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When you collect marine animals there are
certain flat worms so delicate that they are
almost impossible to capture whole, for they
break and tatter under the touch. You must
let them ooze and crawl of their own will
onto a knife blade and then lift them gently
into your bottle of sea water.

—John Steinbeck, Cannery Row
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Introduction

Game theorists may appreciate Schiller’s famous observation that

Human beings are only fully human when they play games.

This suggests that game theory is a mathematical theory of almost all forms of
human agency. But is Schiller right? The aim of this book is to find out.

I will undertake two projects. The first, reported in Part I, studies game theory
internally. I will develop a formalism in epistemic logic to expose assumptions that
game-theoretic solution concepts make about human agency. While the core of this
research is interpretative and philosophical, and while the exact set-up of the logic
is inspired by philosophical, rather than game-theoretic questions, a number of new
logical results are proven along the way. In this way, the book not only contributes
to the philosophy of game theory, but also to the Epistemic Programme within game
theory—a branch of the social sciences, also known as Interactive Epistemology,
in which logicians, probability theorists, economists and game theorists combine
efforts to increase our understanding of human strategic interaction.

The second project, covered in Part II, studies non-cooperative game theory from
an external, epistemological perspective. I will argue that game theory does not
make sense as a normative theory, and that it can be reduced to decision theory
whenever it aims to explain actual human behaviour. Where the first project under-
takes a careful reading of the internal workings of the mathematical models pro-
posed in non-cooperative game theory, the second project focuses on the method-
ological assumptions of the researchers, and on their research strategies. A case
study concludes the external investigations, contrasting the Nash Equilibrium Re-
finement Programme and the Epistemic Programme.

Chapter 1 introduces epistemic characterisation theorems and presents the logical
form of game-theoretic modelling in normal form and extensive games. Characteri-
sation theorems not only lie at the core of the Epistemic Programme in game theory,
but are also essential to the argument about reducing game theory to decision theory
and in the investigations of the Nash Equilibrium Refinement Programme. I will ar-
gue that these theorems are best understood as involving conditions on the possible
actions that players can choose between, the preferences over the possible outcomes

XV



Xvi Introduction

of the combined play of all those possible actions, the rationality principles that the
players decide to act upon, the actions that the players actually perform in the game-
playing situation, and the beliefs of the players about all five ingredients—that is,
with intended recursion, the possible actions, preferences, principles, actions to be
performed, and beliefs. I will examine the exact content of these conditions for nor-
mal form and extensive games, introducing two interpretations for the latter kind
of games. In the one-shot interpretation, playing an extensive game is playing the
normal form of that game, and all players pick one full strategy simultaneously.
Epistemic characterisations for the one-shot interpretation follow the logical form
of epistemic characterisations for normal form game solution concepts. The many-
moment interpretation, by contrast, stipulates that playing an extensive game in-
volves more than one decision moment, and that at each decision moment precisely
one player chooses an individual action that leads to a future decision moment, or
to the termination of the game. The rest of the chapter sets out the logical prelim-
inaries required in the remainder of the book. As well as recalling some standard
ingredients of epistemic logic, Chapter 1 provides a brief, systematic impression of
the formalisation presented in Part I.

Chapter 2 presents a logical formalism in order to describe epistemic charac-
terisation results of normal form game solution concepts in a uniform way which
enables detailed philosophical discussion of their internal structure. Two epistemic
characterisation theorems of the Nash equilibrium are considered, one involving
strategies, the other beliefs. A central claim here is that the former does not conform
to the belief—desire framework of human agency unless the beliefs of the players are
taken to be necessarily, conceptually true (that is, unless the T-axiom of veridicality
is assumed). Another claim is that the meaningfulness of the latter characterisation
result, concerning beliefs in equilibrium, depends upon the meaningfulness of the
former result. Ultimately, the Nash equilibrium does not provide a justification in the
endogenous way—still heavily influential in the Epistemic Programme—promoted
by John von Neumann and Oskar Morgenstern, because it is only possible to ex-
plain the behaviour of players playing the Nash equilibrium if you are prepared to
go beyond the game-playing situation by using statistical or other kinds of data that
are not interior to game theory.

I will then develop a uniform logical language to represent the epistemic charac-
terisation results of iterated dominance conceptions, which models rationality (ex-
pected utility maximisation) inductively and implicitly rather than by explicit ref-
erence to players’ utility functions and probabilistic beliefs. This approach allows
me to demonstrate that certain intuitions underlying a well-known result by Eddie
Dekel and Drew Fudenberg about the behaviour of players with less than full in-
formation about their opponents’ utility functions do not characterise the so-called
Dekel-Fudenberg procedure. Rather, they characterise a different iterative domi-
nance concept that is called here mixed iterated strict weak dominance. Yet a direct
characterisation of the Dekel-Fudenberg procedure can be obtained in our frame-
work, too, if we use insights from Robert Stalnaker’s game models. The epistemic
characterisation of the Dekel-Fudenberg procedure that Stalnaker obtains is based
on a perfected form of rationality where players not only maximise utility given
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their current beliefs, but also maximise utility given beliefs that they would adopt if
their current beliefs were shown to be false. An inductive, implicit axiomatisation
of perfect rationality underscores this result.

Chapter 3 turns to extensive games, and studies the main solution concept of
backward induction under the one-shot as well as the many-moment interpretation.
A reconstruction of one version of the argument that common knowledge would
entail backward induction reveals that a one-shot view of extensive game-playing
is assumed together with—but strikingly inconsistent with—a rationality principle
that takes seriously certain aspects of the game tree structure of extensive games
that can only be truly meaningful to the many-moment interpretation. An alternative
characterisation can be given that substitutes the incompatible rationality principle
for another one; but many game theorists will object to the replacement principle
as well. Turning to backward induction, we find that the critique against it needs
the many-moment outlook on extensive game-playing along with highly restrictive
belief formation practices—which is also incoherent.

Chapter 4 turns to external investigations, first of the rationality principle, and
then of game theory used for explanatory and prescriptive, normative purposes. I
mention briefly Max Weber’s and John Stuart Mill’s conceptions of rationality and
social explanation, which leads to an investigation of the logical form of rationality
as expected utility maximisation and the presuppositions about human agency made
by this concept. I will argue that the sharpest, but also the most ambitious phrasing
of the principle involves existential quantification only, and that two equally plau-
sible normative interpretations of the principle are obtained by either prefixing the
deontic operator de dicto, or by infixing it de re. Applying the same logic to game-
theoretic explanations allows me to defend the claim that if these explanations are
to conform to the belief—desire framework—which they should—epistemic charac-
terisation theorems are the canonical purveyors of the players’ beliefs. As a result
of this, however, game-theoretic explanations become reducible to decision theory.
Worse, an epistemological bias embodied in these results towards narrow epistemic
policies shows these reductions to be of rather limited applicability. Moreover, with
the theory of games being reducible as an explanatory theory, a detailed logical
analysis shows that it is nonsensical as a normative theory. All of this should not
lead us to reject game theory—non-cooperative game theory, that is—as a whole;
but it defers its applications to such domains as mechanism design or conceptual
philosophical argumentation in need of equilibrium notions.

Chapter 5 first examines the true-in-the-abstract conception of game-theoretic
modelling. This conception is seen partly to cause and partly to constitute over-
mathematisation of scientific texts, and to lead to an introverted stance to applied
mathematics and to a research habit I call model-tinkering. The original motiva-
tion behind John Nash’s solution concept, as well as the ways in which a number
of refinement solution concepts are defended in the Nash Equilibrium Refinement
Programme betray the true-in-the-abstract view to a considerable extent—in strik-
ing contrast to the equally mathematical, but more outward looking Epistemic Pro-
gramme. | will show that the Nash Equilibrium Refinement Programme and the
Epistemic Programme share the same key research objective, that is, to produce the
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ultimate characterisation of strategic interaction between rational, economic agents.
Furthermore, I will argue that the Epistemic Programme has been more successful
in reaching this goal, and explain this by reference to its more application-driven
mathematical modelling techniques.



Chapter 1
Preliminaries

1.1 The Logic of Game Theory

Human actions can be made sense of in various ways. Combining the dichotomy
of understanding and explanation on the one hand, and that of individualism and
holism on the other, we can explain actions as expressing meaning, as governed
by rules, as fulfilling functions in larger systems, or as being based on individual
reasons. !

Which of these four modes applies to the theory of games? This question suggests
that there is only one way to use game theory in the social sciences, which may
not be too plausible given the creativity of the social scientist working in any of
the four frameworks and applying game theory in a way she judges productive.
Nonetheless, if we take the declared aims of non-cooperative game theory seriously,
we are almost automatically led to think of game theory as conforming to the belief—
desire framework of action explanation. Game theory explains actions in terms of
the reasons agents have to carry them out.> While this may not be the only way
to make sense of game theory, it is certainly a central sense of game theory. The
belief—desire framework forms the basis of this book.

This chapter first deepens our understanding of the contrast between decision
theory and game theory, and shows the ways in which to give a precise descrip-
tion of the differences between the two theories in epistemic terms. Subsequently, I
will consider normal form and extensive form game-playing in order to distinguish,
as their relevant elements, the possible actions a player can choose to perform, her
preference ordering and rationality principle, the action eventually performed, and,
finally, the beliefs about—with recursion intended—all five ingredients. For exten-
sive games, a one-shot interpretation and a many-moment interpretation will be set
apart.

! Martin Hollis, The Philosophy of Social Science: An Introduction (Cambridge: Cambridge
University Press, 1994).

2 The belief-desire framework has most notably been defended by Donald Davidson, Essays on
Actions and Events (Oxford: Clarendon Press, 1980).

B. de Bruin, Explaining Games, Synthese Library 346, 1
DOI 10.1007/978-1-4020-9906-9_1, (© Springer Science+Business Media B.V. 2010



2 1 Preliminaries

1.1.1 Decision Theory and Game Theory

It is standard to account for the differences between decision and game theory in
terms of the number of players, and to note that where decision theory is concerned
with one player who has to act in a situation of certainty, uncertainty or risk, game
theory is concerned with several players who interact strategically. The number of
players, however, is not the crucial factor here. Sometimes, for instance, decision
theory is held as the study of individuals playing against a second player, nature.
Rather, the difference is that decision theory involves only one agent with beliefs and
desires—nature does not have beliefs or desires—and that game-theoretic agents all
have beliefs and desires.?

This distinctive feature is unequivocally mirrored in the way games against na-
ture and games against opponents with beliefs and desires are represented. The en-
tries of the decision matrix are pairs of real numbers in game theory, but only single
real numbers in decision theory. Nonetheless, what these differences lead to—what
game-theoretic agents are supposed to do with their beliefs and desires—remains to
be examined.

1.1.1.1 The Ban on Exogenous Information

John von Neumann and Oskar Morgenstern describe the function of preferences as
follows:

Every participant can determine the variables which describe his own actions but not those
of the others. Nevertheless those ‘alien’ variables cannot, from his point of view, be de-
scribed by statistical assumptions. This is because the others are guided, just as he himself,
by rational principles—whatever that may mean—and no modus procedendi can be correct
which does not attempt to understand those principles and the interactions of the conflicting
interests of all participants.*

That being the case, the difference between decision and game theory is not so much
that opponents have beliefs and desires, but rather that any player has to consider
her opponents as having such beliefs and desires. The right way to think about your
opponent is the way that you think about yourself, as a rational being acting on
beliefs and desires, not in the way that you think of the weather or radioactive decay.

One of the most striking consequences of this view—a consequence that recurs
throughout the entire book—is that in order to find out what your opponents will
do, the only information a game-theoretic agent is supposed to use is her beliefs and
desires. Statistical data or any other exogenously based data are out. To conceive
of your opponents’ agency as guided by rationality means that numerous epistemic

3 In an alternative vocabulary this is the distinction between parametric and strategic choice situa-
tions. Decision theory is also called rational choice theory. A classic reference is R. Duncan Luce
and Howard Raiffa, Games and Decisions: Introduction and Critical Survey (New York: Wiley,
1957).

4 John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior (Prince-
ton: Princeton University Press, 1944), 11.
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policies that are entirely natural in meteorology or nuclear physics are out. This is
quite literally a ban on exogenous information. Decision-theoretic models typically
have individuals base their probabilistic beliefs on statistics and other outside data.
For instance, in order to choose with the help of decision theory whether to build a
nuclear plant, statistical data about nuclear catastrophes are essential. Von Neumann
and Morgenstern’s call to choose one’s strategy on the basis of reasoning processes
that do not transcend the game structure, but only refer to the rationality principles
and the utility functions of the players, excludes such forms of information, however.

In general, various ways to form beliefs about what opponents will play are avail-
able. Players may consult statistical surveys, they may call upon experience, they
may read historical texts, or they may watch videos of previous games. The ban
on exogenous information rules all this out, though, and so the question is: how
can game-theoretic agents, if the ban is genuinely enforced, ever obtain information
about the prospective strategic choices of their opponents?

To show how merely endogenous information can form the basis of substantial
belief formation and lead players to select certain strategies and to exclude others is,
in fact, the main research goal of non-cooperative game theory. Up until the 1990s,
game-theorists thought that solution concepts that refine the Nash equilibrium would
accomplish this goal; but nowadays the Epistemic Programmeis considered the most
likely source of insight, particularly by way of mathematical results called epistemic
characterisation theorems.’ Strictly obeying the ban on exogenous information, the
main idea is that I can derive sensible and precise predictions of my opponents’
prospective strategic behaviour from the assumption that they are as rational as I
am.®

1.1.1.2 Epistemic Characterisation Theorems

In order to get some feel for the general form of epistemic characterisation theorems,
let me first examine the logic of decision-theoretic modelling, and then contrast it
with the logic of game-theoretic modelling. Consider the decision problem shown
in Figure 1.1 where agent i has to choose between actions i1, i> and i3, and where the
possible states of nature are @, @, and ws. If i does not have any information about
what state of nature will obtain, she may decide to act on a number of divergent and
mutually inconsistent principles. She may decide to maximise the minimal payoff or
utility, to minimise the maximum possible regret (risk), to use Hurwicz’s pessimism-
optimism index criterion, or she may use a principle of decision under uncertainty

5 While ‘Decision-Theoretic Foundations Programme’, ‘Epistemic Foundations Programme’ or
‘Interactive Epistemology’ are good candidates, the terminology of ‘Epistemic Programme’ seems
to be gaining popularity in the literature (Adam Brandenburger, personal communication).

6 It may be worth pointing out that the ban on exogenous information still enjoys wide support.
Adam Brandenburger and Amanda Friedenberg, ‘Intrinsic Correlation in Games’, Journal of Eco-
nomic Theory, 141 (2008), 30 consider as endogenous the beliefs of the players in so far as they
are derived from a hierarchy of common beliefs, emphasising that it is standard in the Epistemic
Programme to consider these variables as part of the description of the game.
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[} 073 3
i 1 0 1
5] 5 0 3
13 3 1 2

Fig. 1.1

based on Laplace’s criterion of insufficient reason. But it is clear that she will never
choose her first strategy—unless she wishes to lose—as it is strictly (or strongly)
dominated by i3.

Equally clear is that if she possessed information to the effect that the first or third
state of nature will obtain, she would choose her second strategy and if she believed
that the second state is the actual world, she would choose i3. In easily understood
formalism, this reasoning is of the form

(s utility A i’s rationality A [J;(possible states of nature)) — i’s actions,

where the [J; is used for i’s beliefs. The sentence attests that i’s actions ensue from
her payoffs, rationality and beliefs about possible states of nature.”

24 2, 23

I (1,5) 0,1) (1,3)

1s (5,0) (0,0) (3,1)

13 (3,3) (1,1) (2,2)

Fig. 1.2

Turning to game theory proper, consider the game shown in Figure 1.2. It is a
normal form game between two players 1 and 2. Player 1 has the payoffs agent i
had in the above decision problem, and as a result she will not play her first strategy

7 I adopt the game-theoretic convention that actions and objects of beliefs are thought of extension-
ally. It is crucial to note the plural in the consequent, because rationality principles do not always
fix unique actions.
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here either. Furthermore, it is plain that her choice between her second and her
third strategy ought to depend on what she believes about the prospective choices
of her opponent. If he chooses 2,, then 13 is the best choice for her; if he chooses
something else, then she should play 1,—unless, again, she wishes to lose.

The decision-theoretic analysis only proceeds if the agent possesses exogenous,
statistical information about nature’s prospective moves. How does the Epistemic
Programme circumvent the use of such data? In the present case, player 1 can further
develop her beliefs about her opponent in purely endogenous ways, that is, only
referring to beliefs, utilities and rationalities. To see this, consider what player 1 can
do with the extra information about player 2’s utility function. Player 1 observes that
playing 23 is always better for player 2 than playing 2, and this kind of reasoning
helps her to decide upon her own action; playing 1, is the best choice if player 2
does not play 2,. Nor is this all, because player 2 only avoids playing dominated
strategies if he does not wish to lose. For that reason, player 1 also has to have
information about her opponent’s rationality; she should know that he maximises
expected utility. In formalism, the assumptions allowing me to conclude that player
1 believes that player 2 does not play 2, and that therefore player 1 plays her second
strategy are fully captured in the antecedent of

(1’s utility A 1’s rationality A OJ; (2’s utility) A OJ; (2’s rationality)) — 1’s actions.

It is natural to ask whether similar reasoning can be used to determine player 2’s
choice of strategy. The analogue of the above assumptions,

(2’s utility A 2’s rationality A Clp (17s utility) A (o (17s rationality)) — 2’s actions,

is insufficient, though. Being rational, player 2 will not play 2,; it is strictly dom-
inated by 23. Strategy 23, moreover, is a better choice against 1,, but 2 is better
against 11 and 13. Since player 2 believes 1 to be rational, he will exclude her from
playing 1. That does not help him too much, however, as long as he does not have
more information about whether 1 will play 1, or 13. Unfortunately for player 2,
there is no way to obtain more information on the basis of the epistemic setting
described in the antecedent of the above implication. While player 1 considers 1,
to be a bad strategy no matter what, her opinion about 1, and 13 depends on what
she believes that player 2 will do. But as long as player 2 has no information about
player 1’s beliefs about what 2 will do, player 2 has no basis for beliefs about which
of the two strategies 1, and 13 player 1 plays.

With more elaborate, yet still exclusively endogenous information, progress can
be made, though. To see this, suppose that

2’s utility A 2’s rationality A O (17s utility) A O, (1’s rationality) A
2001 (2’s utility) A 200, (2’s rationality).
Player 2 believes that 1 is rational and that 1 has a utility function as shown in

Figure 1.2. From this, player 2 concludes that 1 will not play 1;. Player 2 believes,
in addition, that 1 believes that 2 is rational and that 2 has payoffs as stipulated
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in the game matrix. A rational player possessing such preferences never plays 25,
and therefore player 2 believes that 1 believes that 2 will not play 2,. Player 2
then observes that—provided 1 is rational and has the utility function the matrix
details—the best response of 1 to the belief that 2, will not be played is playing 1,.
Consequently, player 2 believes that 1 will play 1,. He has made his beliefs about
his opponent more precise, and this allows him, in particular, to decide between 2
and 23. Believing that his opponent will play her second action, he chooses 23. That
is, a precise description of player 2’s choice of strategy can be derived from the
more elaborate epistemic assumption.

The general form of epistemic characterisation results emerges. What I have es-
tablished is something of the form

(up=...)Arat; A (up =...) Araty A
|:|1(112 = ...)/\Dz(ll] = ...)/\D]DQ(ul = ...)/\Dz[ll(llz = )/\
O (raty) A, (raty ) ACH O, (raty ) ACLO, (raty) — 12 A 23,

where u; = ... abbreviates a complete description of i’s utility function, rat; means
that 7 is an expected utility maximiser (is rational), iy means the player i plays her
kth strategy. Anticipating the discussion in Chapter 2, this is a particular instance of
the epistemic characterisation theorem to the effect that common true belief about
rationality and utility entails that players choose strategies that survive the iterated
elimination of strictly dominated strategies. Epistemic characterisation results, in
short, are sentences of the form

o(rat;,raty, u;,up) — actions,

where ¢ is a formula in which epistemic operators [J; and [, may be used, nested
arbitrarily deeply. The statement about actions in the consequent is a statement of
the form 1; A 2; describing a situation in which 1 plays her kth strategy and 2 his /th,
or a (finite) disjunction of such statements \/; ;(1x A2;), if the antecedent epistemic
conditions are insufficient to attribute performing one single action to each player.®

1.1.2 Normal Form Games

Different assumptions about beliefs, desires and rationality principles epistemically
characterise different game-theoretic solution concepts.” Similar assumptions ap-
pear in almost every characterisation result, and the aim of this section is to expli-

8 A consequence of non-uniqueness is that a full explanation of the specific action performed by an
agent cannot always be given in entirely game-theoretic terms. Decision and game theory explain
that the action actually chosen lies in some set of possible actions. But neither theory can always
account for why one action is chosen rather than another.

9 The treatment of these issues has benefited from detailed written comments by Wlodek Rabi-
nowicz, for which I am very grateful.
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cate them. While it is entirely false that no models could be developed for situations
in which these assumptions are not satisfied, without them epistemic characteri-
sation results would often make less sense to the Epistemic Programme in game
theory—but, as will become clear, there are important exceptions. Evolutionary,
behavioural, stochastic and cooperative game theory all provide ample space for re-
laxing the assumptions—and some non-cooperative game theorists may also wish to
resist adopting the viewpoint promoted by the Epistemic Programme—but this does
not contradict my argument in this section, because the aims of those researchers
are crucially different from ours.'?

To start with, players of a normal form game can choose from a set of possible
actions, in most models finite, and never containing fewer than two elements. Mod-
elling a situation as a decision or game theorist means ascribing to the agents weak
total preference orderings over all possible outcomes of the game. Ordinal order-
ings are often sufficient in the Epistemic Programme, but the full force of the von
Neumann—Morgenstern axioms is needed whenever preference orderings are to be
uniquely represented by means of utility functions modulo linear transformations;
this is the content of Theorem A.1 (see the Appendix A).!! Games are almost never
specified using preference orderings. Utility functions are the standard.

Even though preferences are essential, they are insufficient to give a full moti-
vation for actions; they do not on their own constitute reasons to act, but stand in
need of at least a principle telling the agent what to do with her preferences. Deci-
sions under certainty or uncertainty allow for a fair number of different principles.
Decisions under risk involve the maximisation of expected utility, and this is the
principle employed in game theory, too.'? In the Epistemic Programme, no agent
ever acts without a principle of rationality.

It follows that acting is rationally choosing an action from a non-empty, non-
singleton choice set. If agents did not choose, they would dawdle and leave the
game unfinished, and if agents chose more than one action, they would be spoil-
sports and ruin the game. Only if all players choose precisely one action can the
game reach an outcome. In normal form games, a related condition is often phrased
by stipulating that players play simultaneously, which means that players have no
chance to observe what their opponents do. They act in ignorance of what their
opponents choose—notwithstanding the fact that they may have very accurate be-
liefs that would predict their opponents’ actions. This requirement could be envis-
aged by players who make their choice in private first, handing their choice over to

10 The stance here is logical, not epistemological. No critical evaluation of the plausibility of the as-
sumptions is carried out; only an investigation into the logic underlying epistemic characterisation
results.

1A weak total ordering is a reflexive linear ordering. To be precise, the ordering ranges over the
lotteries composed of the possible outcomes of the decision problem or game, satisfying, in addi-
tion, conditions of monotonicity, substitutability, continuity and reduction, i.e., the von Neumann—
Morgenstern axioms. See, e.g., Luce and Raiffa, op. cit. 23-31. For an alternative rendering that
has become the standard in the Epistemic Programme, see the Appendix A.

12 1f a player’s preference ordering is an ordinal one, or if her beliefs are not of the Kolmogorov
form, not all of the mathematical details of expected utility maximisation are needed in full to make
a player play, and a simpler definition of rationality can be used.
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an objective umpire who reveals the choices—and thereby announces the achieved
outcome—as soon as she has received them all.

Accompanied by highly specific utility functions, rationality principles are still
often powerless if a player does not have beliefs. As I have suggested, fully pinning
down the strategic choice of a game-theoretic agent involves quite complex reason-
ing with nested epistemic operators involving the beliefs of one player about those
of another. In a typical situation, a player possesses beliefs about her and her op-
ponents’ possible actions, about her and her opponents’ preference orderings, about
her and her opponents’ rationality principles, about her and her opponents’ actions
to be performed, and—with recursion intended to generate the necessary hierarchy
of beliefs—about her and her opponents’ beliefs.

Before turning to these five kinds of beliefs in more detail, it is important to
realise that what applies to preferences also applies to beliefs: they take, in game
theory, a specific kind of object. While in most concrete examples the beliefs as well
as the preferences can be stated in everyday language, beliefs are regularly—but
not always—taken to be probability measures over outcomes. They have to satisfy
the Kolmogorov axioms to ensure, most importantly, that summing up probabilities
is allowed whenever the probability of the disjunction of two independent events
will be calculated. More intricate models are needed when we are interested in the
ways players would change their beliefs if they learned that their current beliefs
were wrong. Plain standard probability theory does not tell us much about how
to apply Bayes’ Rule to null events. Belief revision theory, by contrast, sorts out
more (theoretically) rational from less rational ways to update and correct one’s
epistemic state. In the characterisation of several game-theoretic solution concepts,
the Epistemic Programme has employed this theory to describe how the players’
dispositions to revise beliefs influence the outcome of the game.

Of the five ingredients, the first is clear. Without beliefs about what to choose
between, players cannot make a choice, and without beliefs about what outcomes
may result, the players’ choices of action cannot be guided by their opinions about
the desirability of possible outcomes. Information about possible actions suffices to
that end, because the set of possible outcomes is entirely determined by the possible
actions of the players.

Second, players ought to have correct beliefs about their own preferences—or
at least, beliefs that are sufficiently correct to guide decision making. If players
believe they do not have preference orderings, preferences cannot be considered
as reasons for their actions; and if they believe they have certain preferences, but
their true preferences are very different, it is hard to tell whether they inform their
agency. In fact, it seems as though completely incorrect beliefs about preferences
are incoherent—at least for the purposes of decision and game theory. If players
believe they have preferences that are different from those stipulated by the model,
and act on those beliefs, then there is much to recommend that the theorist substitute
the preference ordering in the model with the believed ordering. In the absence of
any beliefs about preferences, only unconscious motivation would make sense, and
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without beliefs about preferences that are not at least approximately correct, there is
no theory of games at all.'3

This point is important, in particular if various degrees of autonomous choice
are to be distinguished. Unconscious motivation has to be rejected, because play-
ers who are unconscious of their own preferences can hardly be thought to play a
game. Of course, there is nothing incoherent about describing a person as gradually
getting to know her real preferences and making conscious what she was previously
unconscious of, and this may not be completely impossible in decision theory. In
fact, someone’s actions may be neatly modelled as maximin actions in some model
ascribing preferences to the agent she first refused to acknowledge as her own. As
the theorist continues modelling, however, we find that the model describes her
behaviour correctly more often than not, and this prompts the agent to accept the
model’s specification of her preferences as correct. The models, one could say, ex-
plained her actions correctly, but it took a while before the agent herself became
aware of that.

Yet this does not make sense in non-cooperative game theory as long as the per-
spective of the Epistemic Programme is adopted. A similar scenario where some-
one’s actions are modelled as iteratively strictly undominated, for instance, may
indeed turn out to describe her behaviour adequately, and the agent may indeed ac-
knowledge that this reveals her true preferences. It is doubtful, however, whether a
real explanation of her actions would be given, because the epistemic conditions of
iterated strict dominance were not satisfied; these conditions involve common true
belief about rationality and utility, and this was lacking as the modelled preferences
were different from the actual preferences—the beliefs were common but not true.
The distinction between players’ real and believed preferences, in other words, is
rejected, because at most only one preference ordering can play a motivating role,
and the motivating preference ordering would need to appear in the game-theoretic
model. Moreover, while not denying the conceptual possibility of players entertain-
ing the belief that they do not possess any preference orderings, I reject the relevance
of such possibilities to decision and game theory. If such beliefs are false, the pref-
erence ordering probably provides unconscious reasons for action; and if they true,
there is just nothing decision and game theory can do.

Nor does it make sense, for game-theoretic purposes, to talk about players who
are wholly uncertain about their preferences. If players are so uncertain about their
preferences as to make it impossible to decide upon an action, then they just lack
preference orderings. If, on the other hand, they can still decide on actions, they are,
for game-theoretic purposes, just players with a particular preference ordering—
or a range of possible orderings—that inspires the performance of one particular
action. To summarise, as Adam Brandenburger and Robert Aumann write in their
seminal paper on the epistemic characterisation of the Nash equilibrium, ‘knowl-

13 Players may be ignorant of their future preferences in extensive games under the many-moment
interpretation.
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edge of one’s own payoff function may be considered tautologous’.'* Without this
assumption, the Epistemic Programme would not fully flourish.

Players not only need beliefs about their own preferences, they also need beliefs
about the rationality principle that they use. If I explain the behaviour of a certain
agent in terms of maximin, but she sees herself as solving a maximisation prob-
lem corresponding to the utility function and the probabilistic beliefs she believes
herself to possess, then I misconstrue the reasons underlying her choice of action.
Whenever I say that preferences, beliefs and rationality principles explain actions,
I actually mean to refer to beliefs about preferences, beliefs about rationality and
beliefs about a number of other aspects of the game-playing situation (available
actions, outcomes, and so on).15

Of course, players have to have numerous beliefs about their own role in the
game. The Epistemic Programme has helped to uncover the fact that players must
have beliefs about each other. Games in which players do not have a clue about
the preferences of their opponents are reducible, for them, to games against nature;
all entries in the game matrix—except their own—can be removed, as far as they
are concerned. Acting on principles from decision theory, they would choose on the
basis of exogenous information. In the game shown in Figure 1.2 player 1 may form
the belief that 2 will not play his second strategy on the basis of the information 1
has about 2’s preferences, because player 1 observed that 2, is strictly dominated
by 23. Without beliefs about 2’s preference ordering and rationality, player 1 would
not have been in the position to make the argument. '

In summary, for the Epistemic Programme in game theory to make sense, a player
of a normal form game must have beliefs about her and her opponents’ possible
actions, about her and her opponents’ preference orderings, about her and her oppo-
nents’ rationality principles, about her and her opponents’ actions to be performed,
and, with recursion to generate the necessary hierarchy of beliefs, about her and her
opponents’ beliefs. This five-tiered structure reoccurs in game-playing situations of
extensive games—but with crucial complications.

14 They state that ‘Knowledge of one’s own payoff function may be considered tautologous’, ‘Epis-
temic Conditions for Nash Equilibrium’, Econometrica, 63 (1995), 1162. This is not to exclude
Bayesian games and other models of incomplete or imperfect information. The aim of modelling
such games is to capture situations where individuals are less than fully informed about the pref-
erence relations of their opponents, or even about certain exogenous features of the actual world.
This is compatible with the claim I defend, because—to stay within the framework of the Epis-
temic Programme—reasoning about solution concepts of such games involves considering larger
games in which these pieces of information have been ‘endogenised’. For a textbook treatment, see
Martin Osborne and Ariel Rubinstein, A Course in Game Theory (Cambridge: MIT Press, 1994),
24-27.

15 T use the concept of game-playing situation rather loosely. Cf., e.g., Adam Brandenburger, ‘The
Power of Paradox: Some Recent Developments in Interactive Epistemology’, International Journal
of Game Theory, 35 (2007), 465—492.

16 Again, these assumptions can be somewhat relaxed. Sensible conclusions can be derived about
the likelihood of opponents performing certain strategies even when a player only has approximate,
not entirely accurate beliefs about opponent utility functions. For further discussion see Section 2.4.
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1.1.3 Extensive Games: The One-Shot Interpretation

Extensive games model temporally extended, sequential strategic interaction. Nor-
mal form games, by contrast, model one-shot events. That, at least, is the common
view. For von Neumann and Morgenstern, however, normal form and extensive form
games are different possible models of one and the same sort of thing. ‘Imagine,’
they write,

that each player. . .instead of making each decision as the necessity for it arises, makes up
his mind in advance for all possible contingencies.'’

Then this is no restriction of his freedom of action

because the strategy is supposed to specify every particular decision only as a function of
just that amount of actual information which would be available for this purpose in an actual

play.'8

One thing can be modelled in two different ways. The normalised form is more ap-
propriate for proving general results, the extensive form is better when one wishes to
analyse particular cases, but for the founding fathers of game theory the two forms
are ‘strictly equivalent’.!” To analyse the characterisation results that the Epistemic
Programme has obtained about extensive form games, it pays to set out these two
interpretations more clearly, and I do this by distinguishing between a one-shot in-
terpretation and a many-moment interpretation of extensive form games. The latter
interpretation is most sensitive to sequentiality, but the one-shot interpretation, too,
is still different in subtle respects from pure normal form games.

1 1
Aq aj : Ar a . (54)
p X X2 X3
D| d1 D2 d2
(1,D 0,3) (3.2 2.5
Fig. 1.3

According to the one-shot interpretation, players of an extensive game act simul-
taneously, and choose between a set of strategies fixing the actions at any of their

17 Op. cit. 79

18 Tbid.

19 Ibid., 85. It is not terribly clear what ‘strict equivalence’ means here. For further discussion
see Boudewijn de Bruin, ‘Game Transformations and Game Equivalence’, ILLC Technical Note
X-1999-01 (University of Amsterdam, 1999), and Susan Elmes and Philip Reny, ‘On the Strategic
Equivalence of Extensive Form Games’, Journal of Economic Theory, 62 (1994), 1-23.
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decision nodes in the game. In the Centipede game shown in Figure 1.3, for instance,
player 1 can choose between the strategies D1D,, D{Az, A1D, and AjA;. In order
to find the assumptions on one-shot extensive game-playing situations one could
expect, first, that copying the conditions on the five elements of normal form game-
playing situations suffices. Preference orderings surely satisfy the von Neumann—
Morgenstern axioms, players act on principles of rationality, and they ought to have
beliefs about possible strategies, performed strategies, preferences, rationality prin-
ciples, and, with the usual recursion, about beliefs. Moreover, similar to playing
normal form games, players decide on precisely one full strategy (a function, here,
mapping any decision nodes of hers to an immediate successor) and choose simul-
taneously.

Under the one-shot interpretation, players of an extensive game can choose be-
tween a set of possible full strategies prescribing a unique action at any decision
node. At every decision node more than one action is possible, and on that account
the set of possible full strategies contains at least two elements. From these possi-
ble strategies, players pick precisely one, without the game structure allowing them
to have information about the choices that the others make. In short, they choose
simultaneously.

Preference orderings in normal form game-playing situations range over strategy
profiles combining the strategic choices of all the players. Different strategy profiles
give rise to different outcomes with different—or identical—utility for one or more
players. Preference orderings in one-shot extensive game-playing situations, by con-
trast, are defined over the terminal nodes of the game tree, the genuine outcomes of
the game, and the same terminal node can often be reached by more than one full
strategy. In the Centipede , for instance, strategy profiles (A1D,,d d), (A1A2,d d>),
(A1Dy,d1a;) and (A1A,,djay) determine the same outcome.

More subtle issues arise when we consider rationality in the one-shot interpre-
tation, as we have to decide whether one-shot principles of rationality differ from
normal form principles. Using normal form rationality as one-shot rationality, a full
strategy in an extensive game is rational for a player given her beliefs and utility
function whenever the full strategy is rational in the normal form version of the
game. Different notions of rationality for normal form games (weak domination,
strict domination, perfect rationality, and so on) will give rise to different notions
of rationality for extensive games, without, however, essentially referring to their
sequential character. An alternative way to define one-shot extensive game rational-
ity does exploit the extra structural properties of extensive games by considering
a full strategy not only in the whole game but also in all of its subgames. Imag-
ine, for instance, that player 2 in the Centipede wishes to quit the game at the first
decision node, because this is presumably the best thing to do given the player’s
beliefs and preferences. Looking at the normal form of the game, it does not matter
whether she plays did> or dja,, because the outcome will be the same with either
of these two full strategies. The latter prescribes a bad action in the subgame gen-
erated by x3, though, for player 2 would lose one unit of utility in comparison to
playing d,. That being the case, a notion of rationality sensitive to subgames ex-
cludes player 2 from playing dja, without, it is important to note, transcending the
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one-shot framework—it only involves player 2’s one-time event of choosing a full
strategy.

If rationality principles come in two versions, it might be expected that beliefs
come in a subgame-insensitive and a subgame-sensitive version also. The subgame-
insensitive conception takes the full strategies of players’ opponents as objects of
their beliefs. In order to get some impression of the ways a subgame-sensitive con-
ception can be defined, consider the ways that player 1’s belief that 2 will quit the
Centipede game as soon as possible can be phrased. Since the one-shot interpreta-
tion holds to the view that the only objects of choice are full strategies, player 1’s
beliefs should be about 2 playing d1d; or dja,. She could believe that player 2 plays
the former, she could believe he plays the latter, and she could believe that either he
plays the former or he plays the latter, but in all three cases she believes that at x;
player 2 quits the game. For the rational evaluation of player 1’s choice of a one-
shot full strategy makes no difference which of the three beliefs she uses, because
all that matters is what she does at the root of the game. In order to evaluate a full
strategy in, say, the subgame generated by x», it matters what exactly she expects of
her opponent in that subgame.

There are two ways out. First, players may be supposed to have beliefs for all
subgames. Player 1 may believe that player 2 will play dja» in the entire game, but
that in the subgame generated by x, he will play d», for instance. Alternatively, we
could presuppose that a player’s beliefs about the entire game are serious. If a belief
entails a certain action at a certain node which, according to that very belief, will not
be reached, the belief about this action still expresses serious reasoning about the
opponent’s strategic situation. Player 1 should, following this latter logic, believe
that 2 will play d;d> in the entire game, and that belief would be reusable in the
subgame generated by x» stating that 1 believes 2 to play d; at x3.

I do not have a strong opinion about which of the two is the best, because, I
believe, they are both antithetical to the one-shot interpretation of extensive game-
playing. In a one-shot game-playing situation, players make up their minds about
full plans of action, without envisaging any future moments of decision. Players
who do not envisage future moments at which they can decide, do not envisage
future moments at which they have beliefs either, and if I am right here, special
subgame-sensitive beliefs, under the one-shot interpretation, do not make sense. As
a consequence, rationality principles which pay attention to subgames do not make
sense according to the one-shot interpretation for the same reason. Beliefs about
subgames and rationality, in other words, are about what would happen if subgames
were reached at some later point in time. But under the one-shot interpretation it
does not make sense to consider such possibilities. Subgames are not reached at all.

Ultimately, the one-shot interpretation comes in only one version—a radical one.
Playing an extensive game in the one-shot interpretation is playing its normal form
version without rationality principles that go beyond the normal form, and Chap-
ter 3 discusses important consequences for the epistemic characterisation results
adopting the one-shot view.
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1.1.4 Extensive Games: The Many-Moment Interpretation

The one-shot interpretation seems to stay closest to von Neumann and Morgen-
stern’s dictum that normal form and extensive form games are equivalent. To mo-
tivate considering a many-moment interpretation of extensive game-playing, a pos-
sible counterargument against the equivalence would hold that a player who thinks
of the game as consisting of various subsequent decision moments will just not
develop a full plan of action for the game—and hand it to the umpire overseeing
it—but will rather think only about the choice of action to be made at the decision
node she thinks she is at. The many-moment interpretation indeed conceives of a
game-playing situation as a sequence of decision moments. Game-play, that is, en-
tails a run through the game tree terminating in some outcome, but it entails more,
because every decision moment ought to contain the necessary elements to explain
the action performed at any decision moment in the run—preferences, principles
and beliefs. A game-playing situation is accordingly a run through the game tree
plus some extra information.?’

The essential difference between the one-shot and the many-moment interpreta-
tions is that the former has players choose a full strategy at one single point in time,
while the latter sees players as making up their minds at various points in time. In
the many-moment interpretation, players may exert influence on the outcome more
than once, respond to their opponents’ moves, and block entire subgames by their
choices of action. Since a many-moment game-playing situation is a sequence of
decision moments, the logical form of the various components of decision moments
is different from the corresponding element of the one-shot interpretation. At every
decision moment a player has to act rationally on the basis of some preferences and
beliefs. A player’s beliefs may, first, be thought of as relating all of her possible
actions at some decision node to the terminal nodes she expects to ensue if she were
to choose that action, and however minimal this conception of beliefs may be, it is
enough to make rationality principles work: choose the action you expect to lead to
the best possible terminal node. Yet as it stands this conception of beliefs is in al-
most all cases unserviceable to the Epistemic Programme’s purposes, because only
very occasionally will the utility structure of the game be sufficient for the players to
base their expectations on. Outcomes that are worst for everyone may be excluded,
and those that are best for everyone expected, but such cases are rare, and statistical
data and the like are clearly ruled out by the ban on exogenous information.

As long as the players’ beliefs concern terminal nodes, they may be said to pos-
sess beliefs about a restricted number of possible eventualities only, and I therefore
propose to add more structure to beliefs to make them fit for the many-moment

20 Another interpretation comes into sight when we consider players deciding on the performance
of entire strategies, but not necessarily once and for all. Such an interpretation is mentioned by
Wlodek Rabinowicz, ‘Grappling with the Centipede: Defence of Backward Induction for BI-
terminating Games’, Economics and Philosophy, 14 (1999), 99. See also ibid., “To Have One’s
Cake and Eat It, Too: Sequential Choice and Expected-Utility Violations’, Journal of Philosophy,
92 (1995), 586-620.
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interpretation. In this interpretation, players have beliefs about all possible future
decision nodes, giving rise to an expected path through the game and its subgames.

Apart from beliefs about choices of action, players have beliefs about possible ac-
tions, preferences, principles, and, with recursion, beliefs, plus—new for the many-
moment interpretation—beliefs about the actions played prior to the current decision
moment. Beliefs about possible future actions and beliefs about previous actual ac-
tions are beliefs about the tree structure of the game and the position therein. Beliefs
about preferences are beliefs about the ordering over terminal nodes.

Formal renderings of those beliefs, as well as the even more obvious beliefs
about beliefs, may disagree on the details of the logical form, but these issues need
not detain me here. What should be discussed, however, are the different ways in
which the many-moment interpretation can deal with the history of game-play. The
one-shot interpretation has players form beliefs about their opponents’ choice of
full strategies. The many-moment interpretation has players form beliefs about their
opponents’ choices of action at each and every possible decision node of theirs.?!
Now, imagine a player at some decision moment who wishes to form a belief about
what is going to happen at some future decision node. If it is her own decision node,
she could simply commit herself to performing some action there, but that would
be strikingly incoherent with the many-moment interpretation, because she would
in that case adopt a full strategy as in the one-shot case. To be a genuine many-
moment agent, she should imagine herself in the particular future decision node,
find out what preferences, principles and beliefs she will act upon then and there,
and deduce from that a belief about her own choice of action. This is no different
from the way players form beliefs about each others’ prospective choice of action at
future decision nodes. Beliefs about future preferences, principles and beliefs, that
is, are used to deduce predictions of future actions.

1 A 2 a 1 A 2 a
’ ! . ‘ : . e (0)
p x| X2 X3
D, dy D do
(OO (-, 10) (CW)) .5)
Fig. 1.4

21 In the one-shot interpretation, beliefs may also involve subgames and in the many-moment
interpretation, beliefs may also be about terminal nodes. As I have shown, however, these are
either insufficient to run the Epistemic Programme, or incoherent given the further details of the
interpretation.
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How can players obtain any information about these elements? As with normal
form games and the one-shot interpretation, general conditions on game-playing
situations such as common true belief about rationality and utility may be used.
A new source of information springs, however, from the decision nodes and their
positions in the game tree. Consider, for instance, a variant of the Centipede, shown
in Figure 1.4, of which only the relevant parts of the utility functions have been
drawn. Player 1 at the root of the game wants to predict what is going to happen
at x3, and tries—in a first attempt—to find out what 2’s preferences, principles and
beliefs will be at x3. She may reason that player 2 is rational and that going down at
x3 is the only rational move whatever player 2 believes, concluding that at x3 player
2 will play d». She could also—a second attempt—argue that imagining player 2 at
X3 entails imagining player 2 having chosen a; at x;. Playing a; at x; is, player 1
believes, not rational for player 2, whatever his beliefs are, and therefore imagining
player 2 at x3 entails imagining player 2 with a past of irrational play. Player 1 may
go on to note that there are various ways to make sense of x3 being reached. Player
2 may have made a mistake at x|, he may be genuinely irrational, and so on, and
depending how player 1 continues the image of player 2 at x3 different expectations
about his action at x3 follow. If that is right, without extra assumptions it is not clear
what beliefs player 1 forms.

1 A 2 a 1 A 2 a
. ! . ! . 2 s 2 . (6.0)
p X1 X2 X3
D d; D dr
(,) -, 5) (12,0 (0,10)
Fig. 1.5

The example suggests that players who take a history-sensitive look at decision
nodes are in a worse position than those who adopt a history-insensitive view, be-
cause history often involves more than one, possibly conflicting explanation. To
reinforce this point, consider yet another Centipede, shown in Figure 1.5. Player 1
at the root of the game again wants to know what is going to happen at x3. If she
takes the history of x3 seriously, she has to consider 2’s choice of a; at x;. As a;
is rational only if 2 expects 1 to play A, at xp, picturing x3 as being reached means
picturing not only 2’s action and principle at x; (as in the previous example) but also
2’s beliefs at x;. In order to form a belief about what is going to happen at x3, it mat-
ters what 1 believes about 2’s beliefs at xy; it matters, for instance, to the question
whether 1 ought to consider x3 the result of mistakes, irrational play, or otherwise.
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In summary, the most far-reaching consequences of the many-moment interpre-
tation of extensive game-play pertain to beliefs, partly because of their content (ter-
minal nodes, or actions at all decision nodes of the subgame) and partly because
of their formation (history-sensitivity, or not). I will briefly examine assumptions
that the many-moment interpretation places on further elements of game-playing
situations.

