
1 Introduction 

This book represents Part 2 of a larger work on the structural synthesis of 
parallel robots. The originality of this work resides in combining new 
formulae for the structural parameters and the evolutionary morphology in a 
unified approach of structural synthesis giving interesting innovative solutions 
for parallel robots. Part 1 (Gogu 2008a) presented the methodology of 
structural synthesis and the systematisation of structural solutions of simple 
and complex limbs with two to six degrees of connectivity systematically 
generated by the structural synthesis approach. Part 2 of this work focuses 
on the structural solutions of translational parallel robotic manipulators 
(TPMs) with two and three degrees of mobility.  

This section recalls the terminology, the new formulae for the main 
structural parameters of parallel robots (mobility, connectivity, redundancy 
and overconstraint) and the main features of the methodology of structural 
synthesis based on the evolutionary morphology presented in Part 1.  

1.1 Terminology 

Robots can be found today in the manufacturing industry, agricultural, 
military and domestic applications, space exploration, medicine, education, 
information and communication technologies, entertainment, etc.  

We have presented in Part 1 various definitions of the word robot and 
we have seen that it is mainly used to refer to a wide range of mechanical 
devices or mechanisms, the common feature of which is that they are all 
capable of movement and can be used to perform physical tasks. Robots 
take on many different forms, ranging from humanoid, which mimic the 
human form and mode of movement, to industrial, whose appearance is 
dictated by the function they are to perform. Robots can be categorized as 
robotic manipulators, wheeled robots, legged robots swimming robots, flying 
robots, androids and self reconfigurable robots which can apply themselves to 
a given task. This book focuses on parallel robotic manipulators which are 
the counterparts to the serial robots. The various definitions of robotics 
converge towards the integration of the design and the end use in the 
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studies related to robotics. This book focuses on the conceptual design of 
parallel robots.  

Although the appearance and capabilities of robots vary greatly, all robots 
share the features of a mechanical, movable structure under some form of 
control. The structure of a robot is usually mostly mechanical and takes the 
form of a mechanism having as constituent elements the links connected by 
joints.  

Serial or parallel kinematic chains are concatenated in the robot mecha-
nism. The serial kinematic chain is formed by links connected sequentially 
by joints. Links are connected in series as well as in parallel making one or 
more closed-loops in a parallel mechanism. The mechanical architecture 
of parallel robots is based on parallel mechanisms in which a member 
called a moving platform is connected to a reference member by at least 
two limbs that can be simple or complex. The robot actuators are integrated 
in the limbs (also called legs) usually closed to the fixed member, also called 
the base or the fixed platform. The moving platform positions the robot 
end-effector in space and may have anything between two and six degrees  
of freedom. Usually, the number of actuators coincides with the degrees  
of freedom of the mobile platform, exceeding them only in the case of 
redundantly-actuated parallel robots. 

The paradigm of parallel robots is the hexapod-type robot, which has six 
degrees of freedom, but recently, the machine industry has discovered the 
potential applications of lower-mobility parallel robots with just two, three, 
four or five degrees of freedom. Indeed, the study of this type of parallel 
manipulator is very important. They exhibit interesting features when 
compared to hexapods, such as a simpler architecture, a simpler control 
system, high-speed performance, low manufacturing and operating costs. 
Furthermore, for several parallel manipulators with decoupled or uncoupled 
motions, the kinematic model can be easily solved to obtain algebraic 
expressions, which are well suited for implementation in optimum design 
problems. Parallel mechanisms can be considered a well-established solution 
for many different applications of manipulation, machining, guiding, testing, 
control, etc.  

The terminology used in this book is mainly established in accordance 
with the terminology adopted by the International Federation for the 
Promotion of Mechanism and Machine Science (IFToMM) and published 
in (Ionescu 2003). The main terms used in this book concerning kinematic 
pairs (joints), kinematic chains and robot kinematics are defined in Tables 
1.1–1.3 in Part 1 of this work. They are completed by some complementary 
remarks, notations and symbols used in this book. 

IFToMM terminology (Ionescu 2003) defines a link as a mechanism 
element (component) carrying kinematic pairing elements and a joint is a 
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physical realization of a kinematic pair. The pairing element represents the 
assembly of surfaces, lines or points of a solid body through which it may 
contact with another solid body. The kinematic pair is the mechanical 
model of the connection of two pairing elements having relative motion of 
a certain type and degree of freedom.  

In the standard terminology, a kinematic chain is an assembly of links 
(mechanism elements) and joints, and a mechanism is a kinematic chain in 
which one of its links is taken as a “frame”. In this definition, the “frame” 
is a mechanism element deemed to be fixed. In this book, we use the notion 
of reference element to define the “frame” element. The reference element 
can be fixed or may merely be deemed to be fixed with respect to other 
mobile elements. The fixed base is denoted in this book by 0. A mobile 
element in a kinematic chain G is denoted by nG (n = 1, 2, …). Two or 
more links connected together in the same link such that no relative motion 
can occur between them are considered as one link. The identity symbol 
“ ” is used between the links to indicate that they are welded together in 
the same link. For example, the notation 1G  0 is used to indicate that the 
first link 1G is the fixed base.  

A kinematic chain G is denoted by the sequence of its links. The notation 
G (1G  0–2G–…–nG) indicates a kinematic chain in which the first link is 
fixed and the notation G (1G–2G–…nG) a kinematic chain with no fixed link. 

