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PREFACE

Tubes, rods, plates, shells, etc., are ubiquitous engineering structures, traditionally
imagined as continuous objects. Their mechanical behaviour is usually studied with
the computational engineering tools of the continuum scale, based on the relations
of macroscopic elasticity. These methods are computationally efficient, since they
do not need to track every single atom. Thermodynamic quantities, such as tempera-
ture, are represented as fields. Behind this static elastic continuum is the effervescent
world of mechanics – Nanomechanics – where temperature represents the kinetic
energy of the random motion of an order of 1023 microscopic entities. This dynam-
ical discrete behaviour shapes the experimentally verifiable constitutive laws of the
continuum.

Nano-tubes, -wires, -coils, and -plates are organizations of matter that became
possible with recent advances in synthetic methods. In these novel structures,
macroscopic mechanics breaks down and nanomechanical behaviour emerges.
Understanding the new mechanical response is important both fundamentally and
practically. By capitalizing on the science emerging from the newly accessible size
range, engineers can develop electromechanical devices, machines, and electronics
on the nano scale. In spite of a vast body of research, however, the inherent practical
difficulties at the nano scale have prevented most applications from being achieved.
This is a powerful motivation for computational modeling, which is increasingly
viewed as a third technique, complementing theory and experiment.

Situated at the intersection of computational chemistry, solid state physics, and
mechanical engineering, computational nanomechanics has emerged as an exciting
area of research that has already played an important role in understanding complex
mechanical responses at the nano scale. Important nanomechanical problems can
be simulated with traditional computational approaches, such as molecular dynam-
ics (for the microscopic scale) and finite elements (for the continuum scale). Many
other important problems (e.g., the overall strength of a material) span large time
and size scales and are strongly influenced by atomic-scale processes (e.g., frac-
ture propagation). Performing an exhaustive simulation at the smallest/fastest scale
for a domain of engineering significance is computationally prohibitive and likely
to remain so for a very long time. Recent advances in computational methodolo-
gies have made it possible to go beyond the distinct approaches mentioned above.
By linking previously “separated by discipline” investigation tools, multi-scale
nanomechanical aspects begin to be simulated and studied from both fundamental
and engineering-application viewpoints.
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Trends in Computational Nanomechanics is an informative description of the
progress in nanomechanics as of 2009. It captures the important insights generated
via the separate application of microscopic (from ab initio to tight binding to empir-
ical force field) and continuum modeling techniques, as well as recent developments
in multiscale methodologies and the new results generated by utilizing these meth-
ods. The book is a useful reference for graduates, undergraduates, and professionals
interested in this interdisciplinary research area.

Nanomechanical problems involving large-scale phenomena are particularly suit-
able for hybrid multiscale numerical modeling strategies. Hybrid schemes combine
within the same overall spatial and temporal domain, several physical models that
are separately designed to address different length and time scales. The assort-
ment of models can have similar or fundamentally different ways of representing
the physical processes. For example, several schemes couple molecular dynamics
simulations where the atomistic system is described with quantum mechanical and
classical potential models, whereas others couple classical molecular dynamics at
the microscopic scale to continuum mechanics (typically finite element) simulations
at larger scales. The main difficulty with developing hybrid schemes is reconciling
the boundaries between the domains represented with the various models.

When various regions of a nanomechanical object are treated with diverse atom-
istic resolutions, differences arise because of the inherent differences in the various
levels of description. In this respect, Chapter 1, contributed by A. de Vita et al.,
presents the “Learn on The Fly” hybrid quantum/classical molecular dynamics. The
merit of this fully atomistic scheme is that it successfully washes out the differences
between the two atomistic-level models by incorporating adjustable classical poten-
tials. Using it, one can investigate the motion of dislocations, brittle fracture, and
growth of hydrogen-induced platelets in silicon. Hybrid molecular dynamics is also
the focus of Chapter 2. Encouraged by the success of the hybrid quantum/classical
molecular dynamics scheme, B. Ensing and S.O. Nielsen take an important step
toward reaching the mesoscale by developing atomistic/coarse-grained molecular
dynamics. Each coarse grain in their method lumps on the order of ten atoms. This
chapter addresses in depth the technical details of the coupling between particles in
the different resolution regions and the treatment of particles that cross a boundary
between regions of different resolution and offers case studies.

Conventional molecular dynamics places severe limitations on the time scale
afforded by the simulation. Recently, significant activities have focused on time-
accelerated molecular dynamics methods that aim to push the limits of the sim-
ulation time and thus eliminate the gulf between nanomechanical simulation and
experiment. Chapter 3, contributed by M. Grünwald and C. Dellago, discusses
transition path sampling, a set of computational methods designed to overcome
the timescale problem. The relevance of this method for nanomechanics is well
illustrated with a study of the structural transformations of nanocrystals under
pressure.

Microscopic methods are attractive starting points for understanding nanoscale
thermal transport. Chapter 4, contributed by S.P.A. Gill, reviews molecular
dynamics modeling methodologies suitable for conducting concurrent multiscale
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simulations of heat conduction in solids, the fundamental connections between the
thermophysical properties of a material and the quantum model of phonons, and
the progress in atomistic modeling in heat transport in relation to nonequilibrium
molecular dynamics. On the same theme, Chapter 5, by I.K. Puri and S. Murad,
presents a hybrid methodology to couple molecular dynamics with the mesoscale
lattice Boltzmann method.

Due to the increased importance of surface effects, the behaviour and properties
of nano-objects generally differ from those of their bulk counterparts. To understand
these new behaviours, combining hierarchically atomistic treatments with contin-
uum methods is an attractive strategy. In this respect, Chapter 6, contributed by
V. Dupont and F. Sansoz, presents the insight gained by applying large scale parallel
molecular dynamics and the quasicontinuum method in contact-induced plastic-
ity studies in nanocrystalline metals. Chapter 7, contributed by R.W. Nunes and
J.F. Justo, provides an overview of the microscopic studies of silicon nanowires.
To account for the larger scale, the authors propose extracting scaling laws for
the energetics of nanowire motifs exposing surfaces. Chapter 8, contributed by
H.S. Park and P.A. Klein, discusses the methodology to incorporate surface effects
in a continuum framework and thus to efficiently model nanowires in engineering
applications. Chapter 9, by C.V. Ciobanu et al., discusses the use of genetic compu-
tational methodologies to obtain optimal surface reconstruction and morphologies
in nanowires.

Carbon nanotubes continue to be the focus of intense investigations. Significant
insights into the behavior of these long molecules, or small solids, have been
obtained with classical potential atomistic treatments. Chapter 10, by B.-W. Jeong
and S.B. Sinnott, discusses molecular dynamics simulation methods and their
applicability in studying the resilient response of carbon nanotube systems to com-
pressive and torsional loads. A detailed treatment of covalent bonding limits the
scale range covered by molecular dynamics. Chapter 11, by T. Chang, demonstrates
that specific aspects of the mechanical response of carbon nanotubes at different
length scales can be obtained analytically, starting from very simplified forms of
the interatomic potentials, such as harmonic and Morse-type. Due to their high
axial stiffness, nanotubes possess a macroscopic persistent length. As a result, nan-
otubes can be efficiently glued together over the extended contacts through van der
Waals interactions, to form ropes, rings, and cables. In this respect, Chapter 12, con-
tributed by Y. Huang et al., describes how to efficiently account for the van der Waals
interlayer interactions of graphitic structures in molecular dynamics simulations.

Hierarchical and hybrid multiscale models are extremely useful in studying the
rich mechanics of large-size carbon nanotubes. Chapter 13, by A. Pantano, presents
a computationally-effective hierarchical tight-binding finite element scheme that
can simulate the electromechanical behaviour of nanotubes of realistic dimensions.
Chapter 14, by Y. Sun and K.M. Liew, provides insight into several atomistic to
continuum coupling schemes and focuses on the coupling of a particular atomistic
method to a higher-order continuum model. Chapter 15, by S. Im et al., presents a
method that embeds quantum mechanics into a molecular mechanics quasicontin-
uum in order to simulate the mechanical deformation of curved crystalline bodies.
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The effectiveness of this hybrid method is demonstrated in several situations that
describe very well the mechanics of carbon nanotubes. Chapter 16, by Y.A. Wang
et al., surveys commonly employed first-principles theoretical methods and focuses
on the popular hybrid ONIOM scheme to determine the electronic properties and
reactivity of perfect, defective, and doped carbon nanotubes.

The multiscale methodologies developed for nanomechanics show a remarkable
transferability to the more complex area of biomaterials. Their application in study-
ing the biomechanical response, which is the focus of the last three chapters of the
volume, is currently a frontier research area called Meteriomics. Chapter 17, by
M.J. Buehler et al., reviews the relevant atomistic modeling approaches and dis-
cusses the size-dependent fracture behaviour of protein materials via the application
of hybrid multiscale strategies linking atomistic and continuum scales. Chapter 18,
by X. Chen and Q. Cui, illustrates the utility of hierarchical modeling in under-
standing the fundamental processes of large channel conductance in Escherichia coli
bacteria. The networks of biopolymers within a tissue exhibit complex multiscale
mechanics, governed by the properties of the individual entities and the relationship
between them. Chapter 19, by V.H. Barocas et al., reviews the current multiscale
models developed for tissues and critically examines their validity against experi-
mental results. This chapter demonstrates that multiscale modeling of networks has
the potential to address some of the fundamental questions in the mechanobiology
of tissues.

I thank the authors for the quality and completeness of their chapters, which
highlight both the advances and many of the remaining challenges in this area. I
also thank the reviewers for their stimulating comments and Ilia Nikiforov for help
with the manuscript.

Minneapolis, MN Traian Dumitrica
June 2009
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Abstract: The atomistic simulation of many processes in materials involves large-size model sys-
tems where different levels of complexity need to be described simultaneously. While
accurate quantum mechanical simulations of large-size systems are usually not afford-
able, less computationally intensive classical models are not suitable for the description
of many chemical processes. Hybrid (quantum/classical) modelling schemes are required
in these circumstances. Here, we describe the “Learn on the fly” (LOTF) hybrid molec-
ular dynamics scheme. Some technical aspects of this technique are illustrated through a
series of examples of its applications to multiscale processes in silicon

Keywords: Quantum/classical atomistics, Hybrid modeling, Multiscale computations

1.1. INTRODUCTION

Molecular dynamics (MD) plays a very important role in the study of many kinds
of physical, and more recently, biological processes, gaining insight at the atom-
istic level which in turn complements or can drive experimental work. Progress
in the field has been driven by the two pronged advance of hardware and soft-
ware, allowing the treatment of successively larger systems over successively longer
times. However, we are far from an ideal world in which any and every problem can
be studied with ab initio molecular dynamics, the problem domain being currently
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restricted to a few hundred atoms for tens of picoseconds at most, due to the lim-
its of current technology. By loosening the accuracy of the quantum description
to, for example, tight-binding, the domain can be further extended to thousands of
atoms for longer times, but still there remain problems for which this is insuffi-
cient and quantum-mechanical techniques have to be replaced by simpler, but less
transferable, classical interatomic potentials.

Within this hierarchical multiscale approach [1], physical quantities obtained by
simulations performed at one length (or time) scale (e.g. ab initio MD) are used to
parametrise models which are, in turn, used at a larger scale (e.g. classical inter-
atomic potentials). However, many physical processes involve different, strongly
coupled, length scales that must be studied simultaneously. This often happens when
the influence of macroscopic forces produces structural or chemical changes at a
much shorter-ranged, local level. Important examples of such multiscale phenom-
ena in material science are stress-induced defect processes (e.g. diffusion of point
defects, motion of dislocations, brittle fracture). For example, the propagation of
a crack tip through a brittle material, or the motion of dislocations within a bulk
matrix, involve the breaking and rebonding of atoms bordering the crack front or
the dislocation core, respectively, while simpler stress concentration phenomena
take place in a much larger surrounding area. In cases such as these the use of a
uniform-accuracy Hamiltonian to model the entire system is not a viable strategy.
A fully quantum-mechanical description of the model system is usually unfeasible,
as well as wasteful since a simpler classical model would be sufficiently accurate
to describe most of the system. However, less computationally intensive classical
models are not suitable for the description of the chemically complex region of
the system. Therefore, hybrid quantum/classical modelling schemes are required in
these circumstances.

Several multi-Hamiltonian approaches have been proposed where the atomistic
model system is divided into a chemically relevant quantum-mechanical (QM)
region and a larger region which is described by a simpler classical interatomic
potential [2–4]. The most serious difficulty when constructing such hybrid schemes
is finding an effective and generally applicable treatment of the boundary between
the two regions. Here, we describe a method which allows the boundary problem
to be tackled in the context of hybrid quantum/classical molecular dynamics: the
“Learn on the fly” (LOTF) technique [5–9]. Some technical aspects of this hybrid
scheme are described through examples of its applications to multiscale processes
in silicon, such as the motion of dislocations, brittle fracture and the growth of
hydrogen-induced platelets.

1.2. THE LOTF SCHEME

1.2.1. Reconciling the Boundary

As outlined in the introduction, the main difficulty when developing hybrid quan-
tum/classical atomistic schemes is finding an effective description of the boundary
between the quantum-mechanical (QM) and the classical regions in which the
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system is divided. Within standard quantum mechanical/molecular mechanical
(QM/MM) schemes developed for biological systems [2, 3], the total energy of the
hybrid system is obtained as the sum of the quantum-mechanical energy of the QM
region, the classical energy of the rest of the system, and a term representing the
interaction between the two subsystems. This requires the development of complex
and dedicated techniques for the boundary treatment which usually prevent atoms
from entering or leaving the QM region during MD simulations. As a result, the
QM/MM simulation of many dynamical multi-scale processes in materials, such as
the motion of dislocations or the propagation of brittle fracture, is technically very
difficult. However, allowing the QM region to move during the MD simulation fol-
lowing the chemically complex region of the system (i.e. the dislocation core or the
crack tip) is both necessary and indeed the only way to keep the number of atoms
selected for the QM treatment low. Finally, very few attempts have been made so far
to combine more than two Hamiltonians (see e.g. [10]), since the boundary problem
is such cases is even more complex.

This problem can be solved by following an alternative route. Firstly, we avoid
the complex task of deriving a combined Hamiltonian from the separate quantum-
mechanical and classical Hamiltonians, and instead we focus on local quantities,
such as the forces acting on the atoms, which can still be used to perform MD sim-
ulations. Secondly, we want the forces at each time step of the MD to be the deriva-
tives of a unique Hamiltonian: this is a main idea behind the LOTF scheme and is
obtained in the following way. We choose a unique classical Hamiltonian, and at
each time step we adjust its parameters to reproduce accurate quantum-mechanical
forces in those regions of the systerm where the accuracy of a classical potential
would not be sufficient to describe the local physical processes (e.g. at the advanc-
ing crack tip). In general this unique Hamiltonian is complicated, and we have
found that it is not always sufficient to simply vary the parameters of a pre-existing
classical potential; this is discussed in more detail in Section 1.2.3 below.

Within the LOTF scheme, the boundary problem is therefore tackled in two
separate steps:

Evaluation of the QM forces. Accurate QM forces are calculated during the sim-
ulation only in those regions of the system where the accuracy of the classical
interatomic potential needs to be improved (i.e in the QM region of the sys-
tem). If any of the atoms flagged for the QM treatment — i.e., those for which
the QM forces are used for MD — were located on the surface of the zone
treated by QM in the calculation (e.g., created by simply carving out the QM
region from the system), large errors would be introduced by the presence of
the artificial surface so introduced. This problem can be avoided by including
in the QM calculation a “buffer zone” of finite width surrounding the QM-
flagged set of atoms, and then retaining for use in the MD the forces on the
“internal” QM-flagged atoms only (cf. Section 1.2.2).

Force matching. Forces coming from different Hamiltonians may suffer from
an inconsistency across the boundary between the two regions. For exam-
ple, force components acting along a bond crossing the boundary do not
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necessarily obey an “action-reaction” principle. Tuning the parameters of a
unique Hamiltonian to reproduce all the forces on the atoms avoids this incon-
sistency (any inconsistency in the forces across the boundary is smoothed out
in the fit procedure) automatically enforcing the action-reaction principle.

A detailed description of the LOTF scheme is provided in the following parts of this
section.

1.2.2. Evaluation of the QM Forces

At each time step of the LOTF MD, all the regions of the system which are not suit-
ably described by the classical model are selected for the QM treatment. As already
mentioned, this continuous selection procedure allows for small, mobile QM regions
to be considered at each time step. However, it also requires a robust algorithm
for selecting the QM region. The selection criteria we use are typically based on
geometric and topological information (e.g. atom coordination, bond lengths, bond
angles) and are defined by the user in order to track the regions of the system which
are important for the particular physical process under investigation. Some details
regarding the QM selection algorithms applied to the motion of dislocations and the
propagation of brittle fracture in silicon will be discussed in Section 1.3.

Once the atoms in need of a quantum treatment are identified, the chosen
quantum-mechanical “black box” engine (e.g. a Density-Functional-based scheme
or a Tight Binding Hamiltonian) is used to compute the forces acting on the atoms
of the QM region. As explained above, in order to avoid any errors originating
from spurious QM “surface” atoms, we carve out a larger subsystem containing
the desired QM region and a surrounding buffer zone. The QM blackbox is used to
perform the calculation of the forces for this entire enlarged subsystem. Only the
forces on the atoms composing the original QM region are retained while the forces
on the atoms of the buffer zone, which are affected by the presence of the artificial
surfaces, are discarded (i.e. not used for augmenting the classical model). Tests show
that a ∼1 nm wide buffer zone allows very accurate force calculation in silicon sys-
tems (force component errors with respect to the fully QM calculation on the whole
test system are typically lower than 0.01 eV/Å) [7]. The size of the buffer zone can
be further reduced by providing a suitable termination of the dangling bonds at the
outer cluster surface, using for example hydrogen atoms in a silicon system.

Based on the same idea, an alternative force evaluation scheme can be used where
the forces on each atom in the QM region are computed independently. For each
atom in the QM region, a spherical cluster is carved out, centred on the given atom.
The QM forces are then calculated and only the force on the central atom of each
cluster is retained. In this case, the radius of the spherical cluster is equivalent to
the size of the aforementioned buffer zone and chemical termination of the cluster
surfaces can be used to reduce the cluster radius (or to increase the accuracy of the
force calculation for a given radius). Since each cluster calculation is independent,
this scheme allows a very efficient parallelisation of the force evaluation, requiring
minimal bandwitdth from the inter-processor communication hardware [7].
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1.2.3. Force Matching

The QM forces calculated at each time step of the LOTF MD in a selected region,
are used to locally augment the classical potential. This is achieved by means of a
force matching procedure. The simplest force matching approach is to modify an
existing classical potential. A suitably chosen subset of the classical Hamiltonian’s
parameters is let free to take different values across the system (e.g. each two-body
term of the classical potential has an independent set of parameters). These param-
eters are then adjusted to reproduce the QM forces through the minimisation of the
objective functional

F({α}) =
N∑

i=1

|Ftarget
i − Fi({α})|2, (1-1)

where {α} is the subset of varying parameters, N is the total number of atoms and

Ftarget
i =

{
FQM

i if atom i ∈ QM region

Fclassical
i if atom i �∈ QM region.

(1-2)

The parameter optimisation does not need to take place throughout the whole
system. We can often just adjust the parameters of the classical Hamiltonian in a
fitting region including the QM zone and a surrounding “crust” region as far as
the crust is thick enough to allow a smooth transition and small errors in the force
matching. Tests performed on Si and Si/H systems show that a fitting region includ-
ing the QM zone and a surrounding nanometer-sized region is sufficient to obtain
accurate force matching (i.e. force matching errors smaller than 0.01 eV/Å) using a
few tens of conjugate gradient steps in parameters space.

This force matching approach has been successfully used to perform LOTF simu-
lations on silicon systems, where the Stillinger-Weber (SW) potential [11] was used
as the classical Hamiltonian [6, 7]. Nevertheless, adjusting the parameters of the
classical Hamiltonian has some drawbacks:

1. Minimizing the objective functional of Eq. (1-1) requires the derivatives of the
objective functional with respect to the parameters to be evaluated at each step
of the minimisation. Expressions for these derivatives have thus to be coded for
each different force field used to describe the system.

2. Often, no classical potential is available which is able to provide a reasonably
accurate description of the system. This means that the difference between the
classical and the QM forces in the QM region can be large and therefore a slight
modification (a parameter variation within a reasonably small domain) of the
classical potential might not be sufficient to achieve an accurate force matching.

For these reasons, we have chosen to extend the unique Hamiltonian used for
force matching: instead of modifying the parameters of the classical potential, a
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general adjustable potential (AP) can be used to reproduce the differences between
the classical and the QM forces. This suitably parametrised potential is then added
to the classical potential and the forces used in the MD are derived from the total
potential. In practice, both the classical and the quantum-mechanical forces are cal-
culated as described in Section 1.2.2. Then, the parameters {α} of the AP, which
also in this case are free to take different values across the system, are tuned in
order to minimise the objective functional

F({α}) =
N∑

i=1

|(Ftarget
i − Fclassical

i ) − F({α})adj
i |2, (1-3)

where F({α})adj
i are the forces calculated as gradients of the AP and

Ftarget
i =

{
FQM

i if atom i ∈ QM region

Fclassical
i if atom i �∈ QM region.

(1-4)

Therefore, after a successful force matching, we have, for each atom,

Ftarget � Fclassical + Fadj. (1-5)

We can therefore propagate the MD by using the potential

V(r,{α}) = Vclassical(r) + Vadj(r,{α}), (1-6)

the force on each atom being

F = −∇rV = Fclassical + Fadj. (1-7)

Within the adjustable potential approach, the force matching procedure is inde-
pendent of the classical Hamiltonian used to describe the system. Therefore, the
derivatives of the AP with respect to the parameters can be coded once and for all.
Moreover, both classical and quantum-mechanical forces are obtained from black
box engines, which take atomic coordinates and lattice parameters as input, return-
ing the force on each atom. This increases the flexibility of the scheme, since new
force models can be added quickly and easily. A fully flexible adjustable potential
can, furthermore, be constructed so that it guarantees accurate forces even for local
system configurations for which the underlying classical potential used is far from
accurate.

1.2.3.1. The Adjustable Potential

We want the choice of the AP analytical form to be independent of the particular sys-
tem under investigation, and of the classical and quantum-mechanical Hamiltonians.
Therefore, the AP should offer a good compromise between expressive power and
robustness. Moreover, since the AP parameters are adjusted on the fly, the AP should
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change smoothly as the parameters change. Finally, the AP derivatives with respect
to its parameters, which need to be computed at each step of the force matching
procedure, should be ideally easy to code and fast to evaluate [9, 12]. According to
these criteria, a simple linear spring adjustable potential has been formulated, using
bond lengths rij and bond angles θjik as fundamental coordinates. The linear spring
potential can be written as a sum of two-body and three-body terms

Vspring(r,{α}) =
∑

i,j
i<j

αijrij +
∑

i,j,k
i<j<k

βjik cos θjik, (1-8)

where {α} is the set of free parameters αij and βjik and both the two-body and three-
body terms are linear in the interatomic distance rij and in cos θjik, respectively. An
important consequence of using a linear potential is that the objective function in Eq.
(1-3) can be minimised by singular value decomposition (SVD), thus allowing fast
linear algebra routines to be used. This analytical form has been tested on Si, Si/H
and C systems [13, 14]. Very accurate force matching (i.e. force matching errors
smaller than 0.01 eV/Å) can be achieved by using the two-body terms only and a
nanometer-sized buffer region for the fitting procedure.

1.2.4. The LOTF Predictor-Corrector Scheme

The parameters of the classical potential (or Adjustable Potential) do not generally
need to be adjusted at each time step of a LOTF MD simulation. In fact, if the
fractional variation of the AP parameters is sufficiently small along the trajectory,
the AP can be used with unchanged parameters for a small number of time steps
after each force matching procedure. This allows a significant speed up of the MD
simulation, since the computationally expensive evaluation of the QM forces is only
carried out when the AP parameters actually need to be adjusted. In practice, the
LOTF MD simulation can be performed by using a predictor-corrector scheme,
as follows (a diagram of this procedure is shown in Figure 1-1). Starting from a
point R0 in phase space, the QM forces are calculated on the selected atoms and
the parameters of the adjustable Hamiltonian are optimised in order to reproduce
these accurate forces. After the parameter optimisation, which gives AP parameters
{α0}, a small number N of MD time steps are performed using this fixed set of
parameters to arrive at point R′

1 (this part is referred to as predictor or extrapolation
part). Here, a new QM force evaluation is performed in the QM region and the
AP parameters are re-optimised. Simply continuing the MD from this point using
the new set of parameters {α1} would not make use of the knowledge of the local
optimal parameter variation occurred between the last two QM force evaluations,
and would furthermore lead to a spurious discontinuity in the second derivative of
the trajectories. Therefore, we return to the initial atomic positions, R0, and redo
the MD for N time steps using a linear interpolation of the parameters between
{α0} and {α1} (corrector/interpolation part). If t0 is the time corresponding to the
configuration (R0,{α0}) and t1 = t0 + N�t, where �t is the time step of the MD,
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(R0,α0)

tΔ

Δ T

Eval QM force at R’1
Optimise to get α1

(R ’,α0)

(R1,α1)

Extrapolate with α0

Interpolate from α0 to α1

1

Figure 1-1. The LOTF predictor-corrector scheme. The MD is propagated from R0 using fixed param-
eters {α0} for a small number of time steps N (predictor/extrapolation). New QM forces are calculated in
the QM region after the predictor cycle (R′

1) and the force matching procedure is performed giving a new
set of parameters {α1}. The MD is then redone for N time steps starting from R0 and using parameters
linearly interpolated between {α0} and {α1} (corrector/iterpolation)

then the set of parameters used at t0 + m�t (0 ≤ m ≤ N) during the corrector cycle
is calculated as

{αm} = {α0} + m

N
({α1} − {α0}). (1-9)

At the end of the corrector cycle we arrive at a point in phase space, R1, which is
different from R′

1. However, if N is suitably small, this point is within the phase
space region where the parameters {α1}, optimised in R′

1, provide very accurate
forces, and the dynamics can be continued from (R1,{α1}) iterating this predictor-
corrector cycle. Note that using a smaller time step would correspond to an increase
of N. However, the MD time step is already the maximum allowed by the system’s
physical conditions. Therefore, using a time step N times larger and no predictor-
corrector scheme would compromise the stability of the simulation so that the
predictor-corrector procedure is associated to a genuine overall speed up.

The robustness of the AP form determines the choice of the number of extrap-
olation/interpolation time steps, N. Tests performed tuning the parameters of the
SW potential or of a two-body linear spring potential, and using different QM
black boxes, show that N = 5–10 time steps can be used to accurately model
silicon systems at high temperatures. Although the proposed adjustable potentials
are equally accurate in reproducing QM forces, we might expect the interpolation
behaviour of the simpler spring potential to differ from that of the Stillinger-
Weber based approach. This has been tested by comparing the forces given by
the LOTF adjustable Hamiltonian during the extrapolation and interpolation cycles
(FLOTF = Fclassical + FAP) with the full hybrid force (i.e. the forces calculated by
means of the QM blackbox within the QM zone, and the classical Hamiltonian out-
side the QM region) calculated at each time step of the predictor and corrector parts.
The error



The “Learn on the Fly” Molecular Dynamics Scheme 9

Ferror = F{QM,classical} − FLOTF (1-10)

gives a measure of the transferability of the spring potential during the predictor-
corrector loop. The test was carried out for a 64 atom silicon system at a temperature
of 2000 K, with a MD time step �t = 1 fs. The linear spring adjustable potential
with two body springs only was used and the QM force model was the tight bind-
ing potential of Kwon et al. [15]. 1000 independent trajectories were generated by
randomising the initial atomic positions and velocities. The force errors during one
predictor-corrector cycle were recorded and then averaged over all the trajectories
to produce distributions of RMS and maximum force errors as a function of time
during the extrapolation and interpolation, as illustrated in Figure 1-2 for 10-step
predictor-corrector loops. The force errors rise approximately linearly during the
extrapolation part of the cycle, as we move away from the point in phase space (i.e.,
the set of atomic positions) where the potential parameters were fitted. Providing
the range of validity of the new parameters fitted at the end of the extrapolation
is large enough, the force errors should remain small throughout the interpolation.
We must choose the number of interpolation steps N appropriately to ensure this
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Figure 1-2. Transferability of the linear spring potential. The system used to test the adjustable potential
was a 64 atom silicon bulk cube with 5 QM atoms, at a temperature of 2000 K, with MD timestep
�t = 1 fs and N = 10. Force errors during one predictor-corrector cycle were averaged over many
independent trajectories. The gray-scale colouring shows the density of force errors as a function of
time, with black corresponding to high and white to low densities. The mean and standard deviation of
the distribution are indicated by the red lines, and the extreme values by the black dashed lines. The linear
spring adjustable potential with two body springs only was used. QM force model is the tight binding
Hamiltonian of Kwon et al. [15]
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is the case. The appropriate scale is set by the accuracy to which the forces have
been computed; for a DFT-based self-consistent QM Hamiltonian (CASTEP [16])
this is normally around 0.05 eV/Å. We can see from Figure 1-2 that N = 10 gives
acceptable accuracy: the RMS deviation typically remains smaller than 0.01 eV/Å,
and the maximum force error is typically below 0.1 eV/Å. The transferability tests
were repeated with a variety of different adjustable potentials, including the original
Stillinger-Weber potential with variable parameters and a form of the adjustable
potential using cubic splines instead of linear springs. There was no significant
difference in the distribution of force errors produced by the different potentials.
Moreover, the force error distribution is essentially unchanged when three body
springs are included. The choice of linear or cubic parameter interpolation makes
only a very small difference to the measured force errors, as does repeating the
predictor corrector cycle two or more times.

1.3. SELECTION OF THE QM REGION: AN HYSTERETIC
ALGORITHM

As introduced in Section 1.2.2, the selection of the quantum region has to be imple-
mented using geometric and topological criteria. However, the instantaneous atomic
positions cannot always be used for this purpose, since they often fluctuate too
rapidly to allow the creation of a stable QM region. Unnecessary rapid oscillation
of the set of atoms forming the QM region should be avoided since they may cause
a number of problems. Atoms that move in and out of the QM region can gener-
ate spurious heat as they do so, since the two energy models are trying to drive the
system towards different configurations. Most importantly, from a practical point
of view, such changes in the number of QM atoms are inefficient since ab initio
calculations can be sped up very significantly by reusing the electronic density and
wavefunctions from the previous timestep.

For these reasons, it is useful to use time-averaged atomic positions for the QM
region selection, in order to filter out the fast optical phonons. The time-averaged
coordinates are defined as

r̃(t) = (1 − e−�t/τ )
∞∑

n=0

e−n�t/τ r(t − n�t), (1-11)

where �t is the MD time step and τ the averaging time constant [7]. However, in
many circumstances this does not allow us to completely avoid undesirable fluctua-
tions. Difficulties occur in situations where it is impossible to choose the averaging
time τ to be large enough to exclude atomic oscillations and at the same time small
enough to still capture rapid bond breaking events. An important example is the
case of a fast-moving crack: it has been found that τ needs to be below about 100 fs
to correctly follow a moving crack in silicon, but this is of the same order as the
thermal oscillation period of a single Si–Si bond [13]. Therefore, atoms at the edge
of the QM region tend to pop in and out as they vibrate backwards and forwards.
Another example where using time-averaged atomic positions is not sufficient to
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guarantee a stable QM region, is the motion of dislocations. Atoms at a disloca-
tion core may pass through bulk like configurations as they are being modelled,
for long enough timescales that they are no longer identified as needing quantum
treatment. To solve this problem, a selection algorithm with hysteresis has been
developed [13]. Essentially, once an atom has been flagged for quantum treatment
through topological considerations based on its time-averaged position, two spheres
are defined around it, one inner and one outer with radii Rin and Rout respectively.
An atom within a distance Rin from the flagged atom is also flagged for quantum
treatment, extending the QM zone. However, it is not deselected until it travels fur-
ther than Rout from the central (flagged) atom, so that entry is effectively easier
than escape. Modelling the QM zone in this way suppresses unwanted fluctuations,
and provides more reliable tracking of the QM atoms. The dislocation and the brit-
tle fracture studies mentioned above are discussed in the next parts of this section,
together with some details of the hysteretic selection algorithm applied during LOTF
simulations of these two systems.

1.3.1. A Screw Dislocation Study

Understanding the properties of dislocations in silicon has important implications,
due to their electrical properties and effects on devices, acting as trapping or scat-
tering centres for charge carriers. Much work has been done on dislocations in
silicon, both in theory and experiment, elucidating the many types with their differ-
ent geometries and core structures. Previously, ab initio studies have been carried out
to obtain a picture of the different types of kink that form from the dislocation cores,
estimating the energy of formation and thus deducing the most likely mechanisms
for kink migration along the dislocation line [17]. In a high Peierls’ barrier material
such as silicon, dislocation glide occurs through the formation and propagation of
kinks rather than via coherent motion of the line itself. Thus far computational stud-
ies have been restricted to focus on the static properties of such dislocations, and the
dynamics have been modelled mainly through kinetic monte-carlo techniques [18].
Using the LOTF method, however, it is possible to perform a MD study of the dislo-
cation glide, a problem which naturally fits the LOTF paradigm, since the majority
of the system remains in a bulk configuration, conferring strain onto the moving
dislocation core, where the localised bond breaking/forming events take place. In
this section we give a brief introduction to the screw dislocation in silicon.

The most important mobile dislocations in silicon are the screw and the 60◦ dis-
locations. Our current work focusses on motion of the screw dislocation at high
temperature in the presence of grain boundaries [19, 20]. Above 600 K, the per-
fect screw dislocation dissociates into two 30◦ partial dislocations bounded by a
stacking-fault (SF) region. The structure of the perfect screw has been studied using
ab initio techniques [21], as has that of the 30◦ partial [22]. Figure 1-3 shows the
core structure of two 30◦ partials, separated by a SF region. In fact, the 30◦ partial
is thought to govern the dislocation dynamics in silicon. The atoms along the core
are dimerised and the dimers must be broken in order to form the kinks which are
the precursor of migration, with a high energetic cost [17].



12 G. Moras et al.

Figure 1-3. Atomic structure of the dissociated screw dislocation in silicon, separated into two 30◦
partials which are bounded by a SF

In order to model the dislocation glide, we must be able to track the moving dis-
location core, which forms the QM zone of our LOTF calculation. Firstly, we must
identify the atoms which are undergoing bond-breaking processes. This can be done
simply by monitoring changes in the time-averaged number of nearest neighbours
for atoms in the dislocation glide plane. We have seen that atoms in the unperturbed
core are dimerised in the [110] direction, so these are also flagged for quantum treat-
ment. However, these criteria alone are not enough, as the dynamics is performed
at high temperature, around 1400 K. As a consequence of the high temperature
there are large fluctuations of the atomic positions so that atoms which should be
flagged for quantum treatment may be overlooked. Usage of the hysteretic selection
of the QM region overcomes this problem of large fluctuations, as can be seen from
Figure 1-4. The different coloured lines correspond to different choices of inner and
outer radii in the definition of the hysteretic quantum zone. The black line, corre-
sponding to a 3 Å inner radius and a 5 Å outer radius, drops by half after 50 ps of
simulated time, because one of the partial cores has been “lost” by the hysteretic
algorithm. In practice, having inner and outer radii which are too small reduces
the effectiveness of the hysteretic quantum zone scheme which proves not robust
enough to identify the fluctuating dimers, and the observed drop is due to the fact
that one remaining core only is being tracked. With a more robust choice of inner
radius of 4 Å the quantum selection remains broadly stable throughout the run (blue
and red lines), despite the different outer radii (7 Å for the red line and 10 Å for the
blue).

1.3.2. Brittle Fracture

One of the best known examples of a strongly coupled multiscale system is the
fracture of brittle materials. The conditions for crack propagation are created by
stress concentration at the crack tip, and depend on macroscopic parameters such
as the loading geometry and dimensions of the specimen [23–26]. In real materi-
als, however, the detailed crack propagation dynamics are entirely determined by
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Figure 1-4. Effect of using hysteretic QM zone in tracking the migrating dislocation core. The pair of
numbers corresponding to each of the colours in the picture label are the radii of the inner and outer
circles, respectively

atomic scale phenomena since brittle crack tips are atomically sharp and propagate
by breaking bonds, one at a time, at each point along the crack front [27,28]. This
means the tip region is primarily a one dimensional line, perpendicular to the direc-
tion of propagation, and so it should be possible to define a contiguous embedding
region to be treated with a more accurate model in a hybrid simulation. There is a
constant interplay between the length scales because the opening crack gives rise to
a stress field with a singularity at the tip [29], as illustrated in Figure 1-5, and in turn
it is this singular stress field which breaks the bonds that advance the crack. Only by
including the tens of thousands of atoms that contribute significantly to the elastic
relaxation of this stress field can we hope to accurately model the fracture system,
and thus a multiscale approach is essential.

The LOTF method is ideally suited to studying brittle fracture since the use of
a buffer zone to yield accurate quantum forces allows the the quantum region to
be made small and mobile. This requires a robust selection algorithm to follow the
crack tip as it moves and identify the atoms that need to be treated with quantum
mechanical accuracy. This is a difficult problem since the timescales of thermal
vibration and crack motion are not well separated. The hysteretic selection algorithm
described above provides an effective solution to this problem.

We flag atoms as “active” when they change their bonding topology, and then
construct embedding ellipses around each active atom. The set of active atoms is
seeded with a few atoms near to the crack tip at the start of the simulation. Figure 1-6
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Figure 1-5. Maximum principal stress near the the tip of a crack under uniaxial tension in the opening
mode, from the linear elastic solution. Black areas are the least stressed and yellow the most

illustrates how the algorithm works in a simple case with only two active atoms —
in reality there could be several hundred. Ellipses with different radii are used to
define inner and outer selection regions, and then the hysteretic algorithm ensures
that atoms near the edges of the QM region do not oscillate in and out of the active
region. Elongated ellipses allow the embedding region to be biased forwards so that
the QM region always extends ahead of the crack tip.

As the crack moves on, we can stop treating atoms behind the crack tip quantum
mechanically. We cap the size of the QM region at some limit Nquantum based on our
computational capability — this can be several hundred atoms for a tight binding
simulation, or of the order of a hundred for an ab initio simulation. By keeping
track of the order in which atoms became active, we can remove them from the QM
region in a consistent fashion. An additional condition prevents atoms further than
a threshold distance away from the centre of mass of the current QM region from
becoming active.

Figure 1-6. Hysteretic QM selection algorithm applied to crack tip region. The red and blue atoms are
considered “active”, and are used to define inner (left panel) and outer (right panel) selection regions. The
atom indicated with the black arrow remains selected despite oscillating in and out of the inner region
providing that it stays inside the outer region
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(a) t = 37.5 fs, G = 2.5 J/m2

(d) t = 75.0 fs, G = 5.8 J/m2(c) t = 62.5 fs, G = 4.0 J/m2

(e) t = 87.5 fs, G = 5.8 J/m2 (f) t = 100.0 fs, G = 7.9 J/m2

(b) t = 50.0 fs, G = 2.5 J/m2

Figure 1-7. Snapshots from LOTF tight binding MD simulation at a temperature of 300 K using the
tight binding model of Kwon et al. [15]. The red atoms are treated quantum mechanically and the yellow
atoms with the classical potential. Atomistic visualisations were produced with AtomEye [32]

Hybrid fracture simulations on the silicon (111) cleavage plane using any of vari-
ety of tight binding potentials [15,30] or the CASTEP [16] density functional code
near the crack tip combined with a classical atomistic potential [11] further away
yield brittle fracture. The calculations reveal a novel sub-critical crack tip recon-
struction that plays an important role in the fracture process, full details of which are
published elsewhere [31]. Figure 1-7 shows snapshots from a LOTF tight binding
simulation of brittle fracture.

1.4. TOWARDS CHEMICAL COMPLEXITY: HYDROGEN-INDUCED
PLATELETS IN SILICON

The investigation of the influence of impurities and corrosive agents on failure
processes is a natural extension of the brittle fracture study. Environment-assisted
cracking processes are a common cause of limited lifetime of engineering
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components. Nevertheless, their complex underlying mechanisms remain poorly
understood at the atomic level. Relevant examples are stress-corrosion-induced
cracks at the Si/SiO2 interface in electronic devices and hydrogen-embrittlement
in metallic components.

In this section, we focus on a particular example of environment-assisted
cracking of crystalline silicon which have been harnessed for the production of
“silicon-on-insulator” devices in microelectronics through the “Smart Cut” tech-
nique [33]. This widely used technological process allows a thin layer of oxidized
silicon to be transferred from a hydrogen-implanted silicon wafer onto a substrate
after wafer bonding and heat-induced splitting. The latter is caused by the propa-
gation of microcracks parallel to the implanted surface. Microcracks are thought to
origin from the growth of hydrogen-induced platelets (HIPs) during the first stages
of the high temperature annealing. HIPs are ∼ 10 nm wide and ∼ 1 nm thick disk-
shaped extended defects which nucleate at room temperature after H-implantation.
Most of these extended defects are located in the region where the final splitting
takes place and lie on planes parallel to the implanted surface (i.e. the (100) planes
for the technologically relevant Si(100) implanted wafers). Despite the important
role played by HIPs in the Smart Cut process, a detailed atomic-level knowledge
of both their nucleation and growth processes is still lacking. Both DFT-based [34,
35] and classical [36] simulation techniques have been used to study the structure
and the formation mechanism of HIPs. The results of these simulations combined
with those of experimental investigations [37] suggest that (100)-HIPs are com-
posed of two facing internal H-terminated Si(100) surfaces. The surfaces are created
either by substitution of Si–Si bonds with Si–H/H–Si structures or by coalescence
of H-saturated silicon vacancies. However, using uniform accuracy to perform MD
simulations of the thermally activated platelet growth is not a viable strategy. These
simulations would require a combination of quantum-mechanical accuracy and large
system sizes in order to couple the chemical reactions occurring at the platelet edges
with the stress field in the surrounding Si crystal.

To solve this problem, we have applied the LOTF scheme to perform MD
simulations on a realistically sized (100) HIP model system [38]. A ∼ 10 nm wide
(100) HIP is centered in a ∼ 35 × 35 nm2 crystalline silicon slab and periodic
boundary conditions (PBCs) are applied perpendicularly to the slab plane. While
a standard Stillinger-Weber interatomic potential is sufficient to describe silicon
atoms in the crystalline phase, a QM technique is necessary to describe silicon and
hydrogen atoms in the defective platelet region. During the LOTF MD simulation,
the following atoms are selected for the QM treatment: (a) all hydrogen atoms;
(b) all silicon atoms having at least one hydrogen atom among their first neighbours;
(c) all under-coordinated Si atoms (defined as the Si atoms having less than 4
neighbours within a 2.5 Å distance, excluding those located on the outer slab
surfaces); (d) the first neighbours of the atoms in (a), (b), and (c). Figure 1-8 shows
a typical (100) HIP model system, where the hydrogen atoms and silicon atoms
depicted in red are included in the QM region.

Within the LOTF predictor-corrector scheme, the Density Functional Tight
Binding (DFTB) [39] formalism is used to calculate the forces on the atoms flagged
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Figure 1-8. A realistic-sized (100)-HIP atomistic model: enlargement of the ∼ 10 nm wide HIP region.
The whole system is a 35 × 35 nm2 silicon crystal. Periodic boundary conditions are applied along the
direction perpendicular to the picture plane. The silicon atoms depicted in red and the hydrogen atoms
are flagged for the QM treatment within the LOTF scheme

for the QM treatment whenever needed. An efficient calculation of the DFTB forces
in this relatively large QM region (300-600 atoms, depending of the PBC orienta-
tion) is performed using the (“embarrassingly parallel”) multiple clusters method
described in Section 1.2.2. To determine the minimum size of H-terminated spheri-
cal clusters which allows accurate DFTB forces to be calculated in the QM region,
we have tested the accuracy of the forces obtained through the multiple clusters
method on a small model system. This is depicted in Figure 1-9a and is composed of
two 2 × 1-reconstructed dihydride (100) Si surfaces. PBCs are applied on the plane
parallel to the surfaces, while 12 Si planes are considered on the perpendicular direc-
tion. The DFTB forces calculated by using H-terminated multiple clusters on the H
atoms and on the 4 outmost Si planes during a 400 fs MD at 800 K are compared to
the forces calculated on the same atoms by using DFTB on the whole periodic sys-
tem. In Figure 1-9b, the mean force component error for Si and H atoms is plotted as
a function of the clusters radius. This test shows that a 7 Å cluster radius is sufficient
to keep the error lower than 0.02 eV/Å for both Si and H atoms. Interestingly, the
error obtained on the Si atoms using 8 Å clusters is observed to be larger than the
error made by using 7 Å clusters, at the right end of the plot. The same behaviour
has been observed in other periodic silicon systems [7]. A similar small peak of the
error is observed when the diameter of the clusters becomes approximately equal to
the size of the periodic cell. The cause of this slight temporary increase of the error
is related to the simultaneous presence in the cluster of an atom and of its periodic
image.

A two-body linear spring potential is used to match the differences between the
hybrid (DFTB/SW) and the classical (SW) forces in the fitting region. The latter
includes all the atoms in the QM region and four shells of first neighbours of the
atoms at the boundary of the QM region. The maximum force component error in
reproducing the target forces is again typically smaller than 0.02 eV/Å. This level
of accuracy is obtained by setting to zero all the two- and three-body terms of the
SW potential involving H atoms. Tests show that using a SW-like parametrisation
for these terms give rise to higher force matching errors. This is due to the relatively
poorer transferability of these parametrisations, sometimes causing the difference
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Figure 1-9. Accuracy of the QM force calculation using the multiple clusters approach. (a) Two 2 × 1-
reconstructed dihydride (100) Si surfaces. PBC are applied on the plane parallel to the surfaces, while
12 Si planes are considered on the perpendicular direction. (b) The fully DFTB forces on the H atoms
and on the 4 outmost Si planes during a 400 fs MD at 800 K are compared to the forces calculated using
multiple clusters on the same atomic configurations. In this graph, the mean force component errors for
Si and H atoms are plotted as a function of the clusters radius

between the classical and quantum-mechanical forces to be even larger than the
quantum forces themselves.

Geometry optimization of the HIP model system has been performed through
LOTF damped dynamics using a 10-step predictor-corrector loop. The transfer-
ability of the two-body spring potential during the predictor-corrector cycles, at
a temperature of about 100 K, has been tested using the procedure described in
Section 1.2.4 for the Si system case. A 1000 time-step MD was performed using
10-step predictor-corrector loops on two different HIP systems, using a 0.2 fs time
step. The force error of Eq. (1-10) was calculated during each predictor-corrector
loop. Figure 1-10 shows the evolution of the RMS and maximum force errors
during the predictor and corrector cycles, averaged over all the predictor-corrector
loops of the two simulations. While the error increases in a nearly linear way during
the predictor part, it remains roughly constant during the corrector part where the
time-averaged maximum force error is about 0.02 eV/Å.

1.4.1. The Atom-Resolved Stress Tensor

Besides being the starting point for subsequent finite-temperature LOTF MD, the
relaxed atomic positions can be used to calculate the stress field distribution in
the silicon crystal. This distribution does not suffer any discontinuity at the bor-
der between the classical and the QM regions since a unique Hamiltonian is used
to calculate the forces on the whole system. Moreover, the parameters of the clas-
sical potential are slightly varied in order to reproduce as accurately as possible the
elastic constants obtained by the QM blackbox. This guarantees an elastic match-
ing between the two regions. As a final technical point, we now describe how the
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Figure 1-10. RMS (left) and maximum (right) force errors during 10-step predictor and corrector loops
averaged during a 1000 time step LOTF MD. The simulations are performed on two different HIP sys-
tems at a temperature of about 100 K, using a two-body adjustable spring potential. The classical and
QM Hamiltonians are the SW potential and the DFTB Hamiltonian, respectively

stress/strain tensor field can be practically evaluated at the atomistic scale and use-
fully compared with elasticity theory results. The atom-resolved values of the stress
tensor are obtained from a local definition of the strain tensor through the linear
theory of elasticity.

A definition of the atom-resolved strain tensor is obtained for all the four-fold
coordinated Si atoms in the tetrahedral structure (all other atoms are assigned zero
strain) by comparing the atomic positions to the atomic positions in the unstrained
crystal. The four neighbours of an atom are used to build a local set of cubic axes.
The components of the local deformation, with respect to the unstrained tetragonal
structure, are combined into a matrix

U =
⎛

⎝
| | |

e1 e2 e3
| | |

⎞

⎠ , (1-12)

where ei (i = 1,2,3) is the component of the deformation along the i-th axes. This
deformation can be decomposed into two contributions, one due to rotation and one
due to strain. This is done by polar decomposition of the matrix U which gives
U = SR, where R is a unitary matrix (rotation contribution) and S is a positive
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semi-definite Hermitian matrix (strain contribution). If one considers the matrix
UU†, where U† is the Hermitian transpose of U, it turns out that

UU† = SS† (1-13)

since RR† = I, where I is the identity matrix, R being a unitary matrix. Moreover,
the eigenvalue decomposition of UU† gives:

UU† = VLV†, (1-14)

where V is the matrix of the eigenvectors of UU† and L is the diagonal matrix of the
UU† eigenvalues. From Eqs. (1-13) and (1-14), we obtain

SS† = VLV† (1-15)

and, being the eigenvalues of an Hermitian matrix real numbers,

S = VL
1
2 V†. (1-16)

Figure 1-11. Atomic-resolved stress distributions: two cross-sections of the σyy component distribution
are plotted as a function of the atomic x coordinate. The black and red curves refer to the regions A and
B, respectively, whose atoms are depicted in red
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Therefore S can be directly calculated from the eigenvalues and eigenvectors
obtained by the diagonalisation of UU†. Once S has been calculated, R is obtained
as R = S−1U. The components of the strain tensor εxx, εyy, εzz, εxy, εxz and εyz

can now be calculated by rotating S to align the local cubic axes with the reference
Cartesian axes:

R†SR = I + ε =
⎛

⎝
1 + εxx εxy εxz

εxy 1 + εyy εyz

εxz εyz 1 + εzz

⎞

⎠ . (1-17)

The analysis of the stress distribution in our relaxed HIP systems shows that a
large intensification of the tensile σyy component is observed close to the platelet
edges, while a smaller compressive component occurs above and below the defect
as a result of the two surfaces moving apart from each other during relaxation. Two
cross sections of the σ yy distributions are shown in Figure 1-11. Curves A and B
refer to the two regions whose atoms are depicted in red. The curves are obtained
by plotting the σ yy component of the atom-resolved stress tensor in these regions as
a function of the x coordinate.

We are currently investigating whether the large tensile stress intensification at
the platelet edges could provide the driving force for HIPs growth during high
temperature annealing.
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Abstract: Multiscale techniques are becoming increasingly important for molecular simulation as a
result of interest in increasingly complex problems involving events occurring over mul-
tiple time and length scales. Here, inspired by the success of the multiscale quantum
mechanics/molecular mechanics (QM/MM) methods, we introduce a hybrid, adaptive
resolution, multiscale molecular dynamics method that combines accurate, atomistic,
modeling of key regions of the system with a coarse-grained modeling of the remain-
der of the system. Hybrid multiscale methods must solve the interfacial hand-shaking
problem of coupling together different levels of description in different spatial regions of
the system; in addition, to implement an adaptive resolution algorithm to correctly model
diffusive systems, one must have a procedure in place to dynamically change the repre-
sentation of a molecule, either from a finer to a coarser level or vice versa. We propose a
solution to these problems through a detailed energy analysis and the use of a rotational
dynamics to align molecular fragments. The algorithms we propose significantly advance
the state-of-the-art and should serve to spur significant advances in our ability to model
complex chemical systems.

Keywords: Multiscale, Adaptive resolution, Coarse-graining, Molecular dynamics, Reverse
mapping, Rotational dynamics

2.1. INTRODUCTION

In numerical analysis and computer simulations, multiscale techniques are used
where possible to obtain higher accuracies for lower computational cost. Weather
forecast simulations and fluid dynamics calculations, for example, often make use
of solving Navier-Stokes-like differential equations on discrete grids with a vari-
able length spacing, so-called multigrids. The choice of the length scale is arbitrary;
perhaps a particular part of the calculation is of greater interest and is therefore per-
formed at a higher resolution or accuracy than the remainder. But more often, the
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length scales used reflect those of the underlying physics of the simulated process.
In the case of weather prediction, mountainous regions with rapidly varying topog-
raphy require pressure and temperature evaluations on a denser grid than do flat
regions.

The properties of materials are governed by processes that take place over a vast
range of length and time scales. Creep in polymers and glasses is a very slow pro-
cess that can easily have relaxation constants on the order of reciprocal years. On
the other hand, the atomic motions in the same materials take place on the fem-
tosecond time scale. The electronic motions at the onset of a chemical reaction are
even faster, while the chemical reaction itself might take place only a few times
per second within a certain amount of material, resulting in a time scale ratio of
15 orders of magnitude. This inherent multiscale character of phenomena in mate-
rials is seen also in the length scales. A charge transfer or proton transfer chemical
reaction can be a very localized process, taking place within a region of radius ten
Ångstroms. The same reaction taking place in the active site of an enzyme involves
the catalytic effect of the tens of nanometers-sized protein environment, while in
general biological processes taking place in the cell, such as signal transduction
or gene expression, are often intricately governed by long-range changes in the
environment.

For the modeling of molecular phenomena with such inherent multiscale charac-
ter, new developments have been made to extend existing simulation techniques that
could otherwise only be applied to rather limited ranges of application. Accurate
quantum mechanical ab initio methods allow for electronic structure calculations
using a large supercomputer involving tens to hundreds of atoms for tens of picosec-
onds. Neglecting electronic structure, the behavior of molecular systems of up to a
million atoms can be simulated for hundreds of nanoseconds using classical molec-
ular dynamics techniques. Modeling of even larger systems or of processes that take
place on even longer time scales requires one to relinquish an atomistic representa-
tion and simulate the motion of effective particles that each comprise several atoms;
this is the domain of coarse-grained and mesoscale methods.

However, there is another choice: one can use multiscale techniques. For example
in quantum chemistry, one can include the extended environment of an electronic
process using embedding techniques [1, 2], continuum models [3–5] or hybrid
quantum mechanics and classical forcefield (QM/MM) techniques [6]. In classical
molecular dynamics simulations implicit solvent models can be employed to reduce
the computation cost (with a concomitant loss of accuracy) of including for exam-
ple a protein environment. And more recently, so-called hybrid multiscale methods
have been developed that mix an atomistic molecular dynamics treatment of part of
a system with a lower resolution treatment of the rest [7–15].

Popularity of the term multiscale has led the word to be used in various con-
texts and with an increasing (multi-) scale of meanings. Here, we will distinguish
between two types of simulation techniques termed multiscale, namely (1) those
in which methods of different accuracy and scale are used sequentially [16, 17],
and (2) those in which methods of different accuracy and scale are used simul-
taneously [7–12, 18–21]. The first type makes use of a relatively accurate, high
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resolution, method to parameterize the less accurate, low resolution, method which
is then used for the actual simulation. In a sense, this type of multiscale method
includes practically all semi-empirical and empirical methods, such as MD simula-
tions that employ forcefields that were first parameterized using quantum chemical
(e.g. Hartree-Fock) calculations. Instead, the latter type of multiscale techniques are
based on treating different parts of a system with different resolutions and include
for example multi-grid methods, multi-timestep techniques, certain Hamiltonian
switch or replica exchange methods and hybrid methods. The multiscale method
that is the subject of this book chapter is a hybrid method that allows key parts of
the system to be treated at a high, atomistic, level of resolution while the rest of the
system is modeled at a lower, coarse-grained, level of resolution [7].

Hybrid multiscale methods must solve the interfacial hand-shaking problem
of coupling together different levels of description in different spatial regions
of the system. If the shape or position of these spatial regions is changing in
time, or if particles are allowed to move between the spatial regions, a special
mechanism must be introduced into the multiscale method to allow particles to
dynamically adapt their representation. The “Learn On The Fly” method is an
example of such an adaptive hybrid method that has been successfully applied
to model the propagation of a crack in a brittle solid, in which only the atoms
in the advancing crack tip region are modeled at the QM tight-binding level of
theory and the rest are treated with a classical forcefield representation [22]. In
this case, a one-to-one mapping exists between the atoms in the quantum rep-
resentation and those in the classical representation (i.e. only the number of
electronic degrees of freedom differs). Bridging between an atomistic represen-
tation and a coarse-grained representation, in which each coarse-grained particle
comprises several atoms, however, raises the additional difficulty that the map-
ping between the two representations is no longer trivial. In particular, the so-called
reverse mapping of moving from the lower, coarse-grained, resolution to the higher,
atomistic, resolution is fraught with difficulty as it requires the generation of
information.

The need for adaptive boundaries within multiscale modeling methods becomes
more urgent as we move from hybrid high-level QM/low-level QM methods
and QM/MM methods, along the accessible time and length scales, to hybrid
atomistic/coarse-grained methods. Whereas often a static boundary suffices on the
relatively small, tens of picoseconds, timescale accessible to QM/MM, as shown
for example by its success in modeling enzymatic chemistry, instead adaptive
boundaries become crucial on the microsecond timescale domain of coarse-grained
models, and therefore also hybrid atomistic/coarse-grained methods, which are
particularly developed to study diffusive behavior in complex fluids, such as poly-
mers, proteins, and amphiphilic assemblies. Adaptive boundaries are thus expected
to be essential in hybrid atomistic/coarse-grained studies of a wide range of
applications, such as protein folding, protein-protein interaction, permeation in
(trans-membrane) ion-channels and pores, diffusion and adsorption on surfaces and
open-framework materials, permeation through polymer electrolytes, self-assembly
of nano-materials, and so on.
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In the remainder of this book chapter, we describe the construction of a hybrid
multiscale molecular dynamics method that bridges regions of high (atomistic) reso-
lution and regions of low (coarse-grained) resolution, paying special attention to the
reverse mapping problem that needs be overcome in order to make the method adap-
tive. But first we give a brief introduction to atomistic and coarse-grained molecular
dynamics and on the forward and reverse mapping between these representations.

2.1.1. Atomistic and Coarse-Grained Molecular Dynamics

Atomistic and coarse-grained molecular dynamics simulations are particle-based
methods in which conservative forces, and also sometimes dissipative and random
forces, are used to evolve the particles in time; this time evolution is called a trajec-
tory. Such classical trajectories in molecular systems can be computed on present
day computers for systems containing 105 − 106 particles for as long as about 108

discrete time steps. If these particles are chosen to be the atoms, the requirement to
accurately sample the molecular vibrations will set the maximum total simulation
time to be less than a microsecond. The most cpu-intensive part of the computation
is the evaluation of the non-bonded van der Waals and electrostatic interactions,
which are typically approximated by pairwise additive 2-body potentials, yielding
in principle a quadratic scaling of the computational effort with system size.

For certain long-time or large length scale phenomena, the fastest molecular
vibrations are irrelevant, making it desirable to average out these high frequency
fluctuations a priori and model directly the representative (coarse grained) parti-
cles that move on the mesoscopic length and time scale. To model these large
scale motions in complex fluids such as polymers, colloids, surfactants and
bio-molecular assemblies, mesoscopic simulation methods have been developed,
for instance Dissipative Particle Dynamics [23], Langevin Dynamics [24], and
Brownian Dynamics [25], in which the local atomic rattling is simplified to ran-
dom noise and dissipation terms. The “potential energy surface” on which these
coarse-grained particles move can in principle be computed from the high-resolution
representation of the system by integrating over all irrelevant fast-frequency degrees
of freedom r :

U(R) = −kBT ln
∫

dr e−V(R,r)/kBT (2-1)

with kB Boltzmann’s constant, T the absolute temperature, and V the potential that
governs the fundamental interactions in the system. The resulting effective potential
felt by the coarse-grained particles, U(R), is actually a free energy surface that is
also a function of the thermodynamic variables that define the state at which U(R)
is evaluated, for example the temperature and the pressure in an isothermal, isobaric
ensemble. Free energy methods, such as the metadynamics method [26, 27], allow
for the evaluation of a free energy landscape of a (very) small set of slow variables,
which can then be used in a Langevin dynamics to explore the kinetics. However,
for the construction of a (many-) particle based coarse-grained model, calculation
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of the exact potential U(R) is not feasible in practise and people have devised other
approximate methods to build coarse-grained potentials, or forcefields.

The level of coarse-graining applied here in the context of hybrid multi-
scale molecular dynamics is in between atomistic and mesoscopic. At this level,
coarse-grained particles represent approximately the chemical functional groups
of molecules, containing in the order of ten atoms each [28]. That way, the
same machinery as used for atomistic molecular dynamics can be used for the
coarse-grained molecular dynamics, including for example harmonic bond and
bend functions and non-bonded van der Waals-like and electrostatic interactions
that make up the forcefield. Critically, this lets us use existing atomistic molecu-
lar dynamics software to carry out the coarse grained simulations, so that we do
not have to worry about writing efficient, parallelized simulation code. Moreover, at
this level the molecular shape is preserved which conceptually allows for a mapping
between the atomistic and coarse-grained representations of the system.

Motivated by Henderson’s theorem [29], which states that there exists a one-
to-one mapping between measured pair-correlation functions and the underlying
potential energy function in the case that the latter is a sum of pair-interactions,
strategies to construct coarse-grained forcefield are often based on constructing
effective pair-potentials from pair-correlation functions and potentials of mean force
obtained from atomistic simulations [30–34]. These approaches work well in cases
where 3-body and higher correlations are weak. The resulting effective potentials
that reproduce the target distributions are not unique however, which leaves room to
simultaneously match other target properties, for example experimental densities,
surface tensions, heats of vaporization, and so forth. Jain and co-workers showed
that such inclusion of thermodynamic target properties in the optimization proce-
dure has the added advantage of increased convergence [33]. A different method
to build coarse-grained potentials is by trying to match the effective forces on the
coarse-grained degrees of freedom within an atomistic simulation [35–37].

It is beyond the scope of the current multiscale topic to discuss the art of coarse-
graining in more depth. It is however important, and hopefully obviously so, to
ensure that the low-resolution and high-resolution models of the system, merged
in an hybrid multiscale method, represent the same thermodynamic state point.
The limited transferability of coarse-grained forcefields (as mentioned for U(R) in
Eq. 2-1) as compared to atomistic forcefields, might therefore require one to re-
optimize the coarse-grained potentials for new simulation conditions (e.g. a different
temperature or pressure) to ensure the same chemical potential in the different low
and high resolution regions and avoid spurious density fluctuations.

2.1.2. Mapping Between Different Representations, or the Reverse
Mapping Problem

In order to implement an adaptive resolution algorithm, one must have a proce-
dure in place to dynamically change the representation of a molecule, either from
a finer to a coarser level or vice versa. The “forward” direction, namely where one
coarsens the representation of a molecule, is straightforward because one merely
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throws away information; for example by replacing the atomic coordinates of a col-
lection of atoms with the coordinates of their center of mass (COM). On the other
hand, the “reverse” mapping, in which one resolves a molecule into finer detail,
is problematic because it requires the creation of information. Indeed, in a recent
review article on multiscale modeling, de Pablo and Curtin say that “a persistent
challenge remains that of reverse mapping, that is, of restoring some of the details
after they have been blurred away through an averaging procedure” [38].

Here we propose a solution to the reverse mapping problem. We associate a
frozen atomistic fragment with each coarse-grained site, and rigidly rotate these
fragments about their COM in accordance with an energy function designed to
maintain a low-energy atomistic-level representation of the system. In this manner
the coarse-grained system has, superimposed on it, a globally unfrustrated atomistic
configuration which is prepared for reverse mapping. Indeed, only a local relaxation
needs to be further performed on the degrees of freedom which were frozen (the
degrees of freedom within each fragment). This is accomplished, for instance, by
running a short atomistic simulation or by using a healing region as will be described
below. This method is efficient because the atomistic fragments are treated as rigid
bodies with no internal degrees of freedom. This means that there are only three
degrees of freedom per coarse-grain site to evolve, namely an element of the special
orthogonal Lie group SO(3). The mathematical details of this treatment are given
below.

2.2. ADAPTIVE MULTISCALE MOLECULAR DYNAMICS

Due to the reverse mapping problem described above, constructing a meaningful
adaptive multiscale molecular dynamics algorithm is not trivial. First of all, the
number of degrees of freedom continuously changes during such a simulation as
low-resolution (coarse-grained) particles break up into their high-resolution compo-
nents (atoms) when they enter the high-resolution region and vice versa when they
leave. During these transitions the number of pair-interactions also changes, so that
both the total potential energy and the total kinetic energy show spurious fluctuations
with the changing numbers of particles in the low-resolution and high-resolution
regions. What thermodynamic ensemble would such an adaptive multiscale sim-
ulation sample? Secondly, and this is precisely the reverse mapping problem, a
coarse-grained particle entering the high-resolution region has to be replaced by its
fine-grained counterpart, which requires the generation of information: how can one
generate suitable equilibrium positions and velocities for these atoms in harmony
with the other atoms in the high-resolution region?

In this section, a possible solution is given to the above difficulties that come
with the construction of an algorithm for adaptive multiscale molecular dynam-
ics, or hybrid MD. The algorithm that we discuss is aimed to be simple, robust,
and have certain desired properties such as conservation of linear momentum and
conservation of total energy. This algorithm is built in two stages. Starting from
an atomistic (i.e. the high resolution) representation of the entire system and a
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(forward) mapping of groups of atoms into coarse-grained beads, the atomistic pair-
interactions that span atoms belonging to different coarse grained beads are replaced
by coarse-grained pair-interactions in the coarse-grained region. The details of such
a coarse-graining of interactions is presented in the following subsection where we
discuss the treatment of the coupling between atoms in the atomistic and coarse-
grained regions. The second stage then involves “freezing” of the atoms in the
coarse-grained region inside their coarse-grained beads so that the dynamics of the
atoms can be replaced by a coarse-grained dynamics. This is presented in the subse-
quent subsection. Next, we present an illustrative case study of a hybrid molecular
dynamics (hybrid MD) simulation of liquid methane. We end with a brief discus-
sion of variations of and alternatives to this multiscale algorithm that have recently
appeared in the literature.

2.2.1. Stage 1: Coupling Atomistic and Coarse-Grained Regions

Let us consider a molecular system that we wish to separate into two regions, one of
which contains the part that we want to treat in atomistic detail and the other which
contains the rest to be treated at a lower, coarse-grained, resolution. This section
describes the first of the two stages in which such a multiscale treatment can be
constructed, leading to an adaptive algorithm that allows particles to move between
the two regions and adapt their representation on the fly.

But first, let us recall that a conventional molecular dynamics treatment of the
entire system at the atomistic level maintains the micro-canonical NVE ensemble
as governed by the conservation laws of Hamilton’s equations. In this ensemble
the number of atoms, N, the volume, V, and the total energy, E, remain constant.
The total energy is taken to be the sum of the total kinetic energy, T, and the total
potential energy, V, summed over all atoms, i:

E = T + V =
N∑

i

1

2
miv

2
i + V(rN) (2-2)

in which mi and vi are the mass and velocity of atom i respectively, and the potential
depends on all the positions ri.

Other ensembles can be generated, for example the canonical NVT ensemble or
the isobaric-isothermal NPT ensemble by invoking a thermostat or a barostat plus
a thermostat. Note that now the total energy is no longer constant. However, also
in these ensembles a conserved quantity such as the total energy can be recovered
by cleverly bookkeeping the energy flows between the molecular system and the
external variables introduced to control the temperature and/or the pressure. The
Nosé-Hoover (chain) thermostat [39, 40], the Parrinello-Rahman barostat [41], and
the recently introduced stochastic velocity rescaling thermostat by Bussi [42] are all
good examples of external control mechanisms that provide the desired ensemble
and recover a conserved total energy even though the dynamics is not strictly
Hamiltonian.
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Conserved quantities play a very important role in molecular simulations.
Monitoring the conservation of total energy yields the first and foremost assessment
of the quality of the integration of the equations of motion during the simulation.
Whether the computer code contains a bug, or the simulation time step is too large,
or the initial system configuration contains overlaps between atoms, the problem is
always first seen in the (non-) conservation of the total energy. Given this impor-
tance, it seems like a good idea to focus on energy conservation while constructing
a multiscale algorithm.

The construction of a multiscale algorithm begins from the atomistic representa-
tion of the entire system and some mapping in which groups of atoms are lumped
into coarse-grained beads, which can for example be positioned at the centers of
mass of the atomic groups they represent. The first stage of coarse-graining the low-
resolution part of the system consists of replacing all atomistic interactions that span
different beads by coarse-grained interactions. The second stage consists of replac-
ing the atoms in this region by their coarse-grained bead representation, which is
dealt with in the next subsection. Specifically, for now, the atomistic bonded (and
non-bonded) interactions between atoms i and j that belong to the same coarse-
grained bead α are maintained, and only the interactions between atoms i and j that
belong to different beads α and β are replaced by coarse-grained potentials. The
energy function of such a system reads:

E =
n+m∑

i

1

2
miv

2
i + VA(rn) + VCG(RM) + Vmix(RN , RM) (2-3)

VA(rn) =
n−1∑

i=1

n∑

j>i

	A(ri,rj)

VCG(RM) =
M−1∑

α=1

M∑

β>α

	CG(Rα , Rβ )

Vmix(RN ,RM) =
N∑

α=1

M∑

β=1

	CG(Rα , Rβ )

so that the n atoms in the atomistic region interact with each other through
an atomistic potential or forcefield VA(rn) while the remaining m atoms in the
coarse-grained region interact with each other through a coarse-grained potential
or forcefield VCG working on the M centers of mass, R, of the atomic fragments
corresponding to beads. Here the potential terms are expressed as sums of pair-
potentials, 	. The effective force on such a center of mass is then distributed,
mass weighted, over the atoms that belong to the coarse-grained bead. The cou-
pling between atoms in different regions is governed by the last term Vmix(RN , RM),
which is also the coarse-grained potential working on the centers of mass and there-
fore not different from VCG, except that then α runs over the N beads in the atomistic
region, instead of the M − 1 beads in the coarse-grained region.
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The total energy in Eq. (2-3) is conserved, however this multiscale setup is not
yet adaptive so that after some simulation time, due to diffusion, the atoms “feeling”
fully atomistic interactions will start to mix with those atoms from the coarse-
grained region that only feel their environment through coarse-grained interactions,
which is not what we set out to do. To make the method adaptive and have the atoms
switch their interaction when they cross user-defined regions, we introduce a spa-
tial order parameter q to distinguish the two regions and we denote the boundary
between the two regions by q†. With this order parameter all atoms can be attributed
a label, s, which we shall call the (amount of) “coarse-grained character”, and which
equals zero for atoms in the (atomistic) region of q < q† and one for atoms in the
(coarse-grained) region with q > q†, as shown in the upper panel (panel A) in
Figure 2-1.
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Figure 2-1. An intermediate “healing region” that smooths the coupling between the high-resolution
and low-resolution regions is introduced in three simple steps
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Next, the amount of coarse-grained character, s, is employed to make the
potential function adaptive:

VA + VCG + Vmix =
∑

αβ

⎛

⎜⎜⎝λαβ	
CG
αβ + (1 − λαβ )

∑

i∈α
j∈β

	A
ij

⎞

⎟⎟⎠ +
∑

α

∑

i,j∈α
	A

ij

λαβ = max (sα , sβ )

(2-4)

Here, the previous potential energy terms are replaced by the two terms on the
right. The first term accounts for all interactions between different coarse-grained
beads α and β, which are either taken as the coarse-grained pair-potential 	CG

when λαβ = 1 or as the sum of atomistic pair-potentials 	A between atoms i
belonging to bead α and atoms j belonging to bead β when λαβ = 0. The value
of the scaling function, λαβ , being zero or one, is determined by the maximum
coarse-grained character s between the two interacting beads α and β, as illus-
trated in Figure (2-1A). Using this scaling factor, the same multiscale behavior is
obtained as before, namely, atoms in the atomistic region interact through the atom-
istic forcefield while they feel the particles in the coarse-grained region through
the coarse-grained forcefield, and the atoms in the coarse-grained region “see” all
other atoms, in both regions, as coarse-grained particles. The difference is now
that this interaction automatically adapts when atoms move from one region to the
other. The last term in Eq. (2-4) accounts for all bonded (and non-bonded) inter-
actions within each bead. Note also that this equation is trivially generalized for
interactions other than pair-interactions, such as bending (or dihedral) potentials,
by taking for lambda the maximum s-value of the now three (or four) interacting
atoms.

By making the multiscale approach adaptive, we have introduced two new prob-
lems: one, the total energy is no longer conserved, and, two, also the forces are
discontinuous when particles cross the boundary at q†. In other words, as long as
the particles stay in their initial regions the energy is conserved and the dynamics
is well-behaved, but every time a particle crosses q† the total energy and the forces
will display a jump. The jump in the energy when the atoms of bead α cross from
the atomistic region to the coarse-grained region equals the difference between the
coarse-grained potential and the atomistic potential due to all other atoms:

�UA/CG
α =

∑

β

�λαβ

⎛

⎜⎜⎝	̃CG
αβ −

∑

i∈α
j∈β

	̃A
ij

⎞

⎟⎟⎠ (2-5)
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where �λαβ is the change of λ for each pair-interaction, which equals zero for all β
particles in the coarse-grained region (as these λ remain unity), and for all other β
equals either +1 if α moves from the atomistic region to the coarse-grained region,
or −1 if α moves from the coarse-grained region to the atomistic region. The tilde
indicates the value of the interaction, 	, at the moment of boundary crossing. By
simply adding this term, �UA/CG

α , every time a particle crosses between regions, the
total energy is recovered as a conserved quantity. Fixing the spurious jumps in the
forces, however, will require more than just this simple bookkeeping. This is what
we set out to do next.

Some improvement can be envisioned by introducing an intermediate “healing
region” between the atomistic region and the coarse-grained region, in which par-
ticles are attributed a mixed atomistic/coarse-grained character of s = 0.5. This is
illustrated in Figure 2-1, panel B. Particles in this healing region interact with other
“hybrid” particles in this region through a potential that is the sum of the atomistic
interactions and the coarse-grained interactions, both scaled by λ = 0.5, according
to Eq. (2-4). The same type of interaction is felt between these hybrid particles in the
healing region and particles in the atomistic region (as max (s1, s2) = 0.5), while the
interaction between the hybrid particles and particles in the coarse-grained region is
purely the coarse-grained 	CG (i.e. max (s1, s2) = 1).

Similar to the previous dual-scale setup, the evolution of the atomistic dynam-
ics can be performed on this, now three-region, system, where the potentials are
switched accordingly every time a particle crosses the boundary between the atom-
istic region and the healing region or the boundary between the coarse-grained
region and the healing region. In other words, the bookkeeping �UA/CG

α now sup-
plements the energy function when a particle α switches between s = 0 and s = 0.5
and when a particle switches between s = 0.5 and s = 1, to correct the jumps in
the total energy. These corrections are smaller than with the previous single region
boundary because �λ (in Eq. (2-4)) now only amounts to + 1

2 or − 1
2 , and with that

also the jumps in the forces are somewhat smaller.
Further improvement can thus be made by dividing the healing region into sev-

eral, say N−1, intermediate sub-regions, as shown in panel C of Figure 2-1. Particles
in each sub-region k could then be attributed a stepwise increasing coarse-grained
character of s = k/N, starting from k = 0 in the fully atomistic region to k = N in
the fully coarse-grained region. Again, a particle in sub-region k interacts with all
particles that find themselves in the same sub-region k or in regions smaller than k
with a hybrid potential, given by Eq. (2-4), with scaling factor λ = k/N, whereas
this particle interacts with all other particles in higher regions with a hybrid potential
with a larger scaling factor that is determined by the other particle. For a fixed total
healing region width with larger and larger numbers of intermediate sub-regions, N,
the intermediate regions become narrower in spatial extent and particles are more
frequently found to cross one or another region boundary. A particle α crossing
from region k to region k + 1 requires an update of the bookkeeping term �UA/CG

α

equal to:
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�UA/CG
α =

∑

β

⎛

⎜⎜⎝
k + 1

N
	CG

αβ − k

N
	CG

αβ − N − k − 1

N

∑

i∈α
j∈β

	A
ij + N − k

N

∑

i∈α
j∈β

	A
ij

⎞

⎟⎟⎠

=
∑

β

⎛

⎜⎜⎝
1

N
	CG

αβ − 1

N

∑

i∈α
j∈β

	A
ij

⎞

⎟⎟⎠

(2-6)
which is not different from the bookkeeping term defined by Eq. (2-5) with
�λ = ±1/N. In the case of very narrow sub-regions, a particle moving in any direc-
tion that is not strictly perpendicular to q will cross several sub-region boundaries,
which requires summing over as many bookkeeping terms �UA/CG

α .
Now, taking the limit of the number of sub-regions going to infinity,

�UA/CG
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N→∞
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the sum over boundaries for a particle moving from sub-region k at q to sub-region
k′ at q′ can be replaced by an integral:

�UA/CG
α =

∫ q′

q
dq
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dλαβ
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⎛

⎜⎜⎝	CG
αβ −
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	A
ij

⎞

⎟⎟⎠ . (2-8)

Of course, the linear change of s and therefore of the scaling factor, λ, of 1/N
per intermediate region is not a requirement, and other smoothly varying functions
for s can be used, as long as it switches from zero to one over the healing region and
is differentiable. During a molecular dynamics simulation, it is practical to perform
the integration over the full spatial trajectory rather than its projection onto q, as
both the interaction potentials, 	, and the order parameter, q, are functions of the
position, r.

�UA/CG
α =

∫
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∑
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dλαβ
dq

∂q
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⎛

⎜⎜⎝	CG
αβ −

∑

i∈α
j∈β

	A
ij

⎞

⎟⎟⎠ . (2-9)

The resulting energy function of this adaptive multiscale method is obtained from
Eq. (2-3), (2-4), and the total bookkeeping energy, �UA/CG, of all particles moving
in the healing region. Integration of the equations of motion derived from this energy
function, with a sufficiently small time step, will in principle maintain the total
energy as a conserved quantity. In reference [7] an illustrative numerical calculation
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is discussed of a simple model system containing a diatomic molecule which moves
through a healing region. Despite the deliberately mismatched potential functions
between the atomistic and coarse-grained representations, total energy conserva-
tion is recovered to remarkably high accuracy using the numerical integration of
Eq. (2-9).

2.2.2. Equations of Motion

The Newtonian equations of motion of the adaptive multiscale molecular dynamics
are constructed in the usual way

mi
d2ri

dt2
= fi = −∂V

∂ri
(2-10)

with the force f on particle i derived from the potential,

V =
∑

αβ
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ij + �UA/CG (2-11)

This is the adaptive multiscale, or hybrid MD, potential, which was derived in the
previous section. Summarizing, the first term sums the scaled interactions between
all pairs of coarse-grained particles α and β, with the scaling factor λαβ a number
between zero and one depending on the resolution (being atomistic, coarse-grained,
or something in between) of the interacting particles. The second term accounts
for all atomistic interactions within the coarse-grained beads. These interactions
are not scaled by λ, as they are obviously not replaced by a coarse-grained inter-
action, and which would otherwise thus lead to disintegration of the molecules
when they leave the atomistic region. The third and last term holds the bookkeep-
ing energies (Eq. 2-9) of all particles that change their resolution in the healing
region.

Derivation of the forces from the hybrid potential requires special attention to
the first and last terms which contain the position dependent switching function.
The force on atom i is

fi∈α = −∂V
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(2-12)
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in which the terms in curly brackets are obtained by applying the chain rule to the
scaled coarse-grained and atomistic interactions respectively, shown in Eq. (2-11)
as the term in parenthesis. The first term in both of the pieces between the curly
brackets we recognize as the usual interaction force, but now multiplied by the scal-
ing factor λ and (1 −λ) respectively. The second terms resulting from the chain rule
contain the derivative of the scaling factor with respect to the particle position. This
derivative is non-zero in the healing region where λ changes in the direction of the
order parameter q (see also panel D in Figure 2-1). This seems strange as apparently
these two terms will cause a force, and thus a flux of particles, between the atomistic
and coarse-grained regions, unless 	CG

αβ = ∑
ij 	

A
ij .

However, the last term, the derivative of �UA/CG is just the integrand of
Eq. (2-9)
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which cancels exactly these two spurious terms leaving only the scaled interactions
plus the intra-bead interaction in the force expression:
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ij

∂ri
(2-14)

This equation contains the usual symmetry with respect to interacting particles i
and j which ensures obedience to Newton’s third law (fi = −fj) and conservation of
momentum in the system.

2.2.3. Stage 2: Freezing the Intra-Bead Motions

In the previous two sections an adaptive multiscale dynamics approach was con-
structed by coupling an atomistic region, in which atoms interact through an
atomistic forcefield, with a coarse-grained region in which atoms interact through
a coarse-grained forcefield. Technically, however, both regions still maintain atom-
istic dynamics rather than a coarse-grained dynamics in the coarse-grained region.
That is, the integrator propagates the atomic positions and velocities also in the
coarse-grained region instead of propagating positions and velocities of the coarse-
grained particles. Here, in the second stage of the multiscale method development,
the atoms in the low-resolution region are replaced by coarse-grained beads.

Basically, the atoms grouped into a coarse-grained bead can be “frozen” with
respect to their center of mass and replaced by the coarse-grained particle as soon
as they enter the coarse-grained region from the healing region, since, from there
on, the motion of the center of mass of each atomic fragment is solely governed by
the coarse-grained interactions making the “internal” atomic motions irrelevant to
the molecular dynamics. Such one-step-freezing is exactly what we will do here,
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although alternative schemes are possible, involving for example a gradual freezing
of the atomic degrees of freedom in the healing region (see Section 2.2.4 for more
details).

The advantages of replacing the evolution of the atomic degrees of freedom by
coarse-grained molecular dynamics are mainly economic; computation of atomic
intra-bead interactions is avoided, a larger time step is allowed without violating
energy-conservation, and memory storage can be saved in the coarse-grained region,
which is typically the larger region. The only disadvantage of discarding the atom-
istic details is that of the reverse mapping problem discussed earlier: once the atomic
inter-bead interactions are replaced by the coarse-grained forcefield the atomic frag-
ments are free to rotate around their centers of mass, randomizing the atomistic
details with respect to their environment outside the bead. This is why we in fact
control this rotation as discussed in Section 2.3, so that we can recover the atomic
details to some approximation.

The fact that, in the low-resolution region, the atoms no longer feel their envi-
ronment and adopt random orientations (ignoring for the moment the possibility of
SO(3) rotational dynamics) means that such groups, upon moving into the healing
region and toward the atomistic region, practically always do so starting relatively
high up on the atomic potential energy surface. That is, while the atomic interactions
are gradually switched on while moving toward the atomistic region, the atomic
degrees of freedom (have to) re-equilibrate with respect to their atomistic environ-
ment. This equilibration process of transforming from high potential energy random
orientations to equilibrium energy structures generates thermal motion or heat. Note
that the reverse process of switching off the atomistic interactions and allowing
atomic fragments to take random orientations as molecules move toward the coarse-
grained region does not require the absorption of heat. This asymmetry in heat
transport with respect to movement toward the high-resolution region versus move-
ment in the other direction means that heat is produced continuously in adaptive
multiscale molecular dynamics. This heat has to be removed by a thermostat.

When particles cross the boundary between the coarse-grained region and the
healing region, the atoms are replaced by a single coarse-grained particle or vice
versa depending on the crossing direction. In the coarse-grained region, the atomic
positions and velocities can simply be stored relative to their center of mass and
thus be recovered when the particle leaves the coarse-grained region. Alternatively,
atomic positions and velocities can be re-generated, for example by inserting a
relaxed structure with random (Boltzmann) velocities or by copying positions and
velocities from a molecule in the atomistic region. The instantaneous switching
between atoms and coarse-grained particles at this boundary introduces jumps in
the total energy that require two extra bookkeeping terms, namely

�UintraCG =
∑

α

� (sα − 1)
∑

i,j∈α
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ij (2-15)
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2
i

)
(2-16)



40 B. Ensing and S.O. Nielsen

The first extra bookkeeping term accounts for the atomistic intra-coarse-grained
bead interactions which are no longer computed when the atoms become “frozen”.
Here, the tilde indicates again the values of 	 and v at the boundary crossing
moment and the Heaviside step function, �, equals one for particles in the coarse-
grained region (s = 1) and zero otherwise. The second equation accounts for the
change in kinetic energy as the number of degrees of freedom adapts. The sum of
the two terms can be seen as the instantaneous internal energy of the atomic degrees
of freedom inside the coarse-grained bead, which is integrated out upon coarse-
graining and thus becomes a constant in the coarse-grained region, whereupon it
will be released again when switching back to the atomistic representation.

The definition of the regions (high-resolution, healing, and low-resolution) is
arbitrary and can for example be chosen to be a spherical atomistic region centered
on a particle of particular interest, so that the high-resolution part of the simulation
follows this particle. The healing region should then also be a spherical region with
the same center but with a larger radius, leaving everything outside this sphere as the
low-resolution region. Alternatively, the regions can be fixed in space. In either case,
after every (smallest) time step the amount of coarse-grained character, s, needs to
be computed by calculating the distance between each particle and the center of
the spherical regions. The coarse-grained character is used for the scaling factor in
the force calculations involving all particles in the healing region. A computational
saving can be made by computing s only for a list of particles that find themselves
in this healing region or just outside of it (skin-regions). By taking the width of the
skin-regions on either side of the healing region equal to the skin length applied in
the usual neighbor list for the non-bonded interactions, the small list of particles for
which s is computed needs to be rebuild only as often as the neighbor list is updated.

Summarizing, we have constructed an adaptive multicale molecular dynamics
by first introducing an intermediate healing region and subsequently replacing
the groups of atoms in the low-resolution region by coarse-grained beads. The
total energy is recovered as a conserved quantity by adding the proper auxiliary
bookkeeping terms to the energy function. Next, we will examine the behavior of
this hybrid MD approach with an illustrative example.

2.2.4. Case Study 1: Liquid Methane

As an illustrative application of the adaptive multiscale dynamics method, we have
performed a simulation of liquid methane at T = 111.5 K and atmospheric pressure.
In the high resolution region, methane is treated as a fully flexible atomistic CH4
molecule (using the CHARMM forcefield [43]) and in the low resolution region
each methane molecule is modeled as a single bead using Jorgensen’s united atom
model [44]. A similar simulation of 8000 methane molecules has been published
in reference [7], in which case the atomistic region was defined by a sphere with
a radius of RA = 8 Å fixed in space. Different surrounding healing regions were
tried with widths varying between RHR = 1 and 4 Å, and, not surprisingly, the
largest, 4 Å wide, healing region resulted in the best performance as seen from the
conservation of energy.
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Here, we take instead a rectangular box with edges L = 38.0, 38.0, 75.5 Å, con-
taining 1900 methane molecules subdivided into rectangular regions of different
resolution. That is, the atomistic region is a slab, flanked by healing regions on both
sides with a total thickness of dA + 2 × dHR = 44 Å, which leaves the rest of the
system as a coarse grained slab of width dCGR = 31.5 Å. See Figure 2-2 for an
illustration of the system. We will compare six hybrid MD simulations in which we
again vary the width of the healing regions from dHR = 1 to 6 Å (thus leaving an
atomistic region of varying width between dA = 42 and 32 Å). The average number
of methane molecules in the coarse-grained region was close to 790 with a standard
deviation of about 17. The number of molecules in the atomistic region varied from
1063 in the RHR = 1 Å simulation to 812 in the RHR = 6 Å simulation, leaving
50–294 molecules respectively in the healing regions (see also top-right panel in
Figure 2-3).

The interesting observables that illustrate the behavior of the hybrid MD method
are plotted in the other three panels of Figure 2-3. Starting at the top-left panel,
we see the total energy (shifted for comparison) is very well conserved for the
RHR = 6 Å healing region, and showing an unstable drift in the hybrid MD sim-
ulations with healing region smaller than RHR = 3 Å. The graph at the bottom
left shows the �UA/CG bookkeeping term (Eq. 2-9), which in the simulations is
computed on the fly by multiplying the integrand (Eq. 2-13) by the displacement
dq of the interacting particle in the healing region. Molecules moving from the
coarse-grained region to the atomistic region fall quickly down from high potential
energy configurations as they equilibrate into their atomistic environment, whereas
molecules moving in the other direction are not pushed up to such high potential
energy configurations. This asymmetry with respect to the direction that particles

Figure 2-2. Hybrid MD snapshot of the periodic unit cell of 1900 methane molecules. In the center is
the atomistic region flanked by the two halves of the coarse-grained slab, in which each CH4 molecule
is treated as a single blob (pictured in blue). These two regions are coupled through 6 Å wide heal-
ing regions in which the molecules smoothly change their resolution, here indicated by the varying
transparency of the molecules
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move (i.e. positive or negative dq in Eq. 2-9) means that on average the fluctuations
in �UA/CG do not cancel, as reflected by the negative slopes in the plot.

The atomistic equilibration process in the healing region, driven by a gradual
switching on of the atomistic interactions, forces the atoms to move and reorient.
This increase in kinetic energy is counteracted by a Nosé-Hoover thermostat cou-
pled to each particle. The bottom-right panel in Figure 2-3 shows the flow of energy
from the system to the thermostat, which is larger for small healing region widths.

This case study of a hybrid MD simulation of liquid methane illustrates that the
adaptive multiscale algorithm is a robust and very promising method. It also shows
the importance of recovering the total energy as a conserved quantity in assessing the
stability and accuracy of the simulation. Without this total energy observable, one
is left with guessing, based on secondary information such as density fluctuations
or other measured properties, whether the choices made for the healing region size
and the time step were adequate.

2.2.5. Other Adaptive Multiscale Implementations

At this stage, we briefly outline two other approaches to (particle-based) adap-
tive multiscale dynamics methods, paying special attention to the differences and
similarities to the hybrid MD method constructed in the previous sections.

Figure 2-3. Hybrid MD simulation data for liquid methane with varying healing region widths. Top left:
the conservation of the total energy is excellent for the 6 Å healing region and becomes unacceptable for
healing regions smaller than 3 Å. Top right: Continuously fluctuating numbers of molecules in the atom-
istic region (upper part of the graph) and in the healing region (lower part). Bottom left: bookkeeping
term �UA/CG from Eq. 2-9. Bottom right: continuous energy flow into the Nosé-Hoover thermostats
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Praprotnik et al. [8] were the first to present an adaptive resolution dynamics
scheme, only preceded by the similar adaptive Monte-Carlo approach of Abrams
[45]. Instead of starting from an energy function with scaled potentials (as we did
in Eq. 2-4), Praprotnik uses force scaling:

fαβ = w(Rα)w(Rβ )
∑

iα,jβ

f A
iαjβ + [1 − w(Rα)w(Rβ )] f CG

αβ (2-17)

Here, w are the scaling functions of the interacting beads α and β. This scheme
also obeys Newton’s third law and is constructed not to cause any flux of par-
ticles over the intermediate healing region. Unfortunately, the energy function is
not known in this approach. Another difference is the use of fractional degrees
of freedom. The temperature is then calculated using the fractional analog of the
equipartition theorem

< Kα >= w(Rα)kBT

2
(2-18)

where < Kα> is the average kinetic energy per fractional degree of freedom
[46, 47]. In this approach, all interactions, including the atomistic intra-bead inter-
actions are scaled, and simultaneously the kinetic energy of the atomic degrees of
freedom is scaled to zero when a particle switches from atomistic to coarse-grained
resolution. Control of the kinetic energy is established through a position depen-
dent dissipative particle dynamics thermostat coupled to each (fractional) degree of
freedom.

The other approach worth mentioning is to derive a mixed-resolution
Hamiltonian, starting from a linear combination of all possible Lagrangians that can
be constructed by treating all particles in the atomistic region plus a subset of those
in the healing region at the high-resolution level of theory, and treating all other
particles at the low resolution [9]. Also in this case, the internal, high-resolution,
degrees of freedom gradually “freeze” when particles leave the atomistic region,
through a coordinate dependent kinetic energy. Although this approach is somewhat
more involved, requiring the implementation of a special generalized integrator and
the definition of a special mixed-resolution potential energy function, one advantage
is that it is not limited to pair-potential forcefields but can also be used in combi-
nation with many-body forcefields, such as is common in a quantum mechanical
treatment [48]. Also, the total momentum and total energy are strictly conserved.

2.3. REVERSE MAPPING THROUGH RIGID BODY ROTATION

From the viewpoint of the reverse mapping problem, the example of liquid methane
shown in the previous section represents the simplest possible case. The atomistic
methane molecule, CH4, is symmetrical: it has four hydrogen atoms in a tetrahedral
arrangement around a central carbon atom, and hence to a first approximation is
well-described by the united atom sphere which is used to represent it in the coarse
grained region. When such a united atom sphere enters the healing region, one may
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conceivably insert the missing hydrogen atoms in a randomly oriented tetrahedron
without paying too steep a price in potential energy. The tetrahedron will need to
rotate to avoid steric clashes with nearby methane molecules, and this motion is
the source of the energy flow to the thermostat seen in the previous section. These
steric clashes are non-bonded in nature, and non-bonded forces are the softest forces
which exist in the forcefield. Soft forces are easily “healed” in the healing region.
Once one moves from methane to more complex molecules, the reverse mapping
problem can become serious, and one needs a more sophisticated strategy to solve it.

Recall that our solution to the reverse mapping problem is to associate a frozen
atomistic fragment with each coarse-grain site, and to rigidly rotate these fragments
about their COM in accordance with an energy function designed to maintain a
low-energy atomistic-level representation of the system. The atomistic fragments
are treated as rigid bodies with no internal degrees of freedom. This means that
there are only three degrees of freedom per coarse-grain site to evolve, namely an
element of the special orthogonal Lie group SO(3). In the remainder of this section
we present several strategies for implementing this SO(3) rotational motion. First
we present an energy minimization approach using conjugate gradient optimization.
Next, we describe a dynamics approach using the direct analog of the velocity Verlet
algorithm for the SO(3) setting. We then discuss the coupling between the SO(3)
dynamics and the coarse-grained molecular dynamics, and finish this section with a
case study of a polyethylene chain.

2.3.1. Rigid Body Rotational Optimization

Here we present an algorithm that uses SO(3) optimization to align molecular
fragments corresponding to coarse-grained sites. The output from this algorithm
consists of rigid fragments centered at the coarse-grained sites, rotated to minimize
an energy function consisting of both intra- and inter-molecular terms. The approach
is based on an algorithm due to Taylor and Kriegman [49] in which a sequence
of local parameterizations of the manifold SO(3) is used, rather than relying on a
single global parameterization such as the Euler angles. The problems caused by
singularities in a global parameterization are thus avoided.

One can object to an energy-minimized structure on the grounds that it is not
compatible with the ensembles typically used in molecular dynamics simulations
(e.g. NVT or NPT). In this sense, one can ask the question “In what sense is this
configuration a representation of the underlying molecular system?” Rather than
attempting to provide a mapping algorithm that generates an equilibrated atomistic
configuration, in this section we take a more pragmatic approach. The mapping
algorithm described here quickly generates a globally stable atomistic configuration
that further requires very localized relaxation and equilibration.

The algorithm minimizes a real-valued objective function E:SO(3) → R defined
on the set of rotation matrices

R ∈ SO(3) ≡
{
∈ R3×3 : RtR = I, det (R) = 1

}
. (2-19)
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At every point R0 on the manifold SO(3) we construct a continuous, differentiable
mapping between a neighborhood of R0 on the manifold and an open set in R3,

R(ω) = R0 exp J(ω), ω ∈ R3, |ω| < π (2-20)

where the skew symmetric operator J:R3 → SO(3) is defined as

J(ω) =
⎡

⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎦ . (2-21)

R(ω) can be computed using the Rodrigues formula, although we will not need
to do so. The objective (energy) function can be expanded to quadratic order about
R0 as

E(R(ω)) = E(R0) + gtω + ωtHω (2-22)

where g and H are the gradient and the Hessian of the function, respectively, evalu-
ated at the point ω = 0 which corresponds to the rotation matrix R0. The conjugate
gradient incremental step is

ωs = −H−1g . (2-23)

This incremental step determines the new rotation matrix as follows:

R = R0 exp J(ωs) . (2-24)

The incremental step must lie within the range of the local parameterization,
namely |ωs| < π . The updating step can be made computationally efficient by rep-
resenting the rotations by unit quaternions. The relationship between SO(3) and the
group of unit quaternions Sp(1) is

q = ( cos θ ,ω̂ sin θ ), θ = |w|/2 . (2-25)

The incremental step corresponds to the quaternion

qs =
(

cos
θ

2
, ω

sin (θ/2)

θ

)
where θ = |w| . (2-26)

With the rotation R0 expressed as the unit quaternion q0, the product of the two
rotations, which gives the new rotation matrix, is given by the quaternion multipli-
cation q0qs. It has been shown that this algorithm exhibits quadratic convergence
provided that the starting point is sufficiently close to a minimum. According to
Eq. (2-22), we are supposed to evaluate the Hessian as well as the gradient to com-
pute the update step. However, by employing the Fletcher-Reeves-Polak-Ribiere
version of the conjugate gradient algorithm, only the gradient is needed [50].
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To apply this algorithm to molecular systems, two things are needed. Firstly, an
objective function must be chosen which imbues the algorithm with chemical mean-
ing. This function should provide a measure of the potential energy of the molecular
configuration associated with a given rotation matrix. Secondly, the algorithm must
be extended to many coupled SO(3) optimizations so that the molecular system is
simultaneously and concertedly optimized over all the coarse-grain centers. This
multi-body extension is in fact trivial and does not incur any additional computa-
tional cost aside from the necessary linear scaling with the number of centers. The
nature of the multi-body aspect of the algorithm will become clear in what follows.

Let us now address the choice of an energy function. Only interactions between
atoms belonging to different coarse-grain units need be considered. This is because
the intra-unit degrees of freedom are frozen. The SO(3) algorithm is designed to
find the optimal rotational orientation of each of these fragments, where the center
of mass of each fragment is constrained to lie at the location of the coarse-grained
site representing it, and where no internal relaxation of the intra-fragment degrees
of freedom is allowed. Ideally, we would like to take the functional form and the
parameters of all of the terms contributing to the energy function from an under-
lying atomistic force field. There is no need to invent new potential energy terms
when we have well-parameterized ones at our disposal. The most important contri-
bution to the energy function is a bonded term arising from the “dangling” bonds
in the molecular fragments which would connect the fragments to one another in an
atomistic representation of the system. This function is harmonic in the interatom
distance and is expressed as (see Figure 2-4)

E(R1, R2) = k/2 (|r + R2v − R1u| − d0)
2 (2-27)

Figure 2-4. Schematic of the SO(3) optimization algorithm for a hexane molecule. Atomistic fragments
are rotated about the centers of mass of the coarse-grain units representing them to align the unconnected
atomistic bond between fragments (shown in dashed line)
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where R1 and R2 are the rotation matrices corresponding to coarse-grain units
1 and 2, located at positions COM1 and COM2, respectively. The vector from
COM1 to COM2 is denoted r. u represents the vector from COM1 to the atom
in coarse-grain unit 1 involved in the bond. v represents the vector from COM2 to
the atom in coarse-grain unit 2 at the other end of the bond. The bond has an equilib-
rium distance of d0 and a force constant of k. In order to perform optimization, the
gradient must be evaluated. There are six gradient terms associated with this energy
function, three for rotation matrix R1 and three for R2. For the ωx component of R1,
the gradient is

∂

∂ωx1
E = −k

(|r + R2v − R1u| − d0)

|r + R2v − R1u| (r + R2v − R1u) · ∂

∂ωx1
R1u (2-28)

with

∂

∂ωx1
R1u = R1

0J(x̂)u (2-29)

where R1
0 denotes the initial rotation matrix for coarse-grained center 1. This last

result is computationally important because it means that the J operator only ever
acts on three elements, x̂, ŷ, and ẑ, where,

J(x̂) =
⎡

⎣
0 0 0
0 0 −1
0 1 0

⎤

⎦ , J(ŷ) =
⎡

⎣
0 0 1
0 0 0

−1 0 0

⎤

⎦ , J(ẑ) =
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ (2-30)

The multi-body nature of the minimization procedure proceeds as follows: the
potential energy function is written as a sum over all the coarse-grain sites, with
separate terms arising from bonds, bends, torsions, one-fours, and Lennard-Jones
interactions. The gradient of this function is evaluated with respect to each degree
of freedom, namely the three numbers ωx, ωy, and ωz for each coarse-grain site.
This gradient is used to decide upon a global incremental update step in which
all the rotation matrices are simultaneously changed. For further details on how to
implement bend, torsional, and non-bonded energy terms, we refer the interested
reader to our previous work [51].

2.3.2. Rigid Body Rotational Dynamics

In the interest of energy conservation, we now turn to rigid body rotational dynamics
algorithms, namely how to adapt the velocity Verlet algorithm for the setting of
the SO(3) Lie group. This is a challenging problem because the dynamics occurs
on a curved manifold, not a vector space. There are no known algorithms which
possess all the desired properties expected of such an integrator, namely that it be
symplectic, time-reversible, and energy and momentum conserving. We have chosen
to implement the best-performing currently known explicit algorithm for rigid body
dynamics, which is due to Krysl and Endres [52]. This algorithm is the direct analog
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of the velocity Verlet algorithm for the rotation dynamics setting. The fundamental
law of motion for rotational dynamics is t = L̇ where t is the torque, L = Iω
is the angular momentum, I is the moment of inertia tensor, and ω is the angular
velocity. The initialization and subsequent dynamics components of the algorithm
are as follows.

We initialize the angular velocity from the coordinates and (linear) velocities of
the atoms via

ω0 = I−1
0 L0 = I−1

0 (
∑

i

ri × mivi) , (2-31)

where I is computed relative to the COM, ri is the vector from the COM to atom i;
mi is the mass of atom i, vi is the (linear) velocity of particle i, and × is the cross
product. The angular acceleration is initialized from

α0 = I−1
0 (t0 − ω0 × I0ω0) , (2-32)

where t is the torque.
Following initialization, the dynamics occurs in a 4-step algorithm as follows,

where the time step is τ .

Step 1: ω′
n = ωn−1 + τ

2αn−1
Step 2: Rn = exp [τJ(ω′

n)]
Step 3: Solve Inαn − tn + (

ω′
n + τ

2αn
) × In(ω′

n + τ
2αn) = 0 for αn

Step 4: ωn = ω′
n + τ

2αn

Steps 1 and 4 are the velocity half-steps. In Step 2 the rotation matrix Rn is used
to update the atomic positions relative to their COM. Hence, unlike the original
algorithm, we do not apply incremental updates to the rotation matrix, but instead
directly rotate the atoms at each time step. We remind the reader that J(ω) is defined
by Eq. (2-21). In between Steps 2 and 3, the torque and the moment of inertia tensor
are updated. In Step 3 we need to solve a non-linear vector equation for the angular
acceleration αn using Newton′s method since it is coupled with the angular veloc-
ity due to the velocity update. The Jacobian (the matrix of first partial derivatives)
required for Newton′s method is straightforward to evaluate [52].

The multi-body nature of the algorithm, as was the case for the optimization
algorithm presented above, is trivial: the net torque on each coarse-grained center is
computed due to the effect of all other fragments one wishes to consider.

2.3.3. Coupling Between the Rotational Dynamics and Coarse-Grained
Molecular Dynamics

To allow for reverse mapping on the fly during a coarse-grained molecular dynamics
simulation, we wish to couple the velocity Verlet algorithm introduced above for
the rigid body rotational dynamics to the dynamics of the coarse-grained centers
of mass. That is, we wish to perform the rotational dynamics of the atoms within
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the coarse-grained beads simultaneously with the (Cartesian) molecular dynamics
of the beads in a fashion reminiscent of Car-Parrinello MD. In the latter method,
the classical dynamics of the nuclei are in principle coupled to a second, artificial,
dynamics of electronic wave function degrees of freedom, although in that case
an adiabatic separation exists due to the large difference in particle masses, and
therefore in temperatures, between the two sub-systems. Here, such a separation
does not exist.

The orientation of the rigid body and its rotational motion are governed
through atomistic interactions that span different beads as illustrated by the dashed
C–C bond in Figure 2-4. These atomistic interactions are affected if we allow
the beads to move with respect to each other. Imagine for example that the
two beads in Figure 2-4 are moving away from each other, than clearly also the
(dashed) C–C bond elongates, leading to an increased torque on the atomistic body
and thus a speedup of the rotational motion. That means in practise that the rota-
tional dynamics continuously heats up if we allow the beads to move, unless a
corresponding back-coupling of the rigid body rotation is added to the dynamics
of the beads or, alternatively, a friction is added to the rotational dynamics to avoid
heating up. The latter damped dynamics is most easily implemented and results in
an alternative on-the-fly rotational optimization scheme (see also Section 2.3.1); this
solution is an example of a general technique known as simulated annealing. Here
instead, we will discuss the (back-) coupling between the (undamped) dynamics
subsystems, as it will play a role in the hybrid multiscale method (see Section 2.2).

Adding the correct back-coupling of the rotational dynamics to the dynamics of
the beads entails adding the atomistic interactions that govern the rotational motions
to the coarse-grained dynamics. However, we do not wish to disrupt the coarse-
grained molecular dynamics more than necessary, not in the least because adding
stiff atomistic interactions to the coarse-grained dynamics would require a smaller
time step for its evolution. We therefore distinguish between translational and rota-
tional motion of the beads with respect to each other, where we define translation as
the motion that alters the distance between two beads and rotation as the motion in
which the bead-bead distance remains constant.

For the translational motion of beads (imagine the coarse-grained stretch vibra-
tion between the two beads in Figure 2-4), instead of adding the back-coupling
of the atomistic interaction to the coarse-grained dynamics, we remove the cou-
pling of the coarse-grained translational motion to the rotational dynamics. This is
done by re-normalizing the atomistic configurations to the equilibrium bead-bead
distance, instead of using the actual bead-bead distance. That is, the instantaneous
bead-bead distance r in Eq. (2-27) for the rotational potential energy is replaced by
the equilibrium bond distance r0, as follows

E(R1, R2) = k/2 (|r0 + R2v − R1u| − d0)
2 (2-33)

and likewise in the force expression of Eq. (2-28). This way, the rotation dynamics
is computed as if the beads are always placed at their equilibrium distance, thus
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removing any effect of translational motion on the rotational dynamics and the need
to add back-coupling.

For the rotational motion of the beads, we cannot remove the coupling because it
would defeat the purpose of keeping the atomistic configuration while the (coarse-
grained) molecule rotates. That is, when the coarse-grained molecule rotates, we
want the atomistic rigid bodies to adapt their orientation simultaneously. The fluctu-
ations on the interactions due to the rotation of the molecule are expected to be
much smaller than that due to the coarse-grained stretching modes. The proper
back-coupling is added to the coarse-grained dynamics using

f1 × r = T1 = fi × u (2-34)

That is, a back-coupling force f1 on bead 1 is computed from the torque T1 on the
atomistic rigid body of this bead that is due to the atomistic interaction between one
of its atoms i and another atom j belonging to neighboring bead 2 (see Figure 2-4) .
In other words, the torque from the force fi on atom i that drives the rotation results
in addition to a force on the bead that is normal to the plane of the torque and the
bond, r, between the beads.

Having added the proper coupling between the rotational rigid atom dynamics
and the rotational motions of the coarse-grained molecules (and removed the cou-
pling with the translational bead motions) we obtain a stable energy conserving
dynamics scheme which tends to thermal equilibrium between the two subsystems.
In the following section, we will compare the two methods of on-the-fly reverse
mapping through rigid rotation, and show that both the optimization scheme (or
simulated annealing scheme) as well as the coupled dynamics scheme succeed
in recovering good approximations of the atomistic structure in a coarse-grained
simulation.

