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PREFACE

Tubes, rods, plates, shells, etc., are ubiquitous engineering structures, traditionally
imagined as continuous objects. Their mechanical behaviour is usually studied with
the computational engineering tools of the continuum scale, based on the relations
of macroscopic elasticity. These methods are computationally efficient, since they
do not need to track every single atom. Thermodynamic quantities, such as tempera-
ture, are represented as fields. Behind this static elastic continuum is the effervescent
world of mechanics — Nanomechanics — where temperature represents the kinetic
energy of the random motion of an order of 10%* microscopic entities. This dynam-
ical discrete behaviour shapes the experimentally verifiable constitutive laws of the
continuum.

Nano-tubes, -wires, -coils, and -plates are organizations of matter that became
possible with recent advances in synthetic methods. In these novel structures,
macroscopic mechanics breaks down and nanomechanical behaviour emerges.
Understanding the new mechanical response is important both fundamentally and
practically. By capitalizing on the science emerging from the newly accessible size
range, engineers can develop electromechanical devices, machines, and electronics
on the nano scale. In spite of a vast body of research, however, the inherent practical
difficulties at the nano scale have prevented most applications from being achieved.
This is a powerful motivation for computational modeling, which is increasingly
viewed as a third technique, complementing theory and experiment.

Situated at the intersection of computational chemistry, solid state physics, and
mechanical engineering, computational nanomechanics has emerged as an exciting
area of research that has already played an important role in understanding complex
mechanical responses at the nano scale. Important nanomechanical problems can
be simulated with traditional computational approaches, such as molecular dynam-
ics (for the microscopic scale) and finite elements (for the continuum scale). Many
other important problems (e.g., the overall strength of a material) span large time
and size scales and are strongly influenced by atomic-scale processes (e.g., frac-
ture propagation). Performing an exhaustive simulation at the smallest/fastest scale
for a domain of engineering significance is computationally prohibitive and likely
to remain so for a very long time. Recent advances in computational methodolo-
gies have made it possible to go beyond the distinct approaches mentioned above.
By linking previously “separated by discipline” investigation tools, multi-scale
nanomechanical aspects begin to be simulated and studied from both fundamental
and engineering-application viewpoints.
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Trends in Computational Nanomechanics is an informative description of the
progress in nanomechanics as of 2009. It captures the important insights generated
via the separate application of microscopic (from ab initio to tight binding to empir-
ical force field) and continuum modeling techniques, as well as recent developments
in multiscale methodologies and the new results generated by utilizing these meth-
ods. The book is a useful reference for graduates, undergraduates, and professionals
interested in this interdisciplinary research area.

Nanomechanical problems involving large-scale phenomena are particularly suit-
able for hybrid multiscale numerical modeling strategies. Hybrid schemes combine
within the same overall spatial and temporal domain, several physical models that
are separately designed to address different length and time scales. The assort-
ment of models can have similar or fundamentally different ways of representing
the physical processes. For example, several schemes couple molecular dynamics
simulations where the atomistic system is described with quantum mechanical and
classical potential models, whereas others couple classical molecular dynamics at
the microscopic scale to continuum mechanics (typically finite element) simulations
at larger scales. The main difficulty with developing hybrid schemes is reconciling
the boundaries between the domains represented with the various models.

When various regions of a nanomechanical object are treated with diverse atom-
istic resolutions, differences arise because of the inherent differences in the various
levels of description. In this respect, Chapter 1, contributed by A. de Vita et al.,
presents the “Learn on The Fly” hybrid quantum/classical molecular dynamics. The
merit of this fully atomistic scheme is that it successfully washes out the differences
between the two atomistic-level models by incorporating adjustable classical poten-
tials. Using it, one can investigate the motion of dislocations, brittle fracture, and
growth of hydrogen-induced platelets in silicon. Hybrid molecular dynamics is also
the focus of Chapter 2. Encouraged by the success of the hybrid quantum/classical
molecular dynamics scheme, B. Ensing and S.O. Nielsen take an important step
toward reaching the mesoscale by developing atomistic/coarse-grained molecular
dynamics. Each coarse grain in their method lumps on the order of ten atoms. This
chapter addresses in depth the technical details of the coupling between particles in
the different resolution regions and the treatment of particles that cross a boundary
between regions of different resolution and offers case studies.

Conventional molecular dynamics places severe limitations on the time scale
afforded by the simulation. Recently, significant activities have focused on time-
accelerated molecular dynamics methods that aim to push the limits of the sim-
ulation time and thus eliminate the gulf between nanomechanical simulation and
experiment. Chapter 3, contributed by M. Griinwald and C. Dellago, discusses
transition path sampling, a set of computational methods designed to overcome
the timescale problem. The relevance of this method for nanomechanics is well
illustrated with a study of the structural transformations of nanocrystals under
pressure.

Microscopic methods are attractive starting points for understanding nanoscale
thermal transport. Chapter 4, contributed by S.P.A. Gill, reviews molecular
dynamics modeling methodologies suitable for conducting concurrent multiscale
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simulations of heat conduction in solids, the fundamental connections between the
thermophysical properties of a material and the quantum model of phonons, and
the progress in atomistic modeling in heat transport in relation to nonequilibrium
molecular dynamics. On the same theme, Chapter 5, by [.K. Puri and S. Murad,
presents a hybrid methodology to couple molecular dynamics with the mesoscale
lattice Boltzmann method.

Due to the increased importance of surface effects, the behaviour and properties
of nano-objects generally differ from those of their bulk counterparts. To understand
these new behaviours, combining hierarchically atomistic treatments with contin-
uum methods is an attractive strategy. In this respect, Chapter 6, contributed by
V. Dupont and F. Sansoz, presents the insight gained by applying large scale parallel
molecular dynamics and the quasicontinuum method in contact-induced plastic-
ity studies in nanocrystalline metals. Chapter 7, contributed by R.W. Nunes and
J.E. Justo, provides an overview of the microscopic studies of silicon nanowires.
To account for the larger scale, the authors propose extracting scaling laws for
the energetics of nanowire motifs exposing surfaces. Chapter 8, contributed by
H.S. Park and P.A. Klein, discusses the methodology to incorporate surface effects
in a continuum framework and thus to efficiently model nanowires in engineering
applications. Chapter 9, by C.V. Ciobanu et al., discusses the use of genetic compu-
tational methodologies to obtain optimal surface reconstruction and morphologies
in nanowires.

Carbon nanotubes continue to be the focus of intense investigations. Significant
insights into the behavior of these long molecules, or small solids, have been
obtained with classical potential atomistic treatments. Chapter 10, by B.-W. Jeong
and S.B. Sinnott, discusses molecular dynamics simulation methods and their
applicability in studying the resilient response of carbon nanotube systems to com-
pressive and torsional loads. A detailed treatment of covalent bonding limits the
scale range covered by molecular dynamics. Chapter 11, by T. Chang, demonstrates
that specific aspects of the mechanical response of carbon nanotubes at different
length scales can be obtained analytically, starting from very simplified forms of
the interatomic potentials, such as harmonic and Morse-type. Due to their high
axial stiffness, nanotubes possess a macroscopic persistent length. As a result, nan-
otubes can be efficiently glued together over the extended contacts through van der
Waals interactions, to form ropes, rings, and cables. In this respect, Chapter 12, con-
tributed by Y. Huang et al., describes how to efficiently account for the van der Waals
interlayer interactions of graphitic structures in molecular dynamics simulations.

Hierarchical and hybrid multiscale models are extremely useful in studying the
rich mechanics of large-size carbon nanotubes. Chapter 13, by A. Pantano, presents
a computationally-effective hierarchical tight-binding finite element scheme that
can simulate the electromechanical behaviour of nanotubes of realistic dimensions.
Chapter 14, by Y. Sun and K.M. Liew, provides insight into several atomistic to
continuum coupling schemes and focuses on the coupling of a particular atomistic
method to a higher-order continuum model. Chapter 15, by S. Im et al., presents a
method that embeds quantum mechanics into a molecular mechanics quasicontin-
uum in order to simulate the mechanical deformation of curved crystalline bodies.
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The effectiveness of this hybrid method is demonstrated in several situations that
describe very well the mechanics of carbon nanotubes. Chapter 16, by Y.A. Wang
et al., surveys commonly employed first-principles theoretical methods and focuses
on the popular hybrid ONIOM scheme to determine the electronic properties and
reactivity of perfect, defective, and doped carbon nanotubes.

The multiscale methodologies developed for nanomechanics show a remarkable
transferability to the more complex area of biomaterials. Their application in study-
ing the biomechanical response, which is the focus of the last three chapters of the
volume, is currently a frontier research area called Meteriomics. Chapter 17, by
M.J. Buehler et al., reviews the relevant atomistic modeling approaches and dis-
cusses the size-dependent fracture behaviour of protein materials via the application
of hybrid multiscale strategies linking atomistic and continuum scales. Chapter 18,
by X. Chen and Q. Cui, illustrates the utility of hierarchical modeling in under-
standing the fundamental processes of large channel conductance in Escherichia coli
bacteria. The networks of biopolymers within a tissue exhibit complex multiscale
mechanics, governed by the properties of the individual entities and the relationship
between them. Chapter 19, by V.H. Barocas et al., reviews the current multiscale
models developed for tissues and critically examines their validity against experi-
mental results. This chapter demonstrates that multiscale modeling of networks has
the potential to address some of the fundamental questions in the mechanobiology
of tissues.

I thank the authors for the quality and completeness of their chapters, which
highlight both the advances and many of the remaining challenges in this area. I
also thank the reviewers for their stimulating comments and Ilia Nikiforov for help
with the manuscript.

Minneapolis, MN Traian Dumitrica
June 2009
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Abstract: The atomistic simulation of many processes in materials involves large-size model sys-
tems where different levels of complexity need to be described simultaneously. While
accurate quantum mechanical simulations of large-size systems are usually not afford-
able, less computationally intensive classical models are not suitable for the description
of many chemical processes. Hybrid (quantum/classical) modelling schemes are required
in these circumstances. Here, we describe the “Learn on the fly” (LOTF) hybrid molec-
ular dynamics scheme. Some technical aspects of this technique are illustrated through a
series of examples of its applications to multiscale processes in silicon

Keywords:  Quantum/classical atomistics, Hybrid modeling, Multiscale computations

1.1. INTRODUCTION

Molecular dynamics (MD) plays a very important role in the study of many kinds
of physical, and more recently, biological processes, gaining insight at the atom-
istic level which in turn complements or can drive experimental work. Progress
in the field has been driven by the two pronged advance of hardware and soft-
ware, allowing the treatment of successively larger systems over successively longer
times. However, we are far from an ideal world in which any and every problem can
be studied with ab initio molecular dynamics, the problem domain being currently

1

T. Dumitrica (ed.), Trends in Computational Nanomechanics, 1-23.
DOI 10.1007/978-1-4020-9785-0_1, © Springer Science+Business Media B.V. 2010



2 G. Moras et al.

restricted to a few hundred atoms for tens of picoseconds at most, due to the lim-
its of current technology. By loosening the accuracy of the quantum description
to, for example, tight-binding, the domain can be further extended to thousands of
atoms for longer times, but still there remain problems for which this is insuffi-
cient and quantum-mechanical techniques have to be replaced by simpler, but less
transferable, classical interatomic potentials.

Within this hierarchical multiscale approach [1], physical quantities obtained by
simulations performed at one length (or time) scale (e.g. ab initio MD) are used to
parametrise models which are, in turn, used at a larger scale (e.g. classical inter-
atomic potentials). However, many physical processes involve different, strongly
coupled, length scales that must be studied simultaneously. This often happens when
the influence of macroscopic forces produces structural or chemical changes at a
much shorter-ranged, local level. Important examples of such multiscale phenom-
ena in material science are stress-induced defect processes (e.g. diffusion of point
defects, motion of dislocations, brittle fracture). For example, the propagation of
a crack tip through a brittle material, or the motion of dislocations within a bulk
matrix, involve the breaking and rebonding of atoms bordering the crack front or
the dislocation core, respectively, while simpler stress concentration phenomena
take place in a much larger surrounding area. In cases such as these the use of a
uniform-accuracy Hamiltonian to model the entire system is not a viable strategy.
A fully quantum-mechanical description of the model system is usually unfeasible,
as well as wasteful since a simpler classical model would be sufficiently accurate
to describe most of the system. However, less computationally intensive classical
models are not suitable for the description of the chemically complex region of
the system. Therefore, hybrid quantum/classical modelling schemes are required in
these circumstances.

Several multi-Hamiltonian approaches have been proposed where the atomistic
model system is divided into a chemically relevant quantum-mechanical (QM)
region and a larger region which is described by a simpler classical interatomic
potential [2—4]. The most serious difficulty when constructing such hybrid schemes
is finding an effective and generally applicable treatment of the boundary between
the two regions. Here, we describe a method which allows the boundary problem
to be tackled in the context of hybrid quantum/classical molecular dynamics: the
“Learn on the fly” (LOTF) technique [5-9]. Some technical aspects of this hybrid
scheme are described through examples of its applications to multiscale processes
in silicon, such as the motion of dislocations, brittle fracture and the growth of
hydrogen-induced platelets.

1.2. THE LOTF SCHEME
1.2.1. Reconciling the Boundary

As outlined in the introduction, the main difficulty when developing hybrid quan-
tum/classical atomistic schemes is finding an effective description of the boundary
between the quantum-mechanical (QM) and the classical regions in which the
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system is divided. Within standard quantum mechanical/molecular mechanical
(QM/MM) schemes developed for biological systems [2, 3], the total energy of the
hybrid system is obtained as the sum of the quantum-mechanical energy of the QM
region, the classical energy of the rest of the system, and a term representing the
interaction between the two subsystems. This requires the development of complex
and dedicated techniques for the boundary treatment which usually prevent atoms
from entering or leaving the QM region during MD simulations. As a result, the
QM/MM simulation of many dynamical multi-scale processes in materials, such as
the motion of dislocations or the propagation of brittle fracture, is technically very
difficult. However, allowing the QM region to move during the MD simulation fol-
lowing the chemically complex region of the system (i.e. the dislocation core or the
crack tip) is both necessary and indeed the only way to keep the number of atoms
selected for the QM treatment low. Finally, very few attempts have been made so far
to combine more than two Hamiltonians (see e.g. [10]), since the boundary problem
is such cases is even more complex.

This problem can be solved by following an alternative route. Firstly, we avoid
the complex task of deriving a combined Hamiltonian from the separate quantum-
mechanical and classical Hamiltonians, and instead we focus on local quantities,
such as the forces acting on the atoms, which can still be used to perform MD sim-
ulations. Secondly, we want the forces at each time step of the MD to be the deriva-
tives of a unique Hamiltonian: this is a main idea behind the LOTF scheme and is
obtained in the following way. We choose a unique classical Hamiltonian, and at
each time step we adjust its parameters to reproduce accurate quantum-mechanical
forces in those regions of the systerm where the accuracy of a classical potential
would not be sufficient to describe the local physical processes (e.g. at the advanc-
ing crack tip). In general this unique Hamiltonian is complicated, and we have
found that it is not always sufficient to simply vary the parameters of a pre-existing
classical potential; this is discussed in more detail in Section 1.2.3 below.

Within the LOTF scheme, the boundary problem is therefore tackled in two
separate steps:

Evaluation of the QM forces. Accurate QM forces are calculated during the sim-
ulation only in those regions of the system where the accuracy of the classical
interatomic potential needs to be improved (i.e in the QM region of the sys-
tem). If any of the atoms flagged for the QM treatment — i.e., those for which
the QM forces are used for MD — were located on the surface of the zone
treated by QM in the calculation (e.g., created by simply carving out the QM
region from the system), large errors would be introduced by the presence of
the artificial surface so introduced. This problem can be avoided by including
in the QM calculation a “buffer zone” of finite width surrounding the QM-
flagged set of atoms, and then retaining for use in the MD the forces on the
“internal” QM-flagged atoms only (cf. Section 1.2.2).

Force matching. Forces coming from different Hamiltonians may suffer from
an inconsistency across the boundary between the two regions. For exam-
ple, force components acting along a bond crossing the boundary do not
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necessarily obey an ‘“action-reaction” principle. Tuning the parameters of a
unique Hamiltonian to reproduce all the forces on the atoms avoids this incon-
sistency (any inconsistency in the forces across the boundary is smoothed out
in the fit procedure) automatically enforcing the action-reaction principle.

A detailed description of the LOTF scheme is provided in the following parts of this
section.

1.2.2. Evaluation of the QM Forces

At each time step of the LOTF MD, all the regions of the system which are not suit-
ably described by the classical model are selected for the QM treatment. As already
mentioned, this continuous selection procedure allows for small, mobile QM regions
to be considered at each time step. However, it also requires a robust algorithm
for selecting the QM region. The selection criteria we use are typically based on
geometric and topological information (e.g. atom coordination, bond lengths, bond
angles) and are defined by the user in order to track the regions of the system which
are important for the particular physical process under investigation. Some details
regarding the QM selection algorithms applied to the motion of dislocations and the
propagation of brittle fracture in silicon will be discussed in Section 1.3.

Once the atoms in need of a quantum treatment are identified, the chosen
quantum-mechanical “black box” engine (e.g. a Density-Functional-based scheme
or a Tight Binding Hamiltonian) is used to compute the forces acting on the atoms
of the QM region. As explained above, in order to avoid any errors originating
from spurious QM “surface” atoms, we carve out a larger subsystem containing
the desired QM region and a surrounding buffer zone. The QM blackbox is used to
perform the calculation of the forces for this entire enlarged subsystem. Only the
forces on the atoms composing the original QM region are retained while the forces
on the atoms of the buffer zone, which are affected by the presence of the artificial
surfaces, are discarded (i.e. not used for augmenting the classical model). Tests show
that a ~1 nm wide buffer zone allows very accurate force calculation in silicon sys-
tems (force component errors with respect to the fully QM calculation on the whole
test system are typically lower than 0.01 eV/A) [7]. The size of the buffer zone can
be further reduced by providing a suitable termination of the dangling bonds at the
outer cluster surface, using for example hydrogen atoms in a silicon system.

Based on the same idea, an alternative force evaluation scheme can be used where
the forces on each atom in the QM region are computed independently. For each
atom in the QM region, a spherical cluster is carved out, centred on the given atom.
The QM forces are then calculated and only the force on the central atom of each
cluster is retained. In this case, the radius of the spherical cluster is equivalent to
the size of the aforementioned buffer zone and chemical termination of the cluster
surfaces can be used to reduce the cluster radius (or to increase the accuracy of the
force calculation for a given radius). Since each cluster calculation is independent,
this scheme allows a very efficient parallelisation of the force evaluation, requiring
minimal bandwitdth from the inter-processor communication hardware [7].
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1.2.3. Force Matching

The QM forces calculated at each time step of the LOTF MD in a selected region,
are used to locally augment the classical potential. This is achieved by means of a
force matching procedure. The simplest force matching approach is to modify an
existing classical potential. A suitably chosen subset of the classical Hamiltonian’s
parameters is let free to take different values across the system (e.g. each two-body
term of the classical potential has an independent set of parameters). These param-
eters are then adjusted to reproduce the QM forces through the minimisation of the
objective functional

N
F({a}) =Y [F{"™ — Fi({a})|, (1-1)

i=1

where {a} is the subset of varying parameters, NV is the total number of atoms and

i Flglassical (1-2)
i

plaget _ FM ifatomi € QM region
ifatomi ¢ QM region.

The parameter optimisation does not need to take place throughout the whole
system. We can often just adjust the parameters of the classical Hamiltonian in a
fitting region including the QM zone and a surrounding ‘“crust” region as far as
the crust is thick enough to allow a smooth transition and small errors in the force
matching. Tests performed on Si and Si/H systems show that a fitting region includ-
ing the QM zone and a surrounding nanometer-sized region is sufficient to obtain
accurate force matching (i.e. force matching errors smaller than 0.01 eV/A) using a
few tens of conjugate gradient steps in parameters space.

This force matching approach has been successfully used to perform LOTF simu-
lations on silicon systems, where the Stillinger-Weber (SW) potential [11] was used
as the classical Hamiltonian [6, 7]. Nevertheless, adjusting the parameters of the
classical Hamiltonian has some drawbacks:

1. Minimizing the objective functional of Eq. (1-1) requires the derivatives of the
objective functional with respect to the parameters to be evaluated at each step
of the minimisation. Expressions for these derivatives have thus to be coded for
each different force field used to describe the system.

2. Often, no classical potential is available which is able to provide a reasonably
accurate description of the system. This means that the difference between the
classical and the QM forces in the QM region can be large and therefore a slight
modification (a parameter variation within a reasonably small domain) of the
classical potential might not be sufficient to achieve an accurate force matching.

For these reasons, we have chosen to extend the unique Hamiltonian used for
force matching: instead of modifying the parameters of the classical potential, a
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general adjustable potential (AP) can be used to reproduce the differences between
the classical and the QM forces. This suitably parametrised potential is then added
to the classical potential and the forces used in the MD are derived from the total
potential. In practice, both the classical and the quantum-mechanical forces are cal-
culated as described in Section 1.2.2. Then, the parameters {a} of the AP, which
also in this case are free to take different values across the system, are tuned in
order to minimise the objective functional

N
Fla)) = Y I(F" — By — B}, (1-3)

i=1

where F({Ol})?dj are the forces calculated as gradients of the AP and

plareet _ F?M . ifatomi € QM region (1-4)
! Félassical if atom i ¢ QM region.
Therefore, after a successful force matching, we have, for each atom,
pareet o pelassical | padj. (1-5)
We can therefore propagate the MD by using the potential
V(rfa)) = Vel + v fa)), (1-6)
the force on each atom being
F = —V,V = Felasical 4 padj, (1-7)

Within the adjustable potential approach, the force matching procedure is inde-
pendent of the classical Hamiltonian used to describe the system. Therefore, the
derivatives of the AP with respect to the parameters can be coded once and for all.
Moreover, both classical and quantum-mechanical forces are obtained from black
box engines, which take atomic coordinates and lattice parameters as input, return-
ing the force on each atom. This increases the flexibility of the scheme, since new
force models can be added quickly and easily. A fully flexible adjustable potential
can, furthermore, be constructed so that it guarantees accurate forces even for local
system configurations for which the underlying classical potential used is far from
accurate.

1.2.3.1. The Adjustable Potential

We want the choice of the AP analytical form to be independent of the particular sys-
tem under investigation, and of the classical and quantum-mechanical Hamiltonians.
Therefore, the AP should offer a good compromise between expressive power and
robustness. Moreover, since the AP parameters are adjusted on the fly, the AP should



The “Learn on the Fly” Molecular Dynamics Scheme 7

change smoothly as the parameters change. Finally, the AP derivatives with respect
to its parameters, which need to be computed at each step of the force matching
procedure, should be ideally easy to code and fast to evaluate [9, 12]. According to
these criteria, a simple linear spring adjustable potential has been formulated, using
bond lengths r;; and bond angles 0;; as fundamental coordinates. The linear spring
potential can be written as a sum of two-body and three-body terms

Vispring(r,{a}) = E a;irij + E Bjik €08 Ojig, (1-8)
i ijik
i<j i<j<k

where {a} is the set of free parameters «;; and Bj;x and both the two-body and three-
body terms are linear in the interatomic distance r;; and in cos 6j;, respectively. An
important consequence of using a linear potential is that the objective function in Eq.
(1-3) can be minimised by singular value decomposition (SVD), thus allowing fast
linear algebra routines to be used. This analytical form has been tested on Si, Si/H
and C systems [13, 14]. Very accurate force matching (i.e. force matching errors
smaller than 0.01 eV/A) can be achieved by using the two-body terms only and a
nanometer-sized buffer region for the fitting procedure.

1.2.4. The LOTF Predictor-Corrector Scheme

The parameters of the classical potential (or Adjustable Potential) do not generally
need to be adjusted at each time step of a LOTF MD simulation. In fact, if the
fractional variation of the AP parameters is sufficiently small along the trajectory,
the AP can be used with unchanged parameters for a small number of time steps
after each force matching procedure. This allows a significant speed up of the MD
simulation, since the computationally expensive evaluation of the QM forces is only
carried out when the AP parameters actually need to be adjusted. In practice, the
LOTF MD simulation can be performed by using a predictor-corrector scheme,
as follows (a diagram of this procedure is shown in Figure 1-1). Starting from a
point Rg in phase space, the QM forces are calculated on the selected atoms and
the parameters of the adjustable Hamiltonian are optimised in order to reproduce
these accurate forces. After the parameter optimisation, which gives AP parameters
{ao}, a small number N of MD time steps are performed using this fixed set of
parameters to arrive at point R} (this part is referred to as predictor or extrapolation
part). Here, a new QM force evaluation is performed in the QM region and the
AP parameters are re-optimised. Simply continuing the MD from this point using
the new set of parameters {1} would not make use of the knowledge of the local
optimal parameter variation occurred between the last two QM force evaluations,
and would furthermore lead to a spurious discontinuity in the second derivative of
the trajectories. Therefore, we return to the initial atomic positions, R, and redo
the MD for N time steps using a linear interpolation of the parameters between
{ao} and {a1} (corrector/interpolation part). If fy is the time corresponding to the
configuration (Ro,{ep}) and #; = 9 + NAt, where At is the time step of the MD,
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Eval QM force at R’y
P el Optimise to get a4

(Roto) @—+——+——+——F+——+——+——+——+——+—@ (R}.00)

(R1,(X1)

Interpolate from oy to o4

AT

Figure 1-1. The LOTF predictor-corrector scheme. The MD is propagated from Rg using fixed param-
eters {aq} for a small number of time steps N (predictor/extrapolation). New QM forces are calculated in
the QM region after the predictor cycle (R/l) and the force matching procedure is performed giving a new
set of parameters {«1}. The MD is then redone for N time steps starting from R and using parameters
linearly interpolated between {«} and {«|} (corrector/iterpolation)

then the set of parameters used at 7y + mAz? (0 < m < N) during the corrector cycle
is calculated as

{orm} = {ao} + 1”—;({011} — {ao)). (1-9)

At the end of the corrector cycle we arrive at a point in phase space, Ry, which is
different from R}. However, if N is suitably small, this point is within the phase
space region where the parameters {«1}, optimised in R}, provide very accurate
forces, and the dynamics can be continued from (Ry,{c1}) iterating this predictor-
corrector cycle. Note that using a smaller time step would correspond to an increase
of N. However, the MD time step is already the maximum allowed by the system’s
physical conditions. Therefore, using a time step N times larger and no predictor-
corrector scheme would compromise the stability of the simulation so that the
predictor-corrector procedure is associated to a genuine overall speed up.

The robustness of the AP form determines the choice of the number of extrap-
olation/interpolation time steps, V. Tests performed tuning the parameters of the
SW potential or of a two-body linear spring potential, and using different QM
black boxes, show that N = 5-10 time steps can be used to accurately model
silicon systems at high temperatures. Although the proposed adjustable potentials
are equally accurate in reproducing QM forces, we might expect the interpolation
behaviour of the simpler spring potential to differ from that of the Stillinger-
Weber based approach. This has been tested by comparing the forces given by
the LOTF adjustable Hamiltonian during the extrapolation and interpolation cycles
(FLotr = Fdlassical + Fap) with the full hybrid force (i.e. the forces calculated by
means of the QM blackbox within the QM zone, and the classical Hamiltonian out-
side the QM region) calculated at each time step of the predictor and corrector parts.
The error
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Ferror = F{QM,classical} — Frorr (1-10)

gives a measure of the transferability of the spring potential during the predictor-
corrector loop. The test was carried out for a 64 atom silicon system at a temperature
of 2000 K, with a MD time step At = 1fs. The linear spring adjustable potential
with two body springs only was used and the QM force model was the tight bind-
ing potential of Kwon et al. [15]. 1000 independent trajectories were generated by
randomising the initial atomic positions and velocities. The force errors during one
predictor-corrector cycle were recorded and then averaged over all the trajectories
to produce distributions of RMS and maximum force errors as a function of time
during the extrapolation and interpolation, as illustrated in Figure 1-2 for 10-step
predictor-corrector loops. The force errors rise approximately linearly during the
extrapolation part of the cycle, as we move away from the point in phase space (i.e.,
the set of atomic positions) where the potential parameters were fitted. Providing
the range of validity of the new parameters fitted at the end of the extrapolation
is large enough, the force errors should remain small throughout the interpolation.
We must choose the number of interpolation steps N appropriately to ensure this

Mean error
Mean +/- 16
Max error
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Figure 1-2. Transferability of the linear spring potential. The system used to test the adjustable potential
was a 64 atom silicon bulk cube with 5 QM atoms, at a temperature of 2000 K, with MD timestep
At = 1fs and N = 10. Force errors during one predictor-corrector cycle were averaged over many
independent trajectories. The gray-scale colouring shows the density of force errors as a function of
time, with black corresponding to high and white to low densities. The mean and standard deviation of
the distribution are indicated by the red lines, and the extreme values by the black dashed lines. The linear

spring adjustable potential with two body springs only was used. QM force model is the tight binding
Hamiltonian of Kwon et al. [15]
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is the case. The appropriate scale is set by the accuracy to which the forces have
been computed; for a DFT-based self-consistent QM Hamiltonian (CASTEP [16])
this is normally around 0.05eV/A. We can see from Figure 1-2 that N = 10 gives
acceptable accuracy: the RMS deviation typically remains smaller than 0.01 eV/A,
and the maximum force error is typically below 0.1 eV/A. The transferability tests
were repeated with a variety of different adjustable potentials, including the original
Stillinger-Weber potential with variable parameters and a form of the adjustable
potential using cubic splines instead of linear springs. There was no significant
difference in the distribution of force errors produced by the different potentials.
Moreover, the force error distribution is essentially unchanged when three body
springs are included. The choice of linear or cubic parameter interpolation makes
only a very small difference to the measured force errors, as does repeating the
predictor corrector cycle two or more times.

1.3. SELECTION OF THE QM REGION: AN HYSTERETIC
ALGORITHM

As introduced in Section 1.2.2, the selection of the quantum region has to be imple-
mented using geometric and topological criteria. However, the instantaneous atomic
positions cannot always be used for this purpose, since they often fluctuate too
rapidly to allow the creation of a stable QM region. Unnecessary rapid oscillation
of the set of atoms forming the QM region should be avoided since they may cause
a number of problems. Atoms that move in and out of the QM region can gener-
ate spurious heat as they do so, since the two energy models are trying to drive the
system towards different configurations. Most importantly, from a practical point
of view, such changes in the number of QM atoms are inefficient since ab initio
calculations can be sped up very significantly by reusing the electronic density and
wavefunctions from the previous timestep.

For these reasons, it is useful to use time-averaged atomic positions for the QM
region selection, in order to filter out the fast optical phonons. The time-averaged
coordinates are defined as

F() = (1 — e 21/ Ze_"m/’r(t — nAb), (1-11)
n=0

where At is the MD time step and t the averaging time constant [7]. However, in
many circumstances this does not allow us to completely avoid undesirable fluctua-
tions. Difficulties occur in situations where it is impossible to choose the averaging
time 7 to be large enough to exclude atomic oscillations and at the same time small
enough to still capture rapid bond breaking events. An important example is the
case of a fast-moving crack: it has been found that 7 needs to be below about 100 fs
to correctly follow a moving crack in silicon, but this is of the same order as the
thermal oscillation period of a single Si—Si bond [13]. Therefore, atoms at the edge
of the QM region tend to pop in and out as they vibrate backwards and forwards.
Another example where using time-averaged atomic positions is not sufficient to
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guarantee a stable QM region, is the motion of dislocations. Atoms at a disloca-
tion core may pass through bulk like configurations as they are being modelled,
for long enough timescales that they are no longer identified as needing quantum
treatment. To solve this problem, a selection algorithm with hysteresis has been
developed [13]. Essentially, once an atom has been flagged for quantum treatment
through topological considerations based on its time-averaged position, two spheres
are defined around it, one inner and one outer with radii Rj, and Ry respectively.
An atom within a distance R;, from the flagged atom is also flagged for quantum
treatment, extending the QM zone. However, it is not deselected until it travels fur-
ther than Ry, from the central (flagged) atom, so that entry is effectively easier
than escape. Modelling the QM zone in this way suppresses unwanted fluctuations,
and provides more reliable tracking of the QM atoms. The dislocation and the brit-
tle fracture studies mentioned above are discussed in the next parts of this section,
together with some details of the hysteretic selection algorithm applied during LOTF
simulations of these two systems.

1.3.1. A Screw Dislocation Study

Understanding the properties of dislocations in silicon has important implications,
due to their electrical properties and effects on devices, acting as trapping or scat-
tering centres for charge carriers. Much work has been done on dislocations in
silicon, both in theory and experiment, elucidating the many types with their differ-
ent geometries and core structures. Previously, ab initio studies have been carried out
to obtain a picture of the different types of kink that form from the dislocation cores,
estimating the energy of formation and thus deducing the most likely mechanisms
for kink migration along the dislocation line [17]. In a high Peierls’ barrier material
such as silicon, dislocation glide occurs through the formation and propagation of
kinks rather than via coherent motion of the line itself. Thus far computational stud-
ies have been restricted to focus on the static properties of such dislocations, and the
dynamics have been modelled mainly through kinetic monte-carlo techniques [18].
Using the LOTF method, however, it is possible to perform a MD study of the dislo-
cation glide, a problem which naturally fits the LOTF paradigm, since the majority
of the system remains in a bulk configuration, conferring strain onto the moving
dislocation core, where the localised bond breaking/forming events take place. In
this section we give a brief introduction to the screw dislocation in silicon.

The most important mobile dislocations in silicon are the screw and the 60° dis-
locations. Our current work focusses on motion of the screw dislocation at high
temperature in the presence of grain boundaries [19, 20]. Above 600K, the per-
fect screw dislocation dissociates into two 30° partial dislocations bounded by a
stacking-fault (SF) region. The structure of the perfect screw has been studied using
ab initio techniques [21], as has that of the 30° partial [22]. Figure 1-3 shows the
core structure of two 30° partials, separated by a SF region. In fact, the 30° partial
is thought to govern the dislocation dynamics in silicon. The atoms along the core
are dimerised and the dimers must be broken in order to form the kinks which are
the precursor of migration, with a high energetic cost [17].
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Figure 1-3. Atomic structure of the dissociated screw dislocation in silicon, separated into two 30°
partials which are bounded by a SF

In order to model the dislocation glide, we must be able to track the moving dis-
location core, which forms the QM zone of our LOTF calculation. Firstly, we must
identify the atoms which are undergoing bond-breaking processes. This can be done
simply by monitoring changes in the time-averaged number of nearest neighbours
for atoms in the dislocation glide plane. We have seen that atoms in the unperturbed
core are dimerised in the [110] direction, so these are also flagged for quantum treat-
ment. However, these criteria alone are not enough, as the dynamics is performed
at high temperature, around 1400 K. As a consequence of the high temperature
there are large fluctuations of the atomic positions so that atoms which should be
flagged for quantum treatment may be overlooked. Usage of the hysteretic selection
of the QM region overcomes this problem of large fluctuations, as can be seen from
Figure 1-4. The different coloured lines correspond to different choices of inner and
outer radii in the definition of the hysteretic quantum zone. The black line, corre-
sponding to a 3 A inner radius and a 5 A outer radius, drops by half after 50 ps of
simulated time, because one of the partial cores has been “lost” by the hysteretic
algorithm. In practice, having inner and outer radii which are too small reduces
the effectiveness of the hysteretic quantum zone scheme which proves not robust
enough to identify the fluctuating dimers, and the observed drop is due to the fact
that one remaining core only is being tracked. With a more robust choice of inner
radius of 4 A the quantum selection remains broadly stable throughout the run (blue
and red lines), despite the different outer radii (7 A for the red line and 10 A for the
blue).

1.3.2. Brittle Fracture

One of the best known examples of a strongly coupled multiscale system is the
fracture of brittle materials. The conditions for crack propagation are created by
stress concentration at the crack tip, and depend on macroscopic parameters such
as the loading geometry and dimensions of the specimen [23-26]. In real materi-
als, however, the detailed crack propagation dynamics are entirely determined by
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Figure 1-4. Effect of using hysteretic QM zone in tracking the migrating dislocation core. The pair of
numbers corresponding to each of the colours in the picture label are the radii of the inner and outer
circles, respectively

atomic scale phenomena since brittle crack tips are atomically sharp and propagate
by breaking bonds, one at a time, at each point along the crack front [27,28]. This
means the tip region is primarily a one dimensional line, perpendicular to the direc-
tion of propagation, and so it should be possible to define a contiguous embedding
region to be treated with a more accurate model in a hybrid simulation. There is a
constant interplay between the length scales because the opening crack gives rise to
a stress field with a singularity at the tip [29], as illustrated in Figure 1-5, and in turn
it is this singular stress field which breaks the bonds that advance the crack. Only by
including the tens of thousands of atoms that contribute significantly to the elastic
relaxation of this stress field can we hope to accurately model the fracture system,
and thus a multiscale approach is essential.

The LOTF method is ideally suited to studying brittle fracture since the use of
a buffer zone to yield accurate quantum forces allows the the quantum region to
be made small and mobile. This requires a robust selection algorithm to follow the
crack tip as it moves and identify the atoms that need to be treated with quantum
mechanical accuracy. This is a difficult problem since the timescales of thermal
vibration and crack motion are not well separated. The hysteretic selection algorithm
described above provides an effective solution to this problem.

We flag atoms as “active” when they change their bonding topology, and then
construct embedding ellipses around each active atom. The set of active atoms is
seeded with a few atoms near to the crack tip at the start of the simulation. Figure 1-6
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Figure 1-5. Maximum principal stress near the the tip of a crack under uniaxial tension in the opening
mode, from the linear elastic solution. Black areas are the least stressed and yellow the most

illustrates how the algorithm works in a simple case with only two active atoms —
in reality there could be several hundred. Ellipses with different radii are used to
define inner and outer selection regions, and then the hysteretic algorithm ensures
that atoms near the edges of the QM region do not oscillate in and out of the active
region. Elongated ellipses allow the embedding region to be biased forwards so that
the QM region always extends ahead of the crack tip.

As the crack moves on, we can stop treating atoms behind the crack tip quantum
mechanically. We cap the size of the QM region at some limit Nquantum based on our
computational capability — this can be several hundred atoms for a tight binding
simulation, or of the order of a hundred for an ab initio simulation. By keeping
track of the order in which atoms became active, we can remove them from the QM
region in a consistent fashion. An additional condition prevents atoms further than
a threshold distance away from the centre of mass of the current QM region from
becoming active.

Figure 1-6. Hysteretic QM selection algorithm applied to crack tip region. The red and blue atoms are
considered “active”, and are used to define inner (left panel) and outer (right panel) selection regions. The
atom indicated with the black arrow remains selected despite oscillating in and out of the inner region
providing that it stays inside the outer region
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(e) t=87.5fs, G=5.8/m>

Figure 1-7. Snapshots from LOTF tight binding MD simulation at a temperature of 300 K using the
tight binding model of Kwon et al. [15]. The red atoms are treated quantum mechanically and the yellow
atoms with the classical potential. Atomistic visualisations were produced with AtomEye [32]

Hybrid fracture simulations on the silicon (111) cleavage plane using any of vari-
ety of tight binding potentials [15,30] or the CASTEP [16] density functional code
near the crack tip combined with a classical atomistic potential [11] further away
yield brittle fracture. The calculations reveal a novel sub-critical crack tip recon-
struction that plays an important role in the fracture process, full details of which are
published elsewhere [31]. Figure 1-7 shows snapshots from a LOTF tight binding
simulation of brittle fracture.

1.4. TOWARDS CHEMICAL COMPLEXITY: HYDROGEN-INDUCED
PLATELETS IN SILICON

The investigation of the influence of impurities and corrosive agents on failure
processes is a natural extension of the brittle fracture study. Environment-assisted
cracking processes are a common cause of limited lifetime of engineering
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components. Nevertheless, their complex underlying mechanisms remain poorly
understood at the atomic level. Relevant examples are stress-corrosion-induced
cracks at the Si/SiO; interface in electronic devices and hydrogen-embrittlement
in metallic components.

In this section, we focus on a particular example of environment-assisted
cracking of crystalline silicon which have been harnessed for the production of
“silicon-on-insulator” devices in microelectronics through the “Smart Cut” tech-
nique [33]. This widely used technological process allows a thin layer of oxidized
silicon to be transferred from a hydrogen-implanted silicon wafer onto a substrate
after wafer bonding and heat-induced splitting. The latter is caused by the propa-
gation of microcracks parallel to the implanted surface. Microcracks are thought to
origin from the growth of hydrogen-induced platelets (HIPs) during the first stages
of the high temperature annealing. HIPs are ~ 10 nm wide and ~ 1 nm thick disk-
shaped extended defects which nucleate at room temperature after H-implantation.
Most of these extended defects are located in the region where the final splitting
takes place and lie on planes parallel to the implanted surface (i.e. the (100) planes
for the technologically relevant Si(100) implanted wafers). Despite the important
role played by HIPs in the Smart Cut process, a detailed atomic-level knowledge
of both their nucleation and growth processes is still lacking. Both DFT-based [34,
35] and classical [36] simulation techniques have been used to study the structure
and the formation mechanism of HIPs. The results of these simulations combined
with those of experimental investigations [37] suggest that (100)-HIPs are com-
posed of two facing internal H-terminated Si(100) surfaces. The surfaces are created
either by substitution of Si—Si bonds with Si—-H/H-Si structures or by coalescence
of H-saturated silicon vacancies. However, using uniform accuracy to perform MD
simulations of the thermally activated platelet growth is not a viable strategy. These
simulations would require a combination of quantum-mechanical accuracy and large
system sizes in order to couple the chemical reactions occurring at the platelet edges
with the stress field in the surrounding Si crystal.

To solve this problem, we have applied the LOTF scheme to perform MD
simulations on a realistically sized (100) HIP model system [38]. A ~ 10 nm wide
(100) HIP is centered in a ~ 35 x 35nm? crystalline silicon slab and periodic
boundary conditions (PBCs) are applied perpendicularly to the slab plane. While
a standard Stillinger-Weber interatomic potential is sufficient to describe silicon
atoms in the crystalline phase, a QM technique is necessary to describe silicon and
hydrogen atoms in the defective platelet region. During the LOTF MD simulation,
the following atoms are selected for the QM treatment: (a) all hydrogen atoms;
(b) all silicon atoms having at least one hydrogen atom among their first neighbours;
(c) all under-coordinated Si atoms (defined as the Si atoms having less than 4
neighbours within a 2.5 A distance, excluding those located on the outer slab
surfaces); (d) the first neighbours of the atoms in (a), (b), and (c). Figure 1-8 shows
a typical (100) HIP model system, where the hydrogen atoms and silicon atoms
depicted in red are included in the QM region.

Within the LOTF predictor-corrector scheme, the Density Functional Tight
Binding (DFTB) [39] formalism is used to calculate the forces on the atoms flagged
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Figure 1-8. A realistic-sized (100)-HIP atomistic model: enlargement of the ~ 10 nm wide HIP region.
The whole system is a 35 x 35 nm? silicon crystal. Periodic boundary conditions are applied along the
direction perpendicular to the picture plane. The silicon atoms depicted in red and the hydrogen atoms
are flagged for the QM treatment within the LOTF scheme

for the QM treatment whenever needed. An efficient calculation of the DFTB forces
in this relatively large QM region (300-600 atoms, depending of the PBC orienta-
tion) is performed using the (“embarrassingly parallel”) multiple clusters method
described in Section 1.2.2. To determine the minimum size of H-terminated spheri-
cal clusters which allows accurate DFTB forces to be calculated in the QM region,
we have tested the accuracy of the forces obtained through the multiple clusters
method on a small model system. This is depicted in Figure 1-9a and is composed of
two 2 x 1-reconstructed dihydride (100) Si surfaces. PBCs are applied on the plane
parallel to the surfaces, while 12 Si planes are considered on the perpendicular direc-
tion. The DFTB forces calculated by using H-terminated multiple clusters on the H
atoms and on the 4 outmost Si planes during a 400 fs MD at 800 K are compared to
the forces calculated on the same atoms by using DFTB on the whole periodic sys-
tem. In Figure 1-9b, the mean force component error for Si and H atoms is plotted as
a function of the clusters radius. This test shows that a 7 A cluster radius is sufficient
to keep the error lower than 0.02eV/A for both Si and H atoms. Interestingly, the
error obtained on the Si atoms using 8 A clusters is observed to be larger than the
error made by using 7 A clusters, at the right end of the plot. The same behaviour
has been observed in other periodic silicon systems [7]. A similar small peak of the
error is observed when the diameter of the clusters becomes approximately equal to
the size of the periodic cell. The cause of this slight temporary increase of the error
is related to the simultaneous presence in the cluster of an atom and of its periodic
image.

A two-body linear spring potential is used to match the differences between the
hybrid (DFTB/SW) and the classical (SW) forces in the fitting region. The latter
includes all the atoms in the QM region and four shells of first neighbours of the
atoms at the boundary of the QM region. The maximum force component error in
reproducing the target forces is again typically smaller than 0.02 eV/A. This level
of accuracy is obtained by setting to zero all the two- and three-body terms of the
SW potential involving H atoms. Tests show that using a SW-like parametrisation
for these terms give rise to higher force matching errors. This is due to the relatively
poorer transferability of these parametrisations, sometimes causing the difference
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Figure 1-9. Accuracy of the QM force calculation using the multiple clusters approach. (a) Two 2 x 1-
reconstructed dihydride (100) Si surfaces. PBC are applied on the plane parallel to the surfaces, while
12 Si planes are considered on the perpendicular direction. (b) The fully DFTB forces on the H atoms
and on the 4 outmost Si planes during a 400 fs MD at 800 K are compared to the forces calculated using
multiple clusters on the same atomic configurations. In this graph, the mean force component errors for
Si and H atoms are plotted as a function of the clusters radius

between the classical and quantum-mechanical forces to be even larger than the
quantum forces themselves.

Geometry optimization of the HIP model system has been performed through
LOTF damped dynamics using a 10-step predictor-corrector loop. The transfer-
ability of the two-body spring potential during the predictor-corrector cycles, at
a temperature of about 100K, has been tested using the procedure described in
Section 1.2.4 for the Si system case. A 1000 time-step MD was performed using
10-step predictor-corrector loops on two different HIP systems, using a 0.2 fs time
step. The force error of Eq. (1-10) was calculated during each predictor-corrector
loop. Figure 1-10 shows the evolution of the RMS and maximum force errors
during the predictor and corrector cycles, averaged over all the predictor-corrector
loops of the two simulations. While the error increases in a nearly linear way during
the predictor part, it remains roughly constant during the corrector part where the
time-averaged maximum force error is about 0.02 eV/A.

1.4.1. The Atom-Resolved Stress Tensor

Besides being the starting point for subsequent finite-temperature LOTF MD, the
relaxed atomic positions can be used to calculate the stress field distribution in
the silicon crystal. This distribution does not suffer any discontinuity at the bor-
der between the classical and the QM regions since a unique Hamiltonian is used
to calculate the forces on the whole system. Moreover, the parameters of the clas-
sical potential are slightly varied in order to reproduce as accurately as possible the
elastic constants obtained by the QM blackbox. This guarantees an elastic match-
ing between the two regions. As a final technical point, we now describe how the
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Figure 1-10. RMS (left) and maximum (right) force errors during 10-step predictor and corrector loops
averaged during a 1000 time step LOTF MD. The simulations are performed on two different HIP sys-
tems at a temperature of about 100K, using a two-body adjustable spring potential. The classical and
QM Hamiltonians are the SW potential and the DFTB Hamiltonian, respectively

stress/strain tensor field can be practically evaluated at the atomistic scale and use-
fully compared with elasticity theory results. The atom-resolved values of the stress
tensor are obtained from a local definition of the strain tensor through the linear
theory of elasticity.

