
Chapter 3
Concrete Members Under Cyclic Loading

This chapter presents the mechanical behaviour:

– of the constituent materials of concrete members, namely concrete and reinforc-
ing steel, as well as of their interaction; and

– of concrete members typical of buildings,

under cyclic loading of the type induced by strong earthquake shaking. This
behaviour determines how concrete and reinforcing steel are used in concrete ele-
ments (notably, the shape and dimensions of concrete members and the shape,
amount and layout of their reinforcement), for satisfactory seismic performance of
the members and the structural system as a whole.

Some of the material in this chapter provides the background for detailing rules
specified in Part 1 of Eurocode 8 for ductile members in new earthquake resistant
buildings. These rules are derived in Chapter 5. Besides, the rules and expressions
given in Part 3 of Eurocode 8 for the deformations of concrete members at yielding
and at ultimate conditions are also presented here, along with their background and
justification. This material is used and developed further in Chapter 4 for the mod-
elling of concrete members in seismic response analysis and in Chapter 6 for the
assessment and retrofitting of existing concrete members.

3.1 The Materials and Their Interaction

3.1.1 Reinforcing Steel

3.1.1.1 Stress-Strain Behaviour Under Cyclic Uniaxial Loading

Owing to their one-dimensional geometry, reinforcing bars are essentially sub-
jected to uniaxial tension or compression. So, we are interested in the uniaxial σ -ε
behaviour of reinforcing steel. The fundamental features of this behaviour are shown
in Fig. 3.1. Yielding at the yield stress fy is followed by the yield plateau, which is
relatively short, at least in the reinforcing steels currently used in most of the world.
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Fig. 3.1 Features of the cyclic σ -ε behaviour of reinforcing bars

Strain-hardening follows. Under monotonic loading strain-hardening leads to the
maximum stress, ft, termed tensile strength, that takes place at strain εsu, which is
called strain at maximum stress (or uniform elongation at failure) and is taken as the
nominal ultimate strain of steel under monotonic loading.

Unloading from the yield plateau or from the strain-hardening region is initially
elastic, but it gradually deviates from linearity before reaching the yield stress in
monotonic compression, –fy, as if the steel yielded prematurely. This is termed
“Bauschinger effect”. Because of it the tangent modulus of elasticity decreases from
the elastic value, Es = 200 GPa, to zero; but it does so gradually, not abruptly as
when steel first yields in monotonic loading.

If the steel has yielded first in tension, then unloading does not lead to a yield
plateau in compression. The Bauschinger effect leads to a stress that exceeds the
yield stress in compression, –fy. If there is a reversal of stress and strain (i.e., unload-
ing from compression and reloading towards the original direction of loading, i.e.
to tension), it leads to a σ -ε branch similar to that of the previous unloading from
tension to compression. The reloading branch exceeds the yield stress fy in first (vir-
gin) loading and heads towards the point from where the previous reversal from
tension to compression had started (previous peak stress and strain point in the cur-
rent direction of loading). If loading continues past that point, it follows the σ -ε
curve in monotonic loading till rupture of the bar, unless a new reversal of loading
takes place towards compression.

In the unlikely case (for a bar in a concrete member) that before it yields in
tension the bar yields in compression without buckling, the yield plateau takes place
in compression alone (see Fig. 3.2(a)). The rest of the σ -ε behaviour is similar to
the one described above, with the roles of compression and tension interchanged.
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Fig. 3.2 σ -ε loops of bar that buckles in a concrete member under cyclic loading: (a) stress σ v
real strain ε along the axis of the buckled bar; (b) stress v apparent strain in the original direction
of the bar axis (adapted from Suda et al. (1996)). Buckling is displayed as (•)

An unloading branch from tension to compression (or vice-versa) and the fol-
lowing reverse branch of reloading in the opposite direction towards the point from
where the first branch started, constitutes a hysteresis loop. If the second reversal
(from compression to tension) occurs at a stress and strain equal and opposite to
those at the first reversal (from tension to compression), the hysteresis loop is sym-
metric (see Fig. 3.3(a)).

Fig. 3.3 Loops of stress vs apparent strain of bar subjected to cyclic loading with full reversal, as
a function of the ratio of free bar length to diameter, L/D (Monti and Nuti 1991)

3.1.1.2 Buckling of Longitudinal Reinforcing Bars in Concrete Members
Subjected to Cyclic Flexure and Its Consequences

Unless well restrained laterally – by a thick shell of sound concrete cover and/or
engagement by closely spaced transverse reinforcement – a longitudinal bar in a
flexural plastic hinge of a concrete member may buckle. Outward lateral pressures
exerted on the bar from the bulging concrete core accelerate buckling.

As buckling entails lateral deflection of the bar, the distance between the two
ends of the buckled length, L, shortens without any real axial shortening of the bar
itself. The experimental σ -ε values in Fig. 3.2(a) show that right after buckling the
mean axial strain of the bar increases algebraically: the bar axis unloads (its mean
compressive stress decreases) following the σ -ε law of the material. As bending of
the bar axis due to buckling shortens the distance between the ends of its buckled
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length, the apparent strain of the bar along its original axis (i.e., the relative displace-
ment of the two ends along the original axis, divided by their original distance L)
decreases algebraically. Remember that what matters for the macroscopic behaviour
of the member, in whose compression zone the bar belongs, is the force in the bar
as a function of the average strain of the surrounding concrete, i.e. of the apparent
strain of the buckled bar, not of the real one. The stress-apparent strain behaviour
of a buckling bar is as shown in Fig. 3.2(b) and in Fig. 3.3(b) and (c) for bars with
unrestrained length 8- or 11-times the diameter, respectively.

A longitudinal bar in a flexural plastic hinge will not buckle, unless the adjacent
concrete has already disintegrated or the concrete cover is thin and weak, provid-
ing little lateral restraint. Real lateral restraint against buckling is provided only by
closed ties. The effective buckling length depends on the conditions of engagement
of the bar by, and the spacing and diameter of the ties. Under ideal conditions, the
effective buckling length is equal to 50% of the tie spacing or of the distance of
the first tie engaging the bar from the end section where the member connects to
another one or to the foundation. In reality, the deflection of the bar upon buckling
will extend beyond the ties engaging it and the effective buckling length will exceed
the ideal value above. Ties with small diameter compared to the longitudinal bar
may stretch and let the effective buckling length extend over several tie spacings
(see Fig. 3.4(b)).

(a) (b)

Fig. 3.4 Bar buckling over: (a) one; or (b) several tie spacings

The stress at which the bar may buckle is proportional to its Modulus and to the
square of the ratio of the bar diameter to the effective buckling length. Regarding the
Modulus, note that bars in concrete members subjected to seismic loading normally
yield in tension before they do so in compression (see Figs. 3.5, 3.6 and 3.7 for typ-
ical seismic σ -ε histories of bars in various types of concrete members). Buckling
usually takes place during a σ -ε branch of unloading from tension to compression

Fig. 3.5 σ -ε histories of the type induced by seismic action to column bars: (a) for grade S400
steel; (b) for S500 steel (Carvalho and Coelho 1997)
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Fig. 3.6 σ -ε histories of the type induced by seismic action to bottom bars of beams: (a) for grade
S400 steel; (b) for S500 steel (Carvalho and Coelho 1997)

Fig. 3.7 σ -ε history of the type induced by seismic action to S500 top bars in beams (Carvalho
and Coelho 1997)

that exhibits the Bauschinger effect, or in the hardening branch that follows it. So,
it is not the Elastic Modulus, Es = 200 GPa, that applies for the critical buckling
load of the bar, but a much lower value. If bending due to buckling is considered
to cause one side of the bar cross-section to unload elastically while the opposite
side continues loading, then Engesser’s “Reduced Modulus” or “Double Modulus”
applies, which has a value between Es and the tangent Modulus, Et. For buckling of
round bars in the strain hardening range the “Reduced Modulus” is about double the
strain hardening modulus (Pantazopoulou 1998). In Shanley’s alternative model for
inelastic buckling the axial force in the bar is considered to keep increasing while
buckling commences (as if the full bar section continues loading). So the tangent
Modulus (which is much lower than Engesser’s “Reduced Modulus”) is considered
to apply. No matter which one of the two approaches is adopted, the reduction in
Modulus is such that an individual bar is predicted to buckle at a load much lower
than Euler’s critical load for elastic buckling.

The buckling behaviour of an individual bar compressed under force-control
is different from that of a longitudinal bar in the compression zone of a flexural
plastic hinge (Pantazopoulou 1998), as the latter is just one component in a highly
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redundant parallel system encompassing the entire compression zone and compris-
ing concrete and several longitudinal bars. Occurrence of buckling is very sensitive
to minor differences in the lateral restraint conditions of the bar and to the pressure
exerted on it by the bulging concrete. So, the longitudinal bars of the compression
zone will not buckle all at the same time. Buckling of a bar takes place under condi-
tions of deformation control and allows force redistribution to the rest of the parallel
system. So, it does not have the immediate catastrophic consequences that we see,
e.g., when a strut in a statically determined steel truss buckles. Normally the member
will survive buckling of one or more longitudinal bars.

The immediate consequence of buckling of a compression bar in a concrete mem-
ber is a drop in the lateral force resistance of the member, due to the following
reasons:

– Unless it has already taken place, spalling of the shell of concrete cover will be
triggered by bar buckling, as, without prior disintegration of the concrete core
inside the cage of reinforcing bars, bars can buckle only outwards.

– Redistribution of the compressive force of the buckled bar brings the surrounding
concrete closer to exhaustion of its compressive strength.

– A buckled bar does not contribute anymore to the confinement of the concrete
core, particularly if its buckled length extends over several tie spacings. In this
latter case the lateral bar deflection due to buckling stretches all ties that lie within
the buckled length and reduces their own effectiveness in confining the concrete
inside.

Note that in a concrete member subjected to bending the compression zone is on
the concave side. So, its longitudinal bars, having their convex side inwards, would
tend to buckle inwards against the concrete core. Buckling outwards would be much
easier, as the concrete shell may have already spalled off, or if it hasn’t, it can spall
upon bar buckling. For the bar to buckle outwards, it has to overcome and reverse
its inwards pre-curvature, which is unlikely. So, it is the corner bars that normally
buckle first, and, as a matter of fact, they do so outwards almost at right angles to the
plane of bending of the member and of the bar. For an intermediate bar to buckle,
the concrete core in its immediate vicinity should be in (imminent) disintegration.

The interplay between the tendency of a compression bar in a concrete member
to buckle over one or more tie spacings, the lateral pressures exerted on it by the con-
fined concrete core and the restraint provided by the ties both against bar buckling
and bulging of the confined concrete, is very complex even for monotonic load-
ing (Pantazopoulou 1998). The phenomena are much more complex under cyclic
loading, as described in the following paragraphs.

In a concrete member subjected to cyclic bending, the tension is taken exclu-
sively by the tensile reinforcement, while the compression reinforcement shares the
compressive force with the surrounding concrete. As a result, if the member is sub-
jected to no axial load or to low axial compression, symmetric load cycles (i.e.
cycles between equal and opposite values of moment M, or curvature, ϕ) induce
in longitudinal bars asymmetric σ -ε cycles, with peak tensile strains significantly
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exceeding the peak compressive ones and permanent tensile strains accumulating
in the reinforcement of both sides. The σ -ε histories in Figs. 3.5, 3.6 and 3.7 are
typical of what happens in concrete members subjected to cycles of constant
moment amplitude but increasing deformation amplitude:

– in Fig. 3.5, for the bars of a column with symmetric reinforcement and relatively
low axial load ratio, ν = N/Acfc;

– in Fig. 3.6, for the bottom bars of an asymmetrically reinforced beam, that yield
in compression in order for the crack to close at the bottom under positive (sag-
ging) moments;

– in Fig. 3.7, in the beam’s top reinforcement, which normally has larger cross-
sectional area than the bottom one and never yields in compression.

In the σ -ε histories of Fig. 3.5 bar buckling may take place under conditions of
tensile strain but of compressive stress in the bar. These bars, having unrestrained
length six-times their diameter, indeed buckled during the last compressive half-
cycle and ruptured in the following tensile half-cycle. The bars of Fig. 3.6(a) and
(b) have the same geometry and mechanical properties as those of Fig. 3.5(a) and
(b), respectively, but didn’t buckle. They eventually broke in tension, at a strain at
maximum stress not much lower than the uniform elongation, εsu, of the steel in
monotonic loading. Note the superior ductility of grade S400 steel over S500 in
Figs. 3.5 and 3.6.

Bars seem very vulnerable to buckling during that phase of unloading-reloading
when the crack is open throughout the depth of the section, owing to cyclic accu-
mulation of tensile strains in the reinforcement of both sides, exhibited by all bars
in Figs. 3.5, 3.6 and 3.7 (see also point 3 in Section 3.2.2.6). During that phase the
reinforcement alone resists the compression force of the section and, in the absence
of the stabilising effect of concrete, the bars of the compression zone may be con-
sidered as liable to buckling all at the same time. Fortunately, the crack may be
open throughout the depth only at about the time the bending moment of the section
changes sign. The likelihood of buckling during that stage is reduced by the low
magnitude of compression stresses in the reinforcing bars and of the lateral pressure
exerted on them by the concrete inside. Buckling may start shortly thereafter, before
the surrounding concrete is fully mobilised in compression but after the bending
moment increases sufficiently to build up the stress in the bar and reduce its tangent
Modulus to the level necessary for buckling (see, e.g., the point where buckling
occurs in Fig. 3.2(a)). It may start even later, after the outward pressure exerted on
the bar and its restraining ties by the bulging concrete builds up as well.

Sometimes, but not often, bar buckling entails an immediate drop in the lateral
force resistance of the member, large enough to be considered as ultimate failure.1

1A member is conventionally considered to have reached its ultimate deformation, if its (lateral)
force resistance cannot increase above 80% of the maximum ever force resistance (defined as the
force capacity of the member) by increasing the member’s deformation, see Section 3.2.2.7.
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Even when it is not, buckling of longitudinal bars in members subjected to cyclic
loading may precipitate ultimate failure afterwards, by rupture in tension of the
buckled bar during a subsequent half-cycle of loading, according to the following
mechanism: Buckling induces in the bar additional flexural strains, positive (tensile)
on one side and negative (compressive) on the other. These strains are superimposed
on the axial strain of the axis of the bar (the one on the horizontal axis of Fig. 3.2(a)).
The shorter the length, L, over which the bar buckles, the larger are the additional
flexural strains. In all likelihood, the mean bar strain on which the flexural strains
are superimposed is tensile, due to the yielding of the bar in tension before and the
permanent extension it entails (cf. Fig. 3.2(a)). So, the total (mean plus flexural)
strain of the extreme tensile fibres of the bar may approach, or even exceed, the
uniform elongation, εsu, of steel. Note that, exceedance of the rupture strain at the
bar surface upon buckling is more likely in the Tempcore steels currently dominating
the European market. These bars owe their superior yield and tensile strengths to
quenching and tempering of their surface, which increases very much the strength
of the skin but reduces its elongation at failure.2 So, a crack may develop at the
surface of the buckled bar. After reversal of the loading of the member, the bar that
has buckled straightens up and – depending on the magnitude of the new half-cycle –
may go into the inelastic range in tension. Then the pre-existing crack may extend
through the entire cross-section, causing complete loss of the bar. If the loss of the
tensile capacity of the bar causes a drop in the peak force resistance exceeding 20%
of the maximum ever force resistance (see footnote 1 above), we will conventionally
call this failure (or ultimate deformation) of the member.

Should the compression zone lose a large fraction of its compressive strength
owing to abrupt or gradual disintegration of the concrete during load cycling, its
longitudinal bars will buckle, unless they have done so already.

3.1.1.3 Time Effects on the Mechanical Behaviour of Steel

The fundamental quantities characterising a reinforcing steel, notably the yield
stress, fy, the tensile strength, ft and the uniform elongation at rupture, εsu, are mea-
sured in the lab under strain rates which are very slow compared to those induced by
an earthquake. For the types of steel normally used in earthquake resistant design,
namely steel grades S400–S500, it may be considered that the values of the afore-
mentioned σ -ε parameters under monotonic loading increase with strain rate, ε̇, by
cln(ε̇/ 5 × 10–5) above those measured in the lab under quasi-static loading with
ε̇ = 5 × 10–5 s–1, where (CEB 1988a):

c = 6 MPa for fy,
c = 7 MPa for ft and
c = 0.3% for εsu.

2Whatever effect, internal or external, increases the strength of steel, typically reduces its ductility
and elongation at failure.
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Fig. 3.8 Effect of strain rate
on hysteresis loops of
reinforcing steel (adapted
from Restrepo-Posada et al.
(1993))

Cold worked reinforcing steels, that are normally not used in earthquake resistant
structures, exhibit a smaller effect of strain rate on the values of fy and ft than the
more ductile types of steel, like those of grade S400–S500. The effect on their –
anyway low – ultimate elongation is more pronounced.

Everything that has been said so far refers to monotonic loading. Figure 3.8 sug-
gests that under cyclic loading the strain rate affects only the yield stress, leaving
the subsequent σ -ε behaviour (notably the peaks of hysteresis loops) unaffected.

The strain rate is not constant during seismic loading. It is zero at peaks of the
deformation, positive or negative, and attains a maximum value in-between these
peaks (normally, at zero stress). The increase in strength relative to the quasi-static
value is not derived from the mean strain rate during the half-cycle of the response,
but from a lower value, about 15% of the peak strain rate during the response (i.e. of
the strain rate attained at practically zero stress), or about 30% of the average strain
rate.

3.1.1.4 Requirements on the Reinforcing Steel Used in Earthquake
Resistant Construction

The steel parameters which are of prime importance for the seismic performance of
concrete members are:

– the strain at maximum stress (uniform elongation at failure), εsu, and
– the ratio of tensile strength to yield stress, ft/fy (“hardening ratio”),

of reinforcing bars. The yield stress, fy, per se is important just for the onset of yield-
ing of structural members, to the extent it matters for the Operational or the Imme-
diate Occupancy performance levels and for the member stiffness to the yield point.

The importance of εsu for the failure of reinforcing bars, possibly after buckling,
has been noted in Sections 3.1.1.1 and 3.1.1.2. The impact of εsu on the ultimate
deformation of a RC member is elucidated by the relationship between the ultimate
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curvature of a concrete section, ϕsu, as controlled by rupture of the tension rein-
forcement, and the value of εsu:

ϕsu = εsu

(1 − ξsu) d
(3.1)

where d is the effective depth of the section and ξ su the neutral axis depth at steel
rupture, normalised to d.

The hardening ratio ft/fy is important for several reasons. First, the higher its
value, the greater is the tangent modulus of the steel bar in its strain-hardening
range and the later buckling will take place. More important is the role of ft/fy for the
control of the value of the maximum moment at the end of a member and, through
it, of the extent of plastification near that end. This extent may be defined as the
length of the member over which the bending moment exceeds the yield moment,
My. If we assume that after yielding the internal lever arm at the end section stays
approximately constant, then the bending moment at the end section is equal to M =
(σ s/fy)My, where σ s is the stress of the tension reinforcement there. If failure of the
end section takes place due to rupture of the tension bars, at that section we have
σ s = ft. If the bending moment diagram is approximately linear in the vicinity of
the end section over a length Ls (which is equal to the moment-to-shear ratio at the
end section, i.e., to the shear span), then member plastification at failure due to steel
rupture extends over a length of:

l p l = Ls

(
1 − My

Mu

)
= Ls

(
1 − fy

ft

)
(3.2)

Therefore, the higher the value of ft/fy, the longer is the zone of plastification as
a fraction of the shear span Ls. In turn, the longer the length of plastification, lpl, the
larger is the value of the chord rotation at flexure-controlled failure of the shear span
(see footnote 1 in Chapter 1 and Fig. 1.4 for the definition of the chord rotation at a
member end). As a matter of fact, if we assume that along the shear span, Ls, only
flexural deformations take place, the ultimate chord rotation at the end of the shear
span, θu, is derived from Fig. 3.9 as:

θu = ϕy
Ls

3
+ l p l

3

[
ϕu

(
1 + fy

2 ft

)
− ϕy

(
1

2
+ ft

fy

)]
(3.3)

My

Mu

Ls

lpl

Fig. 3.9 Extent of
plastification of member
when the end section reaches
its ultimate moment
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where ϕy is the curvature at yielding of the end section and ϕu the ultimate curvature
there (see Sections 3.2.2.2 and 3.2.2.4). For increasing ft/fy ratio, the value of the
expression in brackets decreases, but not sufficiently to override the ensuing large
increase in the value of lpl. So, overall, the larger the hardening ratio, ft/fy, the greater
is the flexure-controlled ultimate chord rotation at the end of the member where
inelasticity takes place. As a matter of fact, if the value of ft/fy is close to 1.0, that
of lpl approaches zero and the flexure-controlled ultimate chord rotation is very low
as well. For this reason, Eurocode 8 sets a lower limit to the value of the hardening
ratio, ft/fy, of the steel to be used in ductile structures.

As emphasised in Section 1.3, current seismic design codes pursue the con-
trol of the inelastic seismic response through capacity design. The required force
resistance of those regions or mechanisms intended to remain elastic is computed
from equilibrium and the force capacities of the adjacent ductile regions or force-
transfer mechanisms considered capable of developing large inelastic deformations.
The only mechanism of force transfer entrusted to develop inelastic deformations
under cyclic loading is flexure – provided that the yield moment is controlled by the
tensile reinforcement and its nominal yield stress, fyk. If the tensile strength of steel
is much higher than its yield stress, soon after the ductile members yield their force
resistance may increase well beyond the value used in the capacity design calcula-
tions. This increase may upset the balance between the force resistances of ductile
and brittle mechanisms achieved through capacity design and cause the brittle mech-
anisms to exceed their force resistance and start developing inelastic deformations
that they are not capable of. For this reason, Eurocode 8 sets an upper bound on the
value of ft/fy of reinforcing steel to be used in ductile structures. For similar reasons,
and, in addition, to ensure that the steel of any section or region will indeed yield
before the concrete crushes, Eurocode 8 sets an upper limit on the ratio of the actual
yield stress of the steel to the nominal value, fyk.

Recognising that deformation and ductility capacity depends not only on the
detailing of members, but on the inherent ductility of their materials as well,
Eurocode 8 increases the ductility requirements on the steel in “critical regions”
(i.e., those where inelastic deformations may take place under the design seismic
action, see Section 5.1.1) of the elements of the lateral-load-resisting system (the
“primary seismic” ones, see Section 4.12) with the Ductility Class, DC, as shown in
Table 3.1. The limits on the hardening ratio, ft/fy, and the strain at maximum stress
(uniform elongation at failure), εsu, refer to lower 10% fractiles. The lower bound on
εsu is for ensuring a minimum curvature ductility and flexural deformation capacity,
by preventing bar fracture prior to concrete crushing, or simply delaying it until a
target flexural deformation is reached. The lower limit on ft/fy aims at ensuring a
minimum length of the flexural plastic hinge according to Eq. (3.2). The ceiling on
the values of ft/fy and fyk,0.95/fyk is to limit flexural overstrength, and hence shear
force demands on members and joints, as controlled by flexural yielding at the end
of members, as well as the moment input from beams to columns.

Steels of class B or C according to Eurocode 2 (CEN 2004b) fulfil the conditions
for the steel in DC L or M buildings. The conditions on εsu and ft/fy of steel in DC
H buildings are met only by steels of class C according to Eurocode 2.
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Table 3.1 Requirements of Eurocode 8 for reinforcing steel in elements of the lateral-load-
resisting system of new buildings

Ductility Class DC L or M DC H

5%-fractile yield strength fyk 400–600 (MPa)
95%-fractile actual yield strength fyk,0.95/fyk – ≤1.25
(ft/fy)k,0.10 ≥1.08 ≥1.15

≤1.35
10%-fractile strain at maximum stress, εsu,k,0.10 ≥5% ≥7.5%

Strictly speaking, for buildings belonging in DC M the Eurocode 8 requirement
for the use of steel of at least class B applies only to the “critical regions” at the
ends of “primary seismic” elements. As in DC L buildings “critical regions” are not
defined, the requirement for the use of steel of at least class B applies throughout
the length of their elements. As DC M or H buildings should not in any respect
be inferior in local ductility to DC L ones, the whole length of “primary seismic”
elements of DC M and H buildings should have reinforcing steel of at least class B.
The additional requirements on the steel of the “critical regions” of DC H buildings
essentially apply:

– thoughout the entire height of “primary seismic” columns,
– in the “critical region” at the base of “primary seismic” walls, and
– in the “critical regions” near the supports of “primary seismic” beams on columns

or walls (including the slab bars which are parallel to the beam and fall within
the effective flange width in tension).

In practice, the Eurocode 8 requirements on reinforcing steel of “critical regions”
are expected to be applied over the entire primary seismic element, including the
slab it may be working with.

Thanks to its lower cost-to-strength ratio, weldability and fairly good ductility,
weldable tempcore steel of type S500s has become the reinforcing steel of choice
in the more seismic prone European countries since the mid-1990s. It is a surface-
hardened low carbon steel with nominal yield strength of 500 MPa. It easily fulfils
all Eurocode 8 requirements for DC L or M buildings, but it meets those for DC
H ones (notably the lower limit on ft/fy) only when produced for application in
moderate- or high-seismicity regions. The small quantity of S400 steel still on the
market of these countries has higher strain at maximum stress, εsu, and hardening
ratio, ft/fy, both meeting easier the limit values for DC H buildings. However, the
value of fyk,0.95/fyk may exceed the maximum limit permitted for DC H. The main
reason is that steels produced as S500 but failing to meet the minimum criteria on
fyk, are sometimes re-classified and marketed as S400.

The widest available survey of ductile steels of the type used in the seismic
regions of Europe has been carried out in the early 1990s (Carvalho and Coelho
1997, Carvalho 1995, Pipa and Carvalho 1994), drawing several thousands of data
from nine different European countries (Carvalho and Pipa 1994, Plumier and
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Table 3.2 Outcome of surveys of steel used in seismic regions of Europe

Country of production
Spain,
Portugal Italy

Belgium, France,
Germany, Italy,
Luxembourg,
Netherlands, Portugal,
Spain UK Various

nominal yield strength, fyk

(MPa)
400 430 500 500 460

mean yield strength, fym

(MPa)
496 478 571 552 530

95%-fractile of actual yield
strength, fyk,0.95/fyk

1.335 1.19 1.23 1.165 1.27

mean tensile strength, ftm
(MPa)

598 733 663 653 618

(ft/fy)k,0.10 1.15 1.44 1.10 1.13 –
(ft/fy)k,0.90 1.27 1.62 1.23 1.23 –
mean strain at maximum

stress, εsu,m (%)
11.8 11.6 10.4 11.7 11.1

10%-fractile of strain at
max. stress, εsu,k,0.10 (%)

9.6 9.7 8.6 9.7 –

Vangelatou 1995, Stanescu and Plumier 1993, Elnashai 1994, Calvi et al. 1994).
That survey paved the way for the revision of the requirements of ENV 1998-
1-3:1993 (the prestandard version of Part 1 of Eurocode 8) toward the limits in
Table 3.1. The statistical outcome of that survey is compiled in Table 3.2, columns
1–5, in the form of average statistics of those steel parameters which are of interest
to Eurocode 8. The last column of Table 3.2 gives also statistics of steel properties
provided by the UK certification agency (Cairns 2006). All values listed in Table 3.2
meet the requirements of EN-Eurocode 8 for the reinforcement of DC L or M build-
ings. However, the values in italics in Table 3.2 violate the corresponding limit for
the steel of DC H buildings. So, not a single one among the types of steel in Table
3.2 conformed fully to the limits placed on the steel of DC H buildings. Neverthe-
less, since then the steel industry in at least some European countries has developed
and marketed cost-effective products that meet all Eurocode 8 limits for the steel of
DC H buildings.

3.1.2 The Concrete

3.1.2.1 Concrete Under Cyclic Uniaxial Compression

Unlike reinforcing bars, which by geometry develop essentially only uniaxial stress
conditions, concrete may be subjected also to biaxial or triaxial stresses. Because of
its low tensile strength, concrete normally cracks at right angles to any significant
tensile stresses. As a result, these stresses drop to zero. Even when there is no
cracking tensile stresses are low anyway. The compressive strength and stiffness
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of concrete decreases with increasing tensile stress in the transverse direction. This
reduction is taken into account where relevant (see Eqs. (3.96) in Section 3.2.4.2
under The Variable Strut Inclination Truss of the CEB/FIP Model Code 90 and
Eurocode 2). Compressive stresses in one of the three principal stress directions
increase the compressive strength and stiffness in the orthogonal directions, but if
the lowest of the three principal stresses is much smaller than the other two (regard-
less of its sign) the increase is negligible.

The prime case where multiaxiality of stresses has a major effect on the behaviour
in the direction of the predominant compressive stress is when the stresses in both
orthogonal directions are compressive and significant in magnitude. This is the case
of confinement, Except for that case (dealt with at length in Section 3.1.2.2) and the
strength reduction due to transverse tension (Eqs. (3.96) in Section 3.2.4.2 under
The Variable Strut Inclination Truss of the CEB/FIP Model Code 90 and Eurocode
2), the multiaxiality of the stress field is neglected and the behaviour in the direc-
tion of the predominant compressive stress is considered, as if we had uniaxial
compression.

The σ -ε behaviour depicted in Fig. 3.10 is typical of concrete under cyclic uni-
axial compression. The energy dissipated by the material (i.e. the area enclosed by
unloading-reloading hysteresis loops) is small, compared to either the deformation
energy stored in the concrete at the peak of a loading cycle, or to the energy dissi-
pated by steel under cyclic loading. Reloading σ -ε branches are directed toward the
σ -ε curve in monotonic loading and follow it if reloading continues past the maxi-
mum ever previous strain value. Therefore, the monotonic σ -ε curve is the envelope
and the skeleton curve of σ -ε loops under cyclic loading.

If unloading-reloading from and to a constant maximum stress equal to a large
fraction of the uniaxial compressive strength, fc, is repeated indefinitely, perma-
nent compressive strains accumulate and the falling branch of the monotonic σ -ε
envelope will ultimately be reached, signaling failure. In Fig. 3.10(b) 19 cycles
at a peak stress of 0.9fc suffice to reach the monotonic σ -ε curve. If the peak
stress is at 0.85fc, 200 cycles are required for this to happen (Karsan 1968). This
behaviour is characteristic of low-cycle fatigue. If the peak stress level is lower, the
loading–unloading loops stabilise and the falling branch of the monotonic σ -ε curve
is never reached.

Fig. 3.10 σ -ε behaviour of concrete under cyclic uniaxial compression (adapted from Karsan
(1968))
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The number of stress cycles approaching the uniaxial compressive strength, fc, in
an earthquake is roughly equal to the duration of strong ground shaking divided by
the predominant period of the structure. For a concrete building this number would
normally be expected to be not more than 10, which means that low-cycle fatigue
effects will not be important. Then, only the monotonic σ -ε behaviour of concrete
in uniaxial compression is of interest.

Until a uniaxial stress of about 0.95fc the Poisson ratio of concrete is approxi-
mately constant and close to 0.20. Above that stress level it increases fast, reaching
a secant value of about 0.4 at ultimate strength. The underlying physical reason is
that, as failure approaches, pre-existing microcracks at the interface of aggregates
with the hardened cement paste extend into the latter in a direction parallel to that of
the applied uniaxial compression stress and tend to join up as macro-cracks in that
direction. The opening up of these macro-cracks soon leads to ultimate strength,
manifesting itself as a precipitous increase in the apparent lateral strain. The volu-
metric contraction, which so far had been continuously increasing, starts decreasing.
Right after ultimate strength it gives way to volumetric expansion (dilation). This
mechanism has important implications for the enhancement of concrete strength
through confinement.

3.1.2.2 Effects of Confinement on σ -ε Behaviour in Compression – Modelling

The case of prime interest in earthquake resistant design is that of concrete under
the following conditions of triaxial compression:

– the stress in one principal direction, let’s say direction 1, is compressive and
rather high;

– the two other principal stresses, in directions 2 and 3, are compressive and about
equal in magnitude, but smaller than σ 1: σ 2 ≈ σ 3 < σ 1.

Such triaxial stress conditions are found in the compression zone when the con-
crete approaches its ultimate strength, provided that the lateral expansion that pre-
cedes its failure is restrained (Pantazopoulou 1995). Lateral restraint may come from
various sources:

– tests have demonstrated that the restraint of the dilation of the compression zone
of the end section of a member framing into another (a beam into a column,
a column into a floor slab or a foundation element, etc.) by the volume of the
surrounding concrete of the latter produces a triaxial stress condition, greatly
enhancing the local strength and deformation capacity of the concrete (Takiguchi
et al. 1997, Imai et al. 2005);

– closely spaced hoops or ties as transverse reinforcement restrain the lateral dila-
tion of the concrete inside the cage of stirrups and longitudinal reinforcement
(the “concrete core”);

– Fibre-Reinforce Polymers (FRPs) wrapped around the member have a similar
effect on the enclosed volume of concrete.
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The restraint of the lateral dilation of concrete by such means is termed “confine-
ment”, and the volume of concrete affected is considered as “confined”.

By opposing the large Poisson expansion arising from the opening up of internal
macro-cracks parallel to the predominant compressive stress σ 1 when concrete is
close to ultimate strength, a uniform pressure, σ 2 = σ 3 = p, at right angles to σ 1

and to these macro-cracks, increases the compressive strength in the direction of
σ 1 from fc to fc∗ and the strain at the peak of the σ 1–ε1 curve from εco ≈ 0.2%
to εco

∗. The larger the lateral pressure, the greater is the enhancement of ultimate
strength and of the corresponding strain. Moreover, the falling branch of the σ 1–ε1

diagram after the peak at fc∗, εco
∗ becomes flatter with increasing value of p (i.e.,

confined concrete strain-softens slower). The monotonic σ 1–ε1 curve for p > 0 is
the envelope of the hysteresis loops under cycling loading with p > 0.

Several models have been proposed over the past decades for the σ -ε behaviour
of confined concrete. A few of them are described here, notably those that are –
for some reason or another – widely used, as well as simple models that fit well
available experimental results.

The available test results for concentric compression show that the compressive
strength in the direction of σ 1> σ 2=σ 3 increases with p as:

f ∗
c = fc(1 + K ) (3.4)

Eurocode 8 Part 3 (CEN 2005a) has adopted the value of K proposed in (Newman
and Newman 1971).

K ≈ 3.7

(
p

fc

)0.86

(3.5)

As shown in Fig. 3.11(a), Eq. (3.5) gives about the same result as the more com-
plex expression fitted to data by (Elwi and Murray 1979):

K = 2.254

[√
1 + 7.94

p

fc
− 1

]
− 2p

fc
(3.6)

After its adoption by Mander et al. (1988), Eq. (3.6) is widely quoted and used
today.

One of the earliest confinement models is the one proposed in Sheikh and
Uzumeri (1982), still used in the US. It referred directly to confinement by ties.
That model, gives:

K = a

(
7

√
2p

fc

)
(p and fc in MPa) (3.7)

where a is the “confinement effectiveness factor” of the ties, given by Eqs. (3.24),
(3.20), (3.21) and (3.22) in Section 3.1.2.3. The lateral pressure may be taken equal
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(a)

(b)

(c)

Fig. 3.11 Comparison of the predictions of various confinement models for the enhancement of
concrete: (a) strength; (b) strain at maximum strength; and (c) ultimate strain
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to p = 0.5ρwfyw, where fyw is the yield stress of the ties and ρw their volumetric ratio
(ratio of the volume of stirrups to the volume of the confined core of the concrete,
measured to the centreline of the perimeter stirrup) (cf. Eqs. (3.19) and (3.23)).

In Europe, the model in Model Code 90 of CEB/FIP (CEB 1991) is still in
use, although it gives, in general, less enhancement of the key properties of con-
crete with confinement (see Fig. 3.11(a)). In that sense it is safe-sided for design.
It is used mainly thanks to its adoption by Eurocode 2 (CEN 2004b). In that
model the enhancement of ultimate strength and of the corresponding strain are
given as:

f ∗ = β fc = min

(
1 + 5

p

fc
; 1.125 + 2.5

p

fc

)
fc (3.8)

εco
∗ = εcoβ

2 (3.9)

where β in Eq. (3.9) is the strength amplification factor in Eq. (3.8), standing for the
factor (1+K) of Eq. (3.4).

If the two transverse stresses are not equal (σ 2 > σ 3) the value p ≈ (σ 2+4σ 3)/5
may be used in Eqs. (3.5), (3.6) and (3.8). The smaller of the two transverse stresses
controls confinement, implying that detailing of concrete members for earthquake
resistance should aim at providing (about) the same restraint of lateral expansion in
both transverse directions of the member.

Larger than the enhancement of maximum strength with confinement is the
increase in the strain at maximum strength. According to Richart et al. (1928) the
following expression applies (adopted also in Eurocode 8, Part 3 (CEN 2005a)):

εco
∗ ≈ εco(1 + 5 K ) (3.10)

Equation (3.10) gives much higher enhancement of the strain at maximum
strength than Eq. (3.9) in Model Code 90 (CEB 1991) and Eurocode 2 (see
Fig. 3.11(b)).

Confinement starts affecting the σ 1–ε1 diagram only when the value of σ 1

approaches the uniaxial compressive strength of unconfined concrete, fc. Until then,
neither the tangent, nor the secant value of the elastic modulus of concrete are
affected much by confinement. Note that the secant modulus from the origin to
the peak of the σ 1–ε1 diagram, i.e. the value of fc∗/εco

∗, drops, as the confining
pressure increases. Note also that, if the ascending branch of the σ 1–ε1 diagram is
modelled as a parabolic curve (a common practice for uniaxial compression), then
the initial tangent modulus is equal to 2fc∗/εco

∗ and decreases with increasing value
of p. This anomaly can be avoided by adopting – instead of the commonly used
parabolic diagram – the σ 1–ε1 relation proposed by Eurocode 2 (CEN 2004b) for
use in nonlinear analysis of concrete structures. The generalised form of that relation
is:
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σ

f ∗
c

=
ε

ε∗
co

(
k − ε

ε∗
co

)

1 + (k − 2)
ε

ε∗
co

(3.11)

where:

k = 1.05Ecεco
∗/ f ∗

c (3.12)

with Ec denoting the secant modulus of elasticity from the origin to a stress
σ 1=0.4fc, which is equal to Ec = 11000fc0.3 (for Ec and fc in MPa) according to
Eurocode 2 (CEN 2004b). Equation (3.11) reduces into the simple parabolic σ 1–ε1

diagram if k is taken equal to 2. By extension from the uniaxial compression for
which it has been adopted in Eurocode 2, Eq. (3.11) may be considered to apply
also along the softening branch beyond the peak at fc∗ and εco.

In seismic design, more than the strength of concrete matters its ultimate strain –
i.e. the strain beyond which concrete is considered to shed all its resistance to load
and disintegrate – denoted as εcu (or εcu

∗ for confined concrete). The ultimate defor-
mation of a member (i.e. “failure”) is conventionally identified with attainment of
εcu at the extreme compression fibre of that section where the bending moment
is largest (typically at the end section for seismic action), or of εcu

∗ at the extreme
fibres of the confined core. εcu is also conventionally defined as the strain at the point
on the softening branch of the σ 1–ε1 diagram where the stress, σ 1, has dropped to
0.85fc (or to 0.85fc∗, for εcu

∗ in confined concrete). Recall that in design the flexural
resistance of concrete sections is conveniently calculated assuming that the σ 1–ε1

diagram is parabolic up to the peak stress and horizontal thereafter, until the value of
εcu. The implication is that the value of εcu should be such that the softening branch
of the σ 1–ε1 diagram contributes to the maximum possible force that can develop in
the compression zone with a force of fcbx(εcu–εco)/εcu, or of fc∗b∗x∗(εcu

∗–εco
∗)/εcu

∗

for confined concrete, where b and x are the width and depth of the compression
zone, if rectangular, and b∗, x∗ their counterparts in the confined core.

The Model Code 90 CEB/FIP model (CEB 1991), adopted by Eurocode 2 (CEN
2004b) for the design of new buildings, gives the following ultimate strain of con-
fined concrete:

εcu
∗ = 0.0035 + 0.2p/ fc (3.13)

On the basis of test results showing that concrete confined by stirrups and sub-
jected to concentric compression ultimately fails when concrete dilation causes the
stirrups to exhaust their uniform elongation at failure, εsu,w and rupture, Mander
et al. (1988) proposed that when the ultimate strain of confined concrete is reached,
the total deformation energy stored in the stirrups until they rupture at strain εsu,w

is equal to the gain in the total deformation energy of the confined concrete core.
Assuming, for convenience, that the σ -ε diagram of the stirrup steel is horizontal
(i.e. rigid-plastic) at a stress equal to fyw until the failure strain of εsu,w, the idea in
Mander et al. (1988) gives: ρw fywεsu,w ≈ fc

∗ (εcu
∗ − εcu), i.e.:
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εcu
∗ ≈ εcu + 2εsu,w

p

f ∗
c

(3.14)

where the confining pressure p is taken equal to p = 0.5ρwfyw, according to the
discussion right after Eq. (3.7) and to Eqs. (3.19) and (3.23).

Paulay and Priestley (1992) proposed a modified form of Eq. (3.14), on the basis
of test results for concentric compression (again with p = 0.5ρwfyw):

εcu
∗ ≈ 0.004 + 2.8εsu,w

p

f ∗
c

(3.15)

Whatever has been said so far has been developed for concentrically compressed
concrete and, strictly speaking, applies only there. What matters, though, for earth-
quake resistance is the behaviour of the extreme fibres in the confined concrete core
of members subjected to cyclic bending, with or without axial load. Apart from the
strain gradient (i.e. the fact that the strain is maximum at the extreme fibres, decreas-
ing to zero towards the neutral axis), what is different from concentric compression
is the target, which is the flexure-controlled ultimate deformation of the member.3

Test results, especially in cyclic loading, show that by the time the ultimate curvature
is reached, stirrups very rarely exhaust their elongation capacity and snap. There-
fore, the value of εsu,w is not of prime importance for the confined concrete core.

If we adopt the analysis in Section 3.2.2.4 for the calculation of the ultimate cur-
vature, ϕu, on the basis of first principles and use Eqs. (3.4), (3.5) and (3.10) for
the confined concrete strength, fc∗, and for the associated strain, εco

∗, good aver-
age fitting to available experimental results on ϕu of cross-sections with rectangular
compression zone and confined concrete core is achieved (with acceptable scatter)
if the following expressions are used for εcu

∗ (Biskinis 2007):

– for monotonic loading:

εcu
∗ = 0.0035 +

(
10

hc

)2

+ 0.57
p

f ∗
c

(3.16a)

– for cyclic loading:

εcu
∗ = 0.0035 +

(
10

hc

)2

+ 0.4
p

f ∗
c

(3.16b)

or, alternatively:

– for monotonic or cyclic loading:

εcu
∗ = 0.0035 +

(
1

xc

)3/2

+ 1

3

p

f ∗
c

(3.17)

3See footnote 1 in Section 3.1.1.2 for the definition of ultimate deformation (see also Sections
3.2.2.4 and 3.2.2.7).
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where:

– hc is the depth of the confined concrete core within the plane of bending (in mm);
– xc is the neutral axis depth in the confined concrete core within the plane of

bending (mm);
– the confining pressure, p, is related to the geometric ratio and to the arrange-

ment of the confining medium (the transverse reinforcement), differently for Eqs.
(3.16) or for Eq. (3.17) as specified in Section 3.1.2.3;

– the confined compressive strength, fc∗, is given from Eqs. (3.4) and (3.5).

The “ultimate strain” of the extreme compression fibres of the unspalled section
at its ultimate curvature (i.e. when the moment resistance of the unspalled section
drops below 80% of the maximum previous moment resistance, see footnotes 1 and
3 of this chapter) may be determined from Eqs. (3.16) and (3.17) with p = 0 and the
full section depth in the plane of bending, h, or the neutral axis depth x in the full
concrete section, instead of hc or xc, respectively.

The 2nd terms in Eqs. (3.16) and (3.17) imply a size-effect, as in Bigaj and Wal-
raven (1993) and Bosco and Debernardi (1993). Although this is a controversial
issue (e.g., Alca et al. 1997), a size effect on εcu is rationalised on the basis of stabil-
ity considerations of the compression zone (cf. the definition of εcu as the terminal
strain of a parabolic-rectangular σ -ε diagram that reproduces the maximum possible
resisting force of the compression zone).

Part 3 of Eurocode 8 (CEN 2005a) proposes the following for the ultimate strain
at the extreme fibres of the confined concrete core in members under cyclic bending:

ε∗
cu = 0.004 + 0.5

p

f ∗
c

(3.18)

Equation (3.18) is meant to be used with Eqs. (3.4), (3.5) and (3.10) for fc∗ and
εco

∗ in a package considered by Part 3 of Eurocode 8 as more accurate and repre-
sentative than the confinement model of Eurocode 2, consisting of Eqs. (3.8), (3.9)
and (3.13).

Figure 3.11(c) compares the outcome of Eqs. (3.16) to those of Eqs. (3.13), (3.14)
and (3.15). For the purposes of this comparison, the value of εsu,w used in Eqs. (3.14)
and (3.15) is the average in the tests to which Eqs. (3.16) have been fitted. The pre-
dictions of Eq. (3.15) are on the high side, while Eq. (3.14) seems to agree well with
Eq. (3.16a) – and hence with the underlying monotonic data – but to be on the unsafe
side compared to Eq. (3.16b) – and to the underlying cyclic data. The predictions of
Eq. (3.18) – not shown in Fig. 3.11(c) – are half-way between those of Eqs. (3.16a)
and (3.16b). Being design-oriented, Eq. (3.13) gives safe-sided estimates of the
ultimate strain, but not overly so, and hence is an acceptable alternative to
Eq. (3.16b) for cyclic loading.

Sections 3.2.2.4 and 3.2.2.10 elaborate further the context of Eqs. (3.16) and
(3.17), notably the expressions for the ultimate curvature ϕu in which the value of
εcu

∗ is to be used.
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Note that all expressions given in the present section, except Eqs. (3.16), (3.17)
and (3.18), have been fitted to concentric compression test results. The reader should
be cautioned, then, for the fact that all confinement models are applied throughout
the compression zone of sections subjected to bending with or without axial load,
and especially to its extreme fibres. The implicit assumption there is that every point
in the compression zone is laterally restrained by the surrounding volume of con-
crete in the same way that the perimeter stirrup and any intermediate ones restrain a
section under concentric compression. Being under smaller strains than the extreme
fibres, the ones immediately inwards have a lower tendency to dilate and do indeed
restrain the inward dilation of the extreme fibres. However, it is rather arbitrary to
assume that this restraint depends on the diameter, layout and spacing of stirrups,
in exactly the same way as the outward restraint does (see next Section 3.1.2.3).
Indeed, the available experimental evidence suggests they don’t.