2.3.4. Case Study 2: Polyethylene Chain

In this case study, we compare the reverse mapping schemes, introduced in the pre-
vious section, for coarse-grained simulations of a (C75H152) polyethylene chain in
vacuum. The chain is represented by 25 coarse-grained beads, interacting through
harmonic bond and bending potentials and Lennard–Jones type van der Waals inter-
actions [53]. Each bead is mapped on 3 carbon atoms and its associated hydrogens
as shown in Figure 2-5. We performed four NVT coarse-grained dynamics simula-
tions of 500 ps in length at T = 303 K, each with a different variant of the reverse
mapping scheme to recover atomistic configurations on the fly. The first 100 ps are
regarded as equilibration; the remaining 400 ps of the trajectory was analyzed and
compared with that of a fully atomistic simulation of the system. The four reverse
mapping schemes are:

1. At each timestep the relaxed atomistic C3H6 structure is inserted into each bead
with a random orientation (i.e. random mapping).
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Figure 2-5. Illustrative snapshot from a coarse-grained simulation of a polyethylene chain (C75H152),
using the reverse mapping through rigid body rotation to recover atomistic configurations. Rotational
dynamics of the atomistic C3H6 functions is governed by a simplified energy function containing only a
harmonic C–C bond plus two repulsive H–H bonds (shown in white) between neighboring beads

2. The C3H6 structures are inserted at the beginning after which their orientations
are optimized during the coarse-grained simulation through the damped SO(3)
rotational dynamics (i.e. damped rigid rotation).

3. Same as 2. but instead of annealing, the rotational dynamics is used, coupled to
the coarse-grained dynamics (i.e. coupled rigid rotation).

4. atomistic flexible rotation

Here, the first scheme of random orientations is used for reference, the second
and third schemes are the two rigid body rotation schemes introduced in the previous
section, and the fourth scheme is another rotational scheme that acts on flexible
atomistic structures, rather than rigid bodies.

This last flexible scheme is added here because we will use it later in the hybrid
multiscale method (see Section 2.2). That is, until now we have talked about reverse
mapping to recover atomistic configurations from a coarse-grained trajectory, but
hereafter, these reverse mapping schemes will be combined with the hybrid MD
algorithm to pre-condition coarse-grained molecules before they enter the healing
region. In order to gradually switch off this rotational dynamics while the atomistic
interactions are being switched on, we require a variant of the rotational dynamics
that will work on flexible, atomistically propagated, bodies as is the case in the
healing region. This is the fourth scheme of which the details follow in Section 2.4.

For the purpose of illustration, we used a very simple energy function in all of
the three rotational dynamics schemes. That is, in principle we can use the full set
of atomistic interactions of bonds, bends, torsions and even non-bonded potentials
spanning neighboring beads, to govern the rotational dynamics, but it makes sense to
choose an economic reduced subset instead. For our polyethylene chain, an intuitive
good choice would include (at least) the carbon-carbon bond interaction spanning
each pair of neighboring beads supplemented with the dihedral angles centered at
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this C–C bond. Here, in fact, we replace the dihedral angles with two repulsive
harmonic interactions between two hydrogens per pair of neighboring beads. These
repulsive “bonds” between hydrogens are shown in Figure 2-5 as white sticks.

How do the reverse mapping schemes based on rotational dynamics of rigid or
flexible atomistic bodies perform with respect to the randomly oriented bodies and
with respect to a fully atomistic molecular dynamics simulation? To answer this
question, we compared atomistic distribution functions, two of which are shown
in Figure 2-6. On the left-hand side are the histograms of the pair-correlation of
each carbon in the chain with the carbon three positions away. This 1–4 correlation
is the shortest correlation that always spans two different beads. In the atomistic
simulation, the 1–4 correlation shows two peaks reflecting the staggered trans con-
figuration (larger peak) and the two, less favorable, staggered cis configurations
(smaller peak) of each quartet of carbons. In the coarse-grained simulations, the
repulsive hydrogen interactions (namely the white sticks in Figure 2-5) make the cis
configuration very improbable, so that the 1–4 correlations all show a single peak
positioned at the larger peak from the atomistic simulation. The broadening of the
peak from the reverse mapping schemes is due to the stretch vibration between the
beads, which is much softer than that between two carbons. The right-hand panel
in Figure 2-6 shows the histograms of dihedral angles between each sequence of
4 sequential carbon atoms centered at the bond between two beads (i.e. the first
two carbons belong to one bead and the second two carbons belong to the next
bead). Again, the repulsive terms in our simplified energy function used for the
rotational dynamics represses completely the secondary peaks seen in the his-
tograms from the atomistic simulation; however all three reverse mapping schemes
recover a good approximation to the average structure, which is the trans config-
uration. As a side remark, we note that the coupled dynamics scheme performs
slightly better, showing narrower distributions, than the damped dynamics scheme,
which is somewhat surprising as the damped dynamics would be expected to

0 1 2 3 4 5 6

d(Ci-Ci+3)/Å
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random mapping
atomistic simulation
damped rigid rotation

coupled rigid rotation
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Figure 2-6. Comparison of the reverse mapping schemes to recover the atomistic structure in coarse-
grained simulation of a polyethylene chain. Left panel: histograms of the distance between each carbon at
position i with that at position i + 3 in the chain. Right panel: histograms of dihedral angles of sequential
carbon atoms of which the first two carbons and the second two carbons belong to different beads,
respectively
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tend closer to the lowest energy conformation. Further study to optimize the
damping factor might improve this.

All three reverse mapping schemes, based on rotational dynamics of rigid and
flexible atomistic bodies, manage very well in maintaining good atomistic config-
urations on the fly during a coarse-grained simulation. The overhead of the rigid
body schemes is minimal due to the local nature of the energy function, relative
to the demanding evaluation of the non-bonded interactions in the coarse-grained
dynamics. The reverse mapping scheme was initially designed to allow for easy
back-and-forth switching between atomistic and coarse-grained simulations of a
system, reducing the requirement of re-equilibration in between. The reverse map-
ping is therefore also expected to be helpful in replica exchange simulations, in
which simultaneously several replicas of the system at different resolution are sim-
ulated that can exchange based on a Metropolis criterion [18–21]. In the context of
this chapter however, we will now return to the hybrid multiscale method and show
how the rotational reverse mapping algorithm, applied to the coarse-grained region,
is essential to simulate more complex structures.

2.4. COMBINING ROTATIONAL REVERSE MAPPING
WITH HYBRID MD

In this last methodological section, we merge the reverse mapping algorithm with
the adaptive multiscale method. The recent literature until now only shows applica-
tions of adaptive hybrid atomistic/coarse-grained methods that consist of simple
spherical beads in the low-resolution representation, for example, methane [7],
water [54, 55], and even simpler toy models [8, 56]. The reason for this is that
these spherical, or united, atoms require minor re-orientation when switching to the
atomistic resolution compared to larger molecules spanning more than one coarse
grained bead. In other words, all previous studies have explicitly avoided the reverse
mapping problem. Indeed, it is clear from figure 4 that the dashed C–C bond imposes
severe constraints on the relative orientation of the two beads representing a hexane
molecule. If the atomic fragments in these two beads are randomly oriented with
respect to one another when the hexane molecule enters the healing region, a very
large healing region will be needed to bring the atomic representation down from an
almost infinitely high potential energy value.

Applying the reverse mapping algorithm in the coarse-grained region of the mul-
tiscale setup allows, for the first time, hybrid MD simulations of realistic systems
with multi-bead molecules in the low-resolution representation. The rigid body rota-
tional dynamics (introduced in Section 2.3.2) maintains rigid atomistic structures
superimposed on the coarse-grained molecular dynamics. These rigid structures are
rotated about their centers of mass in accordance with an energy function which
includes a subset of the local atomistic interactions, such as bond and bending
potentials between atoms belong to sequential beads. This pre-conditioning of atom-
istic configurations in the coarse-grained region therefore requires a much smaller
healing region to equilibrate coarse-grained molecules that switch to the atomistic
resolution.
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Note, however, that applying this reverse mapping scheme only to the coarse-
grained region is not enough. Also at the coarse-grained end of the healing region,
the orientation of atomistic structures within the beads becomes randomized when
the molecules spend sufficient time at healing region positions of, say, around ninety
percent coarse-grained character. Only a very wide healing region would then be
able to restore the atomistic structure in a smooth manner, when such a molecule is
pushed toward the atomistic region and the highly unfavorable atomistic interactions
are switched on. This is the reason that a scheme in which atomistic structures are
locally equilibrated (constrained to keep the centers of mass at the coarse-grained
bead positions), for molecules that leave the coarse-grained region, does not suffice.
Instead, we will also apply the rotational reverse mapping scheme in the heal-
ing region, which is then gradually switched off, together with the coarse-grained
interactions, as the atomistic forcefield takes over.

In the healing region, in contrast to the coarse grained region, the atomistic bod-
ies are not rigid. Flexible bodies break the SO(3) rotational dynamics integrator
because the moment of inertia tensor changes due to non-rotational forces. To never-
theless allow for a rotational dynamics in conjunction with the atomistic dynamics,
we employ a modified approach that adds the same reduced energy function that
governs the rigid body rotational dynamics in the coarse-grained region. However,
instead of computing a torque on the body from the atomistic interactions, we let
the interaction act directly on the atoms with the additional constraint that the frag-
ment should not feel an effective force. This constraint is satisfied if we apply a
counter interaction on the fragment that cancels any translational acceleration and
only keeps the rotational acceleration. In the example of Figure 2-4, this would
mean that the atomistic bond interaction (dashed line) causes a force on the inter-
acting carbon atoms and simultaneously a constraint force of the same amplitude but
with opposite sign on the centers of mass. In the healing region, the coarse-grained
forces acting on the centers of mass are distributed, mass-weighted, over the atoms.
The coupling of this rotational dynamics with the normal atomistic dynamics in the
healing region is implemented on the same footing as the coupling between those
terms in the coarse-grained region (see Section 2.3.4). In Section , this atomistic
flexible rotation variant of the reverse mapping technique was shown to behave well,
compared to the rigid body rotational algorithms and to a fully atomistic molecular
dynamics simulation.

2.4.1. Case Study 3: Hybrid Simulation of a Polyethylene Chain

In the third case study, we examine the application of the final combined adaptive
multiscale molecular dynamics, i.e. including the reverse mapping algorithm, to the
folding of a polyethylene chain in vacuum. The C150H302 chain is twice as long
as in the previous case study and is represented by 50 beads at the coarse-grained
level [53]. The initially stretched configuration is taken from a equilibration run,
subject to an end-to-end distance constraint. As an illustration of the method, we
show 2 short, 150 ps, hybrid MD simulations of the folding process, once using
the reverse mapping algorithm and once without. Two atomistic regions are defined
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with a radius of RA = 6 Å centered on beads 15 and 30 in the coarse-grained
representation of the chains. The surrounding healing region skin is RHR = 5 Å. Two
representative snapshots of the hybrid MD simulation (using the reverse mapping
algorithm) are shown in Figure 2-7.

Comparing the total energies of the two simulations, with and without reverse
mapping, displays a dramatic difference, as shown in Figure 2-8, top panel. Using
the reverse mapping algorithm, which maintains a good pre-conditioned atomistic
structure in the coarse-grained region, the simulation shows very good energy con-
servation. Without the reverse mapping algorithm the total energy shows erratic
behavior (note the difference in scales in these plots), indicating problems and poor
accuracy in the simulation. Visual inspection of the trajectory shows that groups of
atoms move suspiciously fast in the healing region and eventually, after about 95 ps
of simulation, the system explodes. Because of the relatively large number of atoms
in the healing region, the increasing temperature (despite the thermostat) is an indi-
cation of problems (data not shown). Note that for example in a simulation of the
chain in a solvent, such local temperature changes may not be apparent in the total
system temperature.

The bottom panel in Figure 2-8 shows the decreasing radius of gyration
and the end-to-end distance of the polymer chain as it collapses from the ini-
tial stretched configuration to its random coil state. Note that, in this case, the
unstable hybrid simulation displays reasonable behavior for these observables,
not indicating any obvious problems, at least until the system explodes after
95 ps.

In conclusion, we have seen that incorporating the reverse mapping algorithm
into our hybrid MD method to pre-condition the atomistic structure results in a
robust adaptive multiscale molecular dynamics method. Close observation of the

Figure 2-7. Two snapshots from the adaptive multiscale simulation of a polyethylene chain (C150H302)
in vacuum, using two spherical atomistic regions (red spheres). The atomistic regions have a diameter of
6 Å and are centered on beads 15 and 30 of the 50 bead coarse-grained representation (blue spheres)
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Figure 2-8. Top panel: Using the reverse mapping algorithm within the hybrid MD simulation of a
polyethylene chain leads to good conservation of the total energy; instead without reverse mapping the
hybrid method is unstable. Middle panel: the continuously fluctuating numbers of beads in the low, high,
and hybrid resolution regions. Bottom panel: the folding of the chain shown by the radius of gyration
(black lines; left axis) and the end-to-end distance (red lines; right axis). Despite the spurious dynamics
of the simulation without reverse mapping, these observables show fortuitous similar physical behavior,
that is, until the system explodes after about 95 ps

conservation of the total energy is required to assess the accuracy and physical rel-
evance of the hybrid simulation. Without the reverse mapping algorithm, the hybrid
method only works for small structureless molecules that can be represented by a
single spherical bead in the coarse-grained region.

This case study of the collapse of a polymer chain illustrates the promising poten-
tial of the adaptive atomistic/coarse-grained method for the study of much more
complicated and demanding phenomena of self-assembly, for example protein-
protein interaction, multimeric protein assembly, and protein-DNA interaction. We
foresee that such investigations, which now require either enormous computer
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resources or rather simplified models, will take full advantage of the speedup from
this multiscale method. Compared to a million atom sized MD simulation, such a
speedup could easily reach two or three orders of magnitude when the demanding
atomistic description can be limited to interacting regions of several hundreds to
thousands of atoms.

2.5. SUMMARY

Adaptive multiscale molecular dynamics is a promising new simulation technique
aimed at bridging the gap between the large spatial and temporal scales exhibited
by the phenomena that we wish to predict and the fast and short-ranged molecular
fluctuations that limit current high-resolution methods. This technique allows one
to focus the available computational resources on those special regions of the sys-
tem where the key events are occurring by modeling the system in these regions at a
higher, more accurate, resolution than the rest of the system. Here, we used an atom-
istic description in the high-resolution regions, and coarse-grained models, in which
atoms are grouped into single interaction sites, to describe the other, low-resolution,
regions.

The level of description of molecules that move between the high and low resolu-
tion regions adapts on the fly. This transformation from a coarse-grained description
to an atomistic one, or vice versa, proceeds in a smooth manner through a thin inter-
mediate healing region that bridges between the high and low resolution regions.
In particular, the transformation from coarse-grained to atomistic, the so-called
reverse mapping, is otherwise cumbersome as it requires the introduction of inter-
nal degrees of freedom that should be equilibrated together with their surrounding
molecules. The continuous introduction (and removal) of degrees of freedom in
the healing region is therefore a non-equilibrium process that produces heat, which
can be removed with a thermostat. An important feature of the current multiscale
algorithm is that it recovers, nevertheless, the total energy as a conserved quantity.
Energy conservation provides a crucial handle to assess the accuracy of the integra-
tion of the equations of motion (i.e. the quality of the simulation) and is for example
necessary to be able to choose an appropriate size for the healing region as well as
for the time step.

We also discussed a special reverse mapping technique that allows one to obtain
the atomistic conformations from a coarse-grained molecular dynamics simula-
tion at low computational overhead. The algorithm consists of a dynamics on the
Lie group SO(3) of rotations for every coarse-grained site. Combining this tech-
nique with the adaptive multiscale approach to pre-condition molecules in the
low-resolution region, before they enter the healing region, helps to limit the size
of the healing region.
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TRANSITION PATH SAMPLING STUDIES
OF SOLID-SOLID TRANSFORMATIONS
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Abstract: Many interesting phenomena in nature, as diverse as first order phase transformations,
biomolecular isomerizations, or transport processes in solids, are characterized by widely
disparate timescales. While the waiting time for a spontaneous incidence of such a process
can exceed seconds or even hours, the underlying relevant molecular motions occur on
the femtosecond timescale. This fact poses a serious problem to molecular dynamics com-
puter simulations aimed at revealing the atomistic mechanisms of such phenomena. Here,
we give a review of transition path sampling, a set of computational methods designed to
overcome this timescale problem. As an application, we show how transition path sam-
pling can be used to identify the atomistic mechanisms of structural transformations in
nanocrystals under pressure

Keywords: Rare events, Transition path sampling, Nanoparticles

3.1. RARE EVENTS IN COMPUTER SIMULATIONS

In the past few decades, molecular dynamics simulation has grown into a very pow-
erful tool that today is used routinely to study the dynamics of condensed matter
systems consisting of up to a few million particles with atomistic resolution. Many
processes occurring in nature and technology such as the folding of a protein or the
transport of a dopant through a semiconductor, however, are still beyond the reach
of this methodology due to widely disparate time scales that are present in the prob-
lem. Consider, for instance, the nucleation of a crystal from the undercooled liquid.
For moderate undercooling, this process typically proceeds through the formation
of a critical nucleus that then grows, eventually transforming the whole sample into
the crystalline state. Since this process involves the creation of an interface between
the crystallite and the metastable liquid, which is associated with a free energetic
barrier, the formation of the critical nucleus is rare on the time scale of basic
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molecular motions. Indeed, it has been known for a long time that water, carefully
cooled below the freezing point, can remain in this supercooled state for hours or
even days. Thus, the time scale for nucleation exceeds the picosecond time scale
for the formation and cleavage of hydrogen bonds by many orders of magnitude.
Similar rare but important events, related to high energy barriers or entropic bottle-
necks in phase space, can also dominate the dynamics of folding proteins, chemical
reactions or transport on surfaces.

Naturally, such a wide separation of time scales is a problem for molecular
dynamics simulation. In this method, the equations of motion of the system are
solved numerically in small time steps. The size of the time step must be selected
such that even the fastest motions in the system are reproduced faithfully. In a
molecular system, fast bond and angular vibrations require a time step of about
1 femtosecond. With such a time step, current computer technology permits to fol-
low the time evolution of the system for 106 − 109 time steps, corresponding to
total simulation times from nanoseconds to microseconds. Of course, the accessi-
ble simulation times depend on the size of the system and on the particular way
of calculating the forces acting on the individual atoms. If forces are determined
ab initio by solving of the electronic structure problem, typical simulation times do
not exceed tens of picoseconds even for moderate system sizes of 100–200 atoms.
For our example, the formation of a crystal from the supercooled liquid, this limi-
tation in the accessible time scales means that in a molecular dynamics simulation
the crystallization event simply cannot be observed.

For the computer simulator this situation is frustrating, particularly because typi-
cally rare events are not slow. Rather, if they occur, they occur rapidly. For instance,
the formation of a critical crystalline nucleus proceeds quickly, while the time spent
waiting for this event may be very long. (In fact, microscopic time reversibility
requires that the formation of a critical nucleus happens as quickly as its decay.)
Similarly, an activated chemical reaction can proceed quickly once it is initiated,
but the waiting time between subsequent reactions may be very long. To circumvent
this problem caused by widely disparate time scales, several computer simula-
tion algorithms have been devised in recent years. If the reaction mechanism is
known in terms of a reaction coordinate that quantifies the reaction progress, for
instance the size of the crystalline nucleus forming in the supercooled liquid, the
rare event can be studied with umbrella sampling [1] or the blue moon sampling
technique [2]. In these methods, an appropriate bias or constraint forces the sys-
tem to visit the configurations associated with rare barrier crossing events. The
detailed mechanism and rate constants of the transition can then be studied using
the Bennett-Chandler approach [3, 4], in which dynamical trajectories are initiated
from these rare configurations, expanding on the original idea of transition state
theory [5, 6].

In complex molecular systems, however, a priori knowledge of the reaction
mechanism is often not available and these methods are not directly applicable.
In such cases, methods that modify the dynamics such as metadynamics [7], tem-
perature accelerated dynamics [8], or coarse molecular dynamics [9] can be used
to explore the possible mechanisms for transitions between stable states. If both the
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initial and the final state are known, the transition path sampling (TPS) method, an
importance sampling scheme acting in trajectory space, can be used to study the
transition. In contrast to other methods, in a transition path sampling simulation
truly dynamical trajectories are considered such that both the mechanism as well as
the kinetics of the transition can be determined. Alternative methods to study rare
transitions between known (meta)stable states are the nudged elastic band (NEB)
method [10] and the string method [11, 12]. For a recent review of these approaches
and a discussion of their relation to the transition path sampling methodology we
refer the reader to [13]. In the present article, we will concentrate on the transition
path sampling method and its application.

A typical example to which transition path sampling can be fruitfully applied
are phase transformation occurring in semiconductor nanocrystals under pressure.
At ambient pressure, cadmium selenide exists in the wurtzite structure, in which
every sadmium atom is coordinated by exactly four selenium atoms. Under pres-
sure, this material undergoes a transformation to the denser rocksalt structure, in
which every atom is coordinated by six atoms of the other species. If one goes
from the bulk system to small crystallites of nanoscopic dimensions, the pressure at
which the transition occurs increases considerably [14]. This finite size effect can
be understood qualitatively in terms of the higher surface free energy of the rocksalt
structure. In small crystals, this surface free energy plays an important role such that,
in comparison to the bulk, a larger pressure has to applied to the system to compen-
sate for the extra free energetic cost of the surface. It is conceivable that transitions
in the bulk and in the nano-crystal differ not only by the pressure at which they
occur, but also by the specific mechanism that transforms one phase into the other.
The mechanism preferred in the bulk may be blocked in the nano-crystal, because it
leads to morphologies with particularly unfavorable surface free energetics. While
experiments have yielded detailed information on the thermodynamics and kinetics
of this transition in CdSe nanocrystals, their temporal and spatial resolution is not
sufficient to follow the atomic motions during the transition and reveal the mecha-
nism. In principle, molecular dynamics simulations can provide this information. It
turns out, however, that in order to observe the transition in a straightforward molec-
ular dynamics simulation within the accessible simulation time, the pressure has to
exceed the pressure applied in the experiments by far. At more realistic pressures,
the typical waiting times are simply too long for a transformation to be observed
in such a simulation. This time scale problem can be solved using transition path
sampling [15–17]. In this method, one concentrates on those segments of the time
evolution in which the transition event actually happens. An analysis of the trajec-
tories harvested with transition path sampling then yields both the mechanism and
the rate of the transition. In the following, we will first outline the main concepts of
transition path sampling and then explain how this computational technique can be
used to study phase transformations occurring in nanocrystals under pressure.

The remainder of this article is organized as follows. In Section 3.2 we briefly
review the main ideas and algorithms of transition path sampling including methods
for the analysis of transition pathways as well as for the calculation of reaction
rate constants. A specific variant of the transition path sampling algorithm designed
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for the simulation of pressure induced structural phase transitions in nanocrystals
is then discussed in Section 3.3. The application of this algorithm to the Wurtzite-
to-Rocksalt transition of CdSe nanocrystals is the subject of Section 3.4. A few
concluding remarks are offered in Section 3.5.

3.2. TRANSITION PATH SAMPLING

Transition path sampling is a computational methodology developed to study rare
transitions between long-lived metastable states [18, 19]. These stable states, let us
call them A and B, can be different phases of a condensed material in the case of
phase transitions or different chemical species in the case of a chemical reaction.
Transitions between stable states A and B are rare (otherwise we could study them
with standard molecular dynamics simulation) and may involve crossings of pos-
sibly rough and unspecified free energy barriers. While transition path sampling
does not require an prior knowledge of the transition mechanism, the stable states
A and B between which the transition occurs must be known in advance. The cen-
tral idea of transition path sampling now is to consider only short trajectories, long
enough for the barrier crossing event to complete, but much shorter than the typical
waiting time before transitions occur. These short trajectories have different proba-
bilities to be observed: trajectories fluctuating in the stable states, for instance, are
more probable than reactive trajectories that cross the barrier. The statistical distri-
bution of various trajectories is taken into account in the definition of the transition
path ensemble, which assigns the appropriate probability weight to each individ-
ual trajectory. Since in transition path sampling one is interested only in transition
pathways, i.e., trajectories that connect the stable states, the transition path ensemble
excludes trajectories that do not start in A and end in B. The transition path ensemble
is then sampled with a Monte Carlo procedure that generates trajectories according
to their statistical weight. If the sampling is ergodic, all important pathways will
be found and can then be analyzed to yield information on the mechanism but also
on the kinetics. In the following sections we will outline the basic principles and
algorithms of transition path sampling. For further information on various aspects
of transition path sampling we refer the reader to [20–26].

3.2.1. The Transition Path Ensemble

The conceptual starting point of transition path sampling is the definition of the
transition path ensemble, a statistical description of all pathways connecting stable
states A and B as illustrated in Figure 3-1. Each of these trajectories has the same
temporal length t and consists of an ordered sequence of L = t/�t microscopic
states separated by a small time step �t,

x(t) ≡ {x0, x�t, x2�t, . . . , xt}. (3-1)

Such a sequence of states may, for instance, result from a molecular dynamics or
Brownian dynamics simulation carried out with a time step �t. Each microscopic
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Figure 3-1. The transition path ensemble includes all trajectories of a given length that connect the
stables states A and B

state xτ , or time slice, along a trajectory is a complete copy of the system and,
depending on the dynamics considered, includes only the positions or the positions
and momenta of all particles. Subsequent time slices on a trajectory are connected by
the dynamics of the system. If we denote the short time transition probability from
state xτ at time τ to state xτ+�t a time step later by p(xτ → xτ+�t), the probability
density to observe a given trajectory is given by

P[x(t)] = ρ(x0)
t/�t−1∏

i=0

p(xi�t → x(i+1)�t). (3-2)

Here, ρ(x0) is the distribution of the initial conditions from which the trajectories
start. Equation (3-2) is valid provided the dynamics of the system is Markovian,
i.e., the future time evolution of the system depends only on its current state and
not on its past. Most of the kinds of dynamics considered in molecular simulations,
including Newtonian dynamics, Langevin dynamics and Monte Carlo dynamics,
obey this condition.

The probability density of Eq. (3-2) describes the likelihood of observing a trajec-
tory starting end ending at arbitrary microscopic states. In transition path sampling,
however, one is specifically interested only in pathways that are reactive, i.e., that
start in A and end in B. This condition on the pathways is included into the statistical
description of pathways by multiplying the unrestricted probability density P[x(t)]
with the characteristic functions of regions A and B acting on the initial and final
time slice of the path, respectively:

PAB[x(t)] ≡ hA(x0)P[x(t)]hB(xt)/ZAB(t). (3-3)

The characteristic functions hA(x) and hB(x) are defined such that they are unity
if their argument is in the respective region and they vanish otherwise. Thus, hA(x)
is given by

hA (x) =
{

1 if x ∈ A,

0 if x /∈ A,
(3-4)
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and hB(x) is defined analogously. In Eq. (3-3), PAB[x(t)] is normalized by the factor

ZAB(t) ≡
∫

Dx(t) hA(x0)P[x(t)]hB(xt) (3-5)

where the notation

∫
Dx(t) ≡

∫
· · ·

∫
dx0dx�tdx2�t · · · dxt, (3-6)

familiar from path integrals, indicates an integration over all time slice of the path.
The probability density PAB[x(t)], we call it the transition path ensemble (TPE), is a
statistical description of all pathways of length t that connect the stable states A and
B. All pathways that are not reactive are assigned a vanishing weight and thus are
not members of the transition path ensemble.

The specific functional form of PAB[x(t)] depends on the distribution of initial
conditions, the underlying dynamics and on the definition of the initial and final
regions. Depending on the particular situation one considers, the distribution of
initial conditions may be the microcanonical or the canonical one. Other distri-
butions are possible as well, including non-equilibrium distributions [27, 28]. The
short-time transition probabilities p(xτ→xτ+�t), which enter the espression for the
transition path ensemble in Eq. (3-3), depend on the kind of dynamics chosen to
model the time evolution of the system. While for a deterministic time evolution
such as Newtonian dynamics the transition probabilities are delta functions leading
to a highly singular transition path ensemble [29], the transition probabilities are
smooth functions for stochastic dynamics, such as the one produced by the Langevin
equation [18]. Finally, care must be exercised in the definition of the stable states A
and B. These regions, usually defined in configuration space, should be large enough
to include all equilibrium fluctuations of the system in the stable states, but should
not overlap with their mutual basins of attraction [19].

While the formal definition of the transition path ensemble poses no difficulty,
its practical value hinges on ones ability to generate trajectories according to their
weight in this ensemble. An efficient way to accomplish exactly that is discussed in
the next section.

3.2.2. Monte Carlo in Trajectory Space

In a transition path sampling simulation the transition path ensemble is sampled
following the basic idea of a Monte Carlo simulation. The respective procedure is
carried out in two basic steps. First, a new trajectory, x(n)(t), is generated from an
old one, x(o)(t), for instance using the shooting algorithm described below. Then,
the newly generated trajectory is accepted or rejected according to the relative sta-
tistical weights of the new and old trajectories. If the new trajectory is accepted, the
old trajectory is replaced by the new one. Otherwise, the old one is kept. Iterating
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these two basic steps generates a biased random walk in trajectory space, in which
trajectories are visited according to their weight in the transition path ensemble.

To ensure that the transition path ensemble is sampled correctly, one requires that
detailed balance is obeyed,

PAB[x(o)(t)]π [x(o)(t) → x(n)(t)] =
PAB[x(n)(t)]π [x(n)(t) → x(o)(t)].

(3-7)

Here, π [x(o)(t) → x(n)(t)] is the probability to move from the old path x(o)(t)
to the new path x(n)(t) in one Monte Carlo step. This conditions requires that the
flow in trajectory space from x(o)(t) to x(n)(t) is exactly compensated by a flow of
equal magnitude in the backward direction. If the transition probability π satisfies
the detailed balance condition of Eq. (3-7), the Monte Carlo algorithm conserves the
transition path distribution PAB[x(t)] and, if ergodic, results in correct sampling of
reactive trajectories. For the two-step Monte Carlo procedure described above, the
transition probability π [x(o)(t) → x(n)(t)] is given by the product of the probability
Pgen[x(o)(t) → x(n)(t)] to generate the new path from the old one and the probability
Pacc[x(o)(t) → x(n)(t)] to accept the newly generated path,

π [x(o)(t) → x(n)(t)] =
Pgen[x(o)(t) → x(n)(t)] × Pacc[x(o)(t) → x(n)(t)].

(3-8)

Inserting this particular form of the transition probability into the detailed balance
condition (3-7) on obtains a condition for the acceptance probability, which can be
satisfied using the celebrated Metropolis rule [30], eventually leading to

Pacc[x(o)(t) →x(n)(t)] = hA[x(n)
0 ]hB[x(n)

t ]

× min

{
1,

P[x(n)(t)]Pgen[x(n)(t) → x(o)(t)]

P[x(o)(t)]Pgen[x(o)(t) → x(n)(t)]

}
.

(3-9)

According to this equation, which provides a general prescription for accepting
or rejecting new pathways, a pathway that does not start in A and end in B is imme-
diately rejected. Pathways that are reactive, on the other hand, are accepted with a
probability that depends both on the relative weight of the old and the new path in
the transition path ensemble as well as on the ratio of the forward and backward
generation probabilities.

The specific form of the acceptance probability resulting from Eq. (3-9) depends
on the particular way new pathways are generated from old ones. The particular
algorithm chosen to do that also controls how rapidly path space is sampled and
thus determines the efficiency of the transition path sampling simulation. One path
generation method that has proven particularly simple, practical, and efficient is
the so-called shooting algorithm [29], depicted schematically in Figure 3-2. In this
approach, one first randomly selects a time slice x(o)(t′), the shooting point, from the
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Figure 3-2. In a shooting move, a new trajectory (blue) is generated from an old one (red) by first
randomly choosing a time slice of the old path, and then “shooting off” new trajectory segments forward
and backward in time, starting from this shooting point. If the underlying dynamics is deterministic, the
shooting point must be modified before the shooting takes place

old path. Then, this shooting point is modified, for instance by adding a random per-
turbation to the momenta. Starting from the modified shooting point, one integrates
the equations of motion of the system forward to time t and backward to time 0
obtaining a complete new trajectory x(n)(t). While for stochastic dynamics the mod-
ification step may be omitted, it is strictly necessary for deterministic dynamics. In
the latter case, the new trajectory differs from the old one only if the shooting point
is modified first. In both cases, the acceptance probability for the shooting move is
given by

Pacc[x(o)(t) → x(n)(t)] = hA[x(n)
0 ]hB[x(n)

t ] min

[
1,
ρ(x(n)

t′ )

ρ(x(o)
t′ )

]
. (3-10)

Thus, non-reactive trajectories are rejected and reactive ones are accepted with a
probability that depends only on the equilibrium distribution at the shooting point
before and after the modification. The acceptance probability is particularly simple,
if the dynamics conserves the energy and the distributions of initial conditions is the
microcanonical one:

Pacc[x(o)(t) → x(n)(t)] = hA[x(n)
0 ]hB[x(n)

t ]. (3-11)

In this case, non-reactive trajectories are rejected and all reactive ones accepted.
For deterministic dynamics, the modification of the shooting point offers the pos-

sibility to tune the acceptance probability and, hence, to optimize the efficiency of
the simulation. For very small perturbations of the shooting point, the new trajectory
retraces the old trajectory to a large degree. Consequently, the new trajectory has a
high probability to be reactive and to be accepted. In this regime, most trajectories
are accepted, but since subsequent trajectories are very similar, sampling progress
is slow. In contrast, very large perturbations of the shooting point lead to new tra-
jectories that markedly differ from the old ones. Nevertheless, the sampling can be
inefficient, if most of the new trajectories are non-reactive and are therefore rejected.
Optimum sampling efficiency is obtained for shooting point perturbations with a
magnitude somewhere between these two extreme cases. This optimum regime is
characterized by an average acceptance probability of 20–60% [31].
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3.2.3. Analyzing Trajectories

As a result of a transition path sampling simulation, one obtains a collection of
reactive pathways that are typical representatives of the transition path ensemble.
Extracting information on the transition mechanism from these pathways is, how-
ever, often non-trivial. In this section we will review several computational tools
that can be used to for this purpose.

A recurrent problem in molecular simulation is to identify those degrees of free-
dom that capture the essential physics of the process under study and to separate
them from the unessential ones that merely act as random noise. For the freezing
transition, for instance, it is often unclear whether the size of the crystalline nucleus
is sufficient to describe the progress of the transition or if its shape also plays an
important role. While for processes occurring in low-dimensional systems with a
handful of degrees of freedom, such as a chemical reaction in the gas phase, locating
the saddle points on the potential energy surface often yields valuable mechanis-
tic information, the situation is much more involved in high-dimensional systems.
Consider, for instance, a chemical reaction in solution. In this case, solvent degrees
of freedom may play an important role that is not easily determined from a saddle
point analysis. One difficulty is that the number of saddle points grows exponen-
tially with the number of degrees of freedom such that a complete enumeration of
the saddle points becomes impractical beyond a certain system size. Perhaps more
importantly, the transition of interest is typically not associated with single saddle
points that the system must cross on its way from the initial to the final state. In our
crystallization example the critical nucleus does not necessarily coincide with any
saddle point in the potential energy surface.

By watching the atomic motions during the transitions with a molecular view-
ing program on a computer, one may gain some information about the process of
interest. While it is often useful and stimulationg to do so, important details of
the mechanism, which can be best captured in form of a reaction coordinate, may
remain hidden to the eye. A reaction coordinate q(r) is a function of the config-
uration r of the system, which quantifies the progress of the reaction. In the case
chemical reactions, for instance, bond angles or bond lengths may serve as a reac-
tion coordinate; for a folding protein, the number of native contacts may provide
a measure for the folding progress. A good reaction coordinate should tell us how
far the reaction has proceeded and what is likely to happen next. The concept of
the quality of a reaction coordinate can be made more precise by considering the so
called committor [32, 33], introduced by Onsager as splitting probability [34] and
known as pfold in the context of protein folding [35]. The committor pB(r), which
can be defined in configuration space or in phase space [12], is the probability that a
trajectory starting from r reaches B rather than A first. As indicated in Figure 3-3, the
committor can be calculated for a particular configuration r by initiating a number of
short trajectories from that configuration and determining the fraction of trajectories
that end up in B rather than A. A committor value close to 1 indicates that trajecto-
ries started from r are very likely to relax into B. While they do not necessarily lie
in B itself, such configurations are strongly committed to B and can be viewed to be
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Figure 3-3. To estimate the committor pB for a particular configuration r (red point), one starts n tra-
jectories from r with random initial momenta and determines the number nB of trajectories that reach B
rather then A. The committor is then given by the fraction pB = nB/n.

part of the basin of attraction of region B. Committor values close to 0, on the other
hand, characterize configurations that will most likely relax into region A.

Configurations with pB(r) = pA(r) = 1/2 play a special role because they can
be identified as transition states, from which both stable states are accessible with
equal probability [36–40]. This statistical concept of a transition state, which gener-
alizes the conventional definition of a transition state as saddle point on the potential
energy surface, is applicable also to the complex high-dimensional systems of inter-
est here. By determining all configurations with pB = 1/2 on transition pathways
one obtains the so-called transition state ensemble (TSE). Comparison of configu-
rations belonging to the transition states ensemble with those from the stable states
can yield important information on the transition mechanism.

As asserted above, a good reaction coordinate should provide a measure for the
progress of a particular reaction. In this sense, the committor is the perfect reac-
tion coordinate as it exactly specifies how far the reaction has proceeded and what
is likely to happen next [41]. Unfortunately, the committor is very unspecific and
does not automatically lead to insight into the mechanism in terms of physical vari-
ables. Furthermore, the committor is not easy to evaluate numerically such that it is
impractical to use the committor, for instance, as reaction coordinate in a transition
state theory calculation. However, the committor can be used as a criterion for dis-
tinguishing between good and poor reaction coordinates. If q(r) is a good reaction
coordinate, its value determines the progress of the reaction and the committor is
completely determined by q(r):

pB(r) = pB[q(r)]. (3-12)

For a poor reaction coordinate, on the other hand, the value of the reaction
coordinate does not predict the committor and the above relation does not hold.

The fact that a good reaction coordinate determines the committor can be used
to test a proposed reaction coordinate q(r). One may, for instance, expect that for
the freezing transition of a particular material the size of the crystalline nucleus
is a good reaction coordinate. To examine the quality of this coordinate, one first
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computes the free energy F as a function of q. If q(r) has any relation to the rare
event of interest, F(q) is expected to be bistable with a barrier at q = q∗ separat-
ing the free energy minima corresponding to the stable states A and B. Since the
value of the reaction coordinate completely specifies the committor, all configura-
tions with the same reaction coordinate should also have the same committor. So if
one generates configurations for a fixed value of q(r), for instance with a constrained
molecular dynamics simulation, and computes the committor value for each of this
configurations, the resulting distribution of committor values, P(pB), should be delta
peaked at pB(q). In particular, configurations with reaction coordinate q(r) = q∗
corresponding to the barrier top should all have the committor pB(q∗) and hence
the corresponding committor distribution has a sharp peak at pB(q∗). For a good
reaction coordinate, the barrier top coincides with the transition state ensemble and
the peak is located at pB = 1/2. In contrast, a poor reaction coordinate does not
determine the value of the committor and hence does not lead to sharply peaked
committor distributions. Rather, the committor distribution calculated for configu-
rations constrained to the barrier top typically is bimodal with peaks at 0 and 1.
Thus, any committor distribution without a single sharp peak is an indication of an
inadequate reaction coordinate. An analysis based on committor distributions has
been used to reveal the reaction coordinate of ionic dissociation [32], biomolecular
isomerization [33], and the freezing transition [42].

3.2.4. Calculating Rate Constants

Reaction rate constants, describing the kinetics of processes involving rare events,
are often measured empirically and thus provide an important way to establish close
contact between molecular simulation and experiment. Since pathways harvested in
a transition path sampling simulation are truly dynamical trajectories, they can be
used to compute such reaction rate constants. The transition path ensemble, how-
ever, is restricted only to short trajectory segments during which the transition of
interest occurs such that reaction rates cannot be directly extracted from these path-
ways. While the relative probabilities of different reactive trajectories are correctly
described by the transition path ensemble, the information on the probability of
observing a reactive event at all (as opposed to no event) is not contained in this path
ensemble. Therefore, the fundamental problem in calculating reaction rate constants
with transition path sampling consists in estimating the relative weight of the reac-
tive trajectories with respect to all possible trajectories. Several approaches to do
that have been suggested in the past and we will briefly survey them in this section.
A more detailed review of these methods is provided in [13].

The link between the microscopic dynamics of the system and its phenomenolog-
ical description in terms of reaction rate constants is provided by the time correlation
function

C(t) ≡ 〈hA(x0)hB(xt)〉
〈hA〉 . (3-13)
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Here, the angular brackets 〈· · · 〉 denote an equilibrium average. This time cor-
relation function equals the conditional probability to observe the system in region
B at time t provided it was in A at time 0. In the case of two-state kinetics, C(t)
approaches its asymptotic value exponentially,

C(t) = 〈hB〉(1 − exp ( − t/τrxn)). (3-14)

where the relaxation time τrxn is related to the forward and backward reaction rate
constants kAB and kBA by

τ−1
rxn = kAB + kBA. (3-15)

The exponential behavior of Eq. (14) cannot be valid for very short times. If
regions A and B are not adjacent and there is a gap between them, the system will
need a minimum time τmol to cross this gap. Only for times larger than τmol can
exponential behavior set in as expected from the solution of the phenomenological
rate equations. If there is a separation of time scales, i.e., if there is a time regime
such that τmol < t � τrxn, the exponential growth can be approximated by a linear
behavior such that

C(t) ≈ kABt. (3-16)

Equivalently, the time derivative k(t) = dC(t)/dt reaches a plateau for times
τmol < t � τrxn [4]. Thus, knowledge of the time correlation function C(t) is
sufficient for a calculation of the forward reaction rate constant kAB.

One transition path sampling approach for the computation of reaction rate con-
stants consists in determining the time correlation function C(t) using free energy
calculation techniques [31, 25]. In this method, one rewrites C(t) as

C(t) =
∫ Dx(t)P[x(t)]hA(x0)hB(xt)∫ Dx(t)P[x(t)]hA(x0)

, (3-17)

and observes that C(t) can be viewed as a ratio of two partition functions. In
Eq. (3-17), the numerator is the partition function of all pathways starting in A at
time 0 and ending in B at time t. The denominator, on the other hand, is the par-
tition function of all pathways starting in A without and restriction on where they
end. Hence, the ratio of these partition function is related to the “reversible work”
WAB(t) required to transform the ensemble of trajectories with free endpoints into
that with endpoints in B, C(t) = exp [−WAB(t)]. The reversible work WAB(t), a free
energy in trajectory space, can be calculated with standard free energy methods such
as umbrella sampling [31], thermodynamic integration [43], or even Jarzynski fast
switching [44]. In these calculations, one starts with a final region that encompasses
the entire configuration space and then successively shrinks it to the desired size.
Since the calculation of the reaction rate constant requires the calculation of the time
derivative of C(t), in principle several of these path free energy calculations have to
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be carried out for different path lengths t. This costly operation can be avoided, by
calculating C(t) in two steps. First, the time correlation function is calculated with
a free energy procedure for one particular time t′. In the second step, the path free
energy required to change the path length from t′ to t is calculated. This can be
done for all values of t up to a maximum time tmax in one single regular transition
path sampling simulation [31]. Combining the results of these two calculations one
obtains the correlation function C(t) from 0 to tmax and the reaction rate constant
can then be extracted from it.

An alternative transition path sampling algorithm for the calculation of reac-
tion rate constants was proposed by Bolhuis and collaborators and named transition
interface sampling (TIS) [45, 46]. In this method, pathways of variable length are
used which leads to a reduced numerical effort with respect to the method described
above. Transition interface sampling, however, is based on an additional assump-
tion about correlated transitions between the stable states. The method rests on the
concept of the “overall states” A and B. Overall state A consists of points in A plus
all points that originate from A in the sense that a trajectory going through such
points reaches A before B if followed backwards in time. (This definition is valid
only for deterministic trajectories.) Overall state B is defined analogously. The two
overall states A and B cover the entire phase space with a possibly very complicated
boundary separating them. If one now considers the time correlation function

C(t) ≡ 〈hA(x0)hB(xt)〉
〈hA〉 (3-18)

and evaluates the corresponding time derivative in the transition state theory
approximation (recrossings are excluded [20]), one obtains the expression

kAB = 〈φAB〉
〈hA〉 (3-19)

for the rate constant. Here, 〈φAB〉 is the effective positive flux into region B, i. e., the
average flux into B due to trajectories coming directly from A. Thus, for a trajectory
connecting A with B only the first entry of the trajectory into B contributes to the
effective positive flux. Since the above expression of the rate constant was obtained
from a TST-approximation for the overall states A and B, the underlying approxi-
mation is that there are no correlated transitions from A to B and back, a condition
that is often but not always satisfied. For stables states A and B defined in config-
uration space as is customary, chemical reactions occurring in the energy diffusion
regime, for instance, may violate this assumption.

In principle, the effective positive flux 〈φAB〉 could be calculated from a long
molecular dynamics trajectory by counting the number of first entries into B occur-
ring per time unit. Of course, rare events make this direct approach impractical. To
calculate the effective positive flux, Bolhuis and collaborator have therefore devel-
oped a technique based on a sequence of non-intersecting interfaces that span the
region between A and B [45, 46]. The spacing between these interfaces is selected
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such that a trajectory crossing interface i coming from A has a non-vanishing prob-
ability of also crossing the interface i + 1. The effective positive flux can then be
expressed as the product of the average positive flux through the surface of A with
the product of all these crossing probabilities. The effective positive flux is thus
given by the average flux out of A multiplied with the probability of these exit tra-
jectories to eventually reach B. This probability can be calculated from transition
path sampling simulations carried out separately for each interface. The ensemble
sampled in these simulations consists of trajectories with varying length starting in
A, reaching interface i, and then going back to A or on to cross interface i + 1.
To date, transition interface sampling has been used to calculate reaction rate con-
stants for the freezing transition in simple liquids [42] and several biomolecular
isomerizations [47, 48].

For very long and diffusive barrier crossing processes the efficiency of transition
interface sampling simulations can be considerably increased by exploiting the loss
of correlations along individual pathways. This idea is used in the partial path tran-
sition interface sampling (PPTIS) method [49]. Another method similar in spirit to
the transition interface sampling algorithm is the so-called forward flux sampling
method (FFS), which can be applied also to non-equilibrium systems in which the
stationary phase space distribution is unknown [50–52].

3.3. A TPS ALGORITHM FOR NANOCRYSTALS
IN A PRESSURE BATH

In the previous sections we have given a brief outline of the main concepts and algo-
rithms of transition path sampling. In this and the following sections we will explain
how to apply these techniques for the simulation of pressure induced structural
phase transitions in semiconductor nanocrystals.

3.3.1. Ideal Gas Pressure Bath

A central part of a computer simulation of a nanoparticle under pressure is the pres-
sure bath. In experimental studies, ethylcyclohexane [53–55] and ethyl-pyridine
[14] have been used as a pressure medium and solvent for CdSe nanocrystals.
These substances guarantee pressurization of the crystals under quasi-hydrostatic
conditions up to pressures of 10 GPa [14]. In a computer simulation of a single
nanocrystal under pressure, the number of particles in the pressure bath exceeds the
number of crystal atoms by far. Apart from being able to apply hydrostatic pressure,
a simulated pressure medium therefore also should be efficient in terms of computer
time.

In the first computational study of a pressure-induced structural transformation
of a nanocrystal, Martoňák, Molteni and Parrinello used a liquid of soft spheres to
transmit hydrostatic pressure on a small silicon cluster [56–59]. In their scheme, the
pressure is controlled by tuning the parameter of the interaction of particles in the
pressure medium. This is possible because the equation of state of the soft sphere
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system is known from computer simulation [60]. In this method, fluctuations of
the volume of the crystal, in particular the large volume change accompanying the
structural transformation, affect the pressure. For precise control over the pressure,
the volume of the nanocrystal therefore must be known.

In a different approach, Morgan and Madden studied structural transformations
of ionic nanocrystals using particles of the Lennard-Jones type as a pressure bath
[61–64]. The system was coupled to the Andersen baro- and thermostat [65, 66],
which modifies the dynamics of the system to achieve conditions of constant pres-
sure an temperature. A similar approach was taken by Vashishta and coworkers in
their study of GaAs nanocrystals [67, 68] and CdSe nanorods [69].

Finally, methods have been proposed that do not make use of an explicit pressure
medium, but use a barostat that changes the equations of motion of crystal atoms
by coupling to the volume of the crystal. Although computationally cheap, these
methods do not directly model the experimental situation and results can depend
strongly on the specific definition of the cluster volume [70].

In the following, we concentrate on the ideal gas barostat, a method developed
in our group [15, 16]. In this scheme, a nanocrystal is surrounded by a cloud of
non-interacting, hence ideal, particles, that transmit the pressure on the crystal via
a simple, purely repulsive interaction potential. No fixed system volume is used,
nor is the number of gas particles a constant. Instead, the shape and size of the
ideal gas atmosphere is dynamically adjusted to adapt to shape and volume changes
of the crystal. To achieve the correct statistics of an ideal gas at the desired pres-
sure and temperature, the proper flow of gas particles through the boundary of the
atmosphere is modeled stochastically. In effect, the method allows the simulation
of an arbitrarily shaped, microscopic subvolume of a macroscopic ideal gas (see
Figure 3-4 for an illustration of the method).

3.3.1.1. Algorithm

For an implementation of the ideal gas barostat [15, 16], the simulation box is
divided in cubic cells of side length lcell ≥ rcut. Here, rcut is the cutoff distance
of the interaction between gas particles and crystal atoms,

u(r) =
{
ε

[
(r/σ)−12 − (rcut/σ)

−12]
if r < rcut ,

0 if r ≥ rcut .
(3-20)

The parameters ε and σ should be chosen large enough to prevent gas particles
from penetrating the crystal; a convenient value for the cutoff distance is rcut = 2σ.
At any given time, the volume occupied by ideal gas particles consists of those cells
that hold possible interaction partners of crystal atoms. (If a given cell is occupied
by a crystal atom, the cell itself and all 26 neighbor cells are considered as a part of
the atmosphere.)

If a gas particle leaves the so-defined atmosphere, it is removed from the simu-
lation. The resulting outward flow of gas particles is balanced by new gas particles



76 M. Grünwald and C. Dellago

Figure 3-4. Cross section of a CdSe nanocrystal (cyan and yellow) immersed in the pressure bath of
ideal gas particles (gray). The gas occupies only a thin layer, or atmosphere, around the nanocrystal.
Built from rectangular cells (blue grid), this atmosphere adapts to the shape of the crystal and thus
always provides the amount of gas particles necessary to exert the desired pressure

that are introduced at the boundary of the atmosphere. To ensure correct statistics,
on average

n̄ = (2πmkBT)−1/2Pl2cell�t (3-21)

particles need to enter the atmosphere through any given side face of a cell during a
time interval of length �t. Here, P is the pressure, T is the temperature, and kB is the
Boltzmann constant. While two of the three velocity components of these particles
follow a Maxwell-Boltzmann distribution, the velocity component v⊥ perpendicular
to the side face through which the particles enter is distributed according to

p(v⊥) = m

kBT
v⊥ exp

(
− mv2⊥

2kBT

)
. (3-22)

When the crystal changes its shape or position in the simulation box, parts of the
atmosphere cease to be nearest neighbors of crystal-filled cells. As these parts, or
cells, are no longer needed to apply pressure on the crystal, they are removed from
the simulation. On the other hand it is necessary to add new gas-filled cells to the
atmosphere when crystal atoms enter cells not occupied before. On average,

N̄ = Pl3cell/kBT (3-23)
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gas particles should be put into newly added cells, with positions equally distributed
over the cell volume.

The following molecular dynamics scheme propagates the crystal and gas par-
ticles for one time step of length �t. The integration of the equations of motion is
carried out with the Velocity Verlet algorithm [71].

MD algorithm

1. Propagate the positions of crystal atoms for one time step (first part of
the Verlet integrator), using forces calculated in the last time step.

2. Check if the gas atmosphere needs to be updated by removing or adding
gas-filled cells.

3. Remove cells (and gas particles therein) from the atmosphere, if they are
no longer needed.

4. Propagate the positions of all gas atoms for one time step (first part of the
Verlet integrator), using forces calculated in the last time step. Remove
particles that leave the atmosphere.

5. Insert new gas particles on the boundary of the atmosphere. The number
of particles placed on a given side face of a cell is Poisson-distributed
with average n̄. Positions of added particles are uniformly distributed.
Velocity components are distributed according to p(v⊥) for the direction
perpendicular to the side face, and follow a Maxwell-Boltzmann distri-
bution for the in-plane directions. Propagate the newly added particles
for a time interval uniformly distributed between zero and �t. Remove
particles that leave the atmosphere in this step.

6. If necessary, add new cells to the atmosphere and fill them with a
Poisson-distributed number of gas particles with average N̄. Positions
are uniformly distributed and velocities are drawn from a Maxwell-
Boltzmann distribution.

7. Compute the forces.
8. Using the newly computed forces, propagate the velocities of all par-

ticles, gas and crystal, for one time step (second part of the Verlet
integrator).

It can be shown analytically that this algorithm satisfies detailed balance and
therefore conserves the equilibrium distribution of a system at constant pressure
and temperature [16].

3.3.2. Simple Shooting Moves

The ideal gas barostat discussed in the last section can be easily incorporated into
the framework of a TPS simulation [16]. As discussed in Section 3.2.2, the accep-
tance criterion for shooting moves takes a particularly simple form if the underlying
dynamics of the system satisfy detailed balance. This is the case for the ideal gas
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barostat. Furthermore, there is no need to actively modify the phase space vector of
the system at the shooting point, because the stochastic element of the barostat –
new gas particles are introduced to the simulation in a random fashion – will
lead to divergent trajectories typically within a few thousand time steps. Also, as
the dynamics of the system is not purely deterministic, one-way shooting moves,
where only one part of the trajectory is resampled, may be used to increase the
acceptance of newly generated trajectories. The following shooting algorithm there-
fore correctly samples the transition path ensemble of a nanoparticle in a pressure
bath.

Shooting move

1. Choose a shooting point along the given trajectory.
2. Choose a direction of time in which to propagate the system from the

shooting point.
3. From the chosen shooting point, integrate the equations of motions,

either forward or backward in time, until a complete new trajectory is
obtained.

4. Accept the trajectory, if it still starts in stable state A and ends in state
B; reject otherwise.

To enhance the efficiency of shooting moves, shifting moves should be applied
in the customary way [19].

3.4. THE WURTZITE TO ROCKSALT TRANSFORMATION IN
CDSE NANOCRYSTALS

In this section, we discuss the application of TPS to the case of a structural trans-
formation in CdSe nanocrystals. The bulk semiconductor CdSe transforms from the
four-coordinated, hexagonal wurtzite structure to the six-coordinated, cubic rocksalt
structure at pressures around 2.5 GPa [72]. The analogous transformation in CdSe
nanocrystals in the size range of a few nanometers has become the paradigmatic
example for size effects in phase transitions. In a series of experiments, Alivisatos
and coworkers were able to clarify much of the kinetics and thermodynamics of
these transitions. The thermodynamic transition pressure increases with decreasing
crystal size, in agreement with the notion of different surface free-energies of the
two crystal structures [73, 14]. The kinetic barriers to the transition, characterized
by activation energies and volumes, also show strong dependence on crystal size and
pressure, indicating that transformations proceed through single nucleation events
and subsequent growth [74, 53, 55, 75].

Although it is possible to exclude certain transition routes from experimen-
tal findings [54], the time and space resolution of experiments is insufficient for
an understanding of the transformation mechanism on the atomistic scale. Only
through detailed knowledge of atomistic transition pathways, however, will it
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be possible to meet promising technological challenges like the stabilization of
metastable structures through control of crystal shape and surface configuration. In
the following, we discuss the use of molecular dynamics computer simulation, and
in particular transition path sampling, in identifying the transformation mechanisms
of CdSe nanocrystals.

3.4.1. Straightforward MD Simulations

A typical molecular dynamics simulation of a nanocrystal under pressure proceeds
in the following way, which is similar to the experimental procedure. A single crys-
tal is constructed from a bulk lattice and thermalized at ambient conditions in the
pressure bath. In small steps, pressure is increased and the crystal is allowed to
relax at every pressure level typically for a few picoseconds. A structural trans-
formation of the crystal can be conveniently identified by visual inspection, or by
monitoring quantities like the potential energy or coordination number of crys-
tal atoms. Using the ideal gas barostat and the approach outlined above, we have
studied the wurtzite to rocksalt transformation in CdSe nanocrystals consisting of
100–5000 atoms [76]. The crystals were built according to electron microscopy
images of experimentally used crystals [77, 78] and had two different shapes,
which markedly influenced the transformation behavior. While spherical crystals
with disordered, strongly reconstructed surfaces transformed directly from wurtzite
to rocksalt, faceted crystals with well-defined, stable surfaces transformed in two
steps: At intermediate pressures, a compression of the crystal along the hexagonal
c-axis produces the five-coordinated h-MgO structure. This metastable intermediate
is unstable in bulk CdSe [79–81] and stabilized in faceted crystals by a favorable
surface free energy [76, 69, 82] (see Figure 3-5).

Figure 3-5. A faceted Cd528Se528 nanocrystal in the wurtzite, h-MgO, and rocksalt structures. The
crystals are shown both from the side and the top, looking down the hexagonal c-axis. Note that the
intermediate h-MgO structure is obtained from the wurtzite configuration by a simple flattening of the
puckered (001) layers, which leaves the hexagonal structure unchanged otherwise



80 M. Grünwald and C. Dellago

The transformation from wurtzite to rocksalt in spherical crystals and from
h-MgO to rocksalt in faceted follow similar transition routes. Two main mecha-
nisms could be identified: While in most cases the transformation proceeds through
the sliding of parallel (100) crystal planes, a few crystals transformed through a con-
secutive flattening, or compression, of (100) layers in the [100] direction. The latter
mechanism is similar to a transition pathway previously proposed by Alivisatos and
coworkers [14].

Straightforward MD simulations like the one discussed here take place on
timescales many orders of magnitude smaller than the duration of typical exper-
iments. As a result, pressures of up to 10 GPa have to be used to induce the
transformation (depending on crystal size and shape), while transformation pres-
sures of about 5 GPa are reported from experiments [53]. At elevated pressures, the
kinetic barrier of the transition essentially vanishes and the transformation becomes
observable on the picosecond timescale of the simulation. Under these extreme
conditions, transformations proceed in violent ways: simultaneous nucleation from
different sites on the crystal and the formation of multiple grains are frequently
observed [61, 68, 76] – a direct comparison with experiments becomes increasingly
difficult.

Figure 3-6. Snapshots along three trajectories from a TPS simulation of a Cd528Se528 nanocrystal at
3 GPa. The crystal is viewed along its hexagonal c-axis; the pressure bath is not shown. In each tra-
jectory, time passes from left to right. The crystal starts in the h-MgO structure and, at the end of the
trajectory, has transformed to the rocksalt structure. (a) In the first (artificially created) trajectory, the
crystal is transformed via a collective motion of all crystal atoms and is compressed in one of three
equivalent [100] directions, indicated by black arrows. (b) After 107 iterations of the algorithm, the
mechanism has changed. Starting in a fashion similar to the initial trajectory, the final steps of the trans-
formation occur through sliding of (100) planes, as indicated by red arrows. (c) In pathway 400, trace of
the initial mechanism disappears and the entire transformation, starting on the crystal surface, proceeds
via the sliding-planes mechanism. Reprinted with permission from J. Chem. Phys. 127, 154718 (2007).
Copyright 2007, American Institute of Physics
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3.4.2. TPS Reveals the Main Mechanism

In a TPS simulation, these problems are avoided and quantitative information about
the relative probability of different mechanisms can be obtained under conditions
close to experiments. To clarify the role of the two main mechanisms observed
with straightforward MD, we studied the transformation from h-MgO to rocksalt in
faceted CdSe nanocrystals with the TPS-algorithm discussed in Section 3.3 at pres-
sures between 2 and 3.5 GPa [16]. As a first trajectory, a necessary ingredient to start
a TPS simulation, we constructed a pathway that resembles the compression mech-
anism discussed by Alivisatos and coworkers [14] and illustrated in Figure 3-6a.
This specific mechanism, although observed in a few of our high-pressure MD sim-
ulations, is highly unfavored at lower pressures: within a thousand iterations of the
shooting algorithm, the compression mechanism is lost completely and the simu-
lation converges towards the sliding-planes mechanism illustrated in Figure 3-6c.
When continued, the simulation explores equivalent pathways, where the transfor-
mation starts from different sites on the crystal surface or proceeds along different
sets of parallel (100) planes. The characteristics of the sliding-planes mechanism,
however, remain the same. In particular, return to the initial compression mechanism
is never observed. This result strongly indicates that the sliding-planes mechanism
is the favored transformation pathway for faceted CdSe nanocrystals.

3.5. CONCLUDING REMARKS

Conducting a computer simulation under near-experimental conditions (for
instance, using transition path sampling) is a prerequisite but not a guarantee for
observing transformation pathways relevant in the real system. For nanocrystals
under pressure, the role of different surface passivation agents, defects in the crystal
lattice, or the dynamics and composition of the pressure bath is difficult to assess
experimentally and even harder to model realistically in a simulation. The relevance
of mechanisms observed in a computer simulation can therefore only be established
by comparison with experimental data. Transition path sampling offers various tech-
niques to do so. First, calculation of the rate constant allows direct contact with
experiments. Though computationally rather expensive, the calculation of rate con-
stants in the framework of transition path sampling (as discussed in Section 3.2.4)
does not need a priori knowledge of the reaction coordinate and thus is free of any
bias. One drawback that makes a direct comparison with experiments via the rate
constant difficult is the fact that rate constants often strongly depend on the qual-
ity of empirical potentials. With the development of ever more sophisticated pair
potentials and the increasing range of problems that can be tackled ab initio, we
nevertheless expect this approach to become fruitful for many systems of interest.
A second way to establish contact with empirical data is offered by committor anal-
ysis and the determination of the transition state ensemble (as discussed in Section
3.2.3). As the central part of a rare event, the transition state not only offers direct
insight into the relevant degrees of freedom governing the transformation, but can
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also be quantified in terms of activation energy and activation volume, quantities
that are readily accessible in experiments.

In summary, transition path sampling is a versatile and efficient set of com-
putational techniques for the study of rare events in complex systems. It has has
been successfully applied to a broad range of problems from material science to
molecular biology; it can be adapted to clarify the transformation details of a sim-
ple chemical reactions as well as solid-solid phase transitions, occurring in bulk
and nanoscale materials. As computers advance, the range and complexity of sys-
tems to which transition path sampling can be fruitfully applied increases and a
more realistic modelling of the experimental situation becomes possible in many
cases.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund (FWF) under Grant No.
P20942-N16 and within the Science College “Computational Materials Science”
under grant W004.

REFERENCES

1. G. M. Torrie and J. P. Valleau, J. Comp. Phys. 23, 187 (1977).
2. J. Kirkwood, J. Chem. Phys. 3, 300 (1935); E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral,

Chem. Phys. Lett. 156, 472 (1989).
3. C. H. Bennett, in Algorithms for Chemical Computations, ACS Symposium Series No. 46, edited

by R. Christofferson, American Chemical Society, Washington, D.C. (1977).
4. D. Chandler, J. Chem. Phys. 68, 2959 (1978).
5. H. Eyring, J. Chem. Phys. 3, 107 (1935).
6. E. Wigner, Trans. Faraday Soc. 34, 29 (1938).
7. A. Laio and M. Parrinello, Proc Natl. Acad. Sci. USA 99, 12562 (2002).
8. A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).
9. G. Hummer and I. G. Kevrekidis, J. Chem. Phys. 118, 10762 (2003).

10. H. Jonssón, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase
Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker, p. 385, World Scientific, Singapore
(1998).

11. W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002).
12. W. E, W. Ren, and E. Vanden-Eijnden, Chem. Phys. Lett. 413, 242 (2005).
13. C. Dellago and P. G. Bolhuis, Adv. Poly. Sci. 221, 167 (2008).
14. S. H. Tolbert and A. P. Alivisatos, J. Chem. Phys. 102(11), 4642 (1995)
15. M. Grünwald and C. Dellago, Mol. Phys. 104, 3709 (2006)
16. M. Grünwald P. L. Geissler, and C. Dellago, J. Chem. Phys. 127, 154718 (2007)
17. M. Grünwald and C. Dellago. Nano Letters 9, 2099 (2009).
18. C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys. 108(5), 1964 (1998).
19. C. Dellago, P. G. Bolhuis, and P.L. Geissler, Adv. Chem. Phys. 123, 1 (2002).
20. C. Dellago, P. G. Bolhuis, and P. L. Geissler, in Computer Simulations in Condensed Matter: from

Materials to Chemical Biology, edited by M. Ferrario, G. Ciccotti, and K. Binder, p. 349, Springer
Lecture Notes in Physics, New York (2006).

21. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Ann. Rev. Phys. Chem. 53 291 (2002).



Transition Path Sampling 83

22. C. Dellago, P. G. Bolhuis, and P. L. Geissler, Adv. Chem. Phys. 123 1 (2002).
23. C. Dellago and D. Chandler, in Molecular Simulation for the Next Decade, ed. by P. Nielaba,

M. Mareschal, and G. Ciccotti, p. 321, Springer, Berlin (2002).
24. C. Dellago, in Handbook of Materials Modeling, edited by S. Yip, p. 1585, Springer, Berlin (2005).
25. C. Dellago, in Free Energy Calculations: Theory and Applications in Chemistry and Biology, edited

by A. Pohorille and C. Chipot, Springer, Berlin (2007).
26. C. Dellago and P. G. Bolhuis, Top. Curr. Chem. 268, 291, edited by M. Reiher, Springer (2007).
27. G. E. Crooks and D. Chandler, Phys. Rev. E 64, 026109 (2001).
28. P. L. Geissler and D. Chandler, J. Chem. Phys. 113, 9759 (2000).
29. P. G. Bolhuis, C. Dellago, and D. Chandler, Faraday Discuss. 110, 421 (1998).
30. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21,

1087 (1953).
31. C. Dellago, P. G. Bolhuis, and D. Chandler, J. Chem. Phys. 110, 6617 (1999).
32. P. L. Geissler, C. Dellago, and D. Chandler, J. Phys. Chem. B 103, 3706 (1999).
33. P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. Natl. Acad. Sci. USA 97, 5877 (2000).
34. L. Onsager, Phys. Rev. 54, 554 (1938).
35. R. Du, V. Pande, A. Y. Grosberg, T. Tanaka, and E. I. Shakhnovich, J. Chem. Phys. 108, 334 (1998).
36. D. Ryter, Physica A 142, 103 (1987).
37. A. Berezhovski and A. Szabo, J. Chem. Phys. 125, 104902 (2006).
38. M. M. Klosek, B. J. Matkowsky, and Z. Schuss, Ber. Bunsenges. Phys. Chem. 95, 331 (1991).
39. E. Pollak, A. M. Berezhkovskii, and Z. Schuss, J. Chem. Phys. 100, 334 (1994).
40. P. Talkner, Chem. Phys. 180, 199 (1994).
41. G. Hummer, J. Chem. Phys. 120, 516 (2004).
42. D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005).
43. C. Dellago and P. G. Bolhuis, Mol. Sim. 30, 795 (2004).
44. P. L. Geissler and C. Dellago, J. Phys. Chem. B 108, 6667 (2004).
45. T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. 118, 7762 (2003).
46. T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005).
47. P. G. Bolhuis, P Natl Acad Sci USA 100, 12129 (2003).
48. P. G. Bolhuis, Biophys J 88, 50 (2005).
49. D. Moroni, P. G. Bolhuis, and T. S. van Erp, J. Chem. Phys. 120, 4055 (2004).
50. R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005).
51. R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 024102 (2006).
52. R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 194111 (2006).
53. K. Jacobs, D. Zaziski, E. C. Scher, A. B. Herhold, and A. P. Alivisatos, Science 293(5536), 1803

(2001)
54. J. N. Wickham, A. B. Herhold, and A. P. Alivisatos, Phys. Rev. Lett. 84(5), 923 (2000)
55. K. Jacobs, J. Wickham, and A. P. Alivisatos, J. Phys. Chem. B 106(15), 3759 (2002)
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CHAPTER 4

NONEQUILIBRIUM MOLECULAR DYNAMICS
AND MULTISCALE MODELING OF HEAT
CONDUCTION IN SOLIDS

SIMON P.A. GILL
Department of Engineering, University of Leicester, Leicester, UK, e-mail: spg3@le.ac.uk

Abstract: Modeling methodologies for conducting concurrent multiscale simulations in solids at
finite temperature are reviewed. The application of such models to the simulation of
inhomogeneous thermal problems is of particular interest. Firstly, the basic methods for
temperature control of molecular dynamics (MD) simulations are presented. The deriva-
tion of fundamental thermophysical properties from the quantum model of phonons is
then outlined, and the relevance of classical MD simulation to heat transport phenomena
discussed. Progress in fully atomistic modeling of heat transport is reviewed in rela-
tion to nonequilibrium molecular dynamics (NEMD) simulation. Different approaches
to isothermal finite temperature multiscale modeling are presented. Equations of motion
for coarse-grained dynamics are derived and subject to comment. The further require-
ments of conservation of thermal energy and the approaches to the transport of heat in
non-isothermal multiscale simulations are discussed. Recent progress in this relatively
new area of modeling is reported and areas for further work identified

Keywords: Molecular dynamics, Nonequilibrium, Heat conduction, Thermal conductivity,
Thermostats, Multiscale, Atomistic-continuum simulation, Coarse-graining, Crystalline
solids

4.1. INTRODUCTION

Typically molecular dynamics (MD) simulations are conducted under equilibrium
(or near equilibrium) conditions of constant energy (E) or temperature (T), constant
atomic number (N) or chemical potential (μ), and constant volume (V) or pressure
(P). The most widely adopted statistical sampling ensembles [1] are the micro-
canonical ensemble (constant NVE), the canonical ensemble (constant NVT) and
the isobaric-isothermal ensemble (NPT) for solids. The grand canonical ensemble
(constant μVT) is most commonly applied to fluids, where the number of parti-
cles is allowed to fluctuate. There has been a large body of work dedicated to the
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design and implementation of algorithms to generate these ensembles, particularly
for thermostatic (constant T ) and bariometric (constant P) control. However, there
is increasing interest in conducting MD simulations which do not fall within the
classification of these classical ensembles. These broadly fall in to the category of
nonequilibrium molecular dynamics (NEMD). A simple example is the imposition
of a temperature gradient across a sample, for which different temperatures at the
boundaries are prescribed [2]. A more complex example is a system that has work
done to it during the simulation in the form of a mechanical deformation (such as
crack growth [3, 4], nanoindentation [5] or particle impact [6]) or direct thermal
excitation (such as laser annealing [7]). In these cases the temperature, pressure (or
a more complex stress state), volume and energy of the system vary spatially and
temporally during the simulation in a complex way. Ideally the boundary conditions
would be applied at a considerable distance from the region of interest to minimize
their effect on its dynamics. However, the size of an atomistic system that can be
considered is limited by finite computational resources due to their large numbers of
degrees of freedom. Therefore most simulations can “see” their boundaries during
the course of a simulation and consequently be affected by them. In conventional
MD simulations these boundary conditions are a compromise between reality and
practicality. In recent years a number of efforts have been undertaken to increase
the size of the system under consideration by representing the far field by a coarse-
grained (CG) region with a greatly reduced number of degrees of freedom. The
prescribed conditions on the remote boundaries of the continuum therefore have
less influence on the dynamics of the fully resolved (atomistic) region. A number of
successful efforts have been made in this regard for simulation at zero temperature
(for a review see [8]). The most notable of these multiscale methods for quasi-static
problems being the quasi-continuum method [9]. Figure 4-1a shows a cross-section
through a CG substrate subject to deformation under a nanoindenter (not shown).
The area beneath the indenter has full atomic resolution where the material response
is expected to be highly non-linear (i.e. plasticity due to nucleation of dislocations).
This is embedded in a consistent finite element (nonlinear) elastic mesh which mod-
els the response of the far-field. Wave propagation at zero temperature has been
modeled using coarse-grained molecular dynamics (CGMD) [10]. This is useful if
the dynamic response of a body is of interest. Figure 4-1b shows a CGMD model of
a nanoelectromechanical system (NEMS) silicon microresonator. Full atomic reso-
lution is retained in the narrow region of the resonator to capture finite size effects
due to wave scattering from interfaces.

Since these pioneering early works, there have been a few attempts to extend
this type of hybrid atomistic-continuum method to finite temperature. This is over-
all a more challenging problem for which a number of different approaches have
recently been proposed. These methods are divided into two categories. Isothermal
multiscale models are considered in Section 4.4. Multiscale models for inhomoge-
neous thermal problems are the subject of Section 4.5, where heat transport and
conservation of thermal energy are a requirement. For this purpose, current atom-
istic methods for modeling heat transport and determining coefficients of thermal
conductivity are reviewed in Section 4.3. The basics of MD simulation are briefly
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(a) (b)

Figure 4-1. Examples of two different zero temperature coarse-graining methods. (a) Quasi-continuum
model for simulation of nanoindentation of Au showing a cross section of a fine-scale atomistic region
embedded within a coarse-scale finite element mesh (Reprinted (Fig 6, pg 226102-3) with permis-
sion from [Knap J, Ortiz M, Phys Rev Lett, 90, 2003]. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRL/v90/p226102). (b) Schematic of a coarse-grained molecular dynamics
(CGMD) simulation of a NEMS silicon microresonator. The CG region comprises most of the volume,
but the MD region contains most of the simulated degrees of freedom (Reprinted (Fig 1, pg 144104-3)
with permission from [Rudd RE, Broughton JQ, Phys Rev B, 72, 2005]. Copyright by the American
Physical Society. http://link.aps.org/abstract/PRB/v72/p144104)

documented in Section 4.2 to introduce the nomenclature, along with definitions
of the relevant thermophysical properties. Such quantities are necessarily derived
from a fundamental quantum model of phonon heat transport to demonstrate the
relevance of classical MD to this field.

4.2. MOLECULAR DYNAMICS AND ITS APPLICABILITY
TO THE SIMULATION OF HEAT TRANSPORT

Firstly some of the fundamentals of MD simulation and temperature control are
reviewed. Then the quantum model of phonon-phonon heat transport in a crystalline
solid is introduced. This raises issues about the limitations of classical MD and the
valid range of application of such atomistic methods is discussed.

4.2.1. Introduction to Equilibrium MD

The basic principles of MD simulation are well-documented [1, 13, 14] and only
briefly summarized here. This is a classical method in which particles interact via
Newton’s second law

mi
d2xi

dt2
= −∂V

dxi
(4-1)
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where mi and xi are the mass and position vector of the ith particle and the total
potential energy V(xi) = ∑

i

∑
j>i

φ(rij) is the sum of all the interatomic potentials,

φ(rij), where rij =
∣∣∣xi − xj

∣∣∣ is the interatomic separation. This expression is for

simple pairwise atomic interactions which is reasonable for most solid metals and
fluids. For covalent solids, such as silicon or carbon, an additional three-body term is
necessary to include the bond angle dependence of the potential. More information
on material specific interatomic potentials can be found elsewhere [14, 15]. Note
that interatomic potentials are always an approximation. They are determined either
by fitting the function to reproduce known bulk properties of the material (such as
equilibrium lattice spacing, crystal structure, elastic modulus etc) or matching the
potential to the results of first-principles calculations. The reliability of such poten-
tials to model complex non-linear phenomena such as defect structures/energies and
heat transport coefficients cannot always be taken for granted.

One of the fundamental restrictions on the use of MD is the very small time
step. This is determined by the frequency of atomic vibrations in the solid and is
typically of the order of femtoseconds. Efficient numerical integration of (4-1) is
therefore very important. One of the simplest and most accurate methods is the
second-order Verlet algorithm [16], although higher order algorithms such as Gear
predictor-corrector [1] and Runge-Kutta [17] are sometimes used. Constant tem-
perature MD simulations are usually initiated at a given temperature by randomly
assigning the atoms velocities from the classical Maxwell-Boltzmann distribution
subject to zero net momentum. Equipartition theory states that the total energy of
a system is equally divided between kinetic and potential energy in the classical
regime. Thermal energy is associated with the vibrational (kinetic) energy of atoms
such that in a system of N atoms the absolute temperature, T, is defined by

d/2NkBT = 1/2

N∑

i=1

mi
∣∣ẋi − 〈

ẋi

〉∣∣2 (4-2)

where d is the dimension (1, 2 or 3), kB is Boltzmann’s constant, the dot denotes
differentiation with respect to time and the time-averaged velocity of particle i,〈
ẋi

〉
, is subtracted from the total velocity to obtain the vibrational component. It is

argued that temperature can only be resolved at a length scale comparable with the
mean free path [18] but it is common to define the kinetic temperature of an atom
from (4-2) as

Ti = mi
∣∣ẋi

∣∣2

kBd
(4-3)

where the net velocity of atoms in solids is typically negligible. (Note that this is
not the case in fluids where the determination of (4-2) can be problematic. For this
reason the configurational temperature [19, 20] is often used. This only requires
knowledge of the spatial distribution of atoms, not their velocities).
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4.2.2. Temperature Control

The system temperature is then regulated by an algorithmic thermostat. There are
a wide variety of different methods for controlling the temperature of MD simula-
tions. Ideally these should reproduce the canonical Maxwell-Boltzmann distribution
but this is not always the case. The first thermostat to produce the canonical ensem-
ble was the stochastic collision method of Andersen [21]. Some other methods, such
as velocity exchange [22], also generate the canonical ensemble. Velocity rescal-
ing algorithms [22] are not generally canonical, although this is not strictly always
the case [23]. The method of Gaussian constraint [24, 25] produces the iso-kinetic
ensemble which is not physically realized. Three of the most popular thermostatting
methods are summarised here.

(i) The Nosé-Hoover thermostat. This is a deterministic thermostat which main-
tains the average temperature of an atomic ensemble at a target value [26, 27]. This
is widely used for constant temperature dynamical simulations due to its symplectic,
volume conserving, time-reversible Hamiltonian structure which render it beneficial
numerical properties. The motion of a thermostatted particle is described by

miẍi = −∂V

∂xi
− ξmiẋi

Qξ̇ = T(t)

Tc
− 1

(4-4)

where Q is a (constant) thermal mass, ξ is a thermostatting variable which drives

the instantaneous mean temperature, T(t) = 1/N

N∑
i=1

Ti towards the prescribed target

temperature Tc. This is a global thermostat in that it enforces an ensemble of par-
ticles to maintain an average kinetic energy over time. The choice of the thermal
mass is important to ensure sufficient thermal coupling and avoid thermal oscilla-
tions [28]. A variant on this thermostat is the Nosé-Hoover chain [29] whereby the
thermostatting variable is thermostatted by another thermostatting variable and so
on. This is applicable for small and stiff systems as it improves ergodicity.

(ii) The Langevin thermostat. This is a stochastic thermostat which adds a random
force to the particle motion along with an appropriate damping term such that the
motion of a thermostatted particle is governed by [30]

miẍi = −∂V

dxi
− γmiẋi + Rf (4-5)

where γ is a damping coefficient, –1 ≤ R ≤1 is a uniformly distributed random vari-

able and fn =
√

6γmiTc
�t is the magnitude of each component (n = x, y or z) of the

stochastic force f for a time step �t. The Langevin thermostat is described as a local
thermostat as the target temperature can be specified for each atom.
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(iii) The Berendsen thermostat. This is another local thermostat, although unlike
the Langevin thermostat it is deterministic. In this case the velocities are rescaled
at each time step such that the rate of change of temperature is proportional to the
deviation in the temperature such that [31]

dT(t)

dt
= (Tc − T(t))

τ
(4-6)

where τ is a characteristic relaxation time. The resulting scaling factor for the veloc-

ities is

√
1 + �t

τ

(
Tc

T(t)
− 1

)
. Like most velocity rescaling algorithms, the Berendsen

thermostat does not rigorously generate the canonical ensemble. However, it is still
widely used due to its simplicity.

Other specialized thermostats include Recursive Multiple Thermostats [32] for
problems with inherently different timescales (particularly biomolecules), config-
urational temperature thermostats [33] (mainly advantageous for fluids), hybrid
deterministic/stochastic thermostats such as Hoover-Langevin [34] (with random
noise to improve ergodicity), thermostats based on the generalized Langevin
equation [35] (to avoid wave scattering at interfaces) and temperature regulated
thermostats [36] (for maintaining equilibrium with minimal intervention). However,
it should be noted that any thermostatting algorithm will corrupt the dynamics of
the system. Whether this is important depends on the nature of the problem under
consideration. For long time sampling of equilibrium thermodynamic quantities
such as the thermal expansion coefficient this is not problematic. The consequences
for nonequilibrium processes such as heat transport are an issue however. This will
be discussed further in the context of nonequilibrium MD simulation in Section
4.3.2. The remainder of this section considers the advantages and disadvantages of
using MD to model heat transport in crystal lattices.

4.2.3. Lattice Vibrations

Thermal energy in a solid is due to atomic vibrations. In classical mechanics heat
conduction is via the propagation and interaction of normal modes of atomic vibra-
tion. In most real crystals there are two mode types: the acoustic branch (lower
frequencies) and the optical branch (higher frequencies). In practice heat transport
is predominantly due to the acoustic modes and the optical modes are often ignored.
Each branch consists of longitudinal and transverse mode branches. The vibration
is in the direction of wave propagation for longitudinal waves and perpendicular
to it for transverse waves. For a d-dimensional system (d = 1, 2 or 3) there is
one longitudinal branch and (d–1) transverse branches. Hence in one-dimension
there are no transverse waves but in three-dimensions there are two transverse
branches. These differences introduce a strong dependence on the dimensionality
to the problem. Using mode coupling theory, Lepri et al. [37] showed that the ther-
mal conductivity in a system of typical size L scaled as L2/5 in one-dimension, ln(L)
in two-dimensions and was independent of L in three-dimensions. This size effect in
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lower dimensions is due to the absence of interaction between the transverse modes.
This has consequences for the simulation of systems in reduced dimensions, either
due to the constraints of the model or due to the constraints of the system, e.g carbon
nanotubes are low dimensional systems.

The relationship between the wave frequency and the mode number is called the
dispersion relation. This is often written as ω(K), where K is the wavevector. For a
one-dimensional solid, the wavevector is a scalar known as the wavenumber, related
to the wavelength λ by K = 2π /λ. For a chain of N atoms with lattice spacing a0 one
has K = nπ /L where n is the wave mode (an integer) and L = Na0 is the length of
the chain. One can see that the crystal size and lattice spacing place upper and lower
limits on the wave mode, 1 ≤ n ≤ N, and the related wavelength, 2a0 ≤ λ ≤ 2L. This
system size dependence is not only important in determining the thermal properties
of nanostructures but also in determining the accuracy of MD simulations (natu-
rally of constrained size). Wave scattering at interfaces (real or not) known as the
Kapitza effect (or phonon scattering) reduces the thermal conductivity due to the
local decorrelation of atomic vibrations.

4.2.4. The Quantum Model of Phonon Heat Transport

The true quantum nature of atomic vibrations is not captured by classical models
such as MD (see [38, 39] for recent reviews). It is useful to give a brief introduction
to the quantum model to appreciate the shortcomings of using classical methods.
Quantum theory [40] states that the energy of wave modes can only have certain
discrete values. These packets of vibrational energy are known as phonons. The
energy of the nth mode is given by

En = �ωn (4-7)

where � is Planck’s constant and ωn = ω(Kn) is the frequency of the nth mode (in
radians per second). Phonons are categorized in particle physics as belonging to the
family of “particles” known as bosons. These are “particles” that do not obey Pauli’s
exclusion principle (such that there is no constraint on their number at a particular
point in time or space). At thermal equilibrium, the probability of finding Nn mode-n
phonons in the canonical ensemble is given by the Boltzmann factor

P(Nn) = e−βNnEn

Zn
(4-8)

where β = 1/kBT and the normalizing factor (for an infinite crystal)

Zn =
∞∑

Nn=0

e−βNnEn = 1

1 − e−βEn
(4-9)
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ensures unit total probability and is known as the partition function for the nth mode.
The average number of mode-n phonons is therefore given by

〈Nn〉 =
∞∑

Nn=0

NnP(Nn) = 1

eβEn − 1
= f (En) (4-10)

which is known as the Bose-Einstein distribution [41]. The total internal energy of
a (one-dimensional) solid is therefore

U =
∑

n

Enf (En). (4-11)

For isotropic systems of infinite size the number of vibrational modes becomes
infinite. The above sum can therefore be expressed as an integral, which is most
conveniently written in terms of the (continuous) frequency as

∑

n

→
∫

g(ω)dω (4-12)

where g(ω) is known as the density of states. It is the number of states with a fre-
quency in the range ω and ω + dω, and is derived from the dispersion relation [40].
Thus (4-11) is often written in continuous form as

U =
∫

E(ω)f (ω,T)g(ω)dω (4-13)

where E(ω) = �ω etc. The (volumetric) specific heat per atom is the thermal energy
required to raise its temperature by 1 K such that

C = 1

N

∂U

∂T
= 1

N

∫
E(ω)

∂f

∂T
g(ω)dω. (4-14)

The thermal conductivity is given by

k = 1

Nd

∂

∂T

∫
E(ω)f (ω,T)g(ω)v(ω)�(ω)dω (4-15)

where the phonon transmission velocity (or group velocity)

v(ω) = dω

dK
(4-16)

is given by the dispersion relation, and �(ω) is the phonon mean free path. This is
the average distance a phonon travels before it interacts with another phonon (or an
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interface). Heat transport is via the (anharmonic) interaction of phonons, sometimes
referred to as Umklapp scattering or the U-process [40]. Note that if the velocity
and mean free path are assumed to be constant then, using (4-14), (4-15) can be
simplified to the familiar formula for (three-dimensional) thermal conductivity

k = 1/3Cv�. (4-17)

Transport coefficients, such as the thermal conductivity, arise from the summa-
tion of a number of complex interaction processes throughout the entire lattice. They
are not readily approximated analytically, but can be determined by simulation or
experiment. This is addressed in Section 4.3. However, simple approximations about
the nature of wave propagation in a solid can yield useful analytical predictions for
other thermomechanical properties, such as the heat capacity. Two simple models
are briefly reviewed here.

(i) The Debye model. Debye [41] made the simplifying assumption that the
dispersion relation is given by ω = cK where c is constant. Although this is not
completely true (even for an ideal harmonic crystal) it is often a reasonable approx-
imation for the lower frequency modes. We can see from (4-16) that v(ω) = c so c
is the speed of sound in the crystal. In three-dimensions the summation becomes

U = 3
∑

nx

∑

ny

∑

nz

En f (En) (4-18)

where n =
√

n2
x + n2

y + n2
z is the total magnitude of its three components and the

factor of 3 appears because of the existence of three phonon branches. The group
velocity of the longitudinal and two transverse branches is assumed to be the same.
Debye approximated this summation by an integral over an eighth of a sphere such
that

∑

nx

∑

ny

∑

nz

→ π

2

∫
n2dn =

∫
g(ω)dω (4-19)

The dispersion relation is ω = cnπ /L so the density of states is g(ω) = πn2

2
dn
dω =

V0ω2
2π2c3 , where V0 = L3 is the volume of the crystal. From (4-10) and (4-13) the
internal energy of the crystal per atom is

UDebye

N
= 9(kBT)

(
T

θD

)3
θD/T∫

0

x3

ex − 1
dx (4-20)

where θD =
√

6π2

�
�c
kB

is the Debye temperature, � = V0/N is the atomic volume and
x = �ω/kBT. Alternatively the Debye temperature is expressed in terms of the Debye
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frequency, ωD, where kBθD = �ωD. The Debye approximation for the specific heat
capacity can therefore be calculated from (4-14) and (4-20) such that

CDebye = 9kB

(
T

θD

)3
θD/T∫

0

x4ex

(ex − 1)2
dx (4-21)

(ii) The Einstein model. This considers the atoms to be non-interacting simple
quantum harmonic oscillators vibrating at a fundamental frequency, ω0. Due to this
decoupling, the energy levels of the oscillator

En = �ω0(n − 1/2) (4-22)

are similar to be energy of the Debye modes except for the introduction of an
additional non-zero reference energy 1/2�ω0, known as the zero-point energy. The
Einstein density of states is therefore g(ω) = δ(ω – ω0), where δ(ω) is the Delta
function. Hence (4-13) can be written as

UEinstein

N
= 1/2�ω0 + �ω0

eβ�ω0 − 1
(4-23)

for a one-dimensional oscillator. In three-dimensions this can be expressed as

UEinstein

N
=

3∑

k=1

�ωk

2
coth

(
β�ωk

2

)
(4-24)

where ωk are the three fundamental frequencies of the three-dimensional lattice. The
atomic heat capacity also has a simple analytical expression from (4-14)

CEinstein = kB

3∑

k=1

(
β�ωk

2

)2 1

sinh2 (
β�ωk

/
2
) (4-25)

Using the local harmonic approximation, the fundamental frequencies of a lattice
are given by the determinant of the dynamical matrix

∣∣∣∣miλ
2I − ∂2 V

∂x i∂x i

∣∣∣∣ = 0 (4-26)

where the ωk are the three eigenvalues λ of this 3 × 3 matrix for atom i and I is the
identity matrix. From (4-26) is it clear that the local eigenfrequencies can depend
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Figure 4-2. Debye (4-21) vs Einstein (4-25) prediction for the atomic heat capacity as a function of
temperature. The Debye model is accurate at low temperatures whereas the Einstein model is not. The
models are indistinguishable at high temperatures. The classical limit is shown as a dashed line. It is
generally accepted that classical MD is valid above the Debye temperature (T/θD > 1)

on the potential energy of the body, V({xi}), and hence change locally in the vicin-
ity of defects and globally if the body is elastically deformed. For an undeformed,
isotropic solid we can associate the fundamental frequencies with the highest sus-
tainable frequency in the lattice. This allows the predictions of the Debye and
Einstein models to be compared. Figure 4-2 shows the heat capacity as a function of
temperature. It is clear that both models agree at high temperature. However there is
a significant departure at low temperatures. Experimentally it has been shown that
the Debye model is valid in this regime but the Einstein model is not. However, as
we shall see in Section 4.4.1, the Einstein model is of benefit to multiscale simula-
tion as it is reasonably good at higher temperatures, analytically tractable and relates
the thermophysical state to the local dynamic properties of the matrix.

4.2.5. The Classical Limit

The previous subsection considered the quantum nature of lattice vibrations. This
is not accounted for in classical Newtonian MD. This subsection considers under
what conditions the two models are compatible. Compare the predictions of the
quantum models in Figure 4-2 with the expectations for a classical (non-quantized)
system. In a classical system energy is equally partitioned between the kinetic and
potential energy of the atoms (on average). In crystalline systems each atom has
3 translational degrees of freedom. Classical models of temperature state that the
kinetic energy of each degree of freedom is 1/2kBT . Hence the total kinetic energy
per an atom in three-dimensions is 3/2kBT and similarly for the potential energy. For
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N atoms, the total internal energy is therefore UMD = 3NkBT and hence the classical
heat capacity per atom is CMD = 1

N
dUMD

dT = 3kB. This is known as the Dulong-
Petit law. It is easy to see in Figure 4-2 that the quantum heat capacities, given
by (4-21) and (4-25), converge to this limit for high temperatures. At the Debye
temperature T = θD the quantum heat capacity is Cdebye = 0.95 CMD. For this
reason, it is commonly accepted that classical Newtonian dynamics are acceptable
for the modeling of heat conduction in insulators above the Debye temperature.
In this regime the Dulong-Petit law for heat capacity is very reasonable for most
materials. It is still valid for many materials at low temperatures (e.g. silicon) but
fails for metals, where the contribution to the heat capacity from electrons becomes
significant. Values for the Debye temperature for some common elements are shown
in Table 4-1. In total, 30 of the elements have Debye temperatures above room
temperature of which only three are not metals: carbon, silicon and germanium.
The high value for carbon means that the heat capacity is 25% of the classical value
at room temperature, i.e. Cdebye = 0.25 CMD. At high temperatures one can also see
that that the Bose-Einstein distribution (4-10) is equivalent to the classical Maxwell-
Boltzmann distribution such that

f (En) ≈ e−En/kBT for T > θD (4-27)

Table 4-1. Table of Debye temperatures for some common elements [40].
Their position in the list of elements (highest Debye temperature first) is
shown

Position Element Debye temperature, θD

1st Carbon 2230 K
2nd Beryllium 1440 K
3rd Silicon 645 K
4th Chromium 630 K
8th Iron 470 K
9th Nickel 450 K
13th Aluminium 428 K
20th Germanium 374 K
35th Silver 225 K

The validity of classical MD is summarized nicely in Figure 4-3. It is valid over
the range of most practical length scales. MD obeys Fourier’s law quite closely even
under high temperature gradients [42] but the conductivity varies with the extent of
the domain and changes locally in the vicinity of defects. The dispersion relation
(and hence the density of states and phonon velocities) is strongly modified by the
size of the crystal. In general all such features lower the thermal conductivity. This
property of MD is an advantage for the simulation of heat transport in nanostruc-
tures in that it includes size effects due to the inherent restrictions on the mean
free path of energy carriers and scattering at interfaces. One disadvantage is that
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it is difficult to remove these size effects if the modeler is interested in the bulk
properties. This is discussed further in Section 4.3.3. Another disadvantage is that
MD results are only valid in the classical regime (above the Debye temperature).
As shown in Figure 4-3, modeling methodologies such as perturbation theory (PT)
and the Boltzmann Transport Equation (BTE) can be adopted at these small scales if
required. See Sinha and Goodson [43] and Murthy et al. [39] for recent reviews on
sub-continuum heat transport. It has recently been proposed that low-temperature
quantum effects due to discrete phonons can be incorporated into classical MD sim-
ulations using appropriate quantum thermostats [44, 45]. Finally, MD is restricted
to the analysis of heat transport due to phonon-phonon interactions only. This is
the dominant transport process in insulators but not in metals. Metals are briefly
discussed in the next subsection. MD is typically employed to model heat transport

Figure 4-3. The appropriate thermal modeling methodology for insulators depends on the dimension of
the system and the temperature. At dimensions comparable to the phonon wavelength λ and tempera-
tures much smaller than the Debye temperature θD (bottom left), quantum mechanical nature is strongly
manifest. At larger dimensions approaching the phonon mean free path � and room temperatures, a
semi-classical approach is more pragmatic such as perturbation theory (PT) or the Boltzmann Transport
Equation (BTE). At temperatures above θD the classical physics of MD is applicable. The diffusion
length

√
αt is given for the sake of completeness where α is the thermal diffusivity t is the phonon relax-

ation time t (Reprinted from [Sinha S, Goodson KE (2006) Thermal conduction in sub-100nm transistors.
Microelectronics Journal 37:1148] with permission from Elsevier)
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in carbon (important for nanotubes, fullerenes, graphite etc) and silicon and germa-
nium (which are important materials in transistors and many nanostructures [46]).
Results for these materials are reviewed in Section 4.3.3.

4.2.6. Heat Transport in Metals

Table 4-2 shows a comparison between values for the thermal conductivity of differ-
ent elemental solids from experiment and as determined from MD simulation (see
Section 4.3.2 for details). The simulated values for the metallic elements are one
or two order of magnitude in difference from the experimental values, even though
the temperatures are within or close to the classical regime. The values for silicon
are within the margin of error, and the values for carbon are of the same magnitude
but the difference is not inconsiderable as the temperature is well below the Debye
value. The dramatic difference between these materials is because the majority of
heat transport in metals is due to electrons which are not accounted for in MD sim-
ulations, whereas electronic heat transfer is negligible for insulators. Electrons also
contribute to the heat capacity at low temperatures [40].

Scattering effects due to the dominant electron-phonon interactions in metals
have been included for modeling electrothermal transport in transistors [43, 46].
There are only a few MD studies of heat transport in metals (see [48, 49] and ref-
erences therein). These assume that electron-phonon interactions are the dominant
heat transport process and that phonon-phonon (ballistic) interactions can be ignored
if the electrical conductivity is high [48]. The conductance due to phonon-phonon
interactions is determined from an MD simulation. The dominant phonon-electron
contribution is then determined from estimation of the phonon-electron mean free
path [48] or Wiedemann-Franz law [49] where the thermal conductivity associ-
ated with conductance electrons is deduced from the electrical conductivity. The
Wiedemann-Franz law states that, for metals at not too low temperatures, the ratio

Table 4-2. Thermal conductivities for various elements (W/mK). Metals use embedded atom method
(EAM) potential and silicon and carbon use Stilinger-Weber (SW) potential. The estimated errors on
the simulated conductivities are due to extrapolating the finite size results of the simulation to an infinite
crystal. The allotrope employed for carbon is diamond

Element Experimental Simulated Temperature (K)

Silvera 420 1.2 300
Aluminiuma 242 3.6 300
Golda 309 0.4 300
Coppera 405 4.3 300
Nickela 86 6.5 300
Siliconb 120 119±40 500

50 65±16 1000
Carbonb 400 573±60 1000

aFrom reference [47].
bFrom reference [2].
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of thermal (k) to electrical (σ ) conductivity is proportional to the temperature such
that

k

σ
= π2

3

(
kB

e

)2

T = LT (4-28)

where e is the electron charge and the constant L = 2.45 × 10–8 W Ohm K–2 is
known as the Lorenz number.

4.3. NONEQUILIBRIUM MOLECULAR DYNAMICS

The previous section considered the practical requirements and limitations of con-
ducting constant temperature (equilibrium) MD simulations. The extension of these
principles to the investigation of non-isothermal nonequilibrium molecular dynam-
ics (NEMD) is the subject of this section. Away from equilibrium, the flow of heat
within a body needs to be conserved such that

ρcp
∂T

∂t
= −∇j (4-29)

where ρ is the material density (kg m–3), cp is the specific heat capacity (J kg–1 K–1)
and j is the heat flux (W m–2). Fourier proposed a simple constitutive relationship
between the heat flux and temperature gradient such that

jq = −
3∑

r=1

kqr
∂T

∂xr
(4-30)

where kqr is the three-dimensional thermal conductivity tensor (W m–1 K–1). For an
isotropic solid kqr = kδqr where k is the isotropic thermal conductivity and δqr is the
identity tensor. Equations (4-39) and (4-30) then give the classical heat conduction
equation

ρcp
∂T

∂t
= ∇(k∇T) (4-31)

where k(T) is often a function of temperature.
There are two widely used methods for the calculation of the (ballistic or

phonon) thermal conductivity (of insulators) from atomistic simulation in the clas-
sical regime. These methods are discussed in some detail by Schelling et al. [2] and
hence are only briefly repeated here.
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4.3.1. The Green-Kubo Method

Unlike fluids, the transport of heat in solids is derived from correlations in the
motion of atoms in a crystal lattice. The Green-Kubo relations use the fluctuation-
dissipation theorem to derive an exact mathematical expression for the thermal
conductivity which can be determined from isothermal equilibrium MD simula-
tions. The thermal conductivity is given by a time integral over the equilibrium flux
autocorrelation function such that

kqr = 1

V0kBT2

∞∫

0

〈 jq(t)jr0)〉dt (4-32)

where V0 is the volume of the system and the angular brackets indicate an ensemble
average (over the volume of the sample) [38]. Schelling et al. [2] give a discretized
version of this equation for atomistic calculation, and a method for calculating the
instantaneous heat flux between atoms from the interatomic potential. Webb et al.
[50] have gone into the derivation of the heat flux in some detail. Jolley and Gill
[42] used a simpler method based on the change in temperature of an atom before
and after the time step. This relies on the knowledge of the flux at a given point in
the system.

Nonlinear transport coefficients can be calculated from steady state NEMD using
a nonlinear version of the Green-Kubo relation called the transient-time correlation
function [51]. This is particularly advantageous for fluids where the exceptionally
large temperature gradients required for standard NEMD induce large convection
currents which make determination of the thermal conductivity problematic.

4.3.2. The Direct Method

In the direct method, a steady state temperature gradient is imposed on the atomistic
sample by thermostatting different regions at different temperatures. This is one of
the principal examples of NEMD simulations in the literature. The samples usually
have one long dimension and a smaller square cross-section. The temperature gradi-
ent is imposed along the long dimension. Periodic boundary conditions are used on
the sides. Two typical examples of the types of boundary conditions that can be used
at the ends are shown in Figure 4-4. In theory the periodic end conditions allow for
the existence of longer wavelength modes than the fixed end conditions. However,
in practice the thermostats corrupt the lattice dynamics, so the maximum mean free
path is typically the distance between the thermostatted regions. A variety of ther-
mostats are often used, such as those discussed in Section 4.2.2. Another variant is to
control the rate that heat enters the hot bath and leaves the cold bath regions [50, 52].
This has the same effect but the magnitude of the resulting temperature gradient can-
not be determined beforehand and some calibration of the heating rate is required.
A velocity rescaling thermostatting algorithm [52] was used in the example shown
in Figure 4-5 to avoid the thermostat adding any instantaneous momentum to the
system. All thermostats conserve momentum on average, however, and it has been
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Figure 4-4. Two different boundary conditions for imposing a steady state temperature gradient on a
NEMD simulation: (a) fixed boundary conditions (four atomic planes are fixed (black) and six are used
for the hot and cold bath atoms (dark grey and light grey) but only four are shown here). (b) periodic
boundary conditions (Reprinted from [Stevens RJ, Zhigilei LV, Norris PM (2007) Effects of temperature
and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium MD simulations.
Int J Heat Mass Transfer 50:3977] with permission from Elsevier)

demonstrated that rigorous momentum control at each time step is not necessary in
solids [22].

Upon reaching a steady state, the (time-averaged) variation in temperature across
the length of the sample can be determined. A typical example of such a tempera-
ture profile is shown for a silicon sample in Figure 4-5 where periodic boundary
conditions have been used (such as those shown in Figure 4-4b). The temperature
profile is highly nonlinear and not as expected. In the steady state the heat flux must
be constant (on average) at all points in the system. For a constant thermal con-
ductivity, Eq. (4-30) predicts that the expected temperature profile is linear between
the thermostats. Examination of Figure 4-5 shows that there are two linear regions
between the thermostats but there is a sudden change in temperature near the heat
sink and source regions themselves. Given the temperature gradient in the linear
region(s) the thermal conductivity can be determined from (4-30) as

k = j

(
∂T

∂x

)−1

. (4-33)

This requires a knowledge of the heat flux, j. This is always uniform across the
length of the sample in the steady state and can be calculated by several methods
(see Section 4.3.1).
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hot source heat sink

Linear region

Figure 4-5. Typical temperature profile for an atomic 4 × 4 × 288 silicon system. The heat source
is located at z = 39 nm, and the heat sink is located at z = 117 nm. Within 6 nm of the source and
sink, a strong nonlinear temperature profile is always observed. To compute k from (4-30) the tempera-
ture gradient is determined from the linear region, which are at least 6 nm away from the heat source
and sink (Reprinted (Fig 3, pg 144306-4 and Fig 6, pg 144306-5) with permission from [Schelling
PK, Phillpot SR, Keblinski P, Phys Rev B, 65,2002]. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRB/v65/p144306)

It is clear from Figure 4-5 that the temperature gradient observed in the linear
regions (where Fourier’s law (4-30) applies) is very different from the temperature
gradient that is applied. The nonlinearity in the temperature profile in the prox-
imity of the thermostatted regions is commonly attributed to phonon scattering at
the interface between the thermostatted and non-thermostatted regions. This scatter-
ing arises because the thermostatting algorithms necessarily corrupt the dynamics
of the thermostatted atoms. As seen in Section 4.3.1, the thermal conductivity is
proportional to the long-time flux autocorrelation function. The correlated motions
of atoms are sensitive to small disturbances, such as those used by thermostats
to regulate temperature. It is clear from (4-31) that if the motions of atoms in a
crystal lattice are completely uncorrelated then the thermal conductivity is zero.
Thermostats will always reduce the correlation in the motion of atoms and as such
this will always reduce the thermal conductivity in these regions. The heat flux
is constant in the steady state so (4-31) predicts that a decrease in the thermal
conductivity will be associated with an increase in the temperature gradient. This
is what is observed in Figure 4-5 in the proximity of the thermostatted regions.
This change in the thermal conductivity at an interface is known as the Kapitza
effect and is observed in all NEMD simulations. It is widely known that the mate-
rial properties near interfaces are different from those in the bulk, and hence the
Kapitza effect is important in nanostructures, where the large proportion of inter-
faces can dominate their response. However, in NEMD simulations such as that
in Figure 4-5, the interface is not real and the observed artificial Kapitza effect
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is unphysical and consequently undesirable. This lack of precision in the control
of the thermal boundary conditions for NEMD simulations is very important when
considering concurrent compatibility conditions with multiscale methodologies (see
Section 4.4). Unfortunately it is impossible to avoid completely as temperature
control can only be achieved through adjusting the motion of the thermostatted
atoms.

Jolley and Gill [42] found that the (artificial) Kapitza effect present in NEMD
simulations was significant for deterministic thermostats (such as Nosé-Hoover) but
overall the effect was much greater for stochastic thermostats (such as Langevin).
This is not surprising as stochastic thermostats rely on uncorrelated random noise to
supply the thermal bath which will destroy the correlated motion of the thermostat-
ted atoms. Jolley and Gill [42] also found that the Kaptiza effect was more dominant
in lower dimensions and that in three-dimensions the Kapitza effect increased as the
cross-section of the sample was reduced below roughly 8 × 8 (for the Lennard-
Jones potential). This is expected to be due to the restricted interaction between the
transverse phonon modes in these cases. Thermostatting methods based on memory-
kernels (see Section 4.4.3) which utilize information retained offer time and space
to minimize disruptions to the correlations in the motion of atoms over potential
benefits in minimizing the (artificial) Kapitza effect [35, 54]. However, constant
temperature results still show some corruption of the autocorrelation function adja-
cent to the thermalised region [35]. To the authors knowledge, these techniques have
not been applied to NEMD simulations so their advantages in this respect cannot
currently be quantified.