A definition of the atom-resolved strain tensor is obtained for all the four-fold
coordinated Si atoms in the tetrahedral structure (all other atoms are assigned zero
strain) by comparing the atomic positions to the atomic positions in the unstrained
crystal. The four neighbours of an atom are used to build a local set of cubic axes.
The components of the local deformation, with respect to the unstrained tetragonal
structure, are combined into a matrix

U=]|e e e3], (1-12)

where ¢; (i = 1,2,3) is the component of the deformation along the i-th axes. This
deformation can be decomposed into two contributions, one due to rotation and one
due to strain. This is done by polar decomposition of the matrix U which gives
U = SR, where R is a unitary matrix (rotation contribution) and S is a positive
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semi-definite Hermitian matrix (strain contribution). If one considers the matrix
UUT, where UT is the Hermitian transpose of U, it turns out that

vut = sst

(1-13)

since RR" = I, where I is the identity matrix, R being a unitary matrix. Moreover,
the eigenvalue decomposition of UU" gives:

vut = vLvt,

(1-14)

where V is the matrix of the eigenvectors of UU™ and L is the diagonal matrix of the
vut eigenvalues. From Egs. (1-13) and (1-14), we obtain

sst = vLv?

and, being the eigenvalues of an Hermitian matrix real numbers,

S=vLrv',

(1-15)

(1-16)
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Figure 1-11. Atomic-resolved stress distributions: two cross-sections of the oy, component distribution
are plotted as a function of the atomic x coordinate. The black and red curves refer to the regions A and
B, respectively, whose atoms are depicted in red
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Therefore S can be directly calculated from the eigenvalues and eigenvectors
obtained by the diagonalisation of UU. Once S has been calculated, R is obtained
as R = S~!'U. The components of the strain tensor &y, Eyys Ezz5 Exys Exz and €y,
can now be calculated by rotating S to align the local cubic axes with the reference
Cartesian axes:

L +exw  &xy Exz
RISR=T+e=| ey lt+ey & |. (1-17)
Exz &y 1+ey

The analysis of the stress distribution in our relaxed HIP systems shows that a
large intensification of the tensile 6y, component is observed close to the platelet
edges, while a smaller compressive component occurs above and below the defect
as a result of the two surfaces moving apart from each other during relaxation. Two
cross sections of the oy distributions are shown in Figure 1-11. Curves A and B
refer to the two regions whose atoms are depicted in red. The curves are obtained
by plotting the oy, component of the atom-resolved stress tensor in these regions as
a function of the x coordinate.

We are currently investigating whether the large tensile stress intensification at
the platelet edges could provide the driving force for HIPs growth during high
temperature annealing.
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Abstract: Multiscale techniques are becoming increasingly important for molecular simulation as a
result of interest in increasingly complex problems involving events occurring over mul-
tiple time and length scales. Here, inspired by the success of the multiscale quantum
mechanics/molecular mechanics (QM/MM) methods, we introduce a hybrid, adaptive
resolution, multiscale molecular dynamics method that combines accurate, atomistic,
modeling of key regions of the system with a coarse-grained modeling of the remain-
der of the system. Hybrid multiscale methods must solve the interfacial hand-shaking
problem of coupling together different levels of description in different spatial regions of
the system; in addition, to implement an adaptive resolution algorithm to correctly model
diffusive systems, one must have a procedure in place to dynamically change the repre-
sentation of a molecule, either from a finer to a coarser level or vice versa. We propose a
solution to these problems through a detailed energy analysis and the use of a rotational
dynamics to align molecular fragments. The algorithms we propose significantly advance
the state-of-the-art and should serve to spur significant advances in our ability to model
complex chemical systems.

Keywords:  Multiscale, Adaptive resolution, Coarse-graining, Molecular dynamics, Reverse
mapping, Rotational dynamics

2.1. INTRODUCTION

In numerical analysis and computer simulations, multiscale techniques are used
where possible to obtain higher accuracies for lower computational cost. Weather
forecast simulations and fluid dynamics calculations, for example, often make use
of solving Navier-Stokes-like differential equations on discrete grids with a vari-
able length spacing, so-called multigrids. The choice of the length scale is arbitrary;
perhaps a particular part of the calculation is of greater interest and is therefore per-
formed at a higher resolution or accuracy than the remainder. But more often, the
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length scales used reflect those of the underlying physics of the simulated process.
In the case of weather prediction, mountainous regions with rapidly varying topog-
raphy require pressure and temperature evaluations on a denser grid than do flat
regions.

The properties of materials are governed by processes that take place over a vast
range of length and time scales. Creep in polymers and glasses is a very slow pro-
cess that can easily have relaxation constants on the order of reciprocal years. On
the other hand, the atomic motions in the same materials take place on the fem-
tosecond time scale. The electronic motions at the onset of a chemical reaction are
even faster, while the chemical reaction itself might take place only a few times
per second within a certain amount of material, resulting in a time scale ratio of
15 orders of magnitude. This inherent multiscale character of phenomena in mate-
rials is seen also in the length scales. A charge transfer or proton transfer chemical
reaction can be a very localized process, taking place within a region of radius ten
Angstroms. The same reaction taking place in the active site of an enzyme involves
the catalytic effect of the tens of nanometers-sized protein environment, while in
general biological processes taking place in the cell, such as signal transduction
or gene expression, are often intricately governed by long-range changes in the
environment.

For the modeling of molecular phenomena with such inherent multiscale charac-
ter, new developments have been made to extend existing simulation techniques that
could otherwise only be applied to rather limited ranges of application. Accurate
quantum mechanical ab initio methods allow for electronic structure calculations
using a large supercomputer involving tens to hundreds of atoms for tens of picosec-
onds. Neglecting electronic structure, the behavior of molecular systems of up to a
million atoms can be simulated for hundreds of nanoseconds using classical molec-
ular dynamics techniques. Modeling of even larger systems or of processes that take
place on even longer time scales requires one to relinquish an atomistic representa-
tion and simulate the motion of effective particles that each comprise several atoms;
this is the domain of coarse-grained and mesoscale methods.

However, there is another choice: one can use multiscale techniques. For example
in quantum chemistry, one can include the extended environment of an electronic
process using embedding techniques [1, 2], continuum models [3-5] or hybrid
quantum mechanics and classical forcefield (QM/MM) techniques [6]. In classical
molecular dynamics simulations implicit solvent models can be employed to reduce
the computation cost (with a concomitant loss of accuracy) of including for exam-
ple a protein environment. And more recently, so-called hybrid multiscale methods
have been developed that mix an atomistic molecular dynamics treatment of part of
a system with a lower resolution treatment of the rest [7—15].

Popularity of the term multiscale has led the word to be used in various con-
texts and with an increasing (multi-) scale of meanings. Here, we will distinguish
between two types of simulation techniques termed multiscale, namely (1) those
in which methods of different accuracy and scale are used sequentially [16, 17],
and (2) those in which methods of different accuracy and scale are used simul-
taneously [7-12, 18-21]. The first type makes use of a relatively accurate, high
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resolution, method to parameterize the less accurate, low resolution, method which
is then used for the actual simulation. In a sense, this type of multiscale method
includes practically all semi-empirical and empirical methods, such as MD simula-
tions that employ forcefields that were first parameterized using quantum chemical
(e.g. Hartree-Fock) calculations. Instead, the latter type of multiscale techniques are
based on treating different parts of a system with different resolutions and include
for example multi-grid methods, multi-timestep techniques, certain Hamiltonian
switch or replica exchange methods and hybrid methods. The multiscale method
that is the subject of this book chapter is a hybrid method that allows key parts of
the system to be treated at a high, atomistic, level of resolution while the rest of the
system is modeled at a lower, coarse-grained, level of resolution [7].

Hybrid multiscale methods must solve the interfacial hand-shaking problem
of coupling together different levels of description in different spatial regions
of the system. If the shape or position of these spatial regions is changing in
time, or if particles are allowed to move between the spatial regions, a special
mechanism must be introduced into the multiscale method to allow particles to
dynamically adapt their representation. The “Learn On The Fly” method is an
example of such an adaptive hybrid method that has been successfully applied
to model the propagation of a crack in a brittle solid, in which only the atoms
in the advancing crack tip region are modeled at the QM tight-binding level of
theory and the rest are treated with a classical forcefield representation [22]. In
this case, a one-to-one mapping exists between the atoms in the quantum rep-
resentation and those in the classical representation (i.e. only the number of
electronic degrees of freedom differs). Bridging between an atomistic represen-
tation and a coarse-grained representation, in which each coarse-grained particle
comprises several atoms, however, raises the additional difficulty that the map-
ping between the two representations is no longer trivial. In particular, the so-called
reverse mapping of moving from the lower, coarse-grained, resolution to the higher,
atomistic, resolution is fraught with difficulty as it requires the generation of
information.

The need for adaptive boundaries within multiscale modeling methods becomes
more urgent as we move from hybrid high-level QM/low-level QM methods
and QM/MM methods, along the accessible time and length scales, to hybrid
atomistic/coarse-grained methods. Whereas often a static boundary suffices on the
relatively small, tens of picoseconds, timescale accessible to QM/MM, as shown
for example by its success in modeling enzymatic chemistry, instead adaptive
boundaries become crucial on the microsecond timescale domain of coarse-grained
models, and therefore also hybrid atomistic/coarse-grained methods, which are
particularly developed to study diffusive behavior in complex fluids, such as poly-
mers, proteins, and amphiphilic assemblies. Adaptive boundaries are thus expected
to be essential in hybrid atomistic/coarse-grained studies of a wide range of
applications, such as protein folding, protein-protein interaction, permeation in
(trans-membrane) ion-channels and pores, diffusion and adsorption on surfaces and
open-framework materials, permeation through polymer electrolytes, self-assembly
of nano-materials, and so on.
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In the remainder of this book chapter, we describe the construction of a hybrid
multiscale molecular dynamics method that bridges regions of high (atomistic) reso-
lution and regions of low (coarse-grained) resolution, paying special attention to the
reverse mapping problem that needs be overcome in order to make the method adap-
tive. But first we give a brief introduction to atomistic and coarse-grained molecular
dynamics and on the forward and reverse mapping between these representations.

2.1.1. Atomistic and Coarse-Grained Molecular Dynamics

Atomistic and coarse-grained molecular dynamics simulations are particle-based
methods in which conservative forces, and also sometimes dissipative and random
forces, are used to evolve the particles in time; this time evolution is called a trajec-
tory. Such classical trajectories in molecular systems can be computed on present
day computers for systems containing 10° — 10° particles for as long as about 108
discrete time steps. If these particles are chosen to be the atoms, the requirement to
accurately sample the molecular vibrations will set the maximum total simulation
time to be less than a microsecond. The most cpu-intensive part of the computation
is the evaluation of the non-bonded van der Waals and electrostatic interactions,
which are typically approximated by pairwise additive 2-body potentials, yielding
in principle a quadratic scaling of the computational effort with system size.

For certain long-time or large length scale phenomena, the fastest molecular
vibrations are irrelevant, making it desirable to average out these high frequency
fluctuations a priori and model directly the representative (coarse grained) parti-
cles that move on the mesoscopic length and time scale. To model these large
scale motions in complex fluids such as polymers, colloids, surfactants and
bio-molecular assemblies, mesoscopic simulation methods have been developed,
for instance Dissipative Particle Dynamics [23], Langevin Dynamics [24], and
Brownian Dynamics [25], in which the local atomic rattling is simplified to ran-
dom noise and dissipation terms. The “potential energy surface” on which these
coarse-grained particles move can in principle be computed from the high-resolution
representation of the system by integrating over all irrelevant fast-frequency degrees
of freedom r:

UR) = —kBTln/dre*V(R,r)/kBT (2-1)

with kp Boltzmann’s constant, T the absolute temperature, and V the potential that
governs the fundamental interactions in the system. The resulting effective potential
felt by the coarse-grained particles, U(R), is actually a free energy surface that is
also a function of the thermodynamic variables that define the state at which U(R)
is evaluated, for example the temperature and the pressure in an isothermal, isobaric
ensemble. Free energy methods, such as the metadynamics method [26, 27], allow
for the evaluation of a free energy landscape of a (very) small set of slow variables,
which can then be used in a Langevin dynamics to explore the kinetics. However,
for the construction of a (many-) particle based coarse-grained model, calculation
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of the exact potential U(R) is not feasible in practise and people have devised other
approximate methods to build coarse-grained potentials, or forcefields.

The level of coarse-graining applied here in the context of hybrid multi-
scale molecular dynamics is in between atomistic and mesoscopic. At this level,
coarse-grained particles represent approximately the chemical functional groups
of molecules, containing in the order of ten atoms each [28]. That way, the
same machinery as used for atomistic molecular dynamics can be used for the
coarse-grained molecular dynamics, including for example harmonic bond and
bend functions and non-bonded van der Waals-like and electrostatic interactions
that make up the forcefield. Critically, this lets us use existing atomistic molecu-
lar dynamics software to carry out the coarse grained simulations, so that we do
not have to worry about writing efficient, parallelized simulation code. Moreover, at
this level the molecular shape is preserved which conceptually allows for a mapping
between the atomistic and coarse-grained representations of the system.

Motivated by Henderson’s theorem [29], which states that there exists a one-
to-one mapping between measured pair-correlation functions and the underlying
potential energy function in the case that the latter is a sum of pair-interactions,
strategies to construct coarse-grained forcefield are often based on constructing
effective pair-potentials from pair-correlation functions and potentials of mean force
obtained from atomistic simulations [30—34]. These approaches work well in cases
where 3-body and higher correlations are weak. The resulting effective potentials
that reproduce the target distributions are not unique however, which leaves room to
simultaneously match other target properties, for example experimental densities,
surface tensions, heats of vaporization, and so forth. Jain and co-workers showed
that such inclusion of thermodynamic target properties in the optimization proce-
dure has the added advantage of increased convergence [33]. A different method
to build coarse-grained potentials is by trying to match the effective forces on the
coarse-grained degrees of freedom within an atomistic simulation [35-37].

It is beyond the scope of the current multiscale topic to discuss the art of coarse-
graining in more depth. It is however important, and hopefully obviously so, to
ensure that the low-resolution and high-resolution models of the system, merged
in an hybrid multiscale method, represent the same thermodynamic state point.
The limited transferability of coarse-grained forcefields (as mentioned for U(R) in
Eq. 2-1) as compared to atomistic forcefields, might therefore require one to re-
optimize the coarse-grained potentials for new simulation conditions (e.g. a different
temperature or pressure) to ensure the same chemical potential in the different low
and high resolution regions and avoid spurious density fluctuations.

2.1.2. Mapping Between Different Representations, or the Reverse
Mapping Problem

In order to implement an adaptive resolution algorithm, one must have a proce-
dure in place to dynamically change the representation of a molecule, either from
a finer to a coarser level or vice versa. The “forward” direction, namely where one
coarsens the representation of a molecule, is straightforward because one merely
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throws away information; for example by replacing the atomic coordinates of a col-
lection of atoms with the coordinates of their center of mass (COM). On the other
hand, the “reverse” mapping, in which one resolves a molecule into finer detail,
is problematic because it requires the creation of information. Indeed, in a recent
review article on multiscale modeling, de Pablo and Curtin say that “a persistent
challenge remains that of reverse mapping, that is, of restoring some of the details
after they have been blurred away through an averaging procedure” [38].

Here we propose a solution to the reverse mapping problem. We associate a
frozen atomistic fragment with each coarse-grained site, and rigidly rotate these
fragments about their COM in accordance with an energy function designed to
maintain a low-energy atomistic-level representation of the system. In this manner
the coarse-grained system has, superimposed on it, a globally unfrustrated atomistic
configuration which is prepared for reverse mapping. Indeed, only a local relaxation
needs to be further performed on the degrees of freedom which were frozen (the
degrees of freedom within each fragment). This is accomplished, for instance, by
running a short atomistic simulation or by using a healing region as will be described
below. This method is efficient because the atomistic fragments are treated as rigid
bodies with no internal degrees of freedom. This means that there are only three
degrees of freedom per coarse-grain site to evolve, namely an element of the special
orthogonal Lie group SO(3). The mathematical details of this treatment are given
below.

2.2 ADAPTIVE MULTISCALE MOLECULAR DYNAMICS

Due to the reverse mapping problem described above, constructing a meaningful
adaptive multiscale molecular dynamics algorithm is not trivial. First of all, the
number of degrees of freedom continuously changes during such a simulation as
low-resolution (coarse-grained) particles break up into their high-resolution compo-
nents (atoms) when they enter the high-resolution region and vice versa when they
leave. During these transitions the number of pair-interactions also changes, so that
both the total potential energy and the total kinetic energy show spurious fluctuations
with the changing numbers of particles in the low-resolution and high-resolution
regions. What thermodynamic ensemble would such an adaptive multiscale sim-
ulation sample? Secondly, and this is precisely the reverse mapping problem, a
coarse-grained particle entering the high-resolution region has to be replaced by its
fine-grained counterpart, which requires the generation of information: how can one
generate suitable equilibrium positions and velocities for these atoms in harmony
with the other atoms in the high-resolution region?

In this section, a possible solution is given to the above difficulties that come
with the construction of an algorithm for adaptive multiscale molecular dynam-
ics, or hybrid MD. The algorithm that we discuss is aimed to be simple, robust,
and have certain desired properties such as conservation of linear momentum and
conservation of total energy. This algorithm is built in two stages. Starting from
an atomistic (i.e. the high resolution) representation of the entire system and a
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(forward) mapping of groups of atoms into coarse-grained beads, the atomistic pair-
interactions that span atoms belonging to different coarse grained beads are replaced
by coarse-grained pair-interactions in the coarse-grained region. The details of such
a coarse-graining of interactions is presented in the following subsection where we
discuss the treatment of the coupling between atoms in the atomistic and coarse-
grained regions. The second stage then involves “freezing” of the atoms in the
coarse-grained region inside their coarse-grained beads so that the dynamics of the
atoms can be replaced by a coarse-grained dynamics. This is presented in the subse-
quent subsection. Next, we present an illustrative case study of a hybrid molecular
dynamics (hybrid MD) simulation of liquid methane. We end with a brief discus-
sion of variations of and alternatives to this multiscale algorithm that have recently
appeared in the literature.

2.2.1. Stage 1: Coupling Atomistic and Coarse-Grained Regions

Let us consider a molecular system that we wish to separate into two regions, one of
which contains the part that we want to treat in atomistic detail and the other which
contains the rest to be treated at a lower, coarse-grained, resolution. This section
describes the first of the two stages in which such a multiscale treatment can be
constructed, leading to an adaptive algorithm that allows particles to move between
the two regions and adapt their representation on the fly.

But first, let us recall that a conventional molecular dynamics treatment of the
entire system at the atomistic level maintains the micro-canonical NVE ensemble
as governed by the conservation laws of Hamilton’s equations. In this ensemble
the number of atoms, N, the volume, V, and the total energy, E, remain constant.
The total energy is taken to be the sum of the total kinetic energy, 7, and the total
potential energy, V, summed over all atoms, i

N
E=T4v=) tmd + V(") 22

in which m; and vj are the mass and velocity of atom i respectively, and the potential
depends on all the positions r;.

Other ensembles can be generated, for example the canonical NVT ensemble or
the isobaric-isothermal NPT ensemble by invoking a thermostat or a barostat plus
a thermostat. Note that now the total energy is no longer constant. However, also
in these ensembles a conserved quantity such as the total energy can be recovered
by cleverly bookkeeping the energy flows between the molecular system and the
external variables introduced to control the temperature and/or the pressure. The
Nosé-Hoover (chain) thermostat [39, 40], the Parrinello-Rahman barostat [41], and
the recently introduced stochastic velocity rescaling thermostat by Bussi [42] are all
good examples of external control mechanisms that provide the desired ensemble
and recover a conserved total energy even though the dynamics is not strictly
Hamiltonian.
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Conserved quantities play a very important role in molecular simulations.
Monitoring the conservation of total energy yields the first and foremost assessment
of the quality of the integration of the equations of motion during the simulation.
Whether the computer code contains a bug, or the simulation time step is too large,
or the initial system configuration contains overlaps between atoms, the problem is
always first seen in the (non-) conservation of the total energy. Given this impor-
tance, it seems like a good idea to focus on energy conservation while constructing
a multiscale algorithm.

The construction of a multiscale algorithm begins from the atomistic representa-
tion of the entire system and some mapping in which groups of atoms are lumped
into coarse-grained beads, which can for example be positioned at the centers of
mass of the atomic groups they represent. The first stage of coarse-graining the low-
resolution part of the system consists of replacing all atomistic interactions that span
different beads by coarse-grained interactions. The second stage consists of replac-
ing the atoms in this region by their coarse-grained bead representation, which is
dealt with in the next subsection. Specifically, for now, the atomistic bonded (and
non-bonded) interactions between atoms i and j that belong to the same coarse-
grained bead « are maintained, and only the interactions between atoms i and j that
belong to different beads o and B are replaced by coarse-grained potentials. The
energy function of such a system reads:

n+m
E=Y)" %m,-viz + VAW + VESRM) 4 ymix(RN RM) (2-3)
1
n—1 n
VAGY = Y ) oA
i=1 j>i
M—-1 M
VCG(RMy — Z Z qJCG(RmRﬁ)
a=1 B>«
N M
Vmix(RN,RM) — Z Z CDCG(RO,,R/g)
a=1p=1

so that the n atoms in the atomistic region interact with each other through
an atomistic potential or forcefield VA(+") while the remaining m atoms in the
coarse-grained region interact with each other through a coarse-grained potential
or forcefield V€O working on the M centers of mass, R, of the atomic fragments
corresponding to beads. Here the potential terms are expressed as sums of pair-
potentials, ®. The effective force on such a center of mass is then distributed,
mass weighted, over the atoms that belong to the coarse-grained bead. The cou-
pling between atoms in different regions is governed by the last term V™X(RN, RM),
which is also the coarse-grained potential working on the centers of mass and there-
fore not different from VY, except that then « runs over the N beads in the atomistic
region, instead of the M — 1 beads in the coarse-grained region.
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The total energy in Eq. (2-3) is conserved, however this multiscale setup is not
yet adaptive so that after some simulation time, due to diffusion, the atoms “feeling”
fully atomistic interactions will start to mix with those atoms from the coarse-
grained region that only feel their environment through coarse-grained interactions,
which is not what we set out to do. To make the method adaptive and have the atoms
switch their interaction when they cross user-defined regions, we introduce a spa-
tial order parameter ¢ to distinguish the two regions and we denote the boundary
between the two regions by ¢'. With this order parameter all atoms can be attributed
alabel, s, which we shall call the (amount of) “coarse-grained character”, and which
equals zero for atoms in the (atomistic) region of ¢ < ¢' and one for atoms in the
(coarse-grained) region with ¢ > ¢', as shown in the upper panel (panel A) in
Figure 2-1.

s(g<q’)=0 gt s@@>qh)=1

1.0
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0.0
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Figure 2-1. An intermediate “healing region” that smooths the coupling between the high-resolution
and low-resolution regions is introduced in three simple steps
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Next, the amount of coarse-grained character, s, is employed to make the
potential function adaptive:

VAL VEO LV = 3 R0 + (1= hap) D@ [+ 30" @

aff ica o ijea
Jjep

(2-4)

Agp = Max (Sq¢,Sp)

Here, the previous potential energy terms are replaced by the two terms on the
right. The first term accounts for all interactions between different coarse-grained
beads « and B, which are either taken as the coarse-grained pair-potential &G
when Aqg = 1 or as the sum of atomistic pair-potentials ®A between atoms i
belonging to bead o and atoms j belonging to bead 8 when Ay, = 0. The value
of the scaling function, Ayg, being zero or one, is determined by the maximum
coarse-grained character s between the two interacting beads « and S, as illus-
trated in Figure (2-1A). Using this scaling factor, the same multiscale behavior is
obtained as before, namely, atoms in the atomistic region interact through the atom-
istic forcefield while they feel the particles in the coarse-grained region through
the coarse-grained forcefield, and the atoms in the coarse-grained region “see” all
other atoms, in both regions, as coarse-grained particles. The difference is now
that this interaction automatically adapts when atoms move from one region to the
other. The last term in Eq. (2-4) accounts for all bonded (and non-bonded) inter-
actions within each bead. Note also that this equation is trivially generalized for
interactions other than pair-interactions, such as bending (or dihedral) potentials,
by taking for lambda the maximum s-value of the now three (or four) interacting
atoms.

By making the multiscale approach adaptive, we have introduced two new prob-
lems: one, the total energy is no longer conserved, and, two, also the forces are
discontinuous when particles cross the boundary at ¢'. In other words, as long as
the particles stay in their initial regions the energy is conserved and the dynamics
is well-behaved, but every time a particle crosses ¢ the total energy and the forces
will display a jump. The jump in the energy when the atoms of bead « cross from
the atomistic region to the coarse-grained region equals the difference between the
coarse-grained potential and the atomistic potential due to all other atoms:

AUSCE = Z Adgp | Dof — Z oy (2-5)
B ica

jep
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where A)qg is the change of A for each pair-interaction, which equals zero for all 8
particles in the coarse-grained region (as these A remain unity), and for all other g
equals either +1 if « moves from the atomistic region to the coarse-grained region,
or —1 if @ moves from the coarse-grained region to the atomistic region. The tilde
indicates the value of the interaction, @, at the moment of boundary crossing. By
simply adding this term, AUO‘?‘/ CG | every time a particle crosses between regions, the
total energy is recovered as a conserved quantity. Fixing the spurious jumps in the
forces, however, will require more than just this simple bookkeeping. This is what
we set out to do next.

Some improvement can be envisioned by introducing an intermediate “healing
region” between the atomistic region and the coarse-grained region, in which par-
ticles are attributed a mixed atomistic/coarse-grained character of s = 0.5. This is
illustrated in Figure 2-1, panel B. Particles in this healing region interact with other
“hybrid” particles in this region through a potential that is the sum of the atomistic
interactions and the coarse-grained interactions, both scaled by A = 0.5, according
to Eq. (2-4). The same type of interaction is felt between these hybrid particles in the
healing region and particles in the atomistic region (as max (s, s2) = 0.5), while the
interaction between the hybrid particles and particles in the coarse-grained region is
purely the coarse-grained @Ce (i.e. max (s, $2) = 1).

Similar to the previous dual-scale setup, the evolution of the atomistic dynam-
ics can be performed on this, now three-region, system, where the potentials are
switched accordingly every time a particle crosses the boundary between the atom-
istic region and the healing region or the boundary between the coarse-grained
region and the healing region. In other words, the bookkeeping AUO‘?/CG now sup-
plements the energy function when a particle o switches between s = 0 and s = 0.5
and when a particle switches between s = 0.5 and s = 1, to correct the jumps in
the total energy. These corrections are smaller than with the previous single region
boundary because AA (in Eq. (2-4)) now only amounts to —}—% or —%, and with that
also the jumps in the forces are somewhat smaller.

Further improvement can thus be made by dividing the healing region into sev-
eral, say N—1, intermediate sub-regions, as shown in panel C of Figure 2-1. Particles
in each sub-region k could then be attributed a stepwise increasing coarse-grained
character of s = k/N, starting from k = 0 in the fully atomistic region to k = N in
the fully coarse-grained region. Again, a particle in sub-region k interacts with all
particles that find themselves in the same sub-region & or in regions smaller than k
with a hybrid potential, given by Eq. (2-4), with scaling factor A = k/N, whereas
this particle interacts with all other particles in higher regions with a hybrid potential
with a larger scaling factor that is determined by the other particle. For a fixed total
healing region width with larger and larger numbers of intermediate sub-regions, N,
the intermediate regions become narrower in spatial extent and particles are more
frequently found to cross one or another region boundary. A particle « crossing
from region k to region k + 1 requires an update of the bookkeeping term AU{XV cG
equal to:
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which is not different from the bookkeeping term defined by Eq. (2-5) with
AM = £1/N.In the case of very narrow sub-regions, a particle moving in any direc-
tion that is not strictly perpendicular to ¢ will cross several sub-region boundaries,
which requires summing over as many bookkeeping terms AUQ’ G,
Now, taking the limit of the number of sub-regions going to infinity,

k /
AUNCE = Jim_ Z Z Adgp | D55 Z o) (2-7)
kg B ica

JjeB

the sum over boundaries for a particle moving from sub-region k at g to sub-region
k" at ¢’ can be replaced by an integral:

AU;?’CG=/ dq Z “’3 oSS - o | (2-8)
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Of course, the linear change of s and therefore of the scaling factor, A, of 1/N
per intermediate region is not a requirement, and other smoothly varying functions
for s can be used, as long as it switches from zero to one over the healing region and
is differentiable. During a molecular dynamics simulation, it is practical to perform
the integration over the full spatial trajectory rather than its projection onto ¢, as
both the interaction potentials, ®, and the order parameter, ¢, are functions of the

position, r.

dhgp 0
A/CG aB 99 | 5CG A
AUA /dz da o olF — > ap |- (2-9)
i€a
Jjep
The resulting energy function of this adaptive multiscale method is obtained from
Eq. (2-3), (2-4), and the total bookkeeping energy, AUACS | of all particles moving
in the healing region. Integration of the equations of motion derived from this energy
function, with a sufficiently small time step, will in principle maintain the total
energy as a conserved quantity. In reference [7] an illustrative numerical calculation
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is discussed of a simple model system containing a diatomic molecule which moves
through a healing region. Despite the deliberately mismatched potential functions
between the atomistic and coarse-grained representations, total energy conserva-
tion is recovered to remarkably high accuracy using the numerical integration of
Eq. (2-9).

2.2.2. Equations of Motion

The Newtonian equations of motion of the adaptive multiscale molecular dynamics
are constructed in the usual way

— =fi=—— (2-10)

with the force f on particle i derived from the potential,

V= | 2ap®S§ + 1 —dap) Y @p | + D) @p + AUMC  (2-11)
aff ica o ijea
Jjep
This is the adaptive multiscale, or hybrid MD, potential, which was derived in the
previous section. Summarizing, the first term sums the scaled interactions between
all pairs of coarse-grained particles o and 8, with the scaling factor A4 a number
between zero and one depending on the resolution (being atomistic, coarse-grained,
or something in between) of the interacting particles. The second term accounts
for all atomistic interactions within the coarse-grained beads. These interactions
are not scaled by A, as they are obviously not replaced by a coarse-grained inter-
action, and which would otherwise thus lead to disintegration of the molecules
when they leave the atomistic region. The third and last term holds the bookkeep-
ing energies (Eq. 2-9) of all particles that change their resolution in the healing
region.
Derivation of the forces from the hybrid potential requires special attention to
the first and last terms which contain the position dependent switching function.
The force on atom i is
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in which the terms in curly brackets are obtained by applying the chain rule to the
scaled coarse-grained and atomistic interactions respectively, shown in Eq. (2-11)
as the term in parenthesis. The first term in both of the pieces between the curly
brackets we recognize as the usual interaction force, but now multiplied by the scal-
ing factor A and (1 — X) respectively. The second terms resulting from the chain rule
contain the derivative of the scaling factor with respect to the particle position. This
derivative is non-zero in the healing region where A changes in the direction of the
order parameter g (see also panel D in Figure 2-1). This seems strange as apparently
these two terms will cause a force, and thus a flux of particles, between the atomistic
and coarse-grained regions, unless <I>CG le <I>A

However, the last term, the derlvatlve of AUA/CG is just the integrand of
Eq. (2-9)

BAUA/CG A ENY
=3 "’3 S P (2-13)
B Jjep
which cancels exactly these two spurious terms leaving only the scaled interactions

plus the intra-bead interaction in the force expression:

Roks

A
fiea = —Z ""3 +y - aﬁ)— -y 7 (2-14)
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This equation contains the usual symmetry with respect to interacting particles i
and j which ensures obedience to Newton’s third law (f; = —f}) and conservation of
momentum in the system.

2.2.3. Stage 2: Freezing the Intra-Bead Motions

In the previous two sections an adaptive multiscale dynamics approach was con-
structed by coupling an atomistic region, in which atoms interact through an
atomistic forcefield, with a coarse-grained region in which atoms interact through
a coarse-grained forcefield. Technically, however, both regions still maintain atom-
istic dynamics rather than a coarse-grained dynamics in the coarse-grained region.
That is, the integrator propagates the atomic positions and velocities also in the
coarse-grained region instead of propagating positions and velocities of the coarse-
grained particles. Here, in the second stage of the multiscale method development,
the atoms in the low-resolution region are replaced by coarse-grained beads.
Basically, the atoms grouped into a coarse-grained bead can be “frozen” with
respect to their center of mass and replaced by the coarse-grained particle as soon
as they enter the coarse-grained region from the healing region, since, from there
on, the motion of the center of mass of each atomic fragment is solely governed by
the coarse-grained interactions making the “internal” atomic motions irrelevant to
the molecular dynamics. Such one-step-freezing is exactly what we will do here,
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although alternative schemes are possible, involving for example a gradual freezing
of the atomic degrees of freedom in the healing region (see Section 2.2.4 for more
details).

The advantages of replacing the evolution of the atomic degrees of freedom by
coarse-grained molecular dynamics are mainly economic; computation of atomic
intra-bead interactions is avoided, a larger time step is allowed without violating
energy-conservation, and memory storage can be saved in the coarse-grained region,
which is typically the larger region. The only disadvantage of discarding the atom-
istic details is that of the reverse mapping problem discussed earlier: once the atomic
inter-bead interactions are replaced by the coarse-grained forcefield the atomic frag-
ments are free to rotate around their centers of mass, randomizing the atomistic
details with respect to their environment outside the bead. This is why we in fact
control this rotation as discussed in Section 2.3, so that we can recover the atomic
details to some approximation.

The fact that, in the low-resolution region, the atoms no longer feel their envi-
ronment and adopt random orientations (ignoring for the moment the possibility of
SO(3) rotational dynamics) means that such groups, upon moving into the healing
region and toward the atomistic region, practically always do so starting relatively
high up on the atomic potential energy surface. That is, while the atomic interactions
are gradually switched on while moving toward the atomistic region, the atomic
degrees of freedom (have to) re-equilibrate with respect to their atomistic environ-
ment. This equilibration process of transforming from high potential energy random
orientations to equilibrium energy structures generates thermal motion or heat. Note
that the reverse process of switching off the atomistic interactions and allowing
atomic fragments to take random orientations as molecules move toward the coarse-
grained region does not require the absorption of heat. This asymmetry in heat
transport with respect to movement toward the high-resolution region versus move-
ment in the other direction means that heat is produced continuously in adaptive
multiscale molecular dynamics. This heat has to be removed by a thermostat.

When particles cross the boundary between the coarse-grained region and the
healing region, the atoms are replaced by a single coarse-grained particle or vice
versa depending on the crossing direction. In the coarse-grained region, the atomic
positions and velocities can simply be stored relative to their center of mass and
thus be recovered when the particle leaves the coarse-grained region. Alternatively,
atomic positions and velocities can be re-generated, for example by inserting a
relaxed structure with random (Boltzmann) velocities or by copying positions and
velocities from a molecule in the atomistic region. The instantaneous switching
between atoms and coarse-grained particles at this boundary introduces jumps in
the total energy that require two extra bookkeeping terms, namely

AUMCE =30 (s, — 1) Y DF (2-15)
o

ijea

1 N 3
ATVCE =30 (s4 — 1) 3 Moy — Y miv; (2-16)
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The first extra bookkeeping term accounts for the atomistic intra-coarse-grained
bead interactions which are no longer computed when the atoms become “frozen”.
Here, the tilde indicates again the values of @ and v at the boundary crossing
moment and the Heaviside step function, ®, equals one for particles in the coarse-
grained region (s = 1) and zero otherwise. The second equation accounts for the
change in kinetic energy as the number of degrees of freedom adapts. The sum of
the two terms can be seen as the instantaneous internal energy of the atomic degrees
of freedom inside the coarse-grained bead, which is integrated out upon coarse-
graining and thus becomes a constant in the coarse-grained region, whereupon it
will be released again when switching back to the atomistic representation.

The definition of the regions (high-resolution, healing, and low-resolution) is
arbitrary and can for example be chosen to be a spherical atomistic region centered
on a particle of particular interest, so that the high-resolution part of the simulation
follows this particle. The healing region should then also be a spherical region with
the same center but with a larger radius, leaving everything outside this sphere as the
low-resolution region. Alternatively, the regions can be fixed in space. In either case,
after every (smallest) time step the amount of coarse-grained character, s, needs to
be computed by calculating the distance between each particle and the center of
the spherical regions. The coarse-grained character is used for the scaling factor in
the force calculations involving all particles in the healing region. A computational
saving can be made by computing s only for a list of particles that find themselves
in this healing region or just outside of it (skin-regions). By taking the width of the
skin-regions on either side of the healing region equal to the skin length applied in
the usual neighbor list for the non-bonded interactions, the small list of particles for
which s is computed needs to be rebuild only as often as the neighbor list is updated.

Summarizing, we have constructed an adaptive multicale molecular dynamics
by first introducing an intermediate healing region and subsequently replacing
the groups of atoms in the low-resolution region by coarse-grained beads. The
total energy is recovered as a conserved quantity by adding the proper auxiliary
bookkeeping terms to the energy function. Next, we will examine the behavior of
this hybrid MD approach with an illustrative example.

2.24. Case Study 1: Liquid Methane

As an illustrative application of the adaptive multiscale dynamics method, we have
performed a simulation of liquid methane at 7 = 111.5 K and atmospheric pressure.
In the high resolution region, methane is treated as a fully flexible atomistic CHy
molecule (using the CHARMM forcefield [43]) and in the low resolution region
each methane molecule is modeled as a single bead using Jorgensen’s united atom
model [44]. A similar simulation of 8000 methane molecules has been published
in reference [7], in which case the atomistic region was defined by a sphere with
a radius of Ry = 8 A fixed in space. Different surrounding healing regions were
tried with widths varying between Ryr = 1 and 4 A, and, not surprisingly, the
largest, 4 A wide, healing region resulted in the best performance as seen from the
conservation of energy.
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Here, we take instead a rectangular box with edges L = 38.0,38.0,75.5 A, con-
taining 1900 methane molecules subdivided into rectangular regions of different
resolution. That is, the atomistic region is a slab, flanked by healing regions on both
sides with a total thickness of da + 2 x dyr = 44 A, which leaves the rest of the
system as a coarse grained slab of width dcgr = 31.5 A. See Figure 2-2 for an
illustration of the system. We will compare six hybrid MD simulations in which we
again vary the width of the healing regions from dyr = 1 to 6 A (thus leaving an
atomistic region of varying width between ds = 42 and 32 A). The average number
of methane molecules in the coarse-grained region was close to 790 with a standard
deviation of about 17. The number of molecules in the atomistic region varied from
1063 in the Ryr = 1 A simulation to 812 in the Ryr = 6 A simulation, leaving
50-294 molecules respectively in the healing regions (see also top-right panel in
Figure 2-3).

The interesting observables that illustrate the behavior of the hybrid MD method
are plotted in the other three panels of Figure 2-3. Starting at the top-left panel,
we see the total energy (shifted for comparison) is very well conserved for the
Rur = 6 A healing region, and showing an unstable drift in the hybrid MD sim-
ulations with healing region smaller than Ryr = 3 A. The graph at the bottom
left shows the AUACC bookkeeping term (Eq. 2-9), which in the simulations is
computed on the fly by multiplying the integrand (Eq. 2-13) by the displacement
dg of the interacting particle in the healing region. Molecules moving from the
coarse-grained region to the atomistic region fall quickly down from high potential
energy configurations as they equilibrate into their atomistic environment, whereas
molecules moving in the other direction are not pushed up to such high potential
energy configurations. This asymmetry with respect to the direction that particles

Figure 2-2. Hybrid MD snapshot of the periodic unit cell of 1900 methane molecules. In the center is
the atomistic region flanked by the two halves of the coarse-grained slab, in which each CHy4 molecule
is treated as a single blob (pictured in blue). These two regions are coupled through 6 A wide heal-
ing regions in which the molecules smoothly change their resolution, here indicated by the varying
transparency of the molecules
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move (i.e. positive or negative dg in Eq. 2-9) means that on average the fluctuations
in AUACG do not cancel, as reflected by the negative slopes in the plot.

The atomistic equilibration process in the healing region, driven by a gradual
switching on of the atomistic interactions, forces the atoms to move and reorient.
This increase in kinetic energy is counteracted by a Nosé-Hoover thermostat cou-
pled to each particle. The bottom-right panel in Figure 2-3 shows the flow of energy
from the system to the thermostat, which is larger for small healing region widths.

This case study of a hybrid MD simulation of liquid methane illustrates that the
adaptive multiscale algorithm is a robust and very promising method. It also shows
the importance of recovering the total energy as a conserved quantity in assessing the
stability and accuracy of the simulation. Without this total energy observable, one
is left with guessing, based on secondary information such as density fluctuations
or other measured properties, whether the choices made for the healing region size
and the time step were adequate.

2.2.5. Other Adaptive Multiscale Implementations

At this stage, we briefly outline two other approaches to (particle-based) adap-
tive multiscale dynamics methods, paying special attention to the differences and
similarities to the hybrid MD method constructed in the previous sections.
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Figure 2-3. Hybrid MD simulation data for liquid methane with varying healing region widths. Top left:
the conservation of the total energy is excellent for the 6 A healing region and becomes unacceptable for
healing regions smaller than 3 A. Top right: Continuously fluctuating numbers of molecules in the atom-
istic region (upper part of the graph) and in the healing region (lower part). Bottom left: bookkeeping
term AUACS from Eq. 2-9. Bottom right: continuous energy flow into the Nosé-Hoover thermostats
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Praprotnik et al. [8] were the first to present an adaptive resolution dynamics
scheme, only preceded by the similar adaptive Monte-Carlo approach of Abrams
[45]. Instead of starting from an energy function with scaled potentials (as we did
in Eq. 2-4), Praprotnik uses force scaling:

fup = WRIWRE) Y finig + [1 = wR)WRP) fi° (2-17)
io jp

Here, w are the scaling functions of the interacting beads « and 8. This scheme
also obeys Newton’s third law and is constructed not to cause any flux of par-
ticles over the intermediate healing region. Unfortunately, the energy function is
not known in this approach. Another difference is the use of fractional degrees
of freedom. The temperature is then calculated using the fractional analog of the
equipartition theorem

<Ky >= —— (2-18)

where < K,> is the average kinetic energy per fractional degree of freedom
[46, 47]. In this approach, all interactions, including the atomistic intra-bead inter-
actions are scaled, and simultaneously the kinetic energy of the atomic degrees of
freedom is scaled to zero when a particle switches from atomistic to coarse-grained
resolution. Control of the kinetic energy is established through a position depen-
dent dissipative particle dynamics thermostat coupled to each (fractional) degree of
freedom.

The other approach worth mentioning is to derive a mixed-resolution
Hamiltonian, starting from a linear combination of all possible Lagrangians that can
be constructed by treating all particles in the atomistic region plus a subset of those
in the healing region at the high-resolution level of theory, and treating all other
particles at the low resolution [9]. Also in this case, the internal, high-resolution,
degrees of freedom gradually “freeze” when particles leave the atomistic region,
through a coordinate dependent kinetic energy. Although this approach is somewhat
more involved, requiring the implementation of a special generalized integrator and
the definition of a special mixed-resolution potential energy function, one advantage
is that it is not limited to pair-potential forcefields but can also be used in combi-
nation with many-body forcefields, such as is common in a quantum mechanical
treatment [48]. Also, the total momentum and total energy are strictly conserved.

2.3. REVERSE MAPPING THROUGH RIGID BODY ROTATION

From the viewpoint of the reverse mapping problem, the example of liquid methane
shown in the previous section represents the simplest possible case. The atomistic
methane molecule, CHy, is symmetrical: it has four hydrogen atoms in a tetrahedral
arrangement around a central carbon atom, and hence to a first approximation is
well-described by the united atom sphere which is used to represent it in the coarse
grained region. When such a united atom sphere enters the healing region, one may
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conceivably insert the missing hydrogen atoms in a randomly oriented tetrahedron
without paying too steep a price in potential energy. The tetrahedron will need to
rotate to avoid steric clashes with nearby methane molecules, and this motion is
the source of the energy flow to the thermostat seen in the previous section. These
steric clashes are non-bonded in nature, and non-bonded forces are the softest forces
which exist in the forcefield. Soft forces are easily “healed” in the healing region.
Once one moves from methane to more complex molecules, the reverse mapping
problem can become serious, and one needs a more sophisticated strategy to solve it.

Recall that our solution to the reverse mapping problem is to associate a frozen
atomistic fragment with each coarse-grain site, and to rigidly rotate these fragments
about their COM in accordance with an energy function designed to maintain a
low-energy atomistic-level representation of the system. The atomistic fragments
are treated as rigid bodies with no internal degrees of freedom. This means that
there are only three degrees of freedom per coarse-grain site to evolve, namely an
element of the special orthogonal Lie group SO(3). In the remainder of this section
we present several strategies for implementing this SO(3) rotational motion. First
we present an energy minimization approach using conjugate gradient optimization.
Next, we describe a dynamics approach using the direct analog of the velocity Verlet
algorithm for the SO(3) setting. We then discuss the coupling between the SO(3)
dynamics and the coarse-grained molecular dynamics, and finish this section with a
case study of a polyethylene chain.

2.3.1. Rigid Body Rotational Optimization

Here we present an algorithm that uses SO(3) optimization to align molecular
fragments corresponding to coarse-grained sites. The output from this algorithm
consists of rigid fragments centered at the coarse-grained sites, rotated to minimize
an energy function consisting of both intra- and inter-molecular terms. The approach
is based on an algorithm due to Taylor and Kriegman [49] in which a sequence
of local parameterizations of the manifold SO(3) is used, rather than relying on a
single global parameterization such as the Euler angles. The problems caused by
singularities in a global parameterization are thus avoided.

One can object to an energy-minimized structure on the grounds that it is not
compatible with the ensembles typically used in molecular dynamics simulations
(e.g. NVT or NPT). In this sense, one can ask the question “In what sense is this
configuration a representation of the underlying molecular system?” Rather than
attempting to provide a mapping algorithm that generates an equilibrated atomistic
configuration, in this section we take a more pragmatic approach. The mapping
algorithm described here quickly generates a globally stable atomistic configuration
that further requires very localized relaxation and equilibration.

The algorithm minimizes a real-valued objective function E:SO(3) — R defined
on the set of rotation matrices

R € SO3) = {e R¥3.R'R = I, det (R) = 1] . (2-19)
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Atevery point Ry on the manifold SO(3) we construct a continuous, differentiable
mapping between a neighborhood of Ry on the manifold and an open set in R>,

R(w) = RyexpJ(w), w € R3, lo| < 7 (2-20)
where the skew symmetric operator J:R> — SO(3) is defined as

0 —w, wy
Jw=| w, 0 —ow|. (2-21)
—wy wy 0

R(w) can be computed using the Rodrigues formula, although we will not need
to do so. The objective (energy) function can be expanded to quadratic order about
Ry as

E(R(w)) = E(Ry) + gta) +o'How (2-22)

where g and H are the gradient and the Hessian of the function, respectively, evalu-
ated at the point @ = 0 which corresponds to the rotation matrix Ry. The conjugate
gradient incremental step is

ws=—Hg. (2-23)
This incremental step determines the new rotation matrix as follows:
R = Ro expJ(wy) . (2-24)

The incremental step must lie within the range of the local parameterization,
namely |wg| < m. The updating step can be made computationally efficient by rep-
resenting the rotations by unit quaternions. The relationship between SO(3) and the
group of unit quaternions Sp(1) is

g = (cosO,wsinh), 0 = |w|/2. (2-25)
The incremental step corresponds to the quaternion

qs = (cos g, w%) where 6 = |w|. (2-26)
With the rotation Ry expressed as the unit quaternion g, the product of the two
rotations, which gives the new rotation matrix, is given by the quaternion multipli-
cation gogs. It has been shown that this algorithm exhibits quadratic convergence
provided that the starting point is sufficiently close to a minimum. According to
Eq. (2-22), we are supposed to evaluate the Hessian as well as the gradient to com-
pute the update step. However, by employing the Fletcher-Reeves-Polak-Ribiere
version of the conjugate gradient algorithm, only the gradient is needed [50].
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To apply this algorithm to molecular systems, two things are needed. Firstly, an
objective function must be chosen which imbues the algorithm with chemical mean-
ing. This function should provide a measure of the potential energy of the molecular
configuration associated with a given rotation matrix. Secondly, the algorithm must
be extended to many coupled SO(3) optimizations so that the molecular system is
simultaneously and concertedly optimized over all the coarse-grain centers. This
multi-body extension is in fact trivial and does not incur any additional computa-
tional cost aside from the necessary linear scaling with the number of centers. The
nature of the multi-body aspect of the algorithm will become clear in what follows.