We will use the notion of mechanism to qualify the whole mechanical 
system, and the notion of kinematic chain to qualify the sub-systems of a 
mechanism. So, in this book, the same assembly of links and joints G will 
be considered to be a kinematic chain when integrated as a sub-system in 
another assembly of links and joints and will be considered a mechanism 
when G represents the whole system. The systematization, the definitions 
and the formulae presented in this book are valuable for mechanisms and 
kinematic chains.  

We use the term mechanism element or link to name a component 
(member) of a mechanism. In this book, unless otherwise stated, we 
consider all links to be rigid. We distinguish the following types of links:  

(a) Monary link – a mechanism element connected in the kinematic chain 

(b) Binary link – a mechanism element connected in the kinematic chain 

(c) Polinary link – a mechanism element connected in the kinematic 
chain by more than two joints (ternary link – if the link is connected by 

The IFToMM terminology defines open/closed kinematic chains and 
mechanisms, but it does not introduce the notions of simple (elementary) 
and complex kinematic chains and mechanisms. A closed kinematic chain 

by only one joint (a link which carries only one kinematic pairing element). 

by two joints (a link connected to two other links). 

three joints, quaternary link if the link is connected by four joints).  
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is a kinematic chain in which each link is connected with at least two other 
links, and an open kinematic chain is a kinematic chain in which there is at 
least one link which is connected in the kinematic chain by just one joint. 
In a simple open kinematic chain (open-loop mechanism) only monary and 
binary links are connected. In a complex kinematic chain at least one ternary 
link exists. We designate in each mechanism two extreme elements called 
reference element and final element. They are also called distal links. In an 
open kinematic chain, these elements are situated at the extremities of the 
chain. In a single-loop kinematic chain, the final element can be any element 
of the chain except the reference element. In a parallel mechanism, the two 
extreme elements are the mobile and the reference platform. The two 
platforms are connected by at least two simple or complex kinematic chains 
called limbs. Each limb contains at least one joint. A simple limb is 
composed of a simple open kinematic chain in which the final element is 
the mobile platform. A complex limb is composed of a complex kinematic 
chain in which the final element is also the mobile platform. 

IFToMM terminology (Ionescu 2003) uses the term kinematic pair to 
define the mechanical model of the connection of links having relative 
motion of a certain type and degree of freedom. The word joint is used as a 
synonym for the kinematic pair and also to define the physical realization 
of a kinematic pair, including connection via intermediate mechanism 
elements. Both synonymous terms are used in this text.  

Usually, in parallel robots, lower pairs are used: revolute R, prismatic P, 
helical H, cylindrical C, spherical S and planar pair E. The definitions of 
these kinematic pairs are presented in Table 1.1 – Part 1. The graphical 
representations used in this book for the lower pairs are presented in Fig. 
1.1a–f. Universal joints and homokinetic joints are also currently used in 
the mechanical structure of the parallel robots to transmit the rotational 
motion between two shafts with intersecting axes. If the instantaneous 
velocities of the two shafts are always the same, the kinematic joint is 
homokinetic (from the Greek “homos” and “kinesis” meaning “same” and 
“movement”). We know that the universal joint (Cardan joint or Hooke’s 
joint) are heterokinetic joints. Various types of homokinetic joints are 
known today: Tracta, Weiss, Bendix, Dunlop, Rzeppa, Birfield, Glaenzer, 
Thompson, Triplan, Tripode, UF (undercut-free) ball joint, AC (angular 
contact) ball joint, VL plunge ball joint, DO (double offset) plunge ball 
joint, AAR (angular adjusted roller), helical flexure U-joints, etc. (Dudi  
et al. 2001a, b). The graphical representations used in this book for the 
universal homokinetic joints are presented in Fig. 1.1g–h. 

Joints with idle mobilities are commonly used to reduce the number of 
overconstraints in a mechanism. The idle mobility is a potential mobility 
that is not used by the mechanism and does not influence a mechanism’s 
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mobility in the hypothesis of perfect manufacturing and assembling 
precisions. In theoretical conditions, when no errors exist with respect to 
parallel and perpendicular positions of joint axes, motion amplitude in an 
idle mobility is zero. Real life manufacturing and assembling processes 
introduce errors in the relative positions of the joint axes and, in this case, 
the idle mobilities become effective mobilities usually with small amplitudes, 
depending on the precision of the parallel robot. 

A parallel robot can be illustrated by a physical implementation or by an 
abstract representation. The physical implementation is usually illustrated 
by robot photography and the abstract representation by a CAD model, 
structural diagram and structural graph.   

Figure 1.2 gives an example of the various representations of a Gough-
Stewart type parallel robot largely used today in industrial applications.  

The physical implementation in Fig. 1.2a is a photograph of the parallel 
robot built by Deltalab (http://www.deltalab.fr/). In a CAD model (Fig. 1.2b) 
the links and the joints are represented as being as close as possible to the 
physical implementation (Fig. 1.2a). In a structural diagram (Fig. 1.2c) they 
are represented by simplified symbols, such as those introduced in Fig. 1.1, 
respecting the geometric relations defined by the relative positions of joint 
axes. A structural graph (Fig. 1.2d) is a network of vertices or nodes 
connected by edges or arcs with no geometric relations. The links are noted 
in the nodes and the joints on the edges. We can see that the Gough–Stewart 
type parallel robot has six identical limbs denoted in Fig. 1.2c by A, B, C, D, 
E and F. The final link is the mobile platform 4  4A  4B  4C  4D  4E  
4F and the reference member is the fixed platform 1A  1B  1C  1D  1E  
1F  0. Each limb is connected to both platforms by spherical pairs.  
 