A simple pragmatic approach to the artificial Kapitza effect has been proposed by
Jolley and Gill [42]. This does not aim to avoid the Kapitza effect, but uses standard
thermostats to impose the precise temperature gradient that is desired upon a ther-
mostatted region of the system through a simple control loop. Typical time-averaged
temperature profiles for deterministic (Nosé-Hoover) and stochastic (Langevin)
thermostatic control are shown for an 8 × 8 × 100 Lennard-Jones solid in Figure
4-6. The aim is to maintain different prescribed temperatures at the boundaries of
an (unthermostatted) true dynamics region (TDR) in the centre of the sample. These
are defined as T0 = 50 K and TM = 40 K on the left and righthand ends respectively,
where M = 50 is the number of atomic planes in the TDR. The end conditions
are fixed (as in Figure 4-4a). The target temperatures of the thermostatted regions
(TR) at the left and righthand ends, TL and TR are not known. They are determined
during the simulation via a very simple feedback control algorithm

QTṪL = (T0 − 〈T0〉) QTṪR = (TM − 〈TM〉) (4-34)

where 〈T0〉 and 〈TM〉 are the atomistic temperatures at the TDR boundaries and
the constant QT determines the responsiveness of the thermostat. There is a buffer
region (BR) between the TRs and the TDR to allow for the nonlinear Kapitza effect.
The difference between the temperature profiles for the two thermostats is of inter-
est. Firstly, the temperature within the TR is not constant for both cases. This is not
surprising for the Nosé-Hoover thermostat as it is a global thermostat which drives
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Figure 4-6. Temperature profile across an 8 × 8 × 100 atom Lennard-Jones MD simulation. The tem-
peratures in the thermostatted regions (TR) at the ends are dynamically determined to achieve the target
temperatures (50 and 40 K) on the boundaries of the true dynamics region (TDR). The buffer region (BR)
allows for non-linear Kapitza effects

the system towards an average temperature. The average temperature is achieved but
there is no requirement for the temperature distribution to be uniform. The Langevin
thermostat was designed as a local equilibrium thermostat. The target temperature is
imposed using (4-5) but (unlike Nosé-Hoover) there is no feedback from the simula-
tion in this algorithm to ensure that the target temperature is achieved. Therefore the
Langevin thermostat on its own cannot be guaranteed to maintain a prescribed target
temperature in NEMD simulations. However, equation (4-34) introduces a feedback
loop which avoids this problem in the above situation. Secondly, note that the tem-
perature difference between the TRs for the Langevin algorithm is much higher
than for Nosé-Hoover. As discussed before, this is due to the fact that the artificial
Kapitza effect (temperature drop) in the BR is much larger for stochastic thermostats
than deterministic ones due to their stronger disruption of the correlations in the
atomic vibrations. Both algorithms locally reproduce the canonical ensemble in the
TDR and enforce the correct temperatures at the boundaries of the TDR.

One of the general disadvantages of NEMD simulations is that the temperature
gradients are very large (of the order of 109 K/m). Such a large gradient might be
expected to be beyond the applicability of Fourier’s law. Although the author has not
found this to be the case within the classical MD regime [42] other nonlinear contin-
uum models have been proposed [38, 39] for non-classical heat flow. Temperature
gradients of this magnitude are expected across interfaces [53], when two surfaces at
different temperatures first come into contact [55] and around hot spots in nanostruc-
tured devices [46]. An advantage of the direct method over the Green-Kubo method
is that the dependence of the thermal conductivity on temperature can be deduced
from the NEMD temperature profile. A linear temperature variation in the thermal
conductivity will result in a quadratic variation in the temperature profile [42]. A
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quadratic fit to the profile will yield the (extrapolated) thermal conductivity at 0 K as
well as the linear temperature dependence term. However, NEMD simulation results
will also include a dependence on strain [56]. Although possibly free to expand, the
shape of NEMD simulations are constrained to remain cuboidal. Thermal expansion
within the body will be non-uniform resulting in a dilational strain gradient along
the sample. For highly constrained systems, or large temperature differences, the
strain state will have an affect on the calculated thermal conductivity.

A variant on the direct method has been proposed by Terao and Müller-Plathe
[57]. In their scheme, the sample is uniformly heated at all points within the body
by the addition of a random noise. This random noise is not generated by a ther-
mostat, but arises by deliberately truncating the cut-off distance for the interatomic
potential interactions so that the noise is derived from numerical errors. Heat must
be removed from the system for it to attain a steady state. A thermostat is used
to impose a heat sink at two locations along the periodic sample. The resulting
temperature profile is a quadratic variation between the cooling slabs, as shown in
Figure 4-7 Although easy to implement, the disadvantage of this approach for solids
is that the entire region is thermostatted and hence the dynamics and the resulting
transport coefficient will be affected.

Another approach is to monitor the decay of thermal transients in a system. Daly
et al. [58] investigated the conductance of superlattices by initially imposing a sinu-
soidal temperature variation across the sample. Fourier’s law (4-31) predicts that
such a variation will remain sinusoidal and that its amplitude will decay exponen-
tially with time at a characteristic rate. Hulse et al. [59] applied a transient technique

Figure 4-7. Schematic quadratic temperature profile in water calculated under periodic boundary con-
ditions. (Reprinted with permission from [Terao T, Müller-Plathe F (2005) A nonequilibrium MD
method for thermal conductivities based on thermal noise. J Chem Phys 122:081103]. Copyright [2005],
American Institute of Physics)
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to fluids, in which a small region of the simulation was instantaneously heated by
velocity rescaling. The thermal conductivity was determined from the rate at which
the average temperature in the heated region returned to equilibrium.

In summary, any thermostatting algorithm will cause a reduction in the thermal
conductivity in regions within a distance of 3-5 atomic spacings of where it is active.
Therefore the thermal conductivity can only be properly determined in regions of
true dynamics which are not thermostatted. This suggests that NEMD simulations
should only be thermostatted at the boundaries and not in the bulk. Deterministic
thermostats tend to be less disruptive to correlated dynamics than stochastic ones.
Local thermostats are preferable for prescribing spatially varying thermal bound-
ary conditions, as global thermostats only control the temperature average away
from equilibrium, not its distribution. Most thermostats have been designed for
simulations at thermal equilibrium. They require some feedback from the actual
temperature of the simulation for use in NEMD simulations.

4.3.3. Size Effects

All of the algorithms discussed in the previous subsection are subject to size effects
due to phonon scattering at the system (or thermostat) boundaries, and restrictions
on the maximum phonon mean free path. In nanostructures, many of these size
effects are real and it is desirable that they are observed in representative NEMD
simulations. These are discussed at the end of this section. However, it is often
desirable to determine the bulk thermal conductivity of a material from a MD sim-
ulation. In this case, the finite size thermal conductivity has to be extrapolated up to
the bulk value using analytical predictions. The simplest of these is the widely used
equation [2]

k(L) = k∞
(

L

L + 4l∞

)
(4-35)

where L is the length of the simulation cell, l∞ is the phonon mean free path in an
infinite system and k∞ is the (bulk) thermal conductivity in an infinite system. This
is fitted to results from NEMD simulations of different system sizes in Figure 4-8.
The bulk thermal conductivity can be extrapolated from (4-35) by letting L → ∞.
Equation (4-35) implies that the thermal conductivity of a sample is prone to size
effects when the dimensions fall below 5–10 times the phonon mean free path. For
phonons the mean free path is typically 10–100 nm [38].

Such size effects are prevalent in nanostructured materials [38, 60, 61], where
the reduction in thermal conductivity can either be beneficial or problematic. For
instance, nanolayered structures can be used to produce films with good thermal
insulating properties [62]. However, in nanoscale transistors, where Joule heating
due to high electric currents is very significant, the increased thermal resistance
leads to the development of large adverse temperature gradients and hot spots within
the device [46]. NEMD simulations have been employed to investigate a variety of
nanostructures, including size effects in argon [18] and silicon [63, 64], nanocon-
strictions in silicon [55], nanoporous silicon [65] and silicon nanofilms [63, 66]
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Figure 4-8. System size dependence of thermal conductivity, k, on the sample length, L. Data points
shown are calculated from NEMD simulations for Si at T = 500 K and T = 1000 K and for diamond
at T = 1000 K for different sample sizes. The bulk conductivities are calculated using (4-35) from lines
of best fit. The results are given in Table 4-1 (Reprinted (Fig 3, pg 144306-4 and Fig 6, pg 144306-5)
with permission from [Schelling PK, Phillpot SR, Keblinski P, Phys Rev B, 65,2002]. Copyright by the
American Physical Society. http://link.aps.org/abstract/PRB/v65/p144306)

and nanowires [67], liquids confined in nanopores [51], quantum wells in semicon-
ductors [68], nanolayered superlattices [58, 62], nanoparticles [49], molecular wires
[69] and carbon nanotubes [70–76]. The effect of crystalline defects on phonon scat-
tering [53], such as grain boundaries [77, 78] has also been studied. A significant
reduction in the thermal conductivity has been observed in quantum dot superlat-
tices [79] when the quantum dot arrangement in the superlattice have changed from
correlated (regular) to completely uncorrelated, indicating a reduction in the phonon
mean free path in uncorrelated (defect) structures. Figure 4-9a shows the change in
the measured thermal conductivity of silicon nanowires with their diameter, with
the lowest conductivity in the narrowest nanowires as expected as the scattering
of phonons at the boundaries becomes more significant. However, the temperature
dependence of the conductivity is shown to change with the nanowire diameter in
Figure 4-9b, from the expected Debye T3 law scaling for 115 nm nanowires to
roughly a T scaling for the smallest 22 nm nanowires. This indicates a change in the
dominant mechanism for heat transport. It is proposed that this might be due to the
presence of a silicon oxide layer on the surface of the wire, for which much higher
phonon frequencies are supported [80]. In very narrow nanowires (about 2 nm in
diameter) the thermal conductivity has been expected to actually increase due to
phonon confinement effects. This increases the frequency of the longest wavelength
phonons which consequently transport a greater amount of thermal energy.

Carbon nanotubes are of great interest due to their remarkable thermal proper-
ties [82]. The predicted thermal conductivities of these nanostructures are strongly
dependent on their morphology, with chirality [76, 83], defects [71] and the number
of walls [71] playing a vital role. Single-walled carbon nanotubes (SWCNTs) are
expected to have particularly good heat conduction properties. However, the thermal
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Figure 4-9. (a) Measured thermal conductivity of different diameter Si nanowires. The number beside
each curve denotes the corresponding wire diameter. (b) Low temperature experimental data on a log-
arithmic scale. Also shown are T3, T2, and T1 curves for comparison (Reprinted with permission from
[Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon
nanowires. Appl Phys Lett 83:2934]. Copyright [2003], American Institute of Physics)

conductivity of SWCNTs is not easily measured experimentally, with studies usu-
ally on bundles of nanotubes. The conductivity of bundles is much lower than single
nanotubes as it is dominated by the interfacial resistance between nanotubes [70].
This inability to efficiently transfer heat between nanotubes and the surrounding
medium has lead to lower than expected thermal conductivities in carbon nanotube
composites. However, so high is their conductivity that a 1% weight fraction of
SWCNTs embedded in an industrial epoxy can increase the thermal conductivity
of the composite by 125% [84]. NEMD simulations have been used to determine

Figure 4-10. Comparison of thermal conductivity for different carbon nanotubes as a function of their
length L. There is a wide disparity in the values obtained by different methods. The triangular data points
are predictions from NEMD, the horizontal dotted lines are predictions from equilibrium MD and the
crosses are experimental results. (Reprinted from [Chantrenne P, Barrat JL (2004) Analytical model for
the thermal conductivity of nanostructures. Superlattice and Microstructures 35:173] with permission
from Elsevier)



Nonequilibrium Molecular Dynamics 109

the thermal conductivity of SWCNTs [70, 72–75] and multi-walled carbon nan-
otubes (MWCNTs) but the predictions range from several hundred to 6600 W m–1

K–1 [71]. This typically wide discrepancy in results is illustrated in Figure 4-10.
Lukes and Zhong [85] primarily assign this confusion to length effects. However,
the importance of quantum effects is not clear [86, 87] as it is not entirely apparent
what the Debye temperature is for SWCNTs. Although the Debye temperature for
diamond is 2230 K (see Table 4-1) it is argued that the Debye temperature may be
closer to that of graphite (reported as 420 K in [87]) although values as low as 30 K
for nanotubes have been suggested [87]. Lukes and Zhong [85] report that quantum
corrections to NEMD results yield qualitative agreement with experimental results.
Overall, the preponderance of NEMD simulations are concerned with the study of
carbon and silicon.

4.4. ISOTHERMAL CONCURRENT MULTISCALE METHODS

The number of degrees-of-freedom and femtosecond time step in MD simulation
place a heavy constraint on their maximum length and time scale. There is always a
compromise between accurately representing a real system and computational prac-
ticality, even in the case of nanostructures. The time and length scales are inherent
restrictions of atomistic models, but this is not the case for statistical or continuum
models, which represent a system by the evolution of average quantities and their
distributions. The advantage of such higher level models is that systems of real-
istic size can be modeled over realistic time scales. However, in many problems
the length and time scales are strongly coupled with the details of the atomistic
processes (e.g. the dislocation creep properties of materials are determined by the
relatively long-range interaction between dislocations in the crystal lattice). These
details are increasingly important in areas where the material response is highly
non-linear (e.g. near cracks tips and other stress concentrators, around atomic scale
defects such as dislocations, grain boundaries and other interfaces) and/or highly
constrained (e.g. thermal transport in nanostructures). Therefore it is often desirable
to retain atomistic detail in these areas but represent the material response in the
linear regime using a coarse-grained (CG) description (e.g. Fourier’s law for heat
transport). These models are generally described as concurrent multiscale models,
as the different material models are strongly coupled and evolve and interact in
parallel.

This approach has been the subject of a significant body of work over the
last two decades. The most widely adopted of these methodologies has been the
quasicontinuum method [9], which embeds a molecular mechanics model within
a finite element model of the far field. The atomistic model is described as
molecular mechanics (as opposed to MD) as the methodology is developed for
zero-temperature simulation. Therefore the only degrees-of-freedom in the system
are the positions of the atoms. In the finite element region the atomic positions are
interpolated from the positions of the nodes using standard finite element shape
functions. The two models are coupled by the requirement that atoms on the atom-
istic/continuum interface occupy the same relative positions as their associated
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Figure 4-11. Bridging domain model for a nanotube; finite elements are indicated by lines that connect
continuum nodes (Reprinted from [Xiao SP, Belytschko T (2004) A bridging domain method for coupling
continua with MD. Comput Methods Appl Mech Engrg 193: 1645] with permission from Elsevier)

nodes in the finite element model (see Figure 4-11). Some complications arise due
to the introduction of “ghost forces” at the interface due to the truncation of the
interatomic potential but these can be compensated for [8].

A number of methods have been proposed to extend this methodology (and
others) to finite temperature. There are some examples of this approach in the
modeling of fluids [89–91] but in general the issues for fluids are not relevant
to the study of solids. Abraham et al. [4] have considered the concurrent cou-
pling of quantum, atomistic, and continuum scales in the fracture of silicon. The
zero-temperature quasicontinuum model has also recently been extended to include
electronic degrees-of-freedom for the simulation of metals [92]. In addition, cou-
pling methods for quantum and atomistic models of heat transport have been
proposed for non-isothermal modeling at low temperatures [39]. However, here it
is assumed that the atomistic model is purely classical in nature in all respects and
that the fundamental material response is given by the MD simulation from which
any higher level model must be derived.

The primary issues that need to be addressed in moving from zero-temperature
to finite temperature multiscale simulation are:

1. the dynamics of the CG nodes. The thermal vibrations of the missing degrees-
of-freedom in the CG model need to be accounted for. This temperature
dependence must be incorporated into the CG inter-node potential which defines
the dynamics of the nodes. The derivation of this potential is discussed in
Section 4.4.1.

2. consistency between the thermodynamic properties of the continuum and the
atomistic model, e.g. the thermal conductivity and thermal expansion coefficient
in the continuum model are identical to those produced in the MD model. Some
of these properties can be derived from the CG potential (see Section 4.4.2).
As discussed in Section 4.3.3, the thermal conductivity is dependent on the size
of the atomistic region. It is expected that the atomistic region will typically be
smaller than the phonon mean free path, and therefore the thermal conductivity
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is not that of a bulk sample. For ballistic models, the continuum must be compat-
ible with the atomistic region, so unfortunately this reduced finite-size thermal
conductivity must be adopted throughout the simulation.

3. smooth information transfer across the atomistic/continuum interface. Ideally
the propagation of phonons from the atomistic to the continuum region (and
vice versa) would be seamless. However high frequency atomic vibrations that
exist in the atomistic model cannot exist in the higher level region due to the
absence of the finer length scales there. This results in the reflection of high
frequency phonons from the boundary and consequently there is a net flow of
heat from the continuum to the atomistic region leading to localized heating.
This must be prevented, but it must be recognized that there will always be a loss
of information when moving from a fine-scale to a coarse-scale model as this is
an inherent feature of multiscale models. This is discussed in Section 4.4.3.

Note that these are not important issues for metal models (see Sections 4.5.3 and
4.5.4) which impose the thermal conductivity on the simulation.

The models discussed in this section are referred to as near-equilibrium models
as the flow of heat between the atomistic and continuum regions is not explicity
accounted for, such that the concurrent simulation as a whole retains a constant
average temperature or the continuum region is isothermal. When conducting mul-
tiscale simulations it is important to decide what the function of the CG region is.
Two different classes of functionality are identified here: dynamics and sampling.
A dynamic CG region is inertial, e.g the finite element nodes vibrate thermally
and transport (lower frequency) lattice vibrations. This is important if the aim of
the simulation is to determine information about the dynamic properties of a struc-
ture where the boundaries of the CG region are “seen” within the simulation time
(e.g. resonance of NEMS [12]) or to allow the transmission of dynamic information
between atomistic regions (e.g. two cracks propagating simultaneously). Otherwise
the main function of the CG region is to sample the average response of an ensemble
of atoms and provide a representative environment for the evolution of the atomistic
region. In this case the CG region does not need to retain detailed inertial infor-
mation about individual lattice waves and the magnitude of thermal vibrations of
some or all of the atoms can be represented by their standard continuum measure,
temperature. It will be argued that this latter condition is essential for the non-
equilibrium simulations presented in Section 4.5. However, here we consider the
development of purely CG dynamics in the context of simulations that are close to
thermal equilibrium.

4.4.1. Coarse-Grained Dynamics

The first issue to address in dynamic CG models is: what are the dynamics of the CG
nodes? This has been addressed by a number of authors [10, 12, 93–97]. There are
a number of routes to the same result. Firstly, we assume that the partition function
of the system is unaffected by the coarse-graining process. The classical dynam-
ics of a set of N atoms can be defined by its Hamiltonian (kinetic plus potential
energy)
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H({xi},{pi
}) =

N∑

i=1

|p
i
|

2m

2

+ V({xi}) (4-36)

where p
i

= mẋi is the momentum of particle i. The continuous classical partition
function for this Hamiltonian is defined as [94]

Z = 1
h3 N

∞∫

−∞−

∞∫

∞
e−βH({xi},{pi

})d{xi}d{pi}

= 1

�3 N

∞∫

−∞−
e−βV({xi})d{xi}

(4-37)

where the momentum degrees-of-freedom can be integrated out exactly and � =√
2πβ

m � is the de Broglie wavelength.
Now consider a CG system where the degrees-of-freedom of a subset of ns slave

atoms {xs} are not independent but determined by interpolation from a reduced
subset of nr representative atoms {xr}, where necessarily ns + nr = N. The CG
Hamiltonian is consequently given by

HCG({xr},{pr
}) =

nr∑

r=1

|p
r
|2

2mCG
+ VCG({xr}) (4-38)

where m CG is the CG mass of the representative atoms (assuming uniform coarse-
graining) and VCG({xr}) is the CG potential. The associated CG partition function
can be expressed in a similar form to (4-37) such that

Z = 1

�
3nr
CG

∞∫

−∞
e−βVCG({xr})d{xr} (4-39)

where �CG =
√

2πβ
mCG

�. The CG potential can be determined from the equivalence of
(4-37) and (4-39) in theory but this is difficult in practice. To make further progress
we assume that the interatomic potential is harmonic such that φ(r) = 1/2α(r − a)2

where α is the spring constant and a is the lattice spacing. Consider three atoms in a
one-dimensional chain with positions [x1, x2, x3]. Coarse-grain the system by taking
the representative atoms to be {xr} = [x1, x3] and enslave the central atom {xs} =
[x2]. From (4-37) therefore
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(4-40)

where the positional degree-of-freedom of the slave atom, x2, has been integrated

out exactly and the fundamental frequency of vibration of the system ω0 =
√

2α
m has

been introduced. The last two lines of (4-40) give an expression for the CG potential

VCG(x1,x3) = − 1

β
ln

[
�2

CG

�2

(
kBT

�ω0

)
e−1/4βα(x3−x1−2a)2

]

= 1/4α(x3 − x1 − 2a)2 + kBT ln
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(4-41)

where the expressions have been generalized in the final line for any number of slave
and representative atoms, and r̄ (= 1/2(x3 − x1) in this case) is the average spacing
between slave atoms. Assuming that the first line of (4-41) can be extended to a
general anharmonic potential this gives

VCG({xr}) = − 1

β
ln

⎡

⎣
(
�

nr
CG

�N

)d ∞∫

−∞−
e−βV({xr},{xs})d{xs}

⎤

⎦ (4-42)

where d is the dimension. In this formulism the CG potential is commonly known as

the potential of mean force (PMF) [98]. Although the factor
(
�

nr
CG

�N

)d
has the dimen-

sions of (length)−(N−nr)d it is often omitted as it only makes a constant (although
temperature-dependent) contribution to the CG potential which is of no consequence
for isothermal simulation.

Generalizing the last line of (4-41) in three-dimensions gives an expression for
the classical CG potential
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Vclassical
CG ({xr},T) = V({xr}) + kBT
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r=1

3∑
q=1
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�ωrq
kBT
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+1/2nrkBT ln
( mCG

m

) (4-43)

where ωrq is the qth eigenfrequency determined for the rth slave atom from (4-26)
and V({xr}) is calculated from the positions of the representative atoms by assum-
ing the slave atoms are uniformly spaced between them. The first term in the CG
potential (4-43) is the zero-temperature potential energy of the body derived for
the zero-temperature quasicontinuum method [9]. The second term accounts for the
contribution to the free energy from the thermal vibrations of the missing slave
atoms.

The last (mass) term in (4-43) is often neglected as it is constant for isothermal
simulations. It is clear that the partition function places no particular restriction on
the choice of the CG mass. One approach is to assume that mCG = m, in which
case the last term disappears even for non-isothermal conditions. However, this
choice will mean that the speed of sound in the material is a function of the coarse-
graining. Another approach is the lumped mass model where it is assumed that
nrmCG = Nm to conserve mass. This ensures that the wave speed is independent
of the coarse-graining. However, the above calculations assume that the coarse-
graining is uniform, i.e. the density of representative atoms in the CG region is
constant. Dupuy et al. [96] have considered the non-uniform case in more detail.

The dynamics of the representative atoms evolve in the usual way

mCGẍr = −∂VCG

∂xr
(4-44)

which is identical to (4-1) in the fully atomistic limit (ns = 0) as one would expect.
However, it should be noted that the representative atoms only truly represent the
time-averaged position of an atom (or group of atoms); their oscillation frequency
and amplitude are not those of a normal atom.

The second term in (4-43) is dependent on the system temperature, the level
of coarse-graining and, through (4-26), the local deformation of the body. This
term can also be derived from the quantum partition function using the local har-
monic approximation of the Einstein model for a solid [93]. This was discussed in
Section 4.2.4 and is advantageous over the Debye model in that the thermodynam-
ics are analytically tractable and only depend on the fundamental frequencies of the
lattice. For a simple quantum harmonic oscillator the partition function is given by
(4-9) and (4-22) to be

Zn = e−β�ω0/2

1 − e−β�ω0
= 1

2 sinh (β�ω0/2)
(4-45)

The Helmholtz free energy, F = U – ST, gives the available work under the
constraints of constant temperature and volume, where S is entropy and the internal
energy is given by (4-23), and hence is the characteristic function for the canonical
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ensemble. For a single quantum harmonic oscillator in one-dimension the thermal
contribution is [93]

F = −kBT ln Zn = kBT ln
[
2 sinh (β�ω0/2)

]
. (4-46)

using (4-45). It is clear from the above expression that assuming that the Helmholtz
free energy is unchanged by the coarse-graining process is equivalent to assuming
that the (quantum) partition function remains unchanged. Therefore the difference
between the free energies due to the loss of the dynamic thermal contribution from
the slave atoms for the quantum CG potential is

VEinstein
CG ({xr},T) = V({xr}) + kBT

ns∑

r=1

3∑

q=1

ln

(
2 sinh

(
�ωrq

2kBT

))
. (4-47)

This is identical to (4-43) in the classical limit x = �ω

kBT
< 1 for which 2 sinh

(x/2) ≈ x. The final mass-dependent term in (4-43) is absent from (4-47) as the
momentum of the atoms is not included in the phonon model.

4.4.2. Coarse-Grained Thermal Properties

It is important that the CG potential reproduces the correct thermophysical proper-
ties for consistency with the atomistic model. The most obvious contribution from
thermal vibrations in the lattice is the expansion of the crystal with an increase in
the temperature. The CG potential allows for an estimate of this contribution. For
a one-dimensional solid at constant volume the macroscopic stress that develops in
the body due to a temperature rise of �T is given by σ T =αTE�T where αT is the
coefficient of thermal expansion and E is Young’s modulus. This stress is equivalent
to an atomic thermal expansion force of

fT = − 1

ns

∂VCG

∂r

∣∣∣∣
r=a

= −
[(

1 + 1

ns

)
∂φ

∂r
+ �

2

∂ω0

∂r
coth (β�ω0/2)

]

r=a
(4-48)

where the simple one-dimensional CG potential in the final line of (4-41) has
been adopted without the assumption of classical mechanics. Given that ω2

0 =
2α

m
= 2

m

∂2φ

∂2r
and taking the coarse-graining to the macroscale (ns → ∞) one

can determine the thermal expansion force. In the classical limit (4-48) gives

f MD
T (a) = −1/2kBT

φ,rrr(a)

φ,rr(a)
. (4-49)

where
∂φ

∂r

∣∣∣∣
r̄=a

= φ,r(a) = 0 at the equilibrium zero-temperature spacing. From

this expression it is immediately clear that there will be no thermal expansion in
the case of a harmonic potential as φ,rrr = 0. For the Lennard-Jones potential



116 S.P.A. Gill

φ(r) = ε

((a

r

)12 −
(

2
a

r

)6
)

this yields f MD
T = 21kB

2a
T which predicts that the

force is linearly proportional to the temperature in agreement with the macroscopic
stress. Roughly f MD

T ≈ −σTa2 which suggests that αTE = 21/3kBa−3.
This classical prediction and the full quantum prediction from (4-48) are com-

pared with the results of a one-dimensional MD simulation in Figure 4-12a. It is
expected that the simulation results should correspond with the classical CG model
and this is found to be the case. The agreement is excellent at low temperatures,
with only a small deviation at high temperatures. The quantum model converges to
the classical model at high temperatures but is significantly different below room
temperature. The quantum thermal expansion force is predicted to be finite at zero
temperature, i.e. a is not the equilibrium lattice spacing at zero temperature. This
is due to the existence of the zero-point energy in a quantum crystal introduced in
(4-22). However, the Einstein model has been shown to be inaccurate at very low
temperatures (see Figure 4-2). The predictions for a two-dimensional nickel crys-
tal [96] are shown in Figure 4-12b. Here the crystal is allowed to expand and the
change in lattice spacing with temperature recorded. The agreement for the lattice
parameter is good but not as good as the constrained thermal expansion force in
Figure 4-12b. This is because different values of the anharmonic potential are
sampled for the case of free expansion.

It should be noted that the thermal force f MD
T (r) → ∞ when φ,rr(r) = 0 [95]. This

situation occurs at the inflexion (point of zero curvature) in the potential where the
stiffness vanishes. For the Lennard-Jones potential this occurs at a radius of 1.109a.

Figure 4-12. (a) Average thermal expansion force fT in a one-dimensional MD simulation of Lennard-

Jones atoms with ε = 0.6 eV, a = 2.8 Ǻ and m = 10–25 kg [95]. The lines are the predictions from the
classical (4-49) and quantum (4-48) CG potentials. As expected, the quantum and classical predictions
are indistinguishable at high temperatures. Note that the quantum predictions do not go to zero at 0 K due
to the existence of a finite zero point energy (see 4-22). (b) Lattice parameter of nickel as a function of
temperature using an embedded atom model (EAM) potential. The melting temperature of this potential
is 1478 K. The CG (quasicontinuum) calculation involved a cell of dimensions 200 × 100 nm with a
regular mesh containing 50 nodes (Reprinted (Fig 1, pg 115404-1) with permission from [Dupuy LM,
Tadmor EB, Miller RE, Phillips R, Phys Rev Lett, 95,2005. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRL/v95/p060202)
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There is always a finite probability that this state will be sampled during the course
of a simulation. At low temperatures the chance is small with the possibility rapidly
increasing with temperature. This problem arises from the nature of the quadratic
approximation in the determination of the CG potential. If the full nonlinear poten-
tial is calculated from (4-42) then this situation does not arise, although this is not a
practicable solution for CG simulation.

4.4.3. Boundary Conditions for the Atomistic/Continuum Interface

One of the critical issues in finite-temperature multiscale simulation is the effect of
interfaces between different length scales on phonon heat transport. The require-
ments of the phonon boundary condition depend on the nature of the problem. For
dynamic coarse-graining, lower frequency (coarse-scale) phonons must be trans-
mitted into the continuum, whereas the higher frequency (fine-scale) phonons that
are not supported in the continuum should be absorbed and generated according
to the canonical ensemble. The boundary conditions for phonons for a quasi-static
continuum are simpler in that all incident phonons simply need to be absorbed and
generated. Two main classes of approach are identified here:

(i) Memory kernel methods. Impedance boundary conditions are based on the
generalized Langevin equation (GLE) [30, 99] which are an exact derivation for
harmonic interatomic interactions. For an atom i in the interfacial region this is
typically expressed as [99]

mẍi = − ∂V

∂x i
+

∑

j

t∫

0

βij(t − τ )ẋi(τ )dτ +
∑

j

βij(t)xj(0) + R(t) (4-50)

where j �= i represents the other atoms in the interfacial region, β ij(t) is the mem-
ory kernel function representing the history of interaction between atoms i and j,
and R(t) is a random noise representing the thermal vibrations of the heat bath. The
existence of the convolution integral term is due to the importance of long-time
correlations in the motion of atoms in a crystal. Exact determination of the con-
volution integral is expensive and it is characteristically truncated over space and
time usually without introducing significant errors, at least in the harmonic limit.
This methodology has principally been applied to the study of “zero-temperature
dynamics” in which the atoms initially have no kinetic energy and are subject to a
dynamic perturbation [14, 99–102]. One advantage of “zero-temperature dynamics”
is that the propagation of phonons through the medium can be easily resolved with-
out the presence of thermal noise. The effectiveness of these impedance boundary
conditions is nicely illustrated in such a case in Figure 4-13. A Gaussian-type wave
perturbation of high and low frequencies is introduced at the centre of the atomistic
region. The wave propagates outwards and is expected to be smoothly transmitted
into the surrounding continuum. This is the case where memory kernels are used
in Figure 4-13a. The reflection of the high frequency waves can be clearly seen in
Figure 4-13b where there is no special treatment of the boundary conditions. One



118 S.P.A. Gill

Figure 4-13. Wave propagation through the atomistic domain in the FCC lattice structure: (a) impedance
boundary conditions are involved at the MD/continuum interface, (b) continuity boundary conditions
(Reprinted from [Liu WK, Karpov EG, Zhang S, Park HS (2004) An introduction to computational
nanomechanics and materials. Comput Methods Appl Mech Engrg 193: 1529] with permission from
Elsevier)

disadvantage of memory kernels is that it is difficult to move the position of the
atomistic/continuum interface during the simulation due to their dependence on the
simulation history.

Methods for extending the GLE to finite temperature have been recently pro-
posed to thermalize the system as well as absorb phonons [35, 103]. As mentioned
in Section 4.3.2, this type of boundary condition holds the best opportunity for min-
imizing decorrelations in atomic motions at the interface due to thermostatting and
avoiding the artificial Kapitza effect. However, no studies of non-isothermal systems
using the GLE approach appear to have been conducted at this time. This may be
complicated by the fact that the memory kernels depend on temperature [35] and
therefore the local temperature history also. They are also highly potential specific
and have a complicated implementation structure [35, 103].

(ii) Diffuse interface methods. A simpler method for minimizing phonon reflec-
tions is to make the transition from one length scale to another as smooth (or diffuse)
as possible. This can be achieved to some extent by subtle mesh gradation, although
such meshes can be complicated to generate and can add complexity to the coarse-
graining algorithm. The bridging domain method [88] minimizes phonon reflection
by a smooth transition from the atomistic representation to the continuum, such that
the interfacial Hamiltonian is given by

H = αHM + (1 − α)HC (4-51)

where HM and HC are the Hamiltonian’s in the molecular and continuum regions
respectively and α varies continuously through the interface from 1 in the purely
atomistic region to 0 in the purely continuum region. This means that the two
regions must overlap in the transition zone, as shown in Figure 4-11. This has the
advantage of being simple to implement given the continuum dynamics, and has
been demonstrated to be effective for “zero-temperature dynamics”.

A diffuse phonon-absorbing interface known as stadium damping has been
proposed by Holian and Ravelo [3]. This had been employed in an isothermal con-
current atomistic/continuum simulation by Qu et al. [104, 105]. In this approach, an
atomistic region is embedded within a quasi-static finite element mesh, as shown in
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Figure 4-14. Schematic of the finite-temperature dynamic coupled atomistic/continuum simulation cell,
showing the outer continuum finite element region (left), the damped stadium region of atoms near the
atom/continuum boundary (red) and an undamped atomistic region in the interior (blue) (Reprinted from
[Qu S, Shastry V, Curtin WA, Miller RE (2005) A finite temperature dynamic coupled atomisitic/discrete
dislocation method. Model Sim Mater Sci Engng 13:1101]with permission from Institute of Physics)

Figure 4-14. The mesh can deform (elastically) but the nodes are not dynamic. The
atoms at the outer boundary of the (red) atomistic region are effectively quasi-static
in nature and deform with the mesh for continuity. The atoms in the central (blue)
region are fully dynamic and unthermostatted. The quasi-static and fully dynamic
atoms are separated by a (red) interfacial region of stadium damped atoms. The
dynamics of these atoms are regulated by Langevin thermostats, as in (4-5), except
that the strength of the damping, γ (x), varies linearly from zero in the fully-dynamic
(blue) region to its maximum value γmax at the outermost (quasi-static) boundary.
Unlike a sharp interface, the resulting diffuse interface allows phonons to pene-
trate into it, whereupon they are gradually thermostatted out of the system. Stadium
damping is advantageous in that it is simple to implement and it is independent of the
interatomic potential. It also thermalises the boundary (and hence the fully-dynamic
region) to a specified temperature and has been shown to generate the canonical
ensemble in isothermal simulation [104]. Stadium damping also allows the outer
atomistic boundary to be fixed/quasi-static which is essential for embedding in a
quasi-static CG region. The effectiveness of stadium damping to absorb phonons is
illustrated in Figure 4-15.

(iii) alternative methods. Other treatments for the boundary conditions do not
fall into the previous categories. Gill et al. [95] proposed a rapid thermalisation
method, although this requires a small time step and is computationally intensive.
The remaining methods have been shown to be effective for “zero-temperature
dynamics”. Tang [106] has proposed computationally efficient velocity interfacial
conditions in which a high-order Taylor expansion is used to predict the atomic
motions at the interface [106]. It is claimed that this method has a higher perfor-
mance than memory kernel methods for strongly nonlinear problems and has the



120 S.P.A. Gill

Figure 4-15. A high energy pulse is introduced at the centre of a stadium damped atomistic simulation
(left side) and a much larger (reference) atomistic simulation (right side) at 100 K. The snapshots are
shown at different times (a) t = 0, (b) t = 14, (c) t = 28, (d) t = 42. The phonons are absorbed by
the stadium damping region (left) or propagate out of view (right). The differences are due to thermal
fluctuations. The color scale indicates the magnitude of the displacements (Reprinted from [Qu S, Shastry
V, Curtin WA, Miller RE (2005) A finite temperature dynamic coupled atomisitic/discrete dislocation
method. Model Sim Mater Sci Engng 13:1101]with permission from Institute of Physics)
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advantage of being local in time and space. Li et al. [107] use a Perfectly Matched
Layer (PML) which adds a linear damping term and change in stiffness term to the
dynamics of the interfacial nodes. They investigate a harmonic potential but present
derivations for higher order potentials. The method is extended to finite temperature
[108] but the precise efficacy of the boundary conditions is not investigated. Namilae
et al. [109] have proposed and analyzed a number of simple absorbing conditions
based on the non-linear wave equation [109] and implemented them in a concurrent
multiscale model.

4.4.4. Isothermal Dynamic Multiscale Models

Dupuy et al. [96] utilize the CG potential (4-43) (the third term is neglected at
constant temperature) to simulate the isothermal nanoindentation of nickel at dif-
ferent temperatures using a non-uniform coarse-graining. All the atoms and CG
finite element nodes vibrate with thermal energy. No special boundary conditions
at the atomistic/continuum interface are introduced to tackle the issue of phonon
reflection. This is addressed by the application of a single global Nosé-Hoover ther-
mostat to the dynamics of all the degrees-of-freedom (i.e. nodes and atoms). This
prevents the atomistic region heating up due to the confinement of high frequency
phonons. Strictly the natural increase in thermal energy of the simulation (due to
applied loads) should not be removed by a thermostat, but allowed to be transported
to the boundaries. However, given the subject material is a metal, the thermal trans-
port processes inherent in the MD simulation would drastically underestimate those
in the true metal anyway, due to the absence of conducting electrons in the classical
model. (This problem is addressed in Sections 4.5.3 and 4.5.4). Assuming the ther-
mal equilibration processes are rapid, the isothermal assumption is reasonable. The
performance of the Nosé-Hoover thermostat under these conditions could be ques-
tionable given that the CG simulation will contain multiple inherent time scales.
Advanced thermostats such as the recursive multiple thermostats [32, 95] may be
more pertinent to this type of problem. Additionally, as discussed in Section 4.2.2,
a global thermostat will not ensure a uniform temperature in a nonequilibrium
simulation such as this. It will only drive the system towards a given average tem-
perature. In doing this it is possible that some regions are cooled below the average
temperature to offset the increase in temperature of other regions.

Heat transport in dynamic CG models has been studied by Curtarolo and Ceder
[97], using a CG potential similar to (4-43) (again without the final mass term) using
a lumped mass approximation. They find excellent correspondence between fully
atomistic and CG simulation predictions for the elastic properties of the system.
The thermal conductivity in CG systems is also considered. It is found that this is
always underestimated in the CG region, as one would expect with the reduction in
the available phonon modes for heat transport. These calculations are in the steady
state where the specific heat capacity of the CG nodes is of no consequence. To
fully model heat transport in a dynamic CG system is impossible as the specific
heat capacity of each degree-of-freedom is always kB in the classical MD model
(see Section 4.2.5). Therefore the heat capacity of a dynamic CG system will not
be constant but vary in space with the degree-of-freedom density (level of coarse-
graining).



122 S.P.A. Gill

Rudd and Broughton did a lot of the early work on coarse-graining a harmonic
Hamiltonian [10] at zero-temperature, and have recently extended this with an
anharmonic correction to incorporate nonlinear effects at finite temperature [12].
They investigate the effect of coarse-graining on the phonon dispersion relationship
and phonon reflection at interfaces (see Figure 4-1b). They show that the distribu-
tion of mass to the CG nodes can have a significant effect on the response of the
system. They distribute the mass through the finite element shape functions which
seems preferable to the lumped mass approach which exacerbates the reflection of
phonons at CG interfaces. In this case it is necessary to retain as much informa-
tion about the dynamics of the system as possible. However, in general, retaining
the dynamic motions of CG nodes is computationally expensive and need only be
considered if it is a necessary requirement of the CG region.

Other dynamic approaches which do not use a CG potential have also been
proposed [88], the most widely applied of which is the bridging scale method
[14, 100, 101]. In this method, a coarse-scale finite element continuum exists every-
where such that it overlaps the atomistic region, where a fine-scale also exists.
The displacement field is decomposed into coarse and fine scales in this region.
The coarse-scale at all points is defined by the displacements of the finite element
nodes via the shape function in the usual manner. The fine scale is the differ-
ence between the total displacement and the coarse-scale displacement, such that
it represents the part of the displacement field that the coarse-scale cannot repre-
sent. The fine-scale displacement is chosen such that it minimizes the least square
difference between the atomistic and coarse-scale displacements. This results in
the coarse-scale and fine-scale dynamics being coupled in the atomistic region.
The dynamics in the purely coarse-scale region evolve under the action of a zero-
temperature potential not entirely dissimilar to V({xr}) in (4-43). This is principally
a “zero-temperature dynamics”, in the sense that the method has primarily been
used to look at the propagation of elastic waves in bodies with zero initial kinetic
energy. The thermal vibrations of the missing degrees-of-freedom, represented by
the temperature-dependent terms in (4-43), do not therefore need to be accounted
for. The bridging scale methodology has been applied to the evolution of tempera-
ture in coupled atomistic/continuum simulations [54]. This proposes a method for
projecting the kinetic energy of atoms onto a coarse-scale temperature grid. A model
for the evolution of the temperature in a coarse-scale region is developed based on
the discretized wave equation. This harmonic approach has the advantage of being
analytically tractable but it is not applicable to finite temperature heat transport,
which is purely due to anharmonic interactions. It does, however, allow for the exact
solution of the phonon reflection problem at the atomistic/CG interface (see memory
kernel methods in Section 4.4.3.)

4.5. NON-ISOTHERMAL CONCURRENT MULTISCALE METHODS

Heat transport and the conservation of thermal energy are requirements of non-
isothermal multiscale models. The CG regions can be either dynamic or quasi-static,
but it is essential that the kinetic energy of the missing degrees-of-freedom is rep-
resented in some way. In the quasi-static approach, the CG nodes have no kinetic
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energy and the kinetic energy of all the atoms (representative and slave) represented
by the state variable temperature. In the dynamic approach, the CG nodes (represen-
tative atoms) have kinetic energy and only the missing kinetic energy of the slave
nodes is represented by the elemental temperature. The evolution of temperature
within the CG region can be readily calculated from (4-31) with relatively little com-
putational overhead given a knowledge of the thermal conductivity. This suggests
two approaches: one in which the thermal conductivity of the atomistic simulation
is taken to be the correct one (applicable for purely phonon heat transport such as
that found in insulators), and one in which the thermal conductivity of the con-
tinuum is prescribed and is then imposed on the atomistic simulation (suitable for
non-classical heat transport such as that found in metals). These are consequently
described as insulator and metal models respectively. The objective of this section is
to look at multiscale methods for tackling nonequilibrium, non-isothermal problems
in solids.

4.5.1. Quasi-Static Phonon Models for Insulators

Although most multiscale models are dynamic, it is likely that sampling will be a
sufficient requirement for most CG regions in multiscale simulations. Gill and Jolley
[95] have proposed an extension to the isothermal model of Qu et al. [104, 105] (see
Figures 4-14 and 4-15) to inhomogeneous thermal problems. They avoid the Kapitza
problem by regulating the atomistic-continuum boundary indirectly using adjacent
thermostatted zones that are not directly part of the atomistic-continuum model (see
Figure 4-6). Stadium damping thermostats are used to absorb phonons at the bound-
ary and thermalize the boundary, where use of a local thermostat such as Langevin
is useful in imposing inhomogeneous thermal boundary conditions (see Section
4.2.2). For a purely atomistic NEMD simulation in Figure 4-6, the thermostatted
regions (TRs) are simply used to regulate the temperature at the boundary of the
true dynamics region (TDR), with any artificial Kapitza boundary effects occurring
in the intermediate buffer regions (BRs). The TDR is the only region of interest for
the numerical experimentalist. It is simple to couple the TDR of such a simulation
to a quasi-static continuum region evolving under (4-31). Now the temperature at
the boundaries of the TDR are not known. They are determined naturally during the
simulation from the energy coupling between the atomistic and continuum regions.
The temperatures of the TRs are regulated to ensure conservation of thermal energy
such that

QqṪL =
t∫

0

(qL − 〈q〉L)dt QqṪR =
t∫

0

(qR − 〈q〉R)dt (4-52)

where TL and TR are the thermostat target temperatures (as in 34), Qq is a constant
which determines the responsiveness of the thermostats, and q–〈q〉 is the difference
between the heat fluxes in the continuum and the atomistic regions along a shared
boundary at the centre of the BR. The integrals ensure that heat is conserved exactly



124 S.P.A. Gill

over time. Two examples of fully transient simulations are shown in Figure 4-16.
The temperature in the atomistic TRs and BRs is not shown as these purely exist
for the purposes of controlling the boundary conditions of the TDR. Figure 4-16a
illustrates the thermal response of a system which is initially at a uniform 20 K
and then the temperature at the lefthand continuum boundary is instantly raised
to 40 K. The thermal noise in the atomistic profile is minimized by averaging over
time and repeated simulations. The predictions of a purely continuum model are also
shown, where the thermal conductivity is determined to be k(T) = k0 + ∇kT with
k0 = 1.037/

√
m and ∇k = 0.021/

√
mW m–1 K–1 where m is the (dimensionless)

atomic mass, taken in this case to be one. The two models agree well, indicating that
Fourier’s law (4-30) is valid for three-dimensional Lennard-Jones MD simulations
even under high temperature gradients. The steady state solution is not completely
linear due to the change in conductivity with temperature. Averaged over very long
times the steady state profile in the coupled system is continuous with no visi-
ble local disturbance at the atomistic/continuum interface. The atomistic-continuum
interfaces on the left and right-hand sides evolve under identical algorithms, show-
ing that they are equally valid for heat flow in either direction. As Fourier’s law
appears to be valid, coupled simulation of homogenous atomistic regions appears
to be unnecessary. Figure 4-16b illustrates the case of an inhomogeneous atom-
istic region which contains a layer of atoms with 10 times the mass of the others.
This mass difference leads to phonon reflection at the interface and a drop in the
thermal conductivity between high and low mass regions. This is a real Kapitza
effect, as opposed to the artificial Kapitza effect previously encountered due to ther-
mostats (see Figure 4-5), and is not present in continuum models. This effect has
been incorporated in the continuum model here by recalibrating the thermal conduc-
tivity between cells of different mass to a much lower value with k0 = 0.0001 and
�k = 0.001. The resulting continuum model again nicely reproduces the atomistic
results. This is a three-dimensional atomistic simulation of a one-dimensional heat
transport problem. For a fully three-dimensional heat transport problem, the issue
of the anomalous thermal expansion of the redundant TR and BR regions needs to
be addressed as these are typically at more extreme (high or low) temperatures than
those in the TDR.

Knowledge of the heat capacity, thermal conductivity and expansitivity is usu-
ally required for such models to ensure compatibility between the atomistic and
continuum regimes. It has been shown that the heat capacity is known exactly for
classical dynamics (kB per degree-of-freedom) and that the thermal expansitivity
can be approximated from the interatomic potential (see Figure 4-12). However, as
seen in Section 4.3, transport coefficients such as the thermal conductivity are more
complex and not readily approximated from atomistic theory. Therefore it is nec-
essary to calibrate the thermal conductivity from direct molecular simulation. This
can be readily done for a particular situation. However, the conductivity is often
a function of other state variables (such as strain [56]) and it is not always possi-
ble (or desirable) to determine the full dependence of a material parameter on all
of these state variables. Therefore, under some conditions, it can be attractive to
determine such parameters during the course of the simulation. Give the atomistic
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Figure 4-16. Snapshots of the temperature profile evolution for an entirely continuum model (dashed
lines) and a coupled atomistic/continuum model, where the atomistic region (TDR) is 0 ≤ < j ≤ 80
and the rest is the continuum region (CR). (a) The system is initially at a uniform 20 K but then the
temperature of the left-hand (continuum) boundary is instantly changed to 40 K. The final (yellow) curve
is the steady state temperature profile. This is curved due to the dependence of the thermal conductivity on
temperature. The purely continuum model and coupled model are indistinguishable, implying Fourier’s
law (4.31) applies for Lennard-Jones MD under large temperature gradients. (b) The response of the same
system except that a central layer of atoms with 10 times the mass of the other atoms has been introduced
into the atomistic system. The progress of heat through the body is hindered by phonon scattering at the
interface between the different mass regions. The steady state curve is again shown in yellow (From [42])

heat fluxand temperature gradient, on-the-fly estimates can be used to determine
and refine such values concurrently. The Heterogeneous Multiscale Method (HMM)
[110, 111] adopts this approach in which small MD simulations are used to inform
a higher-level continuum model, and in some cases exclusively used to give atom-
istic detail around defects etc. Missing macroscale data (such as microscopic energy

Figure 4-17. Inhomogeneous thermal boundary conditions imposed on a central atomistic system for the
Heterogeneous Multiscale Method (HMM): the border region is divided into bins and a Nosé–Hoover
thermostat is applied to each bin (Reprinted from [Li X, E W (2005) Multiscale modelling of the dynam-
ics of solids at finite temperature. J Mech Phys Solids 53:1650] with permission from Elsevier)
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and momentum fluxes) are estimated using an on-the-fly microscale atomistic sim-
ulation at each point where it is needed. The MD simulation is constrained so that
it is consistent with the local macroscopic state. Inhomogeneous thermal boundary
conditions are achieved by dividing the border region into bins and regulating the
temperature of each bin using a number of Nosé-Hoover thermostats, as shown in
Figure 4-17. To be practical, the size of the individual microscale simulations needs
to be as small as possible, although for accurate thermal conduction the size will
ideally be many times greater than the length of the phonon mean free path.

4.5.2. Dynamic Phonon Models for Insulators

Xiao and Beltyschko [88] investigated one-dimensional heat conduction using
their bridging domain method. They considered the imposition of a steady state
temperature gradient across the atomistic/continuum simulation. As can be seen
from the interfacial condition (4-51), the dynamics of the continuum nodes is
defined by a continuum Hamiltonian. This has the advantage that some of the
dynamic information (about the longer wavelength vibrations) is retained, although
at some computational cost. However, as mentioned previously, the kinetic energy
of these nodes cannot fully represent the vibrational energy of the continuum due to
the reduced number of degrees-of-freedom. The vibrational energy of the missing
degrees-of-freedom is represented by assigning a temperature to each continuum
cell. This temperature evolves according to the continuum energy conservation
equation (4-31). The thermal conductivity is an unknown parameter and is initially
determined from a fully atomistic NEMD simulation to ensure consistency between
the atomistic and continuum descriptions. The transfer of energy between the atom-
istic and continuum regions is determined by the interfacial condition (4-51) in the
overlapping region. This always removes energy from the fine-scale as the positions
of the atoms are constrained to be commensurate with their associated continuum
positions in this region (interpolated from the elemental shape function). This lost
energy provides the energy source for the continuum temperature equation if heat
flow is expected from the atomistic to the continuum region (i.e. the temperature of
the atomistic region is higher than that of the continuum). Otherwise the energy is
fed back into the atomistic region. The continuum temperature equation can also act
as a heat source for the atomistic region. This energy is injected into the atomistic
boundary using a Berendsen thermostat. The resulting temperature profiles are
roughly what is expected (see Figures 25 and 27 in [88]) although the high degree
of thermal noise makes the details of the correspondence hard to determine. As
expected, even with a smooth atomistic-continuum interface (4-51), the Kapitza
effect cannot be avoided entirely.

Fish and Li [112] have proposed a finite-temperature CG continuum model based
on Generalised Mathematical Homogenization (GMH). The problem is divided into
two length and time scales, a coarse-scale and a fine-scale. In the coarse-scale the
body is continuous and in the fine-scale it is discrete. The displacement and inter-
atomic force are expanded into a leading order (coarse length-scale) term and a
higher order fine length-scale term. The acceleration is then expanded into terms that
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include coarse and fine time-scales and length-scales. The resulting MD equations
of motion yield the coupled dynamics of the fine and coarse scales. The fine-scale
motion only functions at the fast time-scale. The coarse-scale motion includes the
fast time-scale and the slow time-scale. The two different time-scales are separated
out to give a coarse-scale wave equation and a coarse-scale thermal equation. The
heat flux depends on the fine-scale and coarse-scale velocities. The coarse-scale is
represented by a dynamic finite element mesh with nodal values for the displace-
ment and temperature. The fine scale is a dynamic atomistic unit cell which exists
at the quadrature points of the finite elements. The computational advantages of this
approach are demonstrated for a few simple examples and it is clearly promising.

4.5.3. Quasi-Static Models for Metals

The contribution of electrons to heat transport is not incorporated into classical
MD simulations. As discussed in Section 4.2.6, this contribution is overwhelm-
ingly important in metals, where the thermal conductivity is typically 2–3 orders
of magnitude higher than that due to the classical (ballistic) phonon heat transport
processes that dominate in insulators (see Table 4-2). One solution to this problem
would be to utilize a full quantum mechanics model for the atomistic simulation,
except this is computationally too intensive. The alternative solution is to prescribe
the thermal properties of the continuum (from experiment) and impose these on the
atomistic region. The disadvantage of this is that heat is then primarily transported
around the system by locally adding and removing heat by the constant action of
strong thermostats. The thermal response of the system is therefore purely homoge-
neous with no dependence on the system size due to scattering from interfaces and
atomistic defects (the electron mean free path is huge compared to the phonon mean
free path so size effects could be important at even higher length scales in metals).
The advantage in strongly regulating the temperature at all points in the simulation,
however, is that the sensitive issues relating to the artificial Kapitza effect and heat
transport across the atomistic-continuum interface is no longer a primary issue.

The most widely adopted of these schemes is the Two Temperature Method
(TTM). This has mainly been used to consider the effects of laser annealing on voids
due to rapid heating (see [7, 113] and references therein) where large atomic rear-
rangement occurs under the action of high temperatures and temperature gradients.
As shown in Figure 4-18, the simulation incorporates two simultaneous models:
atomistic and electronic. The atomistic model is an MD simulation. The kinetic
energy of the atoms is known as the lattice temperature, Tl. The temperature of the
electrons, Te, evolves in the electronic (continuum) region. The two models interact
by the electrons thermalizing the atoms according to

CeṪe = ∇(ke∇Te) − λ(Te − Tl) + S
ClṪl = λ(Te − Tl)

(4-53)
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Figure 4-18. Two temperature method (TTM) for heat conduction in metals shows two overlap-
ping regions: atomistic and electronic. The electronic system is simulated using a finite-difference
scheme (FD). A laser deposits energy in the electron system according to the source term S in (4-
53). The atomic system is treated by a molecular-dynamic scheme down to a depth l and beyond
that by a continuum approach (FD). The electronic and atomic systems are coupled by the electron-
phonon coupling λ-term in (4-53) (Reprinted (Fig 1, pg 115404-1) with permission from [Schäfer
C, Urbassek HM, Zhigilei LV, Phys Rev B, 66]. Copyright by the American Physical Society.
http://link.aps.org/abstract/PRB/v66/p115404)

where the standard symbols have been used with the subscripts e and l referring to
the properties associated with electrons and atoms respectively, S is a (radiation)
heat source (due to the laser) and λ is the strength of the electron-phonon coupling.
This final term couples the two simulations and allows the electrons to thermalize
the atomistic system (and vice versa to a lesser extent). The lattice temperature is
enforced via a velocity rescaling thermostat [7]. A less physical model is proposed
by Schall et al. [47] which simply imposes the continuum temperature on the atom-
istic simulation. This is equivalent to λ → ∞ in (4-53) such that Tl = Te with
no characteristic interaction time (apart from the responsiveness of the thermostat).
This is used to examine the effects of frictional heating during sliding. The model is
also extended to Joule heating [114], whereby the heat source term in (4-53) is deter-
mined from the solution for the local electric current determined from an imposed
continuum representation.

4.5.4. Dynamic Coarse-Grained Models for Metals

Finally, a multiscale method developed by Liu and Li [108] incorporates many
of the features of the CG methodologies discussed previously. As in the bridging
scale method [14, 100, 101], the displacement field is decomposed into a fine-scale
part and a coarse-scale part. The continuum region extends over the entire region
and overlaps the smaller atomistic region. Atoms and coarse-scale nodes are both
dynamic and evolve under the action of fine and coarse scale forces. The coarse-
scale forces are derived from the quantum CG potential due the Einstein model
(4-47). Temperature exists at the coarse-scale and represents the thermal vibrations
of the missing atoms where no fine-scale exists. This evolves by the standard con-
tinuum relation (4-31). The thermal conductivity is specified using (4-17) where the
velocity and mean free path can refer to either phonons or electrons. Material proper-
ties such as heat capacity (4-25) and the thermal expansion force (4-48) are derived
from the quantum Einstein model. This introduces a deformation-dependence on
the heat capacity and hence (4-17) introduces a strain-dependence into the thermal
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conductivity. The momenta of the fine-scale is thermalised by the coarse-scale tem-
perature using Nosé-Hoover chains (NHC). Neither scale has the true dynamics of
an unthermostatted region, but this is unavoidable for the simulation of heat con-
duction in metals. Phonons are absorbed at the boundaries of the fine-scale region
using a Perfectly Matched Layer [107], as discussed above.

4.5.5. Conclusions

A range of concurrent atomistic-continuum models for finite temperature multiscale
simulation in the literature have been discussed. Although zero temperature multi-
scale methods, such as the quasi-continuum method [9, 11], are becoming more
widely used and common tools for the materials modeler, the extension and appli-
cation of these techniques to finite temperature is still in its infancy. As discussed
in Section 4.4.1, the dynamics of CG nodes at finite temperature is now reason-
ably well established, at least in the prediction of thermophysical properties. The
dynamics of a CG node represents the kinetic energy of a single (representative)
atom. Given the correct CG mass, the dynamics can also roughly represent the
propagation of (low frequency) waves through the CG medium (neglecting ther-
malisation of the waves due to interaction with higher frequency modes). However,
the CG node does not have the dynamics of an individual atom and it does not rep-
resent the kinetic energy of the missing (slave) atoms it claims to represent. Only
the average position of the CG node is actually a true representation of the represen-
tative atom itself. In this respect finite temperature CG dynamics will always be a
somewhat abstract feature of multiscale simulation. This raises questions as to how
these CG degrees-of-freedom should be treated in a consistent multiscale frame-
work. In isothermal simulation these issues are less important. However, multiscale
simulations are almost never exactly isothermal as they are typically subject to inter-
nal or external stimuli. As seen in Section 4.5, the elemental temperature must be
recorded to represent (at least) the thermal energy of the missing (slave) atoms for
inhomogeneous thermal problems in order to conserve thermal energy and model
heat transport. In general, the requirements of the CG medium need to be assessed
for a particular problem. Does the CG region need to retain dynamic information
(about low frequency vibrations) or is a (deformable) quasi-static CG medium, such
as those in Sections 4.5.1 and 4.5.3, sufficient? Is the objective to determine the ther-
mal transport properties of a particular device from the simulation? If this is the case,
only the phonon-phonon (ballistic) contribution can be determined from classical
atomistic models, such as those outlined in Sections 4.5.1 and 4.5.2. This is strictly
only applicable to poor electrical conductors (typically carbon and silicon) although,
as discussed in Section 4.2.6, approximate methods for estimating the thermal con-
ductivity for metals from such simulations do exist. Imposing the experimental
thermal properties of a material on the multiscale model, as in Sections 4.5.3 and
4.5.4, is an attractive option. This is primarily beneficial in the simulation of metals,
but it is still applicable to other materials. Taking such strong thermostatting control
eliminates many of the issues associated with atomistic/continuum interfaces and
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consistency between descriptions. However, such methods are only strictly applica-
ble to the simulation of fairly dramatic situations which are insensitive to changes in
the dynamics due to the thermostats. The thermal model is necessarily a bulk model
which does not represent the finite size effects due to interfaces and defects seen in
Section 4.3. There are clearly a number of different approaches for specific problems
and many of these have been addressed, at least in part, by the models reviewed in
this chapter. Most of the proposed multiscale modelling approaches discussed here
are in their early stages and require more detailed and demanding simulations to
fully illustrate the complete competency of the model. No one approach currently
addresses all the issues. This is primarily due to the inability of classical MD sim-
ulation to fully represent low temperature phonon heat transport and heat transport
due to electrons.
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Abstract: The contact resistance problem between dissimilar or bonded substrates is particularly
important at the nanoscale, since the length scales associated with the structures and
energy carriers become comparable. We provide a basic understanding of nanoscale
thermal properties, focusing on nanoscale composition and surface structure effects on
local and bulk thermal properties, and discuss how surface modifications can create novel
materials and structures that have tunable thermal properties. Since nanoscale flows are
typically part of larger scale systems and we are confronted with an inherently mul-
tiscale problem, a multiscale approach is required to integrate atomistic simulations
with computational methods suitable for flow phenomena at larger scales. We begin by
describing how nanoscale thermal transport can be investigated using molecular dynam-
ics (MD) simulations for ideal (defect-free) materials, with defects, and with simpler
(solid-solid, solid-liquid, solid-vapor, etc.) and more complex (solid-liquid-solid, solid-
liquid-vapor, liquid-vapor-liquid) material contacts. Next, we describe how the mesoscale
lattice Boltzmann method (LBM) can be used to model thermal transport. Then, we
describe a hybrid model that couples MD with LBM. Finally, we provide examples of
several problems suitable for the multiscale modeling of thermal transport

Keywords: Multiscale methods, Molecular dynamics, Lattice Boltzmann method, Nanoscale
transport, Heat transfer

5.1. INTRODUCTION

The contact resistance problem [1] between dissimilar or bonded substrates is par-
ticularly important at the nanoscale, since the length scales associated with the
structures and energy carriers become comparable. The thermal management of
electronic packaging of thermo-electrics [2], nanofabrication [3], and heat trans-
fer though microchannels [4] has prompted atomic-level investigations of this
resistance.
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5.1.1. Interfacial Resistance

When thermal energy is transported through a solid-fluid interface of area A, it pro-
duces a temperature discontinuity across the boundary [5]. If the heat flow Q′ across
the interface is small, the temperature difference across the interface �T is thought
to be proportional to it. The effective thermal resistance �T/Q′ is typically expressed
as the Kapitza resistance [6–10], R = A �T/ Q′ (m2 K/W). The first measurements of
R were made by Kapitza for metal surfaces suspended in He II (the superfluid phase
of 4He) in the temperature range between 1.6 and 2.12 K. These and other similar
experiments involving other substances and temperatures suggest that R ∝ Tα . The
Kapitza resistance can be represented as the inverse interfacial conductance [11],
i.e., R = 1/G = AdT/Q′, or in terms of the Kapitza length l = Rλ. Here, λ denotes
the thermal conductivity of the bulk medium and l is the equivalent width of the
bulk medium over which the temperature drop is the same as over the interface [12,
13]. For a normal liquid-solid interface, l is on the order of few molecular diameters
[12].

Investigations of this conductance at the nanoscale have been generally restricted
to inert defect-free ideal interfaces that do not consider dissimilar molecules placed
on the interface, interfacial defects, or the application of external fields. The role of
defects, e.g., when carbon nanotubes (CNTs) bond to other materials, have catalyst
nanoparticles at their tips, or contain atomic vacancies and array misalignments,
is also important. (For instance, the measured thermal conductivity along the axial
direction of multiwall CNTs can be much smaller than theoretical predictions for
idealized single-walled CNTs [14]).

5.1.2. Phonon Behavior Through Acoustic Waves

Phonons are quanta of lattice vibrational energy. They play a major role in determin-
ing the thermal and electrical resistances of a material. The effects of the interfacial
thermal (Kapitza) can be explained in the light of phonon scattering [11, 15].
The thermal conductivity of an interface depends on electron-phonon and phonon-
phonon interactions as well as electron and phonon scatterings [16]. Calculating
phonon interactions that limit thermal conductivity is an undoubtedly complex prob-
lem but can be mechanically examined by considering phonon-phonon interactions
that lead to acoustic waves [17].

Like other transport and thermodynamic properties, the thermal behavior of
nanostructured interfaces, e.g., in nanoelectronic devices or across nanometer scale
point like constrictions, cannot be simply inferred by extrapolating bulk behavior to
the smaller scales. Nanoscale thermal transport differs from transport in bulk materi-
als because the mean free path for phonon scattering can be large compared to device
dimensions and lead to interesting physics such as quantum thermal phenomena
[18]. When the thermal transport dimension is comparable to the dominant phonon
wavelength, the interface thermal resistance, or Kapitza resistance, is considerably
lower than the calculated ballistic resistance because bulk phonon dispersion and
bulk potential are no longer accurate [19].



A Multiscale Methodology to Approach Nanoscale Thermal Transport 137

The thermal resistance can be explained through the acoustic mismatch model,
which assumes it to arise from the large impedance to the passage of thermal
phonons across a solid-fluid interface. The acoustic impedance governing the trans-
mission and reflection of these phonons is the product ρc of the density and sound
velocity. It can be many orders of magnitude greater for a solid than a fluid. Due
to an acoustic mismatch, a large fraction of the phonons impinging upon such an
interface from both sides are unable to pass through it. This model typically over-
predicts the thermal resistance and is considered as an upper bound on it. The diffuse
mismatch model provides a lower bound on R. It assumes nonspecular behavior at
the interface, i.e., that all phonons are diffusively scattered. The phonon transmis-
sion probability is again related to a mismatch, in this case between the different
densities of the solid-fluid states [7].

5.1.3. Strategies to Modulate the Interfacial Resistance

The nature of a nanoscale interface has an important influence on thermal trans-
port [6, 9, 10]. An understanding of phonon behavior suggests several strategies to
reduce the mismatch at the interface, thus decreasing R and increasing Q′/A, as fol-
lows. (1) Since the product ρc increases with pressure, one approach could be to
simply increase the fluid pressure to facilitate better acoustic matching, thus lower-
ing R. (2) The interface could be made more solid-like by adsorbing and ordering
additional fluid molecule layers [6, 7, 10, 20], e.g., by making the surface more
hydrophilic [21, 22]. For both cases, the impedance of a dense solid-like layer on
the fluid side would be intermediate between the corresponding values for the solid
and fluid. Once formed, an open question is if these properties are relatively pressure
independent [23].

5.1.4. Role of Surface Modifications

Surface structure has a profound effect on a material’s wettability and, thus on
its thermal transport characteristics. We address this with a brief and rudimen-
tary discussion of intermolecular and surface forces [24]. Intermolecular forces are
responsible for the cohesion of molecules in solids and liquids. Water is different
from many liquids in that it is a polar molecule that has strong hydrogen bonds
(∼10–15 kJ/mol) between the water molecules. Other non-polar liquids are held
together by weaker van der Waals forces (∼1 kJ/mol), while hard solids are held
together by exceptionally strong covalent or metallic bonds (∼500 kJ/mol). Non-
polar substances are generally incapable of strongly interacting (associating) with
water. These materials are hydrophobic, as water does not “wet” their surfaces. A
familiar example is wax upon which water beads up, or certain forms of carbon
nanostructures deposited upon Si [25]. On the other hand hydrophilic materials are
either polar or contain electronegative atoms capable of interacting strongly with
water.

As another example, carbon films can be deposited [26] in the form of nanotubes
[27, 28] and nanobeads, e.g., on silicon wafers, in order to modify the substrate
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Figure 5-1. Images of ≈2 mm water droplets placed on a Si disc containing a carbon nanobead
deposit [25]

surface wettability, as shown in Figure 5-1 [25]. Carbon nanostructures, particularly
nanotubes, also provide a test bed for synergistic simulations and measurements [29]
such as of their thermal transport properties [30–32], flow within and outside the
structures [33–36], energy exchange with fluids [37, 38], interfacial thermal trans-
port between adjacent nanostructures [39], and effects of the boundary resistance
[40] and chemical bonding (e.g., between the matrix and fiber on thermal transport
in case of nanotube composites [41]). Some of this research has been motivated
by the potential use of carbon nanotubes in composite materials to enhance their
thermal conductivity [42–45]. Thus, we note that there are many interesting config-
urations that lend themselves to simulations to elucidate the nanoscale interfacial
thermal properties between dissimilar materials.

5.2. CONTINUUM LIMITS

In the absence of interfaces, nanoscale transport can follow the regular continuum-
scale physical relations, even for nanoscale segments containing only 10 molecules
in each spatial direction [21, 46–48]. However, the nature of an interface and the
material adjacent to it have an important influence on the associated nanoscale trans-
port phenomena [9, 10, 21, 36, 46, 48]. For instance, transport in nonpolar fluids
deviates significantly from the predictions of continuum theories because of thermal
fluctuations [49–51]. In contrast, heat and mass transport in strongly polar fluids that
have significant intermolecular interactions (such as the high dipole moment and
hydrogen bonding in water) can be much different. Here, molecules lose memory of
their initial or previous velocities, i.e., their local energies, much more rapidly after
collisions occur, thereby significantly attenuating the role of thermal fluctuations.
Therefore, the influence of polarity and the action of external fields (e.g., electric or
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magnetic) across interfaces on nanoscale transport phenomena must be investigated
more closely [46, 48].

5.3. MULTISCALE INVESTIGATIONS

5.3.1. Atomistic and Multiscale Simulations

Nanoscale thermal transport can be investigated using molecular dynamics (MD)
simulations for ideal materials, those with defects, and with simpler (solid-solid,
solid-liquid, solid-vapor, etc.) and more complex (solid-liquid-solid, solid-liquid-
vapor, liquid-vapor-liquid) material contacts. Examples of such simulations include
examinations of liquid thermal conductivity [52], thermal transport in the so-called
“nanofluids” [53] (a perplexing misnomer), or Si [54], and the effects of grain size
[55, 56] and phonon scattering [57] on thermal resistance across grain boundaries.
Nonequilibrium (NEMD) simulations that rely on the imposition of temperature gra-
dients within the system are used to investigate thermal transport across solid-solid
[58] and liquid-liquid interfaces [59], across thin films [60–63], and to determine
transport properties such as the interfacial (Kapitza) thermal resistance [12]. Their
success depends on how well atomic interactions are modeled and how long the
simulation lasts.

MD simulation methodology can handle both equilibrium and nonequilibrium,
and unsteady and steady state problems. It can account for the implicit effects
of acoustic waves. Temperature is maintained in such simulations by a Gaussian
thermostat where molecules have an initial Gaussian velocity distribution corre-
sponding to the local temperature. The rate of heat transfer can be obtained from
the energy supplied by the heat source (higher temperature) that is removed by
the heat sink (lower temperature). One method that we have used uses a fifth-
order Gear predictor–corrector algorithm for translational motion; a fourth-order
predictor–corrector algorithm for rotational motion is used by employing the quater-
nion method [36, 46, 48]. We can investigate unusual effects, such of electric
fields [36, 48], on the thermal transport rate for both atomistic simulations and the
multiscale hybrid simulations. We are also able to simulate complex interactions
such as the impingement of nanojets on inert and variously hydrophobic surfaces
(e.g., shown in Figure 5-2).

Nanoscale flows are typically part of larger scale systems, e.g., when nanoflu-
idic channels interface with microfluidic domains, and we are confronted with an
inherently multiscale problem. Hence, a multiscale approach is required to integrate
atomistic simulations with computational methods suitable for flow phenomena at
larger scales [64]. Multiscale analyses bridge length and time scales [65] and suit-
ably incorporate boundary conditions across them [66]. The boundary conditions
for realistic surfaces are often unknown, but become increasingly important as the
system size decreases into the micrometer and nanometer scales. These unknown
boundary conditions have led to intense interest in the development of hybrid meth-
ods that can determine interfacial boundary conditions atomistically while solving
continuum equations away from the interface [67].
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Despite the success of atomistic simulations, their limitations in accessible length
and time scales are stringent and allow only for the analysis of elementary systems
for rather short times. To illustrate these limitations, consider that the time step
dt in an MD simulation is dictated by the fastest frequency one needs to resolve.
For a simulation of pure water, dt = 2 fs when models with fixed O–H bonds and
H–O–H angles are used; in other words, 500 million time steps are required for
1 μs of simulation time. With the optimistic assumption that the execution of a
single time step takes 0.1 s, a total of some 19 months of CPU time is required
[68]. Since full atomistic simulations are prohibitively expensive, hybrid atomistic–
continuum simulations are necessary to study large systems for reasonable times.
Here we describe a hybrid model coupling the molecular dynamics (MD) and lattice
Boltzmann method (LBM). Thus, it is possible to take advantage of the mesoscopic
modeling inherent in LBM to allow for a broader geometric flexibility than the one
allowed for in finite volume solver [64].

5.3.2. Molecular Dynamics (MD) Simulations

The most fundamental theoretical techniques that can provide realistic results are
molecular simulation methods such as MD or Monte Carlo simulations. These meth-
ods have been widely used for investigating transport phenomenon at the nanoscale
[47, 48]. MD is a deterministic method that solves for the equation of motion of
individual molecules and looks at the time evolution of the system. The position of
each atom/molecule is determined by solving the equations of motion

d

dt
ri = vi and mi

d

dt
vi = Fi = −

∑

j �=i

∇U(rij)

where

U(rij) = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

+ Ub (rw) . (5-1)

Here, ri denotes the position vector of an atom, vi the corresponding velocity
vector, rij the relative position between sites i and j, and U the Lennard-Jones poten-
tial. The term Ub(rw) is the boundary potential and accounts for the interaction of
the boundary region with the surrounding medium. MD is particularly advantageous
in the case of solids, higher density fluids, such as gases under high pressure, or liq-
uids, and can be used to calculate dynamic properties. The accuracy of the results
predicted by MD depends on the accuracy of the potential function that is used.
Therefore, one needs to be careful in selecting the potential function such as the
representation for U.

Simulations can be based on the following steps: (1) Establish the initial config-
uration or geometry of a nanostructure. This will vary with the specific geometry of
interest such as the molecular details and crystal structure of a solid-liquid interface;
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and (2) Prescribe the intermolecular interactions. The interactions between a solid
crystal and the liquid phase must be modeled as well as the liquid-liquid or solid-
solid interactions. In the case of a transition metal, e.g., iron, it is possible to use
the embedded atom model (EAM) to accurately model the solid phase. The liquid
phase can be modeled with a Lennard-Jones potential.

MD is also a classical approach in which each vibrational mode is equally excited
and it does not consider electron contributions to heat conduction. Thus, in the
context of phonon transport it is rigorously applicable only to nonmetallic solids
above their Debye temperatures TD [69]. For large enough interface temperatures
T when TD �= f(T), the thermal resistance is inversely proportional to the interface
temperature, i.e., R ∝ T–α [70].

5.3.3. Thermal Lattice Boltzmann Method (LBM)

The fundamental concept defining the LBM is the construction of simplified kinetic
models that incorporate the essential physics of microscopic and mesoscopic pro-
cesses so that the averaged macroscopic properties obey the desired macroscopic
equations [71–73]. The Boltzmann equation with the Bhatnagar-Gross-Krook
(BGK) approximation is [74]

(
∂

∂t
+ e · ∇r + a · ∇e

)
f (r, e, t) = − f − feq

τ
,

where f(r, e, t) is a one-particle probability distribution function defined such that
[f(r, e, t).d3r.d3e] is the number of particles that at time t are located within a phase-
space control element [d3r.d3e] about r and e (where r is the particle’s coordinate
in physical space and e is the particle’s discrete velocity) [75]. Here, a denotes
the external force per unit mass acting on the particle. The last term in the BGK
approximation of the Boltzmann equation represents the collision between the two
particles and is the BGK collision operator [76]. The equilibrium distribution feq is
generally taken to be the Maxwell-Boltzmann distribution for molecules for which
∇e f ≈ ∇e feq = e−u

RT feq. Thus,

∂f

∂t
+ e · ∇rf = − f − feq

τ
+ a · (e − u)

RT
feq.

This classical view must be modified to model thermal transport. The thermal
energy distribution model uses a new distribution function to simulate the temper-
ature field, whereas the density and velocity fields are simulated using a modified
density distribution function. The modified density distribution function and new
thermal energy distribution function satisfy the following equations (where time and
space are discretized along a discretized finite set of velocity directions eα) [77],

f̃α (ri + eαδt,t+δt) − f̃α (ri,t)=− δt

τv + 0.5δt

[
f̃α (ri,t) − f eq

α (ri,t)
]

+ τvFαδt

τv + 0.5δt
,

(5-2a)
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and

g̃α (ri + eαδt,t + δt)−g̃α (ri,t) = − δt

τc + 0.5δt

[
g̃α (ri,t) − geq

α (ri,t)
]+τcfα (ri,t) qαδt

τc + 0.5δt
(5-2b)

where, Fα = a·(eα−u)δt
RT f eq

α (ri,t), a the force per unit mass and

qα = (eα − u) ·
[
∂u
∂t

+ (eα · ∇)u
]

.

Relaxation times are related to the fluid viscosity and thermal diffusivity through
the relations ν = (1/3)τv (δx/δt)2 and χ = (1/6)τc (δx/δt)2, respectively. Fluid
density, momentum, and energy are calculated from the moments of the distribution
function, ρ = ∑

α

f̃α , ρu = ∑
α

f̃αeα + ρaδt/2, and ρε = ∑
α

g̃α − (δt/2)
∑
α

fαqα .

Pressure can be obtained from the relation p = (1/3)ρc2.
The original density distribution function fα and thermal distribution function

gα are used for the boundary conditions. These original unmodified distribution
functions are related to the modified ones through the following equations,

f̃α = fα + (δt/2τv)
(
fα − f eq

α

) − (δt/2)Fα ,

and

g̃α = gα + (δt/2τc)
(
gα − geq

α

) + (δt/2)fαqα .

The bounce-back rule for the nonequilibrium distribution function [78] can be
used for the boundary condition. The density distribution function at the boundary
should satisfy the condition f neq

α = f neq
β , where eα and eβ are in opposite directions.

Thus, the thermal boundary condition is [77]

gneq
α − e2

α f neq
α = −

(
gneq
β − e2

β f neq
β

)
.

5.3.4. Hybrid Multiscale Methodology

In a hybrid multiscale simulation, one key issue is the appropriate coupling of
length and time scales for the two descriptions. Significant progress has been made
in solving both problems in the case of rarefied gas flows [79, 80]. However, for
dense fluids the situation is more complex since the atomistic description involves
interacting particles. Two classes of coupling schemes for dense fluids have been
proposed, one based on direct flux exchange [81–83] and the second on the Schwarz
alternating method [84, 85]. Direct flux exchange schemes decouple length but not
time scales while the Schwartz method finds a consistent solution iteratively in both
atomistic and continuum domains.
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Figure 5-3. The multiscale computation domain

The Schwarz method avoids the direct imposition of fluxes but ensures flux con-
tinuity under the assumption that the transport coefficients of the two descriptions
match one another in the overlap region. Here, the computational domain is decom-
posed into two overlapping regions: an atomistic region described by MD and a
continuum region described by LBM as shown in Figure 5-3. A Schwartz itera-
tion consists of computing the continuum velocity field uc(tc) and temperature field
Tc(tc) with boundary conditions set by the previous atomistic cycle ua(tc–1) and
Ta(tc–1) and by an external boundary condition that depends on the system config-
uration. Then, uc(tc) and Tc(tc) are used for setting up the boundary condition for
computing ua(tc) and Ta(tc). The iteration runs until convergence.

5.3.5. Coupling MD and LBM

The coupling between MD and LBM leads to a number of challenges that must be
addressed including (1) the presence of periodic boundary conditions in the MD
simulations, (2) the sampling of the MD solution over small regions that will serve
as a boundary condition for the continuum, and in turn, (3) the imposition of the con-
tinuum boundary conditions onto each cell of the atomistic domain. The presence
of periodicity in MD simulations requires a mechanism to compensate for particles
that exit the boundary. Simplified models such as elastic boundaries and/or particle
reinsertion often result in a strong density gradient and unphysical system behavior.

A boundary force can be imposed to ensure a correct mean pressure for at the
MD/LBM interface that will minimize local disturbances in flow quantities like
pressure and density. A number of boundary force models have been employed in
hybrid schemes. The simulations can use a model [68] that maintains constant den-
sity in the atomistic portion of the domain. This boundary model accounts for the
local structure of the fluid described by a suitable radial function g(r). The force
components normal to the wall and the potential energy contributions weighted by
g(r) can be integrated over the part of the cutoff sphere that lies outside the atomistic
domain, as shown in Figure 5-4. The integration can, for instance, be performed
in polar coordinates, where z is normal to the boundary and x denotes the radial
direction as
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Figure 5-4. Schematic for calculating the boundary force to compensate for a nonperiodic boundary
condition

Fb (rw) = −2πρn

rc∫

z=rw

√
r2
c −z2∫

x=0

g (r)
∂U12−6 (r)

∂r

z

r
xdxdz,

and

Ub (rw) = 2πρn

rc∫

z=rw

√
r2
c −z2∫

x=0

g (r)U12−6 (r) xdxdz, (5-3)

rc denotes the cutoff radius, ρn the average number density, r = √
x2 + z2 and rw

the distance to the wall. Fb(r) and Ub(r) for a Lennard–Jones fluid can be obtained
by either using a readily available parameterization of g(r) [85] or by performing
the integration for Eq. (5-3).

This boundary force does not, however, guarantee that particles will not exit
the boundary of the atomistic domain. Particles should, in fact, be able to exit
the domain because of the interaction of the atomistic region with the surround-
ing medium. Therefore, it is necessary to employ a hard specular wall that moves
with the local fluid velocity. Particles that strike the wall are specularly reflected,
i.e., their velocity components normal to the wall are reversed while the other
components are not altered by the impact. A specular wall acts as a plane of sym-
metry and prevents density perturbations close to it. The instantaneous momentum
of the atomistic system is altered by each particle reflection although the average
momentum remains constant. At the end of each time step these walls are reset to
their initial positions to maintain a fixed frame of reference. The particles remain-
ing outside the computation domain after wall resetting are reinserted in inflow
regions following the Usher algorithm [82], which in turn maintains a constant
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number of particles for a steady incompressible flow and minimizes disturbances
in the potential energy of the system.

MD velocities can be sampled in cells of the same size as the cells in the LBM
domain. These velocities can be imposed as boundary conditions for the continuum
calculation using two coupling methods. The first [68] amounts to imposing MD
velocities within a one cell wide strip located at a distance δs from the MD sub
domain as shown in Figure 5-3 while the other couples velocity gradients [64].

5.4. EXAMPLE PROBLEMS

Future investigations should examine the effects of various surface treatments on
both solid-solid and solid-liquid interface thermal conductances, e.g. through the
fundamentals of hydrophobic and hydrophilic surfaces [21, 22], and an exam-
ination of the effects of monolayers that can be experimentally self-assembled
and surfactants. Molecular dynamics simulations [86–88] predict that the inter-
face thermal conductance should increase significantly with increasing strength
of the bonds between the solid and liquid. In particular, the most complete work
predicts a substantial difference in conductance between wetting and non-wetting
interfaces. However, there are no comprehensive or systematic synergistic sim-
ulation and experimental investigations of the effects of solid-liquid bonding on
interface conductance. Thus, suggestions for future work involve examinations of
semiconducting and oxide materials, which represent some of the simplest sys-
tems of hydrophobic and hydrophilic surfaces. Many semiconductors, e.g. Si, are
hydrophobic, but in the presence of oxygen many of these surfaces oxidize, e.g.,
to SiO2, and become hydrophilic. Since the thermal properties of these materi-
als are well known, they make for ideal test cases. After examining these solid
hydrophobic and hydrophilic layers, these investigations should continue by exam-
ining self-assembled functional groups that are either hydrophobic or hydrophilic.
These self-assembled layers have great technical importance as they may be applied
to a wide variety of solid materials.
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Abstract: Predicting the integrity of metallic thin films deposited on semiconductors for micro-
electromechanical systems (MEMS) applications requires a precise understanding of
surface effects on plasticity in materials with nano-sized grains. Experimentally, the use
of nanoscale contact probes has been very successful to characterize the dependence of
flow stress on mean grain size in nanocrystalline metals. From atomistic simulations,
several models of plastic yielding for metal indentation have also been proposed based
on the nucleation and propagation of lattice dislocations, and their interaction with grain
boundaries beneath penetrating tips. However, model refinement is needed to include the
characteristics of materials whose grain size is much smaller than the typical plastic zones
found in contact experiments. Particularly, cooperative deformation processes mediated
by grain boundaries, such as grain rotation, deformation twinning, and stress-driven grain
coarsening, can simultaneously emerge for very small grain sizes (< 20 nm), thus making
a predictive understanding of plastic yielding elusive. This chapter summarizes our recent
progress in using multiscale modeling to gain fundamental insight into the underlying
mechanisms of surface plasticity in nanocrystalline face-centered cubic metals deformed
by nanoscale contact probes. Two numerical approaches to model contact-induced plas-
ticity in nanocrystalline materials, the quasicontinuum method and parallel molecular
dynamics simulation, are reviewed. Using these techniques, we discuss the role of a
grain boundary network on the incipient plasticity of nanocrystalline Al films deformed
by wedge-like cylindrical tips, as well as the processes of stress-driven grain growth in
nanocrystalline films subjected to nanoindentation

Keywords: Nanoindentation, Nanocrystalline metal, Atomistic simulation

6.1. INTRODUCTION

Nanocrystalline films of pure face-centered cubic (FCC) metals such as Al, Ni
and Cu with a grain size less than 100 nm, are commonly used in surface-
micromachining to process micron-scale structures and devices including micro-
electromechanical systems (MEMS) [1–5]. Characterizing the mechanical and
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tribological behavior of nanocrystalline metals upon contact loading remains an
essential task in predicting the structural integrity of such micro-components [6,
7]. In addition, past studies [8–10] have proved that a marked transition in plasticity
mechanisms operates with a reduction of grain size from the microcrystalline to the
nanocrystalline regime in FCC metals.

While advanced characterization techniques have been used to study the mechan-
ical behavior of thin films, such as MEMS-based tensile testing [11–14] or
membrane deflection experiments [15], small-scale contact experiments, such as
nanoindentation, have been used ubiquitously to characterize the nature of yield
phenomena and the influence of grain size on hardness and strengthening in
nanocrystalline metals [16–22]. A nanoscale tip attached to the cantilever beam of
an atomic force microscope (AFM) that was made to measure the nanomechan-
ical behavior of metallic thin films is shown in Figure 6-1 along with nanoscale
indentations performed on a nanocrystalline Ni surface. Such probes are particularly
well-suited for the studies of plasticity transition in nanograined metals, because
they can be highly sensitive to the heterogeneous nature of plastic deformation in
very confined volumes of materials.

In earlier studies [9, 24, 25], particular focus has been placed on examining
how dislocations interact with surrounding grain boundaries (GBs) by performing
nano-indentations at the center of single nanograins, that is, by forcing the contact
area to be much smaller than the grain size. Yang and Vehoff [25] have observed
that the dislocations, which nucleate below the tip, only interact directly with the
neighboring interfaces for grain sizes below 900 nm. At this scale, the point of
elastic instability is clearly defined by a pop-in event whose width is strongly cor-
related to the size of the indented grain. The smaller the grain size, the smaller the
pop-in width and the harder the material. For grain sizes comparable to the con-
tact area, Minor et al. [24] have also revealed using in situ transmission electron
microscopy (TEM) nanoindentation that significant dislocation activity could take

Figure 6-1. Measurements of nanomechanical properties in thin films using nanoscale contact probes.
(a) SEM image of a made-to-measure cube-corner tip attached to the cantilever beam of an AFM; (b)
AFM-enabled nanoscale indentations performed on a 50-μm-thick nanocrystalline Ni film [23]
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place in ultrafine-grained Al thin films before the first obvious jump in displace-
ment in the load-depth nanoindentation curves. However, a predictive understanding
of plastic yielding in nanocrystalline metals during indentation remains elusive,
primarily for two reasons:

• While the nanoscale indentations shown in Figure 6-1b can be considered as
physically small, these contact zones can still be an order of magnitude larger
than the mean grain size of the film tested. In this case, it is the coopera-
tive deformation of the dense GB network that dominates the plastic behavior
in nanocrystalline materials. All experimental evidence shows that the pile-
up of deformation left around residual impressions varies dramatically from
homogeneous at large grain size (> 20 nm) to inhomogeneous with intense
plastic deformation in highly-localized shear bands for very small grain sizes
(< 20 nm) [9, 21, 26, 27]. Furthermore, new deformation mechanisms, includ-
ing grain rotation, deformation twinning, and stress-driven grain coarsening,
can simultaneously emerge for very small grain sizes [28–32]. Therefore, some
model refinement is required in order to include the characteristics of materials
whose grain size is much smaller than the typical plastic zones found in contact
experiments.

• GB-mediated deformation phenomena have been observed during the nanoin-
dentation of nanocrystalline FCC metals. Abnormal grain growth was found by
Jin et al. [29] during in situ TEM experiments of nanoindentation in nanocrys-
talline Al films. For instance, Figure 6-2 shows different snapshots from Jin
et al.’s study, where a local increase in brightness related to grain rotation,
indicates that grain growth takes place under the tip as indentation proceeds.
Stress-driven grain growth was also observed by Zhang et al. [30, 31] during
the micro-indentation of nanocrystalline Cu films. These authors showed that
grain growth occurred at faster rates at cryogenic temperature than at room tem-
perature, and that the purity of the material influences the grain growth process.
Since it is well-established that the flow stress characterized by hardness testing
strongly depends on the material grain size [8, 33–35], the process of contact-
induced grain growth appears to be undesirable for most microscale systems
with nanocrystalline characteristics. It is therefore critically important to under-
stand the mechanisms of GB motion under nanoscale contact in order to achieve
control over such phenomena.

This chapter presents an overview of quasicontinuum (QC) method and large-
scale molecular dynamics (MD) simulations used to shed light on the funda-
mental mechanisms of surface plasticity in pure nanocrystalline metals deformed
by nanoscale tips. The numerical methods related to the atomistic modeling of
nanoscale contact in nanocrystalline films are reviewed in Section 6.2. Section 6.3
describes the effects of interatomic potentials on randomly-oriented microstructures
and the energies at GBs predicted by atomistic simulation. Using the QC method,
we focus in Section 6.4 on the role of a GB network on the incipient plasticity of a
7 nm-grain-size nanocrystalline Al film deformed by a wedge-like cylindrical tip. In
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Figure 6-2. Snapshots during in situ TEM nanoindentation of a polycrystalline Al film showing abnor-
mal growth of nano-sized grains. (a) No grains in strong diffraction condition under the tip area indicated
by the white arrow. (b) A grain with size about 10 nm has appeared. (c)–(d) The size of the grain has
become larger with increasing load. Reprinted from [29] with permission from Elsevier

Section 6.5, using both MD and QC methods, we discuss the mechanisms of stress-
driven grain growth in nanocrystalline Al during nanoindentation. An outlook for
future research in this rich area is also presented in Section 6.6.

6.2. ATOMISTIC MODELING OF NANOSCALE CONTACT
IN NANOCRYSTALLINE FILMS

Earlier attempts made to model the nanoindentation of nanocrystalline materi-
als by classical MD simulations have usually employed a spherical repulsive
force to model virtual tips varying from 30 to 98 Å in diameter [36–42]. As
such, contact areas were, to a large extent, smaller than the grain size, and the
plastic zone produced by these tips was only limited to one or two grains. In
contrast, Szulfarska et al. [43] have simulated the nanoindentation of normally-
brittle nanocrystalline ceramics with a four to one ratio between tip diameter
and grain size, which revealed unusual GB-mediated plastic behavior. Different
numerical approaches have also been used to study the problems of contact
in single-crystal and nanocrystalline films using concurrent multiscale model-
ing [44–48]. Using the QC method, we show here that it is critically impor-
tant to simulate nanoindentation tips with more realistic sizes. Furthermore,
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atomistic simulations in FCC metals have been performed using different
embedded-atom-method (EAM) potentials, from which predictions of stacking fault
energies can lead to strong differences within the same metal [49]. The impact of the
interatomic potential on cooperative plastic processes, however, is not fully under-
stood. This chapter focuses on the modeling of nanoscale contact in nanocrystalline
metal films using MD simulations with LAMMPS [50] and the QC simulation
technique [51]. These two methods and specific numerical tools for the analy-
sis of stresses and the visualization of defects and GBs are briefly recalled in the
following.

6.2.1. Simulation Methods

6.2.1.1. Molecular Dynamics

Classical MD simulation is a common technique for the numerical investigation of
physical and dynamical properties of matter at the molecular level. Each atom in the
simulation is treated as a point mass whose velocity and position are computed by
time integration of the Newton’s equations. The computational task in a typical MD
simulation is to solve the set of coupled differential equations given by

mi
d�vi

dt
=

∑

j

F2
(�ri,�rj

) +
∑

j

∑

k

F3
(�ri,�rj,�rk

) + . . . (6-1)

d�ri

dt
= �vi, (6-2)

where mi is the mass of atom i, �ri and �vi are its position and velocity vectors, respec-
tively, F2 is a force function describing pairwise interactions between atoms, F3

describes three-body interactions, and many-body interactions can be added in the
same way. Numerical integration of the atomic positions is usually performed using
the Verlet method [52] with a time step, which may be varied from 1 to 5 fs for
studies in crystal plasticity. The calculations are also conducted at constant temper-
ature (NVT) using a Nose/Hoover temperature thermostat [53]. Furthermore, the
calculations on large-scale systems must take full advantage of massively-parallel
computing with open-source MD simulation software such as LAMMPS [50].

6.2.1.2. Quasicontinuum (QC) Method

The QC method, which was developed by Miller and Tadmor [51], is a multi-
scale atomistic/continuum simulation technique combining both finite element and
molecular statics methods. This technique therefore alleviates the need for repre-
senting all the atoms as in classical MD simulation. A complete description of the
QC method can be found in the review by Miller and Tadmor [51]. A typical QC
model consists of atomistic zones (non local) and finite element zones (local). The
regions subjected to high plastic deformations are modeled atomically, while the
rest is modeled by finite elements. Each node in the mesh is a representative atom,
or “repatom”, which can either represent just itself (non local zone as well as some
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atoms of the atomistic/continuum interface), or a group of atoms (local zone). The
total energy of the system is therefore computed such as

Etot =
Nrep∑

α=1

nαEα ≈ Eexact, (6-3)

where Nrep is the total number of repatoms in the system, nα is the number of real
atoms the repatom is representing (nα = 1 for non local atoms), and Eα is the energy
of each repatom. This formulation permits to conduct concurrent calculations on
both local and non-local regions, which largely decreases the number of degrees
of freedom as opposed to MD simulations with corresponding model dimensions.
Some discontinuities in energy may also appear at the local/non-local interface, but
these can be eliminated by taking ghost forces [51] into account. The minimum
energy is calculated at each loading step, after a new set of forces or displacements
is applied, using a conjugate gradient method. The QC method can also apply a
“nonlocality criterion” to the model in order to verify whether atoms should be
local or non-local. This criterion is defined by:

max
a,b;k

∣∣∣λa
k − λb

k

∣∣∣ < ε, (6-4)

where λa
k is the kth eigenvalue of the right stretch tensor Ua = √

FT
a Fa obtained

from the deformation gradient Fa in element a, k = 1. . .3, and the indices a and
b run over all elements within a cutoff distance of a given repatom. The threshold
ε is usually determined empirically, but a value of 10% gives reasonable results in
crystal plasticity. If the inequality is not satisfied, the repatom is made non local and
vice-versa. It is worth noting that, because of the energy minimization procedure,
the QC method can only predict the athermal behavior of crystalline materials at
0 K. Furthermore, Eq. (6-4) may be used with remeshing techniques in order to
adapt the finite element mesh as a function of the deformation. Some examples of
adaptive QC simulations can be found elsewhere [54, 55].

6.2.2. Modeling of Spherical/Cylindrical Contact in Nanocrystalline
Metals

Two methods have been used to model tips in contact problems using atomistic
simulation. The first method consists in assuming the tip to be either spherical or
cylindrical with a virtual repulsive force such that:

F(r) = −k(r − R)2 (6-5)

with k a specified force constant (k = 10 N/m2), R the tip radius, and r the distance
between the atom and the center of the tip. This method removes the effects of
adhesion and friction that are typically applied by real indenters. Second, the tip can
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be modeled by representing all the atoms. If kept rigid, solid tips can be used for
direct comparison with different contact theories including adhesion effects [56].

A Voronoi tessellation based on a constrained-Delaunay connectivity scheme
[57] is commonly used to model polycrystalline films with randomly-oriented
microstructures, i.e. similar to natural GB networks. Reference points are first ran-
domly placed at a specified mean distance from each other in the surface or volume
studied. Each reference point becomes the center of a grain whose crystallographic
orientation is also randomly assigned. The Voronoi tessellation created from these
points forms the network of GBs that are orthogonal to the lines joining the reference
point to neighbor reference points as illustrated in Figure 6-3.

In Figure 6-4, we present the use of this methodology to model the indentation
of a three-dimensional polycrystalline thin film with a mean grain size of 7 nm. The
total number of atoms for such a model is ∼3 million. The film thickness is 30 nm.
The film is indented by displacing a spherical tip with a diameter of 18 nm along
the direction normal to the top surface. The bottom of the film is fixed along the
direction of indentation, while the sides of the model are assigned periodic boundary
conditions. The model is first relaxed under zero force condition using a conjugate
gradient method in order to obtain the lowest state of energy in the GB network to
simulate equilibrium conditions. After relaxation, the tip is moved at a speed on the
order of 1 m� s–1. The simulation is performed at 300 K with a time step of 5 fs and
the atomic positions are recorded at 50 ps intervals (10,000 steps).

Similarly, a QC model of indentation in a 200-nm-thick Al film with a wedge-
like cylindrical tip is shown Figure 6-5. In this model, the contact region at the
interface between the indenter and the film surface is fully represented by individual
atoms. For comparison, the dimensions of both film and fully-atomistic zone are
400 × 200 × 0.286 nm and 50 × 25 × 0.286 nm, respectively. Plane-strain contact
is modeled by displacing a single-crystal Al cylinder with a diameter of 30 nm
along the direction normal to the film. The tip is oriented along the crystallographic

Figure 6-3. Schematic showing the Voronoi construction for a two-dimensional polycrystalline model
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Figure 6-4. Molecular dynamics model of a nanocrystalline thin film to be indented by a rigid, spherical
tip. Tip diameter and mean grain size are 18 and 7 nm, respectively. The crystallographic orientations of
the tip are as indicated. Periodic boundary conditions are assigned on each side. This model consists of
∼3 million atoms

directions shown in Figure 6-5b and kept completely rigid during the simulation.
This model consists of ∼40,000 atoms.

To avoid discontinuities in the energy state during force minimization, the
continuum/atomistic frontier is modeled as a single crystal interface with the crystal-
lographic orientations shown in Figure 6-5a. We note that if the deformation is small
(tip penetration < 10 nm), no significant atomistic activity is found near this inter-
face, indicating that the plastic deformation is limited to the polycrystalline region
during the simulations. The bottom of the film is fixed along each direction, while
both sides of the model are left free. Periodic boundary conditions are imposed along
the out-of-plane direction in the entire model. Each grain is assigned a common tilt
axis along the [110] direction, and random in-plane orientation. Therefore, this QC
model simulates the mechanical behavior of a randomly oriented two-dimensional
columnar microstructure, which may differ from that of fully three-dimensional
polycrystalline microstructures. Similar to the MD model, the sample is first relaxed
under zero pressure condition in order to obtain the equilibrium microstructure.
After relaxation, energy minimization by conjugate gradient method is performed
between each loading step.

6.2.3. Calculations of Local Stresses and Mean Contact Pressures

In the fully-atomistic zone of QC models, the local stress tensor of the ith atom,
σ i , is calculated using the formula provided by Lilleodden et al. [38], which can be
simplified as follows:
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Figure 6-5. Quasicontinuum model of a 7 nm-grain-size Al film indented by a 30-nm-diameter cylin-
drical tip. (a) Full view of both finite element and fully-atomistic regions. (b) Close-up view of the full
atomistic zone near the contact region. (c) Structure and atomic energies at grain boundaries between
three nanograins as predicted from the Voter-Chen potential, and (d) the Mishin-Farkas potential.
Adapted from reference [44] with permission by Elsevier
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where α and β are the Cartesian coordinates, ω0
i is the undeformed atomic vol-

ume of atom i, Det[Fi
αβ ] is the determinant of the deformation gradient, φ is the

interatomic potential, and rij is the distance between ith and jth atoms. Note that
the kinetics terms have been eliminated in Eq. (6-6) as compared to the formula in
[38]. In this equation, the use of the determinant of the deformation gradient has
been shown to provide improved accuracy for the calculation of deformed atomic
volumes. Furthermore, the force applied by solid tips is calculated using

F =
∑

i∈Z

Fi, (6-7)



160 V. Dupont and F. Sansoz

where Z represents all atoms of the contact area belonging to the film and Fi is the
out-of-balance force on atom i in this area, projected along the direction of indenta-
tion. The contact area is computed after each loading step by only including atoms
at the indenter-film interface within a separation distance from the tip equal to the
potential cutoff radius. For wedge-like, cylindrical tips, the mean contact pressure
H can be determined at each step such as

H = F

2a×zperio
, (6-8)

where a is the contact length, defined as half the width of the projected contact area,
and zperio is the sample thickness in the out-of-plane direction.

For virtual tips with a repulsive force, if an atom has penetrated the boundary
of the indenter (e.g., R > r) after the loading step is completed, the atom is con-
sidered “contacted” and feels a force given by Eq. (6-5). The force applied to all
contacted atoms is resolved in the direction of indentation, summed and recorded,
and is used in the generation of load–displacement profiles [38]. The mean contact
pressure is calculated by taking the total applied force on the tip, and by dividing
this value by the projected contact area calculated from the position of the contacted
atoms.

6.2.4. Tools for the Visualization of Defects and Grain Boundaries

6.2.4.1. Centro-Symmetry Parameter

In solid-state systems, the centro-symmetry parameter P is a useful measure of the
local lattice disorder around an atom and can be used to characterize whether the
atom is part of a perfect lattice, a local defect (e.g., a dislocation or stacking fault)
or at a surface. P is computed using the following formula [58]:

P =
∑

i=1,6

∣∣�Ri + �Ri+6
∣∣2

, (6-9)

where the 12 nearest neighbors are found and Ri and Ri+6 are the vectors from the
central atom to the opposite pair of nearest neighbors. An atom in perfect FCC lat-
tice has a centro-symmetry parameter of zero. The values for other configurations
depend on the material chosen. For aluminum, those values are 32.8 Å2 for a sur-
face atom, 8.2 Å2 for atoms in an intrinsic stacking fault, and 2.05 Å2 for atoms
halfway between fcc and hcp sites (in a partial dislocation). Equation (6-9) is gen-
erally projected in the plane for use with the QC method. In two-dimension, these
values are 16.4 Å2, 4.1 Å2 and 1.025 Å2, respectively, for the QC method. The
centro-symmetry parameter is well adapted for atomistic simulations at low tem-
peratures, since no averaging for P is needed in these conditions. In the following,
atoms in a perfect FCC lattice are either colored in grey or omitted for clarity, those
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with a HCP structure or representing a stacking fault are in blue color, and all other
non-coordinated atoms appear in green or red colors.

6.2.4.2. Local Crystal Structure by Ackland and Jones

In contrast to the centro-symmetry parameter, the method using the formulation
by Ackland and Jones [59] averages out statistical fluctuations due to the temper-
ature boost, because it is not based on the distance between atoms, but the angles
between atom pairs. This parameter classifies atoms depending on the closest crys-
tallographic structure it belongs to (BCC, FCC, HCP or unknown). The procedure
[59] first calculates the mean squared separation

r2
0 =

∑

j=1,6

r2
ij

/
6, (6-10)

for the nearest six particles to atom i (i.e., the closest neighbors that verify
r2

ij <1.55r2
0). For each of the neighbor pairs found, the bond angle cosines cos(θ jik)

is determined. The procedure, which enables determining the local crystal structure
to which atom i can be assigned, relies on a table provided by Ackland and Jones
that separates the possible cosine values into 8 ranges. The color scheme used for
this parameter is the same than that for the centro-symmetry parameter.

6.3. EFFECTS OF INTERATOMIC POTENTIALS ON EQUILIBRIUM
MICROSTRUCTURES

Interactions amongst atoms for FCC metals are represented using an embedded-
atom-method (EAM) potential [60], which most accurately predicts the energies of
defects and surfaces in such metals. The total energy of a monoatomic system by
EAM is described by [61]:

Etot = 1

2

∑

ij

V
(
rij

) +
∑

i

F (ρ̄i) (6-11)

where V(rij ) is a pair potential as a function of the distance rij between atoms i and
j, and F is the embedding energy as a function of the host density ρ̄i induced at site
i by all other atoms in the system. The latter is given by:

ρ̄i =
∑

j �=i

ρ(rij), (6-12)

ρ(rij) being the atomic density function. The second term in Eq. (6-11) is volume
dependent and represents, in an approximate manner, many-body interactions in the
system. EAM potentials are fitted to experimental and ab-initio data for the values



162 V. Dupont and F. Sansoz

of equilibrium lattice parameter, the cohesive energy, the elastic constants and the
vacancy formation energy. This basic set of properties can often be complemented
by other data such as planar fault energy and phonon frequencies.

Hereafter, we focus our attention on the effect of EAM interatomic potentials in
predicting generalized stacking and planar fault energies, as well as GB energies
in equilibrium microstructures. To this end, we compare both the Mishin-Farkas
[61] and Voter-Chen [62] potentials for Al. For brevity in the following, these
two potentials are referred to as Al-VC and Al-MF potentials, respectively. For
each potential, past QC procedures [63, 64] were used to calculate the general-
ized planar and stacking fault energy curves and the GB energy of 18 � <110>
tilt bicrystals consisting of symmetrical tilt GBs. The generalized stacking and pla-
nar fault energy curves for both potentials are shown in Figure 6-6a. The unstable
stacking fault energy (γUSF), stacking fault energy (γSF) and unstable twinning
fault energy (γUTF) are also indicated in this figure. We find that the calculated
energy values are significantly smaller for the Al-VC potential than the Al-MF
potential, which is consistent with the predicted values in the literature [61]. In
addition, we find that all the ratios γSF/ γUSF and γUTF/ γUSF are similar and equal
to 0.81–0.86 and 1.30–1.32, respectively, which suggests the same slip and twin-
ning behavior regardless of the interatomic potential for Al [65]. Figure 6-6b also
shows a significant increase in GB energy for the symmetric tilt bicrystals from
the Al-VC potential to the Al-MF potential. The difference of GB energy at atomic
level, as a function of EAM potential, is also clearly shown in Figures 6-5c and
d, where a cluster of three nanograins is represented. Both atomic energies and
structures at GBs are dramatically changed by the interatomic potential, despite
the same misorientation angles between grains. This observation therefore indicates
that the bonding properties of the GBs will be markedly different depending on the
potential.

Figure 6-6. Comparison of the Mishin-Farkas and Voter-Chen EAM potentials for Al by QC method
for (a) the generalized stacking fault energy (solid line) and planar fault energy (dashed line) curves, and
(b) GB energies in symmetrical <110>-tilt bicrystals
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Figure 6-7. Effects of EAM potentials on equilibrium microstructures in the simulated nanocrystalline
Al film shown in Figure 6-5. (a)–(b) Distribution of misorientation angles (ψ + ψ′) between grains. (c)–
(d) Degree of symmetry of the GB structure from perfectly-symmetrical tilt GB (STGB, ψ – ψ′ ∼0) to
highly-asymmetrical tilt GB (ATGB, ψ – ψ′ ∼180◦). Reprinted from [44] with permission from Elsevier

Furthermore, the effect of potential is investigated on the misorientation angle
and asymmetry of the GBs in the 7-nm-grain-size microstructure shown in Figure
6-5. Figure 6-7 shows the angles ψ and ψ′, which represent the angle between the
[110] lattice direction and the GB plane for two neighboring grains, respectively.
The sum ψ + ψ′ characterizes the misorientation angle at the boundary separating
two grains. Some minor differences in the misorientation angle ψ + ψ′ are observed
due to the rearrangement of microstructure after relaxation, even though the original
model is identical. It can however be concluded from Figures 6-7a and b that the
distribution of misorientation angle and, therefore, the overall microstructure of the
GB network are not significantly affected by the potential. In addition, the difference
ψ – ψ′ represents the degree of symmetry of the GB, where ψ – ψ′ = 0◦ corresponds
to perfectly-symmetric tilt GBs, and ψ – ψ′ = 180◦ to highly-asymmetric tilt GBs.
In Figures 6-7c and d, the degree of symmetry is found to be homogeneous along
the set of values for ψ – ψ′ regardless of the potential.

