5 Overconstrained *T3*-type TPMs with uncoupled motions

T3-type translational parallel robots with *uncoupled motions* with various degrees of overconstraint may be obtained by using three simple or complex limbs. In these solutions, each operational velocity given by Eq. (1.19) depends, in the general case, on just one actuated joint velocity: $v_i = v_i(\dot{q}_i)$, i = 1,2,3. The Jacobian matrix in Eq. (1.19) is a diagonal matrix.

They can be actuated by linear or rotating actuators which can be mounted on the fixed base or on a moving link. In the solutions presented in this section, the actuators are associated with a revolute joint mounted on the fixed base.

Equation (1.16) indicates that *overconstrained* solutions of *T3* translational parallel robots with coupled motions and *q* independent loops meet the condition $\sum_{I}^{p} f_{i} < 3 + 6q$. Various solutions fulfil this condition along with $S_{F} = 3$, $(R_{F}) = (\mathbf{v}_{I}, \mathbf{v}_{2}, \mathbf{v}_{3})$ and $N_{F} \ge 1$.

They may have identical limbs or limbs with different structures. We limit our presentation in this section to the solutions with just three identical limbs. A large set of solutions with an additional unactuated limb can also be obtained by combining an unactuated limb presented in Figs. 7.1–7.11 – Part 1 with three other limbs with $4 \le M_{Gi} = S_{Gi} \le 6$ that integrate velocities v_1 , v_2 and v_3 in the basis of their operational space and fulfil the uncoupled motions condition.

5.1 Basic solutions with rotating actuators

In the *basic* solutions of overconstrained TPMs with *rotating actuators* and uncoupled motions $F \leftarrow G_1 - G_2 - G_3$, the moving platform $n \equiv n_{Gi}$ (i = 1, 2, 3) is connected to the reference platform $1 \equiv 1_{Gi} \equiv 0$ by three limbs with three, four or five degrees of connectivity. No idle mobilities exist in these basic solutions.

The various types of limbs with three degrees of connectivity are systematized in Fig. 5.1. They combine one (Fig. 5.1a, b), two (Fig. 5.1c–f) or three (Fig. 5.1g) *Pa*-type parallelogram loops. Other parallelogram loops of types Pa^{t} (Fig. 5.1h), Pa^{tcc} (Fig. 5.1i) or Pa^{cc} (Fig. 5.1j, k) may also be combined in these limbs. We recall that the parallelogram loop Pa^{cc} -type has two degrees of mobility, Pa^{t} -type has three degrees of mobility and Pa^{tcc} -type has four degrees of mobility.

The various types of limbs with five degrees of connectivity are systematized in Fig. 5.5. They are complex limbs which combine one (Fig. 5.5a) or two (Fig. 5.5b) *Rb*-type rhombus loops, one *Pn2* (Fig. 5.5c, d) or *Pn3*-type (Fig. 5.5e, f) planar loop or one *Pa*-type parallelogram loop (Fig. 5.5g–i). Any planar loops of types *Pn2* and *Pn3* presented in Table 5.1 can be used.

Various solutions of translational parallel robots with uncoupled motions and no idle mobilities can be obtained by using three limbs with identical or different topologies presented in Figs. 5.1-5.5. We only show solutions with identical limb type as illustrated in Figs. 5.6-5.48. The limb topology and connecting conditions in these solutions are systematized in Tables 5.2-5.5 and their structural parameters in Tables 5.6-5.12.

The directions of the three actuated revolute joints adjacent to the fixed base can be reciprocally orthogonal or parallel to two coplanar and perpendicular directions.

Basic solutions of *T3*-type TPMs with decoupled motions and different limb topologies can be obtained by using two limbs from Figs. 5.1-5.5 and one limb from Figs. 3.1-3.5, Figs. 3.60-3.70 and Figs. 4.1, 4.2 or 4.29.

Basic solutions of T3-type TPMs with coupled motions and different limb topologies can be obtained by using one limb from Figs. 5.1–5.5 and two limbs from Figs. 3.1–3.5, Figs. 3.60–3.70 and Figs. 4.1, 4.2 or 4.29.

No.	<i>Pn2</i> -type loops	<i>Pn3</i> -type loops
	with two degrees of freedom	with three degrees of freedom
1	R R R R R	R R R R R R
2	$P \perp R R R R$	$P \perp R R R R R$
3	$R \perp P \perp R R R$	$R \perp P \perp R R R R$
4	$R R \perp P \perp R R$	$R R \perp P \perp R R R$
5	$P \perp P \perp \overset{\perp}{R} R R$	$P \perp P \perp R \mid R \mid R \mid R \mid R$
6	$R \perp P \perp P \perp R R$	$R \perp P \perp P \perp R R R$
7	$P \perp R \perp {}^{\perp}P \perp R R$	$P \perp R \perp {}^{\perp}P \perp {}^{ }R R R$
8	$R \perp P \perp {}^{ }R \perp P \perp {}^{ }R$	$R \perp P \perp {}^{ }R \perp P \perp {}^{ }R R$
9	$P \perp R R \perp P \perp R$	$P \perp R R \perp P \perp R R$
10	$P \perp R R R \perp P$	$P \perp R R R \perp P \perp R $
11	$P \perp P \perp {}^{\perp}R R \perp P$	$R R \perp P \perp P \perp R R$
12		$P \perp R R R \perp P$
13		$R \perp P \perp R R \perp P \perp R $
14		$P \perp P \perp {}^{\perp}R R R \perp P$

Table 5.1. Topology of the planar loops with two and three degrees of mobility that can be used in the limbs of TPM with uncoupled motions

No.	TPM	Limb	Connecting
	type	topology	conditions
1	3- <u>Pa</u> PP	$Pa P\perp^{\perp}P$	The rotation axes of the
	(Fig. 5.6a)	$\overline{(Fig. 5.1a)}$	actuated revolute joints are
			reciprocally orthogonal
2	3- <u>Pa</u> PP	$Pa P\perp^{\perp}P$	The rotation axes of the
	(Fig. 5.6b)	(Fig. 5.1a)	actuated revolute joints are
			parallel to two orthogonal
			directions
3	3- <u>Pa</u> PP	$\underline{Pa} \perp P \perp {}^{ }P$	Idem No. 1
	(Fig. 5.7a)	(Fig. 5.1b)	
4	3- <u>Pa</u> PP	$\underline{Pa} \perp P \perp P $	Idem No. 2
	(Fig. 5.7b)	(Fig. 5.1b)	
5	3- <u>Pa</u> PaP	$\underline{Pa} \perp Pa \perp P$	Idem No. 1
	(Fig. 5.8a)	(Fig. 5.1c)	
6	3- <u>Pa</u> PaP	$\underline{Pa} \perp Pa \perp P$	Idem No. 2
	(Fig. 5.8b)	(Fig. 5.1c)	
7	3- <u>Pa</u> PaP	$Pa \perp Pa \perp^{\perp} P$	Idem No. 1
	(Fig. 5.9a)	(Fig. 5.1d)	
8	3- <u>Pa</u> PaP	$Pa \perp Pa \perp^{\perp} P$	Idem No. 2
	(Fig. 5.9b)	(Fig. 5.1d)	
9	3-PaPPa	$Pa P \perp Pa$	Idem No. 1
	(Fig. 5.10a)	(Fig. 5.1e)	
10	3- <u>Pa</u> PPa	$\underline{Pa} P \perp Pa$	Idem No. 2
	(Fig. 5.10b)	(Fig. 5.1e)	
11	3- <u>Pa</u> PPa	$Pa \perp P \perp^{\perp} Pa$	Idem No. 1
	(Fig. 5.11a)	(Fig. 5.1f)	
12	3- <u>Pa</u> PPa	$Pa \perp P \perp^{\perp} Pa$	Idem No. 2
	(Fig. 5.11b)	(Fig. 5.1f)	
13	3-PaPaPa	$Pa \perp Pa Pa$	Idem No. 1
	(Fig. 5.12)	(Fig. 5.1g)	
14	3- <u>Pa</u> PaPa	$\underline{Pa} \perp Pa Pa$	Idem No. 2
	(Fig. 5.13)	(Fig. 5.1g)	
15	3- <u>Pa</u> Pa ^t P	$\underline{Pa} Pa^t P$	Idem No. 1
	(Fig. 5.14a)	(Fig. 5.1h)	
16	3- <u>Pa</u> Pa ^t P	$\underline{Pa} Pa^t P$	Idem No. 2
	(Fig. 5.14b)	(Fig. 5.1h)	
17	3- <u>Pa</u> Pa ^{tcc}	$\underline{Pa} Pa^{tcc}$	Idem No. 1
	(Fig. 5.15a)	(Fig. 5.1i)	
18	3- <u>Pa</u> Pa ^{tcc}	$\underline{Pa} Pa^{tcc}$	Idem No. 2
	(Fig. 5.15b)	(Fig. 5.1i)	

Table 5.2. Limb topology and connecting conditions of the overconstrained TPM with uncoupled motions and no idle mobilities presented in Figs. 5.6–5.15

No.	TPM	Limb	Connecting
	type	topology	conditions
1	3- <u>Pa</u> ^{cc} P	$\underline{Pa^{cc}} \perp P$	The rotation axes of the
	(Fig. 5.16a)	(Fig. 5.1j)	actuated revolute joints are
			reciprocally orthogonal
2	3- <u>Pa</u> ^{cc} P	$\underline{Pa^{cc}} \perp P$	The rotation axes of the
	(Fig. 5.16b)	(Fig. 5.1j)	actuated revolute joints are
			parallel to two orthogonal
			coplanar directions
3	3- <u>Ра</u> ^{сс} Ра	$\underline{Pa^{cc}} \perp Pa$	Idem No. 1
	(Fig. 5.17a)	(Fig. 5.1k)	
4	3- <u>Ра</u> ^{сс} Ра	$\underline{Pa^{cc}} \perp Pa$	Idem No. 2
	(Fig. 5.17b)	(Fig. 5.1k)	
5	3- <u>R</u> RPP	$\underline{R} R \perp P \perp P $	Idem No. 1
	(Fig. 5.18a)	(Fig. 5.2a)	
6	3- <u>R</u> RPP	$\underline{R} R \perp P \perp P $	Idem No. 2
	(Fig. 5.18b)	(Fig. 5.2a)	
7	3- <u>R</u> CP	$\underline{R} C \perp P$	Idem No. 1
	(Fig. 5.19a)	(Fig. 5.2c)	
8	3- <u>R</u> CP	$\underline{R} C \perp P$	Idem No. 2
	(Fig. 5.19b)	(Fig. 5.2c)	
9	3- <u>Pa</u> RRP	$\underline{Pa} \perp R R \perp P$	Idem No. 1
	(Fig. 5.20a)	(Fig. 5.3a)	
10	3- <u>Pa</u> RRP	$\underline{Pa} \perp R R \perp P$	Idem No. 2
	(Fig. 5.20b)	(Fig. 5.3a)	
11	3- <u>Pa</u> RRP	$\underline{Pa} \perp R R \perp^{\perp} P$	Idem No. 1
	(Fig. 5.21a)	(Fig. 5.3b)	
12	3- <u>Pa</u> RRP	$\underline{Pa} \perp R R \perp^{\perp} P$	Idem No. 2
	(Fig. 5.21b)	(Fig. 5.3b)	
13	3- <u>Pa</u> RPR	$\underline{Pa} \perp R \perp P \perp R$	Idem No. 1
	(Fig. 5.22a)	(Fig. 5.3c)	
14	3- <u>Pa</u> RPR	$\underline{Pa} \perp R \perp P \perp R$	Idem No. 2
	(Fig. 5.22b)	(Fig. 5.3c)	
15	3- <u>Pa</u> RRR	$\underline{Pa} \perp R R R$	Idem No. 1
	(Fig. 5.23a)	(Fig. 5.3d)	
16	3- <u>Pa</u> RRR	$\underline{Pa} \perp R R R$	Idem No. 2
	(Fig. 5.23b)	(Fig. 5.3d)	
17	3- <u>Pa</u> PRR	$\underline{Pa} P \perp R R$	Idem No. 1
	(Fig. 5.24a)	(Fig. 5.3e)	
18	3- <u>Pa</u> PRR	$\underline{Pa} P \perp R R$	Idem No. 2
	(Fig. 5.24b)	(Fig. 5.3e)	