3.1.2.3 Confinement by Transverse Reinforcement

The confinement of the end section of a member by the surrounding concrete beyond
the member end – i.e. by a larger column for a beam, or a large foundation element
for the base of a vertical element – is neglected in design, as it refers to a single
section. However, confinement of the concrete core inside the reinforcement cage
by closely spaced transverse reinforcement is a key point in the detailing of concrete
members for earthquake resistance.

The yield strain of reinforcing steel is about 2.5-times the lateral strain of con-
crete at uniaxial ultimate strength. When the uniaxial stress approaches fc the con-
fining steel is activated and, if in sufficient quantity, reaches its yield stress, fyw,
while the – by now triaxially compressed – concrete attains its enhanced ultimate
strength.

Circular hoops or spirals provide the most efficient confinement. Hoops or spi-
rals with small spacing or pitch, respectively, compared to the centreline diameter
of the hoop or spiral, Do = 2Ro, may be considered as a tube of thickness t = Asw/s,
where Asw is the cross-section of the tie or spiral and s its spacing or pitch. (Strictly
speaking, the equivalent thickness is equal to ast, where as is the confinement effec-
tiveness factor given by Eqs. (3.20a) and (3.20b) and which is close to 1.0 if s/Do

is small). Reacting to the tendency of the enclosed concrete core to dilate when it
approaches its ultimate strength under axial compression, the hoop or spiral will
develop a tensile stress σ s and exert on the concrete core a radial (confining) pres-
sure, p, related to σ s as: p = tσ s/Ro. The confining steel reaches its yield stress, fyw,
while the triaxially compressed concrete attains its enhanced ultimate strength. After
yielding of the confining steel, σ s = fyw, the lateral pressure p remains constant. On
this basis, confinement models, like those in Section 3.1.2.2, fitted to triaxial com-
pression tests under constant value of p are considered to apply when the lateral
pressure derives from transverse reinforcement. If this reinforcement is idealised as
a tube of thickness t, the value of p (normalised to the unconfined concrete strength)
to be used in these confinement models is:

p

fc
= 0.5ρw

fyw

fc
= 0.5ωw (3.19)



3.1 The Materials and Their Interaction 151

Where ωw = ρwfyw/fc is the mechanical volumetric ratio of the confining reinforce-
ment, defined with respect to the volume of the concrete core to the centreline of the
confining hoop or spiral: ρw = (2πRo)Asw/(πRo

2s) = 2Asw/sRo = 2t/Ro.
A circular hoop or spiral exerts its confining action on the concrete it surrounds

not as a uniform pressure p = tσ s/Ro, but as a radial force per unit length of the
perimeter, 2πRo. The effect of this force is dispersed within the volume of the con-
crete core inside the hoop or the spiral. A convenient assumption for the dispersal
of the confinement force was initially proposed by Sheikh and Uzumeri (1982) and
extended by Mander et al. (1988). According to this assumption, the confinement
force is dispersed following parabolic arcs defined within planes through the mem-
ber axis (meridional planes) and spanning from one hoop (or intersection of the
spiral with the meridional plane) to the next with tangents there at ±45◦ to the plane
of the cross-section (see Fig. 3.12(a)). Any concrete outside these parabolic arcs is
assumed as unconfined, like the concrete cover outside the hoop or spiral. The entire
concrete volume inside these arcs is considered as uniformly confined.

For circular hoops, the minimum confined cross-sectional area along the member
is mid-way between consecutive hoops. The apex of a parabolic arc is at a distance
from the chord connecting its two ends equal to 0.5(s/2)tanα, where α is the angle
of the tangent to the parabola at each end with respect to the chord of the parabolic
arc. For the assumptions in Sheikh and Uzumeri (1982) and Mander et al. (1988),
α = 45◦. The minimum confined cross-section has a diameter equal to 2(Ro–s/4) =

(a) (b) 

Fig. 3.12 Confined and unconfined parts over the cross-section and along a member with: (a)
circular section and circular hoops; or (b) square section and multiple ties
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Do–s/2 and a cross-sectional area of π(Do–s/2)2/4, i.e. to the following fraction of
the confined core defined by the centreline of the hoop:

as =
(

1 − s

2Do

)2

(3.20a)

If confinement is provided by a spiral, the model in Sheikh and Uzumeri (1982)
and Mander et al. (1988) gives a constant confined cross-sectional area along the
member. This area is circular with the ends of its diameter defined as follows:

– One end is at the apex of the parabolic arc extending between consecutive points
of intersection of a meridional plane with the spiral.

– The other end is at the intersection of the same meridional plane with the spiral
itself.

Then the diameter of the confined area is equal to Do–s/4, where s is now the
pitch of the spiral. Therefore, the confined area is equal to the following fraction of
the cross-sectional area inside the centreline of the spiral:

as =
(

1 − s

4Do

)2

≈ 1 − s

2Do
(3.20b)

In rectangular sections confinement is normally provided by rectangular ties. If
the centreline dimensions of the tie are bxo and byo (Fig. 3.12(b)) the same reasoning
gives a minimum confined cross-sectional area mid-way between consecutive ties
with area equal to the following fraction of the cross-section area inside the tie
centreline:

as =
(

1 − s

2bxo

)(
1 − s

2byo

)
(3.20c)

Circular hoops or spirals exert radial confining forces all along the perimeter.
By contrast, straight stirrup legs along the perimeter do not develop any confining
action, because the tendency of concrete to dilate when its stress approaches its
ultimate strength causes these legs to bend outwards. The confining force exerted
by a unit length of a stirrup bent to a radius of curvature equal to R is Aswσ s/R,
where Asw is the stirrup cross-section area and σ s its tensile stress. This force is
negligible, until eventually outwards bending of the straight stirrup leg reduces its
radius of curvature, R, to a value of the order of the cross-sectional dimensions. But
then it may be too late for the concrete. So, rectangular or polygonal stirrups are
considered to exert concentrated confining forces on the concrete inside, only:

– at the corners, and
– wherever outwards bending of their straight legs is prevented by the hook of a

cross-tie, well anchored within the concrete volume (the end hooks of intermedi-
ate single-legged cross-ties normally engage opposite sides of a perimeter tie).
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Normally every stirrup corner or any intermediate point of the perimeter tie later-
ally restrained by a cross-tie hook engages also a longitudinal bar with much larger
diameter than the stirrup itself. This bar plays an important role for the dipersal of
the confining force concentrated there to the volume of the concrete core. The dis-
persal model in Sheikh and Uzumeri (1982) and Mander et al. (1988) is used also to
separate the unconfined from the fully confined part inside the cross-section where
the stirrup lies. The unconfined part is the one outside parabolic arcs connecting
consecutive stirrup corners or points laterally restrained by a cross-tie hook, and the
fully confined part is that inside these arcs. The apex of each parabolic arc is at a
distance bitanα/4 from the chord connecting its two ends, where bi is the length of
this chord along the perimeter and α the angle between the chord and the tangent
of the arc at each end, taken as α = 45◦ according to Sheikh and Uzumeri (1982)
and Mander et al. (1988). The area enclosed by the arc and its chord of length bi is
equal to their distance at the apex times 2bi/3, i.e. to bi

2/6. So, the confined part of
the cross-section at the level of a rectangular stirrup with centreline dimensions bxo

and byo is equal to the following fraction of the area enclosed by the centreline of
the stirrup:

an = 1 −
∑

bi
2/6

bxobyo
(3.21)

Circular hoops or spirals provide confinement all along their perimeter, so the
counterpart of Eq. (3.21) is:

an = 1 (3.22)

Rectangular columns or beams have a closed perimeter stirrup providing con-
finement only at its corners. Columns of earthquake resistant buildings designed for
ductility are required by codes to have intermediate longitudinal bars engaged by a
stirrup corner or cross-tie hook not further apart than a specified maximum spacing
(of the order of 150–250 mm, see Table 5.2 in Chapter 5 for Eurocode 8). As a mat-
ter of fact, for buildings of Ductility Class M or H Eurocode 8 requires (for other
reasons) a least one intermediate bar between adjacent corners of a column sec-
tion, but does not impose engaging such bars with a cross-tie hook. Lateral restraint
of intermediate bars is provided by cross-ties engaging two intermediate bars at
opposite sides of the cross-section, or, more commonly in large cross-sections, by
intermediate closed stirrups engaging one bar at each stirrup corner. A tensile stress
σ s = fyw in all stirrup legs and cross-ties parallel to transverse direction x (or 2)
that opposes the dilatation of a concrete that approaches its ultimate strength, pro-
duces an average compressive stress σ 2 in the concrete, computed from equilibrium
as: σ 2byo = (ΣAswx/s)fy, i.e. σ 2/fc = ρxfyw/fc, where (ΣAswx/s) is the total
cross-sectional area of all stirrup legs or cross-ties per unit length of the member
parallel to transverse direction x, and ρx = ΣAswx/(sbyo) the geometric ratio of trans-
verse reinforcement in that direction. Similarly in the other transverse direction y (or
3): σ 3/fc = ρyfyw/fc. If ρx > ρy it is the value p ≈ (σ 2+4σ 3)/5 that counts. It is sim-
pler and safe-sided to consider that essentially the minimum of the two transverse
reinforcement ratios controls confinement:
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p/ fc ≈ min(ρx , ρy) fyw/ fc = 0.5ωw (3.19a)

where the volumetric ratio of confining reinforcement, ρw, referring to the volume
of the confined concrete core inside the centreline of the perimeter stirrup, is not the
real one, but that defined as:

ρw = 2 min(ρx , ρy) = 2 min(ΣAswx/byo,ΣAswy/bxo)/s (3.23)

The mechanical volumetric ratio of confining reinforcement in Eq. (3.19a), ωw

= ρwfyw/fc, derives from the fictitious volumetric ratio of confining reinforcement,
ρw, given by Eq. (3.23).

Equations (3.19a) and (3.23) are similar to the one for confinement by circular
hoops or spirals, Eq. (3.19), but applies only to cross-sections with stirrup legs or
cross-ties parallel to the section sides. In (nearly) square columns (with bx ≈ by)
with just one intermediate bar to be laterally restrained along each side, all four
intermediate bars can be conveniently restrained at the same time by a diamond-
shaped interior tie (Fig. 3.13 (a)). That tie enters in the calculation of ρx and ρy

with its cross-sectional area Asw, times
√

2. In that special case the value of ρw

(a) (b)

(d)(c) 

Fig. 3.13 Ties in square column engaging the four corner bars and (a) four mid-side bars; (b), (c)
two intermediate bars per side; (d) three intermediate bars per side
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coincides with the real volumetric ratio of confining reinforcement (volume of all
tie legs, divided by the volume of confined core to the centreline of the perime-
ter tie). In a (nearly) square section with two intermediate bars that need lateral
restraint along each side, it is cost-effective and convenient to employ a single octag-
onal interior tie engaging all eight intermediate bars (Fig. 3.13(c)), instead of two
interior rectangular ties each engaging two pairs of intermediate bars at opposite
sides of the section (Fig. 3.13(b)). The octagonal tie enters in the calculation of ρx

and ρy with its cross-sectional area, Asw, times
√

2 so, the volumetric ratio from
Eq. (3.23) is slightly less than the real volumetric ratio of confining reinforcement.
If all intermediate bars in a square column are laterally restrained by single-leg
cross-ties, the outcome of Eq. (3.23) coincides with the real volumetric ratio of
confining reinforcement. This is not the case anymore if interior rectangular ties
engage each two pairs of intermediate bars at opposite sides of the section (Fig.
3.13(b) and (d)), because the legs of an interior tie on the perimeter do not count in
Eq. (3.23).

Equations (3.21) and (3.22) express the confined fraction of the cross-section at
the level of an individual stirrup, as a fraction of the area enclosed by the centreline
of the perimeter stirrup. Equations (3.20) give the minimum confined area along the
length of the member as a fraction of the confined area at the level of individual
stirrups. Factors as and an may be considered as coefficients of confinement effec-
tiveness along the member, or over the cross-section, respectively. The combined
confinement effectiveness factor is the product:

a = anas (3.24)

which gives the minimum confined cross-sectional area anywhere along the mem-
ber, as a fraction of the area enclosed by the centreline of the perimeter stirrup or
spiral (Fig. 3.12(b)).

Early work about the effect of confinement on the behaviour of concrete focused
on the ultimate strength of columns under concentric compression. Under such load-
ing the compression strength of the column is equal to that of its least confined cross
section. If unconfined concrete does not exhaust its ultimate strain, εcu, before the
confined concrete reaches its compressive strength, fc∗, the ultimate compressive
force of the column may be taken to be approximately equal to (Ac +aKAo)fc, where
Ac is the area of the gross concrete section, Ao is the cross-sectional area enclosed
by the centreline of the perimeter stirrup or spiral, a is the confinement effective-
ness factor of Eq. (3.24) and K the strength enhancement factor in Eq. (3.4). It
is often considered that just the concrete cover spalls-off before the confined con-
crete reaches its ultimate strength, fc∗. Then the ultimate compressive load may be
estimated as aAofc∗, computed from Eq. (3.4) with the value of K multiplied times
the confinement effectiveness factor of Eq. (3.24). As a matter of fact (Sheikh and
Uzumeri 1982), that first introduced the concept of a confinement effectiveness fac-
tor essentially in the form of Eqs. (3.20), (3.21), (3.22) and (3.24), incorporates it in
K as a multiplicative factor in Eq. (3.7).
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If K is proportional to the confining pressure p (as, e.g., in the 1st term of the
model of Eq. (3.8)), which in turn is proportional to the mechanical volumetric
ratio of transverse reinforcement (see Eqs. (3.19) and (3.19a)), then a may multiply
directly ωw. However, this practice has been common even in models where K is
nonlinear in p. In the Mander et al. (1988) model factors an and as multiply the
transverse stresses σ 2 and σ 3. More specifically, for circular hoops or spirals as

multiplies ωw in Eq. (3.18); for rectangular ties a from Eq. (3.24) multiplies the
mechanical stirrup ratios in the two transverse directions, ωx = ρxfyw/fc and ωy =
ρyfyw/fc, for the calculation of σ 2/fc = aωx, σ 3/fc = aωy. A similar approximation
is common in the use of Eq. (3.5), which is also nonlinear in p. Unfortunately, this
practice is carried over to the calculation of εco

∗ through Eq. (3.10) and of εcu
∗

through Eqs. (3.13) and (3.18). So, the common practice is to apply Eqs. (3.5), (3.6),
(3.8), (3.13) and (3.18) with a value of p/fc from Eqs. (3.19) or (3.19a) multiplied by
a (which is equivalent to multiplying ωw at the right-hand-side of Eqs. (3.19) and
(3.19a) by a):

p

fc
= 0.5aρw

fyw

fc
= 0.5aωw (3.25)

The same for Eqs. (3.16) and (3.17), but not for Eqs. (3.14) and (3.15).
The so resulting value of K is used then in Eqs. (3.4) and (3.10).
In earthquake resistant structures confinement is primarily of interest for the com-

pression zone of members subjected to bending with or without axial force. A more
meaningful measure of the effectiveness of confinement for a member with rectan-
gular section subjected to bending in a plane parallel to side bx, would involve a
value of a modified as follows (see Fig. 3.14):

Fig. 3.14 Calculation of confinement effectiveness in the compression zone of the confined core
of a member in flexure
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– instead of the depth of the confined concrete core, hc = bxo, its neutral axis depth
from the centreline of the perimeter stirrup, xo, is used, calculated from the nor-
malised neutral axis depth at ultimate conditions of the confined concrete core,
ξ cu, computed according to Section 3.2.2.4 under Ultimate Curvature of the Con-
fined Core, After Spalling of the Cover and Flow Chart 3.2;

– the summation Σibi
2 in the numerator of the 2nd term of Eq. (3.21) extends

over the external perimeter of the confined compression zone – i.e. from one
intersection of the neutral axis with the centreline of the perimeter stirrup to the
other intersection on the opposite side, excluding the neutral axis itself between
these two intersection points;

– the 1st parenthesis at the right-hand-side of Eq. (3.20c) is replaced by 1–0.25s/xo,
where s is the stirrup spacing.

The end result is a factor for the effectiveness of confinement of the compression
zone:

ax =
(

1 − s

2bxo

)(
1 − s

4xo

)(
1 −

∑
b2

i

6xobyo

)
(3.24a)

replacing a in Eq. (3.24).
The strong interaction between confinement of concrete and buckling of longitu-

dinal bars, already noted in Section 3.1.1.2, is worth re-emphasising:

– Thanks to their flexural stiffness, longitudinal bars contribute to the confinement
of the adjacent concrete, no matter that the model in Sheikh and Uzumeri (1982)
and Mander et al. (1988) and Eqs. (3.20) and (3.21) derived from it discount
this contribution. The confined concrete in turn exerts on these bars outwards
pressures driving them toward buckling.

– Once they buckle outwards, longitudinal bars contribute little to confinement
and to axial force resistance. Moreover, they may buckle over several tie spac-
ings (see Fig. 3.4(b)), stretching the ties and diminishing their role for confine-
ment. So, bar buckling may precipitate disintegration of the confined concrete
core.

3.1.2.4 Confinement by FRP Wrapping

The columns of existing substandard buildings normally have widely spaced and/or
poorly closed stirrups. Such stirrups provide little confinement, if at all. Confine-
ment can be very conveniently provided a-posteriori by wrapping the end regions of
columns where plastic hinges may form in Fibre-Reinforced-Polymers (FRPs) with
fibres oriented (primarily) in the hoop direction of the section (see Section 6.8.3).

The lateral stress-axial strain response for the two most common Fibre-
Reinforced-Polymers, notably carbon FRP (CFRP) and glass FRP (GFRP), is
contrasted in Fig. 3.15(a) to that for confinement by steel. Being essentially linear-
elastic, once activated by concrete that dilates after its unconfined ultimate strength
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(a) (b)

(c) (d)

Fig. 3.15 Schematic behaviour of concrete confined with steel, CFRP or GFRP: (a) σ -ε curves of
confining material, normalised to the yield stress and strain of steel; (b) axial σ -ε curves of confined
concrete, normalised to the strength and the corresponding strain of unconfined concrete; (c) (d)
lateral or volumetric strain v axial strain of confined concrete, normalised to the corresponding
strains of unconfined concrete at ultimate strength (adapted from fib 2006)

is attained, the FRP provides an ever increasing confining pressure until it fractures
in tension. So, unlike the σ -ε curve of concrete confined by ties which exhibits
softening after the ultimate strength, those of FRP-wrapped concrete continue hard-
ening until the FRP breaks (Fig. 3.15(b)). As shown in Fig. 3.15(c) and (d), after
they yield steel ties lose effectiveness compared to CFRP, and later on to GFRP as
well, in restraining the lateral and volumetric strains of concrete. As a matter of
fact, as shown in Fig. 3.15(d), after the unconfined ultimate strength of concrete is
exceeded, the restraint of its dilation by the large confining stiffness of CFRP can
soon turn dilation into contraction (Teng and Lam 2004). Of course, for the σ -ε
curve of confined concrete to be continuously ascending until rupture of the FRP,
the FRP wrapping should have a minimum of tensile strength, ffutf, and extensional
stiffness, Eftf, with ffu and Ef denoting the ultimate strength and Modulus of the
FRP material and tf the thickness of the FRP jacket (see Fig. 3.16 for FRP wrapping
with large values of ffutf and Eftf). Otherwise, the confined concrete will soften after
ultimate strength, as shown schematically in Fig. 3.16(b) for concrete wrapped with
FRP having low values of ffutf and Eftf. According to Yan and Pantelides (2006,
2007), the transition from hardening to softening takes place when the value of
ffutf/R drops below 0.2fc.
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(a) (b) 

Fig. 3.16 Schematic axial σ -ε response of FRP-confined concrete (a) for increasing FRP strength,
ffutf, and stiffness, Eftf, (b) hardening (top) or softening (bottom) behaviour, for ffutf/R > 0.2fc or
ffutf/R < 0.2fc, respectively (adapted from Yan and Pantelides 2007)

The difference between the passive confinement offered by an elastic material,
such as FRP, and an active one by a constant lateral pressure p was not recognised
at the beginning. So, in the first publications that proposed and investigated the use
of FRP to confine the concrete (Fardis and Khalili 1981, 1982), Eqs. (3.4) and (3.5)
have been applied for the enhancement of the concrete strength. Equations (3.4),
(3.7) and (3.10) were adopted for the same purpose when the subject was first revis-
ited (Saadatmanesh et al. 1994) and later adopted in ACI Committee 440 (2002)
too. All subsequent work avoided blind adoption of models of active confinement
by a constant lateral pressure, p, such as those presented in Section 3.1.2.2 for con-
crete confined by steel ties. Models were custom-fitted, instead, to the stress-strain
behaviour and the strength of FRP-confined concrete.

Research on the experimental behaviour of FRP-confined concrete under concen-
tric compression and its modelling has been intense since the mid-1990s and will
continue at least till the end of the first decade of the 20th century. In the absence
of agreement within the research community about the models to be used in prac-
tice, the present section covers the subject at a greater length than warranted by its
importance. Hopefully, the dust will soon settle and some of the following material
will become redundant.

The ultimate strength and strain of confined concrete under concentric com-
pression are controlled by the failure strain of the FRP in the hoop direction. It
has recently emerged that the value of the effective ultimate hoop strain of the
FRP, εfu, is a much more important factor for stress-strain and strength models
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of FRP-confined concrete than the model itself. There is indeed strong experi-
mental evidence that the full elongation at rupture of the FRP material, as mea-
sured in coupon tests, cannot be utilised for confinement. The FRP that confines
concentrically compressed concrete fails when its hoop strain reaches a fraction
of the ultimate elongation of tension coupons. In ACI Committee 440 (2002)
this fraction is called efficiency factor and is given a value of 0.75 for rectan-
gular members subjected to bending and shear (but with the value of the effec-
tive ultimate strain of FRP not to exceed 0.004), or of 1.0 for circular sec-
tions. In the light of current knowledge the values in ACI Committee 440 (2002)
are high: values of the efficiency factor around 0.5 (Yan and Pantelides 2007,
Toutanji et al. 2007, Fujikake et al. 2004), 0.6 (Lam and Teng 2003a,b, Tamužs
et al. 2007, Tabbara and Karam 2007), or 0.85 just for AFRP (Lam and Teng
2003a,b) are more consistent with test results. It has also been found in Tab-
bara and Karam (2007) that models of active confinement by a constant lateral
pressure, p, such as those presented in Section 3.1.2.2 for concrete confined by
steel ties, can describe well the ultimate strength of FRP-confined concrete under
concentric compression, provided that p is derived from the FRP geometric ratio
ρf = 2tf/D as p = ρfffu, with the effective ultimate strength of FRP taken as ffu =
Efεfu, where εfu is the effective, reduced ultimate hoop strain of the FRP and not the
ultimate elongation of tension coupons. Finally, it has been demonstrated in Teng
and Lam (2004) that σ -ε models for confined concrete agree much better to test
results if they employ the measured ultimate hoop strain of the FRP, instead of a
default value or the ultimate elongation of tension coupons. So, the reader should
consider the statement in the second sentence of the present paragraph as well sub-
stantiated and should keep it in mind while going through the rest of this section.

The Spoelstra and Monti model in Spoelstra and Monti (1999):

f ∗
c

fc
= 0.2 + 3

√
ρ f

f f u

fc
(3.26a)

ε∗
cu

εco
= 2 + 1.25

Ec

fc
ε f u

√
ρ f

f f u

fc
(3.26b)

applies to circular sections with diameter D, wrapped with FRP having a geometric
ratio ρf = 2tf/D and effective ultimate strain εfu, giving an effective ultimate FRP
strength ffu = Efεfu. Although widely quoted – notably in fib (2001, 2003) – the
model has been recently found (Vintzileou and Panagiotidou 2007, Yan and Pan-
telides 2006, Tamužs et al. 2007, De Lorenzis and Tepfers 2001) to overestimate on
average by about 5% the strength of confined concrete cylinders (via Eq. (3.26a))
and much more (by more than half) their ultimate strain (via Eq. (3.26b)). More-
over, it predicts that a very low level of confinement (with ρfffu/fc < 0.07) reduces
the strength below the unconfined value.

Among the widely known proposals so far, the model in Lam and Teng (2003a,b)
has emerged from an independent comparison with the largest known database of
FRP-confined concrete under concentric compression (Vintzileou and Panagiotidou
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2007) as the most unbiased for ultimate strength and strain (with median value
of experimental-to-predicted or predicted-to-experimental ratio within a few per-
cent from 1.00), with acceptable overall scatter. Moreover, it is fairly complete: it
provides the full hardening σ -ε law of circular or rectangular FRP-confined sec-
tions, giving at the limit the one of unconfined concrete. The σ -ε curve consists of a
parabolic ascending branch followed by a linear one that intercepts (if extended) the
stress axis at the unconfined concrete strength, fc, and terminates to the following
ultimate strength and strain point:

f ∗
c

fc
= 1 + 3.3

(
b

h

)2

an
ρ f f f u

fc
(3.27a)

ε∗
cu

εco
= 1.75 + 12

√
h

b
an
ρ f f f u

fc

(
ε f u

εco

)0.45

(3.27b)

The parabolic first branch merges into the linear one at the same slope E2 = (fc∗

– fc)/εcu
∗ and at a strain equal to 2fc/(Ec – E2).

In Eqs. (3.27) b and h are the shorter and the longer of the two sides of the section
(b = h for circular sections). The confinement effectiveness factor, an, is given by
Eq. (3.22) for circular sections and by Eq. (3.28) below for rectangular ones. On
the basis of the measured hoop strains at failure of the FRP and the specimen, Lam
and Teng (2003a,b) have concluded that the effective FRP ultimate strength, fu,f, is
equal to fu,f = Efεfu, where εfu is on average about equal to 60% of the failure strain
of tensile coupons for CFRP and GFRP, or about 85% of the coupon failure strain
for AFRP (for GFRP or AFRP these percentages were estimated from very limited
data).

According to Lam and Teng (2003a,b), if ρfffu/fc< 0.07, the strength enhance-
ment in Eq. (3.27a) is neglected. However, this departure from Eq. (3.27a) may not
be sufficient for the realistic description of the behaviour of concrete for low levels
of FRP-confinement. In the model in Yan and Pantelides (2006, 2007) the expres-
sions for ultimate strength and strain under hardening behaviour (i.e., for ffutf/R
> 0.2fc) are supplemented with rules for softening behaviour (with ffutf/R < 0.2fc),
namely with expressions giving both the ultimate strain point in Fig. 3.16, fcu

∗, εcu
∗,

and the peak or ultimate strength one, fc∗, εc
∗. That σ -ε model is more complete in

this respect, but it has been fitted to limited data of tests carried out by its very pro-
posers. So, till an independent assessment of its performance for a wider database
of test results, the reader is referred to Yan and Pantelides (2006, 2007) for details.

An FRP jacket provides continuous confinement all along the length of its appli-
cation around the member. So, the confinement effectiveness factor in that direction
is as = 1 (cf. Eqs. (3.20) for confinement by steel ties).

Regarding the effectiveness of confinement by FRP within the section, for
circular members the FRP jacket is fully effective all along the perimeter. So, the
confinement effectiveness factor within the section is an = 1, as in circular steel
hoops or spirals (cf. Eq. (3.22) for confinement by steel ties).



162 3 Concrete Members Under Cyclic Loading

If the section is rectangular, the FRP jacket exerts confining forces only at the
corners and not at all in-between (similar to a perimeter tie). Primarily to enhance
the confinement effectiveness of the FRP jacket, but also to reduce stress concentra-
tions in it at the corner that may cause premature rupture, the corner of the section is
rounded into a quarter-circle of radius R before applying the FRP. Note that, when
a sheet of fibre-reinforced fabric of thickness t is applied around such a corner, a
strain of ε = 0.5t/R is locked in at the expense of the ultimate strain capacity of the
FRP. From this point of view, to achieve a target value of total tensile strength of the
FRP in the circumferential direction of a rectangular section, a larger number of thin
individual fibre-reinforced sheets – each with thickness t not more than a fraction of
a millimetre – is preferable to fewer but thicker sheets.

In rectangular sections, confinement by the FRP jacket is fully effective right
inside the rounded corners of the section. In-between the corners the parabolic arc
model in Sheikh and Uzumeri (1982) and Mander et al. (1988) may be applied as in
Fig. 3.17, giving in the end the following fraction of the original rectangular section
as confined (CEN 2005a, fib 2001, 2003):

an = 1 − (bx − 2R)2 + (by − 2R)2

3bx by
(3.28)

The long exposé above refers exclusively to concentric compression. Strictly
speaking it applies only in that case. It has been emphasised in Sections 3.1.2.2
and 3.1.2.3 that what matters for earthquake resistance is the compression zone
of members subjected to cyclic flexure with or without axial load and notably the
flexure-controlled ultimate deformation of the member,4 conveniently expressed by
the ultimate curvature of the section. By analogy to the development of Eqs. (3.16)
and (3.17) in Section 3.1.2.2, the ultimate curvature, ϕu, is calculated from first prin-
ciples according to the analysis in Section 3.2.2.4 modified to accept a parabolic-
trapezoidal σ -ε curve for the confined concrete, instead of the parabolic-rectangular
one used for unconfined concrete. In addition, the σ -ε model in Lam and Teng

Fig. 3.17 Confinement of
rectangular section by FRP
jacket

4See footnote no. 1 in Section 3.1.1.2 for the definition of ultimate deformation (see also Section
3.2.2.7).
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(2003a,b) is adopted, except that the ultimate strain, εcu
∗, is determined for opti-

mal fitting of available experimental results on ϕu of FRP-confined sections. It has
been found that such a fitting is unbiased (i.e., good on average) and associated
with acceptable scatter, if for cyclic loading Eq. (3.16b) is modified as follows for
confinement by FRP (Biskinis and Fardis 2009):

εcu
∗ = 0.0035 +

(
10

h

)2

+ 0.4an min

[
0.5;

ρ f fu, f

f ∗
c

]
aef f , j (3.29)

where:

– h is the full section depth in the plane of bending, in mm;
– an is the confinement effectiveness factor of the FRP, equal to an = 1 for circular

sections or given by Eq. (3.28) for rectangular ones;
– ρf = 2tf/b is the geometric ratio of the FRP in the direction of bending;
– ffu = Efεfu, with εfu as in Lam and Teng (2003a,b), i.e. about equal to 60% of

the failure strain of tensile coupons; note that in Lam and Teng (2003a,b) this
percentage value has been proposed only for CFRP or GFRP, while 85% was
given for AFRP, but on the basis of limited test results;

– aeff,j is an additional effectiveness factor for the FRP jacket, expressing that its
effectiveness is not proportional to the geometric ratio and stiffness of the FRP:

• aef f, j = 0.5

(
1 − min

[
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f ∗
c

])
for CFRP, GFRP, (3.30a)

• aef f , j = 0.3

(
1 − min

[
0.5;

ρ f fu, f

f ∗
c

])
for AFRP (3.30b)

Section 3.2.3.10 under Members with Continuous Bars gives details about the
outcome of the application of Eqs. (3.28), (3.29) and (3.30) for the estimation of the
ultimate flexural deformation of FRP-wrapped members.

Note that, if the FRP provides relatively light confinement compared to the trans-
verse reinforcement, the end section may survive rupture of the FRP jacket and
reach subsequently a larger ultimate curvature controlled by the confined concrete
core inside the stirrups, for which Section 3.1.2.2 applies.

3.1.2.5 Concrete Strength Requirements for Earthquake Resistant Buildings

Because the effect of concrete strength on member ductility and energy dissipa-
tion capacity seems to be beneficial in practically every respect (from the increase
of bond and shear resistance, to the direct enhancement of deformation capacity),
Eurocode 8 (CEN 2004a) sets a lower limit on the nominal cylindrical concrete
strength in primary seismic elements, equal to 16 MPa (concrete class C16/20) in
buildings of DC M, or 20 MPa (concrete class C20/25) in those of DC H. No upper
bound is set on concrete strength, as there is no experimental evidence that the
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lower apparent ductility of high strength concrete (due to which the values speci-
fied in Eurocode 2 for εco and εcu converge, from εco = 0.002 and εcu = 0.0035
for concrete class C50/60, to a single value of 0.0026 at C90/100) has any adverse
effect on member ductility and energy dissipation capacity. The above lower lim-
its on nominal concrete strength are consistent with the lowest concrete strengths
currently used in buildings of the more seismic prone European countries.

3.1.3 Interaction Between Reinforcing Bars and Concrete

3.1.3.1 Cyclic Shear Transfer Along Cracks Crossed by Reinforcement

Cracks in concrete take place at right angles to the direction of a principal tensile
stress. So, the crack plane is initially free of shear stresses. Owing to the change
in the stress field during cyclic loading, shear stresses later develop along the crack
plane. Due to such shear stresses one of the two faces of the crack tends to slip
with respect to the other. Unless the shear is accompanied by stresses normal to the
crack, slippage along the crack would be restrained only in the presence of reinforc-
ing bars crossing the crack – at right angles or at an inclination. The magnitude of
the slippage induced by a given shear stress (i.e., the effect of the crack on shear
stiffness) and the maximum shear force that can be transferred along the crack (the
shear resistance) depend on the diameter, spacing and inclination of the bars cross-
ing the crack and the tensile stress already in them due to other reasons (i.e. at zero
shear stress along the crack).

Rough cracks crossed by reinforcing bars can transfer shear by friction. In this
“interface shear transfer” or “aggregate interlock” mechanism, the clamping force
needed for the development of friction is provided by the reinforcing bars that cross
the crack and depends on their total cross-sectional area, inclination with respect to
the crack and tensile stress due to other reasons. These bars connect also the two
faces of the crack as “dowels”. Their effectiveness in this respect depends on their
diameter (more than on their cross-sectional area) and on the minimum concrete
cover in the direction of the shear stress on either side of the crack (or, if this cover
is small, by the engagement of the bar acting as dowel by transverse reinforcement
close to and almost parallel to the crack).

Significant shear forces can be transferred by aggregate interlock and dowel
action under monotonic loading (see virgin loading branches in Figs. 3.18 and 3.19).
However, both mechanisms are very sensitive to the cycling of the shear force and
of the associated slip along the crack. Cycling of the slip polishes the crack faces
and reduces the effectiveness of aggregate interlock. Bearing stresses under a bar
acting as dowel may crush locally the concrete and open a “gap” that may need to
be closed, for the bar to be re-engaged as a dowel in a subsequent load cycle. This is
evident from the cyclic shear force (or stress) v slip behaviour depicted in Fig. 3.18
for aggregate interlock and in Fig. 3.19 for dowel action. In both cases (but espe-
cially for aggregate interlock) unloading-reloading loops have an inverted-S shape,
with initially steep unloading and steep final reloading in the opposite direction.
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(a) (b)

Fig. 3.18 Increase of slip in aggregate interlock for cycles of about constant shear stress amplitude,
with the clamping reinforcement normal to the crack initially at: (a) zero tensile stress; or (b) 90%
of yield stress (Perdikaris 1980)

Fig. 3.19 Dowel force v slip loops for asymmetric cover of the dowel (adapted from Vintzeleou
1984)

In-between there is an intermediate phase of nearly unrestrained slippage, until hard
contact of the two polished faces of the cracks resumes in the cases of Fig. 3.18, or
till the bar bears against sound concrete again in that of Fig 3.18. Hysteresis loops
are narrow (especially for aggregate interlock), dissipating very little energy.

Note that not only dowel action, but also shear transfer by aggregate interlock is
a mechanism of concrete-steel interaction: the shear transfer by aggregate interlock
is essentially a friction mechanism (Fardis and Buyukozturk 1979). For slippage to
take place along a rough crack, asperities of one face have to ride over those on the
opposite face. So the crack opens-up, stretching the reinforcement that crosses it.



166 3 Concrete Members Under Cyclic Loading

The clamping force necessary for the friction is provided by compressive contact
forces that develop between asperities of the crack faces as reaction to the tension
that builds up in the reinforcement owing to the sliding and opening-up of the crack.
Witness in Fig. 3.18(b) the detrimental effect of high initial tension in the clamp-
ing reinforcement on the cyclic resistance and stiffness of the aggregate interlock
mechanism. Bars under high initial tension provide little clamping effect. Once they
yield, almost unrestrained slippage takes place along the crack. Similar is the detri-
mental effect of a high tensile stress in a bar that acts as a dowel: the combination of
this stress with the direct shear and bending stress due to dowel action precipitates
generalised yielding of the bar in the vicinity of the crack, diminishing its resis-
tance against further slippage. Therefore, the longitudinal bars in a plastic hinge of
a concrete element, which are expected to yield during the seismic response, cannot
contribute to interface shear transfer on the side.

The overall conclusion is that, under cyclic conditions the shear resistance and
stiffness along cracks crossed by reinforcement degrades fast and offers practically
no energy dissipation. So, one cannot rely on it for earthquake resistance.

3.1.3.2 Bond of Reinforcing Bars to Concrete

Smooth (plain) reinforcing bars were quite common until the mid-1960s (in the US)
to the mid-1980s (in some European countries). Nowadays only ribbed (deformed)
bars are used in concrete structures. Such bars are bonded to the surrounding con-
crete by bearing of their ribs against it. A characteristic parameter for the bond
properties of a ribbed bar is its relative rib area, which is defined as the ratio of
the projected area of the ribs on a plane normal to the bar axis to the lateral sur-
face area of the bar – both per unit length of the bar – and is roughly equal to the
rib height-to-distance ratio. A relative rib area value typical of turn-of-the-century
European production is around 0.06. Doubling it to 0.12 improves the bond by just
10% (Cairns 2006). For such values of the relative rib area, bond failure along bars
or laps having clear cover or clear mid-distance to the nearest anchored bar or lap
less than about three bar-diameters normally is in the form of concrete splitting
along planes through the axis of the bar(s), as in Figs. 3.20 and 3.21. Splitting is
caused by the circumferential tensile stress that develops in the concrete due to the
bursting action of the radial component of the bearing forces exerted by the ribs
on the concrete. For typical configurations of the surface of the ribs, the bursting
radial component is in the order of 25% of the longitudinal one (i.e., of the bond
force).

Bond resistance drops rather rapidly after splitting, as the slip of the bar with
respect to the surrounding concrete increases. Transverse reinforcement intercept-
ing the potential splitting crack(s), and/or transverse pressure on the bar – be it
active, due to external forces, or passive, thanks to confinement – delay splitting and
reduce the drop in bond resistance it entails; they can even prevent splitting. Split-
ting can also be prevented if the clear cover and the clear mid-distance to the nearest
anchored bar or lap are fairly large (at least three bar-diameters, for no transverse
reinforcement or pressure). If in such cases bond failure ultimately takes place, it
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Fig. 3.20 Splitting failures of lapped bars, with definition of k-factor in Eq. (3.31) and of the
number of bars or stirrup legs in Eq. (3.32) (adapted from Eligehausen and Lettow 2007)

has the form of bar pull-out (or -through) by shearing of the concrete around the bar
or the lap, all along a surface through the tops of the ribs. This failure mode is far
less brittle than by splitting: bond resistance is almost fully maintained until the bar
travels nearly the full clear distance between successive ribs – about 80% of the bar
diameter (Cairns 2006) – fully crushing the concrete between them.

Design codes consider bond as a uniform shear stress over the lateral surface of
the bar. To determine the minimum required length of anchorages or lap splices they
specify the design value of the ultimate bond stress, fbd, considering it as a material
property.5 In Eurocode 2 (CEN 2004b) and hence in Eurocode 8 (CEN 2004a) as
well, fbd is taken as 2.25 times the design value of concrete tensile strength, fctd =
fctk,0.05/γ c = 0.7fctm/γ c, where γ c is the partial factor for concrete and indices k,
0.05 and m to fct denote the lower characteristic and the mean value, respectively.
These Eurocode 2 values of fbd apply for “good” bond conditions, i.e. if the bar:

– is at an angle more than 45◦ to the horizontal; or
– is not more than 250 mm from the bottom of the concrete layer cast; or
– is at least 300 mm from the top surface of the concrete layer cast.

For all other positions of the bar during casting, bond conditions are considered
as “poor”, owing to the effects of laitance and consolidation of concrete during

5As we will see shortly, the concept of bond strength as a property of the concrete for given relative
rib area and position of the bar with respect to casting, albeit convenient, is not representative of
reality.
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Fig. 3.21 Splitting cracks
along corner bars due to bond

compaction. The Eurocode 2 value of fbd for “poor” bond conditions is 70% of that
applying under “good” conditions (CEN 2004b). So, fbd is finally equal to 0.315fck

2/3

for “good” bond conditions, or to 0.22fck
2/3 for “poor” conditions (with fck in MPa)

and for the recommended value of the partial factor for concrete γ c =1.5. For fck

between 16 and 30 MPa, the value of fbd is from 2 to 4.3 MPa under “good” bond
conditions and from 1.4 to 3 MPa for “poor” conditions.

The code-specified value of fbd is meant to correspond not to the real ulti-
mate bond stress, but to the monotonic bond stress causing a slip between the bar
and the surrounding concrete about equal to 0.1 mm. According to the CEB/FIP
Model Code 90 (CEB 1991), the real ultimate monotonic bond stress of ribbed bars
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corresponds to a slip of s = 0.6 mm. In unconfined concrete the ultimate bond stress
in CEB (1991) is about equal to 2

√
fc (units: in MPa) for “good” bond conditions, or

to
√

fc for “poor” (not incorporating the partial factor γ c). For fc from 16 to 50, the
CEB/FIP Model Code 90 ultimate bond stress ranges from 8 to 14 MPa in the for-
mer case, or from 4 to 7 MPa in the later. According to more recent results (Huang et
al. 1996, Oh and Kim 2007) the ultimate monotonic bond stress along elastic ribbed
bars occurs at a bond slip of about 1 mm and is higher than the CEB/FIP Model
Code 90 value. In Huang et al. (1996) it was found equal to 0.45fc for “good” bond
conditions (i.e., between 7.2 and 22.5 MPa, for fc from 16 to 50 MPa) and to half
that value (0.225fc) for “poor” conditions. In Oh and Kim (2007) the ultimate mono-
tonic bond stress (in MPa) was found equal to 2.5fc0.6 (fc in MPa) for “good” bond
conditions (i.e., between 13 and 26 MPa, for fc from 16 to 50 MPa).

Once the bar yields, the ultimate bond stress drops by about 80%, giving in the
end values of the ultimate monotonic bond stress in the range of those specified by
Eurocodes 2 and 8 and incorporating a partial factor γ c = 1.5.

Bond stress reduces gradually with increasing slip, after the real ultimate value is
reached, ending up at a very low residual value of about 15% of the ultimate stress,
or even less if there is little confinement.

The values quoted above for the bond resistance in unconfined concrete are for
splitting failure. For bond failure by pull-out (or -through) it is considered that
the above quoted ultimate stress values increase by at least 25% and the residual
strength to about 40% of the ultimate stress. As noted at the beginning of this sec-
tion, the slip for which the ultimate stress is retained before residual strength is
reached is of the order of the bar diameter.

The slip that accompanies bond stresses is irreversible, because it is due to local
micro-crushing of concrete against which the ribs of the bar bear. So, the residual
slip after unloading to zero bond stress is about equal to the peak slip attained.
Repeated loading, with the bond stress cycling without reversal between zero and
a peak value (as in bridges due to traffic loads) produces a gradual increase in slip,
similar to the accumulation of concrete strains in the right-hand part of Fig. 3.10.
However, unless the cumulative slip exceeds the value of (about) 1 mm associated
with the peak stress of the monotonic bond-slip curve, the ultimate monotonic bond
stress is not adversely affected by any previous cycles at lower bond stress levels
and is available in case of subsequent loading up to ultimate stress (Oh and Kim
2007).

The apparent conclusion from the above is that the value of the design bond
stress used for the design of anchorages and splices is but a small fraction of the
real ultimate stress. It is indeed about equal to the residual bond strength attained
well beyond the ultimate bond strength. However, what appears under monotonic
or repeated loading as a wide safety margin, is necessary in earthquake resistant
structures, because reversal and full cycling of the bond stress causes a large drop in
the effective bond strength and stiffness (Balázs 1991). This is evident from the test
results in Fig. 3.22, showing that for constant amplitude cycling of bond stress the
slip gradually increases. Hysteresis loops are narrow and pinched, dissipating very
little energy. The inverted-S shape of the loops is due to:
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Slip 
Monotonic curve (a) 

Force or bond 
stress (b)

Fig. 3.22 Bond stress v slip behaviour under cyclic loading in concrete with fc = 25 MPa (adapted
from Balázs 1989)

– the abrupt release of the bond stress upon reversal, with no recovery of the slip;
– the almost unstrained slippage of the bar until hard contact of the ribs with sound

concrete beyond the locally crushed volume of concrete, and
– the resistance of the newly contacted concrete to deformation.
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Such a shape of hysteresis loops suggests that the behaviour is controlled by
friction and sliding, as in aggregate interlock. The underlying mechanism is the
gradual disintegration of the volume of concrete on which the ribs bear. Micro-
cracks starting from the area of contact extend and join up with those that have
formed during loading in the opposite direction.

If sufficient anchorage or lap splice length is provided, the peak bond stress
demand is low and accumulation of slip as in Fig. 3.22 is limited. Moreover, seis-
mic loading does not cause full reversals of bond stress at bar anchorages or lap
splices. During the half-cycle that induces compression in the anchored or spliced
bar the bond demand is reduced, as the bar shares the compressive force with the
concrete around it and transfers part of its own share through bearing of its end. In
buildings designed for earthquake resistance it is generally easy to keep the peak
bond stress demand low, except along the length of the bar within beam-column
joints. Bond stress along that length reverses fully during seismic loading, while
the joint size is normally insufficient for the full anchorage length to develop (see
Section 3.3.2). Moreover, the top bars of the beams framing into a joint may have
yielded at its face and developed already significant inelastic deformations (see
Fig. 3.7). Just inside the face of the joint tensile stresses and strains in the bar
are lower, but still rather high and most likely beyond yielding. As bar slippage
with respect to the surrounding concrete is equal to the integral of the steel strains
along the bar (minus the normally negligible tensile strains in any still uncracked
concrete), large tensile strains in the bar imply also large slippage. This in turn
means that the bond stress conditions at that point of the bar will be at the tail of
the monotonic bond-slip relation, where bond resistance has dropped to low val-
ues. As a result, relatively high bond stresses can develop only well inside the joint,
where the concrete around the bars is well confined and can sustain high bond stress
with very little slippage of the bar. So, anchorage takes place only in the core of
the joint which is confined by the stirrups. Outside this core the bond is not suf-
ficient for the reduction of the tensile stress in the bar below the yield value. For
this reason, the outermost length of bars within joints, in the order of a few bar
diameters, is called “yield penetration depth” (see Section 3.2.2.9 and Eqs. (3.63)
there).