In summary, the two EAM potentials for Al mostly differ in their prediction of
the generalized stacking and planar fault energies, and GB energies, but should not
significantly influence the grain morphology at equilibrium and slip behavior in the
material.
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6.4. EFFECTS OF A GRAIN BOUNDARY NETWORK ON INCIPIENT
PLASTICITY DURING NANOSCALE CONTACT

Shear banding is an important mode of plastic deformation in nanocrystalline
materials, and is best illustrated by a 5 nm-grain-size simulation using the Al-
VC potential (Figure 6-8). At the onset of plasticity, significant GB sliding takes
place leading to rotational deformation of the grains with limited intragranular slip.
During this process, the GB structure is significantly changed and, in some cases,
several GBs tend to be aligned (Figure 6-8b). The bands are formed by the slid-
ing of aligned interfaces separating the grains (see for example grains 3 and 4 in
Figure 6-8c). When the shear plane encounters a triple junction and is stopped by
a grain that is not in its alignment, the shear band follows its path by intragranular
slip in the prolongation of the shear plane. For example, a stacking fault left behind
a partial dislocation can be seen in grain 2 in the prolongation of the shear plane in
Figure 6-8b. Subsequently, the newly created stacking faults are found to nucleate
mechanical twins, which grow under the applied shear stress. Mechanical twinning
has also been observed in nanocrystalline Al under indentation by Chen et al. [28]
(This result therefore suggests that there is good agreement between simulation and
experimental data).

Figure 6-8. Formation of a thin shear band in a 5-nm-grain-size nanocrystalline Al during indentation
by QC method. (a) Partial view of the contact interface and location of the grain cluster associated with
the shear band. (b) Close up view of the shear plane. (c) Magnitude and direction of atomic displacements
between two loading increments shown by arrows. Reprinted from [47] with permission from Elsevier
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Figure 6-9. Effects of EAM potential on the mean contact pressure as a function of penetration depth in
a 7 nm-grain-size QC simulation. (a)–(c) Loading and unloading responses with Voter-Chen (Al-VC) and
Mishin-Farkas (Al-MF) EAM potentials for Al. Snapshots showing the deformation in the film near the
contact region for different stages of indentation for (d)–(e) the Al-VC potential, and (f)–(g) the Al-MF
potential. Adapted from [44] with permission from Elsevier

Furthermore, Figure 6-9 represents the evolution of the mean contact pressure
as a function of penetration depth for both the Al-VC and Al-MF potentials. A
fitting between atomistic simulation and elastic continuum theory [44] shows an
excellent agreement in the initial portion of the curves. Both curves also show clear
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evidence of flow serration at large depths of indentation, which is consistent with
the formation of shear bands. In Figure 6-9, however, the plastic flow serration is
somewhat less intense with the Al-VC potential than the Al-MF potential. In the
latter, a clear change in slope occurs for a penetration depth of 34 Å, which corre-
sponds to the propagation of an extensive shear band by intragranular slip through
several grains (not shown). Furthermore, Figures 6-9b and c reveal that the con-
tact pressures are almost identical between atomistic results and elastic theory until
the two curves reach a depth of 10–15 Å. The divergence between elastic and atom-
istic curves marks the onset of plasticity from a macroscopic, continuum standpoint.
These curves also provide direct evidence that the onset of plasticity occurs at signif-
icantly larger contact pressure in the Al-MF potential than the Al-VC potential. The
pressure difference becomes even more significant at the end of the indentation pro-
cess, where contact pressures of 4.3 and 8.6 GPa are observed for the two potentials,
respectively. Investigation of the depth of the residual impression after unloading
also shows some significant differences in the constitutive response between the
two potentials.

The change in nanoindentation behavior can be largely interpreted from fun-
damental differences in plastic deformation mechanisms at GBs as a function of
potential. While the nucleation of a few dislocations takes place at the tip/substrate
contact interface during the elastic portion of the contact curves with both poten-
tials (Figures 6-9d and f), more GB-mediated activity in the substrate occurs with
the Al-VC potential. Here, GB-mediated plasticity is characterized by one of the
following mechanisms: (1) the emission of partial dislocations and twins emanat-
ing from GBs, along with their propagation through intragranular slip, (2) GB
sliding and grain rotation, and (3) stress-driven GB migration coupled to shear
deformation.

6.5. MECHANISMS OF GRAIN BOUNDARY MOTION DURING
CONTACT PLASTICITY

Several mechanisms for grain growth have been investigated in nanocrystalline
metals. These can primarily be divided into two categories: Thermally-driven mech-
anisms and stress-assisted mechanisms (Figure 6-10). The first category is related
to curvature-driven GB motion [66] (Figure 6-10a). During this process, the GB
tends to move towards the center of the curvature to reduce the total area of GBs,
and thus the energy of the system [67]. Another thermally-driven mechanism is GB
atom diffusion [68], during which the atoms jump in the crystal into point vacancies,
creating a new vacancy in the process.

The last two mechanisms in Figure 6-10 represent stress-assisted mechanisms,
which can make grain growth at cryogenic temperatures possible [31]. The first
mechanism corresponds to rotation-induced grain coalescence [67], during which
one grain rotates in order to match the orientation of a neighbor grain, thus form-
ing a single larger grain (Figure 6-10d). This process is often associated with
GB sliding [69]. The second mechanism of strain-driven grain growth is related
to shear-coupled GB motion (Figure 6-10e). In this case, the normal motion of



Multiscale Modeling of Contact-Induced Plasticity 167

Figure 6-10. Schematic illustrations of different mechanisms of GB motion in metals. (a)–(b)
Thermally-driven GB motion. (c) Strain-driven GB motion by either (d) grain rotation and coalescence
or (e) shear-coupled GB migration

GBs results from a shear strain applied tangentially to them and causing tangential
motion, or coupled motion [69–72].

To illustrate such grain growth mechanisms during indentation, Figure 6-11
presents the indentation of a 7-nm-grain-size Al film by a spherical tip from MD
simulation at 300 K. In this figure, the GB atoms and lattice defects appear in white
color, and the other atoms are colored according to the grain they belonged to at
the beginning of the simulation. Several major grain growth events are visible in
Figure 6-11: between grains 1 and 2, between grains 3 and 4, for grains 5, 6, 7 and
8, which all appear to be strain-driven as demonstrated below.

The grain growth events occurring between grains 1 and 2 and between grains 3
and 4, starts very early in the indentation process. A closer inspection of the evolu-
tion of these grains shows that the misorientation angles at the GB are very small
before relaxation, which makes them low-angle GBs. After relaxation, the grains
slightly rotate, until the misorientation angle is low enough to have the atoms at
the interface in perfect FCC arrangement. The corresponding mechanism of GB
migration is therefore rotation-induced grain coalescence.



168 V. Dupont and F. Sansoz

Figure 6-11. Three-dimensional MD simulation of microstructure evolution in nanocrystalline Al
indented by a 9 nm-radius Al tip. General view obtained (a) after relaxation and before indentation
(ε = 0%) and (b) at maximum indentation (ε = 94%). (c) Close-up view of grains 1, 2, 5, 6, 7 and 8
when (c) ε = 0% and (d) ε = 94% [48]

The deformation process in grains 5, 6, 7 and 8 is clearly different from that
in grains 1, 2, 3 and 4, because the boundaries are followed moving across neigh-
bor grains (Figure 6-11d). We find that the rate of GB migration can be strongly
decreased as the tip radius decreases which tends to indicate that this mechanism
depends on the local strain. Furthermore, the shape of grain 7 evolves from origi-
nally square to trapezoidal after migration of the interface between grains 7 and 8.
These results suggest that the process of GB migration is coupled to shear deforma-
tion in this case. In this process, grains 6 and 8 have grown, while grains 5 and 7 have
notably decreased in diameter. Also a new grain was grown at the triple junction of
grains 1, 6 and 8.

However, MD simulation makes the analysis of strain-driven GB motion diffi-
cult due to the implications of thermal effects. In contrast, QC simulations, which
operate at zero temperature, may readily eliminate those effects. For example,
Figure 6-12 shows the motion of the interface separating grains 3 and 5, which cor-
responds to a high-angle GB (ψ + ψ′ = 160.7◦), from the QC simulation presented
in Figure 6-5 with the use of the Al-VC potential.
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Figure 6-12. QC simulation of shear-coupled GB motion in nanocrystalline Al during indentation. (a)
Local lattice rotations at GB forming vortex-like patterns. (b)–(e) Snapshots showing the evolution of
the atomic-level shear stress relative to the orientation of the interface between grains (in units of GPa).
The boundaries of grains 1 and 2 have been highlighted for clarity. Adapted with permission from [46].
© 2006, American Institute of Physics

Each stress map represented in Figure 6-12 corresponds to a different loading
level taken from before the start of the migration to the end of the GB motion. It
is found that the interface migration process causes a strong stress relief in the GB
network. Furthermore, the sign of the stress, indicated by the color blue or red in
Figure 6-12 indicates that the GB between grains 3 and 5 is under shear stress,
one side being under positive stress, and the other under negative stress. In this GB
migration process, it is clear that the size of grain 5 has increased at the expense
of grain 3. Therefore, this analysis shows clear evidence that the mechanism of
stress-assisted grain growth corresponds to shear-coupled motion.

Furthermore, Figure 6-13 shows that GB migration is only observed for the Al-
VC simulation. The original position of the GB before indentation is indicated by
a dashed line for reference. The GB in the Al-VC simulation has moved about
34 Å into grain 3, whereas no significant differences are found with the Al-MF
simulation, other than some minor rearrangements of GB atoms.

In summary, the mechanism of stress-driven grain growth was found associated
with shear-coupled GB motion, rather than by rotation-induced grain coalescence.
We can therefore conclude that the plastic flow is found enhanced in the case of the
Al-VC simulation because of the increased GB deformation activity in the form of
GB sliding and coupled GB motion at both 0 and 300 K. This finding could therefore
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Figure 6-13. Effects of EAM potential on the shear-coupled GB migration between grains 3 and 5 as
shown in Figure 6-6, as a function of penetration depth δ. (a) Voter-Chen potential. (b) Mishin-Farkas
potential. Reprinted from [44] with permission from Elsevier

suggest a new means to control stress-assisted grain growth mechanisms by altering
the local structure and energies at GBs.

6.6. CONCLUDING REMARKS

In this chapter, we describe two computational approaches using either MD or
QC methods to investigate the complexity of plastic deformation and yielding in
nanocrystalline GB networks under nanoscale contact. These approaches show that
the interatomic potentials play a key role in the prediction of equilibrium structures
and energies at GBs, which in turn has a strong influence on the mechanisms of plas-
ticity mediated by GBs, such as GB-mediated crystal slip, GB sliding, grain rotation
and GB migration. It is also demonstrated that shear-coupled GB motion due to the
strain applied by penetrating tips, is an important mechanism of grain growth and
plasticity at both absolute zero and room temperature.

An outlook for future research in this area can be summarized by asking two
fundamental questions. First, can the addition of impurities significantly influence
the simulation of GB-mediated plasticity in nanocrystalline metals? It is acknowl-
edged that solute impurities, like H and O impurities in Al, have strong impact on
stacking fault and GB energies, and plasticity in FCC metals [32, 73–75]. To this
end, proper numerical formalisms, such as local chemical potential [75], should
be developed to include impurities in multiscale simulations. Second, how do the
geometry and deformation of tips influence plasticity induced by nanoscale con-
tact in nanocrystalline materials? Clearly, present simulations do not take into
account the finite-temperature deformation of the tips. Atomistic simulation on
this aspect may provide more fundamental understanding of tip-film interactions,
which may ultimately help engineers explore new routes for high-throughput
nanomanufacturing technology, such as nanoimprint lithography [76].
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Abstract: Silicon nanowires have been the subject of intense investigation over the last decade.
The experimental realization of nanowire configurations with a wide range of diame-
ters, lengths, and surface types leads us to envision a wealth of applications, running
from selective sensors of rapid response to electronic devices. In this period, theoreti-
cal modeling has helped to understand the electronic, mechanical, optical and transport
properties of nanowires and to explore applications of such properties in the context of
the current electronic technologies. These modern theoretical calculations have reached a
point where realistic description of materials properties are provided by computational
simulations. Carefully constructed empirical potentials provide a good description of
silicon-nanowire energetics, making possible investigations of the stability of silicon
wires with different surface terminations (or facets) for a given family of nanowires.
Simulations using empirical potentials have also been employed to examine the thermal
and mechanical stability of silicon nanowires, and also the response under external load.
In the latter case, there is and indication that the response under load of silicon nanowires
is different from the bulk, to the extent that crack propagation is suppressed and healing
at the crack is mediated by surface effects. Investigation of nanowire properties are also
within the reach of tight-binding and first principles methodologies, that have been used
to examine the effects of quantum confinement on the nanowire electronic, transport and
structural properties, as well as the nature of their surface states. These methods have also
been used to examine the possibility of structural transitions of very thin silicon wires,
induced by surface effects

Keywords: Nanowires, Atomistic modeling

7.1. INTRODUCTION

Nanoscience and nanotechnology have seen a remarkable development over the
last decade, mostly because substantial advances in experimental techniques have
allowed to manipulate matter at the nanometer scale. For example, the current
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challenge in developing faster and more efficient devices has driven researchers
to explore the limits of materials properties, unavoidably leading to the nanoworld
[1]. In this context, one of the main goals is to understand and manipulate one-
dimensional (1D) nanostructured systems, which are envisaged as fundamental
building blocks for constructing nanoscale electronic devices [2–6]. A variety of
prototype devices have already been constructed. To name only a few, under the
risk of ignoring some of the voluminous literature that has accumulated on this
topic, reported prototype-device fabrication include: electron memory cells [7, 8],
passive diode structures using crossed p- and n-type silicon nanowires and active
bipolar transistors based on heavily doped nanowires [9], logic gates built with
integrated nanoscale field-effect transistors [10], three terminal devices [11], pho-
tonic devices [3], nanowire based lasers [12, 13], and chemical and biological
sensors [14–16]. Besides the interest for device applications, studies on nanowires
offer the possibility of understanding, fundamentally, the roles of dimensionality
and size in optical, electrical, magnetic, mechanical and transport properties of
low-dimensional condensed-matter systems.

Along with carbon nanotubes [17], semiconducting nanowires are among the
most extensively studied nanostructured systems. To a large extent, silicon has
remained the material of choice for the electronic device technology, and silicon
nanowires (SiNWs), in particular, have attracted great interest, since it is expected
that any proposed silicon-based nano-devices should be “easily” integrated into the
existing silicon-based electronic technology. When properly functionalized, SiNWs
may work as electronic devices, such as diodes or transistors [18]. Moreover, nar-
row SiNWs present quantum confinement, which should allow gap engineering and
the possibility of incorporating silicon based optical devices in integrated circuits
[19–21]. Full silicon integration into nanotechnology requires understanding the
structural and electronic properties of SiNWs and devising controlled processes to
build SiNWs with tailored properties.

Starting in the mid 1990’s, several routes have been demonstrated for the syn-
thesis of semiconducting nanowires. Perhaps the first reported work on silicon
nanowires synthesis, as such, is that of Liu and collaborators, which employed
a combination of electron beam lithography, reactive ion etching, and dry ther-
mal oxidation [22, 23]. Further studies employed a variety of synthesis techniques,
such as etching [24], nanolitography [25], scanning tunnelling microscopy (STM)
manipulation of silicon atoms on substrates [26], deposition of nanowire material
into porous templates [27, 28], laser ablation [29, 30], and deposition or subli-
mation of silicon vapor [29, 31–35], among others. In order to devise SiNWs
with pre-determined properties, it is important to develop procedures that enable
controlling the growth direction and surface types. The search for better control
of nanowire surface morphology and crystalline orientation has led to synthesis
protocols based on either vapor-liquid-solid or super-critical-solution liquid-solid
processes, in which nanowires grow usually from a metallic nanoparticle catalyst
[36–46]. Several authors have succeeded in getting nanowires with a wide range of
diameters and along several crystallographic lattice directions: Holmes et al. have
grown SiNWs along the 〈100〉 and 〈110〉 lattice directions [37]. Ma et al. reported
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ultra-thin hydrogen-terminated wires along 〈100〉 directions [46]. Wu et al. reported
SiNWs along 〈110〉, 〈111〉, and 〈112〉 lattice directions [47].

With these experimental developments leading to the synthesis of SiNWs from
a variety of methods, it was only natural that the expertise gained by theorists
in addressing the structural and electronic properties of silicon clusters [48, 49],
using ab initio, tight-binding (TB) and classical potential methodologies, would be
applied to the study of these properties in SiNWs. Indeed, over the last few years,
theoretical investigations on the properties of SiNWs have been performed using
those methodologies or a combination of them. Among the pioneers, Menon and
Richter [50] employed TB molecular dynamics to investigate the structural stability
of Si wires, concluding that, at variance with small- and intermediate-sized silicon
clusters, which undergo extensive reconstruction and relaxation down to the core
atoms, a fourfold-coordinated crystalline nanowire core is stable when surrounded
by a reconstructed surface of threefold coordinated atoms, drawn from the most sta-
ble bulk reconstructions. Single-walled nanotubes (SWSiNT) were also considered
as possible quasi-one-dimensional forms of silicon. Several works examined the
structural and electronic properties of SWSiNTs [51–56]. However, despite some
works suggesting otherwise [54], more likely, in the case of silicon, the overlap of
π -electrons is not strong enough to stabilize the planar graphene form, and a carbon-
like SWSiNT should be mechanically and thermally unstable [52, 55, 57], and even
at zero temperature puckering should be considerable and a substantial amount of
sp3-hybridized orbitals would mix into the sp2 network [52, 55, 56]. Ab initio cal-
culations by Dumitrica et al. [58] indicated that hollow nanotube-like structures can
be stabilized by endohedral metal atoms. Other types of hollow SiNT structures
have been considered, with facetted cross sections [59], variable wall thickness [60,
61], or with hydrogen-passivated surfaces [62]. These may be considered to fall in
the category predicted by Menon and Ritcher, to the extent that they represent sp3-
hybridized structures with either tetrahedral or hexagonal symmetry, and with either
reconstructed or saturated surfaces.

In the last few years, theoretical research has focused on sp3 silicon-bulk
derived structures [63–81], given the experimental observation of the prevalence
of nanowires oriented along the 〈110〉, 〈112〉, and 〈111〉 bulk crystalline direc-
tions [47]. A number of different possibilities, with prevailing sp3 structures,
have been considered: trigonal-prism geometries [64]; fivefold and sixfold cross-
section symmetries both crystalline [77] and polycrystalline [63, 65]; and cage-like
structures [31, 67–69, 71, 75]. The energetics and orientational dependence of elec-
tronic, mechanic, and surface properties in the bulk-derived geometries have been
addressed by a number of authors [66, 70, 72–74, 76, 79, 81]. The works of Ng et al.
on gap reduction upon surface functionalization [74]; of Lu et al. on hydrogen-
chemical-potential dependence of the stability of passivated wires [76]; of Rurali
et al. on charge injection effects upon structural features [79]; and of Wu et al. on
tapering and charge inhomogeneities effects [81], point in the direction of impor-
tant issues related to the future SiNW integration. Another issue that deserves a
full address is the stability both mechanical and thermal of the various alternative
nanowire structures proposed in these works. For example, identification of possible
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soft-mode phonons, and of the strain-state dependence of these modes, is required
in order to address the issue of mechanical stability of these geometries against
structural transformation.

In the following, we outline some recent theoretical investigations that employed
atomistic simulations to address the energetics and structural properties of SiNWs.

7.2. METHODOLOGICAL CONSIDERATIONS

Theoretical investigations, based on atomistic simulations, have become a powerful
tool to understand and/or predict materials properties. This field has blossomed as
a result of intensive research and the development of precise methodologies over
the last decades, which now enable researchers to describe materials properties with
an unprecedented precision. The central element in the investigation of materials
properties is the level in which interatomic interactions are described, ranging from
pure first principles models, based on quantum mechanics with no fitting param-
eters, to semi-empirical ones, in which quantum mechanics is still considered but
with a few fitting parameters, to empirical models, based on classical mechanics
using functional forms fitted to experimental results.

First principles (or ab initio) methods take into account all the particles (elec-
trons and nuclei) of the system and their fundamental Coulomb interactions [82–84].
In the context of condensed matter physics and materials science, first principles
approaches are usually based on the density functional theory (DFT) [82, 83]. In a
few words, in DFT it is shown that the ground-state energy of a many-body system
of electrons and nuclei is a functional of the electronic density of the system, and an
operational scheme is proposed that maps the many-body problem into an effective
single-particle set of equations, known as Kohn-Sham equations. The mapping is
exact, and the only fundamental approximation needed in practical implementations
of this scheme is due to the unknown form of the so-called exchange and correlation
functional, which contains the contribution of quantum-fluctuations to the mutual
electronic Coulomb interactions, and also a many-body correction to the kinetic
energy. This has proved a very successful approach to address the ground-state
properties of a large variety of condensed-matter systems [84].

While first principles approaches provide a precise description of the interatomic
interactions and consequently of the materials properties, the computational costs
involved scale with some power law on the number of atoms in the system. As a
result, simulations are restricted to systems involving only up to, at most, a thousand
atoms, which is not enough to capture many important atomistic and mesoscopic
phenomena. Approximations, leading to less expensive models, that make possi-
ble to treat systems involving a higher number of atoms have been implemented.
Semi-empirical models are still computationally intensive but allow investigations
of systems with thousands of atoms. These are based on a local minimal-basis
description of the quantum mechanical interactions, in the so-called tight-binding
(TB) approximation. The strategy, in this case, is to constrain the computational
scale of the problem by restricting the electronic matrix elements, that constitute
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the Hamiltonian of the electronic interactions, to near-neighbor interactions and to
a sub-space of the Hilbert space that spans the valence bands (or highest-occupied
molecular orbitals in a molecular system) and a few of the lower conduction bands
(or lowest-unoccupied molecular orbitals). Moreover, the multi-center integrals
needed to evaluate the Hamiltonian matrix elements are not computed. Rather, the
matrix elements are parameterized such that results for a set of selected properties,
in a reference configuration, agree with either experimental or first principles results.

A more radical approach is to describe the interactions by classical potentials,
in which the electronic effects are taken into account only implicitly, allowing to
treat systems with millions of atoms. The gain in computational efficiency with
semi-empirical and empirical methods comes with a price: a considerably poorer
description of the microscopic phenomena, such that those models should be used
with caution, staying within their range of validity. A very useful approach to
describe nanosystems has been to combine methods with different levels of approxi-
mation, in the so-called multi-scale methods that combine empirical, semi-empirical
and first principles methods [85, 86].

In the following section, we describe the main theoretical ingredients of empir-
ical and semi-empirical models, that have been employed to investigate SiNW
properties. A review on ab initio methodologies can be found elsewhere [84].

7.2.1. Empirical Models

The cohesive energy, Ec(Rn,rm), quantifies the cohesive strength of a material, and
is given in terms of the degrees of freedom of the Na nuclei ([Rn]) and Ne elec-
trons ([rm]) of the system. While it could be computed by solving the quantum
mechanical equations for the electrons of the system, approximations can be used
to describe cohesion with less expensive methods. One strategy is to employ an
approximate description of the electronic states, but still keeping the electronic
degrees of freedom explicitly. One of these approaches, the TB method, provides
a realistic description of interatomic bonding, although it is still computationally
intensive. This method will be described in Section 7.2.2. An extreme approach
is to remove all the electronic degrees of freedom, and Ec would be given by
Ec(Rn,rm) ≈ Ec(Rn). In this case, the electronic effects would be considered only
implicitly, in the construction of the functional form of the empirical potentials.

For materials in which the covalent interactions prevail, several empirical poten-
tials have been developed over the years. Only for silicon, there are more than
forty models in the literature, many of them have been extensively used and tested
[87, 88]. Three empirical potentials have been intensively used to model silicon
properties: the Stillinger-Weber [89], the Tersoff [90], and the EDIP [91] models.
Specifically for SiNWs, all these potentials have been used to study the structural
properties and stability, and have been compared recently [92]. Overall, all three
models provide a reasonably realistic description of the structural properties of these
wires.

Cohesive energy can be written as a function of the atomic arrangement, in terms
of a many-body expansion [93]
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Ec =
Na∑

i

V1(Ri) +
Na∑

i,j

V2(Ri,Rj) +
Na∑

i,j,k

V3(Ri,Rj,Rk) + · · · , (7-1)

in which the sums are over all the Na atoms of the system. In principle, Ec could be
determined by an infinite many-body expansion, but the computational cost scales
with Nl

a, where l the order in which the expansion is truncated. The one-body terms
(V1) are generally neglected, but the two-body (V2) and three-body (V3) terms carry
most of the relevant effects underlying bonding. While the V2 and V3 have a simple
physical interpretation, intuition for higher order terms is not so straightforward,
and most models have avoided such terms. Truncation of this expansion up to only
two-body terms generally fails in capturing the essential properties of covalent sys-
tems; higher expansion terms, i.e. the many-body interactions, are necessary. The
many-body effects [93] could be introduced in Ec by several procedures: inside the
two-body expansion (pair functionals), by an explicit many-body expansion (cluster
potentials), or a combination of both (cluster functionals). Models which have been
successfully developed to describe covalent systems fit into one of these categories.
All three models mentioned earlier [89–91] include these many-body effects in dif-
ferent approaches. The Stillinger-Weber [89] model can be classified as a cluster
potential, with an explicit three-body expansion, while the Tersoff [90] and EDIP
[91] models can be classified as cluster functionals.

7.2.2. Semi-Empirical Models

In semi-empirical TB methods, the quantum-mechanical nature of the system is
retained. The terminology “semi-empirical” is related to the traditional way of
setting up TB Hamiltonians, by fitting the Hamiltonian matrix elements of a
minimal-set basis orbitals to experimentally measured band-structures, in a refer-
ence configuration. The minimal-set basis orbitals are chosen such as to span the
sub-space of the valence band and a few of the lowest conduction bands. More gen-
eral formulations which included efficient scaling laws have been introduced [94],
and total energies have also been incorporated, with the addition of a repulsive clas-
sical potential term, which accounts for the Coulomb and overlap repulsive ion-ion
(nuclei + core electrons) interactions. These tight-binding total energy formulations
(TBTE) also include matrix elements scaling laws, allowing for structural relaxation
and molecular dynamics simulations of systems with several thousand atoms, with
very good accuracy.

In a TBTE scheme, the total energy of a system containing Ne electrons, as a
function of the {Rn} nuclear positions, is given by

Etot [{Rn}] =
Nocc∑

i

εi + Erep [{Rn}] . (7-2)

In this expression, Etot is the total energy, the sum is over the Nocc eigenvalues
(εi) of the occupied electronic states, and Erep is the repulsive term. The occupied
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states and eigenvalues are obtained by diagonalization of a TB Hamiltonian, whose
matrix elements, in their more usual form, are written as:

Hn,m
α,β (Rn − Rm) = H0

α,β × fsc (Rn − Rm) , (7-3)

where Hn,m
α,β is the matrix element between local-basis function φα centered in the

n-th nuclei and basis function φβ centered in the m-th nuclei, H0
α,β is the value of

this matrix element in some reference configuration, and fsc is the scaling law that
gives the dependence of Hn,m

α,β in the interatomic distance. The reference values of
these interactions and the scaling functions are determined by fitting the TB results
to a chosen set of reference values, either from experiments or from first principles
calculations.

The modern versions of TB Hamiltonians include more involved scaling laws
for the matrix elements, in an attempt to describe bonding of materials in vari-
ous coordination environments (given by the number of near-neighboring atoms
to a given atomic site) [95–98]. Effective many-body screening terms [96] and
also self-consistent charge transfer have been included in some formulations [97].
These modern and more sophisticated versions are usually derived from databases
of reference DFT calculations and hence have been termed DFT-TB. A high degree
of accuracy is possible using these DFT-TB Hamiltonians, if the bonding patterns
present in the atomic structure of the system do not depart too radically from those
included in the fitting database.

Solving for the TBTE energies and forces requires diagonalization of the TB
Hamiltonian, a procedure with a computational cost that scales as N3

a (Na is the
number of atoms in the system). Linear scaling or order-N [O(N)] methods have
been developed to overcome this bottleneck [99–101]. In O(N) methods, appro-
priate functional forms for the total electronic energy (the sum of eigenvalues in
Eq. 7-2) are used, often based on a density-matrix representation of the occupied
electronic sub-space. In the O(N) formulation of [100, 101], the sum of eigenvalues
is written:

Nocc∑

i

εi = Tr
[
ρ̃H

]
,

= Tr
[(

3ρ2 − 2ρ3
)

H
]

;

(7-4)

where H is the Hamiltonian matrix, and

ρ̃ = 3ρ2 − 2ρ3 , (7-5)

is the physical density matrix. The matrix ρ contains the electronic degrees of free-
dom of the problem. Unconstrained direct minimization of Eq. (7-4), with respect
to matrix elements of ρ, leads to the minimum of the electronic energy, because,
by construction, this functional form has a local minimum at the physical density
matrix, i.e., the one corresponding to filling the Nocc lowest-energy eigenstates.
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Truncation of the matrix elements in ρ within a given localized region surround-
ing each atomic site leads to the linear scaling or O(N) behavior of the method.
This O(N) TBTE framework retains a quantum mechanical description of the sys-
tem, at a quantitative level, when combined with the more modern TB Hamiltonian
parameterizations [95–98].

In what follows, we discuss the main results of two recent investigations, one
that employed classical potentials to address the scaling laws of the energies of
SiNWs, and another that examines structural transitions of very thin SiNWs, using
a combination of ab initio and TB methodologies.

7.3. STRUCTURAL PROPERTIES: APPLICATION OF EMPIRICAL
METHODS

A major challenge in growing SiNWs is to control their final properties, such as
the growth direction, surface types, reconstruction and passivation. Recently, it has
been shown that the electronic properties of SiNWs are strongly dependent on their
surface parameters [80], such that they can present metallic or insulating character.
In order to grow SiNWs with pre-determined parameters, such as the growth direc-
tion and surface types, it is important to know the thermodynamic conditions which
would favor growth with such properties. Additionally, it is crucial to know how the
wire properties scale with the size of the nanowire.

In order to establish scaling laws for nanowires, a classical model has been
used to determine the nanowire free energy in terms of its parameters [102, 103].
This energy could be used to establish the thermodynamic conditions for nanowire
growth in equilibrium. The wire energy (F) comprises three elements: a bulk (Eb),
a surface (Es), and an edge (Ee) term,

F = Ee + Es + Eb . (7-6)

The surface term is given by the contribution of all wire facets:

Es =
∑

i

γisi , (7-7)

where γi is the surface energy of facet i, and si is the number of unit cells of type i
in the surface. Therefore, the nanowire energy lies between two limits [104]:

Ee + γmin

∑

i

si < (F − Eb) < Ee + γmax

∑

i

si , (7-8)

where γmin and γmax represent the minimum and maximum values for the sur-
face energies, respectively. Therefore, the nanowire energies in a certain growth
direction, with surfaces of mixed characters, should lie between those two limits.
However, this modeling can only establish these limits but still does not allow to
compare energies with different surface compositions [103].
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The scaling properties of nanowires, such as their energies, have been described
in terms of their diameters [80, 105, 106]. However, defining nanowire properties
within a single parameter, such as diameter, is not simple, since nanostructures based
on covalent bonding generally have facets and do not have a single diameter param-
eter. Authors either avoid defining such a parameter [69, 80] or describe the wire
representative dimension as its smallest diameter, taken from images of the wire
cross-section [106]. Other authors take the diameter of the smallest cylinder that
contains the wire [46, 105]. If a single diameter is used, scaling of the nanowire
energetics as function of its cross-section size takes into account an average of the
surface energies of the various facets.

Considering the SiNW faceting, the wire perimeter (P), and not the wire diam-
eter, provides a more detailed description of the nanowire scaling properties [104].
The wire perimeter comprises the sum of the length of each facet (fi) of the wire
(P = ∑

fi), shown in Figure 7-1. The surface size of each facet is determined by
fi × L (L is the wire length) and the total wire surface is given by P × L. Therefore,
a wire scaling law described in terms of its perimeter is equivalent to a law in terms
of its total surface. Considering that in a nanowire, the surface/volume ratio is very
large, it is reasonable to consider that scaling laws should be described in terms of
the wire surface.

The wire energy can be given in terms of the facet length, fi, shown in Figure 7-1.
The energy limits of Eq. (7-8), can be written in terms of the wire perimeter (P =∑

i fi). Dividing all the terms in Eq. (7-8) by the number of atoms, N ∝ P2, per unit
length, one gets the following relation for the wire energy per atom [104]:

EeP−2 + γminP−1 < (F − Eb)/N < EeP−2 + γmaxP−1. (7-9)

Equation (7-9) gives the limits for wire energy in terms of their perimeters. For
large perimeters, the edge effects could be neglected, and the wire energies should
have a linear relation with P−1, and lie between two limiting cases, related to high
(γmax) and low (γmin) surface energies. This model could be confirmed by atomistic
simulations, combining interatomic potentials [91], discussed in Section 7.2.1, and
molecular dynamics. Considering SiNWs in a 〈001〉 growth direction, one could
have wires with different facets, ranging from wires with pure {100} surfaces to
wires with pure {110} surfaces, as represented in Figure 7-2a.

Figure 7-2b shows the energy per atom (Enw) of 〈001〉 SiNWs as a function of
P−1. This energy is defined with relation to the reference crystalline energy per

f f

f f

f f

1 4

2 3

6 5

Figure 7-1. Cross-section of a typical silicon nanowire. The wire perimeter (P) is given as the sum of
all the facet sides
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Figure 7-2. (a) A cross-sectional representation of the wires with 〈001〉 growth direction with pure
{100}, mixed ({100} + {110}), and pure {110} surfaces. (b) Nanowire energy per atom (Enw), computed
using an empirical potential [91], as a function of P−1 for 〈100〉 nanowires. Circles (•) represent wires
with pure {110} surfaces, the squares (�) those with pure {100} surfaces, and the triangles (�) those with
mixed ({100}+{110}) character. The dotted and dashed lines are data fittings coming from configurations
that determine the energy limits

atom, such that very large wires (P−1 → 0) tend to crystalline silicon, and the
respective energy tends to zero. The nanowire energies follow a universal scaling
law, for each facet family. The energy of a nanowire with any surface composi-
tion (pure or mixed character) falls within a certain region of the graphics, always
between wires with {100} and {110} pure surfaces. These results are consistent: for
a certain wire perimeter, the wire energy could have several values, depending on
the surface types. The crystalline Si {100} surfaces have higher energies than {110}
surfaces [107], therefore it is consistent that wires (with the same perimeter) have
higher energies if they have {100} rather than {110} pure surfaces. Such results are
fully consistent with the analytical model of Eq. (7-9). For large wire perimeters,
edge effects can be neglected, and there is a linear relation between energy and the
inverse of the wire perimeter. However, for smaller perimeters, edge effects become
important [103, 108], leading to non-linear behavior. This behavior, of a window
in which nanowire energies lie, could also be observed for SiNWs with 〈110〉, and
〈112〉 growth directions [104].

The results on Figure 7-2 provide the thermodynamic conditions for growing
〈100〉 SiNWs. Those results showed that wire properties are strongly dependent
on the surface properties. However, another important aspect of these thin wires
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Figure 7-3. Stress (σ ) strain (ε) curve of a thin wire (〈001〉 SiNW with mixed {100} + {110} surface
character) computed using an empirical potential [91] and molecular dynamics at finite temperature
(T = 350 K). The inserts represent the respective atomic wire configurations (near the deformation
region) for several strains

is how they deform in response to external load, and the role of surfaces in such
deformation processes. The typical behavior of a bulk material under load is a
linear stress-strain relation for small strains, and for larger strains the material
presents a stress saturation until rupture. Figure 7-3 shows the response of a
SiNW to external load, computed combining an empirical potential and molecular
dynamics. The wire response is essentially equivalent to that of a bulk material,
but the wire appears to support considerably larger strains before full rupture. For
small strains (ε<0.05), the stress-strain curve has a linear behavior, which indicates
an elastic response. For larger deformations (0.05< ε<0.13), inelastic behavior
takes place. At about ε ≈ 0.13, there is a large decrease in the stress, and the wire
starts to open a surface crack. It would be expected that, for a certain large strain
(here ε ≈ 0.13), the nanowire would simply follow a fracture process, as observed
in bulk experiments [106]. However, the evolution of the nanowire deformation
allows larger strains, with considerably larger nanowire elongations. For those
large strains, the crack did not evolve because atoms in the surface had enough
thermal energy to diffuse toward the crack, preventing crack propagation and full
rupture.

The above results show how faceting can be described by a scaling law that
considers the nanowire perimeter and takes into account various possible surface
terminations (or facets) for a given family of nanowires. In the following, we discuss
a related but different issue, which is the stability of SiNWs, derived from bulk
structures other than the cubic-diamond one, due to surface effects, for wires of
very small diameters, of the order of 1 nm.
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7.4. MORPHOLOGY OF THIN SILICON NANOWIRES:
APPLICATION OF TIGHT BINDING AND FIRST
PRINCIPLES METHODS

In the limit of the ultrathin wires, with diameters of the order of 2 nm and smaller,
the surface-to-volume ratio is large enough that structural stability is strongly dic-
tated by surface effects. Kagimura et al. [105] have investigated the possibility
of structural transitions from the cubic-diamond (cd) nanowire forms to alter-
native geometries, for nanowires with diameters (D) between 0.4 and 2.0 nm.
Calculations in [105] were performed in the DFT framework [83], within the
generalized-gradient approximation (GGA) [109] and norm-conserving pseudopo-
tentials [110–112], using the SIESTA code [113]. This ab initio methodology was
combined with the O(N) density-matrix tight-binding methodology (DM-TBTE)
of [100], using the TB silicon Hamiltonian of [95]. Being a linear-scaling method
where the workload to compute the electronic structure of the system scales
linearly with the number of atoms, as opposed to the cubic scaling of matrix-
diagonalization methods, the DM-TBTE method is particularly useful in the study
of larger structures not amenable to calculation by ab initio methods.

The sequence of phase transitions in the bulk [114–119], motivates most of the
choice of geometries considered in [105]. They can be separated in three classes
shown in Figures 7-4 and 7-5:

(1) Diamond-structure nanowires – These are derived from the cubic-diamond (cd)
bulk phase, with the nanowire axis oriented along the [100] and [110] directions.
The latter is the observed orientation of SiNWs with diameters between 3 and
10 nm [47]. The wires with D > 1 nm, oriented along [110], remain cd-like after
the ab initio geometry optimization. Two examples (labelled cd1 and cd2) are
shown in Figure 7-4a and b, respectively. Both wires undergo reconstruction at
the surface but retain a crystalline core at the central interstitial channel. The cd
wires with D < 1nm undergo extensive reconstruction towards amorphous-like
structures.

Figure 7-4. Cross sections of selected SiNW structures labeled according to the parent bulk phase. In (a)
and (b), cd1 and cd2 wires derived from the cubic diamond structure, with axis along the [110] direction;
in (c), a simple cubic wire; in (d), a β− tin wire with axis along the bulk c-direction; in (e) and (f), simple
hexagonal wires with axis along the bulk c-direction (From [105])
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Figure 7-5. Side view of corrugated Si nanowire structures. In (a), corrugated wire resulting from a
structural instability of a [100] cubic diamond nanowire; in (b), a filled-fullerene nanowire. Inner atoms
are shown as green spheres (From [105])

(2) High-density nanowires – Derived from the high-density β-tin, simple cubic
(sc), and simple hexagonal (sh) bulk phases. The simple cubic wire oriented
along the [100] direction is shown in Figure 7-4c. It shows very little distortions
relative to the bulk structure, and its energy is lower than that of the sc structures
oriented along [110] and [111] directions. The relaxed geometry of the β-tin is
shown in Figure 7-4d, with the nanowire axis parallel to the bulk c-axis, passing
through the center of an interstitial channel. All sh nanowires oriented along the
bulk c direction retain the crystalline order along the wire axis after geometry
optimization, regardless of the wire radius. Two examples (sh1 and sh2) are
shown in Figure 7-4e and f, respectively. An empty-hexagon variation of sh1
was also considered, where the atom at the hexagon center is removed.

(3) Fullerene-like nanowires – The structures in this class are derived from
fullerene-like geometries [31, 67, 68]. Two of these are based, respectively,
on the two fullerene-based geometries proposed in [31], namely, the Si20 cage
polymer (ful1) and the Si24 cage polymer (ful2). Given the predicted stability
of filled-fullerene-like clusters [67, 68], two variations of these nanowires were
also considered, labeled f-ful1 and f-ful2, where two extra atoms are included
inside the cage. The structure f-ful2 is shown in Figure 7-5b. Its corrugated
structure, with the presence of fivefold rings at the surface, is similar to that
of a wire which results from the reconstruction of the cd(100) wire, shown
in Figure 7-5a. Hence, the latter was classified as fullerene-like in [105], and
labeled f-ful3. Filled fullerene-like nanowires of smaller diameters, based on
Si12 and Si16 cages, with one additional atom in the center of the cage, were
also considered, but these have relatively high formation energies, as shown
below.
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Table 7-1. Calculated total energies per atom �Etot, in eV/atom, of
selected Si phases, relative to the cubic diamond phase. (From [105])

hd β-tin sh sc bcc hcp fcc

0.01 0.31 0.33 0.36 0.52 0.52 0.55

Table 7-1 shows the total energy per atom of the relevant bulk phases, �Etot =
Etot − Ecd

tot, relative to the total energy of the cd phase (Ecd
tot). �Etot is within

0.20–0.40 eV/atom for the sc, sh, and β-tin phases, in good agreement with other
calculations [114–116]. The calculated results for the diamond to β-tin transition
pressure for Si (109 kbar) are also in good agreement with experimental results and
other calculations [114–116].

Figure 7-6 shows the calculated total energies, �Etot (relative to the cd bulk
phase, as defined previously) as a function of D, of the Si nanowires with D <

1.4 nm. In the 0.9 nm < D < 1.4 nm range, the formation energies of the high-
density sc, sh, and β-tin nanowires, and also of the fullerene-like wires, are very
close to the energies of cd1 and cd2, with energy differences of ∼0.05 eV/atom or
less. These values are one order of magnitude smaller than the energy differences
of the corresponding bulk phases in Table 7-1, showing that the energetics of wire
formation, at such small diameters, is strongly affected by surface effects, consistent
with findings discussed in Section 7.3. Figure 7-6 also shows that the amorphous
wires, derived from the instabilities of thin cd wires, have higher formation energies
than the high-density and the fullerene-like wires of comparable diameters. This
suggests that amorphous wires in this diameter range could only be produced in
conditions far from thermodynamic equilibrium.
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Figure 7-6. First-principles total energies (in eV/atom), relative to cd bulk energy, of Si nanowires as a
function of nanowire diameter. Labeling of the structures is explained in the text (From [105])
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A comment is in order regarding the hollow geometries like the unfilled-fullerene
[69, 71, 75] and the empty-hexagon structures, to the extent that they have very
high energies, when compared to the denser structures. Figure 7-6 also shows that
among the nanowires with D < 0.7 nm, the sh1 structure appears below and to the
left in the energy vs. diameter diagram, suggesting a high stability for this structure,
when compared to the other small-diameter geometries. In the range 0.7 nm < D <

0.9 nm, filled-fullerene-like wires are the most stable ones.
The results above indicate that the energetics of nanowire formation is deter-

mined by the interplay between the energies of a bulk part and a surface part of the
wire. Figure 7-7 shows –�Etot for the cd and sh Si wires, respectively, as a function
of the inverse nanowire diameter D−1. The values of the respective bulk phases (the
D−1 → 0 limit), are also shown. The Figure shows distinct trends for the cd- and
sh-based Si nanowires, with a much larger variation of the total energy per atom as
a function of D−1 for the cd-based wires than for the sh-based ones. Moreover, the
energies of the two types of Si nanowires are very close for D ∼ 1.2 nm. The results
of the first-principles calculations shown in Figure 7-7 are reasonably well fitted by
the expression

εnw = εs + (εb − εs)
(D − 2ρ−1/3)2

D2
(7-10)

In Eq. (7-10), εnw is �Etot for the nanowire based on a given structure (cd or sh),
while εb and ρ are, respectively, �Etot and the number of atoms per volume for the
corresponding bulk structure. εs is a measure of the surface energy per atom of the
nanowire. εb and ρ are obtained from the bulk first-principles calculations, leaving
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Figure 7-7. First-principles and tight-binding (DM-TBTE) total energies (in eV/atom), relative to the
cd bulk energy, of SiNWs as a function of D−1. The dashed (solid) line shows the curve obtained from
a continuum model, parameterized for cd (sh) wires (From [105])
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εs as the only fitting parameter. In Figure 7-7, Eq. (7-10) is plotted with εs = 0.83 eV
for the cd structure and εs = 0.72 eV for the sh structure.

Equation (7-10) results from a simple continuum model for a cylindrical wire
with diameter D, density ρ, and total energy Enw. Enw is decomposed into con-
tributions due to the bulk-like atoms and to the low-coordinated surface atoms:

Enw = εbρVb + εsρVs. (7-11)

By considering a surface thickness of ρ−1/3, it is straightforward to obtain
Eq. (7-10).

Although this continuum model would be valid only in the limit D–1→0, it pro-
vides a simple interpretation for the larger variation of εnw as a function of D−1 for
the cd-based wires when compared with the sh-based ones. In Eq. (7-10), the varia-
tion of εnw with D is proportional to �ε = εs − εb. �ε is about twice as large for
the cd phase than for the sh phase, meaning that the energy cost of a cd surface is
much larger than that of an sh surface. This arises from the fact that surface atoms
in a cd structure are under-coordinated, while the surface atoms in an sh structure
are still highly coordinated, reducing the energy cost of its surface. The above one-
parameter continuum model, least-square-fitted to cd and sh geometries, displays a
crossing between the two curves for D ∼ 1.2 nm. Hence, the model suggests a sta-
bility inversion resulting essentially from the larger �ε for the cd phase. The same
stability inversion is indicated by the very close ab initio values obtained for εnw for
the sh- and cd-based wires, for D ∼ 1.2 nm. Moreover, the structural instability of
the cd class of nanowires suggested by the first principles results, from crystalline-
like (for D > 1 nm) to amorphous-like (for D < 1 nm), occurs at diameters which
are very near the cd-sh stability inversion. DM-TBTE calculations allows one to ver-
ify the validity of Eq. (7-10) to wires of larger radii. The results for (110)-oriented
Si wires with 2 nm > D > 5 nm, which were not used in the fitting of Eq. (7-10), are
also included in Figure 7-7. The agreement between the ab initio-fitted Eq. (7-10)
and the DM-TBTE values for εnw is very good, at larger diameters.

7.5. CONCLUSIONS

Modern theoretical calculations have reached a point where realistic description
of materials properties are provided by computational simulations. A carefully
constructed empirical potential, such as EDIP, provides a good description of
silicon-nanowire energetics. When combined with a scaling law that considers the
nanowire perimeter, it allows for the comparison of silicon wires with different
surface terminations (or facets) for a given family of nanowires. Further, simula-
tions using this potential suggest that the response under external load of silicon
nanowires is different from the bulk, to the extent that crack propagation is sup-
pressed and healing at the crack is mediated by surface effects. Investigation of
nanowire properties are also within the reach of tight-binding and first principles
methodologies. These methods have been used to describe how, in the limit of very
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thin wires, of subnanometer diameters, surface effects may lead to the stabiliza-
tion of nanowire structures built from the simple-hexagonal bulk structure or from
filled-fullerene units.
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MULTISCALE MODELING OF SURFACE EFFECTS
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Abstract: Surface effects have recently been recognized as having the dominant effect on the
mechanical behavior and properties of nanowires. Understanding these effects will be
critical, in particular for the accurate design and functionalization of future nanowire-
based nanoelectromechanical systems, including sensors, resonators and actuators. The
purpose of this chapter is therefore to overview a recently developed multiscale contin-
uum model, the surface Cauchy-Born model, which was developed to study nanomaterials
where surface effects such as surface stresses are expected to contribute significantly to
the mechanical response. The approach is based upon a simple extension to Cauchy-Born
theory, in which continuum properties such as stress and stiffness are obtained for a given
material and crystal structure directly from an underlying atomistic potential. In partic-
ular, by explicitly accounting for differences in energy for both bulk and surface atoms,
we develop a variational formulation that leads to a nanomechanical boundary value prob-
lem that can be solved using standard nonlinear finite element methods for displacements,
stresses and strains while naturally accounting for the effects of atomistic surface stresses.
Finite element calculations using the proposed surface Cauchy-Born model demonstrate
how surface stresses cause variations in the resonant frequencies of silicon nanowires as
compared to those expected from continuum beam theory, and emphasize the importance
of nonlinear elasticity in understanding and capturing the resonant frequency variations

Keywords: Multiscale computations, Nanowires

8.1. INTRODUCTION

Nanowires have been amongst the most studied nanomaterials in recent years. The
intense interest in nanowires has emerged for a variety of reasons, foremost because
their small sizes often lead to unique physical properties that are not observed
in the corresponding bulk material. Non-bulk phenomena have been observed in
the mechanical, electrical, thermal, and optical properties of both metallic and
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semiconducting nanowires [1–3]. These unique properties have therefore gener-
ated significant interest in using nanowires as the basic building blocks of future
multifunctional nanoelectromechanical systems (NEMS) [4, 5], which have been
proposed for a multitude of cross-disciplinary applications, including chemical and
biological sensing, force and pressure sensing, high frequency resonators, and many
others [4–9].1,2

The potential of nanowires in future nanotechnologies has led to significant
interest in experimental characterization of the size-dependent elastic properties of
nanowires. The experimental techniques utilized have varied from time-resolved
spectroscopy [10] to AFM-induced bending [11–12] or resonance measurements [6,
22–30]. In general, resonance measurements to obtain the nanoscale elastic proper-
ties are predominant in the literature due to their relative simplicity as compared
to bending and tensile experiments at the nanoscale due to the reduced amount
of nanowire manipulation involved in resonance-based testing. The experimental
results show significant scatter, with some predictions of enhanced elastic stiffness
[14, 15, 23], some predicting reduced elastic stiffness [10, 29, 31, 32] with decreas-
ing nanostructure size, and some predicting no change with respect to the bulk
elastic stiffness [12,13]. Because many of the proposed applications for nanowire-
based NEMS, such as resonant mass sensing and high frequency oscillators [4, 5,
8] rely on the ability to control and tailor the nanowire resonant frequencies with a
high degree of precision, it is critical to be able to predict how the elastic properties
of nanowires scale with size.

In analyzing the mechanical behavior of nanomaterials, a key feature of interest is
intrinsic surface stresses that arise due to their large ratio of surface area to volume
[33]. Surface stresses have recently been found to cause phase transformations in
gold nanowires [34], self-healing behavior in metal nanowires [35–37], and surface
reorientations in thin metallic films and wires [38, 39]. Surface and confinement
effects are also known to cause elevated strength in nanomaterials [11,12,14,15],
orientation-dependent surface elastic properties [40–42] and a first-order effect on
the operant modes of inelastic deformation in metal nanowires [43].

The knowledge that surface effects are critical to understanding the mechan-
ical behavior and properties of nanomaterials has motivated the development of
enhanced continuum models, as standard continuum mechanics is length scale
independent. Various analytic models have been developed to study the effects of
surface stress on the resonant properties of nanobeams [44–50], or more generally
to capture the non-bulk mechanical behavior and properties of nanostructures [41,
44–60]. Due to assumptions utilized to make the analyses tractable, the coupled
effects of geometry, surface orientation and system size on the resonant properties
of nanowires have not been quantified, nor have surface stress effects arising directly

1 Portions of Section 1, 2.1, 2.2 and 3.1 are from [87]. Copyright John Wiley and Sons Limited.
Reproduced with permission.
2 Portions of Section (2.4), (6), (7) and (8) are reprinted with permission from [84]. Copyright (2008),
American Institute of Physics.
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from atomistic principles been included in the analyses, which are generally in two-
dimensions. The analyses also utilize overly simplistic pair-type atomic interactions
to describe the surface physics, which tend to incorrectly predict a compressive
surface stress for metals whereas the surface stress for metals is almost always ten-
sile. Furthermore, these models are based upon linear elastic continuum mechanics.
These errors indicate that quantitative analyses for real materials cannot be made
using these approaches.

Alternatively, multiple scale models of nanomaterials have been developed
to combine the insights into the detailed response of materials that are avail-
able through atomistics with the reduced computational expense that continuum
approaches offer. Methods for both quasistatic [61–64] and dynamic coupling of
atomistics and continua [65–74] have been proposed. With few exceptions [64], a
critical issue with these methods is that the continuum region generally surrounds
or encloses the atomistic region, thereby eliminating the effects of surface stresses
on the atomistic behavior.

Therefore, the purpose of this work is to overview a recently developed non-
linearly elastic, finite deformation multiscale continuum model that incorporates
atomistic surface stress effects to study surface effects on the mechanical behav-
ior and properties of nanomaterials. We accomplish this through a decomposition
of the potential energy of the system into bulk and surface components; while this
decomposition has been considered before [33, 51, 57], those works require either
higher order terms in the surface energy or empirical fits to constants for the surface
stress which require additional atomistic simulations. The uniqueness of the present
approach is that the surface energies are obtained directly from an underlying crystal
structure and interatomic potential; this approach is adopted since a direct link to the
underlying atomic structure is desired for the constitutive response, and constitutes
the multiscale nature of the approach. Therefore, the approach taken in this work
uses much of the machinery typically used in Cauchy-Born constitutive modeling
[61,75,76] with care taken to treat surface unit cells correctly. This modification to
treat the surface unit cells differently is the key to utilizing the Cauchy-Born rule to
model surface effects in nanostructures as the Cauchy-Born model is based upon a
bulk atomic unit cell that observes no free surface effects.

By decomposing the potential energy into bulk and surface components, a
variational formulation that is composed of surface and volumetric contributions to
the potential energy is obtained. Thus, as the structural length scale decreases and
the ratio of surface area to volume increases, the correct surface energy contribution
to the overall system energy is naturally obtained. Because the method is based
on an energetic approach, the solution of the variational equation can be readily
obtained using standard nonlinear finite element techniques; as the finite element
stresses are simply derivatives of the strain energy, the effects of the surface
energies are transferred naturally to the numerical model. This fact constitutes a
distinct advantage for the proposed approach as it can therefore be utilized to solve
boundary value problems for the deformation of nanoscale materials with arbitrary
geometries, surface orientations and external loading. We present finite element
calculations verifying the accuracy of the proposed surface Cauchy-Born model as
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compared to benchmark fully atomistic calculations for FCC metal nanowires, an
extension of the surface Cauchy-Born for diamond cubic lattices and silicon, and
also using the surface Cauchy-Born model to investigate how surface stress effects
cause deviations in the resonant frequencies of silicon nanowires as compared to
those expected from continuum beam theory.

8.2. METHODOLOGY

8.2.1. Continuum Mechanics Preliminaries

In this section, we briefly review some elements of nonlinear continuum mechanics
which are central to the Cauchy-Born formulation. The position of a material point
X in the reference configuration can be mapped to the current configuration x via

x = X + u(X), (8-1)

where u(X) is the displacement. The transformation of an infinitesimal line seg-
ment from the reference to the current configuration is described by the deformation
gradient F, which is defined as

F = ∂X
∂X

= I + ∂u
∂X

, (8-2)

where I is the identity tensor. In Green elastic theory, stress is derived by differen-
tiating the material strain energy density function. In order to satisfy material frame
indifference, the strain energy density must be expressed as a function of the right
stretch tensor C,

W(F) = Φ(C), (8-3)

where

C = FTF. (8-4)

From the strain energy density, one can obtain the first (P) and second (S) Piola-
Kirchoff stresses as

P = ∂W(F)

∂F
and S = 2

∂Φ(C)

∂C
, (8-5)

where the Piola-Kirchoff stresses are related by

P = SFT. (8-6)

For crystalline materials, we can construct a strain energy density function by
considering the bonds in a representative volume of the crystal. For the case of
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a centrosymmetric crystal modeled using only pair interactions, the strain energy
density is defined in terms of the interatomic potential U as [75]

Φ(C) = 1

2

1

Ωa
0

nb∑

i=1

U
(

r(i)(C)
)

. (8-7)

In (8-7), nb is the total number of bonds to a representative bulk atom, Ωa
0 is the

representative atomic volume in the undeformed configuration, r(i) is the defomed
bond length which follows the relationship

r(i) =
√

R(i)
0 · CR(i)

0 , (8-8)

where R0 is the undeformed bond vector, and the factor of 1/2 in (8-7) comes from
splitting the energy of each bond.

The strain energy density (8-7) is exact in describing the change in energy per
volume of a bulk atom in a corresponding defect-free atomistic system subject to
homogeneous deformation. From (8-5) and (8-7), the second Piola-Kirchoff stress
is given by

S(C) = 1

Ωa
0

nb∑

i=1

(
U′(r(i))

∂r(i)

∂C

)
. (8-9)

These assumptions constitute the Cauchy-Born hypothesis; we note that the
Cauchy-Born model has been used previously for a variety of different materials
and lattices, including carbon nanotubes [76,77] as well as semiconductors such as
silicon [60,78,79] and FCC metals [61].

As mentioned above, all points at which the Cauchy-Born hypothesis is applied
are assumed to lie in the bulk because Φ(C) does not account for surface effects.
Therefore, the issue at hand is to develop an expression for the energy density along
the surfaces of a body. We discuss an approach to accomplishing this next.

8.2.2. Surface and Bulk Energy Densities

In this section, we discuss the methodology by which the the total atomistic potential
energy of a body is represented by continuum energy densities with appropriate
representations for bulk and surface energy densities. The relationship between the
continuum strain energy and the total potential energy of the corresponding, defect-
free atomistic system can be approximated as

natoms∑

α=1

Uα(r) ≈
∫

Ωbulk
0

Φ(C) dΩ +
∫

Γ0

γ (C) dΓ , (8-10)

where Uα is the potential energy of atom α, r is the interatomic distance, Φ(C)
is the bulk strain energy density introduced in Section 8.2.1, Ωbulk

0 represents the
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Figure 8-1. Illustration of bulk and surface atoms for a 1D atomic chain with second nearest neighbor
interactions

volume of the body in which all atoms are fully coordinated, γ (C) is the surface
energy density, Γ0 represents the surface area of the body in which the atoms are
undercoordinated and natoms is the total number of atoms in the system.

Analogous to the bulk energy density, we will derive this surface energy den-
sity γ (C) to describe the energy per representative undeformed area of atoms at or
near the surface of a homogeneously deforming crystal. Figure 8-1 illustrates the
decomposition given by (8-10). The bulk strain energy density function Φ(C) is
integrated only over the part of the domain composed of fully coordinated atoms, or
atoms α = 3 → n − 2 in Figure 8-1. The potential energy of the atoms at or near
the surface (atoms α = 1, 2, n − 1, n in Figure 8-1) which do not possess a bulk
bonding configuration is represented by the surface energy density γ (C). In order
to derive the surface energy density γ (C) with a Cauchy-Born approach, we need
to identify the surface unit cell, or the cluster of atoms that reproduce the structure
of the surface layers when repeated in the plane of the surface. The surface unit cell
possesses translational symmetry only in the plane of the surface, unlike the bulk
unit cell which possesses translational symmetry in all directions. As illustrated in
the Figure 8-1, each layer of atoms near the surface has a different bonding configu-
ration. With these considerations, we express the surface energy density generally as

γ (C) = 1

2

1

Γ a
0

nsl∑

i=1

nbi∑

j=1

U(r(j)(C)), (8-11)

where nsl is the number of surface layers, nbi is the number of bonds for atoms in
surface layer i, Γ a

0 is the representative area of the entire surface layer cluster and
the factor of 1/2 again comes due to splitting the energy of each bond.

We can immediately define the surface stress resulting from the surface energy
in (8-11) as

S̃(C) = 2
∂γ (C)

∂C
= 1

Γ a
0

nsl∑

i=1

nbi∑

j=1

(
U′(r(j))

∂r(j)

∂C

)
. (8-12)

Figure 8-2 summarizes the basic idea of the surface Cauchy-Born model. For
both bulk and surface components, the underlying atomistic potential energy is
obtained by subjecting the bulk or surface unit cell to the continuum stretch ten-
sor C. Once the strain energy density of the deformed unit cell is known, the



Multiscale Modeling of Surface Effects 199

Figure 8-2. Illustration of difference between bulk and surface contributions to surface Cauchy-Born
model

bulk stress can be calculated using (8-9), while the surface stress can be calculated
using (8-12).

8.2.3. Formulation for Embedded Atom Method/FCC Metals

We now present the SCB formulation for FCC metals. We first note that FCC tran-
sition metals can be modeled with a high degree of fidelity including surface driven
phenomena by the embedded atom method (EAM) [35,36,80]. Considering a purely
atomistic system, the EAM energy for an atom Ui is written as3

Ui = Fi(ρ̄i) + 1

2

nbi∑

j �=i

φij(rij),

ρ̄i =
nbi∑

j �=i

ρj(rij),

(8-13)

where nbi are the number of bonds of atom i, Fi is the embedding function, ρ̄i is the
total electron density at atom i, ρj is the contribution to the electron density at atom
i from atom j, φij is a pair interaction function and rij is the distance between atoms
i and j. We note that the number of bonds nbi is dictated by the cutoff distance of
the interatomic potential.

In order to turn the atomistic potential energy into a form suitable for the CB
approximation, two steps are taken. First, the potential energy is converted into a
strain energy density through normalization by a representative atomic volume Ω0;
Ω0 can be calculated noting that there are 4 atoms in an FCC unit cell of volume
a3

0, where a0 is the lattice parameter. Thus Ω0 = 4/a3
0 for a 〈100〉 oriented crystal.

3 Portions of Section 2.3, 3.1 and 5, including Figures 3,6,7,8, are reprinted with permission from [88].
Copyright (2007) by the American Physical Society.
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Second, the neighborhood surrounding each atom is constrained to deform homo-
geneously via continuum mechanics quantities such as the deformation gradient F,
or the stretch tensor C = FTF. The resulting EAM strain energy density Φ is

Φ(C) = 1

Ω0
(Fi(ρ̄i) + φi) ,

φi = 1

2

nbrvi∑

j �=i

φij(rij(C)),

ρ̄i =
nbrvi∑

j �=i

ρj(rij(C)),

(8-14)

where nbrvi are the number of bonds in the representative unit volume Ω0 for atom
i, Fi is the embedding function, ρj is the contribution to the electron density at atom
i from atom j, φij is a pair interaction function and rij is the distance between atoms
i and j.

For homogeneous deformations, integrating the CB strain energy in Eq. (8-14)
over the representative volume Ω0 gives the same result as the energy of an atomic
unit cell in a homogeneously deforming crystal. This energetic equivalence forms
the basis of the traditional CB hypothesis, in which lattice defects are not allowed;
other works, notably the quasicontinuum method [61], have been developed to
relieve this restriction. Once the strain energy density is known, continuum stress
measures such as the second Piola-Kirchoff stress S, which can be interpreted as the
actual force mapped to the undeformed configuration divided by the undeformed
area [81], can be defined as

S = 2
∂Φ(C)

∂C
= 1

Ω0

∂U(C)

∂r
∂r
∂C

, (8-15)

while the material tangent modulus C is defined to be

C = 2
∂S
∂C

. (8-16)

As previously discussed, another key restriction of the CB hypothesis is that all
points are assumed to lie in the bulk as Φ(C) does not account for surface effects.
Therefore, the issue at hand is to develop an expression for the energy density along
the surfaces of a body, where the potential energy of atoms differs from the bulk
due to undercoordination; here, undercoordination is used to describe the fact that
atoms at the surfaces of a material have fewer bonding neighbors than atoms that lie
within the bulk portion of the material.

As discussed in the introduction, most surface elastic models decompose the total
energy of the continuum body into surface and bulk contributions. The uniqueness
of the present approach is the usage of the CB approximation in constructing the
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surface energy density; we now discuss how the CB approximation can be utilized
to approximate the surface energy density.

Equation (8-10) thus represents the decomposition of the total energy of a con-
tinuous body into bulk and surface components. For FCC metals, we consider
Figure 8-3, which illustrates the bulk/surface decomposition for a 〈100〉 oriented
FCC crystal with {100} transverse surfaces. For this crystal structure interacting via
the EAM potential, there are four layers of surface atoms whose forces deviate from
that of an ideal bulk atom. Because the EAM potentials generally employ a fourth
shell neighbor cutoff [82], it would appear that the atoms in layers Γ 3

0 and Γ 4
0 feel

the same force as those in the bulk. However, the forces on atoms in surface layer
Γ 3

0 depend on the electron density of atoms in layers Γ 1
0 and Γ 2

0 , while the forces
on atoms in surface layer Γ 4

0 depend on the electron density of atoms in layer Γ 2
0 .

Because atoms in surface layers Γ 1
0 and Γ 2

0 do not have a full complement of neigh-
bors, their electron densities will deviate from the bulk, causing non-bulk forces on
atoms in layers Γ 3

0 and Γ 4
0 . We concentrate on the effects of forces, and not ener-

gies, as the stresses that are needed for the FE formulation in the next section are
found by performing a chain rule on the forces, as seen in (8-5).

We first note that for 〈100〉 FCC crystals whose interactions are governed by
EAM potentials, there exist four non-bulk layers of atoms at the surfaces, as illus-
trated in Figure 8-3. Thus, we rewrite Eq. (8-10) taking into account the four
non-bulk layers to read

natoms∑

i

Ui(r) =
∫

Ωbulk
0

Φ(C)dΩ +
∫

Γ 1
0

γΓ 1
0

(C)dΓ

+
∫

Γ 2
0

γΓ 2
0

(C)dΓ +
∫

Γ 3
0

γΓ 3
0

(C)dΓ +
∫

Γ 4
0

γΓ 4
0

(C)dΓ .

(8-17)

Figure 8-3. Illustration of bulk and non-bulk layers of atoms in a 3D FCC crystal interacting by an EAM
potential
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Having defined the energy equivalence including both bulk and surface effects,
we now determine the surface energy densities γ (C). Analogous to the bulk energy
density, the surface energy densities γ (C) will describe the energy per representative
undeformed area of atoms at or near the surface of a homogeneously deforming
crystal. For FCC metals, choosing a surface unit cell that contains only one atom
is sufficient to reproduce the structure of each surface layer. The surface unit cell
possesses translational symmetry only in the plane of the surface, unlike the bulk
unit cell which possesses translational symmetry in all directions. Thus, the surface
energy density for a representative atom in a given surface layer in Figure 8-3 can
be written generally as

γΓ a
0

(C) = 1

Γ0
(Fi(ρ̄i) + φi) ,

φi = 1

2

nba∑

j �=i

φij(rij(C)),

ρ̄i =
nba∑

j �=i

ρj(rij(C)),

(8-18)

where nba are the number of bonds for an atom in surface layer a, and Γ0 is the
representative unit area occupied by a non-bulk atom lying at or near the free
surface.

The surface energy densities differ in two ways from the bulk energy density.
First, they are normalized by an area, Γ a

0 , instead of by a volume. This is necessary
to give the correct units of energy when integrating the energy density in (8-17).
The second is that an atom in each different surface layer has a different number of
bonding neighbors; we again note that while atoms in layers Γ 3

0 and Γ 4
0 have the

same number of bonding neighbors as bulk atoms, because the electron densities
of the undercoordinated atoms in layers Γ 1

0 and Γ 2
0 are necessary for the force and

stress calculations, the atoms in layers Γ 3
0 and Γ 4

0 are treated as non-bulk. For the
〈100〉 FCC crystal with {100} transverse surfaces considered in this work, atoms in
layer Γ 1

0 have 33 neighbors, atoms in Γ 2
0 have 45 neighbors, while atoms in layers

Γ 3
0 and Γ 4

0 both have the bulk complement of 54 neighbors.
We note in closing this section that because we have assumed that the ener-

getics of each surface layer can be described by a single representative atom, we
have ignored the effects of edge and corner atoms. While these atoms are expected
to play an important role in truly small nanostructures [83], the system size at
which these effects become significant can easily be described using direct molec-
ular calculations. As will be demonstrated in the numerical examples, the current
methodology is geared for larger problems where such edge and corner effects are
relatively insignificant, and simultaneously where the system size for fully atomistic
calculations becomes prohibitive.
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8.2.4. Formulation for Diamond Cubic Lattices

Before presenting the surface Cauchy-Born formulation for diamond cubic lattices,
we first present the bulk Cauchy-Born (BCB) model for silicon. The BCB formula-
tion in this work for silicon closely mirrors that of Tang et al. [60], Park and Klein
[79] and Park [84]. Because the SCB model for silicon is much easier to understand
once the bulk formulation is presented, we present an abbreviated version of the
BCB formulation below.

8.2.4.1. Bulk Cauchy-Born Model for Silicon

In the present work, we utilize the T3 form of the Tersoff potential [85] and the
resulting parameters. The T3 is named as such due to the fact that two earlier ver-
sions of the Tersoff potential suffered from various shortcomings, including not
predicting diamond as the ground state of silicon, inaccuracies in the bulk elastic
constants, and inaccurate modeling of the {100} surfaces of silicon [86]. The T3
potential energy U can be written as

U = 1

2

∑

i �=j

Vij,

Vij = fC(rij)
(
f R(rij) + bijfA(rij)

)
,

(8-19)

where rij is the distance between atoms i and j, fC is a cut-off function, which is
used to ensure that the Tersoff potential is effectively a nearest neighbor potential,
fR is a repulsive function, fA is an attractive function, and bij is the bond order
function, which is used to modify the bond strength depending on the surrounding
environment.

The various functions all have analytic forms, which are given as

fR(rij) = Ae−λrij, (8-20)

fA(rij) = −Be−μrij, (8-21)

bij(1 + βnζ n
ij )

−1/2n, (8-22)

where
ζij =

∑

k �=i,j

fC(rik)g(θijk), (8-23)

and

g(θijk) = 1 + c2

d2
− c2

d2 + (h − cos θijk)2
, (8-24)

where θijk represents the angle between a triplet of atoms i − j − k.
In order to turn the atomistic potential energy into a form suitable for the BCB

approximation, two steps are taken. First, the potential energy is converted into a
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strain energy density through normalization by a representative atomic volume Ω0;
Ω0 can be calculated for diamond cubic (DC) lattices such as silicon by noting that
there are 8 atoms in a DC unit cell of volume a3

0, where a0 = 5.432Å is the silicon
lattice parameter. Thus, Ω0 = 8/a3

0 for a 〈100〉 oriented silicon crystal. Second, the
neighborhood surrounding each atom is constrained to deform homogeneously via
continuum mechanics quantities such as the deformation gradient F, or the stretch
tensor C = FTF. It is critical to note that due to the usage of nonlinear kinematics
through F and C, the BCB model is a finite deformation, nonlinearly elastic constitu-
tive model that explicitly represents the stretching and rotation of bonds undergoing
large deformation.

Silicon is well-known to occur naturally in the DC lattice structure, which is
formed through two interpenetrating FCC lattices, where the two FCC lattices are
offset by a factor of (a0/4, a0/4, a0/4). The DC lattice is shown in Figure 8-4
which illustrates the interpenetrating FCC lattices. The complication in modeling
DC lattices, which will be resolved below, is that the interpenetrating FCC lattices
must be allowed to translate with respect to each other. This key restriction can be
accommodated through a five-atom unit cell, i.e. atom A and its four neighbors in
Figure 8-4b for which the corresponding Tersoff strain energy density Φ. can be
written as:

Φ(r1j(C)) = 1

2Ω0

5∑

j=2

V1j(r1j(C)), (8-25)

where i = 1 in (8-25) because atom i is considered the center of the unit cell (see
Figure 8-4), and the summation goes over the four nearest neighbor bonds j =
2, 3, 4, 5. The full expression for the strain energy density Φ(r1j) can be written as

Figure 8-4. Illustration of the diamond cubic lattice structure of silicon. Black atoms represent standard
FCC unit cell atoms, while green atoms represent the interpenetrating FCC lattice. The drawn bonds
connect atoms in FCC lattice B to atoms in FCC lattice A
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Φ(r1j(C)) = V1j

2Ω0
= Ae−λr1j(C) − Be−μr1j(C)

⎛

⎝1 + βn

⎛

⎝
∑

k �=i,j

g(θ1jk)

⎞

⎠
n⎞

⎠
−1/2n

(8-26)

where again the multibody effects of the bonding environment are captured through
the g(θ1jk) term. We enable the interpenetrating FCC lattices to translate with respect
to each other by introducing an internal degree of freedom ξ associated with all
neighboring atoms of atom A in Figure 8-4b through the modified bond lengths r1j

as

r − 1j = |r1j| = |F(R1j + ξ )|, j = 2,3,4,5 (8-27)

where r1j is the deformed bond vector, R1j is the undeformed bond vector between
atoms 1 and j and ξ is the shift introduced between the two interpenetrating FCC
lattices (i.e. lattices A and B in Figure 8-4) in the undeformed configuration.

The incorporation of the internal degrees of freedom and writing the bond lengths
in terms of F results in a modified strain energy density function as

Φ(C) = Φ̃(C) = Φ̃(C, ξ (C)). (8-28)

Using standard continuum mechanics relationships, we can calculate the second
Piola-Kirchoff stress (PK2) as

1

2
S = ∂Φ

∂C
= ∂Φ̃

∂C
+ ∂Φ̃

∂ξ

∂ξ

∂C
. (8-29)

To keep the crystal at an energy minimum, the internal degrees of freedom are
constrained to deform according to ξ∗, which leads to the following relationship

∂Φ̃

∂ξ∗ = 0, (8-30)

and changes the final expression for the PK2 stress to

S = 2
∂Φ̃

∂C
. (8-31)

The spatial tangent modulus can be similarly calculated using standard contin-
uum mechanics relations, and can be written as

CIJKL = MIJKL − AIJpAKLq(D−1)pq, (8-32)

where
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MIJKL = 4
∂2Φ̃

∂CIJ∂CKL
, (8-33)

Dpq = ∂2Φ̃

∂ξ∗
p ∂ξ

∗
q

,

AIJp = 2
∂2Φ̃

∂CIJ∂ξ∗
p

.

8.2.4.2. Surface Cauchy-Born Model for Silicon

In this section, we present the formulation by which surface stresses are accounted
for through an extension of the BCB model we call the surface Cauchy-Born (SCB)
model. The SCB model was developed previously for both FCC crystals [87,88]
and for DC lattices [79]. We therefore briefly summarize the relevant aspects of the
SCB model for silicon [79] in this section. We first note that the total energy of a
nanostructure can be written as the sum of bulk and surface terms

natoms∑

α=1

Uα(r) ≈
∫

Ωbulk
0

Φ(C)dΩ +
∫

Γ0

γ (C)dΓ , (8-34)

where Uα(r) represents the potential energy for each atom α, Φ(C) is the bulk
energy density previously defined in (8-26) and γ (C) is the surface energy den-
sity. The issue then is to determine a representation for the surface unit cell that will
be used to calculate the surface energy density γ (C).

We accomplish this through the nine atom surface unit cell for unreconstructed
{100} silicon surfaces shown in Figure 8-5. The rationale for this particular unit cell

Figure 8-5. Illustration of the nine atom surface unit cell for the surface with a [010] normal of a
diamond cubic crystal. Black atoms represent FCC lattice A, while green atoms represent the inter-
penetrating FCC lattice B. The drawn bonds connect atoms in FCC lattice B to atoms in FCC lattice A
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arises because atoms 2 and 6 both have a full complement of neighbors, and thus rep-
resent a distinct FCC lattice B. The atoms neighboring atoms 2 and 6 therefore must
be part of the interpenetrating FCC lattice A, and thus should be able to translate
with respect to atoms 2 and 6. Therefore, we assign an internal degree of freedom
ξ s, where the superscript s designates an internal surface degree of freedom, to all
the black atoms (1, 3, 4, 7, 8, 9) of FCC lattice A in Figure 8-5.

The resulting strain energy density γ for the surface unit cell seen in Figure 8-5
can thus be written as

γ = 1

Γ0

⎛

⎝
∑

j=2, 6

V1j(r1j) +
∑

k=1, 7, 8, 9

V6k(r6k) +
∑

m=1, 3, 4, 5

V2m(r2m)

⎞

⎠ (8-35)

where Γ0 is the area per atom on the surface. Following (8-27), we express the bond
lengths for the surface unit cell as

r1j = |r1j| = |F(R1j + ξ s)|, j = 2, 6

r6k = |r6k| = |F(R6k + ξ s)|, k = 1, 7, 8, 9

r2m = |r2m| = |F(R2m + ξ s)|, m = 1, 3, 4, 5

(8-36)

Incorporating the bond lengths that have been modified by the deformation gra-
dient F and the internal degrees of freedom ξ s in (8-36) creates a modified surface
energy density γ̃ (C) from (8-35), where the surface energy density can be modi-
fied analogously to the procedure outlined previously for the bulk energy density in
(8-29) and (8-30) to enforce the energy minimizing condition

∂γ̃

∂ξ̃ s
= 0 (8-37)

where ξ̃ s, similar to the meaning in the bulk case in (8-30), represents the deforma-
tion of the surface internal degrees of freedom necessary to minimize the surface
energy. Using the modified surface energy density γ̃ (C), we arrive at the expression
for the surface PK2 stress Ss(C), where the superscript s here and below indicates
surface values

Ss(C) = 2
∂γ̃ (C)

∂C
. (8-38)

Similarly, the surface tangent modulus can be written as

Cs
IJKL = Ms

IJKL − As
IJpAs

KLq(D−1)s
pq, (8-39)

where
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Ms
IJKL = 4

∂2γ̃

∂Cs
IJ∂Cs

KL
, (8-40)

Ds
pq = ∂2γ̃

∂ξ̃ s
p∂ξ̃

s
q

,

As
IJp = 2

∂2γ̃

∂Cs
IJ∂ξ̃

s

p

.

8.3. FINITE ELEMENT FORMULATION AND IMPLEMENTATION

8.3.1. Variational Formulation

Having defined the surface energy densities γ (C) for each non-bulk layer of atoms
near the surface, we can immediately write the total potential energy Π . of the
system including external loads T as

�(u) =
∫

Ωbulk
0

Φ(C)dΩ +
∫

Γ0

γΓ0 (C)dΓ −
∫

Γ0

(T · u)dΓ . (8-41)

We note that the surface integral involving γ in (8-41) is a general expression
for the surface energy density; note that the surface energy density could involve
separate terms for each surface layer, as is the case for FCC metals as in (8-17).
In order to obtain a form suitable for FE calculations, we introduce the standard
discretization of the displacement field u(X) using FE shape functions as

u(X) =
nn∑

I=1

N1(X)uI , (8-42)

where NI are the shape or interpolation functions, nn are the total number of nodes
in the discretized continuum, and uI are the displacements of node I [81,89].
Substituting Eqs. (8-14) and (8-18) into Eq. (8-41) and differentiating gives the
minimizer of the potential energy and also the FE nodal force balance [81]

∂�

∂uI
=

∫

Ωbulk
0

BTSFTdΩ +
∫

Γ0

BT S̃FTdΓ −
∫

Γ0

NITdΓ , (8-43)

where S is the second Piola-Kirchoff stress due to the bulk strain energy and BT =(
∂NI
∂X

)T
; S̃ can be loosely labeled as surface Piola-Kirchoff stresses that can be found

using Eqs. (8-18) and (8-5) to be of the form

S̃(C) = 2
∂γΓ0(C)

∂C
= 1

Γ0

∂U(C)

∂r
∂r
∂C

. (8-44)
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The surface Piola-Kirchoff stresses differ from those in the bulk because the
normalization factor is an area, instead of a volume. In addition, the surface Piola-
Kirchoff stresses S̃(C) are 3 × 3 tensors with normal components which allow
surface relaxation due to undercoordinated atoms lying at material surfaces; this
result differs from the traditional definition of surface stress [33] which is a 2 × 2
tensor with only tangential components.

The normal components arise in the present approach because the atoms that
constitute the surface unit cells lack proper atomic coordination in the direction
normal to the surface; therefore, the atomistic forces that are normalized to stresses
in Eq. (8-44) are also out of balance in the normal direction. Thus, surface relaxation
is necessary in the normal direction to regain an equilibrated state. Further details
on the numerical implementation of the surface layers can be found in [87].

In contrast, traditional surface elastic approaches [41, 55] utilize a 2 × 2 stress
tensor which depends only on the tangential components of the deformation, and
thus cannot explain surface relaxation effects. Solving (8-43) requires an iterative
process to solve the nonlinear system of equations. The purpose of the iterative
procedure is to determine the unknown FE nodal displacements uI that minimize
the energy functional Π (u).

What has been accomplished in (8-43) is a systematic manner of obtaining con-
tinuum stress measures by calculating the system potential energy as a function
of bulk and surface components. By correctly calculating the system energy, stan-
dard continuum mechanics relationships can be utilized to derive stress measures
for usage in FE computations. The salient feature of equation (8-43) is that as the
surface area to volume ratio becomes larger, the surface area terms will dominate
the energetic expression. Because the stresses required for the FE internal forces are
calculated by differentiating the strain energy density, correctly accounting for the
surface energy will naturally lead to the correct forces on surface nodes.

This situation is exactly that which occurs in nanoscale materials such as
nanowires, quantum dots, nanoparticles and nanobeams; for these small scale struc-
tures, the finite surface energies will create surface stresses that can cause both
surface relaxation into the bulk, as well as unique mechanical properties caused
by the need to overcome the intrinsic surface stresses [90–92]. In contrast, if the
volume of the material is significantly larger than the surface area, then the poten-
tial energy from the surface terms will be insignificant compared to the volumetric
potential energy, and the material will feel no effect from the surface stresses. Thus,
this model degenerates to a bulk Cauchy-Born model as the length scale of the
material increases.

8.3.2. Finite Element Eigenvalue Problem for Nanowire Resonant
Frequencies

In order to calculate the resonant frequencies of the nanowires, it will be neces-
sary to solve a standard finite element eigenvalue problem. The eigenvalue problem
is obtained from the equation describing the eigenvalue problem for continuum
elastodynamics, which is written as



210 H.S. Park and P.A. Klein

(K − ω2M)u = 0, (8-45)

where M is the mass matrix and K is the stiffness matrix of the discretized FE
equations; the solution of the eigenvalue problem described in Eq. (8-45) gives the
resonant frequencies f, where f = ω/2π and the corresponding mode shapes u.
We note that the stiffness matrix K contains the effects of both material and geo-
metric nonlinearities through a consistent linearization about the finitely deformed
configuration.

We emphasize that the addition of the surface energy terms in Eq. (8-34) leads
naturally to the incorporation of the surface stresses in the FE stiffness matrix K,
which then leads to the dependence of the resonant frequencies f on the surface
stresses. The eigenvalue problem was solved using the Sandia-developed package
Trilinos [93], which was incorporated into the simulation code Tahoe [94].

8.4. APPLICATIONS OF SURFACE CAUCHY-BORN MODEL

We proceed now to demonstrate the capabilities of the proposed SCB model. We
first validate the model through comparison with a full scale atomistic calcula-
tion for FCC metal nanowires. We then move forward to demonstrate what can
be learned about silicon nanowires using the SCB model, particularly about surface
stress effects on their resonant frequencies, which will be critical for the design and
analysis of NEMS.

8.5. DIRECT SURFACE CAUCHY-BORN/MOLECULAR
STATICS COMPARISON

The numerical examples for the direct SCB/molecular statics comparison utilizes
geometries similar to that shown in Figure 8-6, which illustrates a gold nanowire
with square cross section of length aand longitudinal length h. All wires had a 〈100〉
longitudinal orientation with {100} transverse side surfaces, and were subject to the
same boundary conditions; the left (−x) surface of the wires were fixed, while the
right (+x) surface of the wires were constrained to move only in the x-direction. All
simulations, both molecular statics (MS) for the benchmark atomistics and the FE
for the SCB were performed using the stated boundary conditions without additional

Figure 8-6. Nanowire geometry considered for surface-stress-driven relaxation examples
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external loading and without periodic boundary conditions. Therefore, all deforma-
tion observed in the examples is caused by the effects of surface stresses. All SCB
calculations utilized regular meshes of 8-node hexahedral elements.

The atomistic interactions were based on the EAM, with gold being the material
for all problems using the parameters of Foiles [82], while the same parameters were
used to calculate the bulk and surface stresses needed for the SCB simulations; sin-
gle crystal gold nanowires were considered in all cases. Care was taken to consider
nanowires with sizes large enough such that surface-stress-driven phase transfor-
mations [34] or reorientations [95], which have been predicted in gold nanowires
with cross sections smaller than about 2 nm, did not occur. All simulations, for both
FE and MS, were performed quasistatically to find energy minimizing positions of
either the atoms or the FE nodes accounting for the surface stresses.

The first example illustrates a direct comparison between a benchmark MS cal-
culation and a SCB calculation. For this, the gold nanowire was comprised of
145261 atoms with dimensions of 24.48 × 9.792 × 9.792 nm. The equivalent SCB
model contained a regular mesh of 576 finite elements and 833 nodes, leading in
a 99.4% reduction in the number of degrees of freedom; because similar mesh
densities were used for all simulations shown in this work, similar reductions in
the required degrees of freedom for the SCB calculations were achieved in all
cases.

Due to the surface stresses, the +x edge of the wire contracts upon relaxation,
resulting in an overall state of compressive strain in the wire. For both the MS and
SCB calculations, the compressive strain was calculated by measuring the displace-
ment at the center of the +x surface at (+x, 0, 0). This was done because, as seen in
Figure 8-7, the corners of the +x surface of the nanowire have a greater contraction
than the center of the +x surface because they have the greatest degree of under-
coordination. The SCB calculation predicted a compressive strain to relaxation of
−0.91%, while the MS calculation predicted a contraction of −0.83%.

The fact that the SCB can predict the compressive relaxation is strengthened by
comparative calculations for the relaxed and unrelaxed surface energy for both the
SCB and MS systems for the same EAM potential; the unrelaxed surface energies
γur were found to be 0.975 J/m2 for the MS system, and 0.973 J/m2 for the SCB
system for the {100} surface of gold using Foiles et al. [82] potential. The relaxed
surface energies γr were found to be 0.914 J/m2 for the MS system, and 0.932 J/m2

for the SCB system; the slight overestimation of the relaxed surface energy by the
SCB correlates correctly with the higher relaxation strain in the above numerical
example.

The overall contours of the x and y-displacements are shown in Figures 8-7 and
8-8. As can be seen, the SCB calculations reproduce well the displacement fields in
both the x and y-directions, including the compressive relaxation in the x-direction at
the +x edge of the nanowire, which then causes expansion of the nanowire in the y
and z-directions. The y-displacement was calculated at the center of the +y surface
at (0, + y,0) and was compared for both the SCB and MS calculations; the SCB
predicted an expansion of 0.18% while the MS calculation predicted an expansion
of 0.17%.
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Figure 8-7. Comparison of x-displacements for 24.48 × 9.792 × 9.792 nm gold nanowire for (top) MS
and (bottom) SCB calculations

The snapshots of the x and y-displacements shown in Figures 8-7 and 8-8 serve
to highlight both the strengths and the weaknesses of the current version of the
SCB method. As mentioned above, the SCB method clearly captures in a qualitative
sense the overall relaxed configuration for the gold nanowire, at a greatly reduced
computational cost as compared to the MS simulation. On the other hand, the results
of the MS simulations show that the corners and edges of the nanowire experience a
considerably different deformation than the surfaces and the bulk. Because the SCB
method as currently formulated does not account for corner and edge effects, the
deformation of those areas is captured in an average sense due to the deformation of
the adjacent surfaces.

8.6. SURFACE STRESS EFFECTS ON THE RESONANT PROPERTIES
OF SILICON NANOWIRES

We now demonstrate the applicability and utility of the SCB model in predicting sur-
face stress effects on the resonant properties of silicon nanowires [84]. All numerical
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Figure 8-8. Comparison of y-displacements for 24.48 × 9.792 × 9.792 nm gold nanowire for (top) MS
and (bottom) SCB calculations

examples were performed on three-dimensional, single crystal silicon nanowires of
length l that have a square cross section of width a as illustrated in Figure 8-6. Three
different parametric studies are conducted in this work, which consider nanowires
with constant cross sectional area (CSA), constant length and constant SAV (SAV);
the geometries are summarized in Table 8-1.

Table 8-1. Summary of geometries considered: constant SAV ratio (SAV),
constant length, and constant cross sectional area (CSA). All dimensions
are in nm

Constant SAV Constant Length Constant CSA

64 × 16 × 16 240 × 8 × 8 64 × 16 × 16
110 × 15.2 × 15.2 240 × 12 × 12 128 × 16 × 16
170 × 14.9 × 14.9 240 × 18 × 18 256 × 16 × 16
230 × 14.7 × 14.7 240 × 24 × 24 384 × 16 × 16
290 × 14.5 × 14.5 240 × 30 × 30 512 × 16 × 16
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All wires had a 〈100〉 longitudinal orientation with unreconstructed {100} trans-
verse surfaces, and had either fixed/free (cantilevered) boundary conditions, where
the left (−x) surface of the wire was fixed while the right (+x) surface of the wire
was free, or fixed/fixed boundary conditions, where both the left (−x) and right
(+x) surfaces of the wire were fixed. All FE simulations were performed using the
stated boundary conditions without external loading, and utilized regular meshes of
8-node hexahedral elements. The bulk and surface energy densities in Eqs. (8-26)
and (8-35) were calculated using Tersoff T3 parameters [85], while the bulk and
surface FE stresses were found using Eqs. (8-31) and (8-38).

Regardless of boundary condition, the nanowires are initially out of equilibrium
due to the presence of the surface stresses. For fixed/free nanowires, the free end
expands in tension to find an energy minimizing configuration under the influence

Figure 8-9. (Color online) Minimum energy configuration of a fixed/free 128 × 16 × 16 nm silicon
nanowire due to surface stresses as predicted by (top) MS calculation, (bottom) SCB calculation
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of surface stresses. To illustrate this, we compare the energy minimized positions
of the 128 × 16 × 16 nm fixed/free nanowire using the SCB model to a benchmark
molecular statics (MS) calculation performed using the Tersoff T3 potential with
LAMMPS [96] MS code. As seen in Figure 8-9, the SCB model, which required
only 16393 FE nodes, gives a very accurate description of the minimum energy con-
figuration due to surface stresses as compared to the MS calculation, which required
more than 1.7 million atoms. We note that the tensile strain induced in the nanowires
due to the surface stresses is about 0.1%.

As noted previously, no external forces were applied to obtain the results seen
in Figure 8-9; all deformation is solely due to surface stresses. In analyzing the
results in Figure 8-9, we emphasize that the SCB model accurately predicts the
tensile expansion of the free end due to surface stresses, in addition to capturing
the inhomogeneous nature of the tensile expansion, which occurs due to the non-
centrosymmetric nature of the DC silicon lattice. The results are in agreement with
first principles calculations [86,97], which also indicate that 〈100〉 silicon nanowires
with {100} surfaces have compressive surface stresses that cause the nanowires to
expand.

Fixed/fixed nanowires, on the other hand, are constrained such that the nanowire
is unable to expand due to the boundary conditions. The boundary condition con-
straint therefore causes the minimum energy configuration of fixed/fixed nanowires
to be a state of compression, which we will demonstrate is critical to understanding
how surface stresses and boundary conditions couple to alter the resonant properties
of fixed/fixed nanowires as compared to continuum beam theory predictions.

Once the minimum energy configuration for either boundary condition is known,
the eigenvalue problem described in Eq. (8-45) is solved using the FE stiffness
matrix from the equilibrated (deformed) nanowire configuration to find the reso-
nant frequencies. Resonant frequencies were also found using the standard BCB
model (without surface stresses) on the same geometries for comparison to quan-
tify how surface stresses change the resonant frequencies as compared to the bulk
material for a given geometry and boundary condition. For all resonant frequencies
reported in this work, the fundamental, or lowest mode frequencies corresponded to
a standard bending mode of deformation.

8.6.1. Constant Cross Sectional Area

To validate the accuracy of the calculations for the BCB material, we compare in
Tables 8-2 and 8-3 the BCB and SCB resonant frequencies to those obtained using
the well-known analytic solutions for the fundamental resonant frequency for both
fixed/free (cantilevered) and fixed/fixed beams [98]. For the fixed/free beam:

f0 = B2
0

2π l2

√
EI

ρA
, (8-46)

where B0 = 1.875 for the fundamental resonant mode, E is the modulus for silicon
in the 〈100〉 direction, which can be found to be 90 GPa [85], I is the moment of
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Table 8-2. Summary of constant CSA nanowire fundamental resonant frequencies for
fixed/free boundary conditions as computed from: (1) The analytic solution given by Eq.
(8-46), (2) Bulk Cauchy-Born (BCB), and (3) Surface Cauchy-Born (SCB) calculations.
All frequencies are in MHz, the nanowire dimensions are in nm

Geometry Equation 46 BCB SCB

64 × 16 × 16 3933 3912 4008
128×16×16 983 990 1013
256×16×16 246 248 253
384×16×16 109 110 112
512×16×16 62 62 63

Table 8-3. Summary of constant CSA nanowire fundamental resonant frequencies for
fixed/fixed boundary conditions as computed from: (1) The analytic solution given by Eq.
(8-47), (2) Bulk Cauchy-Born (BCB), and (3) Surface Cauchy-Born (SCB) calculations.
All frequencies are in MHz, the nanowire geometry is in nm.

Geometry Equation 47 BCB SCB

64×16×16 24842 21618 22165
128×16×16 6211 6074 6166
256×16×16 1553 1565 1528
384×16×16 690 698 635
512×16×16 388 393 317

inertia, l is the nanowire length, A is the cross sectional area and ρ is the density of
silicon. The FE calculations used to calculate the BCB and SCB resonant frequen-
cies involved regular meshes of 8-node hexahedral elements; the mesh sizes ranged
from about 8000 to 65,000 nodes for the constant CSA nanowires considered.

The BCB resonant frequencies compare quite well to those predicted by the ana-
lytic formula, with increasing accuracy for increasing aspect ratio l/a, as would be
expected from beam theory. We note that the SCB resonant frequencies are con-
sistently larger than the BCB resonant frequencies and thus the analytic solution;
reasons for this trend will be discussed later.

For the fixed/fixed beam, the analytic solution is given as [98]

f0 = i2π

2l2

√
EI

ρA
, (8-47)

where i ≈ 1.5 is a mode shape factor for fixed/fixed beams. Table 8-3 shows that the
BCB and analytic solutions again agree nicely. However, in contrast to the fixed/free
case, the SCB resonant frequencies are found to decrease with increasing aspect
ratio relative to the bulk material; again, reasons for this will be discussed later.
A key point to emphasize here is that due to the accuracy of the BCB results for
both boundary conditions as compared to the analytic solutions, normalizing the
SCB resonant frequencies by the BCB resonant frequencies can be considered to be
equivalent to normalizing by the solution expected from continuum beam theory.
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Figure 8-10. Normalized resonant frequencies for constant CSA silicon nanowires

Figure 8-10a shows the normalized resonant frequencies fscb/fbulk plotted against
both the nanowire aspect ratio l/a and the SAV ratio, for both fixed/fixed and
fixed/free boundary conditions. As can be observed, the surface stress effects on
the resonant frequencies depend strongly upon the corresponding boundary con-
ditions. For the fixed/free nanowires, the resonant frequencies predicted using the
SCB model are about 2% higher than those of the BCB model for all aspect ratios.
In contrast, the fixed/fixed nanowires show completely different behavior. In that
case, the resonant frequencies predicted by the SCB model dramatically decrease
with increasing aspect ratio l/a, with the resonant frequencies due to surface stress
decreasing to nearly 20% lower than the corresponding bulk material when the
aspect ratio l/a > 30.

The resonant frequency calculations are also plotted with respect to the SAV
ratio in Figure 8-10b. As can be seen, the fixed/free nanowires show little variation
with the SAV ratio, while the fixed/fixed nanowires show a decrease in resonant
frequency with decreasing SAV ratio.

8.6.2. Constant Length

We next investigate the resonant frequencies of nanowires in which the length of the
nanowire was fixed at 240 nm, while the square cross section was varied in size. The
FE calculations to determine the resonant frequencies required mesh sizes ranging
from about 13,000 nodes for the smallest (8 nm) cross section to about 71,000 nodes
for the largest (30 nm) cross section considered.

As with the constant CSA nanowires, we plot the fscb/fbcb ratio against both
the aspect ratio l/a and the SAV ratio in Figure 8-11a. When plotted against the
aspect ratio l/a, the trends for the constant length nanowires are similar to those of
the constant CSA nanowires, particularly for the fixed/fixed boundary conditions,
for which surface stresses cause the resonant frequencies to decrease rapidly with
increasing l/a. In fact, for l/a = 30 for the 8 nm cross section nanowire, surface
stresses cause the resonant frequency to be less than 65% of the bulk value. The
surface stresses cause a slightly different trend for the fixed/free case. There, the
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Figure 8-11. Normalized resonant frequencies for constant length silicon nanowires

resonant frequencies are observed to increase slightly with respect to the bulk value
with increasing l/a, while the trend was a very minute decrease in the constant
CSA case.

However, when plotted against the SAV ratio, as in Figure 8-11b, the results
for constant length nanowires differ strongly from the constant CSA nanowires. In
particular, the result is most noticeable for the fixed/fixed nanowires; in the con-
stant CSA case, surface stresses caused an increase in resonant frequency with
increasing SAV ratio. However, for the constant length nanowires, the opposite trend
is observed; the surface stresses cause the resonant frequencies to decrease with
increasing SAV ratio. The trends are also reversed, though not as dramatically, for
the fixed/free boundary conditions.

8.6.3. Constant Surface Area to Volume Ratio

Due to the variation in surface stress and boundary condition effects on the nanowire
resonant frequencies, we consider those coupled effects for nanowires that have
the same SAV ratio, 0.28 nm−1. The FE mesh sizes ranged in this case from about
15,000 nodes (for the 15.2 nm cross section nanowire) to about 41,000 nodes (for
the 14.5 nm cross section nanowire).

Because the SAV ratio is kept constant, we plot the resonant frequencies for
both boundary conditions only against the nanowire aspect ratio l/a in Figure 8-12.
Figure 8-12 thus shows one of the fundamental findings of this work, in that the
resonant frequencies of fixed/fixed silicon nanowires do not, due to surface stresses,
depend on the SAV ratio. The results for the fixed/free nanowires are more ambigu-
ous judging solely from Figure 8-12. However, Figures 8-10a and 8-11a indicate
that the resonant frequencies of fixed/free silicon nanowires, similar to fixed/fixed
silicon nanowires, do not scale according to SAV ratio.

In particular, in all cases, it appears that the nanowire aspect ratio l/a is a much
stronger predictor of how the boundary conditions and surface stresses couple to
vary the resonant frequencies as compared to the corresponding bulk material than
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the SAV ratio. This finding corresponds to results recently published by Verbridge
et al. [22], and Petrova et al. [10]. The Verbridge work analyzed the resonant
properties of SiN nanostrings, with cross sectional dimensions around 100 nm.
While the surface stress effects observed in the present work are unlikely to have
a significant impact on 100 nm cross section nanowires, it is interesting that even
when surface effects become significant, as they do for the nanowires considered
in the present work, that the resonant frequencies, and thus the elastic properties,
are largely independent of SAV ratio. The Petrova work offers a comparison at a
different length scale (cross sections on the order of 10-20 nm) and for a different
material, gold. However, that work also found weak dependence of the resonant
frequencies and thus elastic properties on the SAV ratio; these results, on different
materials at different sizes, lend credibility to the results obtained in the present
work.

8.7. DISCUSSION AND ANALYSIS

We now present an analysis of the boundary condition and surface stress effects on
the nanowire elastic properties, and in particular the Young’s modulus. To calculate
the Young’s modulus, we utilize the beam theory expressions that relate the resonant
frequencies to the modulus in Eqs. (8-46) and (8-47). The beam theory expressions
for the modulus are utilized as they are also ubiquitous in the experimental literature
to calculate the Young’s modulus for nanostructures [6,30,29,22,10,99].

Figure 8-13 depicts the variation in the Young’s modulus, as normalized by the
bulk value, for both the fixed/fixed and fixed/free constant CSA nanowires. As can
be observed, the Young’s modulus for the fixed/free case shows about a 5% variation
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from the bulk value, which can be expected from the fact that the fixed/free resonant
frequencies, when bulk normalized, also showed a small increase with respect to the
bulk resonant frequencies.

However, there is a dramatic variation in the fixed/fixed Young’s modulus with
increasing aspect ratio l/a, as shown in Figure 8-13. In particular, due to the
nature of the resonance formula in (8-47), the modulus that is calculated is actually
significantly reduced as compared to the bulk Young’s modulus than the bulk-
normalized resonant frequencies. For example, fscb/fbulk = 0.81 for l/a = 30, as
seen in Figure 8-10a. However, when surface stresses are accounted for, the Young’s
modulus drops to only 65% of the bulk modulus when l/a = 32.

Furthermore, this observed reduction of the Young’s modulus has been observed
in other theoretical studies for fixed/fixed silicon nanowires. In particular, we note
the recent density functional theory studies by Lee and Rudd for ultrasmall (< 4 nm)
fixed/fixed silicon nanowires [97], which also predicted a decrease in Young’s mod-
ulus due to the fact that the surface stresses in conjunction with the fixed/fixed
boundary conditions cause the nanowire to exist in a state of compression; we note
that the variation of the Young’s modulus accounting for length was not performed
in that work. Molecular dynamics simulations of the resonant frequencies of fixed
edge silicon oxide nanoplates by Broughton et al. [100] also revealed a distinct
reduction in the resonant frequencies with decreasing size.

We also seek to quantify the variations due to surface stresses in the resonant fre-
quencies for the fixed/fixed case. To do so, Figure 8-14, which plots the normalized
resonant frequencies fscb/fbulk for all fixed/fixed nanowires (constant CSA, length,
SAV) against the nanowire aspect ratio l/a, demonstrates one of the major findings
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of this work. As can be seen, for the nanowire sizes considered in this work, the
resonant frequencies for all nanowires as compared to the resonant frequencies of
the bulk material overlap on a similar curve as a function of the aspect ratio, with
the trend being a decreasing resonant frequency with increasing aspect ratio. The
enhanced effect of surface stresses for the constant length nanowire with aspect ratio
of l/a = 30 is likely due to the fact that it was the smallest cross section considered,
i.e. 8 nm, where the surface stress effects are particularly strong. Figure 8-14 can
therefore serve as a design guide for predicting how surface stresses will change the
resonant frequencies of nanowires as compared to the continuum beam theory in
Eq. (8-47) which does not account for surface effects.

We attempted to determine similar relationships for the fixed/free nanowires in
linking the observed variations of the nanowire resonant frequencies due to sur-
face stresses to geometric parameters. Unfortunately, as illustrated in Figure 8-15,
such a relationship was not found in this work. We also studied the variation in
resonant frequencies due to surface stresses as compared to the tensile strain in the
nanowires, but a similarly inconclusive results was obtained. However, Figure 8-15
does indicate that surface stresses are likely not to strongly impact (more than 2%)
the resonant frequencies of fixed/free nanowires unless very small cross sectional
areas (<10 nm) and large aspect ratios are utilized.

8.7.1. Comparison to Experiment

An extensive literature search has revealed that most studies utilizing resonating
silicon nanowires involve nanowires with cross sectional sizes generally exceeding
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50 nm [6,99,30]. At those sizes, both the experimental results and extrapolation of
the current SCB results indicate that surface effects will not have a dominant role
on the resonant frequencies, and that continuum beam theory should be valid for
interpreting the resonant properties.

We did find one study involving the resonant properties of sub-30 nm cross sec-
tion silicon nanowires, that of Li et al. [29]. The silicon nanowires in that work
were of the 〈110〉 orientation, and were fabricated in the fixed/fixed configuration.
The nanowires were found to have a sharp decrease in Young’s modulus, with a 53
GPa Young’s modulus reported for 12 nm diameter nanowires. In comparison, using
the results in Figure 8-13, we find that the SCB model predicts a 58.5 GPa Young’s
modulus for a 16 nm cross section 〈100〉 nanowire. We note that a direct comparison
cannot be made due to the fact that the nanowires in the present work were axially
aligned in the 〈100〉 direction.

Two other studies involving the mechanical properties of sub-30 nm cross sec-
tion silicon nanowires were found, with both involving tensile deformation. Kizuka
et al. [32] used an AFM to perform tensile elongation of single crystal 〈100〉 silicon
nanowires with cross sections less than 10 nm; the measured Young’s modulus was
on the order of 18 GPa, which is considerably smaller than the 90 GPa Young’s
modulus for bulk 〈100〉 silicon.

More recently, Han et al. [31] also performed in situ TEM observation of the ten-
sile failure of 〈110〉 silicon nanowires. Nanowire sizes down to 15 nm cross sections
were considered; using the activation energy for dislocation nucleation, they also
obtained a strong size-dependence in the Young’s modulus, with a modulus value
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of 55 GPa reported for 15 nm cross section nanowires. Again, the 58.5 GPa modu-
lus obtained using the SCB model for 16 nm cross section 〈100〉 nanowires agrees
well, though as before, a direct comparison cannot be made due to the different
crystallographic orientations.

Despite the small amount of experimental data to which to compare the present
results, the present results are qualitatively consistent with available experimental
data [29,32,31] and theoretical results [97,100] in predicting a relative decrease in
resonant frequencies, and thus Young’s modulus, for fixed/fixed nanowires.

8.8. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have presented an overview of the recently developed surface
Cauchy-Born model, which is a nonlinearly elastic, finite deformation multiscale
continuum model that captures surface stress effects on the mechanical behavior and
properties of nanomaterials. The surface Cauchy-Born model leads to a variational
framework that enables the solution of nanomechanical boundary value problems
for displacements, stresses and strains in nanomaterials using standard nonlinear
finite element methods. In this vein, the surface Cauchy-Born model offers the
following advantages as compared to the various continuum surface elastic formu-
lations that have been presented [33, 41, 51, 52, 54–57, 101]: (1) No additional
atomistic calculations are necessary to obtain surface elastic constants. All surface
stresses and elastic constants are obtained directly from the underlying interatomic
potential. (2) The surface physics are captured using accurate, multibody inter-
atomic potentials such as the EAM for FCC metals or Tersoff for silicon. (3) The
variational form requires no non-standard terms as is common for surface elastic
formulations [51], which makes it simple to discretize numerically using standard
nonlinear finite element methods. (4) Capturing the atomistic surface stress effects
within a continuum framework leads to an enormous reduction in computational
expense as compared to fully atomistic calculations while still maintaining accuracy
comparable to that achievable in a fully atomistic calculation. (5) No assumption of
linear elastic kinematics was required for the surface Cauchy-Born model; instead,
the surface Cauchy-Born model is based upon fully nonlinear, finite deformation
kinematics.