A weak total ordering of the terminal nodes representable by a von Neumann—
Morgenstern utility function captures the preferences of the players, and the dis-
tinction between strictly and weakly dominated actions can be used here, too, to
formalise different concepts of rationality. Equally clearly, under the many-moment
interpretation players of an extensive game choose from a set of possible actions at
any decision node on the path followed through the game tree. Yet while the agent
who moves at some decision moment of a game-playing situation chooses exactly
one action among the possible actions, the many-moment interpretation has players
play in turn, not simultaneously; exactly one player plays at a decision moment.

At a decision moment, the player who moves has to know where she is in the
game tree. This general condition entails that she knows what has happened up
to that moment, which actions have been chosen and which ones have been disre-
garded. She needs to know the entire past and every possible future of the entire past.
This condition further entails that the player knows which actions she can choose.
She needs to know every possible future of every possible action and by the same
token she also has to know what her opponents can do at later decision moments. If
these conditions do not hold, no genuinely game-theoretic account can be given of
her actions, because particular features of the game theorist’s model (for instance,
particular preference orderings over terminal nodes of some subgame) would not
play a role in the agent’s own motivation for her actions.”? In addition, a player
should know her own preferences and those of her opponents, and she should know
on which principle she acts at the decision node she is at.??

It is clear that without any beliefs about the opponents’ rationality principles at
possible subsequent decision moments the player cannot form any argument about
the expected outcome—unless she reasons on the basis of statistical data and other
forms of information that were excluded by the ban on exogenous information.
However, how one sees such belief formation depends on how one sees decision
nodes—with or without appreciation of their histories. The obvious requirement for
the history-insensitive view is that players ought to believe that their opponents are
rational at every possible decision node. There does not seem to be an obvious re-
quirement for the history-sensitive conception.

Players should know what they play at a decision node and they should know
what they have played (a consequence of earlier conditions, called perfect recall)

22 It may be that these conditions will often fail to hold. What concerns me here, however, is
not their conceptual plausibility or empirical adequacy. Rather, I indicate here what makes an
explanation a game-theoretic one.

23 This does not mean that she has to know the principles to be applied at any possible (or even
subjectively probable) future decision node. For a discussion of weakening knowledge about op-
ponents’ utility functions, see Sections 2.3 and 2.4.
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but they should not be required to know what they will play at possible future de-
cision moments, because that would approximate the one-shot interpretation. Past
actions of the opponent, however, ought to be known (a consequence of earlier re-
quirements, called perfect information).** Yet players do of course generally have
beliefs about future actions and about beliefs about future actions, for without be-
liefs about future beliefs a player would not be able to form any beliefs about what
actions she would choose at that future decision node. Since she cannot, under the
many-moment interpretation, truly commit herself to some future action already,
she must form a belief about her future actions on the basis of beliefs about her
future preferences, principles and beliefs. Similarly, beliefs about opponents’ future
beliefs are needed. Beliefs about past decision nodes, however, seem only required
under the history-sensitive view. >

1.1.4.1 Identity Over Time

This admittedly rather rote discussion shows how conditions required for normal
form game-playing situations as well as for the one-shot interpretation of extensive
games can be adapted to the specific characteristics of many-moment game-playing
situations. It is not all old wine in new bottles, though. I will now turn to conditions
without earlier analogues, and ask how the five components of decision moments
(possible actions, preferences, principles, beliefs and choices of action) evolve over
time. Is it necessary to assume conditions relating those ingredients at different deci-
sion moments? Such a question does not of course make sense for possible actions,
preferences and choices of actions, because if these ingredients changed the game-
theoretic model proposed by the theorist would not be the game really played. But
for principles and beliefs the question is more than pertinent.

In epistemic characterisation theorems game-theoretic explanations follow
decision-theoretic explanations in that actions are taken to result from rational
choice, and as there is more than one such principle, players may change their ra-
tionality principles over time. A player may start playing only strictly undominated
actions and gradually come to play weakly undominated ones too, for instance. Such
changes may be relatively uncommon, but similar changes in beliefs are, of course,

24 This does not mean that games with imperfect information or imperfect recall are neglected
here. The way I treat such games in Chapter 5, however, follows the one-shot interpretation and
the reason is that only if players can foresee future informational asymmetries can a genuinely
game-theoretic explanation be given. Overstating it slightly, games with imperfect information and
games with imperfect recall do not make sense under the many-moment interpretation.

25 Players have beliefs about the future, which may be justified and even true, but in the explanation
of the players’ actions the theorist cannot go beyond belief and make essential use of the fact that
the beliefs, in fact, constitute knowledge. This also applies to normal form and one-shot situations.
This does not mean that knowledge (as opposed to mere belief) never adds to the explanation of an
action. Timothy Williamson, Knowledge and its Limits (Oxford: Oxford University Press, 2000),
60-64 gives an argument in favour of the ‘causal efficacy’ knowledge may have for human agency.
That aspect of a knowledge constituting belief that makes it causally efficacious (something like
its justification) has not been dealt with in the Epistemic Programme in game theory.
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entirely natural. In fact, (theoretic) rationality entails that several beliefs change,
most notably beliefs about the position in the game. It is useful to distinguish be-
tween the beliefs a player has about herself and beliefs she has about her opponents,
because players have introspective access to aspects of the (possible) development
of their agential identity that they do not have about their opponents. Beliefs about
the players’ own pasts will not generally change, as they know on which preferences,
principles and beliefs they acted, but beliefs about their possible futures may change
quite radically. Suppose that in some extensive game at x; you believe that at x,, you
will play on a principle of rationality. At some intermediate decision moment x; of
yours, however, you may feel differently about that situation. Introspection may tell
you that your attitude to the game has changed—which does not necessarily mean
that your preference ordering over terminal nodes has changed—and this may make
it less likely that you will act on a principle of rationality at x;. This does not strike
me as a very common phenomenon of special use to game-theoretic modelling,
but it does not seem incompatible with the view of action explanation underlying
the Epistemic Programme. So, beliefs about your possible future principles may
change, and beliefs about your beliefs about possible principles may change also.
Similarly, a player’s beliefs about her opponent’s past principles and beliefs may
change. At x; you may believe that your opponent’s action at some preceding x; was
the result of a mistake. At some later x,,, you may have seen more of his decisions,
and this new information may force you to reconsider your earlier beliefs, but these
beliefs are irrelevant in terms of future decision making. However, beliefs about
the future principles and beliefs of a player’s opponents ought not to change. If we
adopt a history-insensitive view of decision nodes, picturing future decision nodes
is independent of any information about previous play; and if we adopt a history-
sensitive view of decision nodes, the picture of future decision nodes already takes
care of all possible information about past play—as counterintuitive as it may sound.

1.2 A Logic for Game Theory

As I have shown, the research presented in this book studies game theory from two
perspectives. It contributes internally to the Epistemic Programme in game theory
itself by developing an epistemic logic for game theory, and it criticises externally
the applicability of game theory as a descriptive and normative endeavour from the
point of view of epistemology.

The conceptual study of normal form and extensive game-playing situations as
the Epistemic Programme views it cannot be used to derive stable results as long as
no appropriate formalism is available to capture what would otherwise remain tacit
and imprecise. I will now present the bare bones of the formalism. In the next two
chapters, I will use the formalism to represent a number of existing results from the

26 T have articulated my views on the interrelations between epistemic logic and epistemology in
Boudewijn de Bruin, ‘Epistemic Logic and Epistemology’, in V. Hendricks and D. Pritchard (eds.),
New Waves in Epistemology (Basingstoke: Palgrave Macmillan, 2008), 106—136.
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Epistemic Programme, both to enable better and more precise comparisons, and to
obtain new epistemic characterisation results. The last two chapters will then refer
back to the formal results and use them in their critical evaluation of descriptive
and normative game theory as well as in a comparison of the Nash Equilibrium
Refinement Programme and the Epistemic Programme.?’

1.2.1 A Logic for Normal form Games

senting the utility structure, I will define a formal language to describe all aspects of
game-playing that are relevant to the study of the epistemic and rationality assump-
tions underlying game-theoretic solution concepts.”®

The logical symbols used are — (not, negation), A (and, conjunction), V (or,
disjunction), — (‘if..., then...’, implication), and < (‘...if and only if...’, equiv-
alence). No quantifiers V (‘for all’) or 3 (‘there exists’) are needed. The conjunction
(disjunction) of all sentences from a finite set X is abbreviated by A X (\/ X), assum-
ing commutativity. If the ¢; enumerate X we may also write A; ¢; (\/; ¢i).

In order to obtain a genuine modal system, the set of logical symbols is en-
larged with three operators. Depending on the precise proof system, the [-operator
(historically with interpretation ‘it is necessary that...”) has a doxastic reading (it
is believed that...”) or an epistemic reading (‘it is known that...”). Since we are
dealing with more than one player it makes sense to index the operators [J; for
each player i. The dual of the [J; is written ¢;; that is, ¢; abbreviates =[J;—. The
E;-operator stands for ‘every player i € I believes (knows) that...’, and the C;-
operator is used to speak about common belief (knowledge)—all players believe
(know). .., and all players believe (know) that all players believe (know)..., and
all players believe (know) that all players believe (know) that all players believe

27 The Epistemic Programme has benefited from an inspiring number of studies in logic and games,
and the present framework, while original in its formalisation of rationality in characterisation of
iterated dominance solution concepts, is indebted to the work of various authors including Johan
van Benthem, ‘Games in Dynamic-Epistemic Logic’, Bulletin of Economic Research, 53 (2001),
219-248, ibid., ‘Extensive Games as Process Models’, Journal of Logic, Language and Informa-
tion, 11 (2002), 289-313, Oliver Board, ‘Dynamic Interactive Epistemology’, Games and Eco-
nomic Behavior, 49 (2004), 49-80, Thorsten Clausing, ‘Doxastic Conditions for Backward In-
duction’, Theory and Decision, 54 (2003), 315-336, ibid., ‘Belief Revision in Games of Perfect
Information’, Economics and Philosophy, 20 (2004), 89—115, Aviad Heifetz and Philippe Mongin,
‘Probability Logic for Type Spaces’, Games and Economic Behavior, 25 (2001), 31-53, Graham
Priest, ‘The Logic of Backwards Inductions’, Economics and Philosophy, 16 (2000), 267-285,
Robert Stalnaker, ‘On the Evaluation of Solution Concepts’, Theory and Decision, 37 (1994),
49-73, ibid., ‘Knowledge, Belief and Counterfactual Reasoning in Games’, Economics and Phi-
losophy, 12 (1996), 133-163 (repr. with proofs in C. Bicchieri, R. Jeffrey and B. Skyrms (eds.),
The Logic of Strategy (New York: Oxford University Press, 1999), 3-38), ibid., ‘Belief Revision in
Games: Forward and Backward Induction’, Mathematical Social Sciences, 36 (1998), 31-56, and
ibid., ‘Extensive and Strategic Forms: Games and Models for Games’, Research in Economics, 53
(1999), 293-319.

28 For further discussion of notations, definitions and some theorems, see the Appendix A.
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(know). .., and so on ad inf. An abbreviation for E;...E;¢@ with n occurrences
of E; is E}¢. Furthermore, E;o AEZ@ A --- AE/@ is written E,S”(p. This is re-
ferred to as common belief (knowledge) up to level n. Probabilistic expressions
P;(-) = - represent i’s probabilistic beliefs and arbitrary finite sums of such expres-
sions P;(¢1) -q1 + -+ Pi(¢,) - q, > q are allowed as long as they are not mixed
over players (as P;(¢1)-qi1 +P;(¢2) - q2 > g would be for i # j), and obvious ab-
breviations use Y..

The non-logical symbols include proposition letters to speak about games. Propo-
sition letters i, stand for the statement ‘i plays her mth strategy i,,’. The for-
mal analogue of the statement that ui(lkl S ,NkN) = r for some real number r is
u;(ki,...,ky) =r. In order to be able to make all relevant statements involving
utility, we need countably many symbols to refer to the real numbers (never all,
sometimes finitely many). Rationality conceptions, finally, correspond to proposi-
tion letters of the form meu;, rat;, prat; and mrat;, which I will explain later.

For modal logics, a Hilbert-style proof system is common and convenient. A
proof in such a system of a sentence ¢ from a set of sentences X is roughly a fi-
nite sequence of sentences that are either taken from X, or axioms (typical for the
particular Hilbert system), or statements derived (by rules typical for the particular
system) from sentences occurring earlier in the sequence, such that the last sen-
tence is ¢. If such a sequence exist—if ¢ is derivable from X—one writes X - ¢.
Generally, the axioms contain all modal or non-modal instances of tautologies from
(classical) propositional logic. No extra creativity is needed to derive statements of
the form @ V —¢ or ¢ — (¥ — ¢).

For the part of the language concerned with modality the following axioms are
needed.?® They are routinely stated for completeness and future reference.

Prop  All classical propositional tautologies.
Dual <>,(p — —||:|,'—‘(p.

Oi(e — v) — (Lip — D).

Uig — o.

Ui — Oip.

Uig — Lillie.

Oip — ;0.

E](p — /\tDl(p

Cip < E[((p A C](p)

In proof systems including the E-axiom every axiom for the [J; is provable for the
E;.3° For instance, if the T-axiom and the E-axiom are available, all instances of
E;¢p — ¢ can also be appealed to. In proof systems including the C-axiom as well
as the rule of induction from below, every axiom for the [J; is provable for the C;.

Amws~g4d R

2% Not all axioms are always needed, and this feature, highlighted in the discussion of the epis-
temic characterisation results in the next two chapters, is conceptually as well as technically quite
interesting.

30 The Dual-axiom and the E-axiom are, in some way, not genuine axioms, but definitions of
operators. This does not apply to the C-axiom, because the C-operator cannot be defined in the
finitary language applied here.
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Taking [J; as the epistemic modality, the K-axiom expresses that what is known
to be a logical consequence of something known is known; the epistemic subject i
is logically omniscient. The Dual-axiom fixes the meaning of the {;-operator. The
T-axiom captures veridicality; what is believed is true. The D-axiom states the con-
sistency requirement that what you believe is not believed not to hold. The 4-axiom
formalises positive introspection of doxastic or epistemic states; you know that you
know what you know. The 5-axiom, in turn, formalises that you know that you
do not know something if you know not to know it—mnegative introspection. The
E-axiom determines that the E;-operator expresses the beliefs everyone has. The
C-axiom, finally, captures rather cryptically what it means that something is com-
monly known: everyone knows it, everyone knows that everyone knows it, and so
on ad inf.

To discuss linear (in)equalities (to do the calculation necessary to solve maximi-
sation problems) the following axioms are needed.’!

O-term Y, Pi(@x) -qx > 1 X Pi(n) Qi +Pi(@ry1)-0 >

Per 3, Pi(@c) qe >t < X Pi(@ir)) - yx) > 1 for I any permutation.

Addgoef i Pi(@c) e = T AZPi( @) - qp = 1) — i Pi( @) - (@ +qp) = (r+
r').

MultCoef ¢>0— Pi(or) qu>r <« Yie-Pi(or) qr >c-1).

Dich ¢t >rVr <r fort any term.

Mon q>r— (t>q—t>r)forzany term.

To allow for probabilistic reasoning the Kolmogorov axioms are essential.

NonNeg Pi(¢) > 0.

True Pi(T)=1.

False P;(L)=0.

Add  Pi(¢) =Pi(pAy)+Pi(pA—y).

Dist P;(¢) =P;(y) whenever ¢ < y is a propositional tautology.

In order to ensure that probabilistic and non-probabilistic beliefs are related in the
right way, two additional axioms are useful.

Cons [0;0 — Pi(p)=1.
KnProb ¢ — O;(¢) for ¢ an i-probability sentence.

The first of these interrelation axioms is a consistency requirement on the relation
between non-probabilistic and probabilistic beliefs. In a sense it guarantees the max-
imum possible, showing that as the []; become redundant, the investigations can in
principle be carried out in a stricter language. A weaker interrelation axiom can
be defended by demanding an implication in the direction from left to right only.
But since it is not necessary here either to allow for cases in which a player holds
some proposition ¢ possible without assigning positive probability to it (or the con-
verse of this case) or to distinguish between beliefs with probability one and non-
probabilistic beliefs, I will ignore this subtlety.

31 For what follows, see Ronald Fagin and Joseph Halpern, ‘Reasoning About Knowledge and
Probability’, Journal of the Association for Computing Machinery, 41 (1994), 340-367.
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The second axiom (where i-probability sentences are sentences starting with P;
or Boolean combinations thereof) yields the players quite some measure of intro-
spective power. It is easily seen, for instance, that the KnProb-axiom together with
Cons-axiom and the necessitation rule entail positive as well as negative introspec-
tion.

The proof rules are thus:

MP IfXF¢@—wyand X+ @, then X+ y.
Nec If F ¢, then ;0.
Ind If Fo—E/(pAy), then ¢ — Cry.

The first two rules of modus ponens and necessitation appear in the proof system of
every epistemic logic. The last rule of induction is specific for proof systems that
contain the E- and C-axiom.

To capture normal form game-playing situations we need four additional axioms.

Strat>1  V,,in-

Stl‘atgl /\m;én ﬁ(im AN ln).

KnStrat A, (il < im).

KnUt lli(k,l) =r— D,’lll'(k,l) =T.

These axioms determine what players do, and what they know, when they play nor-
mal form games. The first axiom stipulates that every player plays at least one strat-
egy, while the second axiom forbids any player to play more than one strategy.
The KnStrat-axiom requires a player to have correct beliefs about what strategy he
chooses. The KnUt-axiom requires players to have correct beliefs about their own
utility functions.?

The precise formalisations of the game-theoretic solution concepts follow in the
next two chapters. For the Nash equilibrium, no extra formal material is needed. For
the iterated dominance solution concepts, I will develop a new way of axiomatisa-
tion.

1.2.2 A Logic for Extensive Games

Negation, connectives, and abbreviations are as before, as are, for the one-shot in-
terpretation, the modal operators. For the many-moment interpretation doxastic or
epistemic modalities [J} are used to represent player i’s beliefs or knowledge at the
decision moment at which decision node x is reached, and super-scripted versions
of Ej, Cj and P¥(-) = - are defined similarly.

32 Since any proof system contains the necessitation rule, players also believe (or know) these
axioms to be true, believe them to believe them to be true, and so forth. This yields common
beliefs about the possible actions, and about the fact that players know their utility. In the epistemic
characterisation of mixed iterated strict weak dominance the last axiom takes a different form. See
Section 2.4.
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The roles decision nodes and decision moments play in extensive game-playing
situations require me to restructure the original normal form language a little. On
the basis of an arbitrary enumeration of all full strategies of some extensive form
game, proposition letters i; denote the kth such strategy; more precisely—the state-
ment ‘i plays her kth full strategy’. For decision node x (which is not necessarily a
decision node where 7 has to move), proposition letter iy states that player i chooses
according to the kth strategy at all decision nodes in the subgame generated by x,
and incidentally i;(x) is used for the statement that, at her decision node x, player
i chooses the action prescribed by her kth full strategy.>? Utility statements need to
be relativised as well. As before, the statement w;(k,) = r captures the fact that ‘the
utility for player i, when full strategies k and / are being played, is r’, and uf (k,!) =
restricts this statement to the subgame generated by x, meaning that ‘the utility for
player i, when the restrictions of full strategies k and / to the subgame generated by
x are being played, is 7’. Finally, a number of proposition letters are needed for the
various principles of rationality such as anrat;, nrat; and rrat, to be explained later.
Super-scripted, they express the respective relativised statements.

We need most of the earlier modal axioms in order to study extensive game-
playing situations: the doxastic and epistemic axioms, the axioms for linear
(in)equalities, the axioms for probability theory and the interrelation axioms, as
well as the three proof rules. For one-shot analysis, we can adopt the earlier nor-
mal form version, but for the many-moment analysis we need to employ axioms
and rules for such modalities as [}, Pf() = -, and so forth. It is plain how this is
done consistently, though.

1.2.2.1 The One-Shot Interpretation

Two proof systems formalise the two interpretations of extensive game-playing sit-
uations. The one-shot interpretation has the following axioms.

Strat>1  V,,im.

Strat<; Ay = (im Aln).

KnStrat A, (0, < in).

KnUt w;(k,l) =r — Ok, ) =r.

Suby i <> \/;cpi; where D contains those strategies coinciding with k on the sub-
game generated by x.

Suby  ix(x) < V,cpi; where D contains those strategies coinciding with & on de-
cision node x.

UtSub  uf(k,m) =u’(l,n) whenever i’s kth and [th, and j’s mth and nth strategies
coincide on the subgame generated by x.

KnUtSub  uf(k,!) =r — Csul(k,l) =r for all decision nodes x.

33 1t is immaterial whether iy and ix(x) are really new proposition letters, or only abbreviations of
the disjunction of the proposition letters of those strategies that coincide with the kth strategy on
the subgame generated by x.
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The first four axioms are copies of the conditions on normal form game-playing
situations. Players pick exactly one full strategy, they know what they do, and they
know what their utility functions are. Sub; states that the use of super-script is to
talk about the restriction of some full strategy to the relevant subgame. Sub, ensures
that function notation is present to report the action taken at some decision node.
UtSub guarantees that the super-script works well when applied to utility functions.
The KnUtSub-axiom, finally, is there to endow players with knowledge about their
utility function in subgames.

1.2.2.2 The Many-Moment Interpretation

The following axioms fix the many-moment interpretation.

Strat>1  V,,im.

Strat<; Ay = (im Aln).

Sub; i <> V/,cpi; where D contains those strategies coinciding with k on the sub-
game generated by x.

Suby  ix(x) <> V,epi; where D contains those strategies coinciding with & on de-
cision node x.

UtSub  uf(k,m) =u’(l,n) whenever i’s kth and /th, and j’s mth and nth strategies
coincide on the subgame generated by x.

KnStratM i < Ay <, LHik(x).

KnUtM1  w;(k,l) =r — Ofu;(k, 1) =r for all decision nodes x.

KnUtM2  w)(k,l) =r — Ofu (k,1) = r for all decision nodes x and y.

KnWhere U} A; Vi< jen j% where D contains the proposition letters for those
full strategies that are consistent with reaching x.

The first five axioms are those axioms from the one-shot interpretation that do not
contain a [J;, and their motivation is similar. Of the last four axioms, KnStratM
ensures that at every moment of a game-playing situation players know what they
choose then and there.3* The next two axioms ensure that players know their utilities
in the entire game as well as in all subgames. The last axiom is there to guarantee
that players know, at some decision moment, which decision node has been reached.
Finally, the solution concept of backward induction is defined in Chapter 3.

34 This means that I adopt an at choice, rather than a pre choice conception of game-playing
situations where the beliefs and preferences are considered just before the moment of choice, not
at the moment of choice. See Wlodek Rabinowicz, ‘Grappling with the Centipede: Defence of
Backward Induction for BI-Terminating Games’, Economics and Philosophy, 14 (1998), 115-119.
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Chapter 2
Normal Form Games

Epistemic characterisation theorems uncover the epistemic assumptions that under-
lie game-theoretic solution concepts. Their antecedents contain statements involving
players’ beliefs, preferences and rationality principles; their consequents describe
actions. This, at least, is the ideal that the belief—desire outlook on human agency
inspires, and this ideal is shared by most of the results from the Epistemic Pro-
gramme.

Yet the Nash equilibrium already insults this ideal. The first of four solution con-
cepts that I will examine in this chapter is characterised in two ways, one for actions
in equilibrium, and one for—Iless intuitively intelligible—beliefs in equilibrium. A
close reading of the logic reveals that the latter is the former with an epistemic
modality prefixed, and that both suffer from irreparably illicit uses of the T-axiom
entailing that beliefs, for the Nash equilibrium, have to be necessarily true, and that
is conceptual nonsense.

I will subsequently deal with three iterated dominance concepts. Their charac-
terisation results all fulfil the ideal, describing the solution concepts in endogenous
terms without any inappropriate epistemic axioms. Iterated strict dominance uses
plain rationality, but our axiomatisation of this notion is new. The Dekel-Fudenberg
procedure (one round of elimination of weakly dominated strategies followed by
infinitely many rounds of elimination of strictly dominated strategies) uses perfect
rationality. The way I formalise it is similar to that of iterated strict dominance, but in
order to analyse the plausibility of the rationality axioms, a comparison with Robert
Stalnaker’s game models will be informative. Finally, the third iterated dominance
concept is a new one. It is arrived at when models are constructed of players whose
information about each others’ preferences is not completely accurate—payoff-
uncertainty. Eddie Dekel and Drew Fudenberg investigated common knowledge of
payoff-uncertainty and demonstrated that it leads to outcomes surviving the Dekel—-
Fudenberg procedure. If we use a different formalisation of payoff-uncertainty in
which players have equiprobable beliefs about utility functions, we arrive at a con-
cept called mixed iterated strict weak dominance.!

! The general form of the present chapter and the next has benefited from Pierpaolo Battigalli and
Giacomo Bonanno, ‘Recent Results on Belief, Knowledge and the Epistemic Foundations of Game

B. de Bruin, Explaining Games, Synthese Library 346, 29
DOI 10.1007/978-1-4020-9906-9_2, (©) Springer Science+Business Media B.V. 2010
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2.1 The Nash Equilibrium

2.1.1 The Epistemic Characterisation Theorems

2.1.1.1 An Explicit Formalisation of Rationality

One epistemic characterisation theorem reveals that rationality, knowledge about
utility, and knowledge about opponent strategies leads to a Nash equilibrium. Fur-
thermore, if a player knows her opponent to be rational, knows that he knows the
utility structure, and knows his probabilistic beliefs, these beliefs form a mixed strat-
egy Nash equilibrium.? In order to understand the two results—a key claim here is
that they do not conform to the general format of the Epistemic Programme—Iet me
first define a number of concepts more precisely. A strategy profile (ay,...,a,) is a
Nash equilibrium if and only if for all players i and all actions b; € A; it is true that

wiap,...,a;,....ay) > ui(ay,...,bi,...,a,).

That is, no player can increase payoff by deviating unilaterally from the equilib-
rium.? In order to capture the Nash equilibrium in our formal framework, we do not
need specific axioms, because utility comparisons can be effected merely by means
of an immediate rendering of the principle of expected utility maximisation. Using
the formalism introduced before, the axiom

MEU  meu; < A, (i Agguik, 1) =rigs AN Pi(in) = i Ai) —
AN ZiPrTimi > 2P Tikl)

states that player i is an expected utility maximiser whenever, if she decides to play
her mth strategy in a situation in which she has certain beliefs about utility (cap-
tured by the r; ;) and about her prospective strategies (captured by the p;) then the
mth strategy is better than any other, given her beliefs.* Around this axiom a proof

Theory’, Research in Economics, 53 (1999), 149-225, and Adam Brandenburger, ‘The Power of
Paradox: Some Recent Developments in Interactive Epistemology’, International Journal of Game
Theory, 35 (2007), 465-492.

2 Both theorems are due to Robert Aumann and Adam Brandenburger, ‘Epistemic Conditions for
Nash Equilibrium’, Econometrica, 63 (1995), 1161-1180. See also Adam Brandenburger, ‘Knowl-
edge and Equilibrium in Games’, Journal of Economic Perspectives, 6 (1992), 83—101. An earlier
version is due to Wolfgang Spohn, ‘How to Make Sense of Game Theory’, in W. Balzer, W. Spohn
and W. Stegmiiller (eds.), Studies in Contemporary Economics: Vol. 2: Philosophy of Economics
(Berlin: Springer, 1982), 239-270. Aumann and Brandenburger seem to have been unaware of
Spohn’s paper. Robert Stalnaker, ‘On the Evaluation of Solution Concepts’, Theory and Decision,
37 (1994), 49-73 gives a proof of the second characterisation theorem using methods from the
model theory of modal epistemic logic.

3 The conditions are sometimes referred to as the Nash conditions. The definition of Nash equilib-
rium is easily generalised so as to incorporate mixed actions as well.

4 An unusual element in our formalisation is the appearance of a doxastic operator in front of the
utility statement, deviating from the general set-up of explanations of human actions explored in
Chapter 1. It is included here in order to make the study of the epistemic characterisation theorems
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system r KTPmeu is built comprising, besides MEU, the axioms Prop, Dual, K, T,
the linear (in)equality axioms, the Kolmogorov axioms, the interrelation axioms, the
proof rules modus ponens and necessitation, and the four axioms for normal form
game-playing situations.

Table 2.1

Assumptions
preferences AN Oi Argui(k, 1) =15

principle A\; meu;

beliefs o1, AO2,
Solution Concept

player 1 AeXimi = Tigg
player 2 N2k = Tk

Proof System rKTPmeu

Proof Two characterisation results are stated here, which reflect two ways to in-
terpret mixed strategies. In the first interpretation, mixed strategies are objects of
choice for the players, that is, players may deliberately use randomisation devices
to generate probability measures on their pure strategies. In the second interpreta-
tion, by contrast, a mixed strategy of some player i does not so much constitute a
strategy i can choose to perform, but represents the probabilistic beliefs i’s oppo-
nents have about i’s strategy choice. The first theorem gives a characterisation of
the Nash equilibrium as an equilibrium of (pure or mixed) strategies. The second
theorem deals with the Nash equilibrium of beliefs. The relevant ingredients of the
theorems are listed in Tables 2.1 and 2.2.> Without loss of generality, T will restrict
attention to a two-person normal form game.

Theorem 2.1 (Aumann and Brandenburger, 1995) Let I" be an N-person normal
form game, and assume that the next three conditions hold.

1. All players know their own utility function.
2. All players are rational.
3. All players know each player’s actual choice of action.

Then the actual action profile played constitutes a Nash equilibrium.

more transparent, even though it could be omitted in the presence of the KnUt-axiom. Note further
that whenever a decision or game theorist voices a claim to the effect that certain agents maximise
their expected utility, he or she should be taken to view the agents as believing to be solving a
maximisation problem corresponding to the beliefs and the utility functions that they think they
have.

5 The tables make fewer distinctions than later tables for characterisation results. This is in order
to facilitate an easier comparison of the two versions of the epistemic characterisation of the Nash
equilibrium.
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It is shown that A, ry ,,; > 1yt (the first clause of the condition for the solution
concept). Inspection of the MEU-axiom shows that three elements are needed for the
proof to work: the beliefs of player 1 about her opponent, the strategy she performs
and her beliefs about the game structure.

The last clause is entirely trivial, so let me turn instead to the first two. By the
rightmost conjunct of the condition about beliefs and the Cons-axiom for proba-
bility, it follows that P;(2,) = 1. On the basis of Strat<; it can be proven that
Nizn01(=2;) which—using P;(¢) = 1 —P;(—¢) and the Cons-axiom—is equiv-
alent to A\;, P1(2;) = 0. In other words, the assumptions imply that all except one
of the p;; vanish. This establishes the clause about the beliefs player 1 has about her
opponent. The second clause about the performed strategy follows easily from the
assumed condition about beliefs together with the T-axiom for the [,; that is, they
yield 1,,, player 1 plays her mth strategy.

These ingredients, and the assumption that player 1 is rational, make it easy to
prove Ay Xy PiiTimi > 2 Pij - T1k,;- This is equivalent to

/\l’l,m,l >k,
k

because, as I have shown above, all except one of the p;; are zero.

Table 2.2

Assumptions
preferences EE(A; Axgui(k,1) =14,)
principles A;Oimeu;
performed action 0y A, P2(1,,) = pim
Lh /\n P, (2n) =dqn

Solution Concept
player 1 A (@i 70— Ny XpPr - T2k > Y P - T2k1)
player 2 NP 0 — N2 - Tipg =2 T1gg)

Proof System r KTPmeu

I will now turn to the second characterisation result. Here A(A;) denotes the set
of probability measures on Aj, the set of j’s pure strategies. While the previous
result holds for normal form games of arbitrarily many players, this is not true here.
Table 2.2 lists the essential ingredients of the theorem.

Theorem 2.2 (Aumann and Brandenburger, 1995) Let I” be a two-person normal
form game, and assume that the next three conditions are satisfied.

1. Each player knows that any player knows the utility functions of both players.
2. Each player knows that her opponent is rational.
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3. Each player i knows that her opponent j has probabilistic beliefs about i’s ac-
tions given by some 0; € A(A;).

Then (02, 01) is a mixed Nash equilibrium.

The formalisation of the assumptions underlying the theorem is undemanding.®
In order to explain the idea behind the conclusion, a precise definition of what it
means for a strategy to be a best response has to be given. If player i has probability
measure P; on her opponents’ actions, the expected utility of playing some action
a; € A; is defined as

EU,‘(P,’,Q,‘) = z Pi(a,i)u(ai,a,i).
a—i€lljzid;

A pure strategy a; is a best response among A; to some probability measure P; on
I1;.iA; whenever for any action b; € A; the expected utility of playing b; is at most
as high as the expected utility of playing a;, or formally,

Pia_u(ai,a_i)> Y Pila_u(bia).
a-i€lljiA; a—i€lljziA;

A useful lemma reveals that on the basis of the assumptions made by the theorem it
is sufficient to show that any strategy receiving non-zero probability by P; (a strategy
in the support of P;) is a best response by player i against P_;.”

Lemma 2.1 Let I' = (I,(A));, (u;);) be an N-person normal form game with finite
strategy sets. Then a profile of mixed actions (01,...,0y) is a Nash equilibrium if
and only if for all players i each strategy in the support of 0; is a best response to
o_;.

Given the way the p; and the q; are fixed in the assumptions of the second charac-

terisation result, this is exactly what the conditions for players 1 and 2 mean.

Proof Proving the condition for player 1, assume that for an arbitrary m we have
qm 7 0. From the condition about principles and some modal reasoning on the
MEU-axiom it follows that

O (E2 Awa(k,1) = o0 A A\P2(1) = i A20) —
k.l k

/\Zpk T2k = ZPk T2 k1)
Ik 3

Let me note this as [} (¢, — W;y,). It has to be shown that ,,; and as this is a linear
inequality not changing its truth value in the scope of modal operators, it suffices to

6 In games containing no pure Nash equilibria, no strategies 1; and 2; that would satisfy the as-
sumptions can be found. Either 1; will not be a best response to 2; or the converse. Modelling the
mixed extension of the game (containing all continuum many mixed strategies) is a way out.

7 Martin Osborne and Ariel Rubinstein, A Course in Game Theory (Cambridge: MIT Press, 1994),
51.
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prove Q1 y,,. Standard modal reasoning shows that, since we have (I (@, — W), it
suffices to prove O Q.

It follows directly from the T-axiom and the assumptions on preferences and
performed actions (first line) that 102 Ay juz(k, 1) = a1 and Oy A P2(1i) = pr.
Since q,, # 0, we find P;(2,,) # 0 from the assumption on performed action (second
line) plus the T-axiom, and with the help of the Cons-axiom and some elementary
Kolmogorov reasoning it follows that {;2,,. Together this establishes

0102 Nwa(k,1) = raps A A\P2(I) = P A2m),
ki k

concluding the proof.

2.1.2 Discussion

Chapter 1 explained the general logical form epistemic characterisation results have
to take if they are to conform to the belief—desire framework which explains actions
in terms of reasons. Antecedent conditions contain statements about players’ prefer-
ences, beliefs and rationality principles; consequent conditions describe the actions
the players perform; and together they reveal the reasons or motivations players
have to perform actions satisfying certain solution concepts. Yet the two epistemic
characterisation results discussed here deviate from this set-up. Neither one of them
contains action statements in the consequent, and the second theorem’s antecedent
does not contain any statement to the effect that the players are rational.

Two factors are responsible for this unfortunate situation, or so I argue here.
First, that no actions are referred to in the consequent arises from the adoption of
the T-axiom. But removing the T-axiom, while making the theorems conform to the
belief—desire format in some respects, would require beliefs to be necessarily true,
which is a very dubious thing to require in explanations of actions. Second, by ex-
amining possible equilibration processes the rationality in the second theorem turns
out to be the theoretic rationality of belief adoption and revision, not the practical
rationality of agency. But no such rationality is referred to in the second epistemic
characterisation theorem.

While both observations already cast serious doubt on the solution concept of
Nash—not on the epistemic characterisation results as such, of course—a final blow
is dealt when I examine how the Nash equilibrium fares under the ban on exogenous
information.

2.1.2.1 The Axiom of Truth

To start, I should note that while it is easy to circumvent using the proof system
of rKTPmeu by adding to the assumptions the relevant clauses (LJ;¢ rewrites as
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i@ A ¢, and so on) this is undesirable from a conceptual point of view, as it would
contradict the idea that epistemic characterisation results lay bare the players rea-
sons for performing certain actions, or in the second theorem, adopting certain be-
liefs. If, for instance, to the assumptions of the first theorem a statement was added
to the effect that 1; A 2;, a genuine motivation for the players’ actions would no
longer be expressed in the antecedent of the characterisation result. A motivation
to perform some action @ must not contain a statement that a is being performed.
Rather, it must give reasons for why it is. Similarly, for the second theorem, if it is
going to specify the agents’ motivations for adopting certain beliefs, then the beliefs
must not be part of the motivations. Once the T-axiom is abandoned, both char-
acterisation results become altogether meaningless from the belief—desire point of
view—antecedents should state motivations.

Yet the desired form can be obtained no better in a context in which the T-axiom
features. The T-axiom requires that the beliefs of the players be necessarily true. But
for an agent, the sole fact that a belief is true plays no motivational role whatsoever.
A player may believe that by performing some action she reaches some desired
outcome, and this belief may be true.® But the fact that a belief is true does not figure
in her motivation to perform the action. The belief suffices; truth is unnecessary.’

2 25

11 (1,-1) -L,1)

P (-1,1) (1,-1)

Fig. 2.1

It might be thought that using the T-axiom in the epistemic characterisation of
the Nash equilibrium just reflects a philosophical disagreement with the view of
truth in action explanations, but if the present analysis is correct, veridicality in
the characterisation results figures for simpler reasons: without it, they would not
work. Without the T-axiom, it would be provable that player 1’s strategy is a best
response to her (in this case possibly false) beliefs about 2, but that is all. To see this,
consider the game of Matching Pennies shown in Figure 2.1. If the assumptions that
underlie the first characterisation result are satisfied with k = [ = 1, proof system
rKPmeu (note the absence of the T-axiom) allows me to prove that 1 A 2. This
is a unique pair of actions, but it is not a Nash equilibrium. Without the T-axiom,

8 Many beliefs in subsequent epistemic characterisation results will likewise be contingently true.

9 If knowledge possesses causal efficacy (see note 25), this is merely due to the fact that knowledge
is more than true belief. The causal efficacy is not due to the truth of knowledge.
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agents cannot be guaranteed to end up with unique probabilistic beliefs that support
Nash equilibria.'”

2.1.2.2 The Rational Equilibration of Beliefs

In order to obtain a clearer view of what it means, in the second theorem, for beliefs
to be in equilibrium, let me first take a brief look at the two main views of what
probability measures (that is, mixed strategies) actually model. According to the
most common conception, mixed strategies involve real objects of choice, modelling
players who deliberately choose to randomise over pure strategies. As Lemma 2.1
reveals, however, a peculiar feature of mixed strategies is that players are indifferent
among all pure actions that receive non-zero probability in the mixture, making it a
little difficult to explain why players would actually randomise instead of choosing
pure strategies. A second interpretation conceives of player i’s mixed strategies as if
they were the beliefs of other players about 7, and although calling them strategies
is rather confusing, mathematically there is nothing wrong with this interpretation,
because player i’s mixed strategies are probability measures on her actions.

While the first theorem is readily consistent with the interpretation of mixed
strategies as objects of choice, the second interpretation of mixtures as beliefs is
the natural environment of the second characterisation theorem.!! Yet to understand
how that interpretation can provide such a context, I will reconsider the logical form
of the results. As I have suggested, from the viewpoint of a belief—desire approach
to action explanation, the first characterisation result attempts to specify the motiva-
tions that a player has to choose a particular action. Nothing precludes adopting the
same view of the second theorem and interpreting it as a specification of the moti-
vations players have to form particular beliefs. The antecedent conditions state such
things as that player 1 knows that 2 knows her payoffs, that 1 knows that 2 is ratio-
nal, and that 1 knows 2’s probabilistic beliefs about 1, while the consequent suggests
as a criterion for belief formation that if player 1’s probability measure assigns pos-
itive probability to some action 2;, this action is a best response, for player 2, to the
probabilistic beliefs player 1 knows 2 to have. This is reasonable, because otherwise
a contradiction with player 1’s knowledge of 2’s rationality would be immediate.

In order to evaluate the general plausibility of such a belief formation process, let
me take a slightly more abstract look at the difference between the two characteri-

10 With respective differences taken into consideration this is true for the second theorem as well,
problematising the motivation of the beliefs rather than that of the actions. The impossibility does
not depend on the fact that Matching Pennies contains no pure Nash equilibria. If both players get
an additional third strategy yielding both zero against every strategy, the strategy profile consisting
of both players’ third strategies constitutes a pure Nash equilibrium. From the above assumptions
it is impossible to prove that this equilibrium will be met.

I Adopting an infinitary language is necessary to incorporate mixed strategies in my framework.
Aumann and Brandenburger, art. cit. 1162 agree, writing that the first theorem ‘applies to pure
strategies’ and ‘also to mixed actions, under the traditional view of mixtures as conscious ran-
domisations’, but that ‘the context of our main results [the second theorem]’ is formed by the
second interpretation.
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Table 2.3

Actions Beliefs
Assumptions

preferences O, U0
principles meu; UJ;meu;
performed action [J;jj, U;i0ijm

Solution Concept Nash(iy, j,) Nash(Ojiy,, Oj,)

Proof System rKTPmeu rKTPmeu

sation results, substituting the probabilistic beliefs P; from the second theorem with
non-probabilistic beliefs [J;.!> This transformation reveals that the second theorem
can be obtained from the first by means of simply prefixing every clause with an
epistemic modality (see Table 2.3) and this is conceptually very intriguing, because
it shows that the argumentation used in the first theorem is used in the second—
with a prefixed epistemic operator, of course. If the first theorem attempts to expose
player i’s motivations which underlie some choice of strategy, the second theorem
studies player j reflecting on i’s motivational reasoning, and both set out to accom-
plish this in a setting of what may be called equilibration.

It is not difficult to understand a reasonable equilibration process motivating the
first theorem, showing convergence to a situation in which players are rational, know
their own utility, and know their opponents’ prospective actions. The respective ac-
tions players 1 and 2 perform in the equilibrium, for instance, keep each other in
equilibrium under the assumption that, first, if player 2 chooses to perform another
action, player 1 perceives this in some way; second, if player 2 chooses to perform
another action, player 1 will respond by switching to another strategy rationally; and
third, player 1 knows her payoff structure. This, one could argue, is the content of
the characterisation result. The first condition (perception) corresponds to [J;j,; the
second (rationality), to meu;; and the third (payoff) to [;u;.

A similar equilibration process is much less plausible for the second theorem.
It would require that, first, if player 2 adopts a different belief about 1, player 1
perceives this change; second, if player 2 assumes another belief about 1, player
1 responds by changing her own beliefs in a theoretically rational way; and third,
to ensure that some epistemic condition on utility functions holds. If, for instance,
player 1 perceives a belief change in 2, then it is theoretically rational for 1 to change
her beliefs about 2 as well, because, in fact, if player 2 changes his beliefs about 1, he

12 Only the third condition changes in this substitution process, for instead of requiring that 1 know
the probabilistic beliefs P, player 2 possesses about 1°s actions, it is now required that player 1
know player 2’s full beliefs [, about 1’s actions. For some 1,, we have [1;[J,1,, and for some best
response 2, to 1,,, it follows that [J;2,,. Given player 1’s beliefs as specified in the assumptions of
the theorem, no other beliefs would be reasonably motivated.
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probably changes his choice of action.! In iterated game-playing situations, players
generally perceive their opponents’ choices from the previous rounds, which may
lead them to readjust their own strategy choice in the next round and this is a pretty
straightforward way to think of equilibration.'* But while it would be going too far
to claim that beliefs never change perceptibly, it is a far less common phenomenon
than perception of strategy choice. To the extent that sense can be made of such an
equilibration process for beliefs, beliefs in equilibrium are meaningful. As long as it
remains unspecified what rational belief adoption means, however, the second theo-
rem contradicts the general form of epistemic characterisation theorems as much as
the first.!

2.1.2.3 The Ban on Exogenous Information

To summarise this discussion, it has become clear that neither of the two theorems
conforms to the format for epistemic characterisation results laid out in Chapter 1,
as each requires the T-axiom, since neither provides for action statements in the
consequent of the implication, and because the second does not refer to rational-
ity in its antecedent. Abstracting from probabilistic reasoning, I have argued that
the first theorem transforms into the second if an epistemic modality is prefixed to
the assumptions underlying the first, and this led to a discussion about beliefs in
equilibrium—meaningful only if, rather implausibly, belief changes are perceptible.

Reinforcing this critique, I will examine how the Nash equilibrium fares under
the ban on exogenous information. At first glance it might seem that no statement
about the origin of the beliefs of the players comes with the epistemic character-
isation of the Nash equilibrium; it looks entirely neutral as to whether the play-
ers have formed their beliefs on the basis of exogenous or endogenous reasoning.
But if this were the case, purely endogenously formed beliefs could support the
Nash equilibrium, and an alternative epistemic characterisation result would need
to be developed. As Aumann and Brandenburger observe, however, typically en-
dogenous concepts involving (variants of) common belief—long held to support the

13 This example works provided that player 2 maximises expected utility and knows his pay-
off, which shows, more generally, that the equilibration process assumes that players believe each
other to be practically rational and to know their utility functions. Common belief about practical
rationality and utility does not seem necessary, though, because the equilibration process involves
rational responses to perceived changes, not to (hypothetical) changes derived from general as-
sumptions involving common beliefs.