Table 5.3. Limb topology and connecting conditions of the overconstrained TPM with uncoupled motions and no idle mobilities presented in Figs. 5.16–5.24

No.	TPM	Limb	Connecting
	type	topology	conditions
1	3- <u>Pa</u> PRR	$Pa \perp P \perp^{\perp} R R$	The rotation axes of the
	(Fig. 5.25a)	(Fig. 5.3f)	actuated revolute joints are
			reciprocally orthogonal
2	3- <u>Pa</u> PRR	$Pa \perp P \perp^{\perp} R R$	The rotation axes of the
	(Fig. 5.25b)	(Fig. 5.3f)	actuated revolute joints are
			parallel to two orthogonal
			coplanar directions
3	3- <u>Pa</u> PaRR	$\underline{Pa} \perp Pa R R$	Idem No. 1
	(Fig. 5.26a)	(Fig. 5.3g)	
4	3- <u>Pa</u> PaRR	$\underline{Pa} \perp Pa R R$	Idem No. 2
	(Fig. 5.26b)	(Fig. 5.3g)	
5	3- <u>Pa</u> RRPa	$\underline{Pa} \perp R R Pa$	Idem No. 1
	(Fig. 5.27a)	(Fig. 5.3h)	
6	3- <u>Pa</u> RRPa	$\underline{Pa} \perp R R Pa$	Idem No. 2
	(Fig. 5.27b)	(Fig. 5.3h)	
7	3- <u>Pa</u> RRbR	$\underline{Pa} \perp R Rb R$	Idem No. 2
	(Fig. 5.28)	(Fig. 5.3i)	
8	3- <u>Pa</u> RRbRbR	$\underline{Pa} \perp R Rb Rb R$	Idem No. 2
	(Fig. 5.29)	(Fig. 5.3j)	
9	3- <u>Pa</u> Pn2R	$\underline{Pa} \perp Pn2 R$	Idem No. 2
	(Figs. 5.30, 5.31)	(Fig. 5.3k, l)	
10	3- <u>Pa</u> Pn3	$\underline{Pa} \perp Pn3$	Idem No. 2
	(Figs. 5.32, 5.33)	(Fig. 5.3m, n)	
11	3- <u>Pa^{cc}</u> RR	$\underline{Pa^{cc}} \perp R R$	Idem No. 1
	(Fig. 5.34a)	(Fig. 5.30)	
12	3- <u>Pa^{cc}</u> RR	$\underline{Pa^{cc}} \perp R R$	Idem No. 2
	(Fig. 5.34b)	(Fig. 5.30)	
13	3- <u>R</u> RPaP	$\underline{R} R \perp Pa \perp^{\perp} P$	Idem No. 1
	(Fig. 5.35a)	(Fig. 5.4a)	
14	3- <u>R</u> RPaP	$R R \perp Pa \perp^{\perp} P$	Idem No. 2
	(Fig. 5.35b)	(Fig. 5.4a)	
15	3-RRPaP	$R R \perp Pa \perp P $	Idem No. 1
	(Fig. 5.36a)	(Fig. 5.4b)	
16	3- <u>R</u> RPaP	$\underline{R} R \perp Pa \perp P$	Idem No. 2
	(Fig. 5.36b)	(Fig. 5.4b)	
17	3- <u>R</u> CPa	$\underline{R} C \perp Pa$	Idem No. 1
	(Fig. 5.37a)	(Fig. 5.4c)	
18	3- <u>R</u> CPa	$\underline{R} C \perp Pa$	Idem No. 2
	(Fig. 5.37b)	(Fig. 5.4c)	

Table 5.4. Limb topology and connecting conditions of the overconstrained TPM with uncoupled motions and no idle mobilities presented in Figs. 5.25–5.37

No.	TPM	Limb	Connecting
	type	topology	conditions
1	3- <u>R</u> RPPa	$R R\perp P\perp^{\perp} Pa$	The rotation axes of the
	(Fig. 5.38a)	(Fig. 5.4d)	actuated revolute joints are
			reciprocally orthogonal
2	3- <u>R</u> RPPa	$R R\perp P\perp^{\perp} Pa$	The rotation axes of the
	(Fig. 5.38b)	(Fig. 5.4d)	actuated revolute joints are
			parallel to two orthogonal
			coplanar directions
3	3- <u>R</u> RPaPa	$\underline{R} R \perp Pa Pa$	Idem No. 1
	(Fig. 5.39a)	(Fig. 5.4e)	
4	3- <u>R</u> RPaPa	$\underline{R} R \perp Pa Pa$	Idem No. 2
	(Fig. 5.39b)	(Fig. 5.4e)	
5	3- <u>R</u> RPaPa	$\underline{R} R \perp Pa Pa$	Idem No. 1
	(Fig. 5.40a)	(Fig. 5.4f)	
6	3- <u>R</u> RPaPa	$\underline{R} R \perp Pa Pa$	Idem No. 2
	(Fig. 5.40a)	(Fig. 5.4f)	
7	3- <u>R</u> RRRbR	$\underline{R} R \perp R Rb R$	Idem No. 1
	(Fig. 5.41)	(Fig. 5.5a)	
8	3- <u>R</u> RRRbRbR	$\underline{R} R \perp R Rb Rb R$	Idem No. 1
	(Fig. 5.42)	(Fig. 5.5b)	
9	3- <u>R</u> RPn2R	$\underline{R} R \perp Pn2 R$	Idem No. 1
	(Figs. 5.43, 5.44)	(Fig. 5.5c, d)	
10	3- <u>R</u> RPn3	$\underline{R} R \perp Pn3$	Idem No. 1
	(Figs. 5.45, 5.46)	(Fig. 5.5e, f)	
11	3- <u>R</u> RRRPa	$\underline{R} R \perp R R Pa$	Idem No. 1
	(Fig. 5.47a)	(Fig. 5.5g)	
13	3- <u>R</u> RPaRR	$\underline{R} R \perp Pa R R$	Idem No. 1
	(Fig. 5.48a)	(Fig. 5.5h)	
13	3- <u>R</u> RPaRR	$\underline{R} R \perp Pa R R$	Idem No. 2
	(Fig. 5.48b)	(Fig. 5.5i)	

Table 5.5. Limb topology and connecting conditions of the overconstrained TPM with uncoupled motions and no idle mobilities presented in Figs. 5.38–5.48

No	. Parallel	Basis		
	mechanism	(R_{Gl})	(R_{G2})	(R_{G3})
1	Figs. 5.6–5.17	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
2	Figs. 5.18a, 5.36a, 5.37a, 5.38a, 5.39a,	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$
3	Figs. 5.18b, 5.36b, 5.37b, 5.38b, 5.39b,	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$
4	Figs. 5.19a, 5.35a, 5.40a	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha})$
5	Figs. 5.19b, 5.35b, 5.40b	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_{\alpha})$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{\omega}_{\alpha})$
6	Figs. 5.20–5.34	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{\omega}_{\alpha})$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{\omega}_\beta)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_\delta)$
7	Figs. 5.41, 5.42, 5.47, 5.48a	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha},\mathbf{\omega}_{\delta})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha},\mathbf{\omega}_{\beta})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta,\boldsymbol{\omega}_\delta)$
8	Figs. 5.43, 5.44, 5.45, 5.46, 5.48b	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha},\boldsymbol{\omega}_{\beta})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta,\boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha},\mathbf{\omega}_{\delta})$

Table 5.6. Bases of the operational velocities spaces of the limbs isolated from the parallel mechanisms presented in Figs. 5.6–5.48

No.	Structural	Solution		
	parameter	3-PaPP	3-PaPaP	3-PaPaPa
	1	(Figs. 5.6, 5.7)	(Figs. 5.8, 5.9)	(Figs. 5.12, 5.13)
			3- <u>Pa</u> PPa	
			(Figs. 5.10, 5.11)	
			3-PaPa ^t P	
			(Figs. 5.14)	
1	т	14	20	26
2	p_1	6	9	12
3	p_2	6	9	12
4	p_3	6	9	12
5	p	18	27	36
6	q	5	8	11
7	k_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.6	See Table 5.6	See Table 5.6
	(i = 1, 2, 3)			
11	S_{G1}	3	3	3
12	S_{G2}	3	3	3
13	S_{G3}	3	3	3
14	r_{G1}	3	6	9
15	r_{G2}	3	6	9
16	r_{G3}	3	6	9
17	M_{G1}	3	3	3
18	M_{G2}	3	3	3
19	M_{G3}	3	3	3
20	(R_F)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)
21	S_F	3	3	3
22	r_l	9	18	27
23	r_F	15	24	33
24	M_F	3	3	3
25	N_F	15	24	33
26	T_F	0	0	0
27	$\sum_{j=1}^{p_I} f_j$	6	9	12
28	$\sum_{j=1}^{p_2} f_j$	6	9	12
29	$\sum_{j=1}^{p_3} f_j$	6	9	12
30	$\sum_{j=1}^{p} f_j$	18	27	36

Table 5.7. Structural parameters^a of translational parallel mechanisms in Figs. 5.6–5.14

No.	Structural	Solution		
	parameter	3- <u>Pa</u> Pa ^{tcc}	3- <u>Pa</u> ^{cc} P	3- <u>R</u> RPP
	-	(Fig. 5.15)	(Fig. 5.16)	(Fig. 5.18)
		3- <u>Pa^{cc}Pa</u>		
		(Fig. 5.17)		
1	т	17	11	11
2	p_1	8	5	4
3	p_2	8	5	4
4	p_3	8	5	4
5	p	24	15	12
6	\overline{q}	8	5	2
7	\overline{k}_{1}	0	0	3
8	k_2	3	3	0
9	k	3	3	3
10	(R_{Gi})	See Table 5.6	See Table 5.6	See Table 5.6
	(i = 1, 2, 3)			
11	S_{G1}	3	3	4
12	S_{G2}	3	3	4
13	S_{G3}	3	3	4
14	r_{G1}	7	4	0
15	r_{G2}	7	4	0
16	r_{G3}	7	4	0
17	M_{G1}	3	3	4
18	M_{G2}	3	3	4
19	M_{G3}	3	3	4
20	(R_F)	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	(v_1, v_2, v_3)
21	S_F	3	3	3
22	r_l	21	12	0
23	r_F	27	18	9
24	M_F	3	3	3
25	N_F	21	12	3
26	T_F	0	0	0
27	$\sum_{j=1}^{p_l} f_j$	10	7	4
28	$\sum_{j=1}^{p_2} f_j$	10	7	4
29	$\sum_{j=1}^{p_3} f_j$	10	7	4
30	$\sum_{j=1}^{p} f_j$	30	21	12