We first verified the surface Cauchy-Born model in calculating the minimum
energy configurations of metal nanowires due to surface stresses. We then uti-
lized the surface Cauchy-Born model to quantify, for the first time, how boundary
conditions and surface stresses couple to alter the resonant frequencies of silicon
nanowires as compared to those expected using standard continuum beam theory
[84]. With regards to the effects of surface stresses on the silicon nanowire resonant
frequencies, we have found that: (1) Surface stresses cause significant deviations
in the resonant frequencies of nanowires as compared to those that are found using
standard continuum beam theory with bulk material properties, with the deviation
having a different trend depending on whether fixed/fixed or fixed/free boundary
conditions are used. We find that the resonant frequencies of nanowires with cross
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sectional lengths greater than about 30 nm show little deviation from those predicted
from continuum beam theory. We also find that surface stresses most strongly impact
the resonant properties of fixed/fixed silicon nanowires, which are found to decrease
substantially as compared to predictions from continuum beam theory. In contrast,
surface stresses do not cause substantial deviations from beam theory for fixed/free
silicon nanowires unless nanowires with very small cross sectional lengths (<10 nm)
and large aspect ratios are considered. (2) For fixed/fixed silicon nanowires, account-
ing for the compressive state of stress resulting from the coupled effects of surface
stresses and boundary conditions is critical to capturing the observed reductions in
the resonant frequencies as compared to continuum beam theory. (3) The devia-
tion that surface stresses cause in the resonant properties of fixed/fixed nanowires
as compared to beam theory scales proportional to the nanowire aspect ratio l/a.
(4) No such scaling relationship was found for surface stress effects on the resonant
properties of fixed/free nanowires. (5) The present finding that the resonant proper-
ties of fixed/fixed silicon nanowires, and therefore the elastic properties such as the
Young’s modulus decrease with respect to the bulk value qualitatively agrees with
recent experimental [29,31,32] and theoretical [97,100] results.

The ability to capture surface effects on the behavior and properties of nano-
materials using accurate and efficient finite element-based models has and will
open the door to study other important nanoscale phenomena. To that end, work
is already underway to study nanoscale resonant mass sensing [102], surface-driven
thermoelastic dissipation in nanomaterials [103], resonant based strain sensing using
deformed FCC metal nanowires [104], and the effects of the residual surface stress
on the resonant frequencies of metal nanowires if finite deformation kinematics
are considered [105]. In general, multiscale models incorporating surface effects
on nanomaterials will be invaluable in the near future for their ability to investi-
gate problems that cannot be solved due to computational expense by atomistic
calculations alone.
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Abstract: In the cluster structure community, global optimization methods are common tools for
arriving at the atomic structure of molecular and atomic clusters. The large number of
local minima of the potential energy surface of these clusters, and the fact that these
local minima proliferate exponentially with the number of atoms in the cluster simply
demands the use of fast stochastic methods to find the optimum atomic configuration.
Therefore, much of the development work has come from (and mostly stayed within)
the cluster structure community. Partly due to wide availability and landmark successes
of high resolution microscopy techniques, finding the structure of periodically recon-
structed semiconductor surfaces was not posed as a problem of stochastic optimization
until recently, when we have shown that high-index semiconductor surfaces can posses a
rather large number of local minima with such low surface energies that the identification
of the global minimum becomes problematic. We have therefore set out to develop global
optimization methods for systems other than clusters, focusing on periodic systems in
one- and two- dimensions as such systems currently occupy a central place in the field
of nanoscience. In this article, we review some of our recent work on global optimiza-
tion methods (the parallel-tempering Monte Carlo method and the genetic algorithm) and
show examples/results from two main problem categories: (1) the two-dimensional prob-
lem of determining the atomic configuration of clean semiconductor surfaces, and (2)
finding the structure of freestanding nanowires. While focused mainly on optimization
the atomic structure for a system with set periodic boundary conditions, our account also
reviews a recent example of using genetic algorithms for growth of nanostructures into
their global energy minima compatible with given confinement conditions
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9.1. INTRODUCTION

The discovery of carbon nanotubes (CNTs) [1] sparked arduous interest in nanotube
science and applications. The fascination with nanotubes, now still at an all-time
high, is beginning to slow down as researchers have found another class of materi-
als (nanowires) with superior potential to impact science at the nanometer scale, as
well as our everyday lives. While CNTs are inert, nanowires (NWs) have “chem-
istry” which opens up unprecedented avenues for controlling their structure as well
as their electronic, optical, mechanical and magnetic properties [2]. The scientific
curiosity about nanostructures in general and about NWs in particular comes from
the realization that at such small scales the structure, properties, and phenomena
cannot be straightforwardly inferred from our knowledge of the bulk forms. The
appeal of the NWs is also driven by the continuous miniaturization of electronics
and optoelectronics industry, which has achieved the limit in which the interconnec-
tion of devices in a reliable and controllable way is particularly challenging. Fervent
strides are underway in the preparation of NWs for molecular and nano-electronics
applications [2, 3]: such wires (possibly doped or functionalized) can operate both
as nanoscale devices and as interconnects [4]. Silicon nanowires (SiNWs) offer, in
addition to their appeal as building blocks for nanoscale electronics, the benefit of
simple fabrication techniques compatible with the currently well-developed silicon
technology.

While remarkable progress has been achieved in the synthesis and device appli-
cations of SiNWs, atomic-level knowledge of the structure of ultrathin nanowires
remains largely speculative. Stating the obvious, when the diameters are as small
as 1 nm, the atomic structure of the NW is the single most important factor that
determines its electronic, optical, and mechanical properties, as well as the ensuing
phenomena and technological applications. The importance of atomic structure has
been emphasized in a sequence of recent high-profile publications [5–10], which
bring strongly plausible arguments and simulation evidence for various configura-
tions in certain diameter regimes. The current proposals for SiNW configurations
fall into several main categories: fused-fullerenes [5], fused-clathrates [9, 11], dia-
mond structure single-crystals with reconstructed nanofacets [8, 12], polycrystals
[7] and high-density phases [10], with each of the categories representing a nov-
elty with respect to previous work. However, when considered together, the works
[5–12] appear to collectively suggest that the procedures currently used to investi-
gate the structure of thin nanowires are not reliable. One may be determined to draw
this conclusion because seemingly simple questions regarding the SiNW diameter
(“what is thinnest stable Si nanowire? ” [7]) and its core structure are still under
investigation.

The reason for the current situation of the SiNW problem is that this problem is
exponentially complex (NP-complete), as we could recognize from a quick compar-
ison with the problem of structure of atomic clusters: for a given number and type of
atoms, the only mathematical difference between the two problems (wire vs. cluster)
is the periodic boundary condition necessary to simulate the quasi 1-dimensional
wires. Yet, in most theoretical approaches to date the structures proposed are not
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derived from the kind of robust search procedures that have been employed for
atomic clusters. The problem is exacerbated by the fact that in the few-nanometer
diameter regime experimental characterization of NWs with atomic resolution is
extremely difficult, and thus theoretical proposals for NW structures cannot be
easily confirmed or refuted. Since the problem of structure determination is NP
complete and the current approaches are not dealing with this aspect, it is likely that
a set of structures based on physical intuition (albeit refined using electronic struc-
ture relaxations) may not include many low-energy minima which could end up
being the global minimum. Even if we assume (purely for the sake of the argument)
that all the thermodynamically relevant structures of silicon NWs have already been
reported in previous theoretical studies over the last 7 years, such a solution for
the case of silicon will not readily transfer into methodologies or knowledge about
NWs made of other materials, and we would again have to resort to trying numerous
intuitive structures over many years.

Another problem, analog in principle with the above problem of finding the struc-
ture of nanowires, is searching for the structure of semiconductor surfaces. Under
conditions of ultra-high vacuum, these surfaces reorganize their atomic configu-
ration to minimize the surface energy, and in the process create periodic recon-
structions which can repeat almost flawlessly over thousands of Angstroms in the
nominal plane of the surface. The determination of atomic structure of crystalline
surfaces is a long-standing problem in surface science. Despite major progress
brought by experimental techniques such as scanning tunneling microscopy (STM)
and advanced theoretical methods for treating the electronic and ionic motion, the
commonly used procedures for finding the atomic structure of surfaces still rely
to a large extent on one’s intuition in interpreting STM images. While these pro-
cedures have proven successful for determining the atomic configuration of many
low-index surfaces [e.g., Si(001) and Si(111)], in the case of high-index surfaces
their usefulness is limited because the number of good structural models for high-
index surfaces is rather large, and may not be exhausted heuristically. An illustrative
example is Si(5 5 12), whose structure has been the subject of intense dispute
[13–16] since the publication of the first atomic model proposed for this sur-
face [17]. There are also other stable surfaces of silicon such as (113) [18, 19]
and (105)[20–25], which required a long time for their correct structures to be
revealed.

The high-index surfaces attract a great deal of scientific and technological interest
since they can serve as natural and inexpensive templates for the fabrication of low-
dimensional nanoscale structures. Knowledge about the template surface can lead to
new ways of engineering the morphological and physical properties of these nanos-
tructures. The main technique for investigating atomic-scale features of surfaces is
STM, although, as pointed out in a recent review, STM alone is only able to provide
“a range of speculative structural models which are increasingly regarded as solved
surface structures” [26]. The role of theoretical methods for structural optimization
of high-index surfaces has been largely reduced to the relaxation of these specu-
lative models. However, the publication of numerous studies that report different
structures for a given stable high-index silicon surface (see, e.g., [13–17]) indicates
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a need to develop methodologies capable of actually searching for the atomic struc-
ture in a way that does not predominantly rely on the heuristic reasoning associated
with interpreting STM data. We are thus facing the same problem as described above
for the case of nanowires, which is why we develop global optimization methods as
useful tools to complement experimental data (when exists or is readily obtainable)
or to make more robust predictions of structure in case experiments are not available.

A truly general and robust way of predicting the atomic structure of 1-D and
2-D systems surfaces takes sustained effort over many years. It is not entirely clear
that such robust atomic-scale predictions about semiconductor surfaces can even
be ventured, since theoretical efforts have been somewhat tempered by the lack of
empirical or semiempirical potentials that are both sufficiently fast and sufficiently
transferable for surface or nanowire calculations.

However, the long process that lead to the discovery of the reconstruction of
the (105) surface [20, 27, 22–25] indicates a clear need for a search methodology
that does not rely on human intuition. Our efforts to develop such methodolo-
gies are presented in Section 2 (parallel-tempering Monte Carlo and the genetic
algorithm) for finding the lowest-energy reconstructions for elemental crystal sur-
faces. We review our work on atomic structures of surfaces and nanowires over the
past few years, relying in particular on Refs. [39, 57, 54, 60], from which large
portions where reproduced here with permission of the respective publishers. Our
initial focus will be on silicon because of its utmost fundamental and technolog-
ical importance; nonetheless, the same strategies could be applied for any other
material surfaces provided suitable models for atomic interactions are available. In
Section 9.3 we will show how the genetic algorithm can be modified to address
the structure of nanowires, and describe recent results on the magic configurations
of the H-passivated SiNWs oriented parallel to the [110] direction. We also review
an intriguing application of the genetic algorithms for 1-d nanostructures, namely
their growth into global minima compatible with preset confinement conditions.
This simulated growth relies on the fact that genetic algorithms for 1-d nanostruc-
tures do not have to preserve the number of atoms during the evolution, and can in
fact grow the structure and optimize its atomic configuration during the same run.
Section 9.4 summarizes our results on various surfaces and nanowires obtained so
far, and identifies a number of future directions that can tremendously benefit from
the application of global search methods.

9.2. RECONSTRUCTION OF SILICON SURFACES AS A PROBLEM
OF GLOBAL OPTIMIZATION

In choosing a methodology that can help predict the surface reconstructions, we
have taken into account the following considerations. First, the number of atoms in
the simulation slab is large because it includes several subsurface layers in addition
to the surface ones. Moreover, the number of local minima of the potential energy
surface is also large, as it scales roughly exponentially[28, 29] with the number
of atoms involved in the reconstruction; by itself, such scaling requires the use of
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fast stochastic search methods. Secondly, methods that are based on the modifica-
tion of the potential energy surface (PES) (such as the basin-hoping[30] algorithm),
although very powerful in predicting global minima, have been avoided as our future
studies are aimed at predicting not only the correct lowest-energy reconstructions,
but also the thermodynamics of the surface. Lastly, the calculation of interatomic
forces is expensive, so the method should be based on Monte Carlo algorithms rather
than molecular dynamics. We mention, however, that recent advances in molecular
dynamics algorithms, especially the parallel replica[31] and temperature accelerated
dynamics[32] developed by Voter and coworkers, may constitute viable alternatives
to Monte Carlo parallel tempering for the sampling of low-temperature systems.

These considerations, coupled with a desire for simplicity and robustness
of implementation, prompted us to choose the parallel-tempering Monte Carlo
(PTMC) algorithm [33, 34] for finding the reconstruction of semiconductor sur-
faces. While we describe the salient features of the PTMC for crystal surfaces in
Section 9.2.1, the reader is refer to the original work [35] for full implementation
details.

The PTMC simulations, however, have a broader scope that the global mini-
mum search, as they are used to perform a thorough thermodynamic sampling of
the surface systems under study. Given their scope, such calculations [35] are very
demanding, usually requiring several tens of processors that run canonical simula-
tions at different temperatures and exchange configurations in order to drive the
low-temperature replicas into the ground state. If we focus only on finding the
reconstructions at zero Kelvin (which can be representative for crystal surfaces in
the low-temperature regimes achieved in laboratory conditions), it is then justified
to explore alternative methods for finding the structure of high-index surfaces. In
Section 9.2.2, we will address the problem of surface structure determination at zero
Kelvin, and report a genetically-based strategy for finding the reconstructions of
elemental semiconductor surfaces. Our choice for developing this genetic algorithm
(GA) was motivated by its successful application for the structural optimization of
atomic clusters [36, 37]. We have designed and tested the algorithm for Si(105)[38],
but we tested it on other surfaces as well [39–41]. Both Sections 9.2.1. and 9.2.2.
deal with the Si(114)-(2 × 1) surface, as an illustrative example of how the two
methodologies fare in the quest for finding low energy structures.

9.2.1. The Parallel-Tempering Monte Carlo

The reconstructions of semiconductor surfaces are determined not only by the effi-
cient bonding of the surface atoms, but also by the stress created in the process [17].
Therefore, we retain a large number of subsurface atoms when performing a global
search for the lowest energy configuration: this way the surface stress is intrinsically
considered when reconstructions are sorted out. The number of local minima of the
potential energy is also large, as it scales roughly exponentially [28, 29] with the
number of atoms involved in the reconstruction; by itself, such scaling requires the
use of fast stochastic search methods. One such method is the parallel-tempering
Monte Carlo (PTMC) algorithm [33, 34], which was shown to successfully find the
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reconstructions of a vicinal Si surface when coupled with an exponential cooling
[35]. Before outlining the procedure, we discuss briefly the computational cell and
the empirical potential used.

The simulation cell [of dimensions 3a × a
√

2 for Si(114)] in the plane of the
surface) has a single-face slab geometry with periodic boundary conditions applied
in the plane of the surface, and no periodicity in the direction normal to it. The
“hot” atoms from the top part of the slab (10–15 Å thick) are allowed to move,
while the bottom layers of atoms are kept fixed to simulate the underlying bulk
crystal. The area of the simulation cell and the number of atoms in the cell are kept
fixed during each simulation. Under these conditions, the problem of finding the
most stable reconstruction reduces to the global minimization of the total potential
energy V(x) of the atoms in the simulation cell (here x denotes the set of atomic posi-
tions). In terms of atomic interactions, we are constrained to use empirical potentials
because the highly accurate ab-initio or tight-binding methods are prohibitive as far
as the search itself is concerned. Since this work is aimed at finding the lowest
energy reconstructions for arbitrary surfaces, the choice of the empirical potential
is important. After numerical experimentation with several empirical models, we
chose to use the highly optimized empirical potential (HOEP) recently developed
by Lenosky et al. [42]. HOEP is fitted to a large database of ab-initio calculations
using the force-matching method, and provides a good description of the energetics
of all atomic coordinations up to Z = 12.

The parallel tempering Monte Carlo method (also known as the replica-exchange
Monte-Carlo method) consists in running parallel canonical simulations of many
statistically independent replicas of the system, each at a different temperature
T1 < T2 < . . . < TN . The set of N temperatures {Ti, i = 1,2, . . . ,N} is called a
temperature schedule (or schedule for short). The probability distributions of the
individual replicas are sampled with the Metropolis algorithm [43], although any
other ergodic strategy can be employed [44]. Irrespective of what sampling strategy
is being used for each replica, the key feature of the parallel tempering method is
that swaps between replicas of neighboring temperatures Ti and Tj (j = i ± 1) are
proposed and allowed with the conditional probability [33, 34] given by

min
{

1,e(1/Tj−1/Ti)[V(xj)−V(xi)]/kB
}

, (9-1)

where V(xi) represents the energy of the replica i and kB is the Boltzmann con-
stant. The conditional probability (9-1) ensures that the detailed balance condition
is satisfied and that the equilibrium distributions are the Boltzmann ones for each
temperature.

In the limit of low temperatures, the PTMC procedure allows for a geometric
temperature schedule [45, 46]. To show this, we note that when the temperature
drops to zero, the system is well approximated by a multidimensional harmonic
oscillator, so the acceptance probability for swaps attempted between two replicas
with temperatures T < T ′ is given by the incomplete beta function law [46]
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Ac(T ,T ′) � 2

B(d/2,d/2)

∫ 1/(1+R)

0
θd/2−1(1 − θ )d/2−1dθ , (9-2)

where d denotes the number of degrees of freedom of the system, B is the Euler
beta function, and R ≡ T ′/T . Since it depends only on the temperature ratio R, the
acceptance probability (9-2) has the same value for any arbitrary replica running at
a temperature Ti, provided that its neighboring upper temperature Ti+1 is given by
Ti+1 = RTi. The value of R is determined such that the acceptance probability given
by Eq. (9-2) attains a prescribed value p. Thus, the (optimal) schedule that ensures
a constant probability p for swaps between neighboring temperatures is a geometric
progression:

Ti = Ri−1Tmin, 1 ≤ i ≤ N, (9-3)

where Tmin = T1 is the minimum temperature of the schedule.
The typical Monte Carlo simulation done in this work consists of two main parts

that are equal in terms of computational effort. In the first stage of the computa-
tion, we perform a parallel tempering run for a range of temperatures [Tmin, Tmax].
The configurations of minimum energy are retained for each replica, and used as
starting configurations for the second part of the simulation, in which replicas are
cooled down exponentially until the largest temperature drops below a prescribed
value. As a key feature of the procedure, the parallel tempering swaps are not turned
off during the cooling steps. Thus, in the second part of the simulation we are in
fact using a combination of parallel tempering and simulated annealing, rather than
a simple cooling. At the k-th cooling step, each temperature from the initial temper-
ature schedule {Ti,i = 1,2, . . . ,N} is decreased by a factor which is independent of
the index i of the replica, T (k)

i = αkT (k−1)
i . Because the parallel tempering swaps

are not turned off, we require that at any cooling step k all N temperatures must be
modified by the same factor αk in order to preserve the original swap acceptance
probabilities. We have used a cooling schedule of the form [35]

T (k)
i = αT (k−1)

i = αk−1Ti (k ≥ 1), (9-4)

where Ti ≡ T (1)
i and α = 0.85.

The third and final part of the minimization procedure is a conjugate-gradient
optimization of the last configurations attained by each replica. The relaxation is
necessary because we aim to classify the reconstructions in a way that does not
depend on temperature, so we compute the surface energy at zero Kelvin for the
relaxed slabs i, i = 1,2, . . . ,N. The surface energy γ is defined as the excess energy
(with respect to the ideal bulk configuration) introduced by the presence of the
surface:

γ = (Em − nmeb)/A (9-5)
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where Em is the potential energy of the nm atoms that are allowed to move,
eb = −4.6124 eV is the bulk cohesion energy given by HOEP, and A is the surface
area of the slab.

At the end of the simulation, we analyze the energies of the relaxed replicas.
Typical plots showing the surface energies of the structures retrieved by the PTMC
replicas are shown in Figure 9-1a, for different numbers of particles in the computa-
tional cell. To exhaust all the possibilities for the numbers of particles corresponding
to the supercell dimensions of 3a × a

√
2, we repeat the PTMC simulation for dif-

ferent values of n ranging from 208 to 220, and look for a periodic behavior of the
lowest surface energy as a function of n. For the case of Si(114), this periodicity
occurs at intervals of �n = 4, as shown in Figure 9-1b. Therefore, the (correct)
number of atoms n at which the lowest surface energy is attained is n = 216, up to
an integer multiple of �n. As we shall show in Section 9.2.2 below, the repetition of

Figure 9-1. (a) Surface energies of the relaxed parallel tempering replicas i, (0 ≤ i ≤ 31) with total
number of atoms n = 216 (solid circles), 215 (open triangles), 214 (open circles) and 213 (solid tri-

angles). For clarity, the range of plotted surface energies was limited from above at 100 meV/Å
2
. (b)

Surface energy of the global minimum structure showing a periodic behavior as a function of n, with a
period of �n = 4; this finding helps narrowing down the set of values for n that need to be considered
for determining the Si(114) reconstructions that have a 3a × a

√
2 periodic cell. (Reproduced from Ref.

[39], with permission from Elsevier)
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the simulation for different values of n in the simulation cell can be avoided within
a genetic algorithm approach.

9.2.2. Genetic Algorithm

Like the previous method, the genetic algorithm also circumvents the intuitive pro-
cess when proposing candidate models for a given high-index surface. An advantage
of this algorithm over most of the previous methodologies used for structural opti-
mization is that the number of atoms involved in the reconstruction, as well as their
most favorable bonding topology, can be found within the same genetic search [38].

This search procedure is based on the idea of evolutionary approach in which
the members of a generation (pool of models for the surface) mate with the goal of
producing the best specimens, i.e. lowest energy reconstructions [38]. “Generation
zero” is a pool of p different structures obtained by randomizing the positions of
the topmost atoms (thickness d), and by subsequently relaxing the simulation slabs
through a conjugate-gradient procedure. The evolution from a generation to the next
one takes place by mating, which is achieved by subjecting two randomly picked
structures from the pool to a certain operation (mating) O:(A,B) −→ C. The mating
operation O produces a child structure C from two parent configurations A and B, as
follows. The topmost parts of the parent models A and B (thickness d) are separated
from the underlying bulk and sectioned by an arbitrary plane perpendicular to the
surface. The (upper part of the) child structure C is created by combining the part of
A that lies to the left of the cutting plane and the part of slab B lying to the right of
that plane: the assembly is placed on a thicker slab, and the resulting structure C is
subsequently relaxed.

A mechanism for the survival of the fittest is implemented as a defining fea-
ture of the genetic evolution. In each generation, a number of m mating operations
are performed. The resulting m children are relaxed and considered for the possi-
ble inclusion in the pool based on their surface energy. If there exists at least one
candidate in the pool that has a higher surface energy than that of the child consid-
ered, then the child structure is included in the pool. Upon inclusion of the child,
the structure with the highest surface energy is discarded in order to preserve the
total population p. As described, the algorithm favors the crowding of the ecology
with identical metastable configurations, which slows down the evolution towards
the global minimum. To avoid the duplication of members, we retain a new struc-
ture only if its surface energy differs by more than δ when compared to the surface
energy of any of the current members p of the pool. Relevant values for the param-
eters of the algorithm are given in [38]: 10 ≤ p ≤ 40, m = 10, d = 5Å , and

δ = 10−5 meV/ Å
2
.

We have developed two versions of the algorithm. In the first version, the number
of atoms n is kept the same for every member of the pool by automatically rejecting
child structures that have different numbers of atoms from their parents (mutants).
In the second version of the algorithm, this restriction is not enforced, i.e. mutants
are allowed to be part of the pool: in this case, the procedure is able to select the
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Figure 9-2. (a) Evolution of the lowest surface energy (solid line) and the average energy (dash line)
for a pool of p = 30 structures during a genetic algorithm (GA) run with variable n (210 ≤ n ≤ 222). (b)
Evolution of the number of atoms n that corresponds to the model with the lowest energy from the pool,
during the same GA run. Note that the lowest energy structure of the pool spends most of its evolution
in states with numbers of atoms that are compatible with the global minimum, i.e. n = 212 and n = 216
(Reproduced from [39], with permission from Elsevier)

correct number of atoms for the ground state reconstruction without any increase
over the computational effort required for one single constant-n run. The results
of a variable-n run are shown in Figure 9-2a which shows how the lowest energy
and the average energy from a pool of p = 30 structures decreases as the genetic
algorithm run proceeds. The plot in Figure 9-2a displays typical features of the
evolutionary approach: the most unfavorable structures are eliminated from the pool
rather fast (initial steep transient region of the graphs) and a longer time is taken for
the algorithm to retrieve the most stable configuration. The lowest energy structure
is retrieved in less than 500 mating operations. The correct number of atoms [refer
to Figure 9-2b] is retrieved much faster, within approximately 100 operations. It is
worth noting that even during the transient period, the lowest-energy member of the
pool spends most of its evolution in a state with a number of atoms (n = 212) that
is compatible with the global minimum structure.

The two independent algorithms (PTMC and GA) presented here are able to
retrieve a set of possible candidates for the lowest energy surface structure. We use
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both of the algorithms in this work in order to assess how robust their structure pre-
dictions are. As it turns out, the two methods not only find the same lowest energy
structures for each value of the total number of atoms n, but also most of the other
low-energy reconstructions – a finding that builds confidence in the quality of the
configuration sampling performed here. Since the atomic interactions are modelled
by an empirical potential [42], it is desirable to check the relative stability of dif-
ferent model structures using higher-level calculations based on density functional
theory (DFT). The details of these density functional calculations can be found, e.g.,
in [39].

9.2.3. Selected Results on Si(114)

At the end of the global search procedures (PTMC and GA), we obtain a set of
model structures which we sort by the number of atoms in the simulation cell and
by their surface energy. Since the empirical potentials may not be fully transferable
to different surface environments, we study not only the global minima given by the
model for different values of n, but also most of the local minima that are within
15 meV/ Å

2
from the lowest energy configurations. After the global optimizations,

the structures obtained are also relaxed by density functional theory (DFT) methods
[39, 40]. The results are summarized in Table 9-1 below.

Table 9-1. Surface energies of selected Si(114) reconstructions, sorted by
the number of atoms n in the 3a × a

√
2 periodic cell. The second column

shows the number of dangling bonds (counted for structures relaxed with
HOEP) per unit area. The last two columns list the surface energies given
by the HOEP interaction model [42] and by density functional calculations
(DFT) [47] with the parameters described in text. (Adapted from [39] with
permission from Elsevier)

Bond counting HOEP DFT

n (db/3a2
√

2) ( meV/ Å
2
) ( meV/ Å

2
)

216 8 81.66 89.48
8 83.16 90.34
8 83.31 91.29
8 83.39 88.77
8 83.64 94.68
8 84.42 92.16

215 8 91.61 97.53
8 91.82 95.30
8 92.00 94.20

214 6 86.95 95.17
10 87.32 99.58
10 87.39 98.47
10 87.49 93.88

213 4 89.46 90.43
6 89.76 94.01
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Table 9-1 lists the density of dangling bonds (db per area), as well as the sur-
face energies of several different models calculated using the HOEP potential and
DFT. The configurations have been listed in increasing order of the surface energies
computed with HOEP, as this is the actual outcome of the global optimum searches.
The data shows clearly that the density of dangling bonds at the Si(114) surface
is, in fact uncorrelated with the surface energy. The lowest number of dbs per area

reported here is 4, and it corresponds to n = 213 and γ = 90.43 meV/ Å
2

at the
DFT level. The optimum structure, however, has twice as many dangling bonds but

its surface energy is smaller, 88.77 meV/ Å
2
. Furthermore, for the same number of

atoms in the supercell (n = 216) and the same dangling bond density (8db/3a2
√

2),
the different reconstructions obtained via global searches span an energy interval of

at least 5 meV/ Å
2
. These findings constitute a clear example that the number of

dangling bonds can not be used as a criterion for selecting model reconstructions for
Si(114). We expect this conclusion to hold for many other high-index semiconductor
surfaces as well.

The HOEP surface energy and the DFT surface energy also show very little cor-
relation, indicating that the transferability of the interaction model [42] for Si(114)
is not as good as, for instance, in the case of Si(001) and Si(105) [35]. The most
that can be asked from this model potential [42] is that the observed reconstruction
[50] is amongst the lower lying energetic configurations – which, in this case it is.
We have also tested the transferability of HOEP for the case of Si(113), and found
that, although the ad-atom interstitial models [18] are not the most stable struc-
tures, they are still retrieved by HOEP as local minima of the surface energy. We
found that the low-index (but much more complex) Si(111)-(7 × 7) reconstruction
is also a local minimum of the HOEP interaction model, albeit with a very high
surface energy. Other tests indicated that, while the transferability of HOEP to the
Si(114) orientation is marginal in terms of sorting structural models by their surface
energy, this potential [42] performs much better than the more popular interaction
models [48, 49], which sometimes do not retrieve the correct reconstructions even
as local minima. Therefore, HOEP is very useful as a way to find different local
minimum configurations for further optimization at the level of electronic structure
calculations.

A practical issue that arises when carrying out the global searches for surface
reconstructions is the two-dimensional periodicity of the computational slab. In
general, if a periodic surface pattern has been observed, then the lengths and direc-
tions of the surface unit vectors may be determined accurately through experimental
means (e.g., STM or LEED analysis): in those cases, the periodic vectors of the
simulation slab should simply be chosen the same as the ones found in experiments.
When the surface does not have two-dimensional periodicity, or when experimental
data is difficult to analyze, then one should systematically test computational cells
with periodic vectors that are integer multiples of the unit vectors of the bulk trun-
cated surface, which are easily computed from knowledge of crystal structure and
surface orientation. There is no preset criterion as to when the incremental testing of
the size of the surface cell should be stopped – other than the limitation imposed by
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finite computational resources; nevertheless, this approach gives a systematic way
of ranking the surface energies of slabs of different areas, and eventually finding the
global minimum surface structure.

In this section we have reviewed the PTMC and GA methods of global opti-
mization, and exemplified their application using the case case of Si(114), a stable
high-index orientation of silicon. The PTMC and GA procedures coupled with the
use of a highly optimized interatomic potential for silicon have lead to finding a
set of possible models for Si(114), whose energies have been recalculated via ab
initio density functional methods. The most stable structure obtained here without
experimental input coincides with the structure determined from scanning tunneling
microscopy experiments and density functional calculations in [50]. Motivated by
these results for 2-dimensional systems, we have set out to adapt the less compu-
tationally intensive of the two methods (GA) for the study of quasi-1-dimensional
nanowire systems. The blue print of this genetic algorithm for 1-d systems, along
with an example application for the case of hydrogenated SiNWs is presented in the
next section.

9.3. THE STRUCTURE OF FREESTANDING NANOWIRES

Interestingly, the application of GA for the study of nanowires has been around for
the last few years, and as we have found one research group and their close col-
laborators [51–53] who used GA for finding the structure of metallic nanowires. To
the best of our determination from [51–53], the method can be traced to the origi-
nal article of Deaven and Ho on molecular clusters [36], since very little has been
reported in terms of actual GA procedure for nanowires. While the spirit of the algo-
rithm is general in that it is based on the natural evolution of living ecosystems, the
adaptation of GA for artificial systems of atoms requires a certain amount of inspi-
ration, design, as well as intense testing of the versatility of the genetic operations
(cross-overs, mutations) for specific boundary conditions. Once GA is fully set up
for 1-dimensional boundary conditions (possibly including variable unit-cell period
and variable numbers of atoms), then it can be used for NWs made of any material
provided that suitable (i.e. fast and sufficiently accurate) atomic interaction models
are available. In what follows we describe the blueprint of such algorithm (Section
9.3.1) and show its application for hydrogenated SiNWs (Section 9.3.2).

9.3.1. A Genetic Algorithm for 1-D Nanowire Systems

As in the 2-dimensional case, the GA uses concept of a genetic pool to search for low
energy structures using principles inspired by the evolution of biological systems. In
biological evolution, offspring generations inherit traits from the older generations
that may or may not help them survive. Similarly, during GA simulations, new NW
configurations (children) inherit diverse structural motifs (genes) from their “parent”
structures that may lower their formation energies, case in which the NW children
live. It may also happen that new NW structures have too high energies to “sur-
vive”, case in which they would not be accepted in the genetic pool. We have shown
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above an example of how GA can be used to find the structure of 2-dimensional
reconstructions. The key to extending the use of GA to NWs is to realize that these
algorithms must be system-specific. In other words, the type of genetic moves (e.g.
mating operations) that define the evolution cannot be identical for e.g., clusters
[36] and surfaces [38]. On the other hand, the moves and their sequence should not
be so radically different that each new physical system would require a prohibitive
amount of programming and testing.

In Section 9.2.2. we described a simple GA scheme in 2-D where the main
assumptions were that the periodic lengths are a priori known, and that the num-
ber of Si atoms in the supercell was either fixed or left to vary. If we consider the
vast number of proposals for SiNWs [5–10], it becomes apparent that an algorithm
with constant periodic length cannot sort through such multitude of structures with
different periods along the wire. We therefore describe here a GA with variable peri-
odic length and variable number of atoms (e.g., with fewer than 100 atoms per unit
cell), so that highly unfavorable numbers of atoms can be eliminated quickly and
naturally during the genetic evolution. It is our hope that such implementation of
GA will prove very versatile as it will be able to simultaneously find the number,
the period and the atomic structure of thin NW structures.

We now describe the salient features of the proposed GA. We again start with
a pool of p structures, in which the atoms are placed at random (but connected)
positions. The key modification is that we allow the boundaries of the periodic
cells to relax along with the atomic positions. The “Generation Zero” itself (see
Section 9.2.2) will have members of different numbers of atoms and different peri-
odic lengths. The evolution proceeds as follows (refer to Figure 9-3). Two members
are randomly chosen from the pool (parent structures a and b), scaled to have the
same length (e.g., the geometric mean of their periodic lengths) and translated so
that they lie between the same spatial bounds in the periodic direction (z) with their
centers of mass projecting in the same location in a plane perpendicular to z. a child

Figure 9-3. Schematics of the cross-over operation in a genetic algorithm design to tackle variations of
the periodic cell along its axis. Reproduced from [54], with permission from Taylor & Francis
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structure c is produced from a and b through a cross-over (mating) operation in
which the parents are sectioned by the same random plane (Figure 9-3) then por-
tions of parents that lie on different sides of the cutting plane are assembled to form
C. There are two possibilities to form the child structure, and one of them will be
discarded at random without an energy calculation. The child structure c is relaxed
(both atomic positions and periodic boundaries), and placed in the pool if its total
energy per atom is smaller than that of the most unfavorable pool member. Upon
placing the structure in the pool, the highest energy structure is removed in order to
preserve the total population p. The procedure is repeated for thousands of gener-
ations and stopped according to a set of desired criteria. Since we are interested in
diverse types of low energy structures, we would not want the pool crowded with
the same structure. For this reason, we allow a child to enter the pool not only when
its formation energy is favorable, but also if its structure is different from all the
other structures in the pool.

The boundary conditions. The periodicity can still be fixed from the start when
it is known from experiments [55] or when we attempt to study wires with crys-
talline core [56]. In the latter case, one subtlety arises as we need to consider integer
multiples of the period of the core in order to allow for various reconstructions to
form along the wire [8]. In the case of moving boundary conditions, we will have to
ensure from the beginning that our system is connected, as otherwise connectivity
may be hard to achieve during the GA evolution.

The cross-over operations. In its most simple form, the cross-over operation
is the one shown in Figure 9-3 We can readily imagine other ways to perform
cross-over operations such as using two random planes to cut and assemble parts
of two or more parents. Based on extensive testing for the high-index surfaces
[38–40], we found that cross-over operations with 2 parents and either 1 or 2 cut-
ting planes are sufficiently robust and efficient for a wide range of aspect ratios
of the structures, and there is little need to go beyond these values for the thick-
ness regimes that we are interested in. For the crystalline-core nanowires the planes
need not be random, but rather parallel to the axis of the nanowire in order for
the supercell boundaries not to act like cutting planes themselves. This compatibil-
ity between periodic boundary conditions and the mating operations only appears
necessary for wires with known core crystal structures: in all other cases it may
negatively affect the course of the evolution as the parents would be limited in
terms of the kind of offspring they could produce using cutting planes parallel to the
axis.

The mutations. As described, there are no explicit mutations in the algorithm.
One can envision the simplest standard mutation as selecting one atoms and moving
it arbitrarily by a small distance. Many of these standard mutations will have to be
forcefully accepted to diversify in the pool, since random mutations almost always
increase the energy per atom. More efficient moves that are aimed at improving the
diversity of the parents participating in mating operations are zero-penalty, global
“mutations” that amount to rotating a child around its axis, shuffling its atomic coor-
dinates through boundary conditions, or taking the mirror image of the child with
respect to a plane perpendicular to its axis.



246 C.V. Ciobanu et al.

9.3.2. Magic Structures of H-Passivated Si-[110] Nanowires

Our choice to first study this particular NW system (i.e. hydrogenated SiNW ori-
ented along the [110] direction) was motivated by recent experiments [55] that
succeeded in characterizing, with atomic-scale resolution, H-SiNWs with diame-
ters between 2 and 7 nm. The authors of [55] have showed that the H-SiNWs are
single-crystals with axis orientations along [110], [112] or [111], and they have also
reported STM imaging of the NW facets. Comparison with these experiments leaves
therefore little wiggle room for theory, and thus constitutes a solid testing bed for
our approach. It should be mentioned that in experiments what is being controlled is
the number of H atoms on the surface and the wire diameter through timed exposure
to the HF environment. What we control in our simulations is the chemical potential
of H atoms, and determine the most stable thermodynamic state for a given chemical
potential [57].

During a GA optimization run, a pool of at p = 60 structures (initially just
random collections of atoms with periodic boundary conditions with a fixed period
of 3.84 Å, corresponding to the [110] crystal axis) is evolved by performing genetic
(mating) operations. For this particular SiNW system, the mating operations consist
in selecting two random parent structures from the pool, cutting them with the same
plane parallel to the wire axis, then combining parts of the parent structures that
lie on the opposite sides on the cutting plane to create a new structure (child). The
child structure is then passivated by satisfying all its dangling bonds with H atoms,
then relaxed with the Hansel-Vogl (HV) empirical model [58]. We include the child
structure in the genetic pool based on its formation energy f defined as

f = (E − μHnH)/n − μ, (9-6)

where E is the total energy of the computational cell with n Si atoms and nH hydro-
gen atoms, μ is the bulk cohesive energy of Si in its diamond structure, and μH is
the chemical potential of hydrogen. The H chemical potential is set such that certain
hydrogenation reactions at surfaces are thermodynamically allowed [57]. The pool
is divided into two equal subsets, one for each values of H. The mating operations
are performed both with parents in the same subset and with parents in different
subsets, in order to ensure a superior sampling of the potential energy landscape.
The mating operation is carried out 15 times during a generation, and a typical GA
run has 50,000 generations. At the end of each run, all structures are relaxed at DFT
level using the VASP package [59]. The chemical potential H used to compute the
DFT formation energies is determined so that it maximizes the correlation with the
HV formation energies for a few hundred configurations [57]. While some energetic
reordering does occur after the DFT calculations, most of the low-energy structures
found with the HV model remain relevant at the DFT level. GA runs with numbers
of atoms in the range 9 < n < 31 revealed three classes of spatially closed structures
with relatively low formation energies, which we described as 6-atom-ring chains,
double-chains (fused pairs of 6-ring chains) and hexagons (refer to Figure 9-4). As
the number of atoms per unit of wire length increases, we found that the most stable
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Figure 9-4. Magic nanowires (perspective view) found as minima of the formation energy per atom,
Eq. (9-6): the crossection of the wire can be (a) chain, (b) double-chain, or (c) hexagonal

cross section of the nanowire evolves from chains of six-atom rings to double-chains
to hexagons bounded by 001 and 111 facets. Our calculations predict that hexago-
nal wires become stable starting at about 1.2 nm diameter, which is consistent with
recent experiments on NWs with diameters of about 3 nm [55]. Pursuing further the
comparison with [55], we computed STM images for the facets of hexagons with
diameters in the range of 2–3 nm. Our calculation is in agreement with the STM
experiments, which also showed the exclusive presence of dihydride species on the
001 facets of [110] H-SiNWs.

9.3.3. Growth of 1-D Nanostructures into Global Minima Under Radial
Confinement

In this subsection we present a novel application of genetic algorithms, namely their
use for finding the structure of a 1-D nanotube via simulated growth [60]. Because
we pursue simulation of growth [60], we have chosen a variable-number genetic
algorithm which in the case of 2-D and 3-D periodic structures was shown to retrieve
the correct global minimum of the relevant energetic quantity – i.e., surface energy
in 2-D,[38, 39] and cohesion energy per particle in 3-D[61]. The 1-D nanotube stud-
ies reviewed here [60] were started with very few atoms in the periodic cell, often
with a single atom. The growth of the nanostructures takes off and proceeds entirely
through crossover operations, and stops when the optimal structure (i.e., that with
lowest energy per particle) for the given confinement conditions is found. As such,
the growth is not a reflection of the kinetic processes that occur in actual synthesis
experiments, but it is rather a different way to seek the optimal nanostructure that
can be synthesized under the prescribed confinement conditions.

We have noticed that simple planar crossovers such as those shown in Figure 9-3
lead to extremely slow and often nonconvergent genetic evolutions. Therefore, we
have diversified the set of mating (crossover) operations in order to improve the
algorithm’s performance. Two types of crossover operations were employed. The
first type, which we call sine crossovers (S1, S2, S3 cf. [60]) requires cutting the
parents along sinusoidal lines that are compatible with the periodic boundary con-
ditions along the axis of the tube and with respect to the angular coordinate. This
crossover procedure is adapted from recent work in 3-D crystal structure prediction
[61] which showed that, at least for 3-D periodic systems, the real-space GA is more
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efficient when using cutting functions that obey the periodic boundary conditions.
The other type of crossover is based on planar cuts (P1 and P2 cf. Ref. [60]) where
planes are either randomly oriented or are parallel to the axis of the nanostructure.

We have tested the genetic algorithm for two systems, LJ systems and carbon
nanotubed subjected to radial confinement conditions [60], and describe here only
the latter system. The purpose is to find out if nanotubes can grow via genetic opera-
tions. To this end, we started the GA runs from genetic pools in which each member
has one single carbon atom in the periodic cell. We follow the evolution of GA
runs in which only one type of cross-over is employed from the set , as well as
GA runs where all the crossover operations are attempted with equal probability.
The evolution of the lowest energy in the pool for each of the six GA runs (i.e.
five runs based on a single type of crossover, and one run with all equiprobable
crossovers) is plotted in Figure 9-5a, and the average energy across the pool is
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Figure 9-5. Evolution of (a) the lowest energy in the pool and (b) the average energy across the pool for
CNT systems in separate runs performed with only one type of crossover, as well as in a run performed
with all crossovers attempted with equal probability. The horizontal axis of each plot shows the number
of crossovers (moves) attempted. Note that the GA runs based solely on sine operations could not find
the global minimum structure within 10,000 crossovers. Reproduced from [60], with permission from
Taylor & Francis
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shown in Figure 9-5b for each run. We observe that only the runs based on pla-
nar cuts (P1 and P2) are able to find the optimal defect free CNT structure in less
than 104 operations. The run based on all operations finds the correct structure in
less than 5000 moves (crossovers). Since the individual sine crossovers are slow in
finding the global optimum structure, the success of the all-move GA run is most
likely due to the planar crossovers.

The structure of the best member in the genetic pool for the all-crossovers GA
run on CNT systems is shown at selected time-points in the evolution in Figure 9-6.
As specified, the run started with a single carbon atom for every member of the
pool, but we show two unit cells for each frame to help the visualization through
periodic boundary conditions along the direction of the nanotube. The best struc-
ture grows from one atom to a string of atoms that spans the length of the periodic
cell (frame labeled 700 in Figure 9-6). A rather large number of crossovers has to
be attempted in order for the string to grow wider (frames 2000, 2200), i.e. into a
strip of sp2-hybridized carbon atoms (graphene) at frame 2200. Planar crossovers
performed with parent structures that consist of graphene strips will likely lead to
two flat strips, as shown in frame 2300. The two strips subsequently coalesce at an
angle (frame 2700 in Figure 9-6), acquire more atoms and start curving onto a cylin-
drical surface due to the confining potential walls (frame 3300). Planar mating of
parent structures such as that shown in frame 3300 results in closing the circumfer-
ence, as shown in frame 3600; this closing occurs with defects along the cross-over
planes, but such defects are systematically weeded out later on (see frames 4100
and 4300).

We have thus shown that a real space, variable-number algorithm can be used
to retrieve simultaneously the lowest-energy structure and the optimal number of
atoms of 1-D nanostructures subjected to desired conditions of radial confinement,
starting from a single atom in the periodic unit cell. This algorithm is based on
two-parent crossover operations and zero-penalty “mutations”, the latter of which
allowing for the algorithm to evolve even from a genetic pool made of identical
structures. The structure of nanowires and nanotubes subjected to radial confinement
were obtained for other materials as well (e.g. gold, Lennard-Jones atoms), which

Figure 9-6. Evolution of lowest-energy carbon structure during a GA run performed with all crossover
types. The system starts with only 1 atom for each member of the genetic pool, and evolves towards a
defect-free CNT as the lowest-energy pool member. The outer confining wall is shown by the white dash
line, and the “time” (i.e., the index of the crossover operation) is indicated by the number shown atop
each frame. The number of atoms is shown at the bottom of the frames; for clarity, two periodic lengths
along the CNT axis are displayed. Reproduced from [60], with permission from Taylor & Francis
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suggests that the variable number genetic algorithm is a versatile tool for finding the
atomic configuration of nanowires.

9.4. FUTURE DIRECTIONS

We have so far described, in certain detail, two methodologies (PTMC and GA)
for the finding the structure of semiconductor surfaces. One of the two methods
(GA) has also been designed for the study of nanowire structures. At this stage,
the problem of pristine SiNWs structure that has triggered the development of GA
for 1-dimensional system is still not solved, as we have chosen to study first a sys-
tem (H-passivated Si [110] nanowire for which experimental observations [55] are
available for comparison. The algorithm is to be developed over time, as one can add
capabilities to it in order to study an increasing number of 1-dimensional material
systems. An overview of the 1-D systems that can be tackled in the future is summa-
rized in Figure 9-7, which shows the possible combinations between the materials
targeted in this study, wire diameter regimes, and experimentally relevant surface
terminations.

In terms of the semiconductor materials, silicon is perhaps the most important,
and it is the material that drew our attention to the nanowire structure problem in the
first place. Since, at its core, our methodology remains the same irrespective of the
material chosen, we will consider not only Si but other materials as well. The binary
materials (e.g., Si-Ge, In-P) in the chart above have been less scrutinized than sili-
con, and thus carry a tremendous potential for scientific novelty. The presence of a
second atomic species in a sizeable proportion is bound to change the NW structure
and will give insight into how the optical, electronic and mechanical properties can
be tailored by changing the wire material and/or its composition.

The two regimes of wire diameters are delineated according to the current capa-
bilities of the genetic algorithm, which turns out to be very efficient when dealing
with less than 100 atoms per periodic cell along the wire axis. Defining the NW

Figure 9-7. An overview of the nanowire semiconductor systems that might be tackled by global opti-
mization methods. With the exception of the oxide-passivated wires (included here only for completness),
the systems presented should be fairly amenable to study via genetic algorithms for diameters smaller
than 10 nm. Reproduced from [54], with permission from Taylor & Francis
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diameter as that of the smallest cylinder that includes all atoms, this number of
atoms roughly corresponds to 3 nm diameter in the case of Si. For larger numbers
of atoms per unit cell, the global optimization methods become much slower, as the
difficulty of the structure determination problem increases exponentially; the meth-
ods should be further developed and refined to address, for example, a tripling of the
number of atoms. Fortunately, in the regimes of diameters thicker than 3 nm, cur-
rent experiments have been able to precisely identify a crystalline core with specific
axis orientations [55, 56]. Therefore, for thick wires we will most likely not have to
apply the GA, but instead study the structure and energetics of NWs starting from
facet and facet-edge energies.

Most of the recent experiments show that the surface of the nanowires can
fall into three main categories: clean [5], H-terminated [55] or oxide-terminated
[62, 63]. Of these categories, the oxide surface is the least tractable with the
currently available atomic interaction models. We cannot reasonably apply DFT
methods either, because the structure of the oxide is mostly amorphous, thus hard
to predict or assume. On the other hand, the clean and H-passivated NWs are very
important for our fundamental understanding of the NWs structure and its effect on
NW properties and applications.

Since in the nanometer-thin regime the structure of the NWs is crucial in deter-
mining novel phenomena, properties and applications, we believe that the impact
of using global optimization methods for finding the structure of low-dimensional
nanostructures should be significant, especially in the very foreseable future when
the experimental community will achieve the stage at which it can routinely fab-
ricate devices based on ultra-thin wires (smaller than 3 nm diameter). At that
point, research in (e.g.) device conduction, optical phenomena, chemical sensing
at the nanoscale, and nano-electromechanical properties will require immediate
and detailed knowledge about the atomic structure as a starting point for any
robust understanding of the operation of such devices. The methodologies that
we have reviewed here have strong predictive capabilities, and therefore we hope
that they will robustly complement the experimental techniques and provide the
needed structure input for investigations of novel properties and functionalities of
ultra-thin NWs.
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Abstract: Among the objects of nanomechanics studies, carbon nanotubes have attracted special
interest due to their unique properties and potential use in a wide range of applica-
tions, including nanometer-scale devices and composite materials. In these applications
the mechanical responses of the nanotubes can significantly affect the performance of
the devices and materials. Therefore, characterizing and understanding their mechan-
ical responses is necessary in order to optimize their utilization in these applications.
Computational simulations are uniquely able to provide insights that are challenging to
obtain experimentally. Molecular dynamics simulations in particular are popular for the
examination of the mechanical responses of nanotubes.
This chapter provides a review of the background of molecular dynamics simulation
methods, their role in the study of the nanomechanical responses of carbon nanotubes,
and their important contributions to this emerging research field. Illustrative examples are
presented that illustrate how these approaches are providing new and exciting insights
into nanomechanical properties as elastic modulus or stiffness, fracture, and bucklng.
Furthermore, the simulations indicate that filling or functionalization, combined loads,
and external gases influence these properties. Thus, molecular dynamics simulation
methods are revolutionizing our understanding of the mechanical behavior of nanotube
systems at the most fundamental atomic level

Keywords: Molecular dynamics simulation, Carbon nanotube, Nanomechanics

10.1. INTRODUCTION

Nanomechanics is an emerging research area that deals with the mechanical
properties and behavior of nanometer-scale structures and materials [1]. Among
the numerous objects of nanomechanics studies, carbon nanotubes (CNTs) have
attracted special interest due to their unique properties and potential use in a wide
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range of applications. In fact, CNTs have the unique properties including high
stiffness, high covalent bond strength, large elastic instability, low density, tubu-
lar shape, and large aspect ratio. They have consequently been proposed for use
as key elements in applications such as nanometer scale devices [2–14] and com-
posite materials [15]. In these CNT-based applications, the mechanical properties
and behavior of the CNTs are key and can significantly influence the performance
of the resulting devices or materials. Therefore, characterizing and understanding
the mechanical responses of CNTs is important to optimize the performance of
CNT-based applications.

Computational simulations are uniquely able to address problems that cannot
be readily addressed analytically or experimentally. Thus, they have been com-
monly used to evaluate and predict the mechanical properties and behavior of
CNTs as it is non-trivial to manipulate CNTs experimentally due to their small size
[16–29]. A variety of computational simulation methods have been used to inves-
tigate the mechanical responses of CNTs, including classical molecular dynamics
(MD) simulations with empirical potentials, Monte Carlo simulations, tight-binding
calculations and simulations, density functional theory calculations and simulations,
and well-defined continuum mechanics methods. Among these various methods,
classical MD simulations have been one of the most popular tools for the examina-
tion of the mechanical responses of CNTs. For example, they have provided insight
into their elastic [30–37] and plastic [38–46] behavior, their interactive behavior
with other materials [47–51], their dynamic responses [52], among others [53–58].
MD simulations are similar to real experiments in many respects in that events are
predicted in real time and the approach is able to consider the qualitative dynamical
behavior of relatively large numbers of atoms.

In MD simulations, atomic trajectories are calculated by numerically integrating
coupled classical equations of motion. Interatomic forces that enter these equations
are typically calculated either from total energy methods that include electronic
degrees of freedom, or from simplified mathematical expressions that give the
potential energy as a function of interatomic displacements. MD simulations can
thus be considered numerical experiments that provide a link between analytic mod-
els and experiments. The another main strength of MD simulations is that they
can reveal unanticipated phenomena or unexpected mechanisms for well-known
observations. The next section contains a review of MD simulations, including the
approximations that are inherent in their application to the study of the nanomechan-
ical properties of CNTs. The subsequent section discusses some of the important
insights and findings that have been obtained from MD simulations of the mechan-
ical behavior of nanotubes, such as determining their elastic moduli or stiffness,
their fracture and bucklng behaviors, the influence of filling or chemical function-
alization, the effect of combined loads, and the consequences of interactions with
external gases. These studies have not only provided insights into the physical phe-
nomena, they have also revealed a wealth of atomic-scale phenomena that occur
during the mechanical behavior of various nanotube systems that was not previously
known.
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10.2. COMPUTATIONAL DETAILS

The MD simulation method was first introduced by Alder and Wainwright in the late
1950’s to study the interactions of hard spheres [59, 60]. MD simulations have been
improved with many algorithms and tools since then and can now be used to inves-
tigate various system states, such as gases, liquids, surfaces, bulk defects, fracture
phenomena, friction, and biomaterial interactions. MD simulations are the process
that generates atomic trajectories of a system of N particles by direct numerical
integration of Newton’s equations of motion with appropriate specification of an
interatomic potential and suitable initial and boundary conditions. Unlike Monte-
Carlo (MC) simulations, MD simulations can provide detailed information about
how the system evolves during a given process. Because of this, the results of MD
simulations can be directly compared with real experiments in most cases.

MD simulations are straightforward to describe: given a set of initial conditions
and a way of mathematically modeling interatomic forces, Newton’s (or equivalent)
classical equation of motion is numerically integrated:

F = ma, (10-1a)

− ∇E = m(∂2r/∂t2), (10-1b)

where F is the force on each atom, m is the atomic mass, a is the atomic acceleration,
E is the potential energy felt by each atom, r is the atomic position, and t is time.
The forces acting on any given atom are calculated, and then the atoms move a short
increment ∂t (called a time step) forward in time in response to these applied forces.
This is accompanied by a change in atomic positions, velocities, and accelerations.
The process is then repeated for some specified number of time steps.

The output of these simulations includes new atomic positions, velocities, and
forces that allow additional quantities such as temperature and pressure to be deter-
mined. As the size of the system increases, it is useful to render the atomic positions
in animations that reveal the responses of the system in a qualitative manner.
Quantitative data can be obtained by analyzing the numerical output directly. The
following sub-sections review the way in which energies and forces are calculated
in MD simulations and the important approximations that are used to realistically
model the mechanical behavior of nanometer-scale structures such as CNTs. The
reader is referred to additional sources [61–64] for a more comprehensive overview
of MD simulations and the interatomic potentials.

10.2.1. Interatomic Potentials

There are several different approaches by which interatomic potentials are deter-
mined in MD simulations. The most theoretically accurate methods are those such
as ab initio or first principles. These approaches are derived from quantum mechan-
ical theory and are generally both the most accurate and the most computationally
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intensive. They are therefore limited to a small number of atoms, which has lim-
ited their use in the study of mechanical behavior. Alternatively, empirical methods
contain parameters that are determined by fitting to experimental data or the results
of ab initio calculations. These techniques can usually be used to correctly describe
qualitative trends and are often the only choice available for modeling relatively
large systems. Empirical methods have therefore been widely used in studies of the
mechanical behavior of relatively large systems and materials.

Empirical methods simplify the modeling of materials by treating the atoms as
spheres. Therefore, electrons are not treated explicitly in this approach, although it
is understood that the interatomic interactions are ultimately dependent on them.
The spheres interact with each other via repulsive and attractive functional terms
that generally depend on interatomic distances and/or angles and contain adjustable
parameters that are fit to ab initio results and/or experimental data. The main
strength of empirical potentials is their computational speed and thus they can
be used to simulate relatively large-size systems. There are several important and
common general classes of empirical methods used for calculating interatomic
potentials, including the bond-order potential (BOP) [65], the reactive empiri-
cal bond-order (REBO) potential [66–69], the Stillinger-Weber potential [70], the
embedded atom method (EAM) [71, 72] and modified embedded atom method
(MEAM) [73, 74] approach, and Coulomb or multipole interaction potentials
[75, 76]. Out of all of these potentials, only the REBO potential is reviewed here
as it is most applicable to the study of CNTs.

The reactive empirical bond-order potential was initially developed and param-
eterized by Tersoff [66, 67] to model materials such as carbon and silicon. It
was based on the formalism of Abell [65] and included a many-body interactions.
While the Tersoff potential can describe the carbon-carbon single, double, and triple
bond lengths and energies for hydrocarbons, solid graphite, and diamond, it cannot
describe bonding situations intermediate between single and double bonds. To cor-
rect this and the non-physical overbinding of radicals, Brenner [68] developed an
improved form of Tersoff-type potential for hydrocarbons. There was, however, a
limit to model processes involving energetic atomic collisions in the Tersoff poten-
tial because the Morse-type functions for pair interactions go to finite values as the
distance between atoms decreases. Accordingly, Brenner et al. [69] modified the
expressions for interatomic interactions and expanded the fitting database. This is
so-called second generation REBO potential that yields more accurate bond lengths,
energies, and force constants for hydrocarbons. It is generally established that the
REBO potential can predict realistic physical properties and behavior for CNTs
[33–35, 39, 40, 42, 52–54].

The expression of the REBO potential used to calculate the binding energy (Eb)
between atoms i and j is:

Eb =
∑

i

∑

j>i

[
VR

(
rij

) − bijVA
(
rij

)]
(10-2)

where VR(rij) and VA(rij) are repulsive and attractive pairwise potentials deter-
mined by the atom types i and j, and that only depend on the distance rij between
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the two atoms. The potential is short-ranged and only considers nearest neighbor
bonds. To model long-range nonbonded interactions, the REBO potential is com-
bined with pair-wise potentials either directly through splines [37] or indirectly with
more sophisticated functions [77]. The terms, VR(rij) and VA(rij) of Eq. (10-2) are
given as,

VR(rij) = fc(rij)

[
1 + Q

rij

]
· A · e−α·rij (10-3a)

VA(rij) = fc(rij)
3∑

n=1

Bn · e−βn·rij (10-3b)

where A, B, Q, α, and β are parameters determined by atom type. The function fc(rij)
is a cutoff function that limits the range of the covalent interactions to insure that
the interactions include nearest neighbors only.

The many-body empirical bond-order term, bij, between atom i and j in Eq. (10-2)
represents the many-body feature of the Tersoff type potential. It includes various
chemical effects such as coordination numbers, bond angles, torsion angles, and
conjugation effects and it depends on the local atomic environment in which a par-
ticular bond is located. Therefore, the REBO potential can describe covalent bond
formation and breakage associated with atomic hybridization alteration by weigh-
ing the bond strength. This term is most essential for treating chemical reactions, in
which the bonding of carbon atoms changes, and is written as a sum of terms:

bij = 1

2

[
bσ−π

ij + bσ−π
ji

]
+ bπij (10-4)

where bσ−π
ij and bσ−π

ji represent the local coordination and bond angles for atoms i
and j. The term bπij is further written as a sum of two terms:

bπij = �RC
ij + �DH

ij (10-5)

where �RC
ij term describes conjugated system and radical character between atoms i

and j, and �DH
ij term depends on the dihedral angle for carbon-carbon bonds which

considers the torsion effect in the molecule.
Long-range van der Waals or related forces are typically modeled with pairwise

additive potentials. A widely used approximation is the Lennard-Jones (LJ) potential
[63, 78], which has the following functional form:

VLJ(rij) = 4 · ε
[(

σ

rij

)12

−
(
σ

rij

)6
]

(10-6)

where σ and ε are the L-J parameters for each particular type of atom being modeled
and rij is the interatomic distance between atoms i and j.
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In the MD simulations reviewed here, the forces on the atoms are calculated using
methods that vary with interatomic distance. The REBO potential for the short-range
covalent interactions is coupled with Lennard-Jones potential for the long-range van
der Waals interactions in the MD simulations

10.2.2. Important Approximations

There are several important approximations that are used to realistically model the
systems in MD simulations. They are discussed as follows.

10.2.2.1. Periodic Boundary Conditions

The purpose of molecular simulations is to model the macroscopic sample at the
atomic scale and provide information that is not easily obtainable from experiments.
Unfortunately, due to the computational limitations of present-day computers, the
number of atoms that can be conveniently handled ranges from a few hundred to
a few billion. In order to model a macroscopic system in terms of a finite simula-
tion system of N particles, periodic boundary conditions (PBC) are employed. The
concept of periodic boundary conditions is illustrated in Figure 10-1, where the sim-
ulation system of N particles is treated as a basic unit and is replicated throughout
space. Therefore, the simulation unit is essentially embedded in an infinite array of
units. In the figure, shaded box (primary cell) represents the system simulated.

The periodic boundary conditions do not need to be applied if the systems
simulated are small and there is no need to mimic larger systems [30, 33, 36].
However, if the systems simulated are large, periodic boundary conditions allow MD

Figure 10-1. Schematic representation of periodic boundary condition (PBC). Primary cell (shaded box)
represents the system simulated
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simulations with a relatively small number of atoms to accurately mimic much larger
systems [53, 55, 56].

10.2.2.2. Temperature Control

In basic MD simulations, the system has a constant value of particles (N), volume
(V), and energy (E) because the total energy should be conserved in any closed
system that follows Newton’s equation of motion. Therefore, in this basic MD sim-
ulation, the system properties are measured in the microcanonical (constant NVE)
ensemble [61]. However, in real cases, it may be necessary to perform simulations
at constant system temperature (T) because most real experiments are carried out
at constant temperatures. In this case, the properties of the system is measured
in the canonical (constant NVT) ensemble [61]. In order to perform MD simula-
tions at constant temperature, the simulation system is brought into contact with a
thermostat. A schematic diagram of a typical thermostat application is shown in
Figure 10-2. In the figure, atoms in the active region follow Newton’s equation
of motion, and thus the properties of the systems of interest are unaffected by the
thermostat.

Several methods, such as velocity-rescaling, Andersen, Nosé-Hoover, and
Langevin thermostats, are used to control system temperature in MD simulations
[61, 63]. In particular, the velocity-rescaling thermostat is widely adopted to inves-
tigate the mechanical behavior of CNTs as it has been shown to have negligible
effects on such behavior [30, 33, 39]. In this thermostat, the velocity is rescaled
to keep the kinetic energy constant and thus to control the system temperature as
follows:

vnew = vold ×
√

T0

Tins
(10-7)

where vnew is the rescaled velocity, vold is the velocity prior to rescaling, T0 is the
reference temperature of the thermostat, and Tins is the instantaneous temperature at

Thermostat

Active region

HeatHeat

Figure 10-2. Schematic diagram of typical thermostat applications
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any time. The velocity-rescaling thermostat is a straightforward approach that has
been used since the early days of MD simulations.

Another popular thermostat is the Langevin thermostat in which the atoms in
the thermostat region follows the Langevin equation of motion instead of Newton’s
equations of motion [61]. The Langevin equation of motion is expressed as:

m · a = −ξ · v + f (r) + f ′ (10-8)

where m is the mass of the particle, a is the acceleration, f(r) is the force obtained
from interatomic potential, v is the velocity of the particle, ξ is a friction constant,
and f ′ is the random force. The effect of friction force ξ · v decreases the temper-
ature of the system because ξ is positive. The random force is determined from a
Gaussian distribution, and its variances are the desired temperature and time step.
Therefore, the random force is balanced with the frictional force and maintains the
system temperature in a desired manner. It should be noted that the random forces
are uncoupled from those at previous steps, which is denoted by the delta function.
Additionally, the width of the Gaussian distribution from which the random force
is obtained varies with temperature. Thus, the Langevin approach does not require
any feedback from the current temperature of the system.

Andersen [79] proposed that the pressure and/or the temperature should be held
constant in some MD simulations to better approximate experimental conditions.
In Anderson’s method, a particle is randomly chosen and its velocity is extracted
from the Maxwell distribution. This simple approach worked but was known to have
poor efficiency and discontinuous trajectories [61]. Anderson’s approach, however,
inspired Nosé [80] who proposed an extended system method for the canonical
ensemble. He introduced a time scale variable s and its conjugate momentum ps,
which describe the coupling of system to the thermostat. An additional parameter
Q can be regarded as a thermostat mass. Hoover [81] simplified Nosé’s approach
by eliminating the time scaling factor s and introducing a thermodynamic friction
coefficient ζ. Hoover’s modified expression of Nosé’s approach is known as the
Nosé-Hoover thermostat.

As indicated in this discussion, thermostat methods have their own strengths and
weaknesses that should be well-understood prior to their use and that influence the
interpretation of results. Therefore, the choice of thermostat method and the fraction
of thermostat atoms are important to correctly examine the behavior of materials
[30].

10.2.2.3. Predictor-Corrector Algorithm

The predictor-corrector algorithm is one of the most widely used algorithms in MD
simulations. The basic idea of the predictor-corrector is that the position, velocity,
and acceleration of each particle at time t +�t are predicted first by Taylor expan-
sion, and then the predicted values are corrected by the interatomic forces calculated
from the interatomic potentials and Newton’s equation of motion. The form of the
predictor is expressed as [61]:
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⎧
⎪⎪⎨

⎪⎪⎩

rp(t + �t) = r(t) + v(t) · �t + 1
2 a(t) · �t2 + 1

6 b(t) · �t3

vp(t + �t) = v(t) + a(t) · �t + 1
2 b(t) · �t2

ap(t + �t) = a(t) + b(t) · �t
bp(t + �t) = b(t)

(10-9)

where rp, vp, ap and bp are the predicted position, velocity, acceleration and third
derivative of each atom at t + �t. Then the interatomic forces are calculated based
on the predicted position of each atom and the corrected accelerations, ac (t +�t).
Usually there will be a discrepancy between ap (t +�t) and ac (t +�t). The adjust-
ment parameter, �a (t +�t), is used in the corrector to bring the predicted values into
agreement with the calculated values, and is defined as

[
ac(t + �t) − ap(t + �t)

]
.

Then, the position and other derivatives can be corrected using the following
equations.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rc(t + �t) = rp(t + �t) + 1
6�a(t + �t)

vc(t + �t) = vp(t + �t) + 5
6�a(t + �t)

ac(t + �t) = ap(t + �t) + �a(t + �t)
bc(t + �t) = bp(t + �t) + 1

3�a(t + �t)

(10-10)

These corrected values are used to predict the positions and first n derivatives at
the next step in the trajectory, and then the same procedure is repeated until the end
of the trajectory is reached. Equations (10-9) and (10-10) as written are termed a
third order predictor-corrector algorithm within the Nordseck version [61].

Although higher order predictor-corrector algorithms, that take higher order
derivatives of position with respect to time, can give more accurate results, the accu-
racy of the trajectory is more sensitive to the length of the time step than to the order
of the algorithm. The time step should be, therefore, determined to obtain an opti-
mal compromise between accuracy and simulation time. In highly dynamic systems,
short time steps should be used.

10.2.2.4. Simulation Methods for Mechanical Behavior

In an early study of the mechanical behavior of CNTs, Yakobson et al. [1] deformed
CNTs and examined their mechanical responses using the displacement control
method. In this approach, displacement is given to the CNTs and then the resulting
force is calculated from the potential energy in MD simulations. Thus, this method
is similar to the displacement control method that is used for the property test of
macroscopic materials.

On the other hand, in the load control method, the external loads are applied
to CNTs and then displacements are calculated in MD simulations [33–35, 39, 40].
Therefore, this approach is similar to the load control method that is used for the test-
ing of macroscopic materials. The advantage of this method is that definite external
loads can be applied within the simulation systems. In this approach, the external
load on each atom is added to the force on each atom calculated by the potential.
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Here, the total external load is the sum of the external load on each atom. The basic
concept of this method is given by Eq. (10-11).

Fi = −∂U

∂ri
+ Fexternal

i (10-11a)

Fexternal
total =

n∑

1

Fexternal
i (10-11b)

where, Fi is the force on atom i, Fexternal
i is the external force on atom i, U is the

interatomic potential, Fexternal
total is the total external force applied to the CNTs, and n

is the number of atoms loaded externally. Specially, in the case of torsional moment,
the external force on each atom is applied as the tangential force on the atoms.

10.3. MECHANICAL BEHAVIOR OF NANOTUBES

In the most general terms, failure refers to any actions leading to an inability of a part
to function in the intended manner. It follows that permanent deformation (yielding)
or fracture may be regarded as modes of failure. Another way in which a part may
fail is through instability by undergoing large displacements when the applied load
reaches the buckling value. Here, while the permanent deformation or fracture indi-
cates the elastic-plastic yield transition of parts, buckling instability is an effect of
overall geometry rather than only material instability. Therefore, the beginnings of
failure occur prior to the onset of any high levels of stress and the buckled sys-
tems are totally elastic. At macroscopic length scales, the failures of columns or
thin walled structures under compressive, bending, or torsional load are governed
by buckling instability and thus the buckling rather than strength considerations
dictates the performance of these structures.

Although CNTs are nanometer-scale structures, their overall shape resembles
macroscopic thin-walled hollow columns or tubes. Accordingly, it has been shown
that the investigation of mechanical behavior of CNTs under compression, bending,
or torsion should also be considered from the point of view of buckling instability
[1]. While the CNTs have their highest rigidity along the direction of the nanotube
axis due to the sp2 bonding between the carbon atoms, they are much more compli-
ant in their radial direction [1, 33, 36]. Therefore, the CNTs are readily collapsed
in their radial direction without breaking any in-plane σ-bonding [1, 33, 36]. This
characterizes the buckling instability which occurs in the CNTs under compres-
sive, bending, or torsional load. However, the CNTs under tensile load exhibit the
elastic-plastic yield transition or fracture behavior [38, 41, 45].

Computational simulations have been widely used to evaluate and predict the
properties and behavior of CNTs as is still relatively challenging to do so exper-
imentally due to the nanometer-scale size of the nanotubes [16–29]. In particular,
MD simulations are similar to real experiments in many respects in that events
are predicted in real time, and are suitable for examining the qualitative dynami-
cal behavior of relatively large numbers of atoms. Therefore, MD simulation has



Atomic-Scale Simulations of the Mechanical Behavior 265

been the most commonly used to investigate the mechanical responses of CNTs
using appropriate empirical interatomic potentials [30–58]. The rest of this section
discusses some of the important insights and findings that have been obtained from
MD simulations of the mechanical responses of the CNTs such as their tensile,
compressive, bending, and torsional responses to loading. Importantly, these stud-
ies have revealed atomic-scale details of the mechanical responses of the nanotube
systems.

10.3.1. Tensile Behavior

It has been established that nanotubes are more compliant in their radial direction
than in their axial direction, and, in fact, have high rigidity in their axial direction.
Consequently, the tensile behavior of the nanotubes is expected to be different from
their behavior in response to compression, bending, or torsion.

10.3.1.1. Young’s Modulus

Analysis of the elastic moduli of CNTs is made by assuming they are elastic beams.
It is therefore necessary to determine their volume. Equation (10-12) provides the
definition of tensile elastic modulus (or Young’s modulus) based on continuum
mechanics theory [82, 83]. When applied to CNTs, the Young’s moduli of the CNTs
are calculated directly from their strain energy and volume as follows:

Y = 2U

Vε2
= 2U

ALε2
(10-12)

where V is the volume of the CNT, A is the cross-sectional area, L is length, U is
the strain energy, and ε is the strain. In Eq. (10-12), the sectional area of CNTs can
be calculated from the effective wall thickness of CNTs which has been commonly
taken to be 0.34 nm, which is the interplanar distance between graphene layers [84].

In most studies, the Young’s moduli of CNTs have been predicted to be about
0.9–1.2 TPa by assuming 0.34 nm as the effective wall thickness of CNTs. For
example, WenXing et al. [85] calculated the Young’s modulus of single-walled
carbon nanotubes (SWNTs) from MD simulations, and reported that the value is
about 0.95 TPa and weakly affected by the tube chirality and radius. Using both
empirical potentials and first principle methods, Robertson et al. [86] examined the
strain energies and the elastic properties of nanotubes having radii less than 0.9 nm
and predicted an elastic modulus of about 1.06 TPa. Lu [84] calculated a value
of about 0.97 TPa for the moduli of various CNTs and predicted that the varia-
tion with CNT diameter is insignificant. Hernandez et al. [87] predicted a value
of 1.2 TPa using tight-binding method. Experimental investigations of the elastic
moduli of CNTs are somewhat limited due to the difficulties involved in the pro-
duction of defect-free CNTs and experimental techniques, and thus there are many
fewer measurements relative to calculated values. The first experimental determina-
tion of elastic modulus was done by Treacy et al. [88] who measured the thermal
vibrations of free-standing multi-walled carbon nanotubes (MWNTs) inside a
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transmission electron microscope. An average elastic modulus of 1.25 TPa was
reported. Yu et al. [89] performed experimental investigation on tension of SWNTs
in a scanning electron microscope and then obtained an average value of 1.0 TPa.

However, Yakobson et al. [45] calculated the value of about 5.5 TPa that is not
realistic and much higher than values mentioned above. This is because a value of
0.066 nm (the thickness of an individual atom of carbon) used as effective wall
thickness was much smaller than 0.34 nm used in above studies. Consequently,
when the Young’s modulus of CNTs is calculated based on continuum mechanics
model, the definition of their wall thickness is important and the examples dis-
cussed above demonstrate that the value of 0.34 nm is reasonable assumption as
the effective wall thickness of CNTs.

10.3.1.2. Fracture or Plastic Behavior

The failures of CNTs under compressive, torsional, or bending load are governed
by buckling instability and thus buckling rather than strength considerations dic-
tates their performance. However, the failure of the CNTs under tensile load should
be dominated by the elastic-plastic yield transition or fracture behavior. In par-
ticular, perfect nanotubes (defect free nanotubes) undergo brittle fracture, while
nanotubes with vacancies exhibit plastic necking and thinning [41]. This fracture
[39, 42] or plastic behavior [41, 45] of CNTs has been successfully predicted from
MD simulations.

Some researchers have examined the fracture of CNTs with MD simulations,
usually with the second-generation REBO potential. However, it has been previ-
ously demonstrated that the cutoff functions of this potential overestimate the force
needed to break a carbon-carbon covalent bond [21, 29, 38, 42]. This overestimation
is due to the form of the cutoff functions in the potential, which artificially raises the
bond force for distances between 1.7 and 2.0 Å [21, 29, 38, 42]. In order to prevent
this overestimation, researchers have modified these cutoff functions. Jeong et al.
[39] and Sammalkorpi et al. [42] increased the onset of the covalent interaction cut-
off distance from 1.7 to 1.95 Å. This modification does not have any adverse effects
on the potential under tensile load. Figure 10-3 shows the typical tension-tensile
strain curves that result [39]. The figure indicates that the tensile fracture loads and
the influence of filling materials are overestimated using the unmodified cutoff func-
tions. The overestimation as a result of filling is due to a Poisson ratio effect that
contracts the CNTs in the radial direction [29]. In the filled CNTs under tension,
the radial-direction contraction decreases, leading to increased van der Waals inter-
action forces between the CNTs and filling materials that influence the progress of
tensile strain, in agreement with the results of previous work [45, 46]. This is espe-
cially apparent as the radial-direction contraction increases above 30% tensile strain.
In contrast, when modified cutoff functions are used, the tensile fracture loads are
substantially decreased and relatively unaffected by CNT filling.

In most MD simulations, the tensile strength is determined to be about 100 GPa
[38, 39, 42], but this value is higher than the tensile strength of about 50 GPa
obtained from experiments [89, 90]. This discrepancy is thought to be caused mainly
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Figure 10-3. Tension-tensile strain curves of hollow and filled single-walled carbon nanotubes
(SWCNTs) under tension using unmodified or modified cutoff functions in the second-generation REBO
potential. DWCNT is a double-walled carbon nanotube. After [39] with permission of AIP (2007)

by the wall defects and other imperfections in the experimental CNT samples that
are not present in the CNTs examined computationally.

10.3.1.3. Effect of Filling, Functionalization, and Temperature

There has also been considerable interest in filling CNTs with various materials
[91] and in chemically modifying CNTs [92], which can affect their mechanical
response. Jeong et al. [39] investigated the effect of functionalization and filling
on the tensile behavior at various temperatures using MD simulations. The CNTs
were filled with n-butane or C60 of which the densities are 0.53 and 1.21 g/cm3,
respectively. Their simulations indicated that filling CNTs does not affect the tensile
fracture load as well as tensile elastic modulus due to weak van der Waals interac-
tions between the filling materials and CNT (Figure 10-3). Here, the effect of the
tensile elastic modulus is in agreement with the results of previous studies of com-
pression of CNTs filled with the same materials [36, 51]. Thus, filling CNTs does
not alter their axial elastic modulus.

Since the chemical modification of CNT walls and temperature have been shown
to influence the mechanical properties of CNTs [36, 44, 49], the effect on the tensile
behavior of functionalization and temperature was considered by Jeong et al. [39]
who also used MD simulations. Figure 10-4 [39] illustrates how functionalization
by H2C–C groups decreases the tensile fracture load and its decrement depends on
the densities of the functional groups, which are slightly lower than those reported
experimentally [92]. Specifically, the rates of decrement are about 1.2 and 3.0%,
respectively. These values are lower than the 12.5% decrease predicted for compres-
sion of CNTs functionalized with the same groups, but in ordered configurations and
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Figure 10-4. Tensile fracture load of hollow SWNTs under tension or combined tension-torsion as a
function of either the density of chemical functional groups or temperature. The system temperature is
maintained at 300 K in the simulations where the effect of chemical functionalization is investigated.
“Type” means the different loading types for combined tension–torsion. The inset illustrates a repre-
sentative functionalized SWNT where the density of functional groups is 0.10 g/cm3. After [39] with
permission of AIP (2007)

at densities about 1.8–3.6 times higher [49]. Figure 10-4 also indicates that higher
temperature decreases the tensile fracture load. However, neither chemical function-
alization nor temperature was predicted to influence the tensile elastic moduli of the
CNTs.

10.3.1.4. Effect of Combined Loads

In the applications based on CNTs, combined tensile and torsional loads are
expected to occur on the CNTs. For instance, CNTs may be used as drive shafts
[4], torsion bar springs [7], and torsional actuators [93] that can experience tor-
sion as well as tension. Thus, understanding the mechanical responses of CNTs
undergoing this type of loading is important in optimizing their use in new materi-
als and devices. While numerous studies have examined some aspect of the tensile
responses of CNTs, such as their strength [38, 41, 44, 90], elastic modulus [43, 84],
and twist induced by tension [19] under uniaxial tensile loading, there is much that
is still unknown about other aspects of the tensile responses of CNTs in combined
tensile and torsional loading.

Jeong et al. [39] examined the tensile responses of hollow, filled, and func-
tionalized single-walled CNTs under combined tensile-torsional loading at various
temperatures using MD simulations. They reported that the tensile fracture load
decreases linearly with applied torsion and is unaffected by filling the CNTs in so
far as torsional buckling does not occur in filled CNT systems. However, if torsional
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buckling occurs under combined loading, especially in the case of large degrees of
torsion, filling CNTs substantially increased the tensile fracture load. In this case,
the tensile fracture load showed notable differences that depended on the type of
filling material, because of their differing influence on critical and postbuckling
behaviors.

Jeong et al. also investigated the tensile elastic modulus under combined tension-
torsion [39]. It was shown that the tensile elastic modulus within the linear elastic
limit is almost the same for this system for different loading types. This means
that applied torsion does not affect the tensile elastic modulus. These results agree
well with the linear elasticity of continuum mechanics theory, where the total strain
energy under combined tension-torsion loading is simply the sum of the strain
energy for each loading direction, and thus there is no interaction between tension
and torsion. This is because the shear strain by applied torsion is much smaller than
the tensile strain within the linear elastic limit.

Combined loading also influences the development of failure criteria for CNTs.
When stress is applied in a uniaxial manner, stress and strength can be compared
directly to estimate whether or not the part will fail. This comparison is relatively
simple because there is only one value of stress and strength. However, the problem
becomes more complex when the stress state is multiaxial. In such cases there are
a multitude of stresses but only one significant value for strength, and this requires
that failure be characterized using multiaxial strength (or failure) criteria [82, 83].
Under multiaxial loading conditions, the details of failure at the micromechanical
and nanomechanical levels are so incomplete that the failure process cannot be fol-
lowed analytically. Thus, failure criteria for macroscopic objects have evolved from
attempts to develop analytical or empirical macromechanical models to describe
experimental observations of failure under multiaxial loading [82, 83]. Such failure
criteria use the concept of “a failure surface” or “a failure envelope” generated by
plotting principal stress components in principal material axes [82, 83].

Jeong et al. [40] recently developed the failure criteria of CNTs using a mul-
tiscale approach that adopts macromechanical or continuum mechanics models (or
stress method) [28] to describe computational, atomic-scale observations of fracture
in MD simulations. Accordingly, these failure criteria also use the stress method and
the concept of “the failure surface” or “the failure envelope” which is generated by
plotting principal stress components along the principal material axes in the same
manner as is commonly done for macroscopic objects [82, 83]. In atomic-scale sys-
tems, the pressure may be calculated by two different methods. One is based on
the virial theorem [61] and another is based on the concept of stress from con-
tinuum mechanics [82, 83]. Numerous studies have compared these two methods
and have shown that they are equivalent for homogeneous systems in equilibrium
[94–97]. However, in the case of nonequilibrium or inhomogeneous systems, the
stress method remains valid while the virial theorem leads to unphysical results
[94–97]. Most previous studies have therefore used the stress method to determine
the mechanical stress of CNTs [38, 42]. If the failure criteria of CNTs were derived
from a virial stress, the values of the stress might be different from those determined
from the mechanical stress, but the trends would be expected to be the same [94–97].
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Additionally, if virial stresses were used thermal fluctuations could be determined.
However, these fluctuations have been determined to have a negligible effect on sys-
tems such as CNTs [38, 42, 94–97]. Consequently, in the work of Jeong et al., the
use of the stress method and the exclusion of the virial theorem are acceptable [40].

Figure 10-5. Failure envelopes for CNTs and failure envelopes predicted from failure criteria for macro-
scopic objects. L is the length and D is the diameter. (a) Failure envelope generated by τ xy (torsional shear
stress) and σ x (tensile stress), which are normalized with respect to σ ts (tensile strength) under uniaxial
tension. (b) Failure envelope generated by σ 1 (maximum principal stress) and σ 2 (minimum principal
stress), which are normalized with respect to σ ts (tensile strength) under uniaxial tension. After [40] with
permission of IOP (2007)
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Figure 10-5 [40] indicates that the failure envelopes of CNTs are significantly
different from the predictions from the failure criteria for macroscopic objects since
these theories do not take into account the different possible failure mechanisms
that can occur in nanometer-scale CNTs. The figure also illustrates that the failure
strength or envelope of the CNTs under combined loading is importantly different
from what occurs under uniaxial tensile loading condition. The interaction failure
curves or failure envelopes in Figure 10-5a or b can be used to determine whether
CNTs will fail under combined tension–torsion, with the failure criteria expressed
by principal stresses [40].

10.3.2. Compressive Behavior

As mentioned earlier, when the CNTs are placed under compression, their behavior
is different from their behavior under tension due to the fact that they are much
more compliant in the radial direction. This section discusses some of the important
insights and findings regarding the response of CNTs to compressive behavior that
have been obtained from MD simulations.

10.3.2.1. Buckling Instability

CNTs exhibit structural instability under compression as they are much more com-
pliant in their radial direction than in the axial direction. However, the deformed
structure remains within the elastic limit without any plastic yield or bond breaking.
Yakobson et al. performed pioneering computational simulations on the compres-
sive buckling behavior of CNTs using MD simulations [1]. Their results indicated
that the nanotubes exhibit great flexibility, and may be severely deformed with-
out breaking any chemical bonds. They also developed a continuum shell model to
describe the buckling modes of the CNTs. After the pioneering work of Yakobson
et al., numerous other computational studies also observed compressive buckling of
CNTs. For example, Ozaki et al. [26] predicted from MD simulations that ripple
shell buckling occurred and was strongly dependent on temperature. In their study,
the stress under large strain and zero temperature varied with helicity. Cornwell et
al. [98] also examined the compressive elastic response and critical strain of SWNTs
by means of MD simulations. They found that the critical strain varies strongly with
tube radius. The critical strain predicted from MD simulations was in agreement
with calculations based on continuum elasticity theory for tube radii greater than
10.0 Å. However, for tube radii less than 10.0 Å, the values from two models were
diverged.

The compressive buckling of CNTs was also examined by Buehler et al. [17]
using MD simulations. In particular, they examined the effect of aspect ratios on
the compressive buckling of the nanotubes and reported that the long tubes with
large aspect ratios display significantly different mechanical behavior than tubes
with smaller aspect ratios. They distinguished three different classes of the response
to compressive loading. While the deformation mechanism was characterized by
the buckling of thin shells in nanotubes with small aspect ratios, it was replaced
by a rod-like buckling mode above a critical aspect ratio, analogous to the Euler
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theory in continuum mechanics. For very large aspect ratios, a nanotube was found
to behave like a flexible macromolecule which tends to fold due to van der Waals
interactions between different parts of the carbon nanotube. This suggests a shell-
rod-wire transition of the compressive behavior of carbon nanotubes with increasing
aspect ratios.

There have been some instances when different simulation studies predicted dif-
ferent responses for similar CNT systems. For example, Trotter et al. [51] and
Ni et al. [36] predicted different average buckling forces and critical strains for
compressed nanotubes using the same potential in the simulations. These differ-
ences were attributed to differences in the number of rigid moving atoms and the
size of thermostat regions. This indicates the importance of the relative thermo-
stat atom configurations and types on the results of MD simulations. Heo et al.
examined the influence of thermostat methods, the number of thermostat atoms, and
the rate of deformation on the compressive behavior of CNTs [30]. They reported
that the compressive buckling force of CNTs can vary with the relative fraction of
Langevin thermostat atoms, and nonphysical buckling can occurs during deforma-
tion with large relative percentage of thermostat atoms and at higher deformation
rates. In contrast, the Nosé-Hoover and velocity rescaling thermostats resulted in
physical compressive deformation modes regardless of the percentage of thermostat
atoms. In addition, they found that the Langevin and velocity rescaling thermostats
are successful at maintaining a constant system temperature during the compres-
sion of CNTs, but the Nosé-Hoover is not able to do so and this is therefore not
considered to be suitable for use in simulations of the compressive deformation
of CNTs. The temperatures of CNTs with 100% thermostat atoms are plotted in
Figure 10-6 [30].
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Figure 10-6. System temperature versus strain for the n-butane filled nanotube using the indicated
thermostats at a deformation rate of 40 m/s. After [30] with permission of ASP (2007)
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10.3.2.2. Effect of Filling, Functionalization, and Temperature

The basic compressive behavior of filled CNTs was investigated by Ni et al. using
MD simulations [36]. They predicted that filling CNTs with fullerenes, methane
or neon increases the compressive buckling loads and decreases the effect of
temperature on the buckling. Similarly, Trotter et al. [51] explored the compress-
ibility of CNTs filled with diamond nanowires, smaller nanotubes, C60, methane,
neon, n-C4H10, or n-C4H7 molecules using MD simulations. They predicted that
nanowire-filled CNTs and MWNTs exhibit similar compressive responses and that
filling CNTs increases their buckling load during compression.

Figure 10-7 illustrates the results obtained by Ni et al. [36]. The figure indicates
the effect of the type of filling material on the compressive behavior. Regardless of
the filling material, filled CNTs have significantly higher buckling forces compared
to empty CNTs. The figure also illustrates that the buckling forces are dependent
on the density of the filling materials. In an effort to elucidate the effect of filling
density on the buckling force, multiple simulations of the CH4-filled CNT were
considered. These simulations showed that the buckling force of the filled CNTs is
approximately constant until a critical filling density is reached. When the CNT is
filled with a suitable number of atoms or molecules, the buckling force begins to
increase with increasing density. They also interpreted the elastic modulus of the
CNTs from examination of the curves in Figure 10-7 where the slopes of the curves
prior to buckling are approximately equal. Therefore, they reported that filling a
CNT does not alter its axial elastic modulus.

In order to increase the strength of adhesion between CNTs and a matrix
in composite materials, CNTs are sometimes modified through covalent chem-
ical modification of CNT walls [92]. However, there is concern that since the

Figure 10-7. Force versus strain for the compression of empty and filled 100 Å CNTs at 300 K
(Reprinted with permission from Ni et al. [36]. Copyright (2002) by the American Physical Society.
http://link.aps.org/abstract/PRL/v88/p205505)
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covalently bonded tethers alter the sp2-hybridization of CNTs wall at the points
of attachment, the compressive properties of the CNTs could be adversely affected.
Garg and Sinnott [49] examined the effect of covalent chemical functionalization
by H2C=C groups on the compressive buckling behavior using MD simulations.
They found that chemical functionalization of nanotube walls leads to slightly lower
compressive buckling forces relative to unfunctionalized SWNTs.

Figure 10-8 show the snapshot from simulations of the compression of func-
tionalized CNTs obtained by Garg and Sinnott [49]. The tubule is compressed,
kinked, or buckled in the body of the nanotube. Chemical covalent functionaliza-
tion decreases the buckling force for the tubule by about 19.4%. This means that
the functionalized tubule is less stiff in the direction of the tubule axis than the
regular unfunctionalized tubule and therefore is predicted to deform more readily.
This degradation in stiffness is caused by the formation of sp3-hybridized carbon
“defect” sites on the tubule walls from the attachment of the functional groups.
They also reported that helical symmetry has little effect on the results of chemi-
cal functionalization but some functional groups dissociate from CNTs with radii
below about 0.4 nm during compression due to the high strain associated with these
systems.

Figure 10-8. Snapshots from the simulation where functionalized carbon nanotubes are compressed.
After [49] with permission of Elsevier (1998)
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10.3.2.3. Nanotube Proximal Probe Tips

CNTs are sometimes used as proximal probe tips because of their high axial mod-
ulus, controlled size, and ability to conduct electrically [2]. Such tips can be used
to image fine details on surfaces [8, 14] and, when a current is running between
the tip and sample, to etch the sample [99]. Grag et al. and Harrison et al. mod-
eled the compressive behavior that occurs when the CNT comes into contact with
a surface using MD simulations [47, 48, 100]. When CNTs indented a surface, the
first response was the compressive deformation of the tube cap and then they devel-
oped the compressive buckling along the tube length [47]. This behavior is similar
to the compressive rod-buckling described by Euler theory of continuum mechan-
ics due to high aspect ratios of the nanotubes [1, 17, 101]. Finally, the end of the
CNT slips on the surface [47], as shown in Figure 10-9, if the surface is passivated.
The MD simulations showed that these deformations occur elastically regardless of
the rigidity of the surface being indented. In addition, similar mechanisms occurred
during indentation with a small MWNT and a bundle of SWNTs [48]. In the case
of MWNT, it was found that while shell-shell interactions have little effect on the
deformation mechanisms, the multiwalled tubule is significantly stiffer than com-
parably sized SWNTs [48]. Finally, Dzegilenko et al. showed how CNT proximal
probe tips can easily etch or penetrate the Si(001) surface during indentation even
without the presence of a current between the tip and the surface using MD simula-
tions [3]. To summarize, MD simulations reveal the mechanical properties of CNTs
and surfaces that are most important for nanometer-scale indentation. The insights
gained from these simulations help in the interpretation of experimental data.

Figure 10-9. Snapshots from a molecular dynamics simulation of a (10,10) SWNT indenting hydrogen-
terminated diamond (111). (Reprinted with permission from Garg et al. [47]. Copyright (1998) by the
American Physical Society. http://prola.aps.org/abstract/PRL/v81/i11/p2260)
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10.3.2.4. Crystalline Bundle

Typically, CNTs are self-organized into crystalline bundles to maximize their van
der Waals interactions. As CNT bundles are difficult to disperse, almost all of the
fibers in experimental nanotube composite materials [15] are likely to be bundles,
and therefore their mechanical responses should be investigated to optimize their
use in these applications. MD simulations have been commonly used to investigate
the compressive behavior of CNT bundles and the influence of the bundle environ-
ment as in the works of Liew et al. [24], Jeong et al. [32], and Grag et al. [48].
Liew et al. [24] found that the long-range van der Waals interactions improve the
overall rigidity, buckling load, and critical strain of the CNT bundle depending on
the bundle size. Jeong et al. [32] also examined the effect of the intertube van der
Waals interactions within the bundle and demonstrated that the intertube van der
Waals interactions apparently increase the buckling load and stiffness of the bundle.
Grag et al. [48] examined the compressive behavior of a small CNT rope indented
against diamond and graphene to assess the effect of intertubule interactions on
deformation. They simulations revealed how the deformation of the rope leads to
the distortion of its end and allow for the determination of the effect of shear stress
within the bundle on the buckling force of the rope. They reported that intrabun-
dle interactions due to shear forces play a critical role in determining the maximum
buckling force of the CNT rope tip. To summarize, the MD simulations revealed that
the intertube van der Waals interactions within the CNT bundle apparently make an
important contribution in improving the compressive properties of the bundle.

10.3.3. Bending Behavior

If CNTs are used as key elements of nanoelectromechanical systems (NEMS) such
as bendable nano-oscillators and actuators [10], then their bending and oscillatory
properties will be especially important. This section discusses some of the important
insights and findings on the bending behavior of the CNTs that have been obtained
from MD simulations.

10.3.3.1. Bending Modulus

The measurement of the bending modulus of CNTs is made by assuming the CNTs
to be elastic beams, and thus requires determination of CNT volume and effective
wall thickness, as was the case for tensile deformations. Srivastava et al. [43] pre-
dicted that the bending modulus of small diameter SWNTs is about 0.9 TPa using
MD simulations in agreement with the value measured experimentally [10]. In addi-
tion, they found that the bending modulus decreases as the diameter of the CNTs
increases. Poncharal et al. [10] observed that, while small tubes exhibit a modulus
of around 1 TPa, larger tubes are much more compliant with a modulus of around
0.1 TPa. This dramatic reduction of the stiffness is attributed to the so-called rip-
pling effect which reveals nearly periodic wavelike distortions in the compressed
section of the tube [16].
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10.3.3.2. Buckling Instability

CNTs can be deformed easily under bending load because of their compliance in
the radial direction. When the CNTs are returned to their original positions, there is
no plastic deformation as a result of the bending [1, 22]. This is a remarkably elastic
phenomenon that would not take place in other graphitic structures and is indica-
tive of the structural instability of the CNTs under bending loads. Numerous studies
have been performed to investigate the bending buckling behavior of CNTs using
MD simulations. For example, Ijima et al. [22] found that atomistic simulations of
the responses of nanotubes to bending are comparable to the images observed in
high resolution electron microscope. Yakobson et al. [1] also examined the bending
responses of SWNTs. Their results indicated that nanotubes may be severely bent
without breaking any chemical bonds. Cao and Chen [18] estimated the bending
buckling strain and curvature of larger nanotubes (with radii up to 27 Å) using both
MD and finite element modeling. These studies identified a single critical disconti-
nuity between bending and buckling of nanotubes, which is delineated by a change
in the functional dependence of the strain energy of the nanotube as a function of
the bending angle [23].

10.3.3.3. Effect of Filling, Functionalization, and Temperature

Filling CNTs can affect their bending response. Danailov et al. [20] used MD sim-
ulations to predict that filling CNTs with Au nanowires would increase the bending
buckling force and that nanowire-filled CNTs and MWNTs exhibit similar bend-
ing responses. They also predicted that filling CNTs increases their stiffness during
bending. This is different from the cases of tensile, compressive, and torsional load-
ing, where filling CNTs did not alter their stiffness [33, 36, 39]. The influence of
filling on CNT bending was also investigated by Heo et al. [102]. They examined the
bending responses of pristine hollow, C60-filled, n-butane-filled, and multi-(dual-,
triple- and quadruple-) walled CNTs at various temperatures using MD simula-
tions, and then compared the results with the responses of CNTs with covalently
bonded functional groups and wall vacancies. The results indicated that filling CNTs
increases their bending buckling forces and that MWNTs support higher bending
buckling loads than SWNTs and peapods because of the presence of the inner CNTs.
Their simulations also reported that the bending behavior of hollow or filled CNTs
can deteriorate at high temperature.

During the synthesis or purification of CNTs, defects such as vacancies can be
introduced into the nanotube walls. CNTs also can be treated to covalently attach
chemical groups to the sides [103] or ends [13] and the site of the functional group
attachment can act like wall defects. This is because the sp2-hybridization of the
carbon atoms around the defects and functional groups are altered. Heo et al. [102]
investigated the effect of wall defects (vacancies or H2C=C functional groups) on
the bending responses of the CNTs. Figure 10-10 [102] illustrates that the maxi-
mum bending forces decreases with the number of wall defects and the density of
the functional groups, which is very similar to the defect effect on the compres-
sive properties of nanotubes [49, 50]. In summary, they found that the chemical
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Figure 10-10. Force versus deflection of 100 Å (10,10) hollow pristine CNT and CNTs having various
densities of (a) vacancy defects and (b) functional groups during bending

modification of the CNT wall through the generation of vacancies or the attachment
of functional groups decreases the bending buckling forces of CNTs [102].

10.3.3.4. Effect of External Gases

Nanotubes are proposed for use in applications such as nanobalance [10] and
nanovalve [6] devices. It was predicted that the nanobalance can weigh particles in
the femtogram to picogram range [10] and the nanovalve can control the flow rate of
fluid through nanometer-scale channels [6]. There were also attempts to use the nan-
otubes as electromechanical oscillators [11]. “Guitar-string-like oscillation modes”
of CNTs suspended between two contacts were detected and tuned. These CNT-
based NEMS devices can be exposed to an external gas fluid that affects the bending
responses of the nanotubes. Therefore, understanding these bending responses in
response to external gas interactions is important to optimize their use in the NEMS
devices and to determine how the external gas influences the bending compared to
the responses discussed above in perfect vacuum.

Heo et al. [104] investigated the fundamental vibrational properties of bridged
and cantilevered CNTs responding to external gases, such as Ar, Kr, and Xe, using
MD simulations. In the vibrational simulation of the bridged CNT, both ends of
CNT were fixed and the other part of the CNT as well as the noble gas atoms moved
free following Newton’s equation of motion, as shown in Figure 10-11a. The cen-
ter region of the CNT was then pulled out by 0.3 nm which is the initial bending
displacement, by applying additional force to the atoms in that region. For the can-
tilevered CNT simulations, atoms in one end of CNT were set to be rigid atoms and
then the other part of the CNT and the fluid molecules were changed into active
atoms as indicated in Figure 10-11b. During the simulations, the deflection of CNT
was measured, which allows for the calculation of the vibrational frequency. The
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Figure 10-11. Snapshots from the MD simulations of (a) a bridged 20 nm long (10,10) hollow single-
walled CNT in the 100 atm Ar fluid and (b) a cantilevered 30 nm long (10,10) hollow single-walled CNT
in the 10 atm Kr fluid. Carbon atoms are in shown in blue, and the Ar and Kr atoms are shown in orange

results indicated that the CNT vibrational frequencies depend on the CNT length as
well as the pressure and mass of the fluid atoms.

Lee et al. [52] also examined the bending responses of CNTs exposed to an exter-
nal gas fluid. Specially, they investigated the responses of single and multiwalled
nanotubes to impacts with noble gas atoms using MD simulations to predict the
motion of nanotubes when they are used for the devices located in the path of pulsed
fluid flow. In their simulations, it was predicted that the more flexible SWNTs buckle
over during the relaxation stage that follows the collision events. They also found
that as the number of collisions and the number of walls increase, the amplitude of
nanotube oscillations increases, and that as the number of walls increases, the oscil-
lations of the MWNTs are balanced in the upward and downward directions. The
deflections of zigzag and armchair nanotubes were compared for similar numbers
of walls and nanotube diameters. As the nanotubes are shortened, the vibrational
motion of the nanotubes was predicted to be damped by energy dissipation. This
work was an important first step to understanding their response to external fluid
flow, which is likely to influence the behavior of nanotube levers in applications
such as NEMS. In addition, understanding the oscillatory deflection of nanotubes is
also important in applications such as nanoactuators, nanoswitches, and nanotweez-
ers, where large displacements are repeatedly induced. Figure 10-12a contains a
typical snapshot after the first Ar collision event onto the SWNT. After 10 collision
events, the nanotube bends and “rumples” form in the wall structure, as indicated in
Figure 10-12b. The SWNT, which is more flexible than the double-walled carbon
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Figure 10-12. Snapshots of a (28,0) SWNT after a series of Ar atom collisions and during subsequent
relaxation. (a) The nanotube after the first collision event. (b) The nanotube after the tenth collision event.
(c) The nanotube after relaxing for 40 ps. The left-most end was held rigid throughout as described in
the text. After [52] with permission of ACS (2005)

nanotubes (DWNTs) and triple-walled carbon nanotubes (TWNTs), even buckles
over during relaxation, as shown in Figure 10-12c.

10.3.4. Torsional Behavior

As stated above, the unique properties of CNTs make them attractive for use in
applications such as NEMS [4, 7, 9, 12, 15]. In these and similar applications, it is
expected that torsional loading will occur on the CNTs. For instance, the CNTs may
act as torsional springs in resonators [9] or act as rotational bearings in actuators
[4]. In these applications, the torsional and oscillatory properties of the CNTs sig-
nificantly affect the performance of the devices. Thus, understanding the torsional
responses of CNTs is important to optimize their use in new devices.

10.3.4.1. Shear Modulus and Stiffness

As mentioned earlier, the measurement of the shear modulus of CNTs is also made
by assuming the CNTs to be elastic beams and thus requires determination of CNT
volume. Equation (10-13) is the definition of shear modulus based on continuum
mechanics theory. Therefore, the shear modulus of CNTs can be calculated from
their strain energy and volume in an analogous manner.

G = 2U

Vγ 2
= 2U

ALγ 2
(10-13)

where V is the volume of the body, A is the cross-sectional area, L is length, U is the
strain energy, and γ is the shear strain. The cross sectional area of the CNTs can be
calculated from the effective wall thickness of 0.34 nm [84].

The shear modulus of various nanotubes has been predicted, most commonly
from atomistic calculation methods [33, 43, 84]. Several experimental approaches
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have also been developed and used to measure the shear modulus of the nanotubes
[105, 106]. As described earlier, MD simulation method is simulated at high strain-
rates due to the limitation in the time scale of the phenomenon. This high strain-
rate significantly affects the torsional buckling loads of CNTs but not the torsional
stiffness or shear modulus [31]. Therefore, the torsional stiffness or shear modulus
can be calculated directly using the MD simulation method, but care must be taken
in interpreting the results and comparing them to one another and to experimental
data.

Some studies have been performed to determine the shear modulus of CNTs. In
most studies, the shear modulus of CNTs has been predicted to be about 0.35–0.45
TPa [33, 43, 84, 106]. Lu [84] predicted a value of about 0.45 TPa using an empir-
ical force constant model. Similarly, Srivastva et al. reported a value of about 0.35
TPa using classical MD simulations [43]. Jeong et al. found that the torsional shear
modulus of the CNTs is about 0.34 TPa using MD simulations [33]. In their work,
it was founded that the torsional shear modulus is relatively independent of CNT
diameter and length in the same way as in continuum mechanics theory. Recently,
Hall et al. [106] experimentally measured a value of 0.4 TPa using a CNT-based
torsion spring.

The torsional stiffness, K, of a body twisted by external torsion can be expressed
as

K = L
d2U

dθ2
(10-14)

where L is the length, U is the strain energy, and θ is the torsional angle. Recently,
Jeong et al. [33] calculated the torsional stiffness of CNTs using Eq. (10-14) and MD
simulations, to determine the dependence of the torsional stiffness on CNT diameter
and length. Figure 10-13 presents the torsional stiffness of hollow CNTs in terms

Figure 10-13. Torsional stiffness of the CNTs in terms of their diameters. K and D are the torsional
stiffness and the diameter of CNTs, respectively. After [33] with permission of AIP (2007)
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of their diameters [33]. The dependence of the torsional stiffness on the diameter of
CNTs is predicted to vary as K ∼ D2.99, where D is the nanotube diameter. This is in
good agreement with the prediction of the linear elasticity of continuum mechanics
theory, where the strain energy of a thin-walled cylinder can be expressed as:

U = 1

2
G

∫ ∫ ∫
γ 2

torsiondV = GπhR3 θ
2

L
(10-15)

where G is the torsional shear modulus, γ torsion is the torsional shear strain, h is the
thickness, R is the radius, θ is the torsional angle, and L is the length. From Eqs
(10-14) and (10-15), the torsional stiffness of a thin-walled hollow cylinder or tube
can be expressed as.

K = L
dU2

dθ2
= 2GπhR3 (10-16)

From Eq. (10-16) we can see that the torsional stiffness of the thin-walled cylin-
der varies as K ∼ R3 (or K ∼ D3), in excellent agreement with the results predicted
from these MD simulations.

Jeong et al. also examined the dependence of the torsional stiffness on the CNT
length using MD simulations [33]. They found that the dependence of the torsional
stiffness per unit length on the CNT length varies as K′ ∼ L–0.99, where K′ is the
torsional stiffness per unit length and L is the CNT length. This dependence is in
agreement with the definition of the torsional stiffness (K′ = T

/
θ = K

/
L, where K

is the torsional stiffness).

10.3.4.2. Buckling Instability

As mentioned above, when the CNTs are placed under torsion, buckling instability
can occur in the same manner as their responses under compressive or bending
loads [1]. The CNTs under torsion show that their stiffness is greatly reduced after a
certain torsional angle is achieved. However, despite the rapid reduction of torsional
stiffness of the nanotubes, no plastic yield or bond breaking occurs for them. This
indicates that the CNTs remain highly elastic and the predicted torsional behavior is
due to torsional-buckling instability. The bifurcation at which the torsional stiffness
of CNTs starts to sharply decrease is the torsional buckling point.

Yakobson et al. performed pioneering computational work on the torsional buck-
ling behavior of CNTs [1]. In particular, they modeled torsional buckling of CNTs
using MD simulations and found that the increase of azimuthal angle ϕ between
the tube ends results in abrupt changes of energy and morphology. In their study,
the nanotubes were predicted to be remarkably resilient up to extremely high strain
with no plastic deformation or atomic rearrangement. They also developed a con-
tinuum shell model to describe the torsional buckling modes of the CNTs. There
have been other studies on the torsional responses of CNTs using computational
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[33, 43, 84] and experimental [105, 106] methods. However, there is much less data
available on the torsional buckling of CNTs compared to the data available on the
compressive or bending buckling of the nanotubes.

Since the pioneering work of Yakobson et al., MD simulations have been com-
monly used to investigate the torsional behavior of CNTs. For example, Jeong et al.
[33] examined the torsional responses of several different nanotubes at various tem-
peratures using MD simulations, and the results were interpreted and compared to
the predictions of continuum mechanics theory. They considered how the torsional
responses of various CNTs, such as the critical torsional moment and stiffness, are
influenced by the CNT conditions. They reported that the torsional buckling direc-
tion of the CNT walls occurs at about 45◦ of the longitudinal axis of the CNTs.
According to continuum mechanics theory, the inclined torsional buckling is caused
by shear loading of the walls of twisted tubes, which gives rise to compressive
buckling stresses at 45◦ to the longitudinal direction as predicted by Mohr’s cir-
cles [101]. Therefore, it is interesting that the torsional buckling deformation of
nanoscale CNTs agrees so well with continuum mechanics theory. They also com-
pared the torsional buckling moment between SWNTs and MWNTs in terms of their
diameters [33]. The results indicated that the torsional buckling moment in MWNTs
increases about 3.3 more rapidly than the SWNTs when their diameters increase and
this is mainly caused by the presence and number of inner tubes in MWNTs.