Implicit in the concept of ultimate bond stress as a concrete property (for given
relative rib area and position of the bar with respect to casting) is the notion that
the maximum force that can be transferred by bond from a bar to the surrounding
concrete is equal to the ultimate bond stress times the lateral surface area of the bar
within the length, lb, available for force transfer by bond (i.e., lb times the perimeter
of the bar, πdb). So, this force, and hence the maximum tensile stress in the bar
that can be transferred by bond, are taken as proportional to lb. Moreover, design
codes consider that force transfer by bond through the concrete from the straight
end of a bar to that of a nearby parallel one for lap-splicing is one-sided and hence
less effective than the force transfer from the straight end of a terminating bar to
the concrete. In Eurocode 2 (CEN 2004b) the loss in effectiveness ranges from 0 to
50%, if the lap-splicing of less than 25% to more than 50%, respectively, of the total
cross-sectional area of the bars overlaps along the member.
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In the context of the conventional wisdom above (Darwin et al. 2002a,b)
overviewed several empirical expressions developed in the USA – ACI Commit-
tee 408 (2001) included – for the minimum length lb required for full anchorage
or lap-splicing of straight ribbed bars. They evaluated also these expressions on the
basis of available test results on bond and anchorage. The bias (deviation in the
mean) for 325 tests ranges from 12 to 24% and the coefficient of variation about the
biased mean from 13 to 29%.

Against this background (Eligehausen and Lettow 2007) departed from the con-
ventional wisdom of a maximum bar tensile stress that can be transferred by bond
which is proportional to lb and fitted a model to the largest available experimental
database, comprising more than 800 tests for anchorage or lap-splicing of straight
ribbed bars. According to this most complete and accurate model in the current
State-of-the-Art, in “good” bond conditions the maximum possible tensile stress
that such a bar can develop, fsm, at a straight distance lb from its end is about
the same, no matter whether the bar is anchored or lap-spliced with a parallel
bar (for clear distance of the two bars not more than 4db). Its expected value is
equal to:

fsm(M Pa) = 51.2

(
lb

db

)0.55 ( fc(M Pa)

20

)0.25 ( 20

max(db; 20 mm)

)0.2

[(
cd

db

)1/3 (cmax

cd

)0.1

+ kKtr + 0.2p(M Pa)

]
≤ fy

(3.31)

where:

– db: bar diameter;
– cd = min [minc; a/2], limited in the range of db/2–3db (see Fig. 3.23),
– cmax = max [maxc; a/2], with an upper limit of 5cd, where:

• minc and maxc are the minimum and the maximum, respectively, clear cover
of the anchored or lap-spliced bars (see Fig. 3.23), and

• a is the clear distance between anchored bars or pairs of lapped bars (see
Fig. 3.23);

Ktr = 1

nbdb

nl Ash

sh
≤ 0.04 (3.32)

is the total cross-sectional area of reinforcement placed within the length lb trans-
verse to the axis of the anchored or lap-spliced bars and crossing the potential split-
ting crack, divided by nbdblb; in Eq. (3.32):

• nb: number of anchored bars or pairs of lapped bars on the plane of the poten-
tial splitting crack that reaches the concrete surface;

• nlAsh/sh: total cross-sectional area of legs of transverse reinforcement crossing
the splitting crack, per unit length of the lapped or anchored bar;
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Fig. 3.23 Definition of bar
distances for Eq. (3.31) (cd =
min[a/2; c1; c] ≥ db, cd ≤
3db, cmax = max[a/2; c1; c] ≤
5db)

Figure 3.20 shows examples of nb and nl from Cairns (2006).
– k = effectiveness factor, with the following values:

• k = 10, if the legs of transverse reinforcement are at right angles to the split-
ting plane (provided that the clear distance of all anchored bars or pairs of
lapped bars from the point where a leg of transverse reinforcement intersects
a splitting crack is less than 150 mm, see Fig. 3.20(a)), or in circular sec-
tions with a circular perimeter tie or spiral reinforcement, where the splitting
crack may either extend from the bar at right angles to the surface or develop
between the bars parallel to the perimeter (Fig. 3.20(b));

• k = 5, if the potential splitting extends from the bar to the surface and is
crossed by a straight leg of transverse reinforcement placed within the cover,
provided that the clear distance between anchored bars or pairs of lapped bars
is not less than three-times the cover (Fig. 3.20(c));

• k = 0, in all other cases (Fig. 3.20(c) and (d));

– p = “active” confining pressure normal to the axis of the anchored or lapped bars
due to external actions (e.g., a load applied to the surface of the member) or their
effects (e.g., the axial load of a column); the mean value of p across the section
of the member in the plane of the bar is used.

Implicit in Eq. (3.32) is a tensile stress in the transverse reinforcement equal to
the tensile strength of concrete, fct, times the ratio of Moduli, Es/Ec. This is because
the role of this reinforcement is to prevent cracking, not to make up for it. If splitting
failure nonetheless does occur, the yield stress of transverse reinforcement may be
mobilised to the benefit of the post-ultimate residual strength.

Equation (3.31) refers to splitting failure of bond along ribbed straight bars in
tension. Its applicability is defined by the range of parameters in the tests to which it
has been fitted in Eligehausen and Lettow (2007): fc from 10 to 117 MPa, relative rib
area between 0.05 and 0.07, lb not less than 12db, minimum clear cover at least 0.5db

but not more than 3db and clear distance between anchored bars or pairs of lapped
bars at least db. The coefficient of variation of the fitting is about 15%. The data
show that, for given values of the parameters at the right-hand side of Eq. (3.31),
the experimental value of fsm is on average about 5% larger for anchored bars than
for lap-splices, irrespective of the number of bars anchored or lapped at the same
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location. The difference may be neglected as statistically insignificant (Eligehausen
and Lettow 2007).

For the pull-out (or -through) mode of failure, Eq. (3.31) may still be applied,
with the confinement terms (1st and 2nd one in the last, bracketed term) replaced by
an upper limit value of 2.0.

If anchorage or lapping of ribbed bars in tension is supplemented with a hook, a
bend or an anchor plate at the end, or by welding to a transverse bar, then the anchor
force developed by these additional means, divided by the bar cross-sectional area
is added to the right-hand-side of Eq. (3.31).

Anchorage or lapping of ribbed straight bars in compression is assisted by bar
end bearing. Provided that the cover of the end in the direction of the bar axis is at
least 2db, the contribution of end bearing may be taken into account by adding to
the right-hand-side of Eq. (3.31) the product of 3fc and of the confinement term (the
last, bracketed one in Eq. (3.31)) (Cairns 2006). That term can be taken equal to 2,
if the bar end bears against a volume of very well confined concrete (e.g., at the tip
of a column bar bearing on the top surface of the floor slab).

FRP wrapping of the member over at least the full length lb contributes to con-
finement. In that case the following value of kKtr may be used in Eq. (3.31) (Biskinis
and Fardis 2007, 2008):

kKtr = 1

nbdb

(
ksnl Ash

sh
+ k f n f t f E f

Es

)
(3.32a)

where tf: total thickness of fibre sheets in the wrapping; Ef: Modulus of the
fibre material; ks: effectiveness factor of transverse steel (the k of Eq. (3.31) and
Fig. 3.20); nf: number of FRP wraps intersected by a potential splitting crack to the
surface and kf: their effectiveness factor. For example, if the members in Fig. 3.20
are wrapped with FRP, then: for Fig. 3.20(a) nf = 2, kf = 10; for Fig. 3.20(b) nf = 1,
kf = 10; for Fig. 3.20(c) and (d) nf = 1 with kf = 5 if a ≥ 3c or kf = 0 if a < 3c.

3.1.4 Concluding Remarks on the Behaviour of Concrete
Materials and Their Interaction Under Cyclic Loading

As pointed out in Section 1.3.6.1, of the two constituent materials of structural con-
crete, only steel is inherently ductile, with stable hysteresis loops and considerable
energy dissipation capacity up to very large deformations. And that only in tension,
as reinforcing bars may buckle in compression, shedding their force resistance and
risking subsequent fracture. Concrete is fairly brittle, but when it is well confined
it can sustain cycles of large compressive strains without appreciable drop in resis-
tance. Confined concrete, however, cannot dissipate significant energy by itself in
compressive stress cycles.

Under cyclic loading, the transfer of shear along cracks and the bond between
reinforcing bars and concrete are characterised by rapid degradation of resistance
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with cycling and little energy dissipation. The first of these mechanisms should not
be relied upon at all, whereas bond should be kept in the elastic range, possibly
through confinement.

The only way to dissipate significant energy during large amplitude deformation
cycles is by combining:

– reinforcing steel in the direction where tensile internal forces and stresses are
expected to develop; and

– concrete and reinforcement in the direction of compressive internal forces and
stresses, provided that closely spaced ties confine the concrete and restrain the
bars against buckling.

It is clear that this is feasible wherever in the member inelastic stresses and
strains invariably develop in the directions where reinforcement can be conveniently
placed. In essentially one-dimensional members, such as beams, columns and slen-
der walls, it is convenient to place the reinforcement in the longitudinal and the
(two) transverse direction(s). So concrete members can be designed to develop large
inelastic deformations and reliably dissipate significant energy, only in their regions
dominated by flexure (with or without axial load). These regions lend themselves
to effective use of reinforcing bars to take up directly the tension and to restrain
concrete and compression steel exactly at right angles to their compression stresses.
Even there energy dissipation takes place primarily – essentially only – in the rein-
forcement and not in the confined concrete.

3.2 Concrete Members

This part of Chapter 3 deals with the behaviour of individual members subjected to
cyclic flexure and shear of the type induced by seismic actions. Member types con-
sidered are those commonly used in earthquake resistant concrete buildings, notably
prismatic members with rectangular, L- or T-section. Connections between such
members are addressed at the end of the chapter.

3.2.1 The Mechanisms of Force Transfer in Concrete Members:
Flexure, Shear and Bond

In prismatic concrete members, such as beams or columns, it is convenient to work
with the centroidal member axis, x, and with cross-sections normal to it, and with
the resultant force and moments of the normal stresses acting on the section (normal
force N, bending moments My, Mz with respect to the centroidal principal axes y and
z of the cross section, respectively) and of the shear stresses acting on it (shear forces
Vy, Vz parallel to axes y, z, respectively, torsional moment T with respect to axis x).
It is then convenient to distinguish the “flexural” deformations as those attributed
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mainly to N, My and Mz and computed on the basis of the Navier-Bernoulli hypoth-
esis of plane sections remaining plane and normal to the x axis. Shear forces cause
additional (“shear”) deformations, which can be computed by relaxing the Navier-
Bernoulli assumption to allow cross-sections not to remain normal to the axis, while
they still remain plane. Interaction effects, i.e. the influence of shear forces on flex-
ural deformations and that of normal stress resultants on shear deformations, are
important in general and cannot be neglected, especially for inelastic cyclic loading.
However, if the bending moment is relatively high and the shear force low, flexural
deformations not only dominate, but can also be computed in good approximation
neglecting the influence of shear forces. The controlling factor is the shear span
ratio, M/Vh, defined as the ratio of the shear span, Ls = M/V, at the end of the mem-
ber where flexural yielding is expected, to the depth h of the cross-section within the
plane of bending. Indeed, even within the framework of linear elasticity, the ratio of
the maximum normal stress parallel to the member axis, σ x,max = M/W, to the maxi-
mum value of the shear stress, τ xy,max = 1.5V/A, in a rectangular cross-section under
uniaxial bending and shear, is equal to: σx,max

τxy,max
= 4 M

V h . So, even in the context of lin-
ear elasticity, the lower the shear span ratio, Ls/h, the more important are the shear
stresses vis-à-vis the normal ones.

Beams, columns and slender walls commonly have values of shear span ratio
above (about) 2.5. For such values of Ls/h the mechanisms of force transfer by flex-
ure (i.e. through forces and stresses parallel to the member axis) or shear (i.e. via
forces or stresses at right angles to the member axis) may be considered as practi-
cally uncoupled and independent. If Ls/h is less than (about) 2.5, as in squat walls or
columns and in short beams, these two mechanisms of force transfer tend to merge,
as the shear span itself becomes a two-dimensional element. If the member is still
considered for convenience as one-dimensional, the merger of the two force trans-
fer mechanisms is reflected in a reduction of the moment resistance due to the high
shear force and of the shear capacity due to the bending moment.

In members with Ls/h above (about) 2.5, the two practically independent mecha-
nisms of force transfer may be considered to act in series along the shear span, Ls,
in the sense that:

– internal forces need to be safely transferred by both mechanisms and failure of
one of the two precipitates failure of the member; and

– the overall deformations of the member are the sum of the individual (elastic or
inelastic) deformations of the two mechanisms.

As a matter of fact, capacity design of members in shear (see Section 1.3.6) is
based on the concept that these two mechanisms act in series, so that the overall
inelastic deformations and the deformation capacity of the member can be engi-
neered to come from the ductile flexural mechanism alone.

To the extent that the above mechanisms of force transfer require development
of (tensile) stresses in reinforcing bars, they require also transfer of forces from the
bars to the concrete and vice-versa through bond. Force transfer by bond is normally
considered as part of the afore-mentioned two main force transfer mechanisms,
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if it takes place within the shear span. It should be taken, though, as a separate
force transfer mechanism in series with the other two, if it takes place along that
part of the longitudinal bars extending beyond the ends of the shear span (notably
into the joints with other elements). So, for the shear span of a member, Ls, a
series system of the following force transfer mechanisms may be considered to
develop:

i. the flexural mechanism within the shear span
ii. the shear mechanism, again within the shear span; and

iii. the development of the (mainly tensile) forces in the longitudinal reinforcement
through bond beyond the end of the shear span.

The overall force capacity of the member is governed by the weakest of these
three mechanisms, while the overall deformation is the sum of those of the individ-
ual ones.

In members with Ls/h below (about) 2.5, it is understood that mechanisms (i) and
(ii) merge into one.

The concluding remarks of Section 3.1.4 imply that the design of a member and
the detailing of its reinforcement within the member and beyond (i.e., in its anchor-
age zone outside the shear span), should ensure that mechanisms (ii) and (iii) will
work in their elastic range, by designing mechanism (i) to have lower force capacity
than the other two.

3.2.2 Flexural Behaviour at the Cross-Sectional Level

3.2.2.1 Physical Meaning and Importance of Curvature in Concrete Members

There is experimental evidence that the Navier-Bernoulli plane section hypothesis
can be applied as a rough approximation to slender concrete members during prac-
tically all ranges of flexural behaviour: till and beyond concrete cracking, towards
yielding of the reinforcement and even further, almost up to the ultimate deforma-
tion of the member. The plane-section hypothesis lends itself to a very convenient
description of the flexural behaviour at the cross-sectional level through the rela-
tion of moment (M) to curvature (ϕ). It allows relating the normal strain ε to the
distance y from the neutral axis as ε = ϕy. Therefore, the strain of the extreme com-
pression fibres is: εc = ϕx, where x = ξd is the neutral axis depth; the strain of the
tension reinforcement is equal to εs1 = ϕ(d–x) = ϕ(1–ξ )d, while that of the com-
pression reinforcement at distance d1 from the extreme compression fibres is εs2 =
ϕ(x–d1) = ϕ(ξ–d1/d)d. Note that the curvature ϕ is the conjugate of the moment M,
in the sense that the integral of Mdϕ gives the flexural deformation energy per unit
length of the member.

The flexural behaviour of concrete members is commonly described in M–ϕ
terms, because for monotonic loading with constant axial force N the M–ϕ curve
can be easily established by calculation, even up to ultimate deformation. For given
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geometry of the cross-section and amount and layout of the longitudinal reinforce-
ment and for known material σ -ε laws, this is done in a stepwise manner:

– For a value of ϕ, the value of the neutral axis depth x is assumed, the strain
distribution across the section is derived as ε= ϕy (with y measured from the trial
location of the neutral axis) and the corresponding stress distribution is derived
from the material σ -ε laws. Force equilibrium in the axial direction, N =∫

σdA,
is checked and the value of x is revised, with calculations repeated until force
equilibrium is satisfied.

– The value of M corresponding to this value of ϕ (and N) is computed from
moment equilibrium: M =∫

σycgdA, where ycg is the distance from the centroid
of the section to which the value of M refers.

– For the next value of ϕ the calculations are repeated, starting the iterations with a
trial value of x equal to the one for which convergence to the value of N has been
achieved in the previous step.

This approach can be used to construct cyclic M–ϕ relations for a given history of
imposed curvatures, provided that the complete cyclic σ -ε relations of the materials
are known, including the rules applying after reversal of loading from any (σ , ε)
point.

Owing to its computational convenience, curvature is an appealing and very
popular measure of flexural deformations. However, in concrete members loaded
beyond cracking, the curvature loses its physical meaning. The reason is that con-
crete cracking, and later on cover spalling, bar buckling and concrete crushing, are
all of discrete nature. For this reason, in concrete members curvature is commonly
defined – and experimentally measured – as the relative angle of rotation Δθ of two
neighbouring sections, divided by their distance, Δx. This distance is not infinitesi-
mal but finite and should be of the order of:

– the typical distance of two adjacent flexural cracks, if the behaviour prior to yield-
ing is of interest, or

– the length over which concrete is expected to spall or crush and reinforcing bars
may buckle or even break.

The resulting value of ϕ = Δθ /Δx is a mean curvature that corresponds to the
mean moment within Δx. In experiments, values of Δx in the range of h/2–h are
commonly selected.

3.2.2.2 Moment-Curvature Relation up to Yielding Under Uniaxial Bending
with Axial Force

Cross-Sections with Rectangular Compression Zone

Until concrete cracks the M–ϕ relation is linear, with slope M/ϕ equal to the rigid-
ity, EcIt, of the uncracked transformed section, i.e. of a concrete section in which
any reinforcing bar of cross-sectional area As,i has been replaced by an equiv-
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alent concrete area, αAs,i, where α = Es/Ec is the ratio of Moduli of the two
materials. A flexural crack forms at the cracking moment Mcr (which is equal to Mcr

= (fctm+N/At)It/yt, where N is the axial force – positive for compression – At is the
cross-sectional area of the transformed section and yt the distance of the extreme
tension fibres from the centroid). The rigidity of the cross-section drops abruptly
then, remaining practically constant until the section finally yields.

The members of concrete buildings typically have rectangular, T-, L-, H- or U-
section (in beams monolithically connected with the slab, or in walls or columns
with non-rectangular section). If the compression zone of a non-rectangular section
falls within a single rectangular part of the section, the compression zone is rectan-
gular. This is the case considered here. The next section addresses cases with a T-,
L- or U-shaped compression zone.

If section yielding is identified with yielding of the tension steel, the yield
curvature is:

ϕy = fyL

Es
(
1 − ξy

)
d

(3.33a)

with fyL denoting the yield stress of the longitudinal bars and ξ y the neutral axis
depth at yielding (normalised to the section effective depth, d), given by:

ξy = (
α2 A2 + 2αB

)1/2 − αA (3.34)

in which α = Es/Ec denotes the ratio of elastic moduli (steel-to-concrete) and A, B
are given from Eqs. (3.35a) (Panagiotakos and Fardis 2001a):

A = ρ1 + ρ2 + ρν + N

bd fy
, B = ρ1 + ρ2δ1 + ρν (1 + δ1)

2
+ N

bd fy
(3.35a)

where ρ1 and ρ2 are the ratios of the tension and compression reinforcement and
ρv is the ratio of “web” reinforcement (i.e. of the reinforcement which is – almost
– uniformly distributed between the tension and the compression steel). The area of
any diagonal bars, times the cosine of their angle with respect to the member axis, is
added to the reinforcement area included in ρ1 and ρ2. All steel ratios are normalised
to bd. Further in Eq. (3.35a), b is the width of the compression zone, N the axial load
(with compression taken as positive) and δ1 = d1/d, where d1 is the distance of the
centre of the compression reinforcement from the extreme compression fibres.

Sometimes members with high axial load ratio, ν = N/Acfc, exhibit apparent
yielding as a distinct downwards curving of the moment-curvature diagram of the
end section, owing to significant nonlinearity of the concrete in compression before
the tension steel yields. A simple way to treat such apparent yielding is by iden-
tifying it with exceedance of a certain strain at the extreme compression fibres,
while still considering both steel and concrete as linear-elastic till that point. The
test results on members yielding under high axial load ratio suggest the following
value for this “elastic strain limit” (Panagiotakos and Fardis 2001a):
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εc ≈ 1.8 fc

Ec
(3.36)

Then apparent yielding of the member takes place at a curvature:

ϕy = εc

ξyd
≈ 1.8 fc

Ecξyd
(3.33b)

where the neutral axis depth at yielding, ξ y (again normalised to the section effective
depth, d), is still given by Eq. (3.34), but this time with A, B from Eqs. (3.35b):

A = ρ1+ρ2+ρν− N

εc Esbd
≈ ρ1+ρ2+ρν− N

1.8α bd fc
, B = ρ1+ρ2δ1+ρν (1 + δ1)

2
(3.35b)

The lower of the two ϕy values from Eqs. (3.33a) or (3.33b) is the yield curva-
ture. Then the yield moment, My, can be computed from equilibrium of the (plane)
section as:

My

bd3
= ϕy

{
Ec

ξ 2
y

2

(
1 + δ1

2
− ξy

3

)
+ Es (1 − δ1)

2

[(
1 − ξy

)
ρ1 + (

ξy − δ1
)
ρ2

+ ρν

6
(1 − δ1)

]}
(3.37)

It is noted that, by the time a strong earthquake shakes a building, practically
every end section of its beams, columns or walls are already cracked, owing to
the gravity loads combined with stresses due to the restrained shrinkage or thermal
strains or other imposed deformations. Normally such previous stresses are not suffi-
cient to cause cracking of columns and walls having significant axial load. However,
the construction joint at the base of these members in each storey and often at the
top as well (at the beam soffit) have little cohesion and will readily open in an earth-
quake. So, concrete members may be considered as already cracked at the time of
the earthquake and their M –ϕ diagram may be taken as linear up to yielding.

Sections with T Compression Zone

T-, L-, H-, U- or hollow rectangular sections are considered here to have a com-
pression flange with constant width and thickness, b and t, respectively, and total
thickness of the webs bw. The bending moment is about an axis parallel to the flange
and induces compression in it. Equations (3.34) and (3.35) may still be applied, but
if the outcome of Eq. (3.34) (significantly) exceeds the ratio of the flange thickness
to the effective depth: ξ y > t/d, the neutral axis falls in the web and the compres-
sion zone has T-, L- or U-shape. The neutral axis depth and the moment at yielding
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may then be obtained from an extension of the analysis in the previous sub-section
Cross-Sections with Rectangular Compression Zone, under the same assumptions
and yield criteria. The tension, the compression and the web reinforcement are again
normalised to bd, to give ratios ρ1, ρ2 and ρv, respectively. The counterparts of
Eqs. (3.35) are (Biskinis 2007, Biskinis and Fardis 2007):

– For section yielding because of yielding of the tension steel:

A = b

bw

(
ρ1 + ρ2 + ρν + N

bd fy

)
+ 1

α

t

d

(
b

bw
− 1

)
,

B = b

bw

(
ρ1 + ρ2δ1 + 0.5ρν (1 + δ1) + N

bd fy

)
+ 1

2α

(
t

d

)2 ( b

bw
− 1

)
(3.38a)

– For section yielding when the strain limit of Eq. (3.36) is reached at the extreme
compression fibres:

A = b

bw

(
ρ1 + ρ2 + ρν − N

εc Esbd

)
+ 1

α

t

d

(
b

bw
− 1

)
,

B = b

bw
(ρ1 + ρ2δ1 + 0.5ρν (1 + δ1)) + 1

2α

(
t

d

)2 ( b

bw
− 1

) (3.38b)

Equations (3.33) and (3.34) still apply, but the yield moment should be computed
from the following counterpart of Eq. (3.37) (Biskinis 2007, Biskinis and Fardis
2007):

My

bd3
= ϕy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ec

[
ξ 2

y

2

(
1 + δ1

2
− ξy

3

)
bw

b
+
(

1 − bw

b

)(
ξy − t

2d

)(
1 − t

2d

)
t

2d

]
+

Es (1 − δ1)

2

[(
1 − ξy

)
ρ1 + (

ξy − δ1
)
ρ2 + ρV

6
(1 − δ1)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.39)

Note that Eqs. (3.38) and (3.39) degenerate into Eqs. (3.35) and (3.37) respec-
tively, if bw equals b.

Comparison with Experimental Results and Empirical Expressions
for the Curvature

The outcome of Eqs. (3.37) and (3.39), with ϕy computed according to the two
sub-sections above: Cross-Sections with Rectangular Compression Zone or Sec-
tions with T Compression Zone, has been compared in Biskinis (2007) to the
“experimental yield moment”, estimated as the moment at the corner of a bilin-
ear M–θ (moment-chord rotation) curve fitted to the envelope of the measured M–θ
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hysteresis loops, taking into account P–Δ effects. The data come from tests of about
2050 beam/columns, 125 rectangular walls or 155 members with T-, H-, U- or
hollow rectangular section, all with shear span ratio and reinforcement such that
there were no flexure-shear interaction effects (see Section 3.2.5). The “experimen-
tal yield moment” exceeds the prediction of Eqs. (3.37) and (3.39) by an average
factor of: 1.025, 1.015 or 1.075 for beams/columns, rectangular walls or members
with T-, U- or hollow rectangular section, respectively (Biskinis 2007). The reason
for the difference is that the corner of a bilinear M–θ curve that envelops the mea-
sured hysteresis loops expresses global yielding of the member and hence is slightly
past the point where the extreme tension steel or compression fibres of the end sec-
tion “yield”. The factor of 1.025, 1.015 or 1.075 should be applied, as correction
factor, also to the value of ϕy obtained from Eqs. (3.33) for beams/columns, rect-
angular walls or members with T-, U- or hollow rectangular section, respectively.
The coefficient of variation of the test-to-prediction ratio for My is equal to 16.3,
14.8 and 12.6% for beams/columns, rectangular walls or members with T-, U- or
hollow rectangular section, respectively (Biskinis 2007). Test-to-test variability and
natural scatter of material properties (e.g., of the yield stress of specimen rebars
with respect to reported values from few coupons, or of the concrete strength rela-
tive to the reported mean values from test cylinders or cubes, etc.) or of geometric
parameters (e.g., of the effective depth to the tension or compression reinforcement,
etc.) correspond to a coefficient of variation of experimental-to-predicted My values
of about 5% (Biskinis 2007). The rest of the scatter is due to model uncertainty.
Assuming statistical independence, the corresponding coefficient of variation of the
test-to-prediction ratio for My is about equal to the values quoted above reduced by
just 1%.

The comparison above refers to members with ribbed bars. Bond along smooth
(plain) bars may not be sufficient for full mobilisation of their yield strength at
“apparent yielding” at the section of maximum moment. This may explain why the
mean and median of the test-to-prediction ratio in about 40 tests of beam/columns
with such bars is about 0.95.

The literature contains also experimental data on the yield curvature, ϕy, “mea-
sured” as relative rotation between the section of maximum moment and a nearby
one, divided by the distance between the two sections. In some of them measured
relative rotations include also the effect of reinforcement pull-out from its anchorage
zone beyond the section of maximum moment. Because:

– the “experimental yield moment”, My,exp, is established more accurately in a test
than the “measured” yield curvature, and

– the relation between ϕy and My, Eqs. (3.37) and (3.39), is well established, as
based on equilibrium and plane section analysis,

it is preferable to consider as “experimental yield curvature”, ϕy,exp, the value
derived from the “experimental yield moment”, My,exp, by inverting Eq. (3.37) or
(3.39). The theoretical yield curvature from Eqs. (3.33), (3.34), (3.35) and (3.38),
times the correction factor of 1.025, 1.015, or 1.075 for beams/columns, rectangular
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walls or members with T-, U- or hollow rectangular section, respectively, may be
considered to predict the ϕy,exp with a median test-to-prediction ratio of 1.0 and a
coefficient of variation equal to that of the test-to-prediction ratio for My, i.e. 12.5–
16%.

The following expressions have also been fitted to ϕy,exp (Biskinis 2007):

– for beams or columns:

ϕy ≈ 1.54 fyL

Esd
(3.40a)

– for rectangular walls:

ϕy ≈ 1.34 fyL

Esd
(3.40b)

– for T-, U- or hollow rectangular sections:

ϕy ≈ 1.47 fyL

Esd
(3.40c)

or alternatively:

– for beams or columns:

ϕy ≈ 1.75 fyL

Esh
(3.41a)

– for rectangular walls:

ϕy ≈ 1.44 fyL

Esh
(3.41b)

– for T-, U- or hollow rectangular sections:

ϕy ≈ 1.57 fyL

Esh
(3.41c)

Being empirical, Eqs. (3.40) and (3.41) predict ϕy,exp without any bias (i.e., with
median value of 1.0 for the ratio test-to-prediction). However, as important param-
eters (e.g., the axial load level and the ratios and layout of longitudinal reinforce-
ment) are neglected, these expressions give a larger coefficient of variation of the
test-to-prediction ratio than Eqs. (3.33) (3.34), (3.35) and (3.38): 17.5, 18.4 and
16.2% for Eqs. (3.40a), (3.40b) and (3.40c), respectively, or 29.2, 17.9 and 17.9%
for Eqs. (3.41a), (3.41b) and (3.41c) (Biskinis 2007).
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3.2.2.3 Fixed-End Rotation Due to Bar Pull-Out from the Anchorage Zone
Beyond the Section of Maximum Moment – Value at Yielding

If there is complete symmetry of the member and its loading with respect to the
section of maximum moment (as at mid-span of a beam subjected to symmetric
loading), or if the longitudinal reinforcement is anchored by welding right next to
this cross-section, there is no slippage (pull-out) of the longitudinal reinforcement
from the region beyond the section of maximum moment. However, such slippage
takes place from the anchorage of longitudinal bars within a joint or footing where
the member frames, contributing to the transverse deflections of the entire shear
span by a rigid-body rotation, θ slip. The effect of this rotation is included in the
measurement of transverse deflections and of chord-rotations of a test specimen
with respect to the base or the joint into which it frames.

If s denotes the slippage of the tension reinforcement from its anchorage beyond
the section of maximum moment, θ slip is equal to θ slip= s/(1–ξ )d, where ξ is the
neutral axis depth, normalised to the effective depth, d. The value of s is equal to the
sum of:

– the slip of the bar with respect to the surrounding concrete at the far end of
its straight embedment length (which is non-zero only if there is a hook, bend
or anchor plate at that end, in which case the slip there is equal to the local
deformation of the concrete due to the contact pressure under the hook, bend or
anchor plate); plus

– the elongation of the bar between the far end of its straight embedment length
and the section of maximum moment of the member.

Note that the value of M at the section of maximum moment is roughly pro-
portional to the force in the tension reinforcement and that this force is the resul-
tant of bond stresses along the anchorage length. So, the M–θ slip relation reflects
the bond-slip behaviour with its strongly pinched shape of the hysteresis loops.
To the extent that the total chord-rotation θ is due to θ slip, the apparent flexibility
of the member increases and the shape of the overall M–θ loops includes certain
pinching.

Fixed-end rotation due to bar pull-out equals the slip from the anchorage zone
divided by the depth of the tension zone, (1–ξ )d (Fig. 3.24). Assuming that bond
stresses are uniform over a length lb of the tension bars beyond the end section, the
stress increases linearly along lb from zero at the end of the bar to the bar elastic steel
stress at the end section of the member, σ s. Bar slippage from its anchorage equals
0.5σ slb/Es. The ratio σ s/Es to (1–ξ )d is the curvature, ϕ. The length lb is proportional
to the force in the bar, Asσ s, divided by its perimeter, πdb (i.e. to dbLσ s/4 where dbL

is the mean tension bar diameter) and inversely proportional to bond strength, i.e.,
in good approximation, to

√
fc. Setting at yielding of the end section: ϕ = ϕy, taking

the mean bond stress in MPa along lb equal to fc(MPa) (which is about 50% or
40% of the bond stress corresponding to a slip equal to s = 0.6 mm of about 2

√
fc in

unconfined or confined concrete, respectively, for “good” bond conditions according
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Fig. 3.24 Fixed-end rotation, θ slip, due to slippage of longitudinal bars from their anchorage within
a joint in which the member frames

to CEB (1991)) and setting for simplicity σ s = fyL (even when ϕy is obtained from
Eq. (3.33b)), the “fixed-end rotation” of the end section at yielding is:

θy,sli p = ϕydbL fyL

8
√

fc
( fyL and fc in MPa) (3.42)

Equation (3.42) has been calibrated to about 160 cases in the literature where cur-
vature was measured as relative rotation between the section of maximum moment
and a nearby one, divided by the distance between the two sections, including the
effect of reinforcement pull-out from its anchorage zone beyond the section of max-
imum moment (including a few cases where the rigid-body rotation due to bar pull-
out, θ slip, was directly measured). The ratio of the (experimental) yield curvature
from the measured relative rotations including the effect of pull-out from the speci-
men base, to the theoretical one from Eqs. (3.33) (3.34), (3.35) and (3.38) times the
correction factor of 1.025, 1.015 or 1.075, plus the value from Eq. (3.42) divided by
the gauge length over which relative rotations are measured, does not exhibit any
systematic effect of the gauge length in these 160 cases and has a median value of
1.00 and a coefficient of variation of 33.9% (Biskinis 2007).

3.2.2.4 Ultimate Curvature of Sections with Rectangular Compression Zone
Under Uniaxial Bending with Axial Force

Definitions and Assumptions

The ultimate curvature ϕu of a section is commonly (and conventionally) identified
with a distinct change in the pattern of the moment-curvature response:
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– In monotonic loading, with a noticeable drop of the moment resistance after the
peak (at least 20% of the maximum resistance).

– In cycling loading, with an abrupt and distinct reduction of the reloading slope,
or of the area of the hysteresis loops, or of the peak moment of the cycle, com-
pared to those of the preceding cycle(s). Such abrupt degradation phenomena
are typically associated with a drop in the maximum possible resisting moment
of at least 20% of the maximum ever resisting moment. Whenever such abrupt
and distinct degradation phenomena cannot be identified, the conventional rule
of a maximum possible resisting moment less than 80% of the maximum ever
moment resistance is used to define the ultimate deformation. Section 3.2.2.7
discusses in more detail this conventional definition of ultimate deformation.

The calculation of ϕu can be based on a plane section analysis but with nonlinear
σ -ε laws, described below under (i) and (ii).

A section will reach its ultimate condition under increasing deformations when
one of the following takes place:

a. The tension reinforcement reaches its ultimate elongation, εsu, and ruptures. This
gives an ultimate curvature equal to:

ϕsu = εsu

(1 − ξsu) d
(3.43)

where ξ su is the neutral axis depth (normalised to d) when the ultimate curvature
of the section is attained due to steel rupture.6 This case is the subject of the sub-
section below titled Failure of the Full Section Due to Rupture of Tension Rein-
forcement Before Spalling of the Concrete Cover.

b. The compression zone disintegrates and sheds (most of) its compressive force.
This takes place when the concrete of the extreme compression fibres reaches its
ultimate strain, εcu, giving an ultimate curvature of:

ϕcu = εcu

ξcud
(3.44)

This case is dealt with in the sub-section below on Curvature at Spalling of the
Concrete Cover.

Depending on:

– the value of the axial load on the section,
– the amount and location of longitudinal bars, and
– the confinement of the compression zone by transverse reinforcement, etc.,
– failure mode (a) or (b) may take place either:

6Equation (3.43) has already appeared in Section 3.1.1.4 as Eq. (3.1).
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1. before, or at spalling of the unconfined concrete cover, i.e. at the level of
the full section (sub-sections Failure of the Full Section Due to Rupture of
Tension Reinforcement Before Spalling of the Concrete Cover and Curvature
at Spalling of the Concrete Cover), or

2. in the confined core, after spalling of the unconfined concrete cover (sub-
section Ultimate Curvature of the Confined Core, After Spalling of the Cover);
then Eqs. (3.43) and (3.44) are applied with: the effective depth of the full
section, d, replaced by that of the confined core, dc; the neutral axis depth, ξ ,
referring to the confined core and normalised to dc; and the ultimate strain of
confined concrete, εcu

∗, used in Eq. (3.44) in lieu of εcu.

The following σ -ε laws of the materials are adopted here:

1. Unconfined concrete has a parabolic σ -ε law up to the ultimate strength of fc and
the corresponding strain, εco. Beyond that point the σ -ε law is horizontal until a
strain εc≤ εcu.

7 Then the compression zone contributes to the axial compressive
force with a force equal to ξ (bdfc)(1–εco/3εc).

2. The σ -ε law of reinforcing steel is elastic-perfectly plastic at relatively low
strains, as those at section ultimate conditions due to crushing of the concrete
(failure mode (b) above). At the large steel strains accompanying section failure
due to steel rupture (failure mode (a)), the steel is considered to strain-harden
after the yield plateau at the yield stress fy. Strain-hardening is linear, starting
from the yield stress fy at a strain εsh, till the ultimate strength ft of steel at an
elongation of εsu. The σ -ε parameters (fy, εy = fy/Es, εsh, ft, εsu) of tension,
compression and web reinforcement are indexed by 1, 2 or v, respectively.

The ultimate curvature of sections with rectangular compression zone is com-
puted according to the multi-step procedure of sub-sections Failure of the Full Sec-
tion Due to Rupture of Tension Reinforcement Before Spalling of the Concrete Cover,
Curvature at Spalling of the Concrete Cover, Ultimate Curvature of the Confined
Core, After Spalling of the Cover and Flow Charts 3.1 and 3.2. Symbols used in the
analysis are:

– ν = N/bdfc: axial load ratio, positive for compression;
– ω1 = ρ1fy1/fc, ω2 = ρ2fy2/fc, ωv = ρvfyv/fc: mechanical reinforcement ratios of

tension, compression and web reinforcement, respectively, with ρ1, ρ2, ρv nor-
malised to bd;

– δ1 = d1/d : the distance of compression reinforcement from the extreme com-
pression fibres, (normalised to d).

7This is the σ -ε law used in CEN (2004b) and CEB (1991) for the calculation of the resistance of
cross-sections.
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Flow Chart 3.1 Calculation of ultimate curvature for the full section before spalling of the
concrete cover (LHS: left-hand-side, RHS: right-hand-side)
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Flow Chart 3.2 Calculation of ultimate curvature for the confined core of the section after spalling
of the concrete cover

Section 3.2.2.4 applies also to sections with more than one rectangular parts in
two orthogonal directions, with the width b taken as that of the section at the extreme
compression fibres, provided that the so-computed depth x = ξd of the compression
zone does not exceed the other dimension (depth) of the rectangular part to which b
belongs.
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Failure of the Full Section Due to Rupture of Tension Reinforcement Before
Spalling of the Concrete Cover

Failure of the full section by rupture of the tension reinforcement at an elongation
of εsu takes place before the extreme fibres of the concrete cover reach the crushing
strain of unconfined concrete, εcu, if the neutral axis depth (normalised to d) ξ is:
ξ < εcu/(εcu+εsu). Such a failure may also occur before yielding of the compression
reinforcement, if ξ satisfies the inequality: ξ < (εy2+εsuδ1)/(εy2+εsu). So, the full
section may fail by steel rupture after yielding of the compression reinforcement, if
the distance of the compression reinforcement from the extreme compression fibres,
δ1 = d1/d (normalised to d), meets the condition:

δ1 ≤ εcu − εy2

εcu + εsu
(3.45)

If Eq. (3.45) is satisfied and the axial load ratio, ν, fulfills the inequality:

δ1εsu + εy2 − (1 − δ1) εco
3

εsu1 + εy2
+ ω2 − ω1

ft1

fy1
− ωv

εsu1 + εy2[
εsu1 − εy2 + 1

2
(εsu1 − εshv)

(
1 + ftv

fyv

)]
≡ νs,y2 ≤ ν ≤

νs,c ≡ εcu − εco
3

εcu + εsu1
+ ω2 − ω1

ft1

fy1
− ωv

(1 − δ1) (εsu1 + εcu)[
δ1 (εsu1 + εcu) − (εsu1 − εcu) + 1

2
(εsu1 − εshv)

(
1 + ftv

fyv

)]
(3.46)

failure of the full section by rupture of the tension reinforcement takes place with the
compression reinforcement already beyond yielding. Then, plane-sections analysis
gives the following value of ξ su to be used in Eq. (3.43):

ξsu ≈
(1 − δ1)

(
ν + ω1

ft1

fy1
− ω2 + εco

3εsu

)
+
(

1 + δ1 + 1
2

(
1 − εshv

εsu1

) (
1 + ftv

fyv

))
ωv

(1 − δ1)
(

1 + εco
3εsu1

)
+
(

2 + 1
2

(
1 − εshv

εsu1

) (
1 + ftv

fyv

))
ωv

(3.47)

If the condition of Eq. (3.45) is met, but the axial load ratio, ν, is less than the
limit value νs,y2 defined at the left-hand-side (LHS) of Eq. (3.46), then the full sec-
tion fails by steel rupture not only before spalling of the concrete cover but also
before the compression reinforcement yields. In that case, the value of ξ su for use in
Eq. (3.43) is the positive root of the equation:
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[
1 + εco

3εsu
+ ωv

2(1 − δ1)

(
1 + ftv

fyv

(
1 − εshv

εsu1

)
+ εshv − 3εyv

εsu1
− εsu1

εyv

)]
ξ 2

−
[

1 + ν + 2εco

3εsu
+ ω1

ft1

fy1
+ ω2

εsu1

εy2
+ ων

(1 − δ1)

(
1 + ftv

fyv

(
1 − εshv

εsu1

)

+ εshv − 3εyv

εsu1
− δ1

εsu1

εyv

)]
ξ +

[
ν + εco

3εsu
+ ω1

ftv

fyv
+ ω2δ1

εsu

εy2

+ ων

2(1 − δ1)

(
1 + ftv

fyv

(
1 − εshv

εsu1

)
+ εshv − 3εyv

εsu1
− δ2

1
εsu1

εyv

)]
= 0

(3.48)

If Eq. (3.45) is met and the axial load ratio, ν, exceeds the limit value νs,c defined
at the right-hand-side (RHS) of Eq. (3.46), spalling of the concrete cover when its
outermost fibres reach the crushing strain of unconfined concrete, εcu, will precede
rupture of the tension reinforcement, but will take place with the compression rein-
forcement already beyond yielding. Then the procedure in sub-section Curvature at
Spalling of the Concrete Cover should be followed.

If the condition of Eq. (3.45) is not met, the limit value νs,y2 defined at the left-
hand-side of Eq. (3.46) is greater than the limit value νs,c given by the right-hand-
side of that inequality. The implication is that the compression reinforcement will
already have yielded, when the tension reinforcement ruptures before spalling of
the concrete cover. Then, if the axial load ratio, ν, is less than the limit value νs,c at
the left-hand-side of Eq. (3.46), the value of ξ su to be used in Eq. (3.43) is still the
positive root of Eq. (3.48). If, by contrast, the axial load ratio, ν, exceeds the limit
value νs,c, the concrete cover will spall before the tension reinforcement ruptures,
but with the compression reinforcement already beyond yielding. The procedure
in sub-section Curvature at Spalling of the Concrete Cover should be followed in
that case.

Curvature at Spalling of the Concrete Cover

When the outermost fibres reach the crushing strain of unconfined concrete, εcu,
and the concrete cover spalls, the moment resistance of the section drops – be it
temporarily. To see what happens after cover spalling, the following moment resis-
tances should be computed:

– the moment resistance of the full unspalled section, neglecting any effect of con-
finement on the concrete properties, MRc,

– the moment resistance of the confined core of the section (conventionally defined
to the centreline of the perimeter stirrup), after spalling of the concrete cover,
MRo.

The moment capacity of the confined core, MRo, is determined on the basis of
the strength fc∗ and ultimate strain εcu

∗ of confined concrete and of the dimensions
bc, dc, dc1 of the confined core; dc and dc1 are obtained by subtracting from d or d1,
respectively, the sum of the cover and of half the diameter of transverse reinforce-
ment; bc is obtained by subtracting twice this sum from b.
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If : MRo ≤ 0.8MRc (3.49a)

spalling of the concrete cover can be taken as the ultimate condition of the section.
Then, the ultimate curvature is given by Eq. (3.44), where the value of the neutral
axis depth, ξ cu (normalised to d), may be determined from Eqs. (3.52), (3.53), (3.54)
or (3.56).

If ξ < εcu/(εcu+εy1), then the tension steel has already yielded by the
time the extreme compression fibres reach the crushing strain of unconfined
concrete εcu.

When εcu is reached at the outermost compression fibres, the compression steel
will still be elastic if ξ < δ1εcu/(εcu–εy2). By contrast, if ξ > δ1εcu/(εcu–εy2) the
compression steel will be beyond yielding at crushing of the extreme compres-
sion fibres. It follows from this and the previous paragraph that a range of ξ val-
ues exists for which both the tension and the compression reinforcement have
yielded before εcu is reached at the extreme compression fibres, provided that εcu/
(εcu+εy1) > δ1εcu/(εcu–εy2), i.e. if:

δ1 ≤ εcu − εy2

εcu + εy1
(3.50a)

If Eq. (3.50a) is not met, there can never be a range of ξ values for which both
the tension and the compression reinforcement yield before the crushing strain of
concrete is reached at the outermost compression fibres. Instead, a range of ξ values
exists where both the tension and the compression reinforcement will still be elastic
when the extreme compression fibres reach a strain of εcu. This latter situation does
not lend itself to ductile behaviour of the cross section. In the sequel, two distinct
cases are considered:

i. Equation (3.50a) is satisfied, or
ii. The following condition is fulfilled instead:

δ1 >
εcu − εy2

εcu + εy1
(3.50b)

Case i is considered first, as more common in practice (and more desirable too).
Values of ξ between εcu/(εcu+εy1) and δ1εcu/(εcu–εy2) correspond to the following

range of values for the axial load ratio, ν:

ω2 − ω1 + ωv

1 − δ1

(
δ1
εcu + εy2

εcu − εy2
− 1

)
+ δ1

εcu − εco
3

εcu − εy2
≡ vc,y2 ≤ ν <

νc,y1 ≡ ω2 − ω1 + ωv

1 − δ1

(
εcu − εy1

εcu + εy1
− δ1

)
+ εcu − εco

3

εcu + εy1

(3.51)
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Within this range the value of ξ cu to be used in Eq. (3.44) is:

ξcu = (1 − δ1) (v + ω1 − ω2) + (1 + δ1)ωv

(1 − δ1)
(

1 − εco
3εcu

)
+ 2ωv

(3.52)

For values of ν greater than the limit value νc,y1 defined at the right-hand-side of
Eq. (3.51) the extreme compression fibres reach the crushing strain of concrete, εcu,
after yielding of the compression reinforcement, but with the tension reinforcement
elastic. Then the value of ξ cu to be used in Eq. (3.44) is the positive root of the
equation:

[
1 − εco

3εcu
− ωv

2(1 − δ1)

(
εcu − εyv

)2

εcuεyv

]
ξ 2 +

[
ω2 + ω1

εcu

εy1
− v + ωv

1 − δ1

(
εcu

εyv
− δ1

)]
ξ

−
[
ω1

εy1
+ ωv

2 (1 − δ1) εyv

]
εcu = 0

(3.53)

Finally, if ν is less than the limit value νc,y2 defined at the left-hand-side of
Eq. (3.51), the outermost compression fibres reach the strain εcu after the tension
reinforcement yields, but with the compression reinforcement still elastic. In that
case the value of ξ cu to be used in Eq. (3.44) is the positive root of the equation:

[
1 − εco

3εcu
+ ωv

2(1 − δ1)

(
εcu + εyv

)2

εcuεyv

]
ξ 2 −

[
v + ω1 − ω2

εcu

εy2
+ ων

1 − δ1

(
1 + εcuδ1

εyv

)]
ξ

−
[
ω2

εy2
− ωvδ1

2 (1 − δ1) εyv

]
εcuδ1 = 0

(3.54)

Case ii, where Eq. (3.50b) is fulfilled, is not so desirable. Fortunately it is rare in
practice, as the right-hand-side of Eqs. (3.48) is in the order of 0.15–0.2, implying
that the compression steel is at a distance to the extreme compression fibres of over
15–20% of the section depth, which is uncommon. At any rate, if Eq. (3.50b) is
met, for values of the axial load ratio between νc,y1 and νc,y2, in Eq. (3.55), both the
tension and the compression reinforcement are still elastic by the time the extreme
compression fibres reach the crushing strain of concrete:

ω2

εy2

(
(1 − δ1)εcu − δ1εy1

) − ω1 + ωv

2εyv

(
εcu − 1 + δ1

1 − δ1

)
+ εcu − εco

3

εcu + εy1
≡ νc,y1 ≤ v <

νc,y2 ≡ ω2 − ω1

εy1

(1 − δ1)εcu − εy2

δ1
+ ωv

δ1εyv

(
1 + δ1

1 − δ1
εy2 − εcu

)
+ δ1

εcu − εco
3

εcu − εy2
(3.55)
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Within this range of ν the value of ξ cu to be used in Eq. (3.44) is the positive root
of: [

1 − εco

3εcu

]
ξ 2 −

[
v −

(
ω1

εy1
+ ω2

εy2
+ ων

(1 − δ1)εyv

)
εcu

]
ξ

−
(
ω1

εy1
+ δ1ω2

εy2
+ ων(1 + δ1)

2(1 − δ1)εyv

)
εcu = 0

(3.56)

For values of ν greater than the limit value νc,y2 defined at the right-hand-side
of Eq. (3.55) the extreme compression fibres reach the crushing strain of concrete
after yielding of the compression reinforcement, but with the tension reinforce-
ment still elastic. The value of ξ cu to be used in Eq. (3.44) is the positive root of
Eq. (3.53) above. If, by contrast, ν is less than the limit value νc,y1 defined at the
left-hand-side of Eq. (3.55), the extreme compression fibres reach a strain of εcu

after yielding of the tension reinforcement, but with the compression reinforcement
still elastic. In that case the value of ξ cu to be used in Eq. (3.44) is the positive root
of Eq. (3.54).

