. loops connecting terminal i with 2⌊L/2⌋−
i+ 1 for i = 1, . . . ,d∗. It will be convenient to define d by
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d =

⌊
L−1

2

⌋
−d∗, (13.26)

where d is called the depth of an HSFPL diagram. An example of an HSFPL dia-
gram of size (L− 1)× L/2 = 13× 7 with three nests and depth d = 4 (d∗ = 2) is
given in Fig. 13.14.

d*=2

L−1=13

Fig. 13.14 An FPL diagram of size (L − 1)× L/2 = 13 × 7 with three nests and depth d = 4
(d∗ = 2).

13.4.2 Depth-Nest Enumeration of HSFPLs

In this section we will say that an FPL diagram is of size L, if it is of size (L−1)×
L/2 if L is even, or of size L× (L−1)/2 if L is odd. Let P(L,d,m) be the number of
such FPL diagrams of size L, depth d and having m + 1 nests. The nest generating
function for diagrams of size L and depth d is defined by

P(L,d;z) =
d

∑
m=0

P(L,d,m)zm. (13.27)

Let S(L,d) be the total number of HSFPL diagrams at a given size L and depth d.
Obviously we have

S(L,d) = P(L,d;1) = P(L,d + 1,0), (13.28)

and
ZHSFPL(L) = S(L,⌊ L−1

2 ⌋) = P(L,⌊L−1
2 ⌋;1). (13.29)
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Based on the RS conjecture, Mitra et al. and Pyatov have conjectured the exact form
of S(L,d) [54, 62]. Here we give this conjecture in the following form:

Conjecture 1 The total number of HSFPL diagrams at a given size L and depth d
is given by

S(L,d) =
d

∏
k=0

Γ (L− k + 1)

2k(1/2)kΓ (L−2k + 1)

Γ ( 2L+2k+3
6 )Γ (L−2k+3

3 )

Γ ( 2L−k+3
6 )Γ ( 2L−k+6

6 )
. (13.30)

Assuming the RS conjecture, the formula for S(L,d) has recently been proved [34].
Pyatov also found an exact formula for P(L,d,m) [62] which fits exact data for

small system sizes (L ≤ 18). He conjectured that this formula holds for all L, d and
m. In terms of the nest generating function this conjecture can be stated as follows.

Conjecture 2 The nest generating function is given by

P(L,d;z) = S(L,d −1) 3F2

(
−d,L−2d,L−d + 1

2
−2d,2L−2d + 1

;4z

)
. (13.31)

Note that Conjecture 1 follows from Conjecture 2 due to the evaluation

3F2

(
−d,L−2d,L−d + 1

2
−2d,2L−2d + 1

;4

)
=

S(L,d)

S(L,d−1)
, (13.32)

which is a consequence of one of the strange evaluations of Gessel and Stanton
[28]. For d = ⌊(L − 1)/2⌋, the formulas in Conjecture 1 and Conjecture 2 were
given in [30].

By convention, P(L,d,m) have the following boundary values:

P(L,d,m = −1) = P(L,d,m = −2) = P(L,d,m = d + 1) = 0 , (13.33)

and we also note the boundary condition

P(L,d,m = 1) = (L−2d)S(L,d−1) . (13.34)

It was found in [1] that the function P(L,d,m) is completely determined by these
boundary conditions and the following interesting bilinear relation called the split
hexagon relation,

P(L+ 1,d + 1,m)S(L−1,d−1)

= P(L−1,d,m)S(L+ 1,d)+ P(L,d−1,m−2)S(L,d + 1).
(13.35)

Summing up over m = 0,1, . . .d + 1 in (13.35) reproduces the hexagon relation, or
discrete Boussinesq equation, for S(L,d), see [62].
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13.4.2.1 Cyclically Symmetric Transpose Complement Plane Partitions

Somewhat outside the scope of this book, we note the following interesting fact
observed in [34]. The total number of nests at a given depth, S(L,d), is equal to the
number of punctured cyclically symmetric transpose complement plane partitions
[14], see Fig. 13.15. This can be seen by enumerating the number of non-intersecting
lattice paths in the South-East fundamental domain of the plane partition. Using the
Gessel-Viennot-Lindström method [29, 49] one obtains a determinant of the type
(13.14) with τ = 1, which can be evaluated in factorised form [14]. This form equals
the expression in (13.30).

*

*

*L+ d +1=18

L− d +1=10

=4

2

2

2d

Fig. 13.15 A punctured cyclically symmetric transpose complement plane partition for L = 13 and
d∗ = 2.

13.4.3 Average Number of Nests in HSFPL Diagrams

The average number of nests in HSFPL diagrams at depth d and size L, denoted by,
〈1 + m〉d∗ , is defined as
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〈1 + m〉d∗ =
1

ZHSFPL(L)

d

∑
m=0

(1 + m)P(L,d,m)

≡ S(L,d)

ZHSFPL(L)
(1 + 〈m〉c

d∗) . (13.36)

For notational clarity we will suppress the dependence of 〈1 + m〉d∗ on L and recall
that

d =

⌊
L−1

2

⌋
−d∗.

With the data P(L,d,m) we can calculate 〈m〉c
d∗ :

〈m〉c
d∗ =

1
S(L,d)

d

∑
m=1

mP(L,d,m)

=
d
dz

∣∣∣∣
z=1

logP(L,d;z). (13.37)

The Mathematica implementation of the Gosper-Zeilberger algorithm [35,
79, 80] by Paule and Schorn [58], is able to recognise 〈m〉d∗ in an almost factorised
form. Let L = 2n, then define µn(d∗) by

µn(d
∗) =

n−1−d∗

∑
m=0

(
3m+ 4(d∗+ 1)

)P(2n,n−1−d∗,m)

P(2n,n−1−d∗,0)

=
(

3〈m〉c
d∗ + 4(d∗+ 1)

)S(2n,n−1−d∗)
S(2n,n−2−d∗)

.

(13.38)

The expression µn(d∗) turns out to be summable in factorised form, giving rise to

〈m〉c
d∗ = −2

3
(L−2d)+ 22/3Γ

( 2L+2d+5
6

)
Γ
( 2L−d+3

3

)
Γ
(

L−2d+1
3

)

Γ
(

2L+2d+3
6

)
Γ
(

2L−d+2
3

)
Γ
(

L−2d
3

) . (13.39)

This formula also holds for odd values of L.

13.4.4 Half-Turn Symmetric FPL Diagrams

In the case of half turn symmetric FPL diagrams (HTSFPLs) it also suffices to con-
sider only the lower half of an FPL diagram, but the boundary conditions on the
top row of the half diagram are different from HSFPLs, see Fig. 13.16. The total
number of HTSFPL diagrams is given by [43]

ZHT(2n) = AHT(2n) = 2
n−1

∏
k=1

3(3k + 2)!(3k−1)!k!(k−1)!
4(2k + 1)!2(2k−1)!2 . (13.40)
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L −1=7

Fig. 13.16 Boundary conditions for an HTSFPL diagram of size (2n−1)×n = 7×4. The arcs at
the top are additional edges which may contain loop segments. The number of external terminals
equals 2n = 8, hence the statistics of this diagram is generated from the periodic O(1) model with
L = 8.

Care has to be taken when defining link patterns and nests for HTSFPL diagrams.
External terminals can be connected in two distinct ways depending on whether the
corresponding loop runs over an odd or even number of the arcs on the top of the
diagram. In the case of an odd number of arcs, we exchange the parentheses denot-
ing the connection of a pair of sites. For example, the connectivity of the HTSFPL
diagram in Fig. 13.17 is denoted by

) · () · () · ((),

where the dots again denote the factorisation of link pattern into nests. Figure 13.17
thus denotes an HTSFPL diagram with three nests.

As in the case of horizontal symmetry, there exists a conjecture for the nest distri-
bution function [30], but in this case only for L = 2n and d∗ = 0. Let P(L,m) denote
the number of half-turn symmetric FPL diagrams with m + 1 nests, and define the
nest generating function by

P(L;z) =
n−1

∑
m=0

P(L,m)zm. (13.41)

Conjecture 3 The nest generating function for half-turn symmetric FPL diagrams
is given by

P(2n;z) = ZHTSFPL(2n)
3n

4n2 −1 3F2

(
3/2,1−n,1 + n
2−2n,2 + 2n

;4z

)
.

The average number of nests in HTSFPL diagrams of size L = 2n having 1 + m
nests, denoted by 〈1 + m〉, is defined as
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L −1=7

Fig. 13.17 An HTSFPL diagram of size (2n−1)×n = 7×4 with link pattern ) · () · () · ((), having
three nests.

〈1 + m〉=
1

ZHTSFPL(L)

n−1

∑
m=0

(1 + m)P(L,d,m) = 1 + z
d
dz

logP(L;z) (13.42)

Knowing the nest generating function we may compute 〈1 + m〉, which turns out to
be summable [30].

Conjecture 4 The average number of nests in HTSFPL diagrams of size L, is given
by

〈1 + m〉= n
n−1

∏
j=1

3 j + 1
3 j + 2

.

13.5 Phase Transitions

13.5.1 Bulk Asymptotics and Phase Diagram

The phase diagram of the FPL model can be derived from the asymptotics of the
partition function Zn defined in (13.10). The leading asymptotics of Zn for general
values of τ has been computed by Korepin and Zinn-Justin [41] using the Toda
equation satisfied by σn [74],

σn
d2 σn

du2 −
(

dσn

du

)2

= σn+1σn−1. (13.43)

Writing σn as a matrix model integral [83], further subleading asymptotics were
computed by Bleher and Fokin [10] and Bleher and Liechty [11] using orthogonal
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polynomials. For special values of γ this method was first employed by Colomo and
Pronko [17]. The final result for 0 < τ2 = 4cos2 γ < 4 (1 > ∆ >−1) is that for some
ε > 0,

Zn = Cnκ exp
[

f n2(1 +O(n−ε))
]
, (13.44)

where C is a constant and

f =
π sin(γ + u)sin(γ −u)

2γ cos(πu/2γ)
, (13.45)

κ =
1

12
− 2γ2

3π(π −2γ)
. (13.46)

The result (13.44) is valid in the so-called disordered (D) phase 0 < τ2 < 4.
There is a phase transition to an ordered phase at τ2 = 4 where the vertices with
weight c are favoured and the perimeters of the polygons in the FPL model consist
of elongated straight lines. In terms of the six-vertex model this is called the anti-
ferromagnetic (AF) phase. At τ = 0, i.e. a = b + c or b = a + c, there is another
phase transition to a so-called ferromagnetic phase, where, respectively, the a- or
b-type vertices dominate. The complete phase diagram is given in Fig. 13.18.

a/c

b/c

D

AF F

F

1

1

Fig. 13.18 Bulk phase diagram of the FPL model. The phases are traditionally called disordered
(D), ferro-electric (F) and anti-ferro-electric (AF), cf. the six-vertex model. The arc corresponds to
the free-fermion condition ∆ = 0 (τ2 = 2), and the line a = b corresponds to τ2-enumerations of
ASMs. On this line τ2 = c2/a2 = 2(1−∆), and the D-AF phase transition takes place at τ2 = 4.

The phase diagram and the Bethe-Ansatz solution of the six-vertex model for pe-
riodic and anti-periodic boundary conditions are thoroughly discussed in the works
of Lieb [45, 46, 47], Lieb and Wu [48], Sutherland [73], Baxter [7], and Batchelor
et al. [3].
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13.5.2 Asymptotics for Symmetry Classes at τ = 1

In this section we determine the asymptotics of equally weighted horizontally and
half-turn symmetric FPL diagrams for τ = 1 or γ = 2π/3, corresponding to the
numbers given in Table 13.1. The leading asymptotic form of these numbers, which
are all products over factorials, can be computed using the Euler-Maclaurin approx-
imation. Full asymptotics can easily be derived using Barnes’ G-function [2], which
satisfies

G(z+ 1) = Γ (z)G(z), G(1) = 1, (13.47)

and whose leading asymptotic behaviour is given by (see e.g. [56]),

log(G(z+ 1)) = z2
(

1
2

logz− 3
4

)
+

1
2

z log2π − 1
12

logz+O(1). (13.48)

In the case of A(n) and AHT(n), a detailed asymptotic analysis including the lower
order terms was carried out by Mitra and Nienhuis [55]. Here we list only the lead-
ing asymptotics of the FPL numbers relevant to the current context. The generic
asymptotic form of the numbers is

logZL = s0 Area+ f0 Surface+ x log(Length)+O(1), (13.49)

where the bulk and boundary entropies are given by

s0 = log

(
3
√

3
4

)
, f0 = log

(
3
√

3

4
√

2

)
. (13.50)

The critical exponent x is a universal quantity. In detail, the cases relevant for this
chapter are

• FPL diagrams, L even
The number A(L/2) counts FPL configurations on an L/2×L/2 square grid, the
area of which is 1

4 L2. We thus find,

logZ(L) = logA(L/2) =
1
4

s0L2 − 5
36

logL+ O(1). (13.51)

• Half turn symmetric FPL diagrams, L even
AHT(L) counts the number of FPL configurations on half an L×L square grid,
the area of which is 1

2 L2. We thus find for L even,

logZHT(L) = logAHT(L) =
1
2

s0L2 +
1

18
logL+ O(1). (13.52)

• Half turn symmetric FPL diagrams, L odd
AHT(L) counts the number of FPL configurations on a square grid of dimension
L× (L−1)/2, the area of which is 1

2 L(L−1). We thus find for L odd,
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logZHT(L) = logAHT(L) =
1
2

s0L(L−1)+
1

36
logL2 + O(1). (13.53)

• Horizontally symmetric FPL diagrams, L even
AV(L+ 1) counts the number of FPL configurations on an (L−1)×L/2 rectan-
gular grid. We find,

logZHSFPL(L) = logAV(L+1) =
1
2

s0L(L−1)+ f0L− 5
72

logL+O(1). (13.54)

• Horizontally symmetric FPL diagrams, L odd
For L odd, AV(L+1) counts the number of FPL configurations on a L×(L−1)/2
rectangular grid. We find,

logZHSFPL(L) = logAV(L+1) =
1
2

s0L(L−1)+ f0L+
7

72
logL+O(1). (13.55)

Note that because the upper boundary for FPL diagrams corresponding to HSFPLs is
not fixed, see e.g. Fig. 13.12, there is a nonzero boundary entropy in logZHSFPL(L).

13.5.3 Nest Phase Transitions

From Section 13.4.3 we recall that the average number of nests is given by S(L,d)
ZHSFPL(L)

(1+

〈m〉c
d∗) where

〈m〉c
d∗ = z

d
dz

logP(L,d;z), (13.56)

with P(L,d;z) given in Conjecture 2. The asymptotics for 〈m〉c
d∗ as L → ∞ can be

derived from the hypergeometric equation satisfied by P(L,d;z). Taking L = 2n
this gives

θ (θ + 1 + 2d∗−2n)(θ + 2 + 2d∗+ 2n)P(2n,d;z) =

4z(θ + 2 + d∗)(θ + 1 + d∗−n)(θ + 3/2 + n)P(2n,d;z), (13.57)

where θ = zd/dz and

d =

⌊
L−1

2

⌋
−d∗ = n−1−d∗. (13.58)

Assuming that d∗ = O(1), we discriminate the cases z < 1, z = 1 and z > 1.

• z < 1
In this case, up to an overall constant factor, the leading asymptotics of P(2n,d;z)
will be polynomial in n. Neglecting lower order terms, equation (13.57) reduces
to,

θP(2n,d;z) = z(θ + 2 + d∗)P(2n,d;z). (13.59)
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We thus we find (1− z)P ′(2n,d;z) = (2 + d∗)P(2n,d;z) and

〈m〉c
d∗ = (2 + d∗)

z
1− z

(n → ∞). (13.60)

• z = 1
In (13.39) an exact expression was given for 〈m〉c

d∗ at z = 1. Asymptotically we
find that for L−2d = O(1),

〈m〉c
d∗ ≈

Γ (L−2d+1
3 )

Γ (L−2d
3 )

L2/3 +O(1), (13.61)

which for L = 2n can be written as

〈m〉c
d∗ ≈

Γ ( 2d∗+3
3 )

Γ ( 2d∗+2
3 )

(2n)2/3 +O(1), (13.62)

• z > 1
In this case, and when d is of order n, the leading asymptotics of P(2n,d;z)
will be of the form p(n)zn, where p(n) is a polynomial in n. This means that
θP(2n,d;z) is of the same order as nP(2n,d;z) and (13.57) reduces in leading
order to

(θ 3 −4n2θ )P(2n,d;z) = 4z(θ 3 −n2θ )P(2n,d;z). (13.63)

Using (13.56) one can derive the following equation for 〈m〉c
d∗ ,

4n2(z−1)〈m〉c
d∗ = (4z−1)

(
θ 2〈m〉d∗ + 3〈m〉c

d∗θ 〈m〉c
d∗ +(〈m〉c

d∗)
3) , (13.64)

which in leading order when 〈m〉c
d∗ ∼ n reduces to (4z−1)(〈m〉c

d∗)
2 = 4n2(z−1)

and thus

〈m〉c
d∗ ≈

√
z−1
4z−1

L+O(1). (13.65)

The scaling behaviour near the phase transition at z = 1 is governed by a single
exponent, the cross-over exponent φ [9]. On general grounds one expects,

〈m〉c
d∗ ∼





L(z−1)1/φ−1 (z > 1)

Lφ (z = 1)

(1− z)−1 (z < 1)

. (13.66)

Indeed, we find such scaling behaviour for 〈m〉c
d∗ with φ = 2/3.
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13.5.3.1 Scaling Function

In [33] an analysis has been carried out to obtain the nest scaling function for L = 2n
and d = n−1, i.e. d∗ = 0. Following Polyakov [60], we expect the following scaling
form of the nest distribution function at the critical point,

P(2n,n−1,m)

S(2n,n−1)
∼ 1

〈1 + m〉0
f

(
1 + m

〈1 + m〉0

)
(n → ∞), (13.67)

where 〈1+m〉0 = 1+ 〈m〉c
0. The large x behaviour of f (x) is related to the exponent

φ [15],

lim
x→∞

f (x) ∼ xs e−axδ
, δ =

1
1−φ

, (13.68)

where a and s are constants. The behaviour of f (x) for small x is related to the large
n behaviour of the probability P(2n,n−1,m)/S(2n,n−1),

lim
x→0

f (x) = bxϑ ⇒ b = lim
m→0

lim
n→∞

(1 + 〈m〉0)
1+ϑ P(2n,n−1,m)

S(2n,n−1)
, (13.69)

from which we find

ϑ = 1, b =
3

Γ (2/3)3 . (13.70)

Assuming that the full scaling function is of the form xϑ e−axδ
, for all values of x,

and using the normalisation condition
∫ ∞

0
f (x)d x = 1, (13.71)

we find that
f (x) = bx e−bx3/3 . (13.72)

In Fig. 13.19 we compare the scaling function (13.72) with a numerical evaluation
of (13.67) for n = 300. When δ ∗ > 0, the value of φ , and hence that of δ , is not
changed, but it follows from (13.69) that the value of the exponent ϑ changes to

ϑ = 1 + 2d∗. (13.73)

The full scaling function is not known in this case.

13.5.4 Half Turn Symmetry

The following analysis closely follows that of the previous section. We are interested
in the asymptotics as n → ∞ of the average number of nests defined in (13.56). This
can be inferred from the hypergeometric equation for P(2n;z),
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1.0f (x)

x

Fig. 13.19 The scaling function f (x) defined in (13.72) compared to a numerical evaluation (dots)
of (13.67) for L = 2n = 600. It can be seen that these are indistinguishable.

θ (θ +1+2n)(θ +1−2n)P(2n;z) = 4z(θ +3/2)(θ +1−n)(θ +1+n)P(2n;z).
(13.74)

Again we discriminate the cases z < 1, z = 1 and z > 1 and remind the reader that
L = 2n.

• z < 1
In this case, up to an overall constant prefactor, P(2n;z) will grow as a polyno-
mial in n and, neglecting lower order terms, (13.74) reduces to,

θP(2n;z) = z(θ + 3/2)P(2n;z), (13.75)

so that we find (1− z)P ′(2n;z) = 3
2P(2n;z) and thus

〈1 + m〉 ≈ 2 + z
2(1− z)

+O(1). (13.76)

• z = 1
For this case, and exact expression was given for 〈m+1〉 in Conjecture 4. Asymp-
totically we find

〈1 + m〉= n
n−1

∏
j=1

3 j + 1
3 j + 2

≈ Γ (5/6)√
π

L2/3 +O(1). (13.77)

• z > 1
Here,up to an overall constant prefactor, P(2n;z) will grow as p(n)zn where
p(n) is a polynomial in n. This means that θP(2n;z) will be of the same order
as nP(2n;z) and (13.74) reduces in leading order to
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(θ 3 −4n2θ )P(2n;z) = 4z(θ 3 −n2θ )P(2n;z), (13.78)

which is the same as (13.63). We thus find that

〈1 + m〉 ≈
√

z−1
4z−1

L+O(1). (13.79)

For half-turn symmetric FPL diagrams we find the same cross-over exponent φ =
2/3 as for horizontally symmetric FPL diagrams.

13.6 Conclusion

We have described a model of tightly packed, nested polygons on the square lattice.
We hope that the study of such tightly packed polygons is relevant to other poly-
gon models described in this book. The advantage of the model described in this
chapter is that many exact results can be obtained, even on finite geometries, due
to its relation with the exactly solvable six-vertex and O(n = 1) lattice models. In
particular, the statistical mechanical partition function can be obtained rigorously on
finite square patches of the square lattice. The free energy can then be obtained an-
alytically and in the thermodynamic limit. The fully packed loop model undergoes
a well-known bulk order–disorder phase transition as a function of an anisotropy
parameter associated to the straight segments of the polygon boundary.

We have furthermore shown that it is possible to obtain closed-form expressions
for partition functions of important subsets of fully packed loop configurations. Two
examples of such subsets are horizontally symmetric fully packed loop models of
depth d, and half-turn symmetric fully packed loop models of depth d. These closed-
form expressions have been obtained experimentally, and remain conjectures at the
time of this writing. In addition, using hypergeometric summation identities, we
were able to compute the average number of polygon nests at the boundary in closed
form. Asymptotic analyses allowed us to study a boundary phase transition as a
function of the nest fugacity, and we obtained a crossover exponent φ = 2/3. At
criticality, we derive a scaling form for the nest distribution function which displays
an unusual non-Gaussian cubic exponential behaviour.

To conclude, it should be said that while some of the exact results presented in
this chapter are more than what one would hope for from a physicist’s perspective,
where numerical techniques are often all what is available, they are just the starting
point for a mathematician. Although great progress has been made in recent years
in understanding fully packed loop models, proving conjectures such as the nest
distribution function and many related combinatorial results, remains a fascinating
and completely open problem. It is for reasons such as these that polygon models in
all shapes and sizes will continue to inspire future research.
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Chapter 14
Conformal Field Theory Applied
to Loop Models

Jesper Lykke Jacobsen

14.1 Introduction

The application of methods of quantum field theory to problems of statistical me-
chanics can in some sense be traced back to Onsager’s 1944 solution [1] of the
two-dimensional Ising model. It does however appear fair to state that the 1970’s
witnessed a real gain of momentum for this approach, when Wilson’s ideas on scale
invariance [2] were applied to study critical phenomena, in the form of the cele-
brated renormalisation group [3]. In particular, the so-called ε expansion permitted
the systematic calculation of critical exponents [4], as formal power series in the
space dimensionality d, below the upper critical dimension dc. An important lesson
of these efforts was that critical exponents often do not depend on the precise de-
tails of the microscopic interactions, leading to the notion of a restricted number of
distinct universality classes.

Meanwhile, further exact knowledge on two-dimensional models had appeared
with Lieb’s 1967 solution [5] of the six-vertex model and Baxter’s subsequent 1971
generalisation [6] to the eight-vertex model. These solutions challenged the notion
of universality class, since they provided examples of situations where the critical
exponents depend continuously on the parameters of the underlying lattice model.
On the other hand, the techniques of integrability used relied crucially on certain ex-
act microscopic conservation laws, thus placing important restrictions on the models
which could be thus solved.

An important break-through occurred in 1984 when Belavin, Polyakov and
Zamolodchikov [7] applied ideas of conformal invariance to classify the possible
types of critical behaviour in two dimensions. These ideas had emerged earlier
in string theory and mathematics, and in fact go back to earlier (1970) work of
Polyakov [8] in which global conformal invariance is used to constrain the form
of correlation functions in d-dimensional theories. It is however only by imposing
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local conformal invariance in d = 2 that this approach becomes really powerful. In
particular, it immediately permitted a full classification of an infinite family of con-
formally invariant theories (the so-called “minimal models”) having a finite number
of fundamental (“primary”) fields, and the exact computation of the corresponding
critical exponents. In the aftermath of these developments, conformal field theory
(CFT) became for some years one of the most hectic research fields of theoretical
physics, and indeed has remained a very active area up to this date.

Despite the amazing classification powers of CFT, it remains a tricky question
to make the link between a given critical lattice model and the corresponding CFT.
This is particularly true for geometrically defined models, such as percolation and
self-avoiding polygons (SAP) and walks (SAW), since then typically the usual as-
sumptions of minimality and unitarity (roughly speaking, positive definite Boltz-
mann weights) fail. Such models are however well treated by the so-called Coulomb
gas (CG) approach, in which the geometric degrees of freedom are directly identi-
fied with the level lines of one or more free bosonic “height” fields. This approach
preceded [9, 10, 11] the break-through of CFT, but shortly thereafter it was used
(in a more formal and less geometrically inspired form) for the extensive computa-
tion of correlation functions in minimal models by Dotsenko and Fateev [12, 13]. A
large number of applications in polymer physics was developed by Duplantier and
Saleur [14].

The goal of this chapter is to present the application of CFT—with special em-
phasis on the CG approach—to two-dimensional models of self-avoiding loops,
each loop occurring with a fugacity n. Self-avoiding polygons and walks then ap-
pear as special cases in the limit n → 0. In section 14.2 we outline the key concepts
of CFT. The aim is to make the presentation self-contained while remaining rather
brief; the reader interested in more details should turn to the comprehensive textbook
[15] or the Les Houches volume [16]. The geometric CG approach is introduced in
section 14.3, and is shown to lead to a CFT of the Liouville type. The presence of
screening charges is linked to a marginality requirement [17, 18] that ensures the
exact solvability of the model.

The CG approach is subsequently applied in section 14.4 to the computation of
bulk critical properties of SAP’s and SAW’s. It should be emphasised that most of
the material is presented within the general framework of loop models, taking the
SAP limit (n → 0) only at the end of the computations. SAW’s are then obtained by
inserting appropriate defects before taking the limit. There are good reasons for this
manner of presentation: first, more general results are obtained at no extra expense;
second, a number of general concepts emerge more clearly; and third, the example of
the Θ -point collapse transition [19] shows that also n 6= 0 is of relevance to polymer
problems. In fact, loop models furnish a nice illustration of most of the key concepts
of two-dimensional CFT.

While section 14.3 focuses on loop models with a scalar height field, equivalent
to the standard O(n) and Q-state Potts models (with n =

√
Q), a new class of loop

models with vectorial target spaces is introduced in section 14.5. In these models,
first solved by Kondev and collaborators [20, 17, 21], the loops are fully packed on
the lattice, and become Hamiltonian circuits or walks in the n → 0 limit.
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In sections 14.6–14.7 we illustrate the importance of the topology of the space
in which the loops are embedded. The preceding discussion in fact pertained to the
geometry of the (punctured) plane. In contrast, section 14.6 is devoted to the half-
plane geometry, in which the loops undergo specific interactions with the surface.
The appropriate theoretical setup is that of boundary CFT, a subject pioneered by
Cardy [22]. Finally, in section 14.7 the loops are embedded in a torus and the funda-
mental requirement of modular invariance [23] is exploited to write down modular
invariant partition functions in the continuum limit. Using a similar approach, ex-
act continuum limit partition functions are written down in the annulus geometry
as well.

14.2 Basic Concepts of CFT

14.2.1 Global Conformal Invariance

A conformal transformation in d dimensions is an invertible mapping x → x′ which
multiplies the metric tensor gµν(x) by a space-dependent scale factor:

g′µν(x′) = Λ(x)gµν(x). (14.1)

Note that such a mapping preserves angles. Therefore, just as Wilson [2] suggested
using global scale invariance as the starting point for investigating a system at its
critical point, Polyakov [8] proposed imposing the local scale invariance (14.1) as
the fundamental requirement for studying a critical system in which the microscopic
interactions are short ranged. A priori, a geometrical model of self-avoiding objects
such as SAP’s and SAW’s does not seem to be governed by short-range interactions;
that this is nevertheless true will be shown in section 14.3.2 where we shall make
explicit the locality of such models.

The group of conformal transformations is easily shown to be generated by
translations, dilations, rotations, and the so-called special conformal transforma-
tions (which are just the composition of an inversion xµ → xµ/x2, a translation,
and another inversion). Writing down the commutation rules of the generators, one
establishes that the conformal group is isomorphic to the pseudo-orthogonal group
SO(d + 1,1) with 1

2 (d + 1)(d + 2) real parameters.
The connection between a statistical mechanics model and quantum field theory

is made as usual by writing the partition function and correlation functions of the
former as functional integrals in the latter:

Z =

∫
DΦ e−S[Φ ]

〈φ1(x1) . . .φk(xk)〉 = Z−1
∫

DΦ φ1(x1) . . .φk(xk)e
−S[Φ ] (14.2)
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Here S[Φ] is the euclidean action, Φ the collection of fields, and φi ∈ Φ . In other
words, Z−1e−S[Φ ]DΦ is the Gibbs measure in the continuum limit. Paradoxically, in
many cases the hypothesis of conformal invariance may permit one to classify and
precisely characterise the possible continuum theories without ever having to write
down explicitly the action S[Φ].

A field φ(x), here supposed spinless for simplicity, is called quasi-primary pro-
vided it transforms covariantly under the conformal transformation (14.1):

φ(x) → φ ′(x′) =

∣∣∣∣
∂x′

∂x

∣∣∣∣
−∆/d

φ(x). (14.3)

The number ∆ = ∆φ is a property of the field and is called its scaling dimension.
Using this, conformal invariance completely fixes [8] the form of the two- and three-
point correlation functions:

〈φ1(x1)φ2(x2)〉 =
δ∆1,∆2

x2∆1
12

, (14.4)

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(14.5)

where we have introduced xi j = |xi − x j|. The fields have here been normalised so
that the coefficient in (14.4) is unity. The structure constants C123 appearing in (14.5)
are then fundamental dynamical quantities characterising the theory at hand. With
four or more points, the correlation functions are no longer completely fixed, due to
the existence of conformally invariant functions of four points, η = x12x34/x13x24,
the so-called anharmonic ratios.

14.2.2 Two Dimensions and Local Conformal Invariance

Conformal invariance is especially powerful in two dimensions for reasons that we
shall expose presently. For the moment, we work in the geometry of the Riemann
sphere, i.e., the plane with a point at infinity, and we shall write the coordinates as
x = (x1,x2). Under a general coordinate transformation xµ → x′µ = wµ(x1,x2) ap-
plication of (14.1) implies the Cauchy-Riemann equations, ∂w2/∂x1 = ±∂w1/∂x2

and ∂w1/∂x1 = ∓∂w2/∂x2, i.e., w(x) is either a holomorphic or an antiholomor-
phic function. Important simplifications will therefore result upon introducing the
complex coordinates z ≡ x1 + ix2 and z̄ ≡ x1 − ix2. A conformal mapping then reads
simply z → z′ = w(z).

The identification of two-dimensional conformal transformations with analytic
maps w(z) could have been anticipated from the well-known fact that the latter are
angle-preserving. It should be noted that an analytic map is defined (via its Laurent
series) by an infinite number of parameters. This does not contradict the result of
section 14.2.1 that the set of global conformal transformations is defined by only
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1
2 (d +1)(d +2) = 6 real parameters, since analytic maps are not necessarily invert-
ible and defined in the whole complex plane. Global conformal transformations in
d = 2 take the form of the projective transformations

w(z) =
a11z+ a12

a21z+ a22
(14.6)

with ai j ∈ C and the constraint detai j = 1, i.e., they form the group SL(2,C) ≃
SO(3,1).

In complex coordinates, the transformation law (14.3) becomes

φ ′(w, w̄) =

(
dw
dz

)−h(dw̄
dz̄

)−h̄

φ(z, z̄) (14.7)

where the real parameters (h, h̄) are called the conformal weights. The combinations
∆ = h + h̄ and s = h− h̄ are called respectively the scaling dimension and the spin
of φ . A field φ satisfying (14.7) for any projective transformation (resp. any analytic
map) w(z) is called quasi-primary (resp. primary). An example of a quasi-primary
field which is not primary is furnished by the stress tensor (see below).

The expressions (14.4)–(14.5) for the two- and three-point correlation functions
still hold true with the obvious modification that the dependence in zi j ≡ zi − z j

(resp. in z̄i j) goes with the conformal weights h (resp. h̄).

14.2.3 Stress Tensor and Ward Identities

The stress tensor T µν is the conserved Noether current associated with the confor-
mal symmetry. It can be defined1 as the response of the partition function to a local
change in the metric:

T µν (x) = − 1
2π

δ logZ
δgµν(x)

(14.8)

Translational and rotational invariances imply the conservation law ∂µT µν = 0 as
well as the symmetry T µν = T νµ . Scale invariance further implies the traceless-
ness T µ

µ = 0; in general the trace would be proportional to the beta function, which
vanishes at a renormalisation group fixed point.

Rewriting this in complex coordinates, one finds that Tzz̄ = Tz̄z = 0, while the
conservation law takes the form ∂z̄T (z) = ∂zT̄ (z̄), where we have defined T (z)≡ Tzz

and T̄ (z̄) ≡ Tz̄z̄. So T (z) is analytic, while T̄ (z̄) is antianalytic. This is a very im-
portant element in the solvability of two-dimensional CFT. Following Fateev and
Zamolodchikov [24] it is even possible to go (much) further: CFT’s in which the
conformal symmetry is enhanced with other, so-called extended, symmetries (su-
perconformal, parafermionic, W algebra,. . . ) can be constructed by requiring more

1 Note the analogy with the theory of integrable systems, where the conserved charges are obtained
as derivatives of the transfer matrix with respect to the anisotropy (spectral parameter).
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analytic currents and making them coexist with T (z) by imposing certain associa-
tivity requirements.

Consider now the change in the metric induced by an infinitesimal conformal
transformation z′ = z + ε(z). Its effects on an arbitrary product of primary fields
X = ∏ j φ j(z j, z̄ j) can be written in terms of T (z) as

∮

C
〈T (z)X〉ε(z)dz = ∑

j

(
h jε ′(z j)+ ε(z j)∂z j

)
〈X〉, (14.9)

where C is any counterclockwise contour encircling {z j}. This is called the confor-
mal Ward identity. By the Cauchy theorem, this is equivalent to

T (z)φ j(z j, z̄ j) =
h j

(z− z j)2 φ j(z j, z̄ j)+
1

z− z j
∂z j φ(z j, z̄ j)+O(1) . (14.10)

This is our first example of an operator product expansion (OPE), i.e., a formal
power series in the coordinate difference that expresses the effect of bringing close
together two operators. Several remarks are in order. First, it is tacitly understood
that OPE’s only have a sense when placed between the brackets 〈· · · 〉 of a correla-
tion function. Second, we generically expect singularities to arise when approaching
two local operators in a quantum field theory; in particular the average of a field over
some small volume will have a variance that diverges when that volume is taken to
zero. Third, an OPE should be considered an exact identity rather than an approx-
imation, provided the formal expansion is written out to arbitrarily high order. In
our example, (14.9) only determines the first two terms in the OPE (14.10). Fourth,
contracting any field φ with T (z) and comparing with (14.10) is actually a useful
practical means of determining its primarity and its conformal dimension hφ .

It is not difficult to see from (14.8) that on dimensional grounds T itself is a quasi-
primary field of conformal dimension h = 2. However, the average 〈T (z1)T (z2)〉 ∼
(z1 − z2)

−4 has no reason to vanish, and so the OPE of T with itself takes the form

T (z1)T (z2) =
c/2

(z1 − z2)4 +
2T (z2)

(z1 − z2)2 +
∂T (z2)

z1 − z2
+O(1). (14.11)

In particular, T is not primary. The constant c appearing in (14.11) is called the
central charge. Considering two non-interacting CFT’s as a whole, one has from
(14.8) that their stress tensors, and hence their central charges, add up, and so c can
be considered as a measure of the number of quantum degrees of liberty in the CFT.
It is straightforward to establish that c = 1/2 for a free fermion and c = 1 for a free
boson. We shall see later that standard SAP’s have c = 0.

As T is not primary, it cannot transform like (14.7) under a finite conformal
transformation z → w(z). We can always write the modified transformation law as

T ′(w) =

(
dw
dz

)−2 [
T (z)− c

12
{w;z}

]
. (14.12)
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To determine what {w;z} represents, we use the constraint due to two successive
applications of (14.12) and the fact that {w;z} = 0 for projective conformal trans-
formations, since T is quasi-primary. The result is that {w;z} is the Schwarzian
derivative

{w;z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (14.13)

14.2.4 Finite-Size Scaling on a Cylinder

The central charge c is ubiquitous in situations where the CFT is placed in a finite
geometry, i.e., interacts with some boundary condition. An important example is
furnished by conformally mapping the plane to a cylinder of circumference L by
means of the transformation

w(z) =
L

2π
logz . (14.14)

This transformation can be visualised by viewing the cylinder in perspective, with
one rim contracting to the origin and the other expanding to form the point at infinity.
Taking the expectation value of (14.12), and using the fact that 〈T (z)〉 = 0 in the
plane on symmetry grounds, one finds that 〈T (w)〉 = −π2c/6L2 on the cylinder.
Applying (14.8) then implies that the free energy per unit area f0(L) satisfies [25]

f0(L) = f0(∞)− πc
6L2 + o(L−2) . (14.15)

This is a very useful result for obtaining c for a concrete statistical model, since
f (L) can usually be determined from the corresponding transfer matrix, either nu-
merically for small L by using exact diagonalisation techniques, or analytically in
the Bethe Ansatz context by using the Euler-McLauren formula.

It is also of interest to study such finite-size effects on the level of the two-point
correlation function of a primary field φ . Again using the mapping (14.14), the
covariance property (14.7) and the form (14.4) of the correlator in the plane can
be used to deduce its form on the cylinder. Assuming for simplicity h = h̄ = ∆/2,
and writing the coordinates on the cylinder as w = t + ix, with t ∈ R and x ∈ [0,L),
one arrives at

〈φ(t1,x1)φ(t2,x2)〉 =

(
2π
L

)2∆ [
2cosh

(
2πt12

L

)
−2cos

(
2πx12

L

)]−∆
, (14.16)

where t12 = t1 − t2 and x12 = x1 − x2. In the limit of a large separation of the fields,
t12 → ∞, this decays like e−t12/ξ with correlation length ξ = L/2π∆ . But this decay
can also be written (Λφ /Λ0)

−t12 , where Λ0 is the largest eigenvalue of the transfer
matrix, and Λφ is the largest eigenvalue compatible with the constraint that an op-
erator φ has been inserted at each extremity t = ±∞ of the cylinder. Denoting the
corresponding free energies per unit area f (L) = −L−1 logΛ , we conclude that [26]
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fφ (L)− f0(L) =
2π∆
L2 + o(L−2) . (14.17)

This is as useful as (14.15) in (numerical or analytical) transfer matrix studies, since
the constraint imposed by φ can usually be related explicitly to properties of the
transfer matrix spectrum.

14.2.5 Virasoro Algebra and Its Representation Theory

Up to this point, we have worked in a setup where the fields were seen as functionals
of the complex coordinates z, z̄. To obtain an operator formalism, one must impose a
quantisation scheme, i.e., single out a time and a space direction. The transfer matrix
then propagates the system from one time slice to the following and is written as the
exponential of the Hamiltonian H , i.e., the energy operator on a fixed-time surface.
In the continuum limit, one may freely choose the time direction. In CFT this is most
conveniently done by giving full honours to the scale invariance of the theory, viz.,
by using for H the dilatation operator (to be precise, H = (2π/L)(L0+ L̄0−c/12))

D =
1

2π i

∮

C
zT (z)dz− 1

2π i

∮

C
z̄ T̄ (z̄)dz̄ = L0 + L̄0 , (14.18)

where C is a counterclockwise contour enclosing the origin. This is called the radial
quantisation scheme: the constant-time surfaces are concentric circles around the
origin. Under the map (14.14) the time becomes simply the coordinate along the
cylinder axis. The usual time ordering of operators then becomes a prescription of
radial ordering.