Let us now address the choice of an energy function. Only interactions between
atoms belonging to different coarse-grain units need be considered. This is because
the intra-unit degrees of freedom are frozen. The SO(3) algorithm is designed to
find the optimal rotational orientation of each of these fragments, where the center
of mass of each fragment is constrained to lie at the location of the coarse-grained
site representing it, and where no internal relaxation of the intra-fragment degrees
of freedom is allowed. Ideally, we would like to take the functional form and the
parameters of all of the terms contributing to the energy function from an under-
lying atomistic force field. There is no need to invent new potential energy terms
when we have well-parameterized ones at our disposal. The most important contri-
bution to the energy function is a bonded term arising from the “dangling” bonds
in the molecular fragments which would connect the fragments to one another in an
atomistic representation of the system. This function is harmonic in the interatom
distance and is expressed as (see Figure 2-4)

E(Ry, Ry) = k/2 (Ir + Rayv — Ryu| — dp)? (2-27)

Figure 2-4. Schematic of the SO(3) optimization algorithm for a hexane molecule. Atomistic fragments
are rotated about the centers of mass of the coarse-grain units representing them to align the unconnected
atomistic bond between fragments (shown in dashed line)
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where R; and R are the rotation matrices corresponding to coarse-grain units
1 and 2, located at positions COM1 and COM2, respectively. The vector from
COMI1 to COM2 is denoted r. u represents the vector from COMI to the atom
in coarse-grain unit 1 involved in the bond. v represents the vector from COM2 to
the atom in coarse-grain unit 2 at the other end of the bond. The bond has an equilib-
rium distance of dy and a force constant of k. In order to perform optimization, the
gradient must be evaluated. There are six gradient terms associated with this energy
function, three for rotation matrix R; and three for R;. For the w, component of Ry,
the gradient is

0 Ryv — Riu| — d,
—F = —k(|r+ 2v 1l O)(r+R2v—R1u)~
dwy] |r + Rov — Ryu| dwy]

Riu (2-28)

with

Riu = R}J(G)u (2-29)

Wx1

where R(l) denotes the initial rotation matrix for coarse-grained center 1. This last
result is computationally important because it means that the J operator only ever
acts on three elements, %, y, and Z, where,

00 0 001 0-10
J&=00-1],0%=| 000 |, u®=[100 (2-30)
010 ~100 000

The multi-body nature of the minimization procedure proceeds as follows: the
potential energy function is written as a sum over all the coarse-grain sites, with
separate terms arising from bonds, bends, torsions, one-fours, and Lennard-Jones
interactions. The gradient of this function is evaluated with respect to each degree
of freedom, namely the three numbers wy, wy, and w, for each coarse-grain site.
This gradient is used to decide upon a global incremental update step in which
all the rotation matrices are simultaneously changed. For further details on how to
implement bend, torsional, and non-bonded energy terms, we refer the interested
reader to our previous work [51].

2.3.2. Rigid Body Rotational Dynamics

In the interest of energy conservation, we now turn to rigid body rotational dynamics
algorithms, namely how to adapt the velocity Verlet algorithm for the setting of
the SO(3) Lie group. This is a challenging problem because the dynamics occurs
on a curved manifold, not a vector space. There are no known algorithms which
possess all the desired properties expected of such an integrator, namely that it be
symplectic, time-reversible, and energy and momentum conserving. We have chosen
to implement the best-performing currently known explicit algorithm for rigid body
dynamics, which is due to Krysl and Endres [52]. This algorithm is the direct analog
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of the velocity Verlet algorithm for the rotation dynamics setting. The fundamental
law of motion for rotational dynamics is r = L where 7 is the torque, L = I
is the angular momentum, 7 is the moment of inertia tensor, and w is the angular
velocity. The initialization and subsequent dynamics components of the algorithm
are as follows.

We initialize the angular velocity from the coordinates and (linear) velocities of
the atoms via

wo=1y"Lo =15 () ri x my), (2-31)

1

where [ is computed relative to the COM, r; is the vector from the COM to atom i;
m; is the mass of atom i, v; is the (linear) velocity of particle i, and x is the cross
product. The angular acceleration is initialized from

ap = Iy (to — wo x Towo) (2-32)

where ¢ is the torque.
Following initialization, the dynamics occurs in a 4-step algorithm as follows,
where the time step is 7.

Step 1: w;, = wy—1 + Fn—1

Step 2: R, = exp [tJ(w))]
Step 3: Solve Lo, — 1, + (a);, + %an) X In(w), + 5a,) =0 fora,
Step 4: w, = w), + S,

Steps 1 and 4 are the velocity half-steps. In Step 2 the rotation matrix R, is used
to update the atomic positions relative to their COM. Hence, unlike the original
algorithm, we do not apply incremental updates to the rotation matrix, but instead
directly rotate the atoms at each time step. We remind the reader that J(w) is defined
by Eq. (2-21). In between Steps 2 and 3, the torque and the moment of inertia tensor
are updated. In Step 3 we need to solve a non-linear vector equation for the angular
acceleration «;, using Newton’s method since it is coupled with the angular veloc-
ity due to the velocity update. The Jacobian (the matrix of first partial derivatives)
required for Newton’s method is straightforward to evaluate [52].

The multi-body nature of the algorithm, as was the case for the optimization
algorithm presented above, is trivial: the net torque on each coarse-grained center is
computed due to the effect of all other fragments one wishes to consider.

2.3.3. Coupling Between the Rotational Dynamics and Coarse-Grained
Molecular Dynamics

To allow for reverse mapping on the fly during a coarse-grained molecular dynamics
simulation, we wish to couple the velocity Verlet algorithm introduced above for
the rigid body rotational dynamics to the dynamics of the coarse-grained centers
of mass. That is, we wish to perform the rotational dynamics of the atoms within
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the coarse-grained beads simultaneously with the (Cartesian) molecular dynamics
of the beads in a fashion reminiscent of Car-Parrinello MD. In the latter method,
the classical dynamics of the nuclei are in principle coupled to a second, artificial,
dynamics of electronic wave function degrees of freedom, although in that case
an adiabatic separation exists due to the large difference in particle masses, and
therefore in temperatures, between the two sub-systems. Here, such a separation
does not exist.

The orientation of the rigid body and its rotational motion are governed
through atomistic interactions that span different beads as illustrated by the dashed
C-C bond in Figure 2-4. These atomistic interactions are affected if we allow
the beads to move with respect to each other. Imagine for example that the
two beads in Figure 2-4 are moving away from each other, than clearly also the
(dashed) C—C bond elongates, leading to an increased torque on the atomistic body
and thus a speedup of the rotational motion. That means in practise that the rota-
tional dynamics continuously heats up if we allow the beads to move, unless a
corresponding back-coupling of the rigid body rotation is added to the dynamics
of the beads or, alternatively, a friction is added to the rotational dynamics to avoid
heating up. The latter damped dynamics is most easily implemented and results in
an alternative on-the-fly rotational optimization scheme (see also Section 2.3.1); this
solution is an example of a general technique known as simulated annealing. Here
instead, we will discuss the (back-) coupling between the (undamped) dynamics
subsystems, as it will play a role in the hybrid multiscale method (see Section 2.2).

Adding the correct back-coupling of the rotational dynamics to the dynamics of
the beads entails adding the atomistic interactions that govern the rotational motions
to the coarse-grained dynamics. However, we do not wish to disrupt the coarse-
grained molecular dynamics more than necessary, not in the least because adding
stiff atomistic interactions to the coarse-grained dynamics would require a smaller
time step for its evolution. We therefore distinguish between translational and rota-
tional motion of the beads with respect to each other, where we define translation as
the motion that alters the distance between two beads and rotation as the motion in
which the bead-bead distance remains constant.

For the translational motion of beads (imagine the coarse-grained stretch vibra-
tion between the two beads in Figure 2-4), instead of adding the back-coupling
of the atomistic interaction to the coarse-grained dynamics, we remove the cou-
pling of the coarse-grained translational motion to the rotational dynamics. This is
done by re-normalizing the atomistic configurations to the equilibrium bead-bead
distance, instead of using the actual bead-bead distance. That is, the instantaneous
bead-bead distance r in Eq. (2-27) for the rotational potential energy is replaced by
the equilibrium bond distance ry, as follows

ER1, Ry) = k/2 (Iro + Rav — Ryu| — do)* (2-33)

and likewise in the force expression of Eq. (2-28). This way, the rotation dynamics
is computed as if the beads are always placed at their equilibrium distance, thus
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removing any effect of translational motion on the rotational dynamics and the need
to add back-coupling.

For the rotational motion of the beads, we cannot remove the coupling because it
would defeat the purpose of keeping the atomistic configuration while the (coarse-
grained) molecule rotates. That is, when the coarse-grained molecule rotates, we
want the atomistic rigid bodies to adapt their orientation simultaneously. The fluctu-
ations on the interactions due to the rotation of the molecule are expected to be
much smaller than that due to the coarse-grained stretching modes. The proper
back-coupling is added to the coarse-grained dynamics using

fl Xr= T] =f, X Uu (2—34)

That is, a back-coupling force f; on bead 1 is computed from the torque 7 on the
atomistic rigid body of this bead that is due to the atomistic interaction between one
of its atoms i and another atom j belonging to neighboring bead 2 (see Figure 2-4) .
In other words, the torque from the force f; on atom i that drives the rotation results
in addition to a force on the bead that is normal to the plane of the torque and the
bond, r, between the beads.

Having added the proper coupling between the rotational rigid atom dynamics
and the rotational motions of the coarse-grained molecules (and removed the cou-
pling with the translational bead motions) we obtain a stable energy conserving
dynamics scheme which tends to thermal equilibrium between the two subsystems.
In the following section, we will compare the two methods of on-the-fly reverse
mapping through rigid rotation, and show that both the optimization scheme (or
simulated annealing scheme) as well as the coupled dynamics scheme succeed
in recovering good approximations of the atomistic structure in a coarse-grained
simulation.

2.34. Case Study 2: Polyethylene Chain

In this case study, we compare the reverse mapping schemes, introduced in the pre-
vious section, for coarse-grained simulations of a (C75H;52) polyethylene chain in
vacuum. The chain is represented by 25 coarse-grained beads, interacting through
harmonic bond and bending potentials and Lennard—Jones type van der Waals inter-
actions [53]. Each bead is mapped on 3 carbon atoms and its associated hydrogens
as shown in Figure 2-5. We performed four NVT coarse-grained dynamics simula-
tions of 500 ps in length at 7 = 303 K, each with a different variant of the reverse
mapping scheme to recover atomistic configurations on the fly. The first 100 ps are
regarded as equilibration; the remaining 400 ps of the trajectory was analyzed and
compared with that of a fully atomistic simulation of the system. The four reverse
mapping schemes are:

1. At each timestep the relaxed atomistic C3Hg structure is inserted into each bead
with a random orientation (i.e. random mapping).
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Figure 2-5. lllustrative snapshot from a coarse-grained simulation of a polyethylene chain (C75H157),
using the reverse mapping through rigid body rotation to recover atomistic configurations. Rotational
dynamics of the atomistic C3Hg functions is governed by a simplified energy function containing only a
harmonic C—C bond plus two repulsive H-H bonds (shown in white) between neighboring beads

2. The C3Hg structures are inserted at the beginning after which their orientations
are optimized during the coarse-grained simulation through the damped SO(3)
rotational dynamics (i.e. damped rigid rotation).

3. Same as 2. but instead of annealing, the rotational dynamics is used, coupled to
the coarse-grained dynamics (i.e. coupled rigid rotation).

4. atomistic flexible rotation

Here, the first scheme of random orientations is used for reference, the second
and third schemes are the two rigid body rotation schemes introduced in the previous
section, and the fourth scheme is another rotational scheme that acts on flexible
atomistic structures, rather than rigid bodies.

This last flexible scheme is added here because we will use it later in the hybrid
multiscale method (see Section 2.2). That is, until now we have talked about reverse
mapping to recover atomistic configurations from a coarse-grained trajectory, but
hereafter, these reverse mapping schemes will be combined with the hybrid MD
algorithm to pre-condition coarse-grained molecules before they enter the healing
region. In order to gradually switch off this rotational dynamics while the atomistic
interactions are being switched on, we require a variant of the rotational dynamics
that will work on flexible, atomistically propagated, bodies as is the case in the
healing region. This is the fourth scheme of which the details follow in Section 2.4.

For the purpose of illustration, we used a very simple energy function in all of
the three rotational dynamics schemes. That is, in principle we can use the full set
of atomistic interactions of bonds, bends, torsions and even non-bonded potentials
spanning neighboring beads, to govern the rotational dynamics, but it makes sense to
choose an economic reduced subset instead. For our polyethylene chain, an intuitive
good choice would include (at least) the carbon-carbon bond interaction spanning
each pair of neighboring beads supplemented with the dihedral angles centered at



52 B. Ensing and S.0O. Nielsen

this C—C bond. Here, in fact, we replace the dihedral angles with two repulsive
harmonic interactions between two hydrogens per pair of neighboring beads. These
repulsive “bonds” between hydrogens are shown in Figure 2-5 as white sticks.
How do the reverse mapping schemes based on rotational dynamics of rigid or
flexible atomistic bodies perform with respect to the randomly oriented bodies and
with respect to a fully atomistic molecular dynamics simulation? To answer this
question, we compared atomistic distribution functions, two of which are shown
in Figure 2-6. On the left-hand side are the histograms of the pair-correlation of
each carbon in the chain with the carbon three positions away. This 1—4 correlation
is the shortest correlation that always spans two different beads. In the atomistic
simulation, the 1-4 correlation shows two peaks reflecting the staggered trans con-
figuration (larger peak) and the two, less favorable, staggered cis configurations
(smaller peak) of each quartet of carbons. In the coarse-grained simulations, the
repulsive hydrogen interactions (namely the white sticks in Figure 2-5) make the cis
configuration very improbable, so that the 1-4 correlations all show a single peak
positioned at the larger peak from the atomistic simulation. The broadening of the
peak from the reverse mapping schemes is due to the stretch vibration between the
beads, which is much softer than that between two carbons. The right-hand panel
in Figure 2-6 shows the histograms of dihedral angles between each sequence of
4 sequential carbon atoms centered at the bond between two beads (i.e. the first
two carbons belong to one bead and the second two carbons belong to the next
bead). Again, the repulsive terms in our simplified energy function used for the
rotational dynamics represses completely the secondary peaks seen in the his-
tograms from the atomistic simulation; however all three reverse mapping schemes
recover a good approximation to the average structure, which is the trans config-
uration. As a side remark, we note that the coupled dynamics scheme performs
slightly better, showing narrower distributions, than the damped dynamics scheme,
which is somewhat surprising as the damped dynamics would be expected to

4 0.02

random mapping
3| L atomistic simulation
L —— damped rigid rotation
21— 0.01

coupled rigid rotation
— flexible rotation

. m
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Figure 2-6. Comparison of the reverse mapping schemes to recover the atomistic structure in coarse-
grained simulation of a polyethylene chain. Left panel: histograms of the distance between each carbon at
position i with that at position i + 3 in the chain. Right panel: histograms of dihedral angles of sequential
carbon atoms of which the first two carbons and the second two carbons belong to different beads,
respectively
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tend closer to the lowest energy conformation. Further study to optimize the
damping factor might improve this.

All three reverse mapping schemes, based on rotational dynamics of rigid and
flexible atomistic bodies, manage very well in maintaining good atomistic config-
urations on the fly during a coarse-grained simulation. The overhead of the rigid
body schemes is minimal due to the local nature of the energy function, relative
to the demanding evaluation of the non-bonded interactions in the coarse-grained
dynamics. The reverse mapping scheme was initially designed to allow for easy
back-and-forth switching between atomistic and coarse-grained simulations of a
system, reducing the requirement of re-equilibration in between. The reverse map-
ping is therefore also expected to be helpful in replica exchange simulations, in
which simultaneously several replicas of the system at different resolution are sim-
ulated that can exchange based on a Metropolis criterion [18-21]. In the context of
this chapter however, we will now return to the hybrid multiscale method and show
how the rotational reverse mapping algorithm, applied to the coarse-grained region,
is essential to simulate more complex structures.

24. COMBINING ROTATIONAL REVERSE MAPPING
WITH HYBRID MD

In this last methodological section, we merge the reverse mapping algorithm with
the adaptive multiscale method. The recent literature until now only shows applica-
tions of adaptive hybrid atomistic/coarse-grained methods that consist of simple
spherical beads in the low-resolution representation, for example, methane [7],
water [54, 55], and even simpler toy models [8, 56]. The reason for this is that
these spherical, or united, atoms require minor re-orientation when switching to the
atomistic resolution compared to larger molecules spanning more than one coarse
grained bead. In other words, all previous studies have explicitly avoided the reverse
mapping problem. Indeed, it is clear from figure 4 that the dashed C—C bond imposes
severe constraints on the relative orientation of the two beads representing a hexane
molecule. If the atomic fragments in these two beads are randomly oriented with
respect to one another when the hexane molecule enters the healing region, a very
large healing region will be needed to bring the atomic representation down from an
almost infinitely high potential energy value.

Applying the reverse mapping algorithm in the coarse-grained region of the mul-
tiscale setup allows, for the first time, hybrid MD simulations of realistic systems
with multi-bead molecules in the low-resolution representation. The rigid body rota-
tional dynamics (introduced in Section 2.3.2) maintains rigid atomistic structures
superimposed on the coarse-grained molecular dynamics. These rigid structures are
rotated about their centers of mass in accordance with an energy function which
includes a subset of the local atomistic interactions, such as bond and bending
potentials between atoms belong to sequential beads. This pre-conditioning of atom-
istic configurations in the coarse-grained region therefore requires a much smaller
healing region to equilibrate coarse-grained molecules that switch to the atomistic
resolution.
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Note, however, that applying this reverse mapping scheme only to the coarse-
grained region is not enough. Also at the coarse-grained end of the healing region,
the orientation of atomistic structures within the beads becomes randomized when
the molecules spend sufficient time at healing region positions of, say, around ninety
percent coarse-grained character. Only a very wide healing region would then be
able to restore the atomistic structure in a smooth manner, when such a molecule is
pushed toward the atomistic region and the highly unfavorable atomistic interactions
are switched on. This is the reason that a scheme in which atomistic structures are
locally equilibrated (constrained to keep the centers of mass at the coarse-grained
bead positions), for molecules that leave the coarse-grained region, does not suffice.
Instead, we will also apply the rotational reverse mapping scheme in the heal-
ing region, which is then gradually switched off, together with the coarse-grained
interactions, as the atomistic forcefield takes over.

In the healing region, in contrast to the coarse grained region, the atomistic bod-
ies are not rigid. Flexible bodies break the SO(3) rotational dynamics integrator
because the moment of inertia tensor changes due to non-rotational forces. To never-
theless allow for a rotational dynamics in conjunction with the atomistic dynamics,
we employ a modified approach that adds the same reduced energy function that
governs the rigid body rotational dynamics in the coarse-grained region. However,
instead of computing a torque on the body from the atomistic interactions, we let
the interaction act directly on the atoms with the additional constraint that the frag-
ment should not feel an effective force. This constraint is satisfied if we apply a
counter interaction on the fragment that cancels any translational acceleration and
only keeps the rotational acceleration. In the example of Figure 2-4, this would
mean that the atomistic bond interaction (dashed line) causes a force on the inter-
acting carbon atoms and simultaneously a constraint force of the same amplitude but
with opposite sign on the centers of mass. In the healing region, the coarse-grained
forces acting on the centers of mass are distributed, mass-weighted, over the atoms.
The coupling of this rotational dynamics with the normal atomistic dynamics in the
healing region is implemented on the same footing as the coupling between those
terms in the coarse-grained region (see Section 2.3.4). In Section , this atomistic
flexible rotation variant of the reverse mapping technique was shown to behave well,
compared to the rigid body rotational algorithms and to a fully atomistic molecular
dynamics simulation.

24.1. Case Study 3: Hybrid Simulation of a Polyethylene Chain

In the third case study, we examine the application of the final combined adaptive
multiscale molecular dynamics, i.e. including the reverse mapping algorithm, to the
folding of a polyethylene chain in vacuum. The Ci50H30y chain is twice as long
as in the previous case study and is represented by 50 beads at the coarse-grained
level [53]. The initially stretched configuration is taken from a equilibration run,
subject to an end-to-end distance constraint. As an illustration of the method, we
show 2 short, 150 ps, hybrid MD simulations of the folding process, once using
the reverse mapping algorithm and once without. Two atomistic regions are defined
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with a radius of RA = 6 A centered on beads 15 and 30 in the coarse-grained
representation of the chains. The surrounding healing region skin is Ryg = 5 A. Two
representative snapshots of the hybrid MD simulation (using the reverse mapping
algorithm) are shown in Figure 2-7.

Comparing the total energies of the two simulations, with and without reverse
mapping, displays a dramatic difference, as shown in Figure 2-8, top panel. Using
the reverse mapping algorithm, which maintains a good pre-conditioned atomistic
structure in the coarse-grained region, the simulation shows very good energy con-
servation. Without the reverse mapping algorithm the total energy shows erratic
behavior (note the difference in scales in these plots), indicating problems and poor
accuracy in the simulation. Visual inspection of the trajectory shows that groups of
atoms move suspiciously fast in the healing region and eventually, after about 95 ps
of simulation, the system explodes. Because of the relatively large number of atoms
in the healing region, the increasing temperature (despite the thermostat) is an indi-
cation of problems (data not shown). Note that for example in a simulation of the
chain in a solvent, such local temperature changes may not be apparent in the total
system temperature.

The bottom panel in Figure 2-8 shows the decreasing radius of gyration
and the end-to-end distance of the polymer chain as it collapses from the ini-
tial stretched configuration to its random coil state. Note that, in this case, the
unstable hybrid simulation displays reasonable behavior for these observables,
not indicating any obvious problems, at least until the system explodes after
95 ps.

In conclusion, we have seen that incorporating the reverse mapping algorithm
into our hybrid MD method to pre-condition the atomistic structure results in a
robust adaptive multiscale molecular dynamics method. Close observation of the

Figure 2-7. Two snapshots from the adaptive multiscale simulation of a polyethylene chain (C150Hz302)
in vacuum, using two spherical atomistic regions (red spheres). The atomistic regions have a diameter of
6 A and are centered on beads 15 and 30 of the 50 bead coarse-grained representation (blue spheres)
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Figure 2-8. Top panel: Using the reverse mapping algorithm within the hybrid MD simulation of a
polyethylene chain leads to good conservation of the total energy; instead without reverse mapping the
hybrid method is unstable. Middle panel: the continuously fluctuating numbers of beads in the low, high,
and hybrid resolution regions. Bottom panel: the folding of the chain shown by the radius of gyration
(black lines; left axis) and the end-to-end distance (red lines; right axis). Despite the spurious dynamics
of the simulation without reverse mapping, these observables show fortuitous similar physical behavior,
that is, until the system explodes after about 95 ps

conservation of the total energy is required to assess the accuracy and physical rel-
evance of the hybrid simulation. Without the reverse mapping algorithm, the hybrid
method only works for small structureless molecules that can be represented by a
single spherical bead in the coarse-grained region.

This case study of the collapse of a polymer chain illustrates the promising poten-
tial of the adaptive atomistic/coarse-grained method for the study of much more
complicated and demanding phenomena of self-assembly, for example protein-
protein interaction, multimeric protein assembly, and protein-DNA interaction. We
foresee that such investigations, which now require either enormous computer
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resources or rather simplified models, will take full advantage of the speedup from
this multiscale method. Compared to a million atom sized MD simulation, such a
speedup could easily reach two or three orders of magnitude when the demanding
atomistic description can be limited to interacting regions of several hundreds to
thousands of atoms.

2.5. SUMMARY

Adaptive multiscale molecular dynamics is a promising new simulation technique
aimed at bridging the gap between the large spatial and temporal scales exhibited
by the phenomena that we wish to predict and the fast and short-ranged molecular
fluctuations that limit current high-resolution methods. This technique allows one
to focus the available computational resources on those special regions of the sys-
tem where the key events are occurring by modeling the system in these regions at a
higher, more accurate, resolution than the rest of the system. Here, we used an atom-
istic description in the high-resolution regions, and coarse-grained models, in which
atoms are grouped into single interaction sites, to describe the other, low-resolution,
regions.

The level of description of molecules that move between the high and low resolu-
tion regions adapts on the fly. This transformation from a coarse-grained description
to an atomistic one, or vice versa, proceeds in a smooth manner through a thin inter-
mediate healing region that bridges between the high and low resolution regions.
In particular, the transformation from coarse-grained to atomistic, the so-called
reverse mapping, is otherwise cumbersome as it requires the introduction of inter-
nal degrees of freedom that should be equilibrated together with their surrounding
molecules. The continuous introduction (and removal) of degrees of freedom in
the healing region is therefore a non-equilibrium process that produces heat, which
can be removed with a thermostat. An important feature of the current multiscale
algorithm is that it recovers, nevertheless, the total energy as a conserved quantity.
Energy conservation provides a crucial handle to assess the accuracy of the integra-
tion of the equations of motion (i.e. the quality of the simulation) and is for example
necessary to be able to choose an appropriate size for the healing region as well as
for the time step.

We also discussed a special reverse mapping technique that allows one to obtain
the atomistic conformations from a coarse-grained molecular dynamics simula-
tion at low computational overhead. The algorithm consists of a dynamics on the
Lie group SO(3) of rotations for every coarse-grained site. Combining this tech-
nique with the adaptive multiscale approach to pre-condition molecules in the
low-resolution region, before they enter the healing region, helps to limit the size
of the healing region.
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Abstract: Many interesting phenomena in nature, as diverse as first order phase transformations,
biomolecular isomerizations, or transport processes in solids, are characterized by widely
disparate timescales. While the waiting time for a spontaneous incidence of such a process
can exceed seconds or even hours, the underlying relevant molecular motions occur on
the femtosecond timescale. This fact poses a serious problem to molecular dynamics com-
puter simulations aimed at revealing the atomistic mechanisms of such phenomena. Here,
we give a review of transition path sampling, a set of computational methods designed to
overcome this timescale problem. As an application, we show how transition path sam-
pling can be used to identify the atomistic mechanisms of structural transformations in
nanocrystals under pressure

Keywords:  Rare events, Transition path sampling, Nanoparticles

3.1. RARE EVENTS IN COMPUTER SIMULATIONS

In the past few decades, molecular dynamics simulation has grown into a very pow-
erful tool that today is used routinely to study the dynamics of condensed matter
systems consisting of up to a few million particles with atomistic resolution. Many
processes occurring in nature and technology such as the folding of a protein or the
transport of a dopant through a semiconductor, however, are still beyond the reach
of this methodology due to widely disparate time scales that are present in the prob-
lem. Consider, for instance, the nucleation of a crystal from the undercooled liquid.
For moderate undercooling, this process typically proceeds through the formation
of a critical nucleus that then grows, eventually transforming the whole sample into
the crystalline state. Since this process involves the creation of an interface between
the crystallite and the metastable liquid, which is associated with a free energetic
barrier, the formation of the critical nucleus is rare on the time scale of basic
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molecular motions. Indeed, it has been known for a long time that water, carefully
cooled below the freezing point, can remain in this supercooled state for hours or
even days. Thus, the time scale for nucleation exceeds the picosecond time scale
for the formation and cleavage of hydrogen bonds by many orders of magnitude.
Similar rare but important events, related to high energy barriers or entropic bottle-
necks in phase space, can also dominate the dynamics of folding proteins, chemical
reactions or transport on surfaces.

Naturally, such a wide separation of time scales is a problem for molecular
dynamics simulation. In this method, the equations of motion of the system are
solved numerically in small time steps. The size of the time step must be selected
such that even the fastest motions in the system are reproduced faithfully. In a
molecular system, fast bond and angular vibrations require a time step of about
1 femtosecond. With such a time step, current computer technology permits to fol-
low the time evolution of the system for 10° — 10° time steps, corresponding to
total simulation times from nanoseconds to microseconds. Of course, the accessi-
ble simulation times depend on the size of the system and on the particular way
of calculating the forces acting on the individual atoms. If forces are determined
ab initio by solving of the electronic structure problem, typical simulation times do
not exceed tens of picoseconds even for moderate system sizes of 100-200 atoms.
For our example, the formation of a crystal from the supercooled liquid, this limi-
tation in the accessible time scales means that in a molecular dynamics simulation
the crystallization event simply cannot be observed.

For the computer simulator this situation is frustrating, particularly because typi-
cally rare events are not slow. Rather, if they occur, they occur rapidly. For instance,
the formation of a critical crystalline nucleus proceeds quickly, while the time spent
waiting for this event may be very long. (In fact, microscopic time reversibility
requires that the formation of a critical nucleus happens as quickly as its decay.)
Similarly, an activated chemical reaction can proceed quickly once it is initiated,
but the waiting time between subsequent reactions may be very long. To circumvent
this problem caused by widely disparate time scales, several computer simula-
tion algorithms have been devised in recent years. If the reaction mechanism is
known in terms of a reaction coordinate that quantifies the reaction progress, for
instance the size of the crystalline nucleus forming in the supercooled liquid, the
rare event can be studied with umbrella sampling [1] or the blue moon sampling
technique [2]. In these methods, an appropriate bias or constraint forces the sys-
tem to visit the configurations associated with rare barrier crossing events. The
detailed mechanism and rate constants of the transition can then be studied using
the Bennett-Chandler approach [3, 4], in which dynamical trajectories are initiated
from these rare configurations, expanding on the original idea of transition state
theory [5, 6].

In complex molecular systems, however, a priori knowledge of the reaction
mechanism is often not available and these methods are not directly applicable.
In such cases, methods that modify the dynamics such as metadynamics [7], tem-
perature accelerated dynamics [8], or coarse molecular dynamics [9] can be used
to explore the possible mechanisms for transitions between stable states. If both the
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initial and the final state are known, the transition path sampling (TPS) method, an
importance sampling scheme acting in trajectory space, can be used to study the
transition. In contrast to other methods, in a transition path sampling simulation
truly dynamical trajectories are considered such that both the mechanism as well as
the kinetics of the transition can be determined. Alternative methods to study rare
transitions between known (meta)stable states are the nudged elastic band (NEB)
method [10] and the string method [11, 12]. For a recent review of these approaches
and a discussion of their relation to the transition path sampling methodology we
refer the reader to [13]. In the present article, we will concentrate on the transition
path sampling method and its application.

A typical example to which transition path sampling can be fruitfully applied
are phase transformation occurring in semiconductor nanocrystals under pressure.
At ambient pressure, cadmium selenide exists in the wurtzite structure, in which
every sadmium atom is coordinated by exactly four selenium atoms. Under pres-
sure, this material undergoes a transformation to the denser rocksalt structure, in
which every atom is coordinated by six atoms of the other species. If one goes
from the bulk system to small crystallites of nanoscopic dimensions, the pressure at
which the transition occurs increases considerably [14]. This finite size effect can
be understood qualitatively in terms of the higher surface free energy of the rocksalt
structure. In small crystals, this surface free energy plays an important role such that,
in comparison to the bulk, a larger pressure has to applied to the system to compen-
sate for the extra free energetic cost of the surface. It is conceivable that transitions
in the bulk and in the nano-crystal differ not only by the pressure at which they
occur, but also by the specific mechanism that transforms one phase into the other.
The mechanism preferred in the bulk may be blocked in the nano-crystal, because it
leads to morphologies with particularly unfavorable surface free energetics. While
experiments have yielded detailed information on the thermodynamics and kinetics
of this transition in CdSe nanocrystals, their temporal and spatial resolution is not
sufficient to follow the atomic motions during the transition and reveal the mecha-
nism. In principle, molecular dynamics simulations can provide this information. It
turns out, however, that in order to observe the transition in a straightforward molec-
ular dynamics simulation within the accessible simulation time, the pressure has to
exceed the pressure applied in the experiments by far. At more realistic pressures,
the typical waiting times are simply too long for a transformation to be observed
in such a simulation. This time scale problem can be solved using transition path
sampling [15-17]. In this method, one concentrates on those segments of the time
evolution in which the transition event actually happens. An analysis of the trajec-
tories harvested with transition path sampling then yields both the mechanism and
the rate of the transition. In the following, we will first outline the main concepts of
transition path sampling and then explain how this computational technique can be
used to study phase transformations occurring in nanocrystals under pressure.

The remainder of this article is organized as follows. In Section 3.2 we briefly
review the main ideas and algorithms of transition path sampling including methods
for the analysis of transition pathways as well as for the calculation of reaction
rate constants. A specific variant of the transition path sampling algorithm designed
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for the simulation of pressure induced structural phase transitions in nanocrystals
is then discussed in Section 3.3. The application of this algorithm to the Wurtzite-
to-Rocksalt transition of CdSe nanocrystals is the subject of Section 3.4. A few
concluding remarks are offered in Section 3.5.

3.2 TRANSITION PATH SAMPLING

Transition path sampling is a computational methodology developed to study rare
transitions between long-lived metastable states [18, 19]. These stable states, let us
call them A and B, can be different phases of a condensed material in the case of
phase transitions or different chemical species in the case of a chemical reaction.
Transitions between stable states A and B are rare (otherwise we could study them
with standard molecular dynamics simulation) and may involve crossings of pos-
sibly rough and unspecified free energy barriers. While transition path sampling
does not require an prior knowledge of the transition mechanism, the stable states
A and B between which the transition occurs must be known in advance. The cen-
tral idea of transition path sampling now is to consider only short trajectories, long
enough for the barrier crossing event to complete, but much shorter than the typical
waiting time before transitions occur. These short trajectories have different proba-
bilities to be observed: trajectories fluctuating in the stable states, for instance, are
more probable than reactive trajectories that cross the barrier. The statistical distri-
bution of various trajectories is taken into account in the definition of the transition
path ensemble, which assigns the appropriate probability weight to each individ-
ual trajectory. Since in transition path sampling one is interested only in transition
pathways, i.e., trajectories that connect the stable states, the transition path ensemble
excludes trajectories that do not start in A and end in B. The transition path ensemble
is then sampled with a Monte Carlo procedure that generates trajectories according
to their statistical weight. If the sampling is ergodic, all important pathways will
be found and can then be analyzed to yield information on the mechanism but also
on the kinetics. In the following sections we will outline the basic principles and
algorithms of transition path sampling. For further information on various aspects
of transition path sampling we refer the reader to [20-26].

3.2.1. The Transition Path Ensemble

The conceptual starting point of transition path sampling is the definition of the
transition path ensemble, a statistical description of all pathways connecting stable
states A and B as illustrated in Figure 3-1. Each of these trajectories has the same
temporal length r and consists of an ordered sequence of L = t/At microscopic
states separated by a small time step At,

x(t) = {x0, XA X215 -+ -5 X¢}e (3-1)

Such a sequence of states may, for instance, result from a molecular dynamics or
Brownian dynamics simulation carried out with a time step Af. Each microscopic
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2

Figure 3-1. The transition path ensemble includes all trajectories of a given length that connect the
stables states A and B

state x;, or time slice, along a trajectory is a complete copy of the system and,
depending on the dynamics considered, includes only the positions or the positions
and momenta of all particles. Subsequent time slices on a trajectory are connected by
the dynamics of the system. If we denote the short time transition probability from
state x; at time 7 to state x;4; a time step later by p(x; — x;4a;), the probability
density to observe a given trajectory is given by

t/At—1

PIx(D] = p(o) [] plxiar = xinan. (3-2)
i=0

Here, p(xp) is the distribution of the initial conditions from which the trajectories
start. Equation (3-2) is valid provided the dynamics of the system is Markovian,
i.e., the future time evolution of the system depends only on its current state and
not on its past. Most of the kinds of dynamics considered in molecular simulations,
including Newtonian dynamics, Langevin dynamics and Monte Carlo dynamics,
obey this condition.

The probability density of Eq. (3-2) describes the likelihood of observing a trajec-
tory starting end ending at arbitrary microscopic states. In transition path sampling,
however, one is specifically interested only in pathways that are reactive, i.e., that
start in A and end in B. This condition on the pathways is included into the statistical
description of pathways by multiplying the unrestricted probability density P[x(?)]
with the characteristic functions of regions A and B acting on the initial and final
time slice of the path, respectively:

Paplx(0)] = ha(xo)P[x(D)]hp(x1)/ Zap(1). (3-3)

The characteristic functions 4(x) and hp(x) are defined such that they are unity
if their argument is in the respective region and they vanish otherwise. Thus, /4 (x)
is given by

1 if xeA
h = ’ 3-4
A (X) {0 if oxgA (3-4)
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and hp(x) is defined analogously. In Eq. (3-3), P4p[x(#)] is normalized by the factor

Zap(t) = f Dx(t) ha (xo)PLx() T x) (3-5)

where the notation

/Dx(t) = /~~~/dxodxmdx2m~~dx,, (3-6)

familiar from path integrals, indicates an integration over all time slice of the path.
The probability density Pag[x(¢)], we call it the transition path ensemble (TPE), is a
statistical description of all pathways of length ¢ that connect the stable states A and
B. All pathways that are not reactive are assigned a vanishing weight and thus are
not members of the transition path ensemble.

The specific functional form of P4p[x(#)] depends on the distribution of initial
conditions, the underlying dynamics and on the definition of the initial and final
regions. Depending on the particular situation one considers, the distribution of
initial conditions may be the microcanonical or the canonical one. Other distri-
butions are possible as well, including non-equilibrium distributions [27, 28]. The
short-time transition probabilities p(x; —x;a¢), Which enter the espression for the
transition path ensemble in Eq. (3-3), depend on the kind of dynamics chosen to
model the time evolution of the system. While for a deterministic time evolution
such as Newtonian dynamics the transition probabilities are delta functions leading
to a highly singular transition path ensemble [29], the transition probabilities are
smooth functions for stochastic dynamics, such as the one produced by the Langevin
equation [18]. Finally, care must be exercised in the definition of the stable states A
and B. These regions, usually defined in configuration space, should be large enough
to include all equilibrium fluctuations of the system in the stable states, but should
not overlap with their mutual basins of attraction [19].

While the formal definition of the transition path ensemble poses no difficulty,
its practical value hinges on ones ability to generate trajectories according to their
weight in this ensemble. An efficient way to accomplish exactly that is discussed in
the next section.

3.2.2. Monte Carlo in Trajectory Space

In a transition path sampling simulation the transition path ensemble is sampled
following the basic idea of a Monte Carlo simulation. The respective procedure is
carried out in two basic steps. First, a new trajectory, x((¢), is generated from an
old one, x(")(t), for instance using the shooting algorithm described below. Then,
the newly generated trajectory is accepted or rejected according to the relative sta-
tistical weights of the new and old trajectories. If the new trajectory is accepted, the
old trajectory is replaced by the new one. Otherwise, the old one is kept. Iterating
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these two basic steps generates a biased random walk in trajectory space, in which
trajectories are visited according to their weight in the transition path ensemble.

To ensure that the transition path ensemble is sampled correctly, one requires that
detailed balance is obeyed,

Paplx @01 [xO @) — x™(0)] =

Paplx™ 0] [xP(0) — xO0)]. e
Here, 7[x©©(1) — x™(1)] is the probability to move from the old path x©(r)
to the new path x™(7) in one Monte Carlo step. This conditions requires that the
flow in trajectory space from x(©(¢) to x™(¢) is exactly compensated by a flow of
equal magnitude in the backward direction. If the transition probability m satisfies
the detailed balance condition of Eq. (3-7), the Monte Carlo algorithm conserves the
transition path distribution P4p[x(f)] and, if ergodic, results in correct sampling of
reactive trajectories. For the two-step Monte Carlo procedure described above, the
transition probability 77 [x(°)(r) — x™(1)] is given by the product of the probability
Pgen 90 — X)) to generate the new path from the old one and the probability
Pacc[xX9(1) = xX®(1)] to accept the newly generated path,

7X@ — x™(n)] =

3-8
Paen[x© (1) = x™(0)] X Pacc[x (1) — xM(1)]. G

Inserting this particular form of the transition probability into the detailed balance
condition (3-7) on obtains a condition for the acceptance probability, which can be
satisfied using the celebrated Metropolis rule [30], eventually leading to

Pacc (1) = xV(0)] = ha[x"1hgl™]
, { PLxX® (6)]Pgen[x™(1) — x©(#)] } (3-9)
X min .

" PIXO(1)]Pgen [x©)(r) — xM(1)]

According to this equation, which provides a general prescription for accepting
or rejecting new pathways, a pathway that does not start in A and end in B is imme-
diately rejected. Pathways that are reactive, on the other hand, are accepted with a
probability that depends both on the relative weight of the old and the new path in
the transition path ensemble as well as on the ratio of the forward and backward
generation probabilities.

The specific form of the acceptance probability resulting from Eq. (3-9) depends
on the particular way new pathways are generated from old ones. The particular
algorithm chosen to do that also controls how rapidly path space is sampled and
thus determines the efficiency of the transition path sampling simulation. One path
generation method that has proven particularly simple, practical, and efficient is
the so-called shooting algorithm [29], depicted schematically in Figure 3-2. In this
approach, one first randomly selects a time slice x(©) (), the shooting point, from the
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Figure 3-2. In a shooting move, a new trajectory (blue) is generated from an old one (red) by first
randomly choosing a time slice of the old path, and then “shooting off”” new trajectory segments forward
and backward in time, starting from this shooting point. If the underlying dynamics is deterministic, the
shooting point must be modified before the shooting takes place

old path. Then, this shooting point is modified, for instance by adding a random per-
turbation to the momenta. Starting from the modified shooting point, one integrates
the equations of motion of the system forward to time # and backward to time O
obtaining a complete new trajectory x™(r). While for stochastic dynamics the mod-
ification step may be omitted, it is strictly necessary for deterministic dynamics. In
the latter case, the new trajectory differs from the old one only if the shooting point
is modified first. In both cases, the acceptance probability for the shooting move is
given by

(")
Pacc (1) — x™(0)] = halxg Tl min | 1,— (3-10)
px,”)

Thus, non-reactive trajectories are rejected and reactive ones are accepted with a
probability that depends only on the equilibrium distribution at the shooting point
before and after the modification. The acceptance probability is particularly simple,
if the dynamics conserves the energy and the distributions of initial conditions is the
microcanonical one:

Paccl @) = xV(0)] = ha[x"1hgl™]. (3-11)

In this case, non-reactive trajectories are rejected and all reactive ones accepted.

For deterministic dynamics, the modification of the shooting point offers the pos-
sibility to tune the acceptance probability and, hence, to optimize the efficiency of
the simulation. For very small perturbations of the shooting point, the new trajectory
retraces the old trajectory to a large degree. Consequently, the new trajectory has a
high probability to be reactive and to be accepted. In this regime, most trajectories
are accepted, but since subsequent trajectories are very similar, sampling progress
is slow. In contrast, very large perturbations of the shooting point lead to new tra-
jectories that markedly differ from the old ones. Nevertheless, the sampling can be
inefficient, if most of the new trajectories are non-reactive and are therefore rejected.
Optimum sampling efficiency is obtained for shooting point perturbations with a
magnitude somewhere between these two extreme cases. This optimum regime is
characterized by an average acceptance probability of 20-60% [31].
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3.2.3. Analyzing Trajectories

As a result of a transition path sampling simulation, one obtains a collection of
reactive pathways that are typical representatives of the transition path ensemble.
Extracting information on the transition mechanism from these pathways is, how-
ever, often non-trivial. In this section we will review several computational tools
that can be used to for this purpose.

A recurrent problem in molecular simulation is to identify those degrees of free-
dom that capture the essential physics of the process under study and to separate
them from the unessential ones that merely act as random noise. For the freezing
transition, for instance, it is often unclear whether the size of the crystalline nucleus
is sufficient to describe the progress of the transition or if its shape also plays an
important role. While for processes occurring in low-dimensional systems with a
handful of degrees of freedom, such as a chemical reaction in the gas phase, locating
the saddle points on the potential energy surface often yields valuable mechanis-
tic information, the situation is much more involved in high-dimensional systems.
Consider, for instance, a chemical reaction in solution. In this case, solvent degrees
of freedom may play an important role that is not easily determined from a saddle
point analysis. One difficulty is that the number of saddle points grows exponen-
tially with the number of degrees of freedom such that a complete enumeration of
the saddle points becomes impractical beyond a certain system size. Perhaps more
importantly, the transition of interest is typically not associated with single saddle
points that the system must cross on its way from the initial to the final state. In our
crystallization example the critical nucleus does not necessarily coincide with any
saddle point in the potential energy surface.

By watching the atomic motions during the transitions with a molecular view-
ing program on a computer, one may gain some information about the process of
interest. While it is often useful and stimulationg to do so, important details of
the mechanism, which can be best captured in form of a reaction coordinate, may
remain hidden to the eye. A reaction coordinate g(r) is a function of the config-
uration r of the system, which quantifies the progress of the reaction. In the case
chemical reactions, for instance, bond angles or bond lengths may serve as a reac-
tion coordinate; for a folding protein, the number of native contacts may provide
a measure for the folding progress. A good reaction coordinate should tell us how
far the reaction has proceeded and what is likely to happen next. The concept of
the quality of a reaction coordinate can be made more precise by considering the so
called committor [32, 33], introduced by Onsager as splitting probability [34] and
known as prolq in the context of protein folding [35]. The committor pg(r), which
can be defined in configuration space or in phase space [12], is the probability that a
trajectory starting from r reaches B rather than A first. As indicated in Figure 3-3, the
committor can be calculated for a particular configuration r by initiating a number of
short trajectories from that configuration and determining the fraction of trajectories
that end up in B rather than A. A committor value close to / indicates that trajecto-
ries started from r are very likely to relax into B. While they do not necessarily lie
in B itself, such configurations are strongly committed to B and can be viewed to be
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Figure 3-3. To estimate the committor pg for a particular configuration r (red point), one starts n tra-
jectories from r with random initial momenta and determines the number np of trajectories that reach B
rather then A. The committor is then given by the fraction pp = ng/n.

part of the basin of attraction of region B. Committor values close to 0, on the other
hand, characterize configurations that will most likely relax into region A.

Configurations with pp(r) = pa(r) = 1/2 play a special role because they can
be identified as transition states, from which both stable states are accessible with
equal probability [36—40]. This statistical concept of a transition state, which gener-
alizes the conventional definition of a transition state as saddle point on the potential
energy surface, is applicable also to the complex high-dimensional systems of inter-
est here. By determining all configurations with pp = 1/2 on transition pathways
one obtains the so-called transition state ensemble (TSE). Comparison of configu-
rations belonging to the transition states ensemble with those from the stable states
can yield important information on the transition mechanism.

As asserted above, a good reaction coordinate should provide a measure for the
progress of a particular reaction. In this sense, the committor is the perfect reac-
tion coordinate as it exactly specifies how far the reaction has proceeded and what
is likely to happen next [41]. Unfortunately, the committor is very unspecific and
does not automatically lead to insight into the mechanism in terms of physical vari-
ables. Furthermore, the committor is not easy to evaluate numerically such that it is
impractical to use the committor, for instance, as reaction coordinate in a transition
state theory calculation. However, the committor can be used as a criterion for dis-
tinguishing between good and poor reaction coordinates. If g(r) is a good reaction
coordinate, its value determines the progress of the reaction and the committor is
completely determined by g(r):

pB(r) = pplg(n)]. (3-12)

For a poor reaction coordinate, on the other hand, the value of the reaction
coordinate does not predict the committor and the above relation does not hold.

The fact that a good reaction coordinate determines the committor can be used
to test a proposed reaction coordinate ¢g(r). One may, for instance, expect that for
the freezing transition of a particular material the size of the crystalline nucleus
is a good reaction coordinate. To examine the quality of this coordinate, one first
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computes the free energy F as a function of g. If ¢(r) has any relation to the rare
event of interest, F(g) is expected to be bistable with a barrier at ¢ = ¢* separat-
ing the free energy minima corresponding to the stable states A and B. Since the
value of the reaction coordinate completely specifies the committor, all configura-
tions with the same reaction coordinate should also have the same committor. So if
one generates configurations for a fixed value of ¢(r), for instance with a constrained
molecular dynamics simulation, and computes the committor value for each of this
configurations, the resulting distribution of committor values, P(pp), should be delta
peaked at pp(g). In particular, configurations with reaction coordinate g(r) = ¢*
corresponding to the barrier top should all have the committor pp(¢*) and hence
the corresponding committor distribution has a sharp peak at pp(¢*). For a good
reaction coordinate, the barrier top coincides with the transition state ensemble and
the peak is located at pp = 1/2. In contrast, a poor reaction coordinate does not
determine the value of the committor and hence does not lead to sharply peaked
committor distributions. Rather, the committor distribution calculated for configu-
rations constrained to the barrier top typically is bimodal with peaks at O and 1.
Thus, any committor distribution without a single sharp peak is an indication of an
inadequate reaction coordinate. An analysis based on committor distributions has
been used to reveal the reaction coordinate of ionic dissociation [32], biomolecular
isomerization [33], and the freezing transition [42].

3.24. Calculating Rate Constants

Reaction rate constants, describing the kinetics of processes involving rare events,
are often measured empirically and thus provide an important way to establish close
contact between molecular simulation and experiment. Since pathways harvested in
a transition path sampling simulation are truly dynamical trajectories, they can be
used to compute such reaction rate constants. The transition path ensemble, how-
ever, is restricted only to short trajectory segments during which the transition of
interest occurs such that reaction rates cannot be directly extracted from these path-
ways. While the relative probabilities of different reactive trajectories are correctly
described by the transition path ensemble, the information on the probability of
observing a reactive event at all (as opposed to no event) is not contained in this path
ensemble. Therefore, the fundamental problem in calculating reaction rate constants
with transition path sampling consists in estimating the relative weight of the reac-
tive trajectories with respect to all possible trajectories. Several approaches to do
that have been suggested in the past and we will briefly survey them in this section.
A more detailed review of these methods is provided in [13].