14 Witness, e.g., John Nash ‘Non-Cooperative Games’, Ph.D. diss. (Princeton University, 1950),

21-26. Also see Larry Samuelson, Evolutionary Games and Equilibrium Selection (Cambridge,
Mass.: MIT Press, 1997).

15 Hans Jgrgen Jacobsen, ‘On the Foundations of Nash Equilibrium’, Economics and Philosophy,
12 (1996), 67-88 provides an alternative justification for the beliefs reading of the Nash equilib-
rium. His argument depends on assumptions about the concept of solution concept that I criticise
in Chapter 5.
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Nash equilibrium—are completely ineffective, and there is consequently no hope
for an endogenous approach to this solution concept.'®

This adds to the unacceptability of the T-axiom in unexpected ways. While this
axiom is, as I have shown, already problematic for reasons regarding the logic of
action explanation, it is completely inappropriate in an exogenous setting for the
additional reason that exogenously formed beliefs based on statistics and the like
are never true by necessity. Certain belief formation practices may be more accurate
than others and more theoretically rational, but they can never be so good that they
produce true beliefs only—by necessity, so to speak. The epistemic characterisa-
tion of the Nash equilibrium not only shows that the concept lacks any endogenous
backing; it also makes clear that it cannot be justified in exogenous terms.

2.2 Iterated Strict Dominance

2.2.1 The Epistemic Characterisation Theorem

Common belief about rationality and utility entails iterated strict dominance.!” In
order to grasp this result formally, I will develop an implicit, inductive axiom system
to capture rationality rather than the more usual explicit rendering of rationality as
expected utility maximisation which I considered in the characterisation of the Nash
equilibrium. To set the stage, a pure strategy a; € A; of player i is strictly dominated
by a mixed strategy o; against all pure strategies of his opponents in [];;A; if and
only if
ui(Gi,a,i) > ui(ai,a,i)

for all i-deleted action profiles a—; € [,.4; A}, and a strategy is strictly dominated in
a game whenever there is a mixed strategy that strictly dominates it. If from a normal
form game I" all actions are removed not in sets X; and [].; X;, leaving the utility
function intact, the resulting game is the game spanned by those sets, and a strategy
is called strictly dominated in a game spanned by sets X; and [];; X; whenever

16 See, e.g., ibid., 1162.

17 B. Douglas Bernheim, ‘Rationalizable Strategic Behavior’, Econometrica, 52 (1984), 1007-
1028, David Pearce, ‘Rationalizable Strategic Behavior and the Problem of Perfection’, Economet-
rica, 52 (1984), 1029-1050, and Wolfgang Spohn, ‘How to Make Sense of Game Theory’ (1982)
were the first to take an epistemic look at iterated strict dominance. Bernheim and Pearce devel-
oped their ideas independently and published them in tandem in the same issue of Econometrica.
Neither of them seems to have been aware of Spohn’s work. Tommy Tan and Sergio Werlang, ‘The
Bayesian Foundations of Solution Concepts of Games’, Journal of Economic Theory, 45 (1988),
370-391 gave the first formal treatment in terms of type spaces using methods from probability and
measure theory. Robert Stalnaker, ‘On the Evaluation of Solution Concepts’, Theory and Decision,
37 (1994), 49-73 proves the result in the a model theory for epistemic logic. Common belief was
introduced in the context of games by Morris Friedell, ‘On the Structure of Shared Awareness’,
Behavioral Science, 14 (1969), 28-39 and David Lewis, Convention (Cambridge, Mass.: Harvard
University Press, 1969).
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there is a mixture over elements from X; satisfying the above strict inequality for all
i-deleted strategy profiles in [];.; X;. Notation

IlSd,' (X,' y X,,')

is used to denote the set of those pure strategies that are not strictly dominated,
or strictly undominated, in the game spanned by X; and [];; X;, usually omitting
explicit reference to the underlying game. With slight abuse of notation nsd; and its
variants are used for functions with different domains.

Strict dominance forms the basis of iterated strict dominance. First, define the
set of pure strategies of player i as S? = A;, and the set of her mixed strategies as
Y9 = A(A;). Then collect recursively in set S/ those elements from S for which
there is no o; € ¥} such that

ui(ci,a;) > ui(ai,a_;)

foralla_; €[] i S;?, as well as in set Zf“ those elements o; from A (A;) for which
oi(a;) > O only if a; € S!. Then, set

sy =(s!

and collect finally in ¥3° all elements o; from A(A;) such that there is no mixed
strategy o7 such that for all a_; € I] ;. ST it holds that

I/ti(O'l-/, a_,-) > Lt,'(O',',a_,').

These two sets determine the solution concept of iterated strict dominance. The
set S7° contains the pure actions of player i that survive the iterated elimination of
strictly dominated strategies. The set X is the set of mixed strategies surviving
iterated strict dominance.'® Slightly abusing the earlier notation,

S+l =nsdi(S},5";)

defines equally well.

2.2.1.1 An Implicit, Inductive Formalisation of Rationality

In my discussion of the logical form of epistemic charcacterisation results it became
clear that three key elements in the antecedent are supposed to entail information
about the strategies the players choose: beliefs, preferences and rationality. If you
know what a player believes about her opponents, if you know what her utility

13 In general &° may be smaller than the set A(S;°), as there may be mixed strategies over S;° that
are dominated. See, e.g., Drew Fudenberg and Jean Tirole, Game Theory (Cambridge, Mass.: MIT
Press, 1991), 45-46.



2.2 Tterated Strict Dominance 41

function looks like, and if, in addition, you know that she is an expected utility
maximiser, then you know how she will act.

The proposed formalisation of rationality exploits the fact that sometimes not all
three elements are needed to obtain (some) information about what a player will
choose. Even in the absence of information about a player’s beliefs, you can still
exclude her from playing strategies that are bad no matter what her opponents do—
as long as you know her utility function and that she is rational. However limited
such information may be, it is nonetheless fruitful to consider this basic step of
reasoning in isolation. Formally, using rat; for rationality, the axiom

Rat,,, rat; — nsd; (Al',Aj)

states that if player i with a utility function as in the relevant underlying game is
rational, she chooses a strategy that is not strictly dominated in the game spanned by
A; and A; (the original game). This axiom gives an implicit definition of rationality
in terms of the exclusion of strictly dominated strategies, and I will turn to different
axioms characterising alternative concepts of rationality shortly. But the main idea
now is that the Rat,,;-axiom captures the base case where, in complete absence of
information about a player’s beliefs, you are still able to exclude her from playing
certain strategies—the really bad ones.

With information about a player’s beliefs, you can say much more of course, and
this is the content of the inductive axiom

Raty,y (rat; ALLX; A |:|in) — nsd,'(X,',Xj).

Suppose that player i (with preferences as in the game matrix) acts on the principle
of rationality to exclude strictly dominated strategies. If you have information to
the effect that (for whatever reasons) she believes that she will choose a strategy
from set X; and that her opponent j will choose a strategy from set X;, then you
may conclude that she chooses a strategy that is not strictly dominated in the game
spanned by X; and X, or so the axiom says. The inductive axiom is an axiom schema
for two players i # j for all subsets X; C A; and X; C A; of the relevant game. This
is easily generalised to game-playing situations with more than two players.

To prove the epistemic characterisation theorem of iterated strict dominance to
the effect that it results from common knowledge of rationality and utility, a proof
system rKgcrat is used consisting of Prop, Dual, K, E, C, the proof rules modus
ponens, necessitation and induction, and the four axioms for normal form game-
playing situations, as well as the basis and inductive rationality axioms. The as-
sumptions of the characterisation result are listed in Table 2.4.

Theorem 2.3 (Bernheim and Pearce, 1984) Let I' be a two-person normal form
game. Assume that the following two conditions are true.

1. There is common true belief among the players about the utility functions of all
players.
2. It is common true belief among the players that they are rational.

Then the players play strategies that survive the iterated elimination of strictly dom-
inated strategies.
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Table 2.4
Assumptions
preferences Niki w;i(k,0) =rigg
principles A\ rat;
beliefs
preferences CAiguilk, D) =rip;
principles CArat;

performed action —

Solution Concept
player i ST

i

Proof System rKgcrat

The proof of the theorem ignores the assumptions about the preferences of the play-
ers because firstly, it does adds little to the conceptual and technical understanding
of the characterisation result to spell out common knowledge of utility structure—it
is trivial here—and secondly, because a non-trivial study of knowledge about util-
ity is examined in the investigation of a new concept of mixed iterated strict weak
dominance in Section 2.4.

Proof Abbreviate ;rat; by rat, recall that ES"¢ abbreviates EQ AE2@ A--- AE"@
(suppressing the subscript), and note that it is not the case that - ggcrat E<"rat; —
rat;. I show by induction on n that

vnt (rat \E="rat) — A\ ST,
J

where the set of proposition letters for iteratively strictly undominated strategies
of player i is denoted S7°, and super-scripts n indicate what remains after n rounds
of elimination. The case of n = 0 is the case of the Rat,,,-axiom. As inductive
hypothesis have a proof of

< +1
(rat \E "rat)—>/\S§F .

J

By the (derivable) necessitation rule for E the statement

E((rat AE="rat) — A7)
J
is then proved as well, and the (derivable) K-axiom for E then yields

<n+1 +1
E=" rat—>E/\S7 .
J

The Rat;,;-axiom for i states that
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(rat,- A Dl’S?Jrl VAN D,’S;&l) — nSdi(Slr'lJrl ,STF] ),

of which the consequent is the same as Sl’.’+2 by definition. Since
+1 +1
ENS = ADe\S]
J k J

it can be concluded that

<n+1 n+2
(rat \E rat)—>/\Sj .
j

This concludes the induction on n. Introducing the C-operator, this establishes

Vn I_rKEcrat (rat A Crat) — /\S;HZ'
j

The S7, including pure actions only, are of the form {iy | k € ,} for non-empty finite
index sets satisfying I, 2 I, 41 2 -+ D I,y = Iy1-1 = - - =, I, # 0. That means that
in the limit it holds that S} = {¢y | k € I, } =, S. From the previous provability
statement it follows that

Vn b Kgerat (rat A Crat) — /\ (]S4,

J

which is equivalent to what had to be shown.

2.2.2 Discussion

2.2.2.1 Axioms T and K, and the Rule of Necessitation

I have shown that the epistemic characterisation of the Nash equilibrium does not
conform to the general format of action explanations employed in the Epistemic
Programme : apart from not stating any actions in the consequent, the characterisa-
tion’s use of the T-axiom contradicts the condition that beliefs are not necessarily
true; with the T-axiom, however, the result just does not work.

The present theorem, by contrast, seems to conform. It derives actions surviving
the iterated elimination of strictly dominated strategies from assumptions on the
players’ preferences, rationality principles and beliefs. In order to show truly that
it does indeed follow the format, I have to show that nowhere are necessarily true
beliefs needed, for while the other conspicuous requirements are obviously met, the
mention of common frue belief in the theorem may elicit suspicion.

This is rather easy, however. Sure, the result could be represented as
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FrKTECrat Crat — /\S;"

1

But since it is different from the characterisation of the Nash equilibrium, it need
not, because if we remove the T-axiom and add the condition A;rat; to the an-
tecedent, not only do we obtain an equally valid statement, but we also (and more
importantly) get a statement that is in complete agreement with the view of action
explanation favoured by the Epistemic Programme. There are beliefs, there are de-
sires (implicit, here, in the utility functions) and there is rationality. That some of
the beliefs concern rationality and that they are true, however, is not a necessity. The
antecedent condition describes a situation where players form correct beliefs about
rationality contingently, not necessarily. Thus the T-axiom could be used, but need
not be used. In other words, it is not hidden in the theorem, and this means that the
players are not committed to veridical beliefs.

2 25 23

1y (1,5) 0,1) (1,3)

P (5,0) (0,0) 3.1

13 (3.3) (1,1) (2,2)

Fig. 2.2

Let me turn to another axiom. While in the proof of this and other characterisation
results the K-axiom rarely appears, this axiom cannot be missed, and it is worthwhile
to highlight its function. Suppose, for the sake of argument, that the antecedent
assumptions of the epistemic characterisation theorem of iterated strict dominance
hold in a game-playing situation of the game shown in Figure 2.2. In that case,
player 1 believes that 2 is rational in the sense that he excludes strictly dominated
strategies, she believes that players 2’s preferences are as in the game matrix, and she
believes the implication that if any player is rational and possesses these preferences,
then he or she will never play his or her second strategy. Player 1, that is, has a belief
about rationality, a belief about preference, and she has a belief about an implication
concerning their connection.

In order to make a choice, however, player 1 needs a belief about player 2’s
prospective action, and she derives information to that effect from the beliefs stip-
ulated in the previous paragraph by applying the K-axiom. Without this axiom, she
would not be in the position to conclude that player 2 does not play his second
strategy.

A similar argument shows that the necessitation rule is essential. The beliefs that
play a part in epistemic characterisation theorems are of two kinds. Some concern
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contingencies such as whether your opponent is rational, or which utility function he
has. Other beliefs, by contrast, are tautologies in the sense that they follow automat-
ically from other beliefs you hold. Suppose, for instance, that you believe that your
opponent maximises expected utility and has a utility function such that his first
strategy is strictly dominated. These beliefs surely concern contingencies. But you
may also hold the belief that players who maximise expected utility avoid strictly
dominated strategies, and this belief is tautologous in that it merely reflects the log-
ical consequences of certain propositions. The above analysis of the role of the
K-axiom revealed that such tautologies are often necessary in order to get the play-
ers’ reasoning off the ground. It is precisely the function of the necessitation rule to
ensure that players have sufficient tautological knowledge.

2.2.2.2 Motivation of the Axioms

A pure strategy is, by definition, strictly dominated whenever there is some mixed
strategy that is strictly better against all i-deleted profiles of pure strategies of his
opponents. This definition allows for cases in which some pure action is only strictly
dominated by a mixture of strategies, and not by a pure strategy. While it may
be rather obvious that rational players avoid pure strategies when there are bet-
ter ones, a defence of the present rationality principle has more difficulty showing
the rationale behind not playing pure strategies that are only dominated by mixed
strategies—how would a rational player in fact implement playing such a mixture?

One way to argue this uses the following lemma, which returns to fulfil similar
tasks in future sections.

Lemma 2.2 (Pearce, 1984) Let I' = (I,(A;);, (u;);) be a normal form game with
any number of players. Then for all players i, an action a; is strictly dominated by
some mixed strategy over A; against [1;;A; if and only if it is not a best response
among A; to some probability measure on [];4;A;.

To motivate why a rational player plays no strategy that is strictly dominated
amounts, given this lemma, to motivating why such a player chooses a strategy
that is a best response against some probability measure. This is a possible way.
Although you will only know in rare cases exactly what a player’s beliefs look like,
you will always know that he or she has some beliefs rather than none, and these
beliefs may take a probabilistic form. Rationality in the utility maximising sense
of the word means that the player chooses a best response against these beliefs,
and that is precisely a strategy that is strictly undominated. This argument assumes
that players always have probabilistic beliefs. Without such beliefs, best responses
make no sense; without best responses, the lemma could not be used; and without
the lemma, the argument would remain inconclusive. But as the same holds for
the definition of rationality as expected utility maximisation, this is not a serious
problem for my approach. Here, the application of the lemma is harmless. In other
contexts, this may not be the case, particularly if we use a similar lemma about weak
dominance simultaneously.
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2.2.2.3 Variants

The set-up of the axiom schemas is general enough to obtain a number of variants of
the characterisation theorem with little extra work, and the most obvious candidate
is to adopt a stronger rationality concept that not only avoids playing strictly domi-
nated strategies, but also weakly dominated ones. A pure strategy a; € A; is weakly
dominated by a mixed strategy o; against all pure opponent strategies in [];;A; if
and only if

ui(oi,a_;) > ui(aj,a_;)

for all i-deleted action profiles a_; € [] #,»A j»and
ui(oj,a—;) > ui(a,a_;)

for at least one such i-deleted action profile a_;. A strategy is weakly dominated in
a game whenever there is such a mixed strategy that weakly dominates it. Notation

Ile,' (X,' s X,i)

stands for those actions of player i that are weakly undominated in the game spanned
by X; and []; X;. Substituting in the epistemic characterisation result of iterated
strict dominance any nsd; by nwd;, a characterisation result of iterated weak domi-
nanceis obtained, or so it seems.

2 2,

1 (1,1) (0,0)

P (1,1) 2,1

13 (0,0) 2.1)

Fig. 2.3

But that conclusion is too rash. While the outcome of iterated elimination of
strictly dominated strategies is relatively independent of what in the algorithm is
considered a round of elimination, slightly different algorithms for iterated weak
dominance yield crucially different outcomes. In a round of elimination some, or
all, weakly dominated strategies can be eliminated for some, or all, players—and the
permutations of some and all give at least four different algorithms and outcomes.
The standard response is that in one round all weakly dominated strategies for all
players are removed.!® This settles the definition of the game-theoretic concept, but
it does not make the logical formalisation task an easy one. To see why, consider the

19 Fudenberg and Tirole, op. cit. 461. See also Krzysztof Apt, “The Many Faces of Rationalizabil-
ity’, The B.E. Journal of Theoretical Economics, 7 (2007), article 18.
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game shown in Figure 2.3.2° The standard procedure removes 1; and 13 in the first
round, and nothing in the second, resulting in the set {(12,21), (12,22) } of iteratively
weakly undominated strategy profiles. The analogues of the axioms for the basis and
inductive step of the characterisation of iterated strict dominance are

rat[ — ani(AhAj)

and
(rat,- AOX; A Din) — Ile,'(X,'7Xj).

For the game shown in Figure 2.3,
rat; — 1,
is a particular instance of such an axiom. It trivially entails
rat; — (1, V1),

however, which means that if it is assumed Cyrat;, it follows that (y(1; V 17).
Since player 2’s first strategy is weakly dominated in the subgame spanned by both
players’ first and second strategies (the entire game minus 13) an instance of the
inductive axiom is

(l'atz /\|:|2(21 \/22) /\D2(11 \ 12)) — 2.

But this suggests that from the epistemic assumptions of the characterisation result
(common knowledge of the fact that players play weakly undominated strategies)
we can derive that player 2 does not play his first strategy, even though that strategy
does survive the iterated weak dominance. Consequently, the present formalisation
cannot be right. In fact, the present proposal is plainly inconsistent—witness what
happens if we go through a second derivation along the lines of the first one, but with
15 instead of 1 to obtain 2;. Combining both derivations yields a contradiction.

A way out of this predicament is to include in the consequent of the axiom not
only information about the strategies an agent considers possible, but also to refer
to information about which strategies an agent explicitly excludes. The basis axiom
for a game-playing situation of the current game is, for instance,

rat; — (12 Aﬁ(l] \/13)).

If X; denotes the complement A;\X; of X; (the set containing proposition letters for
player i’s strategies that are not in X;) and if =X abbreviates —\/ X, then axioms

rat; — (l‘lei(A,'7Aj) AN ﬁani(AhAj))

and

20 Martin Osborne and Ariel Rubinstein, A Course in Game Theory (Cambridge: MIT Press, 1994),
63. A different removal procedure is used, though.
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(rati AN Di(Xi AN —|Z) AN Di(Xj AN ﬂg)) — (ani(Xi,Xj) A ﬁIle,'(X,’,Xj))

can be used to characterise iterated weak dominance as in the standard algorithm.

The mathematical issue of the definition of algorithms, and the logical issue of
the axiomatisation rationality may be easily solvable, but this does not guarantee
that the axioms involving weak dominance are plausible. It is natural to attempt to
defend their plausibility on the basis of an analogue of Lemma 2.2.

Lemma 2.3 (Pearce, 1984) Let I' = (I,(A));, (u;);) be an N-person normal form
game. Then for all i, an action a; is weakly dominated by some mixed strategy over
A; against [1;4;A; if and only if it is not a best response among A; to some proba-
bility measure with full support over [];.;A;.

But as this lemma requires full-support beliefs assigning zero probability to no al-
ternative, this approach seems blocked. To assume, as in the motivation underlying
strict dominance, that players possess just one probabilistic belief or another seems
quite reasonable. To presume, as has to be done here, that their beliefs are such that
they do not assign zero probability to anything is not generally plausible. An im-
portant goal of forming beliefs is to exclude certain things from consideration by
assigning them zero probability. Other approaches, investigated later in the context
of mixed iterated strict weak dominance and the Dekel-Fudenberg procedure, use
lexicographic beliefs, but while this helps to support the basis axiom, iterating this
to subgames is quite problematic. I will therefore put the plausibility of weak dom-
inance to one side until the discussion of mixed iterated strict weak dominance and
the Dekel-Fudenberg procedure in Section 2.4.%!

Before proceeding to another way of generalising the epistemic characterisation
theorem of iterated strict dominance, I will examine why the logical problem does
not arise (there is no issue here, the different algorithms just give the same outcome).
In short, the answer is that nsd; are monotone, but the nwd; not.

Remark 2.1 If X; C A; and Xj - Yj QA.,-, then nsd,-(Xi,Xj) - IlSd,'(X,',Yj).
Remark 2.2 IfY; C X; C A; and X; C Aj, then nsd;(X;, X;) NY; C nsd; (Y3, X;).

Suppose, for example, that player 1 believes that 2 will play (from four possible
strategies) the first or second one. This is most naturally formalised as (J; (2; V
2;). In an attempt to copy the problematic disjunction from above, player 1 might
consider the larger set, and phrase her beliefs as (11 (21 V2, V 23V 24). But while a
contradiction followed in the case of iterated weak dominance, in the proof system
for rationality in terms of strict dominance this is not the case. Player 1’s belief is
less informative, but since the rationality concept at stake is monotone, what follows

2! Adam Brandenburger, Amanda Friedenberg and H. Jerome Keisler, ‘Admissibility in Games’,
Econometrica, 76 (2008), 307-352 provide a sophisticated approach to iterated weak dominance,
taking lexicographic probability systems as modelling instruments. Larry Samuelson, ‘Dominated
Strategies and Common Knowledge’, Games and Economic Behavior, 4 (1992), 284-313 suggests
that common knowledge of the fact that players do not play weakly dominated strategies does not
guarantee that the outcome is iteratively weakly undominated because such common knowledge
entails inconsistencies in the beliefs of the players.
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from the less informative beliefs is consistent with what would follow from the more
refined beliefs.

2.2.2.4 More than Two Players

The result is proven for two-person normal form games, but it can easily be extended
to arbitrary numbers of players. Player i’s beliefs about her opponents are in that
case phrased as ;(V X1 A+~ AVXi—1 AVXis1 A~ AV X,) instead of as [; \V/ X,
and the nsd; will be defined on pairs of the form (X;, (X;);.;) where X; C A; and
X; C A;. But while this is a mathematically and logically trivial move, problems
arise at the level of plausibility. As I have demonstrated, the two-person case inherits
its plausibility from Lemma 2.2. Assuming that any player possesses probabilistic
beliefs, it is clear that if she is rational, she chooses a best response given those
beliefs, and such a best response, the lemma shows, is strictly undominated.

The argument hinges on the assumption that the players have probabilistic be-
liefs. If you assume that someone has probabilistic beliefs, then the lemma helps to
show that she avoids playing strictly dominated strategies, but if you do not wish
to make that assumption, no such line of reasoning is possible. The probabilistic
beliefs required by the lemma are, however, elements of A [] i X In a two-person
game-playing situation, players are supposed to have probability measures on the
opponent’s actions. But in situations involving more than two players, they are sup-
posed to have probability measures on i-deleted strategy profiles, rather than a col-
lection of N — 1 probability distributions on each individual opponent. One instead
of N — 1 means that players possibly assign correlation to their opponents, and this
contradicts the ban on exogenous information. If a player believes that the actions
of two of her opponents are correlated (say they both play their first strategies with
probability one-half, they play their second strategies with probability one-half, thus
giving zero probability to the event that the one plays his first and the other his sec-
ond strategy) then she cannot justify these beliefs solely on the basis of the game
matrix. An appeal to exogenous information, that is, cannot be avoided if one wishes
to allow for correlated beliefs.?>

For a concrete example consider the three-person normal form game shown in
Figure 2.4.2 The first player chooses rows (1; for the upper row, 1, for the lower),
the second columns (21 for the left column, 2, for the right), the third matrices
(enumerated starting from the left), and they all earn the same payoff. The second
matrix from the left is not strictly dominated. If P3((11,21)) = P3((12,22)) = 1,
then the expected utilities satisfy EU3(P3,3;) = EU3(P3,3,) = EU3(P3,33) =4 >

22 Robert Aumann, ‘Correlated Equilibrium as an Expression of Bayesian Rationality’, Economet-
rica, 55 (1987), 16 gives a standard example where the opponents are graduates from the same
business school, possibly responding in similar ways to situations that were studied in school.
That two of your opponents went to the same school, however, is not part of the game structure
here, and therefore the correlation is derived exogenously. For further discussion of the correlated
equilibrium, see Section 4.2.2.2.

23 Osborne and Rubinstein, op. cit. 57-58.
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8 0 4 0 0 0
0 0 0 4 0 8
3 3
3 3

Fig. 2.4

3 = EU3(Ps3,34). Consequently, the second matrix is a best response to P3. But if
P3 counts as a belief of player 3 about his opponents, he believes that his opponents
coordinate in some way, and it is impossible to attribute alternative beliefs to player
2 that would not ascribe correlation to 1 and 2. If player 3 believes that 1 plays 1;
with probability p (and 1, with 1 — p), and that 2 plays 2| with probability ¢ (and
2| with 1 — g) then the second matrix from the left would be a best response if and
only if
4pg+4(1—p)(1—q) <8pq,8(1—p)(1—gq),3.

This is a system of inequalities without a solution, however. Correlated beliefs may
be a rather common phenomenon in many cases of strategic interaction, but they
are excluded by the ban on exogenous information, and consequently the solution
concept of iterated strict dominance loses its attraction for more than two players.?*

2.2.2.5 Stalnaker’s Game Models Approach

While most game theorists have applied probability theory to detect the epistemic
foundations of iterated strict dominance, Robert Stalnaker has proposed an original
and fruitful way to apply the model theory of epistemic logic.>> To bring to light

24 The issue is subtle, though. Adam Brandenburger and Amanda Friedenberg, ‘Intrinsic Corre-
lation in Games’, Journal of Economic Theory, 141 (2008), 28—67 propose to derive correlation
endogenously from players’ beliefs that their common beliefs are correlated, but seem to be in need
of some assumption of correlation on hierarchies of beliefs.

25 “On the Evaluation of Solution Concepts’, Theory and Decision, 37 (1994), 49-73 deals with
iterated strict dominance. See also ‘Knowledge, Belief and Counterfactual Reasoning in Games’,
Economics and Philosophy, 12 (1996), 133-163 (repr. with proofs in C. Bicchieri, R. Jeffrey and
B. Skyrms (eds.), The Logic of Strategy (New York: Oxford University Press, 1999), 3-38), ‘Belief
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the tacit assumptions about players’ reasoning processes underlying various game-
theoretic models, the approach I have chosen is syntactic rather than semantic; it
remains close in spirit to many of Stalnaker’s ideas, though. The remainder of this
section compares the two.

One of Stalnaker’s innovations is to interpret epistemic characterisation re-
sults as relations between classes of game models and solution concepts. A game
model for an N-person normal form game I' = (I, (A;);, (4;);) is a model M =
(W, (Ri)i, (Pi)i, (si);) for an epistemic language (with probabilistic beliefs) together
with the indication of the actual world a of that model. The R; are serial, transitive
and Euclidean accessibility relations (corresponding to the D-axiom, the 4-axiom
and the 5-axiom, respectively), the P;(w) capture the probability measure of player
i at world w, and s;(w) the strategy i performs at world w. Common belief is defined
as usual, and as the accessibility relations are not required to be reflexive, beliefs
may be false. A player i is said to be rational at some world v if and only if for all
a; € A; it holds that

%}Pi("x{w})'ui(sl(w)v---asi(w)v"'7sn(w)> >
> Pi(v)({w}) - ui(si(w), ... ais. .. .su(W)).

weWw

Given a game I let S C J];A; be the set of strategy profiles singled out by a solu-
tion concept. A class M of game models for I" characterises the solution concept
whenever, first, for any model in M there is a strategy profile in S that is played in
the actual world of the model, and, second, for every strategy profile in S there is a
model in M in the actual world of which the strategy profile is played. Stalnaker’s
version of the epistemic characterisation result for iterated strict dominance is the
following theorem.

Theorem 2.4 (Stalnaker, 1994) Ler I' = (I,(A;)i, (ui)i) be an N-person normal
form game. Then iterated strict dominance is characterised by the class of game
models in which there is common true belief among the players about the utility
Sfunctions of all players and it is common true belief among them that they are ratio-
nal.

The proof Stalnaker offers makes essential use of an equivalent formulation of
iterated strict dominance using two lemmas about the solution concept of corre-
lated rationalisability. Before stating the lemmas, let me first clarify this notion. Set
R? = A(A;), the set of player i’s mixed strategies. Then define recursively sets R?*l
to contain those elements (mixed strategies) o; from R} for which there is some
i-deleted profile of mixed strategies 6_; € [] j#hull(R’})—the convex hull , that is,
the smallest convex superset—such that

u;(01,0-;) > ui(o},0-;)

Revision in Games: Forward and Backward Induction’, Mathematical Social Sciences, 36 (1998),
31-56, and ‘Extensive and Strategic Forms: Games and Models for Games’, Research in Eco-
nomics, 53 (1999), 293-319.
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for all o € R!. The set R = (1, R" is then the set of (non-correlated) rational-
isable strategies of player i. The idea behind this solution concept is that players
choose a (possibly mixed) action that is a best response to profiles of mixed actions
of their opponents. Players all see that their opponents do that, and hence they can
remove strategies that fail to be best responses against profiles of opponents’ strate-
gies in, first, the entire game, and, subsequently, in successively smaller subgames.
The players’ beliefs do not correlate actions of opponents here, but beliefs allowing
for correlation are easily represented if only one probability measure on the product
of i-deleted mixed rationalisable strategy profiles is used in the definition, instead of
N — 1. Modifying the above definition of rationalisability to allow for such beliefs
yields correlated rationalisability.

Lemma 2.4 Let I' = (I,(A;)i, (u;);) be an N-person normal form game. A pure ac-
tion a € A; is correlated rationalisable if and only if for each player j there is a set
X; C Aj such that, first, a € X;, and second, for all players j and all actions b € X
there is a probability measure P; j, over [1;.; Xy to which b is a best response among
Xj-

Lemma 2.5 (Pearce, 1984) Let I' = (I,(A));, (4;);) be an N-person normal form
game. Then the set of correlated rationalisable action profiles and the set of the
iteratively undominated profiles are identical.

I can now prove Stalnaker’s version of the epistemic characterisation theorem of
iterated strict dominance.

Proof One direction is proven. Set
X; ={a€A;|si(w) =a,and Rc(a,w) or w = a},

where R¢ is the accessibility relation for the C-operator, that is, the transitive, but
not necessarily reflexive, closure of the union of the R;. This is the set of those
strategies that are not commonly excluded, so to speak. It is readily recognisable that
the X; satisfy the conditions of Lemma 2.4. Let a be some element of X;. Because of
common belief about rationality (and, for w = a, because of rationality) a is played
by i in a world w, say, where i is rational. That means, however, that relative to the
probabilistic beliefs P;(w) the action a is a best response (among X;). Owing to the
set-up of the sets X;, j # i, the support of P;(w) is a subset of [];.; X;. Applying
Lemmas 2.4 and 2.5, and observing that the strategy i plays in a is a member of Xj,
concludes the proof.

What this overview immediately lays bare is that the game model approach
makes it readily possible to prove an additional direction of the epistemic char-
acterisation result. It is shown not only that under certain epistemic assumptions the
solution concept of iterative strict dominance obtains, but also that for any itera-
tively undominated strategy profile there is a game-playing situation in which these
precise epistemic assumptions hold true. This is provable in my system, too, but it
is much more transparent in Stalnaker’s.
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A more theoretically relevant difference between the approaches concerns the
way in which rationality is formulated. Where Stalnaker adopts the explicit defi-
nition of rationality as expected utility maximisation, I propose an inductive and
implicit one that, I believe, is preferable given my interpretative goals. Drawing a
line between a basis case without beliefs and an inductive case with beliefs makes
it possible to mimic every round of elimination of the solution concept by a step in
the hierarchy of common beliefs about rationality, and this is reflected by the decid-
edly inductive character of the proof—in contrast to Stalnaker’s. One could say that
the reference to Lemma 2.2, while making it possible to discuss directly the plausi-
bility of the notions used, suppresses in Stalnaker’s approach the procedural issues
of the solution concept and the way subsequent steps in the removal procedure are
related to subsequent levels of common belief. This also becomes clear when exper-
imental findings on game-playing are considered. Many experiments suggest that
actual players of normal form games do not go through more than three rounds of
elimination of dominated strategies, and my axiomatisation of rationality allows me
to relate their reasoning processes (epistemic assumptions) to their decisions (so-
lution concept) in a highly explicit fashion.?® In addition, the bare logical form of
my formalism easily suggests various extensions of the epistemic characterisation
result that, using game models, would come to mind less readily. It is now time to
investigate another variant, the Dekel-Fudenberg procedure.

2.3 The Dekel-Fudenberg Procedure

2.3.1 The Epistemic Characterisation Theorem

Common true belief about utility structure and perfect rationality entails the Dekel—

Fudenberg procedure of one round of elimination of weakly dominated strategies

followed by infinitely many rounds of elimination of strictly dominated strategies.?’
The solution concept is, with the usual slight abuse of notation, captured by

26 Colin Camerer, Behavioral Game Theory: Experiments in Strategic Interaction (Princeton:
Princeton University Press, 2003), 199-264.

27 Robert Stalnaker, ‘Knowledge, Belief and Counterfactual Reasoning in Games’, Economics
and Philosophy, 12 (1996), 133163 (repr. with proofs in C. Bicchieri, R. Jeffrey and B. Skyrms
(eds.), The Logic of Strategy (New York: Oxford UP, 1999), 3-38), and ‘Belief Revision in Games:
Forward and Backward Induction’, Mathematical Social Sciences, 36 (1998), 31-56. Stalnaker
also provides a characterisation of a variant with two rounds of elimination of weakly dominated
strategies. The Dekel-Fudenberg procedure was developed by Eddie Dekel and Drew Fudenberg,
‘Rational Behavior with Payoff Uncertainty’, Journal of Economic Theory, 70 (1990), 243-267,
who characterised the concept in terms of payoff-uncertainty rather than perfect rationality. See
Section 2.4.
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DF? = 4;,
DF! = nwd;(DFY,...,DFY),
DF'*! = nsd;(DF},...,DFY) (n>1).

The concept of perfect rationality is more involved. Robert Stalnaker developed it
to mirror the fact that in order to decide on an action, players may use not only their
actual beliefs, but also the beliefs they would adopt if they were to learn that their
actual beliefs are false. If, given my actual beliefs, more than one action maximises
expected utility, I can winnow down my choice by inspecting which of the actions
would still be optimal if I changed my beliefs. As a perfectly rational player, I would
choose an action that remains after the sifting.

2 2, 2;

1 (1.4) (1,8) (1,0)

P (5.8) (1,4) (3,0)

13 3.4) (0.8) (2,0)

Fig. 2.5

In order to see this in a context of game-playing, consider the game shown in
Figure 2.5. Clearly, the third strategy of player 1 is a bad choice—no matter what
she believes about her opponent. Now suppose that for whatever reason she has
adopted the belief that player 2 plays 2,. Then two utility maximising strategies
remain, namely, 1; and 1;. So as to decide between them, player 1 checks how she
would change her beliefs if she learned that her belief about 2, is wrong, finding, for
the sake of argument, that she would then believe that her opponent plays 2;. While
given her belief about 2, it makes no difference whether she plays 1; or 1,, given
her (hypothetical) belief about 21, only 1, maximises expected utility. If player 1
were merely rational, she could play 1 or 1,. But as she is perfectly rational, she
only plays 1,.

2.3.1.1 An Implicit, Inductive Formalisation of Perfect Rationality

The way in which I formalise the notion of perfect rationality differs significantly
from Stalnaker’s formalisation. Using an implicit, inductive axiomatisation charac-
teristic of the syntactic approach to the Epistemic Programme proffered here, the
basic axiom requires perfectly rational players to avoid playing weakly dominated
strategies,
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PRaty,; prat; — nwd; (AhAj),

while the inductive case excludes strategies that are strictly dominated in the sub-
game the players believe to be played,

PRat;,,4 (pratl- ALX A |:|in) — nsd; (Xi,Xj).

Table 2.5
Assumptions
preferences Nigewi(k, 1) = rigg
principles A, prat;
beliefs
preferences CAigswi(k, 1) =rpy
principles C A, prat;

performed action —

Solution Concept
player i DF~

1

Proof System rKgcprat

A proof system rKgcprat is used with axioms Prop, Dual, K, E, C, the proof
rules modus ponens, necessitation and induction, the first four axioms for normal
form game-playing situations, plus the two axioms for perfect rationality. The as-
sumptions of the characterisation theorem are formalised in Table 2.5, where prat;
stands for perfect rationality, DF}" for player i’s strategies that survive n rounds of
the Dekel-Fudenberg procedure, and DF;” for the limit.

Theorem 2.5 (Stalnaker, 1996) Let I be a two-person normal form game. Assume
that the following two conditions are satisfied.

1. There is common knowledge among the players about the utility functions of all
players.
2. It is common knowledge among the players that they are perfectly rational.

Then the players play strategies that survive the Dekel-Fudenberg procedure, that
is, the iterated elimination of strictly dominated strategies after one round of elimi-
nation of weakly dominated strategies.

Proof It is demonstrated that
Vn - (prat; ACES""! (prat; A prat;)) — DF"™!, 2.1

Define (pl-o as prat;, and (pi’”rl as @ AOi (@' A (pj") Itis easy to see that ¢/" is provably

equivalent to the antecedent of 2.1. Now I can turn to the proof of

Vn 'k @ — DF'L.
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The case of n = 0 is an instance of PRaty,,. To prove the inductive step assume as
inductive hypothesis
(pll’l D F;n+l ,

and similarly for j. Applying necessitation for i to both inductive hypotheses yields
Oi(of Ag}) — (ODE™ ATDF} ™),
from which, by definition, it follows that
@/ — (prat; ACLDF"*' ACLDFY).
Applying the PRat;,;-axiom yields
(pl{1+1 - nsdi(DFi”“ 7Dan+l)’

which concludes the proof.

2.3.2 Discussion

2.3.2.1 Stalnaker’s Game Models Approach

Robert Stalnaker approaches this theorem using the game models I discussed in the
previous section. To capture perfect rationality, the framework has to be enlarged to
make it possible to reason about belief revision. I present the idea here by means of
a short excursion to conditional logic. This contrasts slightly with Stalnaker’s own
presentation, but ultimately yields the same result.

The first step in the presentation is to add to the logical language symbols >;
with well-formed formulae ¢ >; y with interpretation ‘if player i learned ¢, she
would believe y’.?% A standard model for conditional logic in a multi-agent setting
is a triple M = (W, (fi);,v) where W is the set of possible worlds, f;: W x (W) —
(W) a selection function and v a valuation function as usual. Truth for sentences
involving the >;-sign is defined as

M,w = ¢ >; y if and only if f;(w,[¢]) C [y].

The underlying idea is that game models for perfect rationality represent belief revi-
sion in the following way. While in every world w of a game model, player i’s usual
beliefs can be obtained by simply inspecting the R;-arrows that start from w, giving
extra structure to the game model allows us, in addition, to read off from the game
model the players’ dispositions to belief revision at w, and sentences ¢ >; y, using
conditional logic, are introduced precisely to that end. They express belief revision

28 1n conditional logic, the interpretation is not in terms of belief revision, but in terms of counter-
factual implications.
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dispositions in the sense that, if true at w, player i would revise her beliefs to y if
she learned that ¢. That being the case, the main challenge is to define the selection
function to give >; precisely this desired interpretation, and that is what I will turn
to first.

To start with, belief revision ought to satisfy certain conditions of theoretic ra-
tionality, and an obvious answer to this requirement is the set of standard AGM-
postulates for belief revision.? These postulates are conditions on revision func-
tions * that map sets of worlds plus (extensions of) sentences to sets of worlds with
the interpretation that if B is the initial set of worlds a player believes possible then
*(B,[@]) is the set of worlds she holds possible after she has learned that ¢ is the
case. Notation [¢] is used for the extension of ¢, and By for *(B,X), and applied to
game models the AGM-conditions are the following.?"

By CX.

If X # 0, then By # 0.

If BNX # 0, then By = BNX.

If By NY # 0, then By~y = By NY.

The first of these postulates states that if a player revises her current beliefs B with
new information X, she ends up with an epistemic state in which X is true. The
second requires that new information will never lead a player to draw inconsistent
conclusions unless the information itself is inconsistent. The third states the rather
obvious practice that if the current beliefs B and the new information X have a non-
empty intersection, the new beliefs are formed by the intersection. The last AGM-
postulate, finally, is more difficult. It states that there must be no difference between
subsequently revising beliefs B with X and Y, and simultaneously revising beliefs B
with X NY—unless the intermediate step By of the subsequent revision process has
nothing in common with Y.

Using the functions satisfying the AGM-postulates the desired selection function
can now be defined as

fiw, [@]) = (B, (9]

where B;,, = {v € W | Ri(w,v)} represents player i’s beliefs at w. It is, however,
no trivial matter to show that this is well-defined, and propositions are needed to
demonstrate the existence of the * and the existence of the right B.

Proposition 2.1 Let Q be a reflexive, transitive and connected relation on some set
W. Then there is a revision function B*: go(W) — (W) for some B C W satisfying
the AGM-conditions for all X CW.

Proof 1t is left to the reader to verify that putting

29 Carlos Alchourrén, Peter Girdenfors and David Makinson, ‘On the Logic of Theory Change:
Partial Meet Functions for Contraction and Revision’, Journal of Symbolic Logic, 50 (1985), 510—
530.

30 The conditions are stated not for revision with sentences but with propositions or sets of possible
worlds X and Y, but this is immaterial.
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B={weW]|Q(v,w)forallve W}

and
By ={we X |Q(v,w) forallve X}

works.

This proposition suggests that once Stalnaker’s original game models are decorated
with such Q;-relations for every player i there is a representation of dispositions
to revise beliefs for some specific belief set B C W. So as to obtain a representa-
tion for B;,,, another proposition is needed. Here the belief set B;,, of player i at
w is the set of worlds accessible from w for i, and if the belief sets of two worlds
v and w coincide (that is, if at those worlds i’s beliefs are identical) the worlds are
subjectively indistinguishable for i, with notation T; ,, for the worlds subjectively in-
distinguishable from w for i. Recall that the accessibility relations for the beliefs are
transitive and Euclidean (they are also serial, but that is not needed here). It follows
from R;(w,v) that w and v are subjectively indistinguishable, which establishes the
following inclusion relation used in the proof of the first proposition.

Remark 2.3 For all i and w it is true that B;,, C T; ,,.

Proposition 2.2 Let R; be serial, transitive and Euclidean on W. Let Q; be reflexive,
transitive, and connected on each set T; ,, such that if two worlds are connected they
are subjectively indistinguishable. Assume that R;(w,v) if and only if

Yw(Qi(w,u) V Qi(u,w)) — Q;i(u,v)).
Then it is true that
Biw={u€T,|Qivu)foralveT,}.

Proof The one direction follows from transitivity and Euclideanness of R;. The
other direction is an immediate consequence of the assumption.

This gives the desired way to decorate the original game models with the Q;-
relations. If the condition relating the R; and the Q; is satisfied, then we can in-
terpret sentences from the earlier conditional language on a model of the form tuple
(W, (Ri)i, (Qi)i, (Pi)i, (si)i). Note that what the interrelation condition really says is
that the elements v that stand in the R;-relation to w are exactly the elements that
stand in the R;-relation to any element in 7; ,,.

This detour via conditional logic makes it possible to define perfect rationality.
To define that notion is to define what it means to make mistakes.>' Set recursively

ERR! = {w € W | not R;(w,w)},

the set of worlds in which i is in error, and

31 The definition deviates slightly from Stalnaker, ‘Knowledge, Belief and Counterfactual Reason-
ing in Games’, 147, but is equivalent.



2.3 The Dekel-Fudenberg Procedure 59
ERR!"! = {w € ERR} | w ¢ B;,,(ERR})},

the set of worlds that do not survive revision with the proposition ERR”. So ERR?,
for instance, is the set where i is in error, and even if i would revise her beliefs
with the proposition that she is in error, she would still be in error. Omitting the
discussion about conditionalisation on probability zero events, set

Pi(le] N B;,.([0])
Pi(B;,(Iv])

which for P;([y]) > 0 is the same as Bayesian updating. Then, set inductively

Pile] [ [v]) =

PRAT},, = {a; € A; | EU;y(a;) > EUj,,(b;) for all b; € A},
the set of (not necessarily perfectly) rational actions, and PRAT;’;1 =
{a; € PRAT},, | EU;\,(a; | ERR!™") > EU;,, (b; | ERR}™!) for all b; € PRAT},, },
where the conditional expected utility is defined by

EUiw(ai|[o]) = X Pi(S'[a-i] | [9]) - wilai,a—),

a_j€A_;

and the non-conditional expected utility EU;,,(a;) in an obvious analogous way.
Finally, the set PRAT;” = (1, PRATY is the set of perfectly rational strategies for
player i at w.

If this is Stalnaker’s conception of perfect rationality, how do the proposition let-
ters prat; compare to PRAT; ,,? Since my logic is not really a logic for game models
in Stalnaker’s sense, it does not make sense to state a genuine equivalence result
relative to some class of models. Since there is no possibility of a strict compari-
son, I will examine Stalnaker’s proof and show that what his proof needs in order to
work is captured adequately in my prat;. Perhaps surprisingly this does yield some
insight into the similarities and differences in our approaches.

Stalnaker’s proof of the epistemic characterisation of the Dekel-Fudenberg pro-
cedure is similar to the proof for iterated strict dominance that I discussed in the
previous section.