In (14.18) we have anticipated the definition of the mode operators

Ln =
1

2π i

∮

C
zn+1T (z)dz, L̄n =

1
2π i

∮

C
z̄n+1T̄ (z̄)dz̄. (14.19)

Using the radial ordering, the OPE (14.11) becomes, after a deformation of contours,
the commutation relations

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2 −1)δn+m,0 (14.20)

with a similar expression for [L̄n, L̄m], whereas [Ln, L̄m] = 0. The algebra defined by
(14.20) is called the Virasoro algebra. Importantly, the decoupling into two isomor-
phic Virasoro algebras, one for Ln and another for L̄n, means that in the geometry
chosen we can focus exclusively on Ln. It should be stressed that in the geometry of
a torus, the two algebras couple non-trivially, in a way that is revealed by imposing
modular invariance (see section 14.2.7 below).

We now describe the structure of the Hilbert space in radial quantisation. The vac-
uum state |0〉 must be invariant under projective transformations, whence L±1|0〉 =
0, and we fix the ground state energy by L0|0〉= 0. Non-trivial eigenstates of H are
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created by action with a primary field, |h, h̄〉 = φ(0,0)|0〉. Translating (14.10) into
operator language implies then in particular L0|h, h̄〉 = h|h, h̄〉. We must also impose
the highest-weight condition Ln|h, h̄〉 = L̄n|h, h̄〉 = 0 for n > 0. Excited states with
respect to the primary φ then read

φ{n,n̄} ≡ L−n1L−n2 · · ·L−nk L̄−n̄1 L̄−n̄2 · · · L̄−n̄k̄
|h, h̄〉 (14.21)

with 1≤ n1 ≤ n2 ≤ ·· · ≤ nk and similarly for {n̄}. These states are called the descen-
dents of φ at level {N, N̄}, where N = ∑k

i=1 ni. A primary state and its descendents
form a highest weight representation (or Verma module) of the Virasoro algebra.

Correlation functions of descendent fields can be obtained by acting with ap-
propriate differential operators on the correlation functions of the corresponding
primary fields. To see this, consider first for n ≥ 1 the descendent

(
L−nφ

)
(w) of the

primary field φ(w), and let X = ∏ j φ j(wj) be an arbitrary product of other primaries
as in the conformal Ward identity (14.9). Using (14.19) and (14.10) we have then

〈(
L−nφ

)
(w)X

〉
=

1
2π i

∮

z
dz(z−w)1−n 〈T (z)φ(w)X〉 (14.22)

= − 1
2π i

∮

{w j}
dz(z−w)1−n ∑

j

{ ∂w j

z−wj
+

h j

(z−wj)2

}
〈φ(w)X〉

where the minus sign comes from turning the integration contour inside out, so
that it surrounds all the points {wj}. In other words, a descendent in a correlation
function may be replaced by the corresponding primary

〈(
L−nφ

)
(w)X

〉
= L−n 〈φ(w)X〉 (14.23)

provided that we act instead on the correlator with the linear differential operator

L−n ≡ ∑
j

{
(n−1)h j

(wj −w)n −
∂w j

(wj −w)n−1

}
(14.24)

It is readily seen that a general descendent (14.21) is similarly dealt with by replac-
ing each factor L−ni by the corresponding factor of L−ni in (14.23).

We can now write the general form of the OPE of two primary fields φ1 and φ2.
It reads

φ1(z, z̄)φ2(0,0) = ∑
p

C12p ∑
{n,n̄}∪{ /0, /0}

C{n,n̄}
12p zhp−h1−h2+Nz̄h̄p−h̄1−h̄2+N̄φ{n,n̄}

p (0,0) ,

(14.25)
where the summation is over a certain set of primaries φp ≡ φ{ /0, /0}

p as well as their

descendents. The coefficients C{n,n̄}
12p (we have set C{ /0, /0}

12p = 1) can be determined
by acting with all combinations of positive-index mode operators on both sides of
(14.25) and solving the resulting set of linear equations. In contradistinction, the
coefficients C12p are fundamental quantities, easily shown to coincide with those
appearing in the three-point functions (14.5). They can be computed by the so-called
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conformal bootstrap method, i.e., by assuming crossing symmetry of the four-point
functions.

14.2.6 Minimal Models

Denote by V (c,h) the highest weight representation (Verma module) generated by
the mode operators {Ln} acting on a highest weight state |h〉 in a CFT of central
charge c. The Hilbert space of the CFT can then be written

⊕

h,h̄

nh,h̄V (c,h)⊗V (c, h̄) (14.26)

where the multiplicities nh,h̄ indicate the number of distinct primaries of conformal
weights (h, h̄) that are present in the theory. A minimal model is a CFT for which
the sum in (14.26) is finite.

The Hermitian conjugate of a mode operator is defined by L†
n = L−n; this induces

an inner product on the Verma module. The character χ(c,h) of the module V (c,h)
can then be defined as

χ(c,h)(τ) = TrqL0−c/24 , (14.27)

where τ ∈ C is the so-called modular parameter (see section 14.2.7 below) and
q = e2π iτ . Since the number of descendents of |h〉 at level N is just the number p(N)
of integer partitions of N, cf. (14.21), we have simply

χ(c,h)(τ) =
qh−c/24

P(q)
, (14.28)

where
1

P(q)
≡

∞

∏
n=1

1
1−qn =

∞

∑
n=0

p(n)qn (14.29)

is the generating function of partition numbers; this is also often expressed in terms
of the Dedekind function

η(τ) = q1/24P(q) . (14.30)

However, the generic Verma module is not necessarily irreducible, so further work
is needed.

For certain values of h, it may happen that a specific linear combination |χ〉 of
the descendents of |h〉 at level N is itself primary, i.e., Ln|χ〉 = 0 for n > 0. In other
words, |χ〉 is primary and descendent at the same time, and it generates its own
Verma module Vχ(c,h) ⊂ V (c,h). One easily shows that the states in Vχ(c,h) are
orthogonal to those in V (c,h), and so in particular they have zero norm. A Verma
module V (c,h) containing one or more such null fields |χ〉 is called reducible, and
can be turned into an irreducible Verma module M (c,h) by quotienting out the null
fields, i.e., by setting |χ〉 = 0. The Hilbert space is then given by (14.26) with V
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replaced by M ; since it contains fewer states the corresponding characters (14.27)
are not given by the simple result (14.28).

The concept of null states is instrumental in constructing unitary representations
of the Virasoro algebra (14.20), i.e., representations in which no state of nega-
tive norm occurs. An important first step is the calculation of the Kac determinant
detM(N) of inner products between descendents at level N. Its roots can be expressed
through the following parameterisation:

c(m) = 1− 6
m(m+ 1)

h(m) = hr,s(m) ≡ [(m+ 1)r−ms]2 −1
4m(m+ 1)

(14.31)

where r,s ≥ 1 are integers with rs ≤ N. The condition for unitarity of models with
c < 1, first found by Friedan, Qiu and Shenker [27] reads: m,r,s ∈ Z with m ≥ 2,
and (r,s) must satisfy 1 ≤ r < m and 1 ≤ s ≤ m.

According to (14.23) the presence of a descendent field in a correlation function
can be replaced by the action of a differential operator (14.24). Now let

χ(w) = ∑
Y,|Y |=N

αY L−Y φ(w) (14.32)

be an arbitrary null state. Here, αY are some coefficients, and we have introduced
the abbreviations

Y = {r1,r2, . . . ,rk}
|Y | = r1 + r2 + . . .+ rk (14.33)

L−Y = L−r1L−r2 · · ·L−rk

with 1 ≤ r1 ≤ r2 ≤ ·· · ≤ rk. A correlation function involving χ must vanish (since
we have in fact set χ = 0), and so

〈χ(w)X〉 = ∑
Y,|Y |=N

αY L−Y (w)〈φ(w)X〉 = 0 (14.34)

Solving this Nth order linear differential equation is a very useful practical means
of computing the four-point correlation functions of a given CFT, provided that the
level of degeneracy N is not too large. Indeed, since the coordinate dependence is
through a single anharmonic ratio η , one has simply an ordinary linear differential
equation.

Moreover, requiring consistency with (14.25) places restrictions on the primaries
that can occur on the right-hand side of the OPE. One can then study the conditions
under which this so-called fusion algebra closes over a finite number of primaries.
The end result is that the minimal models are given by
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c = 1− 6(m−m′)2

mm′

hr,s =
(mr−m′s)2 − (m−m′)2

4mm′ (14.35)

with m,m′,r,s ∈ Z, and the allowed values of (r,s) are restricted by 1 ≤ r < m′

and 1 ≤ s < m. The corresponding hr,s are referred to as the Kac table of conformal
weights. The corresponding fusion algebra reads (for clarity we omit scaling factors,
structure constants, and descendents):

φ(r1,s1)φ(r2,s2) = ∑
r,s

φ(r,s) (14.36)

where r runs from 1 + |r1 − r2| to min(r1 + r2 − 1,2m′ − 1− r1 − r2) in steps of 2,
and s runs from 1 + |s1− s2| to min(s1 + s2 −1,2m−1− s1− s2) in steps of 2.

The Kac table (14.35) is the starting point for elucidating the structure of the
reducible Verma modules Vr,s for minimal models, and for constructing the proper
irreducible modules Mr,s. The fundamental observation is that

hr,s + rs = hr,−s . (14.37)

Using the symmetry property hr,s = hm′−r,m−s and the periodicity property hr,s =
hr+m′,s+m it is seen that hr,s +rs = hm′+r,m−s and that hr,s +(m′−r)(m−s) = hr,2m−s.
This means that Vr,s contains two submodules, Vm′+r,m−s and Vr,2m−s, at levels rs and
(m′ −r)(m−s) respectively, and these must correspond to null vectors. To construct
the irreducible module Mr,s one might at first think that it suffices to quotient out
these two submodules. However, iterating the above observations, the two submod-
ules are seen to share two sub-submodules, and so on. So Mr,s is constructed from
Vr,s by an infinite series of inclusions-exclusions of pairs of submodules. This allows
us in particular to compute the irreducible characters of minimal models as

χ(r,s)(τ) = K(m,m′)
r,s (q)−K(m,m′)

r,−s (q) , (14.38)

where the infinite addition-subtraction scheme has been tucked away in the func-
tions

K(m,m′)
r,s (q) =

q−1/24

P(q) ∑
n∈Z

q(2mm′n+mr−m′s)2/4mm′
. (14.39)

This should be compared with the generic character (14.28). Note also the similarity
between (14.37) and (14.38) on the level of the indices.

It is truly remarkable that the above classification of minimal models has been
achieved without ever writing down the action S appearing in (14.2). In fact, an
effective Landau-Ginzburg Lagrangian description for the unitary minimal models
(m′ = m+1) has been suggested a posteriori by Zamolodchikov [28]. It suggests that
the minimal models can be interpreted physically as an infinite series of multicritical
versions of the Ising model. Indeed, the Ising model can be identified with the first
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non-trivial member in the series, m = 3, and the following, m = 4, with the tricritical
Ising model.

To finish this section, we comment on the relation with SAP’s. In section 14.3
we shall see that these (to be precise, the dilute O(n → 0) model) can be identified
with the minimal model m = 2, m′ = 3. Note that this is not a unitary theory. The
central charge is c = 0, and the only field in the Kac table—modulo the symmetry
property given after (14.37)—is the identity operator with conformal weight h1,1 =
0. Seemingly we have learnt nothing more than the trivial statement Z = 1. However,
the operators of interest are of a non-local nature, and it is a pleasant surprise to
find that their dimensions fit perfectly well into the Kac formula, although they
are situated outside the “allowed” range of (r,s) values, and sometimes require the
indices r,s to be half-integer. So the Kac formula, and the surrounding theoretical
framework, is still a most useful tool for investigating these types of models.

14.2.7 Modular Invariance

In section 14.2.3 we have seen that conformal symmetry makes the stress tensor
decouple into its holomorphic and antiholomorphic components, T (z) and T̄ (z̄),
implying in particular that the corresponding mode operators, Ln and L̄n, form two
non-interacting Virasoro algebras (14.20). As a consequence, the key results of sec-
tion 14.2.6 could be derived by considering only the holomorphic sector of the CFT.
There are however constraints on the ways in which the two sectors may ultimately
couple, the diagonal coupling (14.26) being just the simplest example in the con-
text of minimal models. As first pointed out by Cardy [23], a powerful tool for
examining which couplings are allowed—and for placing constraints on the opera-
tor content and the conformal weights—is obtained by defining the CFT on a torus
and imposing the constraint of modular invariance.

In this section we expose the principles of modular invariance and apply them
to a CFT known as the compactified boson, which is going to play a central role
in the Coulomb gas approach of section 14.3. Many other applications, including a
detailed study of the minimal models, can be found in Ref. [15].

Let ω1,ω2 ∈ C \ {0} such that τ ≡ ω2/ω1 /∈ R. A torus is then defined as
C/(ω1Z + ω2Z), i.e., by identifying points in the complex plane that differ by an
element in the lattice spanned by ω1,ω2. The numbers ω1,ω2 are called the peri-
ods of the lattice, and τ the modular parameter. Without loss of generality we can
assume ω1 ∈ R and ℑτ > 0.

Instead of using the radial quantisation scheme of section 14.2.5 we now define
the time (resp. space) direction to be the imaginary (resp. real) axis in C. The parti-
tion function on the torus may then be written Z(τ)= Tr exp [−(ℑω2)H − (ℜω2)P],
where H = (2π/ω1)(L0 + L̄0 − c/12) is the Hamiltonian and P = (2π/iω1)(L0 −
L̄0 − c/12) the momentum operator. This gives

Z(τ) = Tr
(

qL0−c/24q̄L̄0−c/24
)

, (14.40)
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where we have defined q = exp(2π iτ). Comparing with (14.26)–(14.27) we have
also

Z(τ) = ∑
h,h̄

nh,h̄ χ(c,h)(τ)χ̄(c,h̄)(τ) . (14.41)

An explicit computation of Z(τ) will therefore give information on the coupling nh,h̄
between the holomorphic and antiholomorphic sectors. In many cases, but not all,
the coupling turns out to be simply diagonal, nh,h̄ = δh,h̄.

The fundamental remark is now that Z(τ) is invariant upon making a different
choice ω ′

1,ω ′
2 of the periods, inasmuch as they span the same lattice as ω1,ω2. Any

two set of equivalent periods must therefore be related by ω ′
i = ∑ j ai jω j, where

{ai j} ∈ Mat(2,Z) with detai j = 1. Moreover, an overall sign change, ai j → −ai j

is immaterial, so the relevant symmetry group is the so-called modular group
SL(2,Z)/Z2 ≃ PSL(2,Z).

The remainder of this section is concerned with the construction of modular in-
variant partition functions for certain bosonic systems on the torus. As a warmup
we consider the free boson, defined by the action

S[φ ] =
g
2

∫
d2x(∇φ)2 (14.42)

and φ(x) ∈ R. Comparing (14.40) with (14.27)–(14.29), and bearing in mind that
c = 1, we would expect the corresponding partition function to be of the form
Z0(τ) ∝ 1/|η(τ)|2. Fixing the proportionality constant is somewhat tricky [29]. In a
first step, φ is decomposed on the normalised eigenfunctions of the Laplacian, and
Z0(τ) is expressed as a product over the eigenvalues. This product however diverges,
due to the presence of a zero-mode, and must be regularised. A sensible result is
obtained by a shrewd analytic continuation, the so-called ζ -function regularisation
technique [29]:

Z0(τ) =

√
4πg√

ℑτ |η(τ)|2
(14.43)

The CFT which is of main interest for the CG technique is the so-called compact-
ified boson in which φ(x) ∈ R/(2πaRZ). In other words, the field lives on a circle
of radius aR (the reason for the appearance of two parameters, a and R, will become
clear shortly). In this context, suitable periodic boundary conditions are specified by
a pair of numbers, m,m′ ∈ aZ, so that for any k,k′ ∈ Z

φ(z+ kω1 + k′ω2) = φ(z)+ 2πR(km+ k′m′) (14.44)

It is convenient to decompose φ = φm,m′ + φ0, where

φm,m′ =
2πR
τ̄ − τ

[
z

ω1
(mτ̄ −m′)− z̄

ω̄1
(mτ −m′)

]
(14.45)
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is the classical solution satisfying the topological constraint, and φ0 represents the
quantum fluctuations, i.e., is a standard free boson satisfying standard periodic
boundary conditions.

Integrating over φ0 as before, and keeping m,m′ fixed, gives the partition function

Zm,m′(τ) = Z0(τ) exp

(
−2π2gR2 |mτ −m′|2

ℑτ

)
. (14.46)

It is easy to see that this is not modular invariant. A modular invariant is however
obtained by summing over all possible values of m,m′:

Z(τ) ≡ R√
2

Z0(τ) ∑
m,m′∈aZ

exp

(
−2π2gR2 |mτ −m′|2

ℑτ

)
(14.47)

The prefactor R/
√

2 is again a subtle effect of the zero-mode integration. It is ac-
tually most easily justified a posteriori by requiring the correct normalisation of the
identity operator in (14.48) below.

A more useful, and more physically revealing, form of (14.47) is obtained by
using the Poisson resummation formula to replace the sum over m′ ∈ aZ by a sum
over the dual variable e ∈ Z/a. The result is

Z(τ) =
1

|η(τ)|2 ∑
e∈Z/a, m∈aZ

qhe,mq̄h̄e,m , (14.48)

with

he,m =
1
2

(
e

R
√

4πg
+

mR
2

√
4πg

)2

, h̄e,m =
1
2

(
e

R
√

4πg
− mR

2

√
4πg

)2

.

(14.49)
Comparing now with (14.40) and (14.27)–(14.29) we see that (14.49) is nothing else
than the conformal weights of the CFT at hand.

The requirement of modular invariance has therefore completely specified the
operator content of the compactified boson system. An operator is characterised by
two numbers, e∈Z/a and m∈ aZ, living on mutually dual lattices. A physical inter-
pretation will be furnished by the CG formalism of section 14.3: e is the “electric”
charge of a vertex operator (spin wave), and m is the “magnetic” charge of a topo-
logical defect (screw dislocation in the field φ ). Let us write for later reference the
corresponding scaling dimension and spin:

∆e,m =
e2

4πgR2 + m2πgR2, se,m = em (14.50)

Observe in particular that the spin is integer, as expected for a bosonic system.
The reader will notice that the three constants R, a and g are related by the fact

that they always appear in the dimensionless combination R2a2g. Field-theoretic lit-
erature often makes the choice a = 1 and g = 1/4π in order to simplify formulae
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such as (14.49). In the CG approach—the subject of section 14.3—one starts from
a geometrical construction (mapping to a height model) in which a convention for
a must be chosen. The compactification radius aR then follows from a “geometri-
cal” computation (identification of the ideal state lattice), and the correct coupling
constant g is only fixed in the end by a field-theoretic argument (marginality re-
quirement of the Liouville potential). Needless to say, the results, such as (14.50)
for the dimensions of physical operators, need (and will) be independent of the ini-
tial choice made for a.

To conclude, note that the roles of e and m in (14.49) are interchanged under
the transformation Ra

√
2πg → (Ra

√
2πg)−1, which leaves (14.48) invariant. This

is another manifestation of the electro-magnetic duality. Ultimately, the distinction
between e and m comes down to the choice of transfer direction. In the geometry
of the torus this choice is immaterial, of course. In sections 14.3.4–14.3.5 we shall
compare the geometries of the cylinder and the annulus; these are related by inter-
changing the space and time directions, and accordingly the electric and magnetic
charges switch role when going from one to the other.

14.2.8 Boundary CFT

The aspects of CFT exposed to this point pertain to unbounded geometries, either
that of the infinite plane (Riemann sphere) or, in section 14.2.7, that of the torus
(which is really a finite geometry made unbounded through the periodic boundary
conditions). In contrast, boundary conformal field theory (BCFT) describes surface
critical behaviour, i.e., a critical system confined to a bounded geometry. The sim-
plest such geometry, and probably the most relevant from the point of view of poly-
mer physics, is that of the upper half plane {z |ℑz ≥ 0}, where the real axis R acts
as the boundary (one-dimensional “surface”).

The foundations of BCFT were set by Cardy [22] who also initiated many of
the subsequent developments and applications (see [15, 30] for reviews). A useful
review of the status of boundary critical phenomena before the advent of CFT was
given by Binder [31].

To convey an idea of which phase transitions may result from the interplay be-
tween bulk and boundary degrees of freedom, and what may be the corresponding
boundary conditions, we begin by a qualitative discussion of a simple magnetic spin
system. We denote the local order parameter (magnetisation) by φ . When the bound-
ary spins enjoy free boundary conditions, they interact more weekly than the bulk
spins, since microscopically they are coupled to fewer neighbouring spins. Upon
lowering the temperature, the bulk will therefore order before the surface: this is the
so-called ordinary transition. Now consider placing the system slightly below the
bulk critical temperature. Then φ is non-zero deep inside the bulk, and will decrease
upon approaching the boundary. One can argue that in the continuum limit φ will
vanish exactly on the boundary. Thus, the Dirichlet boundary condition φ |R = 0 is
the appropriate choice for describing the ordinary transition.
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Let us now introduce a coupling Js between nearest-neighbour spins on the
boundary which may be different from the usual bulk coupling constant J. Taking
Js > J one may “help” the boundary to order more easily.2 When Js takes a certain
critical value we are at the special transition, at which the bulk and the boundary or-
der simultaneously. Finally, when Js → ∞ the boundary spins are always completely
ordered3, a fact which changes the nature of the ordering transition of the bulk,
now referred to as the extraordinary transition. This corresponds to the Dirichlet
boundary condition φ |R = ∞ in the continuum limit. Note that in the application
of boundary CFT to loop models (see section 14.6) the meaning of Js is to give a
specific fugacity to monomers on the boundary.

The control parameter Js can be thought of in a renormalisation group sense,
and is readily seen to be irrelevant at the ordinary and extraordinary transitions.
Accordingly we expect a boundary RG flow to go from the special to either of the
two other transitions. (In the case of the Ising model, the special and extraordinary
transitions actually coincide.)

In our subsequent application to loop models (see section 14.6) we rather think
of φ as a height field which is dual to the system of oriented loops (this is the
so-called Coulomb gas approach, see section 14.3). In other words, the loops are
level lines of φ . Dirichlet boundary conditions then describe a situation in which
loops are reflected off the boundary, and adjoining two different Dirichlet conditions
forces one or more “loop ends” to emanate from the boundary. One may also impose
Neumann boundary conditions, ∂φ/∂y|R = 0, meaning that the “loops” coming
close to the boundary must in fact terminate perpendicular to it. Clearly the non-
local aspects of these situations call for a more detailed discussion, which will be
postponed to section 14.6.

The allowed conformal mappings in BCFT must keep invariant both the bound-
ary itself and the boundary conditions imposed along it. For the global conformal
transformations (14.6) the invariance of the real axis forces ai j ∈ R, i.e., they form
the group SL(2,R) and the number of parameters is halved from 6 to 3. For an
infinitesimal local conformal transformation z → w(z) = z + ε(z) the requirement
reads ε(z̄) = ε̄(z). This property can be used to eliminate the ε̄(z) part altogether,
since it is just the analytic continuation of ε(z̄) into the lower half plane. It follows
that L̄n = L−n, and so one half of the conformal generators has been eliminated.

At the level of the stress tensor, the requirement is T (z̄) = T̄ (z). In Cartesian
coordinates this reads Txy = 0 on the real axis, the so-called conformal boundary
conditions. Its physical meaning is that there is no energy-momentum flow across
R. This has important consequences on the conformal Ward identity (14.9) where
T (z) is applied to a product of primary fields X = ∏ j φ j(z j, z̄ j) situated in the upper
half plane. The contour C surrounding all z j can then be taken as a large semicircle
with the diameter parallel to the real axis. However, writing the same identity for

2 A similar effect could be obtained by adding a surface magnetic field, but here we do not wish to
break the symmetry of the model [typically O(n) in applications to loop models].
3 This should not (as is sometimes seen in the literature) be confused with imposing fixed boundary
conditions, which would rather correspond to an infinite symmetry-breaking field applied on the
boundary.
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T̄ (z̄) yields another Ward identity involving the conjugate semicircle contour C̄,
and since T̄ = T when z ∈ R, the two contours can be fused into a complete circle
surrounding both z j and z̄ j. The end result, cf. (14.10), is thus

T (z)X = ∑
j

(
h j

(z− z j)2 +
∂z j

z− z j
+

h̄ j

(z̄− z̄ j)2 +
∂z̄ j

z̄− z̄ j

)
X . (14.51)

In conclusion, everything happens as if each primary field in the upper half plane
were accompanied by a mirror field in the lower half plane. This means that com-
putations in the BCFT can be done using a method of images similar to that used in
electrostatics when solving the Laplace equation with boundary conditions. Corre-
lation functions are computed as if the theory were defined on the whole complex
plane, and governed by a single Virasoro algebra (14.20): the physical fields are then
situated in the upper half plane, and their unphysical mirror images in the lower half
plane. The simplification of getting rid of L̄n has thus been achieved at the price
of doubling the number of points in correlation functions. In practice, the former
simplification largely outweighs the latter complication.

In particular, the n-point boundary correlation functions satisfy the very same dif-
ferential equations (14.34) as 2n-point bulk correlation functions, but with different
boundary conditions. The most interesting cases are n = 1 and n = 2, both tractable
in the bulk picture in several situations of practical importance. As examples of the
physical information which can be extracted from these cases we should mention,
for n = 1, the probability profile of finding a monomer of a loop at a certain distance
from the boundary, and for n = 2, the probability that a polymer comes close to the
boundary at two prescribed points [32]. A particularly celebrated application of the
n = 2 case is Cardy’s computation [33] of the crossing probability that a percolation
cluster traverses a large rectangle, as a function of the aspect ration of the latter.

The radial quantisation scheme of section 14.2.5 still makes sense in BCFT. The
associated conformal mapping

w(z) =
L
π

logz (14.52)

transforms the upper half plane into a semi-infinite strip of width L with non-
periodic transverse boundary conditions. The two rims of the strip are then the im-
ages of the positive and the negative real axis, and the time (resp. space) direction
is parallel (resp. perpendicular) to the axis of the strip. The dilatation operator reads
D = L0 and the Hamiltonian H = (π/L)(L0 −c/24). Non-trivial eigenstates of H

are formed by a boundary operator φ j(0) acting on the vacuum state, |h〉= φ j(0)|0〉.
In general, we expect boundary operators to have different scaling dimensions

than bulk operators. This can be understood from the method of images: when a
primary field approaches the boundary it interacts with its mirror image and, by the
OPE (14.25), produces a series of other primaries which then describe the boundary
critical behaviour.
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Likewise, a field φ(r,s) with a given interpretation in the bulk will typically have
a different interpretation when situated on the boundary. Examples pertinent to loop
models will be given in section 14.6.

The finite-size formulae (14.15) and (14.17) can be adapted to the case of a strip
of width L. For this, one uses the method of images and the mapping (14.52). The
end results read:

f0(L) = f0(∞)+
f S
0

L
− πc

24L2 + o(L−2) ,

fφ (L)− f0(L) =
f S
φ − f S

0

L
+

π∆
L2 + o(L−2) . (14.53)

where there is now a non-universal 1/L dependence due to the presence of surface
free energies f S. For some (but not all) choices of excited levels fφ (L) it can be
argued that f S

φ = f S
0 , thus simplifying the second of these formulae.

Note that (14.7) applied to a boundary operator is the reason why we have not
discussed finite Dirichlet boundary conditions at the beginning of this section. More
generally, any uniform boundary condition is expected to flow under the renormal-
isation group towards a conformally invariant boundary condition. It is one of the
goals of BCFT to classify such boundary conditions. One of the main results ob-
tained is the following [30]: For diagonal models (i.e., nh,h̄ = δh,h̄ in (14.26)) there
is a bijection between the primary fields in the bulk CFT and the conformally invari-
ant boundary conditions in the BCFT. For example, for the Ising model (m = 3 and
m′ = 4 in (14.35)) the three different bulk primary operators (the identity I = φ(1,1),
the spin σ = φ(1,2), and the energy ε = φ(2,1)) correspond to three types of uniform
boundary conditions in the lattice model of spins (fixed s = +1 and s =−1, and free
boundary conditions).

To this point we have discussed only uniform boundary conditions. It is important
to realise that the radial quantisation picture with a boundary operator φ j(0) situated
at the origin is compatible also with mixed boundary conditions, i.e., one boundary
condition on the negative real half-axis and another on the positive half-axis. In this
case, φ j(0) is called a boundary condition changing operator. One then needs a
second operator φ j(∞) situated at infinity to change back the boundary condition.
A more symmetric picture is obtained by mapping the upper half plane to the strip,
through (14.52). There are then different boundary conditions on the two sides of
the strip, and a boundary condition changing operators is located at either end of the
strip. More generally, one may study a BCFT on any simply connected domain with
a variety of different boundary conditions along the boundary, each separated by a
boundary condition changing operator.

For bulk CFT, crucial insight was gained by considering the theory on a torus.
The analogous tool for BCFT is to consider the theory on an annulus.4 In analogy

4 It makes sense to think of this in the radial quantisation, or transfer matrix, picture. The theories
are initially considered on a semi-infinite cylinder (resp. a strip) with specified transverse boundary
conditions (periodic, resp. non-periodic) and unspecified longitudinal boundary conditions. This
gives access to the transfer matrix eigenvalues. To access the fine structure, such as amplitudes of
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with the torus case, we denote by ω1 ∈ R the width of the annulus and by ω2 ∈
iR its length (in the periodic direction), defining τ = ω2/ω1 ∈ iR. The boundary
conditions on the two rims are denoted, symbolically, a and b. Then

Zab(τ) = Tr
(

qL0−c/24
)

(14.54)

with q = exp(π iτ). This should be compared with (14.40). The analogue of (14.41),

Zab(τ) = ∑
h

n(ab)
h χ(c,h)(τ) , (14.55)

then becomes linear in the characters. Equivalently, one might exchange the space
and time direction and view the annulus as a cylinder of circumference ω2 and finite
length ω1, with boundary conditions a (resp. b) in the initial (resp. final) state. This
leads to

Zab(τ) =
〈

b
∣∣∣eτ−1Hbulk

∣∣∣a
〉

, (14.56)

where now Hbulk is the Hamiltonian of the bulk CFT propagating between boundary
states |a〉 and 〈b|. The links between bulk and boundary CFT result from a detailed
study of the equivalence between (14.54) and (14.56).

14.3 Coulomb Gas Construction

It has been known since the 1970’s [34] that the critical point of many two-
dimensional models of statistical physics can be identified with a Gaussian free-
field theory. A general framework for the computation of critical exponents was
first given in 1977 by José et al. in the so-called spin wave picture [9]. This was fur-
ther elaborated in the early 1980’s by den Nijs [10] and Nienhuis [11] into what has
become known as the Coulomb gas (CG) construction. These developments have
been reviewed by Nienhuis [35].

The CG approach is particularly suited to deal with the continuum limit of lattice
models of closed loops, in which each loop carries a Boltzmann weight n. Such
loop models arise as the diagrammatic expansion of spin systems in which the spins
take values in Rn and the interactions possess an O(n) symmetry. Depending on
the normalisation constraint imposed on the spins, and on the underlying lattice
structure, the loops may or may not admit self-intersections. The former case can
be treated by supersymmetric techniques [36], within the framework of the non-
linear sigma model, but does not admit a CG representation. In the present review
we are however only concerned with cases without self-intersections, for which the
CG approach does apply. A particularly elegant and useful example was given by
Nienhuis [37]. Another important model, the Q-state Potts model, can be formulated

the eigenvalues, one must impose periodic longitudinal boundary conditions and take the length of
the cylinder (resp. strip) to be finite.
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as a model of self-avoiding loops with n =
√

Q, as first shown by Baxter, Kelland
and Wu [38]. We shall review the relevant mappings in section 14.3.1.

The marriage between the CG and conformal field theory (CFT) happened in
1986–87, when Di Francesco, Saleur and Zuber [39, 40] made the loop model ↔
CG correspondence more precise and showed how the ideas of modular invariance
[23, 29] can be put to good use in the study of loop models (see section 14.7 below).
At the same time, Duplantier and Saleur developed a range of applications to SAW’s
and SAP’s (see in particular [14]).

In section 14.3.2 we show how the loop models can be transformed into height
models with local (albeit complex) Boltzmann weights. It is the continuum limit of
this height which acts as the conformally invariant free field. The underlying lattice
model implies that this height field is compactified, thus making contact with the
modular invariance results of section 14.2.7.

The naive free field action however needs to be modified with extra terms, tra-
ditionally known as background and screening electric charges [35]. The resulting
CFT, known as a Liouville field theory, is written down in section 14.3.3.

The requirement that the Liouville potential be RG marginal determines the cou-
pling constant of the free field as a function of n, as first pointed out by Kondev [17].
This is an important ingredient, since otherwise one would have to rely on an inde-
pendent exact solution to fix the coupling. The analogous marginality requirement
for the case of surface critical behaviour has been established recently by Cardy
[18]. We discuss these developments in sections 14.3.4–14.3.5.

14.3.1 From Potts and O(n) Models to Loops

In this section we show how to transform the Q-state Potts model and the O(n)
model into loop models. There are several mappings of this type, depending on the
lattice structure, the types of (local) interactions, and so on, but for simplicity we
shall concentrate here on the simplest cases in which the Potts model is defined on
a square lattice [38] and the O(n) model on a hexagonal lattice [37].

odd siteeven site

Fig. 14.1 Relation between the clusters E ′ (solid lines) on L (filled circles) and the transition
system T (E ′) (broken lines) on SL . Note that the rules differ for the two sublattices of SL .

Consider first the Potts model, defined initially by assigning spins σi = 1,2, . . . ,Q
to each of the vertices of the square lattice L . A pair of nearest-neighbour spins has
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the interaction energy −Kδσi,σ j , and we set J = K/kBT . The partition function then
becomes that of the so-called random cluster model [41]:

Z = ∑
{σ}

∏
(i j)∈E

eJδσi ,σ j = ∑
E ′⊆E

(eJ −1)|E
′|Qc(E ′) , (14.57)

where E is the set of lattice edges, E ′ runs through all 2|E| subsets thereof, and
c(E ′) is the number of connected components in the graph induced by E ′. Define
now the surrounding lattice SL with vertices which are the midpoints of edges in
L , here a rotated square lattice. On SL we define for each E ′ ⊆ E a transition
system T (E ′) system according to the rule in Fig. 14.1; then T (E ′) constitutes a set
of cycles (loops5) that separate the connected components in the edge set E ′ from
those dual to the complement E \E ′. (In other words, the loops form the boundaries
of connected components in either set.) Using the Euler relation for a planar lattice
with N vertices this results in

Z = QN/2 ∑
E ′⊆E

(
eJ −1√

Q

)|E ′|
Ql(T (E ′))/2 , (14.58)

where l(T (E ′)) is the number of loops in the transition system T (E ′). On a non-
planar graph, (14.58) would be slightly modified (see section 14.7 below).

The local weights of the transition system in (14.58) are in general inhomoge-
neous, due to the first factor inside the sum, since vertices on the even (resp. odd)
sublattice of SL stand on horizontal (resp. vertical) edges of L . This inhomogene-
ity can be directly read off from Fig. 14.1. Even though critical (and even integrable)
points of the inhomogeneous model do exist [42, 43] we are here interested in homo-
geneous solutions only. Indeed, for eJ − 1 = ±√

Q and 0 ≤ Q ≤ 4 the Potts model
(14.57) is at its self-dual critical point [44, 45]. With the plus sign, (14.58) then
becomes simply

Z = QN/2 ∑
E ′⊆E

nl(T (E ′)) (14.59)

with n ≡ √
Q. With the minus sign, (14.59) still holds true provided we take the

other determination of the square root, n = −√
Q, since N + |E ′|+ l(T (E ′)) is even

for any E ′. In conclusion, (14.59) describes a selfdual critical Q = n2 state Potts
model for −2 ≤ n ≤ 2, and it takes the form of a simple loop model in which each
loop carries the weight n.

The limit n→ 0 is of special interest here. The dominant contribution to (14.59) is
such that each E ′ in the sum represents an (unrooted) spanning tree, and its contour
is a so-called osculating SAP.

We now turn to the O(n) model, which is defined initially by assigning vector
spins Si ∈ Rn to each of the vertices of the hexagonal lattice L . A pair of nearest-
neighbour spins has the interaction energy −J Si · S j. The integration measure is

5 The use of the word loop as a synonym of cycle is common in the physics literature, and should
not be confused with its different meaning in graph theory.
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defined such that
∫

dSidS j Sα
i Sβ

j = δα ,β and odd moments of Si vanish by the sym-
metry Si →−Si. Expanding out the Boltzmann weights w̃i j = exp(J Si ·S j/kBT ) and
forming the partition function, the contributing configurations are in bijection with
systems of loops for which each loop carries a weight n. These loops are in general
rather complicated. Namely, on a general lattice containing vertices of degree ≥ 4
the loops may cross; and for any lattice they may cover each edge more than once.
The choice of the hexagonal lattice overcomes the first complication. To overcome
the second we follow Nienhuis [37] and redefine the weights as wi j ≡ 1 + K Si ·S j,
i.e, by truncating the formal high-temperature expansion of the original weights. The
effect of these simplifications on the critical behaviour may be judged a posteriori,
in section 14.4.

1 11 T

Fig. 14.2 Vertices in the O(n) loop model at temperature T = 1/K.

The partition function then reads

Z = ∑
G

K|G |nl(G ) , (14.60)

where G are edge subsets of L with the property that every vertex is adjacent to
an even number (zero or two) of edges in G , as shown in Fig. 14.2. So G forms a
system of l(G ) self-avoiding, mutually avoiding loops drawn on L . Nienhuis [37]
has argued that the loop model (14.60) is critical for −2 ≤ n ≤ 2 and

1/K2 = 2±
√

2−n . (14.61)

The high-temperature solution [plus sign in (14.61)] is supposed to correctly de-
scribe the critical point of the original O(n) model. The loops described by it are
commonly referred to as dilute, as they fill a vanishing fraction of the lattice in
the thermodynamic limit. The low-temperature solution [minus sign in (14.61)] de-
scribes dense loops which cover a finite fraction of the lattice. One would expect
these to be intimately related to the osculating SAP’s of the Potts model, and this is
indeed the case. Their critical behaviour is however not coincident with that of the
original, unmodified O(n) model. These remarks will be clarified further below, and
in section 14.4.



370 Jesper Lykke Jacobsen

14.3.2 Transformation to a Height Model

In the definition of the Q-state Potts and the O(n) models, the parameters Q and
n were originally positive integers. However, in the corresponding loop models,
(14.59) and (14.60), they appear as formal parameters and may thus take arbitrary
complex values. The price to pay for this generalisation is the appearance of a non-
locally defined quantity, the number of loops l. The locality of the models may
be recovered (though not completely, see section 14.3.3) by transforming them to
height models with complex Boltzmann weights [38], as we now show.

In a first step, each loop is independently decorated by a global orientation
s = ±1, which by planarity and self-avoidance can be described as either counter-
clockwise (s = 1) or clockwise (s =−1). Each oriented loop must be given a weight
w(s), so that n = ∑s w(s). An obvious possibility, sometimes referred to as the real
loop ensemble, is w(1) = w(−1) = n/2. This can be interpreted as an O(n/2) model
of complex spins.

We are however more interested in the complex loop ensemble with w(s) = eisγ .
Note that in the expected critical regime,

n = 2cosγ ∈ [−2,2] , (14.62)

the parameter γ ∈ [0,π ] is real. Locality is retrieved by remarking that the weights
w(±1) are equivalent to assigning a local weight w(α/2π) to each vertex where a
loop turns an angle α (counted positive for left turns). If a vertex is traversed by
more than one loop, it gets weighted by the product of w(α/2π) over all traversals.

e λ/6+i e λ/6+i e λ/6+ie λ/6−i e λ/6−i e λ/6−i

Fig. 14.3 Local redistribution of the loop weight n in the O(n) loop model on the hexagonal lattice.