The expressions above for ξ (i.e., Eqs. (3.47), (3.48), (3.52), (3.53), (3.54) and
(3.56)) are derived from the equivalence of the normal stress resultant on the sec-
tion to the axial force N. The plane sections hypothesis and the nonlinear σ -ε laws
outlined in points (i) and (ii) at the end of sub-section Definitions and Assumptions
are also used. Equation (3.52) is derived below for illustration, with the tension
reinforcement not considered to go into strain-hardening.

Because the tension and the compression reinforcement are both past yielding,
their joint contribution to the axial compressive force is equal to (As2–As1)fy=(ω2–
ω1)bdfc. For a neutral axis depth equal to ξd the web reinforcement, taken as
uniformly distributed over a length (1–δ1)d between the compression and tension
steel, contributes to the axial compression with a force of [(ωvbdfc)/(1–δ1)][(ξ–
δ1)–(1–ξ )]=(ωvbdfc)(2ξ–1–δ1)/(1–δ1). Equilibrium gives: ν = N

bd fc
= ω2 − ω1 +

ωv(2ξ−1−δ1)
1−δ1

+
(

1 − εco
3εcu

)
ξ , from which Eq. (3.52) is derived.

Ultimate Curvature of the Confined Core, After Spalling of the Cover

If

MRo > 0.8MRc (3.49b)

then the confined core of the section recovers from spalling of the concrete shell
around it. It ultimately fails either by rupture of the tension reinforcement or by
disintegration of the extreme compression fibres of the core itself.

The analysis in sub-sections Definitions and Assumptions, Failure of the Full
Section Due to Rupture of Tension Reinforcement Before Spalling of the Concrete
Cover and Curvature at Spalling of the Concrete Cover applies for the calculation
of the ultimate curvature of the confined core after spalling of the cover, provided
that:
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– dimensions b, d and d1 are replaced by bc (equal to b minus the diameter
of transverse reinforcement and twice the cover), dc (equal to d minus the
cover and half the diameter of transverse reinforcement) and dc1 (equal to half
the diameter of transverse reinforcement plus half that of longitudinal bars),
respectively;

– N, ρ1, ρ2, ρv are normalised to bcdc, instead of bd, and
– the σ -ε parameters of confined concrete, fc∗, εcu

∗, are used, in lieu of fc, εcu.

Note that dc1 is small compared to d1 above. So, the conditions of Eqs. (3.45)
and (3.50a) are always met in the confined core. Then, only Eqs. (3.46), (3.47),
(3.48), (3.51), (3.52), (3.53) and (3.54) in sub-sections Failure of the Full Section
Due to Rupture of Tension Reinforcement Before Spalling of the Concrete Cover
and Curvature at Spalling of the Concrete Cover are meaningful for the ultimate
curvature of the confined core.

3.2.2.5 Moment Resistance of Concrete Sections with Rectangular
Compression Zone

The moment resistance of the confined core and of the unspalled section, MRo, MRc,
respectively, for use in Eqs. (3.49), may be estimated as uniaxial moment resistances
of concrete sections with rectangular compression zone, through dimensioning tools
(tables, diagrams, analytical expressions or computer codes) available for the Ulti-
mate Limit State of such sections under uniaxial bending with axial force. When
such design tools are utilised, the actual (or expected) value of material strengths
should be used, instead of the design values:

– for reinforcing steel, use fym or fy in lieu of fyd=fyk/γ s;
– for concrete, instead of fcd=fck/γ c, the value fcm or fc should be used before

spalling and the value fcm
∗ or fc∗ for the confined concrete core after spalling

(for MRo); if the design tools used include a reduction factor on fcd due to long
term or other effects, e.g. a reduction factor of 0.85, this factor should be removed
by using the value fc/0.85 or fc∗/0.85 for fcd.

– for the moment corresponding to rupture of the tension reinforcement at the full
section before spalling (and to the ultimate curvature ϕsu), or at the confined core
afterwards (and to ϕsu

∗), the cross-sectional area of tension reinforcement should
be taken equal to As1ft/fy (i.e., ω1 should be multiplied by ft/fy).

As an alternative, the flexural resistance may be calculated analytically, as
described below for MRc (see also Flow Charts 3.1 and 3.2). The value of MRo can
be calculated similarly, using the geometric and strength parameters of the confined
core.

For failure of the section due to rupture of the tension steel (i.e., when the axial
load ratio, ν, is less than the minimum of the limit values νs,y2, νs,c defined in
Eq. (3.46) of sub-section Failure of the Full Section Due to Rupture of Tension
Reinforcement Before Spalling of the Concrete Cover), we consider first the usual
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case when Eq. (3.45) is met. Then, for ν less than the limit value νs,y2 defined at the
left-hand-side of Eq. (3.46), the compression reinforcement is elastic while the ten-
sion reinforcement is at ultimate strength. With ξ given by Eq. (3.48), the moment
resistance of the section is:

MRc

bd2 fc
= (1 − ξ )

[
ξ

2
− εco

3εsu1

(
1

2
− ξ + εco

4εsu1
(1 − ξ )

)]
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2
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)
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6(1 − δ1)

{[
1 − δ1 + ξ

(
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2
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3
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− 1

)
(1 − ξ )

}

(3.57)

If, by contrast, ν satisfies Eq. (3.46), the compression reinforcement is beyond
yielding but not yet in strain-hardening. Then, with ξ from Eq. (3.47), the section
moment resistance is:

MRc
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1

2
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](
1 − εshv
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(1 − ξ )

}
(3.58)

If Eq. (3.45) is not met, but the axial load ratio, ν, is still less than the limit value
νs,c defined at the right-hand-side of Eq. (3.46), the compression reinforcement is
still elastic while the tension reinforcement is at ultimate strength. Then the moment
resistance of the section is again given by Eq. (3.57), with ξ from Eq. (3.48).

For section failure due to concrete crushing (i.e., for axial load ratio, ν, greater
than the minimum of the limit values νc,y2, νc,y1 defined at the left-hand-side of
Eqs. (3.51) and (3.55), respectively, in sub-section Curvature at Spalling of the
Concrete Cover), we consider first the case of Eq. (3.50a) being met. Then, if ν
is less than the limit value νc,y2 at the left-hand-side of Eq. (3.51), the compression
reinforcement is elastic while the tension reinforcement is beyond yielding but not
yet in strain-hardening. With ξ given by Eq. (3.54), the moment resistance of the
section is:
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MRc

bd2 fc
= ξ
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(3.59)

If ν satisfies Eq. (3.51), the tension and the compression reinforcement are both
beyond yielding but not in strain-hardening. The moment resistance of the section
is then:

MRc

bd2 fc
= ξ
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(3.60)
with ξ given by Eq. (3.52). If, by contrast, ν exceeds the limit value νc,y1 at the right-
hand-side of Eq. (3.51), the tension reinforcement is elastic while the compression
reinforcement is beyond yielding but not in strain-hardening. With ξ from Eq. (3.53)
the moment resistance is:
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= ξ
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(3.61)

We consider next the rare case when Eq. (3.50b) is met. If ν is less than the
limit value νc,y1 at the left-hand-side of Eq. (3.55), the compression reinforcement is
elastic and the tension reinforcement is beyond yielding but not strain-hardening yet.
The moment resistance of the section is given by Eq. (3.59), with ξ from Eq. (3.54).
If ν satisfies Eq. (3.55), the entire reinforcement of the section is elastic and the
moment resistance is:

MRc
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= ξ

[
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12ξ
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(3.62)

with ξ from Eq. (3.56). If ν exceeds the limit value νc,y2 defined at the right-
hand-side of Eq. (3.55), the tension reinforcement is elastic and the compression
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reinforcement is beyond yielding but not in strain-hardening. The moment resis-
tance of the section is given by Eq. (3.61), with ξ from Eq. (3.53).

Equations (3.57), (3.58), (3.59), (3.60), (3.61) and (3.62) are derived from
moment equilibrium of the normal stresses acting on the section with respect to
its centroid, taken to be at mid-distance between the tension and the compression
reinforcement. The plane section hypothesis and the nonlinear σ -ε laws outlined in
points (i) and (ii) at the end of sub-section Definitions and Assumptions are used
also. As an illustration, the derivation of Eq. (3.60) is given below, with the tension
reinforcement not considered to be in strain-hardening.

The tension and compression longitudinal reinforcement, with mechanical ratios
ω1 and ω2, each at a distance h/2–d1=(d–d1)/2 to the centroid of the section, con-
tribute to its moment resistance a moment of (ω1+ω2)bd2fc(1–δ1)/2. When the
strain of the outermost compression fibres is equal to εcu, the “web” reinforce-
ment, distributed between ω1 and ω2 and having mechanical ratio ων, contributes
to the flexural resistance a moment about the centroid of the section equal to
ωνbd2fc/(1–δ1)[(ξ–δ1)(1–ξ )–(ξ fy/Esεcu)2/3]. With respect to the same point and for
a parabolic-rectangular σ -ε diagram, the compression zone contributes a moment
equal to bd2fcξ [(1–ξ )/2–(1/2–ξ+ξεco/4εcu)(εco/3εcu)]. Adding all three contribu-
tions, Eq. (3.60) is obtained.

3.2.2.6 Flexural Behaviour Until Failure Under Cyclic Loading

Let’s consider the following load history, which is quite commonly part of the load
history applied in experimental studies of the cyclic behaviour of concrete members:

– reversal of loading into unloading at a value of curvature ϕr past flexural yielding;
– continuation of unloading into reloading in the opposite direction, up to a curva-

ture of about –ϕr
8

;

– new unloading from –ϕr towards the original direction of loading, until and past
the peak curvature reached in the previous cycle, ϕr;

– new unloading from a peak curvature greater than ϕr.
– The experimental behaviour is shown in:
– Fig. 3.25 for a rectangular section with symmetric reinforcement and zero axial

load;
– Fig. 3.26 for a rectangular beam with less reinforcement at the bottom (corre-

sponding in Fig. 3.26 to negative moment) than at the top and zero axial load.

Measured curvatures in these two figures do not include the effect of bar pull-out
from the anchorage zone beyond the end section. Figure 3.26 is typical of a frame
beam, which at the face of the column usually has greater top reinforcement than

8Symmetric deflection cycles, i.e. from a deflection δr to –δr; as commonly applied on test speci-
mens, produce almost but not quite symmetric curvature cycles at the member end where yielding
takes place.
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Fig. 3.25 Experimental M-(mean) ϕ curves of symmetrically reinforced member in cyclic bending
(Ma et al. 1976)

at the bottom. In an actual beam the cross-section is not rectangular, but T or L,
with different effective flange width in tension or compression. As pointed out in
Sections 1.3.4 and 2.2.1, in beams integral with the slab the effective flange width
increases with increasing end moment and deformation, especially after the yielding
of the longitudinal bars placed within the width of the web mobilises the strength
and stiffness of the flange and spreads the nonlinearity into the slab further away
from the web.

In both cases the cyclic behaviour exhibits the following features:

1. In the monotonic branch before any unloading (i.e., during primary or virgin
loading) flexural cracking is followed by a gradual softening of the response.
If the reinforcement is concentrated near the extreme tension and compression
fibres of the section, yielding of the tension bars shows up as a rather abrupt
softening of the overall moment-curvature response. After yielding the resisting
moment keeps increasing, initially because the reduction of the neutral axis depth
due to the large post-yield elongation of the tension reinforcement increases the
internal lever arm, and then because strain hardening of the tension bars starts.
When the concrete cover spalls at a compressive strain equal to the εcu-value of
unconfined concrete, the resisting moment drops momentarily. Depending on the
magnitude of its strains, the compression steel will most likely yield at that point
and may not contribute further to the increase of the resisting moment. These
effects are usually more than offset by the increase of the strength and stiffness
of the core concrete effected by the mobilisation of confinement.

2. During unloading from the post-yield branch of the primary loading curve, the
unloading stiffness is initially high, about equal to the ”elastic” (post-cracking)
stiffness. The unloading branch gradually softens, especially as the applied
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(a)

(b)

Fig. 3.26 Experimental M–(mean) ϕ curves of asymmetrically reinforced member in cyclic bend-
ing: (a) next to the member end; (b) a short distance from the member end (Ma et al. 1976)

moment approaches zero. Overall, and throughout the unloading branch until the
horizontal axis, M = 0, the unloading slope is less than the “elastic” secant stiff-
ness to the yield-point, My/ϕy and decreases with increasing value of the peak
curvature where unloading started, ϕr. This reduction is part of the so-called
”stiffness degradation”, which is a characteristic feature of the cyclic flexu-
ral behaviour of concrete members. When the applied moment becomes zero,
there is a significant residual deformation, mainly due to the permanent inelastic
strains locked in the tension bars and to the residual slip between the bars and the
concrete. Owing to this residual slip, at zero applied moment the cracks remain
open.
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3. Right after the applied moment changes sign, the slope (“stiffness”) of the branch
of loading in the opposite direction (“reloading”) considerably decreases. The
reduction in stiffness is due to the fact that, when the applied moment changes
sign, the crack is open throughout the depth of the section, including the (new)
compression side. The reason is that the bars of that side – now in compres-
sion – have previously yielded in tension and have a certain plastic elongation
locked-in. So, the applied moment is resisted only by the force couple of the ten-
sion and compression reinforcement. So long as the steel couple alone resists the
moment, the M–ϕ diagram resembles that of the σ -ε diagram of steel in cyclic
loading, including the Bauschinger effect for yielding in the opposite direction
(cf. Fig. 3.1 in Section 3.1.1.1). Moreover, the slope (tangent stiffness) of the
M–ϕ diagram is considerably less than the slope of unloading to the horizontal
axis. For the crack to close at the (newly) compressed side and for the concrete to
be activated again there, the compression reinforcement needs to develop com-
pressive stresses sufficiently large to suppress its (plastic) tensile strains (or to
buckle). Once this takes place, the crack closes and the slope (tangent stiff-
ness) of the reloading branch increases again, tending to a roughly constant
value, which is maintained until the previous maximum curvature, ϕr, in the
current direction of (re)loading is reached. As a result, the unloading-reloading
branch has an inverted-S shape. If the section is symmetrically reinforced with
all the reinforcement concentrated at the two ends of the section,9 the shape
of unloading-reloading branches resembles an inverted-S for both directions of
loading (cf. Fig. 3.25) The inverted-S shape of one or both unloading-reloading
branches produces hysteresis loops that are “pinched” at the middle. In sec-
tions with asymmetric reinforcement, i.e. with ρ1+ρv > ρ2 as in Fig. 3.26, the
unloading-reloading branch exhibits a clear pinching only when reloading takes
place from a state with the less reinforced side (that with ratio ρ2) in tension
towards one with this reinforcement in compression. Being less than that of the
other side, this reinforcement yields soon in compression, allowing the crack to
close at the compression side. For reloading in the reverse direction, with the
more heavily reinforced side (that with ratio ρ1) going from tension to com-
pression, the reinforcement of the opposite side (with ratio ρ2) is not sufficient
to drive the reinforcement with the large ratio (ρ1) to yielding in compression.
This delays closure of the through-depth crack. As shown in Fig. 3.7, at the
more heavily reinforced side of the section compressive strains are relatively
low and the concrete is not heavily stressed, because the reinforcement there
can resist the full compression force even without yielding. So, in asymmet-
rically reinforced sections, unloading-reloading branches have the shape of an
inverted-S only when reloading takes place in the direction towards the larger

9If a large fraction of the reinforcement is distributed between the top and the bottom of the section,
e.g., along the two sides that are parallel to the plane of bending, as in large columns or walls, most,
if not all, of this reinforcement is normally in tension, because the compression zone is limited to
(much) less than half of the effective section depth. So, the tension reinforcement is always more
than the compression reinforcement and can easily drive it to yielding and beyond.
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moment resistance. Reloading in the reverse direction always takes place at
a lower stiffness, namely that developed by the steel couple alone. This stiff-
ness is the same as the initial reloading stiffness in the reverse direction, before
the concrete is engaged in compression and the tangent stiffness increases. An
external compressive force on the section helps close the crack on the compres-
sion side and reduces the length of the branch exhibiting low stiffness. Large
axial compression does not let the crack remain open throughout the depth.
Then the stiffness along the unloading-reloading branch decreases steadily and
smoothly.
If the continuation of unloading into (re)loading in the reverse direction happens
to be a first-time post-elastic loading in that direction, it may be considered as
virgin loading. The softening that follows the stiffening at the end of the pinch-
ing (due to yielding of the bars at the side currently in tension) is more gradual
than during first loading in the original direction, because the bars now yielding
in tension have in all likelihood yielded in compression previously and exhibit
the Bauschinger effect. The same effect causes the bars on the compression side,
that have previously yielded in tension, to start yielding early and gradually,
contributing to the gradual softening of reloading. After the yielding of both the
tension and the compression bars is complete, the moment-curvature response
in further loading is like primary post-elastic loading in the current loading
direction, as affected by possible spalling of the concrete cover on the newly
compressed side and by strain-hardening of the steel bars on the side newly in
tension.

4. In addition to the degradation of resistance with increasing lateral displace-
ments, which is due to the increased deformations imposed on concrete and steel,
cycling of the deformations per se even at constant amplitude normally causes
degradation of strength with respect to the envelope provided by the primary
loading curve. The sources of this ”strength degradation” are many. First, alter-
nating opening and closing of cracks causes degradation of strength and stiff-
ness of the concrete in compression, because small shear sliding, flaking off or
debris accumulation along a crack prevents its faces from returning to even and
full contact. Second, cyclic deterioration of the bond-slip behaviour along the
bars (cf. Fig. 3.22) gradually increases the crack width and reduces the tension-
stiffening effect (i.e. the activation of the concrete in tension around the bar).
Third, apart from the gradual deterioration with cycling of the shear behaviour
per se (i.e., of aggregate interlock, dowel action, etc.), the transfer of the shear
force by dowel action along open full-depth cracks when the steel couple alone
resists the applied moment, causes concrete splitting along the longitudinal bars
(the “dowels”) and subsequent further bond deterioration and stiffness degra-
dation, or even spalling of the concrete cover and deterioration of both flex-
ural strength and stiffness. Well designed and detailed members exhibit little
degradation of strength with cycling. Moreover, for constant amplitude cycling
of either force or deflection, the deterioration is noticeable between the 1st and
the 2nd cycle but diminishes almost to zero thereafter, leading to very stable hys-
teretic behaviour. Lack of such stabilisation is a sign of imminent failure under
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cyclic loading. Increasing the transverse steel reduces strength degradation with
cycling, as it enhances confinement. However, increasing the longitudinal steel
seems to increase also the degradation of strength and stiffness with cycling,
because the concrete, which is the main source of the degradation, becomes more
critical.

Besides the absence of strong pinching in reloading towards the direction of
the lower moment resistance, the prime difference of the cyclic flexural behaviour
between the cases of symmetric (Fig. 3.25) and asymmetric cross-section and
reinforcement (Fig. 3.26) is in the stiffness and strength exhibited by the enve-
lope (and primary loading) curve in the two directions of bending, positive or
negative.

3.2.2.7 Failure of Members Under Cyclic Flexure

Flexural damage is physically concentrated in the end region of the member and
entails one or more of the following (see Fig. 3.27 for examples):

– spalling of the concrete cover, often extending to disintegration of the concrete
core inside the reinforcement cage;

– buckling of reinforcing bars (especially of the corner ones);
– rupture of one or more reinforcing bars.

Members detailed for earthquake resistance normally do not fail abruptly under
cyclic loading. Their failure in flexure is typically gradual, governed by the pro-
gressive deterioration of the compression zone. Damage starts with spalling of the
cover concrete and normally continues with buckling of the bars that lose their lat-
eral support and finally with disintegration of the core concrete. Lightly reinforced
members may fail suddenly by fracture of one or more tension bars. Such a frac-
ture often takes place at a minute crack in the bar caused by buckling during the
previous half-cycle. The reduction in moment resistance caused by a bar fracture
shows up in the moment-curvature response as an abrupt drop in the moment, often
considered as failure. When there are no such clear signals of failure, the mem-
ber may be considered to have failed if, from a certain point on, the pattern of the
response changes. For example, when, during constant amplitude cycling the peak
force drops disproportionately from one cycle to the next (“strength decay”), com-
pared to previous cycles at the same or smaller deformation amplitude. Another
example is an entire hysteresis loop that tilts or shrinks relative to the previous
ones. The column in Fig. 1.2(b) exhibits both these features during the last cycles
of the response. Such changes in the macroscopic behaviour signify a marked loss
of stiffness, strength or energy dissipation capacity and may be taken to signal fail-
ure. Examples in this chapter include Fig. 3.5(a) and (b) (for reinforcing bars), the
shear failures of specimens No. 1, 3 and 4 in Fig. 3.36(a), the ductile shear failure
in Fig. 3.38(c) and (f) and the subassembly failure in Fig. 3.46(c).
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 3.27 Examples of flexural damage or failure in the lab or in the field: (a), (b) horizontal
crack at column top, concrete spalling at the corners, buckling of corner bars; (c) complete loss of
cover, partial disintegration of concrete and buckling of bars in horizontal zone near the column
top; (d) full loss of cover, partial disintegration of concrete and buckling of bars in horizontal zone
just above column base; (e) loss of cover, partial disintegration of concrete core and bar buckling,
with tie opening-up on one side of a column above the base; (f) full disintegration of concrete and
buckling of bars in a lapping region at floor level; (g) through-depth cracking near the support of a
T-beam with extension of the cracks into the slab at the top flange; (h) local crushing of concrete
and bar buckling at the bottom of a T-beam; (i) disintegration of concrete and bar buckling at the
bottom of a T-beam, with through-depth flexural cracks extending into the slab at the top flange
(See also Colour Plate 7 on page 721)
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No matter whether the loss of strength, stiffness or energy dissipation capacity is
abrupt or gradual, a conventional definition of member failure under cyclic loading
is necessary. A definition covering both the abrupt and the gradual change in the
force-deformation response has been proposed in French and Schultz (1991) and
Saatcioglou (1991). According to it, failure is taken to occur when it is not possible
to increase the force resistance above 80% of the maximum resistance attained dur-
ing the test, even though the imposed deformation keeps increasing. In the examples
of Figs. 1.2(b), 3.5(a) and (b), 3.36 (no. 1, 3 and 4), 3.38(c) and (f) and 3.46(c), the
conventional identification of failure with a 20%-drop in post-ultimate resistance
coincides with a rather abrupt change in the cyclic force-deformation response. By
contrast, the column of Fig. 1.2(c), the material behaviour in Figs. 3.3(right), 3.6(b)
and 3.10 and the subassembly in Fig. 3.46(b), exhibit a very gradual deterioration of
peak resistance with cycling and failure can be defined only conventionally (as the
20% drop in post-ultimate resistance).

If the qualitative definition of failure as a change in the hitherto pattern of
behaviour is applied to monotonic loading, then failure may be identified with the
peak force resistance (ultimate strength, see Fig. 1.2(a) and monotonic conclusion
of the tests in Figs. 3.6(a) and (b), 3.7 and 3.36(b) (specimen No. 8)). On the other
hand, identification of failure with inability to increase the force resistance above
80% of its hitherto peak value, coincides with the frequently used convention of
identifying failure under monotonic loading with a force point on the falling branch
of the force-deformation response at 80% of the ultimate strength. In Figs. 1.2(a),
3.6(b) and 3.7, the drop in post-peak resistance by at least 20% is clearly meaningful
as failure.

If the section and the reinforcement are symmetric, flexural damage (in a cyclic
test or in the field during an earthquake) is also nearly symmetric at the two sides
of the section. In an asymmetric cross-section the two sides may experience differ-
ent failure modes under cyclic loading. Failure with the stronger side in tension is
typically gradual, with progressive disintegration of the weaker compression side
and crushing of the concrete there. Failure with the weaker side in tension may be
abrupt, owing to fracture of the steel bars there, possibly after buckling in a previ-
ous half-cycle. Often steel fracture on the weaker side is preceded by a significant
drop in strength (called, conventionally or not, failure) during a half-cycle with the
stronger side in tension. So, under displacement-controlled cyclic load histories,
failure of asymmetric sections typically occurs with the stronger side under tension.

3.2.2.8 Effect of Axial Force on the Cyclic Flexural Behaviour

If the axial load ratio, ν = N/Acfc, is low, zero or negative (tensile) and the com-
pression zone is well confined, repetition of a full cycle between equal and opposite
values of peak curvature produces fairly stable hysteresis loops, with no degradation
of the peak resistance from cycle to cycle.

Some axial compression on the cross-section helps close the cracks in the final
phase of unloading and the first stage of reloading in the reverse direction, by pro-
moting yielding in compression of the bars that have previously yielded in tension
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and now go into compression. As a result, never during the loading cycle are the
cracks open through the section depth or is the applied moment carried by the steel
couple alone. So, the moment-curvature behaviour does not exhibit strong pinching
of the loops. However, high axial compression has adverse effects on the behaviour,
especially if the normalised axial force, ν, approaches the value at balance load
(which coincides with νc,y1, defined at the right-hand-side of Eq. (3.51) if the con-
dition of Eq. (3.50a) is met, or with νc,y1, defined at the left-hand-side of Eq. (3.55),
if it is not). For high axial compression the compression zone may disintegrate with
cycling and the peak resistance may drop from cycle to cycle, giving shallower and
narrower hysteresis loops. Failure then may be abrupt, unless the concrete core is
very well confined.

The axial load in frame columns does not always stay constant during the seismic
response. The seismic overturning moment produces an axial force (mainly) in the
exterior columns, compressive on the “leeward” side of the building, tensile on the
“windward” one (see Eq. (2.13) in Section 2.2.1.5). Seismic axial forces are largest
at the bottom storey. The variation of axial compression during the cyclic response
may significantly affect the column inelastic behaviour, so long as the column stays
below its balance load,10 as described below.

An increase in the axial compression increases the yield and ultimate moments
(cf. Eqs. (3.37), (3.39), (3.57), (3.58), (3.59), (3.60), (3.61) and (3.62)), the ordinates
of the envelope curve of the hysteresis loops under cyclic loading, and the stiffness in
virgin loading, unloading and reloading, as the larger neutral axis depth increases the
contribution of concrete to the flexural resistance and stiffness. By contrast, when
the axial compression decreases, all its strength and stiffness properties decrease.
So, a history of symmetric displacement cycles with variation of the axial force
during the cycle produces asymmetric hysteresis loops, with strength and stiffness
distinctly higher in the direction of increasing axial compression (that of negative
moments in Fig. 3.28) than in the opposite one (for positive moments in Fig. 3.28).
Therefore, during the seismic response the “leeward” exterior columns exhibit an
increase in stiffness (increasing momentarily their share in the seismic shear) and
yield moment. The “windward” exterior columns exhibit the reverse effects.

So long as the response is elastic, the seismic axial force in the columns varies in
proportion both to the column moment and to the column deformation. This propor-
tionality does not apply anymore, once plastic hinging and inelastic response start
developing in the frame. So long as the column end section of interest is still in the
elastic range, its seismic axial force will vary less than proportionally to the column
moment and deformation. In the post-yield range of the column end section, and
provided that the mechanism developing in the frame is closer to the beam-sway
type (cf. Fig. 1.3(b)–(e)), the column’s seismic axial force will keep varying with
the column deformation (not the moment) but again less than proportionally to it.
If a soft-storey type of mechanism tends to form (as in Fig. 1.3(a)), the column’s

10If the value of the axial force varies around the column balance load, there is no clear-cut effect
of this variation on the column flexural behaviour.
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(a) (b)

Fig. 3.28 Moment-chord rotation response of column with axial force varying in proportion: (a)
to the moment; (b) to the deformation (adapted from CEB 1996a)

seismic axial force will stay essentially constant during post-yield primary loading
but vary again with the column moment during unloading or reloading.

Tests on columns with the axial load varying about its mean value in proportion to
the moment (Abrams 1987) demonstrate (Fig. 3.28(a)) that the effect of axial load on
post-elastic stiffness in virgin loading or reloading shows up gradually, accelerating
the softening in that direction of loading in which the axial compression decreases
with increasing moment (i.e., for positive moments in Fig. 3.28(a)) but reducing
it for loading in the opposite direction (toward negative moments in Fig. 3.28(a)),
even to the point of producing an overall stiffening effect. An axial force that varies
with the applied moment will remain essentially constant after column yielding. The
different final values of axial force for the two directions of loading just cause dif-
ferent yield moments in these directions. The post-yield behaviour follows closely
the envelope associated with the corresponding constant axial force value.

If the axial load varies about its average value in proportion to the deformations
(Fig. 3.28(b)), yielding in the direction of decreasing axial force (i.e., for positive
moments in Fig. 3.28(b)) is followed by a drop in the moment resistance, as this
decreases with decreasing axial load (Abrams 1987). In the other direction of load-
ing (towards negative moments in Fig. 3.28(b)), the increase of axial load with the
post-yield deformation increases the yield moment further, showing up initially as
an apparent but significant increase in the post yield stiffness. However, this post
yield stiffening is soon followed by a strength decay, which may eventually lead to
failure.

No matter whether the axial force varies with the moment or with the deforma-
tion, failure by rupture of the tension steel (Section 3.2.2.4 under Failure of the Full
Section Due to Rupture of Tension Reinforcement Before Spalling of the Concrete
Cover) is reached sooner for decreasing axial compression, while that by concrete
crushing (Section 3.2.2.4 under Curvature at Spalling of the Concrete Cover) hap-
pens earlier for increasing axial load. As the ultimate curvature is much lower for
the latter failure mode than for the former, the “leeward” exterior columns typically
fail before the “windward” ones.
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3.2.2.9 Fixed End-Rotation at Member Ultimate Curvature, Due to Bar
Pull-Out from the Anchorage Zone Beyond the Section
of Maximum Moment

If the anchorage of the longitudinal bars beyond the member end is insufficient, it
will fail, normally by pull-out. Such a failure may well pre-empt yielding of these
bars and flexural yielding of the member’s end section. It will certainly prevent
that section from developing its full moment resistance, Eqs. (3.57), (3.58), (3.59),
(3.60), (3.61) and (3.62). Figure 3.29 shows examples of wide residual cracks at the
ends of beams with short bar anchorage in corner joints, suggesting very large fixed-
end rotations there during the response. In concrete buildings with well designed
and detailed members, anchorage failures of this type do not take place. Instead, the
fixed-end rotation due to bar pull-out from the anchorage zone will keep increasing
from its value at yielding of the end section, Eq. (3.42), while the member heads
towards its ultimate flexural deformation.

Strain hardening of the tension bars at the section of maximum moment does not
increase markedly the bond stress demand along their anchorage past that section.
The increase of the fixed-end rotation from yielding till the ultimate flexural defor-
mation is due to penetration of inelastic strains into the initial part of the anchorage
length of these bars (see Section 3.1.3.2). Bar anchorage beyond this “yield penetra-
tion length”, ly,p, remains intact and the fixed-end rotation produced by bar pull-out
from the anchorage zone is still given by Eq. (3.42). However, steel elongation along
the “yield penetration length” shows up as additional slippage of the tension bars at
the section of maximum moment. If these bars are perfectly-plastic along the yield

Fig. 3.29 Pull-out of beam bars from short anchorage in corner joint has produced fixed-end
rotation during the response and wide residual cracks (See also Colour Plate 8 on page 722)
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penetration length, their strain is practically constant along that length and equal to
the steel strain, εs, at the section of maximum moment. It produces then an addi-
tional slippage of εsly,p and an additional fixed-end-rotation, Δθu,slip = ϕuly,p, by
the time of the ultimate curvature, ϕu, of the end section. If the tension bars are
considered as linearly strain-hardening all along the yield penetration length, their
strain may be taken to increase linearly along that length from the yield strain, εy,
to the value εs at the section of maximum moment. In that case we have: Δθu,slip =
(ϕy+ϕu)ly,p/2.

Biskinis (2007) used about 465 measurements of relative rotations near the end of
the member at the time of member ultimate deformation, 120 of which included the
fixed-end rotation due to reinforcement pull-out. On the basis of these tests the addi-
tional fixed-end rotation between yielding and ultimate curvature can be inferred as
equal to:

– for cyclic loading:

Δθu,sli p = 5.5dbLϕu (3.63a)

– for monotonic loading:

Δθu,sli p = 9.5dbLϕu (3.63b)

or

– for cyclic loading:

Δθu,sli p = 10dbL
(
ϕy + ϕu

)
/2 (3.63c)

– for monotonic loading:

Δθu,sli p = 16dbL
(
ϕy + ϕu

)
/2 (3.63d)

A slightly better fit to the data is achieved with Eqs. (3.63c) and (3.63d) than with
Eqs. (3.63a) and (3.63b): the coefficient-of-variation is 45.5% v 47.5%.

Note, in this connection, that according to Eurocode 8 (CEN 2004a) the anchor-
age length of beam or column bars in beam-column joints of DC H buildings should
be measured starting 5-bar-diameters inside the joint for reasons of yield penetra-
tion. This length is quite consistent with Eq. (3.63a).

The value of ϕu in Eqs. (3.63) is calculated according to Section 3.4.4.2, using
Eqs. (3.4), (3.5), (3.10), (3.16) or (3.17), (3.20), (3.21), (3.22), (3.23), (3.24)
and (3.25) for the properties of concrete, including the confined core, as well as
Eqs. (3.64) of Section 3.2.2.10 for the strain at which the tension bars rupture.
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3.2.2.10 Experimental Ultimate Curvatures and Comparison with Predictions
for Various Confinement Models

The most important parameters in the approach of Section 3.2.2.4 for the calculation
of ultimate curvature, ϕu, are the ultimate strain of concrete, confined or not, and the
available elongation of the tension reinforcement.

Equations (3.16) or (3.17) in Section 3.1.2.2 give the ultimate strain of concrete,
confined or not, to be used together with Eqs. (3.4), (3.5), (3.10), (3.20), (3.21),
(3.22), (3.23), (3.24) and (3.25) for the prediction of ultimate curvature. Biskinis
(2007) has developed Eqs. (3.16) and (3.17) on the basis of about 465 measure-
ments of relative rotations near the end of the member at the time of member ulti-
mate deformation. About 120 of these measurements included fixed-end rotation
due to reinforcement pull-out and were corrected for its effect using Eqs. (3.63).
The first two terms of Eqs. (3.16) and (3.17) have been derived from 65 cases with
almost no confinement, where the ultimate curvature had been reached at spalling
of the concrete cover. The resulting predictions for ϕu give a test-to-prediction ratio
with a median of 0.925 and a coefficient-of-variation of 55.5%. The 3rd term in
Eqs. (3.16) and (3.17) has been derived from 105 monotonic and about 80 cyclic
tests that reached ultimate curvature by crushing of the confined concrete core. The
resulting ϕu-values give a test-to-prediction ratio with median of 1.02 or 0.99 and
a coefficient-of-variation of 51.9% or 52.6%, for these monotonic or cyclic tests,
respectively. Finally, about 115 monotonic and 100 cyclic tests, reported or inferred
to have reached ultimate curvature by rupture of the tension reinforcement, lead
to the conclusion that the available elongation of tension reinforcement at ultimate
curvature is on average equal to the following fraction of the nominal bar strain
at maximum stress, εsu,nominal, as obtained from coupon tests of the bars (Biskinis
2007, Biskinis and Fardis 2009):

– for monotonic loading:

εsu,mon = (7/12)εsu,nominal (3.64a)

– for cyclic loading:

εsu,cy = (3/8)εsu,nominal (3.64b)

The adverse effect of cyclic loading on steel bars (e.g., surface cracking upon
buckling, etc.) is the main reason for the large difference of εsu,cy from εsu,nominal, in
Eq. (3.64b). By contrast, the prime reason for the (smaller, albeit significant) differ-
ence of εsu,mon from εsu,nominal in Eq. (3.64a) is not mechanical but statistical, similar
to the well known statistical size effect that decreases strength with increasing spec-
imen size. The 115 monotonic tests that reached ultimate curvature by rupture of
the tension reinforcement had from 1 to 20 tension bars (on average 5). Unlike the
cyclic test results, which do not exhibit a statistically significant effect of the num-
ber of bars on εsu,cy, the monotonic ones show clearly that when the number of
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bars increases, the actually available elongation of tension reinforcement, εsu,mon,
decreases. This is consistent with control of failure by the minimum value of εsu

among the bars. Normally, the probability distribution of the minimum value of εsu

among N bars is taken to follow a Type I extreme value distribution of the small-
est values. The parameters of that probability distribution depend on the functional
dependence of the lower tail of the underlying distribution of the value of εsu of the
individual bars, on εsu. A reasonable form of dependence is an exponential of the
negative of an increasing function of the deviation of εsu from its mean value, taken
as εsu,nominal (Benjamin and Cornell 1970). If that function is taken proportional to
(εsu–εsu,nominal)2, the mode (i.e., most likely value) of the minimum value of εsu

among N bars is a linear function of
√

lnN (Benjamin and Cornell 1970). Then, as
Eq. (3.64a) corresponds to an average of 5 tension bars in the 115 monotonic tests
with rupture of tension reinforcement, it can be generalised as follows:

– For monotonic loading:

εsu,mon =
(

1 − 1

3

√
ln Nb,tension

)
εsu,nominal (3.64c)

where Nb,tension is the number of bars in the tension zone. Equation (3.64c) gives
εsu,mon = εsu,nominal if Nb,tension = 1 and εsu,mon ≈ (7/12)εsu,nominal for the average
value of Nb,tension = 5 in the tests. When Eqs. (3.64c) and (3.64b) are used, the test-
to-prediction ratio for ϕu has a median of 1.00 or 1.01 and a coefficient-of-variation
of 44.8% or 34.7%, for these monotonic or cyclic tests, respectively.

Overall, in about 465 ultimate curvature values derived from measurements of
relative rotation, the test-to-prediction ratio for ϕu has a median of 0.995 and a
coefficient-of-variation of 49.8% (or 1.01 and 0.985, and 53.2 and 44.6% sepa-
rately for monotonic and cyclic loading, respectively) (Biskinis 2007). Natural and
test-to-test variability contributes to the scatter a coefficient of variation of about
18.5% in practically identical specimens. After subtracting this source of the scat-
ter, model uncertainty corresponds to a coefficient of variation equal to the values
quoted above, reduced by 3.3% for the larger values to 5.2% for the smaller ones.
The overall statistics, as well as those for the individual failure modes, are slightly
worse if the ultimate concrete strain is given by a single expression, Eq. (3.17), both
for monotonic and cyclic loading, instead of the two different ones of Eqs. (3.16).

After correcting the “experimental” value of ϕu for any fixed-end rotation due to
reinforcement pull-out from its anchorage beyond the section of maximum moment
according to Eqs. (3.63), its magnitude does not exhibit any systematic effect of the
gauge length over which the relative rotation had been measured (Biskinis 2007).

Notwithstanding the large scatter, the above statistics demonstrate that ϕu-values
based on Eqs. (3.4), (3.5), (3.10), (3.16), (3.17) and (3.64) agree much better with
test results than the ϕu-values obtained from alternative well known or widely used
models, namely:
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a. From the model in informative Annex A of Part 3 of Eurocode 8 (CEN 2005a).
According to it, the ultimate strain of longitudinal reinforcement, εsu, to be used
for cyclic loading can be taken equal to the following values, higher than those
of Eq. (3.64b):

• the lower limit values specified in Eurocode 2 (CEN 2004b) for the 10%-
fractile strain at maximum force, εuk, if the steel class is A or B (for class B,
this is the minimum value for DC L or M in Table 3.1 of Section 3.1.1.4); and

• 6% for steel class C (i.e., steel meeting the requirements for DC H in Table 3.1
of Section 3.1.1.4).

According to CEN (2005a), the parameters of confined concrete, including the
effect of confinement, may be obtained either:

i. from Eqs. (3.4), (3.5), (3.10) and (3.18), or
ii. from Eqs. (3.8), (3.9) and (3.13) (i.e., according to CEN (2004b) and CEB

(1991)).

For confinement model (i) the test-to-prediction ratio of ϕu has a median of 1.04
or 0.94 and coefficient-of-variation of 67.2% or 47.3% for monotonic or cyclic
loading, respectively. Overall (for monotonic and cyclic loading) the median is
0.985 and the coefficient-of-variation 62.9%.
For confinement model (ii) the median and the coefficient-of-variation of the
test-to-prediction ratio of ϕu is 1.37 or 1.3, and 70.6% or 51.3% for mono-
tonic or cyclic loading, respectively, and overall (monotonic and cyclic) 1.33
and 65.6% (Biskinis 2007). If the ultimate strain of steel, εsu, is taken from Eqs.
(3.64) instead, the median improves to 1.39, 1.14 and 1.27, for monotonic, cyclic
loading and overall (monotonic and cyclic), respectively, without a significant
increase of the scatter.

b. From Mander et al. (1988) and Paulay and Priestley (1992) regarding confine-
ment, i.e., from Eqs. (3.4), (3.6) and (3.10) and either Eq. (3.14) (Mander et al.
1988), or Eq. (3.15) (Paulay and Priestley 1992) for the ultimate strain of con-
fined concrete.
Best average agreement of these models with tests is obtained if the ulti-
mate strain of longitudinal reinforcement, εsu, is taken according to Part 3 of
Eurocode 8 (CEN 2005a). Then the ultimate strain model of Eq. (3.14) (Man-
der et al. 1988) gives a median of 1.015 or 1.155 for the test-to-prediction ratio
of ϕu and a coefficient-of-variation of 71.5% or 52.4%, for monotonic or cyclic
loading, respectively, and overall a median ratio of 1.035 and a coefficient-of-
variation of 64.5%. If the ultimate strain model of Eq. (3.15) (Paulay and Priest-
ley 1992) is used instead, the test-to-prediction ratio of ϕu has a median of 0.95
or 0.89 and a coefficient-of-variation of 74.5% or 53% for monotonic or cyclic
loading, respectively. Overall the median is 0.925 and the coefficient-of-variation
68.4%.
When the ultimate strain of longitudinal reinforcement, εsu, is taken from
Eqs. (3.64), the ultimate strain model of Eq. (3.14) (Mander et al. 1988) gives
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for the test-to-prediction ratio of ϕu a median equal to 0.895 or 0.945, and a
coefficient-of-variation of 78.3% or 44.2%, for monotonic or cyclic loading,
respectively, and a median of 0.92 and a a coefficient-of-variation of 68.3%
overall. If the ultimate strain model of Eq. (3.15) (Paulay and Priestley 1992)
is used instead, the test-to-prediction ratio of ϕu has a median of 0.87 or 0.835
and a coefficient-of-variation of 84.2% or 47.1%, for monotonic or cyclic load-
ing, respectively. Overall the median is 0.835 and the coefficient-of-variation
75.1%.

3.2.2.11 Curvature Ductility Factor

Equations (1.1) and (1.2) in Section 1.2 relate:

– the behaviour factor q by which the elastic force demand on the structure as a
whole is divided, in order to obtain the design force (base shear) that the system
should be designed to resist at the ULS, to

– the global (lateral) displacement ductility factor, μδ, of the system, defined as
ratio of the displacement demand at the top or at the point of application of
the resultant lateral force, to the displacement at the same point at global yield-
ing (i.e., at the corner of an elastoplastic curve fitted to the force displacement
response)

The importance of μδ arises from its relation with q through Eqs. (1.1) and (1.2).
As noted in Section 1.3 with reference to Fig. 1.3, if the plastic mechanism of

the response is known, member deformation demands (conveniently expressed as
chord rotation demands at member ends, see Figs. 1.3 and 1.4) can be related to
the global displacement demand on the building and evaluated from it. Accordingly,
these member deformation demands are also normalised to the corresponding value
at yielding of the member (i.e., to θy, if the chord rotation θ is used), i.e. as member
deformation (e.g. chord rotation) ductility factors (e.g. μθ = θ /θy). This practice
is extended to the curvature of sections, for which the curvature ductility factor is
defined as μϕ = ϕ/ϕy.