 

 
Fig. 1.1. Symbols used to represent the lower kinematic pairs and the kinematic 
joints: (a) revolute pair, (b) prismatic pair, (c) helical pair, (d) cylindrical pair, (e) 
spherical pair, (f) planar contact pair, (g) universal joint and (h) homokinetic joint  
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Fig. 1.2. Various representations of a Gough–Stewart type parallel robot: physical 
implementation (a), CAD model (b), structural diagram (c) and its associated 
graph (d), A-limb (e) and its associated graph (f)  
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A prismatic pair is actuated in each limb. The spherical pairs are not 
actuated and are called passive pairs. The two platforms are polinary links, 
the other two links of each limb are binary links. The mechanism associated 
with the Gough–Stewart type parallel robot is a complex mechanism with 
a multi-loop associated graph (Fig. 1.2d).  

The simple open kinematic chain associated with A-limb is denoted by A 
(1A  0–2A–3A–4A  4) – Fig. 1.2e and its associated graph is tree-type (Fig. 
1.2f). 

We consider the general case of a robot in which the end-effector is 
connected to the reference link by k  1 kinematic chains. The end-effector 
is a polynary link called a mobile platform in the case of parallel robots, 
and a monary link for serial robots. The reference link may either be the 
fixed base or may be deemed to be fixed. The kinematic chains connecting 
the end-effector to the reference link can be simple or complex. They are 
called limbs or legs in the case of parallel robots. A serial robot can be 
considered to be a parallel robot with just one simple limb, and a hybrid 
robot a parallel robot with just one complex limb.  

We denote by F G1–G2–…Gk the kinematic chain associated with a 
general serial, parallel or hybrid robot, and by Gi (1Gi–2Gi–…–nGi) the 
kinematic chain associated with the ith limb (i = 1,2,…,k). The end 
effector is n  nGi and the reference link 1  1Gi. If the reference link is the 
fixed base, it is denoted by 1  1Gi  0. The total number of robot joints is 
denoted by p. 

A serial robot F  G1 is a robot in which the end-effector n  nG1 is 
connected to the reference link 1  1G1 by just one simple open kinematic 
chain Gi (1Gi–2Gi–…nGi) called a serial kinematic chain.  

A parallel robot F G1–G2–…Gk is a robot in which the end-effector n 
 nGi is connected in parallel to the reference link 1  1Gi by k  2 

kinematic chains Gi (1Gi–2Gi–…nGi) called limbs or legs.  
A hybrid serial-parallel robot F  G1 is a robot in which end-effector n 

 nG1 is connected to reference link 1  1G1 by just one complex kinematic 
chain Gi (1Gi–2Gi–…nGi) called complex limb or complex leg.  

A fully-parallel robot F G1–G2–…Gk is a parallel robot in which the 
number of limbs is equal to the robot mobility (k = M  2), and just one 

1.2 Methodology of structural synthesis 

Recent advances in research on parallel robots have contributed mainly to 
expanding their potential use to both terrestrial and space applications 
including areas such as high speed manipulation, material handling, 

actuator exists in each limb.  
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motion platforms, machine tools, medical applications, planetary and 
underwater exploration. Therefore, the need for methodologies devoted to 
the systematic design of highly performing parallel robots is continually 
increasing. Structural synthesis is directly related to the conceptual phase 
of robot design, and represents one of the highly challenging subjects in 
recent robotics research. One of the most important activities in the 
invention and the design of parallel robots is to propose the most suitable 
solutions to increase the performance characteristics.  

The challenging and difficult objective of structural synthesis is to find a 
method to set up the mechanical architecture to achieve the required 
structural parameters. The mechanical architecture or topology is defined 
by number, type and relative position of joint axes in the parallel robot. 
The structural parameters are mobility, connectivity, redundancy and the 
number of overconstraints. They define the number of actuators, the degrees 
of freedom and the motion-type of the moving platform. A systematic 
approach of structural synthesis founded on the theory of linear transfor-
mations and an evolutionary morphology have been proposed in Part 1 
(Gogu 2008a). The approach integrates the new formulae for mobility, 
connectivity, redundancy and overconstraint of parallel manipulators (Gogu 
2005d, e) and a new method of systematic innovation (Gogu 2005a). 

1.2.1 New formulae for mobility, connectivity, redundancy  
and overconstraint of parallel robots 

Mobility is the main structural parameter of a mechanism and also one of 
the most fundamental concepts in the kinematic and the dynamic modelling 
of mechanisms. IFToMM terminology defines the mobility or the degree of 
freedom as the number of independent coordinates required to define the 
configuration of a kinematic chain or mechanism.  

We note that the mobility of a mechanism can be defined by the number 
of independent finite and/or infinitesimal displacements in the joints 
needed to define the configuration of the mechanism (Gogu 2008a). 

Mobility M is used to verify the existence of a mechanism (M > 0), to 
indicate the number of independent parameters in robot modelling and to 
determine the number of inputs needed to drive the mechanism.  

Earlier works on the mobility of mechanisms go back to the second half 
of the nineteenth century. During the twentieth century, sustained efforts 
were made to find general methods for the determination of the mobility of 
any rigid body mechanism. Various formulae and approaches were derived 
and presented in the literature. Contributions have continued to emerge in 
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the last few years. Mobility calculation still remains a central subject in the 
theory of mechanisms.  