The models (14.59) and (14.60) are now transformed into local vertex models
by assigning to each edge traversed by a loop the orientation of that loop. An edge
not traversed by any loop is assigned no orientation. The total vertex weight is de-
termined from the configuration of its incident oriented edges, as the above local
loop weights summed over the oriented transition systems compatible with edge
orientations; this is illustrated for the hexagonal-lattice O(n) model in Fig. 14.3. In
addition, one must multiply this by any loop-independent local weights, such as K
in (14.60).

As a result, (14.59) is transformed into a six-vertex model on the square lattice,
each vertex being incident on two outgoing and two ingoing edges [44], as shown in
Fig. 14.4. The weights ωi (resp. ω ′

i ) on the even (resp. odd) sublattice read explicitly
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ωω ω ω ω ω1 3 4 5 62

Fig. 14.4 Weights in the six-vertex model.

ω1, . . . ,ω6 = 1,1,x,x,eiγ/2 + xe−iγ/2,e−iγ/2 + xeiγ/2 (14.63)

ω ′
1, . . . ,ω

′
6 = x,x,1,1,e−iγ/2 + xeiγ/2,eiγ/2 + xe−iγ/2 (14.64)

where we have defined x = (eJ − 1)/
√

Q. Note that the anisotropy parameter ∆ =
−cosγ of the equivalent XXZ spin chain is independent of x and of the sublattice.

Similarly, (14.60) becomes a seven-vertex model on the hexagonal lattice, each
vertex being either empty, or incident on one outgoing, one ingoing, and one empty
edge. The six non-empty vertices are shown in Fig. 14.3.

Finally, the vertex models are turned into height models. For this, assign a scalar
variable h(x) to each lattice face x (i.e., to each vertex of the lattice dual to the one
on which the loop model has been defined), so that h increases (resp. decreases)
by a each time one traverses a left-going (resp. right-going) edge. This definition
of the height h is consistent, since each vertex is incident on as many ingoing as
outgoing edges. Since this defines only height differences, one may imagine fixing
h completely by arbitrarily fixing h(0) = 0.

In the continuum limit, we expect the local height field h to converge to a free
bosonic field φ(x), whose entropic fluctuations are described by an action of the
form (14.42), with coupling g = g(n) which is a monotonically increasing function
of n. In particular, for n → ∞ the lattice model is dominated by the configuration
where loops of the minimal possible length cover the lattice densely; the height
field is then flat, φ(x) = constant, and the correlation length ξ is of the order of the
lattice spacing. For finite but large n, φ will start fluctuating, loop lengths will be
exponentially distributed, and ξ will be of the order of the linear size of the largest
loop. When n → n+

c , for some critical nc (we shall see that nc = 2), this size will
diverge, and for n ≤ nc the loop model will be conformally invariant with critical
exponents that depend on g(n). The interface described by φ(x) is then in a rough
phase. The remainder of this section is devoted to making this intuitive picture more
precise, and to refine the free bosonic description of the critical phase.

As a first step towards greater precision, we now argue that φ(x) is in fact a
compactified boson, cf. section 14.2.7. To see this, it is convenient to consider the
oriented loop configurations that give rise to a maximally flat microscopic height
h; following Henley and Kondev [61] we shall refer to them as ideal states. For the
Potts model (14.59), an ideal state is a dense packing of length-four loops, all having
the same orientation. There are four such states, corresponding to two choices of
orientation and two choices of the sublattice of lattice faces surrounded by the loops.
An ideal state can be gradually changed into another by means of ∼ N local changes
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of the transition system and/or the edge orientations. As a result, the mean height
will change, φ → φ ± a. Iterating this, one sees that one may return to the initial
ideal state whilst having φ → φ ± 2a. For consistency, we must therefore require
φ(x) ∈ R/(2aZ), i.e., the field is compactified with radius R = 1/π , cf. (14.44).

h+a

h+a

h h+2a h+a

h+a

h+2a

h+2a

h+a h+2a

h+2a

h+3a h+2a h+3a

h+3a

Fig. 14.5 Ideal states of the O(n) model on the hexagonal lattice. For each of the five panels, the
state of the complete infinite lattice is obtained by tiling the plane with three faces shown, while
respecting the three-sublattice structure. The different panels are related, from left to right, by the
construction explained in the main text, under which one ideal state is gradually changed into
another. The leftmost and rightmost panels represent the same ideal state, but with a global height
change φ → φ +2a that determines the compactification radius.

The same construction applied to the O(n) model (14.61) yields six ideal states of
oriented length-six loops (resulting from a choice of three sublattices and two orien-
tations). Changing the ideal state in four steps, as shown in Fig. 14.5, produces the
initial state but with a height change of ±2a. So one has the same compactification
radius, φ(x) ∈ R/(2aZ), as in the case of the Potts model.

Before we go on, a few remarks are in order:

1. In section 14.2.7 we have seen in detail that the normalisation constant a drops
out from the final physical results. We shall therefore follow standard conventions
and set a = π in what follows.

2. While the complex loop ensemble is geometrically appealing, it is difficult to
make quite rigorous a setup which is based on complex Boltzmann weights.

3. We may already suspect—and we shall see below in more detail—that the O(n)
model in the dense phase and the Q-state Potts model give identical critical the-
ories in the continuum limit, for n =

√
Q. However, the correspondence between

operators in the microscopic model and the continuum limit is not necessarily
identical, leading to subtle differences. For instance, the energy operators of the
two models become different objects in the continuum limit (see section 14.4).

14.3.3 Liouville Field Theory

The essence of the above discussion is that the critical properties of the loop models
under consideration can be described by a continuum-limit partition function that
takes the form of a functional integral
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Z =

∫
Dφ(x) exp(−S[φ(x)]) . (14.65)

Here S[φ(x)] is the Euclidean action of the compactified scalar field φ(x)∈R/(2πZ).
The hypothesis that the critical phase is described by bounded elastic fluctuations
around the ideal states means that S must contain a term

SE =
g

4π

∫
d2x(∇φ)2 (14.66)

with coupling constant g > 0. Higher derivative terms that one may think of adding
to (14.66) can be ruled out by the φ →−φ symmetry, or by arguing a posteriori that
they are RG irrelevant in the full field theory that we are about to construct.

Note that the partition function (14.65) does not purport to coincide with (14.59)
or (14.60) on the scale of the lattice constant. (A similar remark holds true for the
correlation functions that one may similarly write down.) We do however claim that
their long-distance properties are the same. In that sense, the CG approach is an
exact, albeit by no means rigorous, method for computing critical exponents and
related quantities. A more precise equivalence between discrete and continuum-
limit partition functions can however be achieved on a torus; see section 14.7.

The action (14.66) coincides with (14.42) for the compactified boson. To obtain
the full physics of the loop model one however needs to add two more terms to the
action, as we now shall see.

To proceed, we consider the underlying lattice model as being defined on a cylin-
der, x = (x,t). This has the advantage of making direct contact with the radial quan-
tisation formalism of section 14.2.5 used in both numerical (transfer matrix) and
analytical (Bethe Ansatz) studies. The boundary conditions are thus periodic in the
space direction, x = x + L, and free in the time (t) direction. Ultimately, the results
obtained on the cylinder can always be transformed into other geometries by means
of a conformal mapping.

With this geometry, the equivalence between the loop model and a local height
model with complex weights, established in section 14.3.2, must be revisited. While
loops homotopic to a point still acquire their correct global weight n from the local
angle-dependent weights w(α/2π), this is no longer true for loops that wind around
the cylinder. Summing over loop orientations, their weight would be n = 1+1 = 2.
Consider now adding a term

SB =
ie0

4π

∫
d2xφ(x)R(x) (14.67)

to the effective action S, where R is the scalar curvature6 of the space x. The param-
eter e0 is known in CG language as the background electric charge. On the cylinder,
one has simply SB = ie0 (φ(x,∞)−φ(x,−∞)), meaning that in the partition function
(14.65) an oriented loop with winding number q = 0,±1 (all other winding numbers
are forbidden by the self-avoidance of the loops) can equivalently be assigned an ex-

6 We consider the scalar curvature in a generalised sense, so that delta function contributions may
be located at the boundaries. Implicitly, we are just applying the Gauss-Bonnet theorem.
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tra weight of exp(iπqe0). For non-winding loops (q = 0) this does not change the
reasoning of section 14.3.2, whilst summing over the two orientations (q = ±1) of
a winding loop produces the weight n ≡ 2cos(πe0). The choice e0 = γ/π will thus
assign to a winding loop the same weight n = n [see (14.62)] as to a non-winding
one (but note that other choices leading to n 6= n may be useful in some applications
of the CG technique).

The object eieφ (or more precisely, its normal ordered product : eieφ :) is known
in field theory as a vertex operator of (electric) charge e. The boundary term (14.67)
thus corresponds to the insertion of two oppositely charged vertex operators at either
end of the cylinder.

At this stage two problems remain: the field theory does not yet take account
of the weight n of contractible loops, and the coupling constant g has not yet been
determined. These two problems are closely linked, and allow [17] us to fix exactly
g = g(n). The idea is to add a further Liouville term

SL =

∫
d2xw[φ(x)] (14.68)

to the action, which then reads in full

S[φ(x)] = SE + SB + SL . (14.69)

In (14.68), e−w[φ(x)] is the scaling limit of the microscopic vertex weights wi. To
identify it we show the argument for the O(n) model, the Potts case being similar.

Due to the compactification, SL[φ ] is a periodic functional of the field, and as
such it can be developed as a Fourier sum over vertex operators

w[φ ] = ∑
e∈Lw

w̃e eieφ , (14.70)

where Lw is some sublattice of L0 ≡ Z. Note that Lw may be a proper sublattice
of L0 if w[φ ] has a higher periodicity than that trivially conferred by the compact-
ification of φ . By inspecting Fig. 14.5 we see that this is indeed the case here: the
(geometric) averages of the microscopic weights coincide on the first, third, and
fifth panels, indicating that the correct choice is Lw = 2L0. This intuitive deriva-
tion of Lw (which can easily be corroborated by considering more complicated
microscopic configurations) demonstrates the utility of the ideal state construction.

Some important properties of the compactified boson with action SE have al-
ready been derived in section 14.2.7. In particular, its central charge is c = 1 and
the dimension ∆e,m of an operator with electromagnetic charge (e,m) is given by
(14.50). Having now identified the electric charge e with that of the vertex operator
eieφ , one could alternatively rederive (14.50) by computing the two-point function〈

eieφ(x)e−ieφ(y)
〉

by standard Gaussian integration.

The physical interpretation of the magnetic charge m is already obvious from
(14.44): it corresponds to dislocations in the height field φ due to the presence of
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defect lines. In section 14.4 we shall see how to identify these defect lines with
SAW’s and compute the related critical exponents.

It remains to assess how the properties of the compactified boson are modified
by the inclusion of the term SB. Physical reasoning consists in arguing that the ver-
tex operators e±ie0φ will create a “floating” electric charge of magnitude 2e0 that
“screens” that of the other fields in any given correlation function. We infer that
(14.50) must be changed into

∆e,m =
1
2

[
e(e−2e0)

g
+ gm2

]
. (14.71)

Note that to obtain (14.71) we have changed our normalisation so that both e and
m are integers. This is consistent with the normalisation (14.66) of the coupling
constant, rather than (14.42), which is the standard choice in the CG literature.

14.3.4 Marginality Requirement

Following Kondev [17] we now claim that the Liouville potential SL must be exactly
marginal. This follows from the fact that all loops carry the same weight n, indepen-
dently of their size, and so the term SL in the action that enforces the loop weight
must not renormalise under a scale transformation. The most relevant vertex opera-
tor appearing in (14.70) has charge ew = 2π/a = 2, and so ∆ew,0 = 2. Using (14.71),
this fixes the coupling constant as g = 1− e0. In other words, the loop weight has
been related to the CG coupling as

n = ±
√

Q = −2cos(πg) (14.72)

with 0 < g ≤ 1 for the Potts model or the dense O(n) model.
The term SB shifts the ground state energy with respect to the c = 1 theory de-

scribed by SE alone. The corrected central charge is then c = 1+12∆e0,0, where the
factor of 12 comes from comparing (14.15) and (14.17). This gives

c = 1− 6(1−g)2

g
. (14.73)

It should be noted that the choice ew = 2 is not the only one possible. Namely,
the coefficient w̃ew of the corresponding vertex operator in (14.70) may be made to
vanish, either by tuning the temperature T in the O(n) model, or by introducing non-
magnetic vacancies in the Potts model. The former case corresponds to taking the
high-temperature solution [plus sign] in (14.61), while the latter amounts to being
at the tricritical point of the Potts model. The next-most relevant choice is then
ẽw = −2, and going through the same steps as above we see that one can simply
maintain (14.72), but take the coupling in the interval 1 ≤ g ≤ 2 for the dilute O(n)
model or the tricritical Potts model.
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The electric charge ew whose vertex operator is required to be exactly marginal
is known as the screening charge in standard CG terminology.

The central charge (14.73) can now be formally identified with that of the Kac
table (14.35), with m′ = m+ 1. The result is a formal relation between the minimal
model index m and the CG coupling g, valid for integer m. We have

m =

{
g

1−g for the dense O(n) model, or the critical Potts model
1

g−1 for the dilute O(n) model
(14.74)

The special cases n → 0 are related to self-avoiding walks and polygons. This
gives g = 1/2 for dense polymers (with c = −2 and m = 1), and g = 3/2 for dilute
ones (with c = 0 and m = 2).

14.3.5 Annular Geometry

Consider now instead the loop model defined on an annulus which we shall take as
an L×M rectangle with coordinates x ∈ [0,L] and y ∈ [0,M]. The boundary con-
ditions are free (f) in the x-direction and periodic in the y-direction. Very recently,
Cardy [18] has shown how to impose the correct marginality requirement for this
geometry.

Consider first the continuum-limit partition function Z = Zff(τ) from (14.54) in
the limit M/L ≫ 1 of a very long and narrow annulus. The modular parameters
τ = iM/L and q = exp(iπτ) = exp(−πM/L). We expect in this limit that only the
identity operator contributes to Z, and so

Z ∼ q−c/24 ∼ exp

(
πcM
24L

)
. (14.75)

The central charge c is (14.73) from the bulk theory, and in particular is known to
vary with the coupling constant g.

The question then arises how (14.75) is compatible with the continuum-limit
action (14.66). According to Cardy [18] the answer is that there is a background
magnetic flux m0, a sort of electromagnetic dual of the background electric charge
e0 present in the cylinder geometry. Thus, in the continuum limit there is effectively
a number (in general fractional) m0 of oriented loops running along the rims of
the annulus, giving rise to a height difference between the left and the right rim.
Accepting this hypothesis, we can write

φ(x,y) = φ̃(x,y)+
πm0x

L
(14.76)

where φ̃ is a “gauged” height field that still contains the elastic fluctuations but obeys
identical Dirichlet boundary conditions on both rims, say φ̃ (0,y) = φ̃ (L,y) = 0.
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According to the functional integrations in section 14.2.7, the field φ̃ contributes
q−1/24 to Z, corresponding to c = 1. The last term in (14.76) modifies the action
(14.66) by ∆S = g

4π (πm0)
2 M

L and thus multiplies Z by a factor e−∆S = qgm2
0/4, which

correctly reproduces the contribution of the last term in (14.73) to (14.75) provided
that we set

m0 = ± (1−g)

πg
. (14.77)

This value of m0 can be retrieved from a marginality requirement which has
the double advantage of being more physically appealing and of not invoking the
formula (14.73) for c. Indeed, if m0 is too large a pair of oriented loop strands will
shed from the rims, corresponding to a vortex pair of strength m = ±2 situated
at the top and the bottom of the annulus. This vortex pair can then annihilate in
order to reduce the free energy. And if m0 is too small the opposite will occur. The
equilibrium requirement is then that inserting such a vortex pair must be an exactly
marginal perturbation in the RG sense, i.e., the corresponding boundary scaling
dimension is ∆v = 1.

The free energy increase for creating the vortex pair is, by the same gauge argu-
ment as before,

∆S =
g

4π
(
(m0 + 2)2 −m2

0

)(π
L

)2
ML (14.78)

and noting the factor of 24 between c and the scaling dimension ∆v in (14.53), we
now have e−∆S = q−∆v from (14.75), so that

∆v =
g
4

(
(m0 + 2)2 −m2

0

)
= 1 (14.79)

and we recover (14.77).

14.4 Bulk Critical Exponents

We shall now see how to use the Coulomb gas (CG) technology of section 14.3 to
compute a variety of critical exponents in loop models.

The watermelon exponents were derived by Nienhuis [35] and by Duplantier and
Saleur (see [14] and references therein). The issues of their relation to the standard
exponents of polymer physics [46], and to the Kac table (14.31), were discussed
in [14].

Although the watermelon exponents are essentially magnetic-type exponents in
the CG, they do not produce the standard magnetic exponent of the Potts model.
The latter was derived by den Nijs [10], but we present here a somewhat different
argument.

We have seen above that the dense O(n) model and the critical Potts model co-
incide on the level of the central charge, but their thermal exponents are different.
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These are electric-type exponents in the CG, and were first computed by Nienhuis
[37] and den Nijs [10].

Duplantier and Saleur have developed a range of geometrical applications of the
exponents mentioned above. In [47, 14] they have generalised the configurational
exponent γ to arbitrary polymer network conformations. From these a family of
physically relevant contact exponents can be derived. They have also obtained the
probability distribution of the winding angle of a SAW around one of its end points
[48]. Finally, they have derived the exponents for a polymer at the collapse transition
(theta point) from a specific model [19].

14.4.1 Watermelon Exponents

An important object in loop models is the operator Oℓ(x1) that inserts ℓ oriented
lines at a given point x1. Microscopically, this can be achieved by violating the arrow
conservation constraint at x1. For instance, in the O(n) model one can allow a vertex
which is adjacent to one outgoing and two empty edges. Doing so at ℓ vertices in
a small region around x1 yields a microscopic realisation of the composite operator
Oℓ(x1).

x1 x2

Fig. 14.6 Watermelon configuration with ℓ = 4 legs.

If one had strict arrow conservation at all other vertices, the insertion of Oℓ(x1)
would not lead to a consistent configuration. However, also inserting O−ℓ(x2), the
operator that absorbs ℓ oriented lines in a small region around y, will lead to consis-
tent configurations (see Fig. 14.6) in which ℓ defect lines propagate from x1 to x2.
Let Zℓ(x1,x2) be the corresponding constrained partition function. One then expects

〈Oℓ(x1)O−ℓ(x2)〉 ≡
Zℓ(x1,x2)

Z
∼ 1

|x1 −x2|2∆ℓ
for |x1 −x2| ≫ 1 . (14.80)

The corresponding critical exponents ∆ℓ are known as watermelon (or fuseau,
or ℓ-leg) exponents. To compute them we first notice that the sum of the height
differences around a closed contour encircling x1 but not x2 will be aℓ. Equiva-
lently, one could place the two defects at the extremities of a cylinder [i.e., taking
x1 = (x,−∞) and x2 = (x,∞)], and the height difference would be picked up by any
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non-contractible loop separating x1 and x2. This latter formulation makes contact
with the defect lines (14.44) introduced when studying the compactified boson, the
equivalent magnetic charge being mℓ = ℓa

2π = ℓ
2 .

A little care is needed to interpret the configurations of Zℓ(x1,x2) in the model
of un-oriented loops. The fact that all ℓ lines are oriented away from x1 prevents
them from annihilating at any other vertex than x2. One should therefore like to
think about them as ℓ marked lines linking x1 and x2, where each line carries the
Boltzmann weight 1. This is consistent with not summing over the orientations of
the defect lines in the oriented loop model. However, each oriented line can also pick
up spurious phase factors w(α/2π), due to the local redistribution of loop weights,
whenever it turns around the end points x1 and x2. These factors are however exactly
cancelled if we insert in addition a vertex operator eie0φ (resp. e−ie0φ ) at x1 (resp. x2)
[11]. Note that these vertex operators do not modify the weighting of closed loops,
since these must encircle either none of both of x1, x2. We conclude that ∆ℓ = ∆e0,mℓ

,
and using (14.71) this gives

∆ℓ =
1
8

gℓ2 − (1−g)2

2g
. (14.81)

Interestingly, these exponents can be attributed to the Kac table under the identi-
fication (14.74). One has

∆ℓ =

{
2h0,ℓ/2 for the dense O(n) model
2hℓ/2,0 for the dilute O(n) model

(14.82)

The appearance of half-integer indices [12, 14] is somewhat puzzling, whereas the
fact that these exponents are located outside the fundamental domain of the Kac
table reflects the non-local nature of the watermelon operators.

It should be noticed [49] that ∆4 is irrelevant (resp. relevant) in the dilute (resp.
dense) phase of the O(n) model, i.e., for 1 < g < 2 (resp. 0 < g < 1). This means
that on lattices with vertices of degree ≥ 4, loop self-intersections are irrelevant in
the dilute phase. On the other hand, for the dense phase such self-intersections are
relevant and will induce a flow to a supersymmetric Goldstone phase [49] that is not
described by the CG approach. In other words, Nienhuis’ original approximation of
the true O(n) model that led to (14.60) is exact in the continuum limit, but only in
the dilute phase.

14.4.2 Standard Exponents of Polymer Physics

The relation of the standard exponents of critical phenomena (usually denoted α , β ,
γ , δ , ν , and η) to polymer physics has been discussed in details by de Gennes [46].
The end-to-end distance R of a SAW (and also the radius of gyration of a SAP) of
chain length l ≫ 1 behaves as

R2 ∼ l2ν (14.83)
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whereas the number of such objects in d dimensions (here both are supposed to have
one monomer attached to a fixed point) scales like

NSAW ∼ µ l lγ−1

NSAP ∼ µ l l−νd (14.84)

where the connectivity constant µ can be related to the inverse of the critical tem-
perature. There is a more detailed relation where the end-to-end distance R of the
SAW has been fixed, valid for R ≫ 1:

NSAW(R)

NSAP
= R(γ−1)/ν H

(
R
lν

)
(14.85)

defining the scaling function H(u), which obeys H(u) → const as u → 0.
Standard scaling theory applied to the O(n) model then leads to the exponent

relations

∆1 = 1− γ
2ν

∆2 = 2− 1
ν

(14.86)

In view of (14.81) this gives ν = 1
2 , γ = 19

16 for dense polymers (g = 1
2 ) and ν =

3
4 , γ = 43

32 for dilute ones (g = 3
2 ). The remaining critical exponents follow from

standard scaling relations.

14.4.3 Magnetic Exponent in the Potts Model

The watermelon exponents can be said to be of the “magnetic” type, since they
induce a magnetic type defect charge mℓ in the CG. The standard magnetic exponent,
describing the decay of the spin-spin correlation function in the Potts model, is
however not of the watermelon type. It can nevertheless be inferred from (14.71) as
follows:

The probability that two spins situated at x1 and x2 are in the same Potts state is
proportional, in the random cluster picture, to the probability that they belong to the
same cluster. In the cylinder geometry this means that no winding loop separates
x1 from x2. This can be attained in the CG by giving a weight n̄ = 0 to such loops.
We have seen that inserting a pair of vertex operators with charge ±e at x1 and x2

leads exactly to this situation with n̄ = 2cos(πe), and so we need e = 1
2 . The scaling

dimension of this excitation, with respect to the ground state which has e = e0, is
then

∆m = ∆ 1
2 ,0 −∆e0,0 =

1−4(1−g)2

8g
. (14.87)
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In particular we verify that for the Ising model, g = 3
4 , this yields ∆m = 1

8 as it
should.

The location in the Kac table (14.31), using (14.74), is

∆m = 2h1/2,0 . (14.88)

Note that this differs from the lowest possible watermelon excitation ∆1 = 2h0,1/2,
corresponding to one loop strand propagating along the length direction of the cylin-
der.7 Indeed, the dominant configurations participating in the magnetic correlation
function have no propagating strands, since the cluster containing x1 and x2 will
typically wrap around the cylinder.

14.4.4 Thermal Exponents

As discussed in section 14.3.1, the Potts model at the critical temperature can be
identified with the loop model (14.59) with homogeneous weights, (eJ −1)/

√
Q =

1. A deviation from the critical temperature will make the weights inhomogeneous,
i.e., give different weights to the two possible states of the transition system in
Fig. 14.1. Comparing this observation with the discussion of the marginality require-
ment in section 14.3.4, we see that the result is the appearance of electric charges
e = ±1. Determining the correct sign of the charge requires a more careful micro-
scopic analysis, which was first carried out by den Nijs [10] (see also [11, 35]). The
end result for the thermal exponent is then

∆ Potts
t = ∆−1,0 =

3
2g

−1 (14.89)

where we have used (14.71).
Under the identification (14.74), the location of this operator in terms of the Kac

table (14.31) becomes [50]

∆ Potts
t = 2h2,1 =

m+ 3
2m

. (14.90)

Note that this is an RG relevant operator for m > 1 [i.e., for coupling 1
2 < g ≤ 1, or

loop weight 0 <
√

Q ≤ 2], meaning that the critical point is unstable to a deviation
from the critical temperature. On the other hand, for 0 < m < 1 [i.e., for coupling
0 < g < 1

2 , or loop weight −2 <
√

Q < 0] the thermal operator is irrelevant, implying
the existence of a Berker-Kadanoff phase [51].

For the O(n) model, the microscopic derivation of the CG is different (see section
14.3.1), and by construction the sublattice symmetry can no longer be broken. Ac-

7 Naively, the relation to the six-vertex model shows that in the Potts model these strands neces-
sarily come in pairs, but this can be arranged by a suitable generalisation of the periodic boundary
conditions, such that the six-vertex model is defined on an odd number of strands.
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cordingly, a deviation in K from the critical values (14.61) must now couple to the
next most relevant electrical charges e = ±2. Of these two, e = 2 has already been
used for the marginality requirement ∆2,0 = 2, and we expect in contrast a thermal
exponent that depends on g. We are therefore led to

∆t = ∆−2,0 =
4
g
−2 . (14.91)

A detailed derivation was first given by Nienhuis [37]. Note that the thermal operator
is relevant for the dilute case (1 < g < 2), and irrelevant for the dense case (0 < g <
1). The entire low-temperature phase of the O(n) model will therefore renormalise
towards the dense case. Exactly at zero temperature, a new critical theory emerges
(see section 14.5).

The identification of ∆t with the Kac table (14.31), via (14.74), is now

∆t =

{
2h3,1 for the dense O(n) model
2h1,3 for the dilute O(n) model

(14.92)

As a check, note that the critical Ising model is a special case of both the Potts
model (Q = 2, or g = 3

4 ) and of the O(n) model (dilute n = 1, or g = 4
3 ). In both

cases, the above formulae give ∆t = 1 as they should.

14.4.5 Network Exponents

Duplantier and Saleur [47, 14] have shown how to generalise the exponent γ of
(14.84) to more complicated network geometries. In the notation of section 14.4.1,
consider a multi-point correlation function

CG =
〈
Oℓ1(x1)Oℓ2(x2) · · ·OℓV

(xV )
〉

(14.93)

involving V watermelon operators, where the k’th operator inserts an ℓk leg ver-
tex at position xk. The orientations of the loop segments inserted do not matter in
the following discussion, but must be chosen so that CG describes a well-defined
network G (see Fig. 14.7). Accordingly we can assume that the indices ℓk are all
positive.

Let nℓ be the number of ℓ-leg operators in G , and let E be the total number of
edges in G . We then have the topological relations ∑ℓ nℓℓ = 2E and ∑ℓ nℓ = V .

Consider the case of a monodisperse network, where each of the E edges is
constrained to have the same length l (with l ≫ 1). Laplace transform and some
scaling analysis then generalises (14.84) into

NG

NSAP
∼ lγG −1+νd (14.94)

with the network exponent
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Fig. 14.7 A network G made of E = 10 chains and V = 9 vertices, with n1 = 5, n3 = 3, and n4 = 2.

γG = ν

[
2(V −1)−∑

ℓ

nℓ∆L

]
− (E −1) (14.95)

Note that for the ordinary SAW topology (nℓ = 2δℓ,1), we retrieve γG = 2ν(1−∆1),
in agreement with (14.86).

For a polydisperse network, the total length l is freely distributed among the E

edges in the network, and so one has simply to omit the last term (E −1) in (14.95).
Special cases of (14.95) yield contact exponents, describing e.g. the probability

that one of the end points of a SAW comes close to the midpoint of the walk.

14.4.6 Winding Angle Distribution

In section 14.4.1 we have seen that when computing the conformal weights of the
watermelon operators, it was necessary to insert vertex operators e±ie0φ at the chain
ends in order to cancel the spurious phase factors that occur in the oriented loop
model due to the winding of the SAW around its end points. By a generalisation of
this argument, Duplantier and Saleur [48] have shown how to actually compute the
winding angle distribution of a SAW.

Consider an O(n) model with an arbitrary number of closed loops, each of fugac-
ity

n = 2cos(πe0) = −2cos(πg) , (14.96)

and a single open walk (the SAW, for n → 0) with end points x1 and x2. In the ori-
ented loop picture, the walk is taken to be oriented from x1 to x2. To count precisely
its number of windings around each xi, these two points are connected to infinity
through parallel half lines Li, as shown in Fig. 14.8. Then let the winding number
ni be the signed number of times the walk crosses Li, the sign being positive for an
anti-clockwise crossing. In the scaling limit we expect ni ≫ 1, and so even though
ni has been defined as an integer it can be used to deduce the winding angle.

One now compares on one hand the correlation function
〈

exp(iπe1n1 + iπe2n2)
〉

in the O(n) model, and on the other hand
〈

exp(ie′1φ(x1)+ ie′2φ(x2))
〉

in the equiva-
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x1 x2

1

L2

L

Fig. 14.8 SAW oriented from x1 to x2 with winding numbers n1 = 2 and n2 = −1.

lent height model, where we recall that φ is the height function. These will in general
give incorrect weights (i.e., 6= n) to loops that surround both x1 and x2. A careful
study of the complex phase factors arising in these correlators, and in the oriented
loop/height model shows that the two correlators are identical, and the surrounding
loops are weighted correctly, provided that we satisfy the conditions

e′1 = e1 − e0, e′2 = e2 − e0, e1 + e2 = 0 or 2e0 . (14.97)

We shall take e1 = −e2 ≡ e in the last condition.
This deals with the electric charges in the CG picture. The magnetic charges

needed to insert the walk are m1 = −m2 ≡ m with m = 1 as usual. The joint value
of the correlators is then, from (14.50),

∼ |x1 −x2|−2∆ (e) with ∆(e) =
1
2

(
e2

2g
+ g

)
(14.98)

valid in the scaling limit |x1 −x2| ≫ 1. This result can be written

〈
eiπe(n1−n2)

〉
= e−

e2
g log |x1−x2| (14.99)

where we have normalised with respect to the same correlator with e = 0 (but still
m = 1). Noting that this is Gaussian in e, the distribution of the winding angle θ =
θ1 −θ2 = 2π(n1 −n2) itself is also Gaussian, and after a Fourier transformation we
obtain finally the normalised distribution

P(θ ) =

(
16π log |x1 −x2|

g

)−1/2

exp

(
− gθ 2

16 log |x1 −x2|

)
(14.100)

Usually we are interested in the fixed-length rather than the fixed-extremities
ensemble, in which case it suffices to replace |x1 −x2| by lν in (14.100), for a walk
of length l. Another remark is that the winding numbers n1 and n2 can be argued to
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be independent in the scaling limit, and so if one is interested in just one of them it
suffices to replace (14.100) by a distribution of half the width.

The above argument was shown for a SAW (as in [48]), but can easily be adapted
to the windings of a SAP constrained to go through two fixed points x1 and x2.
The relevant magnetic charge is then m = 2, but the remainder of the argument is
essentially unchanged.

The issue of winding angle distribution for a SAW, and its relation with that of
Brownian walks, was studied further by Saleur [52].

14.4.7 Polymer Collapse: the Theta Point

The dilute SAW is a model of a polymer in a good solvent. When this assumption
fails, e.g., upon lowering the temperature of the solvent, the effective attraction be-
tween the monomers increases, and eventually the polymer undergoes a collapse
transition, first described by Flory [53]. The corresponding critical temperature is
traditionally called Θ , or the theta point. It was argued by de Gennes [54, 46] that
this is a tricritical point: intuitively this means that with respect to the critical, or
dilute, SAW—obtained in our framework by tuning the monomer fugacity to a par-
ticular value—one additional parameter, viz. the effective monomer-monomer in-
teraction, has to be adjusted to its critical value.

Duplantier and Saleur [19] have proposed a particularly simple model of the
monomer-monomer interaction that is capable of capturing the physics of the theta
point. Their argument shows that the corresponding universality class is that of the
dense O(n = 1) model, i.e., of critical percolation, and the exponents follow readily.
The argument runs as follows.

Consider a SAW on the usual hexagonal lattice, but in the presence of annealed
dilution. To be specific, each lattice face contains a “defective solvent” with proba-
bility p, and an “ideal solvent” with probability 1− p, independently for each face.
The SAW is constrained to touch only lattice faces containing an ideal solvent, as
shown in Fig. 14.9.

In the partition function, one may first sum over the configurations of the solvent
consistent with a fixed configuration of the SAW, and then over those of the SAW
itself. In the first sum, any face not touching the SAW contributes a trivial factor
of one, whereas each of the remaining faces yields a weight (1− p). Let N2 (resp.
N3) be the number of faces which are adjacent to two (resp. three) successions of
monomers which are non-subsequent along the SAW. [In other words, let Nk be the
number of hexagons having 2k occupied external legs.] The total face weight is then
simply

(1− p)l+1−N2−2N3 (14.101)

where l is the length (number of edges) of the SAW. Clearly this is a kind of short-
range attraction between the monomers in the SAW, albeit a somewhat peculiar one.
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Fig. 14.9 Model of a polymer at the theta point. The SAW lives on a hexagonal lattice, but is not
allowed to share an edge with any of the faces containing a defective solvent, here shown shaded
in grey.

One now argues that the parameter p has a critical value pc. If p < pc the system
should renormalise towards the standard dilute SAW, and if p > pc the solvent de-
ficiencies will percolate and the SAW will be in the dense phase. The threshold pc

must be that of site percolation on the triangular lattice, and so pc = 1
2 exactly. But

exactly at pc, defective and ideal faces are equiprobable and so form clusters which
may equally well be described in terms of their contours, as an O(n) model of loops
(14.60) with trivial parameters, n = 1 and K = 1. The latter value is precisely8 the
dense loop solution of (14.61).

We conclude that polymers at the theta point are described by the CG of the
dense O(n = 1) model, with coupling constant g = 2

3 . In particular, the watermelon
exponents (14.81) read

∆ℓ =
ℓ2 −1

12
. (14.102)

The standard polymer exponents (14.84) describing the theta point are related to
these through the scaling relations (14.86):

η = 2∆1 = 0 , ν =
1

2−∆2
=

4
7

, γ = (2−η)ν =
8
7

. (14.103)

Finally, the thermal exponent ν ′ describing how the size of defective solvent clusters
diverges, ξ ∼ |p−pc|−ν ′

as p ↑ pc is given by ν ′ = 1/(2−∆4) = 4
3 , and so the so-

called crossover exponent is

φ =
ν
ν ′ =

3
7

. (14.104)

8 Even if this had not precisely been the case, the outcome of the argument would be the same, since
the dense loop solution of (14.61) is RG attractive in K by (14.91). This observation is certainly
part of the explanation that the variant models explored in [55] yield unchanged critical exponents.
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Although the theta point exponents (14.103)–(14.104) are in very good agree-
ment with those of numerical simulations, and even experiments, the original pa-
per [19] was subsequently challenged by a number of authors. Indeed, the inter-
action between monomers employed is quite peculiar—it corresponds to attrac-
tions between nearest neighbour vertices and a subset of the next-nearest neighbour
vertices—and one may fear that the universality class described is not the required
tricritical point, but an even higher multicritical point.

To meet this criticism, Duplantier and Saleur produced a second paper [55] in
which they examined numerically a certain number of variant models, involving
different local monomer interactions, anisotropy, and using different lattices. In all
cases the exponents (14.103)–(14.104) were shown to be unchanged, and far from
the values of any variant proposal. We can therefore conclude that in spite of its
simplicity the original model captures the correct theta point physics and produces
the exact values of the corresponding critical exponents.

14.5 Fully Packed Loop Models

In section 14.3 we have seen how to solve loop models by writing a Liouville field
theory for their associated height model. We have discussed in detail two models,
the Q-state Potts and the O(n) model. In both cases, we exploited a bijection between
the configurations of oriented loops and those of a scalar (one-component) height
variable h(x) defined on the lattice faces x. There does however exist geometric
models whose microscopic formulation allows for the definition of a vector height
h(x) ∈ RD with D > 1. A necessary (but not sufficient) condition for this to happen
seems to be that the objects (loops, tiles, colours, . . . ) be maximally packed on the
lattice.

Tiling models are nice examples of statistical models possessing vector height
mappings, provided that the shapes of the tiles and the lattice are chosen carefully.
For example, one obtains D = 2 dimensional heights by tiling the square lattice
with two different types of dimers [56], or by linear trimers [57], or by tiling the
triangular lattice with triangular trimers [58]. In general, such models are either
non-critical, or described in the continuum by D free bosons. For example, all of the
tiling problems just mentioned have been shown (analytically and/or numerically)
to have central charge c = 2.

In this section we are rather interested in models of fully packed loops (FPL)
possessing a vector height. When critical, such models can be described in terms of a
vectorial Coulomb gas (CG), generalising the working of section 14.3. In particular,
the non-local nature of the loops allows for the existence of a background electric
charge, and so one or more control parameters (typically the loop weights) permit
one to change c and the critical exponents continuously. This amounts to a rather
more interesting continuum limit than that of the tiling problems.

In section 14.5.1 we give some examples of FPL models and establish their height
mappings. These models turn out to be highly non-universal, in the sense that D—
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and hence ultimately the values of the critical exponents—depends on the underly-
ing lattice. A necessary condition for the existence of a non-trivial continuum limit
seems to be that the underlying lattice is bipartite [59].

The CG construction for these models is presented in some detail (see sec-
tion 14.5.2), as it sheds further light both on the ideal state construction and on
the marginality requirement. Bulk critical exponents are derived in section 14.5.3.
We conclude by a few further remarks on the underlying quantum group symme-
tries of the FPL models, and the possibility of coupling them to two-dimensional
quantum gravity.

14.5.1 Three Loop Models with a Vector Height Mapping

The loop model based on the Q-state Potts model is an example of an FPL model,
since its loops jointly visit every vertex of the lattice (twice). But since its height
mapping is one-dimensional (see section 14.3.2) this is not what were are interested
in here.

Let us instead revisit the O(n) model (14.60) on the hexagonal lattice. The al-
lowed vertices are shown in Fig. 14.2. It is easy to see that on a lattice with periodic
boundary conditions respecting the three-sublattice structure of the lattice faces, the
number of voids (of weight T ≡ 1/K) must be even, whence the model is symmet-
ric under T → −T . The fact (14.91) that the low-temperature branch of (14.61) is
RG attractive in T then implies that the T = 0 manifold is a line of repulsive fixed
points [60]. A numerical study [60] further reveals that these fixed points are critical
for |n| ≤ 2. For brevity we shall refer to this O(n) model at T = 0 simply as the
FPL model in the remainder of this section. In the polymer limit n → 0 it describes
Hamiltonian circuits (SAP’s) and paths (SAW’s) on the hexagonal lattice.

In the oriented loop model corresponding to the FPL model there are three types
of edges: A) empty edges, B) occupied edges pointing from an even to an odd vertex,
and C) occupied edges pointing from odd to even. We shall often refer to these edge
labels as colours. Denoting the height change when traversing any one of these edges
by A, B, or C, occupied vertices lead to the consistency requirement

A+ B+ C = 0 , (14.105)

whereas empty vertices require A = 0. By symmetry, one must then choose B =
+a and C = −a for some scalar a, as was indeed done in section 14.3.2. But if
T = 0, empty vertices are forbidden, and the only requirement is (14.105). The
height differences can then be taken as two-dimensional vectors pointing from the
centre to the vertices of an equilateral triangle. Since we have shown carefully in
section 14.2.7 that the normalisation of the heights drops out from the final results
for the critical exponents, we henceforth adopt the choice

A =

(
1√
3
,0

)
, B =

(
− 1

2
√

3
,

1
2

)
, C =

(
− 1

2
√

3
,−1

2

)
. (14.106)



14 Conformal Field Theory Applied to Loop Models 389

Kondev, de Gier and Nienhuis [20] used the height mapping (14.106) as the starting
point for solving the FPL model exactly.