The link between the microscopic dynamics of the system and its phenomenolog-
ical description in terms of reaction rate constants is provided by the time correlation
function

C(t) = M. (3-13)
(ha)
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Here, the angular brackets (- - -) denote an equilibrium average. This time cor-
relation function equals the conditional probability to observe the system in region
B at time ¢ provided it was in A at time 0. In the case of two-state kinetics, C(¢)
approaches its asymptotic value exponentially,

C(®) = (hp)(1 — exp ( —1/Trxn)). (3-14)

where the relaxation time 7.x, 1S related to the forward and backward reaction rate
constants k4p and k4 by

Tk = kap + kpa. (3-15)

The exponential behavior of Eq. (14) cannot be valid for very short times. If
regions A and B are not adjacent and there is a gap between them, the system will
need a minimum time Ty to cross this gap. Only for times larger than 0 can
exponential behavior set in as expected from the solution of the phenomenological
rate equations. If there is a separation of time scales, i.e., if there is a time regime
such that o] < <K Trxn, the exponential growth can be approximated by a linear
behavior such that

C(t) =~ kppt. (3-16)

Equivalently, the time derivative k(f) = dC(t)/dt reaches a plateau for times
Tmol < t <K Txn [4]. Thus, knowledge of the time correlation function C(¢) is
sufficient for a calculation of the forward reaction rate constant kp.

One transition path sampling approach for the computation of reaction rate con-
stants consists in determining the time correlation function C(¢) using free energy
calculation techniques [31, 25]. In this method, one rewrites C(¢) as

o = J Dx(0)PLx(1)1ha(x0)hp(xr)
(n=
J Dx())PLx(0)1a (x0)

(3-17)

and observes that C(f) can be viewed as a ratio of two partition functions. In
Eq. (3-17), the numerator is the partition function of all pathways starting in A at
time 0 and ending in B at time 7. The denominator, on the other hand, is the par-
tition function of all pathways starting in A without and restriction on where they
end. Hence, the ratio of these partition function is related to the “reversible work”
Wap(t) required to transform the ensemble of trajectories with free endpoints into
that with endpoints in B, C(t) = exp [—W4p(?)]. The reversible work Wy4p(¢), a free
energy in trajectory space, can be calculated with standard free energy methods such
as umbrella sampling [31], thermodynamic integration [43], or even Jarzynski fast
switching [44]. In these calculations, one starts with a final region that encompasses
the entire configuration space and then successively shrinks it to the desired size.
Since the calculation of the reaction rate constant requires the calculation of the time
derivative of C(¢), in principle several of these path free energy calculations have to



Transition Path Sampling 73

be carried out for different path lengths ¢. This costly operation can be avoided, by
calculating C(¢) in two steps. First, the time correlation function is calculated with
a free energy procedure for one particular time 7. In the second step, the path free
energy required to change the path length from 7 to 7 is calculated. This can be
done for all values of ¢ up to a maximum time #pax in one single regular transition
path sampling simulation [31]. Combining the results of these two calculations one
obtains the correlation function C(f) from O to 7y« and the reaction rate constant
can then be extracted from it.

An alternative transition path sampling algorithm for the calculation of reac-
tion rate constants was proposed by Bolhuis and collaborators and named transition
interface sampling (TIS) [45, 46]. In this method, pathways of variable length are
used which leads to a reduced numerical effort with respect to the method described
above. Transition interface sampling, however, is based on an additional assump-
tion about correlated transitions between the stable states. The method rests on the
concept of the “overall states” A and 5. Overall state .4 consists of points in A plus
all points that originate from A in the sense that a trajectory going through such
points reaches A before B if followed backwards in time. (This definition is valid
only for deterministic trajectories.) Overall state B is defined analogously. The two
overall states A and 5 cover the entire phase space with a possibly very complicated
boundary separating them. If one now considers the time correlation function

C@t) = M (3-18)
(ha)

and evaluates the corresponding time derivative in the transition state theory
approximation (recrossings are excluded [20]), one obtains the expression

(3-19)

for the rate constant. Here, (¢4p) is the effective positive flux into region B, i. e., the
average flux into B due to trajectories coming directly from A. Thus, for a trajectory
connecting A with B only the first entry of the trajectory into B contributes to the
effective positive flux. Since the above expression of the rate constant was obtained
from a TST-approximation for the overall states .A and 15, the underlying approxi-
mation is that there are no correlated transitions from A to B and back, a condition
that is often but not always satisfied. For stables states A and B defined in config-
uration space as is customary, chemical reactions occurring in the energy diffusion
regime, for instance, may violate this assumption.

In principle, the effective positive flux (¢4p) could be calculated from a long
molecular dynamics trajectory by counting the number of first entries into B occur-
ring per time unit. Of course, rare events make this direct approach impractical. To
calculate the effective positive flux, Bolhuis and collaborator have therefore devel-
oped a technique based on a sequence of non-intersecting interfaces that span the
region between A and B [45, 46]. The spacing between these interfaces is selected



74 M. Griinwald and C. Dellago

such that a trajectory crossing interface i coming from A has a non-vanishing prob-
ability of also crossing the interface i + 1. The effective positive flux can then be
expressed as the product of the average positive flux through the surface of A with
the product of all these crossing probabilities. The effective positive flux is thus
given by the average flux out of A multiplied with the probability of these exit tra-
jectories to eventually reach B. This probability can be calculated from transition
path sampling simulations carried out separately for each interface. The ensemble
sampled in these simulations consists of trajectories with varying length starting in
A, reaching interface i, and then going back to A or on to cross interface i + 1.
To date, transition interface sampling has been used to calculate reaction rate con-
stants for the freezing transition in simple liquids [42] and several biomolecular
isomerizations [47, 48].

For very long and diffusive barrier crossing processes the efficiency of transition
interface sampling simulations can be considerably increased by exploiting the loss
of correlations along individual pathways. This idea is used in the partial path tran-
sition interface sampling (PPTIS) method [49]. Another method similar in spirit to
the transition interface sampling algorithm is the so-called forward flux sampling
method (FFS), which can be applied also to non-equilibrium systems in which the
stationary phase space distribution is unknown [50-52].

3.3. A TPS ALGORITHM FOR NANOCRYSTALS
IN A PRESSURE BATH

In the previous sections we have given a brief outline of the main concepts and algo-
rithms of transition path sampling. In this and the following sections we will explain
how to apply these techniques for the simulation of pressure induced structural
phase transitions in semiconductor nanocrystals.

3.3.1. Ideal Gas Pressure Bath

A central part of a computer simulation of a nanoparticle under pressure is the pres-
sure bath. In experimental studies, ethylcyclohexane [53-55] and ethyl-pyridine
[14] have been used as a pressure medium and solvent for CdSe nanocrystals.
These substances guarantee pressurization of the crystals under quasi-hydrostatic
conditions up to pressures of 10 GPa [14]. In a computer simulation of a single
nanocrystal under pressure, the number of particles in the pressure bath exceeds the
number of crystal atoms by far. Apart from being able to apply hydrostatic pressure,
a simulated pressure medium therefore also should be efficient in terms of computer
time.

In the first computational study of a pressure-induced structural transformation
of a nanocrystal, Martonidk, Molteni and Parrinello used a liquid of soft spheres to
transmit hydrostatic pressure on a small silicon cluster [56—59]. In their scheme, the
pressure is controlled by tuning the parameter of the interaction of particles in the
pressure medium. This is possible because the equation of state of the soft sphere
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system is known from computer simulation [60]. In this method, fluctuations of
the volume of the crystal, in particular the large volume change accompanying the
structural transformation, affect the pressure. For precise control over the pressure,
the volume of the nanocrystal therefore must be known.

In a different approach, Morgan and Madden studied structural transformations
of ionic nanocrystals using particles of the Lennard-Jones type as a pressure bath
[61-64]. The system was coupled to the Andersen baro- and thermostat [65, 66],
which modifies the dynamics of the system to achieve conditions of constant pres-
sure an temperature. A similar approach was taken by Vashishta and coworkers in
their study of GaAs nanocrystals [67, 68] and CdSe nanorods [69].

Finally, methods have been proposed that do not make use of an explicit pressure
medium, but use a barostat that changes the equations of motion of crystal atoms
by coupling to the volume of the crystal. Although computationally cheap, these
methods do not directly model the experimental situation and results can depend
strongly on the specific definition of the cluster volume [70].

In the following, we concentrate on the ideal gas barostat, a method developed
in our group [15, 16]. In this scheme, a nanocrystal is surrounded by a cloud of
non-interacting, hence ideal, particles, that transmit the pressure on the crystal via
a simple, purely repulsive interaction potential. No fixed system volume is used,
nor is the number of gas particles a constant. Instead, the shape and size of the
ideal gas atmosphere is dynamically adjusted to adapt to shape and volume changes
of the crystal. To achieve the correct statistics of an ideal gas at the desired pres-
sure and temperature, the proper flow of gas particles through the boundary of the
atmosphere is modeled stochastically. In effect, the method allows the simulation
of an arbitrarily shaped, microscopic subvolume of a macroscopic ideal gas (see
Figure 3-4 for an illustration of the method).

3.3.1.1. Algorithm

For an implementation of the ideal gas barostat [15, 16], the simulation box is
divided in cubic cells of side length lcey > reur. Here, rqy is the cutoff distance

of the interaction between gas particles and crystal atoms,

3-20
0 ifr > reut . ( )

u(r) = {8 [("/0)_12 - (’”cut/U)_lz] ifr < regt»

The parameters ¢ and ¢ should be chosen large enough to prevent gas particles
from penetrating the crystal; a convenient value for the cutoff distance is r¢y = 20.
At any given time, the volume occupied by ideal gas particles consists of those cells
that hold possible interaction partners of crystal atoms. (If a given cell is occupied
by a crystal atom, the cell itself and all 26 neighbor cells are considered as a part of
the atmosphere.)

If a gas particle leaves the so-defined atmosphere, it is removed from the simu-
lation. The resulting outward flow of gas particles is balanced by new gas particles
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Figure 3-4. Cross section of a CdSe nanocrystal (cyan and yellow) immersed in the pressure bath of
ideal gas particles (gray). The gas occupies only a thin layer, or atmosphere, around the nanocrystal.
Built from rectangular cells (blue grid), this atmosphere adapts to the shape of the crystal and thus
always provides the amount of gas particles necessary to exert the desired pressure

that are introduced at the boundary of the atmosphere. To ensure correct statistics,
on average

= umkgT)"'/?PI%, At (3-21)

cel
particles need to enter the atmosphere through any given side face of a cell during a
time interval of length Az. Here, P is the pressure, T'is the temperature, and kg is the
Boltzmann constant. While two of the three velocity components of these particles
follow a Maxwell-Boltzmann distribution, the velocity component v perpendicular
to the side face through which the particles enter is distributed according to

2
pvy) = %u exp (— ;’;;) . (3-22)
When the crystal changes its shape or position in the simulation box, parts of the
atmosphere cease to be nearest neighbors of crystal-filled cells. As these parts, or
cells, are no longer needed to apply pressure on the crystal, they are removed from
the simulation. On the other hand it is necessary to add new gas-filled cells to the
atmosphere when crystal atoms enter cells not occupied before. On average,

N =P8

cell

JksT (3-23)
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gas particles should be put into newly added cells, with positions equally distributed
over the cell volume.

The following molecular dynamics scheme propagates the crystal and gas par-
ticles for one time step of length Az. The integration of the equations of motion is
carried out with the Velocity Verlet algorithm [71].

MD algorithm

1.  Propagate the positions of crystal atoms for one time step (first part of
the Verlet integrator), using forces calculated in the last time step.

2. Check if the gas atmosphere needs to be updated by removing or adding
gas-filled cells.

3.  Remove cells (and gas particles therein) from the atmosphere, if they are
no longer needed.

4.  Propagate the positions of all gas atoms for one time step (first part of the
Verlet integrator), using forces calculated in the last time step. Remove
particles that leave the atmosphere.

5. Insert new gas particles on the boundary of the atmosphere. The number
of particles placed on a given side face of a cell is Poisson-distributed
with average n. Positions of added particles are uniformly distributed.
Velocity components are distributed according to p(v ) for the direction
perpendicular to the side face, and follow a Maxwell-Boltzmann distri-
bution for the in-plane directions. Propagate the newly added particles
for a time interval uniformly distributed between zero and Af. Remove
particles that leave the atmosphere in this step.

6. If necessary, add new cells to the atmosphere and fill them with a
Poisson-distributed number of gas particles with average N. Positions
are uniformly distributed and velocities are drawn from a Maxwell-
Boltzmann distribution.

7.  Compute the forces.

8.  Using the newly computed forces, propagate the velocities of all par-
ticles, gas and crystal, for one time step (second part of the Verlet
integrator).

It can be shown analytically that this algorithm satisfies detailed balance and
therefore conserves the equilibrium distribution of a system at constant pressure
and temperature [16].

3.3.2. Simple Shooting Moves

The ideal gas barostat discussed in the last section can be easily incorporated into
the framework of a TPS simulation [16]. As discussed in Section 3.2.2, the accep-
tance criterion for shooting moves takes a particularly simple form if the underlying
dynamics of the system satisfy detailed balance. This is the case for the ideal gas
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barostat. Furthermore, there is no need to actively modify the phase space vector of
the system at the shooting point, because the stochastic element of the barostat —
new gas particles are introduced to the simulation in a random fashion — will
lead to divergent trajectories typically within a few thousand time steps. Also, as
the dynamics of the system is not purely deterministic, one-way shooting moves,
where only one part of the trajectory is resampled, may be used to increase the
acceptance of newly generated trajectories. The following shooting algorithm there-
fore correctly samples the transition path ensemble of a nanoparticle in a pressure
bath.

Shooting move

1.  Choose a shooting point along the given trajectory.

2. Choose a direction of time in which to propagate the system from the
shooting point.

3. From the chosen shooting point, integrate the equations of motions,
either forward or backward in time, until a complete new trajectory is
obtained.

4.  Accept the trajectory, if it still starts in stable state A and ends in state
B; reject otherwise.

To enhance the efficiency of shooting moves, shifting moves should be applied
in the customary way [19].

34. THE WURTZITE TO ROCKSALT TRANSFORMATION IN
CDSE NANOCRYSTALS

In this section, we discuss the application of TPS to the case of a structural trans-
formation in CdSe nanocrystals. The bulk semiconductor CdSe transforms from the
four-coordinated, hexagonal wurtzite structure to the six-coordinated, cubic rocksalt
structure at pressures around 2.5 GPa [72]. The analogous transformation in CdSe
nanocrystals in the size range of a few nanometers has become the paradigmatic
example for size effects in phase transitions. In a series of experiments, Alivisatos
and coworkers were able to clarify much of the kinetics and thermodynamics of
these transitions. The thermodynamic transition pressure increases with decreasing
crystal size, in agreement with the notion of different surface free-energies of the
two crystal structures [73, 14]. The kinetic barriers to the transition, characterized
by activation energies and volumes, also show strong dependence on crystal size and
pressure, indicating that transformations proceed through single nucleation events
and subsequent growth [74, 53, 55, 75].

Although it is possible to exclude certain transition routes from experimen-
tal findings [54], the time and space resolution of experiments is insufficient for
an understanding of the transformation mechanism on the atomistic scale. Only
through detailed knowledge of atomistic transition pathways, however, will it
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be possible to meet promising technological challenges like the stabilization of
metastable structures through control of crystal shape and surface configuration. In
the following, we discuss the use of molecular dynamics computer simulation, and
in particular transition path sampling, in identifying the transformation mechanisms
of CdSe nanocrystals.

34.1. Straightforward MD Simulations

A typical molecular dynamics simulation of a nanocrystal under pressure proceeds
in the following way, which is similar to the experimental procedure. A single crys-
tal is constructed from a bulk lattice and thermalized at ambient conditions in the
pressure bath. In small steps, pressure is increased and the crystal is allowed to
relax at every pressure level typically for a few picoseconds. A structural trans-
formation of the crystal can be conveniently identified by visual inspection, or by
monitoring quantities like the potential energy or coordination number of crys-
tal atoms. Using the ideal gas barostat and the approach outlined above, we have
studied the wurtzite to rocksalt transformation in CdSe nanocrystals consisting of
100-5000 atoms [76]. The crystals were built according to electron microscopy
images of experimentally used crystals [77, 78] and had two different shapes,
which markedly influenced the transformation behavior. While spherical crystals
with disordered, strongly reconstructed surfaces transformed directly from wurtzite
to rocksalt, faceted crystals with well-defined, stable surfaces transformed in two
steps: At intermediate pressures, a compression of the crystal along the hexagonal
c-axis produces the five-coordinated A-MgO structure. This metastable intermediate
is unstable in bulk CdSe [79-81] and stabilized in faceted crystals by a favorable
surface free energy [76, 69, 82] (see Figure 3-5).

Waurtzite h-MgO Rocksalt
e o A .' 25 :-"’._."-“,":q v ,.3\:__;1____:3
o)
" - v
.
: A

Figure 3-5. A faceted CdspgSespg nanocrystal in the wurtzite, #~-MgO, and rocksalt structures. The
crystals are shown both from the side and the top, looking down the hexagonal c-axis. Note that the
intermediate #-MgO structure is obtained from the wurtzite configuration by a simple flattening of the
puckered (001) layers, which leaves the hexagonal structure unchanged otherwise
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The transformation from wurtzite to rocksalt in spherical crystals and from
h-MgO to rocksalt in faceted follow similar transition routes. Two main mecha-
nisms could be identified: While in most cases the transformation proceeds through
the sliding of parallel (100) crystal planes, a few crystals transformed through a con-
secutive flattening, or compression, of (100) layers in the [100] direction. The latter
mechanism is similar to a transition pathway previously proposed by Alivisatos and
coworkers [14].

Straightforward MD simulations like the one discussed here take place on
timescales many orders of magnitude smaller than the duration of typical exper-
iments. As a result, pressures of up to 10 GPa have to be used to induce the
transformation (depending on crystal size and shape), while transformation pres-
sures of about 5 GPa are reported from experiments [53]. At elevated pressures, the
kinetic barrier of the transition essentially vanishes and the transformation becomes
observable on the picosecond timescale of the simulation. Under these extreme
conditions, transformations proceed in violent ways: simultaneous nucleation from
different sites on the crystal and the formation of multiple grains are frequently
observed [61, 68, 76] — a direct comparison with experiments becomes increasingly
difficult.

Ops L 20 ps

IRER

(A) Trajectory 1

tttt

(B) Trajectory 107

(C) Trajectory 400

Figure 3-6. Snapshots along three trajectories from a TPS simulation of a CdspgSespg nanocrystal at
3 GPa. The crystal is viewed along its hexagonal c-axis; the pressure bath is not shown. In each tra-
jectory, time passes from left to right. The crystal starts in the 2~-MgO structure and, at the end of the
trajectory, has transformed to the rocksalt structure. (a) In the first (artificially created) trajectory, the
crystal is transformed via a collective motion of all crystal atoms and is compressed in one of three
equivalent [100] directions, indicated by black arrows. (b) After 107 iterations of the algorithm, the
mechanism has changed. Starting in a fashion similar to the initial trajectory, the final steps of the trans-
formation occur through sliding of (100) planes, as indicated by red arrows. (¢) In pathway 400, trace of
the initial mechanism disappears and the entire transformation, starting on the crystal surface, proceeds
via the sliding-planes mechanism. Reprinted with permission from J. Chem. Phys. 127, 154718 (2007).
Copyright 2007, American Institute of Physics
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3.4.2. TPS Reveals the Main Mechanism

In a TPS simulation, these problems are avoided and quantitative information about
the relative probability of different mechanisms can be obtained under conditions
close to experiments. To clarify the role of the two main mechanisms observed
with straightforward MD, we studied the transformation from 4-MgO to rocksalt in
faceted CdSe nanocrystals with the TPS-algorithm discussed in Section 3.3 at pres-
sures between 2 and 3.5 GPa [16]. As a first trajectory, a necessary ingredient to start
a TPS simulation, we constructed a pathway that resembles the compression mech-
anism discussed by Alivisatos and coworkers [14] and illustrated in Figure 3-6a.
This specific mechanism, although observed in a few of our high-pressure MD sim-
ulations, is highly unfavored at lower pressures: within a thousand iterations of the
shooting algorithm, the compression mechanism is lost completely and the simu-
lation converges towards the sliding-planes mechanism illustrated in Figure 3-6c.
When continued, the simulation explores equivalent pathways, where the transfor-
mation starts from different sites on the crystal surface or proceeds along different
sets of parallel (100) planes. The characteristics of the sliding-planes mechanism,
however, remain the same. In particular, return to the initial compression mechanism
is never observed. This result strongly indicates that the sliding-planes mechanism
is the favored transformation pathway for faceted CdSe nanocrystals.

3.5. CONCLUDING REMARKS

Conducting a computer simulation under near-experimental conditions (for
instance, using transition path sampling) is a prerequisite but not a guarantee for
observing transformation pathways relevant in the real system. For nanocrystals
under pressure, the role of different surface passivation agents, defects in the crystal
lattice, or the dynamics and composition of the pressure bath is difficult to assess
experimentally and even harder to model realistically in a simulation. The relevance
of mechanisms observed in a computer simulation can therefore only be established
by comparison with experimental data. Transition path sampling offers various tech-
niques to do so. First, calculation of the rate constant allows direct contact with
experiments. Though computationally rather expensive, the calculation of rate con-
stants in the framework of transition path sampling (as discussed in Section 3.2.4)
does not need a priori knowledge of the reaction coordinate and thus is free of any
bias. One drawback that makes a direct comparison with experiments via the rate
constant difficult is the fact that rate constants often strongly depend on the qual-
ity of empirical potentials. With the development of ever more sophisticated pair
potentials and the increasing range of problems that can be tackled ab initio, we
nevertheless expect this approach to become fruitful for many systems of interest.
A second way to establish contact with empirical data is offered by committor anal-
ysis and the determination of the transition state ensemble (as discussed in Section
3.2.3). As the central part of a rare event, the transition state not only offers direct
insight into the relevant degrees of freedom governing the transformation, but can
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also be quantified in terms of activation energy and activation volume, quantities
that are readily accessible in experiments.

In summary, transition path sampling is a versatile and efficient set of com-
putational techniques for the study of rare events in complex systems. It has has
been successfully applied to a broad range of problems from material science to
molecular biology; it can be adapted to clarify the transformation details of a sim-
ple chemical reactions as well as solid-solid phase transitions, occurring in bulk
and nanoscale materials. As computers advance, the range and complexity of sys-
tems to which transition path sampling can be fruitfully applied increases and a
more realistic modelling of the experimental situation becomes possible in many
cases.
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CHAPTER 4

NONEQUILIBRIUM MOLECULAR DYNAMICS
AND MULTISCALE MODELING OF HEAT
CONDUCTION IN SOLIDS
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Abstract:

Keywords:

Modeling methodologies for conducting concurrent multiscale simulations in solids at
finite temperature are reviewed. The application of such models to the simulation of
inhomogeneous thermal problems is of particular interest. Firstly, the basic methods for
temperature control of molecular dynamics (MD) simulations are presented. The deriva-
tion of fundamental thermophysical properties from the quantum model of phonons is
then outlined, and the relevance of classical MD simulation to heat transport phenomena
discussed. Progress in fully atomistic modeling of heat transport is reviewed in rela-
tion to nonequilibrium molecular dynamics (NEMD) simulation. Different approaches
to isothermal finite temperature multiscale modeling are presented. Equations of motion
for coarse-grained dynamics are derived and subject to comment. The further require-
ments of conservation of thermal energy and the approaches to the transport of heat in
non-isothermal multiscale simulations are discussed. Recent progress in this relatively
new area of modeling is reported and areas for further work identified

Molecular dynamics, Nonequilibrium, Heat conduction, Thermal conductivity,
Thermostats, Multiscale, Atomistic-continuum simulation, Coarse-graining, Crystalline
solids

4.1. INTRODUCTION

Typically molecular dynamics (MD) simulations are conducted under equilibrium
(or near equilibrium) conditions of constant energy (E) or temperature (T), constant
atomic number (N) or chemical potential (j1), and constant volume (V) or pressure
(P). The most widely adopted statistical sampling ensembles [1] are the micro-
canonical ensemble (constant NVE), the canonical ensemble (constant NVT) and
the isobaric-isothermal ensemble (NPT) for solids. The grand canonical ensemble
(constant WVT) is most commonly applied to fluids, where the number of parti-
cles is allowed to fluctuate. There has been a large body of work dedicated to the
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design and implementation of algorithms to generate these ensembles, particularly
for thermostatic (constant 7') and bariometric (constant P) control. However, there
is increasing interest in conducting MD simulations which do not fall within the
classification of these classical ensembles. These broadly fall in to the category of
nonequilibrium molecular dynamics (NEMD). A simple example is the imposition
of a temperature gradient across a sample, for which different temperatures at the
boundaries are prescribed [2]. A more complex example is a system that has work
done to it during the simulation in the form of a mechanical deformation (such as
crack growth [3, 4], nanoindentation [5] or particle impact [6]) or direct thermal
excitation (such as laser annealing [7]). In these cases the temperature, pressure (or
a more complex stress state), volume and energy of the system vary spatially and
temporally during the simulation in a complex way. Ideally the boundary conditions
would be applied at a considerable distance from the region of interest to minimize
their effect on its dynamics. However, the size of an atomistic system that can be
considered is limited by finite computational resources due to their large numbers of
degrees of freedom. Therefore most simulations can “see” their boundaries during
the course of a simulation and consequently be affected by them. In conventional
MD simulations these boundary conditions are a compromise between reality and
practicality. In recent years a number of efforts have been undertaken to increase
the size of the system under consideration by representing the far field by a coarse-
grained (CG) region with a greatly reduced number of degrees of freedom. The
prescribed conditions on the remote boundaries of the continuum therefore have
less influence on the dynamics of the fully resolved (atomistic) region. A number of
successful efforts have been made in this regard for simulation at zero temperature
(for a review see [8]). The most notable of these multiscale methods for quasi-static
problems being the quasi-continuum method [9]. Figure 4-1a shows a cross-section
through a CG substrate subject to deformation under a nanoindenter (not shown).
The area beneath the indenter has full atomic resolution where the material response
is expected to be highly non-linear (i.e. plasticity due to nucleation of dislocations).
This is embedded in a consistent finite element (nonlinear) elastic mesh which mod-
els the response of the far-field. Wave propagation at zero temperature has been
modeled using coarse-grained molecular dynamics (CGMD) [10]. This is useful if
the dynamic response of a body is of interest. Figure 4-1b shows a CGMD model of
a nanoelectromechanical system (NEMS) silicon microresonator. Full atomic reso-
lution is retained in the narrow region of the resonator to capture finite size effects
due to wave scattering from interfaces.

Since these pioneering early works, there have been a few attempts to extend
this type of hybrid atomistic-continuum method to finite temperature. This is over-
all a more challenging problem for which a number of different approaches have
recently been proposed. These methods are divided into two categories. Isothermal
multiscale models are considered in Section 4.4. Multiscale models for inhomoge-
neous thermal problems are the subject of Section 4.5, where heat transport and
conservation of thermal energy are a requirement. For this purpose, current atom-
istic methods for modeling heat transport and determining coefficients of thermal
conductivity are reviewed in Section 4.3. The basics of MD simulation are briefly
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Resonator Simulation:
Multiscale Domain
Decomposition

K Coarse Grained Molecular Dynamics

(a) (b)

Figure 4-1. Examples of two different zero temperature coarse-graining methods. (a) Quasi-continuum
model for simulation of nanoindentation of Au showing a cross section of a fine-scale atomistic region
embedded within a coarse-scale finite element mesh (Reprinted (Fig 6, pg 226102-3) with permis-
sion from [Knap J, Ortiz M, Phys Rev Lett, 90, 2003]. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRL/v90/p226102). (b) Schematic of a coarse-grained molecular dynamics
(CGMD) simulation of a NEMS silicon microresonator. The CG region comprises most of the volume,
but the MD region contains most of the simulated degrees of freedom (Reprinted (Fig 1, pg 144104-3)
with permission from [Rudd RE, Broughton JQ, Phys Rev B, 72, 2005]. Copyright by the American
Physical Society. http://link.aps.org/abstract/PRB/v72/p144104)

documented in Section 4.2 to introduce the nomenclature, along with definitions
of the relevant thermophysical properties. Such quantities are necessarily derived
from a fundamental quantum model of phonon heat transport to demonstrate the
relevance of classical MD to this field.

4.2. MOLECULAR DYNAMICS AND ITS APPLICABILITY
TO THE SIMULATION OF HEAT TRANSPORT

Firstly some of the fundamentals of MD simulation and temperature control are
reviewed. Then the quantum model of phonon-phonon heat transport in a crystalline
solid is introduced. This raises issues about the limitations of classical MD and the
valid range of application of such atomistic methods is discussed.

4.2.1. Introduction to Equilibrium MD

The basic principles of MD simulation are well-documented [1, 13, 14] and only
briefly summarized here. This is a classical method in which particles interact via
Newton’s second law

d*x; %

1

miﬁ T dx,

1

(4-1)
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where m; and x; are the mass and position vector of the ith particle and the total
potential energy V(x;) = > Y ¢(ry) is the sum of all the interatomic potentials,
i j>i

@(rjj), where r;j =

X; — )_cj‘ is the interatomic separation. This expression is for

simple pairwise atomic interactions which is reasonable for most solid metals and
fluids. For covalent solids, such as silicon or carbon, an additional three-body term is
necessary to include the bond angle dependence of the potential. More information
on material specific interatomic potentials can be found elsewhere [14, 15]. Note
that interatomic potentials are always an approximation. They are determined either
by fitting the function to reproduce known bulk properties of the material (such as
equilibrium lattice spacing, crystal structure, elastic modulus etc) or matching the
potential to the results of first-principles calculations. The reliability of such poten-
tials to model complex non-linear phenomena such as defect structures/energies and
heat transport coefficients cannot always be taken for granted.

One of the fundamental restrictions on the use of MD is the very small time
step. This is determined by the frequency of atomic vibrations in the solid and is
typically of the order of femtoseconds. Efficient numerical integration of (4-1) is
therefore very important. One of the simplest and most accurate methods is the
second-order Verlet algorithm [16], although higher order algorithms such as Gear
predictor-corrector [1] and Runge-Kutta [17] are sometimes used. Constant tem-
perature MD simulations are usually initiated at a given temperature by randomly
assigning the atoms velocities from the classical Maxwell-Boltzmann distribution
subject to zero net momentum. Equipartition theory states that the total energy of
a system is equally divided between kinetic and potential energy in the classical
regime. Thermal energy is associated with the vibrational (kinetic) energy of atoms
such that in a system of N atoms the absolute temperature, 7T, is defined by

N
UoNksT = 1/2 3 mii; — ()] (42)
i=1

where d is the dimension (1, 2 or 3), kg is Boltzmann’s constant, the dot denotes
differentiation with respect to time and the time-averaged velocity of particle i,
()_'ci), is subtracted from the total velocity to obtain the vibrational component. It is
argued that temperature can only be resolved at a length scale comparable with the
mean free path [18] but it is common to define the kinetic temperature of an atom
from (4-2) as

.12
T — M (4-3)
! kgd

where the net velocity of atoms in solids is typically negligible. (Note that this is
not the case in fluids where the determination of (4-2) can be problematic. For this

reason the configurational temperature [19, 20] is often used. This only requires
knowledge of the spatial distribution of atoms, not their velocities).
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4.2.2. Temperature Control

The system temperature is then regulated by an algorithmic thermostat. There are
a wide variety of different methods for controlling the temperature of MD simula-
tions. Ideally these should reproduce the canonical Maxwell-Boltzmann distribution
but this is not always the case. The first thermostat to produce the canonical ensem-
ble was the stochastic collision method of Andersen [21]. Some other methods, such
as velocity exchange [22], also generate the canonical ensemble. Velocity rescal-
ing algorithms [22] are not generally canonical, although this is not strictly always
the case [23]. The method of Gaussian constraint [24, 25] produces the iso-kinetic
ensemble which is not physically realized. Three of the most popular thermostatting
methods are summarised here.

(i) The Nosé-Hoover thermostat. This is a deterministic thermostat which main-
tains the average temperature of an atomic ensemble at a target value [26, 27]. This
is widely used for constant temperature dynamical simulations due to its symplectic,
volume conserving, time-reversible Hamiltonian structure which render it beneficial
numerical properties. The motion of a thermostatted particle is described by

ov
miX; = —— — Emx;
- ax; (4-4)
. T@)
0f =~ 1

where Q is a (constant) thermal mass, £ is a thermostatting variable which drives

N

the instantaneous mean temperature, 7(f) = !/n Y_ T; towards the prescribed target
temperature 7T,. This is a global thermostat in tlllat1 it enforces an ensemble of par-
ticles to maintain an average kinetic energy over time. The choice of the thermal
mass is important to ensure sufficient thermal coupling and avoid thermal oscilla-
tions [28]. A variant on this thermostat is the Nosé-Hoover chain [29] whereby the
thermostatting variable is thermostatted by another thermostatting variable and so
on. This is applicable for small and stiff systems as it improves ergodicity.

(ii) The Langevin thermostat. This is a stochastic thermostat which adds a random
force to the particle motion along with an appropriate damping term such that the
motion of a thermostatted particle is governed by [30]

N A4 .
mix; = T ymix; + Rf (4-5)

=i

where y is a damping coefficient, —1 < R <1 is a uniformly distributed random vari-

able and f, = ,/ 6”2—’?" is the magnitude of each component (n = x, y or z) of the

stochastic force f for a time step At. The Langevin thermostat is described as a local
thermostat as the target temperature can be specified for each atom.
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(iii) The Berendsen thermostat. This is another local thermostat, although unlike
the Langevin thermostat it is deterministic. In this case the velocities are rescaled
at each time step such that the rate of change of temperature is proportional to the
deviation in the temperature such that [31]

dT() (T — T()
d T

(4-6)

where 7 is a characteristic relaxation time. The resulting scaling factor for the veloc-

T \T®
thermostat does not rigorously generate the canonical ensemble. However, it is still
widely used due to its simplicity.

Other specialized thermostats include Recursive Multiple Thermostats [32] for
problems with inherently different timescales (particularly biomolecules), config-
urational temperature thermostats [33] (mainly advantageous for fluids), hybrid
deterministic/stochastic thermostats such as Hoover-Langevin [34] (with random
noise to improve ergodicity), thermostats based on the generalized Langevin
equation [35] (to avoid wave scattering at interfaces) and temperature regulated
thermostats [36] (for maintaining equilibrium with minimal intervention). However,
it should be noted that any thermostatting algorithm will corrupt the dynamics of
the system. Whether this is important depends on the nature of the problem under
consideration. For long time sampling of equilibrium thermodynamic quantities
such as the thermal expansion coefficient this is not problematic. The consequences
for nonequilibrium processes such as heat transport are an issue however. This will
be discussed further in the context of nonequilibrium MD simulation in Section
4.3.2. The remainder of this section considers the advantages and disadvantages of
using MD to model heat transport in crystal lattices.

ities is \/ 14 4t (] < — 1). Like most velocity rescaling algorithms, the Berendsen

4.2.3. Lattice Vibrations

Thermal energy in a solid is due to atomic vibrations. In classical mechanics heat
conduction is via the propagation and interaction of normal modes of atomic vibra-
tion. In most real crystals there are two mode types: the acoustic branch (lower
frequencies) and the optical branch (higher frequencies). In practice heat transport
is predominantly due to the acoustic modes and the optical modes are often ignored.
Each branch consists of longitudinal and transverse mode branches. The vibration
is in the direction of wave propagation for longitudinal waves and perpendicular
to it for transverse waves. For a d-dimensional system (d = 1, 2 or 3) there is
one longitudinal branch and (d-1) transverse branches. Hence in one-dimension
there are no transverse waves but in three-dimensions there are two transverse
branches. These differences introduce a strong dependence on the dimensionality
to the problem. Using mode coupling theory, Lepri et al. [37] showed that the ther-
mal conductivity in a system of typical size L scaled as L>/3 in one-dimension, In(L)
in two-dimensions and was independent of L in three-dimensions. This size effect in
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lower dimensions is due to the absence of interaction between the transverse modes.
This has consequences for the simulation of systems in reduced dimensions, either
due to the constraints of the model or due to the constraints of the system, e.g carbon
nanotubes are low dimensional systems.

The relationship between the wave frequency and the mode number is called the
dispersion relation. This is often written as w(K), where K is the wavevector. For a
one-dimensional solid, the wavevector is a scalar known as the wavenumber, related
to the wavelength A by K = 2r/A. For a chain of N atoms with lattice spacing ag one
has K = nz/L where n is the wave mode (an integer) and L = Nay is the length of
the chain. One can see that the crystal size and lattice spacing place upper and lower
limits on the wave mode, 1 <n <N, and the related wavelength, 2ag <\ <2L. This
system size dependence is not only important in determining the thermal properties
of nanostructures but also in determining the accuracy of MD simulations (natu-
rally of constrained size). Wave scattering at interfaces (real or not) known as the
Kapitza effect (or phonon scattering) reduces the thermal conductivity due to the
local decorrelation of atomic vibrations.

4.2.4. The Quantum Model of Phonon Heat Transport

The true quantum nature of atomic vibrations is not captured by classical models
such as MD (see [38, 39] for recent reviews). It is useful to give a brief introduction
to the quantum model to appreciate the shortcomings of using classical methods.
Quantum theory [40] states that the energy of wave modes can only have certain
discrete values. These packets of vibrational energy are known as phonons. The
energy of the nth mode is given by

E, = hw, 4-7)

where 7 is Planck’s constant and w,, = w(K},) is the frequency of the nth mode (in
radians per second). Phonons are categorized in particle physics as belonging to the
family of “particles” known as bosons. These are “particles” that do not obey Pauli’s
exclusion principle (such that there is no constraint on their number at a particular
point in time or space). At thermal equilibrium, the probability of finding N, mode-n
phonons in the canonical ensemble is given by the Boltzmann factor

e_ﬂNYlEYl

PWNy) = —— (4-8)

where 8 = 1/kpT and the normalizing factor (for an infinite crystal)

o0
Zi= Y e 1 (+9)
" Np=0 I =Pl

=
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ensures unit total probability and is known as the partition function for the nth mode.
The average number of mode-n phonons is therefore given by

— 1
(No) = 3 NaP(No) = —g— = f(En) (4-10)
Np=0

which is known as the Bose-Einstein distribution [41]. The total internal energy of
a (one-dimensional) solid is therefore

U= Ef(E). (4-11)

For isotropic systems of infinite size the number of vibrational modes becomes
infinite. The above sum can therefore be expressed as an integral, which is most
conveniently written in terms of the (continuous) frequency as

Z_> / g(w)dw (4-12)

where g(w) is known as the density of states. It is the number of states with a fre-
quency in the range w and w + dw, and is derived from the dispersion relation [40].
Thus (4-11) is often written in continuous form as

U= /E(w)f(w,T)g(w)dw (4-13)

where E(w) = hw etc. The (volumetric) specific heat per atom is the thermal energy
required to raise its temperature by 1 K such that

10U 1 af
=——=— | E(w)—= dw. 4-14
N T N/ (@) psle@)de “-14)
The thermal conductivity is given by

= 1%{% / E()f(w,T)g(w)V()A(w)dw (4-15)

where the phonon transmission velocity (or group velocity)

dw

e (4-16)

Ww) =

is given by the dispersion relation, and A(w) is the phonon mean free path. This is
the average distance a phonon travels before it interacts with another phonon (or an
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interface). Heat transport is via the (anharmonic) interaction of phonons, sometimes
referred to as Umklapp scattering or the U-process [40]. Note that if the velocity
and mean free path are assumed to be constant then, using (4-14), (4-15) can be
simplified to the familiar formula for (three-dimensional) thermal conductivity

k=1/3CvA. 4-17)

Transport coefficients, such as the thermal conductivity, arise from the summa-
tion of a number of complex interaction processes throughout the entire lattice. They
are not readily approximated analytically, but can be determined by simulation or
experiment. This is addressed in Section 4.3. However, simple approximations about
the nature of wave propagation in a solid can yield useful analytical predictions for
other thermomechanical properties, such as the heat capacity. Two simple models
are briefly reviewed here.

(i) The Debye model. Debye [41] made the simplifying assumption that the
dispersion relation is given by @ = cK where ¢ is constant. Although this is not
completely true (even for an ideal harmonic crystal) it is often a reasonable approx-
imation for the lower frequency modes. We can see from (4-16) that v(w) = ¢ so ¢
is the speed of sound in the crystal. In three-dimensions the summation becomes

U=3)> 3 EufEn (4-18)

ny ny ng

where n = /n? 4 nZ 4 n2 is the total magnitude of its three components and the

factor of 3 appears because of the existence of three phonon branches. The group
velocity of the longitudinal and two transverse branches is assumed to be the same.
Debye approximated this summation by an integral over an eighth of a sphere such
that

Y3y Yy - % / ndn = f g(w)dw (4-19)

ny Ny n;

The dispersion relation is w = cnmr/L so the density of states is g(w) = ”T"Z j—:) =
2‘;?;"623, where Vy = L3 is the volume of the crystal. From (4-10) and (4-13) the

internal energy of the crystal per atom is

UDebye T 3[ x3
——— =9(kpT) | — d 4-20
N (kp )<91)) x (4-20)
0

2 . . .
where 6p = ,/ % Z—; is the Debye temperature, 2 = Vo/N is the atomic volume and

x = hw/kpT. Alternatively the Debye temperature is expressed in terms of the Debye
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frequency, wp, where kpfp = hwp. The Debye approximation for the specific heat
capacity can therefore be calculated from (4-14) and (4-20) such that

T\° xte*
CDebye = 9kB QD m dx (4-2 1 )
0

(ii) The Einstein model. This considers the atoms to be non-interacting simple
quantum harmonic oscillators vibrating at a fundamental frequency, wg. Due to this
decoupling, the energy levels of the oscillator

E, = hwo(n —1/2) (4-22)

are similar to be energy of the Debye modes except for the introduction of an
additional non-zero reference energy !/2hwg, known as the zero-point energy. The
Einstein density of states is therefore g(w) = §(w — wg), where §(w) is the Delta
function. Hence (4-13) can be written as

UgEinstein _ hao

Uahwo + ——— 423
foheo + —gri T (4-23)

for a one-dimensional oscillator. In three-dimensions this can be expressed as

3

UgEinstein hay, Bhwy
—_— 4-24
=) ( 5 ) (4-24)

k=1

where wy are the three fundamental frequencies of the three-dimensional lattice. The
atomic heat capacity also has a simple analytical expression from (4-14)

Einstein = KB 2 sinh? (,Bhwk/z)

k=1

Using the local harmonic approximation, the fundamental frequencies of a lattice
are given by the determinant of the dynamical matrix

2V
9x,;0x;

‘m,»,\zg — =0 (4-26)

where the wy are the three eigenvalues A of this 3 x 3 matrix for atom i and [ is the
identity matrix. From (4-26) is it clear that the local eigenfrequencies can depend
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Figure 4-2. Debye (4-21) vs Einstein (4-25) prediction for the atomic heat capacity as a function of
temperature. The Debye model is accurate at low temperatures whereas the Einstein model is not. The

models are indistinguishable at high temperatures. The classical limit is shown as a dashed line. It is
generally accepted that classical MD is valid above the Debye temperature (7/6p > 1)

on the potential energy of the body, V({x;}), and hence change locally in the vicin-
ity of defects and globally if the body is elastically deformed. For an undeformed,
isotropic solid we can associate the fundamental frequencies with the highest sus-
tainable frequency in the lattice. This allows the predictions of the Debye and
Einstein models to be compared. Figure 4-2 shows the heat capacity as a function of
temperature. It is clear that both models agree at high temperature. However there is
a significant departure at low temperatures. Experimentally it has been shown that
the Debye model is valid in this regime but the Einstein model is not. However, as
we shall see in Section 4.4.1, the Einstein model is of benefit to multiscale simula-
tion as it is reasonably good at higher temperatures, analytically tractable and relates
the thermophysical state to the local dynamic properties of the matrix.

4.2.5. The Classical Limit

The previous subsection considered the quantum nature of lattice vibrations. This
is not accounted for in classical Newtonian MD. This subsection considers under
what conditions the two models are compatible. Compare the predictions of the
quantum models in Figure 4-2 with the expectations for a classical (non-quantized)
system. In a classical system energy is equally partitioned between the kinetic and
potential energy of the atoms (on average). In crystalline systems each atom has
3 translational degrees of freedom. Classical models of temperature state that the
kinetic energy of each degree of freedom is /2kgT. Hence the total kinetic energy
per an atom in three-dimensions is 3/2kpT and similarly for the potential energy. For
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N atoms, the total internal energy is therefore Unp = 3NkpT and hence the classical
heat capacity per atom is Cyp = %‘Hé% = 3kp. This is known as the Dulong-
Petit law. It is easy to see in Figure 4-2 that the quantum heat capacities, given
by (4-21) and (4-25), converge to this limit for high temperatures. At the Debye
temperature 7' = 6p the quantum heat capacity is Cgebye = 0.95 Cvmp. For this
reason, it is commonly accepted that classical Newtonian dynamics are acceptable
for the modeling of heat conduction in insulators above the Debye temperature.
In this regime the Dulong-Petit law for heat capacity is very reasonable for most
materials. It is still valid for many materials at low temperatures (e.g. silicon) but
fails for metals, where the contribution to the heat capacity from electrons becomes
significant. Values for the Debye temperature for some common elements are shown
in Table 4-1. In total, 30 of the elements have Debye temperatures above room
temperature of which only three are not metals: carbon, silicon and germanium.
The high value for carbon means that the heat capacity is 25% of the classical value
at room temperature, i.e. Cgepye = 0.25 Cvip. At high temperatures one can also see
that that the Bose-Einstein distribution (4-10) is equivalent to the classical Maxwell-
Boltzmann distribution such that

FEp) ~ e Bk for T > 6p 4-27)

Table 4-1. Table of Debye temperatures for some common elements [40].
Their position in the list of elements (highest Debye temperature first) is

shown

Position Element Debye temperature, 6 p
1st Carbon 2230 K
2nd Beryllium 1440 K
3rd Silicon 645 K
4th Chromium 630 K
8th Tron 470 K
9th Nickel 450 K
13th Aluminium 428 K
20th Germanium 374K
35th Silver 225K

The validity of classical MD is summarized nicely in Figure 4-3. It is valid over
the range of most practical length scales. MD obeys Fourier’s law quite closely even
under high temperature gradients [42] but the conductivity varies with the extent of
the domain and changes locally in the vicinity of defects. The dispersion relation
(and hence the density of states and phonon velocities) is strongly modified by the
size of the crystal. In general all such features lower the thermal conductivity. This
property of MD is an advantage for the simulation of heat transport in nanostruc-
tures in that it includes size effects due to the inherent restrictions on the mean
free path of energy carriers and scattering at interfaces. One disadvantage is that
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it is difficult to remove these size effects if the modeler is interested in the bulk
properties. This is discussed further in Section 4.3.3. Another disadvantage is that
MD results are only valid in the classical regime (above the Debye temperature).
As shown in Figure 4-3, modeling methodologies such as perturbation theory (PT)
and the Boltzmann Transport Equation (BTE) can be adopted at these small scales if
required. See Sinha and Goodson [43] and Murthy et al. [39] for recent reviews on
sub-continuum heat transport. It has recently been proposed that low-temperature
quantum effects due to discrete phonons can be incorporated into classical MD sim-
ulations using appropriate quantum thermostats [44, 45]. Finally, MD is restricted
to the analysis of heat transport due to phonon-phonon interactions only. This is
the dominant transport process in insulators but not in metals. Metals are briefly
discussed in the next subsection. MD is typically employed to model heat transport

Surface Modes <—| Extent of Material I—-

Strong Anisotropy Bulk Dispersion
Zone Folding / Finite Boundaries (3-D crystal)
4
- Molecular Dynamics of normal modes 5
(Classical)
QD___ S T * -
<
2 §
8 t 3
2 Phonon BTE 8
£ Phonon Monte Carto with PT |- %
= (Semi-classical)
T Green's Functions
<< 6p = Landauer Theory R e TR
(Quantum)
v

g0 A - Joat

Length Scale of Interest, L

Figure 4-3. The appropriate thermal modeling methodology for insulators depends on the dimension of
the system and the temperature. At dimensions comparable to the phonon wavelength 1 and tempera-
tures much smaller than the Debye temperature 6 p (bottom left), quantum mechanical nature is strongly
manifest. At larger dimensions approaching the phonon mean free path A and room temperatures, a
semi-classical approach is more pragmatic such as perturbation theory (PT) or the Boltzmann Transport
Equation (BTE). At temperatures above 6p the classical physics of MD is applicable. The diffusion
length /&t is given for the sake of completeness where « is the thermal diffusivity ¢ is the phonon relax-
ation time ¢ (Reprinted from [Sinha S, Goodson KE (2006) Thermal conduction in sub-100nm transistors.
Microelectronics Journal 37:1148] with permission from Elsevier)
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in carbon (important for nanotubes, fullerenes, graphite etc) and silicon and germa-
nium (which are important materials in transistors and many nanostructures [46]).
Results for these materials are reviewed in Section 4.3.3.