In Part 1 (Gogu 2008a) we have shown that the various methods proposed 
in the literature for mobility calculation of the closed loop mechanisms fall 
into two basic categories:  

(a) Approaches for mobility calculation based on setting up the kinematic 
constraint equations and calculating their rank for a given position of the 

(b) Formulae for a quick calculation of mobility without the need to 

The approaches used for mobility calculation based on setting up the 
kinematic constraint equations and their rank calculation are valid without 
exception. The major drawback of these approaches is that the mobility 
cannot be determined quickly without setting up the kinematic model of 
the mechanism. Usually this model is expressed by the closure equations 
that must be analyzed for dependency. The information about mechanism 
mobility is derived by performing position, velocity or static analysis by 
using analytical tools (screw theory, linear algebra, affine geometry, Lie 
algebra, etc.). For this reason, the real and practical value of these approaches 
is very limited in spite of their valuable theoretical foundations. Moreover, 
the rank of the constraint equations is calculated in a given position of the 
mechanism with specific joint locations. The mobility calculated in relation 
to a given configuration of the mechanism is an instantaneous mobility 
which can be different from the general mobility (global mobility, full-
cycle mobility). The general mobility represents the minimum value of the 
instantaneous mobility. For a given mechanism, general mobility has a 
unique value. It is a global parameter characterizing the mechanism in all 
its configurations except its singular ones. Instantaneous mobility is a local 
parameter characterizing the mechanism in a given configuration including 
singular ones. In a singular configuration the instantaneous mobility could 
be different from the general mobility. In this book, unless otherwise 
stated, general mobility is simply called mobility.  

Note 1. In a kinematotropic mechanism with branching singularities, full-
cycle mobility is associated with each branch. In this case, the full-cycle 
mobility (global mobility) is replaced by the branch mobility which represents 
the minimum value of the instantaneous mobility inside the same branch. 
As each branch has its own mobility, a single value for global mobility 
cannot be associated with the kinematotropic mechanisms. The term 
kinematotropic was coined by K. Wohlhart (1996) to define the linkages 
that permanently change their global mobility when passing by a singularity 
in which a certain transitory infinitesimal mobility is attained. Various  

mechanism with specific joint locations.  

develop the set of constraint equations. 
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kinematotropic parallel mechanisms have been recently presented (Fanghela 
et al. 2006; Gogu 2008b, c). 

A formula for quick calculation of mobility is an explicit relationship 
between the following structural parameters: the number of links and 
joints, the motion/constraint parameters of joints and of the mechanism. 
Usually, these structural parameters are easily determined by inspection 
without any need to develop the set of constraint equations.  

In Part 1, we have shown that several dozen approaches proposed in the 
last 150 years for the calculation of mechanism mobility can be reduced to 
the same original formula that we have called the Chebychev-Grübler-
Kutzbach (CGK) formula in its original or extended forms. These formulae 
have been critically reviewed (Gogu 2005b) and a criterion governing 
mechanisms to which this formula can be applied has been set up in (Gogu 
2005c). We have explained why this well-known formula does not work 
for some multi-loop mechanisms. New formulae for quick calculation of 
mobility have been proposed in (Gogu 2005d) and demonstrated via the 
theory of linear transformations. More details and a development of these 
contributions have been presented in Part 1. 

The connectivity between two links of a mechanism represents the number 
of independent finite and/or infinitesimal displacements allowed by the 
mechanism between the two links.  

The number of overconstraints of a mechanism is given by the 
difference between the maximum number of joint kinematic parameters 
that could lose their independence in the closed loops, and the number of 
joint kinematic parameters that actually lose their independence in the 
closed loops. 

The structural redundancy of a kinematic chain represents the difference 
between the mobility of the kinematic chain and connectivity between its 
distal links. 

Let us consider the case of the parallel mechanism F G1–G2–…Gk in 
which the mobile platform n  nGi is connected to the reference platform 1 

 1Gi by k simple and/or complex kinematic chains Gi (1Gi–2Gi–…nGi) 
called limbs.  

In Part 1, the following parameters have been associated with the parallel 
mechanism F G1–G2–…Gk: 

RGi – the vector space of relative velocities between the mobile and the 
reference platforms, nGi and 1Gi, in the kinematic chain Gi disconnected 
from the parallel mechanism F,  

RF – the vector space of relative velocities between the mobile and the 
reference platforms, n  nGi and 1  1Gi, in the parallel mechanism F G1–
G2–…Gk, whose basis is 
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(RF)=( G1 G2 GkR R ... R ), (1.1)

SG – the connectivity between the mobile and the reference platforms, 
nGi and 1Gi, in the kinematic chain Gi disconnected from the parallel 
mechanism F, 

SF – the connectivity between the mobile and the reference platforms, n 
 nGi and 1  1Gi, in the parallel mechanism F G1–G2–…Gk. 
We recall that the connectivity is defined by the number of independent 

motions between the mobile and the reference platforms. The notation 1  
1Gi  0 is used when the reference platform is the fixed base. The vector 
spaces of relative velocities between the mobile and the reference 
platforms are also called operational velocity spaces. 