Fig. 14.10 The six vertices defining the FPL2 model.

Another model that we shall consider is the so-called FPL2 model on the square
lattice, which was defined by Kondev and Henley [61] and solved by Jacobsen and
Kondev [21]. This is a model of two different types of fully packed loops (whence
the superscript in the denomination FPL2), henceforth referred to as black and grey.
The allowed vertices are shown in Fig. 14.10. The partition function is defined by
assigning independent fugacities, nb and ng, to the two types of loops,

Z = ∑
G

nNb
b n

Ng
g , (14.107)

where Nb (resp. Ng) is the number of black (resp. grey) loops, and G is the set of all
allowed loop configurations.

A number of special cases of the FPL2 model are of special interest: suffice it
here to say that the limit ng = 1, nb → 0 describes Hamiltonian circuits and paths on
the square lattice.

The two types of loops can be oriented independently, giving rise to four types of
edges: A) black edges oriented from the even to the odd sublattice, B) black edges
oriented from the odd to the even sublattice, C) grey even-to-odd edges, and D) grey
odd-to-even edges. These define the height differences for the height model on the
dual lattice, with the consistency requirement

A+ B+ C+ D = 0 (14.108)

that the total height change when encircling any vertex be zero. We have then a D =
3 dimensional height model, and by symmetry we can take the height differences to
point from the centre to the vertices of a regular tetrahedron:

A = (−1,1,1) , B = (1,1,−1) , C = (−1,−1,−1) , D = (1,−1,1) .
(14.109)

The last model to be discussed in this section is obtained from the FPL2 model by
attributing local vertex weights in addition to the loop weights. By rotational sym-
metry, it suffices to give a special weight wX to the last two vertices in Fig. 14.10,

Z = ∑
G

nNb
b n

Ng
g wV

X , (14.110)
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where V is the number of vertices where the two types of loops cross, and G has the
same meaning as in (14.107). We shall refer to this as the semi-flexible loop (SFL)
model. It was first solved by Jacobsen and Kondev [62].

The polymer limit (ng = 1, nb → 0) of the SFL model has been proposed as a
model of protein melting by Flory half a century ago [63].

14.5.2 Coulomb Gas Construction

We now discuss how to dress the Coulomb gas (CG) for the three models of oriented
loops (FPL, FPL2, and SFL) just introduced. As in section 14.3 the CG will even-
tually take the form of a Liouville field theory, but with electromagnetic charges
which are D-dimensional vectors. The construction for the FPL2 and SFL models
will only start differing when imposing the marginality requirement.

AA A A A
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B

B

B

B

D

D

D

D

D

B

B

B

B

B

D

D

D

D
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A A A A A

0 A 0 A

A+D-B -B A+D

0 A A

-B A+D -B A+D

0

a) b)

c) d)

Fig. 14.11 An ideal state in the FPL2 model shown in terms of a) loops, b) oriented loops, c) edge
colourings, and d) the height mapping.

The first issue is to determine the analogue of the compactification radius, which
now takes the form of a D-dimensional lattice. To this end, the ideal state construc-
tion [61] is a very convenient tool.

We define first the ideal states as periodic arrangements of the colours, such that
the microscopic height is maximally flat. An example of an FPL2 ideal state is shown
in Fig. 14.11. In general, an ideal state is obtained by selecting a permutation of the
edge labels around a fixed vertex; the arrangement is then extended to the whole
lattice in such a way that alternations of any pair of colours form as many short
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cycles as possible. For the FPL model there are 6 ideal states; in these all 3 colour
pairs form short cycles (of length 6); and the colour pair BC defines the loops. In
the FPL2 model there are 24 ideal states; in these 4 out of 6 colour pairs form short
cycles (of length 4); and the colour pairs AB and CD define black and grey loops
respectively.

We construct next the ideal state graph I . For this, we define a transition be-
tween two ideal states as a transposition of a colour pair forming a short cycle. To
each transition we associate a vector in RD equal to the difference between the av-
erage height in the two concerned ideal states. By definition, a transition changes
only the heights on the faces surrounded by transposed short cycles. In I , each
vertex represents an ideal state, and each edge represents a transition. The graph I

is embedded into RD by letting each edge correspond to the vector associated with
the transition between ideal states.

Fig. 14.12 The ideal state graph of the FPL2 model.

For the FPL model, I turns out to be a hexagonal lattice [20], and for the
FPL2 model it is a tiling of R3 with truncated octahedra [61] (also known as
the Wigner-Seitz cell of a body-centered cubic lattice). The latter I is shown in
Fig. 14.12. Crucially, any fixed ideal state is represented infinitely many times in
I and forms a lattice which we shall call the repeat lattice R. It turns out that R

is spanned by the vectors A−B, B−C (and C−D for the FPL2 model). In other
words, for the FPL model R is a triangular lattice of edge length 1 in the normal-
isation (14.105), and for the FPL2 model R is a face-centered cubic lattice with a
conventional cubic cell of edge length 4 in the normalisation (14.108).

In the CG construction, the height is then compactified with respect to R, i.e.,

h(x) ∈ RD/R . (14.111)

In particular, the magnetic charges m ∈ R, and the electric charges e ∈ R∗, where
R∗ denotes the reciprocal lattice of R.
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The Liouville field theory is again described by the action (14.69), consisting
of an elastic term SE, a boundary term SB, and the Liouville potential SL. We now
describe these three terms in turn.

The elastic term is constrained by rotational invariance in real d = 2 dimensional
space to take the form

SE =
1
2

∫
d2xKαβ ∂hα ·∂hβ , (14.112)

where ∂ = (∂1,∂2) is the usual gradient. The D-dimensional tensor Kαβ is further
constrained by the loop reversal symmetries: B ↔ C for the FPL model, while for
the FPL2 model one has both A ↔ B and C ↔ D. The result for the FPL model is
simply

SE =
1
2

∫
d2xgα(∂ hα)2 . (14.113)

with coupling constants g1 ≡ K11, g2 ≡ K22, and g1 = g2. For the FPL2 model one
obtains first a more complicated result

SE =
1
2

∫
d2x
{

K11[(∂h1)2 +(∂h3)2]+ 2K13(∂ h1 ·∂h3)+ K22(∂h2)2} , (14.114)

which can however be diagonalised by a change of coordinates in height space,

h̃1 =
h1 −h3

2
, h̃2 = h2 , h̃3 =

h1 + h3

2
(14.115)

yielding once again (14.113) for h̃α , but now with three unrelated coupling con-
stants g1 ≡ 2(K11 −K13), g2 ≡ K22, and g3 ≡ 2(K11 + K13). Note that magnetic
charges m transform as (14.115), whereas electric charges e transform according to
the reciprocal transformation (swap tilded and untilded quantities). Henceforth we
shall write everything in terms of the new heights h̃α and electromagnetic charges
(ẽ,m̃), but drop the tildes to lighten the notation.9

Let us now parametrise the loop weights as

n = 2cos(πe0) (14.116)

for the FPL model, and

nb = 2cos(πeb) , ng = 2cos(πeg) (14.117)

for the FPL2 model. The boundary term SB in (14.69) reads in vector notation

9 It would seem tempting in a review like this to impose the transformation (14.115) right from
the beginning and choose A = (−1,1,0), B = (1,1,0), C = (0,−1,−1), D = (0,−1,1) instead of
(14.108). But note that (14.108) respects the full permutation symmetry of the four colours: the
scalar product of any two vectors in (14.108) is −1. With (14.115) this symmetry is broken in a
very particular way that could not have been guessed from the outset, and which reflects the choice
of defining the loops from the colour pairs AB and CD.
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SB =
i

4π

∫
d2x(e0 ·h)R(x) (14.118)

and e0 is determined as in section 14.3 by requiring that wrapping loops of each
type be weighted correctly. For instance, for the FPL2 model we must have

e0 ·A = πeb , e0 ·B = −πeb , e0 ·C = πeg , e0 ·D = −πeg , (14.119)

which fixes the background electric charge as

e0 = −π(eb,0,eg) (14.120)

The analogous result for the FPL model is

e0 = 2π(0,e0) . (14.121)

The sceptical reader may object that the ideal state graph I is not really neces-
sary to determine the repeat lattice R. Indeed, it suffices to notice that the funda-
mental height dislocations (magnetic charges) allowed by the microscopic model is
the difference between two of the colour vectors (14.105) or (14.108). However, the
real use of I is for determining the Liouville term

SL =
∫

d2x w[h(x)] , (14.122)

where exp(−w[h(x)]) is the scaling limit of the (complex) microscopic vertex
weights in the oriented loop representation. To this end, we focus for a while on
the FPL2 model.

Denoting by (σ1,σ2,σ3,σ4) the configuration of colours when going anticlock-
wise around an even vertex, the microscopic weights may be written compactly as

w(h) =
i

16
e0 · [(σ1 −σ3)× (σ2 −σ4)] . (14.123)

Fourier analysing this formula, i.e., writing it as a sum of vertex operators, one
arrives at

w(h) = ∑
e∈R∗

w

w̃e exp(ie ·h) . (14.124)

where R∗
w is a proper sublattice of R∗ whose shortest vectors are the twelve next

shortest vectors in the bcc-lattice R∗.
Coming back to the FPL model one finds similarly that R∗

w is spanned by the
next shortest vectors in R∗.

To impose the marginality requirement and extract critical exponents we need to
know the dimension of electromagnetic operators. In the basis where the coupling
constant tensor gα is diagonal, as in (14.113), this is a straightforward generalisation
of the usual CG formula (14.71), which reads in the normalisation of the present
section
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∆e,m =
1

4π

[
1

gα
eα(eα −2e0α)+ gα(mα)2

]
. (14.125)

The FPL model is now solved by noting that e(0) = (0,4π) is the most relevant
electric charge in R∗

w. Solving the marginality requirement ∆e(0),0 = 2 then fixes the
CG coupling in terms of the loop weight:

g = 2π(1− e0) . (14.126)

The case of the FPL2 model is considerably more intricate. Moreover, determin-
ing the correct marginality requirement is the one and only point where the analysis
differs from that of the SFL model. Referring to [21, 62] for a detailed discussion,
the outcome is that the vectors

e(1) = (−2π ,0,0) , e(2) = (0,0,−2π) (14.127)

act as screening charges in both the FPL2 and the SFL models, whereas an additional
symmetry of the FPL2 model implies that it possesses two extra screening charges

e(3) = (−π ,π ,−π) , e(4) = (−π ,π ,−π) . (14.128)

The marginality requirement then fixes

g1 =
π
2

(1− eb) , g3 =
π
2

(1− eg) (14.129)

for both models. The extra screening charges in the FPL2 model imply a third rela-
tion

1
g2

=
1
g1

+
1
g3

, (14.130)

whereas in the SFL model g2 remains a non-universal function of the parameter wX

appearing in (14.110).
In the critical regime |nb|, |ng| ≤ 2 we have g1,g3 ≤ π

2 from (14.129), and so
g2 ≤ π

4 when wX = 1 (i.e., in the FPL2 model). It is easy to see that increasing
wX will make the height interface stiffer in the 2-direction, and so will increase g2.
When g2 > π

2 the operator that discretises the height in the 2-direction becomes
relevant, and so the height profile becomes flat in the continuum limit, meaning that
the model is no longer critical. We deduce that precisely at g2 = π

2 the model stands
at a Kosterlitz-Thouless transition; in the polymer limit this is the protein melting
transition [62] that Flory [63] originally aimed at describing. Exact exponents can
therefore be computed at this KT transition.

However, the CG method does not permit us to solve the SFL model for generic
values of wX, the relation to g2 being unknown. However, note that all critical ex-
ponents can be expressed in terms of just one unknown parameter g2. Furthermore,
for any given values of nb, ng and wX, numerical transfer matrix methods allow us
to determine g2 to very high precision [62].
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14.5.3 Bulk Critical Exponents

In a D-dimensional CG the central charge is c = D+ 12∆e0,0, giving

c =





2− 6e2
0

1−e0
for the FPL model

3−6

(
e2

b
1−eb

+
e2

g
1−eg

)
for the FPL2 and the SFL models.

(14.131)

Watermelon configurations are obtained by violating the colouring constraint at
two vertices x1 and x2. For example, in the FPL model a vertex whose adjacent edges
are coloured (A,A,B) will insert a 1-leg operator of magnetic charge m1 = A−C,
whereas the vertex (A,B,B) gives a 2-leg operator of charge m2 = B−C. Higher-
leg operators are obtained by taking multiples of these basic charges. In all cases,
a further electric charge e0 is needed to correct the spurious phase factors due to
the polymer strands winding around their insertion point. The ℓ-leg watermelon
exponents are then found from (14.125):

∆ℓ =

{
1
8 gℓ2 − (1−g)2

2g for ℓ even
1
8 gℓ2 − (1−g)2

2g + 3g
8 for ℓ odd

(14.132)

where we have set g = 1− e0 to facilitate the comparison with (14.81).
Similar results can be obtained for the FPL2 [21] and SFL [62] models. Note that

the watermelon strands can now be either black or grey, and the parity of the number
of black strands must equal the parity of the number of grey strands. We here state
the results only for the simplest case of the FPL2 model where grey strands are
ignored and grey loops are assigned a trivial fugacity, ng = 1. This gives for the
black ℓ-leg watermelon exponents

∆ℓ =

{
1
8 gℓ2 − (1−g)2

2g for ℓ even
1
8 gℓ2 − (1−g)2

2g + g
3g+2 for ℓ odd

(14.133)

where again we have set g = 1− eb for easy comparison.
With the watermelon exponents (14.132)–(14.133) many of the exponents dis-

cussed in section 14.4 (e.g., network and contact exponents) follow as before. We
focus here on the conformational exponents for Hamiltonian circuits and paths on
the hexagonal and square lattices, obtained from taking the polymer limit in the FPL
and FPL2 models and using the scaling relations (14.86). On both lattices ν = 1

2 , a
trivial result which however serves as a check of the above CG construction. More
interestingly, we have

γhex = 1 , γsq =
117
112

. (14.134)

This means that the end points of a Hamiltonian SAW on the hexagonal lattice do
not interact in the continuum limit, whereas they repel each other weakly on the
square lattice.
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Finally, one can compute the thermal exponent associated with breaking the T =
0 constraint that all lattice vertices be visited by a loop. For the FPL model the
corresponding defect vertex is (A,A,A) of magnetic charge mt = 3A, yielding

∆t = ∆0,mt =
3g
2

. (14.135)

Note that this is always RG relevant, confirming the result of section 14.5.1 that the
T = 0 manifold is a line of repulsive fixed points.

For the FPL2 model the defect (C,D,C,D) of magnetic charge mt = 2(C + D)
excludes black loops from visiting the defect vertex. Again we specialise the general
result [21] to the case where grey loops are weighted trivially (ng = 1):

∆t = ∆0,mt =
4g

3g + 2
. (14.136)

Once again this is always RG relevant.

14.5.4 Further Remarks

We conclude this section with a few further remarks about the fully packed loop
models.

The FPL model [64] and the FPL2 model with equal fugacities nb = ng [65] are
also solvable by the Bethe Ansatz (BA) technique. The FPL2 model with nb 6= ng, or
the SFL model with wX 6= 1, do however not appear to be BA solvable. The critical
exponents computed from the BA [64, 65, 66] confirm those of the CG, giving the
above results a more rigorous status. Defining n = q+q−1, there are even underlying
quantum group symmetries, viz., SU(3)q for the FPL model [67] and SU(4)q for the
equally weighted FPL2 model [66]. The corresponding quantum group symmetry
for the Potts and usual O(n) model discussed in section 14.3 is SU(2)q [68].

The FPL model has also been solved on random lattices using matrix integra-
tion techniques [69]. To be more precise, the loops in [69] were required to live on
planar random graphs where each vertex is adjacent to three edges. However, while
the loops on the regular hexagonal lattice automatically have even length (due to
the bipartiteness), this restriction was not imposed in [69]. Since this is crucial for
constructing the two-dimensional height model, the critical exponents on such un-
restricted random lattices are not directly related to those on a regular lattice [20] by
means of the KPZ equation.

A slightly modified version of the FPL2 model [70] coupled to two-dimensional
quantum gravity provides the exact asymptotic behaviour of meanders [71] and their
multi-component generalisation [72].

Research on the surface critical behaviour of the fully packed loop models dis-
cussed in this section appears to have begun only very recently. This issue will be
further discussed in section 14.6.5.
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14.6 Surface Critical Behaviour

14.6.1 Ordinary, Special and Extraordinary Surface Transitions

The O(n) model with suitably modified surface couplings permits one to realise
the ordinary, special, and extraordinary surface transitions described qualitatively in
section 14.2.8. To this end, one studies the model defined in the annular geometry
of section 14.3.5.

To be precise, the special transition requires the loops to be in the dilute phase,
and so we shall assume this to be the case throughout section 14.6.1. The results for
the ordinary and extraordinary transitions hold true in the dense phase as well.

Fig. 14.13 Hexagonal lattice in an annular geometry. The top and the bottom of the figure are
identified. Boundary edges on the left are shown in grey.

A well-studied case is the hexagonal-lattice loop model (14.60). The lattice is
oriented such that one third of the lattice bonds are parallel to the x-axis, as shown
in Fig. 14.13. The fugacity of a monomer is still denoted K in the bulk, but we now
take a different weight Ks for a monomer touching the left rim of the annulus, x = 0.
In contrast, the right rim of the annulus, x = L, enjoys free boundary conditions,
meaning that its surface monomers still carry the usual weight K.

In this section we wish to limit the discussion to the case where only the left
boundary sustains particular ( 6= free) boundary conditions; this is sometimes re-
ferred to as mixed boundary conditions. The case where both boundaries are distin-
guished is also of interest and will be discussed in section 14.6.8.

The loop model described above has been thoroughly studied by Batchelor and
coworkers [73, 74, 75, 76], in particular using Bethe Ansatz analysis. They find in
particular that when Ks = K the model is integrable and belongs to the universality
class of the ordinary transition, while for

Ks = KS
s ≡ (2−n)−1/4 (14.137)
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it is also integrable and describes the special transition. 10 This is consistent with a
boundary RG scenario, where KS

s is a repulsive fixed point that flows towards either
of the attractive fixed points KO

s < K and KE
s = ∞, the former (resp. latter) point

describing the ordinary (resp. the extraordinary) transition.
This scenario is corroborated by a detailed analysis [76] showing that a pertur-

bation to the fixed point KE
s is RG irrelevant. Moreover, the operator conjugate to

Ks is obviously the energy density on the boundary. At the special transition, this
operator can be identified [77] with φ(1,3) of weight h1,3 = 2

g − 1, and so this is a
relevant perturbation (i.e., h1,3 < 1) only for g > 1 (i.e., in the dilute phase). On the
other hand, the surface energy density has weight h = 2 at the ordinary transition
[78], and so is always irrelevant.

The flow between the ordinary and special transitions has been further studied by
Fendley and Saleur [79], from the point of view of boundary S matrices.

14.6.2 Watermelon Exponents

Surface watermelon exponents can be defined as in section 14.4.1, the only dif-
ference being that the ℓ legs are inserted at the boundary. We shall denote these
exponents by ∆ O

ℓ , ∆ S
ℓ , ∆ E

ℓ at the ordinary, special, extraordinary surface transition
respectively. Whenever a result applies to any of these transitions, we use the generic
notation ∆ ′

ℓ, where the prime indicates a surface rather than a bulk exponent.
For the ordinary transition, ∆ O

ℓ can be derived by a slight refinement of the
marginality argument given in section 14.3.5. First recall that in the continuum limit
there is a background flux m0 given by (14.77), corresponding to a (fractional) num-
ber of oriented loop strands running along the rims of the annulus. Suppose now
that we wish to evaluate the scaling dimension ∆ O

ℓ corresponding to having ℓ > 0
non-contractible oriented loop strands running around the periodic direction of the
annulus. This can be done by evaluating the free energy increase ∆S = Sℓ −S0 due
to these strands, as in (14.78)

∆S =
g

4π
(
(ℓ+ m0)

2 −m2
0

)(π
L

)2
ML (14.138)

and using e−∆S = q−∆ O
ℓ from (14.75).

The question now arises which sign for m0 to pick in (14.77). With the plus sign
we would have ∆2 = 1 independently of g, in clear contradiction with numerical
results [47]. Taking therefore the minus sign leads to the result

∆ O
ℓ =

1
4

gℓ2 − 1
2
(1−g)ℓ . (14.139)

10 Technically speaking this is the mixed ordinary-special transition, but we have simplified the
terminology according to the above remarks.
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The derivation just presented follows the argument of Cardy [18], but in fact
(14.139) was found a long time before by other means. Duplantier and Saleur [47]
were the first to propose (14.139) for any ℓ, by noting that their numerical transfer
matrix results were in excellent agreement with the following locations in the Kac
table (14.31)

∆ O
ℓ =

{
h1,1+ℓ for the dense O(n) model
h1+ℓ,1 for the dilute O(n) model

(14.140)

from which (14.139) follows by the identification (14.74). On a more rigorous level,
(14.139) has been established by Bethe Ansatz (BA) techniques [80, 73, 74].

For the special transition, ∆ S
ℓ does not seem to permit a CG derivation. It is

however known from the BA analysis [75, 74] that one has

∆ S
ℓ =

1
4

g(1 + ℓ)2− (1 + ℓ)+
4− (1−g)2

4g

= h1+ℓ,2 for the dilute O(n) model (14.141)

in this case.
Alternatively, one may imagine producing the special ℓ-leg operator OS

ℓ by fu-
sion of the ordinary ℓ-leg operator OO

ℓ and an ordinary-to-special boundary condi-
tion changing operator φOS. The scaling dimension (14.141) pertains to the insertion
of this composite operator at either strip end. Comparing the Kac indices in (14.140)
and (14.141), and using the CFT fusion rules (14.36), immediately leads to the iden-
tification φOS = φ1,2. If one wants special boundary conditions on both the left and
the right rim, two insertions of φOS are needed (to change from special to ordinary
and back again). One would then expect h1+ℓ,3, as is indeed confirmed by the BA
analysis [75, 74].

Finally, the extraordinary transition is rather trivially related to the ordinary tran-
sition. Indeed, for Ks = ∞ the entire left rim of the annulus will be coated by a
straight polymer strand, so that the remaining system (of width L− 1) effectively
sees free boundary conditions—this is dubbed the teflon effect in [76]. Thus, for
ℓ = 0 the coating strand will be the left half of a long stretched-out loop, whose
right half will act as a one-leg operator, and one effectively observes the exponent
∆ O

1 . For ℓ > 0, one of the legs will act as the coating strand, and one observes ∆ O
ℓ−1.

14.6.3 Network Exponents

The network exponents discussed in section 14.4.5 can be generalised [81] to the
case where at least one vertex of the network G is constrained to stay close to the
surface. Let G consist of nℓ (resp. n′ℓ) bulk (resp. surface) ℓ-leg vertices, E edges,
and let V = ∑ℓ nℓ (resp. V ′ = ∑ℓ n′ℓ) be the total number of bulk (resp. surface)
vertices. The derivation then goes through with straightforward modifications.

For the case of a monodisperse network, where each of the E edges is constrained
to have the same length l (with l ≫ 1), the end result for the network exponent is
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γG = ν

[
2V +V

′ −1−∑
ℓ

(nℓ∆L + n′ℓ∆
′
ℓ)

]
− (E −1) . (14.142)

For a polydisperse network of total length l, the last term (E −1) has to be omitted
as before.

Note that (14.142) does not reduce to (14.95) upon setting all n′ℓ = 0 (there is one
excess ν). This is because of the initial hypothesis that at least one vertex of G is
attached to the surface.

Instead of having G grafted to a linear surface, one may consider tying the net-
work in a wedge of opening angle α 6= π by means of an extra ℓ̂-leg vertex. Since
the wedge can be transformed back on the half plane through the conformal map-
ping w(z) = zπ/α [22], this geometry leads only to a minor modification [81] of the
previous result (14.142):

γG (α) = γG (π)−ν
(π

α
−1
)

∆ ′
ℓ̂

(14.143)

Special cases of these formulae were obtained prior to [81] by Cardy [22], and
yet others were conjectured by Guttmann and Torrie [82].

14.6.4 Standard Exponents of Polymer Physics

Standard exponents describing surface critical behaviour can be defined in analogy
with those valid in the bulk. However, these can all be derived from the watermelon
exponents (14.139) by using the network relation (14.142) and standard scaling re-
lations. We focus here on the ordinary transition.

Consider as an example the exponent η‖ describing the decay of the spin-spin
correlation function along the surface. This is related to the conformational exponent
γ1 of a chain with one extremity tied to the surface and the other belonging to the
bulk, through the scaling relation [31]

2γ1 = γ + ν(2−η‖) (14.144)

Now, γ1 is a special case of (14.142) with nℓ = n′ℓ = δℓ,1, giving γ1 = ν(2−∆1−∆ ′
1).

Isolating η‖ reveals that it belongs to the Kac table:

η‖ =





2h1,2 for the dense O(n) model
2h2,1 for the dilute O(n) model
2h1,3 for the Potts model

(14.145)

as first conjectured by Cardy [22].
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14.6.5 Ordinary Transition in Fully Packed Loop Models

As mentioned in section 14.6.1, the special surface transition is absent in the dense
O(n) model. This agrees with physical intuition: since each edge has a finite prob-
ability of being covered by a monomer, it is redundant to try to attract the loops to
the surface by enhancing the fugacity of surface monomers. In analogy, one would
expect that fully packed loops are unable to sustain a special transition.

On the other hand, the ordinary transition for fully packed loop models does exist.
It can be investigated [83] by adapting the Coulomb gas analysis of sections 14.3.5
and 14.6.2 to the vectorial setup of section 14.5. To this end, we focus on the FPL
model on the hexagonal lattice and the FPL2 model on the square lattice.

Fig. 14.14 Appropriate modifications of the hexagonal (left panel) and square (right panel) lattices
for the definition of the surface versions of the FPL and FPL2 models. The top and bottom of the
figures are identified to make an annular geometry.

The vectorial Coulomb gas treatment of section 14.5 depended crucially on the
lattice being bipartite and of constant coordination number. These features must
therefore be maintained when defining the surface geometry of the FPL and FPL2

models. In particular, the FPL model cannot be defined on the lattice shown in
Fig. 14.13. The appropriate choices of lattices are shown in Fig. 14.14. Note that
in both cases, the corresponding transfer matrix adds two rows of vertices at a time.

For simplicity, we henceforth limit the discussion to the boundary FPL2 model,
defined on an annulus of even width L. The case L = 4 is shown in Fig. 14.14.

Note that if the vertical edges of a given time-slice are labelled alternatingly as
even and odd, the following quantity is strictly conserved by the transfer matrix:

Q =
1
2

[
(evenb −oddb)− (eveng −oddg)

]
(14.146)

where, e.g., evenb means the number of even-labelled vertical edges covered by
black loops. Accordingly, critical exponents are labelled by three indices, viz., Q
and the number of watermelon strands of each colour (ℓb and ℓg). For L even, all
three indices must have the same parity (even or odd).
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Using again the argument of section 14.3.5, the spontaneous vector magnetic flux
m0 is obtained by matching the known central charge (14.131) to (14.75). After the
change of basis (14.115) which makes the action diagonal, the result reads

m̃0 =

(
eb

1− eb
,0,

eg

1− eg

)
(14.147)

where we have used the usual parameterisation (14.117).
Consider first the case Q = 0 and ℓb, ℓg even. Then the flux is increased by the

magnetic charges of the watermelon strands

mℓb,ℓg =
ℓb

2
(A−B)+

ℓg

2
(C−D) (14.148)

which reads in coordinates m̃ℓb,ℓg = (−ℓb,0,−ℓg). This excitation multiplies the

partition function by q−∆c/24 and we can identify the critical exponent ∆ℓb,ℓg;0 =

−∆c
24 . Recalling the one-colour boundary exponents ∆ O

ℓ of (14.139), this result can
be expressed as

∆ℓb,ℓg;0(eb,eg) = ∆ O
ℓb

(eb)+ ∆ O
ℓg

(eg) . (14.149)

Thus, in this sector the two loop species do not interact in the continuum limit.
Consider next the case Q = 1 and ℓb, ℓg odd. The defect magnetic charge is now

mℓb,ℓg =
ℓb −1

2
(A−B)+

ℓg −1
2

(C−D)+ (C−B) (14.150)

which reads in coordinates m̃ℓb,ℓg = (−ℓb,−2,−ℓg). The critical exponent is then

∆ℓb,ℓg;1(eb,eg) = ∆ O
ℓb

(eb)+ ∆ O
ℓg

(eg)+ δ (eb,eg) (14.151)

where the additional contribution

δ (eb,eg) =
2g2

π
=

(1− eb)(1− eg)

(1− eb)+ (1− eg)
(14.152)

comes from the second height component.
To settle the general case, we note that to obtain sectors with higher charge, Q

can be increased by two units by a succession of four consecutive vertical edges
with alternating loop colors. This corresponds to a height defect m = −2(A+B) =
(0,−4,0) = m̃, and in general for even Q mQ = m̃Q = (0,−2Q,0). The final result
for any values of (s1,s2;Q) can thus be written succintly as

∆ℓb,ℓg;Q(eb,eg) = ∆ O
ℓb

(eb)+ ∆ O
ℓg

(eg)+ Q2δ (eb,eg) . (14.153)

This expression has been checked numerically to a very good precision [83].
Finally, let us consider the special case where grey strands are ignored and grey

loops are assigned a trivial fugacity, ng = 1. This gives for the black ℓ-leg boundary
watermelon exponents (with Q = ℓ mod 2)
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∆ℓ =

{
1
4 gℓ2 − 1

2(1−g)ℓ for ℓ even
1
4 gℓ2 − 1

2(1−g)ℓ+ 2g
3g+2 for ℓ odd

(14.154)

where g = 1− eb. This should be compared with (14.133) and (14.139).

14.6.6 Conformal Boundary Loop Model

Very recently, Jacobsen and Saleur [84] have studied a so-called conformal bound-
ary loop (CBL) model in which a continuous parameter n1 permits one to vary the
boundary condition. In sharp contrast with the model of section 14.6.1 this bound-
ary condition remains conformal for any real value of n1, i.e., any n1 constitutes a
boundary RG fixed point and gives rise to a distinct critical exponent of the associ-
ated boundary condition changing operator.

For definiteness, consider the loop model (14.59) based on the critical Potts
model, with each loop having the fugacity n, and defined on the annulus. Now as-
sign to each loop touching at least once the left rim a different fugacity n1. Alge-
braically this situation is closely related to the so-called blob algebra—subsequently
often known as the one-boundary Temperley-Lieb algebra—originally introduced
by Martin and Saleur [85]. Obviously it is possible to apply this boundary condition
also to other types of loop models.

Physically one can consider the CBL model as an O(n)-type model in which the
bulk spins belong to Rn, while the boundary spins have been constrained to live in
a smaller space Rn1 (this makes sense also for n1 > n, by analytic continuation).
Alternatively, the same developments which led to (14.59) establish the equivalence
with a Potts model in which bulk spins can take Q = n2 states, and boundary spins
Q1 = nn1 states.

One central claim of [84] is that the operator that changes the boundary condi-
tions from free (n = n1) to the CBL boundary conditions just described (n 6= n1) has
conformal weight hr1,r1 , where we have parameterised

n = 2cosγ

n1 =
sin[(r1 + 1)γ]

sin(r1γ)
(14.155)

and γ = π
m+1 defines the central charge and the conformal weights through (14.31).

The parameter r1 ∈ (0,m+ 1) is in general a real number. When r1 and m are inte-
gers, the above statement can be rigorously derived from the representation theory
of the corresponding XXZ spin chain with boundary terms. Another check is when
Q1 = 1 (i.e., n = 1/n1, or r1 = m− 1); indeed it is a well-known result by Cardy
[33] that the operator that changes the Potts model boundary conditions from free
to fixed is φm−1,m−1 = φ1,2. Finally, the statement for arbitrary r1 and m has been
subjected to extensive numerical tests in [84].
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The above result can be generalised to the watermelon topology where ℓ non-
contractible loops wrap around the periodic direction of the annulus. A careful
study of the transfer matrix structure reveals that in this case one needs to distin-
guish two possible situations, or sectors: either the leftmost non-contractible loop is
constrained to touch the left rim at least one (blobbed sector), or it is constrained to
never touching it (unblobbed sector). The corresponding conformal weight is then

∆ O
ℓ (n,n1) = hr1,r1±ℓ (14.156)

where the upper (resp. lower) sign is for the blobbed (resp. unblobbed) sector.
The formula (14.156) has subsequently been derived for the O(n) model on ran-

dom lattices by Kostov [86].

Fig. 14.15 Configuration of loops (in green) on the annulus, with Neumann (resp. Dirichlet)
boundary conditions on the left (resp. right) rim. The original Potts spins and their duals live on
the black lattice.

Obviously, the result (14.156) has many applications. One of these is to iden-
tify the operator that changes the O(n) model boundary condition from Dirichlet to
Neumann. By definition, these names refer to the equivalent height model. There-
fore, Dirichlet boundary conditions mean that loops are reflected off the boundary,
while Neumann conditions mean that loop strands terminate perpendicularly on the
boundary. A configuration with Neumann boundary conditions on the left rim of
the annulus is shown in Fig. 14.15. Note that it involves half loops beginning and
ending on the left rim, and by definition these must have unit weight. By connecting
the termination points of these half loops two by two, it is seen that this situation
is actually equivalent to the CBL model with parameter n1 = 1. Thus, the required
operator is φDN = φm/2,m/2 of weight

hDN = hm/2,m/2 =
m2 −4

16m(m+ 1)
. (14.157)
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The result (14.156) holds true also for the hexagonal-lattice model (14.60), pro-
vided that one performs the usual swap of the indices when going from the dense to
the dilute phase [87].

Note that when n1 = n, we have r1 = 1 from (14.155), and so (14.156) reproduces
(14.140) for the ordinary transition, as it should.

14.6.7 Generalised Special Transition

The hexagonal-lattice loop model (14.60) that admitted us to access the special tran-
sition in section 14.6.1 can be modified in a natural way so as to accommodate the
CBL type boundary conditions of section 14.6.6. To this end, we consider again the
annular geometry of Fig. 14.13 with the left boundary being distinguished. A pair
of consecutive boundary edges can be either empty, or carry a surface monomer, or
carry a marked surface monomer.

Loops containing only bulk and surface monomers are called bulk loops, while
loops containing at least one marked surface monomer are referred to as boundary
loops. Note that this terminology differs slightly from that used in section 1.6.6,
since it is now possible for a bulk loop to touch the surface, provided that it contains
only unmarked surface monomers. While this may appear physically slightly unnat-
ural, it is necessary in order to make contact with the relevant algebraic framework,
viz., the dilute one-boundary Temperley-Lieb algebra.

The weight of a bulk (resp. boundary) loop is n (resp. n1). An unmarked (resp.
marked) surface monomer comes with a weight Ks (resp. Ks,1). The physically nat-
ural situation, in which boundary loops are simply those that touch the surface, is
recovered upon setting Ks = 0. Depending on the parameters, this may renormalise
towards any of the fixed points to be discussed below.

The following parameterisation turns out useful:

n = −2cos(4Φ)

n1 = − sin[4(κ −1)Φ]

sin(4κΦ)
. (14.158)

The dilute critical point (14.61) is then obtained by setting 1/K = 2cos(Φ). One
can show [88] that the model defined above admits two new integrable points, that
we shall refer to as the generalised ordinary transition and the generalised special
transition. For the former (Ks,Ks,1) = (KO

s ,KO
s,1) with

(KO
s )2 =

sin[(2κ −1)Φ]

2cos(Φ)sin(2κΦ)
(KO

s,1)
2 =

cos(2κΦ) tan(Φ)

sin(2κΦ)
, (14.159)

and for the latter (Ks,Ks,1) = (KS
s ,KS

s,1) with
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(KS
s )2 =

cos[(2κ −1)Φ]

2cos(Φ)cos(2κΦ)
(KS

s,1)
2 = − sin(2κΦ) tan(Φ)

cos(2κΦ)
. (14.160)

It is interesting to examine a few special cases of (14.159)–(14.160). For n1 = n,
we have κ = −1, and boundary loops are indistinguishable from bulk loops. The
weight of a pair of boundary monomers is therefore y2 ≡ (Ks)

2 + (Ks,1)
2. Using

(14.159) this gives y2 = K2, which is the usual ordinary transition. Meanwhile,
(14.160) gives y2 = (2−n)−1/2 as in (14.137), which is the usual special transition.

The case n1 = 1, or κ = 1
2 , corresponds to Neumann boundary conditions. Indeed,

when boundary loops are weighted trivially, they might as well be transformed into
half loops, as in Fig. 14.15. The generalised ordinary transition (14.159) then corre-
sponds to KO

s = 0 and KO
s,1 = 1, i.e., only boundary loops are allowed at the surface,

and are weighted trivially.
Finally, for n1 = 0, or κ = 1, boundary loops are forbidden, and the weight of

marked surface monomers is therefore immaterial. As expected one has then KO
s =

K, and KS
s = (2−n)−1/4 in agreement with (14.137).

The critical exponents corresponding to these generalised surface transitions can
be identified from numerical diagonalisation of the transfer matrix [88]. To state the
results, it is convenient to go back to the parameterisation (14.155). For the ordinary
case (14.159) one finds

∆ O
ℓ (n,n1) = hr1±ℓ,r1 (14.161)

where we recall that the upper (resp. lower) sign refers to the blobbed (resp. un-
blobbed) sector. This agrees as expected with (14.156) after swapping the indices
(since we are here in the dilute phase of the O(n) model). For the special case
(14.160) one finds instead

∆ S
ℓ (n,n1) = hr1±ℓ,1+r1 (14.162)

which is a nice generalisation of (14.141).

14.6.8 Two-Boundary CBL Model

The conformal boundary loop (CBL) model of section 14.6.6 can be generalised
to the case where both boundaries of the annulus are distinguished. In this two-
boundary CBL model, bulk loops have a weight n, while boundary loops touching
only the left (resp. right) boundary have weight n1 (resp. n2), and loops touching
both boundaries have weight n12.

This model—which is related to the so-called two-boundary Temperley-Lieb
algebra—has been the subject of several recent studies (see [89, 90, 91, 92] and
references therein). It is equivalent to a Potts model in which bulk spins have
Q = n2 states, while spins on the left (resp. right) boundary are constrained to a
smaller number Q1 = nn1 (resp. Q2 = nn2) of states, of which there are Q12 = nn12

common states.
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The following parameterisation turns out to be instrumental for further study:

n = 2cosγ

n1 =
sin[(r1 + 1)γ]

sin(r1γ)

n2 =
sin[(r2 + 1)γ]

sin(r2γ)

n12 =
sin[(r1 + r2 + 1− r12)

γ
2 ]sin[(r1 + r2 + 1 + r12)

γ
2 ]

sin(r1γ)sin(r2γ)
(14.163)

The full meaning of this parameterisation only becomes clear within the represen-
tation theory of the underlying algebra.

From a CFT point of view, distinguishing both rims of the annulus is expected
to be described by the fusion (OPE) of the “free to one-boundary CBL” boundary
condition changing operators which are responsible for the weights n1 and n2 on
either rim. However, a detailed study [92] unravels a number of technical subtleties,
mainly having to do with the possibility of a loop of weight n12 touching both rims.

Critical exponents ∆ α1α2
ℓ depend on all the weights (14.163), on the number of

non-contractible loops ℓ, and on the sector labels α1 and α2. The label α1 = b (resp.
α1 = u) if the leftmost non-contractible loop is constrained to touching (resp. to
never touching) the left rim; these two possibilities are referred to as the blobbed
(resp. unblobbed) sector. The label α2 similarly constrains the behaviour of the
rightmost non-contractible loop. Note that we have supposed that the system size
L is even (and so the number of non-contractible loops is always even).