10.3.4.3. Effect of Filling, Functionalization, and Temperature

There has also been considerable interest in filling CNTs with various materials
[91] and in chemically modifying CNTs [92, 107], which can affect their mechani-
cal response. Jeong et al. [33] investigated the effect of functionalization and filling
on the torsional behavior at various temperatures using MD simulations. In their
study, CNTs were filled with n-butane or C60 of which the densities are 0.53 and
1.21 g/cm3, respectively. In addition, CNTs that have H2C=C groups covalently
and randomly bonded to the CNT walls were also considered to address the influ-
ence of chemical functionalization. The density of functional groups considered
was 0.05 g/cm3 (or a CNT/H2C=C weight ratio of 35.08) and 0.10 g/cm3 (or
a CNT/H2C=C weight ratio of 17.54), a value that is slightly lower than those
reported experimentally [92]. Their simulations indicated that filling and function-
alization of CNTs importantly change the torsional buckling moment but not the
shear modulus.

Figures 10-14 and 10-15 summarize the findings of Jeong et al. on the effect of
CNT filling [33]. Figure 10-14 indicates that there are significant differences in the
torsional buckling moments between hollow and filled CNTs. This is due to the tor-
sional buckling characteristics of the CNTs that are affected by the presence of the
filling material. The torsional buckling of macroscopic thin-walled tubes is indicated
by the growth of bulges, waves or ripples that contract and expand the tubes in the
radial direction. As can be seen in Figure 10-15, the torsional buckling of CNTs also
contracts and expands the tubes in the radial direction in the same way as the tor-
sional buckling behavior of macroscopic thin-walled tubes. However, in the case of
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Figure 10-14. Torsion-torsional angle curves of hollow and filled CNTs. After [33] with permission of
AIP (2007)

Figure 10-15. Buckled configurations of hollow and filled CNTs; (a) Hollow CNT. (b) Butane-filled
CNT. (c) Nanopeapod. (d) (05,05) SWNT-filled CNT. After [33] with permission of AIP (2007)

the filled CNTs, the radial-direction contraction decreases, leading to increased van
der Waals interaction forces between the CNTs and filling materials that influence
the progress of torsional shear strain. Consequently, the torsional buckling moment
can be increased by the presence of filling materials, and that the amount of this
increase depends on the kind of filling materials. In addition, filling CNTs under
torsion may raise the rate of increase in the force needed to buckle CNT systems
more than under bending and compression loading [36, 102]. Figure 10-14 further
indicates that the torsional stiffness and shear modulus are unaffected by the pres-
ence of filling materials due to weak van der Waals shear interactions. This finding
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Figure 10-16. Torsional buckling moment of hollow (10,10) CNTs in terms of the density of chemical
functional groups and temperature. The inset illustrates Buckled configuration of chemical functionalized
(10,10) CNTs. After [33] with permission of AIP (2007)

is in agreement with the results of studies on the compression and tension of filled
CNTs [36, 39, 51]. Thus, filling CNTs does not alter their torsional shear modulus
as well as axial elastic modulus. However, the bending elastic modulus is predicted
to be affected by filling CNTs [20].

In this work of Jeong et al. [33], the effect of covalent chemical functionaliza-
tion by H2C=C groups on the torsional buckling behavior of (10,10) CNTs was
investigated by MD simulations. In Figure 10-16 [33], we can see that this type of
chemical functionalization decreases the torsional buckling moment and its decre-
ment depends on the density of the chemical functional groups. Specifically, the rate
of decrement is about 0.8 and 4.5%, respectively. These values differ little from the
1.2 and 3.0% decrease predicted for tension of (10,10) CNTs functionalized with the
same groups and densities [39], but are lower than the 12.5% decrease predicted for
compression of (10,10) CNTs functionalized with the same groups, but at densities
that were about 1.8–3.6 times higher [49].

As it is known that temperature influences the mechanical behavior of CNTs,
the effect of temperature on the torsional buckling behavior of (10,10) CNTs was
also examined by Jeong et al. [33]. Figure 10-16 illustrates that higher temperatures
decrease the torsional buckling moment [33]. Particularly, the rate of decrement is
about 2.9 and 6.8%, respectively in comparison with values at 100 K. These values
differ little from the 2.4 and 5.4% decrease predicted for tension of (10,10) CNTs
maintained with the same temperature [39]. However, neither chemical functional-
ization nor temperature was predicted to affect the CNT torsional stiffness and shear
modulus [33].
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10.3.4.4. Effect of Combined Loads

In the NEMS based on CNTs such as actuators [4], springs [12], and oscillators [9],
a combination of tensile and torsional loads can occur on the CNTs and produce
mechanical responses that differ substantially from uniaxial loading [39, 101]. Thus,
understanding all aspects of the mechanical responses of CNTs under this type of
combined loading is important to optimize their use in new devices.

In an examination of the tensile responses of CNTs under a combination of ten-
sion and torsion, it was showed that the tensile elastic (or Young’s) modulus is
unaffected by the applied torsion, in agreement with linear elasticity theory [39].
This is because the torsional shear strain energy is much smaller than the tensile
strain energy and thus does not influence the progress of tensile strain [39]. In addi-
tion, the tensile fracture load was decreased by the application of torsion [39]. It
is possible, however, that the effects of tension on the torsional responses of CNTs
may be significantly different from the effects of torsion on the tensile responses
mentioned above. For instance, the torsional buckling moment may be increased by
the presence of tension, which can delay the onset of torsional buckling [101], and
the torsional shear modulus may be influenced by increases in tensile strain energy.
Here, Jeong et al. [34] examined the effects of tension on torsional responses, includ-
ing the torsional buckling moment and shear modulus, of hollow and filled CNTs
under combined tensile-torsional loading using MD simulations.

Figure 10-17 shows the effects of applied tension on torsional properties in
terms of an applied tension ratio Fx/Fts [34]. Here, Fx is the tensile load applied
simultaneously with torsion and Fts is the fracture load under uniaxial tension.
Figure 10-17a indicates how much the critical torsional moment Tcr increases under
a combination of tensile and torsional loading. The figure indicates that the incre-
ment rate Tcr/Tcr-pure, where Tcr-pure is the critical torsional moment under pure

Figure 10-17. Variation curves of the critical torsional moment Tcr and shear modulus G of hollow
SWNTs under combined tension-torsion in terms of an applied tension ratio Fx/Fts. The ratio L/D refers
to the nanotube aspect ratio. (a) Increment rate Tcr/Tcr-pure in the critical torsional moment. (b) Increment
rate G/Gpure in the torsional shear modulus. The inset illustrates the buckled configuration of a (10,10)
SWNT with an aspect ratio of 7.0. After [34] with permission of AIP (2007)
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torsion, significantly increases in proportion to Fx/Fts. This result is similar to
the behavior of macroscopic tubes [101] and is the opposite of the trend for ten-
sile fracture load, which decreases when tension is combined with torsion [39].
Figure 10-17a also shows that Tcr/Tcr-pure increases in proportion to the CNT
diameter and length.

According to continuum mechanics theory, the torsional shear modulus G∝K,
where K is the torsional stiffness [83]. If this is applied to nanotubes, their incre-
ment rate in torsional shear modulus and stiffness under combined tension-torsion
has the relationship G/Gpure∝K/Kpure, where Gpure and Kpure are torsional shear
modulus and stiffness, respectively, under pure torsional loading. Figure 10-17b
illustrates that the torsional shear modulus significantly increases under combined
tension-torsion relative to what happens under pure torsional loading [34]. The fig-
ure indicates that G/Gpure increases in proportion to Fx/Fts, but is unaffected by the
geometry of the CNTs. The simulations thus predict that the maximum value of tor-
sional shear modulus under combined loading is 23% larger than for pure torsion.
These results suggest that the increase of torsional stiffness by combining tensile
and torsional loading may be used to optimize torsional NEMS devices because
torsional stiffness is directly related to torsional oscillation frequency; this is a key
performance factor of many NEMS devices. For instance, the resonance frequency
for torsional oscillation may be expressed as f = [

1
/
(2π)

] (
K′/I

)1/2, where I is
the moment of inertia. Therefore, the coupling effect on torsional responses under
combined loading should also increase the torsional oscillation frequency of CNTs.

Jeong et al. also investigated the effect of filling CNTs on torsional responses
under a combination of tensile and torsional loading [34]. Their study showed that
Tcr/Tcr-pure for filled CNTs significantly increases in proportion to Fx/Fts, as was
the case for the hollow CNTs in Figure 10-17a. They also reported that the torsional
shear moduli of filled CNTs under the combination of tension and torsion are higher
than those under pure torsion, as was shown to be the case for the hollow CNTs
in Figure 10-17b. Interestingly, the study indicated that the values of G/Gpure for
filled CNTs are not significantly different from the values for hollow CNTs, and
they do not depend on the type of filling materials. This is most likely due to the
relatively weak van der Waals shear interactions between the CNT walls and the
filling materials.

Continuum mechanics, in general, and linear elasticity, in particular, has been
applied to study the mechanical behavior of CNTs, either on their own or in com-
bination with molecular mechanics or atomistic simulations [10, 27, 108]. In linear
elasticity, the total strain energy under combined tensile and torsional loading is
expressed as the sum of the strain energy for each loading direction, because torsion
does not work in the tensile direction and tension does not work in the direction of
torsion. This means that there is no interaction between tension and torsion, and so
the fact that combined loading is taking place does not influence the torsional shear
modulus or the tensile modulus. The study of Jeong et al. on the tensile behav-
ior indicated that the tensile modulus of CNTs under combined tension-torsion is
unaffected by the applied torsion in agreement with linear elasticity theory [39].
However, as mentioned above, the torsional shear modulus of CNTs under this type
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of combined loading is significantly changed by applied tension [34]. This indicates
that mechanical coupling influences torsional responses, which is probably caused
primarily by tensile strain energy that is much larger than torsional shear strain
energy [109]. Accordingly, the torsional shear modulus of CNTs under combined
loading can be expressed as:

G = Gpure + �Gcoupled (10-17)

where �Gcoupled is the torsional shear modulus increased by the coupling with ten-
sion. Linear elasticity interprets the mechanics of materials in terms of unchangeable
elastic moduli, and thus the torsional responses of CNTs under combined loading
are beyond linear elasticity theory [83].

In some objects there are preexisting stresses before an external load is applied
and this initial stress is termed the prestress. Prestressed objects include familiar
structures such as rope hammocks and spider webs, and are also exemplified in
engineering applications such as prestressed concrete [110], piezoelectric actuators
[111], and flexure elements of microelectromechanical systems (MEMS) [112]. In
particular, in applications that involve torsional flexure, an axial prestress affects
the resulting torsional properties such as torsional strength (or buckling moment)
and stiffness [112]. Here, the effect of torsional stiffness is of primary importance
because this quantity is directly related to the oscillation frequency, which is the key
performance factor of such systems.

Some studies have shown that although an axial prestress affects the torsional
stiffness of linear elastic materials, the effect is most important for sections with
low torsional rigidity, such as thin rectangular and opened thin-walled sections, and
is less important for closed cross sections having relatively high torsional rigidity
[112, 113]. However, it has been shown that hyperelastic or large deformation (or
nonlinear) elastic materials, such as natural rubbers [114] and biomaterials [115],
behave differently from linear elastic materials due to their substantial large axial
elongation properties. As a result, their torsional stiffness is altered by axial prestress
even in the case of closed circular sections [114, 115].

While CNTs resemble closed, circular, thin-walled objects and have high tor-
sional rigidity relative to their diameter [33, 84, 105, 106, 116], they also have the
ability to elongate in the axial direction to a substantial degree [41] relative to lin-
ear elastic materials. Hence, it is not clear a priori whether the torsional stiffness
of CNTs will be affected by the presence of an axial prestress despite the fact that
numerous studies have examined some aspect of the torsional responses of CNTs
under pure torsion using theoretical [33, 43, 84] or experimental [105, 106] meth-
ods. Here, Jeong et al. investigated the effects of tensile or compressive prestress on
the torsional responses, including torsional stiffness and torsional buckling moment
using MD simulations [35].

Figure 10-18 illustrates the effects of the torsional stiffness Ku by tensile pre-
stress σ tp (or preload Ftp) in terms of the tensile prestress ratio Rtp [35]. The tensile
prestress was kept below the tensile strength of the CNTs, which is calculated to
be about 100 GPa in agreement with previously published theoretical predictions
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Figure 10-18. Variation rate �Ku/Ku–o of the torsional stiffness Ku by tensile prestress σ tp in terms of
tensile prestress ratio Rtp, which is the ratio σ tp/σ ts of tensile prestress and strength or the ratio Ftp/Fts
of tensile preload and fracture load. The variation �Ku is calculated from the definition of �Ku=Ku –
Ku–o, where Ku and Ku–o are the torsional stiffness in the presence and in the absence of tensile prestress,
respectively. After [35] with permission of AIP (2008)

[39, 42]. The figure indicates that when �Ku is normalized with respect to the tor-
sional stiffness Ku–o in the absence of tensile prestress, the variation rate �Ku/Ku–o

depends on only the Rtp and not on CNT curvature, k. In Figure 10-18, it should be
noted that the torsional stiffness decreases as the tensile prestress increases above
Rtp=0.42, and, in particular, is smaller than the torsional stiffness in the absence
of tensile prestress above Rtp=0.77. Previous studies have shown that the linear
elastic limit of (10,10) CNTs under pure tensile loading is about 60 nN [39]. This
value is not significantly different from the tensile preload of the (10,10) CNT at
Rtp=0.42, at which the slope of �Ku/Ku–o changes. Accordingly, this unusual result
is thought to be caused mainly by the ability of the CNTs to endure large axial elon-
gation before they are broken beyond their linear elastic limit [39, 42]. The torsional
stiffness was increased to approximately 23% at Rtp=0.42, which is where the max-
imum �Ku/Ku–o occurs. The effect of the tensile prestress was further extended
to consider its influence on the critical torsional moment Tcr [35]. The variation
�Tcr increased in proportion to Rtp and depended on the curvature of the CNTs, k.
In particular, they reported that �Tcr varies approximately as �Tcr ∝ k−2 and the
increment rate, �Tcr/Tcr–o, of the torsional buckling moment increases in a manner
that is inversely proportional to CNT curvature.

Jeong et al. [35] also examined the effect of compressive prestress on the tor-
sional responses of CNTs that have aspect ratios lower than about 12.5, below which
compressive shell buckling occurs [17]. Figure 10-19 indicates that the variation rate
�Ku/Ku–o in torsional stiffness by compressive prestress, σ cp, decreases depending
on only the compressive prestress ratio Rcp and not on CNT curvature. The torsional
stiffness is decreased to approximately 21% at Rcp=0.82, which is where the mini-
mum �Ku/Ku–o occurs. The �Tcr/Tcr–o depends only on Rcp. This implies that the
CNT curvature dependence is different from what occurs in the case of the tensile
prestress shown above. This can be explained using the stress concept of continuum
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Figure 10-19. Variation rate �Ku/Ku–o of the torsional stiffness Ku by compressive prestress σ cp in
terms of compressive prestress ratio Rcp, which is the ratioσ cp/σ cr of compressive prestress and critical
stress. After [35] with permission of AIP (2008)

mechanics theory, which tells us that the tensile prestress is the same for all CNTs
at the same ratio of tensile prestress and strength because their tensile strength is
constant [42]. However, the compressive prestress varies for different CNTs even if
they have the same ratio of compressive prestress and critical stress because critical
compressive stress σ cr depends on CNT curvature [1].

As mentioned above, �Ku/Ku–o does not depend on CNT curvature. In addition,
�Ku/Ku–o also does not depend on the length of the CNTs because it only expresses
the net variation rate in torsional stiffness. Here, the fact that the torsional stiffness
is changed by axial prestress indicates nonlinear effects due to mechanical coupling
between torsional shear stress and axial prestress. This unusual behavior is thought
to be caused mainly by the ability of the CNTs to endure relatively large axial elon-
gation and thus the trends may not be significantly different in the cases of zig-zag
and multi-walled CNTs.

The torsional stiffness of conventional linear elastic materials is not altered by
the axial prestress in cases of closed cross sections with relatively high torsional
rigidity that are very similar to those of CNTs [112, 113]. Therefore, the changes
in torsional stiffness of CNTs by the axial prestress are unique relative to linear
elastic materials. This is most important for applications such as torsional oscillators
because the torsional stiffness is directly associated with the torsional oscillation
frequency. Consequently, the use of axial prestress may allow tuning of the torsional
stiffness and oscillation frequency of CNTs.

In applications such as bending oscillators, the axial stress has been used to tune
their bending oscillation frequency [11]. This is a common approach as in tuning of
the frequency of a guitar string. However, the concept that the axial stress can tune
the torsional stiffness and oscillation frequency is unfamiliar to most engineering
fields. Another interesting fact comes from the nonlinear mechanical effects due to
the change in torsional stiffness. In pure torsion, CNTs behave as linear torsonal
oscillators [105]. However, the use of axial prestress can cause nonlinear torsional
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oscillations due to nonlinear mechanical effects. It is well known that nonlinear
oscillators have hysteretic behavior and bistability in their frequency response, and
thus possibly could be used for many applications including sensitive mass sensors
and electronics [11, 117]. Finally, the potential use of axial prestress may be more
important in graphene which is a being considered for use in electronics and NEMS
[118]. In graphene, the effects of axial stress on torsional stiffness and oscillation
frequency would be much larger due to its low torsional rigidity.

10.3.4.5. Crystalline Bundle

In many cases, CNTs are self-organized into crystalline bundles by van der Waals
interactions. Such CNT bundles can be used for various applications, including
use as fibers in nanotube composite materials [15], and therefore their mechanical
responses should be investigated to optimize their use in these applications.

While numerous studies have examined the torsional responses of SWNTs and
MWNTs, there is much that is still unknown regarding other aspects of the torsional
responses of the CNT bundles. MD simulations have been also popularly used to
investigate the torsional behavior of CNT bundles and the influence of the bundle
environment as in the works of Jeong et al. [32, 33] and Qian et al. [119]. Jeong
et al. [32, 33] examined the torsional responses, such as critical loads and stiffness,
of bundles, and then compared with the responses of individual CNTs. Their sim-
ulations indicated that the torsional buckling moment and torsional stiffness of a
single CNT in a bundle are higher than those of the individual CNTs and the twisted
configuration of this bundle is similar to that of macroscopic ropes. In addition,
they reported that the intertube van der Waals interactions within the bundle appar-
ently increase its torsional buckling moment and torsional stiffness. Qian et al. [119]
examined the nature of load transfer in a SWNT bundle consisting of one core tube
surrounded by 6 tubes on the perimeter. They found that compared with parallel
bundles, twisting the bundles can significantly enhance the load transfer between
neighboring tubes in the bundles. This was computed from MD simulations as a
function of twist angle for the nanotube bundles.

10.4. CONCLUSIONS

This chapter provides a focused discussion of the background of MD simulation
methods, their role in the nanomechanics study of nanometer-scale CNTs, and
their important contributions to this emerging research field. In particular, the illus-
trative examples present that show how these approaches are providing new and
exciting insights into nanomechanics responsible for the mechanical behavior of
CNTs, such as elastic moduli or stiffness, fracture or bucklng behavior, effect of
filling or functionalization, effect of combined loads, effect of external gases, and
related atomic-scale or molecular scale phenomena. The ability of MD simulations
to study the nanomechanics of CNTs is revolutionizing our understanding of their
mechanical properties and behavior at the most fundamental atomic level. In addi-
tion, these simulation methods have been also attracting a considerable interest in
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the traditional fields of continuum-based mechanics as they can be applicable in
investigating the microscopic mechanical behavior of materials [120]. Finally, meth-
ods such as MD simulations lead to excellent prospects for their contributions to
nanomechanics or micromechanics study as they can simulate large-size systems
and thus make possible the direct simulations with fully atomic-scale details with
increasing computing power.
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CHAPTER 11

STICK-SPIRAL MODEL FOR STUDYING MECHANICAL
PROPERTIES OF CARBON NANOTUBES

TIENCHONG CHANG
Shanghai Institute of Applied Mathematics and Mechanics, Institute of Low Dimensional Carbon and
Device Physics, Shanghai University, Shanghai 200072, People’s Republic of China,
e-mail: tchang@staff.shu.edu.cn

Abstract: Quantum/molecular mechanics and continuum mechanics have been highly developed
to describe material properties at small and large length scales. As we enter the era of
nanotechnology, it has become increasingly important to model phenomena at meso-
scopic length scales. Two alternative approaches, namely the “bottom up” approach based
on quantum/molecular mechanics and the “top down” approach based on continuum
mechanics, are frequently used to model mechanical properties of nano-structured mate-
rials. However, the connection between these two approaches is not well established.
Much effort has been made to develop theories and approaches to span multiple length
scales or to bridge gap between the two approaches. Based on a molecular mechanics
concept, a stick-spiral model is developed to analytically link the molecular structure and
macroscopic properties of carbon nanotubes. We review and summarize in this chapter
the recent advances on this model

Keywords: Carbon nanotubes, Mechanical properties, Multiscale model

11.1. INTRODUCTION

Describing material behavior is a key issue in engineering applications. At different
length scales, the same material may behave much differently due to its hierarchical
structure. Different theories have been developed to describe mechanical behaviors
of materials at different length scales. For example, quantum mechanics predicts
mechanical behavior of materials based on calculations of electronic structures of
molecules; molecular mechanics/dynamics ignores the electronic structure and pre-
dicts mechanical behavior of materials by calculating the system energy that is a
function of the nuclear positions; while continuum mechanics, which ignores the
discrete nature of atomic structure and treats materials as continuum, predicts mate-
rial behavior by solving a series of analytical equations associated with equilibrium,
compatibility and constitution. However, gaps remain between these theories and
much effort has been made to establish organic connections [1–11].
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Advances in the synthesis of nanoscale materials have stimulated ever-broader
research activities due to the combination of their expected structural perfection,
small size, and excellent mechanical and electronic properties. However, a common
theory to describe mechanical behavior of nanomaterials at this length scale is to
date not well established. Two alternative approaches, namely the “bottom up”
approach based on quantum/molecular mechanics and the “top down” approach
based on continuum mechanics, are frequently used. Bottom-up approaches may, in
principle, be used to investigate the behavior of any systems if atomic interactions
could be determined. However, direct simulation of large scale problems (with long
time or large volume) remains a heavy computer task. “Top down” approaches
based on continuum mechanics is computationally efficient, but difficult to account
for some effects such as those resulting from discrete atomic structures. Multi-scale
simulations that bridge bottom up and top down approaches have been widely
developed, such as hierarchical methods, concurrent methods, and quasicontinuum
methods. A detailed review on this topic can be found in Liu et al. [6].

Carbon nanotubes (CNTs) are one of the most promising nanomaterials. The
amazing mechanical properties such as exceptional high stiffness and tensile
strength of CNTs make them highly potential and ideal candidates for multifarious
applications including super-strong materials and nanomechanical devices [12, 13].
Efforts have been made to investigate the mechanical properties of CNTs because
a clear understanding of these properties is essential to ensure the optimum perfor-
mance of CNTs in potential applications. Based on a molecular mechanics concept,
a stick-spiral model is developed to analytically link the molecular structure and
macroscopic properties of carbon nanotubes [5, 14–17]. We review and summarize
in this chapter the recent advances on this model.

The organization of this chapter is as follows. Section 11.2 briefly introduces
CNTs and their mechanical properties, focusing in particular the theoretical model-
ing on geometry dependent mechanical properties of CNTs. Section 11.3 gives the
description of the stick-spiral model and the formulation of its governing equations,
and then presents linear and nonlinear stick-spiral models with their applications in
predicting elastic properties and mechanical behaviors of CNTs. Section 11.4 offers
concluding remarks.

11.2. CARBON NANOTUBES AND THEIR MECHANICAL
PROPERTIES

11.2.1. Carbon Nanotubes (CNTs)

Carbon nanotubes, discovered by Iijima and coworkers [18, 19], can be classified
into multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nan-
otubes (SWCNTs). A MWCNT consists of two or more concentric cylindrical shells
of graphene sheets arranged coaxially around a central hollow with interlayer sep-
aration as in graphite (0.34 nm), whereas a SWCNT is made of a single layer of
graphite.
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A SWCNT can be viewed as a graphene sheet rolled into a seamless tube. In
principle, an infinite number of nanotube geometries can exist because a graphene
sheet can be rolled up with different angles. Different rolling angles result in dif-
ferent chiralities, or helicities, of SWCNTs. A common approach is using a chiral
vector or chiral angle to identify a SWCNT. Figure 11-1 shows a schematic illus-
tration of a graphene sheet. A vector C in the graphene plane can be described as a
combination of base vectors a and b of the hexagon by

C = na + mb, (11-1)

with n and m being two integers. If the head of the vector C touches its tail when
the graphene sheet rolled into a tube, we call C the chiral vector, or roll-up vector
of the nanotube. The magnitude of the chiral vector, C = √

3r0
√

m2 + n2 + mn,
represents the circumference of the nanotube, where r0 is the carbon-carbon bond
length. A SWCNT can thus be uniquely indexed by a pair of integers (n, m) [20] to
represent its chirality or helicity. The chirality of a SWCNT can also be indicated
by the chiral angle φ (see Figure 11-1) which is give by

φ = arccos
2n + m

2
√

m2 + n2 + mn
. (11-2)

Figure 11-1. Schematic illustration of a graphene sheet and definitions of geometrical parameters used
to describe a nanotube. A (3, 1) tube would be formed by rolling up the graphene sheet bounded by the
two dashed lines. The unit cell of the nanotube is shown in gray
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The two limiting cases of nanotubes are (n, 0) (whose chiral angle is 0) and (n, n)
(whose chiral angle is π /6), which are usually known as zigzag and armchair tubes
based on the geometry of carbon bonds around the circumference of the nanotube.
Zigzag and armchair tubes are achiral nanotubes whereas SWCNTs with a chiral
angle of 0 < φ < π /6 are chiral nanotubes.

Another important geometrical parameter of SWCNTs is the translation vector T,
which is directed along the SWCNT axis and perpendicular to the chiral vector C
(see Figure 11-1). In the graphene plane, T is given by

T = 2m + n

dR
a − 2n + m

dR
b (11-3)

The magnitude of the translation vector, T = 3r0
√

m2 + n2 + mn/dR, corres-
ponds to the length of the SWCNT unit cell (which is marked in gray in Figure 11-1).

11.2.2. Mechanical Properties of CNTs

There are many experimental studies that gave direct proof of the exceptional
mechanical properties of CNTs. By investigating vibration frequencies of can-
tilevered CNTs within a transmission electron microscope (TEM), Treacy et al. [21]
obtained the Young’s modulus of multi-walled carbon nanotubes (MWCNTs) in the
range from 0.4 to 4.15 TPa, with a mean value of 1.8 TPa; Krishnan et al. [22]
found the Young’s modulus of single-walled carbon nanotubes (SWCNTs) varying
from 0.9 to 1.7 TPa; Poncharal et al. [23] reported the Young’s modulus of about
1 TPa for small diameter MWCNTs, while for the MWCNT with large diameters,
the Young’s modulus would be dramatically reduced up to 1 order because of the
presence of rippling. By analyzing the bending behavior of MWCNTs which were
manipulated by an atomic force microscope (AFM), Wong et al. [24] obtained an
average value for the Young’s modulus of 1.28 ± 0.59 TPa and Salvetat et al. [25]
obtained a value of 0.81+0.41

−0.16 TPa, with no distinct dependence on the tube diameter.
Yu et al. [26] directly applied axial tensile force on both ends of a MWCNT using
two AFM tips, and measured the Young modulus ranging from 0.27 to 0.97 TPa
and the tensile strength of the outmost layer varying from 11 to 63 GPa. A unique
failure mode of the MWCNT (“sword-in-sheath”) was firstly observed in the work.
Another direct measurement performed by Demczyk et al. [27] indicated that the
tensile strength of a MWCNT is about 150 GPa, and a value of 0.97 TPa derived for
Young’s modulus from a bending test was also reported.

11.2.3. Theoretical Modeling on Geometry Dependent Mechanical
Properties of CNTs

Theoretical studies may provide more detailed information than an experimental
investigation because a simultaneous measure of both mechanical properties and
structural details (such as the chirality) of a CNT remains, to date, a challenge.
Two categories of theoretical approaches, namely the bottom-up approach based
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on quantum/molecular mechanics and the top-down approach based on continuum
mechanics, are frequently used to study mechanical properties of nano-structured
materials. Most of bottom-up approaches need a numerical procedure, such as
molecular dynamics simulations, while many top-down methods are capable of
giving analytical solutions to the problems considered.

Elastic properties and mechanical behavior of CNTs have been extensively
studied by bottom-up calculations [28–48], of which some studies paid special
concerns on the effect of the structural details. Based on the Tersoff-Brenner
potential, Robertson et al. [28] predicted by molecular dynamics that the elastic
constants along the tube axis generally soften with decreasing tube radius. Similar
results were reported in tight binding calculations by Hernandez et al. [32], ab
initio calculations by Sanchez-Portal et al. [34], and lattice dynamics calculations
by Popov et al. [35]. Some of these works showed in particular that the mechanical
behavior of a SWCNT is dependent on the tube chirality. The effects of geometrical
detail on the tensile strength (or failure strain) [49–52, 36, 53, 38, 54, 45, 55]
and the buckling behavior [38, 40, 56, 41, 46–48] of a SWCNT have also been
investigated recently. Two types of failure process, i.e., brittle fracture due to direct
bond breaking and plastic deformation due to dislocation (Stone-Wales defect)
evolution, were studied in these studies [49–54, 45, 55]. Nardelli and coworkers
[50, 66, 52] 2002 showed by ab initio calculations that the mechanical behavior
(including strain release mechanism and failure process) of nanotubes under large
tensile strain strongly depends on their chirality and diameter. Extensive discussions
on these dependences can also be found in a recent paper by Dumitrica et al. [45]. In
particular, they observed by quantum mechanical calculations that the failure strain
of a SWCNT increases from ∼15% to ∼22% with the tube chiral angle increasing
from 0 to 30◦. Molecular dynamics simulations showed that buckling behavior of
a SWCNT upon axial compression [57] and torsion [48] is dependent on the tube
chirality. Molecular dynamics simulations indicate also that the initial buckling
modes for thin and thick MWCNTs are quite different [46], which is confirmed by
successive experimental observations [58]. Although bottom up calculations have
been important tools in studying mechanical behavior of CNTs, direct simulation
of large scale problems (with long time or large number of atoms) remains a heavy
computer task. To reduce computational costs, many novel numerical approaches
[59–72] have been proposed to investigate the mechanical behavior of CNTs, which
makes some large scale problems such as buckling of thick MWCNTs capable of
being studied. Besides, much effort has been made to derive explicit solutions based
on continuum mechanics. For instance, thin shell theory was frequently use to ana-
lytically study buckling of CNTs [30, 73–84]. The applicability and limitations of
shell models was outlined in Wang et al. [85]. Compared to the numerical methods,
a shell model may give explicit solutions to the problems considered. However, at
least two issues are not well addressed in using continuum mechanics models. First,
some parameters of CNTs are not well defined in the continuum mechanics regime.
For instance, no unique definition for the CNT wall thickness is appropriate for
all purposes and conceptual ambiguities remain [e.g., Yakobson’s paradox [30]].
To bypass problems resulted from ill-defined tube wall thickness, some effective
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parameters, such as effective bending stiffness [86], and effective elastic modulus
[32] were proposed. Second, and more importantly, it is difficult to account for the
possible effect of tube chirality on the behavior of CNTs in a continuum mechanics
model because in which the discrete nature of atomic structures is erased.

Recently, explicit solutions for the elastic properties of CNTs were derived
within the framework of molecular mechanics, making the mechanical behavior of
CNTs possible to be analytically investigated by bottom-up approaches. A truss
model is presented by Odegard et al. [87] to establish the relation between effec-
tive bending rigidity and molecular properties of a graphene sheet by equating the
molecular potential energy to the mechanical strain energy. A similar model was
used by Wang [88] to obtain the effective in-plane stiffness and bending rigidity
of achiral (i.e., armchair and zigzag) SWCNTs. Chang and Gao [5] established a
“stick-spiral” model and obtained the first closed-form expressions for the longitu-
dinal Young’s modulus and Poisson’s ratio of achiral SWCNTs. The closed-form
expressions for elastic properties of achiral SWCNTs under various loading con-
ditions were presented by Shen and Li [89] via a energy approach. Leung et al.
[90] obtained Young’s modulus for zigzag CNTs by developing an equivalent truss
model. The closed-form expressions for the axial elastic properties of chiral carbon
nanotubes were presented recently by [14, 16]. These expressions are concise but
capable of directly linking material properties at different length scales. The effects
of structural details on the elastic properties of CNTs can thus be reflected in these
expressions. The stick-spiral model can also be used to investigate the effect of struc-
tural details on the buckling of CNTs [91–93]. The model in the above-mentioned
studies is indeed a linear model because in which harmonic potentials are used to
model interatomic interactions. To study mechanical behavior of CNTs under large
strains, a nonlinear model must be developed. Xiao et al. [94] 2006 firstly extended
Chang and Gao’s [5] model to investigate nonlinear behavior of achiral SWCNTs
by incorporating a Morse type potential presented by Belytschko et al. [36]. Geng
and Chang [15] further extended the model to evaluate nonlinear mechanical behav-
ior of SWCNTs with arbitrary chirality. Most recently, Duan et al. [95] developed a
nonlinear stick-spiral model by incorporating a reactive empirical bond-order poten-
tial given by Brenner et al. [96], and investigated the fracture behavior of SWCNTs.
The analytical results from the mentioned molecular mechanics models for the elas-
tic properties and mechanical behavior are in reasonable agreement with the existing
numerical results, but one needs much less computer time to yield them.

11.3. STICK-SPIRAL MODEL FOR CARBON NANOTUBES

11.3.1. Model Description

In the empirical force field method of molecular mechanics, the total potential
energy, Et, can be expressed as a sum of several individual energy contributions

Et = Ur + Uθ + Uτ + Uω + UvdW + Ues, (11-4)
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where bonded terms Ur, Uθ , Uω, and Uτ are energies associated with bond stretch-
ing, bond angle variation, bond inversion, and torsion, respectively; and nonbonded
terms UvdW and Ues are associated with van der Waals and electrostatic interactions
[97, 98, 5], respectively. Various functional forms may be used for these energy
terms depending on the particular materials and loading conditions considered.

In some cases, some of the energy terms in the right hand side of Eq. (11-1) may
be ignored. For example, if all atom of a SWCNT is kept in cylindrical surfaces
when it deforms, it can be expected that only bond stretching (Ur) and bond angle
variation (Uθ ) terms are significant in the total system potential energy.

A SWCNT, which can be viewed as a graphene sheet rolled into a seamless tube,
is usually indexed by a pair of integers (n, m) to represent its helicity [20]. We
consider a (n, m) tube subjected to an axial force F, an internal pressure P, and an
axial torque MT, as shown in Figure 11-2a. There are three chemical bonds r1, r2, r3
and three bond angles θ1, θ2, θ3 associated with each carbon atom (Figure 11-2b).
The relationship between external stresses and variations in bond lengths and bond
angles can be determined via equilibrium and geometry of the structure.

To obtain the equilibrium equations of the structure, we can visualize the present
molecular mechanical model as an effective “stick-spiral” system. In this system,
we use a stick with an axial stiffness of Kr(r) = ∂2Ur/∂r2 (in which r is the bond

Figure 11-2. (a) Global structure of a chiral nanotube. (b) Front view of local structure and schematic of
the stick-spiral model. In the model, a stick with infinite bending stiffness is used to model force-stretch
relationship of the carbon–carbon bond, and a spiral spring is used to describe the twisting moment
resulting from an angular distortion of the bond angle. (c) Top view of local structure
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length) to model the stretching response of the carbon–carbon bond and a spiral
spring with a stiffness of Kθ (θ ) = ∂2Uθ /∂θ

2 (in which θ is the bond angle) to model
the twisting response resulting from an angular distortion of bond angle. In addition,
we assume that the stick has an infinite bending stiffness because the chemical bond
always remains straight irrespective of the applied load. This provides a clear pic-
ture of the mechanical model of the problem in hand. In the stick-spiral model, the
stretching force resulting from bond elongation and the twisting moment resulting
from bond angle variation is calculated by

F∗(�r) =
∫ �r

0
Kr(r0 + δ)dδ = ∂Ur/∂r|r0+�r , (11-5)

M∗(�θ ) =
∫ �θ

0
Kθ (θ0 + δ)dδ = ∂Uθ /∂θ |θ0+�θ , (11-6)

where r0 and �r, and θ0 and �θ are the equilibrium bond length and the elongation
of bond length, and the equilibrium bond angle and the variation of bond angle,
respectively.

11.3.2. Governing Equations of the Stick-Spiral Model

The relationships between the external forces and the internal forces yield

F = (n + m)f1 + mf2, (11-7)

P = −[(n − m)s1 + (2n + m)s2]/(TR), (11-8)

MT = [(n + m)s1 + ms2]R, (11-9)

where R is the tube radius, and fi and si are forces contributed on carbon bond along
axial and circumferential directions, respectively (see Figure 11-2b).

Equilibrium of the local structure of the SWCNT needs

f1 + f2 + f3 = 0, (11-10)

s1 + s2 + s3 = 0. (11-11)

We now consider the forces and moment in stick (bond) ri with an orienta-
tion angle (the angle between the bond and the tube axis, see Figure 11-2) of φi.
Decompose the force fi into two components, of which one is ficosφi along the
bond direction, and the other fisinφi perpendicular to the bond. The force si can be
decomposed similarly, but it should be noted that sisinφi is along the bond direction
while sicosφi is perpendicular to the bond.

Force equilibrium to bond extension leads to

fi cosφi + si sinφi = Kρdri i = 1,2,3. (11-12)
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The internal bending moment distribution in a stick ri is antisymmetric about
its midpoint. This means that the internal bending moment at the midpoint of the
stick ri is zero. It is thus convenient to establish the moment equilibrium equation
by dividing the stick ri into two equal halves. Let us focus attention on one half of
the stick ri. The effective lateral force exerted on this considered half by the other
half is fisinφi-sicosφi, which exerts a rotation moment of (fisinφi-sicosφi)ri/2 on
the considered half. On the other hand, rotation moments produced by bond angle
variance �θ j is ∂Uθj/∂θj, and by �θk is ∂Uθk/∂θk. The moment equilibrium of the
considered half can thus be expressed by

ri

2
( fi sinφi − si cosφi) = ∂Uθj

∂θj
cosωij + ∂Uθk

∂θk
cosωik i, j, k = 1,2,3; i �= j �= k,

(11-13)

where ωij, the torsion angle between the plane though ri parallel to the nanotube
axis and the plane of θ j, can be calculated by (see Appendix)

cosωij = ( cosφi sinφk cosϕj − sinφi cosφk)/ sin θj i, j, k = 1,2,3; i �= j �= k.
(11-14)

The structural parameters ϕi, φi and θ i are defined in Figure 11-2.
The geometrical relationships of a SWCNT satisfy (see Appendix)

cos θi = sinφj sinφk cosϕi + cosφj cosφk i, j, k = 1,2,3; i �= j �= k. (11-15)

With use of Eqs. (11-14) and (11-15), the variation of bond angle can be
obtained as

�θi = −(�φj cosωji + �φk cosωki) i, j, k = 1,2,3; i �= j �= k. (11-16)

Cylindrical structure of a defect-free SWCNT always needs its chiral vector to
keep a closed ring, i.e., the dislocation between the head and the tail of the chiral
vector should be zero no matter how the SWCNT was deformed unless the presence
of defects. This feature actually gives compatible equation of a deformed SWCNT
as follows

�[mr1 cosφ1 − (n + m)r2 cosφ2 + nr3 cosφ3] = 0. (11-17)

We now have 15 independent equations given by Eqs. (11-7)–(11-13), (11-16),
and (11-17), and 18 independent variables F, P, MT, f1, f2, f3, s1, s2, s3, dr1, dr2, dr3,
dθ1, dθ2, dθ3, dφ1, dφ2, dφ3. We note here that F, P, and MT are applied external
forces. Once these forces are given, the problem is solvable.
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11.3.3. Linear Stick-Spiral Model and its Applications

11.3.3.1. Linear Stick-Spiral Model

There are many functional forms to model the molecular potential. A complex
function must be used to describe the behavior of a chemical bond far from its equi-
librium position. An example is the Morse potential in which three parameters is
used to describe the behavior from equilibrium to bond dissociation. For most prob-
lems, harmonic functions suffice to characterize atomic interactions under relatively
small strain conditions. Chemical calculations have shown that harmonic functions
provide a reasonable approximation to the potential energy of molecular systems in
which the bond length is near its equilibrium. When harmonic potentials are used,
the total system potential of the stick-spiral model can be expressed as

E = Ur + Uθ = 1

2

∑

i

Kr(�ri)
2 + 1

2

∑

j

Kθ (�θj)
2, (11-18)

while the stretching force resulting from bond elongation and the twisting moment
resulting from bond angle variation are calculated by

F∗(�ri) = Kr�ri, (11-19)

M∗(�θj) = Kθ�θj. (11-20)

This is in fact a linear stick-spiral model since the stick has a constant stiffness
Kr and the spiral spring has a constant stiffness Kθ .

11.3.3.2. Elastic Mechanical Properties of SWCNTs

Closed-form expressions for mechanical properties of a SWCNT can be obtained
via the linear stick-spiral model. Here we present some of the expressions. Detailed
procedure to get these expressions can be found in our previous works [5, 14,
16, 17].

The surface Young’s modulus YS and the Poisson’s ratio ν in axial direction are
find to be [14, 16]

YS = η
4μKρ√

3(λ + 3μ)
, (11-21)

ν = λ − ξμ

λ + 3μ
, (11-22)

where η, λ, and ξ are parameters associated with n and m, and μ = Kθ /Krr2
0 with r0

the equilibrium carbon-carbon bond length. In particular, we can obtain the values
of these parameters for some limit cases as follows

λ = 7 − cos (π/n)

34 + 2 cos (π/n)
, η = 1, ξ = 1, for armchair SWCNTs(m = n), (11-23)
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λ = 5 − 3 cos (π/n)

14 − 2 cos (π/n)
, η = 1, ξ = 1, for zigzag SWCNTs(m = 0), (11-24)

λ = 1/6, η = 1, ξ = 1, for graphene sheets(m, n ∼ ∞). (11-25)

The surface Young’s modulus and Poisson’s ratio in circumferential direction are
found to be the same as those in axial direction [16].

The surface shear modulus GS is obtained as [16]

GS = μKρ√
3(λ̄ + ζ̄μ)

, (11-26)

where λ̄ and ζ̄ are parameters associated with n and m. The values of the two
parameters for some limit cases are as follows

λ̄ = 7 − cos (π/n)

4[1 + 2 cos (π/2n)]2
, ζ̄ = [2 + cos (π/2n)]2

[1 + 2 cos (π/2n)]2
, for armchair SWCNTs(m = n),

(11-27)

λ̄ = 1

3 + 3 cos (π/n)
, ζ̄ = [1 + 2 cos (π/2n)]2

9 cos2 (π/2n)
, for zigzag SWCNTs(m = 0),

(11-28)

λ̄ = 1/6, ζ̄ = 1, for graphene sheets(m,n ∼ ∞). (11-29)

The surface Young’s modulus and shear modulus are shown in Figure 11-3a.
We see that both the moduli increase with increasing tube diameter, approaching a
limit value of graphite. For a given tube diameter, the Young’s modulus increases
but the shear modulus decreases with increasing tube chiral angle. The smaller the
tube diameter, the stronger the dependence of the elastic moduli on the tube size and
tube chirality. The effects of tube chirality and tube size may be neglected when the
tube diameter is larger than 2.0 nm. The present predictions for the initial Young’s
modulus are in reasonable agreement with those given by various theoretical meth-
ods, such as tight bonding calculations [32], lattice dynamics [35], atomistic-based
continuum analysis [68], and molecular mechanics approach [60, 94].

The Poisson’s ratio against tube diameter is shown in Figure 11-3b. Poisson’s
ratio decreases with increasing tube diameter, approaching the limit value (0.195)
of graphite for large tubes. For a given tube diameter, Poisson’s ratio decreases
with an increasing in tube chiral angle. Although the present results are in rea-
sonable agreement with some existing data (e.g., [34], there is no unique opinion
that is widely accepted for the dependence of Poisson’s ratio on the tube diame-
ter. Even completely contrary conclusions were reported in the literatures. Tight
binding calculations by Hernandez et al. [32] indicated that Poisson’s ratio for arm-
chair tubes increases from 0.247 to 0.256 with increasing tube diameter from (6,6)
to (15,15), while for zigzag tubes, Poisson’s ratio decreases from 0.275 to 0.270
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Figure 11-3. Chirality and size dependent elastic properties of SWCNTs: (a) Surface Young’s modulus
and shear modulus; (b) Poisson’s ratio. The results for the counterfeit Poisson’s ratio (which is calculated
by ν = (YS/2–GS)/GS) are also presented for comparison. Apparent discrepancy between the two ratios
can be seen. This means that the relationship between Young’s modulus and shear modulus in isotropic
elastic theory is not retained for SWCNTs

with increasing tube size from (10,0) to (20,0). To the contrary, Popov et al. [35]
obtained that, with increasing tube diameter, Poisson’s ratio decreases for armchair
tubes, but increases for zigzag tubes. The contradiction may be attributed to two
aspects. First, there is no sufficient data to eliminate the possible calculating errors
during numerical procedures. For instance, only two points are available for zigzag
tubes in Hernandez et al.’s work. Second, the relationship between Young’s mod-
ulus and shear modulus from continuum mechanics is frequently used to extract
Poisson’s ratio from numerical data, such as in Popov et al.’s work. However, our
results indicate that this relationship is NOT retained for a SWCNT. This conclusion
agrees with the results from molecular dynamics simulations by Wang et al. [43].
To illustrate this point, we present in 11-3b also the results for Poisson’s ratio calcu-
lated by the surface Young’s modulus and shear modulus via ν = (YS/2-GS)/GS in
isotropic elastic theory. We term this Poisson’s ratio the counterfeit Poisson’s ratio.
Apparent discrepancy between the two results can be observed. First, for a given
tube diameter, the counterfeit Poisson’s ratio increases with increasing tube chiral
angle, in contradiction with the results directly from the stick-spiral model. Second,
with an increase in tube diameter, the counterfeit Poisson’s ratio for zigzag tubes
(or those near zigzag tubes) with a diameter larger than 0.5 nm increases, while the
results directly from the stick-spiral model for tubes with arbitrary chiralities show
a decreasing trend.

11.3.3.3. Explicit Expressions for Vibrating Frequencies of Some Raman
Modes

Resonance Raman spectroscopy provides a powerful tool to investigate the geome-
try of SWCNTs. Radial breathing mode (RBM) is one of most important Raman
active vibrational modes. Because of its uniqueness, the RBM frequency often
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serves as a fingerprint of a free-standing single-walled CNT (SWCNT). Many
studies showed that the RBM frequency ωRBM is inversely proportional to the tube
diameter d, i.e.

ωRBM = A

d
. (11-30)

Different values have been obtained for the constant A (ranging from 218 to
248 cm–1 nm, when d is in nm) [99– 105]. Sometimes, an additional term is used to
improve the accuracy of the prediction. For instance, a constant B of 10∼30 cm–1 is
often used to account for the uncertain effects such as those resulted from interaction
with the environment. This gives

ωRBM = A

d
+ B. (11-31)

Although it works well for large tubes, the inverse proportion relationship
between the RBM frequency and the tube diameter would be broken down when
the tube diameter is smaller than 0.7 nm due to the emergence of the small size and
chirality effects in such small tubes [106–111]. Based on the results from numerical
simulations, some empirical formulas for the RBM frequency that takes small size
and/or chirality effects into account are presented [107, 109, 110, 112, 111]. For
example, via a symmetry-adapted nonorthogonal tight-binding model, Popov and
Lambin [111] suggested that

ωRBM = a2

Rn2
+ a3

Rn3
cos θ , (11-32)

where R and θ are respectively the radius and chiral angle of the tube, and a2, a3, n2,
and n3 are constants. Most recently, via a molecular mechanics model, we obtained
an analytical relation between the RBM frequency and the structural details of a
SWCNT as [17]

ωRBM = 1

R

√
Y ′

SA

M0
, (11-33)

with Ys
′ the surface circumferential elastic modulus of the tube, A the surface area

per atom in graphene plane, and M0 the mass of a carbon atom. From Eq. (11-33),
we can see clearly that the RBM frequency is chirality and size dependent because
the surface circumferential elastic modulus Ys

′ of a SWCNT is chirality and size
dependent while R0, A0 and M0 are all constants. In other words, the chirality
and size dependence of the RBM frequency is induced by the chirality and size
dependent elastic properties of a SWCNT.

The RBM frequency of a free standing (n, m) SWCNT is presented in
Figure 11.4, with an inset showing the product of ωRBM and tube diameter d.



310 T. Chang

Figure 11-4. Radial breathing mode frequency versus tube diameter for small single-walled carbon
nanotubes, with comparisons with first principle, tight binding and ab intio calculations. The inset shows
the product of the radial breathing mode frequency and the tube diameter as a function of the inverse tube
diameter. It is seen that the inverse proportion law would be broken down for very small tubes

Different families with n + m = const are shown in different colors, starting with an
armchair (or close to armchair) tube and ending with a zigzag tube. It is seen that
the RBM frequency is dependent not only on the diameter, but also on the chirality.
For a given diameter, the tube with a larger chiral angle has a larger RBM frequency.
The inversely proportional law may be approximately available for relatively large
tubes (i.e., the quantity ωRBM d tends to a constant with increasing tube diameter).
The results from first-principle calculations by Lawler et al. [110], tight binding cal-
culations by Popov and Lambin [111], and ab initio calculations by Kurti et al. [106]
are also presented for comparison. Good agreement can be found.

We obtained also the explicit expressions for some G-band Raman vibration
modes as [113]

ωi =
√

(3 + μκ)Kr

M0
, (11-34)

where κ is a function of tube indexes n and m.

11.3.4. Nonlinear Stick-Spiral Model and its Applications

11.3.4.1. Nonlinear Stick-Spiral Model

The linear stick-spiral model is only suitable for analysis of mechanical behavior
of CNTs under small deformations. When a SWCNT subjected to a relatively large
strain is considered, nonlinear potentials must be introduced to describe the behavior
of atoms far away from their equilibrium positions. In what follows, we demonstrate
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how a Morse type potential presented by Belytschko et al. [36] is incorporated
into the stick-spiral model. We note that Xiao et al. [94]; (2006) firstly extended
Chang and Gao’s [5] model to investigate nonlinear behavior of achiral SWCNTs
by incorporating this potential. A nonlinear stick-spiral model incorporated the reac-
tive empirical bond-order potential given by Brenner et al. [96] was also developed
recently by Duan et al. [95].

The Morse type potential for CNTs can be given by [36]

Et = Ur + Uθ =
∑

i

De{[1 − e−β(�ri)]2 − 1} + 1

2

∑

j

kθ (�θj)
2[1 + ksextic(�θj)

4],

(11-35)

with De = 0.6031 nN · nm, β = 26.25 nm–1, kθ = 1.42 nN · nm/rad2, ksextic =
0.754 rad–4. The stretching force resulting from bond elongation and the twisting
moment resulting from bond angle variation can be calculated by differentiating the
first and the second terms of Eq. (11-35) with respect to bond elongation �ri and
bond angle variation �θ j, respectively,

F∗(�ri) = 2βDe(1 − e−β�ri )e−β�ri , (11-36)

M∗(�θj) = kθ�θj[1 + 3ksextic(�θj)
4]. (11-37)

11.3.4.2. Mechanical Behavior of SWCNTs Under Large Strains

Mechanical behavior of a SWCNT can be predicted using the nonlinear stick-spiral
model. Here we present some of examples for demonstration and detailed procedure
can be seen in our previous work [15].

The nonlinear stress-strain relationships are shown in Figure 11-5 for axial
loaded SWCNTs with different chiralities but approximately the same diameter.
We note that, for the convenience of comparing with the results of others, here the
tube wall thickness is simply taken as 0.34 nm, as is most commonly used in the
literatures. It is seen that the linear response of a SWCNT is confined within a very
small strain region (∼±3%). With increasing tensile strain, the stress-strain curve
tends to flatten out, indicating that the SWCNT under tension is strain softening. In
contrast to the tensile case, the SWCNT under compression is strain hardening. The
tensile stress-strain relations from the present analytical approach agree well with
those from the numerical simulations based on molecular dynamics [40, 54, 55] and
molecular mechanics [36]. We focus here only on the bond breaking failure mode
and the calculations under axial compression are terminated at a relatively small
strain (that is assumed not beyond the buckling threshold). The procedure of inves-
tigating the CNT buckling using the stick-spiral model can be seen in our previous
works [91, 92].
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Figure 11-5. Chirality dependent axial stress-strain relationships for SWCNTs with approximately the
same diameter

Many efforts have been made to investigate the failure of SWCNTs under axial
tension, and two primary failure processes were observed in the studies [49–54,
45, 55]. The first one is brittle fracture (via direct bond breaking), while the second
is plastic deformation (via Stone-Wales bond rotation). Brittle failure always leads
to a sudden fracture of SWCNTs, whereas plastic deformation may result in necking
phenomenon through dislocation evolution [51, 54]. Brittle-to-ductile transition has
been extensively discussed by Nardelli et al. [50, 51] and Dumitrica et al. [45] from
an atomic point of view. They found that the failure mode of a SWCNT depends
not only on tube chirality, but also on applied strain rate and ambient temperature
[50–53, 45]. It is obvious that the present simple analytical model could not capture
both the two modes because bond reconstruction behavior is not taken into account.
Thus it predicts only bond breaking (brittle) failure. That is, once the tube failed
(corresponding to the inflection point of a local broken bond), its loading capacity
losses immediately [114]. This is the favorable failure mode at low temperatures.
On the other hand, the present model is based on an empirical potential [36] that
may not be very accurate under very large strains compared to quantum mechan-
ical calculations, as discussed extensively by Zhao et al. [53]. Hence, the present
model gives only reference values for tensile strength and failure strain of SWCNTs
under brittle fracture, and more accurate results should be obtained by experiments
[26, 27], moledular dynamics or ab initio calculations [49–52, 36, 53, 38, 40, 56,
54, 45, 55].

The ideal tensile strength of the SWCNT under brittle fracture is the maximum
value of the tensile stress which is approached at the inflection point of the stress-
strain curve [36, 38, 94, 114]. The failure strain is the applied strain corresponding
to the tensile strength. Our results show that the influences of the tube chirality on
the tensile strength and failure strain are significant, while the influence of the tube
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Figure 11-6. Variation of axial tensile strength and failure strain against tube chiral angle. Results
from molecular mechanics simulations and quantum mechanics based calculations are also presented
for comparison

diameter is ignorable. Both the tensile strength and failure strain approach their limit
values when the tube diameter larger than 1 nm.

The axial tensile strength and failure strain of SWCNTs (with diameters larger
than 2 nm) versus the tube chirality is shown in Figure 11-6. It is seen that,
with increasing tube chiral angle, the tensile strength of a SWCNT increases
monotonously. However, the variation of the axial failure strain is quite compli-
cated. With an increase in the chiral angle, the failure strain increases firstly to its
maximum value at a chiral angle of about 26◦, then decreases to a local minimum at
about 29◦, and then increases to the value for armchair tubes. The full curve for the
failure strain is just like a long dipper. To reveal the physics behind the curve, fur-
ther study is needed. Results from molecular mechanics simulations by Belytschko
et al. [36] and quantum mechanics based calculations by Dumitrica et al. [45] are
also presented for comparison and reasonable agreements are found. The tensile
strength and the failure strain for armchair tubes (120 GPa and 21%) are about
25 and 30% higher than those for zigzag tubes (95 GPa and 16.4%), respectively.
Our predictions are in reasonable agreement with some existing results. Molecular
mechanics simulations by Belytschko et al. [36] predicted that the tensile strengths
and failure strains of armchair and zigzag tubes are 112 GPa and 18.7%, and 93.5
GPa and 16%, respectively. They found also that the tube size has no effect on the
tensile strength. Ogata and Shibutani [38] using a tight binding method gave the
tensile strength of about 108 GPa and 114 GPa for zigzag and armchair SWCNTs,
respectively. Molecular dynamics simulations by Xiao et al. [40] indicated that the
tensile strengths for both armchair and zigzag SWCNTs are about 80 GPa, while
the failure strain for zigzag and armchair tubes are 15 and 17%, respectively. Liew
et al. [54] obtained by molecular dynamics a tensile strength of 114 GPa and a
failure strain of 28% for (10, 10) tubes. We note that the present predicted ideal
tensile strength and the failure strain, as well as the mentioned theoretical results, is
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significantly higher than some experimental values. For example, Yu et al. [26] mea-
sured the tensile strength ranging from 11 to 63 GPa, and the failure strain from
10 to 13% using a scanning electron microscope; Walters et al. [115] using atomic
force microscopy obtained the tensile strength of 45 ± 7 GPa for SWCNTs.
The lower experimental values might be attributed to the presence of defects, the
measuring errors, and so on.

Mechanical behavior of SWCNTs upon radial pressure and torsion, as well as
the coupling between different deformations, may also be predicted by the present
model. More details can be found in [15]. Here we emphasize in particular that the
torsional behavior of a chiral SWCNT is loading direction dependent. The ideal
shear strength and failure strain on the tube chirality are shown in Figure 11-7 for
SWCNTs with diameters larger than 2 nm. It is seen that, in twisting direction, with
increasing chiral angle from zero to π /6, the ideal shear strength and failure strain
increase from the values (115 GPa and 30.1%) for zigzag tubes to their maximum
values (146 GPa and 41.3%) at a chiral angle of about π /18 (9.6 degree in our calcu-
lations, slightly dependent on tube diameters), and then decreases to the values (99
GPa and 28.5%) for armchair tubes. In untwisting direction, however, with increas-
ing chiral angle from zero to π /6, the ideal shear strength and failure strain decrease
from the values (115 GPa and 30.1%) for zigzag tubes to their minimum values (95
GPa and 27.8%) at a chiral angle of about π /9 (18.1◦ in our calculations, slightly
dependent on tube diameters), and then increases to the values (99 GPa and 28.5%)
for armchair tubes. The two curves for the shear strength along both the twisting and
untwisting directions form a sail-like pattern, so do the curves for the shear failure
strain. The ideal shear strength and failure strain for achiral tubes are independent
of the loading directions due to their geometrical symmetry, and both the mechan-
ical properties for zigzag tubes are slightly higher than those for armchair tubes.
The loading direction dependent buckling behavior of a SWCNT upon torsion is
recently investigated by [48] using molecular dynamics simulations.

Figure 11-7. Non-monotonous variations of ideal shear strength and failure strain versus tube chiralty.
Note that the shear strength and failure strain of a chiral SWCNT in the twisting and untwisting directions
are quite different
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11.4. CONCLUDING REMARKS

Molecular mechanics methods are based on partition of total energy into contribu-
tions associated with bond stretching, angle variation, torsion, inversion, van der
Waals, electrostatic, etc. Under most circumstances, molecular mechanics methods
can be implemented in atomistic simulations to provide a computational descrip-
tion of various physical phenomena. Under special circumstances, as is shown in
this paper, we could simplify a molecular mechanics model sufficiently to obtain
analytical solution to certain problems. The analytical solutions nicely complement
quantum/atomistic simulations and reveal important parameters in the problem.
This might be analogous to parallel development of analytical (e.g., linear elastic-
ity) and numerical methods (e.g., finite element method) in continuum mechanics.
Analytical methods and models provide a clear understanding of the physical phe-
nomenon involved and serve as benchmark solutions for numerical methods. On the
other hand, numerical methods extend the range of capability of a theory far beyond
that reachable by analytical methods alone.

Based on a molecular mechanics concept, a linear stick-spiral model using har-
monic potentials and a non-linear stick-spiral model using a Morse type potential
are presented for studying mechanical behavior of carbon nanotubes. Closed-form
expressions for elastic properties of CNTs can be derived from the linear stick-
spiral model. Material properties at different length scales are directly connected
via these expressions. Mechanical behavior of CNTs at large strains can be pre-
dicted by the nonlinear stick-spiral model. Results from stick-spiral model are in
reasonable agreement with the existing numerical results (as well as experimental
data), but one needs much less computer time to yield them.

Only a representative atom is used to describe the mechanical behavior of
CNTs in the stick-spiral model, which makes it a computationally efficient model.
However, this brings also some limitations to the model. For instance, the stochastic
effect can not be reflected by this simple model and thus the influence of temper-
ature on the mechanical behavior of CNTs can not be investigated. More robust
approaches to account for these effects are importantly necessary.
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APPENDIX

Now let us firstly have an analysis on the triangle ΔAOB in the Figure A1.
In ΔAOB, we have

cos θ3 = 1

2r1r2

(
r2

1 + r2
2 − AB2

)
. (A1)
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On the other hand,

AB2 = AD2 + DB2 = (AE2 + ED2 + 2AE · ED cosφ3) + DB2

= (r1 sinφ1)2 + ( − r2 sinφ2)2 − 2r1r2 sinφ1 sinφ2 cosφ3

+ (r1 cosφ1 − r2 cosφ2)2

= r2
1 + r2

2 − 2r1r2( sinφ1 sinφ2 cosφ3 + cosφ1 cosφ2).

(A2)

Substituting Eq. (A2) into (A1), we obtain

cos θ3 = sinφ1 sinφ2 cosϕ3 + cosφ1 cosφ2. (A3)

This essentially gives Eq. (11-15).
Next we will show how we get Eq. (11-14).
The angle ω13, which is the torsion angle between the plane (AOE) though r1

parallel to the nanotube axis and the plane (AOB) of θ3, can be expressed by the
angle BFG. In ΔBFG, we have

cosω13 = 1

2BF · FG

(
BF2 + FG2 − BG2

)
. (A4)

Note that

BF2 = r2 sin θ3, (A5)

FG2 = OF tanφ1 = −r2 cos θ3 tanφ1,
BG2 = OG2 + OB2 + 2OG · OB cosφ2

(A6)

=
(−r2 cos θ3

cosφ1

)2

+ r2
2 − 2

r2
2 cos θ3 cosφ2

cosφ1
. (A7)

Substituting Eqs. (A5), (A6), and (A7) into (A4), we have

Figure A1. Illustration of some geometrical parameters associated with a carbon atom
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cosω13 = cos θ3 cosφ1 − cosφ2

sin θ3 sinφ1
. (A8)

With use of Eq. (A3), Eq. (A8) can be written as

cosω13 = cosφ1 sinφ2 cosϕ3 − sinφ1 cosφ2

sin θ3
. (A9)

This actually gives Eq. (11-14).
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Abstract: Van der Waals interaction is important to the materials behavior at the nanoscale. Two
potentials for van der Waals interactions in carbon, namely the Lennard-Jones potential
and registry-dependent interlayer potential, are compared through graphenes and car-
bon nanotubes. The registry-dependent interlayer potential has stronger lattice registry
effect than the Lennard-Jones potential, and agrees better with first-principles computa-
tion. However, the deformation of carbon nanotubes predicted by Lennard-Jones potential
shows better agreement with experiments than that by registry-dependent interlayer
potential

Keywords: van der Waals interaction, Potential, Computation

12.1. INTRODUCTION

Van der Waal interaction is much weaker than chemical bonds, but plays a funda-
mental role in nanotechnology. Chopra et al. [1] first observed fully collapsed carbon
nanotubes induced by van der Waals interaction, the mechanism within which was
extensively studied by experiments [2–4] and computations. [5–8] The collapse of
carbon nanotubes changes the electrical properties, [9] which has many potential
applications such as field effect transistors, [10] mechanical nanoswitchs, [11] and
nanoscale pressure sensors. [12]

Recently, van der Waals was found responsible for dry adhesion of gecko setae,
[13] which inspired the carbon nanotube-based synthetic gecko tapes [14] and bio-
compatible tissue adhesives [15] with the potential applications in microelctronics,
robotics and medical therapies. [14, 15]
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In order to investigate the effect of van der Waals interaction for carbon, an
accurate potential describing van der Waals interaction is needed. This chapter
compares the widely used the Lennard-Jones potential [16] and recently developed
registry-dependent interlay potential [17] for van der Waals interaction.

12.2. POTENTIALS FOR VAN DER WAALS INTERACTION

12.2.1. The Lennard-Jones Potential

The Lennard-Jones potential is widely used to characterize the van der Waals
interactions. The interaction energy between two atoms is [16]

v (r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]

, (12-1)

where r is the distance between the two atoms, ε is the well depth and σ is related
to the equilibrium distance r0 by r0 = 21/6σ . For van der Waals interactions among
carbon atoms, the parameters are ε = 2.39 meV and σ = 0.342 nm. [16] The above
potential is a two-body interatomic potential, and has shown good agreement with
experiments for van der Waals interactions among atoms. [8, 18]

12.2.2. The Registry-Dependent Interlayer Potential

Recently, Kolmogorov et al. [17] pointed out that the Lennar-Jones potential
underestimated the lattice registry effect in graphitic systems, and proposed an
improved classical interatomic potential (registry-dependent interlayer potential) to
characterize van der Waals interactions, which has the expression as [17]
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(12-2)

where rij is the distance between atoms i and j, and nk is the normal to the sp2 plane
at the position of atom k, the proper definition of which was given by Kolmogorov
et al. [17]. The parameters for graphitic systems are C0 = 15.71 meV, C2 =
12.29 meV, C4 = 4.933 meV, C = 3.030 meV, A = 10.238 meV, δ = 0.0578 nm,
z0 = 0.334 nm and λ = 36.29 nm–1 [17]. This registry-dependent interlayer poten-
tial shows good agreement with the first-principles computations on lattice registry
effect of graphitic systems [17].
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12.3. COMPUTATIONAL METHOD

Atomic-scale finite element method (AFEM) [19, 20] is introduced in this section,
which is used to study the graphitic systems for the comparison of the Lennard-
Jones and registry-dependent interlayer potentials.

The total energy for a system of N atoms could be evaluated by interatomic poten-
tials, and is denoted by Etot(x), where x = (x1, x2,. . ., xN)T, xi is the position of
atom i. The state of minimal energy corresponds to

∂Etot

∂x
= 0. (12-3)

The Taylor expansion of Etot around an initial guess x(0) = (x(0)
1 ,x(0)

2 , . . . , x(0)
N )Tof

the equilibrium state gives

Etot(x) ≈ Etot(x(0))+ ∂Etot

∂x

∣∣∣∣
x = x(0)

·(x−x(0))+ 1

2
(x−x(0))T · ∂

2Etot

∂x∂x
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x = x(0)

·(x−x(0)).

(12-4)
Its substitution into Eq. (12-3) yields the following governing equation for the

displacement u = x – x(0),

Ku = P, (12-5)

where K = ∂2Etot
/
∂x∂x

∣∣
x = x(0) , and P = − ∂Etot

/
∂x

∣∣
x = x(0) which is the steepest

descent direction of Etot. The above equation is identical to the governing equation
in continuum finite element method (FEM) if atoms are replaced by FEM nodes.
In fact, K and P are called the stiffness matrix and nonequilibrium force vector in
FEM, respectively. For a nonlinear system, Eq. (12-5) is solved iteratively until P
reaches zero.

Since each atom interacts only with finite neighbor atoms (but not necessar-
ily nearest-neighbor atoms), the first and second order derivatives, ∂Etot/∂x and
∂2Etot/∂xx, of Etot with respect to atom i can be calculated via a small subset of
atoms including atom i and its neighbor atoms. Such a subset of atoms is called an
element in AFEM, and the composition of element depends on the atomic structure
and nature of atomistic interactions, as to be discussed in the example shown in
Figure 12-1. The contribution from this element to K is called the element stiffness
matrix Kelement

i such that K is the assemble of all element stiffness matrices.
A carbon nanotube (CNT) as shown in Figure 12-1 is used as an example to

illustrate the AFEM element. Figure 12-1 shows a three-dimensional AFEM ele-
ment for CNT containing a central atom (No. 1), three nearest neighbor (Nos. 2,5,8)
and six second-nearest neighbor atoms (Nos. 3,4,6,7,9, and 10). The atomistic inter-
action among carbon atoms is characterized by multibody interatomic potentials
[21] which indicate that each atom (No. 1) on a CNT interacts with not only three
nearest-neighbor atoms but also six second-nearest neighbor atoms via the bond
angle change. For example, energy stored in an atomic bond between atoms 1
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Figure 12-1. (a) Schematic diagram of a single wall carbon nanotube; (b) an atomic-scale finite element
for carbon nanotubes

and 2 depends on not only the bond length but also angles with neighbor bonds
1–5, 1–8, 2–3, and 2–4, reflecting the multibody nature of atomistic interactions.
Therefore, the position change of central atom 1 influences energy stored in nine
atomic bonds within this element shown in Figure 12-1. Such an element captures
interactions between the central atom and all neighbor atoms, and is used to calcu-
late ∂Etot/∂x and ∂2Etot/∂x associated with the central atom. It gives the following
element stiffness matrix Kelement and nonequilibrium force vector Pelement:

Kelement =

⎡

⎢⎢⎣
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∂2Etot

∂x1∂x1
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2
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Pelement =
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−∂Utot
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)

3×1
(0)27×1

⎤

⎦ , (12-7)

Therefore, each row in the stiffness matrix K assembled from element stiffness
matrices has at most 30 nonzero components (since each element has tens atoms)
such that K is sparse and the number of nonzero components is on the order N,
i.e., O(N), where N is the total number of atoms in the system. It is important to
point out that AFEM does not involve any approximations of continuum FEM (e.g.,
interpolation), and gives accurate results.
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Since the effort to compute K and P is O(N) and the effort to solve Ku = P in
Eq. (12-5) is also O(N) due to the sparseness of K, AFEM is an order-N compu-
tational method, and thus is much faster than the well-known conjugate gradient
method. [19, 20]

12.4. COMPARISON BETWEEN THE TWO POTENTIALS

The Lennard-Jones potential [16] and registry-dependent interlayer potential [17]
with the parameters given in Section 12.2 are implemented in AFEM to account for
van der Waals interaction among atoms within graphitic systems, while the covalent
bonds are characterized by the second generation Tersoff-Brenner potential. [21]

12.4.1. On the Lattice Registry Effect

The effect of lattice registry between two parallel graphenes is studied first to com-
pare the Lennard-Jones potential and registry-dependent interlayer potential. Since
there are two different registry states, AB stacking and AA stacking as shown
in Figure 12-2, between the parallel graphenes, their energies given by the two
potentials are compared separately.

AA stacking AB stacking

Figure 12-2. Schematic diagram of AA and AB stacking between two graphenes

(i) AB stacking. Figure 12-3 shows the van der Waals interlayer energy per car-
bon atom between two AB-stacking parallel graphenes versus their distance. The
curves given by the Lennar-Jones potential and by the registry-dependent interlayer
potential are rather close, and both give an equilibrium distance around 0.34 nm.

(ii) AA stacking. The van der Waals interlayer energy per carbon atom between
two AA-stacking parallel graphenes is shown in Figure 12-4 versus the interlayer
distance. As the distance decreases, the van der Waals energy given by the registry-
dependent interlayer potential increases much faster than that given the by Lennar-
Jones potential. In addition, the equilibrium distances given by the two potentials
are also different, 0.344 nm for the Lennard-Jones potential and 0.362 nm for the
registry-dependent interlayer potential, respectively.

The lattice registry effect of two adjacent graphite layers is determined by the dif-
ference between the van der Waals energies at AA and AB stacking, which is shown
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Figure 12-3. The van der Waals interlayer energy per carbon atom between two AB-stacking parallel
graphenes versus their distance

Figure 12-4. The van der Waals interlayer energy per carbon atom between two AA-stacking parallel
graphenes versus their distance
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Figure 12-5. The difference in the van der Waals energy between AA and AB stacking given by
Lennard-Jones potential and registry-dependent interlayer potential

in Figure 12-5. The registry-dependent interlayer potential shows much stronger lat-
tice registry effect than the Lennar-Jones potential, and it has better agreement with
the first-principles calculations. [17] This suggests that the Lennar-Jones potential
may underestimate the lattice registry effect in graphitic systems.

12.4.2. On the Deformation of Carbon Nanotubes

The effect of Lennard-Jones potential and registry-dependent interlayer potential
on the deformation of carbon nanotubes is compared in this section. The van der
Waals energy versus distance between two (10, 10) armchair single-wall carbon
nanotubes is shown in Figure 12-6 for the Lennard-Jones potential and registry-
dependent interlayer potential. There are 800 atoms in each tube. The equilibrium
distance given by the registry-dependent interlayer potential, 0.31 nm, is slightly
smaller that that given by the Lennard-Jones potential, 0.32 nm. Furthermore, the
registry-dependent interlayer potential gives a larger well depth than the Lennar-
Jones potential, and therefore larger deformation of carbon nanotubes.

The effect of Lennar-Jones potential and registry-dependent interlayer potential
on the deformation of carbon nanotubes is also investigated via a bundle of two chi-
ral single-wall carbon nanotubes (17,5) and (19,11). Figure 12-7 shows the cross
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Figure 12-6. The van der Waals energy versus distance between two (10, 10) armchair single-wall
carbon nanotubes given by Lennard-Jones potential and registry-dependent interlayer potential

sections of two carbon nanotubes after deformation induced by van der Waals inter-
action. The registry-dependent interlayer potential gives much larger deformation
than the Lennard-Jones potential.

Figure 12-7. The cross sections of two chiral single-wall carbon nanotubes, (17,5) and (19,11), after
deformation induced by van der Waals interaction; (a) the Lennard-Jones potential, and (b) the registry-
dependent interlayer potential
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The deformation of carbon nanotubes due to van der Waals interaction has been
measured experimentally by the electron diffraction technique [22] through the
intensity profiles of helical layer lines of the carbon nanotubes. Figure 12-8 shows
the intensities of layer lines

(
11

)
and (10) for the (19, 11) tube and that of layer line(

11
)

for the (17, 5) tube obtained from experiments by electron diffraction (grey
crosses). [18] The intensity profiles obtained from the deformed carbon nanotubes
simulated with the Lennard-Jones potential are shown in Figure 12-8 by blue dashed
lines, while the black solid lines represent the intensities from the deformed carbon
nanotubes with the radial deformation scaled by a factor of 0.75 which is obtained

Figure 12-8. The intensities of layer lines
(
11

)
and (10) for the (19, 11) tube and that of layer line

(
11

)

for the (17, 5) tube obtained from experiments (grey crosses), undeformed circular carbon nanotubes (red
dotted lines), deformed carbon nanotubes simulated with Lennard-Jones potential (blue dashed lines) and
that with a scale factor 0.75 (black solid lines). Reprinted with permission from ref. 18. Copyright 2008
by the American Physical Society
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from the fitting with experimental data. The intensities from the undeformed, circu-
lar carbon nanotubes are also given by red dotted lines for comparison. The ratio of
the intensities of the second peak (I2) over that of the first peak (I1) could be used
to quantify the agreement between simulations and experiments. For the

(
11

)
layer

line for the (19, 11) carbon nanotube, the ratios are I2
/

I1 = 0.19±0.02 from exper-
iments, 0.19 and 0.16 from simulations with and without 0.75 scale, respectively.
The ratios are I2

/
I1 = 0.21 ± 0.04 from experiments, 0.20 and 0.17 from simu-

lations with and without 0.75 scale for the (17, 5) carbon nanotube, respectively.
Though the 0.75 scaled radial deformation matches perfect with the experiments,
the intensity profiles given by simulation with the Lennard-Jones potential without
scale still agree reasonably well with the experimental data.

Table 12-1 compares the diameters of deformed carbon nanotubes from experi-
ments and simulation. Here the diameter is the maximum dimension of the carbon
nanotube in the direction perpendicular to the axis connecting the centers of two
carbon nanotubes. The diameter given by the Lennard-Jones potential shows better
agreement with the experiments than the registry-dependent interlayer potential.

Table 12-1. Comparison of the diameters of deformed carbon nanotubes from
experiments and simulation

Diameter from simulation (nm)

Carbon nanotubes
Diameter from
experiment (nm) Lennard-Jones Kolmogorov

(17,5) 1.60 1.63 1.77
(19,11) 2.25 2.16 2.48

12.5. CONCLUDING REMARKS

The Lennard-Jones potential and registry-dependent interlayer potential are com-
pared through graphitic systems by AFEM. The Lennard-Jones potential has weaker
lattice registry effect than the registry-dependent interlayer potential whose pre-
diction agrees better with the first-principles calculations. On the other hand, the
deformation of carbon nanotubes predicted by the Lennard-Jones potential shows
better agreement with experiments than that by the registry-dependent interlayer
potential.
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CHAPTER 13

ELECTRICAL CONDUCTION IN CARBON NANOTUBES
UNDER MECHANICAL DEFORMATIONS

A. PANTANO
Dipartimento di Meccanica, Università degli Studi di Palermo, Viale delle Scienze – 90128, Palermo,
Italy, e-mail: apantano@dima.unipa.it

Abstract: The enormous potential of carbon nanotubes (CNTs) as primary components in elec-
tronic devices and NEMS necessitates the understanding and predicting of the effects
of mechanical deformation on electron transport in CNTs. In principle, detailed
atomic/electronic calculations can provide both the deformed configuration and the result-
ing electrical transport behavior of the CNT. However, the computational expense of these
simulations limits the size of the CNTs that can be studied with this technique and a
direct analysis of CNTs of the dimension used in nano-electronic devices, particularly
multi-wall CNTs (MWNTs), seems prohibitive at the present. Here a computationally
effective mixed finite element/tight-binding (to be referred to as FE-TB) approach able
to simulate the electromechanical behavior of CNTs devices is presented. The FE-based
structural procedure computes the mechanical deformation of the CNTs and provides a
tight-binding (TB) code with the atomic coordinates in the deformed configuration. The
TB code is carefully designed to realize orders-of-magnitude reduction in computational
time in calculating deformation-induced changes in electrical transport properties of the
nanotubes. The FE-TB computational approach is validated in a simulation of laboratory
experiments on a multiwall CNT and then used to demonstrate the role of the multi-
wall structure in providing robustness to conductivity in the event of imposed mechanical
deformations

Keywords: Carbon nanotubes, Tight binding, Multiscale computation

13.1. INTRODUCTION

The sp2 carbon-carbon bond in the basal plane of graphene is the stiffest and
strongest in nature. Carbon nanotubes (CNTs), because of their cylindrical and
nearly defect-free structures, may approach the maximum theoretical stiffness
and tensile strength. Atomistic simulations have confirmed that CNTs should meet
expectations for an extremely high modulus, however, experimental determina-
tion of mechanical behavior and properties have proved particularly challenging
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because of the small dimensions of the tubes, with diameters of tens of nanome-
ters for MWNTs and about 1 nm for SWNTs, and lengths of the order of microns.
Several experimental studies have attempted to measure the elastic modulus of
carbon nanotubes by vibration of individual cantilevered CNTs [e.g. 1, 2] or by
directly measuring the reaction force for an imposed displacement [e.g., 3, 4] and,
by nanoindentation of vertically-aligned multi-walled carbon nanotube (MWNT)
arrays. [5]

Most experimental measurements [e.g.,1–5] utilize beam theory to interpret the
mechanical response of nanotubes and reduce data to an elastic modulus. Beam the-
ory treats the nanotube as a homogenous solid tube, but does not take into account
specific structural details of nanotubes, such as the nested tube structure of the
MWNT and/or the single-atomic-layer nature of each tube wall. Given the apparent
ambiguity in specifying a thickness for a single atomic layer, the radial wall thick-
ness of a SWNT is usually taken to be t = 0.340 nm, the equilibrium spacing of two
graphite layers. The thickness of an N-layered MWNT is analogously specified as
t = N∗0.340 nm. This value of t is used within beam theory to evaluate the cross-
sectional area, A, and the area moment of inertia of the cross-section, I. Consistent
with the concept established for graphite sheets, the representative wall thickness
0.34 nm of single-walled carbon nanotubes is associated with a Young’s modulus of
about 1.06 TPa (the in-plane stiffness of graphene).

Using electronic and/or molecular dynamics simulations of SWNTs, several
investigators have found unloaded SWNTs to possess an internal (strain) energy
per carbon atom that exhibits a 1/R2 dependence [e.g., 6–8], where R is the radius
of the tube. This dependence suggests that the SWNT wall mechanically emulates
a shell. These simulations, along with additional MD simulations of SWNT tension
and compression [e.g., 6–9], determine a wall membrane stretching stiffness of
C = 56 ÷ 62 eV/atom (C = 58.2 eV/atom for graphite) and a wall bending stiffness
D = 2.2 ÷ 3.8 eV Å2/atom. As a result, taking a wall thickness t of t = 0.34 nm,
gives a wall modulus of E = 1.06 TPa (computed based on the membrane stretching
stiffness); using the bending stiffness of shell theory, D = (t3E)/[12(1 − ν2)],
this wall modulus and thickness pairing then produces a wall bending stiffness
as much as 25 times greater than the actual wall bending stiffness of a SWNT.
The discrepancy is due to the indicated ambiguity in specifying a thickness for
the single-atomic-layer wall. Fitting aforementioned results from ab initio and
semi-empirical MD studies [6, 10, 11] to elastic shell theory, it is possible to
determine values of the effective Young’s modulus and ‘mechanical’ wall thickness
that enable shell theory to correctly predict both the wall membrane and wall
bending stiffnesses of SWNTs. The surface Poisson ratio can be extracted from
MD simulations to be ν=0.19, the same as the in-plane Poisson ratio of graphite.
[12] Thus, the mechanical behavior of SWNTs can be captured by simply modeling
the CNT wall as an elastic shell of effective mechanical thickness twall=0.075 nm
and effective isotropic elastic modulus Ewall=4.84 TPa and Poisson ratio 0.19 as it
has been demonstrated in Pantano et al. [13–15].

The importance of specific features of multi-wall CNT structure on its deforma-
tion behavior has been documented in several microscopy studies [e.g., 1, 16, 17].
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MWNTs under bending develop reversible periodic wrinkles on the compressive
side of the bend [e.g., 1, 16, 17]. Inter-wall spacing is preserved during buckling,
demonstrating a mechanical effect of the strong normal van der Waals (vdW) inter-
actions present between the walls of MWNTs. The wall-to-wall shear interaction is
very compliant and weak [18] compared to the normal vdW stiffness and strength.
Computational nonlinear structural mechanics studies of MWNT deformation have
been presented by Pantano et al. [13–15] using the approach that will be described
later in this chapter.

The effects of mechanical deformation on the electron transport behavior of
carbon nanotubes (CNTs) are of primary interest due to the enormous potential
of nanotubes in making electronic devices and nanoelectromechanical systems
(NEMS). Significant changes in CNT conductivity are linked to structural features,
including diameter, chirality and distortions [e.g., 19, 20], giving behavior ranging
from narrow-gap or moderate-gap semiconducting to metallic. Conduction in
defect-free CNTs has been observed to be ballistic in nature, implying the absence
of inelastic scattering and involving little energy dissipation [e.g., 21]. Progress in
theoretical understanding as well as experimental study and device realization in
this field has been rapid [e.g., 21–44]; already several prototypical devices have
been constructed and demonstrated [e.g., 45], including actuators, transistors and
nano-switches. Most discussions of the electronic structure of CNTs assume perfect
cylindrical symmetry, but this is somewhat of an oversimplification. High resolution
images of CNTs often disclose structural deformations such as bent, twisted, or
collapsed tubes. These deformations may develop during growth, deposition, and
processing, or upon interaction with other CNTs, and with surfaces and surface fea-
tures such as electrodes. Numerical simulations of the electromechanical behavior
of CNTs mostly focus on SWNTs rather than on the more abundant MWNTs, and
the few studies available in the literature deal with small segments of only two- or
three-walled CNTs [40–43]. This is mainly due to the high computational burden
involved in atomistic (i.e., ab initio, tight-binding, molecular dynamics) simulation
of MWNTs of realistic dimensions. In order to enable and optimize CNTs as a basic
building block of a new nano-electronic technology, a sufficient understanding
of both the electrical and mechanical properties, as well as their dependence on
mechanical deformations, must be achieved.

Experiments on the conductance of MWNTs, where the only the outermost wall
is in contact with the electrodes and the inner walls being not in direct contact,
have shown contrasting results on interwall conductivity. Indeed the majority of the
experiments have revealed that current flows only in the outermost wall [24–29, 44],
and there isn’t any significant charge transfer across the shells. The main prove of
this behavior is that the electrical conductivity does not scale with the number of
walls in a MWNT [e.g., 24]. If the transmission coefficients are unity, at the Fermi
level the conductance of individual undeformed metallic tubes has been predicted
theoretically and verified experimentally [e.g., 21] to be exactly 2 G0 , where the
conductance quantum G0 = 2e2/h ≈ (12.9 k �)–1. In the experiments of Frank et al.
[24], where the tips of metallic MWNTs were immersed into liquid metal, a conduc-
tance of only 1 G0 was observed for MWNTs with different diameters. Choi, et al.
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[44] performed ab initio conductance calculations for a (10,10) CNT with one end
immersed in a jellium metal trying to interpret results in [24], and finding that one of
the two channels available for electron transport is turned off due to charge transfer
between the SWNT and the jellium metal contact, creating a substantial band shift
that reduced the conductance to 1 G0. They [44] also consider the influence of
the interwall coupling because experiments were done with multi-wall tubes and
reach the following conclusion: the conductance in the MWNTs is determined by
the outermost wall as if the system were a single wall nanotube. Using four-point
measurement techniques Bourlon et al. [28] estimated the intershell electron trans-
port in multiwalled carbon nanotubes. Measured intershell conductance was found
in agreement with the estimate based on electrons tunneling through overlapping
atomic π orbitals of nearby shells. Thus, the intershell conduction must differ from
that in the sheet plane. Assuming a 0.34 nm intershell separation, they deduced a
radial resistivity for MWNTs of about 1 � m, much larger than that of bulk graphite.
Bourlon et al. [28] have also shown that the current flows mainly along individual
shells that are rather efficiently insulated from each other. An interesting comment
was given about deformed MWNTs, deformation can locally enhance or reduce the
orbital overlap and thus affect the intershell conductance. Bachtold, Schönenberger
et al. [26, 27] assembled a device where a single multi-walled carbon nanotube was
electrically contacted with four electrodes. While imposing current I and measuring
voltage V, the electrical resistances of single MWNTs were measured in a magnetic
field B which was aligned parallel to the tube axis. They [26, 27] concluded that
quantum-interference corrections to the resistance can account for the measured
magnetoresistance, if and only if the electrical current is assumed to flow in one or
at most two of the outermost shells. Tunney and Cooper [29] using a tight-binding
formalism studied theoretically the electrical transport between shells in DWNTs.
They have calculated that intertube conductance depends on the chirality of the two
SWNTs making the DWNTs and can be classified in three different kinds: “zero”,
“intermediate”, and “strong”. But even in the “strong” case, intershell conductance
was calculated to be smaller than 0.05 e2/h = 0.025 G0; much smaller than the 2 G0
conductance in the outermost wall of a MWNT which is undeformed and metallic.
Their results also showed that localized depression of the outer shell can enhanced
intertube conductance. In contrast with the studies presented earlier, Collins and
Avouris [30] did show experimental results where there is significant contribution
from inner shells to the overall conductance of the MWNTs. Their electronic
device was made of MWNTs suspended among four to six gold electrodes. Their
method consisted in a destructive removal of the outermost carbon shell from a
MWNT. The method used current-induced oxidation that was selective because
only the outermost shell was in contact with the oxidizing environment (air) at any
given moment. As the outermost wall was destroyed the current drop of a small
fraction and kept dropping as the following outer shells were eliminated, Collins
and Avouris [30] concluded that the inner walls were contributing to the overall
conductance of the MWNT. However, as the authors observed, this result, which
conflicts with previous observations, may be justified by two factors. A high bias
was used that determined multiple accessible conduction pathways for these inner
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shells, including radial tunneling or charge injection directly from the electrode to a
particular shell. Additionally, it is possible that the oxidation of an outer shell does
alter the coupling between it and a neighboring inner shell. Moreover the measured
nanotube resistances ranged between 5 and 15 k�, higher or slightly lower than
the resistance of an ideal metallic nanotube, 6450 �; significant contribution to
conductance from the inner walls should determine much smaller value of the
resistance. Accordingly, it is reasonable to assume that only the outermost wall
contributes to MWNT conductance. This finding allows for computational savings
since the TB calculation for predicting the conductance need be performed on
only the outermost wall of the MWNT. It is also worth to mention the work of
Gupta et al. [25] as another experimental set up similar to the one that has been
used to validate the proposed numerical approach. They used a nano-manipulation
system operating in an SEM, which did also act as an electrical probing system,
to characterize of individual carbon MWNTs. For an individual undeformed
MWNT they measured a resistance of about 300 k �, which increases significantly
upon bending of the nanotube. It was not possible to quantify the contribution of
nanotube resistance and the contact resistance to the measured resistance.

Here we present a mixed finite element/tight-binding (FE-TB) approach able to
simulate the electromechanical behavior of SWNTs and MWNTs of the dimen-
sions used in nano-electronic devices. To realize the computational savings needed
to work with realistic-sized CNTs, the mixed approach capitalizes on the ability and
efficiency of the FE method to compute mechanical deformation of CNTs and the
tight binding technique to compute electronic behavior if given atomic positions.

13.2. MODELING PROCEDURES

Elastic shell theory, formulated for structures with one dimension (the thickness)
much smaller than the remaining two dimensions, appears a natural idealization
for single-wall carbon nanotubes that can be thought of as one graphene layer of a
hexagonal lattice structure that has been wrapped into a seamless cylinder. However,
the applicability of continuum shell theories to the carbon nanotube structure, where
walls are constructed of a single layer of atoms, is far from obvious. Satisfactory
comparisons with MD simulations and experiments were needed to validate the
accuracy of such an approach.

The experimental and modeling results reveal that a successful continuum-level
model of SWNTs and MWNTs can be constructed by proper treatment of four key
aspects of the CNT. First, the shell behavior of each carbon nanotube wall can be
modeled using shell theory with an appropriate set of elastic constants and, as impor-
tantly, an appropriate corresponding mechanical thickness of the shell. Second, the
tubular nature of the CNT structure necessitates a departure of the lattice from
a stress-free planar hexagonal structure to a wrapped structure which thus con-
tains an initial internal stress state corresponding to its initial curvature. Third, a
CNT wall interacts with neighbouring walls, with other portions of itself, and with
like substrates via strong van der Waals interactions. Fourth, the wall-to-wall shear
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resistance is negligibly small. The manner in which each of these four items is cap-
tured in the proposed finite-element-based continuum-level representation of carbon
nanotubes is discussed separately below.

13.2.1. The Carbon Nanotube Wall

Comparison of various stretching and bending behaviors of SWNTs to shell the-
ory analysis leads to the determination of a membrane stretching stiffness C and
a bending stiffness D of the wall, which, together, are used to compute an effec-
tive modulus and thickness pair (Ewall, twall) of the SWNT wall. The origins of
the membrane stretching stiffness and the bending stiffness of the CNT walls can
be described in terms of the atomic structure and properties of a graphene sheet.
The hexagonal lattice of carbon atoms in a graphene sheet opposes deformation
by resisting C–C bond stretching, in-plane C–C–C angle variation, dihedral angle
torsion, and inversion (out-of-plane angle bending). The membrane stiffness of the
nanotube shell is a measure of the resistance to in-plane stretching and results from
the resistance to C–C bond stretching and the resistance to C–C–C (three-body) in-
plane angle bending. The bending stiffness of the nanotube shell is a measure of the
resistance to changes in the curvature of the shell. In macroscopic-scale shells, this
stiffness arises from an integration of the distribution in tensile/compressive resis-
tances through the thickness of the shell. In the nanotube, where the shell is of only
single atomic layer thickness, the bending stiffness is a result of the resistance to
the change in the C–C–C in-plane bond angle and dihedral angle torsion necessi-
tated to accommodate the change in curvature of the atomic layer, as well as the
inversion (out-of-plane bond angle variation) due to the overlapping of the electron
clouds between atoms. Atomic-level models capture these interatomic interactions
to various degrees and in different ways; therefore, each result in slightly different
values for membrane and bending stiffness. Using a representative membrane stiff-
ness of C = 59.36 eV/atom and a bending stiffness of D = 2.886 eV Å2/atom, we
can compute the (Ewall, twall) pair required to give the desired shell membrane and
bending stiffnesses, giving Ewall=4.84 TPa and twall=0.075 nm; additionally, we
took Poisson’s ratio to be that of a graphene sheet, ν =0.19.

Often applications of traditional shell theories to CNTs found in the literature are
restricted to infinitesimal deformations. However, post-buckling behaviors observed
in both experiments and in atomistic simulations reveal important elastic behavior
well beyond linear analysis. This predominantly small deformation elastic analysis
contrasts with the fact that the nanotubes undergo very large nonlinear deformations
elastically.

By modeling SWNTs using a continuum elastic shell model accounting for
large geometric nonlinearities, it should be possible to appropriately capture their
mechanical behavior. For simulations involving MWNTs, while the individual lay-
ers of the tube are modeled as SWNTs, the van der Waals interaction between
walls needs to be implemented in its geometrically nonlinear form. Most commer-
cial finite element codes contain shell elements able to correctly account for small
strain/large rotations; however, among them the well-established code ABAQUS



Electrical Conduction in Carbon Nanotubes 341

was chosen for the investigation because of the presence of several programmable
user subroutines which enable easy implementation of the van der Waals interac-
tion. Thick shell theory is used as the shell thickness increases, yielding solutions
for structures that are best modeled by shear flexible (Mindlin) shell theory.
General-purpose shell elements become discrete Kirchhoff thin shell elements as
the thickness decreases; the transverse shear deformation becomes very small as
the shell thickness decreases. Experiments [e.g., 3], and atomistic simulations [e.g.,
46, 47],have shown that CNTs can reach moderately large strain before defects are
produced or fracture occurs; appropriately, adopted element types account for finite
membrane strains.

The technique is further enhanced to account explicitly for the chirality of the
CNT and to allow higher accuracy in modeling the deformation of small diameter
SWNTs. Using quadrilateral shell elements, we construct a FE mesh of hexago-
nal cells in which all nodes correspond to individual atomic positions. The method
enables FE modeling of CNTs of every type, including chiral ones. An example of
the new meshing technique is provided in Figure 13-1, where a (13,0) SWNT (D ∼=
1.nm) is discretized by three superimposed meshes, Figure 13-1a–c, sharing all the
nodes. Images of the final mesh are provided in Figure 13-1 d and e; in d, the sides
of the shell elements are partially hidden for a clearer identification of the hexagonal
cells. Successive rotation of shell element pairs within a hexagonal cell by 60◦ in the
three superimposed FE models cancels the artificial mechanical anisotropy caused

Figure 13-1. Construction of a FE mesh of a (13,0) SWNT composed of hexagonal cells, where all
nodes correspond to individual atomic positions. The CNT is discretized by three superimposed meshes:
(a)–(c). Images of the final mesh are provided in (d) and (e). In (d) the sides of the shell elements are
partially hidden for a clearer identification of the hexagonal cells
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Figure 13-2. Construction of a FE mesh of a (5,5) SWNT. The CNT is discretized by three superimposed
meshes: (a)–(c). Images of the final mesh are provided in (d)

by any single-orientation quadrilateral meshing of the cell. Figure 13-2 illustrates
the mesh construction procedure for an armchair (5,5) nanotube. In order to obtain
the proper overall CNT wall membrane stretching stiffness and bending stiffness,
the Young’s modulus assigned to each shell element is Ewall=1.6133 TPa (i.e., one-
third of what should be assigned when a single-layer mesh is used to discretize the
CNT wall); and the [unchanged] wall thickness of each element is specified to be
twall=0.075 nm.

The CNT atomic positions correspond directly to nodal positions of the FE mesh.
Therefore, in deformed configurations, atomic coordinates are precisely determined
using the continuum/finite element approach, which then enables the effect of
mechanical deformation on the electrical transport properties of nanotubes to be
computed by a tight-binding (TB) method. In documentation of the commercial
ABAQUS/Standard FE program (Abaqus Manuals), user subroutine URDFIL can
be used to extract the nodal [atomic] coordinates at each time step of a mechanical
simulation.

13.2.2. Initial Internal Stress State

Several authors [e.g., 6–8, 48] have demonstrated that carbon nanotubes contain
internal stress due to their curvature. A continuum model should take the effect
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of this initial stress state into account. The rolling energy of graphene is given by
the following expression:

UR = D

2R2
= 1

2
Dκ2

wall = t3wallEwall

24(1 − ν2)
κ2

wall. (13-1)

Here R is the tube radius and κwall = 1/R is the initial wall curvature; as before,
Ewall is the Young’s modulus of the wall and twall is the wall thickness.

When a finite element model of a carbon nanotube is developed, the initial inter-
nal stress state is computed by shell theory based on its radius R. The computed
stress distribution through the shell thickness is then applied as a pre-existing stress
state to the model. For large-diameter MWNTs, the influence of the initial stress
state is negligible, since as the tube diameter grows, the initial stress values dimin-
ish rapidly. However, the subsequent deformation of small-diameter SWNTs can be
considerably influenced by the presence of the initial [bending] stress state.

13.2.3. Construction of Special Interaction Elements

The development of an interaction element able to simulate the van der Waals
forces is necessary in order to study MWNT deformations, post-buckling behavior
of SWNTs, and tube/tube and tube/substrate interactions.

Two major functional forms have been used in empirical models of the van der
Waals interaction potential: the inverse power model and the Morse function model.
A very widely used inverse power model is the Lennard-Jones (LJ) potential. For
the carbon-carbon system, the atom/atom non-bonded LJ potential energy has been
treated by Girifalco et al. [49, 50] and is given as:
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]
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Here σ=0.142 nm is the C–C bond length, y0 is a dimensionless constant, and
ri is the distance between the ith atom pair. For graphite, Girifalco and Lad [50]
determined A=24.3·10–79 J m6 and y0 = 2.7. In the literature [e.g., 51–55] the LJ
and local density approximation (LDA) potentials are compared by computing the
equation of state (EOS) for a graphite system by assuming no relaxation within
the graphene plane. Two graphene sheets (in AA and AB registry, respectively)
are considered. The in-plane geometry is held fixed, and the inter-layer distance is
changed. The computed pressure, as a function of the volume change, is plotted.
The results are compared with published experimental data by Zhao and Spain [51]
and by Hanfland et al., [53] and with the ab initio treatment by Boettger. [55] Both
models provided good fits to the experimental data and to Boettger’s model, but the
LDA model seems too attractive at distances greater than 0.340 nm. The resulting
expression for the pressure as a function of the inter-layer distance computed from
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the Lennard-Jones (LJ) potential has been implemented in an ABAQUS user sub-
routine for simulating the van der Waals forces. The pressure/inter-layer-distance
relation calculated by Zhao and Spain [51] has been adopted:

p (α) = #

6

[(
d0

α

)10

−
(

d0

α

)4
]

. (13-3)

Here p is the pressure, α is inter-layer distance, d0 = 0.340 nm is the equilibrium
distance, and #=36.5 GPa.

In ABAQUS/Standard (ABAQUS Manuals) user subroutine UINTER can be
used to define the constitutive interaction between two deforming surfaces. The
interface is taken to be massless. The developed interaction elements are able to
accurately predict the pressure/inter-layer-distance variation between two planar
graphene sheets, since Eq. (13-3) has been verified to agree with experimental
results. [51, 55] To test the validity of the proposed approach, three different kinds
of problems have been simulated and compared to MD results: [13] self collapse
of SWNTs, interaction of SWNTs with a substrate, and tube-tube-substrate inter-
action. In all of these analyses the interaction elements have been able to simulate
successfully the van der Waals forces, demonstrating that, even in case of surfaces
with different radii of curvature, accuracy of the results is not drastically affected.
The reason for the limited sensitivity to the radius of curvature recorded can be
found in the rapid distance decay of the van der Waals forces with the atom/atom
distance. The force between two atoms as a function of the inter-atomic distance can
be derived from the expression for the potential, Eq. (13-3), by taking the derivative
with respect to the distance. It follows a (13,7) dependence on inter-atomic distance,
resulting in forces that are already negligible at distances as small as 2d0 = 0.68 nm,
about twice the equilibrium interplanar distance.

13.2.4. Model of the Inter-Layer Shear Resistance

As discussed above, in contrast to the stiff and strong normal wall-to-wall interac-
tion, there is relatively low shear stiffness and strength between layers in MWNTs.
In fact, the shear strength has been found to be less than 0.5 MPa, the mean value
of the inter-layer sliding resistance strength for crystalline graphite reported in the
literature. [12] Thus, it seems a reasonable assumption to model the shear stiffness
and strength to be zero, as was also done by Ru [56] in his continuum study on the
effect of van der Waals forces on axial buckling of a double-walled carbon nanotube.

13.2.5. Electrical Transport Model

Within the FE program simulating the mechanical deformation of the nanotube
structure, the evolving atomic [nodal] coordinates are further processed using a
tight-binding (TB) code which calculates deformation-induced changes in electrical
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transport properties of the nanotube. There the coordinates are used in TB calcula-
tions to compute electronic properties of the system. Our main objective is to predict
effects of deformation on the electrical properties of MWNTs; hence, adopting a
conventional TB code would negate the computational saving obtained by using
the structural mechanics approach to compute the deformed atomic coordinates.
Instead, a new TB algorithm was developed that results in substantial computational
savings. Beginning with a recently-developed approach, the coherent transport prop-
erties of infinitely-long or finite conductors spanning the distance between two leads
can be computed using two different full sp3, four-orbital, orthogonal TB models
[57, 58] or a non-orthogonal TB model. [59] For details on the quantum conductance
calculations, the reader is referred to. [37] Here, the full sp3, four-orbital, orthogonal
TB model [58] has been used. Then starting from the methodology for computing
the conductance of a system with a large number of atoms [60], a novel approach has
been developed where each CNT is divided along its length into a number of shorter
CNT segments connected to one another at interfaces. The system is equivalent to
the original CNT, but the memory requirements and the computational expenses are
reduced by orders of magnitudes. The realized computational efficiencies increase
with increasing dimensions of the nanotube; for example, the analysis of a (70,70)
tube had a memory requirement almost 5 orders of magnitude smaller than a con-
ventional coding implementation of the TB algorithm. The portion of the (70,70)
tube that is allowed to deform was divided along its length in 207 pieces, since
the matrices on which the program operates are square with dimensions equal to
[(number of atoms) × (number of orbitals per atom)]2, the reduction in the memory
requirement is equal to 207 × 207 = 42849, which gives a ratio of 0.000023 with
respect to the requirements of the original method.

13.3. NUMERICAL RESULTS

13.3.1. Bending of SWNTs

Here, the proposed FE-based mechanical approach was first validated by compar-
ison of simulation results with the MD results of Yakobson et al. [9] for axial
compression and bending of SWNTs of various diameters. Our numerical results
for strain energy and critical buckling loads over a wide range in tube geometries
compared very favorably with the MD results.

In particular, elastic strain energy prior to buckling was within 1.5% of the MD
results. Here, an exemplar bending case is chosen for presentation in order to bet-
ter demonstrate the agreement between the new FE-based simulation approach and
MD results. Figure 13-3 shows the strain energy during bending of a (13,0) helic-
ity (R∼=1.0 nm) and 8 nm long SWNT as a function of bending angle, along with
Yakobson’s MD results, [9] for various model parameters. Bending was imposed by
rigidly rotating the planes of nodes of the two ends of the originally straight tube
through equal and opposite angles. The axis of rotation passed through the tube’s
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center and was normal to the (unbent) length of the tube. Figure 13-3 plots the total
energy of imposed bending, U(θ ), normalized to its second derivative at θ = 0, as a
function of increasing bending angle. Prior to buckling, the differences in energy
between the computational approaches are negligible, and the curves exhibit an
essentially perfect quadratic behavior. The buckling point predicted by the finite ele-
ment simulation agrees well with the MD result. After buckling, differences among
the solutions remain small.

13.3.2. Tube-Tube-Substrate Interaction

Hertel et al. [61] found that the van der Waals interaction between nanotubes, as well
as between nanotubes and a substrate, can lead to substantial axial and radial defor-
mations of adsorbed nanotubes. They dispersed multi-walled carbon nanotubes on
an H-passivated Si(100) substrate. The nanotubes were imaged in air with an atomic
force microscope operating in the noncontact mode. When CNTs cross obstacles
such as other CNTs on the surface, they bend and deform elastically. The observed
flattening of adsorbed nanotubes on the side facing the substrate leads to an increase
in the contact area and binding energy with respect to undeformed tubes. Hertel
et al. [61] also simulated two crossing (10,10) nanotubes on a graphite surface
using molecular mechanics. They computed a tube-tube contact force about 5.5 nN,
leading to cross-sectional distortion of both tubes.

This problem appears to be a valuable test for the present finite element approach,
since it requires both correct modeling of the van der Waals interactions and a
realistic structural response for the two small-diameter SWNTs. The equilibrium
configuration for the two (10,10) nanotubes crossing at 30◦ angle on a graphite
substrate, calculated by the finite element model, is shown in Figure 13-4.

Not only does it compare well with the final deformed configuration from the
molecular dynamics analysis, but it predicts the contact force between the upper
and the lower tubes to be 5.56 nN, almost exactly the same as the 5.5 nN found by
Hertel et al. [61].
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Figure 13-4. Equilibrium configuration for two crossing (10,10) nanotubes on a graphite substrate cal-
culated by a finite element model. (a) Lateral view and (b) top view of the equilibrium configuration

13.3.3. Deformation of MWNTs Under Bending

Due to the prohibitive computational cost of the MD techniques when used
to simulate deformation of carbon nanotubes of more than a few walls,
energy/force/moment versus displacement results are generally lacking in the lit-
erature. Our attention thus focused on comparing high-resolution images of bent
MWNTs with our finite element predictions.

Bower et al. [16] investigated by TEM composites of uniaxially oriented multi-
walled carbon nanotubes embedded in polymer matrices. In strained composite
films, buckling was observed in MWNTs bent to large curvatures. Over thirty such
nanotubes with different inner and outer diameters were observed in TEM and
analyzed. The buckling wavelengths were not accurately predicted by thin shell
theory, [62] which predicts the buckling wavelength, λ, for a circular cylindrical
shell under axial compression to be:

λ = 2π
4
√

12(1 − ν2)

√
Reh (13-4)

where Re and h = Re–Ri are the outermost radius and the total thickness of the nan-
otube, respectively. If the Poisson’s ratio is taken to be 0.19, then λ = 3.4 (Reh)1/2.
This is not in accord with experimental observations, where the experimental ratio
λ/(Reh)1/2 has been found to be about 1. However, the buckling wavelength of
SWNTs or MWNTs with very few walls agreed with Eq. (13-4). As previously
stated, the underlying reason for the lack of agreement between the experimental
results [e.g., 16, 63] and shell theory is that, since traditional elastic shell models
are mainly directed to thin single-layer shells, they cannot be applied directly to
carbon MWNTs, due to their multi-layer structure and the associated inter-wall
van der Waals forces. In contrast, the SWNT can be considered as a thin-walled
cylinder, and shell theory can well predict its behavior. The local buckling in the
MWNTs is a complicated form of buckling, where van der Waals interactions with
neighboring tube walls provide a constraint against the buckling analogous to an
elastic foundation.
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Figure 13-5 plots various model (shell theory and the new FE-based model)
and experimental results of λ vs (Rh)1/2, where both lengths have been normal-
ized by ξ = 0.24 nm, the height of the hexagonal graphene lattice cell. As shown
in Figure 13-5, taking h to be the thickness of the outer wall (twall), the initial λ
computed by the new FE-based approach (open triangles) is in excellent agree-
ment with thin shell theory (which considers only a single thin tube). As discussed
earlier, the final λ greatly exceeds its initial value for all cases; this results in the
much steeper-sloped line shown in Figure 13-5 (open diamonds). Figure 13-5 shows
the experimentally-observed wavelengths, where Bower (open circles) took h to be
the total tube thickness; additional experimental results [17] are plotted with filled
squares. In Figure 13-5, final λ values computed in the FE-based simulations (filled
triangles) are again reported, but this time the real multi-layer structure is assumed
in modeling the MWNTs. The agreement of the new computational results with
experiments is remarkable.