Proof SetX;={ac€A;|si(w)=a,and Rc(a,w) or w=a}. This is the set of strate-
gies that lie on the common belief paths departing from the actual world, plus the
strategy played in the actual world. It has to be shown that, if it is also assumed that
if all such worlds are worlds where the players are perfectly rational (a member of
(; PRATY’) then in no such world will a strategy be chosen that does not survive the
Dekel-Fudenberg procedure.

First it is shown that any member of X; is not weakly dominated in the original
game I". Clearly, such a strategy cannot be strictly dominated, because then i would
not be rational at the respective world, but the extra demands of perfect rationality
ensure that it cannot be weakly dominated either.



60 2 Normal Form Games

Second, consider the subgame I’ of the original game I" spanned by the sets
nwd;(A;,A ;) for all i. It is shown that the X; fulfil the conditions in Lemma 2.4 (cor-
related rationalisability) to conclude, using Lemma 2.5 (correlated rationalisability
and iterated strict dominance coincide), that any member of X; is iteratively strictly
undominated in I'’. Now let a € X;. Since a is being played in a world (say w) in
which i is perfectly rational, a is certainly a best response among X; to P;(w), the
support of P;(w) is a subset of X; by definition, for indeed, at w the strategies that
player i considers possible for himself are the strategies played in worlds v with
Ri(w,v), and hence members of X;.

It is quite clear that such reasoning can be carried out in my formalism equally
well. In my formalism, too, the claim can be defended that the strategy chosen is
not weakly dominated in the original game—the content of the PRat;,; axiom. And
it can be shown equally well that in the subgame spanned as indicated in the proof,
the strictly dominated strategies are shunned. This is precisely what PRat;,; states.
The two steps taken in Stalnaker’s proof are strictly mirrored by the two axioms that
inductively axiomatise perfect rationality. To overstate slightly, the sentences from
Stalnaker’s proof have translations in my framework that constitute a proof of the
statement that prat A Cprat at the actual world implies that the strategies played
there survive, first, one round of elimination of weakly dominated strategies, and
then just as many rounds of elimination of strictly dominated ones as necessary—
provided we consider models for rKgcprat. It is unimportant that these models are
quite different from Stalnaker’s game models.

2.3.2.2 Motivation of the Axioms

The result of all this is to have shown the similarities and differences between Stal-
naker’s approach and my own. Nothing is said, however, about the PRat-axioms. I
will conclude with an argument about their plausibility, paying attention first and
foremost to the fact that these axioms do not refer to the same rationality princi-
ple.3> The general strategy for defence is to imagine that some player i is at some
possible world w of, roughly, a game model in Stalnaker’s sense. Player i’s beliefs
about what she and her opponent j play are represented by sets of strategies X; and
X respectively, and the question that needs to be answered concerns what she will
play.??

32 The presentation owes much to e-mail discussions with Adam Brandenburger and Robert Stal-
naker for which I am very grateful.

33 This is not entirely precise. If you think of X; and X ; as minimal such sets of strategies played
in the worlds v for which R;(w,v), then X; is a singleton, because i knows what she plays. But
if you think of these sets as non-minimal, this is not so, and depending on whether or not the
sets are minimal, lemmas requiring full-support beliefs cannot be appealed to; non-minimal sets
do not represent full-support beliefs. In order to characterise the Dekel-Fudenberg procedure, the
axioms will be invoked for non-minimal sets. This is understandable from the procedural point
of view, advocated here, concerning epistemic characterisations, where subsequent applications of
the inductive axiom mirror the processes in the minds of the players leading them to eliminate



2.3 The Dekel-Fudenberg Procedure 61

A natural way to start is to try and argue for the plausibility of the PRat-axioms
using Lemma 2.3 (weakly undominated strategies are best responses to some neces-
sarily full-support probabilistic belief) in the way I discussed in the previous section,
for if it is established that any perfectly rational player has such beliefs, then the
PRat,,s-axiom seems justified. But this way is blocked, because even if full support
could be motivated, this motivation would be hard to square with using strict dom-
inance in the PRat;,;-axiom, using beliefs that do not have full support in a similar
motivation via Lemma 2.2.

Lexicographic probability systems provide a way out. The representation theo-
rem (see the Appendix A) reveals that if one strategy weakly dominates another, the
expected utility of the one is larger in the lexicographic sense than that of the other.
If it can be established that any perfectly rational player has such a lexicographic
probability system, then the PRat,,;-axiom seems justified—or not, for if I start in-
terpreting some player’s beliefs as lexicographic probability systems, then I ought
to make this interpretation explicit in the treatment of beliefs in the PRat;,;-axiom
as well, and so the problem from the first attempt returns.

This is intended to outline some of the intricacies of defending the plausibility
of rationality axioms by reference to (lexicographic) beliefs, but it is also a good
starting point to develop a fully functional argument in favour of the axioms. Let me
start with the PRat;,;-axiom. Consider a perfectly rational player i in some possible
world w. Because of her rationality, her choice at w maximises expected utility given
her beliefs [J;X; and [;X;. Using Lemma 2.2 (strictly undominated strategies are
best responses to some not necessarily full-support probabilistic beliefs) it transpires
that she does not choose a strategy that is strictly dominated in the subgame spanned
by X; and X, and that is exactly the content of PRat;, .

Turning to the PRat,,s-axiom, that player i is perfectly rational also entails that
at w she possesses a hierarchy of dispositions to revise her beliefs that she uses in a
tie-breaking procedure; what she chooses at w maximises expected utility given an
initial segment of the hierarchy until no tie shows up, precisely as in the example
with which this section started. The representation theorem (see the Appendix A)
entails that this strategy, in addition to being strictly undominated in the subgame
spanned by X; and X;, is weakly undominated in the original game, for it is to the
effect that if she is perfectly rational with such lexicographic beliefs, the agent never
plays a strategy that is not lexicographically optimal. There is a caveat, though, for
the optimal strategy may be a mixed action, and therefore an extra assumption about
the epistemic subject is necessary. It is assumed that there is no alternative that i
assigns zero probability to in all stages of the hierarchy of her lexicographic beliefs.
In other words, for any alternative there is some stage of the hierarchy at which i
holds it positively epistemically open.>*

dominated strategies. The sets get smaller and smaller during this reasoning process, but not until
they have reached the final conclusion will the sets be minimal. For that reason, the argument for
the plausibility of the axioms has to proceed with possibly non-minimal X; and X.

34 Stalnaker, art. cit. takes a different yet equivalent way, using closure conditions on game models
that I have not dealt with in the above exposition.
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While this motivates the PRat, -axiom, it remains to be seen why the nwd; is
not used in the PRat;,;-axiom. For an appropriate application of Lemma 2.3 to de-
fending weak undominance, player i would need a full-support belief over the X.
Because X; is not necessarily minimal, from [J;X; no full-support belief over X; en-
sues, but only a full-support belief over some subset of X, and on that account this
lemma cannot be applied. Nor does the route via lexicographic probability systems
support nwd;(X;, X;) in the consequent of the PRat;,;-axiom, because player i would
have to have a hierarchy of beliefs that all sum to one over the X;. At w, however,
player i has a hierarchy of beliefs such that the beliefs do not restrict themselves to
the subgame that X; and X; span; every strategy in the whole game receives non-zero
probability somewhere in the hierarchy. As a result, only weak undomination with
respect to the original game, and not to a subgame, is correct.

2.4 Mixed Iterated Strict Weak Dominance

2.4.1 The Epistemic Characterisation Theorem

If all players of a normal form game are correctly informed about their own util-
ities, and it is common true belief among them that all players are approximately
correctly informed about the utilities of their opponents, and, in addition, it is com-
mon true belief among the players that they are rational, then they will arrive at
a mixed iterated strict weak dominance solution. This is the content of a new
epistemic characterisation result presented in this section. Eddie Dekel and Drew
Fudenberg were among the first to look at such forms of payoff-uncertainty, and
their pioneering 1990 paper gave rise to a literature relating common knowledge of
payoff-uncertainty and rationality to the iterated elimination of strictly dominated
strategies preceded by one round of elimination of weakly dominated strategies—
the Dekel-Fudenberg procedure.® A key assumption guiding this literature is that
payoff-uncertainty be cast in probabilistic terms. In contrast to this literature, a non-

35 Dekel and Fudenberg, art. cit. Tilman Borgers, ‘Weak Dominance and Approximate Common
Knowledge’, Journal of Economic Theory, 64 (1994), 265-276 characterises the Dekel-Fudenberg
procedure in terms of approximate common knowledge of rationality. Adam Brandenburger, ‘Lex-
icographic Probabilities and Iterated Admissibility’, in P. Dasgupta, et al. (eds.), Economic Analy-
sis of Markets and Games: Essays in Honor of Frank Hahn (Cambridge, Mass.: MIT Press, 1992),
282-276 provides a characterisation in terms of a lexicographic version called common first-order
knowledge. See also Adam Brandenburger, Amanda Friedenberg and H. Jerome Keisler, art. cit.
Faruk Gul, ‘Rationality and Coherent Theories of Strategic Behavior’, Journal of Economic The-
ory, 70 (1996), 1-31 uses the notion of the weakest perfect 7-theory. P. Jean-Jacques Herings and
Vincent Vannetelbosch, ‘The Equivalence of the Dekel-Fudenberg Iterative Procedure and Weakly
Perfect Rationalizability’, Economic Theory, 15 (2000), 677-687 describe the solution concept in
terms of the beliefs players may have about the possibility of opponents making errors with small,
correlated probability. Elchanan Ben-Porath, ‘Rationality, Nash Equilibrium and Backwards In-
duction in Perfect-Information Games’, Review of Economic Studies, 64 (1997), 23-46 studies
very similar payoff-uncertainty in extensive games.
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probabilistic model of payoff-uncertainty is developed here, showing that under
such a conception, common belief about payoff-uncertainty and rationality char-
acterises a new solution concept of mixed iterated strict weak dominance.

If I = (I, (A))i, (u;);) is an N-person normal form game, and X; C A; are sets for
all i, I write (I, (X;);, (ui|x,);) for the game resulting from I" by removing for all i
the strategies in the complement of X; with respect to A; and restricting the utility
functions correspondingly, and apply the notation

nsd,-(Xl geos ,XN)

for the pure strategies that are not strictly dominated for player i in the subgame of
I' spanned by []; X;. The nwd; are defined analogously. Using the nsd; and the nwd;,
iterated strict dominance, as I have illustrated, is captured by

SO:Aia

1

+1 __ .
ST =nsd;(ST,...,Sy) (n>0);
and the concept characterised here, mixed iterated strict weak dominance, by

MQ:Ai7

1

M = nwd;(S,...,M?,...,S) (n>0),

showing mixed recursion. Informally put, the idea is that player i considers a se-
quence of games spanned by, for opponent strategies, the relevant stages from the
sequence of iterated strict dominance, and for herself, the strategies that are not
weakly dominated for her in the previous stage. Stage zero is A;. To obtain stage
one, she removes from the entire game those strategies of hers that are weakly
dominated. To obtain stage two, she considers the game spanned by, for opponent
strategies, the sets S}-, J # i, and for herself, the set obtained at stage one (that is,
nwd(Ay,...,A;,...,Ay)), and she removes from this game those strategies of hers
that are weakly dominated, and so she continues.

Just as before, the sets of proposition letters for these solution concepts are de-
noted S;” and M}, respectively, with super-scripts n indicating what remains after n
rounds of elimination.

This models the outcome of game-playing. In order to model part of the an-
tecedent conditions—payoff-uncertainty—we need to be able to talk not only about
restrictions of the game, but also about games in which utility functions have been
slightly altered. The following ingredients return in my axiomatisation below. If
player i’s strategies are written i1, i>, and so on, a multi-matrix (7;x, . ky)ik;,...ky
containing reals 7;, .. xy is used to build constructs of the form

nsd; (X1, XN, (Fiky ey ik o)

denoting the set of pure strategies that are not strictly dominated in the subgame of
I' spanned by []; X; in which the utility functions u; are replaced by utility functions
u satisfying
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wi(lgy oo Niy) = Figy,oy -

That is, take I', remove all strategies in the complement of X;, substitute u; by ug,
and collect all strategies that are not strictly dominated in the resulting game.

Generalising this, a multi-matrix containing sets of reals (Di7k17---7kN)i-,k1
used to build constructs of the form

is

nsd;(X1,...,. XN, (Dig,,...kn )ik,

denoting the set of pure strategies of player i that are not strictly dominated in any
subgame spanned by [];X; in which the utility functions u; are replaced by utility
functions u/ satisfying

u§(1k1 e ,NkN) EDjky,.. kn-

That is, take as many copies of I" as there are u/ satisfying this condition, remove
all strategies in the complement of X;, substitute ; by u; in the corresponding copy
of I', and collect all strategies that are not strictly dominated in any resulting game.

Dekel and Fudenberg’s objective was to investigate what players of normal form
games end up playing if they are less than fully informed about each others’ util-
ity function in a context in which rationality prescribes players to exclude weakly
dominated strategies.>® As T suggested in my examination of the general form of
characterisation results, players cannot be fully ignorant, since otherwise nothing
can be said about their behaviour, so what Dekel and Fudenberg did was to assume
that the players have approximately correct beliefs about each other.

Though not disputing the mathematical validity of their model, there is room, I
believe, for an alternative approach. The basic difference, to which I will turn in
more detail later, is that while Dekel and Fudenberg model approximately correct
beliefs in probabilistic terms, the approach presented here uses epistemic logic.

The first task is to formalise the statement that player i has approximately correct
beliefs—approximate beliefs—about player j’s utility function. I assume without
loss of generality that there are two players. What makes the formalisation task a
non-trivial one is that this has to be accomplished in a context in which player i
also believes that player j is correctly informed—has exact beliefs—about her own
utility function. I will first formalise player i’s beliefs about player j’s exact beliefs,
and then turn to player i’s approximate beliefs.

The most natural way to formalise the statement that player j has exact beliefs
about the utility r;; player j assigns to strategy profile (k,[) is

Ojuj(k, 1) =11,

and thus a simple way to formalise the statement that player i believes that player j
has exact beliefs about the utility player j assigns to strategy profile (k,I) is to add
a [J; to the above sentence, resulting in

36 Dekel and Fudenberg, art. cit. 245 write that ‘Each player knows his/her own payoffs, and so by
our rationality postulate will not choose a weakly dominated strategy’.
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DiDjllj(k,l) = rj,k,l-

Yet this cannot be coherent in a context where player i has only approximate beliefs
about player j’s utility function, for in such a context [J;(J;u;(k,l) = r;; implies
that player 7 has in mind the specific utility value r;; ;, illegitimately suggesting that
there exists a kind of exact belief about player j’s utility function. What does work,
though, is to cast player i’s beliefs about player j’s exact beliefs about the utility
player j assigns to strategy profile (k,[) in terms of a belief about a conjunction of
implications,
O A (ukl)=r—Ojukl)=r),

FED]‘J{.]

for a finite set D; x; containing r;;; and contained in a small environment of r; 4 ;.
To put it informally, this expresses player i’s belief that if the utility player j assigns
to (k,1) takes, say, value r, then player j believes that it takes value r, and this condi-
tional does not imply that player i has particular utility values in mind. Generalising
this,

O A N\ (ki) =r—Opujkl) =r)

k.l reDMJ

expresses the fact that player i believes that player j has exact beliefs about player
J’s utility function. This is abbreviated by [J;{1;v;, and

A A\ (k) =r—Oju;(k,l)=r)

k,l reDj.,k‘l

is abbreviated by [1;v;. The fact that this notation does not fully capture the logical
form of the statements is unproblematic.

The careful formalisation of beliefs about exact beliefs about a utility function
makes it rather straightforward to formalise approximate beliefs about a utility func-
tion. Due to the above problem about illegitimate beliefs about specific utility val-
ues, it is not an option to represent player i’s approximate beliefs about the utility
player j assigns to strategy profile (k,/) by means of

D,-uj(k,l) =r
for some ’ sufficiently close to the real r;x; = u(k,l). What does work, however, is
to mark
D,‘ \/ llj(k, l) =r
VEDj‘k.l

as a finite set of reals D ; ;, in the way mentioned before, containing r;;; and con-
tained in a small environment of r;4;, and to define the degree of approximation
by putting specific conditions on D; ;. Dekel and Fudenberg suggest such a natu-
ral condition, which is adopted here.3” Given a particular two-person normal form
game, one can find €;;; > 0 such thatif |[r —r; ;| < &, forall r € D ;, player i’s

37 1bid. 245.
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beliefs are such that player i gets relations of strict dominance among the strategies
of player j right, but not necessarily relations of weak dominance. This is expressed
by saying that the &; i ; ensure correct beliefs about strict dominance whenever these
conditions hold with respect to the utility player j assigns to strategy profile (k).

Given the earlier discussion of iterated weak dominance, it is easy to formalise
the rationality requirement that no weakly dominated strategy be played. The basis
is captured by

MRaty,;  (mrat; A Niveajica; w;(k,1) =rir;) — nwd;i(Ai,Aj, (Yikp)iki)s
the inductive step, by

MRat;,,4 (mrati AL /\ikEXiJIEXj ll,'(k, l) =Tk N\ 00X A Din) —
nwd; (X;, X, (Tig1)ik)-

In summary, I have formalised two elements of payoff-uncertainty (beliefs about
exact beliefs about utility functions and approximate beliefs about utility functions)
as well as Dekel and Fudenberg’s notion of rationality excluding weakly dominated
strategies. In order to investigate game-playing situations with common belief about
payoff-uncertainty and common belief about rationality, we have to take one more
step to ensure that these two components of the antecedent do the job that they are
supposed to do. It may come as a surprise that we need extra axioms to that end,
as we needed nothing of that kind in the epistemic characterisation results that were
dealt with earlier. There is a peculiar obstacle to applying the necessitation role,
however, and for that reason we need to do more here.

To see this, observe that if we apply necessitation for j and the K-axiom to the
basis axiom for player i we find

(Djmrat,- A DjDi /\ ll,'(k,l) = riﬁk,l) — Djnwdi(Ai,Aj7 (ri,k,l)i,k,1)~

ikGA,‘,jIEA/'

The antecedent of this sentence cannot, however, be made true under the assumption
of common belief about payoff-uncertainty and rationality. This is because the sec-
ond conjunct of the antecedent involves beliefs possessed by player j about player
i’s beliefs about specific utility values player i assigns to certain outcomes of the
game, and as I have demonstrated, this is incoherent in a context in which player
Jj has only approximate beliefs about player i’s utility function. In fact, it is a good
thing that the antecedent of the above sentence cannot be made true under the as-
sumption of common belief about payoff-uncertainty and rationality, for if it were
true, player j would have correct beliefs about weak dominance relations among
player i’s strategies. Such beliefs were excluded because approximate beliefs about
utility functions were defined in terms of getting strict dominance relations right,
but not necessarily weak dominance relations.

So, necessitation does not get the right procedure off the ground without extra
axioms. The solution proposed here is to use clauses of the form

(Djmrati A DjD,"Ui AN Dj /\ \/ ll,'(k,l) = l') — Djnsdi(Ai,Aj7 (Di,k,l)i,k,l)7
k,l I‘EDi"k)]
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to express the consequences of player j’s beliefs about player i’s rationality in a
situation in which player j only has approximate beliefs about player i’s utility
functions. Clearly, the antecedent conditions are fulfilled once common belief about
payoff-uncertainty and rationality is assumed; player j believes that player i is ratio-
nal (first conjunct), player j believes that player i has exact beliefs about player i’s
utility function (second conjunct), and player j has approximate beliefs about player
i’s utility function (third conjunct). Equally without doubt, the consequent provides
the appropriate beliefs, as player j believes that player i chooses a strategy that is
not strictly dominated.

More intricate, but structurally similar reasoning occurs in the proof of the epis-
temic characterisation result, for which we need more intricate, but structurally sim-
ilar axioms. In fact, again there is a distinction between the two cases, depending on
whether player i has additional beliefs in the form of [J;X; and [J;X; or not.

Knwp,s (00 mrat; AO;O 00 A0 Ay Vyep, ik, 1) =1) —
0,0 nsd; (A, A, (Digea )ik )-

Knw;,q (Djljf’mrati/\DijDiviADij’XiADij’Xj/\
O Niji Viren,, wilk, 1) = 1) — 0,0 nsdi (X;, X, (Dikp)ik,)-

Without loss of generality, these axioms are phrased for a two-person normal form
game so as to grasp the beliefs player j has about player i’s rationality and beliefs
(n = 0), his beliefs about player i’s beliefs about player i’s rationality and beliefs
(n = 1), his beliefs about player i’s beliefs about player i’s beliefs about player i’s
rationality and beliefs, and so on (n > 1). The finiteness of the game ensures that
only finitely many are really needed.

ikl

Table 2.6
Assumptions
preferences /\i,kﬁlui(kv )= T
principles /\; mrat;
beliefs
preferences Oi Argwi(k,1) =rig
Oi Ajtiget Vrep,, 0tk 1) =¥k
CA Ui
CALiAjzini Viep,,, 0tk ) =11
principles C A\;mrat;

performed action —

Solution Concept
player i Mz

1

Proof System rKd4gcmrat

A proof system rKd4gcmrat is used consisting of Prop, Dual, K, 4, E, C, the
proof rules modus ponens, necessitation and induction, the first three axioms for
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normal form game-playing situations (KnUt is omitted), plus four MRat- and Knw-
axioms. The assumptions that underlie the characterisation result are routinely listed
in Table 2.6.

Theorem 2.6 Let I' = (I,(A));, (1;);) be a two-person normal form game, let i =
1,2, j =3 —1i, and let D;y ; be finite sets of reals such that |r— u,'_k71| < & 1 for all
r € D1 and €y ensuring correct beliefs about strict dominance. Assume that the
following three conditions are true.

1. All players have true beliefs concerning their own utilities.

2. It is common true belief among the players that they have approximate beliefs
about the utility functions of their opponents.

3. It is common true belief among the players that they are rational.

Then the players play strategies that survive the mixed iterated strict weak domi-
nance elimination procedure.

Proof 1 write ¢" for

/\mrat /\/\u, (k,1) 7rlk1/\/\D /\u, (kD) =T A
ikl i kil

O AV owik ) =r AEOu AES"T; \\/ u,kl)_r/\E<"/\mrat
klreD;j klreDj

and ¢} for the part of ¢" starting with [J; conjoined with the statement mrat;, that
is,

mrat,-/\Di/\ui(k,l):riﬁkﬁl/\Di/\ \/ ll]'(k,l):l'/\
k1l kI r€Dj

OE=" 'O AOE ' A\ \/ wik.l)=rAQE™" 1/\mratl,
klrElel

with the convention that if n = 0 the (J;E="~! vanish completely. It has to be shown
that
Vi @ — MM (2.2)

First, however, it is proven that all you need to prove 2.2 is
Vn =@ — (OM] AO;ST). (2.3)
Assume, indeed, that 2.3 is proven. By definition of ¢]' we also have

Vnt (pln — (mrat,» A Di/\ui(k, l) = rtﬂ,k,l)-
k.l

Applying MRat;,,; for i yields

Vnt @' — nwd;(M},S7),
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which, observing that Mf“ = nwd;(M], S?), concludes the proof the statement.
One level deeper, all you need to prove 2.3 is

vnk o — (OOM ' ADOST ADDST ADOS). 24
For assume that (2.4) is proven. To show
Vnt @ — OM7,
by definition of ¢;' and the assumption we have

Vn (pln — (Dimrat,- AN D,D,-/\u,(k,l) =Tikl A\ D,‘D,’M?_l N D,’D,’S?_l).
k.l

Apply the rule of necessitation for i to the appropriate instance of MRat;,,; for i, and
observe that its consequent is what had to be shown and that its antecedent is what
was just shown. To show

vnk @ — 087,

by definition of ¢ and the assumption we have

Vnt (pln — D,'mratj A DiDj’l)j A D,DjS’}_l A DiDJ’S;Z_I AN D,/\ \/ llj(k,l) =r.

kI r€D;j g,

Take the appropriate instance of Knw;,; for i (the instance of the axiom that speaks
about i’s beliefs about j’s iterated beliefs), and observe that its consequent is what
had to be shown and that its antecedent is what was just shown. This concludes the
proof that all you need to prove (2.3) is (2.4).

It remains to be shown that (2.4) is true. Induction on n. The basis is left to the
reader. Assume that the statement holds for some n. I prove four implications for
n+ 1 separately.

To prove

(plf’“ — O0,0M7,

1
be true. Apply the rule of necessitation for i to the appropriate instance of MRat;,;
for i twice, and observe that its consequent is what had to be shown and that its
antecedent follows from the definition of (pi"+l and the assumption.
To prove the truth of the assumption apply necessitation for i to the inductive
hypothesis and observe that Vn - ¢! — Ui

]
To prove

it is sufficient to prove @1 — (D,D,DiMi"_1 A DiDiDiS’}_l). Assume the latter to

o/t — 00,87,

it is sufficient to prove ! — (DiDiDjS’}*l ACO;0;87 ). Assume the latter
to be true. Apply the rule of necessitation for i once to the appropriate instance of
Knw,,,; for i and for n = 0, and observe that its antecedent follows from the definition
of ¢! and the assumption, and that the consequent is what had to be shown.

1
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To prove the truth of the assumption apply necessitation for i to the inductive
hypothesis and observe that Vn - ¢! — Uiy
To prove
o/t — 0,08,

be true. Take the approplriate instance of Knw;,; for i and for n = 1, and observe
that its consequent follows from the definition of (p;”rl and the assumption.

To prove the truth of the assumption observe that, first, Vn - (pi”+l — ¢, and
second, Vn I (DIDJS'}*] AOO8 N — (D,-DijS;?’l ACO;0;871). Together
with the inductive hypothesis this shows the truth of the assumption.

To prove

it is sufficient to prove @' — (D,DijS;f*' ACLO;0;871). Assume the latter to

o/t —00;8;,

finally, it is sufficient to prove goi"+1 — (DiDjDiSl’-'_l A D,-DJD,-S:?_I). Assume the
latter to be true. Apply necessitation for i to the appropriate instance of Knw;,; for
j and for n = 0, and observe that its antecedent follows from the definition of (pl.’”rl
and the assumption and that its consequent is what had to be shown.

To prove the truth of the assumption, the inductive hypothesis may be assumed
to hold for ¢} as well. Applying the rule of necessitation for i to it yields L;¢} —
(D,-DjDiS;’_l A D,-DjD,-S?_l). What we now need is (pl-’”rl — D,-(p;l. That is easy to
see, though.

2.4.2 Discussion

The motivation for proving epistemic characterisation theorems in the Epistemic
Programme typically comes from one of two sides. One may start with a familiar
game-theoretic solution concept in mind, and ask under what epistemic conditions
it will capture game-play adequately; or one may start with certain epistemic con-
ditions in mind, and investigate what solution concept follows—the behavioural
consequences of certain epistemic conditions. Taking the first route may lead to the
discovery of new and surprising epistemic conditions; taking the second route, to
new and surprising solution concepts.

While Dekel and Fudenberg started from the epistemic conditions of payoff-
uncertainty, and linked them to what would become known as the Dekel-Fudenberg
procedure (the second route), most of the ensuing game-theoretic literature re-
mained with the Dekel-Fudenberg procedure to study modifications of Dekel and
Fudenberg’s epistemic conditions (the first route). In contrast to this literature, I
will begin with the epistemic conditions in mind, providing an alternative formal-
isation of common true belief about payoff-uncertainty and rationality to examine
its behavioural consequences (the second route). The consequences uncovered by
my characterisation theorem are quite different from those of the Dekel-Fudenberg
procedure, however, and this is due to the fact that the formalisation of payoff-
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uncertainty proposed here is different. In order to locate these differences with pre-
cision, I will discuss the conceptions of payoff-uncertainty developed by Dekel and
Fudenberg, as well as one by Tilman Borgers (which is fairly representative of the
literature) to show by means of an example to what extent they are different from
the model proposed here. I will then turn to a conceptual motivation of the axioms
that connects them to the more standard, semantic tools used in the Epistemic Pro-
gramme of lexicographic beliefs.

2.4.2.1 Comparison with the Literature

What Dekel and Fudenberg do is model payoff-uncertainty by means of elabora-
tions of games as they were developed by John Harsanyi.®® Roughly, a sequence
of games is considered in which the utility functions of the players are slightly dif-
ferent from those in the original game. They define a notion of convergence, both
on sequences of games and on sequences of strategies, and the main result is that a
strategy survives the iterated elimination of strictly dominated strategies preceded
by one round of elimination of weakly dominated strategies just in case it is the limit
of a sequence of strategies that survive the iterated elimination of weakly dominated
strategies in elaborations converging to the original game. Borgers, in turn, defines
a notion of approximate common knowledge, and shows that approximate common
knowledge of rationality characterises the Dekel-Fudenberg procedure.*”

The difference between these two models and the model I propose becomes clear
when we compare the respective formalisations of statements such as

Player i has approximately correct beliefs about the utility player j assigns to strategy profile
(k,1).

Dekel and Fudenberg as well as Borgers model this by having player i assign high
probability to the correct, actual utility value, and low probability to alternative util-
ity values. Under this reading, approximate beliefs are modelled in probabilistic
terms. In the model I present, by contrast, player i possesses a belief concerning
a disjunction of statements one of which expresses the correct utility, and all of
which fall in a small environment of the correct utility. The non-probabilistic model
proffered here has, one could say, player i assign equal probability to finitely many
alternatives close to the actual value.

In order to demonstrate that this makes a difference, consider the games shown
in Figure 2.6. The game on the left correctly represents the utility functions of both
players; it is the game they actually play. The game on the right is the game as player
2 perceives it. It represents player 2’s utility correctly, but it gives an approximation
of the utility player 1 assigns to strategy profile (1;,2,). The intended interpretation

38 «Games with Incomplete Information Played by “Bayesian” Players’ (three parts), Management
Science, 14 (1967-1968), 159-182, 320-334, 486-502.

39 Art. cit. A proposition ¢ is approximate common knowledge whenever everyone believes with
high probability that ¢, everybody believes with high probability that everyone believes with high
probability that ¢, etc.
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2 25 23 24 2, 23
1 (1.4) (1,8) (1,0) 1 (1.4) (D.8) (1,0)
1 (5.8) (1,4) (3,0) 1o (5.8) (1,4) (3,0)
13 3.4) (0,8) (2,0) 13 (3.4) (0.8) (2,0)

Fig. 2.6

is that player 2 believes that u; (11,2,) € D for some finite set D containing the actual
utility value and contained in a small environment of it, such that the conditions of
the epistemic characterisation theorem are satisfied. That player 2 has approximate
beliefs about the utility player 1 assigns to (11,25) is therefore formalised here as a
belief about a disjunction over D. Strictly speaking, the game on the right represents
not one but |D| games. For completeness, I should mention that player 1 perceives
the game as it is. The only outcome that survives the Dekel-Fudenberg elimination
procedure is (15,2;). If player 2 assigns high probability p to the correct utility
player 1 assigns to (1;,2;), any other outcome disappears when p tends to infin-
ity. Similar observations hold for Borgers’ model. If, however, we assume common
belief about payoff-uncertainty and rationality as formalised here, then there is a
second possible outcome: (1,25). An informal way to demonstrate this as follows.
First note that under common true belief about payoff-uncertainty and rationality,
player 1 will play her second strategy, because both her first one and her third one
are weakly dominated. To see that player 2 can play his second strategy under these
assumptions, observe that, since he is rational, he does not play the weakly dom-
inated 23. Furthermore, player 2 believes that player 1 is rational. From the game
which player 2 thinks is being played (the matrix on the right), player 2 removes
player 1’s weakly dominated strategies, but the only such strategy is 13. Particu-
larly, since player 2 only has approximate beliefs about the utility function of player
1, he cannot justifiably remove 1: player 2 holds it possible that 1{ will score more
for player 1 against 2; than any other strategy of player 1. From player 2’s point of
view, player 1 will either play her first or her second strategy, and this makes, for
player 2, playing his first as well as his second strategy rational. Rationality does
not exclude 2,, and hence (12,2;) is a possible outcome.

2.4.2.2 Motivation of the Axioms

While the syntactic approach developed here makes it possible to analyse the role
of various levels of common belief about rationality and a particular form of payoff-
uncertainty, it has the drawback of making it more difficult to motivate the axioms
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in terms of the lexicographic beliefs standardly used in the Epistemic Programme
in the theory of games. While to some extent this is a feature of syntactic investiga-
tions, such a motivation may justifiably be demanded, and I will attempt to provide
one here.

To start with, the purpose of the MRat,,s-axiom is to capture the rationality prin-
ciple according to which weakly dominated strategies are to be excluded, and this
is accomplished by stating that player i will not play a strategy that is weakly dom-
inated in the entire game on the basis of no more information than that player i is
rational and that she is correctly informed about her own utility function. A high-
yielding place to look for a basis of a motivation for this axiom is a lemma encoun-
tered earlier—Lemma 2.3, according to which a strategy is not weakly dominated
for player i in the entire game whenever it is a best response for her to some proba-
bility measure with full support (that is, assigning zero probability to no alternative)
over player j’s available strategies. As I suggested in the discussion of iterated weak
dominance, however, some care has to be taken not to misuse the full-support re-
quirement.

MRaty,, indeed formalises a situation in which no specific information is avail-
able about which alternatives player i’s beliefs exclude. In the process of itera-
tively eliminating strategies, player i’s beliefs focus on certain sets of strategies of
player j and herself. By doing so her beliefs start excluding alternatives, and ac-
cordingly cease to have full support (the temporal phrasing of this process is rather
metaphoric). At the first stage of the elimination process player i assigns zero proba-
bility to no strategy of her opponent, but at the next stage of the elimination process
she removes strategies that, given her own payoff-uncertainty and beliefs about her
opponent j’s rationality, she believes j not to play. If such strategies exist, player i’s
beliefs at this stage exclude them and consequently do not have full support.

In my formalism, MRat;,,; deals with this case. In order to motivate this axiom,
consider the following first attempt. If player i’s beliefs are captured by [;:X; ALJ;X;
for X; C A; and a real subset X; C A, they have indeed no full support with respect to
the entire game, but they do have full support with respect to the subgame spanned
by X; and X;. This shows, the attempt would go, that Lemma 2.3 may still be used
to justify why MRat;,; has player i choose a strategy that is not weakly dominated
in that very subgame—simply reduce it to the subgame. This may sound like a
plausible defence of MRat;,4, but it has an important defect. Going from the first to
the second stage, player i has given up her full-support beliefs from the first stage.
While these beliefs have full support with respect to the subgame of the second
stage, the fact that they no longer have full support with respect to the entire game
makes it impossible simultaneously to adopt MRaty,; (which seems to presuppose
full-support beliefs with respect to the entire game) and MRat;,,; (which seems to
presuppose non-full-support beliefs).

This is very much related to a puzzle presented by Larry Samuelson.*’ A solution
to that puzzle by means of lexicographic probability systems by Adam Branden-
burger, Amanda Friedenberg and H. Jerome Keisler proves very useful for the mo-

40 “Dominated Strategies and Common Knowledge’, Games and Economic Behavior, 4 (1992),
284-313.
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I (1,1) 0,1)

P 0,2) (1,0)

Fig. 2.7

tivational task.*! Consider their version of Samuelson’s game shown in Figure 2.7.
If player 2 is rational in Dekel and Fudenberg’s sense of not choosing weakly dom-
inated strategies, he will not play 2. This means that if player 1 expects player 2
to be rational in that sense, she will not form a full-support belief. But how is that
possible if at the same time player 1 also rationally excludes weakly dominated
strategies? There seems to be a friction between assuming someone to be rational
in the sense of Dekel and Fudenberg, and assuming someone to believe others to be
rational in that same sense.

Brandenburger, Friedenberg and Keisler’s solution represents the players’ beliefs
via lexicographic probability systems. Player 1’s primary measure assigns probabil-
ity 1 to player 2 playing 2, thus grasping the consequences of her expectations
about player 2’s rationality. But player 1 has a secondary measure assigning prob-
ability 1 to the event that player 2 plays 2,, and the interpretation of this is that
player 1 considers it infinitely more likely that player 2 is rational and plays 2; than
that he plays 2,. The idea now is that player 1’s beliefs at the end of the iterative
elimination process that the three authors consider (which differs from ours) can be
represented by means of a lexicographic probability system the primary measure
of which assigns positive probability to the surviving strategies only, while the re-
maining measures cover the subsequently eliminated strategies. In doing so, these
authors rely on the fact that a strategy is not weakly dominated for player i in the
entire game nor in the subgame spanned by X; and X; whenever it is a best response
to a lexicographic probability system with full support (all alternatives receive non-
zero probability in some measure in the system) according to which X; is infinitely
more likely than its complement. The situation described by this result is exactly
that covered by MRat;,,; without any resulting incoherence with MRaty;.

This motivates MRaty,; and MRat;,; in terms of lexicographic beliefs. Knw,;
and Knw;,4, in turn, are intended to capture the specific conception of payoff-
uncertainty: if player j is fully informed about player i’s rationality as well as about
the fact that player i has correct beliefs about her own utility function, but at the
same time player j is less than fully informed about player i’s utility function, then
player j will form certain beliefs about player i’s prospective strategies as well as
about player i’s beliefs about her own prospective strategies.

41 Art. cit.



2.4 Mixed Iterated Strict Weak Dominance 75

At first sight there may seem to be an incoherence—if not an inconsistency—as
the antecedent rationality condition of Knwy,, and Knw;,; refers to a rationality
concept that, by MRat,,,; and MRat;,,;, was cast in terms of excluding weakly dom-
inated strategies, while the consequent refers to the exclusion of strong domination.
It is important to realise, however, that in Knw,,, as well as in Knw;,,4 strong dom-
ination does not occur in the sense of an alternative to weak domination, and that it
does not entail that player j would attribute to player i something like the possession
of lexicographic (or non-lexicographic) beliefs. Rather, its occurrence is motivated
by the fact that player j is under the sway of a particular form of payoff-uncertainty.
She is so cautious that she is unwilling to exclude—epistemically—those strategies
that are weakly dominated but not strictly dominated. An additional sign of her cau-
tious epistemic attitude is the requirement, in the consequent of Knwy,,; and Knw;,,4,
that these strategies are strictly dominated in all games that player i holds epistem-
ically open. Player j may reason that she does not have any information about the
likelihood of the games captured by the sets D; x; (in crucial contrast, as mentioned
earlier, to probabilistic approaches to payoff-uncertainty and the approach proffered
in this book). Being unwilling to take any epistemic risk, she therefore focuses on
strategies that are not strictly dominated in any of the games that she cannot epis-
temically exclude. This epistemic policy is motivated by combining the fact that
she is epistemically risk-averse with her beliefs about player i’s rationality (in the
sense of excluding weakly dominated strategies). If, for instance, she knew j to be
irrational and to play completely arbitrarily, she would not adopt any such specific
policy and would reside with full-support equiprobable beliefs.

In summary, the assumptions of the epistemic characterisation theorem that are
proven here involve players who adopt, on the level of the practical rationality of
strategy choice, a principle that is broad in the sense that it allows for more than its
competitor, based on strong dominance. On the level of the theoretic rationality of
belief formation, by contrast, the players adopt a more limited and cautious policy.

2.4.2.3 The Ban on Exogenous Information

While this motivates the axioms and makes them intelligible in terms of lexico-
graphic beliefs and epistemic policies, it does not yet directly show them to be
plausible. I do believe, however, that nothing speaks conceptually against the as-
sumptions the theorem makes. In particular, there seems to be ample room in the
Epistemic Programme for an analysis of the consequences of interpreting payoff-
uncertainty in equiprobable terms in a context of cautious belief formation policies,
rather than as involving players whose uncertainty entails assigning different de-
grees of likelihood to alternatives.

Yet payoff-uncertainty does not seem to sit easily with the general format of the
Epistemic Programme and its ban on exogenous information. Uncertainty about the
utility functions of opponents does not seem to be attributable to causes internal to
the game, but rather by making reference to exogenous factors. That I do not have
exact beliefs about, say, the utility you assign to selling your house for a certain
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price is due to such exogenous factors as that I do not know you very well and that
I have not listened in on your conversations with your real estate agent. It does not
have any endogenous component, or so it seems.

The ban on exogenous information, however, is not a ban on exogeneity in gen-
eral. The actions available to you and your opponents, for instance, have a decidedly
exogenous character in that they can be causally linked to factors outside the game,
and this is even true for beliefs. Even if it were the case that common belief about
rationality and utility arises as a causal consequence of clearly circumscribed em-
pirical factors (say, the administering of certain medications to the players), this
would not mean that common knowledge of rationality goes against the ban on ex-
ogenous information. Similarly, payoff-uncertainty may have exogenous empirical
causes without contravening the ban.

Of course, genuine exogenous payoff-uncertainty is possible. If I have seen you
behave in ways that look hesitant to me, I may conclude that you are a ditherer,
but I may as well conclude that I simply do not have enough information to deter-
mine your utility function very precisely. If I settle on payoff-uncertainty, I do so
on exogenous grounds. To underscore the conclusion from the previous paragraph,
it must be noted that the form of payoff-uncertainty encountered in the epistemic
characterisation theorem is different from that in the ditherer’s case, because in the
characterisation result the uncertainty is systematically linked to the game struc-
ture itself by way of the condition that the €;; ensure correct beliefs about strict
dominance. That condition is phrased in terms of the game, rather than exogenous
factors, and thus excludes genuinely exogenous payoff-uncertainty.



Chapter 3
Extensive Games

Game theorists may disagree about the suitability of one or another normal form
solution concept—there are many—but a brief inspection of the literature will show
that they rarely disagree about the correct epistemic characterisation of each solu-
tion concept. For extensive games, while several solution concepts are available, the
most obvious candidate is certainly in most cases backward induction (the subgame-
perfect (Nash) equilibrium). Ironically, however, game theorists widely disagree
about its correct epistemic characterisation, and the disagreement centres on the
question of whether or not common true belief about rationality leads to backward
induction. Robert Aumann defends a position in favour of this implication, Philip
Reny objects, and both positions are taken by various other theorists.!

The purpose of this chapter is not to substantiate one line of argument or an-
other. Rather, by analysing the logical form of the arguments ¢ la Aumann and a la
Reny, I will point out that important modelling assumptions have been overlooked.
Devising a logical formalism that captures the two different interpretations of what
extensive games in fact model, I will argue that the argument & la Aumann assumes
the one-shot interpretation in combination with a principle of rationality with which
it is incompatible, and I will argue that the argument a la Reny assumes the many-
moment interpretation in combination with implausible belief revision policies.’

I Robert Aumann, ‘Backward Induction and Common Knowledge of Rationality’, Games and
Economic Behavior, 8 (1995), 6-19, ibid., ‘Reply to Binmore’, Games and Economic Behavior, 17
(1996), 138-146, and ibid., ‘On the Centipede Game’, Games and Economic Behavior, 23 (1998),
97-105. Philip Reny, ‘Two Papers on the Theory of Strategic Behaviour’, Ph.D. diss. (Princeton
University, 1988), ‘Common Knowledge and Games with Perfect Information’, in A. Fine and
J. Leplin (eds.), Proceedings of the Philosophy of Science Association: Volume 2 (East Lansing,
Mich.: Philosophy of Science Association, 1989), 363-369, ibid., ‘Common Belief and the The-
ory of Games with Perfect Information’, Journal of Economic Theory, 59 (1993), 257-274, and
ibid., ‘Rational Behaviour in Extensive-Form Games’, Canadian Journal of Economics, 28 (1995),
1-16.

2 Joseph Halpern, ‘Substantive Rationality and Backward Induction’, Games and Economic Be-
havior, 37 (2001), 321-339 compares Aumann’s approach to backward induction with Stalnaker’s
game models. In contrast to the comparison in the current chapter, Halpern does not distinguish

B. de Bruin, Explaining Games, Synthese Library 346, 77
DOI 10.1007/978-1-4020-9906-9_3, (©) Springer Science+Business Media B.V. 2010
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3.1 The One-Shot Interpretation

3.1.1 The Epistemic Characterisation Result

Common true belief about rationality and utility, in extensive form games, yields
backward induction, or so Robert Aumann and others claim.> To understand this
result, define the normal form nf(I") of an extensive game I" as a triple (7, (A;), (vi)i)
where [ collects the players of I', A; all strategies player i hasin I', and v;: [];A; —
R are utility functions such that

vi(lkla"'7ikia"'7NkN) = Mi(o(lkl7"'7ikia"'7NkN))7

where O is a function mapping a tuple of strategies to the terminal node of the
extensive game that is reached when the players play according to these strategies. I
write u;(k, 1) for v;(O(k,1)). If nf(I") = (1, (A;)i, (vi)i), and if X;, X2, and so on, are
sets of strategies satisfying X; C A; for all i, then the subspan of nf(I") with respect
to [1; X; is the triple (1, (X;);, (vi|x,)i) obtained from nf(I") by removing for all i the
strategies in the complement of X; (with respect to A;) and modifying the utility
functions correspondingly.

In line with the previous chapter, notation nsd;(Xj,...,Xy) is extended to ex-
tensive game-playing settings for the strategies that are not strictly dominated for
player i in the subspan of nf(I") with respect to []; X;; that is, strategies for which
there is no strategy in X; which does strictly better against any combination of op-
ponents’ strategies. In general, I am interested in dominance relations in subspans
of the normal form of subgames of some underlying game generated by certain de-
cision nodes; that is, in constructs of the form nsd;} (Xi,...,Xy), where X; C A;, for
some decision node x.

To compute such sets—the idea is simpler than the construction—consider the
subgame I of I generated by some decision node x, construct its normal form
nf(I3), delete from nf(I;), for all j, the strategies not coinciding on I with any
strategy from X, find out which of the remaining strategies in the resulting subspan
of nf(I}) are strictly undominated, and then take all strategies from A; coinciding on

between one-shot and many-moment interpretations of extensive game-play, nor does he give an
inductive and implicit axiomatisation of rationality.