We give here only the final results for the leading critical exponents in each sec-
tor [92]:

∆0 = hr12,r12

∆ bb
ℓ = hr1+r2−1,r1+r2−1+ℓ

∆ bu
ℓ = hr1−r2−1,r1−r2−1+ℓ

∆ ub
ℓ = h−r1+r2−1,−r1+r2−1+ℓ

∆ uu
ℓ = h−r1−r2−1,−r1−r2−1+ℓ (14.164)

Note that changing the sector label αk simply results in changing the sign of the
parameter rk (for k = 1,2).

We refer the reader to [92] for details on how these expressions are derived.

14.7 Exact Partition Functions

Writing down exact partition functions Z in the continuum limit is a very strong tool
for revealing the complete operator content of the underlying theory. This was first
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pointed out by Cardy [23] who worked on the torus, where the possible forms of Z
are very strongly constrained by modular invariance. Thus, for the three-state Potts
model, Cardy was able to determine Z and the complete operator content from a
prior knowledge of just the central charge and a few scaling dimensions.

Most of the early efforts [23, 29] concentrated on extending this approach to
all the unitary minimal models, and an extensive set of modular invariant Z on the
torus were unravelled. The question however soon arose how to adapt this approach
to non-minimal models [39], and in particular how to make the connection [40] with
the Potts and O(n) model in their loop model formulation, reviewed in section 14.3.

In section 14.2.7 we have already seen how a modular invariant Z of the free
boson (14.42) is constructed by summing over all possible frustrations (magnetic
charges) m. This led to the form (14.48) that revealed the electromagnetic operator
content (14.50). However, this is valid only for a truly free field, with Gaussian
action (14.42) and central charge c = 1. It does not apply to the Potts and O(n)
models whose CG action (14.69) also contains the boundary term (14.67), linked to
the background electric charge e0 and the modification (14.73) of c.

In section 14.7.1 we show how to remedy this shortcoming on a torus, following
the original work of Di Francesco, Saleur and Zuber [40], with a few subsequent
improvements [93, 94]. We also present some applications to polymers, following
Duplantier and Saleur [14].

Exact continuum limit partition functions on the annulus are given in sec-
tion 14.7.2. Due to the two possible ways of orienting the annulus, these give ac-
cess to both the bulk and the boundary operator content. The multiplicities with
which the various terms appear in Z are derived from a combinatorial argument by
Richard and Jacobsen [95], which has the advantage of being readily generalisable
to more complicated geometries [94, 84, 91]. The applications to polymers are due
to Cardy [18].

Finally, we treat the CBL model in section 14.7.3, its two-boundary extension in
section 14.7.4, and the fully packed loop model FPL2 in section 14.7.5.

14.7.1 Toroidal Geometry

Recall first the expression (14.46) for the free boson partition function Zm,m′(g) at
coupling g and fixed frustrations m,m′. Summing this over frustrations which are
multiples of 2π f defines the coulombic partition function

Zc[g, f ] = f ∑
m,m′∈ f Z

Zm,m′(g) =
1

ηη̄ ∑
e∈Z/ f , m∈ f Z

q∆e,mq̄∆̄e,m . (14.165)

where we denote by ∆e,m the conformal weights with respect to the c = 1 theory,
i.e., without the correction coming from the background electric charge e0:
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∆e,m + ∆̄e,m =
e2

2g
+

g
2

m2

∆e,m − ∆̄e,m = em . (14.166)

The free field admits a duality transformation that exchanges electric and mag-
netic charges

g → 4
g

, e → 2m , m → e
2

(14.167)

leading to the following symmetries

Zc[g, f ] = Zc[g
−1, f−1] = Zc[g f 2,1] . (14.168)

Consider now the O(n) model on a torus in its formulation as an oriented loop
model, or a height model. When n is distributed locally as complex Boltzmann
weights in the usual way, the partition function is simply Zc[g,1/2] = Zc[g/4,1].
This however assigns a wrong weight n̄ = 2 to any loop which is non-homotopic to
a point, since by self-avoidance each of its oriented versions makes as many left as
right turns.

We therefore consider more carefully oriented loops of non-trivial homotopy. Let
there be N such loops. Clearly, they all belong to the same homotopy class, up to
the choice of their global orientation which can be described by a sign εi = ±1. The
homotopy class can be defined by giving the (signed) winding numbers n1 and n2

with respect to the two principal cycles of the torus. One then has |n1| ∧ |n2| = 1.
Using this and a trigonometric identity yields

(
2cos(πe0)

)N
= ∏

i
∑

εi=±1

eiπe0εi = ∑
{εi=±1}

cos

(
πe0 ∑

i
εi

)
(14.169)

from which one deduces that the correctly weighted modular invariant partition
function is

Ẑ[g,e0] = ∑
m,m′∈Z

Zm,m′
(g

4

)
cos(πe0m∧m′) . (14.170)

Computing this term by term in the m summation leads to the central result

Ẑ[g,e0] =
1

ηη̄

{
∑
p∈Z

(qq̄)∆e0+2p,0 + ∑
p∈Z

∑
m>0

′
∑
k>0

Λ(m,k)q∆2p/k,m/2 q̄∆̄2p/k,m/2

}

(14.171)
where we have singled out the m = 0 term. The prime on the sum over k indicates
the constraints k|m and p∧ k = 1. Note that (14.171) has the correct form to enable
a physical interpretation. Clearly, m is the magnetic charge corresponding to the
number of non-contractible polymer strands that propagate along the time direction.
The indices k and p control how fast the strands wind around the space direction,
and give access to subdominant operators. Finally, the coefficients Λ(m,k) count the
multiplicities of each operator with m > 0.
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The original paper [40] provides an operational way of computing the Λ(m,k)
from the prime decomposition of m and k. Unfortunately, this is quite cumbersome
to apply, even for moderately small values of m,k. An elegant closed-form expres-
sion which brings out the number theoretical content of Λ(m,k) was derived much
later by Read and Saleur [93]:

Λ(m,k) = 2 ∑
d>0 :d|m

µ
(

k
k∧d

)
φ
(

m
d

)

mφ
(

k
k∧d

) cos(2πde0) . (14.172)

Here, k∧ d denotes the greatest common divisor of k and d, and µ and φ are re-
spectively the Möbius and Euler’s totient function. The Möbius function µ is de-
fined by µ(x) = (−1)r, if x is an integer that is a product x = ∏r

i=1 pi of r distinct
primes, µ(1) = 1, and µ(x) = 0 otherwise or if x is not an integer. Similarly, Eu-
ler’s totient function φ(x) is defined for positive integers x as the number of integers
x′ such that 1 ≤ x′ ≤ x and x ∧ x′ = 1. Note that in (14.172) we may also write
cos(2πde0) = T2d(n̄), where Tℓ is the ℓ’th order Chebyshev polynomial of the first
kind, and n̄ is the weight of a non-contractible loop as usual.

The expression (14.172) has been rederived by Richard and Jacobsen [94] follow-
ing a completely different route. Indeed, these authors view Λ(m,k) as eigenvalue
amplitudes with respect to a suitably defined transfer matrix for the O(n) model on
a torus of width and length which are a finite number of lattice spacings (but wide
enough to accommodate m non-contractible strands), on an arbitrary regular lattice,
and at an arbitrary temperature. By an intricate, but completely rigorous, combina-
torial argument they arrive at the same formula (14.172). We shall illustrate their
method for a much simpler case in section 14.7.2.

Very recently, a more concise and equally rigorous derivation of (14.172) was
provided by Dubail et al. [92] through the construction of the Jones-Wenzl projec-
tors of the periodic Temperley-Lieb algebra.

Note that the ∆(m,k) are not integers for general values of the loop fugacity n.
This was to be expected in view of the non-minimality of the underlying CFT.

The operator content of (14.171) is readily extracted [40]. We state the results in
terms of the true (c < 1) conformal weights

h = ∆ − e2
0

4g
= ∆ +

c−1
24

(14.173)

and their Kac table values

hr,s =
(gr− s)2 − (1−g)2

4g
(14.174)

where we have taken the notation appropriate for the dilute phase of the O(n) model.
The terms with m = 0 contain the thermal series

∆t(ℓ) = 2h1,1+2ℓ =
2ℓ(ℓ+ 1)

g
−2ℓ (14.175)
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of which the principal member ℓ = 1 is (14.91). Similarly, the terms with m > 0
contain precisely the ℓ-leg watermelon exponents (14.81).

Note also that (14.171) can be rewritten in the form (14.41). Once again, the
coupling constants nh,h̄ need not be integers in general.

When g and/or e0 is rational, (14.171) simplifies due to multiple cancellations,
and one can in some cases derive simpler expressions. These can in turn be com-
pared to those derived for the minimal models [23, 29].

Turning now to the Potts model, the derivation is almost identical, with one im-
portant modification. As we have already remarked in section 14.4.3 it may happen
that Potts clusters wrap around (at least) two independent non-contractible cycles
on the torus; this is closely linked to the magnetic exponent ∆m. Care must be taken
to give such clusters their correct weight Q, rather than 1. The result is simply that
(14.171) must be replaced by

Ẑ[g,e0]+
1
2
(Q−1)Ẑ

[
g,

1
2

]
. (14.176)

We end this subsection by giving some applications to polymers, following
Duplantier and Saleur [14]. First note that (14.170) still permits one to distin-
guish the weights of contractible and non-contractible loops, which are respectively
n = −2cos(πg) and n̄ = 2cos(πe0). In other words, we need not take e0 = 1−g.

There are obviously several interesting ways of taking the polymer (SAP) limit.
To obtain polymers of indeterminate homotopy, one first sets n̄ = n and then lets
n → 0. To have contractible polymers only, one first sets n̄ = 0 and then lets n → 0.
Finally, to have non-contractible polymers only, one first sets n = 0 and then lets
n̄ → 0. In all cases, a derivative with respect to the fugacity is needed before taking
the last limit, in order to single out configurations having a single loop—otherwise,
the surviving configuration will have zero loops and give rise to a trivial partition
function, just as in the discrete model (14.60).

To illustrate this, consider the case of contractible polymers. Setting n̄ = 0 in
(14.170) gives

Ẑ

[
g,

1
2

]
= 2 ∑

m,m′∈4Z

Zm,m′
(g

4

)
− ∑

m,m′∈2Z

Zm,m′
(g

4

)
=

1
2

(Zc[4g,1]−Zc[g,1]) ,

(14.177)
where we have used (14.165) and (14.168). If we now set simply n = 0, one recovers
in the dilute (resp. dense) case g = 3

2 (resp. g = 1
2 ), by using Euler’s pentagonal

identity (resp. (14.168))

Ẑ

[
3
2
,

1
2

]
= 1 , Ẑ

[
1
2
,

1
2

]
= 0 . (14.178)

Both these results are trivial, as expected. By contrast, if one takes the derivative
∂/∂n before setting n = 0, a non-trivial result is obtained. For dense polymers this
reads explicitly, after some algebra,
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∂
∂n

Ẑ

[
g,

1
2

]∣∣∣∣
g= 1

2

= − 1
4π

η2(q)η2(q̄) log(qq̄) . (14.179)

14.7.2 Annular Geometry

We now consider instead the geometry of an L×M annulus with free × periodic
boundary conditions, as defined in section 14.3.5. Recall that in the preceding sub-
section we have constructed the continuum limit partition function Z starting from
the explicit weights of the microscopic model—and invoking modular invariance—
and extracted the operator content as a corollary at the end of the calculation. Let us
instead now work the other way around, starting from the known operator content,
viz., the watermelon exponents (14.139) at the ordinary surface transition.

According to (14.55) we have

Z ≡ Zff(q) = ∑
h

nhχ(c,h)(q) (14.180)

where the sum is over the boundary scaling dimensions h, χ(c,h)(q) is the generic
character (14.28), and the modular parameter q = exp(iπτ) = exp(−πM/L). The
degeneracy factor nh states how many times a given character appears in the parti-
tion function, and as usual for non-minimal theories it needs not in general be an
integer. We omit in the following the subscript ff which reminds us that the boundary
conditions on both rims of the annulus are free.

As the watermelon operators are indexed by their number of legs ℓ, we may
replace the sum over h by one over ℓ. Below we shall give a combinatorial argument
that the correct degeneracy factor is

nℓ =
sin
(
(1 + ℓ)πe0

)

sin(πe0)
= Uℓ

(
n̄
2

)
, (14.181)

where Uℓ(x) is the ℓ’th order Chebyshev polynomial of the second kind. Note that nℓ

depends only on the weight n̄ = 2cos(πe0) of a non-contractible loop, which may
in general be different from that of a contractible loop, n = −2cos(πg).

Accepting for the moment (14.181), we then have the central result

Z[g,e0] =
q−c/24

P(q) ∑
ℓ∈Z

sin
(
(1 + ℓ)πe0

)

sin(πe0)
q

gℓ2
4 − (1−g)ℓ

2 (14.182)

which is the analogue of (14.171) on the torus. The attentive reader may object that
1) the expansion (14.180) should not be over generic characters, but the degenerate
ones

Kr,s =
qhr,s −qhr,−s

qc/24P(q)
, (14.183)
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and 2) the sum in (14.182) should be over ℓ ≥ 0 and not ℓ ∈ Z. While these obser-
vations are certainly correct, a little analysis shows that taking into account 1) and
2) leads to exactly the same result (14.182).

The expression (14.182) was first obtained by Saleur and Bauer [80], using tech-
niques of integrability and quantum groups. It has later been rederived and discussed
by Cardy from a Coulomb gas point of view [18].

We now turn to the derivation of (14.181). One line of reasoning is to invoke the
correspondence between the oriented loop model and an SU(2) spin chain Hamilto-
nian, as in [80]. The number of non-contractible loop strands ℓ is then the conserved
spin S of the chain. For each value S = ℓ there is a degeneracy corresponding to the
(2ℓ+ 1) corresponding values of Sz. To be more precise, the symmetry of the spin
chain is not classical SU(2) but the quantum algebra SU(2)q, with deformation pa-
rameter11 given by n̄ = q + q−1. The degeneracy factor is therefore the q-deformed
number (2ℓ+ 1)q, by definition equal to nℓ in (14.181).

Fig. 14.16 Construction of compatible states (see text).

A very different argument was given by Richard and Jacobsen [95] who used
elementary combinatorics. The lattice partition function can be constructed from a
transfer matrix T that acts on connectivity states between two time slices at t = 0
and t = t0. An example of a state is shown in Fig. 14.16.a; it consists of arcs that
connect pairs of points within one time slice, and ℓ strings that connect one point
on either time slice. Upon cutting all the strings, a state is transformed into a pair
of reduced states. T transforms a state from time t0 to t0 + 1 by acting on the upper
time slice. One may write

Z = 〈v|T M|u〉 = ∑
i

niλ M
i (14.184)

11 This q should not be confused with the modular parameter q used elsewhere in the text.
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where |u〉 is an initial state that identifies the two time slices, and 〈v| is a final
state that reglues the two time slices and imposes the correct powers of n and n̄
according to the loops thus formed. As Z is not a trace, each eigenvalue λi of T has
a corresponding amplitude ni.

Note that ℓ cannot increase under the action by T , whence T is upper block-
triangular with respect to ℓ. Therefore, each eigenvalue of T is an eigenvalue of one
of the blocks on the diagonal denoted Tℓ. Furthermore, T cannot change the reduced
state corresponding to the lower time slice, so each Tℓ is block-diagonal with a
number of identical blocks given by the number of reduced states with ℓ strings. In
particular, ni = nℓ(i) and the eigenvalues can be labeled by ℓ, so we may write

Z =
L

∑
ℓ=0

nℓ∑
k

λ M
ℓ,k . (14.185)

Define now Kℓ = Tr(T M
ℓ ) as a trace over reduced states, and Zj as the partition

function constrained to having exactly j non-contractible loops. To determine nℓ

we must determine how many times each Kℓ contributes to Z. Consider instead the
inverse problem

Kℓ =
L

∑
j=ℓ

n( j, ℓ)Zjn̄
− j . (14.186)

where n( j, ℓ) is the number of times a configuration with j non-contractible loops
occurs in the trace Kℓ. To determine it we depict a configuration contributing to
Zj as a state S j, i.e., we suppress all internal loops and empty sites in the time
slices; see Fig. 14.16.a. Then n( j, ℓ) is the number of ℓ-string reduced states Rℓ

that are compatible with S j, i.e., that are invariant when propagated through S j.
A necessary condition is that Rℓ contains the same arcs as the upper time slice of
S j; see Fig. 14.16.b. What remains is topologically equivalent to just j strings; see
Fig. 14.16.c. To ensure compatibility, these must be linked up by arcs so as to leave
exactly ℓ non-enclosed strings. This is an easy counting problem with solution

n(L, ℓ) =

(
L

(L− ℓ)/2

)
−
(

L
(L− ℓ)/2−1

)
. (14.187)

Finally inverting (14.186) gives the number of times Kℓ appears in each Zj, and
since by definition each eigenvalue appears with unit amplitude in Kℓ, we can sum
this over j to obtain nℓ = Uℓ(n̄/2) proving (14.181).

Once again, an alternative to this combinatorial method is furnished by the study
of Jonez-Wenzl projectors of the Temperley-Lieb algebra. The degeneracy factors
(or eigenvalue amplitudes) nℓ then appear as the Markov traces of the ℓ-strand pro-
jectors. The reader is referred to [92] for further details.

We now return to the result (14.182). It may be rewritten [18] in terms of the
conjugate modulus q̃ = exp(−2πL/M), giving
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Z[g,e0] =

√
2
g

q̃−c/12

P(q̃2) ∑
m∈Z

sin
(

π(e0+2m)
g

)

sin(πe0)
q̃

(e0+2m)2

2g − (1−g)2

2g . (14.188)

Note that when going from q to q̃, the time and space directions have effectively
been swapped, and so (14.188) pertains to a cylinder geometry (with free boundary
conditions on the rims), meaning that the expansion is in terms of the bulk theory.
More precisely, in view of the decomposition (14.41) for a diagonal theory, (14.180)
is now replaced by

Z = ∑
h

|bh|2χ(c,h)(q̃
2) , (14.189)

where the sum is over the bulk conformal weights h, χ(c,h)(q) is a bulk character,
and bh is a matrix element with the boundary state corresponding to free boundary
conditions at the rim. Note that there is no multiplicity Λ(m,k), as in the first term
of (14.171), since the free boundary conditions do not allow loops to wrap around
the system in the time-like direction.

In particular setting h = 0 in (14.188) we can read off [18]

b2
0 = −

√
2
g

sin(π/g)

sin(πg)
(14.190)

for n̄ = n, from which the boundary entropy [96] can be determined as logb0.
As in the toroidal case, we end by giving some applications to polymers, follow-

ing Cardy [18]. For n̄ = n, simply setting n = 0, one recovers in the dilute (resp.
dense) case g = 3

2 (resp. g = 1
2 ), by using Euler’s pentagonal identity (resp. simple

algebra), that

Z

[
3
2
,

1
2

]
= 1 , Z

[
1
2
,

1
2

]
= 0 . (14.191)

This should be compared with (14.178). Non-trivial results are obtained by singling
out the O(n̄) term, i.e., by taking a derivative before going to the limit. This gives
for the dilute case

Z1 =
∞

∏
r=1

(1−qr)−1 ∑
k∈Z

k(−1)k−1q
3
2 k2−k+ 1

8 ∼ q5/8 (14.192)

and since Z = 1 this can be interpreted as the probability of having a single non-
contractible loop. For the dense case the O(n̄) term in Z is similarly

Z1 = q−1/24
∞

∏
m=1

(
1−qm− 1

2

)2
∼ q−1/24 . (14.193)
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Fig. 14.17 Continuum-limit view of the four different types of loops in the CBL model. In this
figure the annulus has been conformally mapped to the plane, and the “left rim” referred to in the
text has become the outer rim.

14.7.3 Conformal Boundary Loop Model

Continuum limit partition functions for the CBL model defined in section 14.6.6
have been written down by Jacobsen and Saleur [84]. In this context it is convenient
to define a more general model in which bulk loops have fugacity n or n, and loops
touching the left boundary have weight n1 or n1, where in all cases the overline
refers to non-contractible loops (i.e., loops that are not homotopic to a point). This
is illustrated in Fig. 14.17.

We have seen above how the transfer matrix T of any loop model on the annu-
lus can be decomposed into blocks Tℓ labeled by the number of non-contractible
loops ℓ. For the CBL model one may further decompose Tℓ into the blobbed (resp.
unblobbed) sector T b

ℓ (resp. T u
ℓ ) in which the leftmost non-contractible loop is

required (resp. forbidden) to touch the left rim of the annulus. Indeed, since a non-
contractible loop is conserved by definition, once it has been blobbed (i.e., touched
the boundary) it cannot subsequently be unblobbed. Therefore, Tℓ is upper block-
triangular in the basis

{
|b〉, |u〉

}
and the previous argument applies mutatis mu-

tandis.
The CBL model contains the ordinary O(n) loop model as the special case n1 =

n, but it is clear that its transfer matrix must contain many more states in order
to produce the correct weights for n1 6= n. Therefore, the conformal towers must
be more densely filled, and the spectrum generating functions must contain fewer
degeneracies. Since the loop model characters (14.183) contain just one subtraction,
it seems reasonable that the CBL characters for generic n1 6= n will not involve
any subtractions, i.e., they must be the generic characters (14.28). This is indeed
confirmed by numerical diagonalisation of the transfer matrix [84]. Combining this
with the result for the conformal weights (14.156), we conclude that the spectrum
generating functions for the blobbed and unblobbed sectors read

Zb
ℓ =

qhr,r+ℓ−c/24

P(q)
, Zu

ℓ =
qhr,r−ℓ−c/24

P(q)
. (14.194)
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To find out how to combine these sectors to obtain the complete partition func-
tion Z, one needs to know the multiplicities (eigenvalue amplitudes) of each sector.
These can be derived combinatorially [84], by using the line of reasoning [95, 94]
that we illustrated in section 14.7.2 for a simpler case. Parametrising the weights of
non-contractible loops as

n = 2coshα , n1 =
sinh(α + β )

sinhβ
(14.195)

the result reads

nb
ℓ =

sinh(ℓα + β )

sinhβ
, nu

ℓ =
sinh(ℓα −β )

sinh(−β )
. (14.196)

Supposing L is even, and setting ℓ = 2 j, the results (14.194) and (14.196) lead to

Z = q−c/24

[
∞

∑
j=0

sinh(2 jα + β )

sinhβ
qhr,r+2 j

P(q)
−

∞

∑
j=1

sinh(2 jα −β )

sinhβ
qhr,r−2 j

P(q)

]
(14.197)

If one further supposes β = rα with r integer this can be rewritten as

Z =
∞

∑
j=−[r/2]

sinh(2 j + r)α
sinhrα

Kr,r+2 j (14.198)

where ⌊. . .⌋ denotes the integer part, and Kr,s is given by (14.183).
As an example of an application to dense polymers (c = −2), we consider the

case n = n = 0 and n1 = n1 = 1 where only loops touching the boundary are allowed.
Then (14.197) can be cast in the form

Z =
q−1/24

P(q)

∞

∑
j=−∞

(−1) jq(4 j−1)2/32 . (14.199)

14.7.4 Two-Boundary CBL Model

The two-boundary extension of the CBL model was defined in section 14.6.8. In
particular, we recall the four different weights (14.163) of contractible loops. Since
we have constrained the width of the annulus L to be even, a non-contractible loop
cannot touch both rims of the annulus. We thus need only the following additional
three weights for non-contractible loops:
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n = 2cosχ

n1 =
sin[(u1 + 1)χ ]

sin(u1χ)

n2 =
sin[(u2 + 1)χ ]

sin(u2χ)
(14.200)

The exact continuum limit partition function, expressed in terms of all these
seven weights, has been derived by Dubail et al. [92]:

Z =
q−c/24

P(q) ∑
n∈Z

qhr12−2n,r12 (14.201)

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(u1 + u2 −1 + 2 j)χ ]sinχ
sin(u1χ)sin(u2χ)

qhr1+r2−1−2n,r1+r2−1+2 j

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(−u1 + u2 −1 + 2 j)χ ]sinχ
sin(−u1χ)sin(u2χ)

qh−r1+r2−1−2n,−r1+r2−1+2 j

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(u1 −u2 −1 + 2 j)χ ]sinχ
sin(u1χ)sin(−u2χ)

qhr1−r2−1−2n,r1−r2−1+2 j

+
q−c/24

P(q) ∑
j≥1

∑
n≥0

sin[(−u1 −u2 −1 + 2 j)χ ]sinχ
sin(−u1χ)sin(−u2χ)

qh−r1−r2−1−2n,−r1−r2−1+2 j

The five-term structure of this expression mirrors that of the principal critical ex-
ponents (14.164). The trigonometric factors inside the four last terms are the eigen-
value amplitudes, which can be derived using combinatorial [91] or algebraic [92]
means.

Obviously, an expression like (14.202) contains a wealth of exact probabilis-
tic information, which can be extracted explicitly for any special case of interest
(such as percolation). Moreover, it determines the complete operator content of the
two-boundary model, and the precise fusion rules of two one-boundary CBL type
boundary condition changing operators.

14.7.5 Fully Packed Loop Models

To write the exact continuum limit partition function of the FPL2 model of sec-
tion 14.5, we need the sector labels (ℓb, ℓg;Q) identified in section 14.6.5 as well
as the corresponding critical exponents ∆ℓb,ℓg;Q(eb,eg) of (14.153). The remaining
ingredients are the corresponding eigenvalue amplitudes Dℓb,ℓg;Q and the structure
of descendent states within each sector.

These can be obtained by noting [83] that the two Temperley-Lieb like structures
associated with each of the loop flavours (black and grey), with corresponding semi-
conserved quantum numbers ℓb and ℓg, decouple on the algebraic level. The last
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field, related to the conserved quantum number Q, essentially behaves as a free
boson. One has therefore a simple product form of (14.181)

Dℓb,ℓg;Q =
sin[(1 + ℓb)π fb]

sin(π fb)

sin[(1 + ℓg)π fg]

sin(π fg)
(14.202)

independently of Q. We have here as usual given different weights to non-contractible
loops:

nb = 2cos(π fb)

ng = 2cos(π fg) . (14.203)

A further consequence of this algebraic decoupling is that the characters describ-
ing the structure of descendent states factorise. The factors corresponding to quan-
tum numbers ℓb and ℓg are degenerate characters of the K type, while the last factor
corresponding to quantum number Q is just that of a free boson.

Assembling all this information we thus arrive at

Z =
q−c/24

P(q)3

∞

∑
Q=−∞

∞

∑
ℓb=0

∞

∑
ℓg=0

Dℓb,ℓg;Q(1−qℓb+1)(1−qℓg+1)q∆ℓb,ℓg;Q(eb,eg) (14.204)

where the sums over ℓb and ℓg are constrained so that all three labels (ℓb, ℓg;Q) have
the same parity.

It should be possible to endow one or both loop flavours of the FPL2 model with
(one- or two-boundary) CBL type boundary conditions, and work out the corre-
sponding partition function using the methods of sections 14.7.3–14.7.4.

14.8 Epilogue

We hope to have convinced the reader that loop models are a useful tool for deriv-
ing exact results about two-dimensional self-avoiding polygons and walks, and that
these models offer a fruitful testing ground for many, if not most, of the concepts
developed in two-dimensional conformal field theory.

There are many relevant issues about loop models that we have omitted in order
to keep this review to a reasonable length. Most importantly, we have focused here
mainly on the application of the Coulomb gas approach, and only mentioned very
briefly the results obtainable from integrability, combinatorics, quantum groups, etc.
Also, several exact results—often due to Cardy—are known about universal ampli-
tude ratios in loop models, such as the ratio between the mean area of a loop and its
squared ratio of gyration [97]. Other issues have been omitted because we feel that
they have not yet been sufficiently elucidated. This is the case for loop models in the
presence of quenched disorder, and for certain aspects of surface critical behaviour
in which the two sides of the annulus both sustain non-trivial boundary conditions.
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Another promising field of future research is that of several coupled loop models
(see [98] for an example).

Another limitation of this review resides of course in the number of loop mod-
els that we have treated. Roughly speaking, we have included here only models of
self-avoiding loops whose bulk critical properties are more-or-less fully understood,
and amenable to Coulomb gas analysis. Some interesting examples of loop models
which fall outside this criterion have been discussed by Fendley [99]. One important
model that we could actually have chosen to include is the dilute O(n) model on the
square lattice [100], which is related to the integrable Izergin-Korepin model [101],
and its two-loop generalisation, which is referred to as the DPL2 model in [70].

In any case, despite the effort dedicated to understanding two-dimensional loop
models, they remain a very active area of research to this date.
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Chapter 15
Stochastic Löwner Evolution and the Scaling
Limit of Critical Models

Bernard Nienhuis and Wouter Kager

15.1 Introduction

Great progress in the understanding of conformally invariant scaling limits of
stochastic models, has been given by the Stochastic Löwner Evolutions (SLE).
This approach has been pioneered by Schramm [46] and by Lawler, Schramm and
Werner [31]. It describes a one-parameter family of conformally invariant measures
of curves in the plane or a two-dimensional domain. This family is commonly re-
ferred to as SLEκ , where κ parametrizes the family. It has been shown to be the
scaling limit of many well-known and less well-known statistical lattice models.
These models are typically members of the families of critical and tricritical [40]
q-state Potts models [61] and of O(n) models [17], or believed to be in the corre-
sponding universality class.

SLE describes the scaling limit of various open, non-crossing, stochastic paths
on the lattice, which are, at least on one side, attached to the boundary. Therefore its
application to polygons is restricted in various ways. In the first place it describes
only the scaling limit. In many studies of lattice polygons, of course, the scaling
limit is considered the most interesting aspect. The restriction to open paths attached
to the boundary is more severe. This restriction has been lifted to some extent by
recursively considering domains bounded by closed paths resulting from a previous
SLE process. This approach applies only to paths that have a tendency to touch
themselves (without, of course crossing), and this generalization is not the subject
of this chapter. In most cases the paths under consideration by their nature occur
in extensive numbers. However, one may concentrate on one of them, and treat the
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interaction with the others only as an ingredient that defines the stochastic measure
of the path under consideration. This, in fact is precisely what SLE does.

So far the essential progress made by the SLE approach, does not consist of
the derivation of explicit unknown properties of the scaling limit. The properties it
proves have been known for decades in the physics community, without, however, a
proof being available. They were obtained by means of the Coulomb Gas (CG) [42]
approach, and by Conformal Field Theory (CFT) [14], or Bethe Ansatz and similar
techniques for integrable models [7]. Other properties were not known but can be
obtained by the same methods without more difficulty.

In this chapter we give a brief description of the meaning of SLE, proofs of
its basic properties, and a selection of its results (mostly without proof). For more
extensive treatments and proofs, we refer the reader to several existing reviews
which target different communities: Werner [54] from the mathematical perspec-
tive, Cardy [16] for physicists, and Kager e.a. [25] for both mathematicians and
physicists.

A conformally invariant stochastic measure of curves naturally brings together
the theory of conformal maps, stochastic calculus, and a description of curves. Al-
ready in 1923 Löwner1 combined curves and conformal maps [39]. He considered a
singly connected domain D of the complex plane (for example the upper half-plane
or the unit disk) and a path γs ∈ D starting from the boundary, and parametrized
by s > 0. He then considered the domains Ds from which the initial part of the
path is excluded: Ds = D\ γ[0,s]. For the conformal maps that map Ds back to D he
found a surprisingly simple differential equation in terms of s, provided a suitable
parametrization. Schramm [46] later used this equation to define a stochastic mea-
sure of paths. It turned out that he and others could prove many properties of this
measure by means of Löwner’s equation.

In the following sections we will discuss some of these properties and their appli-
cations to problems in statistical physics. Though mathematical rigor is an essential
ingredient of the progress made by this approach we will largely omit proofs, and
rather refer the reader to the above mentioned reviews and the original literature.
Only in section 3, treating the basics of SLE, do we include proofs of the various
theorems.

15.2 Conformal Maps

Conformal maps play an essential role in this chapter. This is not the place to treat
this subject extensively, but the notation and those few properties that are used fre-
quently are introduced in this section. A comprehensive treatment of the subject is
found in Ahlfors [1], and for a discussion more specific to SLE we refer to Kager
e.a. [25] and its appendix A.

We shall write C for the complex plane, and R for the set of real numbers.
The open upper half-plane {z : Im z > 0} is denoted by H, and the open unit disk

1 The spelling Loewner, while adopted by himself, is of later date.
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{z : |z| < 1} by D. The defining property of conformal maps is that they preserve
angles. Denoted in complex numbers this makes them holomorphic (there is no need
to include the antiholomorphic variety). The basis of conformal mapping theory is
the Riemann mapping theorem, which tells us that any simply connected domain D
can be mapped conformally onto the open unit diskD.

Theorem 1 (Riemann mapping theorem). Let D 6= C be a simply connected do-
main in C. Then there is a conformal map of D onto the open unit diskD.

This map is not unique, which follows from the fact that the unit disk can be
conformally mapped onto itself in multiple ways, as follows from the following:

Theorem 2. The conformal self-maps of the open unit disk D are precisely the
transformations of the form

f (z) = eiϕ z−a
1− āz

, |z| < 1, (15.1)

where a is complex, |a| < 1, and 0 ≤ ϕ ≤ 2π .

Thus it follows that the conformal map from D toD can be determined uniquely
by three real parameters. It immediately follows that between any two singly con-
nected domains there exists a three parameter family of conformal maps. We shall
consider only domains whose boundary is a continuous curve, and this implies that
the conformal maps we work with have well-defined limit values on the boundary.

Now suppose that D is a simply connected domain with a continuous boundary,
and that z1, z2, z3 and z4 are distinct points on ∂D, ordered in the counter-clockwise
direction. Then we can map D onto a rectangle (0,L)× (0,π) in such a way that the
arc [z1,z2] of ∂D maps onto [0, iπ ], and [z3,z4] maps onto [L,L+ iπ ]. The length L >
0 of this rectangle is determined uniquely, and is called the π-extremal distance
between [z1,z2] and [z3,z4] in D.

A compact subset K ofH such thatH\K is simply connected and K = K ∩H is
called a hull (it is basically a compact set bordering on the real line). For any hull K
there exists a unique conformal map, denoted by gK , which sendsH\K ontoH and
satisfies the normalization

lim
z→∞

(
gK(z)− z

)
= 0. (15.2)

This map has an expansion for z → ∞ of the form

gK(z) = z+
a1

z
+ . . .+

an

zn + . . . (15.3)

where all expansion coefficients are real. The coefficient a1 = a1(K) is called the
capacity of the hull K. Conformal maps that have this limit at ∞ are said to satisfy
the hydrodynamic normalization.

The capacity of a nonempty hull K is a positive real number, and satisfies a
scaling rule and a summation rule. The scaling rule says that if r > 0 then a1(rK)=
r2a1(K). The summation rule says that if J ⊂ K are two hulls and L is the closure
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of gJ(K \ J), then gK = gL ◦ gJ and a1(K) = a1(J)+ a1(L). The capacity of a hull
is bounded from above by the square of the radius of the smallest half-disk that
contains the hull and has its centre on the real line.

Fig. 15.1 The conformal map from H slit by a circular arc, to the whole of H. The map is shown
by the inverse image of the coordinate grid. The excluded arc is shown in gray.

15.3 Löwner Evolutions

In this section, we will first discuss the Löwner equation in a deterministic setting,
as it was conceived by Löwner himself. Before we enter into a mathematical discus-
sion, we will first give explicit examples of the ingredients and meaning of this cel-
ebrated equation. We will then show how one can describe a given continuous path
by a family of conformal maps, and we will prove that these maps satisfy Löwner’s
differential equation. Then we will prove that conversely, the Löwner equation gen-
erates a family of conformal maps, that may or may not describe a continuous curve.
Finally, we move on to the definition of the stochastic Löwner evolution. This sec-
tion is based on ideas from Lawler, Schramm and Werner [31], Lawler [29], and
Rohde and Schramm [44].

15.3.1 Describing a Path by the Löwner Equation

Suppose the upper half of the complex plane, H, is slit by a circular arc starting at
the real axis. When we exclude the points on this arc, what remains of H is still
simply connected, provided we do not extend the arc so far that it meets the real
axis again. Thus it follows that the slit upper half plane can be mapped onto the full
upper half-plane by a conformal map. This map can be written in closed form, and is
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shown in Fig. 15.1, by the coordinate grid of the target half plane, on the original slit
half plane. The figure shows that the interior of the arc shrinks strikingly under this
map. When the arc is extended so that it approaches the real axis again, the image
of the interior shrinks more and more, until after closure of the arc, its interior has
no image anymore.

Fig. 15.2 A simple path γt from the origin (left). The path up to the full dot is sent to the real axis
by gt (right). The original real axis is indicated in gray, and the image of the path and its image is
in black. The open point on γ[0,t ] has two images under gt .

Consider now a general simple (i.e. non-intersecting) path γt , inH, parametrized
by t, with γ0 = 0, see Fig. 15.2. We choose a point w = γt on the curve, indicated
by a full dot, and consider the subset of the upper half-plane that excludes the part
of the curve between the origin and w (or γ[0,t]). Now we construct a conformal map
gt , fromH\ γ[0,t] to the entire upper half plane. Clearly since γ[0,t] are now boundary
points, they are sent by gt to the real axis. Because the curve can be approached
from two sides, every point of γ[0,t) has two images on the real axis, but the image
of γt itself is unique. Löwner discovered, that by specifying the map such that it
approaches the identity at ∞, by choosing a suitable parametrization of γt , these
conformal maps gt satisfy the simple differential equation:

∂
∂ t

gt(z) =
2

gt(z)−gt(γt)
, (15.4)

which will be derived below. We note that from the definition gt(γt) is real. Thus it
follows that the path γt can be alternately defined by the family of confomal maps
gt or by the real function Ut ≡ gt(γt ). This surprising observation led Schramm to
apply it to a conformally invariant measure for curves in the plane. If the probability
measure of γt is conformally invariant, the law for γ[0,τ] is the same as for gt(γ[t,t+τ]).
Since Ut fully determines the curve γt , it is pertinent to investigate the law of Ut , see
subsection 15.3.3. The condition that the path is simple is unnecessary, as we shall
see now in a more formal treatment.

Suppose that γt (where t ≥ 0) is a continuous path inHwhich starts from γ0 ∈R.
The parameter t, to be defined later, will be referred to as time. We allow the path
to hit itself or the real line, but if it does, we require the path to reflect off into open
space immediately. In other words, the path is not allowed to enter a region which
has been disconnected from infinity by γ[0,t]∪R. To be specific, let us denote by Ht
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for t ≥ 0 the unbounded connected component ofH\ γ[0,t], and let Kt be the closure
of H \Ht . Then we require that for all 0 ≤ s < t, Ks is a proper subset of Kt . See
Fig. 15.3 for a picture of a path satisfying these conditions.

We further impose the conditions that for all t ≥ 0 the set Kt is bounded, so
that {Kt : t ≥ 0} is a family of growing hulls, and that the capacity of these hulls
eventually goes to infinity, i.e. limt→∞ a1(Kt) = ∞. The latter condition implies that
the path eventually has to escape to infinity (this is a necessary but not sufficient
condition for the hull to diverge, see e.g. section A.4 of [25]). Now let us state the
purpose of this subsection.

For every t ≥ 0 we set gt := gKt , and we further define the real-valued func-
tion Ut := gt(γt) (this is the point to which the tip of the path is mapped). The
purpose of this subsection is to prove that the maps gt satisfy a simple differential
equation, which is ‘driven’ by Ut . Ideas for the proof were taken from [31]. For a
different, probabilistic approach, see [29]. The first thing that we show, is that we
can choose the time parameterization of γ such that the capacity grows linearly in
time. Clearly, this fact is a direct consequence of the following theorem.

Theorem 3. Both a1(Kt ) and Ut are continuous in t.

Proof. The proof relies heavily on properties of π-extremal distance, and we refer
to the chapter on extremal length, sections 4.1–4.5 and 4.11–4.13, in Ahlfors [1] for
the details. We shall prove left-continuity first.