The following formulae demonstrated in Chapter 2 – Part 1 (Gogu 
2008a) for mobility MF, connectivity SF, number of overconstraints NF and 
redundancy TF of the parallel mechanism F G1–G2–…Gk are used in 
structural synthesis of parallel robotic manipulators: 

p

F i F
i 1

M f r , (1.2)

NF=6q-rF , (1.3)

TF=MF-SF , (1.4)

where 

Gi GiS dim( R ) , (1.5)

F F G1 G2 GkS dim( R ) dim( R R ... R ) , (1.6)

k

F Gi F l
i 1

r S S r , (1.7)

k

Gi
i 1

p p , (1.8)

q=p-m+1, (1.9)

and 
k

l Gi
i 1

r r . (1.10)
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We note that pGi represents the number of joints of Gi-limb, p the total 
number of joints of parallel mechanism F, m the total number of links in 
mechanism F including the moving and reference platforms, q the total 
number of independent closed loops in the sense of graph theory, fi the 
mobility of the ith joint, rF the total number of joint parameters that lose 
their independence in mechanism F, Gir  the number of joint parameters 
that lose their independence in the closed loops of limb Gi, rl the total 
number of joint parameters that lose their independence in the closed loops 
that may exist in the limbs of mechanism F. In Eqs. (1.5) and (1.6), dim 
denotes the dimension of the vector spaces.  

We denote by k1 the number of simple limbs and by k2 the number of 
complex limbs (k = k1 + k2). Eq. (1.8) indicates that the limbs of the 
parallel mechanism F G1–G2–…Gk must be defined in such a way that a 
joint must belong to just one limb; that is the same joint cannot be combined 
in two or more limbs.  

In Chapter 5 – Part 1 the following structural conditions have been 
established: 

(a) For the non redundant parallel robots (TF = 0) 

SF=MF MGi     (i=1,…,k), (1.11)

MGi=SGi 6     (i=1,…,k), (1.12)

(b) For the redundant parallel robots with TF > 0 

SF<MF MGi     (i=1,…,k), (1.13)

MGi>SGi 6     (i=1,…,k), (1.14)

(c) For the non overconstrained parallel robots (NF = 0) 

MF=
p

i
i 1

f 6q , (1.15)

(d) For the overconstrained parallel robots with NF > 0  

MF>
p

i
i 1

f 6q . (1.16)

We recall that  
Gip

Gi i Gi
i 1

M f r . (1.17)
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We note that the intersection in Eqs. (1.1) and (1.6) is consistent if the 
vector spaces RGi are defined by the velocities of the same point situated 
on the moving platform with respect to the same reference frame. This 
point is called the characteristic point, and denoted by H. It is the point 
with the most restrictive motions of the moving platform. 

The connectivity SF of the moving platform n  nGi in the mechanism 
F G1–G2–…Gk is less than or equal to the mobility MF of mechanism F. 

The basis of the vector space RF of relative velocities between the 
moving and reference platforms in the mechanism F G1–G2–…Gk must 
be valid for any point of the moving platform n  nGi.  

Note 2. When there are various ways to choose the bases of the vector 
spaces RGi in Eqs. (1.1) and (1.6), the bases (RGi) are selected such that the 
minimum value of FS is obtained by Eq. (1.6). By this choice, the result of 
Eq. (1.2) fits in with the definition of general mobility as the minimum 
value of the instantaneous mobility. 

The parameters used in the new formulae (1.1)–(1.17) can be easily 
obtained by inspection without calculating the rank of the homogeneous 
linear set of constraint equations associated with loop closure or without 
calculating the rank of the complete screw system associated to the joints 
of the mechanism. An analytical method to compute these parameters has 
also been developed in Part 1 just for verification and for a better under-
standing of the meaning of these parameters. These formulae have been 
successfully applied in Part 1 to structural analysis of various mechanisms 
including so called “paradoxical” mechanisms. These formulae are useful 
for the structural synthesis of various types of parallel mechanisms with 2  
MF  6 and various combinations of independent motions of the moving 
platform. These solutions are obtained in a systematic approach of structural 
synthesis by using the limbs generated by the method of evolutionary 
morphology presented in Part 1.  

1.2.2 Evolutionary morphology approach 

Evolutionary morphology (EM) is a new method of systematic innovation 
in engineering design proposed by the author in (Gogu 2005a). EM is 
formalized by a 6-tuple of design objectives, protoelements (initial 
components), morphological operators, evolution criteria, morphologies 
and a termination criterion. The design objectives are the structural solutions, 
also called topologies, defined by the required values of mobility, connecti-
vity overconstrained and redundancy and the level of motion coupling. The 
protoelements are the revolute and prismatic joints. The morphological 
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operators are: (re)combination, mutation, migration and selection. These 
operators are deterministic and are applied at each generation of EM.  

At least MF = SF generations are necessary to evolve by successive 
combinations from the first generation of protoelements to a first solution 
satisfying the set of design objectives. Morphological migration could 
introduce new constituent elements formed by new joints or combinations 
of joints into the evolutionary process. 

Evolutionary morphology is a complementary method with respect to 
evolutionary algorithms that starts from a given initial population to obtain 
an optimum solution with respect to a fitness function. EM creates this 
initial population to enhance the chance of obtaining a “more global 
optimum”. Evolutionary algorithms are optimization oriented methods; EM 
is a conceptual design oriented method. A detailed presentation of the 
evolutionary morphology can be found in Chapter 5 – Part 1.  