Table 5.8. Structural parameters^a of translational parallel mechanisms in Figs. 5.15–5.18

No.	Structural	Solution 3-RCP	3-PaRRP	3-PaPaRR
	purumeter	(Fig 5 19)	(Figs 5.20, 5.21)	(Fig 5.26)
		(115. 5.17)	$(11g_{3}, 5.20, 5.21)$ 3-PaRPR (Fig. 5.22)	(1 Ig. 5.20) 3_PaRRPa
			3 - PaRRR (Fig. 5.22)	(Fig 5 27)
			3-PaPRR (Figs 5.22)	(116.5.27)
			5.25)	
1	т	8	17	23
2	p_1	3	7	10
3	p_2	3	7	10
4	p_3	3	7	10
5	p	9	21	30
6	\overline{q}	2	5	8
7	\bar{k}_1	3	0	0
8	k_2	0	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.6	See Table 5.6	See Table 5.6
	(i = 1, 2, 3)			
11	S_{GI}	4	4	4
12	S_{G2}	4	4	4
13	S_{G3}	4	4	4
14	r_{G1}	0	3	6
15	r_{G2}	0	3	6
16	r_{G3}	0	3	6
17	M_{Gl}	4	4	4
18	M_{G2}	4	4	4
19	M_{G3}	4	4	4
20	(R_F)	(v_1, v_2, v_3)	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
21	S_F	3	3	3
22	r_l	0	9	18
23	r_F	9	18	27
24	M_F	3	3	3
25	N_F	3	12	21
26	T_F	0	0	0
27	$\sum_{j=l}^{p_l} f_j$	4	7	10
28	$\sum_{j=l}^{p_2} f_j$	4	7	10
29	$\sum_{j=l}^{p_3} f_j$	4	7	10
30	$\sum_{j=1}^{p} f_j$	12	21	30

Table 5.9. Structural parameters^a of translational parallel mechanisms in Figs. 5.19–5.27

No	Structural	Solution		
110.	parameter	$3 P_a P R h R$	3 PaRRhRhR	$3 Pa^{cc} P P$
	parameter	(Fig. 5.28)	(Fig. 5.20)	$J = \underline{I} \underline{u} - KK$ (Fig. 5.24)
		$(1^{1}\text{Ig. } 5.28)$	(Ing. 5.29)	(Ing. 5.54)
		$\frac{J-\underline{r}\mu}{(\mathrm{Eign}, 5, 20, 5, 21)}$		
		$(\Gamma Igs. 3.30, 3.31)$		
		3- <u>Pa</u> Pn3		
-		(Figs. 5.32, 5.33)	• •	
1	т	23	29	14
2	p_1	10	13	6
3	p_2	10	13	6
4	p_3	10	13	6
5	р	30	39	18
6	q	8	11	5
7	k_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.6	See Table 5.6	See Table 5.6
	(i = 1, 2, 3)			
11	S_{Gl}	4	4	4
12	S_{G2}	4	4	4
13	S_{G3}	4	4	4
14	r _{Gl}	6	9	4
15	r _{G2}	6	9	4
16	r_{G3}	6	9	4
17	MGI	4	4	4
18	M_{G2}	4	4	4
19	M_{G3}	4	4	4
20	(R_F)	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$
21	S_F	3	3	3
22	r_i	18	27	12
23	r_{F}	27	36	21
24	$M_{\rm F}$	3	3	3
25	N_F	21	30	9
26	T_{E}	0	0	0
27	$\sum_{r}^{p_{l}} c$	10	13	8
21	$\sum_{j=1}^{n} f_j$	10	15	0
28	$\sum_{j=1}^{p_2} f_j$	10	13	8
29	$\sum_{p_3}^{p_3} f$	10	13	8
	$\sum_{j=1} J_j$			
30	$\sum_{j=1}^{p} f_j$	30	39	24

Table 5.10. Structural parameters^a of translational parallel mechanisms in Figs. 5.28–5.34

No.	Structural	Solution		
	parameter	3- <u>R</u> RPaP	3- <u>R</u> CPa	3- <u>R</u> RPaPa
	-	(Figs. 5.35, 5.36)	(Fig. 5.37)	(Figs. 5.39, 5.40)
		3- <u>R</u> RPPa		
		(Fig. 5.38)		
1	т	17	14	23
2	p_1	7	6	10
3	p_2	7	6	10
4	p_3	7	6	10
5	p	21	18	30
6	q	5	5	8
7	\hat{k}_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.6	See Table 5.6	See Table 5.6
	(i = 1, 2, 3)			
11	S_{G1}	4	4	4
12	S_{G2}	4	4	4
13	S_{G3}	4	4	4
14	r_{G1}	3	3	6
15	r_{G2}	3	3	6
16	r _{G3}	3	3	6
17	M_{G1}	4	4	4
18	M_{G2}	4	4	4
19	M_{G3}	4	4	4
20	(R_F)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)
21	S_F	3	3	3
22	r_l	9	9	18
23	r_F	18	18	27
24	M_F	3	3	3
25	N_F	12	12	21
26	T_F	0	0	0
27	$\sum_{j=1}^{p_I} f_j$	8	7	10
28	$\sum_{j=1}^{p_2} f_j$	8	7	10
29	$\sum_{j=1}^{p_3} f_j$	8	7	10
30	$\sum_{j=1}^{p} f_j$	24	21	30

Table 5.11. Structural parameters^a of translational parallel mechanisms in Figs. 5.35–5.40

No.	Structural	Solution	
	parameter	3- <u>RRRbR</u> (Fig. 5.41)	3- <u>R</u> RRRbRbR
	•	3- <u>RRPn2R</u> (Figs. 5.43, 5.44)	(Fig. 5.42)
		3-RRPn3 (Figs. 5.45, 5.46)	· • ·
		3-RRRPa (Fig. 5.47)	
		3-RRPaRR (Fig. 5.48)	
1	т	20	26
2	p_1	8	11
3	p_2	8	11
4	p_3	8	11
5	p	24	33
6	q	5	8
7	\hat{k}_1	0	0
8	k_2	3	3
9	k	3	3
10	(R_{Gi})	See Table 5.6	See Table 5.6
	(i = 1, 2, 3)		
11	S_{GI}	5	5
12	S_{G2}	5	5
13	S_{G3}	5	5
14	r_{G1}	3	6
15	r_{G2}	3	6
16	r_{G3}	3	6
17	M_{G1}	5	5
18	M_{G2}	5	5
19	M_{G3}	5	5
20	(R_F)	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$	(v_1, v_2, v_3)
21	S_F	3	3
22	r_l	9	18
23	r_F	21	30
24	M_F	3	3
25	N_F	9	18
26	T_F	0	0
27	$\sum_{j=1}^{p_l} f_j$	8	11
28	$\sum_{j=1}^{p_2} f_j$	8	11
29	$\sum_{j=1}^{p_3} f_j$	8	11
30	$\sum_{i=1}^{p} f_i$	24	33

Table 5.12. Structural parameters^a of translational parallel mechanisms in Figs. 5.41–5.48

Fig. 5.1. Complex limbs for overconstrained TPMs with uncoupled motions defined by $M_G = S_G = 3$, $(R_G) = (v_1, v_2, v_3)$ and actuated by rotating motors mounted on the fixed base and combined in a parallelogram loop of type Pa (**a**-**i**) or Pa^{cc} (**j** and **k**)

Fig. 5.1. (cont.)

Fig. 5.2. Simple limbs for overconstrained TPMs with uncoupled motions defined by $M_G = S_G = 4$, $(R_G) = (v_1, v_2, v_3, \omega_1)$ and actuated by rotating motors mounted on the fixed base

Fig. 5.3. Complex limbs for overconstrained TPMs with uncoupled motions defined by $M_G = S_G = 4$, $(R_G) = (v_1, v_2, v_3, \omega_1)$ and actuated by rotating motors mounted on the fixed base and combined in a parallelogram loop of type Pa (**a**–**n**) or Pa^{cc} (**o**)

Fig. 5.3. (cont.)

Fig. 5.3. (cont.)

 $Pa^{cc} ot R || R$

Fig. 5.4. Complex limbs for overconstrained TPMs with uncoupled motions defined by $M_G = S_G = 4$, $(R_G) = (v_1, v_2, v_3, \omega_1)$ and actuated by rotating motors mounted on the fixed base

Fig. 5.5. Complex limbs for overconstrained TPMs with uncoupled motions defined by $M_G = S_G = 5$, $(R_G) = (v_1, v_2, v_3, \omega_1, \omega_2)$ and actuated by rotating motors mounted on the fixed base

Fig. 5.5. (cont)

Fig. 5.6. 3-<u>*PaPP*</u>-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 15$, limb topology <u>*Pa*</u>||*P* $\perp^{\perp} P$

Fig. 5.7. *3-<u>Pa</u>PP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 15$, limb topology $\underline{Pa} \perp P \perp ||P$

Fig. 5.8. 3-PaPaP-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 24$, limb topology $\underline{Pa} \perp Pa \perp ||P|$

Fig. 5.9. 3-<u>Pa</u>PaP-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 24$, limb topology <u>Pa</u> \perp Pa $\perp^{\perp} P$

Fig. 5.10. 3-<u>Pa</u>PPa-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 24$, limb topology <u>Pa</u>||P \perp Pa

Fig. 5.11. *3-<u>Pa</u>PPa*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 24$, limb topology <u>Pa</u> $\perp P \perp^{\perp} Pa$

Fig. 5.12. *3-<u>Pa</u>PaPa-type* overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base with the axes parallel to three reciprocally orthogonal directions, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 33$, limb topology <u>Pa</u> \perp Pa||Pa

Fig. 5.13. *3*-<u>*PaPaPa-type* overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base with the axes parallel to two planar orthogonal directions, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 33$, limb topology <u>*Pa*</u> \perp *Pa*||*Pa*</u>

Fig. 5.14. *3-<u>Pa</u>Pa^tP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 24$, limb topology <u>Pa</u>||Pa^t||P

Fig. 5.15. *3-<u>Pa</u>Pa^{tcc}*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>Pa</u>||Pa^{tcc}

Fig. 5.16. 3-<u>Pa</u>^{cc}P-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u>^{cc} $\perp P$

Fig. 5.17. 3-<u>Pa</u>^{cc}Pa-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, $T_F = 0, N_F = 21$, limb topology $\underline{Pa^{cc}} \perp Pa$

Fig. 5.18. *3*-<u>*R*</u>*RPP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>*R*</u> $||R \perp P \perp ||P$

Fig. 5.19. *3*-<u>*R*</u>*CP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>*R*</u> $||C \perp P$

Fig. 5.20. *3-<u>Pa</u>RRP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u> $\perp R ||R \perp ||P$

Fig. 5.21. *3-<u>Pa</u>RRP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u> $\perp R || R \perp^{\perp} P$

Fig. 5.22. *3-<u>Pa</u>RPR-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by M_F = S_F = 3, (R_F) = (v_1, v_2, v_3), T_F = 0, N_F = 12, limb topology <u>Pa</u> \perp R \perp P \perp {}^{\parallel}R*