4.2.6. Heat Transport in Metals

Table 4-2 shows a comparison between values for the thermal conductivity of differ-
ent elemental solids from experiment and as determined from MD simulation (see
Section 4.3.2 for details). The simulated values for the metallic elements are one
or two order of magnitude in difference from the experimental values, even though
the temperatures are within or close to the classical regime. The values for silicon
are within the margin of error, and the values for carbon are of the same magnitude
but the difference is not inconsiderable as the temperature is well below the Debye
value. The dramatic difference between these materials is because the majority of
heat transport in metals is due to electrons which are not accounted for in MD sim-
ulations, whereas electronic heat transfer is negligible for insulators. Electrons also
contribute to the heat capacity at low temperatures [40].

Scattering effects due to the dominant electron-phonon interactions in metals
have been included for modeling electrothermal transport in transistors [43, 46].
There are only a few MD studies of heat transport in metals (see [48, 49] and ref-
erences therein). These assume that electron-phonon interactions are the dominant
heat transport process and that phonon-phonon (ballistic) interactions can be ignored
if the electrical conductivity is high [48]. The conductance due to phonon-phonon
interactions is determined from an MD simulation. The dominant phonon-electron
contribution is then determined from estimation of the phonon-electron mean free
path [48] or Wiedemann-Franz law [49] where the thermal conductivity associ-
ated with conductance electrons is deduced from the electrical conductivity. The
Wiedemann-Franz law states that, for metals at not too low temperatures, the ratio

Table 4-2. Thermal conductivities for various elements (W/mK). Metals use embedded atom method
(EAM) potential and silicon and carbon use Stilinger-Weber (SW) potential. The estimated errors on
the simulated conductivities are due to extrapolating the finite size results of the simulation to an infinite
crystal. The allotrope employed for carbon is diamond

Element Experimental Simulated Temperature (K)
Silver? 420 1.2 300
Aluminium? 242 3.6 300
Gold? 309 0.4 300
Copper? 405 43 300
Nickel? 86 6.5 300
SiliconP 120 119440 500
50 65+16 1000
Carbon® 400 573160 1000

4From reference [47].
YFrom reference [2].
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of thermal (k) to electrical (o) conductivity is proportional to the temperature such
that
b 2 kB

k 2
_- = — (—) T=LT (4-28)
o 3 e

where e is the electron charge and the constant L = 2.45 x 107 W Ohm K2 is
known as the Lorenz number.

4.3. NONEQUILIBRIUM MOLECULAR DYNAMICS

The previous section considered the practical requirements and limitations of con-
ducting constant temperature (equilibrium) MD simulations. The extension of these
principles to the investigation of non-isothermal nonequilibrium molecular dynam-
ics (NEMD) is the subject of this section. Away from equilibrium, the flow of heat
within a body needs to be conserved such that

oT .
'OCPE =-Vj (4-29)

where p is the material density (kg m™), ¢p is the specific heat capacity (J kg ' K1)
and j is the heat flux (W m~2). Fourier proposed a simple constitutive relationship
between the heat flux and temperature gradient such that

Jo== kg7 (4-30)

where kg, is the three-dimensional thermal conductivity tensor (W m~! K1), For an
isotropic solid k- = k3, where k is the isotropic thermal conductivity and &4, is the
identity tensor. Equations (4-39) and (4-30) then give the classical heat conduction
equation

aT
Py = VkVT) 4-31)

where k(T) is often a function of temperature.

There are two widely used methods for the calculation of the (ballistic or
phonon) thermal conductivity (of insulators) from atomistic simulation in the clas-
sical regime. These methods are discussed in some detail by Schelling et al. [2] and
hence are only briefly repeated here.
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4.3.1. The Green-Kubo Method

Unlike fluids, the transport of heat in solids is derived from correlations in the
motion of atoms in a crystal lattice. The Green-Kubo relations use the fluctuation-
dissipation theorem to derive an exact mathematical expression for the thermal
conductivity which can be determined from isothermal equilibrium MD simula-
tions. The thermal conductivity is given by a time integral over the equilibrium flux
autocorrelation function such that

1 i PN
b=y / (g 0,0 (4-32)
0

where V) is the volume of the system and the angular brackets indicate an ensemble
average (over the volume of the sample) [38]. Schelling et al. [2] give a discretized
version of this equation for atomistic calculation, and a method for calculating the
instantaneous heat flux between atoms from the interatomic potential. Webb et al.
[50] have gone into the derivation of the heat flux in some detail. Jolley and Gill
[42] used a simpler method based on the change in temperature of an atom before
and after the time step. This relies on the knowledge of the flux at a given point in
the system.

Nonlinear transport coefficients can be calculated from steady state NEMD using
a nonlinear version of the Green-Kubo relation called the transient-time correlation
function [51]. This is particularly advantageous for fluids where the exceptionally
large temperature gradients required for standard NEMD induce large convection
currents which make determination of the thermal conductivity problematic.

4.3.2. The Direct Method

In the direct method, a steady state temperature gradient is imposed on the atomistic
sample by thermostatting different regions at different temperatures. This is one of
the principal examples of NEMD simulations in the literature. The samples usually
have one long dimension and a smaller square cross-section. The temperature gradi-
ent is imposed along the long dimension. Periodic boundary conditions are used on
the sides. Two typical examples of the types of boundary conditions that can be used
at the ends are shown in Figure 4-4. In theory the periodic end conditions allow for
the existence of longer wavelength modes than the fixed end conditions. However,
in practice the thermostats corrupt the lattice dynamics, so the maximum mean free
path is typically the distance between the thermostatted regions. A variety of ther-
mostats are often used, such as those discussed in Section 4.2.2. Another variant is to
control the rate that heat enters the hot bath and leaves the cold bath regions [50, 52].
This has the same effect but the magnitude of the resulting temperature gradient can-
not be determined beforehand and some calibration of the heating rate is required.
A velocity rescaling thermostatting algorithm [52] was used in the example shown
in Figure 4-5 to avoid the thermostat adding any instantaneous momentum to the
system. All thermostats conserve momentum on average, however, and it has been
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Figure 4-4. Two different boundary conditions for imposing a steady state temperature gradient on a
NEMD simulation: (a) fixed boundary conditions (four atomic planes are fixed (black) and six are used
for the hot and cold bath atoms (dark grey and light grey) but only four are shown here). (b) periodic
boundary conditions (Reprinted from [Stevens RJ, Zhigilei LV, Norris PM (2007) Effects of temperature
and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium MD simulations.
Int J Heat Mass Transfer 50:3977] with permission from Elsevier)

demonstrated that rigorous momentum control at each time step is not necessary in
solids [22].

Upon reaching a steady state, the (time-averaged) variation in temperature across
the length of the sample can be determined. A typical example of such a tempera-
ture profile is shown for a silicon sample in Figure 4-5 where periodic boundary
conditions have been used (such as those shown in Figure 4-4b). The temperature
profile is highly nonlinear and not as expected. In the steady state the heat flux must
be constant (on average) at all points in the system. For a constant thermal con-
ductivity, Eq. (4-30) predicts that the expected temperature profile is linear between
the thermostats. Examination of Figure 4-5 shows that there are two linear regions
between the thermostats but there is a sudden change in temperature near the heat
sink and source regions themselves. Given the temperature gradient in the linear
region(s) the thermal conductivity can be determined from (4-30) as

—1
k=j (aT) . (4-33)

ax

This requires a knowledge of the heat flux, j. This is always uniform across the
length of the sample in the steady state and can be calculated by several methods
(see Section 4.3.1).
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Figure 4-5. Typical temperature profile for an atomic 4 x 4 x 288 silicon system. The heat source
is located at z = 39 nm, and the heat sink is located at z = 117 nm. Within 6 nm of the source and
sink, a strong nonlinear temperature profile is always observed. To compute k from (4-30) the tempera-
ture gradient is determined from the linear region, which are at least 6 nm away from the heat source
and sink (Reprinted (Fig 3, pg 144306-4 and Fig 6, pg 144306-5) with permission from [Schelling
PK, Phillpot SR, Keblinski P, Phys Rev B, 65,2002]. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRB/v65/p144306)

It is clear from Figure 4-5 that the temperature gradient observed in the linear
regions (where Fourier’s law (4-30) applies) is very different from the temperature
gradient that is applied. The nonlinearity in the temperature profile in the prox-
imity of the thermostatted regions is commonly attributed to phonon scattering at
the interface between the thermostatted and non-thermostatted regions. This scatter-
ing arises because the thermostatting algorithms necessarily corrupt the dynamics
of the thermostatted atoms. As seen in Section 4.3.1, the thermal conductivity is
proportional to the long-time flux autocorrelation function. The correlated motions
of atoms are sensitive to small disturbances, such as those used by thermostats
to regulate temperature. It is clear from (4-31) that if the motions of atoms in a
crystal lattice are completely uncorrelated then the thermal conductivity is zero.
Thermostats will always reduce the correlation in the motion of atoms and as such
this will always reduce the thermal conductivity in these regions. The heat flux
is constant in the steady state so (4-31) predicts that a decrease in the thermal
conductivity will be associated with an increase in the temperature gradient. This
is what is observed in Figure 4-5 in the proximity of the thermostatted regions.
This change in the thermal conductivity at an interface is known as the Kapitza
effect and is observed in all NEMD simulations. It is widely known that the mate-
rial properties near interfaces are different from those in the bulk, and hence the
Kapitza effect is important in nanostructures, where the large proportion of inter-
faces can dominate their response. However, in NEMD simulations such as that
in Figure 4-5, the interface is not real and the observed artificial Kapitza effect
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is unphysical and consequently undesirable. This lack of precision in the control
of the thermal boundary conditions for NEMD simulations is very important when
considering concurrent compatibility conditions with multiscale methodologies (see
Section 4.4). Unfortunately it is impossible to avoid completely as temperature
control can only be achieved through adjusting the motion of the thermostatted
atoms.

Jolley and Gill [42] found that the (artificial) Kapitza effect present in NEMD
simulations was significant for deterministic thermostats (such as Nosé-Hoover) but
overall the effect was much greater for stochastic thermostats (such as Langevin).
This is not surprising as stochastic thermostats rely on uncorrelated random noise to
supply the thermal bath which will destroy the correlated motion of the thermostat-
ted atoms. Jolley and Gill [42] also found that the Kaptiza effect was more dominant
in lower dimensions and that in three-dimensions the Kapitza effect increased as the
cross-section of the sample was reduced below roughly 8 x 8 (for the Lennard-
Jones potential). This is expected to be due to the restricted interaction between the
transverse phonon modes in these cases. Thermostatting methods based on memory-
kernels (see Section 4.4.3) which utilize information retained offer time and space
to minimize disruptions to the correlations in the motion of atoms over potential
benefits in minimizing the (artificial) Kapitza effect [35, 54]. However, constant
temperature results still show some corruption of the autocorrelation function adja-
cent to the thermalised region [35]. To the authors knowledge, these techniques have
not been applied to NEMD simulations so their advantages in this respect cannot
currently be quantified.

A simple pragmatic approach to the artificial Kapitza effect has been proposed by
Jolley and Gill [42]. This does not aim to avoid the Kapitza effect, but uses standard
thermostats to impose the precise temperature gradient that is desired upon a ther-
mostatted region of the system through a simple control loop. Typical time-averaged
temperature profiles for deterministic (Nosé-Hoover) and stochastic (Langevin)
thermostatic control are shown for an 8 x 8 x 100 Lennard-Jones solid in Figure
4-6. The aim is to maintain different prescribed temperatures at the boundaries of
an (unthermostatted) true dynamics region (TDR) in the centre of the sample. These
are defined as 7p = 50 K and Tj; = 40 K on the left and righthand ends respectively,
where M = 50 is the number of atomic planes in the TDR. The end conditions
are fixed (as in Figure 4-4a). The target temperatures of the thermostatted regions
(TR) at the left and righthand ends, 77, and Tg are not known. They are determined
during the simulation via a very simple feedback control algorithm

OrTy = (To — (To)) QrTr = Ty — (Tu)) (4-34)

where (Ty) and (T)s) are the atomistic temperatures at the TDR boundaries and
the constant Q7 determines the responsiveness of the thermostat. There is a buffer
region (BR) between the TRs and the TDR to allow for the nonlinear Kapitza effect.
The difference between the temperature profiles for the two thermostats is of inter-
est. Firstly, the temperature within the TR is not constant for both cases. This is not
surprising for the Nosé-Hoover thermostat as it is a global thermostat which drives
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Figure 4-6. Temperature profile across an 8 x 8 x 100 atom Lennard-Jones MD simulation. The tem-
peratures in the thermostatted regions (TR) at the ends are dynamically determined to achieve the target
temperatures (50 and 40 K) on the boundaries of the true dynamics region (TDR). The buffer region (BR)
allows for non-linear Kapitza effects

the system towards an average temperature. The average temperature is achieved but
there is no requirement for the temperature distribution to be uniform. The Langevin
thermostat was designed as a local equilibrium thermostat. The target temperature is
imposed using (4-5) but (unlike Nosé-Hoover) there is no feedback from the simula-
tion in this algorithm to ensure that the target temperature is achieved. Therefore the
Langevin thermostat on its own cannot be guaranteed to maintain a prescribed target
temperature in NEMD simulations. However, equation (4-34) introduces a feedback
loop which avoids this problem in the above situation. Secondly, note that the tem-
perature difference between the TRs for the Langevin algorithm is much higher
than for Nosé-Hoover. As discussed before, this is due to the fact that the artificial
Kapitza effect (temperature drop) in the BR is much larger for stochastic thermostats
than deterministic ones due to their stronger disruption of the correlations in the
atomic vibrations. Both algorithms locally reproduce the canonical ensemble in the
TDR and enforce the correct temperatures at the boundaries of the TDR.

One of the general disadvantages of NEMD simulations is that the temperature
gradients are very large (of the order of 10° K/m). Such a large gradient might be
expected to be beyond the applicability of Fourier’s law. Although the author has not
found this to be the case within the classical MD regime [42] other nonlinear contin-
uum models have been proposed [38, 39] for non-classical heat flow. Temperature
gradients of this magnitude are expected across interfaces [53], when two surfaces at
different temperatures first come into contact [55] and around hot spots in nanostruc-
tured devices [46]. An advantage of the direct method over the Green-Kubo method
is that the dependence of the thermal conductivity on temperature can be deduced
from the NEMD temperature profile. A linear temperature variation in the thermal
conductivity will result in a quadratic variation in the temperature profile [42]. A
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quadratic fit to the profile will yield the (extrapolated) thermal conductivity at 0 K as
well as the linear temperature dependence term. However, NEMD simulation results
will also include a dependence on strain [S6]. Although possibly free to expand, the
shape of NEMD simulations are constrained to remain cuboidal. Thermal expansion
within the body will be non-uniform resulting in a dilational strain gradient along
the sample. For highly constrained systems, or large temperature differences, the
strain state will have an affect on the calculated thermal conductivity.

A variant on the direct method has been proposed by Terao and Miiller-Plathe
[57]. In their scheme, the sample is uniformly heated at all points within the body
by the addition of a random noise. This random noise is not generated by a ther-
mostat, but arises by deliberately truncating the cut-off distance for the interatomic
potential interactions so that the noise is derived from numerical errors. Heat must
be removed from the system for it to attain a steady state. A thermostat is used
to impose a heat sink at two locations along the periodic sample. The resulting
temperature profile is a quadratic variation between the cooling slabs, as shown in
Figure 4-7 Although easy to implement, the disadvantage of this approach for solids
is that the entire region is thermostatted and hence the dynamics and the resulting
transport coefficient will be affected.

Another approach is to monitor the decay of thermal transients in a system. Daly
et al. [58] investigated the conductance of superlattices by initially imposing a sinu-
soidal temperature variation across the sample. Fourier’s law (4-31) predicts that
such a variation will remain sinusoidal and that its amplitude will decay exponen-
tially with time at a characteristic rate. Hulse et al. [59] applied a transient technique

Temperature (arb. units)

P PR R T 1

05 00 05 10 15

Figure 4-7. Schematic quadratic temperature profile in water calculated under periodic boundary con-
ditions. (Reprinted with permission from [Terao T, Miiller-Plathe F (2005) A nonequilibrium MD
method for thermal conductivities based on thermal noise. J Chem Phys 122:081103]. Copyright [2005],
American Institute of Physics)
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to fluids, in which a small region of the simulation was instantaneously heated by
velocity rescaling. The thermal conductivity was determined from the rate at which
the average temperature in the heated region returned to equilibrium.

In summary, any thermostatting algorithm will cause a reduction in the thermal
conductivity in regions within a distance of 3-5 atomic spacings of where it is active.
Therefore the thermal conductivity can only be properly determined in regions of
true dynamics which are not thermostatted. This suggests that NEMD simulations
should only be thermostatted at the boundaries and not in the bulk. Deterministic
thermostats tend to be less disruptive to correlated dynamics than stochastic ones.
Local thermostats are preferable for prescribing spatially varying thermal bound-
ary conditions, as global thermostats only control the temperature average away
from equilibrium, not its distribution. Most thermostats have been designed for
simulations at thermal equilibrium. They require some feedback from the actual
temperature of the simulation for use in NEMD simulations.

4.3.3. Size Effects

All of the algorithms discussed in the previous subsection are subject to size effects
due to phonon scattering at the system (or thermostat) boundaries, and restrictions
on the maximum phonon mean free path. In nanostructures, many of these size
effects are real and it is desirable that they are observed in representative NEMD
simulations. These are discussed at the end of this section. However, it is often
desirable to determine the bulk thermal conductivity of a material from a MD sim-
ulation. In this case, the finite size thermal conductivity has to be extrapolated up to
the bulk value using analytical predictions. The simplest of these is the widely used
equation [2]

L
k(L) = koo (m) (4-35)

where L is the length of the simulation cell, [, is the phonon mean free path in an
infinite system and ko is the (bulk) thermal conductivity in an infinite system. This
is fitted to results from NEMD simulations of different system sizes in Figure 4-8.
The bulk thermal conductivity can be extrapolated from (4-35) by letting L — oo.
Equation (4-35) implies that the thermal conductivity of a sample is prone to size
effects when the dimensions fall below 5-10 times the phonon mean free path. For
phonons the mean free path is typically 10—100 nm [38].

Such size effects are prevalent in nanostructured materials [38, 60, 61], where
the reduction in thermal conductivity can either be beneficial or problematic. For
instance, nanolayered structures can be used to produce films with good thermal
insulating properties [62]. However, in nanoscale transistors, where Joule heating
due to high electric currents is very significant, the increased thermal resistance
leads to the development of large adverse temperature gradients and hot spots within
the device [46]. NEMD simulations have been employed to investigate a variety of
nanostructures, including size effects in argon [18] and silicon [63, 64], nanocon-
strictions in silicon [55], nanoporous silicon [65] and silicon nanofilms [63, 66]
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Figure 4-8. System size dependence of thermal conductivity, k, on the sample length, L. Data points
shown are calculated from NEMD simulations for Si at 7 = 500 K and 7= 1000 K and for diamond
at 7= 1000 K for different sample sizes. The bulk conductivities are calculated using (4-35) from lines
of best fit. The results are given in Table 4-1 (Reprinted (Fig 3, pg 144306-4 and Fig 6, pg 144306-5)
with permission from [Schelling PK, Phillpot SR, Keblinski P, Phys Rev B, 65,2002]. Copyright by the
American Physical Society. http://link.aps.org/abstract/PRB/v65/p144306)

and nanowires [67], liquids confined in nanopores [51], quantum wells in semicon-
ductors [68], nanolayered superlattices [58, 62], nanoparticles [49], molecular wires
[69] and carbon nanotubes [70-76]. The effect of crystalline defects on phonon scat-
tering [53], such as grain boundaries [77, 78] has also been studied. A significant
reduction in the thermal conductivity has been observed in quantum dot superlat-
tices [79] when the quantum dot arrangement in the superlattice have changed from
correlated (regular) to completely uncorrelated, indicating a reduction in the phonon
mean free path in uncorrelated (defect) structures. Figure 4-9a shows the change in
the measured thermal conductivity of silicon nanowires with their diameter, with
the lowest conductivity in the narrowest nanowires as expected as the scattering
of phonons at the boundaries becomes more significant. However, the temperature
dependence of the conductivity is shown to change with the nanowire diameter in
Figure 4-9b, from the expected Debye 7° law scaling for 115 nm nanowires to
roughly a 7T scaling for the smallest 22 nm nanowires. This indicates a change in the
dominant mechanism for heat transport. It is proposed that this might be due to the
presence of a silicon oxide layer on the surface of the wire, for which much higher
phonon frequencies are supported [80]. In very narrow nanowires (about 2 nm in
diameter) the thermal conductivity has been expected to actually increase due to
phonon confinement effects. This increases the frequency of the longest wavelength
phonons which consequently transport a greater amount of thermal energy.

Carbon nanotubes are of great interest due to their remarkable thermal proper-
ties [82]. The predicted thermal conductivities of these nanostructures are strongly
dependent on their morphology, with chirality [76, 83], defects [71] and the number
of walls [71] playing a vital role. Single-walled carbon nanotubes (SWCNTSs) are
expected to have particularly good heat conduction properties. However, the thermal
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Figure 4-9. (a) Measured thermal conductivity of different diameter Si nanowires. The number beside
each curve denotes the corresponding wire diameter. (b) Low temperature experimental data on a log-
arithmic scale. Also shown are 73, T2, and T! curves for comparison (Reprinted with permission from
[Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon
nanowires. Appl Phys Lett 83:2934]. Copyright [2003], American Institute of Physics)

conductivity of SWCNTs is not easily measured experimentally, with studies usu-
ally on bundles of nanotubes. The conductivity of bundles is much lower than single
nanotubes as it is dominated by the interfacial resistance between nanotubes [70].
This inability to efficiently transfer heat between nanotubes and the surrounding
medium has lead to lower than expected thermal conductivities in carbon nanotube
composites. However, so high is their conductivity that a 1% weight fraction of
SWCNTs embedded in an industrial epoxy can increase the thermal conductivity
of the composite by 125% [84]. NEMD simulations have been used to determine
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Figure 4-10. Comparison of thermal conductivity for different carbon nanotubes as a function of their
length L. There is a wide disparity in the values obtained by different methods. The triangular data points
are predictions from NEMD, the horizontal dotted lines are predictions from equilibrium MD and the
crosses are experimental results. (Reprinted from [Chantrenne P, Barrat JL (2004) Analytical model for
the thermal conductivity of nanostructures. Superlattice and Microstructures 35:173] with permission
from Elsevier)
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the thermal conductivity of SWCNTs [70, 72-75] and multi-walled carbon nan-
otubes (MWCNTS) but the predictions range from several hundred to 6600 W m™!
K-! [71]. This typically wide discrepancy in results is illustrated in Figure 4-10.
Lukes and Zhong [85] primarily assign this confusion to length effects. However,
the importance of quantum effects is not clear [86, 87] as it is not entirely apparent
what the Debye temperature is for SWCNTSs. Although the Debye temperature for
diamond is 2230 K (see Table 4-1) it is argued that the Debye temperature may be
closer to that of graphite (reported as 420 K in [87]) although values as low as 30 K
for nanotubes have been suggested [87]. Lukes and Zhong [85] report that quantum
corrections to NEMD results yield qualitative agreement with experimental results.
Overall, the preponderance of NEMD simulations are concerned with the study of
carbon and silicon.

44. ISOTHERMAL CONCURRENT MULTISCALE METHODS

The number of degrees-of-freedom and femtosecond time step in MD simulation
place a heavy constraint on their maximum length and time scale. There is always a
compromise between accurately representing a real system and computational prac-
ticality, even in the case of nanostructures. The time and length scales are inherent
restrictions of atomistic models, but this is not the case for statistical or continuum
models, which represent a system by the evolution of average quantities and their
distributions. The advantage of such higher level models is that systems of real-
istic size can be modeled over realistic time scales. However, in many problems
the length and time scales are strongly coupled with the details of the atomistic
processes (e.g. the dislocation creep properties of materials are determined by the
relatively long-range interaction between dislocations in the crystal lattice). These
details are increasingly important in areas where the material response is highly
non-linear (e.g. near cracks tips and other stress concentrators, around atomic scale
defects such as dislocations, grain boundaries and other interfaces) and/or highly
constrained (e.g. thermal transport in nanostructures). Therefore it is often desirable
to retain atomistic detail in these areas but represent the material response in the
linear regime using a coarse-grained (CG) description (e.g. Fourier’s law for heat
transport). These models are generally described as concurrent multiscale models,
as the different material models are strongly coupled and evolve and interact in
parallel.

This approach has been the subject of a significant body of work over the
last two decades. The most widely adopted of these methodologies has been the
quasicontinuum method [9], which embeds a molecular mechanics model within
a finite element model of the far field. The atomistic model is described as
molecular mechanics (as opposed to MD) as the methodology is developed for
zero-temperature simulation. Therefore the only degrees-of-freedom in the system
are the positions of the atoms. In the finite element region the atomic positions are
interpolated from the positions of the nodes using standard finite element shape
functions. The two models are coupled by the requirement that atoms on the atom-
istic/continuum interface occupy the same relative positions as their associated
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Figure 4-11. Bridging domain model for a nanotube; finite elements are indicated by lines that connect
continuum nodes (Reprinted from [Xiao SP, Belytschko T (2004) A bridging domain method for coupling
continua with MD. Comput Methods Appl Mech Engrg 193: 1645] with permission from Elsevier)

nodes in the finite element model (see Figure 4-11). Some complications arise due
to the introduction of “ghost forces” at the interface due to the truncation of the
interatomic potential but these can be compensated for [8].

A number of methods have been proposed to extend this methodology (and
others) to finite temperature. There are some examples of this approach in the
modeling of fluids [89-91] but in general the issues for fluids are not relevant
to the study of solids. Abraham et al. [4] have considered the concurrent cou-
pling of quantum, atomistic, and continuum scales in the fracture of silicon. The
zero-temperature quasicontinuum model has also recently been extended to include
electronic degrees-of-freedom for the simulation of metals [92]. In addition, cou-
pling methods for quantum and atomistic models of heat transport have been
proposed for non-isothermal modeling at low temperatures [39]. However, here it
is assumed that the atomistic model is purely classical in nature in all respects and
that the fundamental material response is given by the MD simulation from which
any higher level model must be derived.

The primary issues that need to be addressed in moving from zero-temperature
to finite temperature multiscale simulation are:

1. the dynamics of the CG nodes. The thermal vibrations of the missing degrees-
of-freedom in the CG model need to be accounted for. This temperature
dependence must be incorporated into the CG inter-node potential which defines
the dynamics of the nodes. The derivation of this potential is discussed in
Section 4.4.1.

2. consistency between the thermodynamic properties of the continuum and the
atomistic model, e.g. the thermal conductivity and thermal expansion coefficient
in the continuum model are identical to those produced in the MD model. Some
of these properties can be derived from the CG potential (see Section 4.4.2).
As discussed in Section 4.3.3, the thermal conductivity is dependent on the size
of the atomistic region. It is expected that the atomistic region will typically be
smaller than the phonon mean free path, and therefore the thermal conductivity
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is not that of a bulk sample. For ballistic models, the continuum must be compat-
ible with the atomistic region, so unfortunately this reduced finite-size thermal
conductivity must be adopted throughout the simulation.

3. smooth information transfer across the atomistic/continuum interface. Ideally
the propagation of phonons from the atomistic to the continuum region (and
vice versa) would be seamless. However high frequency atomic vibrations that
exist in the atomistic model cannot exist in the higher level region due to the
absence of the finer length scales there. This results in the reflection of high
frequency phonons from the boundary and consequently there is a net flow of
heat from the continuum to the atomistic region leading to localized heating.
This must be prevented, but it must be recognized that there will always be a loss
of information when moving from a fine-scale to a coarse-scale model as this is
an inherent feature of multiscale models. This is discussed in Section 4.4.3.

Note that these are not important issues for metal models (see Sections 4.5.3 and
4.5.4) which impose the thermal conductivity on the simulation.

The models discussed in this section are referred to as near-equilibrium models
as the flow of heat between the atomistic and continuum regions is not explicity
accounted for, such that the concurrent simulation as a whole retains a constant
average temperature or the continuum region is isothermal. When conducting mul-
tiscale simulations it is important to decide what the function of the CG region is.
Two different classes of functionality are identified here: dynamics and sampling.
A dynamic CG region is inertial, e.g the finite element nodes vibrate thermally
and transport (lower frequency) lattice vibrations. This is important if the aim of
the simulation is to determine information about the dynamic properties of a struc-
ture where the boundaries of the CG region are “seen” within the simulation time
(e.g. resonance of NEMS [12]) or to allow the transmission of dynamic information
between atomistic regions (e.g. two cracks propagating simultaneously). Otherwise
the main function of the CG region is to sample the average response of an ensemble
of atoms and provide a representative environment for the evolution of the atomistic
region. In this case the CG region does not need to retain detailed inertial infor-
mation about individual lattice waves and the magnitude of thermal vibrations of
some or all of the atoms can be represented by their standard continuum measure,
temperature. It will be argued that this latter condition is essential for the non-
equilibrium simulations presented in Section 4.5. However, here we consider the
development of purely CG dynamics in the context of simulations that are close to
thermal equilibrium.

4.4.1. Coarse-Grained Dynamics

The first issue to address in dynamic CG models is: what are the dynamics of the CG
nodes? This has been addressed by a number of authors [10, 12, 93-97]. There are
a number of routes to the same result. Firstly, we assume that the partition function
of the system is unaffected by the coarse-graining process. The classical dynam-
ics of a set of N atoms can be defined by its Hamiltonian (kinetic plus potential

energy)
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where p, = mx; is the momentum of particle i. The continuous classical partition
function for this Hamiltonian is defined as [94]
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where the momentum degrees-of-freedom can be integrated out exactly and A =

#h is the de Broglie wavelength.

Now consider a CG system where the degrees-of-freedom of a subset of ng slave
atoms {x,} are not independent but determined by interpolation from a reduced
subset of n, representative atoms {x,.}, where necessarily ng + n, = N. The CG
Hamiltonian is consequently given by

ny | |2

Hea(lxhp h =)

r=1

—— + Veo({x,)) (4-38)
2mcg
where m cg is the CG mass of the representative atoms (assuming uniform coarse-

graining) and Vcg({x,}) is the CG potential. The associated CG partition function
can be expressed in a similar form to (4-37) such that

o0
1
7 = : /e—ﬂVCG({L})d{L} (4-39)
A
CG %

where Acg =,/ % h. The CG potential can be determined from the equivalence of
(4-37) and (4-39) in theory but this is difficult in practice. To make further progress
we assume that the interatomic potential is harmonic such that ¢(r) = 1/20(r — a)?
where « is the spring constant and « is the lattice spacing. Consider three atoms in a
one-dimensional chain with positions [x1, x2, x3]. Coarse-grain the system by taking
the representative atoms to be {x,} = [x1, x3] and enslave the central atom {x;} =
[x2]. From (4-37) therefore
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where the positional degree-of-freedom of the slave atom, x», has been integrated

out exactly and the fundamental frequency of vibration of the system wg = ,/ %"‘ has
been introduced. The last two lines of (4-40) give an expression for the CG potential

1 [ AZg (kT _1
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kgT m

havo
— (ny + 1)$(F) + ngkpT In <kBT) + 1onksTIn ( ncf)

where the expressions have been generalized in the final line for any number of slave
and representative atoms, and 7 (= !/2(x3 — x1) in this case) is the average spacing
between slave atoms. Assuming that the first line of (4-41) can be extended to a
general anharmonic potential this gives

1 A NG T
VCG({&})=—EIH ( ACA?) / e PVUE s gy ) (4-42)
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where d is the dimension. In this formulism the CG potential is commonly known as

d
the potential of mean force (PMF) [98]. Although the factor ([:XCA?‘ ) has the dimen-

sions of (Iength)~ =) it is often omitted as it only makes a constant (although
temperature-dependent) contribution to the CG potential which is of no consequence
for isothermal simulation.

Generalizing the last line of (4-41) in three-dimensions gives an expression for
the classical CG potential
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where w,y is the gth eigenfrequency determined for the rth slave atom from (4-26)
and V({x,}) is calculated from the positions of the representative atoms by assum-
ing the slave atoms are uniformly spaced between them. The first term in the CG
potential (4-43) is the zero-temperature potential energy of the body derived for
the zero-temperature quasicontinuum method [9]. The second term accounts for the
contribution to the free energy from the thermal vibrations of the missing slave
atoms.

The last (mass) term in (4-43) is often neglected as it is constant for isothermal
simulations. It is clear that the partition function places no particular restriction on
the choice of the CG mass. One approach is to assume that mcg = m, in which
case the last term disappears even for non-isothermal conditions. However, this
choice will mean that the speed of sound in the material is a function of the coarse-
graining. Another approach is the lumped mass model where it is assumed that
nymcGg = Nm to conserve mass. This ensures that the wave speed is independent
of the coarse-graining. However, the above calculations assume that the coarse-
graining is uniform, i.e. the density of representative atoms in the CG region is
constant. Dupuy et al. [96] have considered the non-uniform case in more detail.

The dynamics of the representative atoms evolve in the usual way

Ve
0x

Zr

mek, = — (4-44)

which is identical to (4-1) in the fully atomistic limit (rz; = 0) as one would expect.
However, it should be noted that the representative atoms only truly represent the
time-averaged position of an atom (or group of atoms); their oscillation frequency
and amplitude are not those of a normal atom.

The second term in (4-43) is dependent on the system temperature, the level
of coarse-graining and, through (4-26), the local deformation of the body. This
term can also be derived from the quantum partition function using the local har-
monic approximation of the Einstein model for a solid [93]. This was discussed in
Section 4.2.4 and is advantageous over the Debye model in that the thermodynam-
ics are analytically tractable and only depend on the fundamental frequencies of the
lattice. For a simple quantum harmonic oscillator the partition function is given by
(4-9) and (4-22) to be

e~ Bhwo/2 1

Z = =
"7 1 —eBhon — 2sinh (Bhwy/2)

(4-45)

The Helmbholtz free energy, F = U — ST, gives the available work under the
constraints of constant temperature and volume, where S is entropy and the internal
energy is given by (4-23), and hence is the characteristic function for the canonical
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ensemble. For a single quantum harmonic oscillator in one-dimension the thermal
contribution is [93]

F = —kgTInZ, = kgT In[2sinh (Bhwo/2)] . (4-46)

using (4-45). It is clear from the above expression that assuming that the Helmholtz
free energy is unchanged by the coarse-graining process is equivalent to assuming
that the (quantum) partition function remains unchanged. Therefore the difference
between the free energies due to the loss of the dynamic thermal contribution from
the slave atoms for the quantum CG potential is

Emstem({_r} T) = V({X D+ kgT Z Z In <2 sinh (;ik )) 4-47)

r=1 g=1

h
This is identical to (4-43) in the classical limit x = % < 1 for which 2 sinh

B
(x/2) ~ x. The final mass-dependent term in (4-43) is absent from (4-47) as the
momentum of the atoms is not included in the phonon model.

4.4.2. Coarse-Grained Thermal Properties

It is important that the CG potential reproduces the correct thermophysical proper-
ties for consistency with the atomistic model. The most obvious contribution from
thermal vibrations in the lattice is the expansion of the crystal with an increase in
the temperature. The CG potential allows for an estimate of this contribution. For
a one-dimensional solid at constant volume the macroscopic stress that develops in
the body due to a temperature rise of AT is given by o 7=a7EAT where a7 is the
coefficient of thermal expansion and E is Young’s modulus. This stress is equivalent
to an atomic thermal expansion force of

1 dVcg

ng or

fr=—

3¢ hdwy
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where the simple one-dimensional CG potential in the final line of (4-41) has

been adopted without the assumption of classical mechanics. Given that a)g =
20 2% , .

= and taking the coarse-graining to the macroscale (n; — 00) one
m m 94r

can determine the thermal expansion force. In the classical limit (4-48) gives

¢,rrr(a)
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0 ey .
where —d) = ¢,(a) = 0 at the equilibrium zero-temperature spacing. From
r=a
this expression it is immediately clear that there will be no thermal expansion in

the case of a harmonic potential as ¢, = 0. For the Lennard-Jones potential



116 S.PA. Gill

2a
force is linearly proportional to the temperature in agreement with the macroscopic
stress. Roughly f%/lD ~ —ora® which suggests that a7 E = 2/skga>.

This classical prediction and the full quantum prediction from (4-48) are com-
pared with the results of a one-dimensional MD simulation in Figure 4-12a. It is
expected that the simulation results should correspond with the classical CG model
and this is found to be the case. The agreement is excellent at low temperatures,
with only a small deviation at high temperatures. The quantum model converges to
the classical model at high temperatures but is significantly different below room
temperature. The quantum thermal expansion force is predicted to be finite at zero
temperature, i.e. a is not the equilibrium lattice spacing at zero temperature. This
is due to the existence of the zero-point energy in a quantum crystal introduced in
(4-22). However, the Einstein model has been shown to be inaccurate at very low
temperatures (see Figure 4-2). The predictions for a two-dimensional nickel crys-
tal [96] are shown in Figure 4-12b. Here the crystal is allowed to expand and the
change in lattice spacing with temperature recorded. The agreement for the lattice
parameter is good but not as good as the constrained thermal expansion force in
Figure 4-12b. This is because different values of the anharmonic potential are
sampled for the case of free expansion.

It should be noted that the thermal force f}VID(r) — oo when ¢ (r) = 0[95]. This
situation occurs at the inflexion (point of zero curvature) in the potential where the
stiffness vanishes. For the Lennard-Jones potential this occurs at a radius of 1.109a.

12 6 21k
o(r) = ¢ ((C—l) — (23) ) this yields f}VID = =27 which predicts that the
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Figure 4-12. (a) Average thermal expansion force f7 in a one-dimensional MD simulation of Lennard-

Jones atoms with e = 0.6 eV, a =2.8 A andm = 10725 kg [95]. The lines are the predictions from the
classical (4-49) and quantum (4-48) CG potentials. As expected, the quantum and classical predictions
are indistinguishable at high temperatures. Note that the quantum predictions do not go to zero at 0 K due
to the existence of a finite zero point energy (see 4-22). (b) Lattice parameter of nickel as a function of
temperature using an embedded atom model (EAM) potential. The melting temperature of this potential
is 1478 K. The CG (quasicontinuum) calculation involved a cell of dimensions 200 x 100 nm with a
regular mesh containing 50 nodes (Reprinted (Fig 1, pg 115404-1) with permission from [Dupuy LM,
Tadmor EB, Miller RE, Phillips R, Phys Rev Lett, 95,2005. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRL/v95/p060202)
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There is always a finite probability that this state will be sampled during the course
of a simulation. At low temperatures the chance is small with the possibility rapidly
increasing with temperature. This problem arises from the nature of the quadratic
approximation in the determination of the CG potential. If the full nonlinear poten-
tial is calculated from (4-42) then this situation does not arise, although this is not a
practicable solution for CG simulation.

4.4.3. Boundary Conditions for the Atomistic/Continuum Interface

One of the critical issues in finite-temperature multiscale simulation is the effect of
interfaces between different length scales on phonon heat transport. The require-
ments of the phonon boundary condition depend on the nature of the problem. For
dynamic coarse-graining, lower frequency (coarse-scale) phonons must be trans-
mitted into the continuum, whereas the higher frequency (fine-scale) phonons that
are not supported in the continuum should be absorbed and generated according
to the canonical ensemble. The boundary conditions for phonons for a quasi-static
continuum are simpler in that all incident phonons simply need to be absorbed and
generated. Two main classes of approach are identified here:

(i) Memory kernel methods. Impedance boundary conditions are based on the
generalized Langevin equation (GLE) [30, 99] which are an exact derivation for
harmonic interatomic interactions. For an atom i in the interfacial region this is
typically expressed as [99]

t
mi; = —% + ; / Byt — D (T)dT + ; Bi(Dx(0) + R(t)  (4-50)
0

where j # i represents the other atoms in the interfacial region, 8;;(¢) is the mem-
ory kernel function representing the history of interaction between atoms i and j,
and R(7) is a random noise representing the thermal vibrations of the heat bath. The
existence of the convolution integral term is due to the importance of long-time
correlations in the motion of atoms in a crystal. Exact determination of the con-
volution integral is expensive and it is characteristically truncated over space and
time usually without introducing significant errors, at least in the harmonic limit.
This methodology has principally been applied to the study of “zero-temperature
dynamics” in which the atoms initially have no kinetic energy and are subject to a
dynamic perturbation [14, 99-102]. One advantage of “zero-temperature dynamics”
is that the propagation of phonons through the medium can be easily resolved with-
out the presence of thermal noise. The effectiveness of these impedance boundary
conditions is nicely illustrated in such a case in Figure 4-13. A Gaussian-type wave
perturbation of high and low frequencies is introduced at the centre of the atomistic
region. The wave propagates outwards and is expected to be smoothly transmitted
into the surrounding continuum. This is the case where memory kernels are used
in Figure 4-13a. The reflection of the high frequency waves can be clearly seen in
Figure 4-13b where there is no special treatment of the boundary conditions. One
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Figure 4-13. Wave propagation through the atomistic domain in the FCC lattice structure: (a) impedance
boundary conditions are involved at the MD/continuum interface, (b) continuity boundary conditions
(Reprinted from [Liu WK, Karpov EG, Zhang S, Park HS (2004) An introduction to computational
nanomechanics and materials. Comput Methods Appl Mech Engrg 193: 1529] with permission from
Elsevier)

disadvantage of memory kernels is that it is difficult to move the position of the
atomistic/continuum interface during the simulation due to their dependence on the
simulation history.

Methods for extending the GLE to finite temperature have been recently pro-
posed to thermalize the system as well as absorb phonons [35, 103]. As mentioned
in Section 4.3.2, this type of boundary condition holds the best opportunity for min-
imizing decorrelations in atomic motions at the interface due to thermostatting and
avoiding the artificial Kapitza effect. However, no studies of non-isothermal systems
using the GLE approach appear to have been conducted at this time. This may be
complicated by the fact that the memory kernels depend on temperature [35] and
therefore the local temperature history also. They are also highly potential specific
and have a complicated implementation structure [35, 103].

(ii) Diffuse interface methods. A simpler method for minimizing phonon reflec-
tions is to make the transition from one length scale to another as smooth (or diffuse)
as possible. This can be achieved to some extent by subtle mesh gradation, although
such meshes can be complicated to generate and can add complexity to the coarse-
graining algorithm. The bridging domain method [88] minimizes phonon reflection
by a smooth transition from the atomistic representation to the continuum, such that
the interfacial Hamiltonian is given by

H=aHY + (1 — 0)H® (4-51)

where HM and HC are the Hamiltonian’s in the molecular and continuum regions
respectively and « varies continuously through the interface from 1 in the purely
atomistic region to O in the purely continuum region. This means that the two
regions must overlap in the transition zone, as shown in Figure 4-11. This has the
advantage of being simple to implement given the continuum dynamics, and has
been demonstrated to be effective for “zero-temperature dynamics”.

A diffuse phonon-absorbing interface known as stadium damping has been
proposed by Holian and Ravelo [3]. This had been employed in an isothermal con-
current atomistic/continuum simulation by Qu et al. [104, 105]. In this approach, an
atomistic region is embedded within a quasi-static finite element mesh, as shown in



Nonequilibrium Molecular Dynamics 119

1000

N N f
2 N I
500 £ i
> :
% ‘ e
of &
< 81
> ) i
'500 = "4 : ;;EE
|

N N b, ¥ 1
=500 0 500 1000

Figure 4-14. Schematic of the finite-temperature dynamic coupled atomistic/continuum simulation cell,
showing the outer continuum finite element region (left), the damped stadium region of atoms near the
atom/continuum boundary (red) and an undamped atomistic region in the interior (blue) (Reprinted from
[Qu S, Shastry V, Curtin WA, Miller RE (2005) A finite temperature dynamic coupled atomisitic/discrete
dislocation method. Model Sim Mater Sci Engng 13:1101]with permission from Institute of Physics)

Figure 4-14. The mesh can deform (elastically) but the nodes are not dynamic. The
atoms at the outer boundary of the (red) atomistic region are effectively quasi-static
in nature and deform with the mesh for continuity. The atoms in the central (blue)
region are fully dynamic and unthermostatted. The quasi-static and fully dynamic
atoms are separated by a (red) interfacial region of stadium damped atoms. The
dynamics of these atoms are regulated by Langevin thermostats, as in (4-5), except
that the strength of the damping, y (x), varies linearly from zero in the fully-dynamic
(blue) region to its maximum value y pax at the outermost (quasi-static) boundary.
Unlike a sharp interface, the resulting diffuse interface allows phonons to pene-
trate into it, whereupon they are gradually thermostatted out of the system. Stadium
damping is advantageous in that it is simple to implement and it is independent of the
interatomic potential. It also thermalises the boundary (and hence the fully-dynamic
region) to a specified temperature and has been shown to generate the canonical
ensemble in isothermal simulation [104]. Stadium damping also allows the outer
atomistic boundary to be fixed/quasi-static which is essential for embedding in a
quasi-static CG region. The effectiveness of stadium damping to absorb phonons is
illustrated in Figure 4-15.

(iii) alternative methods. Other treatments for the boundary conditions do not
fall into the previous categories. Gill et al. [95] proposed a rapid thermalisation
method, although this requires a small time step and is computationally intensive.
The remaining methods have been shown to be effective for “zero-temperature
dynamics”. Tang [106] has proposed computationally efficient velocity interfacial
conditions in which a high-order Taylor expansion is used to predict the atomic
motions at the interface [106]. It is claimed that this method has a higher perfor-
mance than memory kernel methods for strongly nonlinear problems and has the
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Figure 4-15. A high energy pulse is introduced at the centre of a stadium damped atomistic simulation
(left side) and a much larger (reference) atomistic simulation (right side) at 100 K. The snapshots are
shown at different times (a) t = 0, (b) t = 14, (¢) t = 28, (d) t = 42. The phonons are absorbed by
the stadium damping region (leff) or propagate out of view (right). The differences are due to thermal
fluctuations. The color scale indicates the magnitude of the displacements (Reprinted from [Qu S, Shastry
V, Curtin WA, Miller RE (2005) A finite temperature dynamic coupled atomisitic/discrete dislocation
method. Model Sim Mater Sci Engng 13:1101]with permission from Institute of Physics)
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advantage of being local in time and space. Li et al. [107] use a Perfectly Matched
Layer (PML) which adds a linear damping term and change in stiffness term to the
dynamics of the interfacial nodes. They investigate a harmonic potential but present
derivations for higher order potentials. The method is extended to finite temperature
[108] but the precise efficacy of the boundary conditions is not investigated. Namilae
et al. [109] have proposed and analyzed a number of simple absorbing conditions
based on the non-linear wave equation [109] and implemented them in a concurrent
multiscale model.

4.4.4. Isothermal Dynamic Multiscale Models

Dupuy et al. [96] utilize the CG potential (4-43) (the third term is neglected at
constant temperature) to simulate the isothermal nanoindentation of nickel at dif-
ferent temperatures using a non-uniform coarse-graining. All the atoms and CG
finite element nodes vibrate with thermal energy. No special boundary conditions
at the atomistic/continuum interface are introduced to tackle the issue of phonon
reflection. This is addressed by the application of a single global Nosé-Hoover ther-
mostat to the dynamics of all the degrees-of-freedom (i.e. nodes and atoms). This
prevents the atomistic region heating up due to the confinement of high frequency
phonons. Strictly the natural increase in thermal energy of the simulation (due to
applied loads) should not be removed by a thermostat, but allowed to be transported
to the boundaries. However, given the subject material is a metal, the thermal trans-
port processes inherent in the MD simulation would drastically underestimate those
in the true metal anyway, due to the absence of conducting electrons in the classical
model. (This problem is addressed in Sections 4.5.3 and 4.5.4). Assuming the ther-
mal equilibration processes are rapid, the isothermal assumption is reasonable. The
performance of the Nosé-Hoover thermostat under these conditions could be ques-
tionable given that the CG simulation will contain multiple inherent time scales.
Advanced thermostats such as the recursive multiple thermostats [32, 95] may be
more pertinent to this type of problem. Additionally, as discussed in Section 4.2.2,
a global thermostat will not ensure a uniform temperature in a nonequilibrium
simulation such as this. It will only drive the system towards a given average tem-
perature. In doing this it is possible that some regions are cooled below the average
temperature to offset the increase in temperature of other regions.