1.2.3 Types of parallel robots with respect to motion coupling 

Various levels of motion coupling have been introduced in Chapter 4 – Part 
1 in relation with the Jacobian matrix of the robotic manipulator which is 
the matrix mapping (i) the actuated joint velocity space and the end-effector 
velocity space, and (ii) the static load on the end-effector and the actuated 
joint forces or torques.  

Five types of parallel robotic manipulators (PMs) are introduced in Part 1: 
(I) maximally regular PMs, if the Jacobian J is an identity matrix throughout 
the entire workspace, (ii) fully-isotropic PMs, if J is a diagonal matrix with 
identical diagonal elements throughout the entire workspace, (iii) PMs with 
uncoupled motions if J is a diagonal matrix with different diagonal 
elements, (iv) PMs with decoupled motions, if J is a triangular matrix and 
(v) PMs with coupled motions if J is neither a triangular nor a diagonal 
matrix.  

The term maximally regular parallel robot was recently coined by 
Merlet (2006) to define isotropic robots. We use this term to define just the 
particular case of fully-isotropic PMs, when the Jacobian matrix is an 
identity matrix throughout the entire workspace. 

Isotropy of a robotic manipulator is related to the condition number of 
its Jacobian matrix, which can be calculated as the ratio of the largest and 
the smallest singular values. A robotic manipulator is fully-isotropic if its 
Jacobian matrix is isotropic throughout the entire workspace, i.e., the 
condition number of the Jacobian matrix is one. Thus, the condition number 
of the Jacobian matrix is an interesting performance index characterizing 
the distortion of a unit sphere under this linear mapping. The condition 
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number of the Jacobian matrix was first used by Salisbury and Craig 
(1982) to design mechanical fingers and developed by Angeles (1997) as  
a kinetostatic performance index of the robotic mechanical systems. The 
isotropic design aims at ideal kinematic and dynamic performance of  
the manipulator (Fattah and Ghasemi 2002). In an isotropic configuration, 
the sensitivity of a manipulator is minimal with regard to both velocity and 
force errors and the manipulator can be controlled equally well in all 
directions. The concept of kinematic isotropy has been used as a criterion 
in the design of various parallel manipulators (Zanganeh and Angeles 
1997; Tsai and Huang 2003).  

Fully-isotropic PMs give a one-to-one mapping between the actuated 
joint velocity space and the operational velocity space. The condition 
number and the determinant of the Jacobian matrix being equal to one, the 
manipulator performs very well with regard to force and motion trans-
mission.  

1.3 Translational parallel robots  

This book focuses on the structural synthesis of translational parallel 
robotic manipulators (TPMs) with two and three degrees of freedom. In 
such a robot, the moving platform can undergo two or three independent 
translational motions and its orientation remains unchanged.  

The translational parallel robots with two degrees of freedom are also 
called T2-type parallel robots and give two translational velocities v1 and 
v2 in the basis of the operational velocity vector space (RF) = (v1,v2) along 
with a constant orientation of the moving platform. We consider the xy-
plane as the plane of motion of the moving platform (v1 = vx and v2 = vy). 
T2-type parallel robots have mobility MF = 2 and the connectivity between 
the moving and fixed platforms is SF = 2. 

These kinds of parallel robots are useful in pick-and-place operations 
when the end-effector only needs to undergo purely translational motion in 
one plane. Pick and place parallel robot mechanisms are typically used in 
light industries such as the electronics industry and packaging industries. 
They have to repeat accurately a simple transfer operation many times over 
with relatively high speed in two degrees of freedom planar motion 
without altering the orientation of the moving platform (Vainstock 1990; 
Hesselbach and Frindt 1999; Dagefoerde et al. 2001; Bergmeyer 2002; 
Huang et al. 2003, 2004, 2005, 2006).  
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The direct kinematic model of the T2-type parallel robots becomes 

1 1
2 2

2 2

v q
J

v q
&

&
 (1.18)

where:  
v1 = vx = x&  and v2 = vy = y&  are the translational velocities of the 
characteristic point H of the moving platform, 1q&  and 2q&  are the velocities 
of the actuated joints, 2 2J  is the Jacobian matrix. 

As presented in Chapter 4 – Part 1, for translational parallel robots, the 
design and conventional Jacobians have the same expression and they are 
simply called Jacobians or Jacobian matrices. 

To obtain a non redundant T2-type translational parallel robot, a basic 
limb presented in Figs. 6.1 and 6.2 – Part 1 is associated with at least one 
simple or complex limb with 2 MGi = SGi 6 that integrates velocities v1 
and v2 in the basis of its operational space. In this way, a large set of 
solutions can be obtained. We recall that the basic legs in Figs. 6.1 and 6.2 – 
Part 1 give rise to two independent translations along with a constant 
orientation of the moving platform. 

The translational parallel robotic manipulators with three degrees of 
mobility are also called T3-type parallel robots and give three translational 
velocities v1, v2 and v3 in the basis of the operational velocity vector space 
(RF) = (v1,v2,v3) along with a constant orientation of the moving platform. 
T3-type parallel robots have mobility MF = 3 and the connectivity between 
the moving and fixed platforms is SF = 3. 

This kind of parallel robots are useful in pick-and-place operations when 
the end-effector only needs to undergo purely translational motion in space. 
Pick and place parallel robots are also typically used in light industries 
such as the electronics and packaging industries. They have to repeat 
accurately a simple transfer operation many times over at a relatively high 
speed in three degrees of freedom spatial motion without altering the 
orientation of the moving platform.  