Fig. 5.23. *3-<u>Pa</u>RRR-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by* $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u> $\perp R||R||R$

Fig. 5.24. *3-<u>Pa</u>PRR-*type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u>||P $\perp R$ ||R

Fig. 5.25. *3*-<u>*PaPRR*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>*Pa*</u> $\perp P \perp^{\perp} R || R$ </u>

Fig. 5.26. 3-<u>*PaPaRR*</u>-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>*Pa*</u> $\perp Pa||R||R$

Fig. 5.27. 3-<u>Pa</u>RRPa-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>Pa</u> $\perp R||R||Pa$

Fig. 5.28. 3-<u>Pa</u>RRbR-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>Pa</u> $\perp R ||Rb||R$

Fig. 5.29. 3-<u>Pa</u>RRbRbR-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 30$, limb topology <u>Pa</u> $\perp R||Rb||Rb||R$

Fig. 5.30. 3-<u>Pa</u>Pn2R-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3), T_F = 0, N_F = 21$, limb topology <u>Pa</u> \perp Pn2||R

Fig. 5.31. 3-<u>Pa</u>Pn2R-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>Pa</u> \perp Pn2||R

Fig. 5.32. *3-PaPn3*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology $Pa \perp Pn3$

Fig. 5.33. 3-<u>Pa</u>Pn3-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>Pa</u> \perp Pn3

Fig. 5.34. 3-<u>*Pa*^{*cc*}</u>*RR*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>*Pa*^{*cc*}</u> $\perp R ||R$

Fig. 5.35. 3-<u>R</u>RPaP-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0, N_F = 12$, limb topology $\underline{R} || R \perp P a \perp^{\perp} P$

(a)

Fig. 5.36. *3*-<u>*R*</u>*PaP*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>*R*</u> $||R \perp Pa \perp ||P$

Fig. 5.37. *3*-<u>*R*</u>*CPa*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>*R*</u> $||C \perp Pa$

Fig. 5.38. *3*-<u>*R*</u>*RPPa*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>*R*</u> $||R \perp P \perp^{\perp} Pa$

Fig. 5.39. 3-<u>R</u>*PaPa*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>R</u> $||R \perp Pa||Pa$

(b)

Fig. 5.40. 3-<u>R</u>*PaPa*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) =$ $(v_1, v_2, v_3), T_F = 0, N_F = 21$, limb topology <u>R</u> $||R \perp Pa||Pa$

Fig. 5.41. 3-<u>R</u>RR*k*B*R*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$ limb topology <u>R</u>|| $R \perp R$ ||Rb||R

Fig. 5.42. 3-<u>R</u>RR*kb*R*b*R-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 18$, limb topology <u>R</u>|| $R \perp R$ ||Rb||Rb||R

Fig. 5.43. 3-<u>R</u>*RPn*2*R*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u>|| $R \perp Pn2$ ||R

Fig. 5.44. 3-<u>R</u>*RPn*2*R*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u> $||R \perp Pn2||R$

Fig. 5.45. 3-<u>R</u>*Pn3*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u> $||R \perp Pn3$

Fig. 5.46. 3-<u>R</u>*RPn*3-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topologies <u>R</u> $||R \perp Pn3$

Fig. 5.47. 3-<u>R</u>RRP*a*-type overconstrained TPM with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u>|| $R \perp R$ ||R||Pa

Fig. 5.48. 3-<u>R</u>*RPaRR*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u> $||R \perp Pa||R||R$

5.2 Derived solutions with rotating actuators

Solutions with lower degrees of overconstraint can be derived from the basic solutions in Figs. 5.6–5.48 by using joints with *idle mobilities*. A large set of solutions can be obtained by introducing one or two rotational idle mobilities outside the closed loops that can be integrated in the limbs and up to three idle mobilities (two rotations and one translation) in each planar loop. The joints combining idle mobilities are denoted by an asterisk. We recall that the idle mobilities combined in a parallelogram loop (see Fig. 6.3 – Part 1) are systematized in Table 3.12. Two idle rotational mobilities are introduced in the spherical joint of the parallelogram loops denoted by Pa^{ccs} and Pa^{scc} which combines two cylindrical, one revolute and one spherical joint. In the cylindrical joint denoted by C^* , the rotation is the idle mobility.

For example, the solution $3-\underline{Pa}PC^*$ -type in Fig. 5.49 is derived from the basic solution $3-\underline{Pa}PP$ in Fig. 5.6 by replacing the last prismatic joint P in each limb by a cylindrical joint C^* which combines a rotational idle mobility.

Examples of solutions with identical limbs and three to twenty one degrees of overconstraint derived from the basic solutions in Figs. 5.6–5.48 are illustrated in Figs. 5.49–5.108. The limb topology and the number of overconstraints in these solutions are systematized in Table 5.13 and the structural parameters in Tables 5.14–5.26.

No.	Basic TPM		Derived TPM		
	type	N_F	type	N_F	Limb topology
1	3- <u>Pa</u> PP	15	3- <u>Pa</u> PC*	12	$\underline{Pa} P \perp C^*$
	(Fig. 5.6)		(Fig. 5.49)		
2			3- <u>Pa</u> ^{ss} PP	3	$\underline{Pa}^{ss} P\perp P$
			(Fig. 5.50)		
3	3- <u>Pa</u> PP	15	3- <u>Pa</u> PC*	12	$\underline{Pa} \perp P \perp {}^{ }C^*$
	(Fig. 5.7)		(Fig. 5.51)		
4			3- <u>Pa</u> ^{ss} PP	3	$\underline{Pa}^{ss} \perp P \perp P $
			$\underline{Pa}^{ss} \perp P \perp {}^{ }P$		
			(Fig. 5.52)		
5	3- <u>Pa</u> PaP	24	3- <u>Pa</u> Pa ^{ss} P	12	$\underline{Pa} \perp Pa^{ss} \perp P $
	(Fig. 5.8a)		(Fig. 5.53a)		
6			3- <u>Pa</u> Pa ^{cs} P	15	$\underline{Pa} \perp Pa^{cs} \perp P $
			(Fig. 5.53b)		
7			3- <u>Pa</u> ^{ss} PaP	12	$\underline{Pa}^{ss} \perp Pa \perp P $
			(Fig. 5.54a)		
8			3- <u>Pa</u> Pa ^{cs} PR*R*	9	$\underline{Pa} \perp Pa^{cs} \perp {}^{\parallel}P \perp^{\perp} R^* \perp {}^{\parallel}R^*$
			(Fig. 5.54b)		
9	3- <u>Pa</u> PaP	24	3- <u>Pa</u> Pa ^{ss} P	12	$\underline{Pa} \perp Pa^{ss} \perp^{\perp} P$
	(Fig. 5.9)		(Fig. 5.55a)		
10			3- <u>Pa</u> Pa ^{cs} P	15	$\underline{Pa} \perp Pa^{cs} \perp^{\perp} P$
			(Fig. 5.55b)		
11			3- <u>Pa</u> ssPaP	12	$\underline{Pa}^{ss} \perp Pa \perp^{\perp} P$
			(Fig. 5.56a)		
12			3- <u>Pa</u> Pa ^{cs} PR*R*	9	$\underline{Pa} \perp Pa^{cs} \perp^{\perp} P \perp^{\perp} R^* \perp^{\parallel} R^*$
			(Fig. 5.56b)		
13	3- <u>Pa</u> PPa	24	3- <u>Pa</u> PPa ^{ss}	12	$\underline{Pa} P \perp Pa^{ss}$
	(Fig. 5.10)		(Fig. 5.57a)		
14			3- <u>Pa</u> ^{cs} PPa	15	$\underline{Pa}^{cs} P \perp Pa$
			(Fig. 5.57b)		
15			3- <u>Pa</u> ssPPa	12	$\underline{Pa}^{ss} P \perp Pa$
			(Fig. 5.58a)		
16			3- <u>Pa</u> PPa ^{cs} R*R*	9	$\underline{Pa} P \perp Pa^{cs} \perp R^* \perp^{\perp} R^*$
			(Fig. 5.58b)		
17	3- <u>Pa</u> PPa	24	3- <u>Pa</u> PPa ^{ss}	12	$\underline{Pa} \perp P \perp^{\perp} Pa^{ss}$
	(Fig. 5.11)		(Fig. 5.59a)		
18			3- <u>Pa</u> ^{cs} PPa	15	$\underline{Pa}^{cs} \bot P \bot^{\bot} Pa$
			(Fig. 5.59b)		
19			3- <u>Pa</u> ssPPa	12	$\underline{Pa}^{ss} \perp P \perp^{\perp} Pa$
			(Fig. 5.60a)		

Table 5.13. Limb topology and the number of overconstraints N_F of the derived TPMs with idle mobilities and rotating actuators mounted on the fixed base presented in Figs. 5.49–5.108

Table 5.13. (cont.)