When MWNTs are bent, they develop a characteristic wavelike distortion or
ripple on the area under compression. Their large radius makes the outer walls
more compliant in the radial direction under bending. As the radius of the MWNT
increases, the compressive strain increases for the same bending angle. The “rip-
pling” mode is mainly dominated by partial release of a buildup in compressive
stress. Once the outer layer buckles, the van der Waals interaction transmits loads
to the inner walls, thus opposing abrupt large deformations of the outer wall.
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Therefore, two main factors determine the buckled pattern: the bending stiffness
of the walls and the van der Waals forces. In all of the experimental observations
[e.g., 16, 17] the amplitude of the ripple in the large-diameter MWNTs decreased
monotonically from the outside wall to the inner walls. There were no discontinu-
ities in consecutive inter-layer spacings, nor was there evidence of defects. A direct
comparison between a TEM image of a buckled MWNT and a corresponding finite
element solution shows that not only do the buckling wavelengths closely match,
but also the overall deformed configurations are correctly predicted. In their work
Bower et al. show a TEM image, [16 Figure 2b] of a buckled MWNT in a CNT-
polymer composite. We simulated the bending of a MWNT with the same geometry,
same outer and inner diameter and same numbers of walls.

According to the TEM image shown in, [16] we modeled the MWNT as a 14-
walled CNT constructed of nested (n,n) tubes, with n = 5,10,15,. . .70; the outer tube
radius is R=4.76 nm. The length of the tube is L=15 nm. A bending angle of θ =
0.4 radians is gradually applied, imposing global curvature κ = θ /L; the maximum
κ is 0.0133 (1/nm). At one end, each tube section is rigidly rotated while radial and
circumferential displacements are constrained; the opposite tube end is a symmetry
plane. The total moment vs. global curvature diagram is shown in Figure 13-6.

Deformed configurations and contours of the inter-wall pressure for the 14-
walled CNT are shown in Figure 13-7 at selected imposed curvatures, elucidating
inter-wall interactions and the progression of wrinkling. The first deformed con-
figuration, marked a, corresponds to the onset of buckling; its location on the
moment-curvature diagram is indicated in Figure 13-6. For any given κ , the peak
compressive strain in successive walls increases linearly with respect to wall radius.
The outer walls cooperatively buckle at a κ value when local wall bending and
vdW potential storage becomes energetically more favorable than local compressive
stretching. Initial buckling occurs with a relatively small axial wavelength, λ; as the
outer layers buckle, vdW interactions develop, opposing relative radial motion of
the outer walls. As κ increases, the outer tubes attempt to increase their wrinkling

0

1500

3000

0.00 0.01

M
 (

nN
nm

)

κ

a)

b)

(1/nm)

Figure 13-6. Pure bending of 14-walled carbon nanotubes constructed of nested (n,n) tubes: Total
moment, the sum of the moments acting on all 14 tube walls, vs. global curvature
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a)

b)

Figure 13-7. FE bending simulation of a 14-walled MWNT model at indicated curvatures, κ , in 1/nm.
Distribution of the inter-wall pressure in N/nm2 at the locations (a), and (b) of Figure 13-6

amplitude, but the vdW forces resist the developing inter-wall radial separation;
instead, the wavelength λ increases with a further increase in global curvature, ulti-
mately resulting in a buckling wavelength much longer than that initially observed
at buckling onset.

Furthermore, the wavelength evolution is associated with a sharpening of the
intrusions, as is also observed experimentally. [1, 16] This sharpening results from
the nonlinear and directional nature of the vdW interactions. As κ increases further
(Figure 13-7b), the wrinkle permeates to the innermost wall; no noticeable changes
in inter-wall spacings are observed. The 14-walled CNT simulation compares well
with the TEM image of Bower et al. [16, Figure 13-2b] in terms of both final λ
and deformed configuration. The same progression is observed in all of the MWNT
cases simulated. In our simulations the local radius of curvature at the deepest kink
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Figure 13-8. FE bending simulation of a 14-wall MWNT (2Re=9.52 nm, 2L=30 nm) – Axial sec-
tion. Deformed configuration and distribution of the inter-wall pressure, in N/nm2, at the final imposed
curvature, in 1/nm, are shown

is never smaller than 0.27 nm. Thus, no complete and irreversible sp2 to sp3 transi-
tion should take place. [64, 65] Figure 13-8 shows the final deformed configurations
for the 14-walled CNT discussed. Depiction of axial sections of the models and their
images reflected across the symmetry plane provides a clearer view of the charac-
teristic wavelike distortion on the area under compression; for the 14-walled tube,
the final axial wavelength in the central section is λ=4.80 nm, considerably larger
than the initial value of 2.15 nm shown in Figure 13-7a.

13.3.4. Laterally-Squeezed (8, 8) SWNT

In Lu et al. [35], TB molecular dynamics and the Green’s function method are used
to demonstrate that lateral squeezing of an armchair SWNT can induce a metal-
to-semiconductor transition (MST). They employed a four-orbital TB approach for
investigations of both the mechanical analyses and the electronic transport proper-
ties. Here, we utilize our electro-mechanical approach to reproduce the Lu et al.
[35], simulations of the effects of squeezing on the electrical properties of an (8,8)
armchair SWNT. A schematic of the geometry and loading configuration is provided
in Figure 13-9; for details on the Lu et al., simulations, see [35].

The SWNT is laterally squeezed between two identical rigid tips, each with a
width of 0.580 nm, initially separated by 1.087 nm (the initial diameter of the
SWNT). It is well known that a perfect (8,8) armchair SWNT exhibits metallic
behavior, as also found in the TB calculations of Figure 13-10. When the separation
between the two tips is reduced to 0.700 nm, there is a very small change in the
conductance.

When the separation is further reduced to 0.260 nm, in addition to the strong
change in the curvature of the walls, the orbitals of atoms initially on opposite sides
of a horizontal diameter start to overlap. At this level of deformation, a deformed
configuration preserving initial mirror symmetry with respect to the compression
axis exhibits electronic behavior different from that of one lacking such mirror
symmetry of atomic positions. To show this dependence on symmetry, two cases
are investigated: in one case, atomic positions retain mirror symmetry about the tip
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Figure 13-10. Conductance of an armchair (8,8) SWNT squeezed between two tips in the undeformed
configuration

centerline (the compression axis), while in the other, initial symmetry is broken by
a rotation of the SWNT by 7.75 degrees, corresponding to Lu et al. [35], Figure 1c
and e, respectively]. The effect on the conductance is notable, as shown in Figures
13-11a and b: for a configuration preserving mirror symmetry, Figure 13-11a, the
CNT retains its metallic behavior, whereas in the configuration breaking symmetry,
Figure 13-11b, a band gap develops. The charge density plots reported in Lu, et al.
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[35, Figure 2] further emphasize these differences. It should be underlined that,
with further squeezing, both tubes become semiconducting. Also, good agreement
between our calculations and those from Lu et al. [35] is evident in Figure 13-11.

13.3.5. Bent (10, 0) SWNT

Let’s now focus on the effect of a bending deformation on the electronic transport
properties of a (10,0) zig-zag SWNT. The nanotube is 9.8 nm long and is bent by
fixing the last 8 carbon rings (80 atoms) at each end of the CNT, and then gradu-
ally rotating these rigid portions of the tube. The simulation replicates the study of
Farajian, et al. [36], where a four orbital-per-atom tight-binding approach is used
both to obtain the optimized geometries and to calculate the electronic and transport
properties.

The CNT locally buckles at an imposed relative rotation near 120◦, developing
two clear kinks near the non-deforming ends at ∼130◦, in good agreement with
the calculations of Farajian et al. [36]. The results of the mechanical analysis in [36]
show that this magnitude of bending deformation does not result in bond breaking or
the formation of lattice defects in the nanotube, nor does it result in a collapse from
graphite (sp2) to diamond (sp3) structure; thus the intrinsic stretching and bending
stiffnesses of the wall should be largely unchanged, as is implicitly assumed in our
de-coupled FE-based mechanical analysis.

The calculation of the electrical properties of the CNT is of the finite-length type,
with undeformed leads at the ends. The leads are specified to be ideal nanotubes,
constituting the rigid regions in the mechanical analysis. Figure 13-12 shows our
calculations of the conductance for the (10,0) SWNT in the undeformed configura-
tion and in the final 180◦ bent configuration. It is known that an undeformed (10,0)
SWNT is semiconducting and, furthermore, no transition from semiconductor to
metallic can take place since, regardless of what happens in the deformed regions,
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Figure 13-12. Conductance of a symmetrically-bent (10,0) SWNT. Different curves correspond to:
undeformed configuration, and deformed configurations at 180◦ imposed rotation, from both the present
formulation and from the results of Farajian et al. [36]

the undeformed leads remain semiconducting. Comparing our results with the cal-
culations of Farajian, et al. [36], a good level of agreement is observed. Considering
the significant differences in the parameterizations of the mechanical approach and
in the TB codes, this agreement between outcomes provides a strong validation of
the proposed FE-TB approach.

13.3.6. Simulation of Laboratory Experiments on a MWNT

Here we utilize our electro-mechanical modelling technique to reproduce the
MWNT laboratory experiments of Kuzumaki and Mitsuda [66], who evaluated
deformation-induced changes in electrical conductivity of a multiwall carbon nan-
otube. They measured electrical conductance during the deformation of MWNTs in
a transmission electron microscope (TEM). Using a nanoprobe manipulation unit
consisting of a fixed stage and a piezo-driven stage fitted into a TEM holder, they
applied a compressive axial load on a MWNT, along with a bias voltage between
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the two stages. A combination of axial compression and bending deformation
observable in the TEM was induced in the CNT. For more details about the experi-
mental setup and the testing methodology, the reader is referred to [66]. The applied
bias voltage between tips was fixed at 1 V while the current through the MWNT
was measured during deformation, starting from the undeformed configuration. In
the undeformed configuration, the current measured through the nanotube exceeded
115 μA under an applied bias voltage of 1 V; the resistance of the MWNT obtained
is R =V/I = 8696 �. This value is not far from the resistance of an ideal metallic
nanotube, 6450 � [e.g., 2], indicating that the contact resistance is limited and not
predominant as in other experiments available in literature. Since the undeformed
conductance is near the theoretical one, we take the outermost CNT to be an arm-
chair metallic (70,70) nanotube in the FE-TB model. Kuzumaki and Mitsuda [66]
recorded a 10–12% reduction in the conductance when the MWNT was deformed
to the level shown in their Figure 2b [66]. As the authors noted, the MWNT was
not damaged (e.g., no Stone-Wales transition) at the imposed deformation level: the
local radius of curvature at the deepest kink of the two buckling units formed was
not small enough to cause a complete and irreversible sp2 to sp3 transition [64, 65].
This was confirmed by measurements taken after removal of the load: the nanotube
recovered its original undeformed shape, and the current returned to its initial level.

As previously motivated, the outermost wall is assumed to be an armchair CNT,
thus showing metallic behavior. The model is 60 nm long, and the diameter of the
outermost tube is 9.492 nm. It is compressed and bent by fixing the atoms of each
wall near the two ends, and then displacing these 4 nm long rigid portions; thus,
the deformable part of the model is 52 nm long. Figure 13-13 shows the FE model
in its deformed configuration, both a side view of the outer surface and a diametral
sectional view, with an inset illustrating the hexagonal meshing of the tube. The
model reproducing the MWNT used in the experiment was gradually deformed by

Figure 13-13. Final deformed configuration of the FE model reproducing the experiment, shown both
in (a) a side view of the entire MWNT and (b) in a diametral sectional view
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Figure 13-14. Conductance calculated using the mixed FE-TB approach for the model reproducing the
MWNT used in the experiment, both in the undeformed and deformed configurations. The thermal energy
at room temperature is also indicated

imposing a combination of axial compression and bending loading until the same
configuration as that observed in the TEM image [66, 2b] was reached. Atomic
coordinates, in both the undeformed and deformed configurations, were passed to
the TB code for computing the transport properties of the MWNT. For a bias voltage
of 1 V, the overall conductance of the undeformed tube obtained from the mixed
FE-TB approach was the theoretical one, G=2G0. At room temperature the thermal
energy kT is about 0.025 eV.

Once the deformation level reached that shown in Figure 13-13, the TB code pre-
dicted ∼12% reduction in room-temperature conductance. These results are shown
in Figure 13-14 as a plot of conductance versus energy, where the Fermi energy is
taken as a reference and shifted to zero. Based on a computed conductance change
similar to that reported in the experiments, the accuracy of the current predictions
is considered to be rather good. We are unaware of any numerical simulations that
have successfully replicated experimental results on electromechanical behavior of
MWNTs.

13.3.7. Effect of the Outer Diameter on the Conductance of MWNTs
Under Bending

With this validation of the computational approach, we now investigate the effect
of MWNT outer diameter on the dependence of conductance on mechanical
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deformation. In addition to the (70,70) MWNT described above, models of (50,50)
and (30,30) armchair MWNTs were created and subjected to bending loading
conditions. The new undeformed models resemble the (70,70) tube shown in
Figure 13-13; the only differences consisted of removing the outer two walls of
the (70,70) to produce the 6.78 nm outer-diameter (50,50) mesh, and the outer four
walls for the 4.08 nm outer-diameter (30,30) mesh. The three nanotubes were bent
to the same curvature by fixing the atoms of each wall near the two ends, as done
in the previous simulation of the (70,70) MWNT, and then gradually rotating these
rigid portions of the tube. A bending angle of θ = 1.0472 radians (60◦) is gradually
applied, imposing global curvature κ = θ /L; the final κ is 0.0214 (1/nm), since
the deformable part of the model is 52 nm long. The deformed configurations are
shown in Figure 13-15a–c.

For a bias voltage of 1 V, the computed overall conductance of all three unde-
formed tubes was the theoretical value, G=2G0. Once the deformation levels
reached those shown in Figure 13-15, the TB code predicted a reduction in conduc-
tance that varied over the considered energy range of –0.3 to 0.3 eV. Figure 13-16
shows the longitudinal sections of the (30,30), the (50,50), and (70,70) MWNTs
at the bending angle of 60◦. Figure 13-17 plots conductance versus energy for
all three MWNTs, and the Fermi energy is again taken as a reference and shifted
to zero. At the same curvature, the conductance of MWNTs is found to depend
on the outer diameter. At room temperature, the smaller outer diameter exhibits

Figure 13-15. Views of the final deformed configurations of the FE models producing the same bending
angle of 60◦ in (a) the (30,30), (b) the (50,50), and (c) the (70,70) MWNTs
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Figure 13-16. Sectional views of the final deformed configurations of the FE models producing the
same bending angle of 60◦ in (a) the (30,30), (b) the (50,50), and (c) the (70,70) MWNTs
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Figure 13-17. Conductance calculated using the mixed FE-TB approach for three armchair MWNT
models of different outer diameters, both in the undeformed and deformed configurations
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the greatest average drop in the conductance: the (30,30), the (50,50) and the
(70,70) shows, respectively, a 13%, a 5.5% and a 0% reduction in the conductance.
Additionally, the range in energy values where the conductance is reduced from the
initial undeformed value, G=2G0, is larger for the smaller diameter MWNTs.

Based on the outcomes of these simulations, we identified in the length of the
circumference unaffected by the wrinkling one possible geometrical features of
the deformed configuration able determine the dependence of conductivity on the
MWNT diameter. In Table 13-1 the undistorted circumferential lengths of the three
MWNTs are compared both in value and as percentage with respect to the total cir-
cumference of each tube. Even if the percentages are about the same, there is a big
difference in the value of the lengths of the circumference unaffected by the wrin-
kling. In the (70,70) MWNT the undistorted circumferential length is 2.24 times
longer than in the (30,30), and 1.366 longer than in the (50,50). In MWNTs, the
nested van der Waals interactions of the increased number of inner walls radially
stiffen the tube, thus limiting the circumferential extent of the kink. The number of
relatively undistorted atoms outside the kinked portion of the circumference grows
with the outer diameter. In the areas of the nantube walls where a kink is present,
due to the distortion caused by the bending, centers of scattering are created that
reduce the conductivity. At any kink, the local bonding structure is deformed and
the electrons will lose some of the π character of their corresponding orbitals. As
stated in [65], the curvature in the nanotube walls due to the kink leads to a loss
of spatial overlap of the atomic p orbitals that contribute to conjugation and a shift
in hybridization of the atoms from the sp2 of graphite to something intermediate
between sp2 and sp3. The net result of these orbital effects is an increase in energy
locally and an introduction of partial radical character in the π-bonding electrons.
Smaller nanotubes have a smaller undistorted circumferential length (smaller num-
ber of atoms in position to provide an effective transport pathway) than the larger
diameter MWNTs, thus giving the corresponding larger influence on the loss in
conductivity.

Table 13-1. Comparison of the undistorted circumferential lengths of the three MWNTs both in value
and as percentage with respect to the total circumference of each tube

MWNT
Circumference of
each tube (nm)

Length of the
circumference
unaffected by the
wrinkling (nm)

Percentage of circumference
unaffected by the wrinkling
with respect to the total
circumference

(30,30)
MWNT

12.82 9.35 73

(50,50)
MWNT

21.3 15.33 72

(70,70)
MWNT

29.82 20.95 70
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13.3.8. Effect of the Outer Diameter on the Conductance of MWNTs
Under Stretching

Here we investigate the one of the possible effect of MWNT outer diameter on the
dependence of conductance on mechanical deformation. Models of (70,70), (50,50)
and (30,30) armchair MWNTs were created and subjected to traction loading con-
ditions. All the models are 60 nm long, while the diameter of the outermost tube
of the (70,70), (50,50) and (30,30) armchair MWNTs are, respectively, 9.492, 6.78
and 4.08 nm. The three nanotubes were stretched out by fixing the atoms of each
wall near the two ends, then displacing these 4 nm long rigid portions of the tubes.
An extension of 2.55 nm was gradually applied, imposing global axial deformation
of 0.0472, since the deformable part of the model is 52 nm long. The deformed
configurations are shown in Figures 13-18 and 13-19. Clearly these are not pure
tension boundary conditions, but an attempt to reproduce a possible real working

Figure 13-18. Views of the final 3D deformed configurations of the FE models in (a) the (30,30),
(b) the (50,50), and (c) the (70,70) MWNTs. The figure shows only half of the carbon nanotube models
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Figure 13-19. Sectional views of the final deformed configurations of the FE models in (a) the (30,30),
(b) the (50,50), and (c) the (70,70) MWNTs

condition for MWNTs bases electronic devices where the ends of the nanotubes
are fixed inside metallic leads and cannot deform. For a bias voltage of 1 V, the
computed overall conductance of all three undeformed tubes was the theoretical
value, G=2G0. Once the deformation levels reached those shown in Figures 13-18
and 13-19, the TB code predicted a reduction in conductance that varied over the
considered energy range of –0.1 to 0.3 eV. The Fermi energy is again taken as a
reference and shifted to zero. At the same extension, the conductance of MWNTs is
found unchanged in the energy range where for of all three undeformed tubes it was
the theoretical value, G=2G0. While when these energy levels are exceeded there is
a significant reduction in the conductance of the deformed tubes. Since the energy
level at which conductance have the theoretical value of 2G0 is lower for bigger
armchair MWNTs, we can conclude that for this particular load case armchair car-
bon nanotubes with smaller outer diameter maintain their conductance unchanged
up to higher energy levels (Figure 13-20).

13.3.9. Effect of Current Saturation – Non-Linear I-V Response

Theoretical and experimental results have proved that conductance in carbon nan-
otubes, both SWNTs and MWNTs, drops dramatically as the bias voltage is
increased due to scattering of electrons [e.g., 12, 67–71]. As discussed in, [68] the
current saturation derives from the band structure. In metallic CNTs current is car-
ried by two propagating 1D sub-bands. When scattering is not present, the difference
between the chemical potentials of the right and left moving states will be given by
the applied voltage. When the bias voltage is low the I-V response is Ohmic, but
for high voltage level when eV exceeds the Fermi energy of the 1D sub-bands,
the left moving states will be completely depleted and the current will saturate. In
experiments the current saturation will start at a much lower voltage with respect to
theoretical predictions.
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Figure 13-20. Conductance calculated using the mixed FE-TB approach for three armchair MWNT
models of different outer diameters, both in the undeformed and deformed configurations

Yao et al. [68] using low-resistance electrical contacts have measured the high-
field transport properties of metallic SWNTs. Their experimental results [Figure 2,
40] show a linear I-V response for bias volage under 1 V, at higher voltage current
saturation leads to a quick reduction in conductance that determines a plateau in the
I-V curve. Yao et al. [68] also discussed if in the experiments the contact resistance
maybe the primary cause of the drop in the conductance. They concluded that the
current saturation cannot derive from an amplified contact resistance as the voltage
grow because the contacts should then behave like high-resistance tunneling con-
tacts, and in the I-V associated with tunneling should appear features that are not
present in the measured I-V.

Similar results have been found for MWNTs [e.g., [67, 69–71]. For exam-
ple, Collins et al. [69] investigated high energy transport in MWNTs with a test
structures are produced by depositing arcgrown MWNTs onto SiO2 substrates
prepatterned with Au/Ti electrodes. Their I-V measurements to the high current
[Figure 2, 69] show an extremely nonlinear regime. Above the low bias, linear
regime, MWNT I-V curves have a point of inflection above which dI/dV decreases
towards a sample-dependent saturation.

Using the FE-TB code we have predicted the change in conductance of the
4-walled MWNT whose outermost wall is made of a (30,30) armchair CNT, as
described in Chapter 13.3.7. The conductance of the MWNT at various bias voltage
level, shown in Figure 13-21, has been calculated in the undeformed configuration
and in the deformed bent configuration of Chapter 13.3.7. Since our calculations are
theoretical, our results are expected to leave the linearity later that the experimental
results.
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Figure 13-21. Conductance calculated using the mixed FE-TB approach for (30,30) armchair MWNT
model at various bias voltage level in the deformed bent configuration at the Fermi level

13.4. CONCLUSIONS

In summary, a computationally-effective mixed finite element-tight-binding
approach has been developed which can simulate the electromechanical behavior
of SWNTs and MWNTs of the dimensions used in nano-electronic devices. The
TB code is carefully designed to realize orders-of-magnitude reduction in com-
putational time in calculating deformation-induced changes in electrical transport
properties of the nanotubes. Finally, the effect of the MWNT diameter on the
conductance after mechanical deformation was investigated.
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Abstract: Theoretical modeling and simulation play an important role in understanding the sub-
tle and complex behavior of carbon nanotubes (CNTs). Atomic simulations can capture
the microscale mechanism of nanostructures, but they are limited to very small sys-
tems due to their huge computational cost. Continuum simulations can extend to large
enough systems, however they can’t reflect microscale physical laws of nanostructures.
Multiscale modeling that couples atomic simulations and continuum modeling is emerg-
ing as a feasible and efficient approach for large-size nanostructures. This chapter aims
to systematically illustrate the three components of multiscale modeling of CNTs: atomic
simulation, continuum modeling approach, and multiscale coupling scheme. The chap-
ter first reviews several multiscale coupling schemes, and then introduces an atomic
modeling approach and a higher-order continuum model. The mesh-free method is
employed to implement the continuum discretization, and multiscale analysis is achieved
by appropriately coupling the mesh-free continuum framework and the atomic simulation.
Computations are carried out for CNTs using atomic simulations, continuum model-
ing and multiscale analysis, respectively, and the efficiency of multiscale modeling is
discussed

Keywords: Carbon nanotubes, Multiscale modelling, Brenner potential, Atomic
simulation, Continuum method, Cauchy-Born rule, Higher-order continuum, Buckling

14.1. INTRODUCTION

Carbon nanotubes (CNTs) were first discovered by Iijima [1] of the NEC
Corporation in Japan in 1991. Due to their unique nanostructure, CNTs possess
remarkable physical, electrical, chemical, and mechanical properties, and have
a wide range of potential applications in nano-electronics, quantum wire inter-
connects, field emission panel display, composites, chemical sensors, biosensors,
detectors, etc. In addition to a large amount of experimental work, theoretical
modeling plays an important role in capturing and understanding the delicate
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behavior of nanostructures. Modeling approaches can be generally classified into
two categories: atomic simulation such as molecular dynamics [2–4] (MD) and
continuum method [5–13]. Atomic simulations can capture the microscale mech-
anism of nanostructures and yield results that are in many cases explicit in nature.
However, atom-based methods consume a large amount of computational resources,
and thus computation is limited to a very small size. This huge computational cost
largely restricts the use of atomic-based methods, which has led to the emergence
of continuum method, which makes use of the continuum mechanics theory to
study CNTs. Continuum-based methods are much faster than atomic simulation
in the analysis of systems of engineering interest, which makes them attractive.
Continuum simulation can largely reduce the degrees of freedom in problems,
and the theoretical and numerical analysis of large-scale structures thus become
possible. In addition, continuum simulation can also display certain CNT properties
that cannot be found with atomic simulations. Some equivalent continuum models,
for example, the beam model [5], the shell model [6, 7], and the truss/frame model
[8, 9], have been developed, and have proved to be very efficient from the compu-
tational point of view. However, continuum simulations can’t reflect the microscale
physical laws of nanostructures, and are not adequate for the analysis of CNTs.

The limitations of atomic simulations as well as continuum simulations have
stimulated extensive research into multiscale methods that bridge atomic simulation
and continuum descriptions. Multiscale method takes advantage of both approaches
and can overcome the length and time scale limits in an efficient manner, and it
is emerging as a feasible and efficient approach for large-size problems. The basic
idea of the multiscale method is to use atomic simulation for the localized region in
which the discrete motion of atoms is important and to use the continuum method
for the remaining regions in which the deformation is considered to be homogeneous
and smooth. A key issue associated with the multiscale method is the way to bridge
the two different scales smoothly. In the early multiscale study of CNTs, almost
all researches are focused on exploring the appropriate model to smoothly couple
two scales. Currently, several efficient coupling approaches, example for the quasi-
continuum method [14, 15], the bridging domain method [16, 17], and the bridging
scale method [18, 19], have been proposed.

From the above discussion, it can be seen that there are three components in a
multiscale modeling: an atomic method, a continuum modeling approach, and an
appropriate coupling scheme. These three components will respectively be intro-
duced in this chapter. Several multiscale coupling approaches are first reviewed
in the Section 14.2. Although MD is a commonly popular atomic simulation, we
introduce a faster atomic modeling approach that has the same solving scheme as
the subsequent mesh-free continuum simulation. In the previous multiscale mod-
eling of CNTs, the researchers always ignored the importance of the rationality
of the continuum models. This work introduces a reasonable and accurate con-
tinuum model for CNTs. The multiscale modeling is carried out by coupling the
mesh-free computational framework and the atomic simulation. The present work
aims to present a comprehensive understanding for the multiscale modeling of
CNTs.
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14.2. MULTISCALE COUPLING APPROACHES

Depending on the methods of coupling the multiple scales, multiscale simulation
of CNTs can be either concurrent or hierarchical. In the concurrent simulation, two
scale methods are coupled within one unified numerical code in which the bridging
technique provides the link among them. In the hierarchical approach, simulations
are carried out at separate scales, which provide critical insights for improved
modeling in the next larger scale. To achieve the concurrent simulation, domain
decomposition is generally used. Atomic simulation is implemented in the localized
region where the discrete motion of atoms is important, and the continuum method
is used for the remaining regions in which the deformation is homogeneous and
smooth. Such a multiscale scheme can capture the quantities that vary quickly in the
critical atomic region while significantly reducing the computational cost by treating
the surrounding material in an averaged sense. A great challenge in multiscale sim-
ulations is the treatment of the linking area between two scales. Several techniques
have been developed to couple the continuum and atomic methods. Here, three pop-
ular approaches, the quasi-continuum method [14, 15], the bridging domain method
[16, 17], and the bridging scale method [18, 19], are introduced.

14.2.1. Quasi-Continuum Method

This method was proposed by Tadmor et al. [14, 15] in modeling 2-D crystal-
lites, and it has been used to study a variety of fundamental aspects of deformation
in crystalline solids, including fracture, grain boundary structure and deformation,
nano-indentation, and 3-D dislocation junctions.

The quasi-continuum method introduced the concept of representative atoms.
Shown in Figure 14-1a is a crystalline solid that involves a Lomer dislocation [20]:
the filled circles denote the chosen representative atoms. Around the core of the
dislocation, the deformation is drastic, the microcosmic change of the atomic struc-
ture needs to be described and traced, and all atoms are chosen as the representative
atoms. Far away from the core of the dislocation, the field is slowly varying and the
deformation is homogeneous, and certain sparse atoms are chosen as the represen-
tative atoms. In the former region, the atoms are called non-local atoms, and their
interactions with the neighboring atoms are reflected. The atoms in the latter region
are called local atoms, and a continuum discretization scheme can be established
based on them.

The total potential energy of the quasi-continuum model can be obtained as

EQC =
∑

nonlocal

Vi +
∑

local

wμVμ · (14-1)

The first and second terms in Eq. (14-1) denote the energies of the non-local and
local atoms, respectively. wμ is the weight function and refers to the number of
atoms that this representative atom can represent. In practice, the local region can
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Figure 14-1. (a) Around the core of a Lomer dislocation, all atoms are chosen as the representative
atoms (filled circles), whereas sparse atoms are chosen the far field. (b) The constructed FEM based on
the chosen representative atoms [20]

be discretized as a series of elements by using the representative atoms as nodes (see
Figure 14-1b).

In the quasi-continuum method, a ghost force often arises in the transition zone
between the local and non-local regions, even when the crystal is undeformed. To
avoid the effect of this ghost force, the energy is augmented by a term associated
with the work done by the ghost force:

ÊQC = EQC −
∑

g

f gug · (14-2)

The ghost force f g is calculated each time the status of the representative atoms
is updated and is held constant until an update is required due to the evolving state
of the deformation [20].

14.2.2. Bridging Domain Method

The bridging domain method was proposed by Belytschko and Xiao [16, 17], was
used to simulate the fracture of graphite sheets [17], and was recently extended
to simulate the fracture of large-diameter CNTs [17, 21]. In this technique, the
entire domain is decomposed into three types of regions (see Figure 14-2): an
atomic region �A in which the atomic movement is described, a continuum region
�C =�CL+�CR in which the lattice undergoes a smooth deformation and the con-
tinuum simulation is used, and an overlapping region �O = �A ∩ �C in which
the atomic and continuum models overlap. In the atomic and continuum regions,
the energy is computed using the atomic and continuum methods, respectively. In
the overlapping region, the potential energy is expressed as a linear combination
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Figure 14-2. The entire domain is decomposed into a continuum simulation region �C = �CL + �CR

and a full atomic region �A with an overlapping region �O = �A ∩ �C

of the continuum and atomic energies. This ensures smooth bridging between the
continuum and atomic deformation fields.

14.2.3. Bridging Scale Method

The bridging scale method was developed by the research group of Liu [18,
19]. In this method, the total displacement field is decomposed into two different
components, as follows.

Figure 14-3. Schematic illustration of the multiscale discretization scheme in the bridging scale
method [18]
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u(x) = u(x) + u’(x), (14-3)

where u(x) is the coarse scale component and can be established in a continuum
discretization frame such as the finite element or mesh-free method. u′(x) is the
fine scale component that must be determined by the atom-based method. Far away
from the localized domain, u′(x) becomes insignificant, or, mathematically, u′(x)
has a vanishing projection onto the coarse scale basis function. Therefore, atomic
simulation is only needed in the localized regions. Figure 14-3 shows the computa-
tional scheme for the bridging scale method. There are two different computational
domains. The first is the coupled domain in which the atomic structure co-exists
with the continuum discretization. The second domain is the coarse scale domain
in which only the continuum discretization exists. The coarse and fine scale solu-
tions are coupled. In the computation, the coarse scale solution is solved in the
entire domain, whereas the fine scale solution is only solved in the localized region.
Bridging between the coarse and fine scales is realized by transparently exchanging
information between the coarse and fine scale regions.

14.3. BRENNER POTENTIAL

In the theoretical and numerical modeling of CNTs, the empirical potential is always
used to describe the interaction between carbons. The Brenner potential [22, 23] was
first proposed for hydrocarbons, and has been widely used in the study of CNTs. In
the Brenner potential, the system energy means the sum of the energy on each bond,
and the energy of each bond is composed of a repulsive and attractive pair. Following
Tersoff [22] and Brenner [23], the expression for the bonding energy between atoms
I and J is

VB(rIJ) = VR(rIJ) − BIJVA(rIJ), (14-4)

where rIJ is the distance between atoms I and J, and VR and VA are the repulsive and
attractive pairs of the energy terms given by

VR(rIJ) = D(e)

S − 1
e−√

2Sβ(rIJ−R(e))fc(rIJ), (14-5)

VA(rIJ) = D(e)S

S − 1
e−√

2/Sβ(rIJ−R(e))fc(rIJ). (14-6)

fc is a smooth cut-off function that limits the range of the potential, and is given by

fc(r) =

⎧
⎪⎨

⎪⎩

1 r < R(1)

1
2

{
1 + cos

[
π (r−R(1))
R(2)−R(1)

]}
R(1) < r < R(2)

0 r > R(2)

(14-7)

where R(1) and R(2) are the effective ranges of the cut-off function.
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The parameter BIJ in Eq. (14-4) represents multi-body coupling between the
bond I – J and the local environment of atom I, and is given by

BIJ =
⎡

⎣1 +
∑

K �=I,J

G(θIJK)fc(rIK)

⎤

⎦
−δ

, (14-8)

where θ IJK is the angle between the bonds I – J and I – K, and the angle function G
is given by

G(θIJK) = a0

[
1 + c2

0

d2
0

− c2
0

d2
0 + (1 + cos (θIJK))2

]
. (14-9)

For atoms I and J with different local environments, Brenner [23] suggested
replacing BIJ in Eq. (14-8) with

B̄IJ = 1

2
(BIJ + BJI). (14-10)

The parameters D(e), S,β, R(e), δ, R(1), R(2), a0, c0, d0 in the above equations can
be determined by fitting with the known physical properties of carbon. Brenner gave
two sets of parameters as follows [23]:

(I) D(e) = 6.325 eV, S = 1.29, β = 15 nm−1, R(e) = 0.1315 nm, R(1) = 0.17 nm,
R(2) = 0.2 nm, δ = 0.80469, a0 = 0.011304, c0 = 19, d0 = 2.5;

(14-11)
and

(II) D(e) = 6.000 eV, S = 1.22, β = 21 nm−1, R(e) = 0.139 nm, R(1) = 0.17 nm,
R(2) = 0.2 nm, δ = 0.50000, a0 = 0.00020813, c0 = 330, d0 = 3.5.

(14-12)

The Brenner potential has recently been revised [24], and the new version is
generally called as the second-generation Brenner potential. In comparison with the
Brenner potential, the second-generation potential includes both improved analytic
functions for the interatomic interactions and an extended fitting database, which
results in a significantly better description of the bond length, energies, and force
constants for hydrocarbon molecules and the elastic properties, interstitial defect
energies, and surface energy for diamonds.

The second-generation potential is also expressed as Eq. (14-4), and VR and VA

are given as

VR(rIJ) = f c(rIJ)

(
1 + Q

rIJ

)
Ae−αrIJ , (14-13)
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VA(rIJ) = f c(rIJ)
∑

n=1,3

Bne−βnrIJ , (14-14)

where Q is the effective charge in the screened coulomb potential, and f c(rIJ) is a
cutoff function that is similar to fc(rIJ). The detail on the terms BDH

IJ , A, α, Bn and
βn can be found in Ref. [24].

In simulations of the failure of CNTs that use the second-generation Brenner
potential, researchers [19, 21] have found that the fracture stresses are several times
larger than those of quantum mechanical results. This is due to the functional form
of the cutoff function in the potential, which artificially raises the bond force for
the distances between 1.7 and 2.0. To avoid nonphysical failure mechanisms, it is
suggested that this cutoff function be removed in the fracture analysis, but included
in the C-C interactions only for those atom pairs that are less than 2.0Å apart in the
initial and undeformed configurations [19, 21]. With this modification, the potential
is no longer capable of handling bond formation, but it can give reasonable results
for the fracture. In the present research, the Brenner potential with the second set of
parameters is mainly used, except the fracture simulation of CNTs (Section 14.7.2)
in which we use the modified second-generation Brenner potential.

14.4. AN ATOMIC SIMULATION METHOD

The multiscale method requires an appropriate atomic simulation approach. The
commonly popular atomic method is molecular dynamic. Here, we introduce a dif-
ferent approach that has the same solution framework as the later mesh-free method.
This atomic simulation method will be employed in our multiscale simulation.

Let us consider a system that contains NA carbon atoms. The energy that is stored
in the atomic bonds is a function of the positions of all atoms, as follows.

Unb = Unb(q1,q2, · · · ,qN) =
NA∑

I<J

VB(qJ − qI), (14-15)

where qI is the position of atom I, and VB(qJ − qI) is the Brenner potential.
The total potential energy of the atomic system is

EA(q) = Unb(q) −
NA∑

I=1

f I · qI , (14-16)

where q = (q1,q2, · · · ,qNA)T, and f I is the external force (if any) that is exerted on
atom I. The state of the stable configuration corresponds to

∂EA(q)

∂q
= 0. (14-17)
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The Taylor expansion of EA(q) around an initial guess of q0 = (q0
1,q0

2, · · · ,q0
NA)T

for the equilibrium state gives

EA(q) ≈ EA(q0) + ∂EA(q)

∂q

∣∣∣∣
q=q0

· (q − q0) + 1

2
(q − q0)T ·∂EA(q)

∂q∂q

∣∣∣∣
q=q0

· (q − q0).

(14-18)

Its substitution into Eq. (14-17) yields the following governing equation for the
displacement �q = (q − q0).

KA�q = f, (14-19)

where the stiffness matrix is

KA = ∂2EA

∂q∂q
= ∂2Unb

∂q∂q
, (14-20)

and the non-equilibrium force vector is

f = −∂EA

∂q
= f − ∂Unb

∂q
, (14-21)

where f = (f 1,f 2, · · · ,f NA)T is the external force vector. The equilibrium state is
obtained by iteratively solving Eq. (14-19) until f reaches zero.

Liu et al. [25, 26] recently introduced a concept of the atomic-scale finite ele-
ment to assemble the global stiffness matrix and force vector, and they employed
finite element software to solve large-scale problems. In the present computation,
all work, including assembling the stiffness matrix and force vector and solving the
equation system, is performed with our Fortran codes. It is noted that the stiffness
matrix KA lacks the positive definiteness beyond the buckling, and thus the iterative
solution does not converge to the minimum point of the potential energy. A simple
way to remedy this problem is to replace Kn+1 with Kn+1 + δI, where I is the iden-
tity matrix, and δ is a positive number. The repeated replacement can ensure that the
solution converges to the real one. The stiffness matrix Kn+1 generally becomes pos-
itive definite after a few cycles of replacement, and the standard Newton-Raphson
method can then be resumed. The choice of δ should ensure that Kn+1 + δI is
positive definite. The ideal value of δ is a positive number that is slightly larger
than the magnitude of the most negative eigenvalue of Kn+1 [27] because the larger
the value of δ, the slower the convergence of the solutions. Therefore, to achieve a
good convergence rate, we can first calculate the eigenvalue of Kn+1 at each iterative
step. However, the calculation of this eigenvalue consumes additional computational
time. Therefore, for small-sized structures, the value of δ can be chosen by calculat-
ing the eigenvalue of Kn+1. But, for large-scale structures, it may be determined by
frequent attempts.

Using this atomic method, we have modeled the buckling behavior of SWCNTs
under axial compression, twisting and bending (see Figure 14-4). The method is
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(a) Axial compressive buckling of a (18,0) SWCNT with the length 8.72 nm. 

(b) Twisting buckling of a (10,10) SWCNT with the length 11.81 nm.

(c) Bending buckling of a (15,0) SWCNT with the length 7.65 nm.

Figure 14-4. The buckling deformations of SWCNT under the axial compression, twisting and bending
obtained by the present atomic simulation

proved to be much faster than the molecular dynamic. Prior to the buckling, sev-
eral iterative steps can achieve a good convergence. Around the buckling, 100–200
iterative steps can generally give the stable results.

14.5. A HIGHER-ORDER CONTINUUM MODEL

An accurate multiscale scheme also requires a rational and efficient continuum
model. However, it seems that the previous multiscale analyses always neglect the
importance of the continuum models. Recently, the present authors employed the
higher-order continuum theory to study CNTs, and good efficiency were obtained.
The work is mainly motivated by the previous applications of the Cauchy-Born rule
[14, 28] in the studies of CNTs. The Cauchy-Born rule is a fundamental kinematic
assumption to bridge the deformation of the lattice vectors of crystal to that of a
continuum deformation field, and it plays an important role in establishing the con-
stitutive model. The Cauchy-Born rule has been used in the study of CNTs [29, 30].
However, this application may be insufficient and inaccurate. First, the Cauchy-Born
rule requires sufficiently homogeneous deformations, but the deformation from a
sheet to a 3-D curved surface is quite special, and the Cauchy-Born rule only maps
a planar vector onto the tangent plane of the curved surface. Moreover, the compu-
tations of Arroyo and Belytschko [31–34] revealed that the constitutive model based
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on the Cauchy-Born rule does not describe the bending effect, and thus the buck-
ling deformation of CNTs cannot truly be displayed. The classical Cauchy-Born
rule can be enhanced by considering the effect of the second-order deformation gra-
dient, and this extended rule is called the higher-order Cauchy-Born rule [35–38].
With the higher-order Cauchy-Born rule, a higher-order constitutive model can be
developed for SWCNTs [37, 38], and thus CNTs can be studied in the theoretical
scheme of the higher-order gradient continuum [39, 40]. This section introduces the
higher-order continuum model of SWCNTs and its mesh-free implementation.

14.5.1. Higher-Order Gradient Continuum

The essential idea of the higher-order gradient continuum is that the strain energy
density depends not only on the first-order deformation gradient, but also on the
second-order deformation gradient. As shown in Figure 14-5, we consider a curved
surface in a 3-D space with its original image being a planar sheet on a 2-D plane.
Here, we use the capital X = (X1, X2) to denote the original reference configuration
and the lowercase x = (x1, x2, x3) to denote the current configuration. The deforma-
tion map from the planar sheet to the curved surface is defined by x = x(X), and the
first- and second-order deformation gradients are

F(i,J) = ∂x
∂X

, G(i,J,K) = ∂2x

∂X2
, (14-22)

where i=1,2,3, J,K=1,2.
The first-order Piola-Kirchhoff stress tensor P and higher-order stress tensor Q

are given by

P = ∂W0

∂F
, Q = ∂W0

∂G
, (14-23)

where W0 is the strain energy density that is defined in the reference configuration.
The tangential moduli are given by

r

R

X2

x3 x2

x1

X1

Ω

Figure 14-5. A planar sheet is transformed to a spatial curved surface. With this transformation, the
vector in the original reference configuration is deformed as a curved line that corresponds to a spatial
vector
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MFF = ∂2W0

∂F ⊗ ∂F
; MFG = ∂2W0

∂F ⊗ ∂G
; MGF = ∂2W0

∂G ⊗ ∂F
; MGG = ∂2W0

∂G ⊗ ∂G
.

(14-24)
The stable configurations of the system are identified with the minimization of

the total potential energy [36]:

E =
∫

�

W0(F,G)dV −
∫

∂�

u · tP
0 dS−

∫

∂�

∇Nu · tQ
0 dS, (14-25)

where tP
0 and tQ

0 are, respectively, the first- and second-order stress tractions on the
surface ∂� of the domain � the trial deformation u = (u1,u2,u3)T must satisfy the
essential boundary condition on the boundary of the domain. The outward normal
gradient is defined as

∇Nu = N1
∂u
∂X1

+ N2
∂u
∂X2

, (14-26)

with N1 and N2 being the unit outward normal components that are measured in the
reference configuration.

With the deformation from a 2-D sheet to a curved surface in a 3-D space, an
arbitrary vector R in the reference configuration is transformed to a curved line
in the current configuration (see Figure 14-5), and this curved line corresponds to

(a)

(c)

(b)

Figure 14-6. A graphite sheet is viewed as a continuum plane, and an SWCNT is viewed as a hollow
cylindrical tube with a thin smooth surface. An undeformed SWCNT is formed by rolling up a planar
sheet into a cylindrical shape. (a) Atomic structure; (b) continuum view; (c) the deformed SWCNTs
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a special vector r that looks like a chord on the curved surface. For an arbitrary
deformation, the exact evaluation of the vector r is difficult or impossible.

14.5.2. Constitutive Relationship

An undeformed SWCNT can be viewed as having been formed by rolling up a
graphite sheet into a cylindrical shape (see Figure 14-6a). In the continuum model,
a graphite sheet is viewed as a continuum plane, and an undeformed SWCNT is
viewed as a hollow cylindrical tube with a thin smooth surface (Figure 14-6b). To
evaluate the strain energy density at a given point, a representative cell structure
is imagined at this point, as shown in Figure 14-6b,c (the orientation of the cell
structure in the reference configuration is determined by the chirality of SWCNTs).
A magnified cell structure is shown in Figure 14-7 in which the atom I is connected
to bonds I − J (J = 1,2,3). The deformation of the bond vectors is approximated
using the higher-order Cauchy-Born rule [35–38].

rIJ = F • (RIJ + η) + G:[(RIJ + η) ⊗ (RIJ + η)]/2, (14-27)

here, η = (η1,η2) is the inner shift due to non-centrosymmetry of the atomic
structure [14, 29–32].

The strain energy at this point can be calculated as

Ŵ0 = Ŵ0(F,G,η) = VI

�I
= 1

2�I

3∑

J=1

VB(rIJ), (14-28)

where VB is the Brenner potential, �I is the average area per atom in the reference
configuration, and is calculated as 3

√
3r2

0/4 with r0 being the bond length.
For a given macroscopic deformation description (F and G), the strain energy

should be minimized with respect to the inner shift, which corresponds to

∂Ŵ0

∂η
= 0. (14-29)

After the minimization, we obtain the equilibrium inner shift η = η(F,G), which
implies that the strain energy is only a function of the deformation gradients F
and G:

2

1
I

3

Figure 14-7. A representative cell composed of the bonds I − J (J = 1,2,3)
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W0(F,G) = Ŵ0(F,G,η) = Ŵ0(F,G,η(F,G)). (14-30)

The Piola-Kirchhoff stress tensor P and Q can be calculated using Eq. (14-23), and
the tangential moduli can be calculated using Eq. (14-24).

14.5.3. Mesh-Free Numerical Simulation

Based on the above higher-order constitutive model, we have developed a mesh-free
computational scheme for SWCNTs in Refs. [39–42]. Employing the planar sheet as
the reference configuration (see Figure 14-6b), the deformation from the reference
configuration to the current configuration can be decomposed into two parts. The
first part is from the reference configuration to the initial equilibrium SWCNT, and
it can be exactly calculated. Another part is from the initial equilibrium SWCNT
to the current configuration, and this part is treated as unknown. In the mesh-free
simulation, the second part is interpolated with the moving least-square approxi-
mation [43–46]. For any evaluated point, the first- and second-order deformation
gradients are interpolated directly with the nodal parameters. Of course, we need
to use the first- and second-order derivatives of the mesh-free shape function. The
stable configurations can thus be solved using the Newton’s method [21].

Using the present mesh-free method, we have carried out the numerical simula-
tions of SWCNTs under the axial compression and twisting. At the same time, we
also carried out numerical simulation based on the classical Cauchy-Born rule [23,
24]. Figure 14-8 shows a comparison of the buckling patterns obtained with two

Figure 14-8. A comparison of the axial compressive buckling deformations of a (18,0) SWCNT with the
length 8.72 nm obtained with (a) the higher-order continuum model; and (b) the classical Cauchy-Born
rule
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Figure 14-9. A comparison of the twisting buckling deformations of a (10,10) SWCNT with the length
11.81 nm obtained with (a) the higher-order continuum model; and (b) the classical Cauchy-Born rule

continuum models. Obviously, the higher-order continuum model can truly display
the buckling deformation of SWCNTs, but the continuum model based on the classi-
cal Cauchy-Born rule results in a non-physical pattern. Shown in Figure 14-9 are the
twisting buckling patterns obtained with the two continuum models. Figures 14-8b
and 14-9b are the response of structures in case of no bending stiffness. In addition,
our computations showed that, prior to the buckling, the mesh-free computational
precision is very good. But, around the buckling, the mesh-free simulation becomes
less accurate whereas an amount of nodes were used [39–42].

14.6. MULTISCALE COUPLING SCHEME

The present multiscale scheme couples the developed mesh-free method and the
atomic simulation method presented in Section 14.5. The coupling approach used is
the bridging domain method described in Section 14.2.

Referring to Figure 14-2, the entire domain is decomposed into three regions:
�A, �C = �CL + �CR, and �O = �A ∩ �C. The mesh-free method is used in the
continuum region. Mesh-free nodes are uniformly collocated along the axial and
circumferential directions, and the background integral cells are in accordance with
the nodal arrangements. The crossing points of the axial and circumferential lines
denote the mesh-free nodes in Figure14-2.

The total energy of the coupled system can be written as a weighted sum of
energies for the continuum and atomic regions:

Utot =
∑

I∈�A

[
βA

(
1

2
(qA

I + qA
J )

) ∑

I<J

VB(qJ − qI)

]
+

∫

�c
βC(X)W0(F,G)dV ,

(14-31)

where qA
I is the position of atom I in the undeformed SWCNT, and the weight

functions βA and βC take the forms [16, 17, 21]
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1
β A β C 

ΩA\ ΩO ΩO ΩC \ ΩO

Figure 14-10. The definition of weight functions βA and βC in the three regions

βC(X) = 1 − βA(X) =
⎧
⎨

⎩

1, x ∈ �C\�A,
ζ , x ∈ �A,
0, x ∈ �A\�C,

(14-32)

where the symbol “\” denotes the set-minus operation, and the parameter ζ varies
linearly from 0 to 1 across the overlapping region, as shown in Figure 14-10. This
method thus allows the minimization of the continuum and atomic configurations
concurrently, and the two scale solutions can simultaneously be solved.

The total potential energy of the coupled system is

Etot = Utot −
∑

i∈�A

βA(qA
I )f I · qI −

∫

∂�c
βC(X)u · tP

0 dS−
∫

∂�c
βc(X)∇Nu · tQ

0 dS.

(14-33)

The non-equilibrium force vector and stiffness matrix can be obtained by

ftot = ∂Etot

∂Xtot
, (14-34)

Ktot = ∂2Etot

∂Xtot∂Xtot
. (14-35)

In Refs. [16, 17], the augmented Lagrange multiplier method was used to ensure
that the continuum displacements conformed to the atomic displacements at the
discrete positions of the atoms in the overlapping region. In the present research,
the atomic displacement in the overlapping region is directly interpolated with the
mesh-free nodal parameters at each iterative step, which means that the vector
Xtot contains all of the mesh-free modal parameters, but only the current posi-
tions of the atoms outside the overlapping region. The stable configuration can be
obtained by iteratively solving Ktot�Xtot = ftot until ftot reaches zero. Moreover, the
modification method of the stiffness matrix should also be used around the buckling.
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14.7. MULTISCALE COMPUTATIONAL EXAMPLES

Two examples are chosen to test the validity of the present multiscale computational
scheme. The first example is the bending test, for which the Brenner potential with
the second set of parameters is used. The second example considers the fracture of
SWCNTs with a single-atom vacancy. As described in Section 14.3, the Brenner
potential always results in over-estimated fracture stress. Therefore, the modified
second-generation Brenner potential is used for the second example.

14.7.1. Bending Test

A (12,12) SWCNT is chosen upon which to perform the bending test. The SWCNT
has 42 hexagonal cells (a total of 2,040 atoms) in its length. Atomic simulation
is used for the middle portion, whereas the left and right parts are modeled using a
mesh-free method in which 396 mesh-free nodes are used. In the overlapping region,
the atomic position is interpolated using the mesh-free nodes, and the pure atomic
region contains 552 atoms. The degrees of freedom of the system are reduced from
3×2024 to 3×948. The bending deformation is imposed by incrementally rotating
the two ends of SWCNT in the opposite direction. For each loading step, the tube is
bent by 1◦ per loading step. Figure 14-11 shows a plot of the changes in the average
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Figure 14-11. Comparison of the average bending energy derived from the multiscale method and the
full atomic simulation
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(a)

(b)

Figure 14-12. Deformation of the SWCNT at a bending angle of 20◦, as obtained by (a) the multiscale
method and (b) the full atomic simulation

energy per atom against the bending angle for the multiscale simulation and the full
atomic simulation. Buckling occurs at a bending angle of 13◦ in both simulations,
and the energy change from the two methods also agrees quite well both before
and after the buckling occurs. Figure 14-12 shows the deformations at a bending
angle of 20◦, and a comparison of the two methods reveals that a precise simulation
can be achieved with the multiscale method. In Section 14.6, we have indicated
that the mesh-free simulation presents very precise results prior to buckling, but
after buckling, the results become less accurate. The present multiscale simulation
presents a good agreement with the atomic simulation before and after buckling,
which shows that the multiscale method is very efficient for the localized problems.

14.7.2. Tensile Failure of SWCNTs with a Single-Atom Vacancy Defect

In this example, the multiscale method is used to study the tensile failure of an
SWCNT with a single-atom vacancy defect. This kind of defect has a significant
effect on the strength of a CNT and thus has attracted considerable research atten-
tion. In the computation, one atom is removed from the hexagonal network in the
atomic region, which leads to the reconstruction of the atomic structure near the
vacancy in the initial equilibrium configuration [15]. Here, this initial equilibrium
configuration is determined with the full atomic simulation before the multiscale
computation is performed. The SWCNT is stretched until the fracture occurs.
Figure 14-13 shows the stress-strain curves for (18, 0) and (12, 12) SWCNTs. The
tensile force can be computed by summing the nodal force along the end of the CNT,
and the stress is calculated by dividing the tensile force by the cross-sectional area
2πRt (t being the thickness of SWCNT, and chosen as 0.34 nm). Figure 14-14 shows
the cracking procedure for an (18,0) SWCNT, with Figure 14-14a showing the initial
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Figure 14-13. Stress-strain curves for the tension of (18,0) and (12,12) SWCNTs with a single-atom
vacancy defect

(a)

(c)

(b)

Figure 14-14. Fracture evolution of an (18,0) SWCNT with a single-atom vacancy defect: (a) The initial
equilibrium configuration of the undeformed SWCNT; (b) bond failure spreading from the defect; and
(c) the fractured SWCNT, in which all of the bonds around the circumference have failed
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(a)

(b)

(c)

Figure 14-15. Fracture evolution of a (12,12) SWCNT with a single-atom vacancy defect: (a) the initial
equilibrium configuration of the undeformed SWCNT; (b) bond failure spreading from the defect; and
(c) the fractured CNT in which all of the bonds around the circumference have failed

equilibrium configuration of the undeformed SWCNT, Figure 14-14b highlighting
the breakage of the bonds around the defect, and Figure 14-14c displaying the com-
pletely fractured SWCNT in which all of the bonds around the circumference have
failed. Figure 14-15 shows the fracture progression for a (12,12) SWCNT, from
which it can be seen that the failure path displays a slight difference from that of the
(18,0) SWCNT. In the present simulation, the failure is actually a brittle fracture. To
show the cracking progression, a larger positive number β is added to the diagonal
elements of the stiffness matrix after the occurrence of the fracture.

14.8. SUMMARY

Due to the limitation of the atomic simulation and continuum methods, the
multiscale modeling is emerging as a feasible and efficient approach for large-
size nanostructures. This work presents a comprehensive understanding for the
multiscale modeling of CNTs by illustrating all three components: atomic simu-
lation, continuum modeling, and multiscale coupling scheme. An atomic simulating
method that is faster than MD is introduced. Multiscale modeling of CNTs requires
a reasonable and rational continuum model. A higher-order continuum model is
introduced, and mesh-free method is employed to implement the continuum dis-
cretization. The coupling between the mesh-free method and the atomic simulation
is achieved with the bridging domain method. The implementation of multiscale
modeling of CNTs is discussed in detail.
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Abstract: The noble computational scheme known as quasicontinuum (QC) has been widely uti-
lized over the past decade for exploring extreme/multi-scale phenomena in the spatial
domain, such as, mechanical behaviors of nanostructures or defect behaviors in crys-
talline materials. This article reports on the recent extension of the QC method to
simulate mechanical behaviors or deformations of curved crystalline bodies such as car-
bon nanotubes (CNTs). In addition to QC implementation utilizing high-order triangular
elements, this study presents a new QC approach based on what is known as “variable-
node elements”. This proves to be extremely efficient when combined with a fully
automatic adaptive refinement. Several numerical examples demonstrate the accuracy and
effectiveness of the new method.

Keywords: Quasicontinuum, Multiscale computation, Carbon nanotubes

15.1. INTRODUCTION

Coarse-graining schemes have been widely utilized as a useful tool for bridging the
gap between continuum modeling and discrete atomistic modeling. They make it
possible to look into atomistic material behaviors in consideration of length scales
greater than atomic or molecular scales. Among others, the quasicontinuum (QC)
method, first reported by Tadmor et al. [1], has been highly successful in exploring
the behaviors of defects such as dislocations, grain boundaries, twins, and voids and
impurities (see [2] for details).

Tadmor et al. [1] effectively differentiated between the local zone and the nonlo-
cal zone, providing a corresponding formulation appropriate for each of both zones
and coupling them with each other to consider the entire zone. The local zone here
implies the part of the domain of a body where the Cauchy-Born rule is applicable,
whereas the nonlocal zone refers to the part of the body for which the Cauchy-Born
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rule is not applicable. In the context of continuum mechanics, locally homogeneous
(or uniform) elastic deformations prevail in the local zone, so that the energy of a
local subdomain, which is mostly an element, is obtained by multiplying the energy
of one atom by the number of atoms contained in the element or by multiplying the
strain energy density by the element volume. The calculation of the energy per unit
volume or per atom may be conducted in various ways depending on the nature of
the simulation (see [2] for detail). On the other hand, the presumption of the locally
homogeneous elastic deformations is not valid in the nonlocal zone; here, it is neces-
sary to calculate the energy directly over a nonlocal subdomain, which is in practice
mostly an individual atom or an element, from the discrete atomistic viewpoint.

Each of the two formulations, the local and the nonlocal approach, has its own
advantages. The local approach provides an extremely efficient means of compu-
tation through a coarse-graining scheme based on Cauchy-Born rule or the locally
homogeneous elastic deformations. This assumption makes it possible to calculate
the strain energy density function for the local subdomain either from the atomistic
viewpoint or from the continuum viewpoint by calculating the energy of a unit cell
or one atom. Subsequently, an explicit expression for the stress can be obtained by
differentiating the strain energy density function. This does not mean that the local
formulation is merely the treatment according to the theory of finite elasticity, which
utilizes a phenomenological strain energy density function. If the local approach cal-
culates the strain energy density function from the atomistic viewpoint, as is often
done, it preserves the crystal orientation and the corresponding anisotropy. On the
other hand, the nonlocal approach sees the surroundings beyond the local neighbor-
hood. Therefore, simple homogenization is not allowed, but the nonlocal subdomain
energy should be coarse-grained through the use of the discrete atomic energy for an
individual atom. As a consequence, the nonlocal formulation is capable of providing
atomic scale resolution. Thus, it properly describes the abrupt changes or distur-
bances of atomic behaviors in crystalline bodies due to defects such as dislocations,
grain boundaries, twins or free surfaces.

An appropriate combination of the local and the nonlocal formulation leads to
a coupled approach. In this approach, the nonlocal QC is applied in regions where
the gradient of strain is large, or on nonlocal regions to capture the discrete atom-
istic behaviors. In contrast, the local QC is applied in regions where deformation
is relatively uniform or in local regions for an effective reduction of the degrees of
freedom. Hence, the coupled QC appears to provide a computational scheme that
bridges the local zone and the nonlocal zone seamlessly. However, some inconsis-
tency may be found between the local formulation and the nonlocal formulation, so
that the “ghost force” may take place [3]. Knap and Ortiz [4] proposed the purely
nonlocal approach known as the “cluster-based summation rule,” which sums the
energy contribution of every atom within a given cluster associated with each rep-
resentative node, instead of the “node-based summation rule.” This fully nonlocal
version paves the way to a seamless coupling of different length scales without any
possibility of the inconsistency such as the ghost force. In addition, this method
eliminates any possible zero energy modes that may be found in the node-based
summation rule [4].
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Among the key ingredients of the QC is an effective adaptive meshing scheme
that controls the sizes of the individual element subdomains in an adaptive manner,
consistent with the severity of the deformation and the deformation gradient. This
scheme enables one to reach optimal meshing or coarsening so that a high reso-
lution, very often down to the atomic scale, may be obtained in regions of a stiff
gradient of deformation, while appropriate reduction of the degrees of freedom may
be accomplished in regions of relatively uniform deformation. The element refine-
ment or coarsening depends on the deformation and deformation gradient, which is
scarcely known a priori in many nanomechanics problems. In QC applications for
such complex problems, accordingly, an adaptive meshing or refinement scheme is
essential for an efficient and accurate solution. Mostly, adaptive refinement is imple-
mented [3] by use of linear triangular finite elements which are generated utilizing
the scheme of the constrained Delaunay triangulation [5]. In practice, most of the
finite-element implementations for the QC in the literature are limited to linear tri-
angular or tetrahedron elements, as adaptive refinement or meshing is achieved most
readily through triangulation for this type of elements.

One noteworthy point regarding the use of the linear tetrahedron or triangular
elements for the QC is that applications of the QC have been severely restricted to
rectilinear crystalline structures or materials. Hence, applications for curved bod-
ies like CNTs (carbon nanotubes) are rare apart from the recent work by Park and
Im [6]. This is the natural consequence of using linear tetrahedron triangular ele-
ments, as these elements are not capable of modeling curved geometries. In addition,
despite the high geometric adaptability of triangular or tetrahedron elements, these
elements are far from being satisfactory in terms of the solution accuracy and con-
vergence rate. In terms of the availability of an efficient alternative for adaptive
refinement, it is not necessary to use only triangular or tetrahedral elements for the
implementation of the QC.

The purpose of this chapter is to provide a wider view regarding the imple-
mentation of the QC so as firstly to extend its application range to include curved
crystalline bodies such as carbon nanotubes (CNTs) and secondly to introduce a
new adaptive quasicontinuum implementation for CNTs using what are known as
variable-node elements. The outline of this chapter is as follows. In Section 15.2,
simulation of deformation behaviors of CNTs, as typical curved crystalline struc-
tures, is reviewed from the view of a multiscale computation, and a nonlocal QC
scheme along the line of Park and Im [6] is discussed with a view to an applica-
tion of the simulation for CNT deformations. Next, in Section 15.3 a new adaptive
QC scheme based on variable-node elements [7–9] is proposed to extend the QC
method to rectangular elements other than tetrahedron or triangular elements. This
is followed by Section 15.4, which concludes this chapter.

15.2. QUASICONTINUUM METHOD FOR CARBON NANOTUBES

There have been extensive studies of the simulation of CNT deformation from the
viewpoint of continuum or structural mechanics as well as from the viewpoint of an
atomistic approach (for example, see [6, 10–12] and the references cited therein).
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Among others, Arroyo and Belytschko [11] utilized the exponential Cauchy-Born
rule to extend the standard Cauchy-Born rule to the case of curved crystalline bodies.
This enabled them to devise an efficient coarse-graining scheme for the local qua-
sicontinuum approximation to deformations of curved crystalline structures such as
CNTs.

The first multiscale approach to the nonlocal deformation behaviors of CNTs was
reported by Qian et al. [12], where a bridging scheme between continuum and atom-
istic calculations is employed to look into CNT deformations down to the atomic
scale. This is a useful approach for multiscale computations of CNT deformations;
however, no adaptive meshing or refinement was employed in the computation, and
its applicability is somewhat limited in this context. Typically, some complex mul-
tiscale problems are encountered for which it is not known a priori where zones of
stiff deformation gradient or nonlocal zones are to occur. For this category of prob-
lems, it is essential to couple the computing scheme with an appropriate adaptive
refinement or meshing strategy.

Recently, Park and Im [6] generalized the nonlocal QC of Knap and Ortiz [4],
which was applied exclusively for rectilinear crystalline structures, for application
to curved crystalline bodies such as CNTs. Their work combines the nonlocal QC
scheme with a fully automatic adaptive refinement method, providing an effective
multiscale computing tool for CNT deformations and enabling one to look into non-
local regions with resolution down to the atomic scale as well as to coarsen local
regions in an effective manner. The main feature of this methodology includes the
use of high-order interpolation functions for the accurate mapping of curved CNT
geometry. This was made possible through the introduction of the concept of atom-
less nodes [6] into the nonlocal formulation of Knap and Ortiz, which is based on
the cluster-based summation rule [4].

In this section, an earlier study [6] is reviewed, extending the nonlocal QC
method of Knap and Ortiz [4] to the case of curved crystalline bodies such as CNTs.
This is a fully nonlocal treatment that makes it possible to look into the atomistic
behaviors of CNTs as well as into the continuum-scale deformations of CNTs.

15.2.1. Deformations of Single-Walled CNTs

As in the mechanics of continuous media, a reference configuration is needed to
describe the deformations of a CNT. The initial state is often the choice of a ref-
erence configuration, as in the total Lagrangian description for nonlinear finite
element analysis for continua. In an atomistic computation of nano-systems or nano-
structures, however, the initial configuration itself is not a state completely known
a priori in the presence of boundary layers such as free surfaces or interfaces. The
initial state of a CNT should be obtained through energy minimization as the exact
initial atomic configuration, particularly including the free ends, may be substan-
tially away from the bulk state of the graphene due to bond breakage or curvature
effects. One convenient choice of a reference configuration for CNTs is the bulk
state of the graphene, which is known a priori.

Consider a single-walled CNT (SWCNT). Here, it is assumed that the CNT
undergoes a locally homogeneous deformation in which the Cauchy-Born rule (or
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Figure 15-1. Deformations of a CNT and three configurations andκ̃ , κo and κ(t)

exponential Cauchy-Born rule, strictly speaking) is valid so that lattice is deformed
according to a locally uniform tensor of deformation gradient. The CNT geome-
try is specified by the chirality and the number of carbon layers along the axial
direction. Energy minimization yields its radius and length, and the geometry of
the initial configuration κo is fully determined (see Figure15-1). For the reference
configuration, the bulk state of the flat graphene sheet κ̃ is chosen, as shown in
Figure 15-1.

Two deformations are then considered: one from the bulk graphene state κ̃ to the
initial configuration κo, and the other from κ̃ to the current deformed configuration
κ(t), as shown in Figure 15-1. Let ỸεR2,XεR3, and xεR3 denote the position vectors
in κ̃ , κo and κ(t), respectively. The aforementioned deformation may be written as

X = �̃o(Ỹ) and x = �̃ (Ỹ) (15-1a,b)

x = �̃�̃
−1
o (X) = � (X) (15-1c)

where �̃o,�̃ and � indicate the mappings associated with the corresponding defor-
mations. Let F̃o and F̃ indicate the deformation gradients corresponding to the two
deformations in Eq. (15-1a,b):

F̃o = ∇Ỹ�̃o and F̃ = ∇Ỹ�̃ (15-2a,b)
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Then the deformation gradient F from κo to κ(t) is given as

F = ∇X� = F̃ F̃
−1
o (15-3)

Several assumptions on deformation kinematics as in elastic shells enable a
description of CNT deformations in terms of the extension and the curvature on
the midplane. For local formulation in consideration of atomic features such as
anisotropy and the crystal orientation, these strain measures may directly be linked
to the interatomic potentials of CNTs. This will then result in an effective local
coarse-graining scheme, such as that by Arroyo and Belytschko [11]. This method-
ology is in fact very successful in that it is capable of describing the local behaviors
of CNT deformations. However, nonlocal formulation is indispensable beyond this
local formulation for accurate descriptions of the detailed atomic behaviors involved
in nanoscale phenomena such as bond breakage in fractures or in the Stone-Wales
transformation. In this respect, an efficient fully nonlocal QC formulation is sought
that provides a resolution down to the atomic scale as well as effective coarse-
graining over local regions. Another motivation for this nonlocal QC is that it is
fairly straightforward, as will be shown later. Indeed, it is free from a complex
coarse-graining process at the constitutive level as well as the deformation kine-
matics involving exponential mapping and strain measures such as extensions and
curvatures.

15.2.2. Bravais Multilattice and Inner Displacement

A graphene sheet is comprised of Bravais multilattice or composite lattice, which
is formed by two simple triangular sublattices. It is specified by two base vec-
tors B1 and B2 plus a shift vector T, where B1 and B2 constitute a pair of base
vectors on one sublattice, for example sublattice 1. The shift vector T indicates
the distance vector from this sublattice to the other sublattice or sublattice 2 (see
Figure 15-2). Let jỸ indicate the position vector of atom “j” measured from the ref-
erence atom site belonging to sublattice 1 on plane �̃ in the graphene configuration
κ̃ (see Figure 15-1). Here, the atom sites in a vector and tensor or in the coordinates
are indicated by left lower indices, and the right left indices are reserved for their
components. jỸ is then expressed in terms of shift vector T in addition to integer
multiples of the base vectors B1 and B2, as follows:

iỸ = mB1 + nB2 + (δi − 1)T with δi = 1 or 2 (15-4)

Here, m and n are integers. In addition, δi is equal to 1 for an atom belonging to
sublattice 1 and to 2 for an atom belonging to sublattice 2.

For the present composite lattice, the relative displacement between the two sub-
lattices under macroscopically uniform deformation is not specified by uniform or
homogeneous strain but there is an additional internal mode of deformation. As
described in Figure 15-2, the change ζ in the shift vector T due to deformation



Quasicontinuum Simulations of Deformations of Carbon Nanotubes 395

Figure 15-2. Graphene multilattice and the inner displacement between the two sublattices

of a crystalline body is termed the inner displacement between the two sublattices
[13, 14]. The additional internal degrees of freedom taking place from the inner
displacement field should be accounted for in energy minimization to determine an
equilibrium configuration. Following Tadmor et al. [15], Park and Im [6] considered
the transformation of the inner displacement ζ to �̃ in the graphene configuration κ̃

and defined a new inner displacement field η referred to κ̃:

η = F̃
−1

ζ (15-5)

Here, a new variable η is chosen to represent the inner displacement field. The atom
position vector iỸon the plane �̃ in the graphene state κ̃ is then adjusted to a new
vector iY as follows, accounting for the inner displacement η:

iY = iỸ + (δi − 1)η (15-6)

Let �̄o and �̄ denote the tangent planes in the undeformed CNT configuration κo

and in the deformed configuration κ(t), respectively. Then a material line element
�ijY = iỸ − jỸ + ( δi − δj) η on �̃ is mapped onto �ijX = iX − jX contained
in �̄o in κo, and mapped onto �ijx = ix − jx lying on �̄ in κ(t). Thus, for locally
homogeneous deformation, this gives

� ijX = F̃o� ijY and � ijx = F� ijX = F̃� ijY (15-7)

where F̃o, F and F̃ are defined in Eq. (15-1) and Figure 15-1.
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15.2.3. Interpolation Function

The preceding development shows that it is possible to account for the inner dis-
placement field by adjusting the position vector in the graphene state κ̃ , which was
chosen for the reference configuration to describe the deformed state κ(t).

For the atom position vector jỸ and the approximate inner displacement jη
h on

plane �̃ in κ̃ , interpolations are given in terms of the parental coordinates jξ̃ .

jỸ =
NR∑

β=1

Hβ (jξ̃ ) βỸ
R

and jη
h =

NR∑

β=1

Hβ (jξ̃ ) βηR (15-8)

Here, βỸ
R

and βηR indicate the position vector and the inner displacement of rep-
resentative node β; furthermore, Hβ (k ξ̃ ) denotes the shape function associated with
node β, and NR and k ξ̃ refer to the number of representative nodes and the loca-
tion or the coordinates of atom k in the standard parental domain of a finite element
(see Figure 15-3), respectively. Adding these two equations results in the following
equation for the adjusted position vector jY:

jY =
NR∑

β=1

Hβ (jξ̃ ) [βỸ
R + (δj − 1) βηR] (15-9)

In the meanwhile, for the sake of convenience in the later development, we consider
another development as below by introducing a new parental coordinate jξ .

jY =
NR∑

β=1

Hβ (jξ ) βỸ
R

(15-10)

where jξ corresponds to the adjusted position vector jY

Figure 15-3. Three-noded finite element and ten-noded triangular element with triangular coordinates
(ξ1, ξ2, ξ3)
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The link between jξ̃and jξ becomes apparent when it is noted that jξ̃ may be adjusted
or changed according to the inner-displacement to yield jξ , just as jỸ is adjusted or
moved to yield jY. It should be noted that the choice of jξ instead of jξ̃ in the
interpolation amounts to taking into consideration the inner displacement on the
parental domain.

The deformations �̃o and �̃ in Eq. (15-1a,b) are now reconsidered in terms
of the interpolation function. To account for the inner displacement field in the
graphene configuration κ̃ , the deformed position vector should be given in terms
of the adjusted position vector iY, which is related to iỸ by Eq. (15-6). This implies
that the adjusted parental coordinates jξ be employed to represent the deformed
states. For isoparametric formulation, the same shape function used in Eq. (15-10)
is used in terms of the adjusted parental coordinate jξ :

kXh =
NR∑

β=1

Hβ (kξ ) βXR and kxh =
NR∑

β=1

Hβ (kξ ) βxR (15-11)

Here, kXh and kxh denote the approximate atomic sites in κo and in κ(t),
respectively, and βXR and βxR are the undeformed and the deformed location of
representative node β. This interpolation leads to the following for the displacement
vector kuh:

kuh = kxh − kXh =
NR∑

β=1

Hβ (kξ ) βuR (15-12)

where
βuR = βxR − βXR

The shape function Hβ (ξ ) should be capable of depicting curved geometry,
which is not properly handled by the linear finite element shape function employed
in most QC methods applied for rectilinear crystalline materials. For finite ele-
ment shape function of higher order, in this context, considered is the complete
cubic polynomial in the parental coordinates. The complete cubic polynomial over
the two-dimensional parental domain requires ten free constants. A triangular ele-
ment with ten nodes is consistent with this interpolation. For convenience, the area
coordinates or triangular coordinates [16], as shown in Figure 15-3, are utilized
for routine finite element implementation. The shape functions of the 10-noded
triangular element in Figure 15-3 are given in Appendix A for clarity.

If the shape function Hβ (ξ ) were a complete linear function, as in the existing QC
methods for applications to rectilinear crystalline materials, it would be possible to
make every representative node coincide with its atom location without any diffi-
culty. However, this may not be the case for higher order shape functions, including
the cubic polynomials. For higher order elements, the best choice for the locations
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Figure 15-4. An example of atomless nodes for a ten-noded triangular element

of the physical node to be mated with the mid nodes on the parental domain is that
which minimizes, over the element domain under consideration, the variation of the
Jacobian determinant of the transformation between the parental domain and the
physical domain.

This variation would sharply increase when the mapping between the parental
and the physical domains results in a distorted physical element due to the “enforce-
ment” of the mid nodes to be mapped onto “unnatural” atom sites. In this context,
the most natural location of the interior node may not coincide with an atom
site, as shown in Figure 15-4. To resolve this difficulty, Park and Im [6] intro-
duced atomless nodal points for the cluster-based summation rule of Knap and
Ortiz [4]. It is noteworthy that the energy of the cluster associated with a given
representative node is well defined regardless of whether it is an atom node
or atomless node. The cluster may be contemplated as a representative crystal-
lite that possesses its energy; this is the case even for clusters with atomless
nodes.

Another point concerning the atomless nodes is “Are the atomless nodes con-
sistent with the fully nonlocal formulation?”. In the local zone, CNTs behave as a
structural shell. Each atom on a CNT may be thought of as being embedded onto the
structural element to which it belongs. Therefore, the introduction of atomless nodes
on an element subdomain is straightforward. As far as the subdivision of the non-
local zone proceeds, the errors due to the atomless nodes continue to decrease until
the limit of the fully atomistic model is reached. In the present fully nonlocal for-
mulation, therefore, the atomless nodes do not cause any problems in the nonlocal
zone as well.

15.2.4. Summation and Minimization of Energy

We assume that the system energy is represented by the summation of the node
energies – the node-based summation rule [1], and by the summation of the cluster
energies – the cluster-based summation rule [4]. First, for the node-based summation
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rule, the following applies:

Eh
total =

NR∑

α=1

wα Eα (15-13a)

Here, wα is the weight function for the node-based summation rule, given as

wα =
N∑

j=1

Hα(jξ ) (15-13b)

Again N denotes the number of all atoms, which is usually much greater than
the number of representative nodes NR. Equation (15-13a) is obtained from the
assumption that the energy distribution is expressed by way of interpolation:

Eh(ξ ) =
NR∑

α=1

Hα(ξ ) Eα (15-14)

Next, for the cluster-based summation rule, the energy is given as

Eh
total =

NR∑

α=1

(wα)cl (Eα)cl (15-15a)

where (wα)cl is the weight function for cluster “α”, and (Eα)cl is the cluster energy
given as follows:

(Eα)cl =
∑

j ∈ cluster α

Ej with Ej =
∑

k
rjk<rcut

Ej(rjk) (15-15b)

Here, Ej(rjk) represents the energy from the interaction of atom j with a neighbor-
hood atom k, which is located within the cut-off distance of rcut from atom j. For
three body potentials, this may be defined similarly. Equating Eqs. (15-15a) to (15-
13a), and utilizing Eqs. (15-14) and (15-15b), the following equation for the cluster
weight function (wα)cl is obtained:

NR∑

α=1

(wα)cl

∑

j∈ clusterα

Hβ (jξ ) = wβ (15-15c)

The solution to this system of NR equations yields the cluster weight function
(wα)cl. In the solution procedure, an efficient approximation may be made by replac-
ing the coefficient matrix with a diagonal matrix by way of a “lumping process”
based on the row-sum technique. This replaces the diagonal entries by summation
of all entries on the corresponding rows, leaving all off-diagonal entries zero (see
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p. 444 of [16]). The decoupling due to this diagonalization renders the solution of
this system of linear equations trivial. Note that this technique is widely used for
lumping mass matrices in dynamic finite element equations.

For the convergence of solution, the coarse-graining mesh is supposed to be able
to represent a state of a uniform energy, which is an analog of a constant strain state
in finite element method. Equation (15-14) yields the following condition, called
“the partition of unity,” when applied to a state of a uniform energy:

NR∑

α=1

Hα(ξ ) = 1 for every ξ (15-16)

In addition, the following linear consistency is required:

NR∑

α=1

Hα(ξ ) αXR
j = Xj (15-17)

The equilibrium configuration at the zero Kelvin temperature is obtained through
the minimization of the system potential energy, which is composed of the atomic
potential energy Etotal plus the loading potential �:

π = π (1x, 2x, 3x,......Nx) = Etotal(1x, 2x, 3x,......Nx) + � (1x, 2x, 3x,......NBx)

with � = −
NB∑
j=1

jf̄ · ju

(15-18)

where N and NB indicate the numbers of total atoms in the system and on the traction
boundary, respectively and jf̄ is the applied force on the traction boundary atom.

Introducing the QC discretization of the preceding section, the approximate
potential energy can be written as a function of the current nodal vector βxR and
the nodal inner displacement βηR (β = 1, 2, 3....NR):

πh(xR; ηR) = Eh
total + �h (15-19)

In this equation, πh(xR; ηR) is short for πh(1xR, 2xR, 3xR,.... NRxR; 1η
R, 2η

R,
3η

R, .....NRηR) . In addition, Eh
total is given by Eq. (15-15a), and �h may be given in a

similar manner. Minimization has to be taken for 6NR degrees of freedom (βxR
j and

βη
R
j ; j=1, 2, 3). For efficient computation, an iterative search is adopted such that

the variation of the potential energy is made to vanish first with respect to an arbi-
trary variation of ηR while xR is held constant, and is subsequently made to vanish
with respect to an arbitrary variation of xR while ηR is held constant. This alternat-
ing iterative process is repeated until solution convergence is reached. The potential
energy retains its highly nonlinear behavior in terms of xR and ηR; therefore, an
incremental solution procedure has to be taken to find a solution for a prescribed
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loading or displacement. The undeformed state κo is first obtained through relax-
ation from the graphene state κ̃ . The entire loading is then divided into many loading
steps, or small incremental loadings, and the loading is then applied incrementally
from the first step to the last step. In this process, the initial guess for the solution
in the next step is given from the solution of the current step. For this minimiza-
tion computation, limited memory BFGS (LBFGS) [17, 18], which is known as an
efficient quasi-Newton method, is used.

For clarity, the process of minimization is discussed with respect to the nodal
inner displacement ηR with xR being held constant, focusing on the atomic potential
energy Etotal in the case of a two-body potential. Let rij = � ijx indicate the length
between the two atoms i and j:

rij = � ijx = ∣∣ix − jx
∣∣ (15-20)

For a two-body potential, the total atomic potential energy Eh
total is now expressed

in terms of rij, and the minimization with respect to ηR is now written as:

∂Eh
total

∂βη
R
k

∣∣∣∣∣
x̂R

=
NR∑

α=1

(wα)cl
∂(Eα)cl

∂rij

∂rij

∂βη
R
k

∣∣∣∣∣
x̂R

(15-21)

where •|
x̂R indicates that the nodal position vector αxR (α = 1, 2, 3, ....NR) is held

constant as αxR = α x̂R. With the aid of Eqs. (15-11) and (15-20), ∂rij
/
∂βη

R
k

∣∣
α x̂R is

given in terms of the inner-displacement adjusted parental coordinate mξ as

∂rij

∂βη
R
k

=
NR∑

γ=1

[
∂Hγ (iξ )

∂βη
R
k

γ xR − ∂Hγ (jξ )

∂βη
R
k

γ xR

]
·

(
ix − jx

)

rij
(15-22)

Here, note that ∂Hγ (iξ )
/
∂βη

R
k is efficiently calculated, as iξ corresponds to iY,

which is adjusted by Eq. (15-9) to account for the inner displacement. That is, the
high-order shape function Hα(ξ ) is made to be consistent with the shape function of
the three-node linear triangular element. To do this, the mid nodes are placed on the
one-third and two-thirds points on each of the edges while the center node is on the
centroid of each triangular element on the graphene plane. Thus, iξ corresponding
to iY is picked up directly, and Hα(ξ ) can be considered as a function of iY:

Hα(ξ ( iY) ) = Hα(iY) (15-23)

At this point, ∂Hγ

/
∂βη

R
k is calculated through the use of Eq. (15-9). In practice,

it is important to keep track of the position of each atom within each cluster to deter-
mine if any of the atoms near the boundary of an element moves to the neighboring
element after its position is adjusted according to Eq. (15-9). In addition, the use
of one uniform vector variable for the inner displacement field over each element,
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instead of the interpolation by Eq. (15-8), is sufficient for most of the numerical
examples considered.

15.2.5. Adaptive Meshing Scheme

The best use of the present QC method is made when it is combined with automatic
adaptive mesh refinement. In the adaptive refinement method, the mesh keeps track
of the deformation magnitude and its gradient and is increasingly refined accord-
ing to the severity of the deformation and its gradient. Without this process, the
mesh must be constructed based only on a priori approximate judgment regarding
the overall deformation behavior. The implementation of a computational model
for such automatic adaptation of a mesh demands a mesh generator for triangula-
tion. The code TRIANGLE was employed for two-dimensional triangulation [19],
which provides mesh generation with the constraint of the vertex, i.e., the nodal
points, lying on the graphene domain. To estimate the deformations, the deformation
measure ε was chosen, as follows [4]:

ε = √
II(E)h/a (15-24)

Here, II, E, h and a denote the second invariant of the strain, the Green strain, the
element size and the bond length or the lattice spacing in the graphene, respectively.
The strain E is simply obtainable according to its definition when the deforma-
tion gradient F defined in Figure 15-1 is determined (see Appendix A for a more
detailed expression of the strain). If an element has a value of ε greater than a
given tolerance, the element is refined with nodes being added on the largest edge.
However, it is necessary to obtain a mesh adapted for the gradient of deformation
as well as for the magnitude of deformation so that a steep gradient of strains may
be properly captured in the numerical solution. This is consistent with the basic
premise for the coarse-grained local region, in which the deformation is free from
any severe abrupt changes. In addition, the gradient of deformation in the element
sub-domain is not constant, unlike the linear triangular element, due to the high-
order element employed for the interpolation of the displacement field. The gradient
∇II of the second invariant II at the Gauss points of the high-order element is
suitable as a measure of the gradient of deformation. If the measure ∇II in the sub-
domain of an element is larger than a given tolerance, the element is subjected to
refinement.

15.2.6. Deformation of Multiwalled Carbon Nanotubes (MWCNTs)

The formulation discussed thus far may be applied for the coarse-graining of
MWCNTs. Rather than introducing any solid elements, the modeling of each layer
with the preceding ten-node element is preferred. To reduce the total number of
degrees of freedom, it is advantageous to have the node distribution lined up along
the radial direction so that, along the radial line from the tube center to a node on the
outer most layer, each layer has a nodal point wherever it meets with the radial line.
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In this way, Park and Im [6] conducted quasicontinuum simulations of the bending
and the torsion of a 15-walled CNT with 673,650 atoms or with over 2×106 degrees
of freedom. The QC model for this simulation has only 291,244 degrees of freedom,
which is less than 13% of the fully atomistic model. The rippling structures reported
in experiments [20] were well captures (see [6] for detail).

15.2.7. Numerical Examples

In this section, several numerical examples are shown to demonstrate the accuracy
and effectiveness of the present QC scheme. First, the force field employed for
the computation is briefly reviewed. A case of simple bending deformation is then
considered, in which comparison is made with the results from the fully atomistic
simulation or the molecular mechanics simulation. A simply supported CNT pressed
by an AFM tip at the center is then chosen as an example of the QC combined with
the adaptive refinement method discussed in Section 15.2.5.

15.2.7.1. Bonding and Nonbonding Interaction for CNT

The Tersoff-Brenner potential has been widely used to study the mechanics of car-
bon nanotubes and other low-dimensional carbon nanostructures. As a bond-order
potential, it depends not only on the interatomic distances but also on interatomic
bond angles. The potential was first suggested by Tersoff for covalent systems such
as carbon (C), silicon (Si) and germanium (Ge) [21] and was then elaborately modi-
fied by Brenner for hydrocarbons [22]. The Tersoff-Brenner potential can be written
compactly as

EBond =
∑

i

∑

j(>i)

[
VR(rij) − B̄ijVA(rij)

]
(15-25)

where rij denotes the distance between bond connecting atoms i and j. Furthermore,
VR and VA are the repulsive and attractive pair terms, respectively, and are given as

VR(rij) = fc(rij)
De

S − 1
e−β

√
2S (rij−re) (15-26a)

VA(rij) = fc(rij)
SDe

S − 1
e−β

√
2/S (rij−re) (15-26b)

B̄ij = (Bij + Bji)/2 + Fij (N(t)
i , N(t)

j , Nconj
ij ) (15-26c)

where the parameters De, S, β and re are determined from the known physical
properties of hydrocarbons. The function fc is a smooth cut-off function that lim-
its the range of interaction of atoms and bond breaking. This function smoothly
goes to zero between R(1) = 0.17 nm and R(2) = 0.2 nm. The function B̄ij

represents a multi-body coupling for the bonding. These parameters and func-
tions are presented in Appendix B. The nonbonding interaction between tube
walls plays an important role in the mechanical behavior of multi-walled carbon
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nanotubes. In this study, the Lennard-Jones type potential is used for nonbonding
interaction [23].

EVDW =
∑

i

∑

j(>i)

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(15-27)

Where, ε and σ are parameters related to the energy and length according to
the materials. The nonbonding parameters for carbon nanotubes are also given in
Appendix B.

15.2.7.2. Bending Simulations for a SWCNT

The first numerical example using the generalized quasicontinuum method is the
bending simulation for a SWCNT. A tube 43.36 nm long with chirality (60,0) is
modeled for the bending simulation. The tube is bent by imposing displacement on
each end. The loading conditions used in this paper are not pure bending. In a pure
bending case, a 180◦ bent tube forms a half circle. In this study, however, the tube
is subjected to bending plus compression such that the two tangent lines at the both
ends meet each other at the center with each of the tangent line segment having half
the CNT length (see Figure 15-5). The maximum angle of bending in this simulation
is 25◦. This example was employed by Park and Im [6], and it demonstrates the
adequacy of the proposed method.

The coarse-grained model for bending simulation has a total number of degrees
of freedom of 30,360 (including the inner displacement of 1,560), while the full
atomistic or MM model has 72,000 degrees of freedom. Figure 15-6 shows that the
strain energy from the QC is in good agreement with that from molecular mechan-
ics (MM). When the bending angle reaches 10◦, the strain energy in Figure 15-6
is released and a kink occurs at the center. The relative difference in the strain
energy between the MM and the QC just before and directly after kinking is 1.48
and 3.96%, respectively. Figure 15-7 shows the equilibrium configurations of atoms
and elements at bending angles of 0◦, 9.5◦, 10◦ and 25◦. Although the inner dis-
placement in the coarse-graining model for CNTs occupies a very small number

Figure 15-5. Bending plus compression of a CNT under consideration (L=the initial length of the
CNT): The dashed-dotted line indicates the centroidal line of the tube in the deformed configuration
(Reprinted with permission from Park and Im [6]. Copyright (2008) by the American Physical Society.
http://link.aps.org/abstract/PRB/v77/p184109)
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Figure 15-6. Strain energy curve with respect to bending angle for (60,0) SWCNT. The solid black line
indicates the result using molecular mechanics, and the dotted red line quasicontinuum without consid-
ering the inner displacement. The blue circle denotes quasicontinuum result with the inner displacement

of degrees of freedom, it has a substantial effect on the deformation and on the
strain energy curve (See Figure 15-6). In this and all subsequent examples, the inner
displacement degrees of freedom η are assumed to be uniform throughout each indi-
vidual elements; this approximation was found to incur only a negligibly small error
compared with the case in which η is interpolated in terms of the nodal degrees of
freedom by the same high-order function used for the deformed position vector x.
Moreover, only one iteration for xR and ηR was carried out to determine the equi-
librium configuration through minimization. The result obtained after this single
iteration is indistinguishable from that of a converged solution. In Figure 15-6, the
solid black line indicates the result using molecular mechanics, and the dotted red
line quasicontinuum without considering the inner displacement. The blue circle
denotes quasicontinuum result with the inner displacement.

Recently, the electromechanical properties of CNTs have attracted much interest,
largely based on their potential for application to ultra-sensitive electromechanical
sensors. Among others, Tombler et al. [24] demonstrated that the electrical conduc-
tance of a CNT changes when the center part of a suspended nanotube is deformed
by a sharp AFM tip. To simulate the mechanical behavior of a CNT under this
circumstance, a simply-supported CNT subjected to indentation by AFM tip is con-
sidered, as shown in Figure 15-8. The CNT under consideration is of a single-walled
armchair type with its chirality being (20,20). It is comprised of 15,960 carbon
atoms. The radius is approximately 3 nm and the length is 50 nm.

Both ends are placed on the support, and the center is gradually indented with
the AFM tip, as represented by a repulsive potential, up to the maximum indentation
depth of 3.5 nm. Figure 15-8 shows the adaptive refinement taking place according
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Figure 15-7. Equilibrium configurations of atoms and meshes using a quasicontinuum model with inner
the displacement at each bending angle

Figure 15-8. The (20,20) SWCNT result of simulation for AFM indentation employing adaptive
meshing refinement

to the increasing indentation depth. The initial mesh starts with a total number of
degrees of freedom of 11,907. The final mesh has 24,432 degrees of freedom, which
is nearly 51% of the fully atomistic model. Figure 15-9 shows a plot of the energy
versus the AFM tip displacement. The figure shows that the result from the present
adaptive QC is in good agreement with the molecular mechanics result.
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Figure 15-9. Strain energy curve with respect to the AFM tip indenting depth for the (20,20) SWCNT:
The solid red line indicates the result using molecular mechanics, and the blue dotted line indicates the
quasicontinuum result employing the adaptive mesh refinement

15.3. QC METHOD FOR CNTS BY USE OF VARIABLE-NODE
ELEMENTS

In this section, the possibility of generalizing further the aforementioned work of
Park and Im [6] for more effective computation is explored. To this end, new high
order finite elements with variable nodes are introduced [7–9] and the interelement
compatibility is relaxed, which will cause a negligible error with an increasing num-
ber of iterations for minimization. It is shown that the QC scheme based on the
variable-node elements yields accurate solutions in comparison to solutions from
molecular mechanics or from the previous QC approach by way of the triangu-
lar element. The effectiveness of the variable-node elements for the QC method is
discussed below.

15.3.1. Variable Node Elements for QC

In the conventional quasicontinuum method, triangular and tetrahedron elements are
employed for the coarse-graining of a two- and a three-dimensional domain, respec-
tively. However, it is well known that quadrilateral or hexahedral elements show
much better performance than triangular or tetrahedron elements in a finite element
method. Nevertheless, the conventional quasicontinuum method has adopted trian-
gular or tetrahedron elements for convenience of adaptive refinement. This adaptive
refinement in the presence of quadrilateral or hexahedral elements is easily handled
by variable-node elements, which have been successfully employed with regards to
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non-matching problems and for bridging between two shape functions of different
orders for smooth transition (see [7–9] and the references therein).

Triangular and tetrahedron elements are much less efficient compared to quadri-
lateral and hexahedral elements in terms of element searching. The displacement
of ordinary atoms in the local region is determined via interpolation of the rep-
resentative nodes under the Cauchy-Born rule. Consequently, every ordinary atom
memorizes the identification number of the element to which the atom belongs. For
instance, in the two-dimensional case with triangular elements, ordinary atoms must
check every element in their neighborhood to find the one that contains itself. To do
this, the equality of Atotal = A1 + A2 + A3 is checked, and the value of total Atotal
is computed by the position vectors of the three-element nodes. Each of the areas
A1, A2, A3, corresponding to the triangular or area coordinates ξ1, ξ2, ξ3, is deter-
mined by the atom position and the associated two nodal position vectors. On the
other hand, for quadrilateral elements, the element containing a given atom is easily
found by comparing the position or the parental coordinates of the atom with the
positions of the representative nodes in terms of the parental coordinates without
computing the areas.

Despite the aforementioned advantage of quadrilateral and hexahedron ele-
ments, they are not commonly used in finite element simulations involving adaptive
refinement as in the QC method, whereas triangular and tetrahedron elements are
frequently employed in this case. This is due to the fact that realizing the adap-
tive refinement for a mesh comprised of quadrilateral or hexahedron elements is
not straightforward. Recently, Lim et al. [7–9] showed that “nonmatching meshes,”
are efficiently treated utilizing variable-node elements. This suggests that the use
of variable-node elements makes it possible to introduce a finite element mesh,
as shown in Figure 15-10, which is composed of quadrilateral elements. This
appears to violate the interelement compatibility according to the notion of the
conventional finite elements. However, the nodal points are shared by the two neigh-
boring elements, and their shape functions are constructed for low-order elements
such that the interelement compatibility is satisfied [7–9]. Recently, Kwon et al.
[25] employed three-dimensional variable-node elements in their QC for rectilin-
ear crystalline materials. This enables one to implement the adaptive refinement
for hexahedron elements in a straightforward manner, as the interelement compat-
ibility is taken care of by the variable node elements. Furthermore, an additional
mesh generation program, which is necessary for triangular and tetrahedron ele-
ments, is not required for quadrilateral and hexahedral elements, and the adaptive
refinement may be continued by adding elements and nodes where refinement is
needed.

Finite elements of orders higher than a linear polynomial are essential to model a
curved geometry such as that of CNTs. From the successful modeling of CNTs with
the 10-noded triangular element of the complete cubic polynomial in Section 15.2,
a 12-noded isoparametric element, as shown in Figure 15-11, appears to be capa-
ble of modeling CNTs. Some variable node elements might be constructed such
that they may take care of nonmatching meshes involving the 12-noded isopara-
metric elements, satisfying the interelement compatibility. In such circumstances,
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Figure 15-10. An example of an application of variable-node elements for a non-matching mesh

Figure 15-11. A 12-noded isoparametric element on the parental domain (ξ,η)

the issue of the adaptive refinement would be completely resolved by use of these
variable node elements, as shown in Figure 15-13. However, the construction of
this type of variable node elements would be costly because of the complexity of
the shape functions. Here, simple variable-node elements with hierarchical struc-
ture are instead devised with 15, 18, 21 and 24 nodes, as shown in Figure 15-12.
They are constructed such that their shape functions may all be given as polynomial
type functions. Thanks to this straightforward shape functions, the coding is very
simple, but the exact interelement compatibility is sacrificed in the course of the
adaptive refinement by using these elements. That is, the interelement compatibil-
ity is neglected when it is assembled with two 12-noded elements along the edge
having extra nodes, as in Figure 15-13.
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Figure 15-12. Variable-node elements for adaptive refinement on the parental domain (squares indicate
the nodes added): (a) A 15-noded variable-node element, (b) A 18-noded variable-node element, (c) A
21-noded variable-node element, (d) A 24-noded variable-node element

Figure 15-13. Mesh refinement by way of the variable-node element: two 12-noded elements are refined
to one 15-noded variable-noded element and two 12-noded elements
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The construction of the shape functions for these variable-node elements starts
with the shape functions of the 12-noded element, which is given in Appendix C.
Here, in addition to the partition of unity Eq. (15-16) and the linear consistency
Eq. (15-17), the shape functions of the 12-noded and the variable node elements
satisfy the following Kronecker delta condition:

Hα(βξ ) = δαβ (15-28)

Here, Hα and βξ are the shape functions associated with the α-th node and the
position of the β-th node, respectively. For the variable node elements to continue to
fulfill this condition, the shape functions should be modified systematically as new
nodes are added, as described in Appendix C.

As aforementioned, unlike the lower order variable-node elements reported in
earlier studies [7–9] and [25], the present variable-node elements fail to meet the
interelement compatibility in the circumstances like Figure 15-13. However, this
does not imply that they are not applicable for the present nonlocal QC scheme,
in which the potential energy is calculated from the discrete atomic view and not
from the view of the continuum shell. The energy is not given as a direct function of
nodal displacements in the context of finite element method for continuum shells;
however, it is computed by summing up the individual energies of the atoms in the
discrete manner within each cluster. As a consequence of this, the potential energy is
not significantly sensitive to the compatibility condition. This will be confirmed by
the numerical examples in the next section, in which the solutions using the present
variable-node elements are compared with those from the triangular elements and
from the molecular mechanics. Once the interelement compatibility is neglected,
adaptive refinement is straightforwardly implemented, as in the case of the tri-
angular element in Section 15.2.7. New nodes are inserted where new elements
are added according to the two refinement criteria of the strain magnitude and its
gradient.

15.3.2. Numerical Examples

In this section, an example is considered to confirm the accuracy of the 12-noded
isoparametric or rectangular element and the associated variable-node elements with
regards to the QC method applied for CNT bending. Subsequently, adaptive mesh-
ing for the bending of a CNT under loading, as shown in Figure 15-5, will be adopted
for a comparison between the QC method with the present rectangular elements and
that with the triangular element discussed in Section 15.2.

First, for the bending of a CNT, the chirality is (24,0) and the length and the diam-
eter is 24.2 and 1.9 nm. The loading condition is given in terms of the prescribed
displacement on both ends. The total number of atoms is 5,376, corresponding to
16,128 degrees of freedom. The number of degrees of freedom for the QC model
is 7,680. The undeformed mesh and several deformed configurations are shown in
Figure 15-14. The energy versus the bending angle, as defined in Figure 15-5, is
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Figure 15-14. Equilibrium configurations of atoms and meshes using the quasicontinuum with variable-
node elements at various bending angles

Figure 15-15. Strain energy curve with respect to the bending angle for a (24,0) SWCNT: The
solid red line indicates the result using molecular mechanics, and the dotted blue circle indicates the
quasicontinuum with variable-node elements

presented in Figure 15-15, in which the comparison is made between the two solu-
tions; the first is the solution from the QC with the present rectangular elements,
and the second is from molecular mechanics. The good agreement between the two
solutions is apparent.
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Figure 15-16. Strain energy curve with respect to bending angle for (40,40) SWCNT. The solid red
line indicates the result using molecular mechanics, and the green square quasicontinuum with adaptive
meshing refinement employing the triangular elements. The blue circle denotes the quasicontinuum with
adaptive meshing refinement employing the rectangular and the variable-node elements

The next example considered is the adaptive simulation for the bending of an
armchair type CNT with chirality (40,40) under the loading shown in Figure 15-5.
The tube length and the diameter are 52.34 and 5.5 nm, respectively. The total
number of the carbon atoms is 33,360, which corresponds to 100,080 degrees of
freedom. The number of the nodes of the initial mesh is 984, corresponding to
2,952 degrees of freedom. The number of the total degrees of freedom increases
to 36,510, including the inner displacement degrees of freedom, when the bend-
ing angle reaches 22◦ (see Figure 15-17). In actuality, this example was chosen for
adaptive refinement in the QC using the triangular element by Park and Im [6]. The
present solution from the QC by the 12-noded rectangular element is compared with
each of the solutions from [6] and from molecular mechanics in Figure 15-16. The
three solutions are shown to be in good agreement. The initial undeformed mesh
and several deformed states are presented in Figure 15-17. The QC by the rectan-
gular and the variable-node element is much more efficient in terms of the solution
time than the QC by the triangular elements in Section 15.2 and in Park and Im [6].
Furthermore, a mesh generation code is unnecessary for the rectangular element
case, whereas the mesh generator TRIANGLE was used for the triangular element
case.

15.4. CONCLUSIONS

After a brief review on the QC method applied for the deformations of curved
structures such as CNTs, this work proposes a new implementation of the QC for
curved bodies using the 12-noded rectangular element and associated variable-node
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Figure 15-17. Equilibrium configurations of atoms and meshes using the quasicontinuum model with
adaptive refinement using variable-node elements at each bending angle

elements. This implementation is much more efficient than the use of the triangu-
lar element, as in Park and Im [6]. Particularly, the use of these elements renders
it straightforward to build an adaptively fine mesh in proportion to the severity of
deformation. Numerical examples demonstrate the effectiveness and the accuracy
of the proposed rectangular type elements in the QC for CNTs.

In passing, it should be pointed out that the strength of this kind of approach
utilizing the variable-node elements stands out also for the QC for rectilinear crys-
talline materials. An example is shown in the nano-indentation of a single crystal
metal substrate [25]. Complicated adaptive refinement for the three-dimensional
domain of the substrate is fully automatic, and the resulting QC code is extremely
easy to apply for a variety of problems.

In addition, the present QC can be combined with a DFT calculation for mul-
tiscale computing of QC/DFT hybridization to account for the effect of electronic
structures, which are important in exploring fracture behaviors or electromechanical
coupling phenomena (see Ref. [26] for detail).
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APPENDIX A. THE GREEN STRAIN IN DEFORMATION OF A CNT

The strain E in Eq. (15-24) is obtainable if the deformation gradient F from tangent
plane �̄o of the undeformed tube to tangent plane �̄ of the deformed tube (see
Figure 15-1) is determined:

E = 1/2(FTF − I) (A-1)
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We denote by 	̃o the point mapping of parental domain �̃ onto undeformed
surface �o, and by 	̃ onto deformed surface �. Based on Eq. (15-11), the mapping
	̃ is written as follows;

x = xiei = 	̃i(ξ )ei ξ = ξ IEI (A-2a)

	̃i(ξ ) =
NR∑

α=1

Hα(ξ ) αxR
i (A-2b)

where i=1,2,3 and I=1,2. The mapping 	̃ maps the point ξ, which is the inner
displacement adjusted in the original graphene, onto the position x of the deformed
tube. The mapping of 	̃o, which builds an initial cylinder-shaped tube, is defined by

X = Xiei = 	̃i
o(ξ )ei (A-3a)

	̃1
o(ξ ) = r̂ cos θ = r̂ cos (ξ1/r̂) (A-3b)

	̃2
o(ξ ) = r̂ sin θ = r̂ sin (ξ1/r̂) (A-3c)

	̃3
o(ξ ) = ξ2 (A-3d)

where r̂ is the radius of the tube, which is initially determined. In this case, the
convected basis vectors which are tangent to surfaces �o and � are

GI = ∂	̃i
o

∂ξ I
ei and gI = ∂	̃i

∂ξ I
ei (A-4)

For example, the tangent vectors to the undeformed tube surface �o are given by

G1 = − sin (ξ1/r̂)e1 + cos (ξ1/r̂)e2, G2 = e3, (A-5)

The deformation gradient F is represented as

F = gI ⊗ GI (A-6)

Straightforwardly, the Green strain in Eq. (A-2) is written as

E = 1

2

(
g

IJ
GI ⊗ GJ − GIJ GI ⊗ GJ

)
(A-7)

Here, two convected base vectors GI (I=1, 2) in Eq. (A-4) are orthonormal to
each other, and GI is then identical to GI, so that GIJ reduces to the Kronecker
delta.
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APPENDIX B. THE FUNCTIONS AND THE PARAMETERS
IN THE TERSOFF-BRENNER POTENTIAL

The cutoff function in the Tersoff-Brenner potential is given by

fc(rij) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

1

2

{
1 + cos

[
π (r − R(1))

R(2) − R(1)

]}

0

r < R(1)

R(1) < r < R(2)

r > R(2)

(B-1)

The function Bij of Eq. (15-26c) is defined as

Bij =
⎡

⎣1 +
∑

k(�=i,j)

G(θijk)fc(rik)

⎤

⎦
−1/2

(B-2)

where θ ijk is the angle between bonds i – j and i – k. In this chapter, Bij is simplified
due to the ignorance of the hydrocarbon interaction and the consideration of the
solid state carbon. The function G is given by

G(θijk) = ao

[
1 + c2

o

d2
o

− c2
o

d2
o + (1 + cos θ )2

]
(B-3)

The parameters are determined from the known physical properties of hydrocar-
bons and are presented as follows:

De = 6.0 eV S = 1.22 β = 2.1 Å−1 re = 1.39 Å
R(1) = 1.7 Å R(2) = 2.0 Å ao = 0.00020813 co = 330 do = 3.5 .

The function Fij(Nt
i , Nt

j , Nconj
ij ) in Eq. (15-26c) indicates the correction term for

carbon-carbon bonds (see [22] for detail), but this term has been left out of simplicity
of computation in the present computation.