The direct kinematic model of the T3-type parallel robots becomes 

1 1

2 23 3

3 3

v q
v qJ
v q

&

&

&

    (1.19) 
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where:  
v1 = vx = x& , v2 = vy = y&  and v3 = vz = z&  are the translational velocities of the 
characteristic point H of the moving platform, 1q& , 2q&  and 3q&  are the 
velocities of the actuated joints, 3 3J  is the Jacobian matrix. 

To obtain a non redundant T3-type translational parallel robot of type 
F G1–G2–G3, a basic limb presented in Figs. 7.1–7.11 – Part 1 is associated 
with other two simple or complex limbs with 3 MGi = SGi 6 that 
integrate velocities v1, v2 and v3 in the basis of their operational velocity 
spaces. We recall that the basic limbs in Figs. 7.1–7.11 – Part 1 give rise to 
three independent translations along with a constant orientation of the 
moving platform. In this way, a large set of solutions with coupled, 
decoupled, uncoupled motions along with maximally regular solutions can 
be obtained by using three simple or complex limbs with 3 MGi = SGi 6 
that respect the condition (RF) = ( G1 G2 G3R R R ) = (v1,v2,v3). 

Translational parallel robots are largely used in classical manipulating 
processes, jiggle mechanisms (Li et al. 2005) and micro and nanomanipul-
ation (Jensen et al. 2006; Xu and Li 2006) or MEMS fabrication (Bamberger 
et al. 2007).  

The various architectures of TPM presented in the literature use the 
following types of kinematic pairs: revolute R, prismatic P, helical H, 
cylindrical C, spherical S, planar contact E, universal joint U as well as the 
  

Table 1.1. Examples of implemented translational parallel robotic manipulators  

No. Robot name  Type  References  
1 DELTA 3-RRPaR, 3-RUU,  

3-RPass, 3-PRPaR 
Clavel (1988, 1990, 1991) 

2 University of 
Maryland 
manipulator 

3-RRPaR Tsai and Stamper (1996) 

3 NUWAR 3-RPass Miller (1999, 2001) 
4 Urane Sx 3-PUU Company and Pierrot (2002) 
5 Orthoglide 3-PRPaR Wenger and Chablat (2000)  

Chablat and Wenger (2002) 
6 Cartesian Parallel 

Manipulator  
3-PRRR Kim and Tsai (2002, 2003) 

7 Tripteron 3-CRR, 3-PRRR Gosselin and Kong (2002)   
Kong and Gosselin (2002b, c) 
Gosselin et al. (2004) 

8 Isoglide3-T3 3-PRRR Gogu (2002) 
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Table 1.2. Literature dedicated to the study of the parallel robots of DELTA 
topology 

No. Type of study References  
1 Dimensional synthesis and 

optimization 
Company and Pierrot (2002) 
Bruzzone et al. (2002) 
Kosinska et al. (2003) 
Stock and Miller (2003) 
Chablat et al. (2004a, b) 
Johannesson et al. (2004) 
Yoon et al. (2004) 
Lou and Li (2006) 
Laribi et al. (2007) 

2 Dynamic modelling Stamper and Tsai (1998) 
3 Isotropic conditions Baron et al. (2002) 
4 Kinematic analysis Company and Pierrot (2002) 

Bruzzone et al. (2002) 
Yoon et al. (2004) 
Lee et al. (2005) 
Laribi et al. (2007) 
Lou and Li (2006) 

5 Kinematic calibration  Vischer and Clavel (1998) 
6 Kinematic and dynamic modelling  Pierrot et al. (1990, 1991) 
7 Modelling and control  Pierrot et al. (1991) 
8 Singularities Di Gregorio (2004) 

Liu et al. (2003) 
9 Stiffness Liu et al. (2003) 

Yoon et al. (2004) 
10 Workspace  Miller (1999, 2002) 

Di Gregorio and Zanforlin (2003) 
Liu et al. (2003) 
Chablat et al. (2004a, b) 

 
parallelogram loop Pa which can be considered as a complex pair of circular 
translation (Huang and Li 2003; Liu and Wang 2003; Hervé 2004; Liu et al. 
2004). Examples of implemented translational parallel robotic manipulators 
are presented Table 1.1.  

As a matter of fact, some architectures of TPMs are quite popular already, 
for instance the DELTA robots of types 3-RRPaR, 3-RUU, 3-PRPaR 
proposed by Clavel (1988, 1990). Much literature is dedicated to the study 
of the parallel robots of DELTA topologies (Table 1.2). and industrial 
implementation of these solutions has already been reached by Demareux, 
ABB, Hitachi, Mikron, Renault-Automation, Comau and other.  
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Various solutions are derived from this topology by integrating parallelo-
gram loops in different configurations: 3-RHPaR Y-star, the 3-RPPR Prism-
Robot, the 2-RHPaR + 1PRPaR H-robot (Hervé and Sparacino 1991, 
1992, 1993; Hervé 1995), 3-RRPaR University of Maryland manipulator 
(Tsai and Stamper 1996), 3-PUU Urane Sx (Company and Pierrot 2002). 

A special case of 3-PRPaR-type is Orthoglide having the linear 
actuators on three orthogonal directions. (Wenger and Chablat 2000; 
Chablat and Wenger 2002). The literature dedicated to the study of this 
parallel robot is presented in Table 1.3.  