Without loss of generality we may assume that γ0 = 0. Fix t > 0, let R be a large
number, say at least several times the radius of Kt , and let CR be the upper half of
the circle with radius 2R centred at the origin. Fix ε > 0. Then by continuity of γt ,
there exists a δ > 0 such that |γt − γu| < ε/2 for all u ∈ (t −δ ,t). Now let Cε be the
circle with radius ε and centre γt , and let S be the arc of this circle in the domain Ht .
Then this set S disconnects Kt \Kt−δ from infinity in Ht−δ , see Fig. 15.3. Observe
that the set Kt \Kt−δ may be just a piece of γ , but that it can also be much larger, as
in the figure. S CR gt�Æ C1 C2
Fig. 15.3 A path γ . The two points represent γt and γt−δ , and the shaded area is the set Kt \Kt−δ .
For clarity, the arc CR is drawn much smaller than it is in the proof.

For convenience let us denote by Ω the part of the domain Ht−δ that lies be-
low CR. Let L be the π-extremal distance between S and CR in Ω . By the prop-
erties of π-extremal distance, because the circle with radius R and centre at γt lies
below CR, L must be at least log(R/ε)/2. Note that since π-extremal distance is in-
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variant under conformal maps, L is also the π-extremal distance between gt−δ (CR)
and gt−δ (S) in gt−δ (Ω). This allows us to find an upper bound on L .

To get this upper bound, we draw two concentric semi-circles C1 and C2, the
first hitting gt−δ (CR) on the inside, and the second hitting gt−δ (S) on the outside
as in Fig. 15.3 (this is always possible if R was chosen large enough). Note that by
the hydrodynamic normalization of the map gt−δ , we have an upper bound on the
radius of C1, which depends only on R. As is explained in Ahlfors, this means that
the π-extremal distance L satisfies an inequality of the form L ≤ log(C(R)/r),
where C(R) depends only on our choice of R, and r is the radius of the inner half-
circle C2. But L was at least log(R/ε)/2, implying that r can be made arbitrarily
small by choosing δ small enough. It follows that for every ε > 0 there exists a δ > 0
such that the set Kt,δ := gt−δ (Kt \Kt−δ ) is contained in a half-disk of radius ε . But
then by the summation rule of capacity a1(Kt)−a1(Kt−δ ) = a1(Kt,δ ) ≤ ε2, proving
left-continuity of a1(Kt ).

To prove left-continuity of Ut , let δ and ε be as above, and denote by gt,δ the
normalized map gKt,δ associated with the hull Kt,δ . It is clearly sufficient to show
that gt,δ converges uniformly to the identity as δ ↓ 0 (remember that Ut is defined
as gt(γt ) and refer to Fig. 15.3). To prove this, we may assume without loss of
generality that the set Kt,δ is contained within the disk of radius ε centred at the
origin, since the claim remains valid under translations over the real line. But for a
hull bounded within a radius ε the n-th order coefficient of the asymptotic expansion
of gt is bounded by εn+1 (see equation (A.11) in [25]). Therefore, for |z| > 2ε ,

|gt,δ (z)− z| ≤
∞

∑
n=1

an(Kt,δ )

|z|n ≤ ε
∞

∑
n=1

εn

(2ε)n = ε. (15.5)

This shows that the map gt,δ converges uniformly to the identity. Left-continuity
of Ut follows. In the same way we can prove right-continuity of a1(Kt) and Ut .

Theorem 4. Let γt be parameterized such that a1(Kt) = 2t. Then for all z ∈H, as
long as z is not an element of the growing hull, gt(z) satisfies the Löwner differential
equation

∂
∂ t

gt(z) =
2

gt(z)−Ut
, g0(z) = z. (15.6)

Proof. Our proof is based on the proof of theorem 3 and the Poisson integral for-
mula, which states that the map gt,δ satisfies

gt,δ (z)− z =
1
π

∫ ∞

−∞

Im g−1
t,δ (ξ )

gt,δ (z)− ξ
dξ , z ∈H\Kt,δ (15.7)

while the capacity a1(Kt,δ ) is given by the integral

a1(Kt,δ ) =
1
π

∫ ∞

−∞
Im g−1

t,δ (ξ )dξ . (15.8)
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First consider the left-derivative of gt(z). Using the same notation as in the proof
of theorem 3 we can write gt = gt,δ ◦gt−δ . We know that gt,δ converges to the iden-
tity as δ ↓ 0, and that the support of Im g−1

t,δ on the real line shrinks to the point Ut .
Moreover, using the summation rule of capacity and our choice of time parameter-
ization, equation (15.8) gives

∫
Im g−1

t,δ (ξ )dξ = 2πδ . Hence from equation (15.7)
we get

lim
δ↓0

gt(z)−gt−δ (z)
δ

= lim
δ↓0

1
πδ

∫ Im g−1
t,δ (ξ )

gt,δ
(
gt−δ (z)

)
− ξ

dξ =
2

gt(z)−Ut
. (15.9)

In the same way one obtains the right-derivative.

15.3.2 The Solution of the Löwner Equation

In the previous subsection, we started from a continuous path γ in the upper half-
plane. We proved that the corresponding conformal maps satisfy the Löwner equa-
tion, driven by a suitably defined continuous function Ut . In this subsection, we will
try to go the other way around. Starting from a driving function Ut , we will prove
that the Löwner equation generates a (continuous) family of conformal maps gt

ontoH. The proof follows Lawler [29].
So suppose that we have a continuous real-valued function Ut . Consider for some

point z ∈H\{0} the Löwner differential equation

∂
∂ t

gt(z) =
2

gt(z)−Ut
, g0(z) = z. (15.10)

This equation gives us some immediate information on the behaviour of gt(z). For
instance, taking the imaginary part we obtain

∂
∂ t

Im gt(z) =
−2 Im gt(z)

(Re gt(z)−Ut)2 +(Im gt(z))2 . (15.11)

This shows that for fixed z∈H, ∂t Im [gt(z)] < 0, and hence that gt(z) moves towards
the real axis. Further, points on the real axis will stay on the real axis.

For a given point z ∈H\{0}, the solution of the Löwner equation is well-defined
as long as gt(z)−Ut stays away from zero. This suggests that we define a time τ(z)
as the first time τ such that limt↑τ (gt(z)−Ut) = 0, setting τ(z) = ∞ if this never
happens. Note that as long as gt(z)−Ut is bounded away from zero, equation (15.11)
shows that the time derivative of Im [gt(z)] is bounded in absolute value by some
constant times Im [gt(z)]. For points z ∈H this shows that in fact, τ(z) must be the
first time when gt(z) hits the real axis. We set

Ht := {z ∈H : τ(z) > t}, Kt := {z ∈H : τ(z) ≤ t}. (15.12)



15 Stochastic Löwner Evolution and the Scaling Limit of Critical Models 433

Then Ht is the set of points in the upper half-plane for which gt(z) is still well-
defined, and Kt is the closure of its complement, i.e. it is the hull which is excluded
from Ht . Our goal is now to prove the following theorem.

Theorem 5. Let Ut be a continuous real-valued function, and for every t ≥ 0 let
gt(z) be the solution of the Löwner equation (15.10). Define the set Ht as in (15.12).
Then gt(z) is a conformal map of the domain Ht ontoH which satisfies

gt(z) = z+
2t
z

+ O
(
z−2) , z → ∞. (15.13)

Proof. It is easy to see from (15.10) that gt is analytic on Ht . We will prove (i) that
the map gt is conformal on the domain Ht , (ii) that this map is of the form (15.13),
and (iii) that gt(Ht) =H.

To prove (i), we have to verify that gt has non-zero derivative on Ht , and that it
is injective. So consider equation (15.10) for times t < τ(z). Then the differential
equation behaves nicely, and we can differentiate with respect to z to obtain

∂
∂ t

logg′t(z) = − 2
(gt(z)−Ut)2 . (15.14)

This gives |∂t logg′t(z)| ≤ 2/[Im gt(z)]2. But we know that Im [gt(z)] is decreasing.
Hence, if we fix t0 < τ(z), then the change in logg′t(z) is uniformly bounded for
all times t < t0. It follows that logg′t0(z) is well-defined and bounded and hence,
that g′t(z) is well-defined and non-zero for all t < τ(z).

Next, choose two different points z,w ∈H and let t < min{τ(z),τ(w)}. Then

∂
∂ t

log[gt(z)−gt(w)] = − 2
(gt(z)−Ut)(gt(w)−Ut)

. (15.15)

It follows that gt(z) 6= gt(w) for all t < min{τ(z),τ(w)}, using a similar argument
as above. We conclude that gt(z) is conformal on the domain Ht .

For the proof of (ii), we note that (i) implies that the map gt(z) can be expanded
around infinity. We can determine the form of the expansion by integrating the
Löwner differential equation from 0 to t. This yields

gt(z)− z =

∫ t

0

2ds
gs(z)−Us

. (15.16)

Consider this equation in the limit z → ∞. Then it is easy to see that the expansion
of gt(z) has no terms of quadratic or higher power in z, and no constant term. The
form (15.13) follows immediately.

Finally, we prove (iii), i.e. we will show that gt(Ht) = H. To see this, let w be
any point inH, and let t0 be a fixed time. Define ht(w) for 0 ≤ t ≤ t0 as the solution
of the problem

∂
∂ t

ht(w) = − 2
ht(w)−Ut0−t

, h0(w) = w. (15.17)
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Fig. 15.4 If the flow of a point z up to a time t0 is described by gt(z), then ht(w) as defined in the
text describes the inverse flow.

The imaginary part of this equation says that ∂t Im [ht(w)] > 0 and hence, that Im [ht(w)]
is increasing in time. Since |∂t ht(w)| ≤ 2/ Im [ht(w)], it follows that ht(w) is well-
defined for all 0 ≤ t ≤ t0.

We defined ht(w) such that it describes the inverse of the flow of some point z ∈
Ht0 under the Löwner evolution (15.10) (see Fig. 15.4). To see that this is indeed the
case, suppose that for some t between 0 and t0, ht0−t(w) = gt(z) for some z. Then it
follows from the differential equation for ht(w), that gt(z) satisfies equation (15.10).
This observation holds for all times t between 0 and t0. It follows that such a point z
exists, and that it is in fact determined by z = g0(z) = ht0(w). In other words, for
all w ∈H we have gt0(z) = w for some z ∈ Ht0 . This completes the proof.

We have just proved that a continuous functionUt leads, via the Löwner evolution
equation (15.10), to a collection of conformal maps {gt : t ≥ 0}. These conformal
maps are defined on subsets of the upper half-plane, namely the sets Ht = H \Kt ,
with Kt a growing hull. At this point we still don’t know if the maps gt(z) also
correspond to a path γt . But in the next subsection we shall take Ut to be a scaled
Brownian motion, and it is known [44] that in this case the Löwner evolution does
correspond to a path.

In a few cases the solution of the Löwner equation for γt and Ut , the pair of a
path and its corresponding driving term, is known [24]. To find such solutions one
may choose a form of Ut , so that Löwner’s equation can be solved. An alternative
is to find paths γt for which the conformal map gt is known, and simply calculate
Ut from the Löwner equation. Kager e.a. [24] calculated the traces γt for the cases
Ut constant, linearly dependent on t and proportional to t1/2 and to (1− t)1/2. In
the last case the behavior depends critically on the prefactor of the driving term: for
small coefficient the path spirals in to a point inH, and for large coefficient the path
ends on the real axis.
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15.3.3 Chordal SLE in the Half-Plane

In the previous subsection we showed that the Löwner equation (15.10) driven by
a continuous real-valued function generates a set of conformal maps. Furthermore,
these conformal maps may correspond to a path in the upper half-plane, as is sug-
gested by the conclusions of section 15.3.1. Chordal SLEκ in the half-plane is ob-
tained by taking scaled Brownian motion as the driving process. We give a precise
definition in this subsection.

Let Bt , t ∈ [0,∞), be a standard Brownian motion onR, starting from B0 = 0, and
let κ > 0 be a real parameter. For each z ∈H\{0}, consider the Löwner differential
equation

∂
∂ t

gt(z) =
2

gt(z)−
√

κBt
, g0(z) = z. (15.18)

This has a solution as long as the denominator gt(z)−
√

κBt stays away from zero.
For all z ∈ H, just as in the previous subsection, we define τ(z) to be the first

time τ such that limt↑τ(gt(z)−
√

κBt) = 0, and τ(z) = ∞ if this never happens, and
we set

Ht := {z ∈H : τ(z) > t}, Kt := {z ∈H : τ(z) ≤ t}. (15.19)

That is, Ht is the set of points in the upper half-plane for which gt(z) is well-defined,
and Ht = H \ Kt . The definition is such that Kt is a hull, while Ht is a simply-
connected domain. We showed in the previous subsection that for every t ≥ 0, gt

defines a conformal map of Ht onto the upper half-plane H, that satisfies the nor-
malization limz→∞(gt(z)− z) = 0.

Definition 1 (Stochastic Löwner Evolution). The family of conformal maps {gt :
t ≥ 0} defined through the stochastic Löwner equation (15.18) is called chordal
SLEκ . The sets Kt (15.19) are the hulls of the process.

The SLEκ process defined through equation (15.18) is called chordal, because
its hulls are growing from a point on the boundary (the origin) to another point on
the boundary (infinity). We will keep using the term chordal for processes going
between two boundary points (and not only for SLE processes). Other kinds of
processes might for instance grow from a point on the boundary to a point in the
interior of a domain. An example of such a process is radial SLE, see section 15.3.5.

It turns out that the hulls of chordal SLE in fact are the hulls of a continuous
path γt , that is called the trace of the SLE process. It is through this trace that the
connection with discrete models can be made. We shall discuss properties of the
trace in section 15.4, and we will look at the connection with discrete models in
section 15.5. The precise definition of the trace is as follows.

Definition 2 (Trace). The trace γ of SLEκ is defined by

γt := lim
z→0

g−1
t (z+

√
κBt), (15.20)
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where the limit is taken from within the upper half-plane.

At this point we would like to make some remarks about the choice of time pa-
rameterization. Chordal SLE is defined such that the capacity of the hull Kt satisfies
a1(Kt ) = 2t, and this may seem somewhat arbitrary. But in practice, the choice of
time parameterization does not matter for our calculations. The point is, that in SLE
calculations we are usually interested in expectated values of random variables at
the first time when some event happens, that is, at a stopping time. These values
are clearly independent from the chosen time parameterization (even if we make
a random change of time). For examples of such calculations, see sections 15.4.2
and 15.6.1.

Still, it is interesting to examine how a time-change affects the Löwner equa-
tion. So, let c(t) be an increasing and differentiable function defining a change of
time. Then ĝt := gc(t)/2 is a collection of conformal transformations parameterized
such that a1(K̂t) := a1(Kc(t)/2) = c(t). This family of transformations satisfies the
equation

∂
∂ t

ĝt(z) =
d
dt c(t)

ĝt(z)−
√

kBc(t)/2
, ĝ0(z) = z. (15.21)

In particular, if we choose c(t) = 2αt for some constant α > 0, then the conformal
maps ĝt satisfy

∂
∂ t

1√
α

ĝt(
√

αz) =
2

1√
α ĝt(

√
αz)−

√
κ
α Bαt

,
1√
α

ĝ0(
√

αz) = z. (15.22)

But the scaling property of Brownian motion shows that the driving term of this
Löwner equation is again a standard Brownian motion multiplied by

√
κ . This

proves the following lemma.

Lemma 1 (Scaling property of SLEκ ). If gt are the transformations of SLEκ
and α is a positive constant, then the process (t,z) 7→ ĝt(z) := α−1/2gαt(

√
αz)

has the same distribution as the process (t,z) 7→ gt(z). Furthermore, the pro-
cess t 7→ α−1/2Kαt has the same distribution as the process t 7→ Kt .

This lemma is used frequently in SLE calculations. Its significance will be shown
already in the following subsection, where we define the SLEκ process in an arbi-
trary simply connected domain. Meanwhile, the strong Markov property of Brown-
ian motion implies that chordal SLEκ has another basic property, which is referred
to as stationarity. Indeed, for any stopping time τ the process

√
κ(Bt+τ −Bτ) is itself

a standard Brownian motion multiplied by
√

κ . So if we use this process as a driv-
ing term in the Löwner equation, we will obtain a collection of conformal maps ĝt

which is equal in distribution to the normal SLEκ process.
It is not difficult to see that the process ĝt(z) in question is in fact the process

defined by
ĝt(z) := gt+τ

(
g−1

τ (z+
√

κBτ)
)
−
√

κBτ . (15.23)
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Indeed, taking the derivative of ĝt(z) with respect to t, we find that this process
satisfies the Löwner equation

∂
∂ t

ĝt(z) =
2

ĝt(z)−
√

κ (Bt+τ −Bτ)
, ĝ0(z) = z. (15.24)

This result establishes the following lemma.

Lemma 2 (Stationarity of SLEκ ). Let gt(z) be an SLEκ process inH, and let τ be
a stopping time. Define ĝt(z) by (15.23). Then ĝt has the same distribution as gt ,
and it is independent from {gt : t ∈ [0,τ]}.

Observe that the process ĝt of this lemma is just the original SLEκ process from
the time τ onwards, but shifted in such a way that the new process starts again in the
origin. The content of the lemma is that this new process is the same in distribution
as the standard SLEκ process, and independent from the history up to time τ . So it
is in this sense that the SLEκ process is stationary.

15.3.4 Chordal SLE in an Arbitrary Domain

Suppose that D ( C is a simply connected domain. Then the Riemann mapping
theorem says that there is a conformal map f : D →H. Now, let ft be the solution
of the Löwner equation (15.18) with initial condition f0(z) = f (z) for z ∈ D. Then
we will call the process { ft : t ≥ 0} the SLEκ in D under the map f . The connection
with the solution gt of (15.18), with initial condition g0(z) = z, is easily established.
Obviously we have ft = gt ◦ f , and if Kt are the hulls associated with gt , then the
hulls associated with ft are f−1(Kt ).

Now suppose that we want to consider an SLEκ trace that crosses some domain D
from a specified point a ∈ ∂D to another specified point b ∈ ∂D, a 6= b. Then we
can find a conformal map f : D →H such that f (a) = 0 and f (b) = ∞. The SLEκ
process from a to b in D under the map f is then defined as we discussed above,
with starting point f (a) = 0.

The map f , however, is not determined uniquely. But the maps f̃ of D onto H
that sends a to 0 and b to ∞, have only one free parameter (see section 15.2), scaling
the whole map: f̃ (z) = α f (z).

Lemma 1 then tells us that the trace of the SLEκ process in D under f̃ is given
simply by a linear time-change of the SLEκ process under f . But we explained in
the previous subsection that a time-change does not affect our calculations, and may
therefore be ignored. Hence, in the sequel, we can simply speak of SLE processes
in an arbitrary domain, without mentioning the conformal maps that take these pro-
cesses to the upper half-plane.
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15.3.5 Radial SLE

So far we have looked only at chordal Löwner evolution processes, which grow
from one point on the boundary of a domain to another point on the boundary. One
can also study Löwner evolution processes which grow from a boundary point to a
point in the interior of the domain. These are known as radial Löwner evolutions.
Radial SLEκ in the unit disk, for example, is defined as follows.

Let Bt again be Brownian motion, and κ > 0. Set Wt := exp(i
√

κBt), so that Wt

is Brownian motion on the unit circle starting from 1. Then radial SLEκ is defined
to be the solution of the Löwner equation

∂
∂ t

gt(z) = gt(z)
Wt + gt(z)
Wt −gt(z)

, g0(z) = z, z ∈D. (15.25)

The solution again exists up to a time τ(z) which is defined to be the first time τ
such that limt↑τ (gt(z)−Wt) = 0.

If we set

Ht := {z ∈D : τ(z) > t}, Kt := {z ∈D : τ(z) ≤ t}, (15.26)

then gt is a conformal map ofD\Kt = Ht ontoD. The maps are in this case normal-
ized by gt(0) = 0 and g′t(0) > 0. In fact it is easy to see from the Löwner equation
that g′t(0) = exp(t), and this specifies the time parameterization.

The trace of radial SLEκ is defined by γt := limz→Wt g−1
t (z), where now the limit

is to be taken from within the unit disk. The trace goes from the starting point 1 on
the boundary to the origin. By conformal mappings, one can likewise define radial
SLE in an arbitrary simply connected domain, growing from a given point on the
boundary to a given point in the interior.

15.3.6 Dipolar SLE

A third version of the SLE process is one that can terminate anywhere on a singly
connected segment of the boundary. This process is called dipolar SLE [6]. Consider
a domain D with three boundary points, x−, x0, and x+, with x0 ∈ (x−,x+). We
consider paths γt with γ0 = x0 terminating in the interval (x+,x−). The conformal
map gt sends γ[0,t] to the interval (x−,x+). It leaves x− and x+ invariant and satisfies
g′t(x−) = g′t(x+). The domain in which the defining equation is simplest is the stripS= {z ∈C : 0 < Im z < 2π}. The two boundary fixed points are x± = ±∞ and the
starting point x0 = 0:

∂t gt(z) =
2

tanh(gt(z)−
√

κBt)
, (15.27)
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with g0(z) = z and z ∈ S. Generalized versions of SLE called SLEκ ,ρ [38, 56] have
been constructed, in which the driving term contains a drift with respect to special
points on the boundary. This review will not be concerned with this generalization.

15.4 Properties of SLE

So far we have not said very much about the parameter κ . At first sight it looks very
innocent, as it scales only the parameter t. It can not, however, be eliminated from
Löwner’s equation, which indicates that it may not be as ineffectual as it seems. In
the deterministic context the behavior depends in a qualitative way on the prefactor
of the driving term (end of subsection 15.3.2 and [24]), when the driving term has
a square-root singularity. This convincingly contradicts the naive intuition that the
prefactor κ in (15.18) is irrelevant. In this section we show how SLEκ depends
qualitatively on its index.

First we shall see that the family of conformal maps {gt : t ≥ 0} that is the solu-
tion of the stochastic Löwner equation (15.18) does describe a continuous path. We
will look at the properties of this path, and we shall describe the connection with
the hulls {Kt : t ≥ 0} of the process. All of this work was done originally by Rohde
and Schramm [44]. We shall also see that SLE has some special properties in the
cases κ = 6 (locality) and κ = 8/3 (restriction), as was shown in [31] and [38]. We
end the section by giving the Hausdorff dimensions of the SLE paths, calculated by
Beffara [11, 10].

15.4.1 Continuity and Transience

In section 15.3.2 we proved that the solution of the Löwner equation is a family
of conformal maps onto the half-plane. We then raised the question whether these
conformal maps describe a continuous path. Rohde and Schramm [44] proved that
for chordal SLEκ this is indeed the case, at least for all κ 6= 8. The proof by Rohde
and Schramm does not work for κ = 8. But later, Lawler, Schramm and Werner [36]
proved that SLE8 is the scaling limit of the Peano curve winding around a uniform
spanning tree (more details follow in section 15.5). Thereby, they showed indirectly
that the trace is a continuous curve in the case κ = 8 as well. More precisely, the
following theorem holds.

Theorem 6 (Continuity). For all κ ≥ 0 almost surely the limit

γt := lim
z→0

g−1
t (z+

√
κBt) (15.28)

exists for every t ≥ 0, where the limit is taken from within the upper half-plane.
Moreover, almost surely γ : [0,∞)→H is a continuous path and Ht is the unbounded
connected component ofH\ γ[0,t] for all t ≥ 0.
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In the same paper, Rohde and Schramm also showed that the trace of SLEκ is
transient for all κ ≥ 0, that is, limt→∞ |γt | = ∞ almost surely. This proves that the
SLE process in the half-plane is indeed a chordal process growing from 0 to infinity.

15.4.2 Phases of SLE

The behaviour of the trace of SLEκ depends naturally on the value of the param-
eter κ . It is the purpose of this subsection to point out that we can discern three
different phases in the behaviour of this trace. The two phase transitions take place
at the values κ = 4 and κ = 8. A sketch of what the three different phases look like
is given in Fig. 15.5.

0 0 04 < � < 8 � � 8� � 4
Fig. 15.5 Simplified impression of SLE in the three different phases. The trace of the SLE process
is shown in black. The union of the black path and the grey areas represents the hull.

For κ ∈ [0,4] the SLEκ trace γ is almost surely a simple path, i.e. γs 6= γt for
all 0 ≤ t < s. Moreover, the trace a.s. does not hit the real line but stays in the upper
half-plane after time 0. Clearly then, the hulls Kt of the process coincide with the
trace γ[0,t].

When κ is larger than 4, the trace is no longer simple. In fact, for all κ > 4 every
point z ∈H\{0} a.s. becomes part of the hull in finite time. This means that every
point is either on the trace, or is disconnected from infinity by the trace. But as long
as κ < 8, it can be shown that the former happens with probability zero. Therefore,
for κ ∈ (4,8) we have a phase where the trace is not dense but does eventually
disconnect all points from infinity. In other words, the trace now intersects both
itself and the real line, and the hulls Kt now consist of the union of the trace γ[0,t]

and all bounded components ofH\ γ[0,t].
Finally, when κ ≥ 8 the trace becomes dense inH. In fact, we are then in a phase

where γ[0,∞) = H with probability 1, and the hulls Kt coincide with the trace γ[0,t]
again.
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15.4.3 Locality and Restriction

We discussed above the two special values of κ , 4 and 8, where SLE undergoes a
phase transition. Two other special values of κ , κ = 6 and κ = 8/3, have received
much attention from the beginning. At these values, SLEκ has some very specific
properties, that will be discussed in detail below.

15.4.3.1 The Locality Property of SLE6

Let us start by giving a precise definition of the locality property. Assume for now
that κ > 0 is fixed. Suppose that L is a hull in H which is bounded away from the
origin. Let Kt be the hulls of a chordal SLEκ process inH, and let K∗

t be the hulls of
a chordal SLEκ process inH\L, both processes going from 0 to ∞. Denote by TL the
first time at which Kt intersects the set L. Likewise, let T ∗

L be the first time when K∗
t

intersects L (note that in this case, T ∗
L is the hitting time of an arc on the boundary

of the domain). See Fig. 15.6 for an illustration comparing the traces of the two
processes in their respective domains.

LL(TL) �(T �L)0 0
Fig. 15.6 Comparison of two SLEκ processes from 0 to ∞, in the domain H (left) and in the
domain H \ L (right). If these processes have the same distribution up to the hitting time of the
set L, then we say that SLEκ has the locality property.

Chordal SLEκ is said to satisfy the locality property if for all hulls L bounded
away from the origin, the distribution of the hulls {Kt : t < TL} is the same as the
distribution of the hulls {K∗

t : t < T ∗
L }, modulo a time re-parameterization. Loosely

speaking, suppose that SLEκ has the locality property, and that we are only inter-
ested in the process up to the first time that it hits L. Then it doesn’t matter whether
we consider chordal SLEκ from 0 to ∞ in the domain H, or in the smaller do-
main H \L. Because the equivalence between these processes may involve a time
reparametrization, the hitting times TL and T ∗

L need not be the same, but all the hulls
in {Kt : t < TL} appear in {K∗

t : t < T ∗
L } in the same order.

It was first proved in [31] that chordal SLEκ has the locality property for κ = 6,
and for no other values of κ . Later, a much simpler proof appeared in [38]. A sketch
of the proof with a discussion of some consequences appears in [29].

So far, we defined the locality property for a chordal process in H, but it is clear
that by conformal invariance (invariance under conformal maps) we can translate
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the property to an arbitrary simply connected domain. It is also true that radial and
dipolar SLE6 have the same property. We shall not go into this further, but we would
like to point out one particular consequence of the locality property of SLE6.

Suppose that D is a simply connected domain with continuous boundary, and let
a, b and b′ be three distinct points on the boundary of D. Denote by I the arc of ∂D
between b and b′ which does not contain a (see Fig. 15.7 for an illustration). Let Kt

(respectively K′
t ) be the hulls of a chordal SLE6 process from a to b (respectively

b′) in D, and let T (respectively T ′) be the first time when the process hits I. Then
modulo a time-change, {Kt : t < T} and {K′

t : t < T ′} have the same distribution.
As a result, the hulls of dipolar SLE6 are the same as those of chordal SLE6 up to
the time the exit arc of the dipolar process is hit. Ia bb0(t)
Fig. 15.7 An SLEκ process aimed towards an arc I on the boundary of a domain.

15.4.3.2 The Restriction Property of SLE8/3

To define the restriction property, assume that κ ≤ 4 is fixed. Then the trace γ of
SLEκ is a simple path. Now suppose, as in our discussion of the locality property
above, that L is a hull in the half-plane which is bounded away from the origin. LetΨ
be the map defined by Ψ(z) := gL(z)−gL(0). Then Ψ is the unique conformal map
ofH\L ontoH such that Ψ (0) = 0, Ψ (∞) = ∞ and Ψ ′(∞) = 1. Now suppose that γ
never hits L. Then we let γ∗ be the image of γ under the map Ψ , that is γ∗t :=Ψ (γt).

We say that SLEκ has the restriction property if for all hulls L that are bounded
away from the origin, conditional on the event {γ[0,∞) ∩L = /0}, the distribution of
γ∗[0,∞) is the same as the distribution of the trace of a chordal SLEκ process in H,
modulo a time re-parameterization. In words, suppose that SLEκ has the restriction
property. Then the distribution of all paths that are restricted not to hit L, and which
are generated by SLEκ in the half-plane, is the same as the distribution of all paths
generated by SLEκ in the domainH\L.

SLE has the restriction property for κ = 8/3 and for no other values of κ . A
proof is given in [38] (a sketch of a proof appears in [29]), and in the same article it
was also shown that

P
[
γ[0,∞) ∩L = /0

]
= |Ψ ′(0)|5/8. (15.29)
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Again, the restriction property can be translated into a similar property for arbitrary
domains, and radial SLE8/3 also satisfies the restriction property. We refer to Lawler,
Schramm and Werner [38] and Lawler [29] for more information.

15.4.4 Hausdorff Dimensions

Consider an SLEκ process in the upper half-plane. If κ ≥ 8 the trace of the process
is space-filling, and therefore the Hausdorff dimension of the set γ[0,∞) is 2. But
for κ ∈ (0,8) the Hausdorff dimension of γ[0,∞) is a non-trivial number. Rohde and
Schramm [44] showed that its value is bounded from above by 1 + κ/8, and the
proof that for κ 6= 4 the Hausdorff dimension is in fact 1 + κ/8 was completed by
Beffara [11, 10]. In the physics literature the Hausdorff dimensions of the curves that
are believed to converge to SLE were predicted by Duplantier and Saleur [19, 45].

In the case κ > 4 the hull of SLEκ is not a simple path, and it is natural to
consider also the Hausdorff dimension of the boundary of Kt for some fixed value
of t > 0. Its value is conjectured to be 1+2/κ , because (based on a duality relation
derived by Duplantier [19]) it is believed that the boundary of the hull for κ > 4
is described by SLE16/κ . The dimension of the hull boundary is known rigorously
only for κ = 6 (where it is 4/3) and for κ = 8 (where it is 5/4). For κ = 6 this
follows from the study of the “conformal restriction measures” in [38], for κ = 8
this is a consequence of the strong relation between loop-erased random walks and
uniform spanning trees [36] (section 15.5.3).

15.5 SLE and Discrete Models

For a number of discrete lattice models, the scaling limit (of some of its observ-
ables) has been proven to be SLE. For many more models such a connection is only
conjectured. Typically the stochastic measure of these models induces a measure on
paths which in the scaling limit converges to the trace of an SLE process.

15.5.1 Critical Percolation

We define site percolation on the triangular lattice as follows. All vertices of the
lattice are independently coloured blue with probability p or yellow with probabil-
ity 1− p. An equivalent, visually more attractive, viewpoint is to say that we colour
all hexagons of the dual lattice blue or yellow with probabilities p and 1− p, respec-
tively. It is well-known that for p ≤ 1/2, there is almost surely no infinite cluster of
connected blue hexagons, while for p > 1/2 there a.s. exists a unique infinite blue
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cluster. This makes p = 1/2 the critical point for site percolation on the triangular
lattice. This critical percolation model is discussed here.

Let us for now restrict ourselves to the half-plane. Suppose that as our boundary
conditions, we colour all hexagons intersecting the negative real line yellow, and all
hexagons intersecting the positive real line blue. All other hexagons in the half-plane
are independently coloured blue or yellow with equal probabilities. Then there exists
a unique path over the edges of the hexagons, starting in the origin, which separates
the cluster of blue hexagons attached to the positive real half-line from the cluster
of yellow hexagons attached to the negative real half-line. This path is called the
chordal exploration process from 0 to ∞ in the half-plane. It is the unique path from
the origin such that at each step there is a blue hexagon on the right, and a yellow
hexagon on the left. See Fig. 15.8 for an illustration.

Fig. 15.8 Part of the percolation exploration process in the half-plane.

The exploration process depends only on the hexagons it passes. This makes it
possible to generate it dynamically as follows. Initially, only the hexagons on the
boundary receive a colour. Then after each step, the exploration process meets a
hexagon, which may or may not have been coloured. If it has not yet been coloured,
its colour is decided with equal probability for yellow or blue. Then the exploration
process proceeds always keeping the yellow hexagon on its left. Note that the tip of
the process cannot become trapped, because it is forced to reflect off into the open
if it meets an already coloured hexagon. This property it has in common with the
trace of a chordal SLE process. The process, here described for the half-plane, can
be generalized without difficulty to other domains. In addition, it is easy to envision
closed polygons to be generated by the percolation process. Each percolation con-
figuration in a domain of which the entire boundary has one colour, induces closed
polygons separating the blue from the yellow hexagons. The partition function of
such polygons is a sum over all possible closed polygons on the infinite hexagonal
lattice, with a weight 1/2 for each hexagon touching the polygon. If this polygon
is interpreted as one of the domain walls in the percolation process, each hexagon
touching the polygon has to be coloured with probability 1/2, all others being free.
Besides the stochastics of the local exploration behaviour of such paths, which is
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the same as that of the open path far from the boundary, this partition function also
induces the distribution of the length of such paths.

Smirnov [51] proved that in the continuum limit, the exploration process is
conformally invariant. Together with the results on SLE6 developed by Lawler,
Schramm and Werner, this should prove that the exploration process converges to
the trace of SLE6 in the half-plane. Thus, SLE6 may be used to calculate properties
of critical percolation. Some examples are described in section 15.6.

15.5.2 The Harmonic Explorer

The harmonic explorer is a random path similar to the exploration process of crit-
ical percolation. It was defined recently by Schramm and Sheffield as a discrete
process that converges to SLE4 [48]. To define the harmonic explorer, consider an
approximation of a bounded domain with hexagons, as in Fig. 15.9. As we did for
critical percolation, we partition the set of hexagons on the boundary of our domain
into two components, and colour the one component yellow and the other blue. The
hexagons in the interior are uncoloured initially.

?

Fig. 15.9 Left: the initial configuration for the harmonic explorer, with blue hexagons (dark faces),
yellow hexagons (white faces) and uncoloured hexagons (light faces). Right: a part of the harmonic
explorer process. The colour of the marked hexagon is determined as described in the text.

The harmonic explorer is a path over the edges of the hexagons that starts out on
the boundary with a blue hexagon on its right and a yellow hexagon on its left. It
turns left when it meets a blue hexagon, and it turns right when it meets a yellow
hexagon. The only difference with the exploration process of critical percolation
is in the way the colour of an as yet uncoloured hexagon is determined. For the
harmonic explorer this is done as follows.

Suppose that the harmonic explorer meets an uncoloured hexagon (see Fig. 15.9).
Let f be the function, defined on the faces of the hexagons, that takes the value 1
on the blue hexagons, the value 0 on the yellow hexagons, and is discrete harmonic
on the uncoloured hexagons (for each hexagon the value of f is the average of that
of its neighbors). Then the probability that the hexagon whose colour we want to
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determine is made blue, is given by the value of f on this hexagon. Proceeding
in this way, we obtain a path crossing the domain between the two points on the
boundary where the blue and yellow hexagons meet. In the scaling limit this path
converges to the trace of chordal SLE4.

15.5.3 Loop-Erased Random Walks and Uniform Spanning Trees

In this subsection we consider loop-erased random walks (LERW’s) and uniform
spanning trees (UST’s). We shall define both models first, and we will point out
the close relation between the two. Schramm [46] already proved that the LERW
converges to SLE2 under the assumption that the scaling limit exists and is confor-
mally invariant. In the same work, he also conjectured the relation between UST’s
and SLE8. The final proofs of these connections were given by Lawler, Schramm
and Werner in [36]. Their proofs hold for general lattices, but for simplicity, we
shall restrict our description here to finite subgraphs of the square grid δZ2 with
mesh δ > 0.

Suppose that G is a finite connected subgraph of δZ2. Let u be a vertex of G and
let V be a collection of vertices of G not containing u. Then the LERW from u to V
in G is defined by taking a simple random walk in G from u to V and erasing all its
loops in chronological order. More precisely, if

(
ω(0), . . . ,ω(TV )

)
are the vertices

visited by a simple random walk starting from u and stopped at the first time TV

when it visits a vertex in V , then its loop-erasure
(
β (0), . . . ,β (T )

)
is defined as

follows. We start by setting β (0) = ω(0). Then for n ∈ N we define inductively:
if β (n) ∈ V then T = n and we are done, and otherwise we set β (n + 1) = ω(1 +
max{m ≤ TV : ω(m) = β (n)}). In words: the next step is taken to be the last exit
from β (n). The path

(
β (0), . . . ,β (T )

)
is then a sample of the LERW in G from

u to V .
A spanning tree T in G is a subgraph of G such that every two vertices of G are

connected via a unique simple path in T . A uniform spanning tree (UST) in G is
a spanning tree chosen with the uniform distribution from all spanning trees in G.
There is an interesting connection between UST and LERW:

Theorem 7. The unique path between two distinct vertices u and v on a UST, is
distributed as the LERW from u to v.

Proof. There are several ways to see this connection. One proceeds via a Monte
Carlo (MC) process to generate UST. A MC process is a stochastic process of which
the stationary distribution is the measure one wants to sample. The MC process used
here is driven by a random walk on the graph G. Every time an edge is traversed by
the random walk it is included in the tree, at the expense of the edge of the newly
occupied node, by which the random walk left the node on its previous visit. Since
that edge is the first step from that node to the current position in the random walk,
the loop is removed. The edge added and the one removed need not be different.
That the uniform measure is stationary under this process, follows from the fact that
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for every move in the process there is precisely one counter move, and it is equally
probable. Moreover, when the walk starts in a node u, the first time it arrives in a
preselected subset V , the unique path from u to the arrival point in V is precisely a
LERW.

An interesting collorary of this result is that the LERW is symmetric between
beginning and end. This is not at all obvious from its definition. An algorithm to
generate UST’s, somewhat related to the MC process above is known as Wilson’s
algorithm [60].

Fig. 15.10 Examples of spanning trees on a rectangular graph. In the right-hand panel, the nodes in
the left and bottom boundary are fully connected. The thin curve from the lower right to the upper
left corner closely surrounds the tree, and is space filling. Such paths are called Peano curves.

The connection between LERW and SLE2 can be described as follows. Choose
a subgraph of Z2, with a single, connected boundary, and a UST on it. Figure 15.10
in the left panel shows a rectangular example with the tree indicated by solid bonds.
The unique path between a node u on the boundary and another node v has SLE2

as its scaling limit. When v (or its limiting point in the scaling procedure) is also on
the boundary in the chordal process, and if v is in the interior, it is radial SLE.

To see in what way UST converges to SLE8, consider the right panel of Fig. 15.10.
It also shows a rectangular subgraph of Z2 with a spanning tree. Now the left and
bottom boundary nodes are fully connected to each other. One can trace a path
which closely surrounds the spanning tree. For spanning trees on the square lattice
these paths are called Peano curves. It visits all the sites of a square lattice with
half the mesh size of the original lattice, while it never intersects itself. In general,
non-intersecting paths visiting every site of a graph once are called Hamiltonian
walks.

For this specific boundary condition on the spanning tree, such that all vertices
on the left and bottom of the rectangle are connected, the tree induces a Peano
curve which runs from the lower right corner to the upper left, and visits all sites in
between. It is this path which has chordal SLE8 as its scaling limit.

While we need open paths from the boundary to make the connection to SLE,
the LERW and UST also define closed polygons of well-defined distributions as
follows. Take a UST, and add one bond uniformly chosen from all edges not in-
cluded in the tree. This creates a closed polygon, with the properties of the LERW.