Heat transport in dynamic CG models has been studied by Curtarolo and Ceder
[97], using a CG potential similar to (4-43) (again without the final mass term) using
a lumped mass approximation. They find excellent correspondence between fully
atomistic and CG simulation predictions for the elastic properties of the system.
The thermal conductivity in CG systems is also considered. It is found that this is
always underestimated in the CG region, as one would expect with the reduction in
the available phonon modes for heat transport. These calculations are in the steady
state where the specific heat capacity of the CG nodes is of no consequence. To
fully model heat transport in a dynamic CG system is impossible as the specific
heat capacity of each degree-of-freedom is always kp in the classical MD model
(see Section 4.2.5). Therefore the heat capacity of a dynamic CG system will not
be constant but vary in space with the degree-of-freedom density (level of coarse-
graining).
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Rudd and Broughton did a lot of the early work on coarse-graining a harmonic
Hamiltonian [10] at zero-temperature, and have recently extended this with an
anharmonic correction to incorporate nonlinear effects at finite temperature [12].
They investigate the effect of coarse-graining on the phonon dispersion relationship
and phonon reflection at interfaces (see Figure 4-1b). They show that the distribu-
tion of mass to the CG nodes can have a significant effect on the response of the
system. They distribute the mass through the finite element shape functions which
seems preferable to the lumped mass approach which exacerbates the reflection of
phonons at CG interfaces. In this case it is necessary to retain as much informa-
tion about the dynamics of the system as possible. However, in general, retaining
the dynamic motions of CG nodes is computationally expensive and need only be
considered if it is a necessary requirement of the CG region.

Other dynamic approaches which do not use a CG potential have also been
proposed [88], the most widely applied of which is the bridging scale method
[14, 100, 101]. In this method, a coarse-scale finite element continuum exists every-
where such that it overlaps the atomistic region, where a fine-scale also exists.
The displacement field is decomposed into coarse and fine scales in this region.
The coarse-scale at all points is defined by the displacements of the finite element
nodes via the shape function in the usual manner. The fine scale is the differ-
ence between the total displacement and the coarse-scale displacement, such that
it represents the part of the displacement field that the coarse-scale cannot repre-
sent. The fine-scale displacement is chosen such that it minimizes the least square
difference between the atomistic and coarse-scale displacements. This results in
the coarse-scale and fine-scale dynamics being coupled in the atomistic region.
The dynamics in the purely coarse-scale region evolve under the action of a zero-
temperature potential not entirely dissimilar to V({x,}) in (4-43). This is principally
a “zero-temperature dynamics”, in the sense that the method has primarily been
used to look at the propagation of elastic waves in bodies with zero initial kinetic
energy. The thermal vibrations of the missing degrees-of-freedom, represented by
the temperature-dependent terms in (4-43), do not therefore need to be accounted
for. The bridging scale methodology has been applied to the evolution of tempera-
ture in coupled atomistic/continuum simulations [54]. This proposes a method for
projecting the kinetic energy of atoms onto a coarse-scale temperature grid. A model
for the evolution of the temperature in a coarse-scale region is developed based on
the discretized wave equation. This harmonic approach has the advantage of being
analytically tractable but it is not applicable to finite temperature heat transport,
which is purely due to anharmonic interactions. It does, however, allow for the exact
solution of the phonon reflection problem at the atomistic/CG interface (see memory
kernel methods in Section 4.4.3.)

4.5. NON-ISOTHERMAL CONCURRENT MULTISCALE METHODS

Heat transport and the conservation of thermal energy are requirements of non-
isothermal multiscale models. The CG regions can be either dynamic or quasi-static,
but it is essential that the kinetic energy of the missing degrees-of-freedom is rep-
resented in some way. In the quasi-static approach, the CG nodes have no kinetic
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energy and the kinetic energy of all the atoms (representative and slave) represented
by the state variable temperature. In the dynamic approach, the CG nodes (represen-
tative atoms) have kinetic energy and only the missing kinetic energy of the slave
nodes is represented by the elemental temperature. The evolution of temperature
within the CG region can be readily calculated from (4-31) with relatively little com-
putational overhead given a knowledge of the thermal conductivity. This suggests
two approaches: one in which the thermal conductivity of the atomistic simulation
is taken to be the correct one (applicable for purely phonon heat transport such as
that found in insulators), and one in which the thermal conductivity of the con-
tinuum is prescribed and is then imposed on the atomistic simulation (suitable for
non-classical heat transport such as that found in metals). These are consequently
described as insulator and metal models respectively. The objective of this section is
to look at multiscale methods for tackling nonequilibrium, non-isothermal problems
in solids.

4.5.1. Quasi-Static Phonon Models for Insulators

Although most multiscale models are dynamic, it is likely that sampling will be a
sufficient requirement for most CG regions in multiscale simulations. Gill and Jolley
[95] have proposed an extension to the isothermal model of Qu et al. [104, 105] (see
Figures 4-14 and 4-15) to inhomogeneous thermal problems. They avoid the Kapitza
problem by regulating the atomistic-continuum boundary indirectly using adjacent
thermostatted zones that are not directly part of the atomistic-continuum model (see
Figure 4-6). Stadium damping thermostats are used to absorb phonons at the bound-
ary and thermalize the boundary, where use of a local thermostat such as Langevin
is useful in imposing inhomogeneous thermal boundary conditions (see Section
4.2.2). For a purely atomistic NEMD simulation in Figure 4-6, the thermostatted
regions (TRs) are simply used to regulate the temperature at the boundary of the
true dynamics region (TDR), with any artificial Kapitza boundary effects occurring
in the intermediate buffer regions (BRs). The TDR is the only region of interest for
the numerical experimentalist. It is simple to couple the TDR of such a simulation
to a quasi-static continuum region evolving under (4-31). Now the temperature at
the boundaries of the TDR are not known. They are determined naturally during the
simulation from the energy coupling between the atomistic and continuum regions.
The temperatures of the TRs are regulated to ensure conservation of thermal energy
such that

t t
0,71 = / (qL— (@i QgTx = / (ar — (@)R)dr 4-52)
0 0

where 17 and Tk are the thermostat target temperatures (as in 34), Q, is a constant
which determines the responsiveness of the thermostats, and g—(g) is the difference
between the heat fluxes in the continuum and the atomistic regions along a shared
boundary at the centre of the BR. The integrals ensure that heat is conserved exactly



124 S.PA. Gill

over time. Two examples of fully transient simulations are shown in Figure 4-16.
The temperature in the atomistic TRs and BRs is not shown as these purely exist
for the purposes of controlling the boundary conditions of the TDR. Figure 4-16a
illustrates the thermal response of a system which is initially at a uniform 20 K
and then the temperature at the lefthand continuum boundary is instantly raised
to 40 K. The thermal noise in the atomistic profile is minimized by averaging over
time and repeated simulations. The predictions of a purely continuum model are also
shown, where the thermal conductivity is determined to be k(T) = ko + VKT with
ko = 1.037//m and Vk = 0.021//mW m~! K~! where m is the (dimensionless)
atomic mass, taken in this case to be one. The two models agree well, indicating that
Fourier’s law (4-30) is valid for three-dimensional Lennard-Jones MD simulations
even under high temperature gradients. The steady state solution is not completely
linear due to the change in conductivity with temperature. Averaged over very long
times the steady state profile in the coupled system is continuous with no visi-
ble local disturbance at the atomistic/continuum interface. The atomistic-continuum
interfaces on the left and right-hand sides evolve under identical algorithms, show-
ing that they are equally valid for heat flow in either direction. As Fourier’s law
appears to be valid, coupled simulation of homogenous atomistic regions appears
to be unnecessary. Figure 4-16b illustrates the case of an inhomogeneous atom-
istic region which contains a layer of atoms with 10 times the mass of the others.
This mass difference leads to phonon reflection at the interface and a drop in the
thermal conductivity between high and low mass regions. This is a real Kapitza
effect, as opposed to the artificial Kapitza effect previously encountered due to ther-
mostats (see Figure 4-5), and is not present in continuum models. This effect has
been incorporated in the continuum model here by recalibrating the thermal conduc-
tivity between cells of different mass to a much lower value with ky = 0.0001 and
Ak = 0.001. The resulting continuum model again nicely reproduces the atomistic
results. This is a three-dimensional atomistic simulation of a one-dimensional heat
transport problem. For a fully three-dimensional heat transport problem, the issue
of the anomalous thermal expansion of the redundant TR and BR regions needs to
be addressed as these are typically at more extreme (high or low) temperatures than
those in the TDR.

Knowledge of the heat capacity, thermal conductivity and expansitivity is usu-
ally required for such models to ensure compatibility between the atomistic and
continuum regimes. It has been shown that the heat capacity is known exactly for
classical dynamics (kp per degree-of-freedom) and that the thermal expansitivity
can be approximated from the interatomic potential (see Figure 4-12). However, as
seen in Section 4.3, transport coefficients such as the thermal conductivity are more
complex and not readily approximated from atomistic theory. Therefore it is nec-
essary to calibrate the thermal conductivity from direct molecular simulation. This
can be readily done for a particular situation. However, the conductivity is often
a function of other state variables (such as strain [56]) and it is not always possi-
ble (or desirable) to determine the full dependence of a material parameter on all
of these state variables. Therefore, under some conditions, it can be attractive to
determine such parameters during the course of the simulation. Give the atomistic
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Figure 4-16. Snapshots of the temperature profile evolution for an entirely continuum model (dashed
lines) and a coupled atomistic/continuum model, where the atomistic region (TDR) is 0 < < j < 80
and the rest is the continuum region (CR). (a) The system is initially at a uniform 20 K but then the
temperature of the left-hand (continuum) boundary is instantly changed to 40 K. The final (yellow) curve
is the steady state temperature profile. This is curved due to the dependence of the thermal conductivity on
temperature. The purely continuum model and coupled model are indistinguishable, implying Fourier’s
law (4.31) applies for Lennard-Jones MD under large temperature gradients. (b) The response of the same
system except that a central layer of atoms with 10 times the mass of the other atoms has been introduced
into the atomistic system. The progress of heat through the body is hindered by phonon scattering at the
interface between the different mass regions. The steady state curve is again shown in yellow (From [42])

heat fluxand temperature gradient, on-the-fly estimates can be used to determine
and refine such values concurrently. The Heterogeneous Multiscale Method (HMM)
[110, 111] adopts this approach in which small MD simulations are used to inform
a higher-level continuum model, and in some cases exclusively used to give atom-
istic detail around defects etc. Missing macroscale data (such as microscopic energy

Figure 4-17. Inhomogeneous thermal boundary conditions imposed on a central atomistic system for the
Heterogeneous Multiscale Method (HMM): the border region is divided into bins and a Nosé—Hoover
thermostat is applied to each bin (Reprinted from [Li X, E W (2005) Multiscale modelling of the dynam-
ics of solids at finite temperature. J Mech Phys Solids 53:1650] with permission from Elsevier)
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and momentum fluxes) are estimated using an on-the-fly microscale atomistic sim-
ulation at each point where it is needed. The MD simulation is constrained so that
it is consistent with the local macroscopic state. Inhomogeneous thermal boundary
conditions are achieved by dividing the border region into bins and regulating the
temperature of each bin using a number of Nosé-Hoover thermostats, as shown in
Figure 4-17. To be practical, the size of the individual microscale simulations needs
to be as small as possible, although for accurate thermal conduction the size will
ideally be many times greater than the length of the phonon mean free path.

4.5.2. Dynamic Phonon Models for Insulators

Xiao and Beltyschko [88] investigated one-dimensional heat conduction using
their bridging domain method. They considered the imposition of a steady state
temperature gradient across the atomistic/continuum simulation. As can be seen
from the interfacial condition (4-51), the dynamics of the continuum nodes is
defined by a continuum Hamiltonian. This has the advantage that some of the
dynamic information (about the longer wavelength vibrations) is retained, although
at some computational cost. However, as mentioned previously, the kinetic energy
of these nodes cannot fully represent the vibrational energy of the continuum due to
the reduced number of degrees-of-freedom. The vibrational energy of the missing
degrees-of-freedom is represented by assigning a temperature to each continuum
cell. This temperature evolves according to the continuum energy conservation
equation (4-31). The thermal conductivity is an unknown parameter and is initially
determined from a fully atomistic NEMD simulation to ensure consistency between
the atomistic and continuum descriptions. The transfer of energy between the atom-
istic and continuum regions is determined by the interfacial condition (4-51) in the
overlapping region. This always removes energy from the fine-scale as the positions
of the atoms are constrained to be commensurate with their associated continuum
positions in this region (interpolated from the elemental shape function). This lost
energy provides the energy source for the continuum temperature equation if heat
flow is expected from the atomistic to the continuum region (i.e. the temperature of
the atomistic region is higher than that of the continuum). Otherwise the energy is
fed back into the atomistic region. The continuum temperature equation can also act
as a heat source for the atomistic region. This energy is injected into the atomistic
boundary using a Berendsen thermostat. The resulting temperature profiles are
roughly what is expected (see Figures 25 and 27 in [88]) although the high degree
of thermal noise makes the details of the correspondence hard to determine. As
expected, even with a smooth atomistic-continuum interface (4-51), the Kapitza
effect cannot be avoided entirely.

Fish and Li [112] have proposed a finite-temperature CG continuum model based
on Generalised Mathematical Homogenization (GMH). The problem is divided into
two length and time scales, a coarse-scale and a fine-scale. In the coarse-scale the
body is continuous and in the fine-scale it is discrete. The displacement and inter-
atomic force are expanded into a leading order (coarse length-scale) term and a
higher order fine length-scale term. The acceleration is then expanded into terms that
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include coarse and fine time-scales and length-scales. The resulting MD equations
of motion yield the coupled dynamics of the fine and coarse scales. The fine-scale
motion only functions at the fast time-scale. The coarse-scale motion includes the
fast time-scale and the slow time-scale. The two different time-scales are separated
out to give a coarse-scale wave equation and a coarse-scale thermal equation. The
heat flux depends on the fine-scale and coarse-scale velocities. The coarse-scale is
represented by a dynamic finite element mesh with nodal values for the displace-
ment and temperature. The fine scale is a dynamic atomistic unit cell which exists
at the quadrature points of the finite elements. The computational advantages of this
approach are demonstrated for a few simple examples and it is clearly promising.

4.5.3. Quasi-Static Models for Metals

The contribution of electrons to heat transport is not incorporated into classical
MD simulations. As discussed in Section 4.2.6, this contribution is overwhelm-
ingly important in metals, where the thermal conductivity is typically 2-3 orders
of magnitude higher than that due to the classical (ballistic) phonon heat transport
processes that dominate in insulators (see Table 4-2). One solution to this problem
would be to utilize a full quantum mechanics model for the atomistic simulation,
except this is computationally too intensive. The alternative solution is to prescribe
the thermal properties of the continuum (from experiment) and impose these on the
atomistic region. The disadvantage of this is that heat is then primarily transported
around the system by locally adding and removing heat by the constant action of
strong thermostats. The thermal response of the system is therefore purely homoge-
neous with no dependence on the system size due to scattering from interfaces and
atomistic defects (the electron mean free path is huge compared to the phonon mean
free path so size effects could be important at even higher length scales in metals).
The advantage in strongly regulating the temperature at all points in the simulation,
however, is that the sensitive issues relating to the artificial Kapitza effect and heat
transport across the atomistic-continuum interface is no longer a primary issue.

The most widely adopted of these schemes is the Two Temperature Method
(TTM). This has mainly been used to consider the effects of laser annealing on voids
due to rapid heating (see [7, 113] and references therein) where large atomic rear-
rangement occurs under the action of high temperatures and temperature gradients.
As shown in Figure 4-18, the simulation incorporates two simultaneous models:
atomistic and electronic. The atomistic model is an MD simulation. The kinetic
energy of the atoms is known as the lattice temperature, 7;. The temperature of the
electrons, T,, evolves in the electronic (continuum) region. The two models interact
by the electrons thermalizing the atoms according to

C,T, = V(k,VT,) — MT, — T)) + S

Ty = MT, — T) (4-53)
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Figure 4-18. Two temperature method (TTM) for heat conduction in metals shows two overlap-
ping regions: atomistic and electronic. The electronic system is simulated using a finite-difference
scheme (FD). A laser deposits energy in the electron system according to the source term S in (4-
53). The atomic system is treated by a molecular-dynamic scheme down to a depth / and beyond
that by a continuum approach (FD). The electronic and atomic systems are coupled by the electron-
phonon coupling h-term in (4-53) (Reprinted (Fig 1, pg 115404-1) with permission from [Schifer
C, Urbassek HM, Zhigilei LV, Phys Rev B, 66]. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRB/v66/p115404)

where the standard symbols have been used with the subscripts e and [ referring to
the properties associated with electrons and atoms respectively, S is a (radiation)
heat source (due to the laser) and X is the strength of the electron-phonon coupling.
This final term couples the two simulations and allows the electrons to thermalize
the atomistic system (and vice versa to a lesser extent). The lattice temperature is
enforced via a velocity rescaling thermostat [7]. A less physical model is proposed
by Schall et al. [47] which simply imposes the continuum temperature on the atom-
istic simulation. This is equivalent to A — oo in (4-53) such that 7; = T, with
no characteristic interaction time (apart from the responsiveness of the thermostat).
This is used to examine the effects of frictional heating during sliding. The model is
also extended to Joule heating [114], whereby the heat source term in (4-53) is deter-
mined from the solution for the local electric current determined from an imposed
continuum representation.

4.54. Dynamic Coarse-Grained Models for Metals

Finally, a multiscale method developed by Liu and Li [108] incorporates many
of the features of the CG methodologies discussed previously. As in the bridging
scale method [14, 100, 101], the displacement field is decomposed into a fine-scale
part and a coarse-scale part. The continuum region extends over the entire region
and overlaps the smaller atomistic region. Atoms and coarse-scale nodes are both
dynamic and evolve under the action of fine and coarse scale forces. The coarse-
scale forces are derived from the quantum CG potential due the Einstein model
(4-47). Temperature exists at the coarse-scale and represents the thermal vibrations
of the missing atoms where no fine-scale exists. This evolves by the standard con-
tinuum relation (4-31). The thermal conductivity is specified using (4-17) where the
velocity and mean free path can refer to either phonons or electrons. Material proper-
ties such as heat capacity (4-25) and the thermal expansion force (4-48) are derived
from the quantum Einstein model. This introduces a deformation-dependence on
the heat capacity and hence (4-17) introduces a strain-dependence into the thermal
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conductivity. The momenta of the fine-scale is thermalised by the coarse-scale tem-
perature using Nosé-Hoover chains (NHC). Neither scale has the true dynamics of
an unthermostatted region, but this is unavoidable for the simulation of heat con-
duction in metals. Phonons are absorbed at the boundaries of the fine-scale region
using a Perfectly Matched Layer [107], as discussed above.

4.5.5. Conclusions

A range of concurrent atomistic-continuum models for finite temperature multiscale
simulation in the literature have been discussed. Although zero temperature multi-
scale methods, such as the quasi-continuum method [9, 11], are becoming more
widely used and common tools for the materials modeler, the extension and appli-
cation of these techniques to finite temperature is still in its infancy. As discussed
in Section 4.4.1, the dynamics of CG nodes at finite temperature is now reason-
ably well established, at least in the prediction of thermophysical properties. The
dynamics of a CG node represents the kinetic energy of a single (representative)
atom. Given the correct CG mass, the dynamics can also roughly represent the
propagation of (low frequency) waves through the CG medium (neglecting ther-
malisation of the waves due to interaction with higher frequency modes). However,
the CG node does not have the dynamics of an individual atom and it does not rep-
resent the kinetic energy of the missing (slave) atoms it claims to represent. Only
the average position of the CG node is actually a true representation of the represen-
tative atom itself. In this respect finite temperature CG dynamics will always be a
somewhat abstract feature of multiscale simulation. This raises questions as to how
these CG degrees-of-freedom should be treated in a consistent multiscale frame-
work. In isothermal simulation these issues are less important. However, multiscale
simulations are almost never exactly isothermal as they are typically subject to inter-
nal or external stimuli. As seen in Section 4.5, the elemental temperature must be
recorded to represent (at least) the thermal energy of the missing (slave) atoms for
inhomogeneous thermal problems in order to conserve thermal energy and model
heat transport. In general, the requirements of the CG medium need to be assessed
for a particular problem. Does the CG region need to retain dynamic information
(about low frequency vibrations) or is a (deformable) quasi-static CG medium, such
as those in Sections 4.5.1 and 4.5.3, sufficient? Is the objective to determine the ther-
mal transport properties of a particular device from the simulation? If this is the case,
only the phonon-phonon (ballistic) contribution can be determined from classical
atomistic models, such as those outlined in Sections 4.5.1 and 4.5.2. This is strictly
only applicable to poor electrical conductors (typically carbon and silicon) although,
as discussed in Section 4.2.6, approximate methods for estimating the thermal con-
ductivity for metals from such simulations do exist. Imposing the experimental
thermal properties of a material on the multiscale model, as in Sections 4.5.3 and
4.5.4, is an attractive option. This is primarily beneficial in the simulation of metals,
but it is still applicable to other materials. Taking such strong thermostatting control
eliminates many of the issues associated with atomistic/continuum interfaces and
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consistency between descriptions. However, such methods are only strictly applica-
ble to the simulation of fairly dramatic situations which are insensitive to changes in
the dynamics due to the thermostats. The thermal model is necessarily a bulk model
which does not represent the finite size effects due to interfaces and defects seen in
Section 4.3. There are clearly a number of different approaches for specific problems
and many of these have been addressed, at least in part, by the models reviewed in
this chapter. Most of the proposed multiscale modelling approaches discussed here
are in their early stages and require more detailed and demanding simulations to
fully illustrate the complete competency of the model. No one approach currently
addresses all the issues. This is primarily due to the inability of classical MD sim-
ulation to fully represent low temperature phonon heat transport and heat transport
due to electrons.
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Abstract: The contact resistance problem between dissimilar or bonded substrates is particularly
important at the nanoscale, since the length scales associated with the structures and
energy carriers become comparable. We provide a basic understanding of nanoscale
thermal properties, focusing on nanoscale composition and surface structure effects on
local and bulk thermal properties, and discuss how surface modifications can create novel
materials and structures that have tunable thermal properties. Since nanoscale flows are
typically part of larger scale systems and we are confronted with an inherently mul-
tiscale problem, a multiscale approach is required to integrate atomistic simulations
with computational methods suitable for flow phenomena at larger scales. We begin by
describing how nanoscale thermal transport can be investigated using molecular dynam-
ics (MD) simulations for ideal (defect-free) materials, with defects, and with simpler
(solid-solid, solid-liquid, solid-vapor, etc.) and more complex (solid-liquid-solid, solid-
liquid-vapor, liquid-vapor-liquid) material contacts. Next, we describe how the mesoscale
lattice Boltzmann method (LBM) can be used to model thermal transport. Then, we
describe a hybrid model that couples MD with LBM. Finally, we provide examples of
several problems suitable for the multiscale modeling of thermal transport

Keywords:  Multiscale methods, Molecular dynamics, Lattice Boltzmann method, Nanoscale
transport, Heat transfer

5.1. INTRODUCTION

The contact resistance problem [1] between dissimilar or bonded substrates is par-
ticularly important at the nanoscale, since the length scales associated with the
structures and energy carriers become comparable. The thermal management of
electronic packaging of thermo-electrics [2], nanofabrication [3], and heat trans-
fer though microchannels [4] has prompted atomic-level investigations of this
resistance.
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5.1.1. Interfacial Resistance

When thermal energy is transported through a solid-fluid interface of area A, it pro-
duces a temperature discontinuity across the boundary [5]. If the heat flow Q” across
the interface is small, the temperature difference across the interface AT is thought
to be proportional to it. The effective thermal resistance AT/Q’ is typically expressed
as the Kapitza resistance [6-10], R=A AT/ Q' (m? K/W). The first measurements of
R were made by Kapitza for metal surfaces suspended in He II (the superfluid phase
of “He) in the temperature range between 1.6 and 2.12 K. These and other similar
experiments involving other substances and temperatures suggest that R oc 7%. The
Kapitza resistance can be represented as the inverse interfacial conductance [11],
i.e., R =1/G = AdT/Q/, or in terms of the Kapitza length / = RA. Here, A denotes
the thermal conductivity of the bulk medium and / is the equivalent width of the
bulk medium over which the temperature drop is the same as over the interface [12,
13]. For a normal liquid-solid interface, / is on the order of few molecular diameters
[12].

Investigations of this conductance at the nanoscale have been generally restricted
to inert defect-free ideal interfaces that do not consider dissimilar molecules placed
on the interface, interfacial defects, or the application of external fields. The role of
defects, e.g., when carbon nanotubes (CNTs) bond to other materials, have catalyst
nanoparticles at their tips, or contain atomic vacancies and array misalignments,
is also important. (For instance, the measured thermal conductivity along the axial
direction of multiwall CNTs can be much smaller than theoretical predictions for
idealized single-walled CNTs [14]).

5.1.2. Phonon Behavior Through Acoustic Waves

Phonons are quanta of lattice vibrational energy. They play a major role in determin-
ing the thermal and electrical resistances of a material. The effects of the interfacial
thermal (Kapitza) can be explained in the light of phonon scattering [11, 15].
The thermal conductivity of an interface depends on electron-phonon and phonon-
phonon interactions as well as electron and phonon scatterings [16]. Calculating
phonon interactions that limit thermal conductivity is an undoubtedly complex prob-
lem but can be mechanically examined by considering phonon-phonon interactions
that lead to acoustic waves [17].

Like other transport and thermodynamic properties, the thermal behavior of
nanostructured interfaces, e.g., in nanoelectronic devices or across nanometer scale
point like constrictions, cannot be simply inferred by extrapolating bulk behavior to
the smaller scales. Nanoscale thermal transport differs from transport in bulk materi-
als because the mean free path for phonon scattering can be large compared to device
dimensions and lead to interesting physics such as quantum thermal phenomena
[18]. When the thermal transport dimension is comparable to the dominant phonon
wavelength, the interface thermal resistance, or Kapitza resistance, is considerably
lower than the calculated ballistic resistance because bulk phonon dispersion and
bulk potential are no longer accurate [19].
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The thermal resistance can be explained through the acoustic mismatch model,
which assumes it to arise from the large impedance to the passage of thermal
phonons across a solid-fluid interface. The acoustic impedance governing the trans-
mission and reflection of these phonons is the product pc of the density and sound
velocity. It can be many orders of magnitude greater for a solid than a fluid. Due
to an acoustic mismatch, a large fraction of the phonons impinging upon such an
interface from both sides are unable to pass through it. This model typically over-
predicts the thermal resistance and is considered as an upper bound on it. The diffuse
mismatch model provides a lower bound on R. It assumes nonspecular behavior at
the interface, i.e., that all phonons are diffusively scattered. The phonon transmis-
sion probability is again related to a mismatch, in this case between the different
densities of the solid-fluid states [7].

5.1.3. Strategies to Modulate the Interfacial Resistance

The nature of a nanoscale interface has an important influence on thermal trans-
port [6, 9, 10]. An understanding of phonon behavior suggests several strategies to
reduce the mismatch at the interface, thus decreasing R and increasing Q'/A, as fol-
lows. (1) Since the product pc increases with pressure, one approach could be to
simply increase the fluid pressure to facilitate better acoustic matching, thus lower-
ing R. (2) The interface could be made more solid-like by adsorbing and ordering
additional fluid molecule layers [6, 7, 10, 20], e.g., by making the surface more
hydrophilic [21, 22]. For both cases, the impedance of a dense solid-like layer on
the fluid side would be intermediate between the corresponding values for the solid
and fluid. Once formed, an open question is if these properties are relatively pressure
independent [23].

5.14. Role of Surface Modifications

Surface structure has a profound effect on a material’s wettability and, thus on
its thermal transport characteristics. We address this with a brief and rudimen-
tary discussion of intermolecular and surface forces [24]. Intermolecular forces are
responsible for the cohesion of molecules in solids and liquids. Water is different
from many liquids in that it is a polar molecule that has strong hydrogen bonds
(~10-15 kJ/mol) between the water molecules. Other non-polar liquids are held
together by weaker van der Waals forces (~1 kJ/mol), while hard solids are held
together by exceptionally strong covalent or metallic bonds (~500 kJ/mol). Non-
polar substances are generally incapable of strongly interacting (associating) with
water. These materials are hydrophobic, as water does not “wet” their surfaces. A
familiar example is wax upon which water beads up, or certain forms of carbon
nanostructures deposited upon Si [25]. On the other hand hydrophilic materials are
either polar or contain electronegative atoms capable of interacting strongly with
water.

As another example, carbon films can be deposited [26] in the form of nanotubes
[27, 28] and nanobeads, e.g., on silicon wafers, in order to modify the substrate
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Figure 5-1. Images of ~2 mm water droplets placed on a Si disc containing a carbon nanobead
deposit [25]

surface wettability, as shown in Figure 5-1 [25]. Carbon nanostructures, particularly
nanotubes, also provide a test bed for synergistic simulations and measurements [29]
such as of their thermal transport properties [30-32], flow within and outside the
structures [33-36], energy exchange with fluids [37, 38], interfacial thermal trans-
port between adjacent nanostructures [39], and effects of the boundary resistance
[40] and chemical bonding (e.g., between the matrix and fiber on thermal transport
in case of nanotube composites [41]). Some of this research has been motivated
by the potential use of carbon nanotubes in composite materials to enhance their
thermal conductivity [42—45]. Thus, we note that there are many interesting config-
urations that lend themselves to simulations to elucidate the nanoscale interfacial
thermal properties between dissimilar materials.

5.2. CONTINUUM LIMITS

In the absence of interfaces, nanoscale transport can follow the regular continuum-
scale physical relations, even for nanoscale segments containing only 10 molecules
in each spatial direction [21, 46—48]. However, the nature of an interface and the
material adjacent to it have an important influence on the associated nanoscale trans-
port phenomena [9, 10, 21, 36, 46, 48]. For instance, transport in nonpolar fluids
deviates significantly from the predictions of continuum theories because of thermal
fluctuations [49-51]. In contrast, heat and mass transport in strongly polar fluids that
have significant intermolecular interactions (such as the high dipole moment and
hydrogen bonding in water) can be much different. Here, molecules lose memory of
their initial or previous velocities, i.e., their local energies, much more rapidly after
collisions occur, thereby significantly attenuating the role of thermal fluctuations.
Therefore, the influence of polarity and the action of external fields (e.g., electric or
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magnetic) across interfaces on nanoscale transport phenomena must be investigated
more closely [46, 48].

5.3. MULTISCALE INVESTIGATIONS
5.3.1. Atomistic and Multiscale Simulations

Nanoscale thermal transport can be investigated using molecular dynamics (MD)
simulations for ideal materials, those with defects, and with simpler (solid-solid,
solid-liquid, solid-vapor, etc.) and more complex (solid-liquid-solid, solid-liquid-
vapor, liquid-vapor-liquid) material contacts. Examples of such simulations include
examinations of liquid thermal conductivity [52], thermal transport in the so-called
“nanofluids” [53] (a perplexing misnomer), or Si [54], and the effects of grain size
[55, 56] and phonon scattering [57] on thermal resistance across grain boundaries.
Nonequilibrium (NEMD) simulations that rely on the imposition of temperature gra-
dients within the system are used to investigate thermal transport across solid-solid
[58] and liquid-liquid interfaces [59], across thin films [60-63], and to determine
transport properties such as the interfacial (Kapitza) thermal resistance [12]. Their
success depends on how well atomic interactions are modeled and how long the
simulation lasts.

MBD simulation methodology can handle both equilibrium and nonequilibrium,
and unsteady and steady state problems. It can account for the implicit effects
of acoustic waves. Temperature is maintained in such simulations by a Gaussian
thermostat where molecules have an initial Gaussian velocity distribution corre-
sponding to the local temperature. The rate of heat transfer can be obtained from
the energy supplied by the heat source (higher temperature) that is removed by
the heat sink (lower temperature). One method that we have used uses a fifth-
order Gear predictor—corrector algorithm for translational motion; a fourth-order
predictor—corrector algorithm for rotational motion is used by employing the quater-
nion method [36, 46, 48]. We can investigate unusual effects, such of electric
fields [36, 48], on the thermal transport rate for both atomistic simulations and the
multiscale hybrid simulations. We are also able to simulate complex interactions
such as the impingement of nanojets on inert and variously hydrophobic surfaces
(e.g., shown in Figure 5-2).

Nanoscale flows are typically part of larger scale systems, e.g., when nanoflu-
idic channels interface with microfluidic domains, and we are confronted with an
inherently multiscale problem. Hence, a multiscale approach is required to integrate
atomistic simulations with computational methods suitable for flow phenomena at
larger scales [64]. Multiscale analyses bridge length and time scales [65] and suit-
ably incorporate boundary conditions across them [66]. The boundary conditions
for realistic surfaces are often unknown, but become increasingly important as the
system size decreases into the micrometer and nanometer scales. These unknown
boundary conditions have led to intense interest in the development of hybrid meth-
ods that can determine interfacial boundary conditions atomistically while solving
continuum equations away from the interface [67].
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Despite the success of atomistic simulations, their limitations in accessible length
and time scales are stringent and allow only for the analysis of elementary systems
for rather short times. To illustrate these limitations, consider that the time step
dt in an MD simulation is dictated by the fastest frequency one needs to resolve.
For a simulation of pure water, df = 2 fs when models with fixed O-H bonds and
H-O-H angles are used; in other words, 500 million time steps are required for
1 ws of simulation time. With the optimistic assumption that the execution of a
single time step takes 0.1 s, a total of some 19 months of CPU time is required
[68]. Since full atomistic simulations are prohibitively expensive, hybrid atomistic—
continuum simulations are necessary to study large systems for reasonable times.
Here we describe a hybrid model coupling the molecular dynamics (MD) and lattice
Boltzmann method (LBM). Thus, it is possible to take advantage of the mesoscopic
modeling inherent in LBM to allow for a broader geometric flexibility than the one
allowed for in finite volume solver [64].

5.3.2. Molecular Dynamics (MD) Simulations

The most fundamental theoretical techniques that can provide realistic results are
molecular simulation methods such as MD or Monte Carlo simulations. These meth-
ods have been widely used for investigating transport phenomenon at the nanoscale
[47, 48]. MD is a deterministic method that solves for the equation of motion of
individual molecules and looks at the time evolution of the system. The position of
each atom/molecule is determined by solving the equations of motion

d d
i =i and mi— Vi = F,=— § VU(rij)
JF1

where

o \2  [o\°
U(rij) = 4ej <F_> — (r—> + Up (ry) . (5-1)
ij ij

Here, r; denotes the position vector of an atom, v; the corresponding velocity
vector, rjj the relative position between sites i and j, and U the Lennard-Jones poten-
tial. The term Up(ry,) is the boundary potential and accounts for the interaction of
the boundary region with the surrounding medium. MD is particularly advantageous
in the case of solids, higher density fluids, such as gases under high pressure, or lig-
uids, and can be used to calculate dynamic properties. The accuracy of the results
predicted by MD depends on the accuracy of the potential function that is used.
Therefore, one needs to be careful in selecting the potential function such as the
representation for U.

Simulations can be based on the following steps: (1) Establish the initial config-
uration or geometry of a nanostructure. This will vary with the specific geometry of
interest such as the molecular details and crystal structure of a solid-liquid interface;
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and (2) Prescribe the intermolecular interactions. The interactions between a solid
crystal and the liquid phase must be modeled as well as the liquid-liquid or solid-
solid interactions. In the case of a transition metal, e.g., iron, it is possible to use
the embedded atom model (EAM) to accurately model the solid phase. The liquid
phase can be modeled with a Lennard-Jones potential.

MD is also a classical approach in which each vibrational mode is equally excited
and it does not consider electron contributions to heat conduction. Thus, in the
context of phonon transport it is rigorously applicable only to nonmetallic solids
above their Debye temperatures Tp [69]. For large enough interface temperatures
T when Tp # f(T), the thermal resistance is inversely proportional to the interface
temperature, i.e., R o 77 [70].

5.3.3. Thermal Lattice Boltzmann Method (LBM)

The fundamental concept defining the LBM is the construction of simplified kinetic
models that incorporate the essential physics of microscopic and mesoscopic pro-
cesses so that the averaged macroscopic properties obey the desired macroscopic
equations [71-73]. The Boltzmann equation with the Bhatnagar-Gross-Krook
(BGK) approximation is [74]

_f_feq
at T

where f(r, e, 1) is a one-particle probability distribution function defined such that
[f(r, e, 1).d°r.d?e] is the number of particles that at time 7 are located within a phase-
space control element [d’r.d’e] about r and e (where r is the particle’s coordinate
in physical space and e is the particle’s discrete velocity) [75]. Here, a denotes
the external force per unit mass acting on the particle. The last term in the BGK
approximation of the Boltzmann equation represents the collision between the two
particles and is the BGK collision operator [76]. The equilibrium distribution f,, is
generally taken to be the Maxwell-Boltzmann distribution for molecules for which
Vef ~ Ve feq = %7 feq- Thus,

<3+e~Vr+a-Ve>f(r,e,t):

of  ffu  a-e—u
o Te W = T TRT

This classical view must be modified to model thermal transport. The thermal
energy distribution model uses a new distribution function to simulate the temper-
ature field, whereas the density and velocity fields are simulated using a modified
density distribution function. The modified density distribution function and new
thermal energy distribution function satisfy the following equations (where time and
space are discretized along a discretized finite set of velocity directions ey) [77],

feq-

8t
7, + 0.56¢

T, Fy 0t

7, +0.58¢°
(5-2a)

Fo (81 + eadta+60) = fo (v = [Fe trey =189 i) | +
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and
- - ot - Tofo (Tist) G St
8a (Ti + €y 81,1 + 81)—go (Tit) = T o 0501 (8o (rit) — 8o (mﬂ]*‘#
(5-2b)
where, F, = a‘(e"R—;“W ;q (r;,1), a the force per unit mass and
ou
Go = (&g — 1) - EJr(ea'V)u .

Relaxation times are related to the fluid viscosity and thermal diffusivity through
the relations v = (1/3)t, (8x/81)> and x = (1/6)1. (8x/81)?, respectively. Fluid
density, momentum, and energy are calculated from the moments of the distribution
function, p = Y fo, pu = Y fyey + padt/2, and pe = > gy — (61/2) Y fuqa-

o o o o

Pressure can be obtained from the relation p = (1/3)pc?.

The original density distribution function f, and thermal distribution function
gq are used for the boundary conditions. These original unmodified distribution
functions are related to the modified ones through the following equations,

fo = fa + 1/2%) (fu — f2") — (51/2)F4,

and
Ba = 8a + (81/270) (80 — 8a') + (81/2)f e

The bounce-back rule for the nonequilibrium distribution function [78] can be
used for the boundary condition. The density distribution function at the boundary
should satisfy the condition fyy - = f;eq, where e, and eg are in opposite directions.
Thus, the thermal boundary condition is [77]

- = = (- ).

5.3.4. Hybrid Multiscale Methodology

In a hybrid multiscale simulation, one key issue is the appropriate coupling of
length and time scales for the two descriptions. Significant progress has been made
in solving both problems in the case of rarefied gas flows [79, 80]. However, for
dense fluids the situation is more complex since the atomistic description involves
interacting particles. Two classes of coupling schemes for dense fluids have been
proposed, one based on direct flux exchange [81-83] and the second on the Schwarz
alternating method [84, 85]. Direct flux exchange schemes decouple length but not
time scales while the Schwartz method finds a consistent solution iteratively in both
atomistic and continuum domains.
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Figure 5-3. The multiscale computation domain

The Schwarz method avoids the direct imposition of fluxes but ensures flux con-
tinuity under the assumption that the transport coefficients of the two descriptions
match one another in the overlap region. Here, the computational domain is decom-
posed into two overlapping regions: an atomistic region described by MD and a
continuum region described by LBM as shown in Figure 5-3. A Schwartz itera-
tion consists of computing the continuum velocity field u.(#.) and temperature field
T.(t.) with boundary conditions set by the previous atomistic cycle u,(#.—1) and
Ta(t—1) and by an external boundary condition that depends on the system config-
uration. Then, u.(7.) and T¢(¢.) are used for setting up the boundary condition for
computing u, (%) and Ty(%:). The iteration runs until convergence.

5.3.5. Coupling MD and LBM

The coupling between MD and LBM leads to a number of challenges that must be
addressed including (1) the presence of periodic boundary conditions in the MD
simulations, (2) the sampling of the MD solution over small regions that will serve
as a boundary condition for the continuum, and in turn, (3) the imposition of the con-
tinuum boundary conditions onto each cell of the atomistic domain. The presence
of periodicity in MD simulations requires a mechanism to compensate for particles
that exit the boundary. Simplified models such as elastic boundaries and/or particle
reinsertion often result in a strong density gradient and unphysical system behavior.

A boundary force can be imposed to ensure a correct mean pressure for at the
MD/LBM interface that will minimize local disturbances in flow quantities like
pressure and density. A number of boundary force models have been employed in
hybrid schemes. The simulations can use a model [68] that maintains constant den-
sity in the atomistic portion of the domain. This boundary model accounts for the
local structure of the fluid described by a suitable radial function g(r). The force
components normal to the wall and the potential energy contributions weighted by
g(r) can be integrated over the part of the cutoff sphere that lies outside the atomistic
domain, as shown in Figure 5-4. The integration can, for instance, be performed
in polar coordinates, where z is normal to the boundary and x denotes the radial
direction as
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Figure 5-4. Schematic for calculating the boundary force to compensate for a nonperiodic boundary
condition

N
aU 2z
Fp, (rw) = —2mp, f / 12- 6() ddZ,
z=ry x=0

and

Up (rw) = 2mpy / / g (r) Ura—¢ (r) xdxdz, (5-3)

z=ry x=0

re denotes the cutoff radius, p,, the average number density, r = +/x% + z2 and ry
the distance to the wall. F(r) and Uj(r) for a Lennard—Jones fluid can be obtained
by either using a readily available parameterization of g(r) [85] or by performing
the integration for Eq. (5-3).

This boundary force does not, however, guarantee that particles will not exit
the boundary of the atomistic domain. Particles should, in fact, be able to exit
the domain because of the interaction of the atomistic region with the surround-
ing medium. Therefore, it is necessary to employ a hard specular wall that moves
with the local fluid velocity. Particles that strike the wall are specularly reflected,
i.e., their velocity components normal to the wall are reversed while the other
components are not altered by the impact. A specular wall acts as a plane of sym-
metry and prevents density perturbations close to it. The instantaneous momentum
of the atomistic system is altered by each particle reflection although the average
momentum remains constant. At the end of each time step these walls are reset to
their initial positions to maintain a fixed frame of reference. The particles remain-
ing outside the computation domain after wall resetting are reinserted in inflow
regions following the Usher algorithm [82], which in turn maintains a constant
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number of particles for a steady incompressible flow and minimizes disturbances
in the potential energy of the system.

MD velocities can be sampled in cells of the same size as the cells in the LBM
domain. These velocities can be imposed as boundary conditions for the continuum
calculation using two coupling methods. The first [68] amounts to imposing MD
velocities within a one cell wide strip located at a distance §; from the MD sub
domain as shown in Figure 5-3 while the other couples velocity gradients [64].

54. EXAMPLE PROBLEMS

Future investigations should examine the effects of various surface treatments on
both solid-solid and solid-liquid interface thermal conductances, e.g. through the
fundamentals of hydrophobic and hydrophilic surfaces [21, 22], and an exam-
ination of the effects of monolayers that can be experimentally self-assembled
and surfactants. Molecular dynamics simulations [86-88] predict that the inter-
face thermal conductance should increase significantly with increasing strength
of the bonds between the solid and liquid. In particular, the most complete work
predicts a substantial difference in conductance between wetting and non-wetting
interfaces. However, there are no comprehensive or systematic synergistic sim-
ulation and experimental investigations of the effects of solid-liquid bonding on
interface conductance. Thus, suggestions for future work involve examinations of
semiconducting and oxide materials, which represent some of the simplest sys-
tems of hydrophobic and hydrophilic surfaces. Many semiconductors, e.g. Si, are
hydrophobic, but in the presence of oxygen many of these surfaces oxidize, e.g.,
to SiOy, and become hydrophilic. Since the thermal properties of these materi-
als are well known, they make for ideal test cases. After examining these solid
hydrophobic and hydrophilic layers, these investigations should continue by exam-
ining self-assembled functional groups that are either hydrophobic or hydrophilic.
These self-assembled layers have great technical importance as they may be applied
to a wide variety of solid materials.
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Abstract: Predicting the integrity of metallic thin films deposited on semiconductors for micro-
electromechanical systems (MEMS) applications requires a precise understanding of
surface effects on plasticity in materials with nano-sized grains. Experimentally, the use
of nanoscale contact probes has been very successful to characterize the dependence of
flow stress on mean grain size in nanocrystalline metals. From atomistic simulations,
several models of plastic yielding for metal indentation have also been proposed based
on the nucleation and propagation of lattice dislocations, and their interaction with grain
boundaries beneath penetrating tips. However, model refinement is needed to include the
characteristics of materials whose grain size is much smaller than the typical plastic zones
found in contact experiments. Particularly, cooperative deformation processes mediated
by grain boundaries, such as grain rotation, deformation twinning, and stress-driven grain
coarsening, can simultaneously emerge for very small grain sizes (< 20 nm), thus making
a predictive understanding of plastic yielding elusive. This chapter summarizes our recent
progress in using multiscale modeling to gain fundamental insight into the underlying
mechanisms of surface plasticity in nanocrystalline face-centered cubic metals deformed
by nanoscale contact probes. Two numerical approaches to model contact-induced plas-
ticity in nanocrystalline materials, the quasicontinuum method and parallel molecular
dynamics simulation, are reviewed. Using these techniques, we discuss the role of a
grain boundary network on the incipient plasticity of nanocrystalline Al films deformed
by wedge-like cylindrical tips, as well as the processes of stress-driven grain growth in

nanocrystalline films subjected to nanoindentation

Keywords:  Nanoindentation, Nanocrystalline metal, Atomistic simulation

6.1. INTRODUCTION

Nanocrystalline films of pure face-centered cubic (FCC) metals such as Al, Ni
and Cu with a grain size less than 100 nm, are commonly used in surface-
micromachining to process micron-scale structures and devices including micro-
electromechanical systems (MEMS) [1-5]. Characterizing the mechanical and
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tribological behavior of nanocrystalline metals upon contact loading remains an
essential task in predicting the structural integrity of such micro-components [0,
7]. In addition, past studies [8—10] have proved that a marked transition in plasticity
mechanisms operates with a reduction of grain size from the microcrystalline to the
nanocrystalline regime in FCC metals.

While advanced characterization techniques have been used to study the mechan-
ical behavior of thin films, such as MEMS-based tensile testing [11-14] or
membrane deflection experiments [15], small-scale contact experiments, such as
nanoindentation, have been used ubiquitously to characterize the nature of yield
phenomena and the influence of grain size on hardness and strengthening in
nanocrystalline metals [16-22]. A nanoscale tip attached to the cantilever beam of
an atomic force microscope (AFM) that was made to measure the nanomechan-
ical behavior of metallic thin films is shown in Figure 6-1 along with nanoscale
indentations performed on a nanocrystalline Ni surface. Such probes are particularly
well-suited for the studies of plasticity transition in nanograined metals, because
they can be highly sensitive to the heterogeneous nature of plastic deformation in
very confined volumes of materials.