There is always a demand value for any ductility factor, deriving from the seismic
action, and a supply value, characterising the corresponding deformation capacity
(at ultimate deformation) of the section, member or system. The demand value of
the curvature ductility factor is:

μϕ = ϕ

ϕy
(3.65a)

and its supply (or available) value is:

μϕu = ϕu

ϕy
(3.65b)
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where ϕy can be obtained according to Section 3.2.2.2 and ϕu from Section 3.2.2.4,
using Eqs. (3.16) or (3.17) in Section 3.1.2.2 for the ultimate strain of concrete,
confined or not, together with Eqs. (3.4), (3.5), (3.10), (3.20), (3.21), (3.22), (3.23),
(3.24) and (3.25), as well as Eq. (3.64) for the available elongation of the tension
reinforcement

The importance of μϕ derives mainly from the possible link of its available value
from Eq. (3.65b) to a supply value of the member chord rotation ductility factor,
μθ. The link is via Eq. (3.71) in Section 3.2.3.4 and certain approximations. In the
end it relates μϕ to μδ and hence to q through Eqs. (1.1) and (1.2) (see Section 5.1,
Eqs. (5.1) and (5.2)).

3.2.3 Flexural Behaviour at the Member Level

3.2.3.1 Chord Rotations from Member Tests

The chord rotation at a member end has been introduced in Section 1.3 with refer-

ence to Figs. 1.3 and 1.4. The chord rotations θA =
x B∫
x A

ϕ(x)(x B − x)dx/ (x B − x A) ,

θB =
x B∫
x A

ϕ(x)(x A − x)dx/ (x B − x A) at the two ends A and B of a member are the

angles between the chord connecting the ends in the deformed configuration of the
member and the normal to the cross-section at A and B, respectively. The relative

rotation θAB of these two sections is: θAB =
x B∫
x A

ϕ(x)dx = θA − θB .

The chord rotation at a member’s end is the most important and convenient defor-
mation measure for concrete members, for the following reasons:

– Both in the elastic and inelastic range, chord rotations at member ends are equal
to the nodal rotations there, after subtracting the rigid-body displacements of the
member axis. Therefore, it is in terms of them that the stiffness or flexibility rela-
tion of the member is formulated in member-type models (see Sections 4.10.1.2
and 4.10.1.4). For example, in the elastic range the moments at ends A and B
are derived from the chord rotations there as: MA = (2EI/L)(2θA+θB), MB =
(2EI/L)(2θB+θA). The chord rotations due to flexure determine the distribution
of bending moments along the full length of the member.

– Unlike curvatures, which lack physical meaning and are hard to measure experi-
mentally, deflections are reliably measured or controlled. So, test results, mostly
from single- or double-cantilever specimens, are typically presented as a lateral
force-deflection diagram, F–δ, at the point of application of the lateral load and
reflect the overall load-displacement response of the specimen. Normally the
deflection δ is at the end B of the shear span, Ls = M/V, and is measured with
respect to the original axis of the specimen, which coincides with the normal to
the section A of maximum moment. The F–δ diagram can be translated into an
end moment-chord rotation (or “drift”) diagram, M–θ , of the member, by multi-
plying the shear force by Ls and dividing δ by Ls. Such a diagram refers to the
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Fig. 3.30 Contribution of chord rotations of columns and beams to the angular distortion of a
frame bay

entire shear span and is closely linked to its length. Note that it is the deflection
at point B (where the load is applied) with respect to the tangent at the section A
of maximum moment, that gives the chord-rotation at A, θA.

– The angular distortion of a frame bay with beams and columns in skew symmetric
bending (θA = θB) is equal to the sum, θ c + θb, of the chord rotations of a column
and a beam around the bay, plus the (average) shear distortion of the joint panel, γ
(Fig. 3.30). In design for earthquake or wind, damage to non-structural elements
filling the frame panel, such as partition walls, etc., is limited by limiting this
angular distortion, usually termed drift angle or drift ratio. The term “drift” is
also used for the chord rotation in single- or double-cantilever member tests.

Tests are the main source of information for the cyclic behaviour of concrete
members up to failure. Recall that energy dissipation and inelastic action should
take place mostly in the beams, which should be weaker than the columns they frame
into. In buildings beams are normally subjected to uniaxial bending with practically
zero normal force, whereas columns, in general, may be subjected to biaxial bend-
ing with axial force. So, most of the experimental research on the cyclic behaviour
of reinforced concrete members has addressed the simplest case of uniaxial flex-
ure without axial force. However, although in practice only beams are subjected to
uniaxial bending and zero axial force, in most tests the specimen has rectangular
cross-section and symmetric reinforcement, as in columns. There are few tests on
specimens with T-section and asymmetric reinforcement. But even in them another
source of asymmetric behaviour is missing: the shear span is maintained constant
during testing, whereas in a beam carrying gravity loads and belonging in a frame
subjected to seismic loading the shear span varies during the response. It is mini-
mum, and hence the effect of shear on behaviour is greatest, when the moment and
the shear due to the seismic loading act in the same sense as those due to gravity
loads (i.e., introducing tension to the top flange).

In the most common test setup the specimen cantilevers from a large concrete
base and is subjected to a cyclic lateral force at the tip under displacement con-
trol. Then the shear span is the distance of the point of application of the force to
the top of the base. In another setup, more representative of frame members (espe-
cially of columns), the specimen is fixed against rotation at both ends and sub-
jected to skew symmetric counter-flexure. Then the shear span is half the specimen
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length. In both setups there is slippage (partial pull-out) of the longitudinal bars
from their anchorage in the concrete block(s) at the end(s) of the specimen, that
macroscopically shows up as “fixed-end rotation” of the member’s end section(s)
(see Sections 3.2.2.3 and 3.2.2.9). In yet another setup the specimen is a simply
supported beam subjected to cyclic deflections at mid-span. The symmetry with
respect to the section of maximum moment in principle prevents slippage of the
reinforcement towards either side of that section. This is essentially a test of two
specimens simultaneously, namely of the two halves. From a certain point on dur-
ing the test symmetry is destroyed by unavoidable differences in the behaviour of
the two halves (with one of them reaching ultimate strength or deformation before
the other), the mid-span section rotates and deflection measurements there become
difficult to use and interpret.

3.2.3.2 Member Chord Rotation at Flexural Yielding of the End Section
in Uniaxial Loading

Of interest is the drift ratio of the shear span of a member, Ls, at yielding of the end
section of the shear span. This is the chord rotation at the yielding end, θy.

“Tension stiffening”, i.e., the contribution of the concrete in tension between
cracks to stiffness, is relatively small in members with longitudinal reinforcement
ratios as high as those typical of members designed for earthquake resistance. More-
over, this contribution depends heavily on the bond along the bars between the
cracks, which degrades with cyclic loading. So, as the member has normally been
subjected to one or more elastic load cycles by the time its end section yields, the
(anyway small) effect of concrete in tension on the overall flexural deformations
of the member at yielding is negligible. Therefore, the part of the chord rotation at
yielding which is due to purely flexural deformations is: θy = ϕyLs/3.

Inclined cracking and shear deformations along the shear span increase the mag-
nitude of θy. Diagonal cracking near the yielding end of the member spreads yield-
ing of the tension bars up to the point where the first diagonal crack from the end
section intersects them (Fig. 3.31). This is the “shift rule” in dimensioning of the ten-
sion reinforcement for the Ultimate Limit State in bending with axial force. Accord-
ing to it the value of the force in the tension reinforcement is shifted from the section
to which it corresponds on the basis of the moment and axial force diagrams, to one
where the moment is lower (i.e. further away from the member end). The shift is due
to diagonal cracking and its magnitude depends on the inclination of the diagonal
cracks to the member axis and on the amount of transverse reinforcement. However,
usually a default value is taken for the shift equal to the internal lever arm, z. Such
a shift increases the value of θy which is theoretically due to flexural deformations,
from ϕyLs/3 to about ϕy(Ls+z)/3.11 Of course, such an increase would not take place

11Strictly speaking the increase is to a value of ϕy[(Ls–z)(1–z/Ls)(1+0.5z/Ls)/3+z(1–0.5z/Ls)], but
the difference from ϕy(Ls+z)/3 is practically insignificant.
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Fig. 3.31 Shift of yielding of
tension reinforcement along
the member due to diagonal
cracking (Biskinis 2007)

unless diagonal cracking precedes flexural yielding at the end section. So, the term
z should be added to Ls only if the shear force that causes diagonal cracking, VRc, is
less than the shear force at flexural yielding of the end section, VMy = My/Ls.

Any fixed-end rotation due to reinforcement pull-out from its anchorage zone
beyond the yielding end contributes to θy with the fixed-end-rotation, θy,slip, from
Eq. (3.42). However, the sum of ϕyLs/3 (or ϕy(Ls+z)/3 if there is diagonal cracking)
and of the fixed-end-rotation (if any) from Eq. (3.42) on average falls short of the
“experimental” chord rotation at flexural yielding, taken at the corner of a bilinear
M–θ curve fitted to the envelope of the experimental M–θ hysteresis loops, including
P–Δ effects (cf. Section 3.2.2.2 under Comparison with Experimental Results and
Empirical Expressions for the Curvature). The shortfall can be empirically corrected
via the 2nd term of Eqs. (3.66), fitted to “experimental” chord rotations at flexural
yielding of members with shear span ratio and reinforcement such that there are
no flexure-shear interaction effects on yielding (see Section 3.2.5) (Biskinis 2007,
Biskinis and Fardis 2004):

– For beam/columns with rectangular section (about 1560 tests):

θy = ϕy
Ls + aV z

3
+ 0.0014

(
1 + 1.5

h

Ls

)
+ asl

ϕydbL fy

8
√

fc
(3.66a)

– For walls (rectangular or not) and hollow rectangular members (about 250 tests):

θy = ϕy
Ls + aV z

3
+ 0.0013 + asl

ϕydbL fy

8
√

fc
(3.66b)
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where:

– ϕy in the 1st term is the “theoretical” yield curvature from Eqs. (3.33), (3.34),
(3.35) and (3.38) times the correction factor of 1.025, 1.015 or 1.075, for
beams/columns, rectangular walls, or members with T-, U-, H- or hollow rect-
angular section, respectively;

– av is a zero-one variable:

• av = 0, if VRc > VMy = My/Ls, with VRc taken here from Eurocode 2 (CEN
2004b), Eq. (3.67);

• av = 1, if VRc ≤ VMy = My/Ls;

– z is the length of the internal lever arm, taken as:

• z = d–d1 in beams, columns, or members with T-, H-, U- or hollow rectangular
section, and:

• z = 0.8h in walls with rectangular section.

– asl is a zero-one variable:

• asl = 1 if slippage of longitudinal bars from the anchorage zone beyond the
end section is possible, or

• asl = 0 if slippage is not possible.

– as in Eq. (3.42), fy and fc in the last term are in MPa.

The shear force at diagonal cracking of the member, VRc, is taken here equal to
the shear resistance of members without shear reinforcement, given in Eurocode 2
(CEN 2004b) as:

VR,c =
⎧⎨
⎩max

⎡
⎣180 (100ρ1)1/3 , 35

√
1 +

√
0.2

d
f 1/6
c

⎤
⎦(

1 +
√

0.2

d

)
f 1/3
c + 0.15

N

Ac

⎫⎬
⎭ bwd

(3.67)

With ρ1 denoting the tension reinforcement ratio and the axial load N taken pos-
itive for compression (but if N is tensile, then VR,c = 0), Eq. (3.67) gives the value
of VR,c in kN when bw (width of the web) and d are in m, fc is in MPa and N in kN.

Annex A of Part 3 of Eurocode 8 (CEN 2005a) has adopted an earlier version of
Eqs. (3.66a) and (3.66b) (Biskinis and Fardis 2004) with a coefficient of 0.13 instead
of 1/8 = 0.125 in the 3rd term and with Eq. (3.66b) applicable only to walls and its
2nd term replaced by 0.002[1–0.125Ls/h]. It has also adopted an alternative form
of these expressions where the pullout of tensile reinforcement at the yielding end
section, 0.5fylb/Es, has been translated to fixed-end rotation by dividing it by the dis-
tance between the tension and the compression bars in the section, (d–d1), instead of
the depth of the tension zone at yielding, (1–ξ y)d (Biskinis 2007, Biskinis and Fardis
2004). The 3rd term of the alternative expressions uses εydbLfy/[6(d–d1)

√
fc] (with

εy = fy/Es being the yield strain of longitudinal bars) instead of ϕydbLfy/(8
√

fc). This
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alternative fits the data almost as well as Eqs. (3.66), but is probably easier to apply
in that the 3rd term is independent of ϕy, whose calculation is harder and more prone
to errors.

Equations (3.66) give a median of 1.01 or 0.995 for the test-to-prediction ratio
of θy, and a coefficient-of-variation of 32.1% or 33.7%, for beams/columns or
walls/hollow rectangular members, respectively. Natural and test-to-test variabil-
ity contributes to the scatter a coefficient of variation of about 10% in practically
identical specimens. The rest of the scatter is mainly due to model uncertainty and
corresponds to coefficients of variation equal to the values above reduced by about
1.5%. The variants of Eqs. (3.66a) and (3.66b) adopted in Part 3 of Eurocode 8
(CEN 2005a) (with the value 0.13 used in the 3rd term instead of 1/8) give as good
or even slightly better fit to the data.

The comparison above refers to tests with ribbed bars. In about 20 tests of
beam/columns with smooth (plain) bars the mean or the median of the test-to-
prediction ratio are about 0.98. So, the poorer bond along such bars does not seem
to increase member deformations at yielding.

A prime use of the prediction of θy from Eqs. (3.66) is for the calculation of the
effective member stiffness at incipient yielding from Eq. (3.68) in Section 3.2.3.3.
So, the fitting of Eqs. (3.66) to the experimental values of θy aims at accuracy
in the median, as much for θy, as for the effective stiffness at yielding from Eq.
(3.68) in Section 3.2.3.3. So, any mismatch in the median between the experimen-
tal and the predicted values of θy should not be seen independently of the median
agreement or mismatch between the effective stiffness from Eq. (3.68) and the test
values.

3.2.3.3 Effective Stiffness of Members at Incipient Yielding: Importance
and Estimation

A fundamental simplification underlying the provisions of force-based seismic
design using elastic forces reduced by the behaviour factor q is that the global inelas-
tic response of the structure to monotonic lateral forces is bilinear, close to elastic-
perfectly-plastic. Then, the stiffness used in the elastic analysis should correspond
to the stiffness of the elastic branch of such a bilinear global force-deformation
response. So, the full elastic stiffness of uncracked concrete in the analysis is not
the proper value to use. Eurocode 8 (like US codes) requires concrete buildings be
designed using in the seismic analysis stiffness values for members that take into
account the effect of cracking and correspond to the initiation of yielding of the
reinforcement (secant stiffness to the yield-point). Unless more accurate modelling
is used, Eurocode 8 follows US codes in allowing to derive that stiffness from 50%
of the uncracked gross section rigidity, EcIc, neglecting the effect of reinforcement.

Within the force- and strength-based seismic design philosophy of current seis-
mic design codes, a high estimate of the effective stiffness gives safe-sided results,
as it increases the period(s) and therefore the corresponding spectral acceleration(s)
and design forces. The use of 0.5EcIc serves exactly that purpose, as the experi-
mental secant stiffness of concrete members at incipient yielding is generally much
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lower. Only the lateral drifts and the P–Δ effects computed from these overly high
stiffness values may be (seriously) underestimated. As a matter of fact, Eurocode 2
(CEN 2004b) specifies as follows the effective stiffness for the calculation of 2nd-
order effects in concrete structures:

– as equal to the stiffness EsIs of the section reinforcement with respect to the
centroid of the section, plus the minimum of 0.2EcIc and 0.3νEcIc (where ν =
N/Acfc is the axial load ratio),

– 0.3EcIc if the reinforcement ratio exceeds 1% (although its exact value is not
known in this stage of the design).

Clause 10.11.1 of ACI (2008) specifies the effective stiffness for the magnifica-
tion of moments in compression members and frames due to 2nd-order effects as
follows:

– 0.35EcIc for beams and cracked walls,
– 0.70EcIc for columns and uncracked walls,
– 0.25EcIc for flat plates or slabs.

Clause 10.12.3 of ACI (2008), by contrast, gives the following effective stiffness
for the calculation of moment magnification due to 2nd-order effects in non-sway
frames:

– the stiffness EsIs of the reinforcement with respect to the centroid of the section,
plus 0.2EcIc (i.e., as in the Eurocode 2 rule, except that the fraction of EcIc is not
taken as 0.3ν = 0.3N/Acfc, if this value is smaller than 0.2); or

– 0.2EcIc, as a simpler approximation.

Note that, using in the analysis a low-side estimate of effective stiffness increases
2nd-order effects, which is safe-sided in the context of design for non-seismic
actions, as with Eurocode 2 or Clause 10 of the ACI 318 code.

As elaborated in Chapter 6, seismic assessment and retrofitting of existing
buildings is nowdays fully displacement-based, with direct or indirect verifica-
tion of member deformation capacities against the inelastic deformation demands.
So it needs a relatively accurate estimation of inelastic deformation demands
throughout the structure, which in turn requires realistic values of the effective
cracked stiffness of concrete members at yielding. The use of a member stiffness
of 0.5EcIc for displacement-based seismic assessment and retrofitting of existing
structures is unsafe: member seismic deformation demands will be seriously
underestimated.

The most realistic estimate of the effective elastic stiffness of the shear span, Ls =
M/V, in a bilinear force-deformation model of a concrete member under monotonic
loading, is the secant stiffness of the shear span to the member yield-point:
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E Ief f = My Ls

3θy
(3.68)

where My is the yield moment in the bilinear M–θ model of the shear span and θy

the chord rotation at the yielding end, both by calculation (from Sections 3.2.2.2 and
3.2.3.2, respectively).

The “experimental effective stiffness” at member yielding is obtained by using
experimental values of My and θy in Eq. (3.68). Its ratio to the value obtained
from Eq. (3.68), using the My and θy values from Sections 3.2.2.2 and 3.2.3.2,
respectively, has a median of 1.01 or 0.99 and a coefficient of variation of 32.3%
or 47.1% for beams/columns, or walls/hollow rectangular members, respectively.
Natural and test-to-test variability contributes to the scatter with a coefficient of
variation of about 10% in practically identical specimens. If Eqs. (3.66a) and
(3.66b) are replaced by their variants in Part 3 of Eurocode 8 (CEN 2005a) for
the calculation of θy, the agreement with the data is almost the same (Biskinis
2007, Biskinis and Fardis 2004). These comparisons refer to tests with ribbed
bars. In about 20 tests of beam/columns with smooth (plain) bars the mean test-
to-prediction ratio of the secant stiffness to yield point is about 1.03, implying that
the poorer bond along these bars does not seem to adversely affect the member
stiffness.

The specimens in the large database used for the calibration of the expressions for
My and θy in Sections 3.2.2.2 and 3.2.3.2, have “experimental effective stiffness” at
member yielding on average equal to 22% or 15% of the stiffness of the uncracked
gross section, EcIc, for beams/columns, or walls and members with hollow rectangu-
lar section, respectively. The coefficients of variation of the experimental effective
stiffness with respect to this average are about twice the values from the application
of Eq. (3.68).

For Eq. (3.68) to be applied using the values of My and θy, the amount and layout
of the longitudinal reinforcement should be known. In displacement-based seismic
assessment of existing buildings this information is available before the analysis.
If it is not, as in displacement-based seismic design of new structures, a purely
“empirical effective stiffness” would be more convenient, if it is expressed in terms
of geometric, etc., characteristics of the member known before dimensioning its
reinforcement. The following expression has been fitted in Biskinis (2007) to the
“experimental effective stiffness” at member yielding:

EIeff

EcIc
= a

(
0.8 + ln

[
max

(
Ls

h
; 0.6

)])(
1 + 0.048 min

(
50 M Pa;

N

Ac

))
(3.69)

where N/Ac is in MPa, and

– a = 0.081 for columns;
– a = 0.10 for beams;
– a = 0.115 for rectangular walls; and
– a = 0.09 for members with T-, U-, H- or hollow rectangular section.
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Equation (3.69) refers to the – common in practice – case where slip of the lon-
gitudinal bars from their anchorage beyond the member’s end section is physically
possible (asl = 1 in Eqs. (3.66)). If it isn’t (i.e., if asl = 0 in Eqs. (3.66)), the effective
stiffness increases by one-third, i.e. the values above should be multiplied by 4/3.

Being purely empirical, Eq. (3.69) achieves a median of 1.00 for the test-to-
prediction ratio. However, neglecting the dependence of effective stiffness on the
amount and layout of longitudinal reinforcement increases the scatter: the coef-
ficient of variation of the test-to-prediction ratio is 37.6, 58.7 and 42.6%, for
beams/columns, rectangular walls and members with T-, U-, H- or hollow rectan-
gular section, respectively. More serious than the larger scatter is the lack-of-fit of
Eq. (3.69) with respect to the amount of longitudinal reinforcement. Equation (3.69)
has been fitted to a database of mainly seismically detailed members, with total
reinforcement ratio between 0.1 and 7% (2% on average) and tension reinforcement
ratio between 0.1 and 4.8% (on average 0.9%). So it overpredicts the experimental
value by 10% on average for members with reinforcement ratio at the lower end of
the range and underpredicts it by 40% on average at the upper end.

One would expect the empirical effective stiffness to be a decreasing function
of dbLfy/(h

√
fc), which is proportional to the last term in Eqs. (3.66) and is known

before dimensioning of the longitudinal reinforcement if its diameter has been cho-
sen. However, the increase of the “experimental effective stiffness” with the tension
reinforcement ratio – which does not appear in Eq. (3.69) and is proportional to the
square of dbL/h– fully masks its dependence on dbLfy/(h

√
fc) in the cases when slip

from the anchorage beyond the member’s end takes place.

3.2.3.4 Flexure-Controlled Ultimate Chord Rotation Under Uniaxial
Loading: Calculation from Curvatures and the Plastic Hinge Length

The ultimate condition in terms of deformations is commonly defined convention-
ally, as described in Sections 3.2.2.4 and 3.2.2.7 for the ultimate curvature. The ulti-
mate chord rotation occurs at the same time as the ultimate curvature and is defined
similarly.

The most common model for the ultimate chord rotation at the member end (let’s
say A) where the moment is maximum (Fig. 3.32) uses the yield and ultimate cur-
vatures at section A and assumes that at ultimate conditions the plastic part of the
curvature is constant and equal to ϕu–ϕy over a length Lpl next to the end section at
A. This means that the real distribution of plastic curvatures, which is nearly trian-
gular over the length of plastification lpl, is replaced by a uniform plastic curvature
over a shorter length Lpl ≈ 0.5lpl. Lpl is called “plastic hinge length” and is a con-
ventional quantity. The plastic rotation that has developed in the plastic hinge length
by the time the ultimate condition is reached is equal to θpl,u = (ϕu–ϕy)Lpl. It takes
place with respect to the centre of the plastic hinge length and produces a plastic part
of the deflection at the end B of the shear span equal to θpl(Ls–Lpl/2). If the entire
deflection at B is attributed to flexure, its elastic part is equal to ϕyLs

2/3. Therefore,
the ultimate chord rotation at end A is equal to θA = δB/Ls, i.e. to:
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Fig. 3.32 Actual
plastification length, lpl and
plastic hinge length Lpl in the
shear span

θu = ϕy
Ls

3
+ (
ϕu − ϕy

)
L pl

(
1 − L pl

2Ls

)
(3.70a)

A variant of Eq. (3.70a) may give the chord rotation at end A, θ , when the cur-
vature ϕ at A is between yielding and ultimate:

θ = ϕy
Ls

3
+ (
ϕ − ϕy

)
L pl

(
1 − L pl

2Ls

)
(3.70b)

If the behaviour is postulated to be purely flexural, the chord rotation at yielding
equals θy = ϕyLs/3. So, the chord rotation ductility factor, μθ = θ /θy, is linked to
the curvature ductility factor of the end section of the shear span, μϕ = ϕ/ϕy, as:

μθ = 1 + (
μφ − 1

) 3L pl

Ls

(
1 − L pl

2Ls

)
≈ 3L pl

Ls
μφ (3.71)

The formulation in Eqs. (3.70) and (3.71) offers the following advantages:

– it represents a mechanical and physical model (inelasticity is considered as
lumped in the plastic hinge and uniformly spread within the plastic-hinge length),
and

– ϕy and ϕu can be expressed through plane section analysis in terms of cross-
section and material properties, as in Sections 3.2.2.2 and 3.2.2.4, respectively.

This formulation normally deals indirectly with any effects of shear, bond-slip,
etc., through Lpl, which is not a physical but a conventional quantity, such that
Eq. (3.70a) is satisfied when the ultimate deformation is attained.
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Notwithstanding its mechanical and physical appeal, the real criterion for the
value of Eq. (3.70a) is its ability to predict the experimental ultimate drift ratio or
chord rotation, θu. Empirical expressions for Lpl needed to this end cannot be devel-
oped independently of the models used for the other variables in Eq. (3.70a), notably
for ϕu and ϕy. To maintain the apparent rationality of Eq. (3.70a), priority should be
given to models based on rational mechanics. A natural choice for ϕy is the model in
Section 3.2.2.2, based on first principles and calibrated for good average agreement
with test results. Regarding ϕu, a good choice is the model in Section 3.2.2.4 (also
based on first principles) in conjunction with the proposals developed/calibrated in
Section 3.2.2.10 on the basis of a large volume of test data. Those proposals include
the use of the confinement model of Eqs. (3.4), (3.5), (3.10), (3.16) or (3.17) and of
the ultimate steel strain, εsu, from Eqs. (3.64).

A better overall fit of Eq. (3.70a) to the data on θu is possible, if the chord at
yielding, θy, from Eqs. (3.66) in Section 3.2.3.2 is used in lieu of the flexural term,
ϕyLs/3, alone. Besides, to recognise the contribution of the fixed-end rotation due
to bar pull-out from the anchorage zone beyond the end of the member where fail-
ure takes place, we should add to the right-hand-side of Eq. (3.70a) the fixed-end
rotation that takes place between yielding and ultimate curvature of the end section,
from Eqs. (3.63) in Section 3.2.2.9. The final expression is:

θu = θy + aslΔθu,sli p + (ϕu − ϕy)L pl

(
1 − L pl

2Ls

)
(3.72)

The 1st term in Eq. (3.72) is the chord rotation at yielding from Eqs. (3.66). The
2nd one is the fixed-end rotation from yielding to ultimate due to bar slippage from
the anchorage zone beyond the member end where flexural failure takes place. It
may be calculated from Eqs. (3.63), with asl = 0 if bar slippage from the anchorage
zone beyond the member end is not physically possible, or with asl = 1 if it is (cf. 3rd
term in Eqs. (3.66)). The 3rd term is the plastic deformation of the flexural plastic
hinge.

The same empirical expression for Lpl cannot fit both the monotonic and the
cyclic data. Best among the possible simple expressions for Lpl seem to be a linear
combination of the shear span, Ls, and of the section depth, h. Under the conditions
outlined above for the calculation of ϕy, ϕu, θ y, the following expressions provide
optimal overall fit to θu at flexural failure of rectangular beams, columns and walls
and for members with T-, H-, U- or hollow rectangular section, in monotonic or
cyclic loading (about 300 or 1050 tests, respectively):

– if the ultimate concrete strain is given by the two separate expressions of
Eqs. (3.16) for monotonic and cyclic loading (Biskinis 2007):

• for monotonic loading, regardless of detailing for earthquake resistance:

L pl,mon = h

(
1.1 + 0.04 min

(
9;

Ls

h

))
(3.73a)



3.2 Concrete Members 225

• for cyclic loading, but with member detailing for earthquake resistance:

L pl,cy = 0.2 h

(
1 + 1

3
min

(
9;

Ls

h

))
(3.73b)

– if the ultimate concrete strain is given by the same expression for monotonic and
cyclic loading, Eq. (3.17):

• for monotonic loading, regardless of detailing for earthquake resistance:

L pl,mon = h

(
1.2 + 0.04 min

(
9;

Ls

h

))
(3.74a)

• for cyclic loading, but with member detailing for earthquake resistance:

L pl,cy = 0.2 h

(
1 + 3

8
min

(
9;

Ls

h

))
(3.74b)

If Eqs. (3.16) and (3.73) are used, the test-to-prediction ratio of Eq. (3.72) has a
median of 1.00 and coefficient of variation of 66.8, 44.8 and 51.7%, for monotonic,
cyclic loading and overall (monotonic and cyclic), respectively. Better overall agree-
ment is achieved if Eqs. (3.17) and (3.74) are used instead of Eqs. (3.16) and (3.73):
the median of the test-to-prediction ratio is also 1.00 and the coefficient of varia-
tion 65.6, 43.5 and 50.5%, for monotonic, cyclic loading and overall (monotonic
and cyclic), respectively. Besides, the median is 1.07 and 1.03 for the sub-groups
of rectangular walls and members with T-, H-, U- or hollow rectangular section,
compared to medians of 1.08 and 1.05 for these two sub-groups if Eqs. (3.16) and
(3.73) are used. Natural and test-to-test variability contributes to the scatter a coeffi-
cient of variation of about 18% in practically identical specimens. After subtracting
this source of scatter, the coefficient of variation due to model uncertainty is equal
to the values quoted above, reduced by 2.5% for the larger of these values to 3.5%
for the smaller ones. But even after this reduction, the variance of the cyclic data
with respect to Eq. (3.72) is still about 80% of their total variance if Eqs. (3.16) and
(3.73b) are used, or about 75% of its value if Eqs. (3.17) and (3.74b) are applied.
The picture is only slightly better for the monotonic data.

Well known or widely used alternatives for the plastic hinge length can be eval-
uated on the basis of the data used for the fitting of Eqs. (3.73) and (3.74). Each
expression for Lpl is applied here as proposed in its source, i.e., with its accompany-
ing models for the calculation of ϕu and Eq. (3.70a) (or variations thereof) instead
of Eq. (3.72), as slippage of reinforcement from its anchorage zone is reflected by a
separate term in these expressions for Lpl, in lieu of the 2nd term at the right-hand-
side of Eq. (3.72).

I. The first two expressions evaluated here are those given in Annex A of Part 3 of
Eurocode 8 (CEN 2005a) for cyclic loading of members detailed for earthquake
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resistance. According to CEN (2005a) these expressions are meant to be used in
Eq. (3.70a), but with the full expression for θ y from Eqs. (3.66) instead of the
flexure-only yield term, ϕyLs/3. The ultimate steel strain values specified in CEN
(2005a) for the calculation of ϕu have been given at the end of Section 3.2.2.10
under point (a). A different expression is given in CEN (2005a) for Lpl, for each
one of the two alternative concrete confinement models in CEN (2005a):

i for the model of Eqs. (3.4), (3.5), (3.10) and (3.18):

L pl = Ls

30
+ 0.2 h + asl

0.11dbL fyL√
fc

( fyL and fc in MPa) (3.75)

ii. for the model of Eqs. (3.8), (3.9) and (3.13) (i.e., according to CEN (2004b),
CEB (1991)):

L pl = 0.1Ls + 0.17 h + asl
0.24dbL fyL√

fc
( fyL and fc in MPa) (3.76)

Options (i) and (ii) produce a median test-to-prediction ratio for θu in over 1000
cyclic tests of rectangular beams, columns, walls and members with T-, H-, U- or
hollow rectangular section under cyclic loading equal to 0.90 and 0.79, respec-
tively. The corresponding coefficients of variation are 52.5 and 62.1% (Biskinis
2007). The poorer performance of option (ii) (which includes also a certain lack
of fit for high experimental values of θu) is mainly due to its serious handicap in
the prediction of ultimate curvature (see Section 3.2.2.10, point (a)).

II. The other model evaluated here is the widely used and quoted expression (Paulay
and Priestley 1992):

L pl = 0.08Ls + asl (0.22dbL fyL ) ( fyL in MPa) (3.77)

It is used in Eq. (3.70a), along with the σ -ε models and parameters for the cal-
culation of ϕu outlined at the end of Section 3.2.2.10 under point (b), namely:

• the two concrete confinement models in Mander et al. (1988) and Paulay and
Priestley (1992) and

• the two ultimate steel strain options for which the ultimate curvature predic-
tions resulting from the above confinement models have been evaluated at the
end of Section 3.2.2.10 under point (b), namely:

a. the ultimate steel strain in Annex A of Part 3 of Eurocode 8 (CEN 2005a)
and described in Section 3.2.2.10, point (a); this is the strain used in the
evaluation above pertaining to Part 3 of Eurocode 8 (CEN 2005a), for both
options (i) and (ii); or

b. the values from Eqs. (3.64) in Section 3.2.2.10; used also above in the
calculation of θu from Eq. (3.72) together with Eqs. (3.73) and (3.74) and
the concrete ultimate strain models of Eqs. (3.16) and (3.17), respectively.
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The confinement model in Mander et al. (1988) combined with options (a) or (b)
for steel give a median test-to-prediction ratio for θu in over 1000 cyclic tests of
rectangular beams, columns, walls or members with T-, H-, U- or hollow rectan-
gular section equal to 0.96 or 1.14, respectively. The corresponding coefficient
of variation is 74.9% or 65.5% (Biskinis 2007). The median and the coefficient
of variation of the test-to-prediction ratio for the confinement model in Paulay
and Priestley (1992) used with options (a) or (b) for steel are 0.83 or 1.035 and
83.6% or 70.9%, respectively (Biskinis 2007). These four options give a median
test-to-prediction ratio for the approximately 300 monotonic tests between 1.7
and 1.85.

Note that, for all options considered in I and II above the variance of the cyclic
data with respect to Eq. (3.72) is not less than their total variance, even after remov-
ing the contribution of natural and test-to-test variability from the scatter. So, none
of these options seems to be of much value for the prediction θu.

3.2.3.5 Flexure-Controlled Ultimate Chord Rotation Under Uniaxial
Loading: Empirical Calculation

The scatter of the predictions of Eq. (3.72), used together with Eqs. (3.73) and (3.74)
and the corresponding ultimate concrete strains, Eqs. (3.16) and (3.17), respectively,
is significant. Even larger is that of Eq. (3.70a), used together with Eqs. (3.75),
(3.76) and (3.77) and the corresponding concrete confinement and steel ultimate
strain models. In view of this, purely empirical expressions for the chord rotation at
flexural failure, θu, have been developed in Panagiotakos and Fardis (2001a). That
work has shown:

– that θu depends on whether loading to failure is monotonic or fully-reversed
(cyclic), but is rather insensitive to the number of major deflection cycles pre-
ceding failure;

– that monotonic test data should be distinguished from the cyclic, but used
together in regressions for θu, as complementary: monotonic tests in the literature
cover many members with asymmetric reinforcement and/or less ductile steel,
but few walls or members with T-, H-, U- or hollow rectangular section and no
diagonally reinforced elements; the reverse applies for the available cyclic tests;

As a follow up and improvement over (Panagiotakos and Fardis 2001a), a
larger databank of test results has been used in Biskinis (2007) and Biskinis and
Fardis (2004, 2007) to develop three alternative – and almost equivalent – expres-
sions for the chord rotation at flexure-controlled failure, θu, of members with rect-
angular compression zone and detailing for earthquake resistance (including the
use of continuous ribbed bars for the longitudinal reinforcement). The first one,
Eq. (3.78a), is for the total ultimate chord rotation, θu. Equations (3.78b) and (3.78c)
by contrast separate θu into its elastic component, θy, given by Eqs. (3.66), and the
plastic one, θu

pl = θu–θy.
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θu = ast (1 − 0.43acy)
(

1 + asl

2

) (
1 − 0.42aw,r

) (
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7
aw,nr
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(0.3ν)

[
max (0.01; ω2)

max (0.01; ω1)
fc

]0.225 [
min

(
9;

Ls

h

)]0.35

25

⎛
⎝aρs fyw

fc

⎞
⎠

1.25100ρd

(3.78a)

θu = θy + θ pl
u = θy + a pl
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1.6
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(3.78b)

θu = θy + θ pl
u = θy + ahbw

st (1 − 0.525acy)
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(3.78c)

where:

ast, apl
st, ahbw

st: coefficients for the steel type: ast = apl
st = 0.0185 and ahbw

st

= 0.022 for ductile hot-rolled or heat-treated (Tempcore) steel; ast = 0.0115,
apl

st = 0.009 and ahbw
st = 0.0095 for cold-worked steel;

acy: zero-one variable for the type of loading, equal to acy = 0 for monotonic
loading and to acy = 1 for cyclic loading;

asl: zero-one variable for slip, equal to asl = 1 if there is slip of the longitudinal
bars from their anchorage beyond the section of maximum moment, or to
asl = 0 if there is not (cf. Eqs. (3.66) and (3.72));

aw,r: zero-one variable for rectangular walls, aw,r = 1 for rectangular walls,
aw,,r = 0 otherwise;

aw,nr: zero-one variable for non-rectangular walls, aw,nr = 1 for walls with T-,
H-, U- or hollow rectangular section and aw,nr = 0 for other members;

ν = N/bhfc, with b = width of compression zone, N = axial force, positive for
compression;

ω1 = (ρ1+ρv)fyL/fc: mechanical reinforcement ratio of tension and “web” lon-
gitudinal reinforcement;

ω2 = ρ2fyL/fc: mechanical reinforcement ratio of compression longitudinal rein-
forcement;

fc: uniaxial (cylindrical) concrete strength (MPa);
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Ls/h = M/Vh: shear span ratio at the section of maximum moment;
ρs = Ash/bwsh: ratio of transverse steel parallel to the loading direction;
fyw: yield stress of transverse steel;
a: effectiveness factor for confinement by transverse reinforcement from

Eq. (3.24) (using Eqs. (3.20c) and (3.21));
ρd: steel ratio of diagonal reinforcement in each diagonal direction.
bw: width of one web, even in cross-sections with one or more parallel webs

(for Eq. (3.78c) which distinguishes walls and members with T-, H-, U- or
hollow rectangular section only through the aspect ratio, h/bw, of each web).

Annex A of Eurocode 8, Part 3 (CEN 2005a) has adopted the special case of
Eqs. (3.78a) and (3.78b) for cyclic loading (acy = 1) and slippage of the longitudinal
bars from their anchorage beyond the section of maximum moment (asl = 1), but
with a different value of the coefficient multiplying aw,r for walls: 0.40, in lieu of
0.42 or 0.44.

The dependence of θu on h/bw according to Eq. (3.78c) suggests that the lower
ultimate deformation of non-rectangular walls and mainly of rectangular ones, com-
pared to beams or columns with more compact section, may be due to lateral
instability.

Equations (3.78b) and (3.78c) can be extended more easily than Eq. (3.78a)
to variations of the standard case of unretrofitted members with continuous lon-
gitudinal bars. Lap-splicing of longitudinal bars within the plastic hinge region
(see Section 3.2.3.9) and/or wrapping of the end region with an FRP jacket (see
Section 3.2.3.10) affect differently the elastic and the plastic part of the ultimate
chord rotation and should be accounted for accordingly.

For the subsets of 300 monotonic and 1040 cyclic tests available, as well as over-
all, each one of Eqs. (3.78) give a median test-to-prediction ratio for θu of (effec-
tively) 1.00. The coefficient of variation of the test-to-prediction ratio in the mono-
tonic tests is 53.3%. In the 1040 cyclic tests the corresponding values are 37.4, 37.3
and 38%. For the overall 1340 monotonic or cyclic tests the coefficient of vari-
ation of the test-to-prediction ratio is 42.4%. For the subgroup of 62 rectangular
walls, Eq. (3.78a), (3.78b) or (3.78c) give a median test-to-prediction ratio of 1.00
and a coefficient of variation of 33.6, 33.1 and 37.5%. For 55 members with T-,
H-, U- or hollow rectangular section, either Eq. (3.78a) or (3.78b) give a median
test-to-prediction ratio of 1.00 and coefficients of variation of 33 and 31.5%, while
Eq. (3.78c) gives a median of 1.07 and a coefficient of variation of 28.6%.

Although Eqs. (3.78) give a fairly uniform scatter throughout the full range of
all independent variables, they underpredict high values of θu, especially for mono-
tonic loading, and overpredict low ones. They share this lack of fit with any model
in Section 3.2.3.4 based on curvatures and the plastic hinge length. In all cases
Eqs. (3.78) give a less biased and more accurate estimate of θu than anyone of the
models in Section 3.2.3.4. The scatter of the test-to-prediction ratio is much less,
notably not much larger than that of Eqs. (3.66) for the chord rotation at yield-
ing, and not unduly large compared to the contribution of the natural or test-to-test
variability, which gives a coefficient of variation of about 18% for θu of practically
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identical specimens. After subtracting this source of scatter, the coefficient of varia-
tion due to model uncertainty is equal to the values quoted above, reduced by about
3% for the larger of these values to 5% for the smaller ones. After this reduction, the
variance of the cyclic data with respect to Eqs. (3.78a), (3.78b) or (3.78c) is 36.5%,
41.5% or 41%, respectively of their total variance. The corresponding variances of
the monotonic data values are 43, 44.5 and 46%, respectively. So, Eqs. (3.78) per-
form better than any of the models in Section 3.2.3.4.

The few data for members without detailing for earthquake resistance (e.g., not
closed stirrups), but with continuous ribbed (deformed) longitudinal bars, show that
their chord rotation at flexure-controlled failure may be obtained by the following
modification of Eqs. (3.78) (Biskinis 2007):

θu,old = θu,Eq.(3.78a) / 1.2, or (3.79a)

θu,old = θy + θ
pl

u,Eq.(3.78b) or Eq.(3.78c) / 1.2 (3.79b)

Annex A of Eurocode 8, Part 3 (CEN 2005a) has adopted a version of Eqs. (3.79)
with factor 1/1.2 = 0.833 replaced by 0.825.

For about 50 cyclic tests of members without detailing for earthquake resistance
but with continuous ribbed longitudinal bars, Eq. (3.79a) and (3.79b) (the latter
with θu

pl from Eq. (3.78c)) give a median of 1.00 for the test-to-prediction ratio and
a coefficient of variation of 30.8%. The corresponding values for Eq. (3.79b) with
θu

pl from Eq. (3.78b) are 0.99 and 32.2% (Biskinis 2007). The Eurocode 8-Part 3
versions give medians higher than the above by 0.01.

Few (about 30) available cyclic tests of members without detailing for earthquake
resistance and continuous smooth (plain) longitudinal bars suggest the following
expression for the chord rotation at flexure-controlled failure, giving a median of
1.00 and a coefficient of variation of 32.7% for the test-to-prediction ratio:

θu,smooth = 0.95 θu,Eq.(3.79) (3.80)

3.2.3.6 Member Axial Deformations Due to the Flexural Response

When the curvature increases from zero to ϕ, the axial strain at mid-depth of a
section changes by:

Δεo = |ϕ|(0.5 − ξ )d (3.81)

If the axial load on the cross-section is zero or low (as in beams or in walls,
respectively), the neutral axis depth, normalised to the effective depth d as ξ ,
is less than 0.5. It may even become negative during the phase of the response
when the cracks are open through the depth and the steel couple alone resists the
applied moment. Because ξ increases with increasing axial force ratio, ν, the higher
the value of ν, the lower is the additional elongation (as a comparison between
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(a) (b)

Fig. 3.33 Axial strain at section mid-depth due to cycling of the lateral displacement: (a) column
with low axial force that does not fail; (b) column with high axial load ultimately failing in bending

Fig. 3.33(a) and (b) shows). If ν exceeds the balance load, the value of ξ exceeds
0.5 and the axial strain at mid-depth of the cross-section turns into shortening.

At each displacement cycle an axial extension normally accompanies the devel-
opment of curvature, regardless of the sign of curvature. Except during the phase
when cracks are open through the depth, the value of ξ is approximately constant
along the member and the total additional axial displacement between two sections
A and B of the member is equal to:

Δδx = ∫
l
Δεo dx = (0.5 − ξ )d ∫

l
|ϕ|dx = (0.5 − ξ )θABd (3.82)

where θAB is the relative rotation of sections A and B.12 Equation (3.82) shows that
the maximum additional axial extension takes place when relative rotation attains
its peak value and is proportional to it.

The axial extension given by Eqs. (3.81) and (3.82) is additional to any axial
deformation that may exist during the “neutral” part of the loading cycle, i.e. when
the section curvature, ϕ, is (about) zero. At that stage through-depth cracks may be
open and the total axial strain at mid-depth of the section, εo, is the average of the
permanent strains locked in the tension and the compression reinforcement. These
permanent strains are normally tensile (see the values of strain in Figs. 3.5, 3.6 and
3.7 at zero stress, after several load cycles). In beams, or in columns and walls with
low axial load, the tensile strain at mid-depth of the section may be significant in
magnitude and increase in a ratcheting manner during cycling of the deflection (see
evolution of axial displacements at the bottom left diagram of Fig. 3.34). In columns,
after the cover spalls, the concrete core partially disintegrates and/or vertical bars
buckle, the mean compressive stress of the concrete increases and normally turns the
axial strain, εo, at section mid-depth during the “neutral” part of the loading cycle
from extension to shortening. Axial shortening accelerates as failure due to cyclic

12If moments and curvatures change sign between sections A and B, θAB is not the angle between
the tangent to the member axis at these two sections, but the sum of the absolute values of relative
rotations between section A and the point of inflection and between the point of inflection and
section B.
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Fig. 3.34 Column biaxial deflection paths (a), (b), resulting biaxial force paths (c), (d), force-
deflection loops in the two lateral directions (e), (f), evolution of axial displacement (g), (h) (Bou-
sias 1993)
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loading approaches (Fig. 3.33(b)). So, what has started as accumulation of tensile
axial strains at the axis of the column may at the end of the cyclic load history revert
into net shortening (see evolution of axial displacements at the bottom right diagram
of Fig. 3.34). Moreover, if the axial load ratio ν has intermediate values (e.g., above
0.2), from the very beginning of the cyclic loading the ratcheting axial strain at mid-
depth of the column section, εo, during the “neutral” part of the loading cycle is
shortening instead of elongation (Fig. 3.33(b)).

Unlike the axial strain of Eq. (3.81) that may refer to the full length and pro-
duces a net axial elongation at the peak of the lateral displacement cycle accord-
ing to Eq. (3.82), ratcheting axial strains that develop during the “neutral” (low-
displacement) part of the load cycle according to the previous paragraph take place
only within the plastic hinge. Therefore, their overall effect on the length of the
member is normally smaller than the additional net elongation of Eq. (3.82) at the
peaks of the cyclic lateral displacement history.

There is another facet of the coupling between flexural and axial behaviour,
notably the effect of the variation of axial force on flexural deformations: for con-
stant moment, the reduction of flexural deformation due to an increase in the axial
compression is less than its increase due to an axial force reduction by the same
amount. So, cycling of the axial force causes a ratcheting increase of flexural defor-
mations. Their cumulative magnitude is significant in comparison to the residual
flexural deformations due to cycling of the moment itself (Bousias et al. 1992,
1995). The build-up of flexural deformations due to an axial force that varies concur-
rently with the bending moments amounts to a gradual, albeit significant, apparent
degradation of flexural stiffness.

According to Eq. (3.82) walls with large effective depth, d, develop large net
elongation at the centroid of the section concurrently with the peaks of their lateral
displacements response. We have seen in Section 2.2.2.4 that the effects of such
elongation on the response and performance of wall or wall-equivalent dual systems
are beneficial.