3 ‘Backward Induction and Common Knowledge of Rationality’ contains a defence of this claim,
based on the one-shot interpretation. Assuming a many-moment perspective, Aumann defended the
same claim for smaller classes of extensive games in ‘On the Centipede Game’, a result discovered
independently by Wlodek Rabinowicz, ‘Grappling with the Centipede: Defence of Backward In-
duction for Bl-terminating Games’, Economics and Philosophy, 14 (1999), 95-126, John Broome
and Wlodek Rabinowicz, ‘Backwards Induction in the Centipede Game’, Analysis, 59 (1999),
237-242. Magnus Jiborn and Wlodek Rabinowicz, ‘Backward Induction without Full Trust in Ra-
tionality’, in W. Rabinowicz (ed.), Value and Choice: Some Common Themes in Decision Theory
and Moral Philosophy: Volume 2 (Lund: Lund Philosophy Reports, 2001), 101-120 prove a many-
moment characterisation for the Centipede on the basis of sufficiently strong, but not necessarily
full beliefs about rationality.
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I, with such a strictly undominated strategy. For weak dominance, define nwd; and
its relativisations similarly.

The set containing the strategies that coincide with the backward induction strat-
egy on the subgame generated by x is written BI, and in the logic the set of cor-
responding proposition letters is written BI*. Assuming that the extensive game is
generic in the sense that no player is indifferent between any two terminal nodes,
BIF contains all strategies prescribing the uniquely optimal action at x if x is an im-
mediate predecessor of a terminal node. Reasoning back to the root of the game,
BIY collects all strategies prescribing the uniquely optimal action at decision node
z under the assumption that at decision nodes y > z higher up in the game tree all
players j plays a strategy from BI/. For the root p of the game, BI{»J is a singleton
also written Bl;. For terminal nodes x the convention is applied that BIf = A;.

As I have suggested, while the mathematical differences between normal form
games and extensive games strongly suggest that the former model situations of
simultaneous and independent choice and the latter model temporally extended sit-
uations of sequential choice, we are by no means obliged to make such an interpreta-
tion. The one-shot interpretation, in fact, holds to the view that playing an extensive
game is playing its normal form; that is, whenever players play an extensive game,
what they actually do is choose, at one point in time, their strategies for the en-
tire game. This does not completely determine a unique one-shot interpretation, and
hence there is room for difference of opinion about the relevant kind of rationality
principles. One can invoke some aspects of the sequential structure of the game to
ascertain whether a strategy is rational or not, for while a strategy maps all deci-
sion nodes of a player to actions, choosing, for some decision node, one action over
another implies that certain decision nodes will not be reached—the terminology is
admittedly inappropriate in a one-shot context—and whether these unreached nodes
are relevant or not determines different notions of rationality.

To capture the differences, I call a strategy on-path rational whenever the ra-
tionality depends only on what happens on the actual path through the extensive
game, and I call it off-path rational just in case it prescribes rational actions at every
decision node, reached or unreached. Aumann, for instance, asserts that

each player chooses a strategy, in the usual game-theoretic sense of the term.. . that is, he
decides what to do at each of his vertices x in the game tree, whether or not x is reached.*

This seems to demonstrate that he adopts a one-shot conception of extensive game-
play. Yet he also writes that ‘when deciding what to do at x, the player considers the
situation from that point on: he acts as if x is reached’, to conclude that

it is this feature that distinguishes the current analysis from a strategic [i.e., normal] form
analysis.

4 ‘Backward Induction and Common Knowledge of Rationality’, 7 (notation changed). As I am
more interested here in what Aumann wishes to model, than in the resulting model itself, the stress
lies on his verbal statements rather than on his formalism. This also applies to my treatment of
Reny in the next section.

3 Ibid. (emphasis in original, notation changed).
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Attributing the one-shot interpretation to Aumann and also accepting this conclu-
sion, there seems to be a difference between the one-shot interpretation and playing
the normal form of an extensive game, and this is, in fact, more or less how Au-
mann seems to view it. He does accept the main tenet of the one-shot interpretation
that the objects of choice of an extensive game are the strategies of its normal form,
but he contrasts his view with ‘strategic form analysis’. The reason for this is that
he holds the view that in order to evaluate the rationality of a strategy, one has to
go beyond the information of the normal form and inspect the prescriptions of the
strategy at all decision nodes of the underlying extensive game; that is, Aumann
adopts a one-shot interpretation of extensive game-play with an off-path conception
of rationality. This is underscored by the statement that a rational player,

no matter where he finds himself—at which vertex—I,]. . . will not knowingly continue with
a strategy that yields him less than he could have gotten with a different strategy,®

as well as by the remark that

for each of his vertices x and strategies k, it is not the case that [player] i knows that k would
yield him a higher conditional payoff at x than the strategy he chooses.’

All in all, Aumann adopts a one-shot interpretation with off-path rationality. This
is the same as playing normal form games as far as the objects of choice are con-
cerned, but it is different with respect to the rationality principle. This is a view that
I discarded in Chapter 1, but it will return in the discussion later on.

There is a problem, though. In some sense, the phrase about players who con-
tinue ‘not knowingly’ suggests many-moment game-playing situations. Instead of
taking Aumann to put forward an incongruent claim here, I take knowledge to refer
to beliefs that, in one-shot game-playing situations, players have about the moves
that the full strategies of their opponents prescribe in (certain) subgames. The last
quotation means, in that case, that no rational player will choose a full strategy that
prescribes suboptimal moves at some decision node given the beliefs that the player
has, in that one-shot game-playing situation, about what her opponents’ choices of
full strategies will prescribe in the subgame generated by that decision node.

3.1.1.1 An Explicit Formalisation of Rationality

I will present a direct formalisation to make this precise. While it has the advantage
of staying close to the sources, it makes the proof of the epistemic characterisa-
tion theorem cumbersome, and dependent on heavy logical axioms. I will therefore
subsequently turn to an alternative formalisation.

Following the above quotation quite literally, we have

ANV V Qe AT A (k1) < (m,1)),
x k [ m

6 Ibid.
7 Ibid. 10 (notation changed).
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which says that if player i believes that her opponent is playing his /th strategy, and
i herself believes she is playing her kth strategy (and she is really playing her kth
strategy), then there is no better strategy m than her kth strategy. This is equivalent

with
ANANN-Cie AT A (k, 1) < i (m, 1)),
X k I m

and with

/\/\/\ D A — A\(f (k1) > uf(m, 1)),

m

which brings out nicely the similarity with other rationality notions. This motivates
the following two axioms as renderings of Aumann’s notion of rationality

ANRat anrat} — A\, A\, (O AO5) — A (uf (k1) > af(m,1)).

AFRat  afrat; — A, anrat;.

To prove the epistemic characterisation theorem, the proof system r KTgc45afrat
is used containing Prop, Dual, K, T, 4, 5, E, C, the proof rules modus ponens, ne-

cessitation and induction, all axioms for one-shot game-playing situations, plus the
two rationality axioms.

Theorem 3.1 (Aumann, 1995) Let I" be a finite N-person generic extensive form
game with perfect information. Assume that the following two conditions are true.

1. There is common true belief among the players about the utility functions of all
players.
2. It is common true belief among the players that they are rational.

Then the backward induction outcome is reached.

To give some impression of how this theorem is proven, it can be demonstrated that
for all players i we have
Vx I~ Cafrat — BI.

The rule of necessitation, the K-axiom, and some propositional logic and some ag-
gregation of proofs makes it possible to derive from the relevant inductive hypothe-
sis that

Cafrat — (O; /\ BE' AL /\ BL}).

x=<y x=<y

This can be used to show that we have
Cafrat — —[J;—BI}, (3.1

from which, first
Cafrat — —0,—~0;BI}

by means of the T- and the KnStrat-axiom, and second,
Cafrat — BI,

by means of the 5-axiom, classical negation and the T-axiom.
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The idea underlying a proof of 3.1 is to derive a contradiction from Cafrat A
U;i—BI7, and it is here that the rather manipulated inductive hypothesis is used. The
contradiction becomes apparent as soon as it is observed that on the basis of this
assumption, one would show

Cafrat — (afratAO); A\ BI' AD); A\ BI; NO-BI}),

X<y x=<y

which could be specialised to get a statement expressing that from Cafrat it follows
that for some strategy k player i knows, first, that she plays & in the subgame gen-
erated by x, second, that k is not the inductive strategy in that subgame, and, third,
that k yields strictly less than the inductive strategy in that subgame. This means
that, first, knowledge of one’s strategy is needed, second, some technical axioms
about equivalence of strategies (taking care of subgames), and third, the fact that
a generic game’s utility function is an injection is essential for obtaining strict in-
equality. Moreover, a result about inductive strategies is needed to the effect that
in generic games the inductive strategy is strictly better in some subgame given
that opponents play inductively in that subgame. This is a statement with the same
structural function as Lemma 3.1 (used below), connecting the BI} and inequality
statements with u} about utility.

3.1.1.2 An Implicit, Inductive Formalisation of Rationality

This is all fine, but it is slightly cumbersome. Moreover, a proof system is used
in which the T-axiom (veridicality), the 4-axiom (positive introspection) and the 5-
axiom (negative introspection) figure. There is, however, no need to use such heavy
machinery—endangering the general format of epistemic characterisation results in
the way witnessed by that of the Nash equilibrium—once we adopt an inductive and
implicit axiomatisation of rationality by means of the following three axioms.

NRaty,;  nrat! — nsd;(A;,A;).
NRat;,q (nratf ALLX A |:|in) — nsd} (Xi,Xj).
FRat frat; < A, nrat}.

These axioms need some explanation. First, a preliminary remark about applying
on-path rationality to subgames is appropriate. On the one-shot interpretation, ob-
jects of choice (full strategies) are always functions mapping all decision nodes of
a player to actions, and consequently beliefs are about the full strategies opponents
choose. It makes perfect sense, though, to speak about the on-path rationality of a
strategy in any subgame, for one can consider the restriction to the subgame of a
strategy to evaluate its rationality as a course of action in the subgame and in light
of the restrictions to the subgame of the strategies one expects one’s opponents to
play. This idea is captured in the first two axioms.

What is rational often depends on one’s beliefs, but not always; and as I have
argued, this forms the basis of the implicit and inductive formalisation of rationality.
The first-axiom captures the base case without beliefs. It states that player i, if on-



3.1 The One-Shot Interpretation 83

path rational in the subgame Iy generated by x, never chooses a strategy which
prescribes bad actions independently of what her opponents play. If player i is on-
path rational in I, she does not choose any strategy of which the restriction to I
coincides with a strategy strictly dominated in the normal form of I5.

The second axiom states that, if she is on-path rational in Iy, player i never plays
a strategy that is strictly dominated in the normal form of I'; from which those strate-
gies (both of her opponents as well as herself) have been removed that she believes
will not be chosen. The beliefs are represented by sets X; and X; of strategies. Fi-
nally, the third axiom states that player i is off-path rational in the entire game if
she is on-path rational in all of its subgames. The proof system rKgcfrat used con-

Table 3.1
Assumptions
preferences Nigaui(k,l) =rig
principles Nifrat;
beliefs
preferences CAigguilk, D) =rig;
principles CAfrat;

performed action —

Solution Concept
player i BI;

Proof System rKgcfrat

sists of axioms Prop, Dual, K, E, C, the proof rules modus ponens, necessitation
and induction, all axioms for one-shot game-playing situations, plus the three above
rationality axioms. A formalisation of the assumptions can be found in Table 3.1.
To prove the theorem we need two lemmas. To collect all propositional formulae
for backward induction strategies in any subgame I, first take all strategies that
prescribe backward induction actions in all real subgames of Iy to obtain the set
N <y Blf. Some of the strategies in this set, however, do not prescribe the backward
induction action at x, and therefore attention has to be restricted to those elements
for which there is no strictly better alternative given that all players take backward
induction actions at decision nodes y = x. This is establishes the first lemma.

Lemma 3.1 BI} = nsd}(N,<, Bl ,...,Ne<yBly) Ny BL.

In the formalism proposed, the formula A, <y\/BIltV states that at any y > x player
i plays according to backward induction (if y is a decision node of hers). The
intersection (), <),Bll?’ not being empty (it contains all strategies available to i in
I' that prescribe backward induction actions in I3), it is simple to observe that
FrKefrat Ax<y VBI — V<, BI . With the convention to omit disjunction sym-
bols in front of sets of propositional formulae, this establishes the second lemma.
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Lemma 3.2+ gcfrat Av<y B, — M=y BL;-

I can now turn to a proof of Theorem 3.1 in the alternative formalism. In fact, the
theorem can now be phrased in terms of true belief rather than knowledge.

Proof 1 prove the result for N = 2 with players i and j # i. For more than two
players one only needs to add the relevant conjuncts and to expand nsd; to a func-
tion taking three or more arguments. Clearly frat; — nrat; by axiom FRat, and the
case of a decision node x with depth d(x) = 1 reduces to axiom NRaty,, with an
application of Lemma 3.1. Let d(x) > 1. The inductive hypothesis gives for every
y=x

(Cfrat Afrat) — BI.

Because I consider finite games, the proofs for all y > x and both players i and j can
be aggregated into
y
(Cfrat A frat) — ( A\ B A /\ BE)),

x=<y X<y

and, applying Lemma 3.2, into

(Cfrat A frat) — (| B A () BE)).

X<y x=<y

An application of the necessitation rule for i and the K-axiom, together with some
propositional reasoning, yields

Cfrat — (0; () BL AL () BE)).

x=<y x=<y
Since frat; — nrat;, we find
(Cfrat Afrat) — (nrat! AL () BE ACL () BE)).
x<y X<y

Applying the NRat;,;-axiom gives

(Cfrat A frat) — nsdf((") BI;, (") BI).

1
X<y X<y

Invoking the inductive hypothesis again, and applying Lemma 3.2, the consequent
of this formula can be made somewhat more precise in

(Cfrat Afrat) — nsdf (") B, (| BI}) N () BI},

1 1
X<y X<y x=<y

which is
(Cfrat A frat) — BI

by Lemma 3.1.
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3.1.2 Discussion

I have presented two versions of the one-shot interpretation of extensive game-play:
one with on-path rationality and one with off-path rationality. Aumann was seen to
adopt the latter version. I do not believe, however, that the latter version is concep-
tually consistent; off-path rationality is strictly incompatible with the true spirit of
the one-shot interpretation. The reason is that there is no sensible rationale to take
care of what would happen at unreached, off-path nodes in a situation in which the
objects of choice are strategies from the normal form of an extensive game. In a
one-shot situation, it just does not make sense to talk about nodes being reached
or not. The game-playing situation is a strategic predicament in which the players
choose a strategy that fixes a complete plan of action for the entire game. Temporal
deliberation is senseless, as is thinking about players having beliefs at various points
in a temporally extended sequence of decision moments. No nodes are reached or
unreached. There is only one decision moment and the outcome of the game is de-
termined on the basis of the strategies the players choose at that precise decision
moment.

Does the fact that the one-shot interpretation leaves no room for rationality no-
tions transcending the normal form entail that the epistemic characterisation result
of backward induction fails to be significant, or that backward induction cannot be
epistemically characterised in a one-shot interpretation? I answer the first question
in the affirmative. There is no sense to any epistemic characterisation that presup-
poses the one-shot interpretation together with a form of rationality that goes beyond
on-path rationality by using the specific structural properties of extensive games.
The second question, however, need not be answered in the affirmative. It is not
difficult to see that once you rephrase the NRat-axioms in terms of weak rather than
strict dominance, backward induction can be characterised on the basis of on-path
rationality at the root of the game. Given an extensive game with perfect information
I, let proof system rKcNrat’ consist of the following axioms: Prop, Dual, K, C,
the proof rules modus ponens, necessitation and induction, all axioms for one-shot
game-playing situations for I'", plus the following two rationality axioms.

NRat),.  Nrat'; — nwd}(4;,A)).
NRat, , (Nrat'; AO:X; AO:X;) — nwdf(X;,X;).

The following theorem captures the relation between backward induction and com-
mon true belief about rationality in terms of weak dominance.

Theorem 3.2 Let I' be a finite generic N-person extensive game with perfect infor-
mation. Then
FrKenrat (CNrat”” ANrat””) — A BIP.
i

To prove this theorem, first observe that on the level of the normal form of the exten-
sive game, the relevant solution concept is iterated weak dominance. Although the
actual outcome of a process of iterative elimination of weakly dominated strategies
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depends on the exact definition of the elimination algorithm, a lemma due to Hervé
Moulin shows this to be irrelevant for current purposes.®

Lemma 3.3 Let I be the a finite generic N-person extensive game with perfect
information, and let nf(I") be its normal form. Then

1. Any natural algorithm for iterated weak dominance yields precisely one strategy
profile in nf(T").

2. All of these algorithms yield the same strategy profile.

3. The strategies from this profile correspond to the backward induction strategies
of I'.

The proof of Theorem 3.2 is a direct analogue of the proof of Theorem 3.1. This
precipitates us, of course, into the problem encountered earlier concerning the du-
bious status of the solution concept of iterated weak dominance. I will not reiterate
this point, but instead proceed to the many-moment interpretation.

3.2 The Many-Moment Interpretation

3.2.1 The Inconsistency Result

1 A 2 a 1 A
! s ! ’ 2 . (03
p X1 X2
D, d; D,
(1,0) 0,2) (3,0)

Fig. 3.1

Common true belief about rationality and utility, in extensive form games, does
not yield backward induction. Or so Philip Reny and others claim.’ To defend this

8 Game Theory for the Social Sciences (New York: New York University Press, 1986).

° Philip Reny, art. cit. Kaushik Basu, ‘Strategic Irrationality in Extensive Games’, Mathematical
Social Sciences, 15 (1988), 247-260 investigates temporality aspects. Elchanan Ben-Porath, ‘Ra-
tionality, Nash Equilibrium and Backwards Induction in Perfect-Information Games’, Review of
Economic Studies, 64 (1997), 2346 develops an account in terms of common certainty. Christina
Bicchieri, ‘Common Knowledge and Backward Induction: A Solution to the Paradox’, in M.
Vardi (ed.), Proceedings of the Second Conference on Theoretical Aspects of Reasoning about
Knowledge: March 7-9, 1988, Pacific Grove, California (Los Altos, Calif.: Morgan Kaufmann,
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claim, Reny proves an inconsistency result in the context of the many-moment in-
terpretation of extensive game-play where, in contrast to the one-shot interpretation,
games are seen as models of a temporal succession of many decision moments. Re-
ferring to the game shown in Figure 3.1, for instance, Reny writes that

I claim that if player one does not take the dollar and end the game in the first round [does
not play D1], but instead leaves it so that player 2 must decide whether or not to take the two
dollars [whether or not to play d ], then it is no longer possible for rationality to be common
knowledge. (i.e. At [sic] player two’s information set, it is not possible for rationality to be
common knowledge).'”

Such reasoning makes no sense in the one-shot interpretation, according to which no
decision nodes are reached at all. On the contrary, strategies are chosen which may
or may not induce a path through the game tree to reach some decision node. But it
does not make sense to talk about the beliefs of the players at those decision nodes.
The players have beliefs at the moment they choose their strategy, but the game stops
after that. Reny, by contrast, considers beliefs of players at some decision moment—
typical of the many-moment interpretation. Such beliefs describe the expectations of
a player about what actions will be taken at decision nodes in the subgame generated
by the current decision node.

In principle, as I have argued, the many-moment interpretation leaves two possi-
bilities open. The beliefs at some decision moment can, first, be viewed as dependent
on what happened before, and be sensitive to the history of the decision moment in
the sense, for instance, that a player could decide to believe her opponent to be irra-
tional if the current decision node can only be reached by the irrational play of her
opponent. Second, the beliefs can be viewed as completely insensitive to history. It
will be seen that Reny’s inconsistency result presupposes a history-sensitive view of
belief formation.

Before presenting a formalisation of Reny’s inconsistency theorem criticising
the epistemic characterisation of backward induction in terms of common true belief
about rationality and utility, I should spell out the purpose of the present section, and
set down some notation. In the preceding section I developed a logical framework
for the one-shot interpretation of extensive games and applied it to Aumann’s result
on common knowledge of rationality and backward induction. Likewise, I here de-

1988), 381-393, and ead., ‘Self-Refuting Theories of Strategic Interaction: A Paradox of Common
Knowledge’, Erkenntnis, 30 (1989), 69-85 develop the view that players can be seen as possessing
theories reflecting the epistemic set-up of game-playing. Kenneth Binmore, ‘Rationality and Back-
ward Induction’, Journal of Economic Methodology, 4 (1997), 23—41 zooms in on counterfactual
reasoning. Thorsten Clausing, ‘Doxastic Conditions for Backward Induction’, Theory and Deci-
sion, 54 (2003), 315-336 sets up a truly doxastic system related to ours. Robert Stalnaker, ‘Belief
Revision in Games: Forward and Backward Induction’, Mathematical Social Sciences, 36 (1998),
31-56 studies these issues from the perspective of game models and belief revision theory. More
philosophical essays on backward induction include Philip Pettit and Robert Sugden, ‘The Back-
ward Induction Paradox’, The Journal of Philosophy, 86 (1989), 169—182, Jordan Howard Sobel,
‘Backward-Induction Arguments: A Paradox Regained’, Philosophy of Science, 60 (1993), 114—
133, and Roy Sorensen, ‘Paradoxes of Rationality’, in A. Mele (ed.), The Handbook of Rationality
(Oxford: Oxford University Press, 2004).

10 Reny, ‘Common Knowledge and Games with Perfect Information’, 364-365.



88 3 Extensive Games

velop a logical framework for the many-moment interpretation. Rather than using
it to characterise backward induction from the point of view of the many-moment
interpretation, I turn to an inconsistency theorem which denies that common knowl-
edge of rationality entails backward induction. It should be stressed, though, that
the many-moment perspective has also been adopted to defend the implication of
backward induction by common knowledge of rationality. While such forms of de-
fence characterise backward induction in subclasses of extensive games only, they
do not make the dubious assumptions that underlie the inconsistency result that I
ultimately reject in this section.!!

Recall that I use super-scripted beliefs to indicate beliefs at decision moments at
which the respective decision is reached. Then first define, on the basis of beliefs
P} (i}) = px and P} (j;) = p; an auxiliary notion of the expected utility conditional
on reaching some immediate successor y > x as

EUi(yv P;C) = Zpkplu?y(kv l)
k,l

Then define EU;(k,x,PY), the intended interpretation being the expected utility of
playing according to the kth strategy at the decision moment at which node x is
reached, as

EUi(k7x7P?) = EUi(va;C)

for the immediate successor y that is reached when at x player i plays according to
his kth strategy.

3.2.1.1 An Explicit Formalisation of Rationality

To formalise rationality, the principle of expected utility maximisation can be rela-
tivised to subgames thus.

RRat  rratf o (08 Ayt (kD) = rigs AACPHEE) = pi AP E) = pr A (1))
A« EU;i(m,x,P¥) > EU;(k,x,PY)).

The antecedent of the right hand side contains a condition on the beliefs about the
utility structure, and on probabilistic beliefs about what player i herself and her
opponent j will play. In the consequent it is stated that i will maximise her expected
utility given her beliefs.

1 Many-moment advocates of the implication of backward induction by common knowledge of
rationality (or even by a weakening of these assumptions) include Robert Aumann, ‘On the Cen-
tipede Game’, Games and Economic Behavior, 23 (1998), 97-105, Wlodek Rabinowicz, ‘Grap-
pling with the Centipede: Defence of Backward Induction for BI-terminating Games’, Economics
and Philosophy, 14 (1999), 95-126, John Broome and Wlodek Rabinowicz, ‘Backwards Induction
in the Centipede Game’, Analysis, 59 (1999), 237-242, and Magnus Jiborn and Wlodek Rabinow-
icz, ‘Backward Induction without Full Trust in Rationality’, in W. Rabinowicz (ed.), Value and
Choice: Some Common Themes in Decision Theory and Moral Philosophy: Volume 2 (Lund: Lund
Philosophy Reports, 2001), 101-120.



3.2 The Many-Moment Interpretation 89

We need additional axioms, however, to fix the belief formation policies of the
players. First, players do not revise their beliefs during game-play as long as this
does not lead to inconsistency.

StratPers  A; A\ ;P (37) = Py (j})-

for x <y < z. This persistence axiom states that if x <y < z, then the beliefs that
player i has at x about the action of her opponent or herself at z will be the same at
y. Of course, if game-play has passed z and the beliefs have been contradicted, then
i will have different beliefs. But as long as z has not been reached the beliefs remain
constant.

While this axiom concerns beliefs about strategies, we need another axiom that
involves beliefs about rationality. It states that a player never gives up her beliefs
about someone’s rationality as long as that person has not moved; in more technical
language, the axiom states that if i believes at x that j is rational at some future node
v, then i will not change that belief as long as j has not moved.

RatPers A\ \;(Ofrrat; < Cifrrats),

where x <y <z, 1(z) = j, and no u with 1(u) = j exists such that y < u < z. It is left
to the reader to verify that a striking consequence of this is that either i believes j to
be rational everywhere, or nowhere.

Table 3.2

Assumptions
preferences Niggwi(k,l) =rigy
principles -
beliefs
preferences CAigsui(k,l) =rip;
principles -
performed action —

Inconsistency
node x —C*rrat*
Proof System rKDgcrrat

To prove the inconsistency result, the proof system rKDgcPrrat with Prop,
Dual, K, D, E, C, the linear (in)equality axioms, the Kolmogorov axioms, the in-
terrelation axioms, the proof rules modus ponens, necessitation and induction, all
axioms for many-moment game-playing situations, the rationality axiom and the
two persistence axioms are used. The formalisation of the assumptions can be found
in Table 3.2.

Theorem 3.3 (Reny, 1988) There is an extensive form game with perfect informa-
tion such that for all game-playing situations that consist of at least two decision
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moments there cannot be common true belief, at the second decision moment, among
the players that they are rational.

Reny’s original proof involves an argument to the effect that no game-playing sit-
uation of the game shown in Figure 3.1 can have common belief about rationality
at its second moment, because every second decision moment would be a moment
at which at x; player 2 has to move. In this original game, there is no way for both
players to play on and gain (only one will gain from playing on) and hence the
suggestion might arise that the inconsistency result is not too surprising after all.
However, the result can be proven in a case where both players would gain from
playing on, too, and to underline this I prove the result using the game shown in
Figure 3.2 rather than Reny’s original game shown in Figure 3.1. In fact, Reny pro-
vides an argument which reveals that the class of games for which inconsistency
results can be proven is fairly large.'?

1 2 a 1
A L L e
P X1 X2
D di Dy
0 02 @

Fig. 3.2

Proof 1 make use of the two interrelation axioms Cons and KnProb, because all
relevant beliefs in this proof all have probability one, and I use obvious notation to
refer to strategies. I first prove

Chrrat' — 0;'CRd. 3.2)
To do that, it suffices to show
CYrrat — O0dy, (3.3)

because a simple argument using the rule of necessitation for Dé‘ concludes the
proof. Because of the StratPers-axiom, however, to prove 3.3, it suffices to show

Cirrat — [0}'d), (3.4)

and to show 3.4, in turn, it is shown that

12 «Common Belief and the Theory of Games with Perfect Information’, Journal of Economic
Theory, 59 (1993), 269.
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Chirrat” — (O)'rraty! A 05 D), (3.5)
and then apply necessitation for D’{l to an instance of the rationality axiom to get
(Oy'rrat)! A0S D,) — O07'd).
The remainder of the proof of 3.2 is devoted to showing 3.5. Clearly we have
C'rrat” — O0j'rraty'.

To prove
Cirrat” — O07'(05' D,

observe that with the RatPers-axiom for D’;l and necessitation for D’fl it can be
shown that

0,'05 rrat;' — O0)' 05 rrat?,
because x; is a successor of x| at which 1 moves for which in addition no y with
X1 >y > Xp exists at which it is 2’s turn. Hence

C*rrat — O07'00) rrat 2.

Applying the rationality axioms concludes the proof of 3.2.
Observe now that it is an easy consequence of the RatPers-axiom that

CYrrat" — [3)'rrat! (3.6)

and that
(05O dy AOy'rrat]) — O3 A 3.7

follows directly from the rationality axiom plus an appropriate application of the
rule of necessitation that. All this is used to prove

C'rrat” — 1. (3.8)
The KnWhere-axiom gives D)Z”Al. Hence it suffices to show that
Chirrat — —[1'A;.
Combining 3.2 and 3.6 gives
CYrrat" — (0500 d) A5 rratf)
to which application of 3.7 gives
Chirrat” — [0} -A;.

An application of the D-axiom finishes the proof.



92 3 Extensive Games

3.2.2 Discussion

Given the game-theoretic view of rationality as expected utility maximisation, the
question to ask is not so much whether the RRat-axiom is plausible, but whether the
belief persistence principles embodied in StratPers and RatPers are plausible. Let
me distinguish the plausibility of the principles in general, and the plausibility of
the specific instances in the proof of Theorem 3.3.

Let me start with the general plausibility of the StratPers-axiom:

ANPEG) =P,
i

for x <y < z. A possible argument in favour of this principle runs as follows. If at x
player i believes that at some z >~ x her opponent j chooses action a, say, then there
is no need for i to revise her beliefs at some intermediate y (satisfying x <y <z,
that is) as long as 7 has not received any contradictory information on the way from
x to y. But information contradicting that j chooses a can only be information that j
chooses, at z, an action different from a. Player i has not received such information
at the intermediate y, and consequently she will not need to revise her beliefs at y.
Arguably, this yields a defence of StratPers.

Yet this argument overlooks subtle ways of obtaining pertinent information. A
reason for player i’s belief that j chooses a at z may be her belief that at z player j
chooses rationally. If, however, on the path from x to y, player i has seen j choosing
irrationally, this reason is probably no longer available. Player i might revise her
beliefs in such a way that at z player j plays irrationally, too—not choosing a. She
need not change her beliefs, but she may change them, and that is sufficient to make
StratPers problematic.

This is a general problem with the StratPers-axiom. It completely ignores the fact
that the reasons players have for particular beliefs may change over time, and that
consequently they have to reconsider (or revise) their beliefs, even if they are not
directly contradicted by observed facts.

Similar arguments work against the general plausibility of the RatPers-axiom:

/\ /\(Dfrrat; < Ofrrat’),
i

where x <y <z, 1(z) = J, and no u with 1 (1) = j exists such that y < u < z. Imagine
that only irrational play on the part of j may get her from y to z. Although i believes,
at x, that j will not take that irrational route, it is still questionable whether i should
maintain that even though j plays irrationally, she will return to playing rationally
at node z.

Now it may be that the use of the belief persistence axioms in the proof of Theo-
rem 3.3 is harmless. StratPers is used to prove

O7'd, — 07 d,
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in the proof of 3.2. The general difficulty that displays is clearly revealed. The rea-
sons for the belief [1}'d are the beliefs [} rrat;! AJ}'(J5' D,. This is so because
(O7'rraty! ACI'05' D,) — [Oj'd; is obtained by necessitation on an instance of
the RRat-axiom. These reasons, perhaps available at x;, may not be available at
p, though. That is, it may be doubted whether (I rrat;' A )/ D>. One way to
substantiate doubt would concern the second conjunct. As inspection of the proof
of 3.2 shows, the reasons for [J;' (1! D, involve, among other things, player 1’s be-
liefs about 2’s beliefs about the rationality of player 1 at xp, or [J}'[J' rrat}>. The
question whether these may figure as reasons for the beliefs at the root of the game
(reasons for D’f dy) then boils down to the question whether these reasons were al-
ready available at the root of the game; that is, whether D‘f D;l rrat)lc2 follows from
00 Oy rrat 2.

It may come as an anticlimax that there do not seem to be any serious problems
here. It is about player 1 imagining (at the root and at x;) what player 2 will or
does believe at x; about player 1 at x,. But player 1 will not have obtained any new
information about player 2’s beliefs (at x;) while going from the root to x;. At the
root, player 1 imagines player 2’s beliefs at x|, and at x| player 1 again imagines
player 2’s beliefs at x;. There is no difference between these cases. There would
have been a difference had the statement compared player 2’s beliefs at the root
with his beliefs at x;. But that is not the issue here. Consequently, StratPers causes
no harm to the plausibility of the assumptions of Theorem 3.3.

To turn to the RatPers-axiom, it is first used to arrive at

X1 v X1 X161 X2
'O rrat)! — [0)' (1 rrat;

in the proof of 3.5. You may find this problematic as it involves the rationality of
player 1 at a decision moment where she need not choose any action. But apart
from that there do not seem to be reasons to doubt this line of reasoning. Player
1 does not move at xi, so player 2, if he believes that 1 is rational at the decision
moment corresponding to x1, has no reason to say that 1 would not be rational at the
possible succeeding decision moment. Player 1 believes all this, and consequently
the RatPers-axiom is unproblematic here.
Yet it is also used to prove 3.6,

C'lrrat' — [0)'rratf,

and here I can point to something dubious: a belief revision policy, forced upon
player 2, that is excessively rigid. It excludes, for instance, sensible dealings with a
situation of the following kind. Player 2 has actually arrived at x;, so player 1 has
moved across. While player 2 considers this to be irrational, he also believes it to be
an accident or a mistake. At xp, that is, player 2 believes that player 1 was irrational
at the first decision moment, but he also believes at x, that player 1 is rational at
the second decision moment (and perhaps even the third). This kind of subtle belief
revision policy is excluded by RatPers. Either a player is believed to be rational
everywhere or irrational everywhere.
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In summary, the proof of Theorem 3.3 boils down to showing that there is a
contradiction between having arrived at x| and there being common true belief about
rationality at x;. Such a contradiction can only be shown if, from the fact that there
is common belief about rationality at xj, it can be derived that one cannot be at x,
more specifically, that one cannot be at x| because it can only be reached irrationally.
That can only be demonstrated successfully if, from common belief about rationality
at x1, something follows about the beliefs and rationality at p.

But there is nothing in the concept of common belief at some decision moment
that obliges me to interpret it in such a temporally extended way, and to adopt cor-
responding belief revision policies. In other words, there is nothing to disallow a
game-playing situation in which at the first decision moment there is no common be-
lief about rationality, while there is in the second. The RatPers axiom (together with
the StratPers-axiom) exclude that possibility. This means that they are too strict.
That being the case, the inconsistency result only works under very heavy, if not im-
plausible assumptions, and shares this fate with the epistemic characterisation result
it set out to criticise.



Part 11
Epistemology



Chapter 4
Applications of Game Theory

The aim of this book is to contribute to the philosophy of the theory of games by
offering internal as well as external investigations of game theory. The internal in-
vestigations were reported in the first three chapters, especially in the discussions
in Chapters 2 and 3, and in places made use of heavily technical, logical appara-
tus. Among the outcomes were that the Nash equilibrium implausibly presupposes
veridicality of beliefs, that the Dekel-Fudenberg procedure is not necessarily the
only consequence of common true belief about payoff-uncertainty, and that both
Aumann’s and Reny’s analyses of backward induction make conceptually inconsis-
tent assumptions.

It is now time to adopt an external point of view. The present chapter further
develops the insight into the logical form of game theory, as it is used descriptively
and normatively, and points to a number of serious problems here. It is argued that
game-theoretic explanations always implicitly refer to the epistemic set-up revealed
by the epistemic characterisation results, but that on that account a rather narrow-
minded process of belief formation is ascribed to the players. It is argued, too, that
as a normative theory game theory gives bad advice, is reducible to decision theory,
or is plain nonsensical. This does not mean that non-cooperative game theory is
entirely useless, however.

While taking an external look at game theory involves criticism, I am not con-
cerned here with the merits and flaws of concrete applications of game theory in
the social sciences. Psychologists and sociologists have raised doubts about the ad-
equacy of decision-theoretic modelling, and have attempted to develop models that
are somewhat more pertinent.! The criticism in the last two chapters of the book
does not actually depend on particular forms of evidence against particular applica-
tions of decision and game theory. Rather, it is a kind of meta-argument pointing out

I Recent publications include Margaret Archer and Jonathan Tritter (eds.), Rational Choice The-
ory: Resisting Colonisation (London: Routledge, 2000), Ian Shapiro, The Flight from Reality in
the Human Sciences (Princeton: Princeton University Press, 2005), and Michael Taylor, Rational-
ity and the Ideology of Disconnectedness (Cambridge: Cambridge University Press, 2006). Paul
Moser (ed.), Rationality in Action: Contemporary Approaches (Cambridge: Cambridge University
Press, 1996) collects a number of classic essays.

B. de Bruin, Explaining Games, Synthese Library 346, 97
DOI 10.1007/978-1-4020-9906-9_4, (©) Springer Science+Business Media B.V. 2010
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the inconsistencies and counterproductive research strategies employed by various
researchers.

4.1 Logical Form

4.1.1 Rationality

It is sometimes said that explanations in decision and game theory are empty be-
cause the underlying notion of rationality is empty; that is, if an agent chooses
to perform one action rather than another, she believes it (at least at the time she
chooses it) to be the best choice given her beliefs. That she performs it shows that it
maximises her expected utility. Others make a very similar point in a more technical
way and state that agents can always be described ‘as if’ they maximise their ex-
pected utility, adducing various mathematical results about revealed preferences to
support their views.> But whether the naive or the sophisticated version of the empti-
ness claim is adopted, according to this view you just have to say that agents’ actions
maximise their expected utility because they perform them, rather than holding to
the converse view that agents perform actions because they maximise expected util-
ity.

Instrumentalism may be widespread in economic theory, but I think there is much
to recommend taking a different point of view.> An instrumentalist cannot sensibly
distinguish between the merits of two models if they give the same prediction on the
basis of the same data. If models are inpur—output equivalent, for the instrumentalist
they are the same. Several models of market entrance, for instance, are input—output
equivalent, but they differ internally, some postulating lack of common knowledge

2 I thank Frank Hindriks for a question about this point. The presentation owes much to Daniel
Hausman, ‘Revealed Preference, Belief, and Game Theory’, Economics and Philosophy, 16
(2000), 99-115. Revealed preference theory was developed by Paul Samuelson, ‘A Note on the
Pure Theory of Consumers’ Behaviour’, Economica, 5 (1938), 61-71. Defining preferences in
terms of dispositions to choose, the idea is that in order to find out what an agent’s preference
ordering is, she is confronted with a number of choice problems. The axioms of revealed pref-
erence then ensure that under certain conditions the underlying preference ordering of the agent
can be derived. The term revealed preference theory is also used to refer to the idea that the only
access the theorist has to an agent’s preferences and beliefs is observation of her actual action.
Even if this were plausible (which I do not think, given what historians learn from reading diaries
of historical figures) it would not follow that one can derive someone’s beliefs and desires merely
from information about rationality; an action maximises expected utility relative to a whole lot of
combinations of expectations and utility functions.

3 The classic reference is Milton Friedman, ‘The Methodology of Positive Economics’, in ibid.,
Essays in Positive Economics (Chicago: University of Chicago Press, 1953), 3-43. In game theory,
the most explicit phrasing is probably due to Robert Aumann, “What is Game Theory Trying to
Accomplish?’, in K. Arrow and S. Honkapohja (eds.), Frontiers of Economics (Oxford: Blackwell,
1987), 28-76.
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of rationality, others postulating lack of common knowledge of utility structure.* If
the Epistemic Programme in game theory is to make any sense, however, these dif-
ferences should matter. Common knowledge of rationality and common knowledge
of utility are two different elements of a game-playing situation. Why bother to in-
vestigate the details of payoff-uncertainty if the same output can be obtained from
uncertainty about rationality? The answer is, at least for many researchers working
in the Epistemic Programme, that in numerous concrete game-playing situations
there is a fact to the matter about whether someone is partly misinformed about
her opponents’ utility functions, or about their rationality principles. This is not a
knock-down argument against instrumentalism, and perhaps such an argument is
just impossible to make. Yet if game theory is to have any intellectual bite, it has
to be thought of, not as making merely instrumentalist claims, but rather as putting
forward realist statements about players, their payoffs, their rationality principles,
and their beliefs. Yet, I should stress that while I consider rationality to be an essen-
tial notion—rather than an ‘as if” fiction—in giving an account of human behaviour,
the two main claims about game-theoretic explanations and norms defended in this
chapter do not depend on this view. The claims do depend on the logical analysis
below, but this analysis works equally well with a purely instrumentalist view of
rationality.

In order to put the game-theoretic concept of rationality as expected utility
maximisation into perspective, I will first look at a broad, almost metaphysical or
methodological conception of rationality in the works of Max Weber. I will then
turn to a narrower, rather empirical notion that can be found in John Stuart Mill’s
writings, and these preliminaries allow me to locate expected utility maximisation
with more precision at the end.

4.1.1.1 Max Weber and John Stuart Mill

To get a feel for what is meant here, it is instructive to look first at causality. A meta-
physical reading of causality is found in the statement that all events have causes; the
defence of this statement involves conceptual, metaphysical argumentation. Loosely
following Karl Popper, this metaphysical proposition can be turned into a method-
ological principle when you formulate the rule that all good explanations of events
have to specify their causes, and this rule may, in turn, be rendered into the empiri-
cal statement that causes, as causes, can truly be individuated in nature (it does not
matter for now whether that statement has any plausibility).’

4 Reinhard Selten, ‘The Chain-Store Paradox’, Theory and Decision, 9 (1978), 127-159 pointed
out that a straightforward model of market entrance involving backward induction led to predic-
tions that were highly off the mark. David Kreps, et al., ‘Rational Cooperation in the Finitely Re-
peated Prisoners’ Dilemma’, Journal of Economic Theory, 27 (1982), 245-252, ibid. and Robert
Wilson, ‘Reputation and Imperfect Information’, Journal of Economic Theory, 27 (1982), 253—
279, and Paul Milgrom and John Roberts, ‘Predation, Reputation, and Entry Deterrence’, Journal
of Economic Theory, 27 (1982), 280-312 construct alternative game-theoretic models.

5 Karl Popper, Logik der Forschung (Vienna: Julius Springer, 1935). Philippe Mongin, ‘Le principe
de rationalité et 1’unité des sciences sociales’, Revue Economique, 53 (2002), 301-323 argues that
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Causality relates events to causes, whereas rationality relates human actions to
reasons. A plausible analogous metaphysical reading of rationality states that all
human actions have reasons, the corresponding methodological rule requires that
explanations of actions refer to the reasons of the agents, and the empirical counter-
part is to the effect that human agents truly act on reasons.

What does this mean? Max Weber famously introduced four different kinds of
action.® Value rational actions are guided by, for instance, religious, aesthetic or
moral principles; goal rational actions are guided by the comparison of means and
ends; affective actions are governed by affects and emotions, while traditional ac-
tions are directed by traditions. That is, there are four kinds of things that count as
reasons for actions, described in terms of religious principles, goals or purposes,
emotions and traditions. On the empirical level this entails a commitment to the
claim that at least some actions are guided by such factors, whereas on the method-
ological level a requirement is put forward to explain actions in terms of Weber’s
four kinds of reasons.

Whether you look at the Weberian conception as a methodological call for a
particular kind of explanation, or as an empirical claim about the real character of
human agency, it is a rather broad one in that it allows for diversity of reasons. John
Stuart Mill put forward a much narrower conception of rationality.” Mill suggests
that in contrast with the natural sciences, the social sciences have to start from cer-
tain abstract and simplified versions of the phenomena to be explained. By ‘a priori
[sic]’ reasoning, the social scientist arrives at statements that are ‘only true, as the
common phrase is, in the abstract’:

Geometry presupposes an arbitrary definition of a line, ‘that which has length but not
breadth’. Just in the same manner does Political Economy presuppose an arbitrary defi-
nition of man, as a being who invariably does that by which he may obtain the greatest
amount of necessaries, conveniences, and luxuries, with the smallest quantity of labour and
physical self-denial with which they can be obtained in the existing state of knowledge.®

It is not difficult to see the conception of rationality embodied in this definition
as a concrete kind of Weberian goal rationality. For Weber, a person acts accord-
ing to goal rationality whenever she orients her actions ‘towards goals, means, and

the principle of rationality Popper speaks about has to be considered as purely metaphysical, be-
cause no interesting statements can be deduced from it. On Popper’s views on the principle of
rationality in the social sciences, see Popper’s 1963 lecture ‘The Myth of the Framework’, in
ibid., Models, Instruments and Truth, ed. M. Notturno (London: Routlegde, 1998), 154-184. A
critical appraisal is Boudewijn de Bruin, ‘Popper’s Conception of the Rationality Principle in the
Social Sciences’, in I. Jarvie, K. Milford and D. Miller (eds.), Karl Popper: A Centenary Assess-
ment: Selected Papers from Karl Popper 2002: Volume III: Science (Aldershot: Ashgate, 2006),
207-215.

6 Max Weber, Wirtschaft und Gesellschaft, ed. Marianne Weber (Tiibingen: Mohr, 1921; 5th ed.
1990), 12-13.

7 John Stuart Mill, ‘On the Definition of Political Economy; and on the Method of Philosophical
Investigation in that Science’, London and Westminster Review, 26 (1836), 1-29; citations are from
1844 ed. repr. in ibid., Collected Works of John Stuart Mill, ed. J. Robson (Toronto: University of
Toronto Press, 1967), 309-339.

8 Ibid. 326.
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side-effects, weighing rationally the means against the goals, the goals against the
side-effects, and finally, too, the possible different goals against each other’.” Mill’s
‘arbitrary definition of man’ is fruitfully seen as restricting not so much the aims or
goals themselves as the way in which they are evaluated. Agents adjudicate between
different aims solely by examining how they fare with respect to the ‘amount of nec-
essaries, conveniences, and luxuries’. Similarly, it is not the possible means that are
restricted, but the ways in which they have to be compared; the less they involve
‘labour and physical self-denial’, the better the means are. In clear contradistinction
to Weber, Mill attempts to give a full specification of the aspects of the possible
aims that might be important in the process of weighing up, and it is noteworthy
that he refers to what is conspicuously missing from Weber’s account—the agent’s
epistemic state.