448 Bernard Nienhuis and Wouter Kager

The same distribution would be obtained by starting a LERW at some point in the
lattice, and terminating it the first time it visits the starting point after it has been
away from the starting point at least two steps. This last restriction is only to sup-
press trivial walks of two steps. A closed Peano curve can be defined by removing
one bond from the spanning tree, which necessarily cuts it in two. The closed Peano
curve surrounding each of the two parts is a closed polygon. These two polygons
together fill the original domain. The same distribution of polygons can be obtained
by adding an arbitrary bond to the tree, and taking the Peano curve which traces the
inside of the loop uniquely created by the extra bond.

15.5.4 Self-Avoiding Walks

A self-avoiding walk (SAW) of length n on the square lattice δZ2 with mesh δ >
0 is a nearest-neighbour path ω =

(
ω(0),ω(1), . . . ,ω(n)

)
on the vertices of the

lattice, such that no vertex is visited more than once. In this subsection we shall
restrict ourselves to SAW’s that start in the origin and stay in the upper half-plane
afterwards. The idea is to define a stochastic process, called the half-plane infinite
SAW, that in the scaling limit δ ↓ 0 is believed to converge to chordal SLE8/3.

Following [37] we write Λ+
n for the set of all SAW’s ω of length n that start at the

origin, and stay above the real line afterwards. For a given ω in Λ+
n , let Q+

k (ω) be
the fraction of walks ω ′ in Λ+

n+k whose beginning is ω , i.e. such that ω ′(i) = ω(i) for
0 ≤ i ≤ n. Define Q+(ω) as the limit of Q+

k (ω) as k → ∞. Then Q+(ω) is roughly
the fraction of very long SAW’s in the upper half-plane whose beginning is ω . It
was shown by Lawler, Schramm and Werner that the limit Q+(ω) exists [37].

Now we can define the half-plane infinite self-avoiding walk as the stochastic
process Xi such that for all ω =

(
0,ω(1), . . . ,ω(n)

)
∈ Λ+

n ,

P[X0 = 0,X1 = ω(1), . . . ,Xn = ω(n)] = Q+(ω). (15.30)

We believe that the scaling limit of this process as the mesh δ tends to 0 exists and is
conformally invariant. By the restriction property the scaling limit has to be SLE8/3,
as pointed out in [37]. At this moment it is unknown how the existence, let alone the
conformal invariance, of the scaling limit can be proved. However, the knowledge
of its properties is still growing [57].

Lawler, Schramm and Werner [37] also explain how one can define a natural
measure on SAW’s with arbitrary starting points, leading to conjectures relating
SAW’s to chordal and radial SLE8/3 in bounded simply-connected domains. The
article further discusses similar conjectures for self-avoiding polygons, and predic-
tions for the critical exponents of SAW’s that can be obtained from SLE. We shall
not go into these topics here.



15 Stochastic Löwner Evolution and the Scaling Limit of Critical Models 449

15.5.5 The Critical Ising Model

The Ising model is the prototypical model for a phase transition. It is solvable not
only at the critical point, but also at other temperatures. In the physics literature the
conformal invariance of its scaling is almost always taken for granted. As a conse-
quence there were not many attempts by physicists to formally prove this property.
However, the model is so extensively studied and so much is known about it in detail
that it may well be that some assertions in the physics literature of the conformal
invariance of certain correlation functions, are open to complete proof.

Only recently Smirnov [53] presented a formal proof that some observables in
the scaling limit of the Ising model are conformally invariant, and as a consequence
are SLE16/3. This proof is based on an exploration process of the Fortuin-Kasteleyn
random cluster [23] representation of the model. This connection will be discussed
in the next section, but the percolation exploration process, and that exploring the
UST, discussed in the previous subsections 15.5.1 and 15.5.3 are examples of it.
What Smirnov was able to prove is that the probability that a particular point z is
on the trace of the exploration process, is the absolute value of a discrete analytic
function of z. The phase of this function is proportional to the winding angle at
which the trace passes z.

15.5.6 The Potts Model

So far in this section we discussed relations between SLE at specific values of κ
to certain statistical lattice models. The results of SLE however suggest a further
connection to continuous families of models. This subsection deals with the q-state
Potts model, a natural generalization of the Ising model, which has q = 2. Below we
will give a standard treatment [9], which relates the partition sum of the Potts model
to an ensemble of multiple paths on the lattice. In the scaling limit these paths will
be the candidates for the SLE processes.

The Potts model has on each site of a lattice a variable s j which can take values
in {1,2, . . . ,q}. Of these variables only nearest neighbours interact such that the
energy is −1 if both variables are in the same state and 0 otherwise. The canonical
partition sum is

Z = ∑
{s}

exp

(
β ∑

〈 j,k〉
δs j ,sk

)
. (15.31)

The summation in the exponent is over all nearest-neighbour pairs of sites, and
the external summation over all configurations of the s j. The model is known to
be disordered at high temperatures, and ordered at low temperatures. Here we are
interested in the behaviour at the transition.

In order to make the connection with a path on the lattice, we express this par-
tition sum in a high-temperature expansion, i.e. in powers of a parameter which is
small when β is small. The first step is to write the summand as a product:
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Fig. 15.11 Graph in the cluster expansion of the Potts model in a rectangular domain. The nodes
of the left and bottom boundary are fully connected, so that there is one open path, from the top
left to the bottom right corner.

Z = ∑
{s}

∏
〈 j,k〉

[
1 +(eβ −1)δs j,sk

]
. (15.32)

The product can be expanded in terms in which at every edge of the lattice a choice
is made between the two terms 1 and (eβ −1)δs j,sk . In a graphical notation we place
a bond on every edge of the lattice where the second term is chosen, see Fig. 15.11.
For each term in the expansion of the product the summation over the s-variables is
trivial: if two sites are connected by bonds, their respective s-variables take the same
value, and are independent otherwise. As a result the summation over {s} results in
a factor q for each connected component of the graph. Hence

Z = ∑
graphs

(eβ −1)bqc, (15.33)

where c is the number of connected components of the graph and b the number
of bonds. This expansion is known by the name of Fortuin-Kasteleyn [23] cluster
model. Note that, while q has been introduced as the (integer) number of states, in
this expansion it can take any value.

It is convenient to rewrite the cluster expansion as an expansion of paths on a new
lattice, called the surrounding lattice. The edges of the original lattice correspond to
the vertices of the surrounding lattice. The clusters on the original lattice are rewrit-
ten into polygon decompositions of the new lattice. Every vertex of the surrounding
lattice is separated into two non-intersecting path segments. These path segments
intersect the corresponding edge of the original lattice if and only if this edge does
not carry a bond of the graph, as follows:
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As a result of these transformations the new lattice is decomposed into a collection
of non-intersecting paths, as indicated in Fig. 15.11. Notice that every component
of the original graph is surrounded by one of these closed paths, but also the closed
circuits of the graph are inscribed by these paths. By Euler’s relation the number
of components c of the original graph can be expressed in the number of bonds b,
the total number of sites N and the number of polygons p: c = (N − b + p)/2. An
alternative expression for the partition sum is then

Z = ∑
graphs

(
eβ −1√

q

)b

q(N+p)/2. (15.34)

At the critical point βc the relation exp(βc) = 1+
√

q holds, so that the partition sum
simplifies.

We will now consider this model at the critical point on a rectangular domain.
The lattice approximation of this domain is chosen such that the lower-left corner
of the rectangle coincides with a site of the lattice, while the upper-right corner
coincides with a site of the dual lattice. The sides of the rectangle are parallel to the
edges of the lattice, as in Fig. 15.11. We choose as boundary condition that all edges
that are contained in the left and lower sides of the rectangle carry bonds, and all
edges that intersect the right and upper sides perpendicularly carry no bonds. For
the spin variables this means that all the spins on the left and lower sides are in the
same state, while all other spins are unconstrained.

In such an arrangement the diagrams in (15.34) include one path from the lower-
right to the upper-left corner. All further paths are closed polygons, see Fig. 15.11.
We take the scaling limit by covering the same domain with a finer and finer mesh.
It is believed [44] that in the scaling limit the measure on the paths approaches that
of chordal SLEκ traces. From e.g. the Hausdorff dimension [10, 45] the relation
between κ and q is

q = 2 + 2cos(8π/κ) (15.35)

where 4 ≤ κ ≤ 8. Only in a few cases has this relationship between SLEκ and the
Potts partition sum been made rigorous. For instance, in the limit q → 0, the graph
expansion reduces to the uniform spanning tree, which has SLE8 as its scaling limit.

15.5.7 The O(n) Model

We now turn to the O(n) model, which is another well-known model already dis-
cussed in Chapter 1, where a high-temperature expansion results in a sum over
paths. Here the dynamic variables are n-component vectors of a fixed length, and the
Hamiltonian is invariant under rotations in the n-dimensional space. The simplest
high-temperature expansion is obtained when the Boltzmann weight is chosen as

∏
〈 j,k〉

(1 + x si · s j), (15.36)
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where the product is over nearest neighbours on a hexagonal lattice. The partition
sum is obtained by integrating this expression over the directions of the spin vectors.
As for the Potts model, one can expand the product and do the bookkeeping of the
terms by means of graphs. In each factor in (15.36) the choice of the second term
is indicated by a bond. Then the graphs that survive the integration over the spin
variables have only even vertices, i.e. on the hexagonal lattice vertices with zero or
two bonds. As a result the graphs consist of paths on the lattice. In a well-chosen
normalization of the measure and the length of the spins, the partition sum is a sum
over even graphs

Z = ∑
graphs

xLnM, (15.37)

where M is the number of closed loops, and L their combined length. Note that
this expression for the partition sum is well-defined also when the number of spin
components n is not integer. It is known [8, 41] that the critical point is at xc =
[2 + (2 − n)1/2]−1/2 for 0 ≤ n ≤ 2. When x is larger than this critical value, the
model also shows critical behaviour.

Consider now this model on a bounded domain, and take a correlation function
between two spins on the boundary. The diagrams that contribute to this function
contain one path between the two specified boundary points and any number of
closed polygons in the interior. We conjecture that at the critical value of x in the
scaling limit, the measure on the paths between the two boundary spins approaches
that of chordal SLEκ for n =−2cos(4π/κ) and 8/3≤ κ ≤ 4. For larger values of x,
the scaling limit would again be SLEκ , with the same relation between κ and n, but
now with 4 ≤ κ ≤ 8.

To conclude this section, we remark that the same partition sum (15.37) can
also be viewed as the partition sum of a dilute Potts model on the triangular lat-
tice, described in [43]. In this variant of the Potts model the spins take values in
{0,1,2, . . . ,q}. The model is symmetric under permutations of the q positive values.
The name dilute comes from the interpretation of the neutral value 0 as a vacant site.
If neighbouring sites take different values, then one of them takes the value 0. The
Boltzmann weight is a product over the elementary triangles of weights that depend
on the three sites at the corners of the triangle. We take this weight to be 1 when all
three sites are in the same state, vacant or otherwise. Triangles with one or two va-
cant sites have weights xy and x/y, respectively. The partition sum can be expanded
in terms of domain walls between sites of different values. This expansion takes the
form of (15.37) for y12 = q = n2, which is the locus of the phase transition between
an ordered phase and a disordered phase. Within this locus, the region with x > xc

is a second-order transition. In the regime x < xc the transition is discontinuous, and
the position x = xc separates the two regimes and is called the tricritical point. When
q = x = 1 the site percolation problem on the triangular lattice is recovered, which
is known to converge to SLE6 in the scaling limit.
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15.6 SLE Computations and Results

In this section we discuss some of the results that have been obtained from calcu-
lations involving SLE processes. Our aim in this section is not only to provide an
overview of these results, but also to give an impression of the typical SLE compu-
tations involved, using techniques from stochastic calculus and conformal mapping
theory.

This section is organized as follows: In the first subsection we discuss sev-
eral SLE calculations independently from their connection with other models. The
results we obtain will be key ingredients for further calculations. The second subsec-
tion gives a brief overview of how SLE can be applied to calculate the intersection
exponents of Brownian motion. Finally, we will discuss results on critical percola-
tion that have been obtained from its connection with SLE6.

15.6.1 Several SLE Calculations

The purpose of this subsection is to show what kind of probabilities and corre-
sponding exponents of events involving chordal SLE processes can be calculated.
The results we find in this subsection are for whole ranges of κ , and might therefore
have applications in various statistical models. In this overview we do not include
proofs and extensive calculations. These can be found in [25] with references to the
original literature.

15.6.1.1 Crossing and Passage Probabilities

Consider a chordal SLEκ process inside the rectangle RL := (0,L)× (0,π), which
goes from iπ to L. If κ > 4 this process will at some random time τ hit the right
edge [L,L+ iπ ] of the rectangle, as in Fig. 15.12. Suppose that E denotes the event
that up to this time τ , the SLE process has not hit the lower edge of the rectangle.
Then the following holds:

Theorem 8. The SLEκ process as described above satisfies, for κ > 4,

P[E] ≍ exp

[
−
(
1− 4

κ
)
L

]
as L → ∞, (15.38)

where ≍ indicates that each side is bounded by some constant times the other side.

The theorem in this form is proved in [25]. Since the definition of chordal SLE
in any domain is based on that in the upper half-plane, the first step in the proof is a
mapping of the rectangle toH.

The original form of the theorem is more general: Consider again an SLEκ pro-
cess crossing the rectangle RL from iπ to L. On the event E the trace γ has crossed
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L0i� 0 1(T0)(�) 	
Fig. 15.12 An SLE process crossing a rectangle, and its translation to the upper half-plane. The
darker grey areas represent the hulls of the processes.

the rectangle without hitting the bottom edge. So conditional on this event, the π-
extremal distance between [0, iπ ] and [L,L + iπ ] in RL \Kτ is well-defined. Let us
call this π-extremal distance L . Then one can prove the following generalization
of theorem 8 [31].

Theorem 9. For any λ ≥ 0 and κ > 4,

E[1E e−λL ] ≍ exp
[
−u(κ ,λ )L] as L → ∞, (15.39)

where

u(κ ,λ ) = λ +
κ −4 +

√
(κ −4)2 + 16κλ

2κ
. (15.40)

The exponent u(κ ,λ ) is called the one-sided crossing exponent, because it mea-
sures the extremal distance on one side of an SLE process crossing a rectangle. Ob-
serve that u(κ ,λ ) reduces to the exponent 1− 4/κ for λ = 0 as it should, because
in this case theorem 9 is completely analogous to theorem 8.

There is an analogue of the one-sided crossing exponent for radial SLE, which
we shall discuss only briefly here. The setup is as follows. We consider radial SLEκ
for any κ > 0, and set At := ∂D \Kt . Then the set At is either a piece of arc of
the unit circle, or At = /0. Let r > 0 and let T (r) be the first time when the SLE
process hits the circle {z : |z| = r}. Denote by E the event that AT (r) is non-empty.
On the event E , let L be the π-extremal distance between the circles {z : |z| = 1}
and {z : |z| = r} inD\KT(r), see Fig. 15.13.

Theorem 10. For all λ > 0 and κ > 0,

E[1E e−λL ] ≍ r−ν(κ ,λ ) as r ↓ 0, (15.41)

where

ν(κ ,λ ) =
8λ + κ −4 +

√
(κ −4)2 + 16κλ

16
. (15.42)

We call ν(κ ,λ ) the annulus crossing exponent of SLEκ . A detailed proof of the
theorem can be found in [32].

So far, we have considered several crossing events of SLE processes. A different
kind of event, namely the event that the trace of SLE passes to the left of a given
point z0, was studied by Schramm in [47].
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KT (r)r 1
Fig. 15.13 An SLE process crossing an annulus.

Theorem 11. Let κ ∈ [0,8) and z0 = x0 + iy0 ∈H. Suppose that E is the event that
the trace γ of chordal SLEκ passes to the left of z0. Then

P[E] =
1
2

+
Γ
( 4

κ
)

√
π Γ

( 8−κ
2κ
) 2F1

(
1
2
,

4
κ

;
3
2

;−x2
0

y2
0

)
x0

y0
. (15.43)

This expression played an interesting role in the proof by Smirnov [51] that the
percolation exploration process has SLE6 as its scaling limit. When the half plane is
mapped onto a unilateral triangle with the origin, ∞ and another real point mapped
to corners of the triangle, the hypergeometric function appearing in the theorem for
κ = 6 simplifies to a simple linear function. This suggested that things might become
simpler for this value of κ and for a lattice model with hexagonal symmetry, in the
case of site percolation on the triangular lattice.

15.6.2 Intersection Exponents of Planar Brownian Motion

One of the first successes of SLE was the determination of the intersection expo-
nents of planar Brownian motion. One way of defining these exponents is as fol-
lows (see reference [30], which also presents alternative definitions). Let k ≥ 2
and p1, . . . , pk be positive integers. At time t = 0, from each of the points (0, j)
(for j ∈ {1, . . . ,k}) we start p j planar Brownian motions. Then we can define an
exponent ξ (p1, . . . , pk) from the probability that at time t none of the Brownian
walkers has hit the path of another one that started at a different initial position.
Formally, denote by B

j
t the union of the traces of the p j Brownian motions started

from (O, j) up to time t. Then

P
[
∀i 6= j ∈ {1, . . . ,k},Bi

t ∩B
j
t = /0

]
≍
(√

t
)−ξ (p1,...,pk) (15.44)
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when t → ∞. The exponent ξ (p1, . . . , pk) is called the intersection exponent be-
tween k packets of p1, . . . , pk Brownian motions.

If we further require that the Brownian motions stay in the upper half-plane, we
get different exponents ξ̃ (p1, . . . , pk) defined by

P
[
∀i 6= j ∈ {1, . . . ,k},Bi

t ∩B
j
t = /0 and B

i
t ⊂H]≍ (√t

)−ξ̃ (p1,...,pk) (15.45)

when t → ∞. We could also condition on the event that the Brownian motions stay
in the upper half-plane. The corresponding exponents are ξ̂ (p1, . . . , pk). They are
related to the previous half-plane exponents by

ξ̂ (p1, . . . , pk) = ξ̃ (p1, . . . , pk)− (p1 + . . .+ pk), (15.46)

since the probability that a Brownian motion started in the half-plane stays in the
half-plane up to time t decays like t−1/2.

Duplantier and Kwon [20] predicted the values of the intersection exponents
ξ (p1, . . . , pk) and ξ̂ (p1, . . . , pk) in the case where all pi are equal to 1. In the series
of papers [31, 32, 33, 34], Lawler, Schramm and Werner confirmed these predictions
rigorously, and generalized them. Here, we will give an impression of the arguments
used in the first paper [31], and then we will summarize the main conclusions of the
series.

15.6.2.1 Intersection Exponents Generalized

In [30] Lawler and Werner show how the definition of the Brownian intersection
exponents can be extended in a natural way. This leads to the definition of the expo-
nents ξ̃ (λ1, . . . ,λk) for all k ≥ 1 and all non-negative real numbers λ1, . . . ,λk, and of
the exponents ξ (λ1, . . . ,λk) for all k ≥ 2 and nonnegative real numbers λ1, . . . ,λk,
at least two of which must be at least 1.

It is then convenient to define the exponents not in terms of ordinary Brownian
motions, but of Brownian excursions [30, 31]. A Brownian excursion in a domain
is a measure of Brownian motions up to the time they hit the boundary, in the limit
that the starting point is taken to the boundary, with an appropriate normalization
for the measure to remain bounded and non-zero. Let RL be the rectangle (0,L)×
(0,π), and denote by ω the path of a Brownian excursion in RL started from the
left side. Let A be the event that the Brownian excursion crosses the rectangle from
the left to the right. In other words that the right boundary is hit before the bottom
or top boundary is hit. On this event, let D+ and D− be the domains remaining
above and below ω in RL \ω , respectively, and let L+ and L− be the π-extremal
distances between the left and right edges of the rectangle in these domains. We
refer to Fig. 15.14 for an illustration.

By symmetry, the distributions of L+ and L− are the same. The exponent
ξ̃ (1,λ ) is characterized by
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Fig. 15.14 An SLE6 trace γ and a Brownian excursion ω crossing a rectangle.

EB[1A e−λL+] = EB[1A e−λL−] ≍ e−ξ̃(1,λ )L as L → ∞ (15.47)

where EB is used to indicate expectation with respect to the Brownian excursion
measure. Likewise, ξ̃ (λ+,1,λ−) is characterized by

EB[1A e−λ+L+e−λ−L− ] ≍ e−ξ̃(λ+,1,λ−)L as L → ∞. (15.48)

It is quite remarkable that the weighting of the crossing event with the π-extremal
distance has the same effect as the conditioning on not hitting the path of another
Brownian excursion.

Another major result from [30] is the theorem below, which gives the so-called
cascade relations between the Brownian intersection exponents. Together with an
analysis of the asymptotic behaviour of the exponents (theorems 11 and 12 in [30]),
these relations show that it is sufficient to determine the exponents ξ (1,1,λ ),
ξ̃ (1,λ ) and ξ̃ (λ ,1,λ ) for λ ≥ 0 to know all the intersection exponents.

Theorem 12. The exponents ξ̃ (λ1, . . . ,λk) and ξ (λ1, . . . ,λk) are invariant under
permutations of their arguments. Moreover, they satisfy the following cascade re-
lations:

ξ̃ (λ1, . . . ,λk) = ξ̃
(
λ1, . . . ,λ j−1, ξ̃ (λ j, . . . ,λk)

)
; (15.49)

ξ (λ1, . . . ,λk) = ξ
(
λ1, . . . ,λ j−1, ξ̃ (λ j, . . . ,λk)

)
. (15.50)

These relations not only determine all of the ξ̃ in terms of a few, they also give
a restriction on what form these can take. The final expressions can be computed by
making use of SLE. Since the argument is relatively short, we give it here.
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15.6.2.2 An Example Calculation

Suppose that we start an SLE6 process from iπ to L to the same rectangle RL in
which the Brownian excursion ω is already defined. In what follows, it is crucial
that this process, as well as the Brownian excursion, have the locality property. In
our present setup, this implies that as long as the SLE6 trace does not hit ω , it doesn’t
matter whether we regard it as an SLE6 in the domain RL or in the domain D+. Since
SLEκ has this property only for κ = 6, the following argument works only for this
special value of κ .

Let us denote by γ the trace of the SLE6 process up to the first time that it
hits [L,L + iπ ], and let E be the event that γ is disjoint from ω and that ω crosses
the rectangle from left to right. See Fig. 15.14. On the event E , the π-extremal dis-
tance between [0, iπ ] and [L,L+ iπ ] in the domain between γ and ω is well-defined.
We call this π-extremal distance L . To obtain the value of ξ̃ (1,λ ), our strategy is
to express the asymptotic behaviour of f (L) = E[1E exp(−λL )] in two different
ways.

On the one hand, when ω is given, 1E exp(−λL ) is comparable to exp[−u(6,λ )L+]
by theorem 9. We therefore get

f (L) ≍ EB[1A e−u(6,λ )L+] ≍ e−ξ̃ (1,u(6,λ ))L. (15.51)

On the other hand, when γ is given, the distributions of L and L− are the same
by the conformal invariance of the Brownian excursion. But also, given L+, the
probability of the event E is comparable to exp(−L+/3) by theorem 8. Therefore

f (L) ≍ EB[1A e−L+/3e−λL−] ≍ e−ξ̃ (1/3,1,λ )L. (15.52)

By the cascade relations, ξ̃ (1/3,1,λ ) = ξ̃
(
1, ξ̃ (1/3,λ )

)
. Hence, comparing the two

results we obtain

ξ̃ (1/3,λ ) = u(6,λ ) =
6λ + 1 +

√
1 + 24λ

6
(15.53)

since ξ̃ (1,λ ) is strictly increasing in λ . Finally, this result gives us for example
ξ̃ (1,λ ), because ξ̃ (1/3,1/3) = 1, and then the cascade relations give

ξ̃ (1,λ ) = ξ̃
(
ξ̃ (1/3,1/3),λ

)
= ξ̃

(
1/3, ξ̃(1/3,λ )

)
. (15.54)

15.6.2.3 Summary of Results

As we mentioned before, the series of papers by Lawler, Schramm and Werner [31,
32, 33, 34] led to the determination of all Brownian intersection exponents we de-
fined above. We state their conclusions in a few equations.

For all integers k ≥ 2 and all λ1, . . . ,λk ≥ 0,
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ξ̃ (λ1, . . . ,λk) =
1

24

[
1 +

k

∑
j=1

(√
1 + 24λ j−1

)]2

− 1
24

(15.55)

For all integers k ≥ 2 and all λ1, . . . ,λk ≥ 0, at least two of which are at least 1,

ξ (λ1, . . . ,λk) =
1

48

[
k

∑
j=1

(√
1 + 24λ j−1

)]2

− 1
12

(15.56)

For k = 2 the requirement that at least two of the λ be ≥ 1, may be replaced by
λ1 > 1 and λ1 ∈Z and λ2 ≥ 0.

To the physicist these exponents, based on π-extremal distance, may seem artifi-
cial, but for integer λ they are still the intersection exponents of packets of Brownian
motions. It is worth noting also that those exponents need not be rational.

From earlier work of Lawler [26, 27, 28], it is known that some of these expo-
nents are related to the Hausdorff dimensions of special subsets of the Brownian
paths. Indeed, suppose that we denote by B[0,1] the trace of a planar Brownian
motion up to time 1. Then the Hausdorff dimension of its frontier (the boundary
of the unbounded connected component of C \B[0,1]), is 2− ξ (2,0) = 4/3. The
Hausdorff dimension of the set of cut points (those points z such that B[0,1]\{z} is
disconnected) is 2−ξ (1,1) = 3/4. Finally, the set of pioneer points of B[0,1] (those
points z such that for some t ∈ [0,1], z = Bt is in the frontier of B[0,t]) has Hausdorff
dimension 2− ξ (1,0) = 7/4. Not only do these exponents figure in the percolation
problem, they are precisely the Hausdorff dimension of the same subsets of the per-
colation exploration process, i.e. the frontier, the cut points and the pioneer points.
This shows how closely the random walk and critical percolation are related.

15.6.3 Results on Critical Percolation

The connection between SLE6 and critical site percolation on the triangular lattice
can be used to verify rigorously the values of certain percolation exponents. In this
subsection we review how for example the multi-arm exponents for percolation can
be calculated from the one-sided crossing exponent and the annulus crossing expo-
nent of SLE6. Predictions of the values of these exponents have appeared in several
places in the physics literature, see e.g. [18] and references therein.

15.6.3.1 Half-Plane Exponents

Consider critical site percolation on the triangular lattice with fixed mesh. Let A+(r,R)
be the semi-annulus {z : r < |z|< R, Im z > 0}, and denote by f +

k (r,R) the probabil-
ity that there exist k disjoint crossings of arbitrary colours from the inner circle to
the outer circle in A+(r,R). By a crossing we mean a sequence of distinct connected
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hexagons, all in the same colour, whose first and last hexagons are adjacent to a
hexagon intersecting the inner and outer circle, respectively. Obviously, r has to be
large enough if the definition of f +

k (r,R) is to make sense, i.e. r > const(k).
The probability f +

k (r,R) does not depend on the choice of colours of the differ-
ent crossings. The reason for this is that one can always flip the colours of cross-
ings without changing probabilities. This needs to be done with some care, because
flippings conditioned on certain events may change the probability of the configu-
ration. One can start by considering the right-most crossing. If desired, its colour
can be decided by flipping the colours of all hexagons. Then one proceeds by each
time considering the right-most crossing to the left of the previous one. If desired,
its colour can be changed by flipping the colours of all hexagons to the left of this
previous crossing. In the end one obtains a configuration with all crossings in the
desired colours, without having changed probabilities. In particular, we can take
f +
k (r,R) to be the probability of k crossings of alternating colours.

To make the connection with SLE, suppose that we colour all hexagons that in-
tersect the boundary of the semi-annulus blue if they are on the counter-clockwise
part of the boundary from −r to R, and yellow if they are on the clockwise bound-
ary from −r to R. Then the probability f +

k (r,R) is exactly the probability that the
exploration process from −r to R makes k crossings before it hits the interval [r,R].
By Smirnov’s result, this translates in the scaling limit into the probability that a
chordal SLE6 process from −r to R in the semi-annulus makes k crossings before it
hits the interval [r,R], see Fig. 15.15.

r R�r�R 0 Li�
Fig. 15.15 An SLE6 process which crosses a semi-annulus three times, and the equivalent process
in a rectangle. The thick part of the boundary is the part coloured blue.

It is more convenient now to map the problem to a rectangle using the logarithmic
map. Suppose that g+

k (L) denotes the probability that an SLE6 trace from iπ to L
in the rectangle RL := (0,L)× (0,π) makes k horizontal crossings before it hits
the bottom. Then, by conformal invariance, we want to determine g+

k (L) for L =
log(R/r). For k = 1 theorem 8 immediately gives g+

1 (L) ≍ exp(−L/3). Exponents
for larger k can be determined using theorem 9. This is a good example of the use
of that theorem.

Let T be the time at which the SLE6 process has crossed the rectangle for the
first time, and let E be the event that up to time T the process has not hit the bottom.
Then the process still has to make k − 1 crossings in the domain below this first
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crossing. Hence, if L denotes the π-extremal distance between the left and right
edges in this remaining domain, we have

g+
k (L) = E[1E g+

k−1(L )]. (15.57)

When we define g+
k (L) ≍ exp(−v+

k L) we find v+
1 = 1/3 from Theorem 8 and v+

k =
k(k +1)/6 by applying recursively Theorem 9. For discrete percolation in the semi-
annulus, this implies that

f +
k (r,R) ≍ R−k(k+1)/6 when R → ∞. (15.58)

To make this transition to discrete percolation completely rigorous some more work
is required. We refer to [52] for more details.

15.6.3.2 Plane Exponents

In order to obtain exponents for a point interior in a domain rather than at its bound-
ary, we must use a radial process. Suppose that A(r,R) is an approximation of the
full annulus {z : r < |z| < R} by hexagons, where r is again assumed to be large
enough. We can define an exploration process in this annulus as follows. We colour
all hexagons intersecting the inner circle blue. The exploration process starts at R
with a blue hexagon on its right (above it), and a yellow hexagon on its left. Each
time the exploration process hits a hexagon on the outer circle that was not vis-
ited before, we look at the phase angle of the position of the tip of the trajectory at
that time (defining this phase to be continuous in time). If the phase is positive, the
hexagon on the boundary is coloured blue, and otherwise it is coloured yellow.

When the exploration process described above first hits the inner circle, it de-
fines unambiguously a clockwise-most blue crossing of the annulus and a counter-
clockwise-most yellow crossing, such that the point R lies between them. Moreover,
it can be easily seen that afterwards, the exploration process continues like a chordal
process in the remaining domain between these two crossings, where the outer circle
may now be assumed to be coloured yellow. This remaining domain is equivalent
to a semi-annulus. Therefore, the probability that the process crosses this remain-
ing domain k− 2 times before it disconnects the inner circle from the outer circle
is equal to the probability that there are k− 2 crossings of arbitrary colours of this
domain, as we discussed in the previous subsection.

Let fk(r,R) be the probability that the exploration process crosses the annulus a
total number of k−1 times. Then for even k, fk(r,R) is just the probability that there
exist k crossing paths of the annulus, which are not all of the same colour. (To avoid
confusion one must carefully distinguish the crossings by the exploration process,
and the existence of crossing paths on the percolation clusters.) In this case we have
the freedom of choosing alternating colours for the crossing paths, and then the
point R is always between a right-most blue and a left-most yellow crossing, which
proves the point. For odd k, the situation is different, and fk(r,R) is not equal to
the probability that there exist k crossings of the annulus which are not all of the
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same colour. However, it can be shown that the two probabilities differ only by a
multiplicative constant, see [52].

We now make the connection with SLE6. In the continuum limit, the discrete
exploration process converges to the following SLE process. First, we do radial
SLE6 in the annulus from R to 0, up to the first time T that the process hits the
inner circle. Afterwards, the process continues like a chordal SLE6 process in the
remaining domain. We further define E to be the event that up to time T , the process
has not disconnected the inner circle from the outer circle. On this event, we let L

denote the π-extremal distance between the two circles in the remaining domain.
Denote by gk(r,R) the probability that this SLE6 process crosses the annulus k−1

times before it disconnects the inner circle from the outer circle. Then

gk(r,R) = E[1E g+
k−2(L )] ≍ E[1E e−v+

k−2L ] (15.59)

where g+
k (L) is the probability of k crossings of the rectangle (0,L)× (0,π), as

before. Theorem 10 now tells us that gk(r,R) ≍ (R/r)−vk , where

vk = ν(6,v+
k−2) =

k2 −1
12

. (15.60)

Returning to discrete percolation, it follows from this result that the probability of k
crossings of the annulus A(r,R) which are not all of the same colour behaves like

fk(r,R) ≍ R−(k2−1)/12 when R → ∞. (15.61)

Again, all of this has been made rigorous [52]. Observe also that we can again
interpret the result in terms of crossings of clusters. In this case we have that for k
even, fk(r,R) is comparable to the probability that there exist j = k/2 disjoint blue
clusters crossing the annulus.

So far we have considered only the dichromatic exponents associated with the
probability of k percolation crossings of an annulus that are not all of the same
colour. The corresponding monochromatic exponents for k crossings that are of the
same colour are known to have different values. They are not so easily accessible
through SLE as the dichromatic exponents. However, SLE computations [35] have
confirmed that the one-arm exponent (k = 1) has the value 5/48, and in the same
article, a description of the backbone exponent (k = 2) as the leading eigenvalue of
a differential operator was given.

15.7 Discussion

While Schramm originally introduced SLE as the only possible candidate for the
scaling limit of the loop-erased random [46] walk, the definition and properties of
SLE were sufficiently general to allow Schramm to conjecture that SLE also de-
scribes the scaling limits of uniform spanning trees and critical percolation. Subse-
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quently it was proved to be the scaling limit of several other models. In fact, it is
believed that conformal invariance and stationarity is sufficient for a whole range of
critical models to converge to SLE (section 15.5).

For this approach to be applicable to a lattice statistical model with local interac-
tion (on a domain with a boundary), it must at least have the following properties.

(i) It must have a conformally invariant scaling limit.
(ii) SLE being a measure of curves, the model must induce a measure of non-crossing

paths in the lattice.
(iii) Since the law for γt′ − gt(γt) is the same as that for gt(γt+t′ ) the image under gt

of γ[0,t] may have no other properties than the simple original boundary.
(iv) And because there is no drift in the driving term, there should be symmetry be-

tween the two sides of the curve.

The first condition is believed to be true for almost all models at an isotropic
phase transition. But only in very rare cases has this been proved. Note in the second
condition the difference between crossing and intersecting. This condition is easily
satisfied, as one can take as paths the domain walls, between different values, of the
variable. In a continuous model, level lines may figure as paths. In many cases where
a diagrammatic expansion of the partition sum is possible, it may induce paths on
the lattice. The third requirement, however, is rather restrictive. Together with (iv)
it is known as the stationarity property. Consider as an example a model with a
discrete variable on the lattice, taking four values. Without loss of generality, it can
be described by two coupled Ising variables, σ1 and σ2. The curves we consider first
are the domain walls of σ1, which will be defined in such a way that they cannot
cross. We must now choose boundary conditions compatible with this definition of
the path, i.e. in accordance with the condition on either side of these domain walls.
Clearly σ1 must be fixed at ±1 on the positive and negative real axis respectively.
Now there are several choices to make. We may choose σ2 to be fixed as well, on
the boundary and on either side of the domain wall of σ1. If σ2 is the same on the
positive and negative real axis, then this implies that the domain walls of σ1 and
those of σ2 are not permitted to cross each other. If we choose σ2 to be opposite on
the positive and negative real axes, and consequently on either side of the path, the
model must have domain walls for both Ising components, which cannot split up in
separate domain walls. A third possibility is to choose σ2 to be free on the boundary.
This implies that it is also free on the domain wall of σ1. However, after the path is
mapped onto the real axis, the same point of the path has two images, far apart. It
does not seem acceptable that σ2 has strong correlations between these two points,
as a result of their common history. The only way to avoid such correlations is to
forbid all interactions between σ2 variables accross a domain wall of σ1. Finally,
instead of a domain wall for σ1, we may consider the curves separating one of the
four states from the three others. Such domain walls have an intrinsic asymmetry,
because on one side three states are allowed and on the other only one. Nonetheless,
by special properties of the model this asymmetry may be lifted.

In summary we can say about models with multiple degrees of freedom, that it
may be possible for SLE to describe their scaling limit, but the model must have a
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number of very restrictive properties. It may be noted that the four-state Potts model,
which is expected to be SLE4, does indeed satisfy these restrictions. If it is written
in terms of two Ising spins, the one does not interact accross the domain wall of
the other. Furthermore the domain wall separating one state from the three others
is probably symmetric as a result of the dual symmetry between the ordered and
disordered phases.

Apart from being the candidate for the scaling limit of critical models, SLE also
gives us an idea of how the convergence can be proved. One could try to describe
the discrete path of the critical model by a Löwner evolution, and then prove that the
driving function converges to Brownian motion. Indeed, this is the way in which the
convergence of loop-erased random walks to SLE2, and of the Peano curve winding
around the uniform spanning tree to SLE8 were proved. Recently, the harmonic
explorer was added to the list, and it seems reasonable to believe that in the future
more connections between discrete models and SLE will be established.

However, a limitation of SLE appears to be that it is only capable of describing a
very specific aspect of the discrete models. In the Fortuin-Kasteleyn cluster formu-
lation of the Potts model, for example, SLE describes the boundary of one special
cluster connected to the boundary, as explained in section 15.5.6. An interesting
question is then what can SLE tell us about the full configuration of clusters, rather
than only about the boundary of one? Methods to describe this have been developed
recently, starting with SLE6 [12], and later for general SLEκ [12, 58, 50, 13, 49, 59].

Interesting developments have taken place regarding the connection between
SLE and conformal field theory, a subject not considered in this article. Various as-
pects of this connection have been studied in a series of papers by Michel Bauer and
Denis Bernard [2, 3, 4, 5], showing for example how results from SLE can be com-
puted in the CFT language. Another connection was proposed by John Cardy [15]
who introduced a multiple SLE process. This he could connect with Dyson’s Brow-
nian process, and through it to the distribution of eigenvalues of ensembles of ran-
dom matrices. Using the conformal restriction properties studied in [38], the work
of Roland Friedrich and Wendelin Werner [21, 22, 55] further clarifies the link be-
tween the discrete systems and conformal field theory. Thus SLE may prove to be
very useful in putting the ideas of conformal field theory on a mathematically more
rigorous footing. Clearly an obvious open question is the proof that the q-state Potts
model for all q, and the O(n) model for all n has SLE as scaling limit. It is conceiv-
able that the approach by Smirnov [53], successful for the Ising model, is open to
generalization. Unlike the case of percolation it is not based on a property in which
the Ising model is qualitatively different from the other Potts models.

SLE is a promising field of research, and the literature on SLE is already quite
vast and still growing. In this discussion we only touched upon some of the de-
velopments that have taken place, without the intention of providing a complete
list. In conclusion, SLE seems invaluable for adding mathematical rigour to our
understanding of the scaling limits of critical two-dimensional systems and their
conformal invariance. This same fact makes SLE a mathematically and technically
challenging object of study.
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39. K. Löwner. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I.
Math. Ann. 89:103–121, 1923.

40. B. Nienhuis, A.N. Berker, E.K. Riedel and M. Schick. First- and second-order phase transi-
tions in Potts models; a renormalization-group solution. Phys. Rev. Lett. 43:737 1979.

41. B. Nienhuis. Exact critical point and exponents of the O(n) model in two dimensions. Phys.
Rev. Lett. 49:1062–1065, 1982.

42. B. Nienhuis. Critical behavior of two-dimensional spin models and charge asymmetry in the
Coulomb Gas. Journal of Statistical Physics 34:731–761, 1984. Coulomb Gas formulation of
two-dimensional phase transitions. In C. Domb and J. L. Lebowitz, editors, Phase transitions
and critical phenomena, volume 11, pages 1–53. Academic Press, London, 1987.

43. B. Nienhuis. Locus of the tricritical transition in a two-dimensional q-state Potts model. Phys-
ica A 177:109–113, 1991.

44. S. Rohde and O. Schramm. Basic properties of SLE. Ann. Math. 161:879–920, 2005. arXiv:
math.PR/0106036.

45. H. Saleur and B. Duplantier. Exact determination of the percolation hull exponent in two
dimentions. Phys. Rev. Lett. 58:2325–2328, 1987.