Compared to walls, columns have much shorter effective depth, d, and larger
values of ξ . So, the peaks of their lateral displacement response are accompanied
by small additional elongation according to Eq. (3.82). This additional elongation
brings about an increase in the axial compression of those columns that have larger
size (effective depth, d), smaller ξ -value (i.e., lower axial load ratio, ν) and/or
larger deformation response (relative rotation between sections, θAB) than the other
columns, especially their neighbouring ones. The increase in axial compression of
these columns will be counterbalanced by a reduction in the others, effected through
shear forces in the beams connecting the columns in the 3D frame structural system.
Although small, the increase in axial compression is detrimental for the performance
of large, lightly loaded columns with the larger deformation response, as it reduces
their ultimate flexural deformation. By contrast, the net shortening of the columns
with fairly heavy axial load (with axial load ratio well above 0.2), or of any col-
umn that approaches its ultimate deformation capacity, has a beneficial effect, as it
causes part of the axial load to be transferred – via shear forces in the beams – to
other columns of the system.
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Beams have about the same effective depth, d, as columns but much smaller ξ -
values. So, the additional net elongation according to Eq. (3.82) accompanying the
peaks of their flexural response is larger. The columns into which a beam frames
restrain this axial extension through shear forces translated into a compressive axial
force in the beam. This compressive force will not only tend to reduce its axial exten-
sion, but will also affect its flexural behaviour, increasing its stiffness and strength,
etc.

The three paragraphs above have pointed out the coupling between the flexural
and the axial behaviour of the members of real frames or dual structural systems.
This coupling is not taken into account explicitly in practical seismic design. To
account for it in a nonlinear seismic response analysis, a member model should
capture not only the flexural behaviour, but also the axial one, including its coupling
with the flexural response. Fibre models, described in Section 4.10.1.2, have this
capability.

3.2.3.7 Flexural Behaviour Under Cyclic Biaxial Loading

The behaviour of axially loaded concrete members under biaxial moment histories
is important, as in general the seismic response of columns in concrete frames is in
three dimensions (3D). Biaxial flexure reduces the moment resistance in any of the
two principal directions of bending and increases cyclic strength degradation com-
pared to uniaxial loading. By contrast, the beams of 3D frame systems are subjected
to uniaxial flexure and do not suffer from the adverse effects of biaxial loading. So,
biaxial column moments and the 3D response work against strong-column/weak-
beam behaviour and reduce the effectiveness of the relevant criterion, Eq. (1.4),
applied separately in two orthogonal horizontal directions in 3D frames.

Test results on axially loaded members under biaxial bending moment histories
are limited. So, as the manner in which the histories of bending moments in the two
orthogonal directions are combined adds considerably to the complexity of the prob-
lem, current knowledge of the inelastic behaviour of columns under biaxial cyclic
moments is well behind our understanding of their behaviour in uniaxial cyclic flex-
ure with axial load.

The available test results point to the conclusion that after flexural yielding there
is strong coupling of the behaviour in the two orthogonal directions of bending.
The M–ϕ and M–θ response in one of these directions is affected by the magnitude
and the history of the moment and/or deformation in the orthogonal direction. The
main effects of this coupling on the M–ϕ and M–θ behaviour in each of the two
orthogonal directions of bending are the following:

1. The apparent resistance and stiffness in each individual direction decrease, owing
to a concurrent deformation in the orthogonal direction. So, the moment compo-
nent required to maintain a given deformation in the same direction drops (Fig.
3.34). Similarly, the moment increment necessary for an increment in deforma-
tion decreases. Ratcheting flexural deformations in the direction of a moment
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component that is maintained constant are induced by cycling of the deforma-
tion in the orthogonal direction (Bousias 1993, Bousias et al. 1992, 1995).

2. The hysteretic energy dissipation increases, as hysteresis loops in each individual
direction become broader (e.g., when the peak resistance in a cycle drops under
constant deformation in its own direction, owing to an increase in moment and
deformation in the orthogonal direction, Fig. 3.34). If the response is described
in terms of a path in the 2D space of the two components of bending moment
and the concurrent path in the 2D space of the two deformation components,
the deformation vector always trails the moment vector by a “phase lag”, ψ
(Fig. 3.34). The increase in hysteretic energy dissipation due to the coupling of
the two components can be expressed as an equivalent viscous damping ratio
equal to sinψ (Bousias et al. 1992, 1995). The “phase lag”, ψ , increases with
inelasticity, i.e. with the magnitude of the post-yield excursion, especially when
column failure is imminent.

3. The deformation capacity in each individual direction decreases. When a flexure-
controlled ultimate deformation is reached (i.e., when the resultant of the two
moment components cannot increase above 80% of the peak moment resultant
reached so far during the biaxial response) the individual deformation compo-
nents are lower than they would had been, if flexure-controlled ultimate defor-
mation were attained by uniaxial loading in the corresponding lateral direction.

Effects no. 1 and 3 are adverse, but effect no. 2 is beneficial.
The additional axial extension accompanying biaxial flexural deformations

roughly follows Eqs. (3.81) and (3.82) in Section 3.2.3.6 and is independent of
the direction of the lateral displacement. The same applies for the ratcheting axial
strains (extension for low values of axial load ratio, shortening for medium or high
ones) that accumulate due to cycling of the deflections. The axial displacements at
the bottom of Fig. 3.34 increase in a ratcheting manner during cycling of the lateral
displacement. At the diagram on the right the axial extension turns at the end of the
load history to shortening as failure due to cyclic loading approaches.

Loading along the diagonal of the cross-section may be considered as simulta-
neous equal biaxial loading parallel to the sides of the section. When presented in
terms of moment and deformation components along the sides of the cross-section,
the behaviour appears to give a reduced (by about

√
2) strength and stiffness com-

pared to uniaxial loading and accordingly reduced energy dissipation. If presented,
however, in terms of the resultant moment and deformation along the single direc-
tion of loading, hysteresis loops are similar to those in uniaxial loading, with about
the same or even sometimes enhanced strength and energy dissipation capacity. This
applies in general for any loading in a single transverse direction oblique to the sides
of the section.

Except when the axial load varies near the balance load, the variation of the axial
force with both components of the biaxial moment/deformation affects the flexural
response in both lateral directions as in the uniaxial case. When the axial compres-
sion increases, the instantaneous resistance and stiffness increase, strength decay
with cycling accelerates and deformation capacity is reduced. Reduction of the
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axial compression has the opposite effects. Variation of the axial load only with one
component of the moment/deformation affects the resistance, stiffness and cyclic
strength decay, mainly in the corresponding lateral direction.

3.2.3.8 Flexural Yielding and Flexure-Controlled Ultimate Chord Rotation
Under Cyclic Biaxial Loading

Test results of columns under cyclic biaxial bending with axial force are sparse,
owing to the practical difficulties of such testing. Yielding in such tests may be
identified with the corner of a bilinear M–θ envelope of the experimental mono-
tonic M–θ curve or of the M–θ hysteresis loops, separately for each one of the two
directions of bending, y and z. The so-determined components, Myy,exp and Myz,exp,
of the experimental yield moment in 35 flexure-dominated biaxial tests in which
yielding had taken place under biaxial loading, have been compared with the com-
ponents of the biaxial moment resistance. These components have been computed
from plane-section analysis, using an elastic-perfectly plastic σ -ε law for the rein-
forcing bars (at their exact location in the section) and a parabolic-rectangular one
for the concrete, up to a compressive strain of 0.0045 at one corner of the cross-
section.13 Both of the so-computed components of moment resistance gave a mean
test-to-prediction ratio of 1.0, which is better than what has been achieved for uni-
axial bending in Section 3.2.2.2, where section yielding was identified with yielding
of the extreme tension bars or with a fixed concrete strain at the extreme compres-
sion fibres for linear-elastic concrete in compression. This confirms that the cor-
ner of a bilinear M–θ envelop of the measured hysteresis loops, expressing overall
section yielding is slightly past yielding of the extreme corner bar or compression
fibre.

The uniaxial chord rotations in the two directions of bending, θyy,uni, θyz,uni, have
also been computed from Eqs. (3.66) for these 35 biaxial tests. The experimental
values at section yielding, θyy,exp, θyz,exp, give ratios θyy,exp/θyy,uni and θyz,exp/θyz,uni

that on average exceed by a little more than 10% a circular interaction diagram of
the form:

(
θyy,exp

θyy,uni

)2

+
(
θyz,exp

θyz,uni

)2

= 1 (3.83)

The prime role of θy is for the calculation of the effective stiffness to yield point
via Eq. (3.68). Using the values of Myy,exp, θyy,exp, and Myz,exp, θyz,exp at the corner
of a bilinear envelope M–θ of the experimental monotonic M–θ curve or of the
M–θ hysteresis loops, 35 pairs of the “experimental” effective stiffness have been

13Except for the value of the terminal strain, these assumptions are the same as those made for
the calculation of the uniaxial moment resistance in Section 3.2.2.5. The computed components of
the biaxial moment resistance were found to be fairly insensitive to the precise value of this limit
strain.
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computed from Eq. (3.68), separately in each direction of bending, y or z. They have
been compared to:

i. the corresponding effective stiffness computed from Eq. (3.68) separately
from Myy,uni, θyy,uni and Myz,uni, θyz,uni, using the uniaxial yield moment from
Section 3.2.2.2 and the chord rotation at yielding from Eq. (3.66), and

ii. the “empirical” effective stiffness from Eq. (3.69),

in the transverse direction, y or z, of interest (Biskinis 2007). The test-to-prediction
ratios suggest that the “experimental” effective elastic stiffness in each one of the
two directions is about 10% less, on average, than the uniaxial theoretical effective
stiffness calculated in (i), i.e. theoretically from Eq. (3.68). By contrast, it exceeds
by about 7% the “empirical effective stiffness” in (ii). These trends are opposite and
hence inconclusive. However, as the theoretical effective stiffness is more reliable
and unbiased than the “empirical” one, the limited test results may be considered
to suggest that biaxial loading reduces slightly the effective elastic stiffness in each
one of the two directions of loading.

Biaxial tests carried to flexure-controlled failure are also few (about 35). The
components of chord rotation along the sides of the section at ultimate in these tests,
θuy,exp and θuz,exp, may be normalised to the corresponding ultimate chord rotations
in uniaxial loading from:

(a) the semi-empirical procedure of Section 3.2.3.4 (i.e. Eqs. (3.72) and (3.73),
together with curvatures according to Sections 3.2.2.4 and 3.2.2.10); and

(b) the purely empirical procedure of Section 3.2.3.5 and Eqs. (3.78).

The test-to-prediction ratio exceeds, on average, the circular interaction diagram:

(
θuy,exp

θuy,uni

)2

+
(
θuz,exp

θuz,uni

)2

= 1 (3.84)

by about 5% if the uniaxial ultimate chord rotations are calculated according to Eqs.
(3.72) and (3.73), etc. or by about 16% if Eqs. (3.78) in Section 3.2.3.5 are used
instead (Biskinis 2007, Bousias et al. 2002). Therefore, Eq. (3.84) is safe-sided for
the verification of the ultimate chord rotations under biaxial bending, with uniaxial
ultimate chord rotations estimated according to Sections 3.2.3.4 or 3.2.3.5.

3.2.3.9 Members with Ribbed Longitudinal Bars Lap-Spliced in the Plastic
Hinge Region

Effect of Lap-Splicing on the Yield Properties

It is still common in many parts of the world – including Europe – to lap-splice
all vertical bars of columns or walls at floor levels, for convenience of bar fixing.
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The seismic parts of the US follow nowadays the good practice of splicing longitu-
dinal bars of vertical elements outside their end regions where plastic hinges may
develop. But even there, short lap splices at floor levels are typical of vertical mem-
bers in existing substandard construction, adversely affecting their resistance and
cyclic deformation capacity.

Provided that the lap length is sufficient (i.e., greater than the value giving fsm = fy
in Eq. (3.31) of Section 3.1.3.2, or greater than the limit value in Eq. (3.85) below),
the yield moment and the moment resistance of columns with ribbed (deformed)
longitudinal bars lapped starting at the column base is clearly higher than in similar
members with continuous longitudinal bars (Biskinis and Fardis 2004, Fardis et al.
2005, Bousias et al. 2005a,b). This is thanks to end bearing of a compression bar
stopping at the base section against the very well confined concrete beyond (i.e.,
the concrete at the top of a footing or at the face of 3D joint, etc.), which seems
sufficient for the build-up of a compressive stress in that bar almost as high as in its
companion bar in the lap that continues beyond the end section. Compatibility of
longitudinal strains between these two bars and the concrete surrounding them near
the member’s end section contributes to this effect. The measured yield moment
of such columns compares better with the outcome of Eq. (3.37) in Section 3.2.2.2
under Cross-Sections with Rectangular Compression Zone (after correction with the
calibration factors given in Section 3.2.2.2 under Comparison with Experimental
Results and Empirical Expressions for the Curvature), if in the calculation of My

both bars in any pair of lapped compression bars count towards the compression
reinforcement ratio within the lap splice.

The measured secant stiffness to the yield-point is also higher than in a similar
member with continuous longitudinal bars. It compares better with the outcome of
Eq. (3.68) in Section 3.2.3.3, if in Eq. (3.68):

i. the value of My is based on the yield curvature, ϕy, calculated from Eqs. (3.33),
(3.34), (3.35) and (3.36) in Section 3.2.2.2 under Cross-Sections with Rectan-
gular Compression Zone, including in the compression reinforcement ratio both
bars of any pair of lapped bars in the compression zone, and

ii. θy is calculated from Eqs. (3.66) with the 1st and 3rd terms there based on the
value of ϕy in (i) above and with the 2nd term multiplied by the ratio of the
yield moment My modified for the lap splicing, to the value of My outside the
lap splice; moreover, to determine whether aV = 1 in the 1st term of Eqs. (3.66),
LsVRc is compared to the value of My accounting for the effect of lapping.

The recommendations above, adopted also in Part 3 of Eurocode 8 (CEN 2005a),
refer to lapped bars in compression. Regarding the lapped tension bars, Eqs. (3.31)
and (3.32) in Section 3.1.3.2 may be applied for their maximum possible stress to be
used in the calculation of My and ϕy. If this is done for over 100 tests on members
with rectangular or hollow rectangular section and ribbed bars lapped starting at the
section of maximum moment, the test-to-prediction ratio for the yield moment has a
median of 0.995 and a coefficient of variation of 11.7% (Biskinis and Fardis 2007).
Equations (3.66) may also be applied for the chord rotation at yielding according
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to rule (ii) of the previous paragraph. Then, the test-to-prediction ratio of the chord
rotation at yielding in over 80 tests has a median of 1.04 and a coefficient of variation
of 20.5%. The corresponding statistics for the secant stiffness to the yield-point are
0.935 and 25.4%.

A simpler rule has been proposed in Biskinis and Fardis (2004, 2007) for the
maximum possible stress of lapped tension bars and adopted in Part 3 of Eurocode
8 (CEN 2005a). According to it, if the straight lap length, lo, is less than a minimum
value of lap length, loy,min, required for the full transfer of the yield stress of a lapped
bar in tension to the continuing one, My and ϕy should be calculated with the yield
stress of the tension bars, fyL, multiplied by lo/loy,min. The value of loy,min is given by
the following expression (Biskinis and Fardis 2004, 2007, CEN 2005a):

loy,min = 0.3dbL fyL√
fc

( fyL and fc in MPa) (3.85)

where dbL and fyL are the mean diameter and the yield stress of longitudinal bars,
respectively. Again, Eqs. (3.66) are applied for the chord rotation at yielding accord-
ing to rule (ii) above (Biskinis and Fardis 2004, 2007, CEN 2005a). The test-to-
prediction ratio for the so-computed yield moment has a median of 1.00 and a coef-
ficient of variation of 11.6%, that for the chord rotation at yielding a median of 1.05
and a coefficient of variation of 19.9% and the one of the secant stiffness to the
yield-point a median of 0.935 and a coefficient of variation of 25.6%. Note that, if
lo ≥ loy,min, the value of My from Eq. (3.37) and of the secant stiffness to the yield-
point from Eq. (3.68) increase owing to the lapping. If lo < loy,min, both My and the
secant stiffness to the yield-point decrease with decreasing lo.

There is very little experimental information about members with short anchor-
age of the longitudinal bars beyond the end section. Section 3.1.3.2 has pointed out,
though, that Eq. (3.31) applies equally well either to a single ribbed bar with straight
anchorage length lb or to two bars lap-spliced over the same length. On this basis,
My, ϕy and θy at an end section with insufficient anchorage length lb of its longitu-
dinal bars beyond the end section may be estimated applying the rules above for the
calculation of the tensile stress in the tension bars, using lb instead of lo.

Effect of Lap-Splicing on the Flexure-Controlled Ultimate Deformation

A column with ribbed vertical bars lapped starting at its base exhibits higher flexure-
controlled ultimate deformation than a similar one with continuous vertical bars,
provided that the lapping is at least equal to a certain minimum lap length, lou,min,
given by the following expression (Biskinis and Fardis 2004, 2007), adopted also in
Part 3 of Eurocode 8 (CEN 2005a):

lou,min = dbL fyL(
1.05 + 14.5al,s

ρs fyw

fc

)√
fc

( fyL, fyw, fc in MPa) (3.86)
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where:

– ρs is the ratio of the transverse steel parallel to the plane of bending, and

al,s = (1 − 0.5sh/bo)(1 − 0.5sh/ho)nrestr/nnot, (3.87)

with

• sh: stirrup spacing,
• bo, ho: dimensions of the confined concrete core to the hoop centreline,
• ntot: total number of lapped longitudinal bars along the perimeter of the section

and
• nrestr: number of lapped bars which are engaged by a stirrup corner or a cross-

tie.

To reflect this finding, the ultimate curvature or chord rotation, monotonic or
cyclic, calculated according to the pertinent models in Sections 3.2.2.4, 3.2.3.4 and
3.2.3.5, should include in the compression reinforcement ratio both bars of any pair
of lapped bars in the compression zone.

Tests to flexural failure of rectangular members with ribbed longitudinal bars
lap-spliced starting at the section of maximum moment suggest that the flexure-
controlled ultimate deformation decreases with decreasing lap length, lo, if lo <
lou,min. With the effect of lapping on the chord rotation at yielding, θy, quantified
according to the sub-section above on the Effect of Lap-Splicing on the Yield Prop-
erties, it is convenient to compute the ultimate chord rotation as the sum of the
so-modified value of θy plus a plastic part, θu

pl, appropriately reduced owing to
the short lapping, lo < lou,min. There are two approaches for the estimation of the
reduced value of θu

pl:

(i) The empirical approach of Section 3.2.3.5. The available test results suggest
that θu

pl decreases linearly with lo, if lo < lou,min; θu
pl may be taken equal to the

last term at the right-hand-side of Eqs. (3.78b) or (3.78c) times lo/lou,min ≤ 1,
with lou,min from Eq. (3.86) (Biskinis and Fardis 2004, 2007, CEN 2005a). In
about 75 tests to flexure-controlled ultimate deformation the test-to-prediction
ratio of the so-computed ultimate chord rotation, θu, has a median of 1.065 and
a coefficient of variation of 36.4% if the un-reduced value of θu

pl is taken from
Eq. (3.78b), or a median of 1.045 and a coefficient of variation of 35.9% if
Eq. (3.78c) is used instead.

(ii) The approach of Section 3.2.3.4, based on curvatures and the plastic hinge
length. In that case, the yield curvature, ϕy, entering the calculation may be
modified according to the sub-section above on the Effect of Lap-Splicing on
the Yield Properties for the effect of lap-splicing. The only other modification
is in the calculation of ϕu. There, in addition to including in the compression
reinforcement ratio both lapped compression bars in any pair, if the lap length,
lo, is shorter than the value of lou,min from Eq. (3.86), the maximum elongation



3.2 Concrete Members 241

of the extreme tension bars at ultimate conditions due to steel rupture should be
reduced to:

εsu,l =
(

1.2
lo

lou,min
− 0.2

)
εsu ≥ lo

loy,min

fyL

Es
(3.88)

where εsu is given by Eq. (3.64c) or (3.64b) for monotonic or cyclic load-
ing, respectively, and loy,min, lou,min are given by Eqs. (3.85) and (3.86), respec-
tively. In about 75 tests to flexure-controlled ultimate deformation the test-to-
prediction ratio of the so-computed ultimate chord rotation, θu, has a median
of 1.005 and a coefficient of variation of 35.2%, i.e., better than in approach (i)
above.

There are very few cyclic tests of columns without detailing for earthquake resis-
tance and smooth (plain) hooked bars lapped starting at the base (just 7 tests to the
author’s knowledge, all with lo ≥ 15dbL). They suggest the following modification
of Eq. (3.80) for the chord rotation at flexure-controlled failure:

θu,smooth−lapped =
10 + min

(
lo

dbL
; 40

)
50

θu,Eq.(3.80) (3.80a)

giving a median of 1.0 and a coefficient of variation of 28% for the test-to-prediction
ratio.

3.2.3.10 Effect of FRP Wrapping of the Plastic Hinge Region on Flexural
Behaviour

Members with Continuous Bars

Flexural yielding of the member’s end section is normally associated with yielding
of the tension reinforcement and is insensitive to what happens at the compression
zone unless the axial load is high. The experimental yield moment of members
having the plastic hinge region wrapped with FRP nonetheless exceeds on aver-
age the value calculated according to Section 3.2.2.2. This exceedance is not fully
redressed when the confined concrete strength, fc∗, estimated from Eq. (3.27a) in
Section 3.1.2.4, is used instead of the unconfined value, fc: the test-to-prediction
ratio of the so-estimated yield moment in 180 FRP-wrapped members has a median
of 1.065 (in lieu of 1.025 for beams or columns without FRP wrapping, see Sec-
tion 3.2.2.2 under Comparison with Experimental Results and Empirical Expres-
sions for the Curvature) and a coefficient of variation of 19.6% (Biskinis and Fardis
2009). So, a calibration factor of 1.065 should be applied on the values of the yield
moment and curvature, My, ϕy, obtained from 1st principles according to Section
3.2.2.2 using the confined concrete strength, fc∗, in lieu of fc. The correction factor
of 1.065 should be applied also on the 1st (flexural) term of Eqs. (3.66) for the chord
rotation at apparent yielding, θy, of members with FRP-wrapped ends. By doing so,



242 3 Concrete Members Under Cyclic Loading

the test-to-prediction ratio of θy in about 135 FRP-wrapped members has a median
of 0.995 and a coefficient of variation of 37.8% (Biskinis and Fardis 2009). If the
so-computed values of My and θy are used in Eq. (3.68), the test-to-prediction ratio
of the secant stiffness to the yield-point of these FRP-wrapped test specimens has a
median of 1.055 and a coefficient of variation of 28.7% (Biskinis and Fardis 2009).

FRP-wrapping is often applied to retrofit members that have suffered serious
damage during an earthquake (ranging from yielding to ultimate deformation), of
course after repair of the damage. Repair followed by FRP-wrapping fully re-instate
the yield moment of the damaged member: the mean and the median of the test-to-
prediction ratio of the yield moment of 20 FRP-wrapped pre-damaged columns do
not deviate significantly from those of the undamaged ones. By contrast, repair and
FRP-wrapping cannot redress the effect of previous damage on the effective flexural
stiffness to yielding (as controlled by the chord rotation at yielding, θy): the result
of Eq. (3.68) has been found to exceed the secant stiffness to the yield-point of 20
FRP-wrapped pre-damaged columns by about 30% on average (Biskinis and Fardis
2009).

If the plastic hinge region is wrapped with FRP its ultimate flexural deformation
is enhanced, primarily thanks to the confinement of the compression zone and the
increase of the concrete ultimate strain there. As a matter of fact, Eqs. (3.29) and
(3.30) in Section 3.1.2.4 for the ultimate strain of concrete under cyclic loading have
been fitted to ultimate curvature data in about 35 tests of rectangular FRP-wrapped
columns (Biskinis and Fardis 2009). In that case the ultimate curvature, ϕu, is cal-
culated from first principles according to the analysis in Section 3.2.2.4, modified
to accept a parabolic-trapezoidal σ -ε curve for the confined concrete – as in Lam
and Teng (2003a,b) – instead of the parabolic-rectangular one of unconfined con-
crete. Equations (3.29) and (3.30) used together with the (Lam and Teng 2003a,b)
confined strength model, Eq. (3.27a), give an average test-to-prediction ratio of 1.01
for ϕu with a coefficient of variation of 27.5%.14 If the so-computed ultimate cur-
vature, ϕu, is used in Eq. (3.72) of Section 3.2.3.4 together with the value of Lpl

from Eq. (3.73) (fitted to members without FRP wrapping under cyclic loading), the
test-to-prediction ratio of θu in about 95 tests of members with FRP wrapping has a
median of 0.995 and a coefficient of variation of 34.6% (Biskinis and Fardis 2009).
In another 18 members that had suffered certain damage by testing before been
repaired, FRP-wrapped and re-tested, Eqs. (3.72) and (3.73) give a median test-to-
prediction ratio of 0.985 and a coefficient of variation of 23.1%. If the columns
that had been FRP-wrapped after been damaged and repaired are put together with
the virgin ones, the overall median of the test-to-prediction ratio is 0.995 and the
coefficient of variation 33.4%.

14If the Lam and Teng Eq. (3.27b) is used for εcu
∗ instead of Eqs. (3.29) and (3.30), the ultimate

curvature of the FRP-wrapped member is underpredicted by a factor of about 2.3. So, notwith-
standing any adverse effect of the cycling, the FRP that confines the extreme compression fibres
seems to be put under lower demands by cyclic bending than by the condition of monotonic con-
centric compression for which Eq. (3.27b) has been developed, a condition inducing a uniformly
large strain to the FRP all around the section.
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It has been proposed in Biskinis and Fardis (2004) and adopted by Eurocode 8,
Part 3 (CEN 2005a) to extend to members with FRP wrapping the purely empirical
model for θu, Eqs. (3.78) in Section 3.2.3.5, by adding the term afρf ff,e/fc to the
exponent of the 2nd term from the end to include the effect of confinement by the
FRP, where:

– ρf = 2tf/bw is the geometric ratio of the FRP parallel to the loading direction,
– af is the confinement effectiveness factor of the section by the FRP, given by Eq.

(3.28) where it is denoted by an, and
– ff,e, is the effective stress of the FRP:

f f,e = min
(

f f u,nom ; εu, f E f
) (

1 − min

[
0.5; 0.7 min

(
f f u,nom ; εu, f E f

) ρ f

fc

])
(3.89)

with ffu,nom and Ef denoting the nominal strength and the Elastic modulus of the
FRP and εu,f being a limit strain, equal to:

• εu,f = 0.015 for CFRP or AFRP; and
• εu,f = 0.02 for GFRP.

With this modification Eqs. (3.78) give a median for the test-to-prediction ratio in
about 95 tests of FRP-wrapped members equal to 1.10 and a coefficient of variation
of 31.8%. In 18 members that had been FRP-wrapped and re-tested after been pre-
damaged by testing and repaired, the modification of Eqs. (3.78) on the basis of Eq.
(3.89) gives a median test-to-prediction ratio of 0.925 and a coefficient of variation
of 24%. If all FRP-wrapped columns, virgin and pre-damaged/repaired are lumped
together, the overall median of the test-to-prediction ratio is 1.09 and the coefficient
of variation is 31.5%.

The proposal above has been improved as follows (Biskinis and Fardis 2009):
the term added to the exponent of the 2nd term from the end of Eqs. (3.78) to reflect
effective confinement by the FRP is:

(
a
ρ fu

fc

)
f,e f f

= a f min

[
1.0; min

(
f f u,nom ; εu, f E f

) ρ f

fc

]
(

1 − 0.4 min

[
1.0; min

(
f f u,nom ; εu, f E f

) ρ f

fc

]) (3.90)

where the limit strain is always equal to εu,f = 0.015. With this modification Eqs.
(3.78) give a median test-to-prediction ratio in about 95 tests of FRP-wrapped virgin
members equal to 1.06 and a coefficient of variation of 31.3%.

An even better fit to those tests is achieved (median test-to-prediction ratio of
1.035 and coefficient of variation of 31.2%) if the FRP-confinement term added to
the exponent of the 2nd term from the end of Eqs. (3.78) is based on the effective
FRP strength of the model in Lam and Teng (2003a,b): ffu,L&T = Efεfu, with εfu about
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equal to 60% of the failure strain of tensile coupons.15 The resulting alternative to
Eq. (3.90) is:
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](
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fc

])
(3.91)

where cf = 1.8 for CFRP and cf = 0.8 for GFRP or AFRP.
In the 18 members that were FRP-wrapped and re-tested after been pre-damaged

by testing and repaired, Eqs. (3.78) modified on the basis of Eqs. (3.90) or (3.91)
give a median test-to-prediction ratio of 0.925 or 0.945, and a coefficient of vari-
ation of 24% or 26%, respectively. If all FRP-wrapped columns, virgin and pre-
damaged/repaired are lumped together, the overall median of the test-to-prediction
ratio of Eqs. (3.78) modified on the basis of Eqs. (3.90) or (3.91) is 1.045 or 1.03,
respectively, and the coefficient of variation is about 31%.

Note that the last term in each one of Eqs. (3.89), (3.90) and (3.91) reflects
the experimentally documented reduced effectiveness of FRP-wrapping when larger
amounts of FRP are used.

It has been suggested above that previous damage does not have a statistically
significant effect on the ultimate chord rotation of FRP-wrapped members predicted
from Eqs. (3.72), (3.73) and (3.74) and using in Eq. (3.72) an ultimate curvature,
ϕu, from:

– first principles, according to the analysis in Section 3.2.2.4 modified to use a
parabolic-trapezoidal σ -ε curve for confined concrete – as in the (Lam and Teng
2003a,b) model for confinement by FRP – instead of a parabolic-rectangular one,

– the (Lam and Teng 2003a,b) model for the confined strength, Eq. (3.27a), and
– Equations (3.29) and (3.30) for the ultimate strain of FRP-confined concrete

under cyclic loading.

That conclusion is not corroborated by the comparisons of the predictions of
Eqs. (3.78), modified with the help of Eqs. (3.89), (3.90) and (3.91). Although the
data are not sufficient for a statistically meaningful conclusion, previous damage
seems to reduce by 10–15% the ultimate chord rotation predicted by Eqs. (3.78) as
modified on the basis of Eqs. (3.89), (3.90) or (3.91). The predictions are on the safe
side for members that are intact when wrapped with FRP and slightly on the unsafe
side for previously damaged ones.

Members with Lap-Spliced Ribbed Bars

What has been said in the sub-section above on Effect of Lap-Splicing on the Yield
Properties regarding the effect of lap-splicing on the yield moment and the member

15As noted in Section 3.1.2.4, in Lam and Teng (2003a,b) this percentage value is proposed only
for CFRP or GFRP, and 85% is given for AFRP, but on the basis of few test results.
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secant stiffness to the yield-point still applies if the end region(s) of the member
is wrapped with FRP. The only difference is in the calculation of the maximum
possible stress of lapped tension bars, where the effect of the FRP wrapping should
be taken into account. Provided that the wrapping extends over at least the full length
of the lap, My and ϕy may be calculated with the maximum possible stress of the
lapped tension bars from Eq. (3.31), using there Eq. (3.32a) (see Section 3.1.3.2).
In about 30 tests on members of rectangular section, having their ribbed bars lapped
and FRP wrapping applied starting at the section of maximum moment, the test-
to-prediction ratio for the so-computed yield moment is on average equal to 1.13
and its coefficient of variation is 8.8%. The corresponding statistics for the chord
rotation at yielding are 1.17 and 18% and for the member secant stiffness to the
yield-point 1.00 and 18.8%, respectively.

Section 3.2.3.9 under Effect of Lap-Splicing on the Yield Properties has presented
a simpler alternative to the use of Eq. (3.31) to account for the effect of lapping
of ribbed bars on the yield properties of members without FRP wrapping. In that
alternative the yield stress of lapped tension bars, fyL, is multiplied by lo/loy,min ≤ 1
(Biskinis 2007, Biskinis and Fardis 2004, 2007, CEN 2005a). The extension of that
rule to members with FRP wrapping all along the length of the lap splice entails just
a reduction by one-third of the minimum length given by Eq. (3.85):

For FRP wrapping:

loy,min = 0.2dbL fyL√
fc

( fyL and fc in MPa) (3.85a)

This simplification, proposed in (Biskinis 2007, Biskinis and Fardis 2004, 2007)
and adopted in Part 3 of Eurocode 8 (CEN 2005a), gives for the test-to-prediction
ratio of the yield moment in about 30 tests an average of 1.06 and a coefficient of
variation of 11.4% (Biskinis and Fardis 2009). The corresponding statistics for the
chord rotation at yielding are 1.085 and 16.6% and for the member secant stiffness
to the yield-point 1.005 and 18.2%, respectively.

The approach of Section 3.2.3.9 under Effect of Lap-Splicing on the Flexure-
Controlled Ultimate Deformation for the effect of lap-splicing of ribbed longitudi-
nal bars on the member’s flexure-controlled ultimate deformation can be extended
to members with FRP wrapping all along the lap-splicing. In a way similar to that
approach, the ultimate chord rotation, θu, is expressed as the sum of the chord rota-
tion at yielding, θy, plus a plastic part, θu

pl. The effect of FRP-wrapping on θy is
estimated according to the paragraph above. Regarding the effect on θu

pl, approach
(i) in Section 3.2.3.9 under Effect of Lap-Splicing on the Flexure-Controlled Ulti-
mate Deformation, based on the empirical ultimate chord rotation of Section 3.2.3.5,
takes θu

pl as equal to the last term at the right-hand-side of Eqs. (3.78b) or (3.78c)
times lo/lou,min ≤ 1, with lou,min from Eq. (3.86) (Biskinis 2007, Biskinis and Fardis
2007, CEN 2005a). For the extension of that approach to members with FRP wrap-
ping all along the region with the lap-splice, recall the three approaches presented
in the sub-section above on Members with Continuous Bars for the empirical esti-
mation of θu

pl of members with continuous bars and FRP wrapping:
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1. The one proposed in (Biskinis 2007, Biskinis and Fardis 2004, 2007) and adopted
in Eurocode 8, Part 3 (CEN 2005a), uses Eq. (3.89) in the calculation of the effect
of confinement by the FRP. Its natural extension, also proposed in (Biskinis 2007,
Biskinis and Fardis 2007) and adopted in CEN (2005a), is to calculate lou,min via
the following modification of Eqs. (3.86) and (3.87):

lou,min = dbL fyL(
1.05 + 14.5 4

ntot
a f

ρ f f f,e

fc

)√
fc

( fyL, ff,e, fc in MPa) (3.92)

where ff,e comes from Eq. (3.89) and ntot denotes the total number of lapped
longitudinal bars along the perimeter of the section, out of which only the four
corner ones are confined by the FRP (nrestr = 4 in Eq. (3.87)). Note that, θu

pl

before its reduction due to the lap splice is calculated from Eqs. (3.78b) or (3.78c)
with the exponent of the 2nd term from the end reflecting confinement by the
steel ties as well as by the FRP (i.e., the term afρfff,e/fc is added). By contrast,
confinement of lapped bars by the FRP alone and not by the steel ties is taken
into account in Eq. (3.92). Thirty members with lap-spliced ribbed bars and FRP-
wrapping cyclically tested to flexure-controlled ultimate deformation have mean
test-to-prediction ratio for the so-computed ultimate chord rotation, θu, equal to
0.965 or 0.95, and a coefficient of variation of that ratio of 26.6% or 27.2%, if
the un-reduced value of θu

pl is taken from Eq. (3.78b) or (3.78c), respectively
(Biskinis and Fardis 2009).

2. The improvement of the approach in (Biskinis 2007, Biskinis and Fardis 2004,
2007, CEN 2005a) as proposed in Biskinis and Fardis (2009), namely the use of
Eq. (3.90) for the FRP-confinement term. The natural extension of that approach,
also presented in Biskinis and Fardis (2009), is to modify Eqs. (3.86) and (3.87)
for lou,min as follows:

lou,min = dbL fyL(
1.05 + 14.5 4

ntot

(
a ρ fu

fc

)
f,e f f

)√
fc

( fyL, ff,u, Ef, fc in MPa)

(3.93)
with (aρfu/fc)f,eff from Eq. (3.90). Again the value of θu

pl before the reduction
due to the lap splice is calculated from Eq. (3.78b) or (3.78c) accounting for
confinement by the steel ties and by the FRP through the exponent of the 2nd
term from the end (i.e., adding there the term (aρfu/fc)f,eff from Eq. (3.90)), while
Eq. (3.93) accounts only for confinement of lapped bars by the FRP but not by
the steel ties. In 30 cyclic tests of members with lap-spliced ribbed bars and FRP-
wrapping the test-to-prediction ratio of the so-computed ultimate chord rotation,
θu, is on average equal to 0.925 or 0.91, and has a coefficient of variation of
28.4% or 28.9%, if the un-reduced value of θu

pl is taken from Eq. (3.78b) or
(3.78c), respectively (Biskinis and Fardis 2009).

3. The further modification of the approach, in order to use in the FRP-confinement
term the effective FRP strength of the Lam and Teng (2003a,b) model: ffu,L&T =
Efεfu, with εfu about equal to 60% of the failure strain of tensile coupons. This
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modification uses Eq. (3.90) for the FRP-confinement term in the calculation
of θu

pl for members with continuous bars and FRP wrapping. It is extended to
members with lap-spliced bars by using in Eq. (3.93) the value of (aρfu/fc)f,eff

from Eq. (3.91). The test-to-prediction ratio of the so-computed value of θu in
30 cyclic tests of members with lap-spliced ribbed bars and FRP-wrapping is
on average equal to 0.98 or 0.965, if the un-reduced value of θu

pl is taken from
Eq. (3.78b) or (3.78c), respectively, and has a coefficient of variation of 30.6%
(Biskinis and Fardis 2009).

So, although with the approach in (Biskinis 2007, Biskinis and Fardis 2004,
2007, CEN 2005a) modified as in 2 and 3 above the accuracy of the predictions
of θu improves for members with continuous bars and FRP wrapping, it deteriorates
if the bars inside the wrapping are lap-spliced.

In approach (ii) of Section 3.2.3.9 under Effect of Lap-Splicing on the Flexure-
Controlled Ultimate Deformation the limit strain of steel for the calculation of
the ultimate curvature of members without FRP wrapping (used in the estimation
of the ultimate chord rotation from the plastic hinge length according to Section
3.2.3.4) is corrected for the effect of lap-splicing according to Eq. (3.88). On the
other hand, the ultimate curvature of FRP-wrapped members with continuous bars
may be calculated according to the 3rd paragraph of the sub-section above on Mem-
bers with Continuous Bars: from (a) the analysis in Section 3.2.2.4 modified to
use a parabolic-trapezoidal σ -ε curve for the confined concrete (as in the (Lam
and Teng 2003a,b) model), instead of the parabolic-rectangular one of unconfined
concrete, (b) the (Lam and Teng 2003a,b) confined strength model and (c) the ulti-
mate strain of FRP-confined concrete under cyclic loading given by Eqs. (3.29)
and (3.30) in Section 3.1.2.4. If the tension bars are lapped inside the FRP wrap-
ping their limit strain may be taken from Eq. (3.88), but using there the value of
lou,min for FRP-wrapped members from Eq. (3.93). In that expression the value of
(aρfu/fc)f,eff should be the one from Eq. (3.91), consistent with the (Lam and Teng
2003a,b) model applied for the FRP-confined concrete in the calculation of ϕu. If
this is done, the test-to-prediction ratio of θu in 30 cyclic tests of members with
lap-spliced ribbed bars and FRP-wrapping is on average equal to 1.42 and has a
coefficient of variation of 25.7%. Therefore, if the more “fundamental” approach
for the ultimate chord rotation is extended to FRP-wrapped members with lapped
bars, it gives worse predictions than the versions 1–3 of the empirical approach pre-
sented in the paragraphs above.

3.2.3.11 Effect of Bonded Prestressing Tendons on the Cyclic Flexural
Behaviour

Prestressing of long span beams or girders can be used to advantage in concrete
buildings. However, the scope of current seismic design codes, including Eurocode 8
(CEN 2004a), does not include prestressed elements that are part of the lateral-load-
resisting system (“primary seismic” elements in Eurocode 8, see Section 4.12). The
exclusion is implicit. It comes from the fact that code rules on design and detailing
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for ductility of beam ends where plastic hinges are expected to form apply only
to reinforced concrete beams. A notable exception is the CEB Seismic Model Code
(CEB 1985) that includes a few clauses warning against the use of unbonded tendons
in “primary” members (except in partially prestressed beams with 80% of their flex-
ural resistance coming from ordinary reinforcement and with prestressing tendons
placed only within the mid-third of the section depth) and against placing tendon
anchorages in beam-column joints next to potential plastic hinges. CEB (1985) also
limits the neutral axis depth in potential plastic hinges of prestressed beams at the
moment resistance to less than 20% of the section depth (to avoid brittle failure of
the compression zone) and asks for a 25% margin between cracking and ultimate
moments of any prestressed section.

Concrete buildings designed for energy dissipation according to current codes
may include prestressed girders, provided that they, as well as the columns con-
nected to them, are not taken to be part of the lateral-load-resisting system, i.e., they
are considered and designed as “secondary seismic” elements in the Eurocode 8 ter-
minology (see Section 4.12). According to Eurocode 8 (CEN 2004a) this implies
that the total lateral stiffness of all frames in the building that include prestressed
girders does not exceed 15% of the lateral stiffness of the system of “primary seis-
mic” elements. As a matter of fact, it is sensible to consider the columns sup-
porting prestressed girders as “secondary seismic”, because normally the weak-
beam/strong-column capacity design rule of Eq. (1.4) cannot force plastic hinging
in girders with size typical of prestressed ones. Another option is to design con-
crete buildings having prestressed girders for Ductility Class L and a value of the
behaviour factor q not higher than 1.5 (as recommended in Eurocode 8 only for low
seismicity regions).

Note that, at least in buildings, prestressing is primarily – if not exclusively – used
in long span horizontal elements for resistance against gravity loads. So tendons are
placed eccentric in the member section, on the side where gravity moments induce
tension. Eccentric tendons normally do not enhance the ductility and deformation
capacity of plastic hinges, particularly at beam supports under hogging moments
that induce tension to the top flange, where the tendons are located. Under such
moments the beam section at the face of the column soon reaches its deformation
capacity, owing either to the low ultimate strain of prestressing steel (compared to
ordinary reinforcement) or to crushing of the concrete at the narrow bottom flange.
So, a less eccentric placement of tendons at beam supports and a larger quantity of
ductile ordinary reinforcement at both flanges may be appropriate, for the plastic
hinges at the ends of prestressed beams to develop significant ductility and defor-
mation capacity.

Conventional wisdom in seismic design and codification is against prestressing
members expected to develop plastic hinges, because compression due to prestress-
ing is thought to place additional demands on the compression zone, reducing the
flexural deformation capacity. Recent tests, however, have demonstrated the bene-
ficial effect of prestressing on the cyclic behaviour of bridge piers: ultimate defor-
mation increases with prestressing and residual displacements decrease (Sakai et al.
2006, Inoue and Tanabe 2006).
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So, prestressing of bridge piers has received considerable attention in the draft
code of the Japan Prestressed Concrete Engineering Association for performance-
based seismic design of prestressed concrete bridges (JPCEA 2002).

The international literature contains very few cyclic tests on prestressed mem-
bers, mainly with square section and concentric prestressing. Their results are com-
pared below to the predictions of the models proposed in previous sections, after
appropriate modifications.

In the application of the model in Section 3.2.2.2 for the calculation of the yield
moment and curvature of prestressed members with rectangular compression zone,
any bonded tendons that are near the extreme tension fibres are included in the ratio
of tension reinforcement, ρ1, after weighing the cross-sectional areas of any rein-
forcement near the outermost tension fibres by the corresponding yield stress. The
same weighing is applied for the determination of the centroid of the tension rein-
forcement. Bonded tendons and non-prestressed reinforcement in the compression
zone and the web are elastic at yielding of the section. So, their cross-sectional areas
may be added without any weighing by the yield stress.

There are two alternatives for considering the effect of prestressing:

1. Prestress is considered as part of the actions, as in Serviceability Limit States:

– the action effects due to prestress are taken from the elastic analysis; in iso-
static (statically determinate) systems prestressing induces an axial force equal
to the total prestressing force, P (positive for compression) and a bending
moment equal to P times the eccentricity of the mean tendon, and

– bonded tendons are considered as an integral part of the section, working elas-
tically up to their available yield stress, which is equal to their full yield stress,
f0.01, minus the initial stress in the tendon, σ p.

2. The prestress is considered as part of the resistance: This is how bonded tendons
that yield are normally considered at the Ultimate Limit States:

– bonded tendons that yield are taken to contribute to the resistance as an integral
part of the section, working in the plastic range with their full yield stress, f0.01;

– bonded tendons that have not yielded are considered as in case (1) above, i.e.:

• they are taken to induce in the section an axial force and a bending moment
equal to the force and moment resultant of their prestressing, and

• they are considered to work elastically as an integral part of the section up
to their available yield stress, f0.01–σ p.

For either one of the two alternative considerations (1) and (2) above, the model
in Section 3.2.2.2 underestimates by 13.5% on average the yield moment, My, of
concentrically prestressed members. More important, Eq. (3.66) overestimates the
chord rotation at yielding, by 11% on average when prestress is taken as part of the
actions and by almost 50% when it is considered as part of the resistance. The scat-
ter of the predictions for chord rotations at yielding is large. These differences are
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carried over to the calculation of the secant stiffness to the yield-point through Eq.
(3.68). Its average test-to-prediction ratio is 1.50 if prestress is taken as part of the
actions and about 2.0 when it is considered as part of the resistance! The empirical
secant stiffness to the yield-point from Eq. (3.69) does not improve the predictions.

In view of the very small sample size, the magnitude of underestimation of
the yield moment of concentrically prestressed members by the models for non-
prestressed members is considered as acceptable. The same could be said for the
overestimation of the chord rotation at yielding, but only when prestress is taken as
part of the actions. These deviations, however, accumulate into a more significant
underestimation of the secant stiffness to the yield-point through Eq. (3.68), which
borders the unacceptable. It seems that the effects of the suppression of cracking
by the prestress along part of the member is not fully captured by considering an
axial force equal to the total prestressing force, P. Taking the prestress as part of
the resistance, or using the empirical secant stiffness to the yield-point, Eq. (3.69),
give very poor predictions both for the chord rotation at yielding and for the secant
stiffness to it.

The three versions of Eqs. (3.78) underestimate the flexure-controlled cyclic ulti-
mate chord rotation, θu, of five concentrically prestressed specimens by 7.5–8.5%
on average (with a coefficient of variation of the test-to-prediction ratio from 8.5 to
12.5%). The concentrically prestressed specimens may have exceeded the expeca-
tions of a formula fitted to conventionally reinforced members, because their ten-
dons are always in tension and do not buckle under cyclic loading. For this reason,
it seems appropriate to apply Eq. (3.72), based on the ultimate curvature, ϕu, from
Sections 3.2.2.4 and 3.2.2.10 and the plastic hinge length from Eq. (3.73b), with the
limit strain of tendons taken from Eq. (3.64a), for monotonic loading that does not
cause buckling of the tendons. However, the cyclic ultimate chord rotation in the five
tests is still underestimated by 9% on average (and with a coefficient of variation of
the test-to-prediction ratio of 35.5%).