20			3- <u>Pa</u> PPa ^{cs} R*R*	9	$\underline{Pa} \perp P \perp^{\perp} Pa^{cs} \perp^{\parallel} R^* \perp^{\perp} R^*$
			(Fig. 5.60b)		
21	3- <u>Pa</u> PaPa	33	3- <u>Pa</u> PaPa ^{ss}	21	$\underline{Pa} \perp Pa Pa^{ss}$
	(Fig. 5.12)		(Fig. 5.61)		
22			3-Pa ^{ss} PaPa ^{ss}	9	$Pa^{ss} \perp Pa Pa^{ss}$
			(Fig. 5.62)		
23			3-PaPaPa ^{cs}	24	$Pa \perp Pa Pa^{cs}$
			(Fig. 5.63)		
24			$3-Pa^{cs}PaPa^{cs}R^*R$	*9	$Pa^{cs} \mid Pa \mid Pa^{cs} \mid \mid R* \mid \perp R*$
			(Fig. 5.64)		$\underline{Iu} \perp Iu Iu \perp K \perp K$
25	$3-PaPa^{t}P$	24	$3-PaPa^{t}C^{*}$	21	$Pa Pa^t C^*$
20	(Fig 5 14)	2 /	(Fig 5 65)	21	
26	(119:011)		$3_{Pa}Pa^{tss}P$	12	$Pa Pa^{tss} P$
20			(Fig 5 66a)	12	
27			$3 P_a P_a^{tcs} P P *$	12	$\mathbf{D}_{\mathbf{r}} = [\mathbf{D}_{\mathbf{r}}^{tcs}] + \mathbf{D}_{\mathbf{r}} + \mathbf{D}_{\mathbf{r}}^{tcs}$
21			$\frac{J-\underline{I}u}{(\mathrm{Fig}, 5.66\mathrm{h})}$	12	$\underline{Pa} Pa P \perp R^{+}$
28	$3 D_{\alpha} D_{\alpha}^{tcc}$	21	$(1^{1}\text{Ig. } 5.000)$	12	$\mathbf{D}_{\alpha}^{ss} \mathbf{D}_{\alpha}^{tcc}$
20	$\frac{J-\underline{I}}{(\underline{F})} = \frac{J}{2} $	21	$5 - \underline{I} \underline{u} + \underline{I} \underline{u}$ (Fig. 5.67a)	12	$\underline{I} \underline{a} \parallel \underline{I} \underline{a}$
20	(FIg. 5.15)		$(\Gamma Ig. 5.07a)$	12	$\mathbf{D} \sim cs \mathbf{D} \sim tcc$
29			$5 - \underline{ru} ru$ (Eia 5 67b)	12	$\underline{ra} ra$
20			(F1g. 3.0/0)	(אמן <i>גנו גע</i> ו איז מווא מ
30			3- <u>Pa</u> Pa K*K*	0	$\underline{Pa}^{-} Pa^{-} \perp R^{*} \perp R^{*}$
2.1			(F1g. 5.68a)	6	
31			3- <u>Pa</u> ^{co} Pa ^{co} R*R*	0	$\underline{Pa}^{co} Pa^{co} \perp R^* \perp R^*$
			(Fig. 5.68b)		
32	3- <u>Pa</u> eP	12	3- <u>Pa</u> ^{cc} C*R*	6	$\underline{Pa}^{cc} \perp C^* \perp R^*$
	(F1g. 5.16)		(F1g. 5.69)		227
33			$3-\underline{Pa}^{ccs}P$	6	$\underline{Pa}^{ccs} \perp P$
			(Fig. 5.70)		
34	3- <u>Pa</u> ^{cc} Pa	21	3- <u>Pa</u> ccsPa	15	$\underline{Pa}^{ccs} \perp Pa$
	(Fig. 5.17)		(Fig. 5.71)		
35			3- <u>Pa</u> ^{cc} Pa ^{ss} R*	6	$\underline{Pa}^{cc} \perp Pa^{ss} R^*$
			(Fig. 5.72)		
36	3- <u>Pa</u> RRP	12	3- <u>Pa</u> ^{ss} RP	3	$\underline{Pa}^{ss} \perp R \perp {}^{ }P$
	(Fig. 5.20)		(Fig. 5.73		
37	3- <u>Pa</u> RRP	12	3- <u>Pa</u> ^{ss} RP	3	$Pa^{ss} \perp R \perp^{\perp} P$
	(Fig. 5.21)		(Fig. 5.74)		—
38			3- <u>Pa</u> RRC*	9	$Pa \perp R R \perp^{\perp} C^*$
			(Fig. 5.75)		
39	3- <u>Pa</u> RPR	12	3-PaRPRR*	9	$\underline{Pa} \perp R \perp P \perp {}^{ }R \perp R^*$
	(Fig. 5.22)		(Fig. 5.76)		
40	× C /		3-Pa ^{ss} PR	3	$Pa^{ss}-P \mid {}^{\perp}R$
			(Fig. 5.77)		<u></u> 1 <u></u> 1
41	3-PaRRR	12	3-PaRRRR*	9	$Pa \perp R R R \perp R^*$
	(Fig. 5.23)		(Fig. 5.78)		
	$\langle U \rangle$				

Table 5.13. (cont.)						
42			$3-\underline{Pa}^{ss}RR$	3	$\underline{Pa}^{ss} \perp R R$	
43	$3-\underline{Pa}PRR$	12	(Fig. 5.79) $3-\underline{Pa}PRRR*$	9	$\underline{Pa} P \perp R R \perp R^*$	
44	(F1g. 5.24)		$(F1g. 5.80)$ $3-\underline{Pa}^{cs}PRR$ $(F1g. 5.81)$	3	$\underline{Pa}^{cs} P \perp R R$	
45	3- <u>Pa</u> PRR	12	$(Fig. 5.81)$ $3-\underline{Pa}PRRR$ $(Fig. 5.82)$	9	$\underline{Pa} \perp P \perp^{\perp} R R \perp R^*$	
46	(Fig. 5.25)		$(Fig. 5.82)$ $3-\underline{Pa}^{cs}PRR$ $(Fig. 5.82)$	3	$\underline{Pa}^{cs} \perp P \perp^{\perp} R R$	
47	3- <u>Pa</u> PaRR (Fig. 5.26)	21	(Fig. 5.85) 3- <u>Pa</u> PaRRR* (Fig. 5.84)	18	$\underline{Pa} \perp Pa R R \perp^{\perp} R^*$	
48	(11g. 5.20)		$3 - \underline{Pa}^{cs} Pa^{cs} RR$	3	$\underline{Pa}^{cs} \perp Pa^{cs} R R$	
49	3- <u>Pa</u> RRPa (Fig. 5.27)	21	$\begin{array}{c} (Fig. 5.85) \\ 3-\underline{Pa}^{ss}RPa \\ (Fig. 5.86) \end{array}$	12	$\underline{Pa}^{ss} \perp R Pa$	
50	(Fig. 5.27)		$3 - \underline{Pa}^{ss} RPa^{cs}$ (Fig. 5.87)	3	$\underline{Pa}^{ss} \perp R Pa^{cs}$	
51	3- <u>Pa</u> RRbR (Fig. 5.28)	21	$3-\underline{Pa}^{ss}RbR$	12	$\underline{Pa}^{ss} \perp Rb R$	
52	(11g. 5.26)		$3 - \underline{Pa}^{ss} Rb^{cs} R$ (Fig. 5.89)	3	$\underline{Pa}^{ss} \perp Rb^{cs} R$	
53	3- <u>Pa</u> RRbRbR (Fig. 5 29)	30	$3-\underline{Pa}^{ss}RbRbR$	21	$\underline{Pa}^{ss} \perp Rb Rb R$	
54	(11g. 5.27)		$3-\underline{Pa}^{ss}Rb^{cs}Rb^{cs}R$ (Fig. 5.91)	3	$\underline{Pa}^{ss} \perp Rb^{cs} Rb^{cs} R$	
55	3- <u>Pa</u> Pn2R (Fig. 5 30)	21	$3-\underline{Pa}Pn2RR*$ (Fig. 5.92)	18	$\underline{Pa} \perp Pn2 R \perp R^*$	
56	(119.0.00)		$3 - \underline{Pa}^{cs} Pn2^{cs} R$ (Fig. 5.93)	3	$\underline{Pa}^{cs} \perp Pn2^{cs} R$	
57	<i>3-<u>Pa</u>Pn2R</i> (Fig. 5.31)	21	3- <u>Pa</u> Pn2RR* (Fig. 5.94)	18	$\underline{Pa} \perp Pn2 R \perp R^*$	
58	(118,0101)		$3 - \underline{Pa}^{cs} Pn2^{cs} R$ (Fig. 5.95)	3	$\underline{Pa}^{cs} \perp Pn2^{cs} R$	
59	3- <u>Pa</u> Pn3 (Fig. 5.32)	21	3- <u>Pa</u> Pn3R* (Fig. 5.96)	18	$\underline{Pa} \perp Pn3 \perp R^*$	
60	(8,		3- <u>Pa^{cs}Pn3^{cs}</u> (Fig. 5.97)	3	$\underline{Pa}^{cs} \perp Pn3^{cs}$	
61	3- <u>Pa</u> Pn3 (Fig. 5.33)	21	3- <u>Pa</u> Pn3R* (Fig. 5.98)	18	$\underline{Pa} \perp Pn3 \perp R^*$	
62			3- <u>Pa</u> ^{cs} Pn3 ^{cs} (Fig. 5.99)	3	$\underline{Pa}^{cs} \perp Pn3^{cs}$	
63	3- <u>Pa^{cc}</u> RR (Fig. 5.34)	9	3- <u>Pa</u> ^{cc} RRR* (Fig. 5.100)	6	$\underline{Pa}^{cc} \perp R R \perp R^*$	

Table 5.15. (Colli.)						
64			3- <u>Pa</u> sccRR	3	$\underline{Pa}^{scc} \perp R R$	
			(Fig. 5.101)			
65	3- <u>R</u> RPaP	12	$3-\underline{R}Pa^{ss}P$	3	$\underline{R} \perp P a^{ss} \perp P$	
	(Fig. 5.35)		(Fig. 5.102)			
66	3- <u>R</u> RPPa	12	3- <u>R</u> RC*Pa	9	$R R \perp C^* \perp^{\perp} Pa$	
	(Fig. 5.38)		(Fig. 5.103)			
67			3- <u>R</u> RPPa ^{cs}	3	$R R\perp P\perp^{\perp} Pa^{cs}$	
			(Fig. 5.104)			
68	3- <u>R</u> RPaPa	21	3- <u>R</u> RPaPa ^{cs}	12	$\underline{R} R \perp Pa Pa^{cs}$	
	(Fig. 5.39)		(Fig. 5.105)			
69			3- <u>R</u> RPa ^{ss} Pa	9	$\underline{R} R \perp Pa^{ss} Pa$	
			(Fig. 5.106)			
70			3- <u>R</u> Pa ^{ss} Pa	12	$\underline{R} \perp Pa^{ss} Pa$	
			(Fig. 5.107)			
71			3- <u>R</u> RPaPa ^{ss}	9	$\underline{R} R \perp Pa Pa^{ss}$	
			(Fig. 5.108)			

Table 5.13. (cont.)

No.	Parallel	Basis					
	mechanism	(R_{Gl})	(R_{G2})	(R_{G3})			
1	Figs. 5.49a, 5.51a, 5.57a, 5.59a, 5.61, 5.104a, 5.105a	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$			
2	Figs. 5.49b, 5.51b, 5.104b, 5.105b	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\delta)$	$(v_1, v_2, v_3, \omega_\beta)$			
3	Figs. 5.50, 5.52, 5.54a, 5.56a, 5.58a, 5.60a, 5.66a, 5.73, 5.74, 5.77, 5.79, 5.81, 5.83, 5.85, 5.86, 5.87, 5.88-5.91, 5.93, 5.95, 5.97, 5.99, 5.101	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{\omega}_\delta)$			
4	Figs. 5.53a, 5.55a, 5.65a, 5.102a, 5.107a	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha})$			
5	Figs. 5.53b, 5.55b, 5.57b, 5.59b, 5.63 5.67, 5.70, 5.71	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$			
6	Figs. 5.54b, 5.56b, 5.58b, 5.60b, 5.64 5.68, 5.69b, 5.103 5.106, 5.108	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_\beta, \boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_\alpha,\mathbf{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha},\boldsymbol{\omega}_{\beta})$			
7	Figs. 5.62, 5.69a	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha},\boldsymbol{\omega}_{\delta})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\alpha,\boldsymbol{\omega}_\beta)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_{\beta}, \boldsymbol{\omega}_{\delta})$			
8	Fig. 5.65b	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_{\delta})$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_\delta)$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_{\alpha})$			
9	Fig. 5.66b	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_{\beta})$	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \boldsymbol{\omega}_{\alpha})$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{\omega}_\beta)$			
10	Figs. 5.72, 5.75, 5.76, 5.78, 5.80, 5.82, 5.84, 5.92, 5.94, 5.96, 5.98, 5.100	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha},\mathbf{\omega}_{\beta})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_\beta,\mathbf{\omega}_\delta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{\omega}_{\alpha},\mathbf{\omega}_{\delta})$			
11	Figs. 5.102b, 5.107b	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_\beta)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha})$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\boldsymbol{\omega}_{\alpha})$			