46. O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel
J. Math. 118:221–288, 2000. arXiv: math.PR/9904022.

47. O. Schramm. A percolation formula. Elect. Comm. Probab. 6:115–120, 2001. arXiv:
math.PR/0107096.

48. O. Schramm and S. Sheffield. The harmonic explorer and its convergence to SLE4. Ann. Prob.
33:2127–2148, 2003. arXiv: math.PR/0310210.

49. O. Schramm, S. Sheffield, D. B. Wilson. Conformal radii for conformal loop ensembles.
arXiv:math/0611687.

50. S. Sheffield. Exploration trees and conformal loop ensembles. arXiv:math/0609167.
51. S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling

limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3):239–244, 2001. A longer version is available
at URL http://www.math.kth.se/∼stas/papers/.

52. S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res.
Lett. 8:729–744, 2001. arXiv: math.PR/0109120.

53. S. Smirnov. Conformal Invariance in random cluster models. I Holomorphic fermions in the
Ising model, 2007. arXiv:0708.0039.
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2002 Saint-Flour summer school Springer, 2003. arXiv: math.PR/0303354.

55. W. Werner. Conformal restriction and related questions. 2003. arXiv: math.PR/0307353.
56. W. Werner, Girsanov’s transformation for SLEκ,ρ processes, intersection exponents and hiding

exponents. 2003. arXiv:math/0302115.
57. W. Werner. The conformally invariant measure on self-avoiding loops. J. Amer. Math. Soc.

21:137–169, 2005. arXiv:math/0511605.
58. W. Werner. Some recent aspects of random conformally invariant systems.

arXiv:math/0511268.
59. W. Werner. SLEs as boundaries of clusters of Brownian loops. C. R. Acad. Sci. Paris to appear.

arXiv:math/0308164
60. D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceed-

ings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia,
PA, 1996), pages 296–303, New York, 1996. ACM.

61. F.Y. Wu. The Potts model. Rev. Mod. Phys. 54:235, 1982.



Chapter 16
Appendix: Series Data and Growth Constant,
Amplitude and Exponent Estimates

Anthony J Guttmann and Iwan Jensen

In this appendix we have gathered together the series expansions for self-avoiding
polygons on square, honeycomb and triangular lattices enumerated by either perime-
ter or area and the counts for the number of polyominoes on the same lattices. In
addition we provide data for the number of SAP on three-dimensional lattices and
the number of three-dimensional polyominoes (or polycubes).

Below we also provide a listing for the estimated growth constants1, critical am-
plitudes and critical exponents for these problems. For any lattice, the growth con-
stant for SAP and SAW is the same. The amplitude B for polygons is defined through
pn ∼ Bµnnα−3. For polyominoes if the growth constant is τ, the amplitude B is de-
fined by assuming the number of n-celled polyominoes grows as Bτn/n, while for
polycubes the corresponding expression is Bτn/n1.5. In estimating the amplitudes
of polygons, we used the value of the growth constant µ in the table below and as-
sumed α = 0.5 for two-dimensional lattices, and α = 0.23721 for three-dimensional
lattices. The analysis of the amplitudes assumed only analytic correction-to-scaling
terms. For the two-dimensional problems we believe this to be appropriate, while for
the three-dimensional problems it is generally believed that there are non-analytic
corrections to scaling, but the data we have is so limited that incorporating this re-
finement into the analysis is probably not justified.

Anthony Guttmann and Iwan Jensen
Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia, e-
mail: tonyg@ms.unimelb.edu.au, e-mail: iwan@ms.unimelb.edu.au

1 The estimate for cubic SAP exponents has been obtained by Nathan Clisby using as yet unpub-
lished Monte Carlo data.
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Table 16.1 Growth constants and amplitudes for various problems and lattices. For any lattice,
the growth constant for SAP and SAW is the same.

Problem Growth constant Amplitude

Honeycomb SAP by perimeter
√

2+
√

2 = 1.84775 . . . 1.2719299(1)
Square SAP by perimeter 2.63815853031(3) 0.56230130(2)

Triangular SAP by perimeter 4.150797226(26) 0.2639393(1)

Diamond SAP by perimeter 2.87905(12) 0.3057(5)
Simple cubic SAP by perimeter 4.684043(12) 0.2625(5)
Body-centred cubic SAP by perimeter 6.5304(4) 0.2403(5)
Face-centred cubic SAP by perimeter 10.0363(6) 0.1173(5)
Honeycomb SAP by area 5.161930154(8) 0.2808499(1)

Square SAP by area 3.97094397(9) 0.408105(2)

Triangular SAP by area 2.9446600(8) 1.33652(6)

Polycubes 8.344(10) 0.184(3)
Honeycomb polyominoes 5.1831453(4) 0.273525(5)

Square polyominoes 4.0625696(5) 0.316915(5)

Triangular polyominoes 3.0359688(3) 0.81243(3)

Table 16.2 Critical exponents. Note the hyperscaling relation dν = 2−α , which has been used in
estimating α from estimates of µ . For polygons, the critical exponent is α , while for SAW it is γ .
The size exponent, for both SAW and SAP, is ν .

Lattice dimension and model Exponent α Exponent γ Exponent ν

2-dimensional SAP, SAW 1/2 43/32 3/4
2-dimensional polyominoes 0 n/a 3/4
3-dimensional SAP, SAW α = 0.237209(21) γ = 1.156957(9) ν = 0.587597(7)
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Table 16.3 Honeycomb lattice SAP by perimeter [8].

n pn n pn

6 1 84 491178083710637922
8 0 86 1581253032639606603

10 3 88 5097396231311136576
12 2 90 16453443639137280047
14 12 92 53174059422032707866
16 18 94 172050510835696160358
18 65 96 557317380072692456032
20 138 98 1807258331991309982446
22 432 100 5866638786295311037590
24 1074 102 19063052682366555372695
26 3231 104 62002958760017830656522
28 8718 106 201852240235414126847460
30 25999 108 657719622379254733608348
32 73650 110 2144964109006762422233748
34 220215 112 7000963262791176379323774
36 643546 114 22868699709042371811249463
38 1937877 116 74758226305954241461635666
40 5783700 118 244567626180741238468116552
42 17564727 120 800664473720027754818907952
44 53222094 122 2623031329578131961697097700
46 163009086 124 8598999467519861534628992430
48 499634508 126 28208148022365305050992600420
50 1542392088 128 92592230245440655263097731630
52 4770925446 130 304116068616798314381111483673
54 14832934031 132 999449733343511867195340557200
56 46227584010 134 3286484546424040737658726637502
58 144632622552 136 10812942780599284505769165580800
60 453628244950 138 35595150650752109542282463008318
62 1427228330481 140 117237253821144147623389790232954
64 4500947210772 142 386333037219041809402422116617575
66 14231512500103 144 1273717978234721619312805589240114
68 45095972401236 146 4201399640625869267335427358479958
70 143219294049399 148 13864949790803209919972696473332510
72 455745199043542 150 45776305345419919371285850329676756
74 1453111646955645 152 151201484848510390617214210630381542
76 4641449091849300 154 499642320580635896564744348617472658
78 14851454597198009 156 1651754024778342247238567655133162198
80 47598148798881660 158 5462731645121972078039977740308145672
82 152789607567089925
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Table 16.4 Square lattice SAP by perimeter [6].

n pn n pn

4 1 58 59270905595010696944
6 2 60 379108737793289505364
8 7 62 2431560774079622817356

10 28 64 15636142410456687798584
12 124 66 100792521026456246096640
14 588 68 651206027727607425003232
16 2938 70 4216407618470423070733556
18 15268 72 27355731801639756123505014
20 81826 74 177822806050324126648352460
22 449572 76 1158018792676190545425711414
24 2521270 78 7554259214694896127239818088
26 14385376 80 49360379260931646965916677280
28 83290424 82 323028185951187646733521902740
30 488384528 84 2117118644744425875029583096670
32 2895432660 86 13895130612692826326409919713700
34 17332874364 88 91319729650588816198004801698400
36 104653427012 90 600931442757555468862970353941700
38 636737003384 92 3959306049439766117380237943449096
40 3900770002646 94 26117050944268596220897591868398452
42 24045500114388 96 172472018113289556124895798382016316
44 149059814328236 98 1140203722938033441542255979068861816
46 928782423033008 100 7545649677448506970646886033356862162
48 5814401613289290 102 49985425311177130573540712929060556804
50 36556766640745936 104 331440783010043009106782321492277936522
52 230757492737449636 106 2199725502650970871182263620080571090156
54 1461972662850874916 108 14612216410979678692651320184958285074180
56 9293993428791901042 110 97148177367657853074723038687712338567772
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Table 16.5 Triangular lattice SAP by perimeter [7].

n pn n pn

3 2 32 2692047018699717
4 3 33 10352576717684506
5 6 34 39902392511347329
6 15 35 154126451419554156
7 42 36 596528356905096920
8 123 37 2313198287784319026
9 380 38 8986249863419780682

10 1212 39 34969337454759091232
11 3966 40 136301962040079085257
12 13265 41 532093404471021533628
13 45144 42 2080235431107538787148
14 155955 43 8144154378525048003270
15 545690 44 31927176350778729318192
16 1930635 45 125322778845662829008494
17 6897210 46 492527188641409773340797
18 24852576 47 1937931188484341585677962
19 90237582 48 7633665703654150673637363
20 329896569 49 30101946001283232799847562
21 1213528736 50 118823919397444557546535851
22 4489041219 51 469508402822449711313115200
23 16690581534 52 1856933773092076293566747007
24 62346895571 53 7351015093472721439659392448
25 233893503330 54 29126027071450640626653986531
26 880918093866 55 115500592701344029351721102550
27 3329949535934 56 458398255374927436357237021173
28 12630175810968 57 1820727406941365079260306390484
29 48056019569718 58 7237327695683743010999188700157
30 183383553173255 59 28789332223533619621001538109842
31 701719913717994 60 114602547490254934327469368968190
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Table 16.6 Honeycomb lattice SAP by area [13, 9].

n pn n pn

1 1 26 36138633393334038
2 3 27 179768675964165939
3 11 28 895425672624735867
4 44 29 4465589678921947602
5 186 30 22295966620155816954
6 813 31 111439693993112940196
7 3640 32 557558620919353655115
8 16590 33 2792233438943251452902
9 76663 34 13995852369729891369431

10 358195 35 70212003186716473817832
11 1688784 36 352506828543839738006802
12 8022273 37 1771125269041561567830953
13 38351973 38 8905113919188230264955009
14 184353219 39 44804571829235959198699855
15 890371070 40 225570974088699920561748746
16 4318095442 41 1136340745302289809680018862
17 21018564402 42 5727773558054438208070950886
18 102642526470 43 28887056504374868913302241736
19 502709028125 44 145763914212751560334802981991
20 2468566918644 45 735894997233174457602406978869
21 12150769362815 46 3716988842355112053567240722854
22 59937663454017 47 18783102592560998779533576292617
23 296245438278258 48 94958908613774943408509332060260
24 1466858366128911 49 480273434248924455452231252618009
25 7275229222292218 50 2430068453031180290203185942420933
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Table 16.7 Square lattice SAP by area [11].

n pn n pn

1 1 22 261803388854
2 2 23 996971935098
3 6 24 3802944302442
4 19 25 14528816598358
5 63 26 55585800967658
6 216 27 212949334034600
7 756 28 816822217132804
8 2684 29 3136762752545213
9 9638 30 12058858335360206

10 34930 31 46405735929935474
11 127560 32 178752169549746269
12 468837 33 689161111033801080
13 1732702 34 2659240868309971570
14 6434322 35 10269318260428629674
15 23993874 36 39687503569859369443
16 89805691 37 153488864908550236363
17 337237337 38 594011587420226879158
18 1270123530 39 2300345838908310537296
19 4796310672 40 8913696266990663512620
20 18155586993 41 34560203892113934050327
21 68874803609 42 134071571821918373415776
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Table 16.8 Triangular lattice SAP by area [10].

n pn n pn

1 2 31 13768900283696
2 3 32 39381761647878
3 6 33 112731209513148
4 14 34 322944141486223
5 36 35 925821793030182
6 94 36 2655999419889775
7 250 37 7624549165478464
8 675 38 21901410528537396
9 1832 39 62948996221716186

10 5005 40 181030734048561330
11 13746 41 520896427277498160
12 37901 42 1499600346000360661
13 104902 43 4319315951924817740
14 291312 44 12446880627889433646
15 811346 45 35884225522293806438
16 2265905 46 103498974852276615147
17 6343854 47 298641621862752294144
18 17801383 48 862063552257379673111
19 50057400 49 2489408387765856393710
20 141034248 50 7191418561913160942210
21 398070362 51 20782056815997725229126
22 1125426581 52 60077568702764010825658
23 3186725646 53 173732332629110214974028
24 9036406687 54 502560484888013883133120
25 25658313188 55 1454221557880565649765344
26 72946289247 56 4209231246688674394442949
27 207628101578 57 12187106400969184313465204
28 591622990214 58 35295544624608480713053597
29 1687527542874 59 102248441850332810905160592
30 4818113792640 60 296283374352751571959397999
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Table 16.9 Honeycomb lattice polyominoes [14, 10].

n pn n pn

1 1 24 1570540515980274
2 3 25 7821755377244303
3 11 26 39014584984477092
4 44 27 194880246951838595
5 186 28 974725768600891269
6 814 29 4881251640514912341
7 3652 30 24472502362094874818
8 16689 31 122826412768568196148
9 77359 32 617080993446201431307

10 362671 33 3103152024451536273288
11 1716033 34 15618892303340118758816
12 8182213 35 78679501136505611375745
13 39267086 36 396658618080234793950206
14 189492795 37 2001232317628022658203349
15 918837374 38 10103836183314489605735070
16 4474080844 39 51046672861235124190631667
17 21866153748 40 258063337786459258279344114
18 107217298977 41 1305417245856690662912152269
19 527266673134 42 6607298985024639624903163419
20 2599804551168 43 33460963467529713458350419245
21 12849503756579 44 169543788582768431534598929547
22 63646233127758 45 859496482176765849253640160036
23 315876691291677 46 4359288232974777294574313228655
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Table 16.10 Square lattice polyominoes [5].

n pn n pn

1 1 29 4820975409710116
2 2 30 18946775782611174
3 6 31 74541651404935148
4 19 32 293560133910477776
5 63 33 1157186142148293638
6 216 34 4565553929115769162
7 760 35 18027932215016128134
8 2725 36 71242712815411950635
9 9910 37 281746550485032531911

10 36446 38 1115021869572604692100
11 135268 39 4415695134978868448596
12 505861 40 17498111172838312982542
13 1903890 41 69381900728932743048483
14 7204874 42 275265412856343074274146
15 27394666 43 1092687308874612006972082
16 104592937 44 4339784013643393384603906
17 400795844 45 17244800728846724289191074
18 1540820542 46 68557762666345165410168738
19 5940738676 47 272680844424943840614538634
20 22964779660 48 1085035285182087705685323738
21 88983512783 49 4319331509344565487555270660
22 345532572678 50 17201460881287871798942420736
23 1344372335524 51 68530413174845561618160604928
24 5239988770268 52 273126660016519143293320026256
25 20457802016011 53 1088933685559350300820095990030
26 79992676367108 54 4342997469623933155942753899000
27 313224032098244 55 17326987021737904384935434351490
28 1228088671826973 56 69150714562532896936574425480218
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Table 16.11 Triangular lattice polyominoes [10].

n pn n pn

1 2 39 131764274746623618
2 3 40 390209282091660817
3 6 41 1156271319511222890
4 14 42 3428243851059071792
5 36 43 10170021606617062092
6 94 44 30185576357912854854
7 250 45 89638467588131276054
8 675 46 266316031025897652002
9 1838 47 791588201780520478260

10 5053 48 2353922513181100648048
11 14016 49 7002741498223502133792
12 39169 50 20841060277596144244446
13 110194 51 62049806988299870226456
14 311751 52 184809160446574540356778
15 886160 53 550633812416956110450696
16 2529260 54 1641167126237394780804458
17 7244862 55 4893142168882883602047972
18 20818498 56 14593611643638701475828219
19 59994514 57 43538430128312213641221102
20 173338962 58 129931105423136465757345880
21 501994070 59 387864007832776437943416162
22 1456891547 60 1158157489920023082651029625
23 4236446214 61 3459183249840776065090197424
24 12341035217 62 10334596819468361754858559890
25 36009329450 63 30883315424482772009364074195
26 105229462401 64 92312659826727115613777214819
27 307942754342 65 275995688697147821120388899585
28 902338712971 66 825360885842983560010493834969
29 2647263986022 67 2468783621745427137367974848117
30 7775314024683 68 7386128647683127584488035530328
31 22861250676074 69 22102564476279407636273464326490
32 67284446545605 70 66154257908909010874896059091279
33 198214729430994 71 198043122493458453529791815751245
34 584439943107748 72 592988333797578245954808147666097
35 1724665203979836 73 1775884216384559876692792048399568
36 5093434042872294 74 5319404853729116558903334777867316
37 15053558945238166 75 15936363137225733301433441827683823
38 44521869233046747
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Table 16.12 Diamond lattice SAP by perimeter [4].

n pn n pn

6 2 22 759846
8 3 24 4930656

10 24 26 32852424
12 94 28 221672022
14 582 30 1519813822
16 3126 32 10538532360
18 19402 34 73902970188
20 118110

Table 16.13 Simple cubic lattice SAP by perimeter [3].

n pn n pn

4 3 20 1768560270
6 22 22 29764630632
8 207 24 512705615350

10 2412 26 9005206632672
12 31754 28 160810554015408
14 452640 30 2912940755956084
16 6840774 32 53424552150523386
18 108088232

Table 16.14 Body-centred cubic lattice SAP by perimeter [2].

n pn n pn

4 12 14 43702920
6 148 16 1282524918
8 2736 18 39354507576

10 61896 20 1250685059616
12 1759324 22 40887160690224

Table 16.15 Face-centred cubic lattice SAP by perimeter [12].

n pn n pn

3 8 9 301376
4 33 10 2241420
5 168 11 17173224
6 970 12 134806948
7 6168 13 1079802216
8 42069 14 8798329080
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Table 16.16 Number of polycubes [1].

n pn n pn

1 1 10 8294738
2 3 11 60494549
3 15 12 446205905
4 86 13 3322769321
5 534 14 24946773111
6 3481 15 188625900446
7 23502 16 1435074454755
8 162913 17 10977812452428
9 1152870 18 84384157287999
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N-algebraic, 59
N-rational, 48
π-extremal distance, 427, 430, 431, 454, 456,

458, 461, 462
ζ -function regularisation technique, 360
d+-convex, 46
d−-convex, 46, 76
1/d expansions, 130

adsorbed phase, 301, 306
adsorbed-collapsed, 313
adsorbed-expanded, 313
adsorption

of linear polymers, 307
of ring polymers, 301, 307
of self-advoiding walks, 307

adsorption transition, 301, 303
Airy distribution, 264
algebraic complexity, 143
algebraic generating functions, 45
algebraic models, 57
algebraic objects, 58
algebraic series, 57
algebraic singularities, 182
algebraic structure, 58
alphabet, 49, 51
alternating boundary condition, 317
alternating-sign matrices, 318, 319

half turn symmetric, 327
horizontally, vertically symmetric, 327

ambient isotopic, 35
ambient orientation, 215
amplitude estimates, 188, 190
amplitude predictions, 19
amplitudes, 131
analytic background, 190
anharmonic ratios, 350

animal, 46
anisotropic models, 52
anisotropic perimeter g.f., 57, 59, 60
annealed dilution, 385
annular geometry, 376, 412
antiferromagnetic singularity, 118, 133–135
antiknot, 34
apparent singularities, 195
arbitrary networks, 129
arctic circle theorem, 17
area, 43
area amplitude series, 262
area generating function, 43
area-weighted moments, 167, 174
asymptotic behaviour of series, 182
asymptotic properties, 25, 43
asymptotics, 189, 335
atmospheres, 224
autocorrelation function, 209
autocorrelation time, 209
average area, 44
average width, 44
Aztec diamonds, 16

background electric charge, 373
bargraphs, 46, 47, 57, 67
Barnes’ G-function, 337
benzenoid hydrocarbons, 164
Beretti-Sokal algorithm, 204
Berker-Kadanoff phase, 381
Bethe Ansatz, 353, 426
Bethe Ansatz solution, 336
BFACF algorithm, 204, 207, 213, 223, 230
bijections, 45
binary search networks, 44
blob algebra, 403
body-centred cubic lattice, 1
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Boltzmann distribution, 204, 218
Boltzmann’s constant, 9
bond animal, 39
bond percolation, 325
bond percolation clusters, 146
bond trees, 39
Borel summability, 132
bosonic height fields, 348
boundary conditions

closed, reflecting, 325
boundary conformal field theory, 362
boundary curve, 32
boundary operator, 364
boundary S matrices, 398
bounding rectangles, 150
bounds on growth constants, 52
branched polymer phase, 32
Brownian excursion, 456, 458
Brownian meander, 274
Brownian motion, 436, 438, 456

convergance to, 128, 464
intersection exponent of, 453, 455, 459
scaled, 434, 435

Brownian walks, 385
bulk critical exponents, 377, 395
bulk critical properties, 348

caliper size, 168
caliper span, 5
canonical ensemble, 222
canonical labeling, 146
capacity, 427, 430–432, 436
Catalan number, 60
CDA, 80, 81
Central Limit Theorem, 129, 236
character of the module, 356
Chinese Remainder Theorem, 174, 200
chordal SLE, 435, 438, 439, 444, 447,

451–453, 455, 460–462
harmonic explorer and, 446
locality property, 441, 442
percolation exploration and, 444
radial SLE and, 448
scaled Brownian motion and, 435
stationarity, 436

circle graph, 24
classical Heisenberg model, 8
closely packed polygons, 317
collapse

of ring polymers, 301
collapse transition, 248, 308, 313
collisions, 175
column-convex, 46
column-convex polygons, 50, 59, 60, 70

combinatorial complexity, 143
compactified boson, 359, 360
complex loop ensemble, 370
computational complexity, 162
concatenation arguments, 12, 25, 30–32, 39,

305, 310, 313
condition of detailed balance, 208
configurational entropy, 236
confluent correction exponent, 206
confluent logarithmic terms, 4
conformal

field theory, 426, 464
invariance, 425, 441, 445, 446, 448, 449,

458, 460, 463, 464
map, 426

conformal bootstrap method, 356
conformal boundary condition, 363
conformal boundary loop, 403, 416
conformal dimension, 352
conformal field theory, 348, 419
conformal invariance, 4, 19, 203, 207, 347
conformal mapping, 364
conformal Ward identity, 352, 355
conformal weights, 351
conformally invariant boundary condition, 365
conformally invariant measure, 425, 426, 429
conformational exponents, 395
connected graphs, 123
connected subgraph, 24
connection with statistical mechanics, 8
connective constant, 13, 25, 36, 38, 117, 131
connectivity conditions, 46
contact process, 117
context-free language, 59, 63, 90
continuous branched polymers, 140
convex function, 32, 305
convex polygons, 60, 95, 143, 144, 150, 263
convex polyominoes, 46
convexity, 44–46
Conway criterion, 14
correction-to-scaling exponent, 190, 191
correction-to-scaling function, 260, 288
correlation function, 347, 383
Coulomb gas, 426
Coulomb gas approach, 6, 348, 366, 390, 419
counting polygons, 23
counting polygons by area, 30
counting theorems, 146
covariance, 209
critical amplitude, 117, 182, 188
critical exponent, 3, 4, 13, 30, 127, 182
critical point, 182, 183
critical properties, 18
cross-over exponent, 304, 306, 339
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crossing exponent, 454, 459
crossing number, 36
crossing probability, 364
cycle-free networks, 129
cycles, 39
cyclomatic index, 39
cyclotomic polynomials, 81, 95

d-dimensional hypercubic lattice, 24
D-finite function, 53, 79, 85
D-solvable, 90
D-unsolvable, 81, 82, 88
data management, 174
decidable, 14
Dedekind function, 356
depth-nest enumeration, 330
descendents, 355
desorbed phase, 301, 306
desorbed-collapse, 313
desorbed-expanded, 313
diagonally-convex polyominoes, 76
diamond lattice, 1
differentiable almost everywhere, 305
differentiably algebraic functions, 79
differential approximants, 134, 136, 184
dilute solution, 10
dimerisation, 146
dipolar SLE, 438, 442
directed column-convex polygons, 52, 63
directed convex polygons, 60, 274
directed diagonally-convex polyominoes, 76
directed lattices, 145, 178
directed percolation, 44
directed polygon, 2
directed polyominoes, 44, 59, 65

by area, 64
directed site animal, 86
directedness, 44, 46
direction conditions, 46
Dirichlet boundary condition, 362
discrete Boussinesq equation, 331
disjoint union of sets, 48
dissection problems, 11
Dlog-Padé, 184
domain wall boundary conditions, 323
dominant balance, 259
dominoes, 16
double layer, 241, 243
Dyck paths, 319

edge set, 39
edges, 204
eight-vertex model, 88, 347
Eisenstein criterion, 80

elastic term, 392
electro-magnetic duality, 362
elementary moves, 208
entropic exponent, 206, 216
entropic repulsion, 236, 301
enumerations by area, 167
epsilon expansion, 347
equivalence classes, 186, 204, 208
equivalent height model, 404
ergodic algorithm, 208
ergodic pivot algorithm, 221
ergodicity properties, 216
error analysis, 182, 186
Euler’s pentagonal identity, 415
Euler-Maclaurin approximation, 337
exact enumerations, 43, 143
Exact ODEs modulo a prime, 198
exact partition functions, 407
expected length of polygons, 207
exponential autocorrelation time, 209
exponential complexity, 12
exponents of polymer physics, 379
extraordinary transition, 363, 398

face-centred cubic lattice, 1, 3, 134
Ferrers diagrams, 47, 49, 68, 263, 290
ferro-electrics, 90
field theory, 10
finite alphabet, 53
finite essential singularities, 7
finite-dimensional transfer matrices, 12
finite-lattice method, 12, 18, 153
finite-size scaling, 287, 353
fixed area ensemble, 247
fixed perimeter ensemble, 247
flatPERM, 314
formal power series, 45, 47
formal series expansion, 9
four-spin coupling, 89
Fourier transform, 118, 128
free energies

by atmospheres, 226
by binning, 224
of lattice polygons, 224

free energy, 6
curve shape, 307

Frisch-Wasserman-Delbruck conjecture, 205,
216

Fuchsian ODE, 85
Fuchsian ODEs for polygon models, 192
fully interacting double layers, 241
fully packed loop models, 19, 387, 401, 418
fully packed loops, 317

diagrams, 328
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half-turn symmetric, 333, 340
horizontally symmetric, 328
phase diagram, 335
symmetry classes, 328

functional equation, 44, 66
functional integrals, 349
fundamental theorem of Markov chains, 218
fusion algebra, 357

Gaussian distribution, 128
Gaussian elimination, 198
Gaussian free-field theory, 366
Gaussian limit, 130
generalised special transition, 405
generating function, 43, 181

and enumeration, 143
genus of the surface, 33
Gessel-Viennot-Lindström method, 332
GFUN, 90
global conformal invariance, 349
global move, 220
global scale invariance, 349
good solvents, 301
Gosper-Zeilberger algorithm, 333
grand canonical ensemble, 220
graphs, 9
groundstate eigenvector, 326
group of conformal transformations, 349
growth constant, 205
growth constant in strips, 237

half-pyramid, 64
Hamiltonian, 8
Hamiltonian circuits, 348, 395
Hankel determinant, 323
hard hexagon model, 82
harmonic explorer, 445, 446, 464
hash function, 175
hashing, 174
Hausdorff dimension, 439, 443, 451, 459
heaps, 64
heaps of pieces, 75
height configurations, 318
height models, 371
Helmholtz free energy, 9
hexagonal directed animals, 86
hexagonal lattice, 1, 13
hierarchical four-dimensional lattice, 4
hierarchical lattice, 130
Hilbert space, 354
holonomic, 18
homeomorphism, 215
homogeneous differential equation, 184
honeycomb lattice, 11, 122, 134, 163, 173

hull, 427, 430, 431, 433–437, 439, 440, 442,
443, 453

hydrodynamic normalization, 427, 431
hyper-cubic lattice, 1, 122, 145
hypergeometric equation, 340
hyperscaling relation, 5, 10, 134

ice model, 90
IKDP, 90
impenetrable adsorbing surface, 303
imperfect staircase polygons, 192
inclusion-exclusion principle, 45, 68, 122
indicial equation, 185
inhomogeneous differential equation, 185
integrability, 83
integrable Izergin-Korepin model, 420
integrated autocorrelation time, 209
integrated super-Brownian excursion, 140
interacting models, 228
interacting polygons, 178, 301
interacting with walls, 240
intersection exponent, 453, 455, 457, 458
inversion, 221
inversion formula, 119
inversion relation, 83, 84
irreducible pivot algorithm, 222
irregular singular points, 194
Ising model, 8, 10, 81, 117, 192, 358, 464

critical, 449
differential approximants, 185
expansions, 143
partition function, 10
tricritical, 359

k-punctured discs, 33
Kac determinant, 357
Kac table, 358
KDP, 90
kernel method, 72
Kesten pattern, 35
knot complexity, 34
knot probabilities, 23
knotted arc, 35
knotted ball pair, 34
knotted polygons, 34

Löwner’s equation, 426, 428, 429, 431–434,
436, 464

radial, 438
solution of, 432

Löwners equation, 439
lace, 124
lace expansion, 18, 117, 122, 130

convergence of, 128
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for SAW, 117
lace graphs, 121, 126
Lagrange inversion formula, 60
Landau-Ginzburg Lagrangian, 358
lattice animals, 11, 23, 39, 117, 139, 171
lattice knots, 215
lattice trees, 23, 117, 138
light scattering measurements, 302
limit distribution, 44, 250, 255
limiting free energies, 307
line of logarithmic singularities, 7
line of simple poles, 7
linear differential equation, 357
linear ODEs, 185
linear square models, 206
link pattern, 319, 329
linked lists, 175
Liouville field theory, 367, 372
local conformal invariance, 348, 350
local scale invariance, 349
local vertex models, 370
locality property, 439, 441, 458
logarithmic corrections, 136
logarithmic derivative of the series, 183
long-chain polymers, 10
Loomis-Whitney inequality, 30, 40
loop configurations, 317
loop models, 366
loop-erased random walk, 443, 446, 462, 464
lower bounds, 237

magnetic exponent in the Potts model, 380
magnetic susceptibility, 9
Manhatttan project, 203
marginal dimensionality, 4
marginality requirement, 375, 393
Markov chain, 203
Markov chain Monte Carlo, 203, 207, 208
matrix model, 335
matrix multiplication, 148
mean fraction of visits, 304
mean span of the polygon, 304
mean-field exponents, 4
mean-square end-to-end distance, 235, 237
mean-square radius of gyration, 207, 307, 309
method of Frobenius, 195
method of images, 364
method of moments, 250, 260
metric exponent, 207
metric properties, 168
Metropolis-style Monte Carlo, 212
MGFUN, 90
microscopic conversation laws, 347
minimal models, 348, 356

modular arithmetic, 174
modular functions, 82
modular invariance, 349, 354, 359
modular parameter, 356, 359
moment generating function, 253
monohedral tiling, 14
monomer–monomer contacts, 302, 308
monomer–solvent contacts, 302, 308
monomer-surface interactions, 19
Monte Carlo methods, 11, 18
Monte Carlo simulation, 203
Motzkin path, 162
multi-directed polyominoes, 74
multiple Markov chain Monte Carlo, 210
multiple Markov chain sampling, 207
multivariate series expansion, 146

n → 0 limit, 8, 206
natural boundary, 79, 81, 90
nearest-neighbour model, 118
negative atmosphere, 226, 227
nest, 329

generating function, 317, 330, 331, 334
phase transition, 338
scaling function, 340

network exponents, 382, 399
Neumann boundary conditions, 363
NEWGRQD, 90
Noether current, 351
non-intersecting lattice paths, 9
non-Markovian nature, 203
non-physical singularities, 188, 190
NP-complete, 14
number theory, 44
numerical methods, 181

O(n) model, 425, 451, 464
O(1) loop model, 325
ODEs modulo a prime, 198
one-dimensional gas model, 75
operator product expansion, 352
order-parameter, 82
Ordinary differential equation ODE, 185
ordinary transition, 362, 397, 401
oriented percolation, 117
osculating SAP, 368
osmotic pressure gradient, 30

Padé approximants, 82, 184
parallel algorithms, 153, 176
parity effects, 190
partial generating functions, 146
partially directed polyominoes, 75
partition function, 8, 9, 303, 317, 322
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partitions, 44
pattern theorem, 35, 38, 39, 205
Peano curve, 439, 447, 448, 464
percolation, 143, 144, 171, 348, 449, 452, 455,

459, 461, 462, 464
critical, 443–445, 453
exploration, 444, 455, 459
oriented, 117

percolation clusters, 325
perfect hashing, 175
perimeter, 43
perimeter generating function, 43, 85
periods of the lattice, 359
perm, 204
phase

anti-ferromagnetic, 336
ferromagnetic, 336

phase boundary, 313
phase diagram, 249
phase transition, 335

bulk, 317, 336
nest, 338

physical singularity, 183, 185, 188, 190, 196
pivot algorithm, 204, 207, 220
planar classical Heisenberg model, 8
plane partitions, 328

cyclically symmetric, 324, 332
punctured, 332

Poisson resummation formula, 361
polycubes, 1, 13
polydisperse network, 383
polygon generating function, 144
polygons

in a prism, 38
in a slit, 38, 52, 235, 236
in a square, 238
in a strip, 240
in slabs, 38
in wedges, 37
on the honeycomb lattice, 186

polymer collapse, 385
polymers, 301

at the theta point, 386
in dilute solution, 301

polyominoes, 11, 146, 171
five-celled, 11
fixed, 12
free, 12

positive atmosphere, 226, 227
Potts model, 143, 146, 388, 425, 449, 452, 464
prefixes of words, 53
prime knots, 36
probability distribution, 208
probability of initial ring closure, 10

product of heaps, 65
projective transformations, 351
prototile, 14
pruning, 144, 153, 161, 163
pseudo-orthogonal group, 349
punctured discs, 33
punctured polygons, 178, 280
punctured staircase polygons, 192
punctured surfaces, 33
punctures, 317
pyramids, 64

q-algebraic equation, 67
q-analogues, 56, 66
q-Bessel functions, 70
q-deformed KZ equation, 328
q-difference equation, 268
quadruple point, 313
quantisation scheme, 354
quantum field theory, 347

radial quantisation, 354
radial SLE, 435, 438, 442, 443, 447

chordal SLE and, 448
one-sided crossing exponent, 454
plane exponents and, 461, 462

radius of gyration, 139, 169, 174, 301, 304
raise and peel model, 328
ramified, 32
random cluster model, 368, 449
random graphs, 117
random number generator, 175
random walk, 117, 446, 459
ratio method, 182
rational generating functions, 45
Razumov-Stroganov conjecture, 325, 326
re-entrant behaviour, 241, 243
reciprocal of the generating function, 119
rectangles, 256, 289
reduced partition function, 89
regular languages, 48
regular lattice, 1
regular singular points, 194, 195, 199
renormalisation group, 10, 130, 347
representation theory, 354
restriction property, 439, 442, 443, 448, 464
Riemann mapping theorem, 427, 437
right site-perimeter, 75
ring polymers, 23, 204, 301
rooted polygon, 2, 5
rotational symmetry, 164
row-convexity, 46

SAP in a square, 239
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scalar height field, 348
scale invariance, 347
scaling arguments, 10, 203
scaling dimension, 350, 351
scaling form for self-avoiding polygons, 32
scaling function, 250, 260, 285, 340
scaling limit, 128, 130, 425
scaling theory, 237
Schwarzian derivative, 353
screening charge, 348, 376
section duplication, 98
section graphs, 39
self-avoiding circuits, 2, 10, 24
self-avoiding loops, 348
self-avoiding polygons, 1, 87, 95, 117, 121,

277, 292, 348, 419, 448
minimal models and, 359

self-avoiding returns, 2, 126, 131
self-avoiding surfaces, 23, 32
self-avoiding walks, 1, 9, 27, 117, 204, 448

enumeration, 130
generating function, 3
in slits, 235, 236, 243

self-intersecting polygons, 45
semi-flexible loop model, 390
sensitised floculation, 235
series analysis, 181
series expansions, 181
seven-vertex model, 371
sign alternation, 134
simple-cubic lattice, 1
single layer, 241
singular point, 184
singularities in the complex plane, 189
singularity diagram, 249
site animals, 39
site generating function, 86
site trees, 39
six-vertex model, 317, 323, 327, 336, 347, 370
size-preserving bijection, 49
space types, 145
special transition, 363, 398
spherical model, 8, 132
split hexagon relation, 331
spread-out model, 118, 129, 130
square lattice, 1, 154
squared distance of a monomer from the

endpoints, 5
squared end-to-end distance, 5
squared radius of gyration, 5
squares, 289
stack polygons, 50, 57, 264
stacks, 46

staircase polygons, 32, 44, 45, 68, 83, 90, 95,
143, 264, 291

algebraic decomposition, 59
punctured, 192
transfer matrix techniques, 147

staircase polyominoes, 46
state space, 208
stationarity, 436, 437, 463
steric stabilisation, 235, 303
stochastic Löwner evolution, 4, 6, 19
strange evaluations, 331
stress tensor, 351
string theory, 347
strong embeddings, 39
sub-additive functions, 27, 205
sub-additivity argument, 138
sub-dominant asymptotic behaviour, 29, 33
sub-dominant corrections, 188
sub-multiplicative inequality, 3
sublattice expansions, 146
summation rule, 427, 431
super-multiplicative inequality, 205
super-universality, 308
superadditive function, 26
supermultiplicative inequality, 26
supersymmetric Goldstone phase, 379
surface attached globule phase, 314
surface critical behaviour, 397
surface free energy, 314
symmetric group, 44
symmetry, 160

Taylor’s theorem, 132
teflon effect, 399
Temperley approach, 45, 66
Temperley-Lieb algebra, 403
thermal exponents, 381, 396
thermodynamic limit, 9
theta point, 385
theta temperature, 308
theta-point collapse transition, 348
three-choice polygons, 85, 88, 192, 193
three-choice walks, 193
three-point correlation functions, 351
tiling of the plane, 1, 14
Toda equation, 335
toroidal geometry, 408
transfer matrix, 148, 151, 235, 325, 353

algorithms, 176
techniques, 16, 143, 144, 147, 153

transfer theorem, 254
transition probability matrix, 208
tranverse walks, 239
trefoils, 34, 36
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triangular lattice, 1, 3, 134, 164, 173, 182
polyominoes, 13

tricritical, 32
behaviour, 7
Ising model, 359
point, 7
scaling, 7

triominoes, 173
Tsuchiya determinant, 328
two-boundary CBL model, 406, 417
two-dimensional CFT, 351
two-point correlation function, 353
two-step method, 131
two-variable generating function, 2, 80

umbrella sampling, 207, 211
unfolded walks, 310
uniform distribution, 204
uniform spanning tree, 439, 443, 446, 447,

451, 464
unimodal polynomial, 84
unique stationary distribution, 208
unit disk, 426, 427, 438
unitary minimal models, 358
universality class, 425
unknots, 34
unknotted polygons, 34, 215
unlabeled cycles, 204
unrooted cycles, 204
unrooted spanning tree, 368
updating rules, 158

upper and lower bounds, 27
upper critical dimension, 139, 347
upper half-plane, 426, 428, 432–434, 436, 437,

439, 448
Brownian motions, 456
chordal SLE, 453
conformal maps, 426
Hausdorff dimensions, 443

upper triangular, 198

Verma module, 356
vertex-vertex interaction, 302
vertices, 204
vesicles, 23, 30
Virasoro algebra, 354, 364

wall–walk interactions, 236
Ward identities, 351
watermelon exponents, 377, 398
weakly self-avoiding walks, 117
Wiener measure, 128
winding angle distribution, 383
word, 49

x-unfolded walks, 27

Yang-Baxter equation, 83
Young tableaux, 319

zero radius of convergence, 12
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