4.1.1.2 Decision and Game Theory

One might doubt the plausibility of the suggestion that Mill has put forward an em-
pirical notion of rationality here, because his emphasis is clearly on the a priori,
abstract, possibly metaphysical character of economics. I have represented Mill’s
position as empirical, though, because his notion of rationality, if taken empirically,
forms a conceptually intermediate step between Weberian rationality and the ratio-
nality of decision and game theory, expected utility maximisation, to which I will
now turn.

Expected utility maximisation stipulates particular kinds of means and ends, and
particular ways to compare them. It applies to agents who possess von Neumann—
Morgenstern preference orderings over lotteries, requiring, in addition, that they are
the owners of probabilistic beliefs satisfying the Kolmogorov axioms, and that they
are capable of processing these elements adequately and fruitfully. Before turning
to a logical analysis of the principle of expected utility maximisation, I will give an
informal overview of three elements of decision-theoretic explanations: preferences,
expectations and mathematical maximisation skills.

An agent has a set of actions which, depending on what nature plays—or, in game
theory, depending on what her opponents play—results in particular outcomes. The
set of outcomes, however, is not the set of objects that the agent has to compare to
determine what ends she prefers. Her preference ordering ranges over lotteries, that
is, over probability measures on the set of outcomes.'? If, for instance, by perform-
ing one action an agent would order stew, another kale, and still another pancakes,
to be an agent with preferences in the sense required by rationality as expected util-
ity maximisation she would not only need to have an opinion about whether she
prefers stew to pancakes or kale, but also need to make up her mind about whether

9 Weber, op. cit. 12—13 (original German).

10 The preference ordering ranges over uncountably many alternatives, but to uncover an agent’s
utility functions and probabilistic expectations, only finitely many questions would have to be
asked to her. For a textbook treatment of this fact, see Roger Myerson, Game Theory: Analysis of
Conflict (Cambridge, Mass.: Harvard University Press, 1991), 12—17.
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she prefers pancakes to the lottery that assigns 0.9 probability to stew and 0.1 to
kale. Such human desires are perhaps a little artificial, but they are at the same time
very fine-grained. To say that an agent prefers pancakes to a lottery assigning only
0.1 chance to kale is to say that she dislikes kale very much. If you give her the most
preferred meal almost with certainty, and the least preferred meal with only a small
probability, she will still opt for the second best option, pancakes; she just does not
want to run a risk of 0.1 probability of ending up with kale.

Nor is that all, for as long as the preference ordering over lotteries does not sat-
isfy the von Neumann—-Morgenstern axioms, there is no room for expected utility
maximisation to be effective as a principle of rationality. These axioms make postu-
lations such as that no two alternatives are equally preferable and that all alternatives
can be compared, and they also make it formally possible to represent the preference
ordering in terms of a utility function in such a way that the intervals between the
utility values truly reflect the degree of an agent’s preferences.!!

To be an expected utility maximiser, utility is not enough; you also need to have
expectations. Formally, expectations are probability measures over the outcomes.
The Kolmogorov axioms ensure, most importantly, that adding the probabilities of
two disjoint events yields the probability of their union (in logical terms, their dis-
junction), and a logical consequence of this is that agents with Kolmogorov beliefs
are logically omniscient.'> Moreover, agents with Kolmogorov beliefs assign prob-
ability one to all propositional tautologies, in close correspondence to the work done
by the rule of necessitation in modal epistemic logic.'? If the beliefs of some agent
are given by P, then for every tautology from classical propositional logic ¢ it holds
that P(p) = 1.

Yet as long as an agent cannot process her preferences and probabilistic beliefs,
she cannot be an expected utility maximiser. She has to be able to solve the max-
imisation problem that corresponds to her utility function and Kolmogorov expec-
tations to compute the optimal action given her beliefs and desires. At first sight, it
may seem that the capacity to accomplish such feats derives directly from her logical
omniscience and her knowledge of all propositional tautologies, but this impression
would be incorrect. Kolmogorov axioms necessary, but we also need numerous ax-
ioms that figured in the proofs of several epistemic characterisation results in order

1 This is the content of Theorem A.1 (see the Appendix A). These requirements may seem to be
hardly ever satisfied in practice, and a plethora of experiments in psychology have attempted to
establish exactly that. See the relevant classic essays collected in Paul Moser (ed.), Rationality in
Action: Contemporary Approaches (Cambridge: Cambridge University Press, 1996). Yet there is
nothing intrinsically problematic with the idea that at least in some cases strategic agents actually
do form von Neumann—Morgenstern preference orderings, and rather than criticising expected
utility maximisation and its presuppositions in the traditional way, I here examine how far to go
under the assumption that they have real bite at least in some cases.

21f P(¢) = 1 and P(¢ — ) = 1, then it is easy to establish that P(y) = P(¢ — y) — P(-¢) +
P(=¢@Ny) = 1 using the Kolmogorov axioms and the observation that P(¢ — y) = P(-¢@ V y).
13 Joseph Halpern, ‘The Relationship between Knowledge, Belief, and Certainty’, Annals of Math-
ematics and Artificial Intelligence, 4 (1991), 301-322 contains a general result relating the logic
of certainty (probability one belief) to KD45.
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to allow agents to solve linear programming problems involving linear inequali-
g 14
ties.

4.1.2 Decision Theory

4.1.2.1 Explanatory Use

This determines the elements of rationality as expected utility maximisation, but
it does not fix the logical form of statements involving rationality, and different
readings are possible. To start with, an application of decision theory to explain the
performance by agent S of action a in choice situation C takes the form:

By performing action a in choice situation C, agent S maximised her expected utility.

Extending the traditional methods of microeconomics to give an explanation of why
people marry, Gary Becker, for instance, argues that people marry because they ex-
pect this to yield them higher utility than remaining single.!> Simple though this
sounds, Becker devotes a great deal of mathematical ingenuity to making the argu-
ment work, especially by carefully distinguishing all factors entering into the utility
functions of the marriage partners. Yet, ultimately the decision-theoretic explana-
tion of the fact that, say, Jane marries Bingley is the statement that by marrying him
she maximised her expected utility.

Several readings of the rationality principle can be distinguished, however. To
say that agent S maximised her expected utility by performing action a in choice
situation C may be to make an existential or a universal statement. On the existential
reading, this statement entails that there is some decision-theoretic model for choice
situation C (that is, a decision matrix D); that there is some preference ordering over
possible outcomes of her possible actions satisfying the von Neumann—Morgenstern

14 A case in point can be found in the epistemic characterisation of the Nash equilibrium. True,
given the axioms for linear inequalities the maximisation problem is solved automatically. But it
is conceptually clarifying to separate mathematical skills from logical skills, because it shows that
if, for whatever reasons, you wanted to study systems in which the logical force of the agents is
weakened, you would still need to make sure that they have sufficient mathematical skills. See, e.g.,
Mikaél Cozic, ‘Impossible States at Work: Logical Omniscience and Rational Choice’, in R. Topol
and B. Walliser (eds.), Cognitive Economics: New Trends (Amsterdam: Elsevier, 2007), 47-68.
Another reason to set apart logical and mathematical capacities is that in the last decade computer
scientists have gained deeper understanding of the computational complexity of solving decision
processes. Here it is fruitful not to see maximisation problems as merely requiring logical ability.
See Vincent Conitzer and Tuomas Sandholm, ‘New Complexity Results about Nash Equilibria’,
Games and Economic Behavior, 63 (2008), 621-641 and references therein. To illustrate the rel-
evance of this, note that as early as 1985 it was suggested that bounds to the complexity of the
strategies may result in cooperation in the iterated Prisoner’s Dilemma. See A. Neyman, ‘Bounded
Complexity Justifies Cooperation in the Finitely Repeated Prisoners’ Dilemma’, Economics Let-
ters, 19 (1985), 227-229.

15 The Economic Approach to Human Behavior (Chicago: University of Chicago Press, 1976).
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Table 4.1

RCT(D,C) D is a decision-theoretic model for C
Ut(S,C,u) u is §’s utility function in C

VNM((u) u satisfies the von Neumann—Morgenstern axioms
Prob(S,C,P) P is S’s expectations in C
Kolm(P) P satisfies the Kolmogorov axioms

Perf(S,C,a)  Action a is performable by S in C
Choose(S,C,a) Action a is chosen by S in C
Max(D,u,P,a) Action a solves the maximisation problem of u and P in D

axioms; and that the agent has beliefs satisfying the Kolmogorov axioms. Summing
up with abbreviations as shown in Table 4.1,

3D3uIP(RCT(D, C) AUL(S,C, 1) A VNM(u) A Prob(S,C, P) A Kolm(P) A
Perf(S,C,a) AMax(D,u,P,a)),

which T abbreviate by MEU5(S,C,a).!¢ Using the same abbreviations and formal-
ism, the universal reading is the statement

VDVuvP((RCT(D,C) AUL(S, D, u) A VNM (i) A Prob(S, D, P) A Kolm(P) A
Perf(S,C,a)) — Max(D,u,P,a)),

which is abbreviated by MEUy(S,C,a).

The universal reading is the weaker of the two. It does not claim that there exist
utilities and probabilities, but only that action a solves the maximisation problem if
such utilities and probabilities exist. This makes it less plausible as a rendering of
expected utility maximisation, because it entails, for instance, that agents maximise
their expected utility even in cases in which they are motivated by completely dif-
ferent kinds of reasons—with a false antecedent, the implication is vacuously true.
Under this analysis, an agent performing an action because of tradition in the Webe-
rian sense of the word would be maximising his or her expected utility. This is why
I will ignore the universal reading in much of the remainder of this book.

More general statements about expected utility maximisation easily fit the frame-
work by binding the relevant variables. The statement that

In choice situation C, agent S maximised her expected utility

16 The clause RCT(D, C) states that the decision-theoretic model D represents the choice situation
C. The analysis could be made more precise by specifying exactly the structure of D, and by mak-
ing explicit how D and u relate. The same is true for the game-theoretic analysis below. For the
purposes of my critique, however, the level of detail of the proposed analysis is sufficient. Further-
more, a distinction could be made between available actions and actions the agent believes to be
available. In Chapter 1, however, I argued that in order for a decision-theoretic (or game-theoretic)
model to function properly, these two sets of actions have to coincide. Cf., however, Jaakko Hin-
tikka, The Principles of Mathematics Revisited (Cambridge: Cambridge University Press, 1996),
214-215.
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is analysed by binding the variable a in MEU3(S, C,a) or MEUy(S,C,a) with ex-
istential or universal quantifiers, thus giving rise to the versions 3aMEU35(S,C,a),
JaMEUy(S,C,a), YaMEU5(S,C, a), and VaMEUy(S,C,a). These four clauses, in
turn, can be used to analyse still more general statements to the effect that

Agent § is an expected utility maximiser

" YC(MEU(S,C)),

where MEU ranges over these four clauses.'”

What do the four central clauses mean in the first place? The first one,
JaMEU5(S,C,a), amounts to the conjunction of the following four claims.

1. There exists a decision-theoretic model D of choice situation C specifying the
actions available to S as well as the possible consequences of these actions.

2. There exists a von Neumann—Morgenstern utility function u representing S’s
preferences over the possible consequences of her actions.

3. There exists a Kolmogorov probability measure P representing S’s beliefs about
which consequences result from which actions.

4. Action a is performable by S in choice situation C, and maximises S’s expected
utility given u and P.

In short, the proposition 3JaMEU5(S,C,a) expresses a contingent fact about the bi-
ography of agent S. As with earlier argumentation on the general form of epistemic
characterisations, this clause entails that model D captures choice situation C in the
way the agent represents it. It mirrors the way agent S sees C, so to speak. If S be-
lieves that she has to choose between five actions, but model D only specifies three,
or if S has a different utility function or probability measure than u or P, or if instead
of acting on a principle of maximisation § acted on a principle of rationality such as
maximin or minimax regret, then the explanation fails to capture the reasons S had
to perform a.

The same reasoning applies to the second reading, JaMEUy(S,C,a). Even
though this proposition does not entail that agent S possesses preference orderings
or probabilistic beliefs, it still expresses a contingent fact about S’s performance of
some action.

The third proposition, YaMEU3(S,C,a), states that all actions performed by S
maximise expected utility given certain expectations and utility functions.'® As-
suming that S performs actions rather than not, the proposition expresses the rather
sweeping claim that for any action performed by S, a decision problem was framed
and a maximisation problem solved. Clearly, this claim is not necessarily true. As
I have shown, Weberian traditional action is excluded here, as are actions resulting

17 Only binding the free variable C with a universal quantifier makes sense here. The existen-
tial reading would state that an agent faced a decision problem, and that is quite different from
expressing the fact that she is rational in some sense.

18 Because the universal quantifier precedes the existential one, the utility function and the proba-
bilistic beliefs may depend on the action.
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from a Millian weighing of ‘necessaries, conveniences, and luxuries’, on the one
hand, and ‘labour and physical self-denial’, on the other—at least as long as one
maintains that such weighing does not necessarily involve Kolmogorov’s as well as
von Neumann and Morgenstern’s axioms.

Finally, the proposition YaMEUy(S,C,a) expresses the fact that whatever action
S performs, it always maximises expected utility provided that S is at that point in
time the owner of a utility function and probabilistic expectations. This may seem
trivially true, because why would § take pains to form a preference ordering sat-
isfying the von Neumann—Morgenstern axioms as well as a probability measure
satisfying the Kolmogorov axioms without solving the corresponding maximisation
problem? For all we know, however, it may be too computationally complex to solve
the problem, time may not permit it, or S may decide for whatever other reasons not
to use the information of her probability measure and play maximin or minimax
regret, or even adopt a boundedly rational principle such as satisficing. While that
is admittedly unlikely, it is not conceptually impossible. That is why rather than
making a vacuously true claim, the fourth proposition expresses a contingent bio-
graphical fact about S as much as the other three.

To summarise, decision-theoretic explanations of an agent’s performing some ac-
tion entail that she has to be the owner of a preference ordering or utility function
over all possible outcomes satisfying the von Neumann—Morgenstern axioms; that
she has probabilistic beliefs over all possible outcomes satisfying the Kolmogorov
axioms; and she has the mathematical skills to solve the maximisation problem cor-
responding to her preferences and beliefs. Four ways to analyse the logical form of
such an explanation are in principle open, but the most plausible one—and certainly
the one that features in such applications of decision theory as that of marriage put
forward by Becker—is, I believe, the purely existential 3JaMEU5(S,C,a). It is this
one that plays a role in the remainder of this chapter.

4.1.2.2 Normative Use

Decision theory is not only used to explain, but also to advise.'” To see how, con-
sider an example from medicine. Crucially different treatments for breast cancer
have been developed in the last 50 years, and it is often very difficult to deter-

19 For a discussion of the normativity of rationality, see Raymon Boudon, ‘La rationalité ax-
iologique: Une notion essentielle pour I’analyse des phénomenes normatifs’, Sociologie et so-
cietés, 31 (1999), 103-117, Francesco Guala, ‘The Logic of Normative Falsification: Rationality
and Experiments in Decision Theory ’, Journal of Economic Methodology, 7, 59-93, Philippe
Mongin, ‘L’optimisation est-elle un critere de rationalité individuelle?’, Dialogue, 33 (1994), 191—
222, Oswald Schwemmer, ‘Aspekte der Handlungsrationalitit: Uberlegungen zur historischen und
dialogischen Struktur unseres Handelns’, in H. Schnadelbach (ed.), Rationalitdt: Philosophische
Beitrcige (Frankfurt am Main: Suhrkamp, 1984), 175-197, Wolfgang Spohn, ‘Wie kann die The-
orie der Rationalitat normativ und empirisch zugleich sein’, in L. Eckensberger and U. Gahde
(eds.), Ethik und Empirie: Zum Zusammenspiel von begrifflicher Analyse und erfahrungswis-
senschaftlicher Forschung in der Ethik (Frankfurt am Main: Suhrkamp, 1993), 151-196, and ibid.,
“The Many Facets of Rationality’, Croatian Journal of Philosophy, 2 (2002), 249-264.
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mine which treatment a patient should choose. Simplifying the decision-theoretic
approach somewhat, if chemotherapy, radiation therapy and surgery are the three
options, then probabilities and utilities have to be assigned to all of their possi-
ble outcomes (ranging from full recovery to death), and the patient is advised to
choose the treatment that maximises expected utility. Impressive research has con-
tributed towards making these probabilities precise.”’. In more abstract terms, typ-
ical decision-theoretic advice to S about the action to perform in choice situation
Cis:

Agent S must maximise her expected utility in choice situation C.

From the perspective of decision theory, the difference between explaining mar-
riage and advising about therapy seems to be one of deontic modality—it is only
about adding an operator to the effect that ‘Agent S must’. This means that the
deontic operator O can prefix the four different readings of expected utility maximi-
sation. The clause OFaMEU3(S,C,a) means that agent S has to ensure that there
is a correct decision-theoretic model for her choice situation, a von Neumann—
Morgenstern utility function and a Kolmogorov probability function, as well as
that she perform an action that solves the corresponding maximisation problem.
O3aMEUy(S,C,a) requires that agent S perform an action solving the maximisa-
tion problem of any correct decision-theoretic model, utility function and probabil-
ity measure. OVaMEU5(S, C,a) recommends to agent S that if there is some action
she performs, she makes sure that there is a decision-theoretic model, utility func-
tion and probability measure with respect to which the action solves the maximi-
sation problem. And OVaMEUy (S, C,a) tells agent S to ensure that given a correct
decision-theoretic model, utility function and probability measure, if she performs
some action, it then solves the corresponding maximisation problem.

The first reading is the strongest in that it requires that the agent develops
a decision-theoretic model unconditionally. The third requires setting up such a
model, too, but only on the condition that S performs an action. Under the third read-
ing, the agent would conform to the norm even if she did not perform any action,
and as this is true for the last reading, too, I will set both aside. The second reading
requires S to perform an action even if she does not have utilities and probabili-
ties, which also seems incoherent in a decision-theoretic context. The first reading
is therefore adopted.

The analysis of the logical form of normative decision-theoretic statements re-
quires more done than just prefixing an explanatory statement with deontic operator
0O, however, because quantifying in modal settings raises questions of de dictoand
de re scoping.’! Furthermore, since it is the actual choice of action that is recom-

20 William Hait, David August and Bruce Haffty (eds.), Expert Consultations in Breast Cancer:
Critical Pathways and Clinical Decision Making (New York: Marcel Dekker, 1999). The determi-
nation of the utilities was, quite understandably, left to the patients.

21 Roderick Chisholm, ‘Contrary-to-Duty Imperatives and Deontic Logic’, Analysis, 24 (1963),
33-36 shows that a similar question arises in propositional deontic logic.
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mended, an extra clause Choose(S,C,a) has to be inserted.?? Quite clearly, the ad-
vice to choose an expected utility maximising action is de dicto with respect to
the action, for otherwise it would be advice about a specific action that could be
phrased without recourse to the principle of maximisation of expected utility. For
the quantifiers ranging over decision-theoretic models, utility functions and proba-
bility measures, however, different readings can reasonably be set apart. As much
as we can literally prefix the deontic operator,

03¢3DTuIP(RCT(D,C) A UL(S,C,u) A VNM(u) A Prob(S,C, P) A Kolm(P) A
Perf(S,C,a) A Choose(S,C,a) AMax(D,u,P,a)),

we can narrow the scope to obtain

3D03aTu3P(RCT(D,C) AUL(S,C,u) A VNM(u) A Prob(S,C, P) A Kolm(P) A
Perf(S,C,a) A Choose(S,C,a) AMax(D,u,P,a)).

In addition to the performance of some action, the former requires that the agent
make sure that there is a decision-theoretic model, a utility function and a probability
measure satisfying the stipulated conditions. The latter, by contrast, presupposes the
existence of a decision-theoretic model and requires, besides the performance of an
action, that the agent set up a utility function and a probability measure. While
the former may put a heavy burden on S’s shoulders, what it requires is perfectly
coherent. The latter reading, by contrast, seems to waver between presupposing that
S has already adopted a decision-theoretic outlook and recommending that she take
such a point of view. A more coherent picture is obtainable when it also presupposes
the possession of a utility function and a probability measure with a deontic operator
only ranging over actions:

3D3uIP(RCT(D, C) AUL(S,C,u) A VNM (1) A Prob(S,C,P) A Kolm(P) A
O3a(Perf(S,C,a) A Choose(S,C,a) AMax(D,u,P,a))).

In summary, the first, large scope reading recommends that S take a decision-
theoretic outlook on her choice predicament (decision-theoretic model including the
possible actions of nature, utility function and probability function) and then per-
form an action solving the corresponding maximisation problem. The third, small
scope reading assumes that S has taken such a decision-theoretic view, and only tells
her to perform an action that maximises expected utility (rather than, say, minimax
regret). The second reading, finally, is set aside.?3

22 This clause was avoided in explanatory settings so as to make sure that what is to be explained
(the choice of an action) does not figure in its explanation.

23 My choice here is arbitrary to some extent. The deontic operator could even be appended to
Choose(S,C,a) only. This very strict reading would entail the existence of a maximising action
and recommend its performance only. In what follows, what is true of the small scope reading is
equally true of the strict reading.
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4.1.3 Game Theory

4.1.3.1 Explanatory Use

This concludes the investigations of the logical form of decision-theoretic expla-
nations and prescriptions. In preparation for a similar analysis of the logical form
of the theory of games, let me turn to a typical explanatory application of game
theory—advertisement. Advertising is costly, but without advertisements sellers sell
less. Economists have developed game-theoretic models to explain the decisions that
sellers make about how much to spend on advertising as well as the fact that sell-
ers do not all set the same price. Gerard Butters, for instance, developed a highly
detailed temporal market model and showed that for large numbers of buyers and
sellers a simple Nash equilibrium of advertising strategies and price distributions
can be derived.?* Sellers setting high prices advertise more intensely, because it is
more difficult for them to attract buyers than it is for their lower-priced competi-
tors. They do not overadvertise, though, because that would only lead them to incur
losses. Ultimately, the explanation is that, given what his or her competitors do, a
seller cannot increase expected profits by adopting a different advertising strategy.

Table 4.2
GT(I',C) I' is a game-theoretic model for C
Ut(S,C,u) u is s utility function in C
VNM(u) u satisfies the von Neumann—Morgenstern axioms

Perf(S,C,a)  Action a is performable in C
Choose(S,C,a) Action a is chosen by S in C
Nash(I',u,a) Action a is part of a Nash equilibrium for I" with utility function u

An application of game theory that explains the performance by agent S of action
a in choice situation C takes the form:

By performing action « in choice situation C, agent S played a Nash equilibrium strategy,

where reference is made to one standard ingredient of game theory: the solution
concept.”> As the arguments against the universal reading of expected utility max-
imisation apply to game theory, too, I only give the obvious analogue of the purely
existential reading 3aMEU5(S,C,a),

Ar3u(GT(I,C) AUL(S,C,u) AVNM(u) APerf(S,C,a) ANash(I",u,a)),

with notation as shown in Table 4.2. This amounts to three claims:

24 “Equilibrium Distributions of Sales and Advertising Prices’, Review of Economic Studies, 44
(1977), 465-491.

25 The Nash equilibrium is used throughout as an example, but other solution concepts can be
easily accommodated.
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1. There exists a game-theoretic model I" of choice situation C specifying the ac-
tions available to S as well as the possible consequences of these actions.

2. There exists a von Neumann—Morgenstern utility function u representing S’s
preferences over the possible consequences of her actions.

3. Action a is performable by § in choice situation C, and is part of a Nash equilib-
rium.

Game-theoretic explanations differ from decision-theoretic explanations in four re-
spects. First, the agent’s beliefs do not figure in the explanation of her actions. Sec-
ond, the principle of rationality (maximisation of expected utility) has been substi-
tuted by a game-theoretic solution concept (Nash equilibrium, or any other solution
concept for that matter). Third, the model I" of the choice situation is different, be-
cause the result of the agent’s choice of action is determined by the choices of other
agents who, in contrast to decision theory, have preferences about the outcome of the
game; it is a situation of strategic conflict. Fourth, a game-theoretic explanation of
S’s choice in C is an explanation of the actions of her opponents in C as well. In fact,
the logical form of the explanation could be revealed by writing, for a two-person
game,

3 Jug3ur (GT(,C) AUL(S, C,us) AVNM (us) A U(T,C,ur) A VNM(ur) A
Perf(S,C,a) APerf(T,C,b) ANash(I",ug,ur,a,b)),

thus making it clear that the Nash condition in fact entails that S’s opponent 7 plays
his part of the respective Nash equilibrium.

For the explanation to be adequate, it has to mirror the way agent S views the
choice situation. For decision-theoretic explanations, I have argued that this means
that the utility and probability functions as well as the rationality principle specified
by the theorist have to be those on which S acted. As game-theoretic explanations
treat the actions of all players of a game at one fell swoop, the game has to mirror
not only the way S views her choice predicament, but also the way her opponents
view their choice predicaments. Modelling only one choice predicament, the game
describes a situation where all players have to agree on what the choice predicament
is. The consequences of this observation cannot be overestimated.?®

26 An objection that could be raised to this analysis is that it seems to ignore games with incomplete
information where players are modelled to be uncertain about the utility functions. This objection
would miss the point, though. Such games can easily be transformed into a normal form game
for which the logical analysis proffered here is unproblematic. More importantly, if player S is
incompletely informed about the utility function of T, then this is modelled by having the game
I' start with some probability measure on a number of subgames in which the utilities of 7" are
different. Player S does not know in which subgame of I" she is; player 7" does know that. In order
for I" to figure in an explanation of the actions of S and 7', they still have to carve up their choice
situation in exactly the way of I". In particular, player S is informed about the utility structure of
I', even the part of T'. Accordingly, S concurs with 7" as well as with the theorist in the assignment
of T’s utility values to all leaves of the game tree. The incompleteness of S’s information about 7"’s
utility function enters in once the game has started. In other words, because she knows what the
game looks like, player S knows the kinds of incomplete information about 7"’s utilities she will
encounter during game-play.
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First, the space of options that S believes she has must concur with what I" repre-
sents. If S believes that she has to choose between five actions, but I" only specifies
three, then the explanation fails to capture the reasons S had for performing the
action. The same holds for the utility function. Second, the space of options the
opponents of § believe they have ought to concur with I', because otherwise the
explanation does not capture their reasons for performing their actions. The same
holds for their utility functions. Third, agent S has to believe that the space of her
opponents’ options is exactly the one specified by the model. If S believes that, say,
her opponent T has five options where the model only specifies two, then agent S’s
reasons for performing an action are not adequately captured. Because of the ‘one
fell swoop’ character of game-theoretic explanations, this entails that S has to see the
space of options of T as T himself sees it. The same holds for 7s utility function.?’
Ultimately, to make a game theorist’s explanation of an agent’s action adequate, the
game theorist and the players of the game have to agree on what the choice situation
looks like.

What is the explanatory role of the solution concept? Comparing decision-
theoretic and game-theoretic explanations, it seems as if the solution concept re-
places both the probability measure and the rationality principle. But what does that
mean exactly? One approach to account for the role of the solution concept uses evo-
lutionary game theory, where certain solution concepts from non-cooperative game
theory can be seen as stable equilibria in dynamical systems of agents playing games
repeatedly over time.?® These agents may be seen as readjusting their beliefs over
and over again, and to be acting on the principle of expected utility maximisation.
This account is not very useful for current purposes, however, because there is no
agent here who is repeatedly playing games. Rather, the choice predicament of the
agent is a one-time event. A second, more adequate way to think of the explanatory
role of solution concepts invokes epistemic characterisation theorems. I will show
how below. First, I will turn to the normative use of game theory.

4.1.3.2 Normative Use

There is more to game theory, however, because while this straightens out the log-
ical form of game theory as a descriptive theory, game theory is used normatively
as well. As a case in point, suppose a car manufacturer wishes to enter a new mar-
ket and hires a consultant to give advice on what price to set. Then, Charles Holt
and Alvin Roth write—in an article in the Proceedings of the National Academy
of Sciences highlighting John Nash’s 1950 two-page article on the equilibrium in

27 1t is not necessary that the spaces of options and the utility functions be commonly known.
Something like that could be the case, and depending on whether it is the case or not, one or other
solution concept is more or less appropriate in the explanation (as the epistemic characterisation
theorems reveal). Yet for I" just to model the choice situation C there need not be any higher level
beliefs about the epistemic states of the other players.

28 See, e.g., Larry Samuelson, Evolutionary Games and Equilibrium Selection (Cambridge, Mass.:
MIT Press, 1997) focuses on this topic in particular. I will return to this briefly below.
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the same journal—the consultant had better advise a strategy that is part of a Nash
equilibrium.?® In more abstract terms, a typical instance of game-theoretic advice
is:

Agent S must play a Nash equilibrium strategy in choice situation C,

and given the work on decision theory, it is now easy to obtain a large scope reading

O3 Ju3a(GT(I",C) ANUL(S,C,u) AVNM(u) A Perf(S,C,a) A Choose(S,C,a) A
Nash(I",u,a)),

and a small scope reading,

Ar3u(GT(I",C) AUL(S,C,u) AVNM (1) A O3a(Perf(S,C,a) A Choose(S,C,a) A
Nash(I",u,a))),

where it should be noted once again that, in contrast to the explanatory case, a
clause Choose(S,C,a) has been inserted to ensure that the advice really concerns
the choice of a certain strategy.’® Similar to decision theory, the only significant
difference between the two readings is that the large scope reading requires agent S
to adopt a picture of her choice predicament which under the small scope reading
she is already presupposed to have adopted. But where decision-theoretic advice can
be made sense of, it is not at all clear how to interpret the prescriptive clause about
the Nash equilibrium.

In the next section I will return to the explanatory use of game theory to show that
it is reducible to decision theory. In the subsequent section I will set out three pos-
sible ways to interpret normative game theory, and show them to yield bad advice,
advice that is reducible to decision theory, or nonsense.

29 “The Nash Equilibrium: A Perspective’, Proceedings of the National Academy of Sciences, 101
(2004), 3999—4002. John Nash, ‘Equilibrium Points in n-person Games’, ibid., 36 (1950), 48—49.
Other contemporary calls for a normative conception of game theory appear in Robert Aumann
and Jacques Dreéze, “When All is Said and Done, How Should You Play and What Should You Ex-
pect?’, CORE Discussion Paper 2005-21 (University of Louvain, 2005), and Martin Dufwenberg,
et al., “The Consistency Principle for Set-Valued Solutions and a New Direction for Prescriptive
Game Theory’, Mathematical Methods of Operations Research, 54 (2001), 119-131. The advice
is always directed at a single agent, as recommending a Nash equilibrium to a group of players is
often just wrong. This point will be reinforced below in Section 4.3.1. Moreover, what is meant by
normative here is something truly deontic or prescriptive (‘Keep left!’). Game-theoretic explana-
tions of conventions or efficient norms are not the target of the present argument (‘In Great Britain
the norm is to keep left’). See, e.g., Peter Vanderschraaf, ‘Convention as Correlated Equilibrium,’
Erkenntnis, 42 (1995), 65-87, and Martin van Hees, ‘Liberalism, Efficiency, and Stability: Some
Possibility Results’, Journal of Economic Theory, 88 (1999), 294-309.

30 1n an alternative reading the deontic operator only prefixes the statement Choose(S,C, a).
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4.2 Game Theory as an Explanatory Theory

The analysis of the logical form of game-theoretic explanations and normative state-
ments makes it possible to defend two claims. In this section, I will argue that game-
theoretic explanations of human strategic behaviour can be reduced to decision-
theoretic explanation. In the next section, I will argue that game-theoretic advice
is sometimes bad advice, sometimes reducible to decision theory, and in all other
cases just plain nonsense.

4.2.1 The Reduction

Epistemic characterisation theorems provide sufficient conditions under which so-
lution concepts give an adequate description of the outcome of a game, as they are
implications of which the antecedent specifies conditions on the beliefs, desires and
rationality principles of the players, and of which the consequent states that the out-
come of game-play under these conditions satisfies the relevant solution concept. An
essential component of the argument in favour of reduction is that epistemic charac-
terisation theorems can and should be used to justify the game theorist’s application
of some solution concept in a purported explanation of strategic interaction. If, for
instance, a game theorist uses the concept of iterated strict dominance to explain the
behaviour of some agent, then he or she ought to be understood as implicitly stating
that the relevant epistemic preconditions are satisfied, and that there is common true
belief about rationality and utility in that choice situation.

One may find this rather rigid, but my argument is that there is no alternative
plausible way to understand how, in fact, game-theoretic explanations explain. Any
other way to make game theory conform to the belief—desire format of action expla-
nation investigated in Chapter 1 would be ad hoc. Silly alternatives to make play-
ers’ beliefs explicit, for instance, would say that agents may blunder into a Nash
equilibrium, that giving beliefs is often practically impossible and not even always
necessary. Another line of thought would justify the use of, for instance, the Nash
equilibrium by showing that certain dynamics (the replicator dynamics) obtain that
relate to the Nash equilibrium (via Lyapunov stable sets).>! But the problem with all
these proposals is that they do not fully specify the motivational factors that played a
role in the performance of the action one wishes to explain. Omitting beliefs is not a
serious option, because desires and rationality principles are only in rare, basic cases
sufficient. But introducing dynamics is not an option either, because they are forces
on populations rather than individual motivational factors for agents playing games
only once. If the game theorist is to answer the question what are the beliefs of the
players whose behaviour he or she explains, then the only general plausible way is
to say that their beliefs are what the epistemic characterisation theorems say they
are. For if they were different, the game theorist would give an incorrect explana-

31 Larry Samuelson, op. cit.
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tion. Epistemic characterisation theorems are the canonical purveyors of the beliefs
of the players.’? It is now clear that we can turn a game-theoretic explanation into
a decision-theoretic one. Given some game-theoretic model of agent S’s behaviour,
a decision-theoretic model is developed in the following way. Agent S’s available
actions and her utility function are what they were in the game-theoretic model.
Agent S’s probability measure in the decision-theoretic model is the one described
by the epistemic characterisation theorem of the solution concept used in the game-
theoretic model. Finally, the principle of rationality of the decision-theoretic model
is expected utility maximisation; and that’s all.3* This shows that game theory can
be reduced to decision theory.

4.2.2 The Ban on Exogenous Information

This perspective on game-theoretic modelling has far-reaching consequences. Deci-
sion theorists and game theorists alike explain actions in terms of reasons (beliefs,
desires, rationality), and although in game theory only the desires are explicitly
given in the explanation, epistemic characterisation theorems reveal that the under-
lying explanatory format is the same. Game theory is decision theory in disguise, or
S0 it seems.

4.2.2.1 A Narrow Epistemology

The similarity is highly deceptive, though. They are similar in that even though they
have to defend a claim Ut(S,C, u) to the effect that S possesses u as a utility function
in C, they do not need to explain such things as why S has the preferences she has
and whether they are reasonable. They have to demonstrate that Ut(S,C,u) holds,
but not why it holds. With respect to the belief component Prob(S,C,P) of action
explanation, however, decision and game theory are crucially dissimilar. Decision
theorists as well as game theorists need to show that S possesses certain beliefs.

32 Epistemic characterisation theorems typically have a converse direction to the effect that for any
outcome of game-play satisfying the solution concept there exists an epistemic situation satisfying
the conditions from the epistemic characterisation theorem. At first sight, the validity of the con-
verse direction seems to be necessary if epistemic characterisation theorems are to furnish beliefs
canonically. This appearance is misleading, though. Suppose that for some solution concept the
converse does not hold, and that some outcome (aj, . ..,ay) cannot result in an epistemic situation
satisfying the relevant conditions. Then, if a game theorist explained i’s behaviour by noting that
a; is part of an outcome satisfying the solution concept, he or she would be unable to give an ex-
planation of a; following the belief—desire framework (or the particular solution concept should be
abandoned altogether).

33 Anticipating the discussion later, a similar move would not work to reinstall normative inter-
pretations of game theory. The idea would be to take it that a game-theoretic advisor implicitly
assumes that the beliefs of the players are such as the relevant epistemic characterisation result
specifies. Then, however, the point of the advice would disappear, because expected utility max-
imisation would suffice.
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For a decision theorist, this is captured directly in the requirement to the effect that
Prob(S,C, P); for a game theorist, this means that he or she is committed to ascribing
to S the beliefs stipulated by the corresponding epistemic characterisation theorem,
which in the end amounts just as much to establishing a claim to the effect that
Prob(S,C,P). The difference is, however, that decision theorists need not explain
such things as why S has the beliefs she has, but game theorists need to do exactly
that because of their implicit commitment to epistemic characterisation theorems as
purveyors of beliefs. This commitment entails that these beliefs do not derive from,
say, statistical observations or mere guesswork, but from such epistemic set-ups as
common true belief about rationality and utility—the ban on exogenous information
excludes everything else. To quote the founding fathers of game theory again:

Every participant can determine the variables which describe his own actions but not those
of the others. Nevertheless those ‘alien’ variables cannot, from his point of view, be de-
scribed by statistical assumptions. This is because the others are guided, just as he himself,
by rational principles.*

Whenever a game theorist explains the behaviour of some agent in truly game-
theoretic terms, he or she is implicitly committed to the view that in order to form the
beliefs necessary for their strategic deliberation, the players disregard all available
information except that which involves the game structure and rationality.

Such an epistemic policy is implausible. It is implausible descriptively in that in
many situations of strategic interaction, individuals form their beliefs on the basis of
information that goes far beyond rationality and game structures; and it is implau-
sible prescriptively in that ideal epistemic subjects never rule out any informational
sources unless they have good reasons to do so—and here such reasons are absent.
If I want to know whether a car seller is going to accept my offer for a second-hand
car, I can try to find out how this car seller generally responds to offers that are, say,
20% below the asking price, or I can consult Internet databases detailing the prices
of this particular type of car with a certain age and mileage. Of course, I could in-
spect the game tree and assume that the seller is rational, but there is no reason for
not gathering other information as well. Game-theoretic modelling entails exactly
that, however. Players disregard any information that is not derived from the game
structure or rationality. So, as a descriptive endeavour, game theory is committed to
ascribing a narrow epistemology to the individuals that it models.

One might object to this line of reasoning on the grounds that it presupposes that
the ban on exogenous information cannot be lifted. Interestingly, however, to lift the
ban is to turn exactly from game theory to decision theory. If all kinds of information
are allowed to play a role in an agent’s decision making process, she is no longer
a genuine game-theoretic agent. With the ban, game theory is reducible to decision
theory and is shown to ascribe a narrow epistemology to players of games. Without
the ban, by contrast, game theory is just decision theory.

34 John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior (Prince-
ton: Princeton University Press, 1944), 11.
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4.2.2.2 The Correlated Equilibrium

The solution concept of correlated equilibrium could form the basis of an objection
to my interpretation of von Neumann and Morgenstern’s ban on exogenous data,
however. Given a normal form game I" = (I, (A;);, (u;)), a correlated equilibrium
is a probability measure P over []; A; such that for any player i and strategy b; € A;

z Play,...,an)ui(aj,a—;) > z P(ai,...,an)ui(bia—;).

(a1,..an)€lTiA; (a1,..an)€lTiA;

The use of probability generalises mixed strategies. While mixed strategies model
individuals whose behaviour depends on randomisation devices or other observable
probabilistic events, the correlated equilibrium has all individuals randomise, and it
may be thought that randomisation is a way to model exogenous information.

But that impression would be incorrect. Sure, the probability distribution has to
come from outside the game. It has to be generated by such things as dice, comput-
ers or sunspots.> The ban on exogenous information does not exclude that, though.
The ban does not forbid players from making their choice of strategy dependent on
outside chance events. What it does forbid is making their beliefs about other play-
ers’ behaviour depend on outside events. To form beliefs about what an opponent
will do, you have to restrict yourself to information about the game, typically util-
ity and rationality. Statistical data or information about a player’s character or bad
temper, by contrast, are out. As I suggested in the discussion of payoff-uncertainty,
factors that have a decidedly exogenous flavour (such as uncertainty about the util-
ity functions of opponents) are nonetheless endogenous as long as no particular
information about particular opponents is involved. Payoff-uncertainty as much as
randomising strategies is general, and consequently, endogenous.

Yet there is an alternative (equivalent) way to define the correlated equilibrium,
more common nowadays, that may suggest a different conclusion. Define, for a
probability measure P constituting a correlated equilibrium, a sample space €2 con-
sisting of all strategy profiles of the game, and define partitions &7; by stipulating
that two strategy profiles are members of the same cell whenever they agree on the
strategy of player i. Let functions o;: £2 — A; single out i’s choice in all possible
worlds. It is clear that then

Y, P(o)ui(oi(®),0-i(w)) > Y, P(o)u(t(w),0-(0))

weR weR

for any 7;. More relevant to my purposes, however, is the converse of this result,
which states that for any such sample space, probability measure and partition satis-
fying the inequality, the (induced) probability measure constitutes a correlated equi-
librium. If, interpreted as beliefs, these probability measures can possibly be shown
to have exogenous origin, the ban does not extend its grasp to the correlated equi-
librium.

35 Adam Brandenburger and Eddie Dekel, ‘Rationalizability and Correlated Equilibria’, Econo-
metrica, 55 (1987), 1392.
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This second interpretation of the correlated equilibrium also remains fully in
the domain of endogenous information. The beliefs may be probabilistic, but un-
like the Nash equilibrium case, they can be related here to common knowledge
of rationality—the personification of the ban on exogenous information.3® In fact,
Robert Aumann describes the result as showing that ‘common knowledge that each
player chooses a strategy that maximizes his expected utility given his informa-
tion... . [entails that] the strategies chosen by the players constitute a correlated
equilibrium’.3” Far from involving exogenous information, the beliefs are built in
the orthodox manner, merely on the basis of information concerning rationality and
utility. The ban is still at work.

Nor is that all. Another reason why the correlated equilibrium does not constitute
a problem for what has been said about the ban on exogenous information is that if
the probability measure is taken, in the second definition of the solution concept, to
model beliefs (rather than, as in the first version, randomisation devices) all players
must have the same beliefs—there is only one probability measure. While this is of
course possible, it does not constitute exogenous information. If the correlated equi-
librium is to model information, then it can only model situations in which there
are no differences between the players with respect to the information they have
obtained. That would not be a model of genuine exogenous information that partic-
ular players have about particular opponents, however; rather, it would be a model
of a general endogenous informational feature of the game. The ban on exogenous
information does not exclude that. What it does exclude is players forming beliefs
about particular opponents in ways that defy general description in the game model.

2 25

1 (3,0) (1,2)

1> 0,4) 0,1)

Fig. 4.1

And indeed, once the common prior assumption that all players have one and
the same probability measure is relaxed and each player gets her personal proba-
bility measure with personalised requirements, the solution concept of subjective
correlated equilibrium arises which does allow for some exogenous information. To

36 See Section 2.1.2.2 for a discussion of the two interpretations of mixed strategies that are paral-
leled by the two ways to define the correlated equilibrium, and an argument why the Nash equilib-
rium does not conform to the ban on exogenous information.

37 “Correlated Equilibrium as an Expression of Bayesian Rationality’, Econometrica, 55 (1987), 2.



118 4 Applications of Game Theory

see that, consider the game shown in Figure 4.1.3% Let Q be a two-element sample

space with player 1 assigning probability one to the world in which both players
play their first strategy, and player 2 assigning equal probability to this world and
to the world in which they play profile (15,2;). Choosing a strictly undominated
strategy, player 1 is clearly rational. Given that player 2 assigns equal probability to
both of his opponent’s strategies, playing 2 is optimal, affording him an expected
utility of 2 instead of % Player 2 is rational, too. The beliefs constitute a subjective
correlated equilibrium.

This is certainly a very serious candidate for a model of exogenous information.
It is true that it does not model the belief formation of the players, nor does it model
the precise exogenous origin of their beliefs, but it does make it possible to plug
in exogenously formed beliefs. Ironically, however, the concept of subjective corre-
lated equilibrium seems to be discarded by most game theorists. Robert Aumann,
for instance, notes that

the concept of subjective correlated equilibrium places very few restrictions on the possi-
ble outcomes. To get the flavor of this, note that for any two-person game, not necessarily
zero-sum, in which there are no weakly dominated actions, there is a subjective correlated
equilibrium at which both players assign positive probability to each outcome (action pair);
and there is also a subjective correlated equilibrium that gives each of the two players an
expected payoff as close as you wish to his maximum possible payoff. Such results indicate
that the subjective correlated equilibrium is a relatively weak concept, giving little informa-
tion; and that while logically consistent, it involves a conceptual inconsistency between the
players, which distorts and hides the conflict of interests that is the subject of game theoretic
analysis.>

In other words, the problem with the subjective correlated equilibrium is that it does
not make precise enough predictions and assigns possibly incompatible beliefs to
players.

Sharing this critique, Adam Brandenburger and Eddie Dekel tried to develop a
refinement of the subjective correlated equilibrium that is more convincing (and
equivalent to a concept characterised in terms of common knowledge) thus aligning
it to the ban on exogenous information. Aumann and Dreze, art. cit. have also at-
tempted to do something similar.*? It is certainly true that the subjective correlated

38 The game is due to Brandenburger and Dekel, art. cit. 1394. The interpretation I consider is not
theirs, though.

39 Art. cit. 15.

40 Adam Brandenburger and Eddie Dekel, ‘Rationalizability and Correlated Equilibria’, Econo-
metrica, 55 (1987), 1391-1402. Robert Aumann and Jacques Dreze, “When All is Said and Done,
How Should You Play and What Should You Expect?’, to be published in xxx, express similar
views. The starting point in the latter paper is a view voiced by Joseph Kadane and Patrick Larkey,
‘Subjective Probability and the Theory of Games,” Management Science, 28 (1982), 113-120 to
the effect that players of games should proceed on the basis of subjective probability estimates
concerning their opponents’ actions, and that to form such estimates disciplines such as psychol-
ogy are more suitable than non-cooperative game theory. Aumann and Dreéze find this view ‘on
its face. . . straightforward and reasonable’, but note that Kadane and Larkey overlook the ‘funda-
mental insight of game theory: that a rational player should take into account that all the players
are rational, and reason about each other’ (emphasis in original), which they call ‘interactive ra-
tionality’. They continue that ‘unlike Kadane and Larkey, we note that the demands of interactive
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equilibrium allows for the modelling of exogenous information. It is equally true,
however, that that is an exact reason why game theorists shun the concept or modify
it. The ban on exogenous information is still at work.