Table 5.14. Bases of the operational velocities spaces of the limbs isolated from the parallel mechanisms presented in Figs. 5.49–5.108
No.	Structural	Solution	
	parameter	3- <u>Pa</u> PC*	3- <u>Pa^{ss}PP</u>
		(Figs. 5.49, 5.51)	(Figs. 5.50, 5.52)
1	т	14	14
2	p_1	6	6
3	p_2	6	6
4	p_3	6	6
5	р	18	18
6	q	5	5
7	k_1	0	0
8	k_2	3	3
9	k	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)		
11	S_{G1}	4	4
12	S_{G2}	4	4
13	S_{G3}	4	4
14	r_{G1}	3	6
15	r_{G2}	3	6
16	r_{G3}	3	6
17	M_{G1}	4	4
18	M_{G2}	4	4
19	M_{G3}	4	4
20	(R_F)	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
21	S_F	3	3
22	r_l	9	18
23	r_F	18	27
24	M_F	3	3
25	N_F	12	3
26	T_F	0	0
27	$\sum_{j=1}^{p_I} f_j$	7	10
28	$\sum_{j=1}^{p_2} f_j$	7	10
29	$\sum_{j=1}^{p_3} f_j$	7	10
30	$\sum_{j=1}^{p} f_j$	21	30

Table 5.15. Structural parameters^a of translational parallel mechanisms in Figs. 5.49–5.52

Table 5.16. Structural parameters^a of translational parallel mechanisms in Figs. 5.53–5.60

No.	Structural	Solution		
	parameter	3- <u>Pa</u> Pa ^{ss} P (Figs. 5.53a, 5.55a)	3- <u>Pa</u> Pa ^{cs} P	3- <u>Pa</u> Pa ^{cs} PR*R*
	•	3- <u>Pa</u> ^{ss} PaP (Figs. 5.54a, 5.56a)	(Figs. 5.53b,	(Figs. 5.54b,
		3- <u>Pa</u> PPa ^{ss} (Figs. 5.57a, 5.59a)	5.55b)	5.56b)
		3- <u>Pa</u> ^{ss} PPa (Figs. 5.58a, 5.60a)	3- <u>Pa</u> csPPa	3- <u>Pa</u> PPa ^{cs} R*R*
			(Figs. 5.57b,	(Figs. 5.58b,
			5.59b)	5.60b)
1	т	20	20	26
2	p_1	9	9	11
3	p_2	9	9	11
4	p_3	9	9	11
5	р	27	27	33
6	q	8	8	8
7	\bar{k}_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)			
11	S_{G1}	4	3	5
12	S_{G2}	4	3	5
13	S_{G3}	4	3	5
14	r_{G1}	9	9	9
15	r_{G2}	9	9	9
16	r_{G3}	9	9	9
17	M_{G1}	4	3	5
18	M_{G2}	4	3	5
19	M_{G3}	4	3	5
20	(R_F)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)
21	S_F	3	3	3
22	r_l	27	27	27
23	r_F	36	33	39
24	M_F	3	3	3
25	N_F	12	15	9
26	T_F	0	0	0
27	$\sum_{j=1}^{p_l} f_j$	13	12	14
28	$\sum_{i=1}^{p_2} f_i$	13	12	14
29	$\frac{-\int_{a}^{b} f_{i}}{\sum_{i=1}^{p_{3}} f_{i}}$	13	12	14
30	$\sum_{j=1}^{p} f_{j}$	39	36	42

No.	Structural	Solution		
	parameter	3- <u>Pa</u> PaPa ^{ss}	3- <u>Pa</u> ^{ss} PaPa ^{ss}	3- <u>Pa</u> PaPa ^{cs}
	-	(Fig. 5.61)	(Fig. 5.62)	(Fig. 5.63)
1	т	26	26	26
2	p_1	12	12	12
3	p_2	12	12	12
4	p_3	12	12	12
5	р	36	36	36
6	q	11	11	11
7	k_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)			
11	S_{GI}	4	5	3
12	S_{G2}	4	5	3
13	S_{G3}	4	5	3
14	r_{Gl}	12	15	12
15	r_{G2}	12	15	12
16	r_{G3}	12	15	12
17	M_{G1}	4	5	3
18	M_{G2}	4	5	3
19	M_{G3}	4	5	3
20	(R_F)	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
21	S_F	3	3	3
22	r_l	36	45	36
23	r_F	45	57	42
24	M_F	3	3	3
25	N_F	21	9	24
26	T_F	0	0	0
27	$\sum_{j=1}^{p_l} f_j$	16	20	15
28	$\sum_{j=1}^{p_2} f_j$	16	20	15
29	$\sum_{j=1}^{p_3} f_j$	16	20	15
30	$\sum_{j=1}^{p} f_j$	48	60	45

Table 5.17. Structural parameters^a of translational parallel mechanisms in Figs. 5.61–5.63

No.	Structural	Solution			
	parameter	3- <u>Pa</u> ^{cs} PaPa ^{cs} R*R*	* 3- <u>Pa</u> Pa ^t C*	3- <u>Pa</u> Pa ^{tss} P	3- <u>Pa</u> Pa ^{tcs} PR*
	_	(Fig. 5.64)	(Fig. 5.65)	(Fig. 5.66a)	(Fig. 5.66b)
1	т	32	20	20	23
2	p_1	14	9	9	10
3	p_2	14	9	9	10
4	p_3	14	9	9	10
5	р	42	27	27	30
6	q	11	8	8	8
7	\bar{k}_{l}	0	0	0	0
8	k_2	3	3	3	3
9	k	3	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14	4See Table 5.14
	(i = 1, 2, 3)				
11	S_{G1}	5	4	4	4
12	S_{G2}	5	4	4	4
13	S_{G3}	5	4	4	4
14	r_{G1}	15	6	9	9
15	r_{G2}	15	6	9	9
16	r_{G3}	15	6	9	9
17	M_{G1}	5	4	4	4
18	M_{G2}	5	4	4	4
19	M_{G3}	5	4	4	4
20	(R_F)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
21	S_F	3	3	3	3
22	r_l	45	18	27	27
23	r_F	57	27	36	36
24	M_F	3	3	3	3
25	N_F	9	21	12	12
26	T_F	0	0	0	0
27	$\sum_{j=1}^{p_I} f_j$	20	10	13	13
28	$\sum_{j=1}^{p_2} f_j$	20	10	13	13
29	$\sum\nolimits_{j=1}^{p_3} f_j$	20	10	13	13
30	$\sum_{j=1}^{p} f_j$	60	30	39	39

Table 5.18. Structural parameters^a of translational parallel mechanisms in Figs. 5.64–5.66

No.	Structural	Solution			
	parameter	3- <u>Pa</u> ^{ss} Pa ^{tcc}	3- <u>Pa</u> ^{cs} Pa ^{tcc}	<u>Pa</u> ^{ss} Pa ^{tcc} R*R*	$3-\underline{Pa}^{cs}Pa^{tcc}R^*R^*$
		(Fig. 5.67a)	(Fig. 5.67b)	(Fig. 5.68a)	(Fig. 5.68b)
1	т	17	17	23	23
2	p_1	8	8	10	10
3	p_2	8	8	10	10
4	p_3	8	8	10	10
5	p	24	24	30	30
6	\overline{q}	8	8	8	8
7	\hat{k}_{l}	0	0	0	0
8	k_2	3	3	3	3
9	k	3	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	4See Table 5.14	See Table 5.14
	(i = 1, 2, 3)				
11	S_{G1}	3	3	5	5
12	S_{G2}	3	3	5	5
13	S_{G3}	3	3	5	5
14	r_{G1}	10	10	10	10
15	r_{G2}	10	10	10	10
16	r_{G3}	10	10	10	10
17	M_{Gl}	4	3	6	5
18	M_{G2}	4	3	6	5
19	M_{G3}	4	3	6	5
20	(R_F)	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	(v_1, v_2, v_3)	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
21	S_F	3	3	3	3
22	r_l	30	30	30	30
23	r_F	36	36	42	42
24	M_F	6	3	6	3
25	N_F	12	12	6	6
26	T_F	3	0	3	0
27	$\sum_{j=1}^{p_l} f_j$	14	13	16	15
28	$\sum_{j=1}^{p_2} f_j$	14	13	16	15
29	$\sum_{j=1}^{p_3} f_j$	14	13	16	15
30	$\sum_{i=1}^{p} f_{i}$	42	39	48	45

Table 5.19. Structural parameters^a of translational parallel mechanisms in Figs. 5.67 and 5.68

No.	Structural	Solution			
	parameter	3- <u>Pa</u> ^{cc} C*R*	$3-\underline{Pa}^{ccs}P$	3- <u>Pa</u> ^{ccs} Pa	3- <u>Pa</u> ccPassR*
	-	(Fig. 5.69)	(Fig. 5.70)	(Fig. 5.71)	(Fig. 5.72)
1	т	14	11	17	20
2	p_1	6	5	8	9
3	p_2	6	5	8	9
4	p_3	6	5	8	9
5	p	18	15	24	27
6	\overline{q}	5	5	8	8
7	\hat{k}_{l}	0	0	0	0
8	k_2	3	3	3	3
9	k	3	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	4See Table 5.14	See Table 5.14
	(i = 1, 2, 3)				
11	S_{GI}	5	3	3	5
12	S_{G2}	5	3	3	5
13	S_{G3}	5	3	3	5
14	r_{G1}	4	6	9	10
15	r_{G2}	4	6	9	10
16	r_{G3}	4	6	9	10
17	M_{G1}	5	3	3	5
18	M_{G2}	5	3	3	5
19	M_{G3}	5	3	3	5
20	(R_F)	$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$	(v_1, v_2, v_3)	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	(v_1, v_2, v_3)
21	S_F	3	3	3	3
22	r_l	12	18	27	30
23	r_F	24	24	33	42
24	M_F	3	3	3	3
25	N_F	6	6	15	6
26	T_F	0	0	0	0
27	$\sum_{j=1}^{p_l} f_j$	9	9	12	15
28	$\sum_{j=1}^{p_2} f_j$	9	9	12	15
29	$\sum_{j=1}^{p_3} f_j$	9	9	12	15
30	$\sum_{j=1}^{p} f_{j}$	27	27	36	45

Table 5.20. Structural parameters^a of translational parallel mechanisms in Figs. 5.69–5.72

No.	Structural	Solution		
	parameter	3- <u>Pa</u> ^{ss} RP	3- <u>Pa</u> RRC*	3- <u>Pa</u> RPRR*
	•	(Figs. 5.73, 5.74)	(Fig. 5.75)	(Fig. 5.76)
		3- <u>Pa</u> ^{ss} PR		3- <u>Pa</u> RRRR*
		(Fig. 5.77)		(Fig. 5.78)
		3-Pa ^{ss} RR		3-PaPRRR*
		(Fig. 5.79)		(Fig. 5.80)
1	т	14	17	20
2	p_1	6	7	8
3	p_2	6	7	8
4	p_3	6	7	8
5	p	18	21	24
6	\overline{q}	5	5	5
7	\bar{k}_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)			
11	S_{G1}	4	5	5
12	S_{G2}	4	5	5
13	S_{G3}	4	5	5
14	r_{G1}	6	3	3
15	r_{G2}	6	3	3
16	r_{G3}	6	3	3
17	M_{G1}	4	5	5
18	M_{G2}	4	5	5
19	M_{G3}	4	5	5
20	(R_F)	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$	(v_1, v_2, v_3)
21	S_F	3	3	3
22	r_l	18	9	9
23	r_F	27	21	21
24	M_F	3	3	3
25	N_F	3	9	9
26	T_F	0	0	0
27	$\sum_{j=1}^{p_I} f_j$	10	8	8
28	$\sum_{j=1}^{p_2} f_j$	10	8	8
29	$\sum_{j=1}^{p_3} f_j$	10	8	8
30	$\sum_{j=1}^{p} f_j$	30	24	24