Note that bending moments nowhere enter in the application of Eqs. (3.78) and
(3.72). So, if the prestress is taken as part of the resistance, there is no way to
take into account the bending moment induced by the bonded tendons that have
not yielded. Therefore, in the calculations of θu the prestress has been taken as part
of the action, even though bonded tendons close to the extreme tension fibres had
yielded before the ultimate flexural failure.

The very limited available test data suggest that concentric prestressing is ben-
eficial for the flexure-controlled cyclic ultimate chord rotation, θu. Moreover, the
recentring effect of concentric prestressing reduces the residual deformations, and
therefore damage, no matter whether the conventionally defined flexure-controlled
chord rotation capacity, θu, has been exceeded or not. If this capacity is not
exceeded, a member without any ordinary non-prestressed reinforcement and with
only concentric prestressing returns to about zero residual deformations. If there is
a combination of non-prestressed and prestressed reinforcement, the residual defor-
mation may be considered to decrease in proportion to the contribution of prestress-
ing (in percent) to the yield moment of the section, i.e. to the ratio My(Ap=0)/My,
where My(Ap=0) is the yield moment for presumed zero cross-sectional area of
prestressed reinforcement in the section.



3.2 Concrete Members 251

3.2.4 Behaviour of Members Under Cyclic Shear

3.2.4.1 Introduction: Brittle vs. Ductile Shear Behaviour

If it precedes flexural yielding, ultimate failure of concrete members in shear occurs
at relatively low deformations and is associated with a large drop in lateral load
resistance. So, it is considered as a “brittle” failure mode. Figure 3.35 depicts char-
acteristic shear failures of columns or walls in past earthquakes. A shear failure of a
stair flight acting as an inclined wall has been shown in Fig. 2.13(a).

Often concrete members that first yield in flexure may, under cyclic loading, ulti-
mately fail in a mode showing strong and clear effects of shear: diagonal cracks are
prominent and their width and extent increase during cycling, despite the gradual
drop of peak force resistance with cycling of the load. At the same time, phenomena
which are associated with flexure (e.g., a single wide crack at right angles to the
member axis at the section of maximum moment, disintegration of the compression
zone and/or buckling of longitudinal bars next to that section) may not be so pro-
nounced in such cases. By contrast, these phenomena (often including rupture of a
longitudinal bar) grow in magnitude when flexure-controlled ultimate deformation
approaches, while any diagonal cracks that may have formed initially decrease in
width and may even disappear owing to the drop of the force resistance with load
cycling after the flexure-controlled ultimate strength. Failure in shear under cyclic
loading after initial flexural yielding is termed “ductile shear” failure (Kowalsky and
Priestley 2000). It occurs only under cyclic loading, because shear strength degrades
faster with load cycling than flexural strength. It is normally associated with diag-
onal tension and yielding of the web reinforcement, rather than with web crushing
by diagonal compression.

The left-hand-side of Fig. 3.36 (Yoshimura et al. 2004) shows force-drift hys-
teresis loops of three columns with high longitudinal reinforcement ratio, ρ tot, and
low transverse steel ratio, ρw, failing in brittle shear before yielding in flexure. Their
right-hand-side companions have sufficiently low values of ρ tot to first yield in flex-
ure and then fail in “ductile shear” (the upper two columns) or in flexure (that at the
lower right corner).

Dimensioning of concrete members against brittle shear failure is a familiar sub-
ject, covered in current codes and standards for the design of concrete structures
under non-seismic action effects that increase monotonically until ultimate strength.
Relevant models are reviewed in the Section 3.2.4.2. Shear design of members in
new earthquake-resistant concrete buildings and seismic evaluation of existing ele-
ments in substandard ones should also consider the reduction of shear resistance
with cyclic loading below the monotonic value.

Several mechanisms may explain the degradation of shear strength during cyclic
loading:

1. The degradation of dowel action with cycling of the shear (see Section 3.1.3.1)
and with the accumulation of inelastic strains in the longitudinal bars.

2. The development of flexural cracks through the depth of the member and the
ensuing decreased contribution of the compression zone to shear resistance.
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Fig. 3.35 Shear failures of columns or walls (See also Colour Plate 9 on page 723)
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Fig. 3.36 Shear force-chord rotation behaviour for: (a) brittle shear; and (b) “ductile shear” or
flexural behaviour (adapted after Yoshimura et al. 2004)

3. The reduction of aggregate interlock along diagonal cracks, as their interfaces are
ground and become smoother with cycling; in addition, the cracks open up owing
to bond slippage and accumulation of inelastic strains in the stirrups crossing the
cracks.

4. The softening of concrete in diagonal compression due to accumulation of trans-
verse tensile strains.
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The degradation of shear strength during cyclic loading is normally associated
with diagonal tension and yielding of the web reinforcement, rather than with diag-
onal compression failure in the web. It has by now prevailed to quantify this failure
mode in terms of a shear resistance, VR, (as this is governed by web reinforcement
according to the well-established Mörsch-Ritter truss analogy) that decreases with
increasing (displacement) ductility ratio under cyclic loading (Kowalsky and Priest-
ley 2000, Moehle et al. 2001, Ascheim and Moehle 1992). The contributions to
shear strength decay listed above as 1–3 have to do with the contribution of con-
crete to shear resistance, i.e. with the term Vc normally added to the contribution
of transverse steel according to a 45◦-truss analogy, Vw. Degradation mechanisms
no. 3 and 4 involve also, be it indirectly, the contribution of transverse steel to shear
resistance, reflected in Vw.

Naturally the cyclic degradation of shear resistance is larger within flexural plas-
tic hinges, as it is there that:

– flexural cracks extend into wide and intersecting diagonal cracks,
– the compression zone suffers more damage and decreases in size,
– longitudinal bars develop inelastic strains, or even buckle, and lose most of their

effectiveness in dowel action, and
– (at the end section) the compression zone supports the diagonal strut of the truss

mechanism of shear resistance.

Consequently, the decay of shear strength with cycling takes place mainly in
concrete members that develop flexural plastic hinges before exhausting their shear
resistance. Therefore, the phenomenon is normally expressed quantitatively as a
reduction of shear strength with cyclic inelastic deformations, until the so-reduced
shear strength, VR, becomes less than the shear force corresponding to flexural yield-
ing, Vy = My/Ls. The member deformation where this takes place may be considered
as its deformation capacity, as governed by shear.

An alternative way to describe the phenomenon might be to consider that the
member develops a relatively ductile failure mode in shear after initially yielding in
flexure, but that its ultimate cyclic deformation capacity is less than in an – other-
wise similar – member with higher shear resistance but ultimately failing in flexure.
Such an approach might allow direct quantification of member cyclic deformation
capacity as governed by shear without recourse to a force-based criterion. However,
owing to:

– the lack of rational models for the ultimate deformation of concrete elements as
controlled by “ductile shear” failure, and

– the scarcity of sufficient data for the development of purely empirical alternatives,

the models proposed so far for the description of ultimate shear failure due to
cyclic deformations beyond flexural yielding use force-based criteria as outlined in
the previous paragraph and described in detail in Section 3.2.4.3. These criteria
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employ empirical corrections of the truss analogy model of shear resistance, to
incorporate the effect of cyclic degradation.

The experimental results in Fig. 3.37 (Ma et al. 1976) are typical of the evolu-
tion of shear phenomena under cyclic loading. They refer to a T-beam with Ls/h
= 3.9 subjected to symmetric cycles of tip deflection in sets of three cycles of the
same amplitude. Figure 3.37(a) displays the moment-(mean) curvature loops mea-
sured over a length of d/2 next to the beam end section. Figure 3.37(b) presents the
corresponding loops of shear force v mean shear strain up to a distance 0.3d from
the end section. Diagonal cracking occurred at a shear force of 50 kN (point A in
Fig. 3.37(c)). It is only after that stage that the stirrups were activated and shear
strains started developing. After flexural yielding of the end section, shear strains
grew rapidly with deflection cycles, although the peak force of the cycles remained
almost the same. As a matter of fact, shear strains increased from the 1st to the
3rd cycle of each set of three cycles, while the corresponding peak curvatures of
the cycle decreased (cf Fig. 3.37(a) and (b)). The gradual increase of shear strains
during cycling accelerated the activation of the stirrups, driving the one monitored
in Fig. 3.37(c) to yielding. Witness the small stress of that particular stirrup (about
25% of its yield stress) at the time the end section first yielded.

Similar is the behaviour of the 3-storey barbelled wall in Fig. 3.38 (Wang et al.
1975). It is reminded that walls are considered to resist flexure with the two well-
confined and heavily reinforced section edges, while the web in-between resists
the shear. The vertical bars in the web play of course a role for the behaviour and
resistance of the wall in flexure (see term ρv in Eqs. (3.35), (3.37), (3.38) and
(3.39) and ωv in Eqs. (3.57), (3.58), (3.59), (3.60), (3.61) and (3.62)). Moreover,
if the shear capacity provided by the web reinforcement is exhausted, the bound-
ary elements at the two ends of the section may contribute to shear resistance via
the dowel action of their large diameter bars, or, even, by acting themselves as big
dowels. Notwithstanding the presumed distinct and uncoupled roles of the web and
of the two boundary elements, flexural yielding at the base of the wall’s 1st or
2nd storey (see Fig. 3.38(a), or (b), respectively) triggers the onset of significant
inelastic shear deformations over the entire 1st or 2nd storey, respectively (see Fig.
3.38(c) and (d)). Ultimate failure of that wall took place in shear at the 1st storey,
while the moment-curvature response in the 1st and 2nd storeys was very stable
(see Fig. 3.38(a) and (b)). Besides the gradual degradation of shear resistance due
to inelastic cyclic deformations, Figs. 3.37(b) and 3.38(c), (d) display the shape of
force-deformation loops typical of shear behaviour. Unlike the ones in flexure in
Figs. 3.25, 3.26, 3.28, 3.34, 3.37(a), 3.38(a) and (b), the loops in Figs. 3.37(b) and
3.38(c), (d), become almost flat upon unloading to zero force and remain so until
a steep but late increase in stiffness while the wall reloads in the reverse direc-
tion. The end result is a narrow and inverted-S V-γ loop, with very little energy
dissipation.

The inverted- S shape of the V-γ loop derives from the following mechanism:
Because of dislodgement of aggregates along the diagonal cracks and of inelastic
strains in stirrups that have yielded in tension, diagonal cracks do not close imme-
diately after reversal of the shear force. Significant reverse shear deformation needs
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.38 3-storey wall (adapted from Wang et al. 1975): (a), (b): M-ϕ loops next to the base of 1st
and 2nd storey; (c), (d): V-γ loops over 1st and 2nd storey; (e) loops of base moment vs fixed-end
rotation due to bar pull-out from the anchorage in the footing; (f) base shear vs. top deflection

to be applied, to suppress the inelastic tensile strains in the stirrups and force the
cracks to fully close and develop compressive stresses normal to their face. Espe-
cially when their geometric ratio, ρw, is low, stirrups present little stiffness until the
crack closes. When that happens, a steep increase in stiffness takes place.
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The small energy dissipation capacity of the shear mechanism of force transfer
in cyclic loading and the steady accumulation of inelastic shear deformations in
constant-amplitude cycling of the shear force suggest that the behaviour in shear
does not possess the stability and dissipation capacity required for ductile behaviour
under cyclic loading. Moreover, ultimate failure in shear takes place either by prop-
agation of diagonal cracks into the compression zone, causing its disintegration, or
by diagonal web crushing in compression. In both cases failure is abrupt and catas-
trophic and cannot be prevented or mitigated by confinement. For all these reasons,
shear should be confined in the elastic region. Capacity design rules in shear aim at
exactly that. For the same reason, what is primarily of interest for concrete members
in shear is their cyclic shear resistance and not their (anyway small) inelastic shear
deformations.

3.2.4.2 Fundamental Models for Shear Resistance in Monotonic Loading

The Variable Strut Inclination Truss of the CEB/FIP Model Code 90 and
Eurocode 2

CEB/FIP Model Code 90 (CEB 1991) and Eurocode 2 (CEN 2004b) have adopted
for shear resistance the variable strut inclination truss model – strictly speaking, a
model with variable angle of inclination, δ,16 of the compression stress field in the
web with respect to the member axis. According to this model (Walraven 2002), a
concrete member with:

– longitudinal reinforcement, typically concentrated at two “chords” at the ends of
the section, and

– reinforcement transverse to the axis, with geometric ratio ρw

equilibrates a shear force V through a statically determinate “truss” mechanism com-
prising:

1. a compressive stress field in the concrete, at an angle δ to the member axis;
equilibrium gives the compression stress in the concrete as: σ c = 2V/(bwzsin2δ);

2. a tensile stress in the transverse reinforcement equal to Vtanδ/(ρwbwz), where bw

is the width of the web and z is the internal lever arm between the two “chords”;
this stress amounts to a tension force per unit length of the member equal to
Vtanδ/z;

3. a tension force of Vcotδ in the longitudinal reinforcement.

Diagonal cracking first takes place at about 45◦ to the member axis. At that time
the compression stress field is parallel to the cracks and at an angle to the mem-
ber axis δ ≈ 45◦. So long as the web has sufficient strength to resist the compres-

16The symbol δ is used here instead of the symbol θ normally used for the angle of inclination, to
avoid confusion with chord rotations.
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sive stress field, the member can sustain yielding of the transverse reinforcement
at its yield stress, fyw, and develop a further increased shear resistance at a steadily
decreasing inclination of the new cracks and of the compression field, δ, with respect
to the member axis:

VR,s = ρwbwz fyw cot δ (3.94)

Shear resistance increases with the rotation of the compression field, until either
one of the following possibilities takes place:

i. The tension chord yields, as its tensile force increases owing both to the increase
of the loading and the decrease of the inclination δ. If the member is also sub-
jected to a bending moment, M, and an axial force N (positive for compression),
and the longitudinal reinforcement is concentrated at two “chords” at the ends
of the section, the force in the tension chord is: M/z + 0.5(Vcotδ – N). The shear
force at yielding of a tension chord with cross-sectional area As1 and yield stress
fyL is:

VR,L = 2
(

Asl fyL − M/z + N/2
)

tan δ (3.95)

ii. The web concrete fails in diagonal compression, as the compressive stresses in
the web also increase owing both to the reduction of δ and the increase of V.
Note that the compressive strength of concrete at an angle δ to the member axis
is less than its uniaxial compressive strength, fc, because of the tensile stresses
and strains in the orthogonal direction (namely those associated with yielding
of the transverse reinforcement and the tensile stresses in the concrete between
adjacent diagonal cracks). The reduced strength of concrete is taken equal to
nfc,

17 with:

n = 0.6

(
1 − fc(M Pa)

250

)
in Eurocode 2 (CEN 2004b) or Model Code 90 (CEB 1991)

(3.96a)

n = 0.7

(
1 − fc(M Pa)

200

)
in the AIJ Guidelines (AIJ 1994) (3.96b)

So, the shear resistance at diagonal compression failure of the web is:

VR,max = 0.5bwz(n fc) sin 2δ (3.97)

According to Eq. (3.94), a low value of δ gives less transverse reinforcement, as
the shallower crack intersects and activates more stirrups. According to Eq. (3.95),

17The symbol n is used here instead of the symbol v used in both Eurocode 2 and CEB/FIP Model
Code 90, to avoid confusion with the normalised axial force v = N/Acfc.
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however, it is more demanding for the chords in tension and, according to Eq. (3.97),
for the inclined compression stress field as well.

The shear resistance normally attains its maximum value when the web con-
crete fails in diagonal compression, while the transverse reinforcement has already
yielded (case ii above). The condition VR,s = VR,max gives the following lower limit
for the inclination angle, δ (Walraven 2002):

sin δ =
√
ωw

n
, tan δ =

√
ωw
n

1 − ωw
n

(3.98)

where ωw ≡ ρwfyw/fc is the mechanical ratio of transverse reinforcement. At this
limit value of δ the dimensionless shear resistance is:

υR = VR

bwz fc
=
√
ωw(n − ωw) (3.99)

Although less common than case ii, case i above may also lead to shear failure.
The condition VR,s = VR,L gives the following limit value of δ:

tan δ =
√

ωw

2(ω1 − μ) + ν
(3.100)

where ω1 ≡ As1fyL/(bwzfc) is the mechanical ratio of tension reinforcement and μ ≡
M/(bwz2fc), ν ≡ N/(bwzfc) are the dimensionless bending moment and axial force,
respectively (using in all normalisations the internal lever arm, z, in lieu of the effec-
tive depth). At this value of δ the dimensionless shear resistance is:

υR = VR

bwz fc
=
√
ωw(2(ω1 − μ) + ν) (3.101)

Even less common is a failure mode where the tension chord yields first, fol-
lowed by diagonal compression failure of the web concrete while the transverse
reinforcement stays elastic. The condition VR,max = VR,L gives the following upper
limit for δ:

cos δ =
√

2(ω1 − μ) + ν

n
, tan δ =

√
n − 2(ω1 − μ) − ν

2(ω1 − μ) + ν
(3.102)

and a dimensionless shear resistance of:

υR = VR

bwz fc
=
√

(n − 2(ω1 − μ) − ν)(2(ω1 − μ) + ν) (3.103)

The variable strut inclination truss model is rational, transparent and consis-
tent with the strut-and-tie approach for the Ultimate Limit State (ULS) design of
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two-dimensional concrete regions (including discontinuities of geometry, supports
and regions with concentrated forces). So there is smooth transition between such
regions and adjacent prismatic ones. Accordingly, in Europe it is the basis of the
provisions for calculation of shear resistance of concrete members at the ULS. The
designer is allowed to choose the value of δ in the range:

– in Eurocode 2 (CEN 2004b):

0.4 ≤ tan δ ≤ 1 (22◦ ≤ δ ≤ 45◦); (3.104a)

– in the CEB/FIP Model Code 90 (CEB 1991):

1/3 ≤ tan δ ≤ 1(18◦ ≤ δ ≤ 45◦) (3.104b)

Eurocode 2 and CEB/FIP Model Code 90 consider that a compressive axial force,
N, contributes to shear resistance according to the following mechanism. Shear force
goes together with bending moments. In the common case of a column in counter-
flexure, the axial force N will be equilibrated at the two end sections by concrete
compressive stress blocks that develop at opposite ends of these two sections.18 The
axial force N is transferred, therefore, from the compressive stress block at one end
section to that at the other end via a diagonal compression strut (Fig. 3.39(a), left).
The component of the strut force parallel to the column axis is equal to N, while the
component transverse to the axis is equal to VN = N(z1+z2+d1–d)/L where z1 and
z2 are the internal lever arms at the two end sections, d1 = h–d and L is the clear
column length. This internal force is in the opposite sense with respect to the acting
(external) shear force. So, it can be considered as the contribution of the diagonal
compression strut to the shear resistance of the column. In the common case that the
two ends have about the same acting moment and cross section reinforcement, this
contribution is: VN = N(h–x)/L where x is the neutral axis depth of the end sections
at flexural yielding (computed as x = ξ yd, with ξ y from Section 3.2.2.2). The rest of
the shear force, V–VN, is resisted by the internal truss mechanism with a (variable)
strut inclination δ (Fig. 3.39(a), right). The normal stress component σ = N/bw(h–x)
in the strut acts together with the compression field of the truss, which is equal to
2(V–VN)/(bwzsin2δ) and is at an angle δ to the column axis.

As shown in Fig. 3.40, for monotonic loading the variable strut inclination
truss model gives a safe-side bound of test results on beams failing by diagonal
compression of the web after yielding of the transverse reinforcement (Walraven
2002). In Fig. 3.40(b) the beneficial effect of the (compressive) prestressing force
on shear resistance is taken into account at the same time as the adverse effect of the
superposition of the normal stress component in the strut due to prestress with the

18Being symmetrically reinforced, each end section will resist the bending moments there through
approximately equal and opposite forces in the two “chords”, that produce no net contribution to N.
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Fig. 3.39 Shear resistance model: (a) according to (CEB 1991); (b) according to (AIJ 1994)

(a) (b)

Fig. 3.40 Comparison of Eq. (3.99), subject to the limits of Eq. (3.104a), to monotonic shear
resistance data: (a) reinforced beams with rectangular or T-section; (b) prestressed T- or I-beams
(Walraven 2002)
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compression field of the truss, by multiplying the shear resistance at diagonal com-
pression failure in the web by the following empirical factor given in Eurocode 2:

ac = min[1.25; (1 + v); 2.5(1 − v)] (3.105)

where ν is the normalised axial compression, in this case due to the prestress: ν =
P/Acfc.

The variable strut inclination approach is a generalisation of the classical
Mörsch-Ritter truss, where δ = 45◦. The 45◦-truss is still the basis for shear design
in the US (ACI 2008). In such an approach, transverse reinforcement is dimen-
sioned to take a tensile force per unit length along the member axis equal to
(V–Vc)/z, instead of the value Vtanδ/z of the variable strut inclination truss model.
The Vc term replaces the increase in the contribution of stirrups to shear strength,
VR,s, according to Eq. (3.94) as the strut inclination decreases from δ = 45◦ to a
lower value. It is considered as the “concrete contribution to shear resistance”. Its
physical basis is claimed to be the contributions to the truss model of shear resis-
tance of:

– the uncracked compressive zone;
– aggregate interlock along open diagonal cracks (considered at an angle δ = 45◦);
– dowel action of the longitudinal bars; and
– the tensile strength of concrete between diagonal cracks.

As it is not feasible to quantify the contribution of each one of the above four
mechanisms in terms of the corresponding parameters, the Vc term is just the differ-
ence between:

– the experimentally measured shear resistance, and
– the contribution of transverse reinforcement calculated from Eq. (3.94) with δ =

45◦, plus any contribution of the axial force N.

So the value of Vc is commonly given by empirical or semi-empirical expressions
in terms of all other parameters that seem to significantly affect shear resistance.
Recall in this connection the Eurocode 2 empirical expression, Eq. (3.67), for the
shear resistance of concrete members without shear reinforcement, VRc.

The Truss Plus Diagonal Strut Model of the AIJ Guidelines

The approach of the Guidelines of the Architectural Institute of Japan (AIJ 1994)
for the shear resistance of concrete members under cyclic loading is the most fun-
damental in all codes or standards for earthquake-resistant design of concrete struc-
tures. In this approach shear resistance is taken as the sum of contributions from two
mechanisms:

– a “variable strut inclination” truss, as in Eurocode 2 (CEN 2004b) and Model
Code 90 (CEB 1991); and



264 3 Concrete Members Under Cyclic Loading

– a diagonal strut between the two end sections of the member, considered in skew
symmetric bending (i.e. with length L twice the shear span Ls).

The contribution of the truss mechanism to shear resistance is considered to be
controlled by the transverse reinforcement according to Eq. (3.94). A compression
field at an angle δ to the member axis equal to: σ c = 2Vw/(bwzsin2δ) = ρwfyw/sin2δ

is necessary, to support this contribution to shear resistance. The stress σ c uses up
part of the reduced diagonal concrete strength, nfc (see Eqs. (3.96) for the reduction
factor n). Neglecting the different orientations of the diagonal strut and of the com-
pression field of the truss mechanism, the effective compressive strength available to
the diagonal strut is nfc–ρwfyw/sin2δ. The AIJ Guidelines assume the diagonal strut
to take up half of the cross-sectional depth h in the direction of the shear force, no
matter the width of the compression zone due to flexure. The strut inclination with
respect to the member axis, φ, is such that:

tanφ =
√(

2Ls

h

)2

+ 1 − 2Ls

h
≈ h/4Ls. (3.106)

In the end the maximum compressive force that the diagonal strut can develop has
a component transverse to the member axis equal to 0.5bwh(nfc–ρwfyw/sin2δ)tanφ,
which is the strut contribution to shear resistance. Therefore, the total shear resis-
tance is:

VR = ρw fywbwz cot δ + 0.5bwh[n fc − ρw fyw(1 + cot2 δ)] tanφ (3.107)

An upper limit is set for the value of cotδ, equal to the smallest of the three
values:

– cot δ ≤ 2 (δ ≥ 26.5)◦ (3.108a)

for a positive term in brackets in Eq. (3.107):

– cot δ ≤ √
(n fc/ρw fyw − 1) (3.108b)

– cot δ ≤ z(h tanφ) ≈ 4ζ Ls/h (3.108c)

(with ζ = z/h), which gives the maximum possible shear resistance from Eq.
(3.107).

The effect of inelastic cyclic deformations on the shear strength of plastic hinge
regions is taken into account:

– by replacing the limit of Eq. (3.108a) with:

cot δ ≤ max(1; 2 − 50θpl) (3.108d)
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– by reducing the value of n from Eq. (3.96b) to:

n = 0.7

(
1 − fc(M Pa)

200

)
max

(
0.25; 1 − 15θpl

)
(3.109)

where θpl is the plastic hinge rotation: θpl = (μθ–1)θy, with μθ denoting the
demand value of the displacement or chord rotation ductility factor.

3.2.4.3 Models of Cyclic Resistance in Diagonal Tension After Flexural
Yielding

At pointed out in Section 3.2.4.1, after flexural yielding the shear strength degrades
in the plastic hinge with increasing cyclic inelastic deformations. It has also been
noted that this phenomenon is normally expressed quantitatively as a reduction of
shear strength with cyclic inelastic deformations, until the so-reduced shear strength,
VR, drops below the value of shear force corresponding to flexural yielding, Vy =
My/Ls.

Several models have been proposed for the cyclic decay of the strength of con-
crete members for diagonal tension failure (Kowalsky and Priestley 2000, Moehle
et al. 2001, Ascheim and Moehle 1992, Biskinis et al. 2004). They all recognise
a contribution of transverse reinforcement to shear resistance, VRs, and a separate
concrete contribution, Vc.

The “Revised UCSD model” model in Kowalsky and Priestley (2000) has been
developed on the basis of 18 circular columns that failed in shear after yielding in
flexure. Predictions also compare well to the strength of 20 circular columns yield-
ing and failing in shear and are compatible with the strength of 9 circular columns
failing in flexure.

As in the CEB/FIP Model Code 90, the model in Kowalsky and Priestley (2000)
includes the contribution of the column axial force to shear resistance as a distinct
mechanism, giving a shear resistance:

VR = N
h − x

2Ls
+
√

fck (μθ ) min

(
1.5, max

(
1; 3 − Ls

h

))
min (1; 0.5 + 20ρtot ) (0.8Ac) + VRs (units: MN, m)

(3.110)

where:

– ρ tot is the total ratio of longitudinal steel, reflecting in this case dowel action,
– Ac is taken equal to πDc

2/4 (with Dc: diameter of concrete core inside the hoops),
– h is the depth of the cross-section (equal to the diameter D in circular sections),
– N is the axial load (positive for compression),
– x is the neutral axis depth at flexural yielding (x = ξ yd, with ξ y from Section

3.2.2.2), and
– Ls/h = M/Vh is the shear span ratio at the member end, reflecting the arch mech-

anism of shear resistance.
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Shear strength degradation due to cyclic deformations of the shear span up to a
chord rotation ductility ratio μθ

19 is taken into account through the coefficient k(μθ)
in the concrete term Vc:

k(μθ ) = 1.07 − 0.115μθ
3

, 0.05 ≤ k(μθ ) ≤ 0.28 (3.111)

Equations (3.110) and (3.111) have been developed for circular columns with the
contribution of transverse steel, VRs, taken as:

VRs = π

2

Asw

sh
fyw(D − x − c) cot δ (3.112)

where Asw denotes the cross-sectional area of a circular hoop, sh its spacing and c
its concrete cover. In the “revised UCSD model” the truss inclination is taken as:
δ = 30◦.

Although originally developed for columns with circular section, Eqs. (3.110)
and (3.111) are often applied to rectangular sections as well, using for VRs Eq. (3.94)
with z = d–x, δ = 30◦, and replacing the term 0.8Ac by bwd (where bw is the width of
the web and d the effective depth). In that case it overestimates the shear resistance
of rectangular columns by about 20%, of rectangular walls by about 10% and of
non-rectangular walls or hollow rectangular piers by about 30% (Biskinis 2007,
Biskinis et al. 2004).

In the most recent one of the family of models by Moehle and co-workers for
rectangular columns (Moehle et al. 2001), the contribution of axial compression to
shear resistance is accounted for in the Vc term and not as a separate mechanism
(cf. 1st term in Eq. (3.110)). More important, the reduction of shear strength with
cyclic deformation is considered to affect both the VRs and the Vc terms, which are
multiplied by the same coefficient k(μθ) (Moehle et al. 2001):

VR = k (μθ ) (Vc + VRs) ; Vc = 0.5
√

fc

(√
1 + N

0.5
√

fc Ac

)
Ac

d

Ls
(units: MN, m)

(3.113a)

k(μθ ) = 1.15 − 0.075μθ, 0.7 ≤ k(μθ ) ≤ 1.0 (3.113b)

where Ac = bwd, for cross-sections with rectangular web of width bw and effective
depth d. The part of the Vc term multiplied by d/Ls in Eq. (3.113a) is the product of
the gross section area and the principal tensile stress at diagonal cracking, computed
on the basis of a postulated concrete tensile strength of 0.5

√
fc. For beams, rectan-

gular columns, rectangular walls or barbelled, T-, H- or hollow rectangular sections
the contribution of transverse reinforcement, VRs, is taken from Eq. (3.94), with

19In members the chord rotation ductility factor, μθ, is the same as the displacement ductility
factor.
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δ = 45◦, as in the classical Ritter-Mörsch truss analogy. In circular columns VR,s

may in this case be taken from Eq. (3.112), but with δ = 45◦ and (D–x–c) replaced
by (D–2c).

Equations (3.113) agree well, on average, with the experimental results on rect-
angular columns, but underestimate the shear resistance of circular ones by almost
20% and of rectangular walls by about 10%, while it overestimates that of non-
rectangular walls or hollow rectangular piers by about 15% (Biskinis 2007, Biskinis
et al. 2004).

Note that in Eqs. (3.110) and (3.111) the Vc term is constant and equal to 18% of
its value for zero ductility demand, when the value of μθ exceeds 8. According to
Eq. (3.113b), it is for values of μθ above 6 that the entire shear resistance VR attains
its minimum value of 70% of that for zero ductility demand. The difference in the
limiting value may be attributed to:

– the reduction of the entire shear resistance with increasing μθ in Eq. (3.113a),
whereas only one term out of three is taken to decrease with increasing μθ in
Eqs. (3.110) and (3.111); and

– the relative small magnitude of the only term that decreases with μθ in Eq.
(3.110), owing to the adoption of a value δ = 30◦ for the truss inclination δ
in Eqs. (3.94) and (3.112).

In both models above, μθ is derived from the experimental θy, which is not
known a-priori in practical applications. This may be considered as a weakness.

The models proposed in (Biskinis et al. 2004, Biskinis and Fardis 2004, Biskinis
2007) and adopted in Part 3 of Eurocode 8 (CEN 2005a) are based on the largest
database of cyclic tests of members failing by diagonal tension after yielding in
flexure: 70 circular columns, 192 rectangular beams/columns, 12 rectangular walls
and 26 hollow rectangular piers or non-recangular walls. The range of important
parameters in these tests are:

– v = N/Acfc: –0.01–0.85;
– Ls/h: 0.5–6;
– ρ tot: 0.55–5.5%;
– fc: 13–113 MPa;
– μθ: 1.0–9.5.

In these models the resistance in diagonal tension, VR, is taken a function of μθ
pl

= (μθ–1), computed as the ratio of the plastic part of the chord rotation at ductile
shear failure (: total chord rotation minus experimental yield value) to the yield
chord rotation, θy, from Eqs. (3.66), instead of the experimental θy. In this way μθ

pl

is not affected by the flexibility of the base of some test specimens, which increases
the measured pre-yield deflection but affects very little the post-elastic deformations
of the specimen itself. Similar to Eq. (3.110) of Kowalsky and Priestley (2000), the
axial compression N is taken to affect shear resistance according to the CEB/FIP
Model Code 90 (CEB 1991), but the effect of axial tension is neglected. As in Eqs.
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(3.110) and (3.113a),
√

fc appears in the Vc term, reflecting the tensile strength of
concrete.

In the first one of two models only the Vc term is taken to degrade with inelastic
cyclic displacements (cf. Eq. (3.110)). With units: MN, m, this model is:

VR = h − x

2Ls
min (N ; 0.55Ac fc) + 0.16

(
1 − 0.095 min

(
5; μpl

θ

))

max(0.5, 100ρtot )

(
1 − 0.16 min

(
5;

Ls

h

))√
fc Ac + VRs

(3.114a)

In the other model both Vc and the contribution of VRs degrade with cyclic μθ :

VR = h − x

2Ls
min (N ; 0.55Ac fc) +

(
1 − 0.05 min

(
5; μpl

θ

))
[

0.16 max(0.5; 100ρtot )

(
1 − 0.16 min

(
5;

Ls

h

)) √
fc Ac + VRs

]
(3.114b)

VRs is taken with δ = 45◦ and as for Moehle et al. (2001): in circular columns
from Eq. (3.112) with (D–x–c) replaced by (D–2c) and for all other sections from
Eq. (3.94).

Both Eqs. (3.114a) and (3.114b) agree very well with the data and are practi-
cally equivalent as far as scatter is concerned. Their test-to-prediction ratio in 300
cyclic tests to diagonal tension failure has median of 0.995 and coefficients of varia-
tion of 15.5% or 14.6%, respectively. For comparison, the median test-to-prediction
ratio for Eqs. (3.110) or (3.113) is 0.83 or 1.015, respectively, and the coefficient of
variation of both is about 25%.

Equations (3.114) are also in good agreement with three cyclic tests on pre-
stressed specimens, failing by diagonal tension after flexural yielding. In this cal-
culation the prestress can only be taken as part of the actions, even though bonded
tendons near the extreme tension fibres may yield, when the member’s end section
yields before ultimate failure in shear. The prestress cannot be taken as part of the
resistance, because bending moments nowhere enter in this calculation and hence
the bending moment induced by the bonded tendons that have not yielded cannot be
taken into account.

According to Eqs. (3.114), beyond μθ = 6 there is no further decay of shear
strength. For μθ > 6 the Vc term in Eq. (3.114a) assumes a constant value equal to
52.5% of that at μθ = 1. In Eq. (3.114b) for μθ > 6 the sum of Vc and VRs attains a
constant value of 75% that at μθ = 1.

Equations (3.110), (3.111), (3.112), (3.113) and (3.114) can be conveniently used
to assess whether a member that initially yields in flexure may ultimately fail in
shear by diagonal tension at a cyclic deformation less than that at failure by flexure.
In principle, they can also be inverted to estimate the cyclic deformation capacity
of members failing by diagonal tension after flexural yielding: by setting the shear
resistance VR equal to the shear force, My/Ls, at flexural yielding, solving for μθ
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and estimating the shear-controlled chord rotation capacity as μθ times θy, from
Eqs. (3.66). However, the sensitivity of VR to μθ is not sufficiently large to allow
using this force-based criterion to predict the deformation capacity as controlled by
shear. So, the predictive capability of the inverted procedure is poor (Biskinis 2007,
Biskinis et al. 2004).

3.2.4.4 Inclination of Compression Stress Field at Ductile Shear Failure
Under Cyclic Loading

The method of choice in Eurocode 2 (CEN 2004b) for the design of concrete ele-
ments in shear is the “variable strut inclination” model, Eqs. (3.94), (3.95) and
(3.97), along with Eqs. (3.96a) and (3.104a). Eurocode 8, conforms to the Eurocode
2 framework and uses Eq. (3.94), that includes a term proportional to cotδ but no
Vc term. According to Eurocode 8, columns and walls of DC H (High) buildings,
as well as any member of a DC Medium (M) building, may be dimensioned for an
angle δ of the compression diagonals as low as δ = 22◦ (cot δ = 2.5).The beams
of DC H buildings should be dimensioned in shear for δ = 45◦ (i.e. with a classical
45◦ truss and no Vc term).

The data used for the fitting of Eqs. (3.114) have also been utilised in (Biskinis
2007, Biskinis et al. 2004) to compute the value of δ at which the sum of N(h–
x)/2Ls and VRs from Eq. (3.94) is equal to the experimental shear resistance. The
outcome for the 300 tests is depicted in Fig. 3.41 as a function of the chord rota-
tion ductility factor, μ, at failure. Figure 3.41 shows a tendency of the angle δ to
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Fig. 3.41 Experimental data on the dependence of the strut inclination δ on chord rotation ductility
ratio, for cyclic loading after flexural yielding (Biskinis 2007, Biskinis et al. 2004)
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increase on average with increasing μ, from a value well below the Eurocode 2
lower limit of δ = 22◦ for μ = 1. However, as important parameters reflected in
the Vc term of Eqs. (3.110), (3.113) and (3.114) are missing, the scatter is very
large. So, any attempt to fit the angle δ as a function of μθ is meaningless. An
approximate 5%-fractile line is drawn in Fig. 3.41, extending from the Eurocode
2 lower limit of δ = 22◦ for μ = 1, to δ = 45◦ for μ = 2.5. This line may be
considered to give a very safe-sided estimate of shear strength for design purposes.
So, despite the merits of the “variable strut inclination” method for shear design
against monotonic loads, a classical 45◦-truss model with a Vc term that depends on
displacement ductility demand, seems to be a better means for the design of con-
crete members against diagonal tension failure under cyclic loading after flexural
yielding.

3.2.4.5 Degradation with Cyclic Loading of the Diagonal Compression
Strength of Walls

Squat shear walls subjected to cyclic loading in the lab or in the field may fail in
shear by diagonal compression, often after flexural yielding. Over 50 wall or hollow
rectangular piers (all with shear span ratio, Ls/h, less or equal to 2.5) have been found
in the literature as having failed by shear compression under cyclic loading (Biski-
nis 2007, Biskinis et al. 2004). Most of them failed in shear after they had yielded
in flexure, but a total of 18 specimens (walls with barbelled or T-section or hollow
rectangular piers) failed before flexural yielding. Figure 3.42 shows that the cyclic
shear resistance of these walls decreases when their inelastic deformations increase.

Fig. 3.42 Experimental shear resistance of squat walls for web diagonal compression, as a fraction
of the shear resistance from Eqs. (3.97), (3.98) and (3.99), using the concrete strength reduction
factor of Eurocode 2 and Model Code 90, Eq. (3.96a)
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More important, it is generally much less than the shear resistance of walls in diag-
onal compression of the web for monotonic, non-seismic actions from Eqs. (3.97),
(3.98), (3.99) and (3.96a) (CEN 2004b, CEB 1991). The cyclic shear resistance of
these walls is less than the monotonic value in (CEN 2004b, CEB 1991), even when
shear failure occurs before flexural yielding (μθ = 1 in Fig. 3.42). It seems there-
fore, that the Eurocode 2 design rules are not safe for shear compression failure of
squat walls under cyclic loading. For this reason in Part 1 of Eurocode 8 the value
of VR,max of ductile walls in DC H buildings is just 40% of the value in Eurocode 2,
Eqs. (3.96a) and (3.97). As shown in Fig. 3.42, that value is a 5%-fractile.

A purely empirical model for the cyclic degradation of the shear strength in diag-
onal compression has been fitted in (Biskinis 2007, Biskinis et al. 2004) to the data
that have been used in Fig. 3.42. In addition to μθ

pl = μθ–1, expressing the effect
of inelastic cyclic displacements, statistically significant parameters for the shear
strength in cyclic diagonal compression are those included in the Vc term of Eqs.
(3.114) plus the axial force. Most specimens in the database failed around the value
of δ that maximises VR,max in Eq. (3.97): δ = 45◦. So, the model is based on the clas-
sical 45◦ truss. For units MN, m, it gives the cyclic decay of diagonal compression
strength as (Biskinis 2007, Biskinis et al. 2004):

VR,max = 0.85
(

1 − 0.06 min
(

5; μpl
θ

)) (
1 + 1.8 min

(
0.15;

N

Ac fc

))

(1 + 0.25 max (1.75; 100ρtot ))

(
1 − 0.2 min

(
2;

Ls

h

))
√

min ( fc; 100)bwz

(3.115)

The internal lever arm z is taken as z = 0.8lw for rectangular walls and z = d–d1

for walls with barbelled or T-section and in hollow rectangular piers.
Equation (3.115) fits the data with a median test-to-prediction ratio of 1.01 and

a coefficient of variation of 17.6% (Biskinis 2007). The data fitted include the 18
cyclically loaded walls with barbelled or T-section or hollow rectangular piers fail-
ing in shear compression prior to yielding in flexure. Therefore, it may be con-
sidered to hold also (with μθ

pl = 0) for failure in cyclic shear before flexural
yielding.

Equation (3.115) has been adopted in Part 3 of Eurocode 8 (CEN 2005a).
Being fully empirical, it applies strictly within the range of parameter values in the
fitting:

– Ls/h from 0.5 to 2.4 (squat walls),
– N/Acfc from 0 to 0.18,
– ρ tot from 0.5 to 3%,
– fc from 16.5 to 137 MPa,
– μθ from 1 to 7.5.
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3.2.5 Cyclic Behaviour of Squat Members, Controlled
by Flexure-Shear Interaction

3.2.5.1 Introduction

Short columns (including captive ones, see Section 2.1.13.4), deep beams and squat
walls have low shear span ratio, M/Vh. During earthquakes short columns develop
nearly equal and opposite bending moments at their ends. The same holds in short
beams, because their end moments due to gravity loads are normally very small. So,
the shear span ratio of short columns or beams is equal to 0.5L/h, where L is the
clear length and h the depth of their section. The bending moment diagram of squat
walls is affected little by any beams framing into them. So their shear span ratio at
the base is between 0.5Hw/lw and 2/3(Hw/lw), where Hw is the total height of the
wall.

For given cross-sectional dimensions and longitudinal reinforcement, hence for
given moment resistance, the shear force increases with decreasing shear span ratio.
Moreover, low shear span ratio elements have a two-dimensional geometry. So it
is not possible to distinguish between their end regions, governed by flexure, and
the rest of their length, where (the constant) shear force controls the resistance and
the behaviour. As a matter of fact, if we ignore that the short length of the member
– compared to its depth – invalidates the simple models applicable to prismatic
elements, we may be surprised at first sight by some conclusionst. For example, if
the usual fan pattern of cracking and of the compression field near the member’s end
regions extends up to mid-length, x = L/2, then, if the corresponding value of the
inclination of the compression field at x = L/2: cotδ = L/z is used for the forces in
the chords: Ft(x) = M(x)/z+0.5Vcotδ (see Section 3.2.4.2 under The Variable Strut
Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2), we get:

– at the mid-section, x = L/2: a tensile force in both chords equal to that at the end
sections: Ft = M(x=0)/z,

– at the end sections x = 0 and x = L: zero force in one chord, instead of the
compressive force Ft = –M(x = L)/z expected there on the basis of flexure
alone.

So, the stress in the tension longitudinal reinforcement should drop from σ s = fy
at x = L/2, to σ s = 0 at x = L, inducing very high bond demands on the length of the
bars between these two sections. Unless another failure mode develops first, splitting
cracks may form all-along the corner bars of short concrete members subjected to
cycling loading.

Figure 1.2(a) in Section 1.3.1 shows the load-deformation response of an ele-
ment with Ls/h = 1.9 under monotonic loading. Soon after the monotonic ultimate
strength is reached, resistance drops drastically. In cyclic loading, hysteresis loops
are narrow and have inverted-S shape, with a tendency to tilt and shrink further
with cycling. The ultimate deformation is low and the displacement ductility factor
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at member failure is not much larger than 1.0. The behaviour is not ductile and is
strongly affected (or even governed) by shear.

3.2.5.2 Monotonic Lateral Force Resistance of Squat Members
with Flexure-Shear Interaction

As pointed out in Section 3.2.1, if the shear span ratio is low the mechanisms of
force transfer by shear or flexure essentially merge into a single one. Diagonal com-
pression in the concrete plays a prime role in this joint mechanism. A good starting
point for the understanding of the mechanism of force transfer and of ultimate fail-
ure of low shear span ratio elements is the shear resistance model in AIJ (1994),
outlined in Section 3.2.4.2 under The Truss Plus Diagonal Strut Model of the AIJ
Guidelines. That model, though, has certain limitations:

1. the assumption that the diagonal compression strut takes up one-half of the mem-
ber depth, h, is arbitrary;

2. the effect of axial load is ignored;
3. concrete stresses in the diagonal strut are directly added to those in the compres-

sion field of the truss mechanism, although they do not act in the same direction,
but at angles φ and δ to the member axis, respectively.

An important feature of the AIJ model is that the diagonal compression strut
acting between the compression zones at the two end sections resists, via its force
component that is transverse to the member axis, a certain part of the shear force (cf.
term N(h–x)/2Ls in Eqs. (3.110) and (3.114)). The rest of the shear force is resisted
through the familiar truss mechanism comprising:

– the two parallel chords,
– the stirrups, and
– the concrete compression field at an inclination δ to the member axis.

The AIJ model for shear resistance of relatively slender elements without effect
of the axial force (Section 3.2.4.2 under The Truss Plus Diagonal Strut Model of the
AIJ Guidelines) is extended below to squat elements with axial compression:

(a) by taking into account the contribution of the axial load, N, and
(b) by considering that at the two end sections the diagonal strut extends over the

neutral axis depth there at flexural yielding (i.e., it is equal to: x = ξ yd, with
ξ y from Section 3.2.2.2 under Cross-Sections with Rectangular Compression
Zone), in lieu of 0.5h.

Owing to (b), the strut inclination to the member axis is φ = arctan[(h−x)/2Ls].
Its width normal to the strut axis is x cosφ.

As in the AIJ (1994) model, the member is considered to fail in diagonal com-
pression under the action of:
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– the normal stress in the diagonal strut, assumed uniform over its width, x cosφ,
even at the end section of the member;

– the inclined compression field of the truss mechanism, considered uniform over
the internal lever arm z = ζh between the chords and acting at an angle δ to the
member axis.

Also as in the AIJ shear model, the difference in the orientation of these two
compression fields is neglected. So, their stress magnitudes are added up and the
sum is set equal to a fraction n of the uniaxial compressive strength of concrete, fc
(see Eqs. (3.96)).

The assumptions and approximations above give the following, as generalisa-
tion of the procedure in Shohara and Kato (1981) – where the truss was a classical
Mörsch-Ritter one with δ = 45◦ and n = 1 – (see Fig. 3.43(a), where ν = N/bhfc,
υ = V/bhfc, λ = L/h=2Ls/h, ζ = z/h and ωs is the total mechanical longitudinal
reinforcement ratio, denoted here as ωtot).