4.3 Game Theory as a Normative Theory

If game-theoretic explanations are reducible to decision theory and ascribe a narrow
epistemology to strategically interacting agents, then the advice that prescriptive
game theory gives (to which I now turn) is bad, reducible to decision theory, or
nonsensical.

4.3.1 Collective Advice

2 2
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Fig. 4.2

To start with, it is instructive to see that prescriptive game theory does not succeed
in giving strategic advice to collective entities (groups of players), because it does
not have the conceptual apparatus to treat such entities well. It cannot talk about
common purposes in the way that social choice theory studies collective aggrega-
tion of utility functions, for instance, nor does it shed light on coalition formation
when players team up with allies to cooperate, as cooperative game theory aspires
to.*! Non-cooperative game theory, that is, cannot account for the binding forces

rationality severely restrict the expectations, and go on to characterise precisely what expectations
can arise under this restriction’. In other words, where Kadane and Larkey still left room for exoge-
nous information (in fact, they claimed that the only serious source of information is exogenous),
Aumann and Dreze decide against it.

41 Cf. Michael Bacharach, Beyond Individual Choice: Teams and Frames in Game Theory, eds.
N. Gold and R. Sugden (Princeton: Princeton University Press, 2006) developing a truly collective
form of normative game theory (which is very different from traditional non-cooperative game
theory, though).



120 4 Applications of Game Theory

which groups need to have to ensure that individuals comply with the common pur-
pose even if their individually contributing actions are not individually—and only
collectively—optimal. Of course, it is not strictly speaking excluded that the theory
of games gives good advice to the groups of players of a game in some rare cases, but
it is striking to see that in genuinely standard cases such as the Prisoner’s Dilemma
shown in Figure 4.2, it fails to single out the social optimum. Assuming that the
players want to maximise the sum total of their utilities, the Nash equilibrium of
this game (according to which the players play their first strategy) prescribes a so-
cially suboptimal outcome. The non-equilibrium outcome reached if both players
play their second strategy, by contrast, affords them highest total utility. The Nash
equilibrium gives wrong advice to the players as a group.

4.3.2 Individual Advice

Let me now turn to non-cooperative game theory as a normative theory for indi-
vidual players. I will show, first, that in addition to the earlier observations about
scoping, three interpretations of normative game theory can be set apart. Second, I
will argue that under each of them the advice is problematic.

Under the large scope reading, to say that agent S in some choice predicament C
must play a strategy that is part of a Nash equilibrium (or any other solution con-
cept) is to say that S has to model her choice predicament as a non-cooperative game
and ‘play Nash’. Under the small scope reading, by contrast, agent S is presupposed
to have such a model in mind; she is called upon to ‘play Nash’ only. As much as in
the explanatory setting, in a prescriptive setting the clause GT(I",C) entails that S is
advised to take (large scope) or is presupposed to have taken (small scope) a game-
theoretic view of the situation. Since more players are involved in the game, agent
S’s view of the situation has to agree with those of her opponents. Suppose, for in-
stance, that S thinks of the situation as a truly game-theoretic one, but in reality there
are no other individuals involved, or only individuals who think they are not playing
a game, or individuals who think they are playing a different game. Then playing
part of a Nash equilibrium would be ill-advised and based on a misrepresentation of
the situation which S should first correct. When agent S believes she is playing chess
while her opponent thinks they are playing checkers, the game theorist is wrong to
tell S to play the Queen’s gambit.

While the way to think about the clause GT(I",C) is straightforward, it is more
difficult to make sense of the clause Nash(I",u,a) in a normative setting. A strict
analogy with the explanatory case would have the outcome that to make the pre-
scriptive claim that § must play Nash is to require that S ensure that she and her
opponents will actually end up in a Nash equilibrium. Although in exceptional cases
S may have such powers, this interpretation would in general extend the domain of
the prescriptive to the other players as well. Advice to S would be advice to her
opponents, too. An alternative to this interpretation in terms of actual outcomes is
that S is only advised to make a Nash outcome probable, and another alternative is
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that S is advised to make it possible. Under each of the three interpretations (actual,
probable, possible) prescriptive game theory is problematic, however. The advice
to play Nash or any other solution concept makes no sense if it means that such an
actual outcome has to be guaranteed or that such a possible outcome should not be
excluded, and it can be reduced to decision-theoretic advice if it means that such an
outcome has to be made probable.

4.3.2.1 Actuality

If agent S must play a strategy that is actually part of a Nash equilibrium, then
the advice either presupposes that her opponents concur in playing their parts of
the same Nash equilibrium, or it involves advice to her opponents as well. This is
because S cannot on her own ensure that she will follow the advice correctly. Only
in degenerate cases where, for instance, all outcomes of a game are Nash equilibria,
will agent S be able to enforce a Nash equilibrium all by herself; in general, she is
dependent on her opponents for her success.

To consider the first possibility, if advising agent S to play a strategy that is ac-
tually part of a Nash equilibrium involves a presupposition about her opponents,
then game-theoretic advice can be reduced to decision-theoretic advice. The pre-
supposition that the opponents of S concur in playing their parts of one and the
same Nash equilibrium can be warranted in situations in which the game theorist
advising S has information about the prospective behaviour of S’s opponents. To be
precise, the theorist knows that they will play their parts of the Nash equilibrium.
In that case, however, the game theorist could simply pass on this information to S,
and give her decision-theoretic advice to maximise her utility given the information.
The epistemic characterisation theorem of the Nash equilibrium entails that given
knowledge of the fact that S’s opponents play their parts of a Nash equilibrium, it
maximises S’s expected utility to play her part. That is, game-theoretic advice would
be reduced to decision-theoretic advice.

If advising S to play a strategy that is actually part of a Nash equilibrium involves
advice to her opponents as well (the second possibility), then game-theoretic advice
is bad collective advice in disguise, or simply nonsensical. As I suggested above,
to play Nash in the Prisoner’s Dilemma shown in Figure 4.2 is socially suboptimal
and completely unsuitable as collective advice. Moreover, directed at an individual
it would be nonsensical to take the advice to S to play Nash as also involving advice
to her opponents. If a game theorist hired by a car manufacturer advises her to
set her prices in equilibrium, and adds the proviso that for the advice to be really
appropriate the game theorist must first advise the manufacturer’s competitors as
well, the manufacturer would be better served by finding another consultant. Under
the interpretation of ‘play Nash’ as commanding an actual Nash equilibrium, game
theory yields advice that is bad, nonsensical, or reducible to decision theory.



122 4 Applications of Game Theory

4.3.2.2 Probability

If agent S must play a strategy that will probably be part of a Nash equilibrium,
then the advice presupposes that S has a way to judge degrees of probability, that is,
probabilistic beliefs about the results of her possible actions. As soon as she has such
beliefs, however, a decision-theoretic prescriptive statement can be made: maximise
expected utility. The epistemic characterisation theorem of the Nash equilibrium
(and other solution concepts) reveals that this advice agrees with the game-theoretic
advice to make a Nash equilibrium probable as long as S’s opponents probably con-
cur; and it may diverge considerably from game-theoretic advice in cases where S’s
opponents are far from playing Nash. In the first case, game-theoretic advice is re-
ducible to decision-theoretic advice; in the second, it is bad advice—plain irrational.

One could object that the game-theoretic advice given to agent S to play accord-
ing to the Nash equilibrium entails that S is advised to form beliefs according to
which her opponents play according to the Nash equilibrium as well. Apart from the
problems with the uniqueness of the Nash equilibrium (if there are more of them,
which one to consider is underdetermined) this is unacceptable for another reason.
The idea would be that if a game theorist calls upon S to play according to the Nash
equilibrium, the logic of such game-theoretic advice is such that he or she also calls
upon S to form particular kinds of beliefs. But that would be very strange. To make
a comparison, the logic of promises may be that if one makes a promise, one com-
mits oneself to perform some action. But the logic of advice to perform some action
is not of the kind that also entails advice to form some belief. Advice about action
and advice about belief should be kept separate. Under the interpretation of ‘play
Nash’ as commanding a probable Nash equilibrium, game theory yields bad advice
or advice that is reducible to decision theory.

4.3.2.3 Possibility

If agent S must play a strategy that can possibly be part of a Nash equilibrium, then
the advice only tells S to play a strategy for which there is at least one combination of
her opponents’ actions with which it would form a Nash equilibrium. Her opponents
need not actually play that combination, they need not even probably play it; agent S
is only required not to exclude the possibility that a Nash equilibrium will arise. This
is a nonsensical recommendation. For it to be reasonable to advise S not to exclude
the possibility of a Nash equilibrium outcome, it should be possible to explain why
that is individually good for S. The theorist must be able to give reasons to S that
could motivate her to perform the action she is advised to perform. If the consultant
cannot explain to the car manufacturer why it would be good to set the particular
price he advises, then again the manufacturer should hire another consultant. That
is, the rationale behind not excluding Nash equilibria should be made explicit. And
that cannot be done.*?

42 A different issue is whether the fact that a certain game ends in an actual Nash equilibrium in fact
entails that the players played rationally. Mathias Risse, ‘“What is Rational about Nash Equilibria?’
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To see why not, look first at decision-theoretic advice. To explain why it is sen-
sible to act according to a rationality principle such as minimax regret, one could
refer to the fact that § does not like to regret things, that the regret she acquires has a
much more significant disvalue than, say, the disvalue attached to not obtaining the
maximum possible utility, and that consequently she should minimise the maximum
possible regret. To risk-averse people, by contrast, the theorist would advise the use
of maximin; and to yet other individuals he or she would directly counsel expected
utility maximisation. It is impossible to explain the rationale of leaving the possi-
bility of a Nash equilibrium open in such a way, however. For a player of a game
there is nothing specifically good about performing an action that does not exclude
the possibility of being, at the end of the game, in equilibrium with other actions. To
tell an agent not to exclude a Nash equilibrium does not connect in any way to her
interests, her ways of dealing with risks, and so on. Under the interpretation of ‘play
Nash’ as prohibiting the player to exclude the possibility that a Nash equilibrium
arises, game-theoretic advice does not make sense.

Synthese, 124 (2000), 361-384 shows it does not. My interest here is, however, the reasonableness
(as opposed to rationality) of the advice.



Chapter 5
The Methodology of Game Theory

This book reports both internal and external investigations into game theory. Inter-
nally, game theory’s tacit modelling assumptions were investigated carefully repre-
senting and interpreting epistemic characterisation results. Externally, game theory’s
connections to economic consultancy or normative advice and to descriptions and
explanations of rational economic agency were studied, and it emerged that the first
connection is meaningless and that the second assumes a particularly narrow episte-
mology on the part of the modelled individuals. This chapter continues the external
study. It is devoted to a view of scientific methodology that declares economic the-
ory, if true at all, only true ‘in the abstract’. In that view, game theory does not so
much study strategic interaction of economic agents reasoning on the basis of be-
liefs, desires and rationality principles, as relate it to a field of vaguely adumbrated
‘truths-in-the-abstract’.

To start, I will look at this view in the writings of John Stuart Mill and also
in more recent writings of two highly respected game theorists, Robert Aumann
and Ariel Rubinstein. I will then turn to three mutually dependent research habits
that are sanctioned by this view—overmathematisation, introversion and model-
tinkering. While these habits are not ineluctable consequences of the true-in-the-
abstract view—this view may, by all means, be found in disciplines that are en-
tirely unmathematised—in game theory it manifests itself in these research habits.
The second part of the chapter contains a case study in which I compare the Nash
Equilibrium Refinement Programme with the Epistemic Programme, defending the
claim that the latter is more successful than the former in reaching the goal of de-
veloping a complete characterisation of the strategic rationality of economic agents
and attributing this success to the stronger adherence of the Nash Equilibrium Re-
finement Programme to the truth-in-the-abstract methodology.

To introduce the topic, let me take a brief look at the beginnings of game the-
ory. Suggesting a fresh look at how to apply mathematics to social science, John
von Neumann and Oskar Morgenstern’s The Theory of Games and Economic Be-
havior inspired a generation of mathematicians and economists to work on many
questions left open by the two authors and to use their creativity to explore the

B. de Bruin, Explaining Games, Synthese Library 346, 125
DOI 10.1007/978-1-4020-9906-9_5, (©) Springer Science+Business Media B.V. 2010
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new field in greater depth.! Of this generation, John Nash is by far the best known.
The equilibrium concept that he developed in his Ph.D. dissertation quickly became
a fundamental notion in game theory, spurring an entire research programme. Al-
though a paragon of mathematical elegance and simplicity, his equilibrium concept
was considered as characterising ‘unreasonable’ or ‘counterintuitive’ outcomes of
game-playing. It was the ambitious goal of the Nash Equilibrium Refinement Pro-
gramme (NERP) to overcome these inadequacies and to define a complete charac-
terisation of strategic rationality in the form of the ultimate game-theoretic solution
concept, while at the same time holding to many of the original maxims underlying
Nash’s concept.

There is virtually no textbook on game theory that does not discuss NERP in
detail, while several introductions to the subject only cover NERP.> The programme
gained the highest official recognition in 1994, when the Nobel Prize in Economics
was awarded to John Harsanyi, Reinhard Selten and John Nash himself, for ‘their pi-
oneering analysis of equilibria in the theory of non-cooperative games’.> Robert Au-
mann, a Nobel laureate, too, even declared that ‘the equilibrium concept of Nash. . .,
together with its refinements, is without doubt the single game theoretic tool that is
most often applied in economics’.*

Nevertheless, NERP has met with serious if not devastating objections. Empir-
ical evidence soon revealed that not only the Nash equilibrium, but also all of its
proposed refinements do not score highly on empirical adequacy.’ Moreover, alter-
native work in game theory suggested different, more promising ways to describe
economic behaviour and to reach the key objective of developing a complete char-

! Mary Ann Dimand and Robert Dimand, A History of Game Theory: Volume I: From the Begin-
nings to 1945 (London: Routledge, 1996) shed interesting light on the origins of game theory prior
to von Neumann and Morgenstern’s opus magnum (its sequel, dealing with postwar game theory,
will be published in 2009). Also see E. Roy Weintraub (ed.), Towards a History of Game Theory
(ann. supp. to History of Political Economy) (Durham, NC: Duke University Press, 1992).

2 Morton Davis, Game Theory: A Nontechnical Introduction (1970; rev. ed. 1983; repr. 1997, Mi-
neola: Dover), Drew Fudenberg and Jean Tirole, Game Theory (Cambridge, Mass.: MIT Press,
1991), Roger Myerson, Game Theory: Analysis of Conflict (Cambridge, Mass.: Harvard Univer-
sity Press, 1991), Martin Osborne, An Introduction to Game Theory (New York: Oxford UP, 2003),
id. and Ariel Rubinstein, A Course in Game Theory (Cambridge: MIT Press, 1994). Cf. Eric Ras-
musen, Games and Information: An Introduction to Game Theory (Malden: Blackwell, 1989; 4th
ed. 20006).

3 The Royal Swedish Academy of Sciences, press release, 11 October 1994,
http://nobelprize.org/nobel_prizes/economics/laureates/1994/press.html  (accessed 11 Septem-
ber 2008).

4 “Correlated Equilibrium as an Expression of Bayesian Rationality’, Econometrica, 55 (1987), 1.

3 The Nash equilibrium does not fare well empirically in games with multiple equilibria and in
situations in which inexperienced players play the game only once. If individuals gain experience
playing games with unique Nash equilibria, they tend to converge to playing Nash equilibrium
strategies over time. Evolutionary game theory tries to explain convergence as a result of trial-
and-error tactics. See Larry Samuelson, Evolutionary Games and Equilibrium Selection (Cam-
bridge, Mass.: MIT Press, 1997). On experimental results see Colin Camerer, Behavioral Game
Theory (Princeton: Princeton University Press, 2003), Andrew Colman, ‘Cooperation, Psycholog-
ical Game Theory, and Limitations of Rationality in Social Interaction’, Behavioral and Brain
Sciences, 26 (2003), 139-198, and Douglas Davis and Charles Holt, Experimental Economics
(Princeton: Princeton University Press, 1993).
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acterisation of strategic, interactive rationality. Insights from measure theory, topol-
ogy, epistemic logic, preference logic and belief—desire psychology were used—in
the Epistemic Programme—instead of introducing highly ad hoc ways to refine the
Nash Equilibrium. It is the contrast between these two research programmes that
will be studied in this chapter.®

The Epistemic Programme was not, and is not, the only response to NERP. I ig-
nore more recent contributions from evolutionary game theory, stochastic game the-
ory and behavioural game theory.” These three research programmes depart more
radically from NERP than the Epistemic Programme. They do not share with NERP
and the Epistemic Programme the idea that game theory’s key objective is to model
situations of interaction between perfectly rational economic agents. Rather, they
abandon rationality altogether (in favour of mutation and selection or trial-and-
error, in the case of evolutionary game theory) or study less-than-perfect forms of
rationality (in behavioural and stochastic game theory). While these three research
programmes are generally considered to deliver models that are empirically more
adequate than those of NERP, the Epistemic Programme is arguably in the same
position as NERP with regard to empirical success. The difference between NERP
and the Epistemic Programme highlighted here concerns a criterion of success that
is, by contrast, internal. What matters here is the extent to which the theory pro-
vides adequate models of the strategic interaction of rational agents, rather than the
extent to which it succeeds in describing or predicting empirical economic phenom-
ena. NERP and the Epistemic Programme may or may not have aimed to describe
and predict real economic agents. Even if they did not, it can nevertheless be mean-
ingfully claimed that the Epistemic Programme was more successful than NERP in
terms of such internal criteria of success.®

Game theory has received much attention from philosophers. Action theorists
and philosophers of science have scrutinised the use of game theory in such fields
as ethics, economics and political philosophy, while historians and science studies
scholars have examined such relations as those between game theory and the mil-
itary.9 Yet, as Francesco Guala notes, there is an urgent need for case-studies of

6 Several highly respected game theorists have contributed to both programmes, and I therefore
define NERP and the Epistemic Programme in terms of content and methods, not people. Further-
more, finding mathematics-driven mathematisation in the contributions of a certain author does not
entail that his complete oeuvre betrays overmathematisation. This is especially true of Reinhard
Selten, who has shown a deep and sincere interest in empirical work, witness, e.g., his founding in
1984 of the Experimental Economics Laboratory at the University of Bonn, Germany (the first in
Europe, it is claimed). See also Reinhard Selten, ‘Comment [on Aumann’s ‘“What is Game Theory
Trying to Accomplish?’]’, in K. Arrow and S. Hohkapohja (eds.), Frontiers of Economics (Oxford:
Blackwell, 1987), 77-87.

7 See, e.g., Camerer, op. cit., Samuelson, op. cit., and Jacob Goeree and Charles Holt, ‘Stochas-

tic Game Theory: For Playing Games, Not Just for Doing Theory’, Proceedings of the National
Academy of Sciences, 96 (1999), 10564-10567.

8 Nicola Giocoli, Modeling Rational Agents: From Interwar Economics to Early Modern Game
Theory (Cheltenham: Edward Elgar, 2003), studying the history of postwar economic theory, sug-
gests that game theory does not aim at empirical adequacy.

9 See, e.g., Christina Bicchieri, ‘Rationality and Game Theory’, in A. Mele and P. Rawling (eds.),
The Handbook of Rationality (Oxford: Oxford University Press, 2003), 182-205, Boudewijn de
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concrete game-theoretic argumentation and economic model building, and it is one
of the objectives of this chapter to contribute such a case-study to the literature.'”

5.1 Truth in the Abstract

5.1.1 The Methodology

5.1.1.1 John Stuart Mill

In his 1836 essay on political economics, John Stuart Mill distinguishes between the
a posteriori method of science, characteristic of ‘those who are called practical men’
who reason upward by induction on ‘specific experience’, and the a priori method,
characteristic of ‘those who are called theorists’ who reason downward using de-
duction and ratiocination on the basis of abstract pictures of reality.!! The crux of
the difference—the aim is, of course, to distinguish natural and social science—Ilies
in the possibility of carrying out an experimentum crucis (decisive experiment) to
settle on the correctness of a theory once and for all. Mill believes that in the natural
sciences a theory can be confronted with experiments that would bring to light the
falsity of the theory in a direct, clear-cut and indisputable way, and hence it makes
sense to consider such a theory as an inductive a posteriori generalisation of specific
observed facts. In the social sciences, however, a number of characteristics lead to
serious difficulties when carrying out such decisive experiments. First, the number
of forces influencing a social phenomenon is much higher than in the natural sci-
ences, and on that account it is difficult, if not impossible, to determine what exactly
it is that an experiment shows—the theory may be downright false, or only incom-

Bruin, ‘Game Theory in Philosophy’, Topoi, 24 (2005), 197-208, Zachary Ernst, ‘Explaining the
Social Contract’, British Journal for the Philosophy of Science, 52 (2001), 1-24, Francesco Guala,
‘Has Game Theory been Refuted?’, Journal of Philosophy, 103 (2006), 239-263, Daniel Hausman,
“Testing Game Theory’, Journal of Economic Methodology, 12 (2005), 211-223, Hans Jgrgen Ja-
cobsen, ‘On the Foundations of Nash Equilibrium’, Economics and Philosophy, 12 (1996), 67-88,
Harold Kincaid, ‘Formal Rationality and its Pernicious Effects on the Social Sciences’, Philosophy
of the Social Sciences, 30 (2000), 67-88, Steven Kuhn, ‘Reflections on Ethics and Game Theory’,
Synthese, 141 (2004), Philip Mirowski, ‘When Games Grow Deadly Serious: The Military Influ-
ence on the Evolution of Game Theory’ in C. Goodwin (ed.), Economics and National Security:
A History of their Interaction (ann. supp. to History of Political Economy) (Durham, NC: Duke
University Press, 1991), 227-256, Ahti-Veikko Pietarinen, ‘Games as Formal Tools versus Games
as Explanations in Logic and Science’, Foundations of Science, 8 (2003), 317-364, Mathias Risse,
‘What is Rational about Nash Equilibria?’, Synthese, 124 (2000), 361-384, Julius Sensat, ‘Game
Theory and Rational Decision’, Erkenntnis, 47 (1998), 379—410.

10 “Building Economic Machines: The FCC Auctions’, Studies in History and Philosophy of Sci-
ence Part A, 32 (2001), 453-454.

1" <On the Definition of Political Economy; and on the Method of Philosophical Investigation in
that Science’, London and Westminster Review, 26 (1836), 1-29; citations are from the 1844 ed.
repr. in ibid., Collected Works of John Stuart Mill, ed. J. Robson (Toronto: University of Toronto
Press, 1967), 309-339. On what follows, see pp. 324, 325 and 330.
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plete. Second, where an experiment can circumvent this problem, it is often difficult
or impossible to repeat the experiment. And in the rare cases where a decisive exper-
iment would in principle be repeatable, it is often impossible to vary the experiment
to test its robustness, resilience and reliability. This means, Mill says, that in the
social sciences it does not make much sense to build theories by generalising from
experience; the social sciences can only adopt the a priori method.

That being the case, the social scientist abstracts away from the phenomenon
to be explained. But since he or she has to start from observation as well, it is in
this process of simplification and abstraction that the alleged deductive character of
the social sciences lies. On the basis of an abstract picture of the phenomenon the
social scientist proceeds by mere ratiocination (deduction and calculation) to finish
with statements that ‘are only true, as the common phrase is, in the abstract’. In
the process of abstraction a number of forces, causes and other factors have been
ignored with the rather trivial consequence that their influence cannot be found in
the statements the scientist obtains by ratiocination. In the application of the theory,
these ‘disturbing causes’ (the causes that, in Mill’s words, ‘have not fallen under the
cognizance of the science’) have to be included, and that practice is art, not science,
using the term to refer to skilled, yet creative labour rather than to such activities
as painting or sculpting. Ultimately, however, ‘that which is true in the abstract, is
always true in the concrete with proper allowances’. In other words, the difference
Mill detects between social and natural sciences comes down to the existence of
disturbing causes. Without such causes, decisive experiments could be carried out,
repeated and varied, and results as precise as those in the natural sciences would be
possible.

5.1.1.2 Robert Aumann and Ariel Rubinstein

How do contemporary social scientists (and in particular, game theorists) view the
methodologies they use? While in several branches of the social sciences a genuine
Grundlagenstreit has been fought, few game theorists seem to be worried by the
interpretational questions that may be raised about their subject. Very few have pub-
lished their views on these matters, and if so, almost without exception in papers
whose main topic was not interpretative. Two of the exceptions are Robert Aumann
and Ariel Rubinstein. To start with the latter, although the emphasis in his interpre-
tative papers lies on questions about the interpretation of particular game-theoretic
models, it is fair to read Rubinstein as promoting a true-in-the-abstract view of game
theory, casting the methodology mainly as a denial of any predictive aspirations un-
derlying the theory of games. While Rubinstein does not consider game theory as a
part of pure mathematics in that it relates to the real world, he rejects the view that
‘the object of game theory is to predict behaviour in the same sense as the sciences
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do, or indeed, that it is capable of such a function’.!? Rather, he views the function
of game theory as providing abstract insights into social interaction:

I view game theory as an analysis of the concepts used in social reasoning when dealing
with situations of conflict. It is an abstract inquiry into the function and logic of social
institutions and patterns of behaviour.'?

This does not mean that there is no connection with the real world at all. Unsurpris-
ing for the true-in-the-abstract point of view, this is, however, not part of science but
rather an art:

Modeling requires intuition, common sense, and empirical data in order to determine the
relevant factors entering into the players’ strategic considerations and should thus be in-
cluded in the model. This requirement makes the application of game theory more an art
than a mechanical algorithm. '

An earlier contribution to the true-in-the-abstract conception of game theory is
Robert Aumann’s essay on what game theory is trying to accomplish.”> Holding
to the view that the concept of truth ‘does not. .. apply to theories’ and that conse-
quently game theory is not descriptive ‘in the same sense that physics or astronomy
are’, Aumann takes game theory to be descriptive of rational man, ‘Homo ratio-
nalis. . .[,] a mythical species like the unicorn and the mermaid’, claiming that such
a mythology does have some relevance to ordinary human beings:

I find it somewhat surprising that our disciplines have any relation at all to real behavior. (I
hope that most readers will agree that there is indeed such a relation, that we do gain some
insight into the behavior of Homo sapiens by studying Homo rationalis).

The idea is that game-theoretic models can be expected to represent ‘certain as-
pects of the behavior of Homo sapiens’ in the sense that some of the phenomena
we observe ‘are nicely tied together by the hypothesis that they act as if they were
maximizing’. Although this form of instrumentalism is, if you read the text care-
fully, only attributed to decision-theoretic and game-theoretic models of animal be-
haviour, Aumann nevertheless suggests that something like this may be true in the
social sciences as well. Where truth cannot be the criterion to judge game theory,
Aumann states that we should take an instrumentalist stance and measure its use-
fulness. By usefulness he does not mean usefulness as in prediction or advice, but
rather the usefulness of the ‘insights’ that the theory provides. Nor does the term
remain entirely unclear, for apart from the instrumentalist insights that Aumann

12 «Comments on the Interpretation of Game Theory’, Econometrica, 59 (1991), 909. Other
relevant papers include ‘A Subjective Perspective on the Interpretation of Economic Theory’,
in A. Heertje (ed.), The Makers of Modern Economics: Volume 1 (New York: Harvester Wheat-
sheaf, 1993), 67-83, and ibid., ‘Joseph Schumpeter Lecture: A Theorist’s View of Experiments’,
European Economic Review, 45 (2001), 615-628.

13 Tbid.

14 Tbid. 919.

15 “What is Game Theory Trying to Accomplish?’, in K. Arrow and S. Honkapohja (eds.), Frontiers
of Economics (Oxford: Blackwell, 1987), 28-76. On what follows, see pp. 25, 34, 36, 39 and
41-42.
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promises, he proposes to value the ‘classifying function’ of game theory. Game the-
ory can be used to describe ‘the situations themselves rather than the behavior of
the participants in them’ such as when we distinguish between non-cooperative and
cooperative games, or between normal form and extensive games.'¢

Finally, Aumann wishes to defend the view that game theory has to be seen as
art:

The distinction between the common conceptions of science and art is in any case not
sharp; perhaps our disciplines are somewhere in between. Much of art portrays the artist’s
subjective view of the world; art is successful when the view expressed by the artist finds
an echo in the minds of his audience. .. For this to happen, the artist’s statement must have
some universality. ..

We [game theorists] strive to make statements that, while perhaps not falsifiable, do have
some universality.

Although this may not add to Aumann’s true-in-the-abstract conception of game
theory, I mention it in order to make clear that when Aumann writes of game theory
as an art he does not try to characterise a particular view of application. It is art in
the modern meaning of ‘fine arts’, not in the ancient sense of fechne (craft). It is
clear that Aumann’s notion of art stands in stark contrast to Mill’s and Rubinstein’s
notions.!”

5.1.2 The Research Habits

If these are the theoretic underpinnings of the true-in-the-abstract view, what does
this view lead to in practice? Before turning to the case study pitting the Nash Equi-
librium Refinement Programme against the Epistemic Programme, I will briefly

16 T doubt whether it is genuinely possible to classify situations without behaviour. A first possibil-
ity would be to describe only the actions available to the agents, their utilities, and so on; this would
be a description of the game-playing situation minus the actions actually performed. Different sit-
uations could be distinguished game-theoretically along (precisely) three dimensions (for normal
form games: the (number of) players, the (number of) actions, and the utility functions), and along
a fourth dimension (for extensive games: tree structure). Yet no solution concept is involved, and
hence it is questionable whether such classificatory applications are genuinely game-theoretic. A
second possibility would be to classify games also along the dimension of solution concepts, or
at least to let solution concepts play a significant role in the classification. To be a description of
situations without behaviour, solution concepts would have to be used to show possible ways of
behaving (e.g., asymmetries in the game, socially suboptimal but individually rational outcomes,
coordination problems about multiple Nash equilibria, etc.). Reasonable as this may sound, I doubt
that the second option really makes sense without a commitment to some theory of action and mo-
tivation. An outcome can only be described as socially suboptimal and individually rational if you
have some conception of what it means to be a motivation for a player to perform some action
rather than another, and you can only speak about coordination problems if players envisage their
choice situation in a way that is sufficiently similar to the description of the game.

17 Rubinstein, art. cit., 919 ironically attributes his characterisation of application as art to Au-
mann’s 1987 paper. Note furthermore the remark about falsifiability.
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examine a number of research habits that arise from adherence to the true-in-the-
abstract view of game theory.

5.1.2.1 Overmathematisation

Many papers in game-theoretic literature have a form that does not differ much
from that of papers in pure mathematics. Relations with non-mathematical questions
from economics and other social sciences, as well as with psychological and philo-
sophical insights into rational agency are ignored, while mathematical elegance and
sophistication are assigned a major role. Mathematisation, here, is driven by mathe-
matical concerns rather than by applications. This form of mathematisation is called
overmathematisation, overemphasising mathematics as it does.

Some game theorists acknowledge the preponderance of mathematics-driven
mathematisation, but only a few of them see this as a problem. Indeed, Ken Bin-
more conjectures that it is commonly justified by pointing out that only in such a
mathematical way can game theorists focus on important matters instead of pay-
ing undue attention to irrelevancies. However, he believes that the current approach
misses this aim

[by] leaving unformalized factors which matter, but also by introducing formal require-
ments that cannot be defended operationally except in terms of mathematical elegance or
simplicity.'®

Mathematisation is just a consequence of applying mathematics and is not objec-
tionable as such, and it is often, as Giorgio Israel aptly puts it, ‘the highway leading
to the construction of a science that participates in the truth’.'® When issues of ap-
plications yield to purely mathematical questions, however, this highway to the truth
becomes obstructed.

5.1.2.2 Introversion

Second, a true-in-the-abstract conception often goes hand in hand with a rather in-
troverted approach to science. Internal, technical problems of game theory are as-
signed great importance at the cost of questions about the external relations of the
theory such as its empirical relevance or its connections to psychological, concep-
tual insights into human strategic behaviour. Speaking about the ‘validity’ of the
principle of expected utility maximisation, for instance, Robert Aumann states that
it

does not depend on its being an accurate description of true individual behaviour. Rather,

it derives from its being the underlying postulate that pulls together most of economic the-

18 ‘Modeling Rational Players: Part I', Economics and Philosophy, 3 (1987), 152.

19 “The Science of Complexity: Epistemological Problems and Perspectives’, Science in Context,
18 (2005), 488.
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ory...In judging utility maximisation, we must ask not ‘Is it plausible?’ but ‘What does it
tie together, where does it lead?’20

Aumann continues this introverted line of reasoning to defend the claim that the
alternative principle of satisficing, developed by Herbert Simon, has to be rejected:

Alternatives [to the principle of expected utility maximisation] have proved next to useless
in this respect. While attractive as hypotheses, there is little theory built on them; they pull
together almost nothing; they have few interesting consequences.?!

5.1.2.3 Model-Tinkering

Another true-in-the-abstract habit that can be found in some game theoretic liter-
ature is model-tinkering, the habit of designing all kinds of mathematical niceties
to tune up some model to describe the phenomenon that it should describe. An
example can be found in responses to Reinhard Selten’s work on the Chain-Store
Paradox.?? Selten analysed a form of market entrance involving a monopolist with,
say, hamburger restaurants in twenty towns, and twenty local business people decid-
ing whether to enter the market by opening a local hamburger joint (once they have
raised enough capital, that is). According to Selten’s model, the monopolist would
play cooperatively rather than aggressively in all of the twenty towns, but Selten
found this clearly contrasted with everyday life economic experience, writing that
this game-theoretic model ‘merits the name of a paradox’.??

To describe aggressive behaviour on the part of the monopolist instead of cooper-
ation, a number of game theorists started modifying Selten’s model by relaxing the
assumption that rationality and utility structure are common knowledge among the
players. With high probability the players are expected utility maximisers, but with
low probability they are not.”* This may, of course, exactly describe the epistemic

20 Art. cit. 35.

21 Ibid. The implicit reference is to Herbert Simon, Reason in Human Affair (Stanford: Stanford
University Press, 1983), but an explicit bibliographic reference to Simon is lacking in Aumann’s
paper. This quotation serves here mainly to illustrate introversion. Yet an inconsistency is lurking
in Aumann’s argument. His main objection to Simon’s satisficing is that it ‘ties together’ much less
than the principle of maximisation of expected utility. Of course, satisficing does not tie together
much of the theory built around the principle of expected utility maximisation, but that is hardly
surprising given the fact that that theory is deeply inspired by that very principle of expected utility
maximisation rather than by satisficing. To be fair, Aumann would have to compare two fully
developed theories: one centred around satisficing, the other around expected utility maximisation.
The problem is, however, that while the latter of these theories exists, only the skeleton of a theory
around satisficing is available to date. What Aumann should want to do (to compare the merits of
two theories) is impossible. Therefore, the comparison Aumann envisages is impossible to carry
out.

22 “The Chain-Store Paradox’, Theory and Decision, 9 (1978), 127-159. See Section 4.1.1.
23 1bid. 133.
24 David Kreps, et al., ‘Rational Cooperation in the Finitely Repeated Prisoners’ Dilemma’, Jour-

nal of Economic Theory, 27 (1982), 245-252, ibid. and Robert Wilson, ‘Reputation and Imperfect
Information’, ibid. 253-279, and Paul Milgrom and John Roberts, ‘Predation, Reputation, and En-
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conditions of the monopolist and the local business people, but the alternative mod-
els were not developed on the basis of close inspection of these conditions. Rather,
purely mathematical model-tinkering led rather neatly to slightly different models
with the desired outcome (an aggressive monopolist) and it is entirely ad hoc in
that it does not have any aspirations to larger generality. The desired consistency
with the aggressive monopolist therefore comes at a price, because the model not
only describes the actions of the player, but also the informational structure of the
game-playing situation.

This is in some respects similar to the development of physical models of mo-
tion. While secondary school physics does not correctly describe the behaviour of
light or fluffy objects like balloons, ad hoc models have been developed to take care
of exactly these objects by, for instance, incorporating air resistance. Air resistance
is the obvious analogue of the informational structure in the above game-theoretic
models, but in stark contrast to game theory, physicists can demonstrate the em-
pirical adequacy of air resistance. The ad hoc models not only get their credibility
because of the fact that they describe balloons correctly, but also by the fact that the
extra assumptions concerning air resistance mirror physical phenomena of which
empirical investigations actually demonstrate the ‘reality’. The game theorists do
not show the reality of the informational structure, however. No indication is given
that monopolists and business people indeed lack common knowledge of expected
utility maximisation, and that they rather assign such beliefs to each other with a
certain (high) level of probability. Tuning up a model with extra assumptions with-
out showing the adequacy of these assumptions, however, is not only ad hoc, it is
also mere model-tinkering.?

5.2 A Case Study: Refining the Nash Equilibrium

To see the true-in-the-abstract view at work, I will now turn to a comparison be-
tween the Nash Equilibrium Refinement Programme (NERP) and the Epistemic
Programme. I will first make the case that NERP researchers defended the need
to refine the Nash equilibrium using epistemic terms that betray assumptions very
similar to those successfully formalised in the Epistemic Programme, paying at-
tention to the Nash equilibrium itself, the subgame-perfect equilibrium, the perfect

try Deterrence’, ibid. 280-312. The solution concept used here was developed by David Kreps and
Robert Wilson, ‘Sequential Equilibria’, Econometrica, 50 (1982), 863-894.

25 In all fairness it should be noted that Kreps and Wilson, ‘Rational Cooperation in the Finitely
Repeated Prisoners’ Dilemma’, 276 seem to have anticipated this kind of critique when they wrote
that one may suspect that ‘by cleverly choosing the nature of [some] small uncertainty..., one
can get out of a game theoretic analysis whatever one wishes. We have no formal proposition
of this sort to present at this time, but we certainly share these suspicions. If this is so, then the
game theoretic analysis of this type of game comes down eventually to how one picks the initial
incomplete information. And nothing in the theory of games will help one to do this’.
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equilibrium and the proper equilibrium.?® The structure of the discussion of the so-
Iution concepts is first to examine the motivation underlying the refinement given
by the NERP researchers themselves. I will lay bare the implicit epistemic assump-
tions that NERP researchers adopt to motivate the proposed solution concept, re-
ferring to results from the Epistemic Programme that captured these assumptions
more adequately. Subsequently, a historical summary of the Epistemic Programme
emphasises what I have already explained in detail in Chapters 2 and 3; namely, that
its formalism is application-driven rather than mathematics-driven.

5.2.1 The Nash Equilibrium Refinement Programme

5.2.1.1 The Nash Equilibrium

John Nash worked on his equilibrium concept while he was a graduate student at
Princeton, publishing a paper in Annals of Mathematics in 1951.%” For the historian
and philosopher of science his 1950 Ph.D. dissertation is a more interesting source
to consult though, because it contains a six-page discussion of what Nash calls the
‘interpretation” of the equilibrium concept he proposes.?® Nash asserts that his equi-
librium is the only rational prediction of the outcome of strategic interaction:

‘We proceed by investigating the question: what would be a ‘rational’ prediction of the be-
havior to be expected of rational [sic] playing of the game in question? By using the prin-
ciples that a rational prediction should be unique, that the players should be able to deduce
and make use of it, and that such knowledge on the part of each player of what to expect
the others to do should not lead him to act out of conformity with the prediction, one is led
to the concept of a solution defined before.?’

The wording is already epistemic. First, the players are supposed to be able to ‘de-
duce’ the Nash equilibrium and to ‘make use of it’. This clearly presupposes knowl-
edge about the strategies available to the players as well as their utility functions, for
without strategies and utility there is no equilibrium. The players have to know what
game they are playing if they are to calculate the equilibrium. Second, with no ex-
tra argumentation, Nash contends that knowledge about the equilibrium constitutes
knowledge about ‘what to expect the others to do’. This may seem unwarranted,
for why would players play equilibrium strategies? Yet it is unsurprising once you

26 1 refer to the primary sources from the refinement literature. Eric van Damme, Stability and
Perfection of Nash Equilibria: Second, Revised and Enlarged Edition (Berlin: Springer, 1987)
contains very similar argumentative strategies for such refinement proposals as the approachable,
essential, firm, regular, and strictly and weakly proper equilibrium.

27 ‘Non-Cooperative Games’, Annals of Mathematics, 54 (1951), 286-295.

28 “Non-Cooperative Games’, Ph.D. diss. (Princeton University, 1950). The note is absent from
the published paper with the same title. The appendix to the Ph.D. dissertation (pp. 21-26) also
mentions a second ‘interpretation’ of the Nash equilibrium in terms of repeated game-play, fore-
shadowing applications in evolutionary game theory.

2 Op. cit. 23.
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realise that Nash also stipulates that the equilibrium be the ‘unique’ rational pre-
diction of the outcome of a game. Under that stipulation it is true that if one has
the ability to deduce the equilibrium, one has by the same token the ability to ob-
tain knowledge about the only rational prediction of the game, and, consequently,
to obtain knowledge about what to expect from others. Every player knows what
her opponents will play, and she knows that they will play according to the Nash
equilibrium. Given such knowledge the only expected utility maximising action for
her to perform is to play his part of the Nash equilibrium. This shows that the last of
Nash’s desiderata is also fulfilled. Knowledge about the rational prediction will not
make players act ‘out of conformity with the prediction’.

NERP researchers have long accepted as a ‘folk theorem’ that the Nash equilib-
rium requires common knowledge of rationality and utility. Nash’s argument does
not require this, however, and it was not until the publication of several papers on the
epistemic characterisation of the Nash equilibrium that this view was corrected.’”
It was shown that if all players are rational (expected utility maximisers), and know
their own utility function, and know what their opponents will play, then the players
will play a Nash equilibrium.?' The epistemic characterisation theorem of the Nash
equilibrium does not contain a reference to common knowledge or to knowledge
about rationality—the folk theorem is false. Furthermore, the epistemic assumptions
underlying the Nash equilibrium thus disclosed leave no room for a ‘deduction’ of
the Nash equilibrium as Nash envisaged it. To play a Nash equilibrium, players
have to know exactly what their opponents will choose. Such knowledge cannot in
general be obtained on the basis of knowledge about the fact that the opponents
are rational, because rationality frequently does not allow one to settle on a unique
course of action. It will rather be obtained on the basis of exogenous, statistical in-
formation about previous game-playing situations, if such information is available
and dependable. However, following von Neumann and Morgenstern’s ban on ex-
ogenous information, Nash’s idea was that players will ‘deduce’ such knowledge
on the basis of information about the structure of the game only. The epistemic
characterisation of the Nash equilibrium shows that this is impossible.3?
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5.2.1.2 The Subgame-Perfect Equilibrium

Reinhard Selten’s 1965 paper on oligopoly with demand inertia contains the first
proposal for a refined equilibrium concept.? Selten crafts his argument on the basis
of a game that, he believes, contains a Nash equilibrium that is not ‘rational’, and he
provides a refinement excluding exactly such alleged irrationalities. Selten’s game
is shown in Figure 5.1 with changed notation. It is an extensive game of perfect
information. It contains two (pure) Nash equilibria, (R,r) and (L,[), the former of
which, Selten states, ought not to be called ‘rational’:

The equilibrium point (R, r) can only be so interpreted that player 2, prior to game-play,
threatens with a decision for z; to drive player 1 to behave according to R. This threat, how-
ever, has to remain without effect, as long as player 2 cannot, in advance, commit himself to
carry it out. Player 1 knows that player 2 will have no interest in carrying it out as soon as
play has reached the point x. This reflection shows that (R, r) cannot be seen as a rational,
non-cooperative solution under the assumption of a complete absence of the power to bind

30 Robert Aumann and Adam Brandenburger, ‘Epistemic Conditions for Nash Equilibrium’,
Econometrica, 63 (1995), 1161-1180, and Adam Brandenburger, ‘Knowledge and Equilibrium
in Games’, Journal of Economic Perspectives, 6 (1992), 83—101.

31 For references to papers showing adherence to the incorrect folk theorem, see Aumann and
Brandenburger, art. cit.

32 Nash’s second interpretation in terms of repeated game-play is not immediately excluded by the
epistemic characterisation of the Nash equilibrium.

33 Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetrigheit: Teil I: Bestim-

mung des dynamischen Preisgleichgewichts’, Zeitschrift fiir die gesamte Staatswissenschaft, 121
(1965), 310-324.
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oneself [to a particular choice of strategy]. The possibility of such undesired cases forces us
to sharpen the notion of equilibrium in an appropriate manner.>*

The strategy profile (R,r) can only be interpreted as representing a situation in
which, prior to game-play, player 2 has voiced a threat to commit himself to playing
r. Nonetheless, Selten claims that this threat is not credible because r is irrational
for 2 once he arrives at x. To exclude the ‘irrational strategy profile (R, r), Selten
introduces a refinement of the Nash equilibrium nowadays called subgame-perfect
equilibrium.>> A subgame-perfect equilibrium of an extensive game is a Nash equi-
librium that satisfies the additional requirement that it be a Nash equilibrium of all of
its subgames. This clearly rules out the strategy profile (R, r), since in the subgame
generated by x it would be better for player 2 to play .