Table 5.21. Structural parameters^a of translational parallel mechanisms in Figs. 5.73–5.80

No.	Structural	Solution			
	parameter	3-Pa ^{cs} PRR	3-PaPRRR*	3-PaPaRRR*	$3-Pa^{cs}Pa^{cs}RR$
	1	(Figs. 5.81.	(Fig. 5.82)	(Fig. 5.84)	(Fig. 5.85)
		5.83)	(8)	(8,,-,)	(8,-,,)
1	т	17	20	26	23
2	p_1	7	8	11	10
3	p_2	7	8	11	10
4	p_3	7	8	11	10
5	p	21	24	33	30
6	\overline{q}	5	5	8	8
7	\bar{k}_1	0	0	0	0
8	k_2	3	3	3	3
9	k	3	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)				
11	S_{GI}	4	5	5	4
12	S_{G2}	4	5	5	4
13	S_{G3}	4	5	5	4
14	r_{G1}	6	3	6	12
15	r_{G2}	6	3	6	12
16	r_{G3}	6	3	6	12
17	M_{G1}	4	5	5	4
18	M_{G2}	4	5	5	4
19	M_{G3}	4	5	5	4
20	(R_F)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)
21	S_F	3	3	3	3
22	r_l	18	9	18	36
23	r_F	27	21	30	45
24	M_F	3	3	3	3
25	N_F	3	9	18	3
26	T_F	0	0	0	0
27	$\sum_{j=1}^{p_I} f_j$	10	8	11	16
28	$\sum_{j=1}^{p_2} f_j$	10	8	11	16
29	$\sum_{j=1}^{p_3} f_j$	10	8	11	16
30	$\sum_{j=1}^{p} f_j$	30	24	33	48

Table 5.22. Structural parameters^a of translational parallel mechanisms in Figs. 5.81–5.85

No.	Structural	Solution			
	parameter	3- <u>Pa</u> ^{ss} RPa	3- <u>Pa</u> ^{ss} RPa ^{cs}	3- <u>Pa</u> ^{ss} RbRbR	$3-\underline{Pa}^{ss}Rb^{cs}Rb^{cs}R$
	-	(Fig. 5.86)	(Fig. 5.87)	(Fig. 5.90)	(Fig. 5.91)
		3-Pa ^{ss} RbR	$3-Pa^{ss}Rb^{cs}R$		
		(Fig. 5.88)	(Fig. 5.89)		
1	т	20	20	26	26
2	p_1	9	9	12	12
3	p_2	9	9	12	12
4	p_3	9	9	12	12
5	p	27	27	36	36
6	q	8	8	11	11
7	\overline{k}_1	0	0	0	0
8	k_2	3	3	3	3
9	k	3	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	4 See Table 5.14	See Table 5.14
	(i = 1, 2, 3)				
11	S_{G1}	4	4	4	4
12	S_{G2}	4	4	4	4
13	S_{G3}	4	4	4	4
14	r_{G1}	9	12	12	18
15	r_{G2}	9	12	12	18
16	r_{G3}	9	12	12	18
17	M_{G1}	4	4	4	4
18	M_{G2}	4	4	4	4
19	M_{G3}	4	4	4	4
20	(R_F)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)
21	S_F	3	3	3	3
22	r_l	27	36	36	54
23	r_F	36	45	45	63
24	M_F	3	3	3	3
25	N_F	12	3	21	3
26	T_F	0	0	0	0
27	$\sum_{j=1}^{p_l} f_j$	13	16	16	22
28	$\sum_{j=1}^{p_2} f_j$	13	16	16	22
29	$\sum_{j=1}^{p_3} f_j$	13	16	16	22
30	$\sum_{j=1}^{p} f_{j}$	39	48	48	66

Table 5.23. Structural parameters^a of translational parallel mechanisms in Figs. 5.86–5.91

No.	Structural	Solution			
	parameter	3-PaPn2RR*	$3-Pa^{cs}Pn2^{cs}R$	3-Pa ^{cc} RRR*	3-Pa ^{scc} RR
	1	(Figs. 5.92,	(Figs. 5.93,	(Fig. 5.100)	(Fig. 5.101)
		5.94)	5.95)		
		3-PaPn3R*	3-Pa ^{cs} Pn3 ^{cs}		
		(Figs. 5.96,	(Figs. 5.97,		
		5.98)	5.99)		
1	т	26	23	17	14
2	p_1	11	10	7	6
3	p_2	11	10	7	6
4	p_3	11	10	7	6
5	p	33	30	21	18
6	q	8	8	5	5
7	k_1	0	0	0	0
8	k_2	3	3	3	3
9	k	3	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)				
11	S_{G1}	5	4	5	4
12	S_{G2}	5	4	5	4
13	S_{G3}	5	4	5	4
14	r_{G1}	6	12	4	6
15	r_{G2}	6	12	4	6
16	r_{G3}	6	12	4	6
17	M_{Gl}	5	4	5	4
18	M_{G2}	5	4	5	4
19	M_{G3}	5	4	5	4
20	(R_F)	$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$	(v_1, v_2, v_3)	(v_1, v_2, v_3)	(v_1, v_2, v_3)
21	S_F	3	3	3	3
22	r_l	18	36	12	18
23	r_F	30	45	24	27
24	M_F	3	3	3	3
25	N_F	18	3	6	3
26	T_F	0	0	0	0
27	$\sum_{j=1}^{p_I} f_j$	11	16	9	10
28	$\sum_{j=1}^{p_2} f_j$	11	16	9	10
29	$\sum_{j=1}^{p_3} f_j$	11	16	9	10
30	$\sum_{j=1}^{p} f_j$	33	48	27	30

Table 5.24. Structural parameters^a of translational parallel mechanisms in Figs. 5.92–5.101

No.	Structural	Solution		
	parameter	3- <u>R</u> Pa ^{ss} P	3- <u>R</u> RC*Pa	3- <u>R</u> RPPa ^{cs}
		(Fig. 5.102)	(Fig. 5.103)	(Fig. 5.104)
1	т	14	17	17
2	p_1	6	7	7
3	p_2	6	7	7
4	p_3	6	7	7
5	р	18	21	21
6	q	5	5	5
7	\overline{k}_{1}	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)			
11	S_{GI}	4	5	4
12	S_{G2}	4	5	4
13	S_{G3}	4	5	4
14	r_{G1}	6	3	6
15	r_{G2}	6	3	6
16	r_{G3}	6	3	6
17	M_{G1}	4	5	4
18	M_{G2}	4	5	4
19	M_{G3}	4	5	4
20	(R_F)	(v_1, v_2, v_3)	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$
21	S_F	3	3	3
22	r_l	18	9	18
23	r_F	27	21	27
24	M_F	3	3	3
25	N_F	3	9	3
26	T_F	0	0	0
27	$\sum_{j=l}^{p_l} f_j$	10	8	10
28	$\sum_{j=l}^{p_2} f_j$	10	8	10
29	$\sum_{j=l}^{p_3} f_j$	10	8	10
30	$\sum_{j=1}^{p} f_{j}$	30	24	30

Table 5.25. Structural parameters^a of translational parallel mechanisms in Figs. 5.102–5.104

No.	Structural	Solution		
	parameter	3- <u>R</u> RPaPa ^{cs}	3- <u>R</u> RPa ^{ss} Pa	3- <u>R</u> Pa ^{ss} Pa
		(Fig. 5.105)	(Fig. 5.106)	(Fig. 5.107)
			3- <u>RRPaPa^{ss}</u>	
			(Fig. 5.108)	
1	т	23	23	20
2	p_1	10	10	9
3	p_2	10	10	9
4	p_3	10	10	9
5	p	30	30	27
6	q	8	8	8
7	k_1	0	0	0
8	k_2	3	3	3
9	k	3	3	3
10	(R_{Gi})	See Table 5.14	See Table 5.14	See Table 5.14
	(i = 1, 2, 3)			
11	S_{G1}	4	5	4
12	S_{G2}	4	5	4
13	S_{G3}	4	5	4
14	r_{G1}	9	9	9
15	r_{G2}	9	9	9
16	r_{G3}	9	9	9
17	M_{G1}	4	5	4
18	M_{G2}	4	5	4
19	M_{G3}	4	5	4
20	(R_F)	(v_1, v_2, v_3)	$(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3)$	(v_1, v_2, v_3)
21	S_F	3	3	3
22	r_l	27	27	27
23	r_F	36	39	36
24	M_F	3	3	3
25	N_F	12	9	12
26	T_F	0	0	0
27	$\sum_{i=1}^{p_I} f_i$	13	14	13
28	$\sum_{i=1}^{p_2} f_i$	13	14	13
29	$\sum_{i=1}^{p_3} f_i$	13	14	13
30	$\sum_{j=1}^{p} f_{j}$	39	42	39

Table 5.26. Structural parameters^a of translational parallel mechanisms in Figs. 5.105–5.108

Fig. 5.49. 3-<u>Pa</u>PC*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u>||P $\perp C^*$

(a)

Fig. 5.50. 3-<u>Pa</u>^{ss}PP-type (<u>Pa</u>^{ss}||P \perp P) overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3), T_F = 0, N_F = 3$, limb topology <u>Pa</u>^{ss}||P \perp P

Fig. 5.51. 3-PaPC*-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology $\underline{Pa} \perp P \perp^{\parallel} C^*$

Fig. 5.52. 3-<u>Pa</u>^{ss}PP-type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{ss} $\perp P \perp \parallel P$

Fig. 5.53. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}Pa^{ss}P(\mathbf{a})$ and $3-\underline{Pa}Pa^{cs}P(\mathbf{b})$ defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$ (**a**), $N_F = 15$ (**b**), limb topology $\underline{Pa} \perp Pa^{ss} \perp {}^{\parallel}P$ (**a**) and $\underline{Pa} \perp Pa^{cs} \perp {}^{\parallel}P$ (**b**)

Fig. 5.54. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}^{ss}PaP(\mathbf{a})$ and $3-\underline{Pa}Pa^{cs}PR^*R^*(\mathbf{b})$ defined by $M_F = S_F = 3$, $(R_F) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, $T_F = 0$, $N_F = 12$ (**a**), $N_F = 9$ (**b**), limb topology $\underline{Pa}^{ss} \perp Pa \perp {}^{||}P$ (**a**) and $\underline{Pa} \perp Pa^{cs} \perp {}^{||}P \perp {}^{\perp}R^* \perp {}^{||}R^*(\mathbf{b})$

Fig. 5.55. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}Pa^{ss}P$ (**a**) and $3-\underline{Pa}Pa^{cs}P$ (**b**) defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$ (**a**), $N_F = 15$ (**b**), limb topology $\underline{Pa} \perp Pa^{ss} \perp^{\perp} P$ (**a**) and $\underline{Pa} \perp Pa^{cs} \perp^{\perp} P$ (**b**)

Fig. 5.56. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}^{ss}PaP(\mathbf{a})$ and $3-\underline{Pa}Pa^{cs}PR^*R^*(\mathbf{b})$ defined by $M_F = S_F = 3$, $(R_F) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, $T_F = 0$, $N_F = 12$ (**a**), $N_F = 9$ (**b**), limb topology $\underline{Pa}^{ss} \perp Pa \perp^{\perp} P$ (**a**) and $\underline{Pa} \perp Pa^{cs} \perp^{\perp} P \perp^{\perp} R^* \perp^{\parallel} R^*(\mathbf{b})$