Various other architectures have been proposed to achieve three pure 
translational motions of the platform by using limbs with three, four and 
five degrees of freedom (Hervé and Sparacino 1991, 1992, 1993; Tsai 
1998; Frisoli et al. 2000; Tsai and Joshi 2000; Zhao and Huang 2000; Di 
Gregorio 2001; Carricato and Parenti-Castelli 2001, 2003a, 2004b; Huang 
and Li 2002a, b, 2003; Gao et al. 2002; Zlatanov and Gosselin 2004; Kong 
and Gosselin 2004a, b, 2007; Li et al. 2005; Alizade et al. 2007; Lee and 
Hervé 2006.). Many studies have been dedicated to these various archi-
tectures of translational parallel robots (Table 1.4).  

The first solutions of maximally regular and implicitly fully-isotropic 
T3-type translational parallel robots were developed at the same time and 
independently by Carricato and Parenti-Castelli at University of Genoa, 
Kim and Tsai at University of California, Gosselin and Kong at University 
of Laval, and the author at the French Institute of Advanced Mechanics 
(IFMA). In 2002, the four groups published the first results of their works 
(Carricato and Parenti-Castelli 2002; Kim and Tsai 2002; Gosselin and 
Kong 2002; Kong and Gosselin 2002a, b, c; Gogu 2002). Each of the last 
 

Table 1.3. Literature dedicated to the study of the Orthoglide parallel robot 

No. Type of study References 
 

1 Architecture optimization Chablat and Wenger (2002, 2003) 
2 Dextrous workspace and design 

parameters 
Chablat et al. (2004a, b) 

3 Design and geometric synthesis  Majou et al. (2002a, b) 
Pashkevich et al. (2005) 

4 Dynamic modelling Guégan an Khalil (2002) 
5 Kinematics and workspace Pashkevich et al. (2006) 
6 Sensitivity analysis Caro et al. (2006) 
7 Stiffness analysis  Majou et al. (2005) 
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Table 1.4. Literature dedicated to the study of translational parallel manipulators  

No. Type of study References 
1 Calibration  Bleicher and Günther (2004) 
2 Dynamic performances Di Gregorio and Parenti-Castelli (2004) 
3 Dynamic balancing  Wu and Gosselin (2005) 
4 Dimensional synthesis Callegari and Marzetti (2003) 

Wolf and Shoham (2006) 
5 Kinematic analysis Joshi and Tsai (2002) 

Tsai and Joshi (2002) 
Carricato and Parenti-Castelli (2003b, 
c) 
Ji and Wu (2003) 
Kim and Chung (2003) 

Shen et al. (2005) 
Zeng et al. (2006) 
Zhao et al. (2006) 

6 Kinetostatic indices Gogu (2007) 
7 Mobility analysis  Li and Huang (2004) 

Rico et al. (2005) 
8 Position accuracy Han et al. (2002) 

Frisoli et al. (2007) 
Xu and Li (2007) 

9 Optimal design and modelling Miller (2004) 
10 Workspace analysis and 

optimization 
Badescu et al. (2002) 
Zhao et al. (2008) 
Tsai and Joshi (2002) 

11 Singularity analysis  Wolf and Shohan (2003) 
Liu et al. (2003) 
Zhao et al. (2005) 
Di Gregorio and Parenti-Castelli (2002 
Li et al. (2004) 
Callegari and Tarantini (2003) 

 
three groups has built a prototype of this robot in their research laboratories 
and has called this robot CPM (Kim and Tsai 2002), Orthogonal Tripteron 
(Gosselin et al. 2004) or Isoglide3-T3 (Gogu 2004a). The first practical 
implementation of this robot was the CPM developed at University of 
California by Kim and Tsai (2002).  

The various methods used in structural synthesis of TPM are systematized 
in Table 1.5. 

 

Li et al. (2004b, 2005) 



1.3 Translational parallel robots      21 

Table 1.5. Approaches used in the structural synthesis of translational parallel 
manipulators 

No Approach References  
1 Additional passive limb Brogårdh (2002) 

Hess-Coelho (2007) 
2 Algebraic methods Danescu (1995) 
3 CAD functionalities Lu (2004) 
4 Constraint method Huang and Li (2002a, b, 2003) 
5 Evolutionary morphology Gogu (2002, 2004a, b, 2008a) 
6 Group theory 

 
Hervé (1995, 2004) 
Hervé and Sparacino (1991, 1992, 1993); 
Lee and Hervé (2006); 
Rico et al. (2006). 
Kong and Gosselin (2007) 

7 Mobility formulae Alizade and Bayram (2004); Alizade et al. 
(2007) 
Tsai (1998, 1999) 
Yu et al. (2006) 

8 Plücker coordinates Gao et al. (2002, 2005) 
9 Screw theory  Tsai (1999); 

Frisoli et al. (2000);  
Kong and Gosselin (2001, 2002a, b, c, 
2004a, b),  
Huang and Li (2002a, b, 2003); 

Fang and Tsai (2004) 
10 Structural parameters  Gogu (2002, 2004a, b, 2008a) 
11 Theory of linear  

transformations Gogu (2002, 2004a, b, 2008a) 

11 Units for single-opened-chains Jin and Yang (2004) 
12 Velocity-loop equations Di Gregorio and Parenti-Castelli (1998);  

Di Gregorio (2002),  
Carricato and Parenti-Castelli (2001, 2002, 

 
 
 
 
 
 
 
 
 
 

Li and Huang (2004) 

2003a, b, c, 2004b) 