In earlier studies [9, 24, 25], particular focus has been placed on examining
how dislocations interact with surrounding grain boundaries (GBs) by performing
nano-indentations at the center of single nanograins, that is, by forcing the contact
area to be much smaller than the grain size. Yang and Vehoff [25] have observed
that the dislocations, which nucleate below the tip, only interact directly with the
neighboring interfaces for grain sizes below 900 nm. At this scale, the point of
elastic instability is clearly defined by a pop-in event whose width is strongly cor-
related to the size of the indented grain. The smaller the grain size, the smaller the
pop-in width and the harder the material. For grain sizes comparable to the con-
tact area, Minor et al. [24] have also revealed using in situ transmission electron
microscopy (TEM) nanoindentation that significant dislocation activity could take

)
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Figure 6-1. Measurements of nanomechanical properties in thin films using nanoscale contact probes.
(a) SEM image of a made-to-measure cube-corner tip attached to the cantilever beam of an AFM; (b)
AFM-enabled nanoscale indentations performed on a 50-pum-thick nanocrystalline Ni film [23]
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place in ultrafine-grained Al thin films before the first obvious jump in displace-
ment in the load-depth nanoindentation curves. However, a predictive understanding
of plastic yielding in nanocrystalline metals during indentation remains elusive,
primarily for two reasons:

* While the nanoscale indentations shown in Figure 6-1b can be considered as
physically small, these contact zones can still be an order of magnitude larger
than the mean grain size of the film tested. In this case, it is the coopera-
tive deformation of the dense GB network that dominates the plastic behavior
in nanocrystalline materials. All experimental evidence shows that the pile-
up of deformation left around residual impressions varies dramatically from
homogeneous at large grain size (> 20 nm) to inhomogeneous with intense
plastic deformation in highly-localized shear bands for very small grain sizes
(< 20 nm) [9, 21, 26, 27]. Furthermore, new deformation mechanisms, includ-
ing grain rotation, deformation twinning, and stress-driven grain coarsening,
can simultaneously emerge for very small grain sizes [28-32]. Therefore, some
model refinement is required in order to include the characteristics of materials
whose grain size is much smaller than the typical plastic zones found in contact
experiments.

* GB-mediated deformation phenomena have been observed during the nanoin-
dentation of nanocrystalline FCC metals. Abnormal grain growth was found by
Jin et al. [29] during in situ TEM experiments of nanoindentation in nanocrys-
talline Al films. For instance, Figure 6-2 shows different snapshots from Jin
et al.’s study, where a local increase in brightness related to grain rotation,
indicates that grain growth takes place under the tip as indentation proceeds.
Stress-driven grain growth was also observed by Zhang et al. [30, 31] during
the micro-indentation of nanocrystalline Cu films. These authors showed that
grain growth occurred at faster rates at cryogenic temperature than at room tem-
perature, and that the purity of the material influences the grain growth process.
Since it is well-established that the flow stress characterized by hardness testing
strongly depends on the material grain size [8, 33-35], the process of contact-
induced grain growth appears to be undesirable for most microscale systems
with nanocrystalline characteristics. It is therefore critically important to under-
stand the mechanisms of GB motion under nanoscale contact in order to achieve
control over such phenomena.

This chapter presents an overview of quasicontinuum (QC) method and large-
scale molecular dynamics (MD) simulations used to shed light on the funda-
mental mechanisms of surface plasticity in pure nanocrystalline metals deformed
by nanoscale tips. The numerical methods related to the atomistic modeling of
nanoscale contact in nanocrystalline films are reviewed in Section 6.2. Section 6.3
describes the effects of interatomic potentials on randomly-oriented microstructures
and the energies at GBs predicted by atomistic simulation. Using the QC method,
we focus in Section 6.4 on the role of a GB network on the incipient plasticity of a
7 nm-grain-size nanocrystalline Al film deformed by a wedge-like cylindrical tip. In
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(a)
Indenter

Figure 6-2. Snapshots during in situ TEM nanoindentation of a polycrystalline Al film showing abnor-
mal growth of nano-sized grains. (a) No grains in strong diffraction condition under the tip area indicated
by the white arrow. (b) A grain with size about 10 nm has appeared. (¢)—(d) The size of the grain has
become larger with increasing load. Reprinted from [29] with permission from Elsevier

Section 6.5, using both MD and QC methods, we discuss the mechanisms of stress-
driven grain growth in nanocrystalline Al during nanoindentation. An outlook for
future research in this rich area is also presented in Section 6.6.

6.2. ATOMISTIC MODELING OF NANOSCALE CONTACT
IN NANOCRYSTALLINE FILMS

Earlier attempts made to model the nanoindentation of nanocrystalline materi-
als by classical MD simulations have usually employed a spherical repulsive
force to model virtual tips varying from 30 to 98 A in diameter [36-42]. As
such, contact areas were, to a large extent, smaller than the grain size, and the
plastic zone produced by these tips was only limited to one or two grains. In
contrast, Szulfarska et al. [43] have simulated the nanoindentation of normally-
brittle nanocrystalline ceramics with a four to one ratio between tip diameter
and grain size, which revealed unusual GB-mediated plastic behavior. Different
numerical approaches have also been used to study the problems of contact
in single-crystal and nanocrystalline films using concurrent multiscale model-
ing [44-48]. Using the QC method, we show here that it is critically impor-
tant to simulate nanoindentation tips with more realistic sizes. Furthermore,
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atomistic simulations in FCC metals have been performed using different
embedded-atom-method (EAM) potentials, from which predictions of stacking fault
energies can lead to strong differences within the same metal [49]. The impact of the
interatomic potential on cooperative plastic processes, however, is not fully under-
stood. This chapter focuses on the modeling of nanoscale contact in nanocrystalline
metal films using MD simulations with LAMMPS [50] and the QC simulation
technique [51]. These two methods and specific numerical tools for the analy-
sis of stresses and the visualization of defects and GBs are briefly recalled in the
following.

6.2.1. Simulation Methods

6.2.1.1. Molecular Dynamics

Classical MD simulation is a common technique for the numerical investigation of
physical and dynamical properties of matter at the molecular level. Each atom in the
simulation is treated as a point mass whose velocity and position are computed by
time integration of the Newton’s equations. The computational task in a typical MD
simulation is to solve the set of coupled differential equations given by

dv; . o
mi% :ZFZ (ri,rj)+ZZF3 (ri,rj,rk)-l-... (6-1)
J ik
dri .
7];1 =V (6—2)

where m; is the mass of atom i, 7; and V; are its position and velocity vectors, respec-
tively, F» is a force function describing pairwise interactions between atoms, F3
describes three-body interactions, and many-body interactions can be added in the
same way. Numerical integration of the atomic positions is usually performed using
the Verlet method [52] with a time step, which may be varied from 1 to 5 fs for
studies in crystal plasticity. The calculations are also conducted at constant temper-
ature (NVT) using a Nose/Hoover temperature thermostat [53]. Furthermore, the
calculations on large-scale systems must take full advantage of massively-parallel
computing with open-source MD simulation software such as LAMMPS [50].

6.2.1.2. Quasicontinuum (QC) Method

The QC method, which was developed by Miller and Tadmor [51], is a multi-
scale atomistic/continuum simulation technique combining both finite element and
molecular statics methods. This technique therefore alleviates the need for repre-
senting all the atoms as in classical MD simulation. A complete description of the
QC method can be found in the review by Miller and Tadmor [51]. A typical QC
model consists of atomistic zones (non local) and finite element zones (local). The
regions subjected to high plastic deformations are modeled atomically, while the
rest is modeled by finite elements. Each node in the mesh is a representative atom,
or “repatom”, which can either represent just itself (non local zone as well as some



156 V. Dupont and F. Sansoz

atoms of the atomistic/continuum interface), or a group of atoms (local zone). The
total energy of the system is therefore computed such as

Nrep
Eyo = Z ngEq ~ Eexacts (6-3)

a=1

where Niep is the total number of repatoms in the system, n, is the number of real
atoms the repatom is representing (n, = 1 for non local atoms), and E|, is the energy
of each repatom. This formulation permits to conduct concurrent calculations on
both local and non-local regions, which largely decreases the number of degrees
of freedom as opposed to MD simulations with corresponding model dimensions.
Some discontinuities in energy may also appear at the local/non-local interface, but
these can be eliminated by taking ghost forces [51] into account. The minimum
energy is calculated at each loading step, after a new set of forces or displacements
is applied, using a conjugate gradient method. The QC method can also apply a
“nonlocality criterion” to the model in order to verify whether atoms should be
local or non-local. This criterion is defined by:

max A} — A,lz‘ <e, (6-4)
a,b;k

where A{ is the kth eigenvalue of the right stretch tensor U, = /FIF, obtained
from the deformation gradient F, in element a, k = 1...3, and the indices a and
b run over all elements within a cutoff distance of a given repatom. The threshold
¢ is usually determined empirically, but a value of 10% gives reasonable results in
crystal plasticity. If the inequality is not satisfied, the repatom is made non local and
vice-versa. It is worth noting that, because of the energy minimization procedure,
the QC method can only predict the athermal behavior of crystalline materials at
0 K. Furthermore, Eq. (6-4) may be used with remeshing techniques in order to
adapt the finite element mesh as a function of the deformation. Some examples of
adaptive QC simulations can be found elsewhere [54, 55].

6.2.2. Modeling of Spherical/Cylindrical Contact in Nanocrystalline
Metals

Two methods have been used to model tips in contact problems using atomistic
simulation. The first method consists in assuming the tip to be either spherical or
cylindrical with a virtual repulsive force such that:

F(r) = —k(r — R)* (6-5)
with k a specified force constant (k = 10 N/m2), R the tip radius, and r the distance

between the atom and the center of the tip. This method removes the effects of
adhesion and friction that are typically applied by real indenters. Second, the tip can
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be modeled by representing all the atoms. If kept rigid, solid tips can be used for
direct comparison with different contact theories including adhesion effects [56].

A Voronoi tessellation based on a constrained-Delaunay connectivity scheme
[57] is commonly used to model polycrystalline films with randomly-oriented
microstructures, i.e. similar to natural GB networks. Reference points are first ran-
domly placed at a specified mean distance from each other in the surface or volume
studied. Each reference point becomes the center of a grain whose crystallographic
orientation is also randomly assigned. The Voronoi tessellation created from these
points forms the network of GBs that are orthogonal to the lines joining the reference
point to neighbor reference points as illustrated in Figure 6-3.

In Figure 6-4, we present the use of this methodology to model the indentation
of a three-dimensional polycrystalline thin film with a mean grain size of 7 nm. The
total number of atoms for such a model is ~3 million. The film thickness is 30 nm.
The film is indented by displacing a spherical tip with a diameter of 18 nm along
the direction normal to the top surface. The bottom of the film is fixed along the
direction of indentation, while the sides of the model are assigned periodic boundary
conditions. The model is first relaxed under zero force condition using a conjugate
gradient method in order to obtain the lowest state of energy in the GB network to
simulate equilibrium conditions. After relaxation, the tip is moved at a speed on the
order of 1 m. s™!. The simulation is performed at 300 K with a time step of 5 fs and
the atomic positions are recorded at 50 ps intervals (10,000 steps).

Similarly, a QC model of indentation in a 200-nm-thick Al film with a wedge-
like cylindrical tip is shown Figure 6-5. In this model, the contact region at the
interface between the indenter and the film surface is fully represented by individual
atoms. For comparison, the dimensions of both film and fully-atomistic zone are
400 x 200 x 0.286 nm and 50 x 25 x 0.286 nm, respectively. Plane-strain contact
is modeled by displacing a single-crystal Al cylinder with a diameter of 30 nm
along the direction normal to the film. The tip is oriented along the crystallographic
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Figure 6-3. Schematic showing the Voronoi construction for a two-dimensional polycrystalline model
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Figure 6-4. Molecular dynamics model of a nanocrystalline thin film to be indented by a rigid, spherical
tip. Tip diameter and mean grain size are 18 and 7 nm, respectively. The crystallographic orientations of
the tip are as indicated. Periodic boundary conditions are assigned on each side. This model consists of
~3 million atoms

40 nm

directions shown in Figure 6-5b and kept completely rigid during the simulation.
This model consists of ~40,000 atoms.

To avoid discontinuities in the energy state during force minimization, the
continuum/atomistic frontier is modeled as a single crystal interface with the crystal-
lographic orientations shown in Figure 6-5a. We note that if the deformation is small
(tip penetration < 10 nm), no significant atomistic activity is found near this inter-
face, indicating that the plastic deformation is limited to the polycrystalline region
during the simulations. The bottom of the film is fixed along each direction, while
both sides of the model are left free. Periodic boundary conditions are imposed along
the out-of-plane direction in the entire model. Each grain is assigned a common tilt
axis along the [110] direction, and random in-plane orientation. Therefore, this QC
model simulates the mechanical behavior of a randomly oriented two-dimensional
columnar microstructure, which may differ from that of fully three-dimensional
polycrystalline microstructures. Similar to the MD model, the sample is first relaxed
under zero pressure condition in order to obtain the equilibrium microstructure.
After relaxation, energy minimization by conjugate gradient method is performed
between each loading step.

6.2.3. Calculations of Local Stresses and Mean Contact Pressures

In the fully-atomistic zone of QC models, the local stress tensor of the ith atom,
o, 1s calculated using the formula provided by Lilleodden et al. [38], which can be
simplified as follows:
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Figure 6-5. Quasicontinuum model of a 7 nm-grain-size Al film indented by a 30-nm-diameter cylin-
drical tip. (a) Full view of both finite element and fully-atomistic regions. (b) Close-up view of the full
atomistic zone near the contact region. (¢) Structure and atomic energies at grain boundaries between
three nanograins as predicted from the Voter-Chen potential, and (d) the Mishin-Farkas potential.
Adapted from reference [44] with permission by Elsevier

1 1 10
o = o 17 (—-—‘”) bl (6-6)
a)?Det[F;-I ] 2 ; r or

r=rjj

where o and B are the Cartesian coordinates, w? is the undeformed atomic vol-
ume of atom i, Det[F; *# ] is the determinant of the deformation gradient, ¢ is the
interatomic potential, and r;; is the distance between ith and jth atoms. Note that
the kinetics terms have been eliminated in Eq. (6-6) as compared to the formula in
[38]. In this equation, the use of the determinant of the deformation gradient has
been shown to provide improved accuracy for the calculation of deformed atomic
volumes. Furthermore, the force applied by solid tips is calculated using

F = Z F;, (6-7)

ieZ
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where Z represents all atoms of the contact area belonging to the film and F; is the
out-of-balance force on atom i in this area, projected along the direction of indenta-
tion. The contact area is computed after each loading step by only including atoms
at the indenter-film interface within a separation distance from the tip equal to the
potential cutoff radius. For wedge-like, cylindrical tips, the mean contact pressure
H can be determined at each step such as

F
=— (6-8)
2ax Zperio
where a is the contact length, defined as half the width of the projected contact area,
and Zperio is the sample thickness in the out-of-plane direction.

For virtual tips with a repulsive force, if an atom has penetrated the boundary
of the indenter (e.g., R > r) after the loading step is completed, the atom is con-
sidered “contacted” and feels a force given by Eq. (6-5). The force applied to all
contacted atoms is resolved in the direction of indentation, summed and recorded,
and is used in the generation of load—displacement profiles [38]. The mean contact
pressure is calculated by taking the total applied force on the tip, and by dividing
this value by the projected contact area calculated from the position of the contacted
atoms.

6.2.4. Tools for the Visualization of Defects and Grain Boundaries

6.2.4.1. Centro-Symmetry Parameter

In solid-state systems, the centro-symmetry parameter P is a useful measure of the
local lattice disorder around an atom and can be used to characterize whether the
atom is part of a perfect lattice, a local defect (e.g., a dislocation or stacking fault)
or at a surface. P is computed using the following formula [58]:

2

P = Z |I_é, +]_é,'+6
i=1,6

, (6-9)

where the 12 nearest neighbors are found and R; and Rj;¢ are the vectors from the
central atom to the opposite pair of nearest neighbors. An atom in perfect FCC lat-
tice has a centro-symmetry parameter of zero. The values for other configurations
depend on the material chosen. For aluminum, those values are 32.8 A2 for a sur-
face atom, 8.2 AZ for atoms in an intrinsic stacking fault, and 2.05 AZ for atoms
halfway between fcc and hcep sites (in a partial dislocation). Equation (6-9) is gen-
erally projected in the plane for use with the QC method. In two-dimension, these
values are 16.4 Az, 4.1 A? and 1.025 AZ, respectively, for the QC method. The
centro-symmetry parameter is well adapted for atomistic simulations at low tem-
peratures, since no averaging for P is needed in these conditions. In the following,
atoms in a perfect FCC lattice are either colored in grey or omitted for clarity, those
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with a HCP structure or representing a stacking fault are in blue color, and all other
non-coordinated atoms appear in green or red colors.

6.2.4.2. Local Crystal Structure by Ackland and Jones

In contrast to the centro-symmetry parameter, the method using the formulation
by Ackland and Jones [59] averages out statistical fluctuations due to the temper-
ature boost, because it is not based on the distance between atoms, but the angles
between atom pairs. This parameter classifies atoms depending on the closest crys-
tallographic structure it belongs to (BCC, FCC, HCP or unknown). The procedure
[59] first calculates the mean squared separation

h= 2/ (6-10)

j=16

for the nearest six particles to atom i (i.e., the closest neighbors that verify
rl.zj < 1.55r§). For each of the neighbor pairs found, the bond angle cosines cos(8;ix)
is determined. The procedure, which enables determining the local crystal structure
to which atom i can be assigned, relies on a table provided by Ackland and Jones
that separates the possible cosine values into 8 ranges. The color scheme used for
this parameter is the same than that for the centro-symmetry parameter.

6.3. EFFECTS OF INTERATOMIC POTENTIALS ON EQUILIBRIUM
MICROSTRUCTURES

Interactions amongst atoms for FCC metals are represented using an embedded-
atom-method (EAM) potential [60], which most accurately predicts the energies of
defects and surfaces in such metals. The total energy of a monoatomic system by
EAM is described by [61]:

1
=53 V() + 3 F () (6-11)
ij i

where V(r;; ) is a pair potential as a function of the distance r;; between atoms i and
J» and F is the embedding energy as a function of the host density p; induced at site
i by all other atoms in the system. The latter is given by:

pi= ) p(ry, (6-12)
J#
p(rj) being the atomic density function. The second term in Eq. (6-11) is volume

dependent and represents, in an approximate manner, many-body interactions in the
system. EAM potentials are fitted to experimental and ab-initio data for the values
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of equilibrium lattice parameter, the cohesive energy, the elastic constants and the
vacancy formation energy. This basic set of properties can often be complemented
by other data such as planar fault energy and phonon frequencies.

Hereafter, we focus our attention on the effect of EAM interatomic potentials in
predicting generalized stacking and planar fault energies, as well as GB energies
in equilibrium microstructures. To this end, we compare both the Mishin-Farkas
[61] and Voter-Chen [62] potentials for Al. For brevity in the following, these
two potentials are referred to as Al-VC and Al-MF potentials, respectively. For
each potential, past QC procedures [63, 64] were used to calculate the general-
ized planar and stacking fault energy curves and the GB energy of 18 ¥ <110>
tilt bicrystals consisting of symmetrical tilt GBs. The generalized stacking and pla-
nar fault energy curves for both potentials are shown in Figure 6-6a. The unstable
stacking fault energy (yusr), stacking fault energy (ysg) and unstable twinning
fault energy (yyutr) are also indicated in this figure. We find that the calculated
energy values are significantly smaller for the Al-VC potential than the Al-MF
potential, which is consistent with the predicted values in the literature [61]. In
addition, we find that all the ratios ysg/ yusr and yyTr/ Yusr are similar and equal
to 0.81-0.86 and 1.30-1.32, respectively, which suggests the same slip and twin-
ning behavior regardless of the interatomic potential for Al [65]. Figure 6-6b also
shows a significant increase in GB energy for the symmetric tilt bicrystals from
the Al-VC potential to the AI-MF potential. The difference of GB energy at atomic
level, as a function of EAM potential, is also clearly shown in Figures 6-5¢ and
d, where a cluster of three nanograins is represented. Both atomic energies and
structures at GBs are dramatically changed by the interatomic potential, despite
the same misorientation angles between grains. This observation therefore indicates
that the bonding properties of the GBs will be markedly different depending on the
potential.
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Figure 6-6. Comparison of the Mishin-Farkas and Voter-Chen EAM potentials for Al by QC method
for (a) the generalized stacking fault energy (solid line) and planar fault energy (dashed line) curves, and
(b) GB energies in symmetrical <110>-tilt bicrystals
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Figure 6-7. Effects of EAM potentials on equilibrium microstructures in the simulated nanocrystalline
Al film shown in Figure 6-5. (a)—(b) Distribution of misorientation angles (\{r + /) between grains. (¢)—
(d) Degree of symmetry of the GB structure from perfectly-symmetrical tilt GB (STGB, { — ' ~0) to
highly-asymmetrical tilt GB (ATGB, { — | ~180°). Reprinted from [44] with permission from Elsevier

Furthermore, the effect of potential is investigated on the misorientation angle
and asymmetry of the GBs in the 7-nm-grain-size microstructure shown in Figure
6-5. Figure 6-7 shows the angles { and /', which represent the angle between the
[110] lattice direction and the GB plane for two neighboring grains, respectively.
The sum {r + ' characterizes the misorientation angle at the boundary separating
two grains. Some minor differences in the misorientation angle \r + /" are observed
due to the rearrangement of microstructure after relaxation, even though the original
model is identical. It can however be concluded from Figures 6-7a and b that the
distribution of misorientation angle and, therefore, the overall microstructure of the
GB network are not significantly affected by the potential. In addition, the difference
P — U’ represents the degree of symmetry of the GB, where {r — ' = 0° corresponds
to perfectly-symmetric tilt GBs, and ¥ — ' = 180° to highly-asymmetric tilt GBs.
In Figures 6-7c and d, the degree of symmetry is found to be homogeneous along
the set of values for {r — ' regardless of the potential.

In summary, the two EAM potentials for Al mostly differ in their prediction of
the generalized stacking and planar fault energies, and GB energies, but should not
significantly influence the grain morphology at equilibrium and slip behavior in the
material.
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6.4. EFFECTS OF A GRAIN BOUNDARY NETWORK ON INCIPIENT
PLASTICITY DURING NANOSCALE CONTACT

Shear banding is an important mode of plastic deformation in nanocrystalline
materials, and is best illustrated by a 5 nm-grain-size simulation using the Al-
VC potential (Figure 6-8). At the onset of plasticity, significant GB sliding takes
place leading to rotational deformation of the grains with limited intragranular slip.
During this process, the GB structure is significantly changed and, in some cases,
several GBs tend to be aligned (Figure 6-8b). The bands are formed by the slid-
ing of aligned interfaces separating the grains (see for example grains 3 and 4 in
Figure 6-8c). When the shear plane encounters a triple junction and is stopped by
a grain that is not in its alignment, the shear band follows its path by intragranular
slip in the prolongation of the shear plane. For example, a stacking fault left behind
a partial dislocation can be seen in grain 2 in the prolongation of the shear plane in
Figure 6-8b. Subsequently, the newly created stacking faults are found to nucleate
mechanical twins, which grow under the applied shear stress. Mechanical twinning
has also been observed in nanocrystalline Al under indentation by Chen et al. [28]
(This result therefore suggests that there is good agreement between simulation and
experimental data).

Shear plane

Figure 6-8. Formation of a thin shear band in a 5-nm-grain-size nanocrystalline Al during indentation
by QC method. (a) Partial view of the contact interface and location of the grain cluster associated with
the shear band. (b) Close up view of the shear plane. (¢) Magnitude and direction of atomic displacements
between two loading increments shown by arrows. Reprinted from [47] with permission from Elsevier
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Figure 6-9. Effects of EAM potential on the mean contact pressure as a function of penetration depth in
a7 nm-grain-size QC simulation. (a)—(c) Loading and unloading responses with Voter-Chen (Al-VC) and
Mishin-Farkas (Al-MF) EAM potentials for Al. Snapshots showing the deformation in the film near the
contact region for different stages of indentation for (d)—(e) the Al-VC potential, and (f)—(g) the AI-MF
potential. Adapted from [44] with permission from Elsevier

Furthermore, Figure 6-9 represents the evolution of the mean contact pressure
as a function of penetration depth for both the Al-VC and AI-MF potentials. A
fitting between atomistic simulation and elastic continuum theory [44] shows an
excellent agreement in the initial portion of the curves. Both curves also show clear
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evidence of flow serration at large depths of indentation, which is consistent with
the formation of shear bands. In Figure 6-9, however, the plastic flow serration is
somewhat less intense with the Al-VC potential than the Al-MF potential. In the
latter, a clear change in slope occurs for a penetration depth of 34 A, which corre-
sponds to the propagation of an extensive shear band by intragranular slip through
several grains (not shown). Furthermore, Figures 6-9b and c reveal that the con-
tact pressures are almost identical between atomistic results and elastic theory until
the two curves reach a depth of 10—15 A. The divergence between elastic and atom-
istic curves marks the onset of plasticity from a macroscopic, continuum standpoint.
These curves also provide direct evidence that the onset of plasticity occurs at signif-
icantly larger contact pressure in the Al-MF potential than the Al-VC potential. The
pressure difference becomes even more significant at the end of the indentation pro-
cess, where contact pressures of 4.3 and 8.6 GPa are observed for the two potentials,
respectively. Investigation of the depth of the residual impression after unloading
also shows some significant differences in the constitutive response between the
two potentials.

The change in nanoindentation behavior can be largely interpreted from fun-
damental differences in plastic deformation mechanisms at GBs as a function of
potential. While the nucleation of a few dislocations takes place at the tip/substrate
contact interface during the elastic portion of the contact curves with both poten-
tials (Figures 6-9d and f), more GB-mediated activity in the substrate occurs with
the Al-VC potential. Here, GB-mediated plasticity is characterized by one of the
following mechanisms: (1) the emission of partial dislocations and twins emanat-
ing from GBs, along with their propagation through intragranular slip, (2) GB
sliding and grain rotation, and (3) stress-driven GB migration coupled to shear
deformation.

6.5. MECHANISMS OF GRAIN BOUNDARY MOTION DURING
CONTACT PLASTICITY

Several mechanisms for grain growth have been investigated in nanocrystalline
metals. These can primarily be divided into two categories: Thermally-driven mech-
anisms and stress-assisted mechanisms (Figure 6-10). The first category is related
to curvature-driven GB motion [66] (Figure 6-10a). During this process, the GB
tends to move towards the center of the curvature to reduce the total area of GBs,
and thus the energy of the system [67]. Another thermally-driven mechanism is GB
atom diffusion [68], during which the atoms jump in the crystal into point vacancies,
creating a new vacancy in the process.

The last two mechanisms in Figure 6-10 represent stress-assisted mechanisms,
which can make grain growth at cryogenic temperatures possible [31]. The first
mechanism corresponds to rotation-induced grain coalescence [67], during which
one grain rotates in order to match the orientation of a neighbor grain, thus form-
ing a single larger grain (Figure 6-10d). This process is often associated with
GB sliding [69]. The second mechanism of strain-driven grain growth is related
to shear-coupled GB motion (Figure 6-10e). In this case, the normal motion of
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Figure 6-10. Schematic illustrations of different mechanisms of GB motion in metals. (a)—(b)
Thermally-driven GB motion. (¢) Strain-driven GB motion by either (d) grain rotation and coalescence
or (e) shear-coupled GB migration

GBs results from a shear strain applied tangentially to them and causing tangential
motion, or coupled motion [69-72].

To illustrate such grain growth mechanisms during indentation, Figure 6-11
presents the indentation of a 7-nm-grain-size Al film by a spherical tip from MD
simulation at 300 K. In this figure, the GB atoms and lattice defects appear in white
color, and the other atoms are colored according to the grain they belonged to at
the beginning of the simulation. Several major grain growth events are visible in
Figure 6-11: between grains 1 and 2, between grains 3 and 4, for grains 5, 6, 7 and
8, which all appear to be strain-driven as demonstrated below.

The grain growth events occurring between grains 1 and 2 and between grains 3
and 4, starts very early in the indentation process. A closer inspection of the evolu-
tion of these grains shows that the misorientation angles at the GB are very small
before relaxation, which makes them low-angle GBs. After relaxation, the grains
slightly rotate, until the misorientation angle is low enough to have the atoms at
the interface in perfect FCC arrangement. The corresponding mechanism of GB
migration is therefore rotation-induced grain coalescence.
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Figure 6-11. Three-dimensional MD simulation of microstructure evolution in nanocrystalline Al
indented by a 9 nm-radius Al tip. General view obtained (a) after relaxation and before indentation
(¢ = 0%) and (b) at maximum indentation (¢ = 94%). (c¢) Close-up view of grains 1, 2, 5, 6, 7 and 8
when (¢) e = 0% and (d) ¢ = 94% [48]

The deformation process in grains 5, 6, 7 and 8 is clearly different from that
in grains 1, 2, 3 and 4, because the boundaries are followed moving across neigh-
bor grains (Figure 6-11d). We find that the rate of GB migration can be strongly
decreased as the tip radius decreases which tends to indicate that this mechanism
depends on the local strain. Furthermore, the shape of grain 7 evolves from origi-
nally square to trapezoidal after migration of the interface between grains 7 and 8.
These results suggest that the process of GB migration is coupled to shear deforma-
tion in this case. In this process, grains 6 and 8 have grown, while grains 5 and 7 have
notably decreased in diameter. Also a new grain was grown at the triple junction of
grains 1, 6 and 8.

However, MD simulation makes the analysis of strain-driven GB motion diffi-
cult due to the implications of thermal effects. In contrast, QC simulations, which
operate at zero temperature, may readily eliminate those effects. For example,
Figure 6-12 shows the motion of the interface separating grains 3 and 5, which cor-
responds to a high-angle GB ({ + ' = 160.7°), from the QC simulation presented
in Figure 6-5 with the use of the Al-VC potential.
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Figure 6-12. QC simulation of shear-coupled GB motion in nanocrystalline Al during indentation. (a)
Local lattice rotations at GB forming vortex-like patterns. (b)—(e) Snapshots showing the evolution of
the atomic-level shear stress relative to the orientation of the interface between grains (in units of GPa).
The boundaries of grains 1 and 2 have been highlighted for clarity. Adapted with permission from [46].
© 2006, American Institute of Physics

Each stress map represented in Figure 6-12 corresponds to a different loading
level taken from before the start of the migration to the end of the GB motion. It
is found that the interface migration process causes a strong stress relief in the GB
network. Furthermore, the sign of the stress, indicated by the color blue or red in
Figure 6-12 indicates that the GB between grains 3 and 5 is under shear stress,
one side being under positive stress, and the other under negative stress. In this GB
migration process, it is clear that the size of grain 5 has increased at the expense
of grain 3. Therefore, this analysis shows clear evidence that the mechanism of
stress-assisted grain growth corresponds to shear-coupled motion.

Furthermore, Figure 6-13 shows that GB migration is only observed for the Al-
VC simulation. The original position of the GB before indentation is indicated by
a dashed line for reference. The GB in the Al-VC simulation has moved about
34 A into grain 3, whereas no significant differences are found with the Al-MF
simulation, other than some minor rearrangements of GB atoms.

In summary, the mechanism of stress-driven grain growth was found associated
with shear-coupled GB motion, rather than by rotation-induced grain coalescence.
We can therefore conclude that the plastic flow is found enhanced in the case of the
Al-VC simulation because of the increased GB deformation activity in the form of
GB sliding and coupled GB motion at both 0 and 300 K. This finding could therefore
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Figure 6-13. Effects of EAM potential on the shear-coupled GB migration between grains 3 and 5 as
shown in Figure 6-6, as a function of penetration depth 8. (a) Voter-Chen potential. (b) Mishin-Farkas
potential. Reprinted from [44] with permission from Elsevier

suggest a new means to control stress-assisted grain growth mechanisms by altering
the local structure and energies at GBs.

6.6. CONCLUDING REMARKS

In this chapter, we describe two computational approaches using either MD or
QC methods to investigate the complexity of plastic deformation and yielding in
nanocrystalline GB networks under nanoscale contact. These approaches show that
the interatomic potentials play a key role in the prediction of equilibrium structures
and energies at GBs, which in turn has a strong influence on the mechanisms of plas-
ticity mediated by GBs, such as GB-mediated crystal slip, GB sliding, grain rotation
and GB migration. It is also demonstrated that shear-coupled GB motion due to the
strain applied by penetrating tips, is an important mechanism of grain growth and
plasticity at both absolute zero and room temperature.

An outlook for future research in this area can be summarized by asking two
fundamental questions. First, can the addition of impurities significantly influence
the simulation of GB-mediated plasticity in nanocrystalline metals? It is acknowl-
edged that solute impurities, like H and O impurities in Al, have strong impact on
stacking fault and GB energies, and plasticity in FCC metals [32, 73-75]. To this
end, proper numerical formalisms, such as local chemical potential [75], should
be developed to include impurities in multiscale simulations. Second, how do the
geometry and deformation of tips influence plasticity induced by nanoscale con-
tact in nanocrystalline materials? Clearly, present simulations do not take into
account the finite-temperature deformation of the tips. Atomistic simulation on
this aspect may provide more fundamental understanding of tip-film interactions,
which may ultimately help engineers explore new routes for high-throughput
nanomanufacturing technology, such as nanoimprint lithography [76].
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Abstract:

Keywords:

Silicon nanowires have been the subject of intense investigation over the last decade.
The experimental realization of nanowire configurations with a wide range of diame-
ters, lengths, and surface types leads us to envision a wealth of applications, running
from selective sensors of rapid response to electronic devices. In this period, theoreti-
cal modeling has helped to understand the electronic, mechanical, optical and transport
properties of nanowires and to explore applications of such properties in the context of
the current electronic technologies. These modern theoretical calculations have reached a
point where realistic description of materials properties are provided by computational
simulations. Carefully constructed empirical potentials provide a good description of
silicon-nanowire energetics, making possible investigations of the stability of silicon
wires with different surface terminations (or facets) for a given family of nanowires.
Simulations using empirical potentials have also been employed to examine the thermal
and mechanical stability of silicon nanowires, and also the response under external load.
In the latter case, there is and indication that the response under load of silicon nanowires
is different from the bulk, to the extent that crack propagation is suppressed and healing
at the crack is mediated by surface effects. Investigation of nanowire properties are also
within the reach of tight-binding and first principles methodologies, that have been used
to examine the effects of quantum confinement on the nanowire electronic, transport and
structural properties, as well as the nature of their surface states. These methods have also
been used to examine the possibility of structural transitions of very thin silicon wires,
induced by surface effects

Nanowires, Atomistic modeling

7.1. INTRODUCTION

Nanoscience and nanotechnology have seen a remarkable development over the
last decade, mostly because substantial advances in experimental techniques have
allowed to manipulate matter at the nanometer scale. For example, the current
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challenge in developing faster and more efficient devices has driven researchers
to explore the limits of materials properties, unavoidably leading to the nanoworld
[1]. In this context, one of the main goals is to understand and manipulate one-
dimensional (1D) nanostructured systems, which are envisaged as fundamental
building blocks for constructing nanoscale electronic devices [2—-6]. A variety of
prototype devices have already been constructed. To name only a few, under the
risk of ignoring some of the voluminous literature that has accumulated on this
topic, reported prototype-device fabrication include: electron memory cells [7, 8],
passive diode structures using crossed p- and n-type silicon nanowires and active
bipolar transistors based on heavily doped nanowires [9], logic gates built with
integrated nanoscale field-effect transistors [10], three terminal devices [11], pho-
tonic devices [3], nanowire based lasers [12, 13], and chemical and biological
sensors [14—16]. Besides the interest for device applications, studies on nanowires
offer the possibility of understanding, fundamentally, the roles of dimensionality
and size in optical, electrical, magnetic, mechanical and transport properties of
low-dimensional condensed-matter systems.

Along with carbon nanotubes [17], semiconducting nanowires are among the
most extensively studied nanostructured systems. To a large extent, silicon has
remained the material of choice for the electronic device technology, and silicon
nanowires (SiNWs), in particular, have attracted great interest, since it is expected
that any proposed silicon-based nano-devices should be “easily” integrated into the
existing silicon-based electronic technology. When properly functionalized, SINWs
may work as electronic devices, such as diodes or transistors [18]. Moreover, nar-
row SiNWs present quantum confinement, which should allow gap engineering and
the possibility of incorporating silicon based optical devices in integrated circuits
[19-21]. Full silicon integration into nanotechnology requires understanding the
structural and electronic properties of SINWs and devising controlled processes to
build SiNWs with tailored properties.

Starting in the mid 1990’s, several routes have been demonstrated for the syn-
thesis of semiconducting nanowires. Perhaps the first reported work on silicon
nanowires synthesis, as such, is that of Liu and collaborators, which employed
a combination of electron beam lithography, reactive ion etching, and dry ther-
mal oxidation [22, 23]. Further studies employed a variety of synthesis techniques,
such as etching [24], nanolitography [25], scanning tunnelling microscopy (STM)
manipulation of silicon atoms on substrates [26], deposition of nanowire material
into porous templates [27, 28], laser ablation [29, 30], and deposition or subli-
mation of silicon vapor [29, 31-35], among others. In order to devise SiNWs
with pre-determined properties, it is important to develop procedures that enable
controlling the growth direction and surface types. The search for better control
of nanowire surface morphology and crystalline orientation has led to synthesis
protocols based on either vapor-liquid-solid or super-critical-solution liquid-solid
processes, in which nanowires grow usually from a metallic nanoparticle catalyst
[36-46]. Several authors have succeeded in getting nanowires with a wide range of
diameters and along several crystallographic lattice directions: Holmes et al. have
grown SiNWs along the (100) and (110) lattice directions [37]. Ma et al. reported
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ultra-thin hydrogen-terminated wires along (100) directions [46]. Wu et al. reported
SiNWs along (110), (111), and (112) lattice directions [47].

With these experimental developments leading to the synthesis of SINWs from
a variety of methods, it was only natural that the expertise gained by theorists
in addressing the structural and electronic properties of silicon clusters [48, 49],
using ab initio, tight-binding (TB) and classical potential methodologies, would be
applied to the study of these properties in SINWSs. Indeed, over the last few years,
theoretical investigations on the properties of SINWs have been performed using
those methodologies or a combination of them. Among the pioneers, Menon and
Richter [50] employed TB molecular dynamics to investigate the structural stability
of Si wires, concluding that, at variance with small- and intermediate-sized silicon
clusters, which undergo extensive reconstruction and relaxation down to the core
atoms, a fourfold-coordinated crystalline nanowire core is stable when surrounded
by a reconstructed surface of threefold coordinated atoms, drawn from the most sta-
ble bulk reconstructions. Single-walled nanotubes (SWSiNT) were also considered
as possible quasi-one-dimensional forms of silicon. Several works examined the
structural and electronic properties of SWSiNTs [51-56]. However, despite some
works suggesting otherwise [54], more likely, in the case of silicon, the overlap of
m-electrons is not strong enough to stabilize the planar graphene form, and a carbon-
like SWSINT should be mechanically and thermally unstable [52, 55, 57], and even
at zero temperature puckering should be considerable and a substantial amount of
sp>-hybridized orbitals would mix into the sp? network [52, 55, 56]. Ab initio cal-
culations by Dumitrica et al. [58] indicated that hollow nanotube-like structures can
be stabilized by endohedral metal atoms. Other types of hollow SiNT structures
have been considered, with facetted cross sections [59], variable wall thickness [60,
61], or with hydrogen-passivated surfaces [62]. These may be considered to fall in
the category predicted by Menon and Ritcher, to the extent that they represent sp>-
hybridized structures with either tetrahedral or hexagonal symmetry, and with either
reconstructed or saturated surfaces.

In the last few years, theoretical research has focused on sp3 silicon-bulk
derived structures [63—81], given the experimental observation of the prevalence
of nanowires oriented along the (110), (112), and (111) bulk crystalline direc-
tions [47]. A number of different possibilities, with prevailing sp> structures,
have been considered: trigonal-prism geometries [64]; fivefold and sixfold cross-
section symmetries both crystalline [77] and polycrystalline [63, 65]; and cage-like
structures [31, 67-69, 71, 75]. The energetics and orientational dependence of elec-
tronic, mechanic, and surface properties in the bulk-derived geometries have been
addressed by a number of authors [66, 70, 72-74, 76, 79, 81]. The works of Ng et al.
on gap reduction upon surface functionalization [74]; of Lu et al. on hydrogen-
chemical-potential dependence of the stability of passivated wires [76]; of Rurali
et al. on charge injection effects upon structural features [79]; and of Wu et al. on
tapering and charge inhomogeneities effects [81], point in the direction of impor-
tant issues related to the future SINW integration. Another issue that deserves a
full address is the stability both mechanical and thermal of the various alternative
nanowire structures proposed in these works. For example, identification of possible
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soft-mode phonons, and of the strain-state dependence of these modes, is required
in order to address the issue of mechanical stability of these geometries against
structural transformation.

In the following, we outline some recent theoretical investigations that employed
atomistic simulations to address the energetics and structural properties of SINWs.

7.2 METHODOLOGICAL CONSIDERATIONS

Theoretical investigations, based on atomistic simulations, have become a powerful
tool to understand and/or predict materials properties. This field has blossomed as
a result of intensive research and the development of precise methodologies over
the last decades, which now enable researchers to describe materials properties with
an unprecedented precision. The central element in the investigation of materials
properties is the level in which interatomic interactions are described, ranging from
pure first principles models, based on quantum mechanics with no fitting param-
eters, to semi-empirical ones, in which quantum mechanics is still considered but
with a few fitting parameters, to empirical models, based on classical mechanics
using functional forms fitted to experimental results.

First principles (or ab initio) methods take into account all the particles (elec-
trons and nuclei) of the system and their fundamental Coulomb interactions [82—84].
In the context of condensed matter physics and materials science, first principles
approaches are usually based on the density functional theory (DFT) [82, 83]. In a
few words, in DFT it is shown that the ground-state energy of a many-body system
of electrons and nuclei is a functional of the electronic density of the system, and an
operational scheme is proposed that maps the many-body problem into an effective
single-particle set of equations, known as Kohn-Sham equations. The mapping is
exact, and the only fundamental approximation needed in practical implementations
of this scheme is due to the unknown form of the so-called exchange and correlation
functional, which contains the contribution of quantum-fluctuations to the mutual
electronic Coulomb interactions, and also a many-body correction to the kinetic
energy. This has proved a very successful approach to address the ground-state
properties of a large variety of condensed-matter systems [84].

While first principles approaches provide a precise description of the interatomic
interactions and consequently of the materials properties, the computational costs
involved scale with some power law on the number of atoms in the system. As a
result, simulations are restricted to systems involving only up to, at most, a thousand
atoms, which is not enough to capture many important atomistic and mesoscopic
phenomena. Approximations, leading to less expensive models, that make possi-
ble to treat systems involving a higher number of atoms have been implemented.
Semi-empirical models are still computationally intensive but allow investigations
of systems with thousands of atoms. These are based on a local minimal-basis
description of the quantum mechanical interactions, in the so-called tight-binding
(TB) approximation. The strategy, in this case, is to constrain the computational
scale of the problem by restricting the electronic matrix elements, that constitute
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the Hamiltonian of the electronic interactions, to near-neighbor interactions and to
a sub-space of the Hilbert space that spans the valence bands (or highest-occupied
molecular orbitals in a molecular system) and a few of the lower conduction bands
(or lowest-unoccupied molecular orbitals). Moreover, the multi-center integrals
needed to evaluate the Hamiltonian matrix elements are not computed. Rather, the
matrix elements are parameterized such that results for a set of selected properties,
in a reference configuration, agree with either experimental or first principles results.

A more radical approach is to describe the interactions by classical potentials,
in which the electronic effects are taken into account only implicitly, allowing to
treat systems with millions of atoms. The gain in computational efficiency with
semi-empirical and empirical methods comes with a price: a considerably poorer
description of the microscopic phenomena, such that those models should be used
with caution, staying within their range of validity. A very useful approach to
describe nanosystems has been to combine methods with different levels of approxi-
mation, in the so-called multi-scale methods that combine empirical, semi-empirical
and first principles methods [85, 86].

In the following section, we describe the main theoretical ingredients of empir-
ical and semi-empirical models, that have been employed to investigate SINW
properties. A review on ab initio methodologies can be found elsewhere [84].

7.2.1. Empirical Models

The cohesive energy, E.(R;,rm), quantifies the cohesive strength of a material, and
is given in terms of the degrees of freedom of the N, nuclei ([R,]) and N, elec-
trons ([ry]) of the system. While it could be computed by solving the quantum
mechanical equations for the electrons of the system, approximations can be used
to describe cohesion with less expensive methods. One strategy is to employ an
approximate description of the electronic states, but still keeping the electronic
degrees of freedom explicitly. One of these approaches, the TB method, provides
a realistic description of interatomic bonding, although it is still computationally
intensive. This method will be described in Section 7.2.2. An extreme approach
is to remove all the electronic degrees of freedom, and E. would be given by
E.(Ry,rm) & E.(Ry). In this case, the electronic effects would be considered only
implicitly, in the construction of the functional form of the empirical potentials.

For materials in which the covalent interactions prevail, several empirical poten-
tials have been developed over the years. Only for silicon, there are more than
forty models in the literature, many of them have been extensively used and tested
[87, 88]. Three empirical potentials have been intensively used to model silicon
properties: the Stillinger-Weber [89], the Tersoff [90], and the EDIP [91] models.
Specifically for SiNWs, all these potentials have been used to study the structural
properties and stability, and have been compared recently [92]. Overall, all three
models provide a reasonably realistic description of the structural properties of these
wires.

Cohesive energy can be written as a function of the atomic arrangement, in terms
of a many-body expansion [93]
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Na N, Na
E.=) ViR)+ Y VaRiR)+ Y VaRiRR)+ -+,  (7-])
i ij ij.k

in which the sums are over all the N, atoms of the system. In principle, E. could be
determined by an infinite many-body expansion, but the computational cost scales
with N;, where 1 the order in which the expansion is truncated. The one-body terms
(V1) are generally neglected, but the two-body (V3) and three-body (V3) terms carry
most of the relevant effects underlying bonding. While the V> and V3 have a simple
physical interpretation, intuition for higher order terms is not so straightforward,
and most models have avoided such terms. Truncation of this expansion up to only
two-body terms generally fails in capturing the essential properties of covalent sys-
tems; higher expansion terms, i.e. the many-body interactions, are necessary. The
many-body effects [93] could be introduced in E. by several procedures: inside the
two-body expansion (pair functionals), by an explicit many-body expansion (cluster
potentials), or a combination of both (cluster functionals). Models which have been
successfully developed to describe covalent systems fit into one of these categories.
All three models mentioned earlier [§9-91] include these many-body effects in dif-
ferent approaches. The Stillinger-Weber [89] model can be classified as a cluster
potential, with an explicit three-body expansion, while the Tersoff [90] and EDIP
[91] models can be classified as cluster functionals.

7.2.2. Semi-Empirical Models

In semi-empirical TB methods, the quantum-mechanical nature of the system is
retained. The terminology ‘“semi-empirical” is related to the traditional way of
setting up TB Hamiltonians, by fitting the Hamiltonian matrix elements of a
minimal-set basis orbitals to experimentally measured band-structures, in a refer-
ence configuration. The minimal-set basis orbitals are chosen such as to span the
sub-space of the valence band and a few of the lowest conduction bands. More gen-
eral formulations which included efficient scaling laws have been introduced [94],
and total energies have also been incorporated, with the addition of a repulsive clas-
sical potential term, which accounts for the Coulomb and overlap repulsive ion-ion
(nuclei + core electrons) interactions. These tight-binding total energy formulations
(TBTE) also include matrix elements scaling laws, allowing for structural relaxation
and molecular dynamics simulations of systems with several thousand atoms, with
very good accuracy.

In a TBTE scheme, the total energy of a system containing N, electrons, as a
function of the {R,} nuclear positions, is given by

Noce

Eiot [IR}] =) & + Erep [{Ry}] . (7-2)

In this expression, Eiy is the total energy, the sum is over the Ny eigenvalues
(&;) of the occupied electronic states, and Eyep is the repulsive term. The occupied
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states and eigenvalues are obtained by diagonalization of a TB Hamiltonian, whose
matrix elements, in their more usual form, are written as:

% Ry — Rp) = HY 4y % fic Ry — Rpn) (7-3)

where HZ'; is the matrix element between local-basis function ¢, centered in the

n-th nuclei and basis function ¢4 centered in the m-th nuclei, H° «,p 1s the value of
this matrix element in some reference configuration, and fi is the scaling law that
gives the dependence of H in the interatomic distance. The reference values of
these interactions and the scahng functions are determined by fitting the TB results
to a chosen set of reference values, either from experiments or from first principles
calculations.

The modern versions of TB Hamiltonians include more involved scaling laws
for the matrix elements, in an attempt to describe bonding of materials in vari-
ous coordination environments (given by the number of near-neighboring atoms
to a given atomic site) [95-98]. Effective many-body screening terms [96] and
also self-consistent charge transfer have been included in some formulations [97].
These modern and more sophisticated versions are usually derived from databases
of reference DFT calculations and hence have been termed DFT-TB. A high degree
of accuracy is possible using these DFT-TB Hamiltonians, if the bonding patterns
present in the atomic structure of the system do not depart too radically from those
included in the fitting database.