Fig. 5.57. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}PPa^{ss}$ (a) and $3-\underline{Pa}^{cs}PPa$ (**b**) defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$ (**a**), $N_F = 15$ (**b**), limb topology <u>Pa</u>|| $P \perp Pa^{ss}$ (**a**) and <u>Pa</u>^{cs}|| $P \perp Pa$ (**b**)

9_A

≬″ ∎v₃

78

 \dot{q}_2

18€0€

 7_{\perp}

 Δ V1 ~ **y**o

٥Z٥

00

 x_0

Fig. 5.59. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}PPa^{ss}$ (a) and $3-\underline{Pa}^{cs}PPa$ (**b**) defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$ (**a**), $N_F = 15$ (**b**), limb topology $\underline{Pa} \perp P \perp^{\perp} Pa^{ss}$ (**a**) and $\underline{Pa}^{cs} \perp P \perp^{\perp} Pa$ (**b**)

Fig. 5.60. Overconstrained TPMs with uncoupled motions of types 3-Pa^{ss}PPa (a) and $3-\underline{Pa}PPa^{cs}R^*R^*$ (**b**) defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F =$ 12 (a), $N_F = 9$ (b), limb topology $\underline{Pa}^{ss} \perp P \perp^{\perp} Pa$ (a) and $\underline{Pa} \perp P \perp^{\perp} Pa^{cs} \perp^{\parallel} R^* \perp^{\perp}$ $R^*(\mathbf{b})$

Fig. 5.61. 3-<u>Pa</u>PaPa^{ss}-type overconstrained TPM with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology <u>Pa</u> \perp Pa||Pa^{ss}

Fig. 5.62. 3-<u>Pa</u>^{ss}PaPa^{ss}-type overconstrained TPM with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>Pa</u>^{ss} \perp Pa||Pa^{ss}

Fig. 5.63. 3-<u>Pa</u>PaPa^{cs}-type overconstrained TPM with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 24$, limb topology <u>Pa</u> \perp Pa||Pa^{cs}

Fig. 5.64. $3-\underline{Pa}^{cs}PaPa^{cs}R^*R^*$ -type overconstrained TPM with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_F = S_F = 3$, $(R_F) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3), T_F = 0, N_F = 9$, limb topology $\underline{Pa}^{cs} \perp Pa ||Pa^{cs} \perp ||R^* \perp R^*$

Fig. 5.65. 3-<u>Pa</u> $Pa^{t}C^{*}$ -type overconstrained TPMs with uncoupled motions and rotating actuators mounted on the fixed base, defined by $M_{F} = S_{F} = 3$, $(R_{F}) = (v_{1}, v_{2}, v_{3})$, $T_{F} = 0$, $N_{F} = 21$, limb topology <u>Pa</u> $||Pa^{t}||C^{*}$

Fig. 5.66. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}Pa^{tss}P$ (**a**) and $3-\underline{Pa}Pa^{tcs}PR^*$ (**b**) defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology $\underline{Pa}||Pa^{tss}||P$ (**a**) and $\underline{Pa}||Pa^{tcs}||P\perp^{\perp}R^*$ (**b**)

Fig. 5.67. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}^{ss}Pa^{tcc}$ (**a**) and $3-\underline{Pa}^{cs}Pa^{tcc}$ (**b**) defined by $M_F = 6$ (**a**) $M_F = 3$ (**b**) $S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 3$, $T_F = 0$ (**b**), $N_F = 12$, limb topology $\underline{Pa}^{ss}||Pa^{tcc}$ (**a**) and $\underline{Pa}^{cs}||Pa^{tcc}$ (**b**)

Fig. 5.68. Overconstrained TPMs with uncoupled motions of types $3-\underline{Pa}^{ss}$ $Pa^{tcc}R^*R^*$ (**a**) and $3-\underline{Pa}^{cs}Pa^{tcc}R^*R^*$ (**b**) defined by $M_F = 6$ (**a**) $M_F = 3$ (**b**) $S_F = 3$, $(R_F) = (v_1, v_2, v_3), T_F = 3$ (**a**), $T_F = 0$ (**b**), $N_F = 6$, limb topology $\underline{Pa}^{ss}||$ $Pa^{tcc} \perp R^* \perp ||R^*$ (**a**) and $\underline{Pa}^{cs}||Pa^{tcc} \perp R^* \perp ||R^*$ (**b**)

Fig. 5.69. $3-\underline{Pa}^{cc}C^*R^*$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 6$, limb topology $\underline{Pa}^{cc} \perp C^* \perp R^*$

Fig. 5.70. 3-<u>Pa</u>^{ccs}P-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 6$, limb topology <u>Pa</u>^{ccs} $\perp P$

Fig. 5.71. *3-<u>Pa</u>^{ccs}Pa*-type *o*verconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 15$, limb topology <u>Pa</u>^{ccs} \perp Pa

Fig. 5.72. 3-<u>Pa</u>^{cc}Pa^{ss}R*-type overconstrained TPM with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 6$, limb topology <u>Pa</u>^{cc} \perp Pa^{ss}||R*

Fig. 5.73. 3-<u>Pa</u>^{ss}RP-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{ss} $\perp R \perp ||P|$

Fig. 5.74. *3-<u>Pa</u>^{ss}RP*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{ss} $\perp R \perp^{\perp} P$

Fig. 5.75. 3-PaRRC*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology $\underline{Pa} \perp R || R \perp^{\perp} C^*$

Fig. 5.76. 3-<u>Pa</u>RPRR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>Pa</u> $\perp R \perp P \perp {}^{||}R \perp R^*$

Fig. 5.77. 3-<u>Pa</u>^{ss}PR-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{ss}-P $\perp^{\perp} R$

Fig. 5.78. 3-<u>Pa</u>RRRR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>Pa</u> $\perp R ||R| ||R \perp R^*$

Fig. 5.79. 3-<u>Pa</u>^{ss}RR-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{ss} $\perp R \mid \mid R$

Fig. 5.80. 3-<u>Pa</u>PRRR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology $\underline{Pa}||P \perp R||R \perp R^*$

 5_{ℓ}

1_C≡0

6_B

2,

 \dot{q}_2

 \dot{q}_2

. 3₈

2₈

e≡0

(a)

7

68

́З_В

 $\begin{aligned} H \equiv H_A \equiv H_B \equiv H_C \\ \mathbf{1} \equiv \mathbf{1}_A \equiv \mathbf{1}_B \equiv \mathbf{1}_C \\ \mathbf{7} \equiv \mathbf{7}_A \equiv \mathbf{7}_B \equiv \mathbf{7}_C \end{aligned}$

3_A

 2_c

 $\begin{array}{c} 6 \\ R \\ 5 \\ P \\ 4 \\ \end{array}$

3

R

R

6_C

30

ന

ġ,

Fig. 5.81. *3-<u>Pa</u>^{cs}PRR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{cs} $||P \perp R||R$

≬ ∎v₃

Q

Fig. 5.82. 3-<u>Pa</u>PRRR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>Pa</u> $\perp P \perp^{\perp} R || R \perp R^*$

Fig. 5.83. 3-<u>Pa</u>^{cs}PRR-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{cs} $\perp P \perp^{\perp} R ||R|$

Fig. 5.84. 3-<u>Pa</u>PaRRR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 18$, limb topology <u>Pa</u> \perp Pa||R||R $\perp^{\perp} R^*$

Fig. 5.85. $3-\underline{Pa}^{cs}Pa^{cs}RR$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{cs} \perp Pa^{cs} ||R||R$

Fig. 5.86. *3*-<u>*Pa*</u>^{ss}*RPa*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>*Pa*</u>^{ss} $\perp R || Pa$

Fig. 5.87. $3-\underline{Pa}^{ss}RPa^{cs}$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{ss} \perp R || Pa^{cs}$

Fig. 5.88. 3-<u>Pa</u>^{ss}RbR-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>Pa</u>^{ss} $\perp Rb ||R$

Fig. 5.89. $3-\underline{Pa}^{ss}Rb^{cs}R$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{ss} \perp Rb^{cs} ||R|$

Fig. 5.90. $3-\underline{Pa}^{ss}RbRbR$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 21$, limb topology $\underline{Pa}^{ss} \perp Rb||Rb||R$

Fig. 5.91. $3-\underline{Pa}^{ss}Rb^{cs}Rb^{cs}R$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{ss} \perp Rb^{cs} ||Rb^{cs}||R$

Fig. 5.92. 3-<u>*PaPn2RR**-type</u> overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 18$, limb topology <u>*Pa*</u> $\perp Pn2||R \perp R^*$

Fig. 5.93. $3-\underline{Pa}^{cs}Pn2^{cs}R$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{cs} \perp Pn2^{cs} ||R|$

Fig. 5.94. 3-<u>Pa</u>Pn2RR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 18$, limb topology <u>Pa \perp Pn2||R \perp R*</u>

Fig. 5.95. $3-\underline{Pa}^{cs}Pn2^{cs}R$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{cs} \perp Pn2^{cs} ||R|$

Fig. 5.96. 3-<u>Pa</u>Pn3R*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 18$, limb topology <u>Pa</u> \perp Pn3 \perp R*

Fig. 5.97. $3 - \underline{Pa}^{cs} Pn3^{cs}$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{cs} \perp Pn3^{cs}$

Fig. 5.98. $3-\underline{Pa}Pn3R^*$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 18$, limb topology $\underline{Pa} \perp Pn3 \perp R^*$

Fig. 5.99. $3 - \underline{Pa}^{cs} Pn3^{cs}$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{Pa}^{cs} \perp Pn3^{cs}$

Fig. 5.100. $3-\underline{Pa}^{cc}RRR^*$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 6$, limb topology $\underline{Pa}^{cc} \perp R ||R \perp R^*$

Fig. 5.101. *3-<u>Pa</u>^{scc}RR*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>Pa</u>^{scc} $\perp R ||R$

Fig. 5.102. 3-<u>R</u>P a^{ss} P-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology $\underline{R} \perp P a^{ss} \perp P$

Fig. 5.103. *3*-<u>*R*</u>*RC***Pa*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u> $||R \perp C^* \perp^{\perp} Pa$

Fig. 5.104. *3*-<u>R</u>*RPPa*^{*cs*}-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 3$, limb topology <u>R</u> $||R \perp P \perp^{\perp} Pa^{cs}$

Fig. 5.105. *3*-<u>*R*</u>*RPaPa*^{*cs*}-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>R</u> $||R \perp Pa||Pa^{cs}$

(b)

Fig. 5.106. 3-<u>R</u>*P* a^{ss} *Pa*-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 9$, limb topology <u>R</u> $||R \perp Pa^{ss}||Pa$

Fig. 5.107. *3*-<u>*R*</u> $Pa^{ss}Pa$ -type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology $\underline{R} \perp Pa^{ss} ||Pa|$

(b)

Fig. 5.108. 3-<u>R</u>*RPaPa*^{ss}-type overconstrained TPMs with uncoupled motions defined by $M_F = S_F = 3$, $(R_F) = (v_1, v_2, v_3)$, $T_F = 0$, $N_F = 12$, limb topology <u>R</u>|| $R \perp Pa$ || Pa^{ss}