(a)

(b)

Fig. 3.43 (a) Schematic interaction diagram in dimensionless V-N space (CEB 1996a); (b) appli-
cation for dimensional M-N and V-N diagrams of 200 mm square column with four 16 mm bars
(CEB 1996a)
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1. In the following range of axial forces N (positive for compression):

N1 = 0.5bhn fc − As,tot fy + ρwbw fyw[cot δ(2Ls + (z − 0.5 h) cot δ) − 0.5 h]

≤ N ≤ N2 = 0.5bhn fc + As,tot fy − ρwbw fyw

[cot δ(2Ls − (z − 0.5 h) cot δ) + 0.5 h]
(3.116)

failure is brittle, taking place by yielding of transverse reinforcement and diago-
nal concrete crushing, while all the longitudinal reinforcement is still in the elas-
tic range. The shear resistance is independent of the exact value of N between N1

and N2 and of the total cross-sectional area of longitudinal reinforcement, As,tot.
It is obtained from Eq. (3.107) using there the value of tan φ from Eq. (3.106).

2. In the range of N-values:

N1 ≥ N ≥ −As,tot fy (3.117)

failure is by diagonal concrete crushing, but it is less brittle than in case 1, as not
only the transverse steel but also the tension reinforcement have already yielded.
The shear resistance is:

VR = (N + As,tot fy) tanφ + ρw fywbw cot δ (z − (2Ls + z cot δ) tanφ) (3.118)

where:

tanφ = min

⎛
⎝
√(

Ls

ηh

)2

+ 1 − η

η
− Ls

ηh
,

h

2Ls

⎞
⎠ (3.119)

and

η = N + As,tot fy − ρw fywbw (2Ls + z cot δ) cot δ

bwh
(
n fc − ρw fyw

(
1 + cot2 δ

)) (3.120)

3. In the remaining range of N-values, i.e. for

n fcbwh + As,tot fy ≥ N ≥ N2 (3.121)

failure is again by diagonal concrete crushing with the transverse steel at yield-
ing, but in this case with the compression reinforcement yielding as well. So, it
is again less brittle than in case 1. The shear resistance is:

VR = (N − As,tot fy) tanφ + ρw fywbw cot δ (z + (2Ls − z cot δ) tanφ) (3.122)

The value of tan φ is still given by Eq. (3.119), but with the following value
of η:
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η =
(
N − As,tot fy

) + ρw fywbw (2Ls − z cot δ) cot δ

bwh
(
n fc − ρw fyw

(
1 + cot2 δ

)) (3.123)

The upper limit of cotδ is still given by Eq. (3.108b). An inclination of the com-
pression field close to the cracking pattern is: cotδ = Ls/h.

Case 1 above, of brittle failure and of shear resistance independent of N exists
only if N2 > N1, i.e. only if:

cot δ ≤ ωtot

ωw

h

2Ls
(3.124)

Equations (3.116), (3.117), (3.118), (3.119), (3.120), (3.121), (3.122) and
(3.123), supplemented with Eqs. (3.106) and (3.107) where relevant, are essentially
analytical expressions of the monotonic ULS resistance of squat columns under
skew-symmetric bending, as governed by moment, shear and axial force. In other
words, they give the reduction of flexural resistance due to high shear.

Using the relationship M = VLs, Eqs. (3.116), (3.117), (3.118), (3.119), (3.120),
(3.121), (3.122) and (3.123) can be converted into interaction diagrams relating the
dimensionless moment μ = M/bh2fc = (V/bhfc)(Ls/h) to the dimensionless axial
force ν = N/bhfc. When the shear span ratio, Ls/h, increases, such μ–ν interaction
diagrams tend asymptotically to the simple bilinear diagram:

μ = 0.5ζ (ν + ωtot) for 0.5n > ν ≥ −ωtot (3.125a)

μ = 0.5ζ (n + ωtot − ν) for n + ωtot ≥ ν ≥ 0.5n (3.125b)

Equations (3.125) can be derived as interaction relations between dimensionless
moment and axial force of a single section at the ULS in bending, assuming:

– for Eq. (3.125a), that the resultant force of the concrete stresses in the compres-
sion zone is applied at the location of the compression reinforcement and

– for Eq. (3.125b), that the entire cross-section is under a compressive stress of
nfc.20

Figure 3.43(b) presents interaction diagrams derived from the above procedure
with n = 1 and δ = 45◦ (Shohara and Kato 1981).

3.2.5.3 Under What Conditions Does Shear Reduce the Moment Resistance?

The conventional criterion for the characterisation of an element as squat and prone
to reduction of its moment resistance owing to shear, is its slenderness, λ = L/h,
or – preferably – its shear span ratio, M/Vh = Ls/h. A more rational criterion can

20Normally we take n = 1 for flexure with axial load without shear.
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be based on Eq. (3.124), which is the condition for the existence of the axial-load-
range where failure is brittle, Eq. (3.116). Equation (3.124) has been generalised in
Biskinis (2007) to members with not just tension and compression reinforcement,
but also with “web” reinforcement in-between. Taking for simplicity δ = 45◦ as in
Shohara and Kato (1981), the generalised criterion is:

2
Ls

h
≤ ωtot

ωw
(3.124a)

The yield moment of rectangular beams or columns with relatively low shear
span ratio, Ls/h, has been compared in Biskinis (2007) with the value calculated
from Section 3.2.2.2.21 Over 300 such members were identified to exhibit reduc-
tion of the yield moment owing to shear and low slenderness. Calculation accord-
ing to Section 3.2.2.2 gives for them a median test-to-prediction ratio of 0.86,
distinctly lower than the median test-to-prediction ratio of 1.025 for about 2050
beams or columns that do not exhibit effects of shear on their yield moment (see
Section 3.2.2.2 under Comparison with Experimental Results and Empirical Expres-
sions for the Curvature). Scrutiny of the experimental results has led to proposed
new criteria for members whose moment resistance is reduced by shear:

i. If 2.0 < Ls/h < 3.0: the axial force N is between the bounds of Eq. (3.116).
ii. If Ls/h < 2.0: Eq. (3.124a) is met.

If the member does not satisfy one of these two criteria, its yield moment may be
calculated according to Section 3.2.2.2.

The yield moment of the over 300 members found to meet one of these two
criteria is slightly underpredicted by the procedure of Section 3.2.5.2, even when
applied with n = 1 and δ = 45◦, i.e. as in Shohara and Kato (1981). The test-to-
prediction ratio has a median of 1.085 and a coefficient of variation of 29.1%, to be
contrasted with the median of 1.025 and the coefficient of variation of 16.3% of the
about 2050 beams/columns without effects of shear (Biskinis 2007).

A more sophisticated alternative to the analysis in Section 3.2.5.2 has also been
considered in Biskinis (2007), where:

– the difference in the orientation of the truss (at an angle δ to the member axis) and
of the stress in the diagonal strut is taken into account; the principal compressive
stress of the combined field is set equal to nfc

– plane-sections analysis is carried out at the end sections.

It has further been found in Biskinis (2007) that:

(a) If the principal compressive stress of the combined stress field reaches the limit
value of nfc together with yielding of the stirrups but before attainment of the

21In squat members whose moment resistance is reduced owing to shear, the yield moment is
essentially equal to the moment resistance.
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moment resistance of the end section(s) with exceedance of εcu at the extreme
compression fibres, the more sophisticated alternative gives predictions closer
to the experimental yield moment than the procedure in Section 3.2.5.2 with n
= 1 and δ = 45◦. In those cases the test-to-prediction ratio of the yield moment
has a median of 0.99 and a coefficient of variation of 23.7%.

(b) When the moment resistance of the end section(s) is not attained before failure
of the concrete in diagonal compression and yielding of the stirrups, the proce-
dure of Section 3.2.5.2 with n = 1 and δ = 45◦ gives better prediction: a median
of 1.035 for the test-to-prediction ratio and a coefficient of variation of 31.3%.

Among those members meeting criteria (i) and (ii) for dependence of their
moment resistance on shear, alternative (a) above has been found to approximately
correspond to one of the following two conditions (Biskinis 2007):

ν ≥ 0.4; (3.126a)

ωtot

ωw
≤ 2

Ls

h
max (2; 10ν) (3.126b)

If none of these two conditions is met, the procedure of Section 3.2.5.2 gives
better predictions.

3.2.5.4 Degradation with Cyclic Loading of the Resistance of Squat Columns
to Shear Compression Failure, After Flexural Yielding

The main problem of squat columns is that, after reaching their shear-dependent
flexural capacity (see Section 3.2.5.2), they may fail in shear at relatively low values
of the chord rotation, θ . Most often shear failure of squat columns takes place by
compression along the diagonal of the element between opposite ends of its end
sections.

Close to 40 columns from the literature with shear span ratio, Ls/h, less or equal
to 2, have failed under cyclic loading by shear compression after flexural yield-
ing (Biskinis et al. 2004). A purely empirical model for the cyclic degradation of
shear strength in members failing by diagonal compression has been fitted to those
data. Based on the experimental observations, compression failure is taken to occur
along the column diagonal in elevation. Inelastic cyclic displacements are expressed
through μθ

pl = μθ–1. For units: MN, m, the cyclic shear resistance is (Biskinis et al.
2004):

VR,max = 4

7

(
1 − 0.02 min

(
5; μpl

θ

))(
1 + 1.35

N

Ac fc

)
(1 + 0.45 · 100ρtot )√

min ( fc; 40) bwz sin 2δ
(3.127)

where δ is the angle between the diagonal and the axis of the column (tanδ = h/2Ls).
The internal lever arm z is taken as z = d–d1.
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Equation (3.127) fits the test results with a median value of the test-to-prediction
ratio equal to 1.005 and coefficient of variation of 8.9%. Being almost fully empiri-
cal, it applies only in the range of parameter values in the relevant database:

– Ls/h from 1 to 2,
– N/Acfc from –0.1 to 0.7,
– ρ tot from 0.7 to 4%,
– fc from 14.5 to 61 MPa,
– μθ from 1.4 to 7.

Equation (3.127) has been adopted for squat columns in Part 3 of Eurocode 8
(CEN 2005a).

3.2.5.5 Diagonal Reinforcement in Squat Columns or Deep Beams

It has been pointed out already that elements with low shear span ratio are nearly
two-dimensional. Design of two-dimensional concrete elements for monotonic
loads is normally based on Strut-and-Tie Models (STMs). In the STM approach,
the internal stress field is idealised as a statically determined truss. Bands of com-
pressive stresses identified with concrete struts are verified in compression. Rein-
forcement is placed along tensile stress bands considered as ties of the STM.

Let’s consider a squat column or a deep beam in skew-symmetric bending, i.e.
with equal and opposite design moments at its ends: Md = VEdL/2 = VEdLs where
L and Ls are the total clear length and the shear span, respectively, and VEd is the
design shear associated with Md. The simplest STM of the member consists of;

– a concrete strut along its diagonal in elevation, connecting the compression zones
of its two end sections, and

– a (steel) tie along its other diagonal.

Dimensioning of the diagonal steel tie would give a cross-sectional area, Asd,
such that:

VEd = 2Asd fyd sin δ (3.128a)

Md = z Asd fyd cos δ (3.128b)

where:

– z is the internal lever arm at the end section(s) and
– δ is the angle between the diagonal reinforcement and the axis of the member:

δ = arctan(z/L) = arctan(0.5z/Ls) (3.129)
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If the loading is cyclic, the strut and the tie would alternate between the two
diagonals and the member should be reinforced along both, with a steel tie having
cross-sectional area, Asd, satisfying Eqs. (3.128) and (3.129). When the diagonal tie
is in compression, it could resist (if effectively restrained laterally against buckling)
the full compressive force along the diagonal. The surrounding concrete would be
protected from diagonal crushing.

Reinforcement placed along both diagonals of the element in sufficient quan-
tity to prevent shear failure before or after flexural yielding of the end sections
greatly enhances the flexure-controlled deformation capacity of the element, no
matter whether it is sufficient to take the full design action effects according to
Eqs. (3.128). The last term in Eqs. (3.78) shows that, all other parameters being the
same, a diagonal reinforcement ratio of 1% increases, on average, by 25% the ulti-
mate chord rotation capacity or by 27.5% its plastic part. The enhancement increases
more than proportionally for larger diagonal reinforcement ratios. Moreover, the
hysteresis loops of the diagonally reinforced element resemble those of steel in uni-
axial tension-compression, i.e. they are broad and stable.

Diagonal reinforcement can easily be placed in deep beams, like coupling beams
between coupled walls. It may even be placed fairly easily in squat walls (although
there it crosses the base section at mid-length, its main purpose being to prevent
sliding shear failure, and it does not enhance much the wall moment resistance). As a
matter of fact, in deep coupling beams diagonal reinforcement should preferably be
arranged in square column-like elements with dense hoops around them, to prevent
buckling of the longitudinal bars and confine the concrete inside (Fig. 3.44). In such
cases, only nominal (e.g. the minimum) longitudinal and transverse reinforcement
needs to be placed in the coupling beam, as the diagonal one is dimensioned to resist
the full design action effects according to Eqs. (3.128).

It is very difficult to place diagonal reinforcement in squat columns, while pro-
viding at the same time transverse reinforcement at the density and with a pattern
normally necessary for confinement of the concrete core and anti-buckling action.
Note that, if the column is squat in both horizontal directions, diagonal reinforce-
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Fig. 3.44 Diagonally reinforced coupling beam (CEN 2004a)
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ment should normally be placed along both. This is impracticable. It might be feasi-
ble, though, to place diagonal reinforcement in a column which is effectively squat
only in one direction (e.g., if beams frame into it at short vertical spacing only within
one vertical plane, or if its squatness is due to a concrete or masonry infill in contact
with the column, see Fig. 2.12 in Chapter 2).

3.3 Joints in Frames

3.3.1 Force Transfer Mechanisms in Concrete Joints:
Bond and Shear

Bending moments in beams due to gravity loading normally have the same sign
at opposite faces of their joint with a vertical member. By contrast, beam bending
moments due to seismic loading have opposite sign at opposite faces of the joint.
Therefore, seismic shear forces are very high in the joint itself. Figure 3.45(a) illus-
trates the reason for the magnitude of this shear:

– With the joint considered as part of the beam, the change in the beam moment
from a (high) negative value to a positive one across the joint produces a vertical
shear force, Vjv = ΣMb/hc = ΣVbLcl/2hc, where Mb and Vb denote the beam
seismic moments and shears at the face of the joint, Lcl the beam clear span and
hc the depth of the column.

– With the joint considered as part of the column, the change of the column bending
moment from a high value just above the joint to an equally high value with
opposite sign just below, produces a horizontal shear force, Vjh = ΣMc/hb =
ΣVcHcl/2hb, where Mc and Vc denote column seismic moments and shears above
or below the joint, Hcl the clear storey height and hb the beam depth.

The joint shear forces produce a nominal shear stress in the concrete of the joint:
vj = ΣMc/(hchbbj) = ΣMb/(hchbbj), where (hchbbj) is the volume of the joint, with bj

its effective width normal to the plane of bending, conventionally taken by seismic
design codes (CEN 2004a) as:

if bc > bw : b j = min {bc; (bw + 0.5hc)} ; (3.130a)

if bc ≤ bw : b j = min {bw; (bc + 0.5hc)} (3.130b)

where bc and bw denote the width of the column and the beam, respectively, at right
angles to the plane of bending.

Shear stresses are introduced in a joint mainly by bond along the bars of the
beam and the column (or wall) around the core of the joint. Because the nominal
shear stress in the concrete of the joint is the same, no matter whether it is computed
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Fig. 3.45 Interior beam-column joint: (a) shear forces within the joint; (b) shear resistance mech-
anisms; (c) joint deformation; (d) experimental loops of moment on joint v fixed-end rotation due
to bar slippage within/through joint (adapted from Viwathanatepa et al. 1979)

from the horizontal or the vertical shear force, Vjh or Vjv, it is more convenient to
compute it from the horizontal shear, Vjh, which is based on the forces transferred
via bond stresses along the top bars of the beam. Note that, even when Eq. (1.4) is
not fulfilled, the beams framing into a joint normally yield before the column or the
wall. If they don’t, the horizontal joint shear is overestimated if computed from the
top bars of the beam, and hence is on the safe side for the joint.
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So, the joint may be considered as a series system of two (independent) mecha-
nisms of force transfer:

– from the beam and column (or wall) longitudinal bars to the core of the joint, by
bond;

– from each side of the joint core to the opposite, through shear (see Fig. 3.45(b)).

This implies that:

– if one of the two force transfer mechanisms fails, the joint fails as well; and
– the overall (shear) deformation of the joint is the sum of the individual deforma-

tions of the two mechanisms (see Fig. 3.45(c)).

Force transfer to the joint core by bond along the longitudinal bars passing
through the joint or anchored in it causes slippage along these bars. Slippage shows
up as fixed-end rotation, θ sl, of the end of the member where the longitudinal bars
belong (see Fig. 3.45(c) and (d)). Force transfer through the joint by shear causes an
angular distortion (shear strain) of the joint core, γ j (Fig. 3.45(c)). The total defor-
mation of the joint is an apparent shear deformation, equal to the sum of γ j and of
the fixed-end rotations, θ sl, at the ends of all (four, in an interior joint) members
framing into the joint (unless such a fixed-end rotation is incorporated in the chord
rotation of the member, see discussion in Section 3.3.2). As shown in Fig. 3.30, the
total shear deformation of a frame panel made up of two beams and two columns is
equal to the sum of:

– the average apparent shear deformation of the four joints at the corners of the
panel; plus

– the average chord rotation at the (four) column ends on either side of the panel,
θ c; plus

– the average chord rotations at the (four) beam ends above and below the panel, θb.

It is interesting that, although it adds to θ c + θb, the angular distortion (shear
deformation) of the joint core, γ j, takes place in the opposite sense with respect
to the sum of θ c + θb (see Fig. 3.45(c)): the joint diagonal that shortens is the one
parallel to the panel diagonal that gets longer during the deformation of the panel.
This is consistent with the opposite sign of the joint shears, Vjv, and Vjh, with respect
to those in the members themselves (see Fig. 3.45(a)).

3.3.2 The Bond Mechanism of Force Transfer in Joints

Beams normally yield before the columns. Moreover, compressive stresses in the
vertical bars of columns are normally below yield (as cracks at column ends nor-
mally are not open through the column depth and the concrete participates fully in
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resisting the force of the compressive zone). Therefore, bond stresses are normally
higher along the longitudinal bars of beams passing through a joint, than along the
column bars. So, the transfer of forces into the joint is normally controlled by the
longitudinal bars of the beam.

As the (unusual) example in Fig. 3.21 shows, bond failure along longitudinal
bars of beams or columns within the very length of the element manifests itself as
a splitting crack along the bar, especially if it is a corner one. Bond failure along
the length of the bar within the joint normally manifests itself through partial pull-
out of the bar through the joint. The high static indeterminacy of the system of
the joint and of the members framing in it limits the magnitude of any pull-out of
member longitudinal bars from the joint. Such pull-out manifests itself as a large
fixed-end rotation, θ sl, of the end of that member to which the longitudinal bars
belong. Witness the resemblance of the end moment-fixed end rotation loops in Fig.
3.45(d) (Viwathanatepa et al. 1979) to the bond-slip loops in Fig. 3.22. They are
narrow, have inverted-S shape and degrade with cycling.

The fixed-end rotation, θ sl, at a member end due to partial pull-out of the mem-
ber’s bars from the joint is normally added to the chord rotation of the member
itself at that end (see Fig. 3.24 and Eq. (3.42) in Section 3.2.2.3 and 3rd term in
Eqs. (3.66) in Section 3.2.3.2) increasing its apparent flexibility (through Eq. (3.68),
Section 3.2.3.3). It also increases its apparent deformation capacity (see 2nd term in
Eq. (3.72) in Section 3.2.3.4 and terms with asl in Eqs. (3.78) in Section 3.2.3.5). At
the extreme, bond failure along the member’s longitudinal bars within the joint may
prevent the full yield moment from developing at the end section of the member
(see Fig. 3.29 in Section 3.2.2.3 for two field cases).

The problem of bond is more acute at interior joints, where beam longitudinal
bars continue into the adjacent span, rather than at exterior ones, where beam bars
are anchored with a 90◦ bend at the far end of the joint. As a matter of fact, taking
into account that bond stresses along the part of the beam bars outside the confined
joint core are negligible because:

– yielding penetrates into the initial length of the bar into the joint while confine-
ment there is poor, and

– horizontal cracking of the column may take place at the plane of the beam longi-
tudinal bars,

and taking the width of the joint confined core along the depth hc of the column as:
hco ≈ 0.8hc, the average bond stress along a beam bar is:

– ∼dbLfy/4hco ≈ 0.3dbLfy/hc, if the bar reaches its yield stress in tension at one face
of the joint and has zero compressive stress at the opposite face,

– ∼dbLfy/2hco ≈ 0.6dbLfy/hc, if the bar reaches its yield stress in tension at one face
of the joint and in compression at the opposite one. This may happen if the crack
at the beam section at the face of the column stays open at the top under positive
moments (see Fig. 3.7 in Section 3.1.1.1 and point 3 in Section 3.2.2.6). In that
case the top bars of the beam bear the full force of the compression zone.
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At exterior joints, the average bond stress along beam bars bent by 90◦ at the far
end of the joint is lower: ∼0.2dbLfy/hc.

For common values of dbL and hc the level of bond stresses estimated above
ranges from 5 to 15 MPa, often exceeding the ultimate bond stress under cyclic
loading. Test results show, however, that cyclic bond stresses of that magnitude can
develop in joints, without causing unduly large pull-through slippage of the beam
bars (thanks primarily to lateral confinement at the level of the beam top bars by
the transverse beams and the slab, but also to enhancement of bond by compression
normal to the bar surface due to the column axial load).

Figure 3.46 demonstrates the effect of the column depth, hc, on the hysteresis
loops of shear force v overall deformation of a cross-shaped beam-column sub-
assembly (Kaku and Asakusa 1991). If the column size is small, namely hc =
18.8dbL, the overall force-displacement loops are controlled by bond slip within
the joint and their shape resembles the loops in Fig. 3.22. However, the system’s
peak force resistance does not degrade with cycling. Only the reloading stiffness is
greatly reduced, giving lower energy dissipation and certain growth of the overall
lateral displacements with cycling. For larger column sizes bond slip in the joint
does not govern and the overall force-displacement loops are controlled by the flex-
ural behaviour of the beam.

If l (: left) and r (: right) index the two vertical faces of the joint, σ s denotes the
stress in the beam bars and hco is the width of the confined core of the joint along
the depth hc of the column, the average bond stress along these beam bars is:

τb = πd2
bL

4

|σsl − σsr |
πdbL hco

= dbL

4

|σsl − σsr |
hco

(3.131)

Bond stresses along the length of the bars outside the confined core are negligible.
Plastic hinges are assumed to develop in the beam at both sides of the joint. Let’s
consider the top flange to be in tension on the left of the joint and in compression on
the right (as in Fig. 3.45(a), (b) and (c)). The top flange is normally much stronger
than the bottom one, both in tension and in compression and, therefore, its yield
force cannot be balanced by the bottom flange unless the bottom bars yield. So, the
stresses of the bottom bars are: σ s,l = –fy, σ s,r = fy and the average bond stress along
them at beam plastic hinging is: τ b = 0.5dbLfy/hco. Regarding now the top bars, they
yield at the plastic hinge of the left beam: σ s,l = fy. At the opposite face of the joint
these bars have a compressive stress, σ s,r, such that, acting together with the force
of the concrete at the top flange, Fc,r (taken negative for compression), they balance
the tension force of the bottom bars. These latter bars are forced by the stronger top
flange to yield. So, if As,r1 and As,r2 denote the cross-sectional area of the top and
bottom beam bars on the right of the joint, the compressive stress of the top bars
there is:

σs,r = − As,r2

As,r1
fy − Fc,r

As,r1
= −ρ2

ρ1
fy

(
1 − ξe f f

ω

)
(3.132)
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Fig. 3.46 Effect of bond-slip in the joint, as controlled by column size, on overall force-
displacement loops of a beam-column subassembly (adapted from Kaku and Asakusa 1991)

where ρ1 and ρ2 are the ratios of top and bottom reinforcement at the right of the
joint, normalised to the product bd of the beam, ω is: ω = ρ1fy/fc and ξ eff is the
depth of a fictitious compression zone (normalised to d), such that Fc,r = –bdξ efffc.
Therefore the average bond stress along the top bars at beam plastic hinging is:

τb = dbL

4

fy

hco

(
1 + ρ2

ρ1

(
1 − ξe f f

ω

))
(3.133)
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and is less than the average bond stress along bottom bars with the same diameter,
dbL. However, the bond problem is more acute along the top bars, because bond
stresses are not uniform around a bar but are concentrated more on the side facing
the joint core. This is the underside of the top bars, where bond conditions are con-
sidered “poor” owing to laitance and consolidation of concrete during compaction.
All around the bottom bars bond conditions are considered as “good” (see Section
3.1.3.2).

The bond stress demand given by Eq. (3.133) is capped at the ultimate bond stress
along these bars. Bond outside the confined joint core is normally neglected, but its
enhancement inside the joint core due to confinement by the joint stirrups, the top
bars of the transverse beam and all the surrounding concrete is taken into account. It
has been pointed out in Section 3.1.3.2 that the maximum steel stress at pull-out (or
-through) bond failure may be obtained from Eq. (3.31) with the 1st and 2nd terms
inside the bracketed last term replaced by the upper limit value of 2.0. Bond strength
is further enhanced by the 3rd term inside the brackets, 0.2p (in MPa), owing to the
mean normal stress across the horizontal plane of the bar due to the axial load of the
column: p = N/Ac = νfc (fc in MPa). In Section 5.4.1 these considerations are used
with Eq. (3.133) to justify the lower limit on the hc/dbL ratio imposed by Eurocode
8 on beam bars passing through, or anchored at joints.

Notwithstanding the shortfall within the joint of the full anchorage of the yield
stress of (top) beam bars in tension at one face of the joint and in compression at
the opposite one, there is a real problem only for low hc/dbL values. The solution
is a large column size and/or a small bar diameter. Needless to say, bars of small
diameter are more susceptible to buckling and may require very dense stirrups at
the end of the beam for its prevention. Fortunately, compressive stresses are lower
in beam top bars than in the bottom ones (cf. histories of bar strains in Figs. 3.6 and
3.7) and the slab next to the beam prevents top bar buckling in a horizontal plane.

3.3.3 Force Transfer Within Joints Through the Shear Mechanism

3.3.3.1 Shear Force Demand in Joints

As already pointed out in Section 3.3.1, if there is no pull-out (or -through) of the
beam or column bars around the joint core, shear stresses develop within the joint
core with a nominal value equal to the ratio of ΣMc = ΣMb to the volume of the
joint, hchbbj. Shear failure of the joint, as in the examples of Fig. 3.47, is far more
brittle than any failure of plastic hinges around the joint, even in the columns. So, it
should be prevented through design and detailing of the joint. To this end, the max-
imum possible shear force that can develop in the joint is established from capacity
design calculations, on the basis of the capacity of the beams or the columns fram-
ing into the joint (whichever is weaker) to deliver shear through bond along the
outermost beam or column bars passing through the joint.

If the sum of moment resistances of the beams framing into a joint,
∑

MRb, is
less than that of the columns,

∑
MRc, (

∑
MRb <

∑
MRc), the shear input in the joint
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(a) (b) (c)

Fig. 3.47 Shear failure of exterior joints. (a) reinforced joint; (b), (c): unreinforced joints (See
also Colour Plate 10 on page 724)

is governed by the beams. If pull-out (or -through) of the beam top bars does not
take place, the maximum possible value of the horizontal shear force in an interior
joint, Vjh, can be computed as:

– the maximum possible tensile force in the top bars at one face of the joint, Asb1fy,
– plus the maximum possible compressive force in the top flange at the opposite

face,
– minus the shear force Vc in the column above the joint.

No matter how it is shared by the concrete and the top reinforcement, the max-
imum possible compression force in the top flange will be governed by the bottom
reinforcement. It will be equal to its maximum possible tensile force, Asb2fy. So, the
horizontal shear force in the joint is (Fardis et al. 2003):

If
∑

MRb <
∑

MRc:

Vjh= (Asb1 + Asb2) fy − Vc = (Asb1 + Asb2) fy −
∑

MRb

H

L

Lcl

=
∑

MRb

(
1

zb
− 1

H

L

Lcl

)
≈ (Asb1 + Asb2) fy

(
1 − zb

H

L

Lcl

) (3.134)

where:

– Asb1, Asb2: cross-sectional area of the beam top reinforcement at one face of the
joint and of its bottom reinforcement at the opposite face, respectively;

– Vc: column shear at beam plastic hinging;
– H: storey height;
– L, Lcl: theoretical and clear beam span, respectively; and
– zb (≈ hjb) = d–d1: beam internal lever arm.
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The larger of the two sums Asb1+Asb2 diagonally across the joint should be used
in Eq. (3.134). Normally, no such distinction needs to be made at interior joints,
as the steel area is the same at both sides. At exterior joints one term in Asb1+Asb2

is zero.
The shear force is translated into a nominal shear stress, considered uniform

within the joint core:

v j = Vjh

b j h jc
(3.135)

where:

– hjc: horizontal distance between the outermost layers of column reinforcement in
the direction of the horizontal joint shear force, and

– bj: joint width in the orthogonal horizontal direction, conventionally taken from
Eqs. (3.130).

If
∑

MRb >
∑

MRc, it is the columns that govern the shear input in the joint. Let’s
Asc,top and Asc,bot denote the cross-sectional area of vertical bars on one side of the
column above or below the joint, respectively.22 Then the vertical shear force in the
joint core is (Fardis et al. 2003):

Vjv = fy(Asc,top + Asc,bot ) + Ntop − Vb,min, (3.136)

where:

– Ntop: axial force in the column above; and
– Vb,min: algebraically minimum (and possibly negative) beam shear force on either

side of the joint:

Vb,min ≈
∑

MRc

L

H

Hcl
− max

([
Vg+ψq,b

]
l ;
[
Vg+ψq,b

]
r

)
(3.137)

where:

• H and Hcl are the theoretical and the clear storey height and
• Vg+ψq,b is the shear force at the beam end on the left (index: l) or on the right

(index: r) face of the joint, due to the gravity loads acting on the beam con-
currently with the seismic action.

∑
MRc ≈ fy(Asc,top + Asc,bot )zc + 0.5hc

(
Ntop

(
1 − νtop

) + Nbot (1 − νbot )
)

(3.138)

22Normally column vertical bars are the same above and below the joint: Asc,top = Asc,bot, except at
the joints of the top floor where Asc,top = 0.
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with zc (≈ hjc) ≈ 0.9d ≈ 0.8hc denoting the internal lever arm of the column
and ν = N/Acfc.

So, Eq. (3.136) finally gives: If
∑

MRb >
∑

MRc:

Vjv ≈
∑

MRc

(
1

zc
− 1

L

H

Hcl

)
+ 1

2

∣∣[Vg+ψq,b
]

l
− [

Vg+ψq,b
]

r

∣∣ (3.139)

The shear stress in the joint core is computed as:

v j = Vjv

b j hbj
(3.140)

where hbj is the clear depth of the beam between its top and bottom reinforce-
ment.

3.3.3.2 Joint Shear Strength

Diagonal tension cracking of the joint core takes place when the principal tensile
stress under the combination of the shear stress, vj, and of the mean vertical com-
pressive stress in the joint, νtopfc, exceeds the tensile strength of concrete, fct, i.e.
when:

v j ≥ vcr = fct

√
1 + νtop fc

fct
(3.141)

According to Priestley (1997) confinement by beam bars bent vertically towards
the core of exterior joints increases the shear stress at joint diagonal cracking by
50% over the value in Eq. (3.141).

Diagonal cracking of the joint core seldom has grave consequences, especially
if the joint is reinforced with horizontal hoops and/or beams of significant cross-
section frame into all four sides of the joint. After cracking, the joint core is called
to resist the shear without reaching its ultimate stress in cyclic loading, vju.

The seismic behaviour of joints has been studied experimentally and analytically
since the 1960s. Nevertheless, there is still no universally accepted rational model
for the mechanism through which a joint resists cyclic shears. Variations of a rational
physical model in Park and Paulay (1975) are still used in certain seismic design
codes. According to it a joint resists shear via a combination of two mechanisms
(Fig. 3.45(b)):

1. A diagonal concrete strut between the compressive zones of the beams and
columns at opposite corners of the joint, contributing to the resistance against
the horizontal shear force in the joint, Vjh, with the horizontal component of its
diagonal force.

2. A truss extending over the entire core of the joint, comprising:
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– (any) horizontal hoops in the joint;
– (any) intermediate vertical bars between the column corner bars in planes paral-

lel to that of bending (including column bars contributing to the column moment
resistance above and below the joint as distributed “web” reinforcement, ωv);

– a diagonal compression field in the concrete.

The force in the strut under (1) above is assumed to develop from:

– the concrete forces in the compression zones of the beam and the column at the
two ends of the strut, and

– the bond stresses transferred to the joint over the length of the beam bars within
the width of the strut itself.

The truss under (2) above takes the rest of the joint shear force, Vjh, not resisted
by the horizontal component of the strut diagonal force. So, for safe-sided dimen-
sioning of the horizontal joint reinforcement, the horizontal component of the strut
force should not be overestimated.

Unless there is bond failure along the beam bars, pushing their compressed end
into the joint, the neutral axis depth of the beam is significantly reduced by cycling
of the beam moment, as the crack may not fully close (especially at the top flange)
owing to accumulation of plastic strains in the reinforcement. Then the compression
zone of the beam does not deliver a horizontal force to the diagonal concrete strut,
but only a compressive force to the beam reinforcement. The sum of this force and
of the tension force at the opposite face of the joint is transferred to the truss and
the strut in proportion to their share in the joint width at the level of the beam top
reinforcement. So, the width of the diagonal strut is defined by the neutral axis
depth of the column at the faces of the joint. According to this reasoning, the force
input into the strut directly from the compression zones of the members is reduced
during cycling of the moments. By contrast, the force input into the strut by bond
increases, as the degradation of bond with cycling pushes the force transfer by bond
mainly to that length of the bar within the joint core where bond is enhanced by
transverse compression, i.e. the bar length within the strut width. Therefore, despite
the deterioration of bond along most of the bar length within the joint core, the strut
mechanism remains intact.

Paulay and Priestley (1992) make the assumption that at the face of the joint
where the beam is under sagging moment (tension at the bottom) the crack cannot
close at the top flange, owing to accumulation of plastic strains in the top reinforce-
ment. This means: ξ eff = 0 in Eq. (3.133). Then the horizontal width of the strut at
that level is equal to the neutral axis depth of the column above the joint, xc. So, the
beam compression chord does not contribute to the force of the diagonal concrete
strut and the horizontal component of the strut diagonal force is equal to:

– the force transferred by bond along the bar length within the strut width, minus
– the column shear force, Vc (appearing also in Eq. (3.134) for Vjh and considered

to be applied directly to the strut through the compression zone of the column
above and affect only its horizontal shear force and not that of the truss).
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Moreover, Paulay and Priestley (1992) assume – for simplicity – that the transfer
of the total force (Asb1+Asb2)fy by bond takes place uniformly along the total length
of the top bars within the joint, hc. So, the fraction of this force going to the horizon-
tal force of the strut is equal to xc/hc. The rest, equal to (1–xc/hc), goes to the truss.
Therefore, as the truss extends over the full vertical face of the joint, the total area
of the horizontal legs of hoops within the joint, Ash, should be dimensioned for a
force equal to (1–xc/hc)(Asb1+Asb2)fy. The value of ξ c = xc/hc may be obtained from
Eq. (3.52) in Section 3.2.2.4 under Curvature at Spalling of the Concrete Cover,
using there: ω1 = ω2, ων = 0 (for convenience), εco = 0.002 and εcu = 0.004 (for
spalling of the extreme concrete fibres at the end section of the column). Then ξ c

≈ (6/5)ν, with both ν and ξ c normalised to hc. So the following total area of hor-
izontal hoops should be provided according to this version of the Park and Paulay
model.

– At interior joints:

Ash fyw ≥ (Asb1 + Asb2) fy

(
1 − 6

5
ν

)
(3.142a)

where the normalised axial force, ν, is the minimum value in the column above the
joint for any combination of the design seismic action with the concurrent gravity
loads.

The reinforcement required in exterior joints cannot be obtained by setting Asb2

= 0 in Eq. (3.142a), because the beam top reinforcement is bent down at the far face
of the joint. Then, when the bar is in tension, the bend delivers to the diagonal strut
starting there the full diagonal compression force of the strut. The horizontal com-
ponent of that force is about equal to fyAsb1–Vc. So, very little force is transferred by
bond along the part of the top bars outside the strut, to be resisted as horizontal shear
by the part of the truss falling between the strut and the face of the joint towards the
beam. The horizontal shear force of the truss is governed by the force transferred
by bond along the part of the bottom bars outside the strut.23 The compression zone
at the bottom flange of the beam delivers to the lower end of the strut a horizontal
force equal to the compression force in the concrete, i.e. to the tension force in the
top reinforcement, Asb1fy, minus the force, Asb2fy, in the bottom reinforcement that
yields in compression. The difference between:

– the horizontal component of the strut force at its top end, Asb1fy–Vc, and
– the horizontal forces delivered

• to the lower end of the strut by the beam and the column below: (Asb1–Asb2)fy
–Vc, and

• by bond within the strut width at the level of the bottom reinforcement:
(1–xc/hc)Asb2fy,

23The upward bend of the bottom bars at the far face of the joint does not deliver forces to the joint
core when these bars are in compression.
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is the force transferred by bond along the length of the bottom bars outside the strut
width. This force is a horizontal shear force to be resisted by the part of the truss
falling between the strut and the exterior face of the joint. This gives:

– At exterior joints:

Ash fyw ≥ Asb2 fy

(
1 − 6

5
ν

)
(3.142b)

where now ν is the minimum value of the normalised axial force in the column
below the joint, for any combination of the design seismic action with the con-
current gravity loads.

Test results on interior joints have been collected and compiled in Kitayama et
al. (1991) as in Fig. 3.48. Figure 3.48 suggests that the joint ultimate shear strength,
expressed in terms of the shear stress, vj, of Eqs. (3.135) and (3.140), increases
about linearly with the ratio of horizontal reinforcement within the joint, ρ jh, from
a minimum value vju ≈ 0.15fc at ρ jh = 0 (unreinforced joint) to an upper limit value
in the range of 0.24fc–0.4fc (with mean value: vju ≈ 0.32fc) at ρ jh = 0.4%. Above
that value of the steel ratio and up to ρ jh = 2.4%, the joint ultimate strength seems
to be attained always by diagonal compression in the concrete and to be practically
independent of the value of ρ jh and of the axial load ratio in the column, ν = N/fcAc

(Kitayama et al. 1991).
The experimental results in Fig. 3.48, along with careful and detailed measure-

ments of the evolution of strains in the horizontal hoops within the joint during the
history of cyclic displacements (Kitayama et al. 1991), lead to the following con-
clusions:

Fig. 3.48 Effect of
horizontal reinforcement ratio
in interior joint, ρ jh, on joint
strength (adapted from
Kitayama et al. 1991)
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– Cycling of applied loads and displacements causes a gradual degradation of bond
along the length of a bar within the joint closer to its end which is in tension, and
a concentration of most of the bond transfer near the opposite end of the bar
within the joint, where the bar is in compression (the part falling within the strut
width).

– The breakdown of bond along the length of the beam bar falling outside the strut
width may cause drastic reduction of the contribution of the truss mechanism to
the shear resistance of the joint. When this happens the horizontal component
of the strut diagonal force resists almost the full horizontal joint shear, Vjh. This
force is delivered to the strut partly by bond along the length of the beam bars
falling within the strut and partly by the compression zone of the beam.

– The joint shear that the strut can resist is governed by the compressive strength of
the concrete in its diagonal direction. Any horizontal hoops in the joint affect the
contribution of the strut to shear resistance only to the extent they enhance this
diagonal compressive strength through confinement. So, attainment of the joint
ultimate strength activates not only the hoop legs parallel to the applied shear (i.e.
in the plane of bending), considered in the truss mechanism to resist part of the
joint shear, but also (and to the same extent) the orthogonal hoop legs (at right
angles to the plane of bending). The top and bottom reinforcement of any beams
framing into the joint at right angles to the plane of bending play a role similar to
these orthogonal hoop legs, confining the core of the joint.

– Yielding of the horizontal reinforcement in the joint caps the confinement of
the concrete core and increases tensile strains in the direction(s) normal to the
diagonal strut, reducing further the diagonal compressive strength.

– The column axial force level, measured through ν = N/Acfc, does not seem to
be important, neither for the bond-slip performance of the beam bars, nor for the
joint ultimate shear stress, vju.

Test results in Fig. 3.49 (Kitayama et al. 1991) suggest that confinement on both
sides of the joint by a slab at the level of the beam top and/or by a transverse beam
significantly increases the joint ultimate shear strength, vju (to values close to 0.4fc).
This may explain the scarcity of shear failures at interior joints – even unreinforced
ones – in the field in strong earthquakes.

In view of the test results of Figs. 3.48 and 3.49 and the conclusions above that
cast doubts about the validity of the truss-and-strut physical model, alternative sim-
ple plane stress models have emerged for the shear strength of beam-column joints.
For example, the model adopted in Eurocode 8 (CEN 2004a) as alternative to the
truss-and-strut model and to Eqs. (3.142) for the calculation of joint horizontal rein-
forcement assumes a homogeneous stress field in the body of the joint, comprising:

1. the shear stress, vj, from Eqs. (3.135) or (3.140),
2. the vertical normal stress from the column, N/Ac = νfc (positive for compres-

sion), and
3. a smeared horizontal normal stress, such that the concrete core and the joint hor-

izontal reinforcement balance together the zero external horizontal force applied
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Fig. 3.49 Effect of top slab
and/or transverse beam on
both sides on the ultimate
shear strength of interior
joints (adapted from
Kitayama et al. 1991)

on the joint by the beams; this normal stress has a limit value of –ρ jhfyw (com-
pression), when the joint horizontal reinforcement is driven to yielding by the
dilatancy of the concrete core at imminent failure.

Joint strength criteria in Eurocode 8 are based on the principal stresses, in tension,
σ I, and compression, σ II, under the above system of stresses, 1–3. The joint shear
stress at diagonal cracking (σ I = fct) in the presence of horizontal reinforcement is
(CEN 2004a):

v j

fc
=
√(

fct

fc
+ νtop

)(
fct

fc
+ ρ jh fyw

fc

)
(3.143)

where ν top is computed from the minimum value of the axial force of the column
above the joint under any combination of the design seismic action with the con-
current gravity loads, including the effect of overturning moment on exterior joints.
Note that, for ρ jh = 0 and ν top between 0 and 0.3, Eq. (3.143) gives values of vj from
0.1fc to 0.2fc, in good agreement with the average value of vj ≈ 0.15fc suggested for
ρ jh = 0 by the test results in Fig. 3.48 (Kitayama et al. 1991).

The real threat to the joint is crushing of its core by the diagonal compression.
According to the simple plane stress model above, this may take place if σ II reaches
the concrete compressive strength, as this is reduced due to the tensile stresses and/or
strains in the transverse direction (i.e. that of σ I). The reduction factor on fc may
be taken the same as factor n from Eq. (3.96a) for diagonal compression in con-
crete members due to shear. Eurocode 8 (CEN 2004a) neglects for simplicity the –
adverse – effect of the horizontal normal stress, –ρ jhfyw, on the magnitude of σ II,
as well as its (more important) favourable effect on the compressive strength in the
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diagonal direction through confinement. So the condition: σ II = –nfc gives (CEN
2004a):

v ju

fc
= n

√
1 − νbottom

n
(3.144)

where ν is computed from the maximum axial force of the column below the joint
under any combination of the design seismic action with the concurren gravity loads.

For common values of ν (∼0.25) Eq. (3.144) gives an ultimate shear stress, vju,
close to 0.4fc, at the upper strength limit of interior joints in Figs. 3.48 and 3.49.
It does not seem to provide a safety margin against diagonal compression failure,
unless the design value fcd = fck/γ c is used for fc, with a partial factor for concrete,
γ c, (significantly) higher than 1.0.

An alternative plane stress approach is to apply the variable strut inclination truss
model of Section 3.2.4.2 under The Variable Strut Inclination Truss of the CEB/FIP
Model Code 90 and Eurocode 2 to the joint that is already cracked diagonally, owing
to a shear stress above the limit of Eq. (3.143). In this analogy the counterpart of the
transverse direction of the concrete element of Section 3.2.4.2 under The Variable
Strut Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2 is the hor-
izontal direction of the joint. Its transverse reinforcement ratio, ρw, corresponds to
the joint horizontal reinforcement ratio, ρ jh. The counterpart of the vertical direction
of the joint is the longitudinal one of the concrete element, but with M = 0, ω1 = 0
and N equal to the axial force of the column (positive for compression). The incli-
nation δ is the angle of the centreline of the diagonal strut in the joint to the vertical
direction.

According to the variable strut inclination truss analogy, the shear stress in the
joint at yielding of the horizontal reinforcement before failure of the concrete in
the diagonal direction may be obtained from Eq. (3.101), adapted as follows to the
conditions of the joint:

v j

fc
=
√
νtop

ρ jh fyw

fc
(3.145)

which coincides with Eq. (3.143) for fct = 0.
Adapted to the conditions of the joint, Eq. (3.99) gives the shear strength of the

joint for diagonal concrete failure after yielding of the joint horizontal reinforce-
ment:

v ju

fc
=
√
ρ jh fyw

fc

(
n − ρ jh fyw

fc

)
(3.146)

The counterpart of Eq. (3.97) for the joint shear at diagonal compression
failure is:
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v ju

fc
= 0.5n sin 2δ (3.147)

If the amount of horizontal reinforcement is large, namely if ρ jhfyw > 0.5nfc,
diagonal compression failure will take place before yielding of the joint reinforce-
ment, at the upper limit value of both Eqs. (3.146) and (3.147): vju = 0.5nfc. With
this value of vju for ρ jhfyw > 0.5nfc, Eq. (3.146) gives a variation of the joint ultimate
shear with the strength of the horizontal reinforcement similar to the parabola-cum-
horizontal line given for Eq. (3.99) in Fig. 3.40. The mean upper limit: vju ≈ 0.32fc
in Fig. 3.48 agrees well with the theoretical upper limit of: vju = 0.5nfc. However,
although the data in Fig. 3.48 might suggest a parabolic variation up to ρ jh = 0.4%,
the value ρ jh = 0.4% is much lower than the theoretical one of 0.5nfc/fyw giving the
peak value of vju according to Eq. (3.146).

Equation (3.103), adapted to the conditions of the joint gives an ultimate shear
stress of:

v ju

fc
=
√
νtop

(
1 − νtop

n

)
(3.148)

which is not supported at all by the experimental data.
The shear strain in the joint core, γ ju, at the ultimate shear stress, vju, is in the

order of 0.005 rad (0.5%), i.e., very small compared to the total shear distortion of
a system of ductile beams and columns at failure of the joint.
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