Solving for the TBTE energies and forces requires diagonalization of the TB
Hamiltonian, a procedure with a computational cost that scales as Ng’ (N, is the
number of atoms in the system). Linear scaling or order-N [O(XN)] methods have
been developed to overcome this bottleneck [99-101]. In O(N) methods, appro-
priate functional forms for the total electronic energy (the sum of eigenvalues in
Eq. 7-2) are used, often based on a density-matrix representation of the occupied
electronic sub-space. In the O(N) formulation of [100, 101], the sum of eigenvalues
is written:

NOCC
> ei=Tr[pH]
i (7-4)
=Tr [(3,02 — 2,03) H] ;
where H is the Hamiltonian matrix, and
p=3p"—2p, (7-5)

is the physical density matrix. The matrix p contains the electronic degrees of free-
dom of the problem. Unconstrained direct minimization of Eq. (7-4), with respect
to matrix elements of p, leads to the minimum of the electronic energy, because,
by construction, this functional form has a local minimum at the physical density
matrix, i.e., the one corresponding to filling the Ny lowest-energy eigenstates.
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Truncation of the matrix elements in p within a given localized region surround-
ing each atomic site leads to the linear scaling or O(N) behavior of the method.
This O(N) TBTE framework retains a quantum mechanical description of the sys-
tem, at a quantitative level, when combined with the more modern TB Hamiltonian
parameterizations [95-98].

In what follows, we discuss the main results of two recent investigations, one
that employed classical potentials to address the scaling laws of the energies of
SiNWs, and another that examines structural transitions of very thin SINWSs, using
a combination of ab initio and TB methodologies.

7.3. STRUCTURAL PROPERTIES: APPLICATION OF EMPIRICAL
METHODS

A major challenge in growing SiNWs is to control their final properties, such as
the growth direction, surface types, reconstruction and passivation. Recently, it has
been shown that the electronic properties of SINWs are strongly dependent on their
surface parameters [80], such that they can present metallic or insulating character.
In order to grow SiNWs with pre-determined parameters, such as the growth direc-
tion and surface types, it is important to know the thermodynamic conditions which
would favor growth with such properties. Additionally, it is crucial to know how the
wire properties scale with the size of the nanowire.

In order to establish scaling laws for nanowires, a classical model has been
used to determine the nanowire free energy in terms of its parameters [102, 103].
This energy could be used to establish the thermodynamic conditions for nanowire
growth in equilibrium. The wire energy (F) comprises three elements: a bulk (Ep),
a surface (Ej), and an edge (E.) term,

F=FE.+E +E. (7-6)

The surface term is given by the contribution of all wire facets:
E =) visi, (7-7)
i

where y; is the surface energy of facet i, and s; is the number of unit cells of type i
in the surface. Therefore, the nanowire energy lies between two limits [104]:

Ee + VYmin Zsi < (F — Ep) < Ee + Ymax Zsi s (7-8)

1 1

where Ymin and ymax represent the minimum and maximum values for the sur-
face energies, respectively. Therefore, the nanowire energies in a certain growth
direction, with surfaces of mixed characters, should lie between those two limits.
However, this modeling can only establish these limits but still does not allow to
compare energies with different surface compositions [103].
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The scaling properties of nanowires, such as their energies, have been described
in terms of their diameters [80, 105, 106]. However, defining nanowire properties
within a single parameter, such as diameter, is not simple, since nanostructures based
on covalent bonding generally have facets and do not have a single diameter param-
eter. Authors either avoid defining such a parameter [69, 80] or describe the wire
representative dimension as its smallest diameter, taken from images of the wire
cross-section [106]. Other authors take the diameter of the smallest cylinder that
contains the wire [46, 105]. If a single diameter is used, scaling of the nanowire
energetics as function of its cross-section size takes into account an average of the
surface energies of the various facets.

Considering the SINW faceting, the wire perimeter (P), and not the wire diam-
eter, provides a more detailed description of the nanowire scaling properties [104].
The wire perimeter comprises the sum of the length of each facet (f;) of the wire
(P = Y_f), shown in Figure 7-1. The surface size of each facet is determined by
fi x L (L is the wire length) and the total wire surface is given by P x L. Therefore,
a wire scaling law described in terms of its perimeter is equivalent to a law in terms
of its total surface. Considering that in a nanowire, the surface/volume ratio is very
large, it is reasonable to consider that scaling laws should be described in terms of
the wire surface.

The wire energy can be given in terms of the facet length, f;, shown in Figure 7-1.
The energy limits of Eq. (7-8), can be written in terms of the wire perimeter (P =
> :fi). Dividing all the terms in Eq. (7-8) by the number of atoms, N o P2, per unit
length, one gets the following relation for the wire energy per atom [104]:

EeP™ + yminP ™ < (F = E)/N < EcP™> + Ymax P, (7-9)

Equation (7-9) gives the limits for wire energy in terms of their perimeters. For
large perimeters, the edge effects could be neglected, and the wire energies should
have a linear relation with P~!, and lie between two limiting cases, related to high
(¥max) and low (ymin) surface energies. This model could be confirmed by atomistic
simulations, combining interatomic potentials [91], discussed in Section 7.2.1, and
molecular dynamics. Considering SiNWs in a (001) growth direction, one could
have wires with different facets, ranging from wires with pure {100} surfaces to
wires with pure {110} surfaces, as represented in Figure 7-2a.

Figure 7-2b shows the energy per atom (Epy) of (001) SiNWs as a function of
P~!. This energy is defined with relation to the reference crystalline energy per

I 5

Figure 7-1. Cross-section of a typical silicon nanowire. The wire perimeter (P) is given as the sum of
all the facet sides
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Figure 7-2. (a) A cross-sectional representation of the wires with (001) growth direction with pure
{100}, mixed ({100} 4 {110}), and pure {110} surfaces. (b) Nanowire energy per atom (Epyw ), computed
using an empirical potential [91], as a function of P! for (100) nanowires. Circles (e) represent wires
with pure {110} surfaces, the squares (B) those with pure {100} surfaces, and the triangles (A) those with
mixed ({100} 4{110}) character. The dotted and dashed lines are data fittings coming from configurations
that determine the energy limits

atom, such that very large wires (P! — 0) tend to crystalline silicon, and the
respective energy tends to zero. The nanowire energies follow a universal scaling
law, for each facet family. The energy of a nanowire with any surface composi-
tion (pure or mixed character) falls within a certain region of the graphics, always
between wires with {100} and {110} pure surfaces. These results are consistent: for
a certain wire perimeter, the wire energy could have several values, depending on
the surface types. The crystalline Si {100} surfaces have higher energies than {110}
surfaces [107], therefore it is consistent that wires (with the same perimeter) have
higher energies if they have {100} rather than {110} pure surfaces. Such results are
fully consistent with the analytical model of Eq. (7-9). For large wire perimeters,
edge effects can be neglected, and there is a linear relation between energy and the
inverse of the wire perimeter. However, for smaller perimeters, edge effects become
important [103, 108], leading to non-linear behavior. This behavior, of a window
in which nanowire energies lie, could also be observed for SiNWs with (110), and
(112) growth directions [104].

The results on Figure 7-2 provide the thermodynamic conditions for growing
(100) SiNWs. Those results showed that wire properties are strongly dependent
on the surface properties. However, another important aspect of these thin wires
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Figure 7-3. Stress (o) strain (¢) curve of a thin wire ((001) SINW with mixed {100} + {110} surface
character) computed using an empirical potential [91] and molecular dynamics at finite temperature
(T = 350K). The inserts represent the respective atomic wire configurations (near the deformation
region) for several strains

is how they deform in response to external load, and the role of surfaces in such
deformation processes. The typical behavior of a bulk material under load is a
linear stress-strain relation for small strains, and for larger strains the material
presents a stress saturation until rupture. Figure 7-3 shows the response of a
SiNW to external load, computed combining an empirical potential and molecular
dynamics. The wire response is essentially equivalent to that of a bulk material,
but the wire appears to support considerably larger strains before full rupture. For
small strains (e< 0.05), the stress-strain curve has a linear behavior, which indicates
an elastic response. For larger deformations (0.05< e <0.13), inelastic behavior
takes place. At about ¢ &~ (.13, there is a large decrease in the stress, and the wire
starts to open a surface crack. It would be expected that, for a certain large strain
(here & ~ 0.13), the nanowire would simply follow a fracture process, as observed
in bulk experiments [106]. However, the evolution of the nanowire deformation
allows larger strains, with considerably larger nanowire elongations. For those
large strains, the crack did not evolve because atoms in the surface had enough
thermal energy to diffuse toward the crack, preventing crack propagation and full
rupture.

The above results show how faceting can be described by a scaling law that
considers the nanowire perimeter and takes into account various possible surface
terminations (or facets) for a given family of nanowires. In the following, we discuss
a related but different issue, which is the stability of SiNWs, derived from bulk
structures other than the cubic-diamond one, due to surface effects, for wires of
very small diameters, of the order of 1 nm.
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74. MORPHOLOGY OF THIN SILICON NANOWIRES:
APPLICATION OF TIGHT BINDING AND FIRST
PRINCIPLES METHODS

In the limit of the ultrathin wires, with diameters of the order of 2 nm and smaller,
the surface-to-volume ratio is large enough that structural stability is strongly dic-
tated by surface effects. Kagimura et al. [105] have investigated the possibility
of structural transitions from the cubic-diamond (cd) nanowire forms to alter-
native geometries, for nanowires with diameters (D) between 0.4 and 2.0 nm.
Calculations in [105] were performed in the DFT framework [83], within the
generalized-gradient approximation (GGA) [109] and norm-conserving pseudopo-
tentials [110-112], using the SIESTA code [113]. This ab initio methodology was
combined with the O(N) density-matrix tight-binding methodology (DM-TBTE)
of [100], using the TB silicon Hamiltonian of [95]. Being a linear-scaling method
where the workload to compute the electronic structure of the system scales
linearly with the number of atoms, as opposed to the cubic scaling of matrix-
diagonalization methods, the DM-TBTE method is particularly useful in the study
of larger structures not amenable to calculation by ab initio methods.

The sequence of phase transitions in the bulk [114—119], motivates most of the
choice of geometries considered in [105]. They can be separated in three classes
shown in Figures 7-4 and 7-5:

(1) Diamond-structure nanowires — These are derived from the cubic-diamond (cd)
bulk phase, with the nanowire axis oriented along the [100] and [110] directions.
The latter is the observed orientation of SINWs with diameters between 3 and
10nm [47]. The wires with D > 1 nm, oriented along [110], remain cd-like after
the ab initio geometry optimization. Two examples (labelled cd1 and cd2) are
shown in Figure 7-4a and b, respectively. Both wires undergo reconstruction at
the surface but retain a crystalline core at the central interstitial channel. The cd
wires with D < 1nm undergo extensive reconstruction towards amorphous-like
structures.

(a) cdl (b) cd2 (c) sc

(e) shl (f) sh2

B

Figure 7-4. Cross sections of selected SINW structures labeled according to the parent bulk phase. In (a)
and (b), cd1 and cd2 wires derived from the cubic diamond structure, with axis along the [110] direction;
in (¢), a simple cubic wire; in (d), a 8 —tin wire with axis along the bulk c-direction; in (e) and (f), simple
hexagonal wires with axis along the bulk c-direction (From [105])
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Figure 7-5. Side view of corrugated Si nanowire structures. In (a), corrugated wire resulting from a
structural instability of a [100] cubic diamond nanowire; in (b), a filled-fullerene nanowire. Inner atoms
are shown as green spheres (From [105])

2

3)

High-density nanowires — Derived from the high-density S-tin, simple cubic
(sc), and simple hexagonal (sh) bulk phases. The simple cubic wire oriented
along the [100] direction is shown in Figure 7-4c. It shows very little distortions
relative to the bulk structure, and its energy is lower than that of the sc structures
oriented along [110] and [111] directions. The relaxed geometry of the B-tin is
shown in Figure 7-4d, with the nanowire axis parallel to the bulk c-axis, passing
through the center of an interstitial channel. All sh nanowires oriented along the
bulk ¢ direction retain the crystalline order along the wire axis after geometry
optimization, regardless of the wire radius. Two examples (shl and sh2) are
shown in Figure 7-4e and f, respectively. An empty-hexagon variation of shl
was also considered, where the atom at the hexagon center is removed.
Fullerene-like nanowires — The structures in this class are derived from
fullerene-like geometries [31, 67, 68]. Two of these are based, respectively,
on the two fullerene-based geometries proposed in [31], namely, the Siyg cage
polymer (full) and the Six4 cage polymer (ful2). Given the predicted stability
of filled-fullerene-like clusters [67, 68], two variations of these nanowires were
also considered, labeled f-full and f-ful2, where two extra atoms are included
inside the cage. The structure f-ful2 is shown in Figure 7-5b. Its corrugated
structure, with the presence of fivefold rings at the surface, is similar to that
of a wire which results from the reconstruction of the cd(100) wire, shown
in Figure 7-5a. Hence, the latter was classified as fullerene-like in [105], and
labeled f-ful3. Filled fullerene-like nanowires of smaller diameters, based on
Sijo and Sije cages, with one additional atom in the center of the cage, were
also considered, but these have relatively high formation energies, as shown
below.
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Table 7-1. Calculated total energies per atom AFEio, in eV/atom, of
selected Si phases, relative to the cubic diamond phase. (From [105])

hd B-tin sh sc bee hep fce

0.01 0.31 0.33 0.36 0.52 0.52 0.55

Table 7-1 shows the total energy per atom of the relevant bulk phases, AE;,;, =
Eio — Efgt, relative to the total energy of the cd phase (Efgt). AEy is within
0.20-0.40 eV/atom for the sc, sh, and B-tin phases, in good agreement with other
calculations [114—116]. The calculated results for the diamond to S-tin transition
pressure for Si (109 kbar) are also in good agreement with experimental results and
other calculations [114-116].

Figure 7-6 shows the calculated total energies, AEy (relative to the cd bulk
phase, as defined previously) as a function of D, of the Si nanowires with D <
1.4nm. In the 0.9nm < D < 1.4nm range, the formation energies of the high-
density sc, sh, and B-tin nanowires, and also of the fullerene-like wires, are very
close to the energies of cdl and cd2, with energy differences of ~0.05 eV/atom or
less. These values are one order of magnitude smaller than the energy differences
of the corresponding bulk phases in Table 7-1, showing that the energetics of wire
formation, at such small diameters, is strongly affected by surface effects, consistent
with findings discussed in Section 7.3. Figure 7-6 also shows that the amorphous
wires, derived from the instabilities of thin cd wires, have higher formation energies
than the high-density and the fullerene-like wires of comparable diameters. This
suggests that amorphous wires in this diameter range could only be produced in
conditions far from thermodynamic equilibrium.

0.851-@ A empty hexagon
i m [-tin
084 * A s. hexagonal
Fe ° * o* * ¢ cubic diamond
€075 A * Ok * amorphous
o L . .
kS| F shl O simple cubic
% 07F e filled fullerene
& r O fullerene
2065 g £ . ]
= . — 1 —
m F 1 A ]
? ® % 2 Ex ]
0.6 B f-ful2 / cdl .
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|
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Figure 7-6. First-principles total energies (in eV/atom), relative to cd bulk energy, of Si nanowires as a
function of nanowire diameter. Labeling of the structures is explained in the text (From [105])
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A comment is in order regarding the hollow geometries like the unfilled-fullerene
[69, 71, 75] and the empty-hexagon structures, to the extent that they have very
high energies, when compared to the denser structures. Figure 7-6 also shows that
among the nanowires with D < 0.7 nm, the shl structure appears below and to the
left in the energy vs. diameter diagram, suggesting a high stability for this structure,
when compared to the other small-diameter geometries. In the range 0.7 nm < D <
0.9 nm, filled-fullerene-like wires are the most stable ones.

The results above indicate that the energetics of nanowire formation is deter-
mined by the interplay between the energies of a bulk part and a surface part of the
wire. Figure 7-7 shows —AE; for the cd and sh Si wires, respectively, as a function
of the inverse nanowire diameter D~ !. The values of the respective bulk phases (the
D! =50 limit), are also shown. The Figure shows distinct trends for the cd- and
sh-based Si nanowires, with a much larger variation of the total energy per atom as
a function of D! for the cd-based wires than for the sh-based ones. Moreover, the
energies of the two types of Si nanowires are very close for D ~ 1.2 nm. The results
of the first-principles calculations shown in Figure 7-7 are reasonably well fitted by
the expression

(D—2p"'7)

7 (7-10)

Enw = & + (&b — &5)
In Eq. (7-10), enw is AEyy for the nanowire based on a given structure (cd or sh),
while ¢; and p are, respectively, AE, and the number of atoms per volume for the
corresponding bulk structure. g, is a measure of the surface energy per atom of the
nanowire. €, and p are obtained from the bulk first-principles calculations, leaving
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Figure 7-7. First-principles and tight-binding (DM-TBTE) total energies (in eV/atom), relative to the
cd bulk energy, of SiINWs as a function of D~ . The dashed (solid) line shows the curve obtained from
a continuum model, parameterized for cd (sh) wires (From [105])
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&5 as the only fitting parameter. In Figure 7-7, Eq. (7-10) is plotted with e, = 0.83 eV
for the cd structure and &g = 0.72 eV for the sh structure.

Equation (7-10) results from a simple continuum model for a cylindrical wire
with diameter D, density p, and total energy Enw. Enw is decomposed into con-
tributions due to the bulk-like atoms and to the low-coordinated surface atoms:

Enw = eppVp + &5pVs. (7-11)

By considering a surface thickness of p~!/3

Eq. (7-10).

Although this continuum model would be valid only in the limit D~'—0, it pro-
vides a simple interpretation for the larger variation of &, as a function of D~! for
the cd-based wires when compared with the sh-based ones. In Eq. (7-10), the varia-
tion of e,y with D is proportional to Ae = g5 — &p. Ae is about twice as large for
the cd phase than for the sh phase, meaning that the energy cost of a cd surface is
much larger than that of an sh surface. This arises from the fact that surface atoms
in a cd structure are under-coordinated, while the surface atoms in an sh structure
are still highly coordinated, reducing the energy cost of its surface. The above one-
parameter continuum model, least-square-fitted to cd and sh geometries, displays a
crossing between the two curves for D ~ 1.2 nm. Hence, the model suggests a sta-
bility inversion resulting essentially from the larger Ae for the cd phase. The same
stability inversion is indicated by the very close ab initio values obtained for &y, for
the sh- and cd-based wires, for D ~ 1.2 nm. Moreover, the structural instability of
the cd class of nanowires suggested by the first principles results, from crystalline-
like (for D > 1nm) to amorphous-like (for D < 1 nm), occurs at diameters which
are very near the cd-sh stability inversion. DM-TBTE calculations allows one to ver-
ify the validity of Eq. (7-10) to wires of larger radii. The results for (110)-oriented
Si wires with 2nm > D > 5nm, which were not used in the fitting of Eq. (7-10), are
also included in Figure 7-7. The agreement between the ab initio-fitted Eq. (7-10)
and the DM-TBTE values for &,y is very good, at larger diameters.

, it is straightforward to obtain

7.5. CONCLUSIONS

Modern theoretical calculations have reached a point where realistic description
of materials properties are provided by computational simulations. A carefully
constructed empirical potential, such as EDIP, provides a good description of
silicon-nanowire energetics. When combined with a scaling law that considers the
nanowire perimeter, it allows for the comparison of silicon wires with different
surface terminations (or facets) for a given family of nanowires. Further, simula-
tions using this potential suggest that the response under external load of silicon
nanowires is different from the bulk, to the extent that crack propagation is sup-
pressed and healing at the crack is mediated by surface effects. Investigation of
nanowire properties are also within the reach of tight-binding and first principles
methodologies. These methods have been used to describe how, in the limit of very
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thin wires, of subnanometer diameters, surface effects may lead to the stabiliza-
tion of nanowire structures built from the simple-hexagonal bulk structure or from
filled-fullerene units.
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Surface effects have recently been recognized as having the dominant effect on the
mechanical behavior and properties of nanowires. Understanding these effects will be
critical, in particular for the accurate design and functionalization of future nanowire-
based nanoelectromechanical systems, including sensors, resonators and actuators. The
purpose of this chapter is therefore to overview a recently developed multiscale contin-
uum model, the surface Cauchy-Born model, which was developed to study nanomaterials
where surface effects such as surface stresses are expected to contribute significantly to
the mechanical response. The approach is based upon a simple extension to Cauchy-Born
theory, in which continuum properties such as stress and stiffness are obtained for a given
material and crystal structure directly from an underlying atomistic potential. In partic-
ular, by explicitly accounting for differences in energy for both bulk and surface atoms,
we develop a variational formulation that leads to a nanomechanical boundary value prob-
lem that can be solved using standard nonlinear finite element methods for displacements,
stresses and strains while naturally accounting for the effects of atomistic surface stresses.
Finite element calculations using the proposed surface Cauchy-Born model demonstrate
how surface stresses cause variations in the resonant frequencies of silicon nanowires as
compared to those expected from continuum beam theory, and emphasize the importance
of nonlinear elasticity in understanding and capturing the resonant frequency variations

Multiscale computations, Nanowires

8.1. INTRODUCTION

Nanowires have been amongst the most studied nanomaterials in recent years. The
intense interest in nanowires has emerged for a variety of reasons, foremost because
their small sizes often lead to unique physical properties that are not observed
in the corresponding bulk material. Non-bulk phenomena have been observed in
the mechanical, electrical, thermal, and optical properties of both metallic and
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semiconducting nanowires [1-3]. These unique properties have therefore gener-
ated significant interest in using nanowires as the basic building blocks of future
multifunctional nanoelectromechanical systems (NEMS) [4, 5], which have been
proposed for a multitude of cross-disciplinary applications, including chemical and
biological sensing, force and pressure sensing, high frequency resonators, and many
others [4-9].!:2

The potential of nanowires in future nanotechnologies has led to significant
interest in experimental characterization of the size-dependent elastic properties of
nanowires. The experimental techniques utilized have varied from time-resolved
spectroscopy [10] to AFM-induced bending [11-12] or resonance measurements [6,
22-30]. In general, resonance measurements to obtain the nanoscale elastic proper-
ties are predominant in the literature due to their relative simplicity as compared
to bending and tensile experiments at the nanoscale due to the reduced amount
of nanowire manipulation involved in resonance-based testing. The experimental
results show significant scatter, with some predictions of enhanced elastic stiffness
[14, 15, 23], some predicting reduced elastic stiffness [10, 29, 31, 32] with decreas-
ing nanostructure size, and some predicting no change with respect to the bulk
elastic stiffness [12,13]. Because many of the proposed applications for nanowire-
based NEMS, such as resonant mass sensing and high frequency oscillators [4, 5,
8] rely on the ability to control and tailor the nanowire resonant frequencies with a
high degree of precision, it is critical to be able to predict how the elastic properties
of nanowires scale with size.

In analyzing the mechanical behavior of nanomaterials, a key feature of interest is
intrinsic surface stresses that arise due to their large ratio of surface area to volume
[33]. Surface stresses have recently been found to cause phase transformations in
gold nanowires [34], self-healing behavior in metal nanowires [35-37], and surface
reorientations in thin metallic films and wires [38, 39]. Surface and confinement
effects are also known to cause elevated strength in nanomaterials [11,12,14,15],
orientation-dependent surface elastic properties [40—42] and a first-order effect on
the operant modes of inelastic deformation in metal nanowires [43].

The knowledge that surface effects are critical to understanding the mechan-
ical behavior and properties of nanomaterials has motivated the development of
enhanced continuum models, as standard continuum mechanics is length scale
independent. Various analytic models have been developed to study the effects of
surface stress on the resonant properties of nanobeams [44-50], or more generally
to capture the non-bulk mechanical behavior and properties of nanostructures [41,
44-60]. Due to assumptions utilized to make the analyses tractable, the coupled
effects of geometry, surface orientation and system size on the resonant properties
of nanowires have not been quantified, nor have surface stress effects arising directly

IPortions of Section 1, 2.1, 2.2 and 3.1 are from [87]. Copyright John Wiley and Sons Limited.
Reproduced with permission.

2 Portions of Section (2.4), (6), (7) and (8) are reprinted with permission from [84]. Copyright (2008),
American Institute of Physics.
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from atomistic principles been included in the analyses, which are generally in two-
dimensions. The analyses also utilize overly simplistic pair-type atomic interactions
to describe the surface physics, which tend to incorrectly predict a compressive
surface stress for metals whereas the surface stress for metals is almost always ten-
sile. Furthermore, these models are based upon linear elastic continuum mechanics.
These errors indicate that quantitative analyses for real materials cannot be made
using these approaches.

Alternatively, multiple scale models of nanomaterials have been developed
to combine the insights into the detailed response of materials that are avail-
able through atomistics with the reduced computational expense that continuum
approaches offer. Methods for both quasistatic [61-64] and dynamic coupling of
atomistics and continua [65-74] have been proposed. With few exceptions [64], a
critical issue with these methods is that the continuum region generally surrounds
or encloses the atomistic region, thereby eliminating the effects of surface stresses
on the atomistic behavior.

Therefore, the purpose of this work is to overview a recently developed non-
linearly elastic, finite deformation multiscale continuum model that incorporates
atomistic surface stress effects to study surface effects on the mechanical behav-
ior and properties of nanomaterials. We accomplish this through a decomposition
of the potential energy of the system into bulk and surface components; while this
decomposition has been considered before [33, 51, 57], those works require either
higher order terms in the surface energy or empirical fits to constants for the surface
stress which require additional atomistic simulations. The uniqueness of the present
approach is that the surface energies are obtained directly from an underlying crystal
structure and interatomic potential; this approach is adopted since a direct link to the
underlying atomic structure is desired for the constitutive response, and constitutes
the multiscale nature of the approach. Therefore, the approach taken in this work
uses much of the machinery typically used in Cauchy-Born constitutive modeling
[61,75,76] with care taken to treat surface unit cells correctly. This modification to
treat the surface unit cells differently is the key to utilizing the Cauchy-Born rule to
model surface effects in nanostructures as the Cauchy-Born model is based upon a
bulk atomic unit cell that observes no free surface effects.

By decomposing the potential energy into bulk and surface components, a
variational formulation that is composed of surface and volumetric contributions to
the potential energy is obtained. Thus, as the structural length scale decreases and
the ratio of surface area to volume increases, the correct surface energy contribution
to the overall system energy is naturally obtained. Because the method is based
on an energetic approach, the solution of the variational equation can be readily
obtained using standard nonlinear finite element techniques; as the finite element
stresses are simply derivatives of the strain energy, the effects of the surface
energies are transferred naturally to the numerical model. This fact constitutes a
distinct advantage for the proposed approach as it can therefore be utilized to solve
boundary value problems for the deformation of nanoscale materials with arbitrary
geometries, surface orientations and external loading. We present finite element
calculations verifying the accuracy of the proposed surface Cauchy-Born model as
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compared to benchmark fully atomistic calculations for FCC metal nanowires, an
extension of the surface Cauchy-Born for diamond cubic lattices and silicon, and
also using the surface Cauchy-Born model to investigate how surface stress effects
cause deviations in the resonant frequencies of silicon nanowires as compared to
those expected from continuum beam theory.

8.2. METHODOLOGY
8.2.1. Continuum Mechanics Preliminaries

In this section, we briefly review some elements of nonlinear continuum mechanics
which are central to the Cauchy-Born formulation. The position of a material point
X in the reference configuration can be mapped to the current configuration x via

x =X+ uX), (8-1)

where u(X) is the displacement. The transformation of an infinitesimal line seg-
ment from the reference to the current configuration is described by the deformation
gradient F, which is defined as

0X ou
1+ (8-2)

F=—= ,
X X

where I is the identity tensor. In Green elastic theory, stress is derived by differen-
tiating the material strain energy density function. In order to satisfy material frame
indifference, the strain energy density must be expressed as a function of the right
stretch tensor C,

W(F) = &(C), (8-3)
where
C=F'F. (8-4)

From the strain energy density, one can obtain the first (P) and second (S) Piola-
Kirchoff stresses as

aW(F) ad(C)
P=—— d S=2 , 8-5
oF " aC (85
where the Piola-Kirchoff stresses are related by
P = SFT. (8-6)

For crystalline materials, we can construct a strain energy density function by
considering the bonds in a representative volume of the crystal. For the case of
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a centrosymmetric crystal modeled using only pair interactions, the strain energy
density is defined in terms of the interatomic potential U as [75]

b U(r@(C)). (8-7)

i=1

1
PC)=-—
(©) =35
In (8-7), ny, is the total number of bonds to a representative bulk atom, .Qg is the

representative atomic volume in the undeformed configuration, ¥ is the defomed
bond length which follows the relationship

" =/R} - CRY, (8-8)

where R is the undeformed bond vector, and the factor of 1/2 in (8-7) comes from
splitting the energy of each bond.

The strain energy density (8-7) is exact in describing the change in energy per
volume of a bulk atom in a corresponding defect-free atomistic system subject to
homogeneous deformation. From (8-5) and (8-7), the second Piola-Kirchoff stress
is given by

S(C) = L 3 U ("9 ai? 8-9
© Qaz (r )aC . ( )
0

=

These assumptions constitute the Cauchy-Born hypothesis; we note that the
Cauchy-Born model has been used previously for a variety of different materials
and lattices, including carbon nanotubes [76,77] as well as semiconductors such as
silicon [60,78,79] and FCC metals [61].

As mentioned above, all points at which the Cauchy-Born hypothesis is applied
are assumed to lie in the bulk because @(C) does not account for surface effects.
Therefore, the issue at hand is to develop an expression for the energy density along
the surfaces of a body. We discuss an approach to accomplishing this next.

8.2.2. Surface and Bulk Energy Densities

In this section, we discuss the methodology by which the the total atomistic potential
energy of a body is represented by continuum energy densities with appropriate
representations for bulk and surface energy densities. The relationship between the
continuum strain energy and the total potential energy of the corresponding, defect-
free atomistic system can be approximated as

natoms

> Ua(r)%/ ¢(C)d9+/ y(C)dr, (8-10)
oy _qulk I

where U, is the potential energy of atom «, r is the interatomic distance, @(C)
is the bulk strain energy density introduced in Section 8.2.1, .Q(l)’“lk represents the
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a=1 x=2 =3 «=4 «=n-2 a«=n-1 x=n

Surface atoms Bulk atoms Surface atoms

Figure 8-1. Illustration of bulk and surface atoms for a 1D atomic chain with second nearest neighbor
interactions

volume of the body in which all atoms are fully coordinated, y (C) is the surface
energy density, I represents the surface area of the body in which the atoms are
undercoordinated and natoms is the total number of atoms in the system.
Analogous to the bulk energy density, we will derive this surface energy den-
sity y(C) to describe the energy per representative undeformed area of atoms at or
near the surface of a homogeneously deforming crystal. Figure 8-1 illustrates the
decomposition given by (8-10). The bulk strain energy density function @(C) is
integrated only over the part of the domain composed of fully coordinated atoms, or
atoms @ = 3 — n — 2 in Figure 8-1. The potential energy of the atoms at or near
the surface (atoms o = 1, 2, n — 1, n in Figure 8-1) which do not possess a bulk
bonding configuration is represented by the surface energy density y(C). In order
to derive the surface energy density y(C) with a Cauchy-Born approach, we need
to identify the surface unit cell, or the cluster of atoms that reproduce the structure
of the surface layers when repeated in the plane of the surface. The surface unit cell
possesses translational symmetry only in the plane of the surface, unlike the bulk
unit cell which possesses translational symmetry in all directions. As illustrated in
the Figure 8-1, each layer of atoms near the surface has a different bonding configu-
ration. With these considerations, we express the surface energy density generally as

ngl b;

(€)= Fa Z > ua©)), (8-11)

i=1 j=1

where ny is the number of surface layers, nyp, is the number of bonds for atoms in
surface layer i, Iy’ is the representative area of the entire surface layer cluster and
the factor of 1/2 again comes due to splitting the energy of each bond.

We can immediately define the surface stress resulting from the surface energy
in (8-11) as

WO 1NN D)
S(C) = 2= = I ZZ (U(r(’))%>. (8-12)

i=1 j=

Figure 8-2 summarizes the basic idea of the surface Cauchy-Born model. For
both bulk and surface components, the underlying atomistic potential energy is
obtained by subjecting the bulk or surface unit cell to the continuum stretch ten-
sor C. Once the strain energy density of the deformed unit cell is known, the
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Surface Cauchy Born: Bulk Cauchy-Born + Surface Modification
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Figure 8-2. Illustration of difference between bulk and surface contributions to surface Cauchy-Born
model

bulk stress can be calculated using (8-9), while the surface stress can be calculated
using (8-12).

8.2.3. Formulation for Embedded Atom Method/FCC Metals

We now present the SCB formulation for FCC metals. We first note that FCC tran-
sition metals can be modeled with a high degree of fidelity including surface driven
phenomena by the embedded atom method (EAM) [35,36,80]. Considering a purely
atomistic system, the EAM energy for an atom U is written as’

b.
U e
Ui = Filp) + 5 ; &ij(ri),
l
! (8-13)
nb;
pi = Z pj(rij),

J#

where nb; are the number of bonds of atom i, F; is the embedding function, p; is the
total electron density at atom i, p; is the contribution to the electron density at atom
i from atom j, ¢;; is a pair interaction function and r;; is the distance between atoms
i and j. We note that the number of bonds nb; is dictated by the cutoff distance of
the interatomic potential.

In order to turn the atomistic potential energy into a form suitable for the CB
approximation, two steps are taken. First, the potential energy is converted into a
strain energy density through normalization by a representative atomic volume $2p;
£2p can be calculated noting that there are 4 atoms in an FCC unit cell of volume
ag, where ag is the lattice parameter. Thus 29 = 4/ ag for a (100) oriented crystal.

3 Portions of Section 2.3, 3.1 and 5, including Figures 3,6,7,8, are reprinted with permission from [88].
Copyright (2007) by the American Physical Society.



200 H.S. Park and PA. Klein

Second, the neighborhood surrounding each atom is constrained to deform homo-
geneously via continuum mechanics quantities such as the deformation gradient F,
or the stretch tensor C = F'F. The resulting EAM strain energy density @ is

1 _
&(C) = % (Fi(pi) + i) »
1 nbrv;
¢i=> Z #ij(rii(C)), (8-14)

J#i

nbrv;

pi= Y pi(ry(C)),

J#i

where nbrv; are the number of bonds in the representative unit volume £2¢ for atom
i, F; is the embedding function, pj is the contribution to the electron density at atom
i from atom j, ¢;; is a pair interaction function and r;; is the distance between atoms
iandj.

For homogeneous deformations, integrating the CB strain energy in Eq. (8-14)
over the representative volume £2( gives the same result as the energy of an atomic
unit cell in a homogeneously deforming crystal. This energetic equivalence forms
the basis of the traditional CB hypothesis, in which lattice defects are not allowed,;
other works, notably the quasicontinuum method [61], have been developed to
relieve this restriction. Once the strain energy density is known, continuum stress
measures such as the second Piola-Kirchoff stress S, which can be interpreted as the
actual force mapped to the undeformed configuration divided by the undeformed
area [81], can be defined as

d0(C) 1 JU(C) ir

S=2 = — s 8-15
aC 20 or 0C ( )
while the material tangent modulus C is defined to be
oS
C=2—. 8-16
5C (8-16)

As previously discussed, another key restriction of the CB hypothesis is that all
points are assumed to lie in the bulk as @(C) does not account for surface effects.
Therefore, the issue at hand is to develop an expression for the energy density along
the surfaces of a body, where the potential energy of atoms differs from the bulk
due to undercoordination; here, undercoordination is used to describe the fact that
atoms at the surfaces of a material have fewer bonding neighbors than atoms that lie
within the bulk portion of the material.

As discussed in the introduction, most surface elastic models decompose the total
energy of the continuum body into surface and bulk contributions. The uniqueness
of the present approach is the usage of the CB approximation in constructing the
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surface energy density; we now discuss how the CB approximation can be utilized
to approximate the surface energy density.

Equation (8-10) thus represents the decomposition of the total energy of a con-
tinuous body into bulk and surface components. For FCC metals, we consider
Figure 8-3, which illustrates the bulk/surface decomposition for a (100) oriented
FCC crystal with {100} transverse surfaces. For this crystal structure interacting via
the EAM potential, there are four layers of surface atoms whose forces deviate from
that of an ideal bulk atom. Because the EAM potentials generally employ a fourth
shell neighbor cutoff [82], it would appear that the atoms in layers 1"03 and F04 feel
the same force as those in the bulk. However, the forces on atoms in surface layer
I 03 depend on the electron density of atoms in layers Fol and FOZ, while the forces
on atoms in surface layer F04 depend on the electron density of atoms in layer 1“02.
Because atoms in surface layers 1’01 and F02 do not have a full complement of neigh-
bors, their electron densities will deviate from the bulk, causing non-bulk forces on
atoms in layers F()3 and F04. We concentrate on the effects of forces, and not ener-
gies, as the stresses that are needed for the FE formulation in the next section are
found by performing a chain rule on the forces, as seen in (8-5).

We first note that for (100) FCC crystals whose interactions are governed by
EAM potentials, there exist four non-bulk layers of atoms at the surfaces, as illus-
trated in Figure 8-3. Thus, we rewrite Eq. (8-10) taking into account the four
non-bulk layers to read

natoms

Z Ui(r) = /9  P(0)d2 + fr yp(©dr
i 0 0

(8-17)
+/ ]/Fz(C)dF—i—/ ]/Fs(C)dF—l-/ yr4(C)dr.
rg 0 rg 0 rg 0

Free Surface: F(l) 2 @ @
Non-bulk layer: 1"(2) @ @
Non-bulk layer: Tg @ L @
Non-bulk layer: Fg @ @
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Figure 8-3. Tllustration of bulk and non-bulk layers of atoms in a 3D FCC crystal interacting by an EAM
potential
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Having defined the energy equivalence including both bulk and surface effects,
we now determine the surface energy densities ¥ (C). Analogous to the bulk energy
density, the surface energy densities y (C) will describe the energy per representative
undeformed area of atoms at or near the surface of a homogeneously deforming
crystal. For FCC metals, choosing a surface unit cell that contains only one atom
is sufficient to reproduce the structure of each surface layer. The surface unit cell
possesses translational symmetry only in the plane of the surface, unlike the bulk
unit cell which possesses translational symmetry in all directions. Thus, the surface
energy density for a representative atom in a given surface layer in Figure 8-3 can
be written generally as

1

yra(C) = T (Fi(pi) + i),

nby,
¢i =5 D $ir(C)), E-18)

JF#L
nby,

pi =Y _ pi(ry(C)),
JF

where nb, are the number of bonds for an atom in surface layer a, and Iy is the
representative unit area occupied by a non-bulk atom lying at or near the free
surface.

The surface energy densities differ in two ways from the bulk energy density.
First, they are normalized by an area, 'Y, instead of by a volume. This is necessary
to give the correct units of energy when integrating the energy density in (8-17).
The second is that an atom in each different surface layer has a different number of
bonding neighbors; we again note that while atoms in layers FO3 and F(;‘ have the
same number of bonding neighbors as bulk atoms, because the electron densities
of the undercoordinated atoms in layers Fol and 1"02 are necessary for the force and
stress calculations, the atoms in layers F03 and F04 are treated as non-bulk. For the
(100) FCC crystal with {100} transverse surfaces considered in this work, atoms in
layer 1"01 have 33 neighbors, atoms in F02 have 45 neighbors, while atoms in layers
F03 and 1’6‘ both have the bulk complement of 54 neighbors.

We note in closing this section that because we have assumed that the ener-
getics of each surface layer can be described by a single representative atom, we
have ignored the effects of edge and corner atoms. While these atoms are expected
to play an important role in truly small nanostructures [83], the system size at
which these effects become significant can easily be described using direct molec-
ular calculations. As will be demonstrated in the numerical examples, the current
methodology is geared for larger problems where such edge and corner effects are
relatively insignificant, and simultaneously where the system size for fully atomistic
calculations becomes prohibitive.
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8.24. Formulation for Diamond Cubic Lattices

Before presenting the surface Cauchy-Born formulation for diamond cubic lattices,
we first present the bulk Cauchy-Born (BCB) model for silicon. The BCB formula-
tion in this work for silicon closely mirrors that of Tang et al. [60], Park and Klein
[79] and Park [84]. Because the SCB model for silicon is much easier to understand
once the bulk formulation is presented, we present an abbreviated version of the
BCB formulation below.

8.24.1. Bulk Cauchy-Born Model for Silicon

In the present work, we utilize the T3 form of the Tersoff potential [85] and the
resulting parameters. The T3 is named as such due to the fact that two earlier ver-
sions of the Tersoff potential suffered from various shortcomings, including not
predicting diamond as the ground state of silicon, inaccuracies in the bulk elastic
constants, and inaccurate modeling of the {100} surfaces of silicon [86]. The T3
potential energy U can be written as

U:%ZV[,

i#] (8-19)
Vij = fe(ry) (fR(ry) + byfa(ryp) ,

where r;; is the distance between atoms i and j, fc is a cut-off function, which is
used to ensure that the Tersoff potential is effectively a nearest neighbor potential,
fr 1s a repulsive function, fa is an attractive function, and b;; is the bond order
function, which is used to modify the bond strength depending on the surrounding
environment.

The various functions all have analytic forms, which are given as

fr(ry) = Ae Y, (8-20)
fa(ry) = —Be M, (8-21)
b1+ B"¢iH™">", (8-22)
where
Gi= Y felra)gO), (8-23)
k#ij
and
C2 C2
glin) =1+ — (8-24)

&2 d2+ (h— cos Oijk)?’

where 0;j; represents the angle between a triplet of atoms i — j — k.
In order to turn the atomistic potential energy into a form suitable for the BCB
approximation, two steps are taken. First, the potential energy is converted into a
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strain energy density through normalization by a representative atomic volume £2p;
£2¢ can be calculated for diamond cubic (DC) lattices such as silicon by noting that
there are 8 atoms in a DC unit cell of volume ag, where ag = 5.432A is the silicon
lattice parameter. Thus, 29 = 8 /ag for a (100) oriented silicon crystal. Second, the
neighborhood surrounding each atom is constrained to deform homogeneously via
continuum mechanics quantities such as the deformation gradient F, or the stretch
tensor C = FTF. It is critical to note that due to the usage of nonlinear kinematics
through F and C, the BCB model is a finite deformation, nonlinearly elastic constitu-
tive model that explicitly represents the stretching and rotation of bonds undergoing
large deformation.

Silicon is well-known to occur naturally in the DC lattice structure, which is
formed through two interpenetrating FCC lattices, where the two FCC lattices are
offset by a factor of (ag/4, ap/4, ap/4). The DC lattice is shown in Figure 8-4
which illustrates the interpenetrating FCC lattices. The complication in modeling
DC lattices, which will be resolved below, is that the interpenetrating FCC lattices
must be allowed to translate with respect to each other. This key restriction can be
accommodated through a five-atom unit cell, i.e. atom A and its four neighbors in
Figure 8-4b for which the corresponding Tersoff strain energy density @. can be
written as:

5
1
& (ri;(C)) = 3% E Vij(ri;(C)), (8-25)
j=2

where i = 1 in (8-25) because atom i is considered the center of the unit cell (see
Figure 8-4), and the summation goes over the four nearest neighbor bonds j =
2, 3,4, 5. The full expression for the strain energy density @ (ry;) can be written as

(A) (B)

[001]

—
[100]

~

[010]

Figure 8-4. llustration of the diamond cubic lattice structure of silicon. Black atoms represent standard
FCC unit cell atoms, while green atoms represent the interpenetrating FCC lattice. The drawn bonds
connect atoms in FCC lattice B to atoms in FCC lattice A
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n\ —1/2n
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(8-26)

where again the multibody effects of the bonding environment are captured through
the g(01x) term. We enable the interpenetrating FCC lattices to translate with respect
to each other by introducing an internal degree of freedom & associated with all
neighboring atoms of atom A in Figure 8-4b through the modified bond lengths ry;
as

r—1j=1rj| = FRy; + )./ =23.4,5 (8-27)

where ry; is the deformed bond vector, Ry; is the undeformed bond vector between
atoms / and j and £ is the shift introduced between the two interpenetrating FCC
lattices (i.e. lattices A and B in Figure 8-4) in the undeformed configuration.

The incorporation of the internal degrees of freedom and writing the bond lengths
in terms of F results in a modified strain energy density function as

@(C) = &(C) = &(C, £(C)). (8-28)

Using standard continuum mechanics relationships, we can calculate the second
Piola-Kirchoff stress (PK2) as

1S_aq>_aq5+aqiag
277 9C  aC  9g aC’

(8-29)

To keep the crystal at an energy minimum, the internal degrees of freedom are
constrained to deform according to £*, which leads to the following relationship

D
dE*r

0, (8-30)
and changes the final expression for the PK2 stress to

s=2% (8-31)
rel

The spatial tangent modulus can be similarly calculated using standard contin-
uum mechanics relations, and can be written as

CukL = MyxL — AupAxLg(D ™y, (8-32)

where
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Myxr = 4————, (8-33)

Dpy= ——,
Pq aé_—;ag;

RRX)

App =2—— .
SRRFTT TS

8.2.4.2. Surface Cauchy-Born Model for Silicon

In this section, we present the formulation by which surface stresses are accounted
for through an extension of the BCB model we call the surface Cauchy-Born (SCB)
model. The SCB model was developed previously for both FCC crystals [87,88]
and for DC lattices [79]. We therefore briefly summarize the relevant aspects of the
SCB model for silicon [79] in this section. We first note that the total energy of a
nanostructure can be written as the sum of bulk and surface terms

Natoms

> Ua(r) =~ / &(0)d$2 + / y(C)dr, (8-34)
o _Q(l))u]k F(J

where U, (r) represents the potential energy for each atom «, @(C) is the bulk
energy density previously defined in (8-26) and y(C) is the surface energy den-
sity. The issue then is to determine a representation for the surface unit cell that will
be used to calculate the surface energy density y (C).

We accomplish this through the nine atom surface unit cell for unreconstructed
{100} silicon surfaces shown in Figure 8-5. The rationale for this particular unit cell

Figure 8-5. lllustration of the nine atom surface unit cell for the surface with a [010] normal of a
diamond cubic crystal. Black atoms represent FCC lattice A, while green atoms represent the inter-
penetrating FCC lattice B. The drawn bonds connect atoms in FCC lattice B to atoms in FCC lattice A
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arises because atoms 2 and 6 both have a full complement of neighbors, and thus rep-
resent a distinct FCC lattice B. The atoms neighboring atoms 2 and 6 therefore must
be part of the interpenetrating FCC lattice A, and thus should be able to translate
with respect to atoms 2 and 6. Therefore, we assign an internal degree of freedom
&%, where the superscript s designates an internal surface degree of freedom, to all
the black atoms (1, 3, 4, 7, 8, 9) of FCC lattice A in Figure 8-5.

The resulting strain energy density y for the surface unit cell seen in Figure 8-5
can thus be written as

y=—| D v+ Y. Vatw+ Y. V)| (839

I
0 \i=26 k=1,7,8,9 m=1, 3, 4,5

where I is the area per atom on the surface. Following (8-27), we express the bond
lengths for the surface unit cell as

rij = Iryl = [FRy;j +£%,j=2,6
rek = |rex| = |[F(Rex + &%), k=1,7,8,9 (8-36)
rom = |Fom| = [FRoy + &5, m=1,3,4,5

Incorporating the bond lengths that have been modified by the deformation gra-
dient F and the internal degrees of freedom £* in (8-36) creates a modified surface
energy density y(C) from (8-35), where the surface energy density can be modi-
fied analogously to the procedure outlined previously for the bulk energy density in
(8-29) and (8-30) to enforce the energy minimizing condition

— =0 (8-37)

where &%, similar to the meaning in the bulk case in (8-30), represents the deforma-
tion of the surface internal degrees of freedom necessary to minimize the surface
energy. Using the modified surface energy density y(C), we arrive at the expression
for the surface PK2 stress S*(C), where the superscript s here and below indicates
surface values

N AL ]
s0) =22, (8-38)

Similarly, the surface tangent modulus can be written as

Chikr, = My — Ay, i‘(Lq(Dil);q’ (3-39)

where
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8.3. FINITE ELEMENT FORMULATION AND IMPLEMENTATION
8.3.1. Variational Formulation

Having defined the surface energy densities y(C) for each non-bulk layer of atoms
near the surface, we can immediately write the total potential energy I1. of the
system including external loads T as

IT(uw) =/ ®(C)ds2 —i—/ vr,(C)dIm — (T-wydrl. (8-41)
qulk Ty Iy

We note that the surface integral involving y in (