Selten’s argument against the rationality of (R,r) only works, however, on the
basis of two specific assumptions about the beliefs of the players, one of which
Selten leaves fully implicit and unformalised. First, Selten has to assume that the
strategies characterised by the Nash equilibrium are backed by particular beliefs
held by the players. Without having beliefs about player 2, player 1 would not be
in the position to evaluate player 2’s announcement to play r as a threat rather than
as a helpful suggestion for coordinated action. To see this it is important to examine
what makes a threat a threat. If it is carried out, the threat has to be disadvantageous
to the player threatened. In addition, if the threat is taken seriously by the threatened
player, then this is advantageous to the one who threatens, and the threatener will not
carry out the threat. For the threatened player to believe that the threatener is making
a conscious threat, the one threatened has to believe that the threatener believes all
this. In fact, common belief is needed.

Applied to the present case, Selten has to assume that player 1 believes that player
2 believes that r, if carried out, would be disadvantageous to player 1. This is an
instance of common belief about the utility function of player 1, representing as it
does what is advantageous and disadvantageous to him.3° Selten has to assume, too,
that player 1 believes that player 2 believes that if player 1 takes the threat seriously
and plays R, this is advantageous to player 2. This is an instance of common belief
about the utility function of player 2. Selten has to assume, moreover, that player 1
believes that player 2 believes that if player 1 believes that player 2 will carry out
his threat and play r, that player 1 will then give in and play R. Since such reasoning
involves the rationality of strategic choice given the beliefs and desires of player
1, this is an instance of common belief about player 1’s rationality. Thus, the first
assumption in order for Selten ’s interpretation of (R,r) to work is that there be
common belief about the utility functions of the players as well their rationality.

34 Ibid. 308 (original German).

35 Selten’s own term was ‘perfect equilibrium’ (ibid. 308). It coincides with backward induction
on games with perfect information.

36 1t is common belief up to level 2, to be precise. Larger games naturally require higher levels.
See Section 3.1 to the effect that the full infinity of common belief will never be used in any finite

game, but a general characterisation statement is most easily phrased using full infinite common
belief.
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Nor is this all. As a second presupposition, Selten has to decide on a specific
form of rationality appropriate to playing extensive games by answering the ques-
tion of whether the rational thing for a player to do in a certain subgame depends
on the history of choices preceding the subgame. Selten explicitly adopts the view
that there is no such dependence (a history-insensitive conception of rationality, in
the terminology developed earlier) when he writes that ‘if there is no power to bind
oneself [to a particular choice of strategy], then the behaviour in a subgame is al-
lowed only to depend on the structure of the subgame itself’.3” This assumption is
crucial because without it subgame-perfection would not be the right solution con-
cept, depending as it does on the idea that there is a clear answer to what rationality
entails at any decision node of a game tree.®

Common belief about rationality and utility, coupled with a specific, history-
insensitive view of rationality in subgames, are the assumptions that inspire Selten’s
subgame-perfect equilibrium. It is in the Epistemic Programme that these assump-
tions were investigated and formalised explicitly, however. To anticipate the discus-
sion below, a central debate in the Epistemic Programme concerns the question of
whether common belief about rationality and utility entails subgame-perfect equilib-
ria (backward induction). Subtle distinctions have been made between various forms
of rationality, while the temporal dynamics of beliefs have been analysed using lex-
icographic probabilities and the logical theory of belief revision. To some extent
the Epistemic Programme vindicates Selten’s subgame-perfect equilibrium in situ-
ations of common belief about rationality and utility. It became clear, for instance,
that Aumann’s epistemic characterisation theorem attempts to give a rigorous proof
to that effect. On the other hand, the Epistemic Programme scores better as it not
only formalises the solution concept, but also the epistemic conditions, in particular
various notions of history-sensitivity.

5.2.1.3 The Perfect Equilibrium

Ten years after the publication of his paper on the subgame-perfect equilibrium,
Selten proposed another refinement.® Although subgame-perfection excludes a
number of ‘intuitively unreasonable’ Nash equilibria, Selten argued that there is a
game in which subgame-perfection does not exclude them all. The game, shown in
Figure 5.2 with changed notation, has become famous under the name of Selten’s
Horse. Each of the three players can choose between two actions. There are (un-
countably) infinitely many mixed Nash equilibria which are subgame-perfect as the
game itself is its only subgame. They can be represented by a triple (pi, p2, p3) of

37 1bid. 308.

38 See Chapter 3 for a discussion of the views of common belief about rationality and utility de-
veloped in the Epistemic Programme, attesting that the formalism was inspired by its applications,
namely, to study the behavioural consequences of particular epistemic assumptions involving the
beliefs, desires and rationality of the players of extensive games.

39 ‘Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games’, Inter-
national Journal of Game Theory, 4 (1975), 25-55.
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real numbers in the unit interval, where p; is the probability that player i plays R.
One type of equilibrium is (1,1, p3) with 0 < p3 < %; the other type is (0, p», 1) with
% < pa < 1. Selten explains that the second type of equilibrium ‘cannot be regarded
as reasonable’:

Now suppose that the players believe that [for example]... (0,1, 1)...is the rational way to
play the game. Is it really reasonable to believe that player 2 will choose R if [node x;] is
reached? If [player 2] believes that player 3 will choose R as prescribed by the equilibrium
point, then it is better for [player 2] to select L where he will get 4 instead of R where he
will get 1...

Clearly, [this equilibrium] cannot be regarded as reasonable. Player 2’s choices should not
be guided by his payoff expectations in the whole game but by his conditional payoff ex-
pectations at [x1]. The payoff expectation in the whole game is computed on the assumption
that player 1’s choice is L. At [x;] this assumption has been shown to be wrong. Player 2
has to assume that player 1’s choice was R.*

Again, the motivation for refinement is cast in epistemic terms. As in the paper on
subgame-perfection, Selten here uses common belief about rationality and utility as
well as the history-insensitive view of the temporal development of rationality. He
adds a condition on the temporal development of players’ beliefs, though. Selten
holds that a player’s beliefs at some decision node x will not be determined by be-
liefs the player had, at decision nodes y preceding x, about the likelihood of reaching
x. Belief formation as well as rationality are, that is, history-insensitive.

The refinement of the Nash equilibrium that he proposes is called the perfect
equilibrium. I will give a brief survey of this refinement, first to underline my claims
about the use of epistemic argumentation in the motivation underlying the perfect
equilibrium, and second because it gives a first illustration of mathematics-driven
mathematisation in the Nash Equilibrium Refinement Programme. Given an exten-
sive game I” (with perfect recall), a test sequence of perturbed games is constructed.
A perturbed game I" = (I", 1) is an ordered pair consisting of the original game and
a probability function assigning positive probability to every choice any player can

40 1bid. 34.
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make. A sequence of perturbed games (I'¥);, where I'* = (I", 1), is a test sequence
whenever the probabilities converge to zero for k — oo. In addition, Selten introduces
the notion of behaviour strategy to take account of the information the probability
function 1, gives to the player about the likelihood of certain outcomes of a certain
perturbed (or unperturbed) game. A limit equilibrium point of a test sequence is de-
fined in a straightforward manner. Finally, a Nash equilibrium of an extensive game
I (with perfect recall) is a perfect equilibrium, in the sense that Selten defines it, if
and only if there is at least one test sequence of I" of which it is a limit equilibrium
point. He proceeds to prove a theorem to the effect that every perfect equilibrium is
subgame-perfect, and then makes an intricate, four-page argument to show that the
undesired equilibria from the game shown in Figure 5.2 are not perfect, and that the
other equilibria are, in fact, perfect; not all subgame-perfect equilibria are perfect,
that is, and this shows that the perfect equilibrium is a genuine refinement of the
subgame-perfect equilibrium.

5.2.1.4 The Proper Equilibrium

The reader may wonder if refining the Nash equilibrium involves nothing more than
first extending its scope from normal form games to extensive games with perfect
information, and then to extensive games with imperfect information. To stress that
this impression would be wrong, I will conclude the survey with a discussion of
Roger Myerson’s critique of the Nash equilibrium for normal form games. First, he
explains:

The concept of [Nash] equilibrium...is one of the most important and elegant ideas in
game theory. Unfortunately, a game can have many Nash equilibria, and some of these
equilibria may be inconsistent with our intuitive notions about what should be the outcome
of a game.*!

L (L | 00

R (0,0) (0,0)

Fig. 5.3

On the basis of the game shown in Figure 5.3 with changed notation he continues:

41 “Refinements of the Nash Equilibrium Concept’, International Journal of Game Theory, T
(1978), 73.



142 5 The Methodology of Game Theory

To see how these counterintuitive equilibria can arise, consider the game [shown in Fig-
ure 5.3]. There are two Nash equilibria in this game, (L,/) and (R, r)...It would, however,
be unreasonable to predict (R, r) as the outcome of this game. If player 1 thought that there
was any chance of player 2 using /, then player 1 would certainly prefer L. Thus (R, r) qual-
ifies as an equilibrium only because Nash’s definition presumes that a player will ignore all
parts of the payoff matrix corresponding to opponents [sic] strategies which are given zero
probability.*?

Myerson’s main point is that when player 1 believes (with arbitrarily small proba-
bility) that player 2 may play /, then player 1, if rational, would play L. Yet, if there
is no reason why player 1 would adopt such beliefs, there is no point complaining
about the Nash equilibrium (R, r). While Myerson does not state it explicitly, it is
not difficult to reconstruct his argument in full. One of the reasons why player 1
would adopt such a belief is that / does not score less than r for player 2 against
player 1 playing R, and [ scores better against player 1 playing L. It is, in other
words, a (weakly) undominated strategy, and it is a form of rationality to choose
these.

The mathematical techniques Myerson uses to set up the refinement are vaguely
similar to those used by Selten to develop his perfect equilibrium. First, Myer-
son defines an e-proper equilibrium as a profile of completely mixed strategies
(o1,...,0N) such that each player assigns much higher probability to her better
choices than to her worse ones. More precisely, if it is better to play / than k given
the mixed strategies of player i’s opponents, then i’s mixed strategy should assign a
factor of % greater probability to / than to k. Myerson defines a proper equilibrium
as the limit of a sequence of e-proper equilibria satisfying certain straightforward
mathematical conditions. He goes on to show that the set of proper equilibria is con-
tained in the set of Nash equilibria, thus showing it to be a real refinement. Finally, a
rather intricate theorem shows that every game has at least one proper equilibrium.*?

5.2.2 Mathematics-Driven Mathematisation in the Nash
Equilibrium Refinement Programme

Up until now I have argued that the proposed refinements of the Nash equilibrium
were motivated by very specific epistemic assumptions, and that they were meant to
characterise the outcome of strategic interaction between rational economic agents
in situations satisfying exactly these assumptions. For Nash, the only rationale un-
derlying the quest for the ultimate solution concept was to determine the unique, ra-
tional prediction of rational play by intelligent economic agents. Such an outcome,

42 Ibid. 73-74.

43 Results in the Epistemic Programme show that Myerson’s proper equilibrium does not ade-
quately capture the epistemic assumptions he implicitly makes. For further discussion of the form
of rationality excluding weakly dominated strategies and a solution concept based on it, see Sec-
tion 2.3. For an enlightening discussion and a recent alternative to the proper equilibrium, see, e.g.,
Geir Asheim, ‘Proper Rationalizability in Lexicographic Beliefs’, International Journal of Game
Theory, 30 (2002), 452-478.
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he claimed, can only be an equilibrium, and so he devised his solution concept as
one in which no player would be better off if she were to choose a different strategy.
Subsequent NERP researchers tried to stay as close as possible to this idea.

The treatment of the Epistemic Programme in Chapters 2 and 3 suggests, more-
over, that by taking a different route it was more successful in giving such a char-
acterisation because it provided explicit formal models of these epistemic assump-
tions. It tried to demonstrate systematic connections between the players’ beliefs
and utility functions and the game’s outcome. Since the Epistemic Programme was
not committed to looking for a unique outcome, a whole new realm of mathemat-
ical results was opened, relating epistemic conditions to various non-equilibrium
solution concepts by means of epistemic characterisation theorems. Iterated strict
dominance, for instance, arises in normal form games with common belief about
rationality and game structure, and the same epistemic assumptions in extensive
game-playing give rise to backward induction. The Epistemic Programme has given
rise to different models relaxing these assumptions. Both the probability theory of
lexicographic beliefs and the logic of belief revision have inspired precise character-
isations of outcomes that arise when players adopt history-sensitive conceptions of
rationality and belief, for instance, or when they are less than fully informed about
their opponents’ utility functions.**

Judging by the increased attention the Epistemic Programme has received since
the mid-1990s in such highly respected journals as Econometrica, the Journal of
Economic Theory, Games and Economic Behavior, and the International Journal
of Game Theory, and also by the decline in the number of publications on NERP,
the Epistemic Programme would seem to have won the day. The Epistemic Pro-
gramme has found a home in two biennial conferences devoted solely to the study
of belief in strategic interaction (Theoretical Aspects of Rationality and Knowledge
(TARK) and Logic and the Foundations of Game and Decision Theory (LOFT)), and
it has become a highly interdisciplinary field, attracting attention from, among oth-
ers, game theorists, logicians, philosophers, probability theorists and statisticians.*’

While it would be rash to claim that the Epistemic Programme has outrun NERP
on empirical adequacy, the claim defended here is that the Epistemic Programme
was more successful than NERP if you measure success by the extent to which
the programmes succeeded in reaching the main research objective of providing a
complete characterisation of strategic rationality. I will now consider an explanation
of the differences in success in terms of overmathematisation and other true-in-the-
abstract research habits.

4 NERP and the Epistemic Programme have very similar aims in that both attempt to determine
what players will choose under certain epistemic and rationality assumptions. They share, for in-
stance, the conception of rationality as expected utility maximisation, and they share, as I have
argued here, an interest in common belief, etc. But in NERP these assumptions were not explicitly
formalised and a lot of theorising remained mathematics-driven rather than application-driven. In
the Epistemic Programme, by contrast, these assumptions were formalised with highly technical,
yet in the end application-driven mathematical tools.

4 1t is interesting to note that TARK started as an acronym for ‘Theoretical Aspects of Reasoning
about Knowledge’, and changed to the current name in 1998, reflecting an increase in attention on
decision and game theory.
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The NERP literature is decidedly Bourbakian, with definitions preceding theo-
rems, which in turn precede proofs.46 Existence theorems, uniqueness results, in-
terrelation lemmas and mathematical pleasantries like the decentralisation theorem
for the perfect equilibrium are brought to the foreground.*’ Questions about appli-
cation and empirical relevance are left untouched, as are conceptual questions about
rationality, the role of beliefs and knowledge in decision-making, the specifics of
common belief in strategic interaction, and the subtle differences between various
forms of rationality—overmathematisation.

There is already mathematics-driven mathematisation in Nash’s very idea to gen-
eralise von Neumann and Morgenstern’s solution concept. Nash extends the concept
to apply to games of arbitrary numbers of players (instead of two) and to games
with arbitrary utility functions (instead of zero-sum games), but he does not give a
conceptual or empirical reason why such generalisation would increase our under-
standing of economic phenomena involving rational strategic interaction. In his own
words, the proposed equilibrium notion yields

a generalization of the concept of the solution of a two-person zero-sum game [in the sense

that] the set of [Nash equilibria] of a two-person zero-sum game is simply the set of all pairs
o 48

of opposing ‘good strategies’.
Von Neumann and Morgenstern, by contrast, use conceptual and empirical argu-
mentation to defend the opposite claim that such a generalisation is unnecessary
and even misguided from the viewpoint of applications. They contend that games
with more than two players are no longer non-cooperative because groups of players
will team up to play in a mutually beneficial way. Moreover, in non-zero sum games
the players’ reasoning processes will not substantiate anything like the concept of
solution that they themselves provide.*” Nash does not address these issues at all,
however. He does not explain why he thinks that to understand strategic interaction
there is a need, contra von Neumann and Morgenstern, to generalise their concept.
Irrespective of the question of whether von Neumann and Morgenstern were right
or wrong—there is much evidence that they were, indeed, too strict—Nash’s si-
lence here indicates that his motivation was inspired not so much by questions of
application as by purely mathematical questions.>

46 See, e.g., E. Roy Weintraub and Philip Mirowski, ‘The Pure and the Applied: Bourbakism
Comes to Mathematical Economics’, Science in Context, 7 (1994), 245-272.

47 Selten, ‘Reexamination’.
48 Nash, art. cit. 286.

49 John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior (Prince-
ton: Princeton University Press, 1944), 31-33, 220-221.

30 Von Neumann judged Nash’s result to be ‘trivial...[and] just a fixed point theorem’ (Sylvia
Nasar, A Beautiful Mind: A Biography of John Forbes Nash, Jr, Winner of the Nobel Prize in
Economics, 1994 (New York: Simon and Schuster, 1998), 94). Note, however, that in view of von
Neumann'’s rejection of subjective probability and references to players’ beliefs, Nash’s interpre-
tation is perhaps quite radical in a sense. The biographical detail about von Neumann’s life may
be read, moreover, as indicating that having considered the mathematical generalisation himself,
he (and Morgenstern) found that it did not yield any interesting contribution to the modelling of
economic phenomena. The way Nash introduced the generalisation did not change this conviction,
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A second instance of overmathematisation can be discerned in Nash’s insistence
on requiring the uniqueness of the outcome of a game. Hardly motivated by non-
mathematical concerns, Nash shared with most other mathematicians his fondness
for uniqueness proofs.>! A simple search through the bibliographic database Math-
SciNet of the American Mathematical Society reveals around 15,000 publications
(after 1950) with the word unique (or compounds thereof) in the title.’> But where
uniqueness is often justified as a desideratum within mathematical theory, it is dif-
ficult to justify in the applied context within which Nash was working; not even if
the desideratum is taken to be a scientific one aspiring to the highest levels of fal-
sifiability. Rationality does not often fix one single action, witness the famous case
of Buridan’s ass, which had to decide between two equally attractive hay bales, or,
to take a more extreme case, games in which there are several outcomes that are
equally attractive to all players.

To sum up, Nash’s work betrays overmathematisation in that his mathematical
modelling assumptions are not backed by conceptual or empirical insights about
what the models are intended to model. By contrast, research in the Epistemic Pro-
gramme started from the idea that outcomes of games had to be related to epistemic
conditions involving the key motivational elements of human agency: beliefs, de-
sires and rationality, and it succeeded in staying much closer to the original idea,
which was to study the strategic interaction of rational individuals.

The first refinement of the Nash equilibrium immediately poses a challenge to
the view defended in this paper, however. Selten presents the subgame-perfect equi-
librium in a research report on oligopoly with demand inertia, rather than in a
mathematics-driven context.”? He takes time to introduce the reader to the relevant
economic phenomena, carefully introduces a mathematical model by defending a set
of equations and (on the basis of these equations) an extensive game. He observes
that in this game the Nash equilibrium fails to characterise only adequate outcomes,
and concludes that this shows the deficiency of the solution concept. Then, in little
more than two pages, he submits a refinement of the Nash equilibrium, the subgame-
perfect equilibrium. Of course there is mathematics in this paper, but this is not
emphasised typographically, textually, or conceptually. The stress lies on a model
of particular economic phenomena and some of its properties. That is, the motiva-
tion for refining the Nash equilibrium concept is, in this paper, ultimately driven by
concrete problems of application, and one should expect that, if it is true that the dif-
ferent levels of success of NERP and the Epistemic Programme can be attributed to

because Nash did not show much awareness of economic applications, not even in the interpretative
Appendix to his Ph.D. dissertation (op. cit. 21-26).

51 Nash did allow for this insight into the sense that all strategies that receive non-zero probability
in a Nash equilibrium that consists of mixed strategies are equally good given that the opponents
stick to their equilibrium strategies. This draws me into a discussion about whether a probability
distribution over actions (which is what a mixed strategy really is) models anything like actions
(as Nash seems to suggest for repeated games), or rather beliefs (as the standard view seems to be
nowadays, witness the treatment in most textbooks). See Section 2.1.

52 Using search-term ‘unique* OR unicity’, and 1950—present as the year-range, 15,460 hits were
found (July 10, 2010).

33 ‘Spieltheoretische Behandlung’.
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NERP’s overmathematisation, Selten’s 1965 results come closest to corresponding
findings from the Epistemic Programme.

This is in fact the case. The subgame-perfect equilibrium and the much older
concept of backward induction are the same, at least concerning games with perfect
information, and the epistemic characterisation theorem obtained in the Epistemic
Programme for backward induction agrees with Selten’s argumentation to the ef-
fect that subgame-perfect equilibria arise in situations in which there is common
belief about rationality and utility (with, to be precise, a history-insensitive variant
of rationality).>*

There is a difference, though, for Selten presents a simple, mathematically el-
egant, but conceptually ad hoc solution to the problem he tries to solve. Simple,
because it applies a preexisting definition of Nash equilibrium to subgames, and
mathematically elegant because it tests for a property inductively through the game
tree. It is conceptually ad hoc, however, because the connection with the conceptual
motivations (credible threats, binding forces, rationality) remains very tenuous. Sel-
ten stayed with the techniques that Nash developed, without questioning whether
this really suited his modelling purposes. The Epistemic Programme, by contrast,
developed completely new tools to study exactly the kind of strategic interaction
under the same epistemic conditions (and variants thereof).

It is striking to observe that, ten years later, Selten’s work has become entirely
introverted and mathematics-driven, shunning as it does all references to economic
applications and strategic interaction of rational agents.” He starts his paper on
the perfect equilibrium with some six pages of definitions, then states and proves
a theorem with the help of two lemmas, and presents an argument of less than two
pages for the claim that subgame-perfect equilibria are sometimes ‘intuitively un-
reasonable’.” Selten then introduces the technical apparatus needed to define his
refinement of the subgame-perfect equilibrium, the perfect equilibrium. A series
of theorems demonstrate that in games of perfect recall all perfect equilibria are
subgame-perfect, that not all subgame-perfect equilibria are perfect, that a decen-
tralisation property holds, that all games of perfect recall have at least one perfect

34 It would be both conceptually and historically inappropriate to describe backward induction as a
refinement of the Nash equilibrium, because it already figures in John von Neumann’s ‘Zur Theorie
der Gesellschaftsspiele’, Mathematische Annalen, 100 (1928), 295-320 in which he proves the
minimax theorem, as well as in concrete studies of chess by Ernst Zermelo, ‘Uber eine Anwendung
der Mengenlehre auf die Theorie des Schachspiels’, in E. Hobson and A. Love (eds.), Proceedings
of the Fifth International Congress of Mathematicians, Held at Cambridge 22-28 August, 1912:
Volume 1I: Communications to Sections II-IV (Cambridge: Cambridge University Press, 1913),
501-504, Dénes Konig “Uber eine Schlussweise aus dem Endlichen ins Unendliche’, Mitteilungen
der Universitdt Szeged, 3 (1927), 121-130, Max Euwe (the Dutch world chess champion 1935-
1937), ‘Mengentheoretische Betrachtungen iiber das Schachspiel’, Proceedings van de Koninklijke
Akademie van Wetenschappen te Amsterdam, 32 (1929), 633-642, and more fully in John von
Neumann and Oscar Morgenstern, op. cit.

55 ‘Reexamination’.
56 Tbid. 33.
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equilibrium, and that, finally, perfect equilibria can be defined in an equivalent yet
simpler fashion.”’

Similar mathematics-driven model-tinkering can be found in Myerson’s work on
the proper equilibrium.>® Myerson’s paper first applies Selten’s perfect equilibrium
to normal form games, and grasps it in a mathematically simple way. He then in-
troduces his own concept of proper equilibrium in exactly the same way that he
rendered Selten’s perfect equilibrium. Myerson, too, then considers sequences of
games satisfying certain equilibrium conditions in terms of the e-proper equilibrium
requiring players to assign a factor of % higher probability to their ‘better’ choices;
and he, too, defines the ultimate concept in terms of a limit, concluding with a proof
of an existence theorem to the effect that every normal form game possesses at least
one proper equilibrium. And conceptual and empirical motivation is absent to an
even greater degree than in Selten’s more elaborate 1975 paper.

5.2.3 Application-Driven Mathematisation in the Epistemic
Programme

NERP may be overmathematised and introverted, but what about the Epistemic Pro-
gramme itself? The systematic internal study of epistemic characterisation results
has shown that the development of many modelling techniques was motivated by
applications rather than by purely mathematical reasons. It is instructive to con-
clude with a more historical summary of the three lines of research in the Epistemic
Programme that I discussed earlier.

The first line of research is represented by the work of Wolfgang Spohn, Dou-
glas Bernheim and David Pearce.>® Their main theoretic contribution is to have put
epistemic concerns explicitly on the research agenda of the theory of games. The
refinement researchers were never prompted to take on the task of formalising the
beliefs of the players of games, simply because they kept their epistemic assump-
tions implicit. In the writings of Spohn, Bernheim and Pearce, by contrast, explicit
connections are established between formal work on the epistemic set-up of game-
playing situations and the psychology of interactive strategic agency. Their starting
point is that the usual arguments in favour of the Nash equilibrium often make weak,
possibly even implausible assumptions about how the players decide and what they

57 T cannot overemphasise that I do not at all mean to imply anything about Selten’s or any other
game theorist’s general outlook on science. I focus on the research programmes and some of their
key publications, not on the researchers.

8 Art. cit.

3 Wolfgang Spohn, ‘How to Make Sense of Game Theory’, in W. Balzer, W. Spohn, and W.
Stegmiiller (eds.), Studies in Contemporary Economics: Vol. 2: Philosophy of Economics (Berlin:
Springer, 1982), 239-270, B. Douglas Bernheim, ‘Rationalizable Strategic Behavior’, Economet-
rica, 52 (1984), 1007-1028, and David Pearce, ‘Rationalizable Strategic Behavior and the Problem
of Perfection’, Econometrica, 52 (1984), 1029-1050.
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believe. Objecting to the uniqueness assumption underlying NERP, Bernheim writes
that

even if some [refinement] technique always isolated unique equilibria, it would represent
a psychological hypothesis. . . empirically relevant only if it formalized characteristics that
are already universally perceived as salient.®

While they did not make explicit use of empirical data or thorough conceptual anal-
ysis, Bernheim and Pearce were nonetheless well aware of the fact that insights into
rational agency would lead game theory away from NERP, and their theoretic efforts
are a constructive step towards more adequate and explicit modelling that aspires to
a higher degree of conceptual and empirical accuracy. In Bernheim’s characteristi-
cally modest words:

Analysis of strategic economic situations requires us, implicitly or explicitly, to maintain
as plausible certain psychological hypotheses. The hypothesis that real economic agents
universally recognize the salience of Nash equilibria may well be less accurate than, for
example, the hypothesis that agents attempt to ‘out-smart’ or ‘second-guess’ each other,
believing that their opponents do likewise.f!

Bernheim and Pearce developed static models of the beliefs of the players in terms of
common belief about rationality and utility. Players are fully and correctly informed
about the exact utility functions of their opponents as well as of the fact that they
are expected utility maximisers. There is no room for mistakes, nor is there room
for revising and updating false or incomplete beliefs.

A different line of research within the Epistemic Programme would turn to the
study of strategic interaction in situations in which the assumptions about the be-
liefs, desires, and rationality of the players are relaxed so as to incorporate the fact
that, as Robert Aumann has pointed out, ‘common knowledge of rationality is an
ideal condition that is rarely met in practice’.®> Some of the basics were set out at
around the same time that Bernheim and Pearce published their work.®> Most papers
in this second line of research date from the early 1990s, however. Eddie Dekel and
Drew Fudenberg modelled situations in which players may make small mistakes
about each others’ utility functions, and proved an epistemic characterisation result
connecting it to the decidedly non-equilibrium Dekel-Fudenberg procedure.®* What
is important, though, is that by modelling (slightly) uninformed players Dekel and
Fudenberg attempted to increase the level of realism:

Nash equilibrium and its refinements describe situations with little or no ‘strategic uncer-
tainty’, in the sense that each player knows and is correct about the beliefs of the other
players regarding how the game will be played. While this will sometimes be the case, it is

60 Art. cit. 1010.
61 Ibid.

62 ‘Backward Induction and Common Knowledge of Rationality’, Games and Economic Behavior,
8 (1995), 18.

63 See, e.g., Paul Milgrom, ‘An Axiomatic Characterisation of Common Knowledge’, Economet-
rica, 49 (1981), 219-222.

%4 For further discussion (and qualification), see Section 2.3.
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also interesting to understand what restrictions on predicted play can be obtained when the
players’ strategic beliefs may be inconsistent.%>

The Epistemic Programme would have to go even further. The models of Dekel
and Fudenberg and others were still incapable of describing a relatively obvious
feature of rational agency—the revision of beliefs in the light of new evidence. A
third line of the Epistemic Programme turned to precisely this question. A num-
ber of researchers had shown over the years that there is a need to design models
of how players revise their beliefs if they encounter opponents who do not play as
expected.®® In particular, they argued that the assumption of common belief about
rationality is deeply problematic if it is to be maintained across all worlds of possi-
ble play. Players may start a game with common beliefs about rationality and utility,
but as soon as someone makes a choice that contradicts these beliefs, her oppo-
nents will have to revise their beliefs.®” Subtle distinctions between various belief
revision policies made it possible to prove new, more precise epistemic characteri-
sation results. Robert Stalnaker modelled players who not only maximise their ex-
pected utility given their actual beliefs, but also given what they would believe, were
they to discover that they were mistaken about their opponents’ prospective strategy
choices. Stalnaker connected this notion of rationality to an earlier result showing
that common belief about such rationality leads directly to the Dekel-Fudenberg
procedure.

I have defended the claim that the Epistemic Programme fares better than the
Nash Equilibrium Refinement Programme if you measure success internally, not by
reference to explanatory or predictive power or other empirical factors, but rather
by reference to the way they contribute to the game-theoretic understanding of the
strategic interaction of rational players. I have also explained the different levels of
success by noting that the Nash Equilibrium Refinement Programme shows over-
mathematisation, drawing its main inspiration from mathematical concerns rather
than the application-driven concerns that inspire the Epistemic Programme. This
does not mean that the Epistemic Programme affords concrete, empirical insights
into economic agency. But it does underline that, as it stands, it is a flourishing area
of interdisciplinary work on the conceptual study of interactive rational agency.

95 Tbid. 243 (emphasis in original).
66 See references in Chapters 2 and 3.
67 See Sections 2.3 and 2.4.



Conclusion

In the first part of this book I considered game theory from the perspective of ac-
tion theory, and I developed apparatus, made more formally precise in the second
part, to give detailed epistemic characterisations of several game-theoretic solution
concepts. The third part of the book, by contrast, presented somewhat pessimistic
conclusions about game theory and its prospects as a social theory: nonsensical as
a normative theory, reducible and epistemologically narrow as a descriptive theory,
and also a home to a Nobel Prize winning research programme that was overmath-
ematised, introverted and unacceptably dependent on model-tinkering. Why then
should one care about epistemic characterisation theorems in the first place?

The simplest answer is to say that the Epistemic Programme is not covered by the
criticism. What is normatively nonsensical and descriptively prejudiced are explana-
tions of human interaction that use a game-theoretic model plus a solution concept
as their two sole ingredients. Epistemic characterisation results and the like do not
furnish such explanations, however. While some of the first epistemic characterisa-
tion theorems may have been directly linked to a solution concept already on the
market, many investigations leave the ‘solution concept—driven’ approach in favour
of an account that starts from epistemic conditions to investigate their behavioural
consequences.

My argument was, in fact, that any truly game-theoretic explanation (one in terms
of a model plus a solution concept) can be reduced to a decision-theoretic explana-
tion which uses, as a model, exactly the epistemic conditions and the rationality
principle the relevant epistemic characterisation theorem postulates. The Epistemic
Programme is not left untouched by my critique. Rather, it is essential to make my
philosophical argument work. As Adam Brandenburger has recently expressed it:

A largely open area is to find logics that allow us to carry out epistemic analyses like the
ones discussed. .. Such logics must be able to express concepts such as rationality, strong
belief, assumption, etc., allow the existence of complete structures, and yield conclusions
about solution concepts. .. An analysis of this type would have the benefit of being much
more explicit about the players’ reasoning processes in games.'

! “The Power of Paradox: Some Recent Developments in Interactive Epistemology’, International
Journal of Game Theory, 35 (2007), 487.

B. de Bruin, Explaining Games, Synthese Library 346, 151
DOI 10.1007/978-1-4020-9906-9, (© Springer Science+Business Media B.V. 2010
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The first part of this book is a modest contribution to this area.

While epistemic characterisation theorems may not display the logical or action-
theoretic problems I revealed for game theory as a descriptive enterprise, one may
still ask whether they can be truly useful in actual social scientific theorising. Here I
am probably less optimistic than representatives of the Epistemic Programme such
as Adam Brandenburger. While some of the epistemic assumptions studied in the
Epistemic Programme can easily be set aside because of inconsistency or incom-
patibility (witness my analysis of the debate on backward induction), many of those
that are perfectly acceptable from a logical point of view are dubious if one thinks
of them as describing real human strategic agents. For instance, when will it be the
case that a set of agents’ epistemic assumptions are exactly of the form postulated
by the epistemic characterisation theorem of the Dekel-Fudenberg procedure? In the
light of evidence from research programmes such as evolutionary game theory, be-
havioural game theory and stochastic game theory I advocate cooperation between
these programmes. Evolutionary game theory fares better descriptively in situations
of iterated game-playing and evolutionary learning, while behavioural game theory
provides more adequate models of many one-shot cases, and much can be gained
from combining these approaches with the Epistemic Programme.

A more principled motivation underlies the transition between the two parts,
though. As I have stressed on several occasions, the main aim of the research
project documented in this book was to look at non-cooperative game theory from
the perspective of a philosopher of social science, and this project was subsumed
in two natural projects. The first project was to investigate non-cooperative game
theory internally—to study the assumptions it makes about strategic agents, about
their beliefs, their rationalities, and so on. To carry out this project, much use was
made of the results obtained by game theorists themselves in the Epistemic Pro-
gramme. These results had to be amplified for my purposes by correcting them
(Dekel-Fudenberg procedure), by developing an epistemic logical system that con-
nects them more closely to the action-theoretic and philosophy of science questions
with which I am concerned, and by comparing them with the more informal claims
made in game-theoretic papers. Reconstructing Aumann’s and Reny’s approaches
to backward induction, for instance, I suggested that both lead to inconsistent posi-
tions concerning extensive game-play. Furthermore, I had to interpret them, which
in fact forms the core of the first part of the book. In other words, the outcome of
the first project was a discussion of the internal workings of non-cooperative game
theory facilitated by logical formalism tailored to the interpretative philosophical
questions about what kind of human agents game theory really models.

The second project was to examine game theory externally—to study how it re-
lates, or can relate, to human strategic interaction. First, logical analysis revealed
that solution concept—driven game theory makes no sense as a normative theory of
human agency, and that it can be reduced to decision theory as a descriptive theory.
Second, I undertook a close reading of a game-theoretic literature and argued that a
true-in-the-abstract view of scientific modelling was adopted by researchers in the
Nash Equilibrium Refinement Programme which led them to be guided by mathe-
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matical concerns rather than by applications. A detailed analysis led to a vindication
of the Epistemic Programme.

In conclusion, I will mention a number of important questions left open for fu-
ture research. In the first two chapters I presented a logical analysis of the form
of decision-theoretic and game-theoretic explanations, and I developed the origi-
nal distinction between a one-shot and a many-moment interpretation of extensive
game-play. While in Chapter 3 I formalised belief revision in the context of the
many-moment interpretation, I did not give a formalisation of the many-moment
interpretation as such. It is a task for future research to give a formal version of
these two interpretations and their possible subdivisions, and to see whether one
could think of an appropriate notion of equivalence of game-playing situations to
show interrelations between particular versions of the one-shot interpretation and
the many-moment interpretation.”

In Chapter 2 I discussed normal form game solution concepts and interpreted
their epistemic and rationality assumptions. I omitted such concepts as the approach-
able, correlated, essential, firm, regular, and strictly and weakly proper equilibrium.
I dealt only with the correlated equilibrium in Chapter 4 and with the proper equi-
librium in Chapter 5. While my critical remarks about the Nash Equilibrium Re-
finement Programme apply, I believe, to all of these refinement concepts, it would
nonetheless be an interesting project to try and extend my inductive and implicit
formalisation methods to these concepts and to continue the internal investigations.

In Chapter 3 I analysed two approaches to backward induction, but I did not con-
nect the findings to a longstanding problem in game theory, namely, the Backward
Induction Paradox. I touched upon the paradox in Chapter 5 in the context of intro-
version and model-tinkering when I discussed Selten’s paper on ‘The Chain-Store
Paradox’ and I mentioned a solution to the paradox presented in the literature—a
highly tinkered one.> I believe that much can be gained here by making a clear dis-
tinction between the one-shot interpretation and the many-moment interpretation of
extensive game-play. If I am right, an important question is to investigate how the
players perceive the game they are playing.

To get some impression of what I mean, consider what Graham Priest states in a
paper on backward induction, referring to a Centipede game such as the one shown
in Figure 1:

[I]n the centipede, it is clear that we can both be better off if [the first player] does not

terminate the game at the first move. ..

[A]ccording to the game-theoretic orthodoxy, however, the backwards induction is correct
in the centipede game and its ilk, and thus the game should finish at the first move.*

2 On game equivalence, see Boudewijn de Bruin, ‘Game Transformations and Game Equivalence’,
ILLC Technical Note X-1999-01 (University of Amsterdam, 1999), and Susan Elmes and Philip
Reny, ‘On the Strategic Equivalence of Extensive Form Games’, Journal of Economic Theory, 62
(1994), 1-23.

3 Theory and Decision, 9 (1978), 127-159.

4 “The Logic of Backwards Inductions’, Economics and Philosophy, 16 (2000), 268 (emphasis in
original).
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The analysis of the logical form of game-theoretic explanations and the meaning-
less normative interpretations shows that this is misguided, though. Certainly, the
two players of the Centipede would be better off at almost all of the other terminal
nodes than at the first (inductive) terminal node, but the Centipede is not intended
to capture the behaviour of groups of players as groups, because it is a model of
individual preferences and motivations. As I have suggested, the normative inter-
pretation as advice to the two players as a group in general is just bad advice. For
individual players the situation may be more subtle, however. Of course, almost all
non-inductive terminal nodes are better than the inductive one, but the peculiar struc-
ture of the game entails that the players always prefer the immediately succeeding
terminal node of their decision nodes over the next succeeding terminal node. This
entails that it is at least very imprecise to say that ‘both players [would be] better off
if [the first player] do[es] not terminate the game at the first move’, because the first
player would not be better off if the game terminated in the second terminal node. In
other words, the idea that backward induction arguments are intended to show that
‘rational’ players play inductive strategies is careless.



Appendix A
Notation, Definitions, Theorems

A.1 Decision Theory

A decision maker 7 has a finite set of states €2 and a finite set of (pure) consequences
C. In fact, finiteness need not be assumed as long as one requires that the probability
measures only give positive weight to finitely many elements from C. The set of
probability measures over C is written A(C) and its elements are called lotteries
over C. Agent i further has a (weak total) preference ordering = over acts in A(C),
the set of maps from Q to A(C). If i chooses some act f: Q — A(C), then if o is
the actual state of the world (that is, if nature plays ®), the outcome is determined
by the lottery f(®). The conditional preference ordering g for any event S C Q is
defined by

f =5 g whenever there is an & such that (fs,h_g) > (gs,h—s),

and an event S (a subset of Q) is called Savage-null if and only if f ~g g for all f
and g. A constant act maps every state to the same lottery. I follow the convention
to use > as abbreviating the strict pendant of =, and ~ for the induced similarity
relation. The following axioms are the von Neumann—Morgenstern axioms.'

Ord = is a total, reflexive and transitive ordering; that is, for all f, gand h, f = g
org>f,f> f,and f = gand g > honlyif f > h.

OI The acts are objectively independent; that is, for all f, g, A, and 0 < o < 1, if
f=g thenof + (1 —o)h = oeg+ (1 — ot)h, and similarly for ~.

NT The ordering is non-trivial; that is, there are f and g such that f > g.

Arc  The ordering is Archimedean; that is, for all f, g and A, if f > g > h, then
there exists 0 < o < B < 1 suchthat Bf+(1—B)h>g> af + (1 —o)h.

NN Forall @), @, € €2 thatare not Savage-null, and constant acts f and g, f = 4,}
g ifand only iff =4, &

The following representation theorem is standard.

! Lawrence Blume, Adam Brandenburger and Eddie Dekel, ‘Lexicographic Probabilities and
Choice Under Uncertainty’, Econometrica, 59 (1991), 61-79.
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Theorem A.1 (Blume et al., 1991) The above axioms hold if and only if there are
a linear function u: A(C) — R and a probability measure P on Q such that for all
acts f and g it is true that

f=gifandonlyif 3 P(o)u(f(w))> Y P(o)u(g(w)).

we weQ

Furthermore, u is unique up to positive linear transformations, P is unique, and
P(S) =0 if and only if S is Savage-null.

The axiom about Archimedeanness can be weakened in order to talk about lexico-
graphic probability systems. These are N-tuples of probability measures over the set
of states Q for integers N with lexicographic ordering > of RV defined as follows:
(ai,...,an) >r (b1,...,by) if and only if whenever b; > a; there is a j < i such that
a;j > b;. The alternative axiom is a conditional Archimedean property.

CArc  For each w € Q2 and f, g and h, if f (41 & (e} h, then there exist 0 <
o < B <lsuchthat Bf+(1—B)h=(u) & (0} &f + (1 —a)h.

The corresponding alternative representation theorem is this.

Theorem A.2 (Blume et al., 1991) The above axioms (with CArc instead of Arc)
hold if and only if there are a linear function u: A(C) — R and a lexicographic
probability system (P, ...,Py) on Q such that for all acts f and g it is true that

N N
[z g if and only if ( > Pi(w)“(f(w))> >L < )y Pi(w)u(g(w))>
1

we i= weN i=1

Furthermore, u is unique up to positive linear transformations, the cardinality of €2
is an upper bound for K, the P; are unique up to linear combinations among them,
and P;(S) = 0 for all i if and only if S is Savage-null.

A.2 Normal Form Games

A normal form game T is a tuple of the form (I, (A;);, (>=;);), where I is the set of
players, A; the set of actions from which player i can and has to choose, and >; the
preference relation of player i. In general it is assumed that the set of players as well
as the sets of actions are finite. The players of a game are usually represented by nu-
merals 1, 2, 3, and so forth. The actions player i can choose between in some normal
form game are written iy, i, i3, and so forth, assuming some arbitrary enumeration.
The preference orderings have to satisfy the above axioms for non-lexicographic
probabilities. Due to Theorem A.1 an equivalent definition in terms of utility func-
tions can be given. A normal form game then is a tuple (/, (A;);, (4;);), where the u;
are real-valued utility functions on [];A;.

Normal form games for two players are nicely represented by matrices, and
normal form games for three players can be represented by tuples of matrices,
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a kind of multi-matrix. Although without a visually attractive counterpart, it is
equally pleasant for games with more than three players to write them down by
means of a multi-matrix. For that reason any N-person normal form game is written
(Piky,...Jy )iy, ky- These numbers are nothing more than the utility values for all

possible combinations, or

ui(lkl IR 7NkN) = Piky,...ky -

The number of players can be read off easily from the number of arguments; how
many actions each player i can take can be read off (a bit more indirectly) from
the range of the k;. With more precision, the elements from A; are i’s pure ac-
tions. Linear combinations (probability measures) over A; are called mixed actions.
Because of the von Neumann—Morgenstern axioms, the utility of a mixed action
profile is equal to the weighted utilities of the pure actions. That is, utility functions
are linear in actions. For games with N players, action profiles are tuples of the
form (ay,...,an). Tuples of the form (ay,...,ai_1,ai11,...,an) are called i-deleted
action profiles. Given some action profile a, the obvious i-deleted action profile is
written a_;. The original profile is retrieved by writing (a;,a_;).

A.3 Extensive Games

An extensive (form) game (with perfect information) I' with players from [ is based
on a finite tree (X, <,p) where p is the root or starting point of the game, and <
an obvious strict (that is irreflexive and transitive) partial ordering of the nodes,
called decision nodes, such that p < x for all x # p. The inverse is written >. So
x <y if y is reached later in the game so to speak. Nodes x without y > x are called
terminal nodes. The depth d(x) of a decision node x is the maximum number of
edges connecting x with a terminal node (an inductive definition would make this
more precise). A function t associates all decision nodes D with elements from
I indicating which nodes are within a player’s control. With a bit more precision
one would start from some class of objects (say the natural numbers). Then one
would consider the class of all trees made up from these objects. One would define
equivalence relations on these trees (making all trees of the same form equivalent)
to say that the game trees (X, <, p) are precisely the equivalence classes under this
relation.”

Players have preference orderings over the set of terminal nodes satisfying the
von Neumann—Morgenstern axioms. Alternatively, using Theorem A.1, utility func-
tions #;: X\D — R can be used. It is standard to allow for some ambiguity con-
cerning the domain of u; ranging over strategy profiles or over terminal nodes. An
extensive game I is called generic whenever all i; are injective. Sometimes it is as-

2 Harold Kuhn, ‘Extensive Games and the Problem of Information’, in ibid. and A. Tucker (eds.),
Contributions to the Theory of Games: Volume II (Princeton: Princeton University Press, 1953),
193-216.
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sumed that the preference ordering be strict (that is, irreflexive and transitive). Such
an ordering leads to generic games.

A (full) strategy of player i is a function mapping all her decision nodes to imme-
diate successors. That is, a function s: 1~!(i) — X such that x < s(x) but x <y < s(x)
for no y. In general I use the term (full) strategy for the function s on 1~!(i) (a
function defined on all decision nodes of player i) and restrict the use of the term
(individual) action to the notion of the restriction of s to one single decision node of
player i. As for normal form games I write iy, ip, i3, and so forth, for i’s strategies
on the basis of some arbitrary enumeration.

The subgame generated by x is simply the game based on the tree generated by x
with the obvious restrictions for the player function and the utility functions. If I" is
some extensive game, the subgame generated by some decision node x is written I.
The normal form nf(I") of an extensive game I is the normal form game where the
actions (in the normal form) are the full strategies (from the extensive game), and
where the utility functions are defined in the obvious way.
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