APPENDIX C. THE SHAPE FUNCTIONS FOR A 24-NODED
VARIABLE-NODE ELEMENT

The shape functions of a 12-noded isoparametric element are known and are shown
as below:

φ0
1(ξ ,η) = 1

32
(1 − ξ) (1 − η)

(
−10 + 9ξ2 + 9η2

)
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φ0
2(ξ ,η) = 1

32
(1 + ξ) (1 − η)

(
−10 + 9ξ2 + 9η2

)

φ0
3(ξ ,η) = 1

32
(1 + ξ) (1 + η)

(
−10 + 9ξ2 + 9η2

)

φ0
4(ξ ,η) = 1

32
(1 − ξ) (1 + η)

(
−10 + 9ξ2 + 9η2

)
(C-1)

φ0
5(ξ ,η) = 9

32
(1 − 3ξ) (1 − η)

(
1 − ξ2

)

φ0
6(ξ ,η) = 9

32
(1 + ξ) (1 − 3η)

(
1 − η2

)

φ0
7(ξ ,η) = 9

32
(1 + 3ξ) (1 + η)

(
1 − ξ2

)

φ0
8(ξ ,η) = 9

32
(1 − ξ) (1 + 3η)

(
1 − η2

)

φ0
9(ξ ,η) = 9

32
(1 + 3ξ) (1 − η)

(
1 − ξ2

)

φ0
10(ξ ,η) = 9

32
(1 + ξ) (1 + 3η)

(
1 − η2

)

φ0
11(ξ ,η) = 9

32
(1 − 3ξ) (1 + η)

(
1 − ξ2

)
,

φ0
12(ξ ,η) = 9

32
(1 − ξ) (1 − 3η)

(
1 − η2

)

The shape functions for additional nodes from nodes 13 to 24 can be devised
such that the partition of unity and the Kronecker delta condition may be satisfied.

φ13(ξ ,η) = 9

40
(1 + ξ)

(
1 − η2

) (
1 − 9η2

) (
1 − 3

2
η

)
η

φ14(ξ ,η) = 1

2
(1 + ξ)

(
1 − η2

) (
1 − 9η2

) (
1 − 9

4
η2

)

φ15(ξ ,η) = − 9

40
(1 + ξ)

(
1 − η2

) (
1 − 9η2

) (
1 + 3

2
η

)
η

φ16(ξ ,η) = − 9

40
(1 + η)

(
1 − ξ2

) (
1 − 9ξ2

) (
1 + 3

2
ξ

)
ξ
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φ17(ξ ,η) = 1

2
(1 + η)

(
1 − ξ2

) (
1 − 9ξ2

) (
1 − 9

4
ξ2

)

φ18(ξ ,η) = 9

40
(1 − η)

(
1 − ξ2

) (
1 − 9ξ2

) (
1 − 3

2
ξ

)
ξ

φ19(ξ ,η) = − 9

40
(1 − ξ)

(
1 − η2

) (
1 − 9η2

) (
1 + 3

2
η

)
η (C-2)

φ20(ξ ,η) = 1

2
(1 − ξ)

(
1 − η2

) (
1 − 9η2

) (
1 − 9

4
η2

)

φ21(ξ ,η) = 9

40
(1 − ξ)

(
1 − η2

) (
1 − 9η2

) (
1 − 3

2
η

)
η

φ22(ξ ,η) = 9

40
(1 − η)

(
1 − ξ2

) (
1 − 9ξ2

) (
1 − 3

2
ξ

)
ξ

φ23(ξ ,η) = 1

2
(1 − η)

(
1 − ξ2

) (
1 − 9ξ2

) (
1 − 9

4
ξ2

)

φ24(ξ ,η) = − 9

40
(1 − η)

(
1 − ξ2

) (
1 − 9ξ2

) (
1 + 3

2
ξ

)
ξ

The shape functions for nodes 1–12 are now modified by subtracting the above
additional shape functions multiplied by the weight from the original shape func-
tions of a 12-noded element φ0

j (j = 1 ∼ 12). The shape functions of a 24-noded
variable-node element are finally written as in Eq. (C-3).

φ1(ξ ,η) = φ0
1 − 1

16
φ19 + 1

16
φ20 − 5

16
φ21 − 5

16
φ22 + 1

16
φ23 − 1

16
φ24

φ2(ξ ,η) = φ0
2 − 5

16
φ13 + 1

16
φ14 − 1

16
φ15 − 1

16
φ22 + 1

16
φ23 − 5

16
φ24

φ3(ξ ,η) = φ0
4 − 1

16
φ13 + 1

16
φ14 − 5

16
φ15 − 5

16
φ16 + 1

16
φ17 − 1

16
φ18

φ4(ξ ,η) = φ0
5 − 1

16
φ16 + 1

16
φ17 − 5

16
φ18 − 5

16
φ19 + 1

16
φ20 − 1

16
φ21 (C-3)

φ5(ξ ,η) = φ0
3 − 15

16
φ22 − 9

16
φ23 + 5

16
φ24, φ6(ξ ,η) = φ0

6 − 15

16
φ13 − 9

16
φ14 + 5

16
φ15
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φ7(ξ ,η) = φ0
7 − 15

16
φ16 − 9

16
φ17 + 5

16
φ18, φ8(ξ ,η) = φ0

8 − 15

16
φ19 − 9

16
φ20 + 5

16
φ21

φ9(ξ ,η) = φ0
9 + 5

16
φ22− 9

16
φ23− 15

16
φ24, φ10(ξ ,η) = φ0

10+ 5

16
φ13− 9

16
φ14− 15

16
φ15

φ11(ξ ,η) = φ0
11+

5

16
φ16− 9

16
φ17−15

16
φ18, φ12(ξ ,η) = φ0

12+
5

16
φ19− 9

16
φ20−15

16
φ21
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CHAPTER 16

ELECTRONIC PROPERTIES AND REACTIVITIES OF
PERFECT, DEFECTED, AND DOPED SINGLE-WALLED
CARBON NANOTUBES
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Abstract: After we thoroughly surveyed first-principles theoretical methods commonly employed in
the studies of carbon nanotubes, we highlighted the performance of such ab inito methods
on the electronic properties and reactivities of perfect, vacancy-defected, and hetroatom-
doped single-walled carbon nanotubes. We have found that a rich chemistry can take
place at the vacancy defect and doping sites of nanosystem: this very fact will enable
experimental scientists to produce novel functionalized nanosize materials with much
higher level of precise control of the manufacturing process

Keywords: Single-walled carbon nanotube, Reactivity, Electronic property, Functionality,
Doping, Vacancy defect

16.1. SCOPE

In light of the rapid progress in experimental and theoretical studies of carbon nan-
otubes, it is very difficult, if not impossible, to write a comprehensive book chapter
on the research of carbon nanotubes. Thus, we concentrate on the electronic struc-
tures of doped and vacancy-defected single-walled carbon nanotubes (SWCNTs),
which have been our major focus in this field [1].

We will first review the properties of SWCNTs and the theoretical methods
to study SWCNTs. Then, we report some results from the studies of the elec-
tronic structures of perfect SWCNTs, vacancy-defected fullerenes and SWCNTs,
and doped SWCNTs, and from modeling of gas adsorptions on doped SWCNTs
and chemical reactions involving vacancy-defected SWCNTs.
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16.2. INTRODUCTION

The discovery of SWCNT [2, 3] has spurred extensive experimental and theoretical
investigations on the chemical [4–17] and physical [18–30] properties of SWCNTs
due to the potential applications [31] of SWCNTs in molecular electronics [32–34],
chemical sensor [35–37], vacuum electronic devices [38], field emission flat panel
display [39], catalysis [40], optics [41–44], and hydrogen storage materials [45].

According to the wrapping vectors (m,n) [46, 47], a SWCNT, visualized as a roll
of graphite sheet, can be classified as metallic and semiconducting. If n – m = 3q
(with an integer q), the nanotube is metallic; Otherwise, the nanotube is semi-
conducting with a narrow or moderate band gap [47]. As rolled one-dimensional
graphite sheets, nanotubes display different electronic properties from those of plane
graphite sheet and fullerenes: the electronic properties of nanotubes can be con-
trolled by the diameters of the nanotubes due to hybridization effects [23]. The
pyramidalization of nanotubes is different from fullerenes and there exists π-orbital
misalignment between adjacent pairs of conjugated carbon atoms [4], which renders
different reactivity of nanotubes from fullerenes and among nanotubes themselves
because of different diameters and chiralty [4, 27, 48]. Chemical reactions can take
place on the sidewall of nanotubes [49–61] or at the end of nanotubes [7, 58, 59, 62].
Due to the difficulty in purifying and manipulating SWCNTs, the electronic struc-
ture, chemical reactivity, and possible applications of SWCNTs are waiting for
further investigation. Especially, the reactivity of SWCNTs is still not clear in spite
of numerous attempts and it deserves further studies [63].

Partial destruction of the nanotube structure through vacancy insertion [64–72],
doping [73–77], or distortion [78–83] can alter the electronic structure and reac-
tivity of nanotubes [70, 75]. Upon doping, some carbon atoms on a SWCNT are
replaced by different atoms, producing a hetero SWCNT (HSWCNT) [73–77]. Most
HSWCNTs are doped with main group elements [73–77]; the HSWCNT we stud-
ied here is doped with metals Pt, Ni, Pd, Sn, or chalcogens Se and Te. It has been
shown that the substitution of a metal atom in fullerenes [78–87] renders the metal
as an active center in chemical reactions [88–90]. A good understanding of the elec-
tronic structure of SWCNTs and defected SWCNTs offers deep insight into the
reactivity of SWCNTs and paves the way for general utilizations of SWCNTs in
chemical reactions. As a pseudo-one-dimensional system with a tube structure, a
SWCNT with defect can sever as a catalyst for gas- and liquid-phase reactions: the
reactants are fed from one end of an open SWCNT, the reaction is catalyzed at the
defect site of the SWCNT, and the products are released from the other end of the
SWCNT. HSWCNTs can also be used in gas sensors due to the chemical activity
of the doped heteroatoms. B- and N-doped HSWCNTs attracted extensive atten-
tion due to their potential applications in chemical sensors [75], nanosize electronic
and photonic devices with various electronic properties [91]. For the time being, the
synthetic methods for these HSWCNTs, such as thermal treatment [92] or chemical
vapor deposition [93], can only work under very high temperatures of hundreds and
thousands of degrees and the position where the heteroatom is doped cannot be con-
trolled with precision. The feasibility of such synthesis under mild conditions has
not been explored theoretically nor reported experimentally [94].
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On the other hand, the rapid development of theoretical methods makes compu-
tational studies on the structure and property of SWCNTs possible, shedding light
on possible applications of SWCNTs. However, this does not claim that theoretical
investigations will be easy in any way. The size of SWCNTs lies between small
molecule and bulky particle in the range of the so-called nanosize, which is too
big for accurate quantum mechanical treatment (for capturing quantum effect) and
too small for bulky calculations (for macroscopic properties). The quantum effect of
nanosize particles is important in studying their properties; this very fact necessitates
the application of quantum mechanical treatment for nanosize materials.

In this book chapter, we will report the structures of HSWCNTs and electronic
properties of perfect and vacancy-defected SWCNTs. We will use such knowledge
to study gas adsorptions on HSWCNT and reaction of ozone (O3) with a vacancy-
defected SWCNT to gauge the reactivities of these nanosystems, and to simulate
chemical reaction of a vacancy-defected SWCNT with nitrogen monoxide (NO) to
explore the feasibility of synthesis of an N-doped HSWCNT.

16.3. THEORETICAL METHODS

16.3.1. First-Principles Calculations

Quantum mechanical calculations can be carried out for a system by solving the
electronic Schrödinger equation:

Heψ = Eψ , (16-1)

under the adiabatic approximation, in which the electronic wavefunction is restricted
to one electronic surface, and under the Born-Oppenheimer approximation that war-
rants the separation of nuclear and electronic motions because the nuclei move much
slower than the electrons [95–99]. The electronic Hamiltonian He,

He= Te + Vne + Vee, (16-2)

includes the operators for electronic kinetic energy Te, nucleus-electron attraction
Vne, and electron-electron interaction Vee. The total Hamiltonian Htot of the system
includes He and the operators for nuclear kinetic energy Tn and nucleus-nucleus
interaction Vnn,

Htot = He + Tn + Vnn. (16-3)

In most quantum mechanical methods, the nuclei are treated as classical par-
ticles and only the electronic wavefunction is solved quantum mechanically. If
only fundamental physical constants are used in solving the electronic Schrödinger
equation, first-principles calculations emerge. Based on the choice of the basic vari-
ational variables, first-principles calculations have two flavors: wavefunction-based
ab initio methods [95–99] and electron-density-based density-functional theory
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(DFT) [100–103]. In wavefunction-based ab initio methods, the electronic energy
of a system can be expressed as,

Ee[ψ ] = Te[ψ ] + Vne[ψ ] + Vee[ψ ]. (16-4)

In the quasi-independent-particle models, e.g. the Hartree-Fock (HF) method
[95–99] and the Kohn-Sham (KS) method [100–103], the electronic wavefunction
is approximated by a single Slater determinant for an N-electron system,

ψ = 1√
N!

∣∣∣∣∣∣∣∣∣

χ1 (1) χ2 (1) · · · χN (1)
χ1 (2) χ2 (2) · · · χN (2)

...
...

. . .
...

χ1 (N) χ2 (N) · · · χN (N)

∣∣∣∣∣∣∣∣∣

, (16-5)

where χ i is the ith spin orbital. Because of the quasi-independent-particle nature,
the instantaneous multi-electron interaction is approximated as if an electron is
moving in an average electron–electron potential due to other electrons in the
system. The variational HF (or KS) equation is solved self-consistently with a
basis set representation for molecular orbitals (MOs), which are usually con-
structed from the linear combination of atomic orbitals (LCAOs) [95−104]. The HF
approximation is not capable of describing highly correlated systems, in which the
instantaneous electron–electron interaction is crucial to a correct description of the
electronic structure. High-level methods, such as multiconfiguration self-consistent
field (MCSCF) [105], multireference configuration interaction (MRCI) [106], or
coupled-cluster (CC) methods [107], are then necessary for treating electron correla-
tion more accurately. However, the prohibitive computing resource requirements of
such high-level methods prevent their general applications in large systems [95–99].
Even for the HF approximation, the system size that can be treated is still moder-
ate, since the computational cost formally scales as the fourth power of the number
of basis functions. Other high-level methods, such as CC, scale even worse with
respect to the system size. One solution to reduce the computing cost is devel-
oping linear-scaling methods. Another way is reducing the computational cost by
approximating the most time-consuming step of the calculation, the evaluation of
two-electron integrals. This latter approximation results in semiempirical methods
[95–99].

16.3.2. Semiempirical Quantum Mechanical Methods

In the HF approximation, the electron-electron interaction is evaluated through the
operator Vee,

Vee =
N∑

i

N∑

j>i

1∣∣ri − rj
∣∣ , (16-6)
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which results in two-electron integrals. Through linear combination of atomic basis
functions {ϕa}, molecular orbitals {χ i} can be written as,

χi =
∑

a

caiϕa, (16-7)

where {cai} are the MO coefficients. Following the variation principle, the HF
equation can be derived directly from Eqs. (16-1), (16-2), and (16-5) as a pseudo
one-electron eigen-equation:

Fχi = εiχi, (16-8)

where F is the Fock operator. In the atomic basis function representation, the HF
equation is recasted as the Roothaan-Hall equation,

FC = SCε, (16-9)

where F is the Fock operator matrix, C is the MO coefficient matrix, and S is the
overlap matrix, respectively. The Fock operator F could be written as a sum of one-
electron operator h and two-electron operators,

F = h +
N∑

j

(Jj − Kj), (16-10)

where Jj is the Coulomb operator and Kj is the exchange operator for two-electron
interactions, respectively. Most of the CPU time is spent in calculating the two-
electron integrals due to the two-electron operators Jj and Kj [95–99].

In semiempirical methods [97−99], only valence electrons are taken into account
explicitly; the core electrons are implicitly included in the nuclear part by reduc-
ing the nuclear charge. The evaluation of the two-electron integrals for valence
electrons is simplified by the introduction of parameters. To further reduce the
computational cost, only a minimum number of basis functions are introduced to
describe the motion of electrons in semiempirical methods. The basic approxima-
tion in semiempirical methods is the zero differential overlap (ZDO) approximation,
in which all the products of basis functions of the same electron on different atoms
are neglected. The remaining integrals are parameterized and fitted through bench-
marking with available experimental data. Different semiempirical methods can be
designed depending on how the approximations in the neglect of two-electron inte-
grals and in the fitting of parameters are made [97−99]. Among all variants of the
ZDO approximation, the complete neglect of differential overlap (CNDO) method
[108–110] is the crudest approximation. In the CNDO method, only Coulomb
one-center and two-center two-electron integrals remain. With more refined ZDO
approximation, the intermediate neglect of differential overlap (INDO) method
[111] and the neglect of diatomic differential overlap (NDDO) methods [108–110]
(including MNDO [112], AM1 [113], and PM3 [114, 115]) came with much
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improved accuracy. In present work, the PM3 method is employed in combined
quantum chemical calculations.

16.3.3. Density-Functional Theory

In conventional ab initio methods, the computational cost scales formally at least as
the fourth power of the number of basis functions. To incorporate electron correla-
tion effects into the HF approximation, high-level methods have to pay a big price in
terms of computational cost. On the other hand, the electron-density-based DFT has
a favorable scaling factor [95–103]: the third power of the number of basis functions
in the KS scheme, and more importantly, the electron correlation effects are taken
into account through correlation functionals in DFT [100–103].

In DFT, the electronic energy is expressed as a sum of various energy density
functionals,

Ee[ρ] = Ts[ρ] + Ene[ρ] + J[ρ] + Exc[ρ], (16-11)

where ρ is the single electron density, Ts[ρ] is the electronic kinetic energy, Ene[ρ] is
the nuclear-electron attraction energy, J[ρ] is the electron–electron Coulomb interac-
tion energy, and Exc[ρ] is the exchange and correlation energy. Exc[ρ] can be further
split into two pieces: the exchange energy Ex[ρ] and the correlation energy Ec[ρ].

Exc[ρ] is mainly modeled in three ways: the local-density approximation (LDA),
the generalized gradient approximation (GGA), and the hybrid approach [100–103,
116]. In the LDA, the energy of a system depends on the local value of the electron
density [100–103]. In the GGA, the energy of a system depends not only on the
local value of the electron density but also on the gradients of the electron density
of different orders [103]. While in the hybrid DFT, the exact exchange defined in
terms of the KS orbitals (just like the one used in the HF approximation defined
in terms of the HF orbitals) is admixed with the approximate exchange functional
[117]. Such a hybrid approach of mixing the exact exchange further improves the
predicative accuracy of DFT method in physical and chemical applications [117].

However, the system size and scaling factor of computational cost limit the appli-
cation of quantum mechanical methods in the studies of nanoparticles. To overcome
this difficulty, the ONIOM model [118] has been developed to be a compromise of
the computational feasibility and accuracy.

16.3.4. ONIOM Model

In most cases, chemical reactions are localized in the proximity of the active site.
Such a localized nature of chemical reactions legitimizes an accurate treatment
of the active site with high-level method while the surroundings (the rest of the
chemical system) can be treated with low-level theory [118–123]. This embedding
approach requires relative low computing resources and still keeps the essential
environmental effects exerted on the active site by the surroundings [119–123].
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The ONIOM model [118] is a popular one among many methods [119–123]
suitable for such applications. The basic formula for ONIOM can be written as
[118],

Etotal = ERL − EML + EMH, (16-12)

where Etotal is the total energy of the system, ERL is the energy of the real system
at low-level theory, EML is the energy of the model system (the active site) at low-
level theory, and EMH is the energy of the model system at high-level theory. The
gradient and the second-order derivatives of the total energy with respect to the
nuclear coordinates can be calculated in a similar manner with the help of link atoms
[118]. A link atom is a buffer atom in the model system replacing the actual atom in
the real system connected to the model system.

For very large systems, the low-level theory for the overall real system is usu-
ally molecular mechanics. In molecular mechanics [95–99], the electronic structure
of the system is not explicitly considered. The interatomic interactions are divided
into bond, angle, torsion angle, and weak interactions (including the van der Waals
interactions). Such interactions are parameterized through fitting to the available
experimental data or any high-level quantum mechanical predictions. Depending on
the fitting procedure, different parameterizations give rise to various force fields for
the interatomic interactions. Amber [119–124], Charmm [125], MM3 [126], and
UFF [127] are the most popular force fields among many [100–103].

16.3.5. Molecular Dynamical Simulations

A normal quantum mechanical study on the potential energy surface (PES) inves-
tigates the reaction pathway for a particular reaction channel involving stationary
points on the PES. What we can get from such a study is the structures, proper-
ties, and energetics of the stationary points from which we can calculate reaction
energies, barriers, and rates. On the other hand, molecular dynamics (MD) involv-
ing propagation of nuclei in molecules on the PES by solving Newton’s equation
of motion provides rich information about reactivity and dynamics of the system,
so that the motions of the component atoms during the propagation and the instant
interactions among atoms can be revealed. Though the PES can be obtained by fit-
ting to experimental or computational data, the fitting is not a trivial task even if
the necessary data are available. Theoretical MD simulation, an alternative means
to study molecular propagation and chemical reactions, provides complementary
information about the thermodynamical and dynamical properties and microscopic
motions of nuclei in a chemical reaction.

The force field, which confines the nuclear motions, is important as it dicates
the quality of the MD simulation. Despite that empirical force fields have gained
wide popularity in MD simulations of large systems in biology [128, 129], solid
state physics, and surface science [130], high-quality force field from quantum
mechanics is necessary for accurate description of quantum effects. Therefore,
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quantum mechanical MD (QMMD), in which the force field is computed quantum
mechanically, is a natural choice for this purpose [131−136].

For large systems, a dilemma arises: modeling quantum effects is important
but accurate quantum mechanical methods cannot handle such large systems with
present computational facility. To overcome this obstacle, we utilize the ONIOM
model [118], in which the most important forces are computed by quantum mechan-
ical method and the remaining system is described by molecular mechanical force
fields.

16.4. SINGLE-WALLED CARBON NANOTUBES

SWCNT could be either end-capped or with open end during fabrication [38, 137].
With spherical curvature, the capping ends can have different electronic structure
from that of the sidewall of the SWCNT and modify the electronic properties of the
SWCNT around the ends [18, 68]. We studied two models for SWCNT: one with
hemispherical capping ends (a SWCNT rod) and the other with open ends saturated
by hydrogen atoms (a SWCNT clip). The model for SWCNT is (5,5) SWCNT.

16.4.1. Perfect SWCNT Rods

The caps in the hemispherically capped nanorod are half spheres of a fullerene,
which vary as the diameter and the structure of the SWCNT change [17, 22, 64].
The caps in capped nanorod were predicted to play an important role in the
electronic property of the nanorod [11]. The caps host some localized electronic
states [18, 138], because of the relatively unstable pentagons presented there [139].
However, the caps do not contribute significantly to the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the
nanorods [10]. Differences in curvature and π bonding distinguish the chemical
properties of fullerenes and SWCNTs [4] and thus divide the nanorod into at least
two regions: the caps and the sidewall.

Using Gaussian 03 quantum chemical program package [140] and Pople’s 6-31G
Gaussian basis set [141–144], we studied two nanorods: C170 with D5h symmetry
and C180 with D5d symmetry. The geometries of these nanorods were optimized
by GGA-type DFT based method (BPW91) with Becke’s exchange functional (B)
[145] and Perdew’s correlation functional (PW91) [146, 147]. Natural bond orbitals
(NBOs) [148] were calculated to estimate partial charges of atoms. The structures,
density of states (DOS), and local density of states (LDOS) of the two nanorods are
shown in Figure16-1.

The overall DOS and LDOS of these two SWCNT rods are very similar. The
most noticeable feature of the DOS of C170 is the separation of peaks at 5.2 eV
whereas it is continuous for C180. The similarity of the DOS and LDOS of C170
and C180 is expected, since only one additional circular cis-polyene chain does not
change the electronic structure significantly from C170 to C180. Previous studies
also found the similarity in the HOMO-LUMO gaps of the (5,5) SWCNT rods,
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 (a) C170  (b) C180

HOMO LUMO
HOMO LUMO

 (c) C200H20

HOMO LUMO

Figure 16-1. (a) The density of states and local density of states for the nanorod C170 with D5h sym-
metry. The HOMO has orbital energy −4.61 eV, and the LUMO has orbital energy −4.26 eV. (b) The
density of states and local density of states for the nanorod C180 with D5d symmetry. The HOMO has
orbital energy −4.60 eV, and the LUMO has orbital energy −4.23 eV. (c) The density of states and local
density of states for the open-end (5,5) SWCNT segment C200H20 with D5 symmetry. The HOMO has
orbital energy −3.93 eV, and the LUMO has orbital energy −3.52 eV. L1−L5 are the local density of
states for each specified layer as outlined on the structures. This figure is adopted from Refs. [94, 180]

C170 and C180 [11]. The HOMO-LUMO gaps of the (5,5) SWCNT rods C170 and
C180 are smaller than that of the longer open-end (5,5) SWCNT segment (this will
be elaborated in the next section). The LDOS shows the contribution of a partic-
ular group of atoms to the overall DOS. Figure 16-1a and b display the LDOS of
cis-polyene chains in C170 and C180 along the SWCNT axis and the LDOS of the
cap (a hemisphere of C60). The shapes of the LDOS of different layers are similar
at the frontier molecular orbital (FMO) region, which indicates the delocalization
of the FMOs of the SWCNT rod. The contributions to the HOMO, the LUMO, and
other occupied FMOs from the caps are not significant; major contributions to the
HOMO and the LUMO of C170 and C180 are from the sidewall of the SWCNTs.
Figure 16-1a and b clearly indicate that the conspicuous contributions to the DOS
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of the SWCNT rod from the LDOS of the caps lie about 1.0 eV below the HOMO
and 0.5 eV above the LUMO.

MOs give detailed information about the contributions of the LDOS from each
layer to the DOS of the SWCNT rod. Some occupied and unoccupied FMOs for
SWCNT rods C170 and C180 are plotted in Figure 16-2. The highest four occupied
MOs of C170 and C180 are delocalized π orbitals with contributions from the side-
wall of the SWCNT rod. The occupied MOs with major contributions from the caps
lie about 1.0 eV below the HOMO, as also manifested by the LDOS of the cap in
Figure 16-1. The HOMO and the LUMO have sole contributions from the sidewall
of the SWCNT rod. The lowest two unoccupied MOs of C170 and C180 are also π

orbitals delocalized on the sidewall of the SWCNT rod, and the next four unoccu-
pied MOs are two two-fold degenerated localized MOs on the caps. The patterns
of the HOMO and the LUMO in C170 are different from their counterparts in C180.
Such pattern change was also observed for shorter SWCNT rods before [10].

From the MOs, one can infer that, when reacting with strong electron accep-
tors, the SWCNT rods C170 and C180 will donate electrons from the sidewall to the

Figure 16-2. The frontier molecular orbitals of (a) the nanorod C170 with D5h symmetry, (b) the
nanorod C180 with D5d symmetry, and (c) the open-end (5,5) SWCNT segment C200H20. HOMO−n
(p eV) is the nth orbital below the HOMO with orbital energy p eV. LUMO+m (q eV) is the mth orbital
above the LUMO with orbital energy q eV. This figure is adopted from Refs. [94, 180]
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electron acceptors. According to the NBO analysis, when C170 and C180 accept elec-
trons, the first four electrons will go to the middle of the sidewall of the SWCNT rod,
and any extra (up to eight) electrons will go to the caps. From the MOs of C170 and
C180, one cannot see clearly the separation of the cap from the sidewall, though there
are some gradual geometric changes from the cap to the sidewall [149]. The delo-
calized MOs on the sidewall extend to the ridge of the pentagons of the caps. The
pentagon regions have 6–6 (between two hexagons) and 6–5 (between a hexagon
and a pentagon) CC bond alternation similar to that in C60. The atoms on the last
layer of L4 (in Figure 16-1a and b), bridge between the sidewall and the cap of the
SWCNT rod, have the largest negative charges in C180 and large negative charges
in C170. In chemical reactions, this layer is reactive toward electron acceptors. The
middle layers of the sidewall have positive charges.

16.4.2. Open-End SWCNT Segment

Open-end SWCNTs and end-capped SWCNTs with vacancy defects of the similar
length can have very different electronic structures and reactivity. To understand
such differences, we studied an open-end (5,5) SWCNT segment C200H20, which
has 200 carbon atoms, saturated with 20 hydrogen atoms at the two open ends
(Figure 16-1c). The same method and basis set used for C170 and C180 were
employed to study C200H20. The HOMO-LUMO gap of the C200H20 segment
(0.41 eV) is larger than those of the SWCNT rods, C170 (0.35 eV) and C180
(0.37 eV). Both of the HOMO and the LUMO are destabilized when compared
with those of C170 and C180, in spite that the C200H20 segment is longer than the
SWCNT rods C170 and C180. The stabilization effect of the hemispherical caps
to the SWCNT rod is evident from the comparison of MO energies of the open-
end SWCNT segments and SWCNT rods. The bands in the DOS of C200H20
(Figure 16-1c) shift to higher energy regions than those of the SWCNT rod C180
(Figure 16-1b). The LDOS of the circular cis-polyene chains of C200H20 are very
similar. Figure 16-2c shows that each layer contributes roughly equally to the FMOs
and there is no localized state on C200H20. The HOMO and the LUMO of short (5,5)
SWCNT segments with open ends were studied before and showed alternating nodal
pattern [10], which is not observed here for longer (5,5) SWCNT segments.

Overall, the hemispherical fullerene caps introduce localized states and stabilize
the SWCNT rod.

16.5. VACANCY-DEFECTED FULLERENES AND SWCNTS

Removal of one carbon atom from different positions of the capping ends of a
SWCNT rod results in different vacancy-defected SWCNTs. For simplicity, we
studied single-vacancy-defected fullerenes C59 and C69 (originated from C60 and
C70, respectively), as models for the end caps of SWCNT rods. For vacancy-
defected SWCNT with defects at the middle of the sidewall, (5,5) and (10,0)
SWCNTs were employed as models.
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16.5.1. Vacancy-Defected Fullerenes

Defected C60 (and possibly C70) with odd number of vacancies have been produced
through laser desorption ionization of C60O [150]. Vacancies on defected fullerenes
were proposed to serve as the windows for atoms or small molecules to enter
the cage in the endohedral fullerene chemistry [151]. Vacancy-defected fullerene
C59 has been investigated theoretically [152−159] but with some contradictory
results [156−159]. It was reported [156, 157] that triplet C59(5-8) [with a pentagon
adjacent to an octagon] is more stable than C59(4-9) [with a tetragon adjacent to
a nonagon] (Figure 16-3b and c). The initial singlet C59(4-9) isomer transforms
into the singlet C59(5-8) structure during a geometry optimization based on spin-
unrestricted DFT method [157]. However, Ribas-Ariño and Novoa [158] found
that both C59(5-8) and C59(4-9) have singlet ground states. Using tight-binding
molecular-dynamics and ab initio methods, Andriotis et al. studied single-vacancy

Figure 16-3. Structures of the single-vacancy defected C60 and C70 with partial charges of the important
carbon atoms
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defected C60 in a C60 polymer and found that two out of the three dangling bonds
of the ideal single-vacancy defect do not recombine [159]. Thus, we reexamined the
electronic properties of C59(5-8) and C59(4-9) to resolve these controversies and to
explore the isomerization pathways between these two isomers. To compare with the
C60 system, we also study the vacancy-defected C70. Structurely, C70 has one more
hexagonal belt between two hemispheres of C60, and vacancy-defected C70 might
have some similar properties to vacancy-defected C60 but with different structures.

The hybrid DFT method, B3LYP [117, 160], with the standard 6-31G(d) basis
set was used for geometry optimizations. Single-point calculations at the B3LYP/6-
311G(d) level of theory were performed with the B3LYP/6-31G(d) optimized
geometries. NBO analysis [148] was performed to determine the partial charge dis-
tribution and the bonding characters of these systems. B3LYP/6-31G was employed
to study the isomerization between C59(5-8) and C59(4-9) on the singlet and triplet
PESs. Spin-unrestricted calculations were carried out for the singlet and triplet
electronic states, and spin-restricted calculations were also done for the singlet elec-
tronic states. In light of recent numerical tests [161], the convergence criteria of all
calculations were set very tight (e.g., 10−8 for the density convergence) to ensure
full convergence.

The two types of bonds in C60, the shorter double bonds and the longer single
bonds, are predicted to be 1.395 and 1.453 Å at the B3LYP/6-31G(d) level of theory,
respectively, in good agreement with the experimental data (1.390 and 1.453 Å,
respectively) [162]. The structures of C60 and C70 with an ideal single vacancy and
related point defects are shown in Figure 16-3, in which important carbon atoms
are labelled numerically. In C59, C1 forms a bond with C5 or C8 leading to the
C59(5-8) isomer (5 and 8 denoting the newly forming pentagon and octagon), or C5
forms a bond with C8 leading to the C59(4-9) isomer (4 and 9 denoting the newly
forming tetragon and nonagon). In C69, C1 forms a bond with C5 or C8 leading to
the C69(5-8) isomer, or C5 forms a bond with C8 leading to the C69(4-9) isomer. In
each isomer, there is one unsaturated carbon atom in a pentagon for the (4-9)-type
defects or in a hexagon for the (5-8)-type defects.

In comparison with the HF/3-21G and B3LYP/3-21G results for the C59(4-9)
isomer [156], the B3LYP/6-31G(d) calculations predict shorter bond lengths for
most bonds due to the larger basis set used. Table 16-1 lists the total and cohesive
energies of the isomers computed at the B3LYP/6-311G(d)//B3LYP/6-31G(d) level
of theory. According to the cohesive energies, the triplet C59(5-8) and C69(5-8) iso-
mers are the most stable isomers for C59 and C69, respectively. However, the small
spin contamination in the spin-unrestricted calculations may artificially stabilize the
triplet state over the closed-shell singlet state. With such small energy difference,
the singlet and triplet electronic states of C59 and C69 have similar stabilities within
present DFT treatment.

Reference [158] reported a higher spin-contamination in the spin-unrestricted
calculation of singlet C59(5-8) and the transformation of the open-shell singlet
C59(4-9) structure into the open-shell singlet C59(5-8) structure. We will focus on
the singlet and triplet potential energy curves for the isomerization of these two
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Table 16-1. Energies of C60, C59(4-9), C59(5-8), C70, C69(4-9), and C69(5-8) at the B3LYP/6-
311G(d)//B3LYP/6-31G(d) level of theory

Etotal (Hartree) Esa
c (kcal/mol) �Ed (kcal/mol)

Model S (R/U)a T (U)a S (R/U) T (U) S (R/U) T (U)

C60 −2286.5888 – 159.27 – – –
C59(4-9) −2248.2431 −2248.2418 (2.05)b 156.76 156.75 2.51 2.52
C59(5-8) −2248.2690 −2248.2744 (2.05) 157.04 157.09 2.23 2.18
C70 −2667.7857 – 160.16 – – –
C69(4-9) −2629.4433 −2629.4396 (2.04) 158.05 158.02 2.11 2.14
C69(5-8) −2629.4629 −2629.4670 (2.05) 158.23 158.27 1.93 1.89

a R: Spin-restricted; U: Spin-unrestricted; S: Singlet; T: Triplet.
b The values in the parentheses are the 〈S2〉 values.
c The stability energy per atom, defined as Ets/n, where Ets is the energy difference between the isolated
carbon atoms and the cluster and n is the total number of carbon atoms in the cluster.
d �E = Esa (perfect fullerene) − Esa (defected fullerene).

structures. For singlet C59(4-9), the dangling carbon atom C1 forms single bonds
with C2 and C11. The bond lengths of C1−C2 and C1−C11 are both 1.441 Å
because of Cs symmetry. Based on the NBO analysis, there are two 2-center σ NBOs
involving C1 and two lone-pair-type NBOs for C1. The partial charges of the car-
bon atoms in the nonagon of singlet and triplet C59(4-9) are shown in Figure 16-3g.
C1 has +0.08 charge and its two neighbours have −0.10 charges in the singlet case,
whereas in the triplet case, C1 has a much larger positive charge (+0.25) and its two
neighbours also have larger negative charges (−0.13). The relevant FMOs of singlet
C59(4-9) are shown in Figure 16-4A. Quite interestingly, there is nearly no electron
population on C1 in the HOMO. The first orbital below the HOMO (HOMO−1)1

is mainly the lone-pair sp 1.50 hybridized orbital. The LUMO is mainly the lone-
pair p unhybridized orbital. The HOMO energy of singlet C59(4-9) is −6.15 eV,
higher than that of perfect C60 (−6.40 eV). The LUMO energy of singlet C59(4-9)
is −4.22 eV, lower than that of perfect C60 (−3.68 eV). Thus, the HOMO-LUMO
gap is only 1.93 eV, smaller than that of perfect C60 (2.72 eV).

For triplet C59(5-8), the dangling carbon atom C5 forms a single bond with C4
and a double bond with C6. The bond lengths of C5−C4 and C5=C6 are 1.399
and 1.357 Å, respectively. The point group of triplet C59(5-8) is C1. Based on the
NBO analyses, there are three 2-center NBOs involving C5 and two lone-pair-type
NBOs for C5. The alpha-spin FMOs are shown in Figure 16-4B. The HOMO con-
tains the lone-pair p unhybridized orbitals (Figure 16-4Bc). The orbital energy of
the alpha-spin HOMO of triplet C59(5-8) is −5.78 eV, higher than that of perfect
C60 (−6.40 eV). The orbital energy of the alpha-spin LUMO of triplet C59(5-8)

1Throughout the text, HOMO−n and LUMO+m denote the nth molecular orbital below the HOMO and
the mth molecular orbital above the LUMO, respectively.
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Figure 16-4. (A) Frontier molecular orbitals of singlet C59(4-9); (B) alpha-spin frontier molecular
orbitals of triplet C59(5-8); (C) frontier molecular orbitals of singlet C69(4-9); (D) alpha-spin frontier
molecular orbitals of triplet C69(5-8). HOMO−n (p) is the nth molecular orbital below the HOMO with
orbital energy p eV. LUMO+m (q) is the mth molecular orbital above the LUMO with orbital energy q eV

is −3.77 eV, slightly lower than that of perfect C60 (−3.68 eV). The orbital energy
of the beta-spin HOMO of triplet C59(5-8) is −6.10 eV, higher than that of per-
fect C60 (−6.40 eV). The orbital energy of the beta-spin LUMO of triplet C59(5-8)
is −4.41 eV, lower than that of perfect C60 (−3.68 eV). Thus, the alpha-spin
HOMO-LUMO gap (2.01 eV) and the beta-spin HOMO-LUMO gap (1.69 eV) are
both smaller than that of perfect C60 (2.72 eV).

For singlet C69(4-9), the dangling carbon atom C1 forms single bonds with C2
and C11. The bond lengths of C1−C2 and C1−C11 are both 1.434 Å because of
Cs symmetry. The partial charges of the carbon atoms in the nonagon are shown
in Figure 16-3i for singlet and triplet C69(4-9). C1 has +0.14 charge and its two
neighbours have −0.09 charges in the singlet case, whereas in the triplet case,
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C1 has +0.26 charge and its two neighbours have −0.13 charges. The relevant FMOs
in singlet C69(4-9) are shown in Figure 16-4C. The LUMO (Figure 16-4Cd) con-
tains the lone-pair unhybridized p orbital. The HOMO energy of singlet C69(4-9)
is –6.22 eV, slightly higher than that of perfect C70 (−6.34 eV). The LUMO energy
of singlet C69(4-9) is −4.37 eV, lower than that of perfect C70 (−3.67 eV). Thus,
the HOMO-LUMO gap is only 1.85 eV, smaller than that of perfect C70 (2.67 eV).

For triplet C69(5-8), the dangling carbon atom C8 forms a single bond with C7
and a double bond with C9. The bond lengths of C8−C7 and C8=C9 are 1.397
and 1.358 Å, respectively. The HOMO contains the lone-pair p unhybridized orbital
of C1 (Figure 16-4Dc). The orbital energies of the alpha- and beta-spin HOMO
of triplet C69(5-8) are higher than that of C70 while the orbital energies of LUMO
are lower than C70. Thus, the alpha-spin HOMO-LUMO gap (2.15 eV) and the
beta-spin HOMO-LUMO gap (1.44 eV) are both smaller than that of perfect C70
(2.67 eV).

Andriotis et al. studied the single-vacancy defected C60 in a C60 polymer by using
tight-binding molecular-dynamics and ab initio methods [159]. In their study, two
out of the three dangling bonds of the ideal single-vacancy defect do not recombine,
about +0.5 charge resides on the three carbon atoms with dangling bonds, and the
spin polarization occurs at the σ dangling bonds. In our study of the isolated single-
vacancy defected C60, two out of the three dangling bonds do recombine. Only
about +0.2 charge accumulates at the carbon atom with dangling bond and the two
recombined carbon atoms. The spin polarization mainly localizes at the remaining
carbon atom with dangling bond for both triplet C59(5-8) and triplet C59(4-9). The
different conclusions might be caused by the different environments modeled by
Andriotis et al. (in a C60 polymer) [159] and by us (in gas phase). More refined
theoretical treatment should be carried out to confirm the findings of Andriotis et al.
[159].

It is interesting to recognize that these vacancy-defected fullerenes can be actu-
ally treated as carbenes. A carbene is a divalent carbon atom with four valence
electrons, and its two nonbonding electrons can lead either to singlet state or to
triplet state. The simplest carbene is methylene. If methylene is linear, it will have
two degenerate p orbitals, and each of the two nonbonding electrons will occupy
one of these two p orbitals with the same spin, thus yielding a triplet ground state.
If methylene is bent, the degeneracy of these two p orbitals is destroyed. The orbital
perpendicular to the bent methylene is called “p”, and the other orbital is called “σ”
that hybrids with the s orbital and becomes stabilized. The more s character this σ

orbital has, the bigger the energy gap between the σ and p orbitals will be. If the σ–p
energy gap is big, the two nonbonding electrons will prefer to stay in the p orbital
with opposite spins, thus becoming a singlet carbene. If the σ–p energy gap is small,
the two nonbonding electrons will prefer to stay in different orbitals with the same
spin, thus producing a triplet carbene.

The results indicate that the singlet carbene prefers to stay in the pentagon and
the triplet carbene prefers to stay in the hexagon of the isomers of C59 and C69.
One reason for this scenario is that the triplet carbene prefers bigger bond angle in
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the hexagon of the defect site, whereas the singlet carbene prefers the smaller bond
angle in the pentagon of the defect site. Another reason is due to different electronic
effects in C59(4-9) and C59(5-8) [163]. From the NBO analyses, we know that the
σ orbitals of the carbenes of C59(4-9) and C59(5-8) are sp1.50 and sp3.57 hybridized,
respectively. This means that the σ–p energy gap of the carbene of C59(4-9) is larger
than that of C59(5-8). On the other hand, we find that the p orbital of the carbene
of C59(5-8) forms a π bond with one of its neighbour carbon atoms, whereas this is
not true for the carbene of C59(4-9). This effect can lower the energy of the p orbital
of the carbene of C59(5-8), thus leading to a smaller σ–p energy gap, which also
explains the larger stability of triplet C59(5-8) and triplet C69(5-8).

The isomerization pathways of C59(4-9) and C59(5-8) isomers on the singlet
and triplet PESs are further explored. The relative energies, the transition-state
structures, and the imaginary vibrational modes are shown in Figure 16-5. The
energy of triplet C59(5-8) is set as the reference zero-point. The barrier of singlet
C59(4-9) transforming into singlet C59(5-8) is 35.69 kcal/mol and the reverse bar-
rier is 54.50 kcal/mol. The barrier between singlet C59(5-8)L (L denoting C1−C3
bond-formation) and singlet C59(5-8)R (R denoting C2−C3 bond-formation) is
49.45 kcal/mol. The barrier of triplet C59(4-9) transforming into triplet C59(5-8)
is 17.49 kcal/mol and the reverse barrier is 41.69 kcal/mol. The barrier between
triplet C59(5-8)L and triplet C59(5-8)R is 38.87 kcal/mol. Clearly, the isomerization
takes place more readily on the triplet PES. Under the influence of strong exter-
nal field or irradiation impact during the vacancy defect creation [150, 164–167],
such isomerization can take place feasibly. Both the relative energies of C59(4-9)
and C59(5-8) and the isomerisation barrier between C59(4-9) and C59(5-8) make
C59(5-8) the major component during C59 formation.

Vertical and adiabatic values of the electron ionization and affinity energies
(without the zero-point correction) for ground-state C59(4-9), C59(5-8), C69(4-9),
and C69(5-8) are shown in Table 16-2. The vertical electron affinity (VEA) or
vertical detachment affinity is defined as the energy difference between the neu-
tral cluster and its anion both at the equilibrium geometry of the anion [168].
The adiabatic electron affinity (AEA) or simple electron affinity is defined as the
energy difference between the neutral cluster and its anion at their own equilibrium
geometries [168]. The vertical ionization potential (VIP) is defined as the energy
difference between the cation and its neutral cluster both at the equilibrium geom-
etry of the neutral cluster. The adiabatic ionization potential (AIP) is defined as the
energy difference between the cation and its neutral cluster at their own equilibrium
geometries.

The VEA and AEA of the C59(4-9) and C69(4-9) clusters are smaller than those
of the C59(5-8) and C69(5-8) clusters, whereas the VIP and AIP of the C59(4-9)
and C69(4-9) clusters are larger than those of the C59(5-8) and C69(5-8) clusters.
The differences between the VEA and the AEA and between the VIP and the AIP
for all these clusters are very small, indicating that the optimized geometries of the
neutral clusters and their corresponding anionic and cationic clusters are close to
one another.
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Figure 16-5. (a) and (b) are the isomerization pathway profiles of the single-vacancy defected C60 on
the singlet and triplet potential energy surfaces, respectively (energies are in kcal/mol). (c) Ideal single
vacancy on C60; (d)−(i) are structures of the transition states (numbers are the atom distances in Å and
the blue arrows represent the imaginary vibrational modes). In (f) and (i), L denotes the bond formation
between C1 and C3, thus leading to a pentagon on the left. In (e) and (h), R denotes the bond formation
between C2 and C3, thus leading to a pentagon on the right

Table 16-2. The vertical electron affinity (VEA), the adiabatic electron
affinity (AEA), the vertical ionization potential (VIP), and the adiabatic
ionization potential (AIP) of C59(4-9), C59(5-8), C69(4-9), and C69(5-8).
All energies are in eV

Cluster VEA AEA VIP AIP

C59(4-9) 3.42 3.32 7.36 7.29
C59(5-8) 3.68 3.34 6.92 6.79
C69(4-9) 3.66 3.55 7.35 7.30
C69(5-8) 3.91 3.61 7.06 6.95
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16.5.2. Vacancy-Defected SWCNTs

16.5.2.1. Vacancy-Defected (5,5) and (10,0) SWCNTs

Vacancies on carbon nanotubes have also been studied recently [1, 64–72, 94,
165–167, 169–175], including the effect of vacancies on the conductance [65, 66,
171], the mechanical properties [173, 174], and the electronic properties [1, 94, 172]
of carbon nanotubes. During the process of vacancy creation on carbon nanotubes,
energetic electrons produce mostly single vacancies, whereas heavy ion irradia-
tion produces mostly multi-vacancies [165–167]. Removing one or more carbon
atoms from a carbon nanotube first produces ideal (but unstable) vacancies (see
Figure 16-6a and d). Ajayan et al. have shown that carbon nanotube will respond
to the loss of carbon atoms by surface reconstruction, resulting in vacancy related
point defects [64]. The nature of single vacancies and their related point defects
has been studied systematically by Lu et al. with tight-binding method [70]. Double
and triple vacancies and related defects have been studied by Mielke et al. [173] and
Sammalkorpi et al. [174]. In these studies, however, the ground states of the defected
nanotubes are not mentioned and the structural information has some inconsisten-
cies. For example, Lu and Pan reported that the symmetric 5-1DB (one pentagon
and one dangling bond) defects (Figure 16-6c) do not exist for the armchair-type
SWCNT [70]. Even with the symmetric 5-1DB defect geometry as the initial guess,
the asymmetric 5-1DB defect (Figure 16-6b) was obtained easily [70]. However,
the symmetric 5-1DB defect on (5,5) SWCNT was shown to be stable by Mielke
et al. [173]. To resolve such discrepancy, we investigated the electronic properties
of single- and double-vacancy defected SWCNTs with density functional methods.
(5,5) and (10,0) SWCNTs were chosen to represent typical armchair and zigzag
SWCNTs, respectively. BPW91 with the 6-31G basis set are employed in geometry
optimization and property prediction. The SWCNTs are modeled by imposing peri-
odic boundary conditions (PBCs). The unit cells contain about 100 and 120 carbon
atoms for (5,5) and (10,0) SWCNTs, respectively. The integrations of k space are
achieved by using the default numbers of k points, 27 and 26 for (5,5) and (10,0)
SWCNTs, respectively.

Perfect (5,5) and (10,0) SWCNTs are studied for comparison with defect
SWCNTs. Removal of a single atom yields a dodecagon on both (5,5) and (10,0)
SWCNTs (Figures 16-6a and 16-7a). After the surface reconstruction, a pentagon
and a nonagon (contains an unsaturated carbon atom) appear in two different ways:
one is asymmetric (Figures 16-6b and 16-7b) and the other is symmetric (Figures
16-6c and 16-7c) [174]. There are also two ways to lose two adjacent carbon atoms
on both (5,5) and (10,0) SWCNTs, resulting in tetradecagons (Figures 16-6d, f,
16-7d, and f). After the surface reconstruction, two pentagons and one octagon
appear in the symmetric (Figures 16-6e and 16-7e) and asymmetric (Figures 16-6g
and 16-7g) patterns. No dangling bond is present for the double-vacancy defects.
The energies of these isomers are shown in Table 16-3.

The (5,5) SWCNT 1 asym. isomer (Figure 16-6b) is more stable than the (5,5)
SWCNT 1 sym. isomer (Figure 16-6c). The ground state of the (5,5) SWCNT 1
asym. isomer is singlet, while the ground state of the (5,5) SWCNT 1 sym. isomer
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Figure 16-6. Structures of the ideal single and double vacancies and related defects on the (5,5) SWCNT

is triplet. The bridging bonds of the pentagon and the nonagon in the (5,5) SWCNT
1 sym. isomers are very weak: 1.846 and 1.871 Å in length for the singlet and triplet
cases, respectively. However, for the asymmetric isomers, the bridges are typical
C−C single bonds, with bond distances 1.579 and 1.565 Å for the singlet and triplet
cases, respectively. These results agree with the predictions of Mielke et al. [173]
very well: single-vacancy defected (5,5) SWCNT does have the symmetric 5-1DB
defect, which was not found by Lu et al. with tight-binding method [70].

A finite model of the (5,5) SWCNT 1 sym. isomer, which has the same number of
carbon atoms as in the PBC model and whose two open ends are capped by hydrogen
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Figure 16-7. Structures of the ideal single and double vacancies and related defects on the (10,0)
SWCNT

atoms, was studied for comparison. In this finite model, the bridging bonds of the
pentagon and the nonagon are 1.639 and 1.649 Å in length for the singlet and triplet
cases, respectively, which are shorter than their counterparts in the PBC model. This
is simply due to the relaxation of the constraint at the two open ends of the finite
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Table 16-3. Energies calculated at the BPW91/6-31G level of theory for all the related defects of
the single- and double-vacancy defected (5,5) and (10,0) SWCNTs and the perfect (5,5) and (10,0)
SWCNTs

Etotal (Hartree) Esa
c (kcal/mol) �Ed (kcal/mol)

System S (R/U)a T (U)a S (R/U) T (U) S(R/U) T (U)

(5,5) SWCNT −3810.0481 – 169.20 – – –
(5,5) SWCNT 1 asym. −3771.7310 −3771.7274 (2.02)b 167.85 167.83 1.35 1.37
(5,5) SWCNT 1 sym. −3771.6790 −3771.6944 (2.02) 167.52 167.62 1.68 1.58
(5,5) SWCNT 2 asym. −3733.6917 −3733.6744 (2.02) 168.23 168.12 0.97 1.08
(5,5) SWCNT 2 sym. −3733.5905 −3733.5735 (2.01) 167.58 167.48 1.62 1.72
(10,0) SWCNT −4572.2690 – 170.31 – – –
(10,0) SWCNT 1 asym. −4533.9033 −4533.9102 (2.02) 168.94 168.98 1.37 1.33
(10,0) SWCNT 1 sym. −4533.9535 −4533.9402 (2.02) 169.21 169.14 1.10 1.17
(10,0) SWCNT 2 asym. −4495.8388 −4495.8144 (2.00) 169.13 169.00 1.18 1.31
(10,0) SWCNT 2 sym. −4495.9168 −4495.9041 (2.00) 169.55 169.48 0.76 0.83

a R: Spin-restricted; U: Spin-unrestricted; S: Singlet; T: Triplet.
b The values in the parentheses are the 〈S2〉 values.
c The stability energy per atom, defined as Ets/n, where Ets is the energy difference between the isolated
carbon atoms and the cluster and n is the total number of carbon atoms in the cluster.
d �Ef = Esa (perfect SWCNT) − Esa (defected SWCNT).

model. The energy of the triplet isomer is 14.10 kcal/mol lower than that of the
singlet isomer, which agrees with the results of the PBC model. Thus, the existence
of the symmetric 5-1DB defect on single-vacancy defected (5,5) SWCNT is without
a doubt.

The (5,5) SWCNT 2 asym. isomer (Figure 16-6g) is more stable than its symmet-
ric counterpart. The energy of the singlet state is 10.86 kcal/mol lower than that of
the triplet state. The ground state of the (5,5) SWCNT 2 sym. isomers is also singlet,
whose energy is 10.67 kcal/mol lower than that of the triplet state. The bond lengths
of the bridging bonds of the (5,5) SWCNT 2 sym. isomer are 1.687 Å, longer than
those of the (5,5) SWCNT 2 asym. isomer (1.534 Å). The removal of one or two
carbon atoms from perfect (5,5) SWCNT decreases the cohesive energy per carbon
atom by 1.35, 1.58, 0.97, and 1.62 kcal/mol for the (5,5) SWCNT 1 asym., 1 sym.,
2 asym., and 2 sym. systems, respectively. Apparently, the (5,5) SWCNT 2 asym.
isomer is the most stable one.

According to the FMO analysis (Figure 16-8A and B) of the singlet (5,5)
SWCNT 1 asym. and 2 asym. systems, we can see that vacancy defects severely
destruct the π conjugated system of (5,5) SWCNTs. Vacancy defects also create
localized electronic states, which are clearly shown by the HOMO and the LUMO
of the (5,5) SWCNT 1 asym. system around the nonagon. However, for the (5,5)
SWCNT 2 asym. system, the HOMO and the LUMO are extended π bonds around
the octagon and show no obvious localization.

The (10,0) SWCNT 1 sym. isomer (Figure 16-7c) is more stable than its asym-
metric counterpart (Figure 16-7b). The ground state of the (10,0) SWCNT 1 sym.
isomer is singlet, 8.34 kcal/mol lower in energy than the triplet state. The ground
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Figure 16-8. Frontier molecular orbitals of (A) the (5,5) SWCNT 1 asym. cluster, (B) the (5,5) SWCNT
2 asym. cluster, (C) the (10,0) SWCNT 1 sym. cluster, and (D) the (10,0) SWCNT 2 sym. cluster.
HOMO−n (p) is the nth molecular orbital below the HOMO with orbital energy p eV. LUMO+m (q)
is the mth molecular orbital above the LUMO with orbital energy q eV

state of the (10,0) SWCNT 1 asym. isomer is triplet, 4.33 kcal/mol more stable
than the singlet state. The bridging bonds of the symmetric isomers are 1.560
and 1.530 Å in length for the singlet and triplet states, respectively. However, the
bridging bonds for the asymmetric isomers are much longer, with bond distances of
1.761 and 1.751 Å for the singlet and triplet states, respectively.

The (10,0) SWCNT 2 sym. isomer is more stable than its asymmetric counter-
part. The energies of the symmetric and asymmetric isomers in their singlet states
are 8.16 and 15.31 kcal/mol lower than their triplet states, respectively. The bridg-
ing bonds for symmetric and asymmetric isomers are around 1.511 and 1.620 Å
in length, respectively. The removal of one or two carbon atoms from perfect (10,0)
SWCNT also decreases the cohesive energy per carbon atom by 1.37, 1.10, 1.18, and
0.76 kcal/mol for the (10,0) SWCNT 1 asym., 1 sym., 2 asym., and 2 sym. isomers,
respectively. Among them, the (10,0) SWCNT 2 sym. isomer is the most stable
one. According to the FMO analysis of these two systems (Figure 16-8C and D),
we can see that vacancy defects also severely destruct the π conjugated system of
(10,0) SWCNT. The LUMO of the (10,0) SWCNT 1 sym. system obviously has
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some major contributions from the defect site. Somehow, the localization of the
electronic state is not as obvious as that on (5,5) SWCNT.

16.5.2.2. Vacancy-Defected (5,5) SWCNT Clip

Removal one carbon atom from (5,5) SWCNT clip C200H20 results in a vacancy-
defected SWCNT clip C199H20 with the 5-1DB defect. The existence of the 5-1DB
defects may provide a possible new way to functionalize the sidewall of the
SWCNT. The semiempirical MNDO-PM3 method was initially employed to opti-
mize the geometries of C200H20 and C199H20, and the geometries were then fully
optimized within BPW91/6-31G. The geometric effect due to different methods on
the structure is negligible [1, 94].

The structure, DOS, and LDOS of C199H20 are shown in Figures 16-9a and b.
The removal of one carbon atom from the SWCNT relaxes the geometric con-
strain in the curved sidewall of the SWCNT and stabilizes the HOMO and the
LUMO, as indicated in Figure 16-9. The HOMO-LUMO gap of C199H20 (0.39 eV)
is slightly smaller than that of C200H20 (0.41 eV). The LDOS of different regions in
C200H20 corresponding to the vacancy in C199H20 are plotted to better understand
the effect of creating vacancy defect to the electronic structure of the SWCNT. The
contribution to the HOMO and the LUMO from the region of the vacancy defect

Figure 16-9. The density of states and local density of states of (a) the open-end vacancy-defected (5,5)
SWCNT segment C199H20 and (b) C200H20. (c)−(f) are the frontier molecular orbitals of the open-end
vacancy-defected (5,5) SWCNT segment C199H20. HOMO is the highest occupied molecular orbital,
and LUMO is the lowest unoccupied molecular orbital with orbital energy −3.72 eV. HOMO−n (p eV)
is the nth orbital below the HOMO with orbital energy p eV. L1−L4 are the local density of states for
each specified group of atoms as outlined on the structures. This figure is adopted from Ref. [94]
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in C199H20 (L1 in Figure 16-9a) is much stronger than that of the corresponding
region in C200H20. There are localized states at the vacancy defect region in the
HOMO and the LUMO. The π MOs in C199H20 is destructed to a large degree by
the vacancy defect with respect to the MOs of C200H20. The vacancy defect region
divides C199H20 into two parts at the middle nonagon through the direction perpen-
dicular to the SWCNT axis; this division is clearly manifested by the occupied MOs
from the HOMO−2 to the HOMO, especially by the HOMO−2 and the HOMO−1.
The HOMO consists of lone-pair electrons from the dangling carbon atom bonding
to two carbon atoms and the π bonds of the other carbon atoms of the nonagon. The
LUMO has dominant contributions from the nonagon especially from the dangling
carbon atom. However, only half of the SWCNT contributes to the LUMO. The
MOs of C199H20 indicate that the vacancy defect region will be the active center in
chemical reactions.

16.6. DOPED SWCNTS

The vacancy defects in both fullerene and SWCNT create new active centers.
Another way to create active center is replacing one carbon atom with another atom
such as B, N, or a metal atom, resulting in HSWCNT.

16.6.1. B- and N-Doped SWCNTs

The doping of B or N strongly modifies the electronic structure of SWCNT par-
ticularly near the Fermi level [73–77, 176], and enhances the non-linear optical
coefficients [177] and the sensitivity and selectivity of carbon nanotube, thus broad-
ening its potential application as chemical sensor [75]. Because of the electron
deficient nature of B, there are prominent acceptor-like peaks close to the Fermi
level of B-doped carbon nanotube [73], thus significantly enhancing the conduc-
tivity of carbon nanotube. Like the fullerene counterpart, the electron deficiency
of B-doped carbon nanotube makes such carbon nanotube useful in hydrogen stor-
age [178]. Structurely, the doping of B takes para position in a hexagon in carbon
nanotube [73]. On the other hand, the doping of N in carbon nanotube adopts
pyridine-like structure and brings donor-like peaks close to the Fermi level because
of the electron abundance in N [176]. In different situations, N-doped carbon nano-
tube can be either n-type or p-type (with vacancy) device [76]. However, the mecha-
nism of formation [179], detailed structure [73–77], and applications of such doped
carbon nanotubes [94, 177] await for further investigations.

16.6.2. Ni-, Pd-, and Sn-Doped SWCNTs

Studies on metal-doped carbon nanotubes are rather sparse [1, 180, 181]. For the
main group elements (such as B, N, and O) whose electronic structures and sizes
are similar to those of carbon, their dopings to carbon nanotubes do not greatly dis-
tort the structures of carbon nanotubes. However, due to their large atomic radii
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and partially occupied d orbitals, transition metal atoms have different bonding
to carbon from those of the main group elements. For example, a carbon atom
at the middle of the clip can be replaced with a metal atom from either outside
(exo-doped) or inside (endo-doped) of the tube. Hence, two questions naturally
arise: which one of the exo- and endo-doped conformations is more stable for metal-
doped HSWCNT and what are the electronic structures and reactivities of these
doping sites? To answer these questions, Pd-, Ni-, and Sn-doped HSWCNTs were
studied with quantum mechanic methods. A (5,5) SWCNT with 70 carbon atoms
saturated with 20 hydrogen atoms at two ends was chosen for the modeling.

Geometry optimizations and frequency predictions on these HSWCNTs were
carried out with B3LYP/LANL2MB [182]. The energies and electronic properties
were refined with B3LYP/LANL2DZ [182]. The model and optimized structures for
these HSWCNTs are shown in Figure 16-10. Major bond distances and relative ener-
gies of these HSWCNTs are listed in Table 16-4. The doping metal atom essentially
bonds to three carbon atoms in both endo- and exo-doped HSWCNTs. All exo-
doped HSWCNTs are more stable than their corresponding endo-doped HSWCNTs.
All bond distances between the doping metal atom and the bonded carbon atoms
are much longer than any C−C bond, thus resulting in much distorted geometry
around the doping site and different electronic structures for endo- and exo-doped
HSWCNTs. Except for the Ni- and Pd-endo-doped HSWCNTs, the doping metal
atoms have large amount of positive charges. The doping metal atoms are always
more positively charged in the endo-doped HSWCNTs than in the corresponding
exo-doped HSWCNTs.

The difference in electronic structures between the endo- and exo-doped
HSWCNTs and among different HSWCNTs is illustrated by the HOMO and the
LUMO of these HSWCNTs, shown in Figure 16-11. The metal atoms in all these
HSWCNTs serve as both electron acceptors and donors because of their partially
occupied d orbitals, except for Sn-doped HSWCNTs.

Figure 16-10. The structures of undoped (5,5) SWCNT and Ni-, Pd-, Sn-, Se-, and Te-doped (5,5)
HSWCNTs



Electronic Properties and Reactivities of Carbon Nanotubes 447

Table 16-4. Data for metal-doped (5,5) HSWCNTs. The doping atom and its neighboring three carbon
atoms are donoted by X, C1, C2 and C3 as in Figure 16-11, where the latter two carbon atoms are
symmetrically equivalent to each other. Energy is in eV; distance is in Å

X Conformation Relative energy X−C1 distance X−C2(C3) distance Partial charge on X

Ni exo 0.00 1.905 1.851 0.310
endo 1.63 1.791 1.847 −0.004

Pd exo 0.00 2.066 2.009 0.195
endo 2.55 1.937 2.022 −0.104

Sn exo 0.00 2.184 2.145 0.643
endo 4.29 2.112 2.111 0.501

Se exo 0.00 2.121 2.032 0.797
endo 3.77 2.083 1.988 0.578

Te exo 0.00 2.268 2.163 0.987
endo 4.83 3.013 2.260 0.496

Figure 16-11. The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular
orbitals (LUMOs) of metal-doped (5,5) HSWCNTs
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16.6.3. Chalcogen Se- and Te-Doped SWCNTs

Chalcogen Se- and Te-doped HSWCNTs were studied by the same method. The
structures, the HOMO, and the LUMO of these HSWCNTs are shown in Figures
16-10 and 16-11. Relative energies, bond distances, and charges for the doping
atoms are listed in Table 16-4. Se and Te are positively charged in both the exo- and
endo-doped HSWCNTs. The HOMOs in all these HSWCNTs are localized around
the doping site. The LUMOs of Se-doped HSWCNTs and Te-exo-doped HSWCNT
are delocalized along the tube.

16.6.4. Pt-Doped SWCNTs

From above, we conclude that the exo-doped HSWCNT is more stable than the
endo-doped HSWCNT and there exists localized electronic states at the doping
site. Such conclusion could be also true for HSWCNT rods if the doping site is
at the middle of the sidewall [1, 180]. However, the hemispherical caps of SWCNT
rod have different curvature from that of the sidewall, thus can have different elec-
tronic structure and reactivity [10, 11, 17, 138]. To appreciate such difference in the
electronic structure and reactivity, Pt-doped HSWCNT rods originated from (5,5)
SWCNT were studied with BPW91/LANL2DZ.

For (5,5) SWCNT rod C170, the NBO partial charge analysis indicates that the
five atoms connecting to the top pentagon of the cap have the largest negative
charges and the atoms of the next layer have the largest positive charge. Thus,
the caps can be chemical reaction centers. Substitution of the carbon atoms in the
cap by other elements will change the chemical selectivity and sensitivity of the
SWCNT rod in catalytic reactions. Replacing one carbon atom with a Pt atom
in the end pentagon, in the next layer, or on the sidewall of C170 results in three
Pt-doped SWCNT rods: C169Pt(ce), C169Pt(c), and C169Pt(w). Single-point calcu-
lations at the BPW91/6-31G level of theory predict C169Pt(ce) is the most stable
nanorod: the total energies of C169Pt(c) and C169Pt(w) are 0.8 and 17.9 kcal/mol
higher, respectively. Evidently, the cap-doped SWCNTs are more stable than the
wall-doped SWCNT, because of the relaxation of the constraint on the cap through
doping. The total energy of the triplet electronic state of the Pt-doped nanorod is
found to be higher than that of the singlet, i.e. the ground state of the Pt-doped
nanorod is singlet.

Figure 16-12 displays the structures, DOS, and LDOS of the cap-end-doped
C169Pt(ce), the cap-doped C169Pt(c), and the wall-doped C169Pt(w). Their FMOs
are shown in Figure 16-13. The shapes of the LDOS of different layers are similar
at the FMO region, which indicates the delocalization of the FMOs of the HSWCNT
rods.

The Pt−C bond distances at the cap end are 2.01 Å and the other Pt−C bond
distances are 1.96 Å. Clearly, the Pt atom points outward along the translation direc-
tion of the SWCNT rod. The distortion of the SWCNT rod due to the Pt-doping is
localized on the pentagons and hexagons around Pt. The overall DOS of C169Pt(ce)
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Figure 16-12. (a) Density of states and local density of states for the Pt cap-end-doped nanorod
C169Pt(ce) with Cs symmetry. The HOMO has orbital energy −4.51 eV, and the LUMO has orbital
energy −4.21 eV. (b) Density of states and local density of states for the Pt cap-doped nanorod C169Pt(c)
with Cs symmetry. The HOMO has orbital energy −4.48 eV, and the LUMO has orbital energy −4.25 eV.
(c) Density of states and local density of states for the Pt wall-doped nanorod C169Pt(w) with Cs sym-
metry. The HOMO has orbital energy −4.46 eV, and the LUMO has orbital energy −4.26 eV. L1−L9
are the local density of states for each specified layer of atoms as marked on the structures. This figure is
adopted from Ref. [180]

is similar to that of C170 with D5h symmetry. The doping of Pt produces more peaks
in the DOS in the FMO region due to the introduction of the Pt 5d orbitals and the
induced electronic structure change in the doped cap.

The HOMO of C169Pt(ce) is similar to that of C170, except for the significant
contributions from Pt and its neighboring carbon atoms in C169Pt(ce). The effect of
Pt on the electronic structure of C169Pt(ce) is also reflected in several other frontier
occupied MOs [1, 180]. The HOMO−1 has some major contributions from the Pt
5d orbitals, which form d-p π bonds with the carbon atoms in the next layer. The
geometric distortion in C169Pt(ce) induces single and double CC bond alteration
around Pt, which is reflected in the strong π bonding around the doped cap in the
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Figure 16-13. Relevant frontier orbitals of the Pt wall-doped nanorods: (a) C170 with D5h symmetry, (b)
C169Pt(ce) with Cs symmetry, (c) C169Pt(c) with Cs symmetry, and (d) C169Pt(w) with Cs symmetry.
LUMO+1 (q eV) is the first orbital above the LUMO with orbital energy q eV. This figure is adopted
from Ref. [180]

HOMO−5 [180]. The LUMO of C169Pt(ce) is very similar to that of C170. The
next unoccupied MO, the LUMO+1 (and the LUMO+2), of C169Pt(ce) is mainly
from the 5d orbitals of Pt, and the contribution to this unoccupied MOs from the
un-doped cap diminishes. According to the MOs of C169Pt(ce), it is quite clear that
the reactive center in C169Pt(ce) is around the location of Pt.

The Pt atom can donate electrons to electron acceptors and its empty 5d orbitals
can accept electrons from electron donors, e.g. in reaction with gases like H2, C2H4,
CO, NH3, NO, etc. The NBO analysis indicates that Pt transfers about 0.80 electrons
(0.40 electrons from 6s and 0.40 electrons from 5d) to the nearby carbon atoms:
the electronic configuration of Pt is essentially [Xe]5d8.606s0.60. The carbon atom
connecting to Pt in the second layer from the doped cap end has the largest negative
charge, –0.22.

The DOS and the LDOS of each layer of atoms of C169Pt(c) are very similar to
those of C169Pt(ce). The structure of C169Pt(c) is also similar to that of C169Pt(ce),
except for the region around Pt. The FMOs of C169Pt(c) are very similar to those
of C169Pt(ce) [180]. The noticeable difference is that Pt contributes to the HOMO
of C169Pt(c) more than it does in C169Pt(ce), which enhances the reactivity of Pt
in C169Pt(c). The electronic configuration of Pt is essentially [Xe]5d8.636s0.60. The
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partial charge of Pt is 0.77 and the carbon atom connecting to Pt in the top pentagon
has the largest negative partial charge, –0.25.

The DOS of C169Pt(w) around the FMO region is different from those of
C169Pt(ce) and C169Pt(c): the contribution to the DOS at the FMO region from Pt
has noticeably increased in C169Pt(w). The LDOS of Pt indicates that Pt contributes
significantly to the DOS at the FMO region in C169Pt(w). The introduction of Pt on
the sidewall of the SWCNT also drastically changes the LDOS of its neighboring
carbon layers, as vividly demonstrated by the comparison of the LDOS of L2 and
L3 with L1 and L2 of C170 in Figure 16-12 and the HOMO and the LUMO in Figure
16-13. From the HOMO−1 to the LUMO+3, Pt has significant contributions to each
MO [180]. The HOMO-LUMO gap (0.53 eV) of C169Pt(w) is larger than those of
C170 (0.35 eV), C169Pt(ce) (0.30 eV), and C169Pt(c) (0.23 eV). In chemical reac-
tions, Pt will serve as various catalytic centers with flexible oxidation states capable
of accepting and donating electrons. The electronic configuration of Pt is essentially
[Xe]5d8.636s0.54. The partial charge of Pt is 0.83. The partial charge of the carbon
atom connecting to Pt in the symmetric plane is –0.18 and the partial charges of the
other two equivalent carbon atoms connecting to Pt are –0.10.

In summary, the doping of Pt in SWCNT significantly changes the local elec-
tronic structure of the HSWCNT especially around the doping site, thus creating
new chemical active center.

16.6.5. Gas Adsorptions on Pt-Doped SWCNTs

Doping of Pt enhances both the electron accepting and donating capacities of the
doped nanorod, changes the chemical reactivity and regioselectivity of the SWCNT,
and broadens the field of the applications of the SWCNT rods in such areas as gas
sensors [183]. Present studies have found that the change of structure and reactivity
through the doping of Pt in the SWCNT is localized at the doping site. Adsorptions
of C2H4 and H2 on the Pt atom of the three Pt-doped SWCNTs reveal the different
reactivity of the Pt-doped SWCNTs. The relative stability of the Pt-doped SWCNTs
and the adsorption energies of C2H4 and H2 on the Pt-doped SWCNTs are collected
in Table 16-5. Figure 16-14 shows the bond distances at the adsorption site.

Table 16-5. The relative stabilities of the Pt-doped nanorods and the adsorption energies of C2H4 and
H2 on the Pt-doped nanorods. The minus sign indicates the release of the heat of formation upon the
adsorption [180]. All energies are in kcal/mol

Adsorbate Level of theory C169Pt(ce) C169Pt(c) C169Pt(w)

None BPW/6-31G 0.0 0.8 17.9
B3LYP/Lanl2mb 0.0 2.4 28.6
B3LYP/Lanl2dz 0.0 3.3 26.3

C2H4 B3LYP/Lanl2mb −22.4 −23.5 −19.2
B3LYP/Lanl2dz −20.6 −22.2 −14.7

H2 B3LYP/Lanl2mb −2.1 −2.3 −10.7
B3LYP/Lanl2dz −2.8 −3.0 −10.9
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Figure 16-14. The relevant bond distances (in Å) of the adsorptions of C2H4 and H2 on the Pt atom
in the Pt-doped nanorods (C169Pt). The Pt atom is in purple. The C=C bond distances in the C2H4
adsorption and the HH bond distances in the H2 adsorption are in black. The PtC bond distances between
Pt and the carbon atoms of C2H4 in the C2H4 adsorption and the PtH bond distances in the H2 adsorption
are in blue. The PtC bond distances between Pt and its nearest carbon atoms of the SWCNT are in red.
The numbers in parentheses are the PtC bond distances of the isolated C169Pt without adsorption, the
C=C bond distance in the isolated free C2H4, and the H−H bond distance of the isolated free H2. This
figure is adopted from Ref. [180]

As exemplified by the Pt−C bond distances, there is no significant structural
change at the Pt-doped region for the adsorption of H2 on the two cap-doped
SWCNT rods. These two cases are physisorptions according to the H−H bond
distance and the distances between H2 and the SWCNT rod (Figure 16-14) and
the adsorption energies (Table 16-5). On the other hand, the adsorption of H2 on the
Pt atom in the middle of the nanorod C169Pt(w) is a chemical one. Obviously, the
H−H bond is broken and the two hydrogen atoms form chemical bonds with Pt with
bond lengths of ca 1.70 Å. The distance between the two hydrogen atoms is 2.29 Å.
This chemisorption releases about 10.0 kcal/mol energy, which is nearly five times
of those energies (about 2.0–3.0 kcal/mol) released by the adsorption of H2 on the
Pt atom at the end cape of the SWCNT rods. The interaction between H2 and Pt in
the two physisorptions is mainly the electron transfer from the bonding orbital of H2
to the empty 5d orbital of Pt [180]. Though the two hydrogen atoms in the adsorp-
tion on C169Pt(w) are separated, the interaction between these two hydrogen atoms
remains strong, as revealed by the MO overlaps between them [180]. The strong
bonding between Pt and H indicates the possibility of more H2 can be adsorpbed on
Pt, which opens a new path in search of hydrogen storage material.

The adsorption of C2H4 on the Pt atom in the three Pt-doped nanorods is
physisorption with C−Pt distances ca 2.30 Å. As the adsorption site changes
from the end-capes of C169Pt(ce) and C169Pt(c) to the middle of the sidewall of
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C169Pt(w), the CC bond distance in C2H4 gets longer, and Pt−C bond distances
between C2H4 and Pt get shorter, perhaps indicating the strength of the interaction
between C2H4 and the Pt-doped SWCNTs in this ascending order: C169Pt(ce)
< C169Pt(c) < C169Pt(w). However, this conclusion based on structure analysis alone
does not agree with the data in Table 16-5: the adsorption energy of C2H4 is the
smallest on C169Pt(w) and the largest on C169Pt(c). The trend of the adsorption
strengths of C2H4 on the Pt-doped SWCNTs is the compromise of the weaken-
ing of the C=C double bond in C2H4, the electrostatic attraction between the two
carbon atoms of C2H4 and Pt, and the repulsion between the C2H4 and the SWCNT
rod. It is also interesting to note that the geometries of the adsorptions of C2H4 on
the Pt atom at the end-cap of the Pt-doped SWCNTs are very similar to those on the
Pt-doped fullerene, C59Pt [88], which should possess similar adsorption strengths.

Overall, the adsorptions of H2 and C2H4 get stronger as the adsorption site
changes from the hemispheric cap to the sidewall of the SWCNT rod, as manifested
by the relevant MOs [180] and the adsorption energies, reflecting different chemical
activity on different sites.

16.7. CHEMICAL REACTIONS OF VACANCY-DEFECTED SWCNTs

MO and LDOS analyses reveal that the vacancy defect on SWCNT is chemical
active. Particularly, the carbon atom with dangling bond of the 5-1DB defect is the
active center. The modelings of the reactions of vacancy-defected (5,5) SWCNT clip
with NO [94] and O3 [184] provide strong evidence for the reactivity of the vacancy
defect. Recent modeling of H2 adsorbed at the vacancy in vacancy-defected (12,0)
SWCNT revealed that after overcoming a potential barrier, H2 is strongly adsorbed
on the carbon atom with dangling bond [185].

16.7.1. Computational Details and Model Selection

The electronic state of the 5-1DB vacancy is localized in vacancy-defected (5,5)
SWCNT according to the MO and LDOS analyses. Such localization enables the
treatment of the vacancy within the ONIOM model [94, 118, 184]. To validate the
modeling selection, a single-point calculation of the nonagon of the 5-1DB defect
capped by hydrogen atoms, C9H8 (shown in Figure 16-15b), was carried out at the
B3LYP/6-31G level of theory. Figure 16-15 clearly shows that the HOMO and the
LUMO, the most important MOs in chemical reactions according to Fukui frontier
orbital theory [186], of C199H20 are very close to those of C9H8. Hence, the C9H8
model can be used to represent most of the chemical properties of the 5-1DB defect
on the SWCNT [94].

A two-layered ONIOM model was used for the system. The nonagon of the
5-1DB defect and NO molecules were included in the high layer, which was treated
at the B3LYP/6-31G(d) level of theory [94]. All other carbon atoms were set in the
low layer, treated by UFF. The spin-unrestricted DFT method was applied to open-
shell species. Partial charges shown in Figure 16-15b indicate that the carbon atom
with dangling bond is the active center.
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Figure 16-15. (a) The top view of the 5-1DB defect on the (5,5) SWCNT, where the nonagon is chosen
as the high layer and the other carbon atoms are chosen as the low layer in a two-layered ONIOM model;
(b) The nonagon (with partial charges) of the 5-1DB defect capped by hydrogen atoms; (c) The LUMO
ofC199H20; (d) The LUMO of C9H8; (e) The HOMO of C199H20; (f) The HOMO of C9H8. The figure
is adopted from Ref. [94]

16.7.2. Chemical Reaction of NO with Vacancy-Defected SWCNT

The reaction of NO with C199H20 proceeds in two steps: attacking of the first NO to
the tube network and extracting of the oxygen atom of the first attacking NO by the
second attacking NO. The major structures of the active site in the reaction and rela-
tive energies of the stationary points on the reaction path are shown in Figure 16-16.

The active carbon atom C1 has the smallest steric hindrance and is the
most chemically reactive center. The partial charges of NO are distributed as
N(+0.181)−O(−0.181), whereas the active carbon atom has a +0.149 partial charge.
When NO is far away from C1, the electrostatic effect should be the dominant fac-
tor controlling the initial reaction. A transition state (TS1) for the O-end attacking
mode is found for two possible attacks with N or O attacking the active carbon atom.
The bond length of C2 and C3 in TS1 is 1.55 Å, a typical single C−C bond. The
distance between O and C1 is 1.70 Å. The energy barrier is only 8.6 kcal/mol, which
means the initial attacking is very feasible, mainly due to the strong electrostatic
attraction and molecular orbital overlap between O and C1. At this stage, the pen-
tagon of the 5-1DB defect still exists, and there are 0.052 electrons transferred from
the SWCNT to NO. From the shapes and energies of the FMOs of TS1, NO and
the SWCNT with the 5-1DB defect, the orbital interaction for TS1 can be viewed
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Figure 16-16. Reaction profiles and geometries of the transition states, intermediates, and finally prod-
uct of the reaction of NO molecules with C199H20. The units of energy and bond length are in kcal/mol
and Å, respectively. The active carbon atom is labeled as Carbon 1, and other two important carbon atoms
are labeled as Carbons 2 and 3. The nitrogen atoms are in blue, and the oxygen atoms are in red. (a) is
the reaction profile of NO with 5-1DB defected (5,5) SWCNT and (b) is the reaction profile of NO with
LM3. (e) and (f) are the HOMO and the LUMO of C199NH20, respectively. This figure is adopted from
Ref. [94]

as the single occupied molecular orbital of NO interacting with the HOMO of the
SWCNT with the 5-1DB defect [94].

After overcoming the initial reaction barrier, the system reaches the first inter-
mediate, LM1, with a bridge conformation. The oxygen atom is still chemically
bounded to C1, and the nitrogen atom begins to form chemical bond with C2. When
O approaches C1, N also approaches C2, with an in-phase orbital overlap. In LM1,
the pentagon begins to open, and the C2−C3 bond is nearly broken with an elon-
gated bond length 1.69 Å. The energy of LM1 is 19.1 kcal/mol lower than that of
the reactants: the initial reaction is exothermic. Due to the breaking of the C2−C3
bond, C3 in LM1 becomes a new active center because it has one dangling bond.
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System can easily overcome an energy barrier of 12.2 kcal/mol from LM1 reach-
ing a transition state, TS2, which is smaller than the energy released from the
initial reaction (19.1 kcal/mol). After crossing TS2, system reaches LM2 forming
a hexagon of five carbon atoms and one nitrogen atom. The formation of LM2
is highly exothermic: the system releases 85.5 kcal/mol. Such a big amount of
energy release is enough for the system to overcome TS3 with reaction barrier
of 41.1 kcal/mol. TS3 connects to the two intermediates that have either O or N
bounded to C1. The forward intermediate is LM3. In LM3, one can see that N forms
single bonds with C1, C2, and C3, and also with O. The oxygen atom sticks out of
the sidewall of the nanotube. The energy of LM3 is 90.0 kcal/mol lower than that of
the reactants and is only 2.4 kcal/mol higher than LM2, indicating that LM3 is quite
stable. In the end of the first step, the net reaction of NO with C199H20 is that NO
inserts its N into the defect site with the initial attack of O toward the active carbon
atom. This reaction is highly thermally feasible.

The relatively long bond distance between N and O (1.41 Å) indicates that O is
not strongly bounded to N, so this N−O bond may be easily broken upon proper
attack from another NO molecule in the NO excess environment. The attack of a
second NO toward LM3 (C199H20NO) proceeds.

The N end of the second NO attacks C1 and O1 (the oxygen atom of the first NO)
to reach TS4. The distance between C1 and N2 (the nitrogen atom of the second NO)
in TS4 is 1.61 Å; the C1−N1 (the nitrogen atom of the first NO) bond elongates to
1.58 Å; and the distance between N2 and O1 is 2.55 Å. The electrostatic attraction
between N2 and O1 stabilizes TS4, whereas the electrostatic repulsion between C1
and N2 counterbalances this attraction. The overall interaction of these two reactants
renders the reaction barrier for TS4 to be only 3.7 kcal/mol: this reaction is very
facile.

A complex of NO2 with C199H20N forms following TS4. In the complex, NO2
bonds to C199H20N through a long ionic N2−C1 bond with a bond length of 1.64 Å,
and the interaction between the oxygen atom (O1) of NO2 and the nitrogen atom
(N1) of C199H20N is very weak with a bond distance of 2.64 Å. In an experiment set-
ting, NO2 can be removed from the surface of the SWCNT by a flow of Ar gas [35].
The formation of the final product releases 78.3 kcal/mol energy from the reaction
of the second NO with C199H20NO. The reverse reaction barrier of 82.0 kcal/mol
makes the reverse reaction kinetically virtually impossible under normal conditions.
In short, the second NO extracts the oxygen atom from C199H20NO, forming NO2
and the N-substitutionally doped SWCNT through a one-step reaction.

The doped N stays slightly above the sidewall surface of the SWCNT in the
N-substitutionally doped (5,5) SWCNT (C199NH20) (Figure 16-16c), because of
the longer σ C−N bonds and the asymmetric sp3 hybridization of N. The HOMO-
LUMO gap is only 0.62 eV, which is much smaller than those of C200H20 and
C199H20 (1.38 and 1.12 eV, respectively). Thus, the N-substitutionally doped (5,5)
SWCNT has much enhanced conductivity. Substitutional doping of N destructs the
conjugated π system of C200H20 and introduces localized electronic states (Figures
16-16e and 16f) like what the 5-1DB defect does to perfect SWCNT, but to a less
degree.
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16.7.3. Chemical Reaction of O3 with Vacancy-Defected SWCNT

The net reaction of NO with a vacancy-defected (5,5) SWCNT (C199H20) is the
insertion of N into the defect site to form an N-doped HSWCNT. Is it possible to
produce O-doped HSWCNT with reaction of O3 with vacancy-defected open-end
SWCNT segment C119H20? What is the product of such reaction? Reaction of O3
with C119H20 was studied similarly hereafter [184].

Static potential energy curves for possible reaction pathways of the reaction were
explored with a 2-layered ONIOM[B3LYP/6-31G(d):AM1] model, in which the
5-1DB nonagon (Figure 16-17a) and O3 were chosen as the high layer and the
rest part was the low layer. In order to identify the most possible reaction path on
the static PES, QMMD-based atom-centered density matrix propagation (ADMP)
method [133–136] was employed in MD simulations for the reaction of O3 with
C119H20. The successful application of ADMP in chemical reactions [187] ensures
the reliability of our MD simulation studies at 300 K with time step 0.25 fs and
fictitious electronic mass 0.1 au. A 2-layered ONIOM/ADMP scheme was applied
for the QMMD simulation [188]. The partition of the ONIOM model in the ADMP
calculations was the same as that of the static quantum mechanical calculations,
except that the UFF force field was used for the low layer to save computational
time.

In the 5-1DB nonagon, C1 is the active carbon atom and is the major contributor
to the HOMO and the LUMO of the vacancy-defected SWCNT [180]. The out-of-
plane geometry and the large positive charge of C1 make it more reactive toward
the attacking reagents. The bond lengths and the bond orders indicate that around

Figure 16-17. Geometries of the reaction center of the transition states, intermediates, and finally prod-
uct of the reaction of O3 with the active carbon atom of C119H20. The units of energy and bond length
are in kcal/mol and Å, respectively. The oxygen atoms are in red. This figure is adopted from Ref. [184]
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the 5-1DB defect site, the C2−C3, C4−C5, C6−C7, and C8−C9 bonds have some
significant π bond characters. In fact, these four bonds have similar bond lengths
to the other aromatic C=C double bonds on the sidewall of the SWCNT. Thus,
the attacking of O3 on C1 and these four bonds in the nonagon were studied as
prototype reactions of O3 with the 5-1DB defect site. The ADMP simulations will
be presented at the end to verify the reaction pathway.

16.7.3.1. Reaction of O3 with the Active Carbon Atom

The structures of the initial intermediate (aComplex) and the initial attacking transi-
tion state on C1 (aTS1) are shown in Figure 16-17b. In aComplex, O3 and C1 form
a tetragon. The electrostatic attraction between C1 and O1 and between C1 and O3
stabilizes aComplex [184], whereas the electrostatic repulsion between C1 and O2
counteracts with this attractive stabilization. In aTS1, O3 and C1 form a more com-
pact tetragon than the one in aComplex. The imaginary vibrational mode shows the
shortening of the C1−O1 bond and elongating of the O1−O2 bond, indicating the
attacking of O1 to C1 and the breaking of the O1−O2 bond, i.e. the dissociation of
O3. Based on the NBO analysis of aTS1, the partial charges of O1, O2, O3, and C1
are −0.21, 0.22, −0.21, and 0.14, respectively. So, there are 0.20 electrons trans-
ferred from the SWCNT to O3, and the electrostatic interaction scheme in aTS1
is qualitatively the same as that in aComplex. Following the imaginary vibrational
mode forward, C1 indeed captures O1 and the outgoing singlet O2 (1�g) can be
immediately quenched into a triplet O2 (3�g–). The C1−O1 bond is very strong
with a bond length of 1.209 Å, close to a typical carbonylic C=O double bond.
The structure of the product (aProduct) is shown in Figure 16-17b. The energies of
aComplex and aTS1 are 5.9 and 0.3 kcal/mol lower than the reactants, respectively.
The forward reaction barrier is only 5.6 kcal/mol for aComplex, and the effective
forward reaction barrier of the overall reaction is very close to zero, only −0.3
kcal/mol. The overall energy released from the reaction is −128.0 kcal/mol. Thus,
the reaction of O3 with C1 is highly exothermic and facile.

16.7.3.2. Reaction of O3 with the C8−C9 Bond (Position 1)

The attack of O3 on C8−C9 bond first forms an initial intermediate, P1Complex, and
goes through a transition state, P1TS1 (Figure 16-18). P1Complex was reported as a
π-complex in previous matrix spectroscopic and theoretical studies of ozonization
of certain alkenes [189, 190]. The complex is stabilized by the interaction of the
π-type HOMO and LUMO on alkenes and O3. P1Complex is 4.3 kcal/mol more
stable than the reactants, whereas P1TS1 lies 2.4 kcal/mol above the reactants. In
the first intermediate P1LM1, the C8−C9 bond length is 1.663 Å, longer than those
of P1Complex (1.438 Å) and P1TS1 (1.483 Å), due to the rehybridization of C8 and
C9 from sp2 to sp3. The binding energy of P1LM1 is −27.2 kcal/mol (relative to the
reactants), and the reaction of O3 with C8−C9 is exothermic.

Two different pathways were found for the forward decomposition of P1LM1. In
the first pathway, the system climbs through the transition state P1TS2, by breaking
the O2−O3 bond (2.164 Å) and forming the C1−O3 bond (1.781 Å), with an
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Figure 16-18. Geometries of the reaction center of the transition states, intermediates, and finally prod-
uct of the reaction of O3 with the C8−C9 bond (position 1) on the nonagon of C119H20. The units of
energy and bond length are in kcal/mol and Å, respectively. The oxygen atoms are in red. This figure is
adopted from Ref. [184]

activation barrier 35.3 kcal/mol. After overcoming P1TS2, O1 and O2 dissociate
as a singlet O2, the C9−O3 bond breaks, and O3 forms a carbonylic C=O double
bond with C1, and yields the same product aProduct as in the reaction of O3 on C1.
The second decomposition pathway goes through another transition state P1TS2′
and forms an epoxy adduct P1epo89. The imaginary vibrational mode clearly shows
the breaking of the O1−O2 and C9−O3 bonds. The activation barrier from P1LM1
to P1TS2′ is 42.9 kcal/mol, which is 7.6 kcal/mol higher than that of the first decom-
position pathway. Contrast to the high exothermicity of the first decomposition
pathway (−61.5 kcal/mol relative to P1LM1), the second decomposition pathway is
endothermic (17.5 kcal/mol with respect to P1LM1). Therefore, the first decomposi-
tion pathway is kinetically and thermodynamically much more favourable than the
second decomposition pathway. However, the high reaction barrier (35.3 kcal/mol)
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from P1LM1 to the products makes this reaction pathway uncompetitive to the
dissociation pathway on the active atom.

16.7.3.3. Reaction of O3 with the C6−C7 Bond (Position 2)

The structures of P2Complex, P2TS1, and P2LM1 in the course of O3 attacking the
C6−C7 bond are shown in Figure 16-19. P2Complex is also a π-complex according
to its structure. The imaginary frequency mode of P2TS1 mainly shows the attacking
of O1 to C6 and the stretching of the C5−C6 bond. In the primary ozonide P2LM1,
the C5−C6 bond (1.719 Å) is nearly broken. With respect to the energy of the
reactants, P2Complex lays 4.5 kcal/mol lower, whereas P2TS1 stays 6.4 kcal/mol
higher. Thus, the forward reaction barrier from P2Complex is 10.9 kcal/mol, which

Figure 16-19. Geometries of the reaction center of the transition states, intermediates, and finally prod-
uct of the reaction of O3 with the C6−C7 bond (position 2) on the nonagon of C119H20. The units of
energy and bond length are in kcal/mol and Å, respectively. The oxygen atoms are in red. This figure is
adopted from Ref. [184]
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is 5.3 kcal/mol higher than that of the reaction on C1. The binding energy of P2LM1
is −24.2 kcal/mol, thus the reaction of O3 with C6−C7 is also exothermic.

There are two different decomposition or isomerization pathways of P2LM1. The
first pathway needs to overcome a 28.5 kcal/mol activation barrier and reaches
the transition state P2TS2, in which O3 attacks C8 and breaks the O2−O3 bond.
After passing P2TS2, the system relaxes to P2LM2 by releasing nearly 5 kcal/mol
energy. P2LM2 is 23.6 kcal/mol less stable than P2LM1. P2LM2 can isomerize to
P2Product through another transition state, P2TS3, by overcoming a small barrier of
2.5 kcal/mol. In P2TS3, O1 begins to migrate from C6 to C1. In P2Product, O1 forms
bond with C1 and O2 forms bond with C6: O1 and O2 thus coalesce into a bridge
between C6 and C1. P2Product is 79.2 kcal/mol more stable than the reactants.

Another isomerization pathway of P2LM1 is going through the transition state
P2TS2′, in which O1, O2, O3, C6, and C7 are almost in the same plane. There is
virtually no energy cost from P2LM1 to P2TS2′. After passing P2TS2′, the system
goes to the endo-primary ozonide P2LM2′, whose energy is only 0.5 kcal/mol lower
than that of the exo-primary ozonide P2LM1. The isomerization continues moving
forward to overcome a 24.8 kcal/mol barrier and reaches P2TS3′, in which C5−C6
is almost broken (1.862 Å). The imaginary vibrational mode in P2TS3 shows the
breaking of the O3−C7 and O1−O2 bonds and the attacking of O1 to C5. Once
overcoming this barrier, the system yields the final product P2Product′, which is
159.8 kcal/mol more stable than the reactants. Even though, the 24.6 kcal/mol reac-
tion barrier from P2LM2′ to the final products renders this pathway unfavorable
compared to the dissociation on the active atom.

16.7.3.4. Reaction of O3 with the C4−C5 Bond (Position 3)
P3Complex, in the course of O3 attacking the C4−C5 bond (Figure 16-20), is also a
π-complex according to its structure. The imaginary vibrational mode of transition
state right after P3Complex, P3TS1, clearly indicates the concerted attacking of O1
to C4 and O3 to C5 and shows the stretching of the C4−C5 bond. The reaction bar-
rier for the reaction on C4−C5 is 19.3 kcal/mol. After overcoming this barrier, the
system goes to P3LM1, which is not a primary ozonide. In P3LM1, the C4−C5 bond
(2.982 Å) is totally broken, and O1, O2, and O3 form a bridge between C4 and C5.
P3LM1 is 46.8 kcal/mol below the energy of the reactants. It is thermodynamically
more stable than the primary ozonides P1LM1 and P2LM1.

There are two isomerization pathways of P3LM1. The first one goes through
P3TS2, by breaking of the O1−O2 bond with a barrier only 7.7 kcal/mol. After
crossing P3TS2, the system goes to P3Product, which is 51.5 kcal/mol more stable
than the reactants. Another pathway goes through P3TS2′, in which O3 attacks C1
and simultaneously breaks the bond with O2 with a barrier of only 8.9 kcal/mol. The
product, P3Product′, in which O3 bridges C1 and C5, is 100.5 kcal/mol more stable
than the reactants. In spite of the exothermicity of this reaction pathway, the first
reaction barrier from P3Complex to P3LM1 is much higher than the corresponding
reaction barrier from aComplex to aTS1.
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Figure 16-20. Geometries of the reaction center of the transition states, intermediates, and finally prod-
uct of the reaction of O3 with the C4−C5 bond (position 3) on the nonagon of C119H20. The units of
energy and bond length are in kcal/mol and Å, respectively. The oxygen atoms are in red. This figure is
adopted from Ref. [184]

16.7.3.5. Reaction of O3 with the C2−C3 Bond (Position 4)

No π-complex for the reaction on the C2−C3 bond has been found (Figure 16-21).
In P4TS1, the O1−C2 bond is 1.498 Å, which is much shorter than those in the
previous initial-reaction transition states. The reaction barrier is 17.3 kcal/mol. The
primary ozonide P4LM1 is only 6.2 kcal/mol more stable than the reactants and is the
least stable primary ozonide. A dissociation pathway for P4LM1 has an activation
barrier 23.5 kcal/mol. The system goes through P4TS2, in which O1 begins to break
the bond with O2 and attack C1 at the same time and O2−O3 tends to leave as
singlet O2. After overcoming P4TS2, O2−O3 indeed dissociate from the system
and O1 migrates from C2 to C1, yielding the same final product (aProduct) as that
in the reaction on C1. The initial reaction barrier is too high for the system to reach
P4LM1 in comparison with the initial reaction barrier of the dissociation at the active
carbon atom.

16.7.3.6. Ab initio Molecular Dynamics Studies

Above, static quantum mechanical studies have found five different reaction posi-
tions of O3 on the nonagon of the 5-1DB defect site. Among all the reaction
pathways, the reaction of O3 with the active carbon atom C1 is most probable, as it
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Figure 16-21. Geometries of the reaction center of the transition states, intermediates, and finally prod-
uct of the reaction of O3 with the C2−C3 bond (position 4) on the nonagon of C119H20. The units of
energy and bond length are in kcal/mol and Å, respectively. The oxygen atoms are in red. This figure is
adopted from Ref. [184]

is a one-step reaction with the lowest initial attacking barrier. This reaction pathway
is much more kinetically favorable than other alternatives.

To verify the static quantum mechanical studies of the reactions of O3 around the
5-1DB defect, ADMP-based AIMD simulations were carried out at 300 K. Initially,
an O3 molecule was placed above the center of the nonagon so that all reactive
sites around the 5-1DB defect have equal chance to interact with the incoming O3
molecule. The dynamical simulation results ratify the spontaneous dissociation of
O3 on C1 to be the most probable reaction process [184]. The change of potential
energy of the system during the simulations is shown in Figure 16-22. In less than
50 fs, the system quickly overcomes a ca. 20 kcal/mol barrier and releases a large
amount of heat (about 160 kcal/mol), during which one oxygen atom is captured
by the active carbon atom C1, forming a carbonylic C=O bond, and the other two
oxygen atoms leave as O2. This mechanism is consistent with the scenario from
the static quantum mechanical study discussed above, despite the differences in the
energies due to the different methods used for the low layer of the 2-layered ONIOM
model.

In summary, among the five possible reactive positions of the nonagon of the
5-1DB defect in the vacancy-defected (5,5) SWCNT, the most favorite reaction
takes place on the active carbon atom, through a one-step process, in which the
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Figure 16-22. The relative potential energy (in kcal/mol) for the system during the ADMP simulation
of 1 ps at 300 K. The insert is the relative potential energy for the first 100 fs. This figure is adopted from
Ref. [184]

active carbon atom captures an oxygen atom from O3 and the remaining two oxy-
gen atoms dissociate away as O2. ADMP dynamical simulation at 300 K confirms
the fast spontaneous dissociation of O3 on the 5-1DB defect.

16.8. CONCLUSIONS AND OUTLOOKS

Electronic properties and reactivities of perfect, defected, and doped SWCNTs have
been reviewed based on the theoretical works from us and other groups.

Without defect, a SWCNT with open ends has delocalized electronic structure.
Hemispherical caps stabilize SWCNT rods and decrease the HOMO-LUMO gap of
SWCNT rod from that of SWCNT segment with open ends. The DOS, LDOS, and
FMOs further confirm the existence of localized states on the hemispherical caps in
the SWCNT rods. The circular cis-polyene chain between the cap and the sidewall
of a SWCNT rod is active in chemical reactions according to the MO analysis.

Introduction of vacancy defect brings localized active center to SWCNT (either
with open ends or with hemispherical caps) and fullerens. Vacancy defects on
SWCNTs also decrease the HOMO-LUMO gaps, destruct the π conjugated
system of the FMOs, and enhance their chemical activity. The chemical reactiv-
ity of the vacancy defect can be utilized to functionlize SWCNTs and to broaden
the applications of SWCNTs in electronic devices, hydrogen storage, chemical sen-
sor, catalysts, and optical materials. Reactions of NO and O3 with vacancy-defected
(5,5) SWCNT showcase such novel functionlizations.
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Doping of hetero-atom to SWCNT results in new active center. Depending on the
nature of the doping atom, the doped HSWCNT can have very different properties.
The adsorption of gas molecules on HSWCNT reveals different chemical activity of
the doping site. Such doped HSWCNT can be utilized as catalyst, chemical sensor,
and hydrogen storage material because of its chemical sensitivity, reactivity, and
selectivity.

Our studies point to new directions for future applications of HSWCNTs in catal-
ysis, chemical sensor, surface science, and nanotube chemistry. Certainly, more
sustained research efforts should be carried out to deepen our understanding of the
wonders of carbon nanotubes.
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Abstract: Multi-scale properties of biological protein materials have been the focal point of exten-
sive investigations over the past decades, leading to formation of a research field that
connects biology and materials science, referred to as materiomics. In this chapter
we review atomistic based modeling approaches applied to study the scale-dependent
mechanical behavior of biological protein materials, focused on mechanical deforma-
tion and failure properties. Specific examples are provided to illustrate the application of
numerical methods that link atomistic to mesoscopic and larger continuum scales. The
discussion includes the formulation of atomistic simulation methods, as well as examples
that demonstrate their application in case studies focused on size effects of the fracture
behavior of protein materials. The link of atomistic scale features of molecular structures
to structural scales at length-scales of micrometers will be discussed in the analysis of
the mechanics of a simple model of the nuclear lamin network, revealing how protein
networks with structural flaws cope with mechanical load

Keywords: Hierarchical material, Nanomechanics, Biological protein materials, Fracture,
Deformation, Experiment, Simulation, Materiomics, Multi-scale modeling

17.1. INTRODUCTION

Proteins constitute critical building blocks of life, forming biological protein mate-
rials (BPMs) such as hair, bone, skin, spider silk or cells, which play an important
role in providing key mechanical functions to biological systems [1–9]. Flaws and
failure of these materials can cause serious diseases and malfunctions in biological
organisms, for example due to misfolded protein structures. However, the funda-
mental deformation and failure mechanisms of biological protein materials remain
largely unknown, partly due to a lack of understanding of how individual protein
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building blocks respond to mechanical load and how they participate in the function
of the overall biological system. Significant advances in experimental, theoretical
and computational materials science have enabled a deeper understanding of BPMs
through the linking of structure-process-property (SPP). The material properties of
BPMs have been the focal point of extensive studies over the past decades, lead-
ing to formation of a research field that connects biology and materials science,
referred to as materiomics. Materiomics utilizes mechanistic insight, based on BPM
SPP relations in its biological context, to provide a basis for understanding disease
processes, to develop new approaches to treating genetic and infectious diseases,
injury and trauma as well as to enhance engineered materials via translating material
concepts from biology.

In biology, structural design and materials engineering is unified through for-
mation of hierarchical features with atomic resolution, from nano to macro (see
Figure 17-1, illustrating the multi-scale hierarchical structure of collagenous tis-
sue). Protein materials are capable of unifying disparate properties such as strength
(ability to sustain large stresses without fracture) and robustness (ability to undergo
deformation without fracture despite the presence of defects, equivalent to the
materials science concept of toughness), as well as other dynamical proper-
ties such as self-healing ability, adaptability, changeability, and evolvability into

Figure 17-1. Overview over different material scales, from nano to macro, here exemplified for col-
lagenous tissue [15, 17–19]. Biological protein materials such as collagen, skin, bone, spider silk or
cytoskeletal networks in cells feature complex, hierarchical structures. The macroscopic mechanical
material behavior is controlled by the interplay of properties throughout various scales. In order to under-
stand deformation and fracture mechanisms, it is crucial to elucidate atomistic and molecular mechanisms
at each scale (examples are provided in the plot). Computational multi-scale approaches thereby play a
crucial role in transcending through multiple scales in length and time
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multi-functional materials [1–9]. Many synthetic materials are not capable to unify
strength and robustness, leading to materials that are either extremely strong with
little ductility and high brittleness (e.g. ceramics, glass, silicon), or weak materials
with extreme ductility (e.g. soft metals like copper, nickel or gold). The molecular
basis of the ability of protein materials to combine contrasting material proper-
ties remains unexplained, albeit it has been suggested that it is perhaps related to
the characteristic molecular and hierarchical features found in biological protein
materials.

17.1.1. Nanomechanics of Protein Materials: Challenges
and Opportunities

The behavior of materials is intimately linked to the atomic microstructure of
the material. Whereas crystalline materials show mechanisms such as dislocation
spreading or crack extension [10–12], biological materials feature molecular unfold-
ing or sliding, with a particular significance of rupture of chemical bonds such as
hydrogen bonds, covalent cross-links or intermolecular entanglement. Additional
mechanisms operate at larger length scales, where the interaction of extracellular
materials with cells and of cells with one another, different tissue types and the
influence of tissue remodeling (at longer time-scales) become more evident. The
dominance of specific mechanisms is controlled by geometrical parameters, the
chemical nature of the molecular interactions, as well as the structural arrangement
of the protein elementary building blocks, across many hierarchical scales, from
nano to macro.

A major trait of virtually all biological materials is the occurrence of hierar-
chies and, at the molecular scale, the abundance of weak interactions. It has been
suggested that the presence of hierarchies in biological materials is vital to utilize
molecular and sub-molecular features for the generation of biologically functional
properties. Material components utilized in the material buildup are sometimes
mechanically inferior, such as weak H-bonds or highly brittle mineral crystal phases.
Hierarchical arrangements with characteristic length-scales provide the basis to
enhance these properties and to generate overall superior mechanical properties.
Thereby, hierarchies provide a link between structural organization and function
[13], and enable the bridging of nanoscale mechanisms to macroscale properties.
The types of processes play a crucial role in understanding the basis of materials
in their biological context. For example, the utilization of weak chemical interac-
tions such as H-bonds makes it possible to produce strong materials at moderate
temperatures and thus with limited energy use. An important distinction between
traditional “engineered” and biological materials is the geometrical occurrence of
defects. While defects are often distributed randomly over the volume in crys-
talline materials, biological materials consist of an ordered arrangement of structure
that reaches down to molecular scales. In many biological materials, defects are
placed with atomistic or molecular precision, and play a major role in the material
behavior observed at larger scales. Examples for such defects include material inter-
faces between protein and mineral crystals, structural defects in protein domains
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(e.g. stutter domains in intermediate filament proteins), or soft protein domains that
can undergo large deformation and thereby dissipate great amounts of energy. These
features have been observed in bone, nacre, collagenous tissue or cellular protein
networks, among others. It is noted that this placement of defects in materials is
similar to concepts used in the design of composite materials; however, in biolog-
ical protein materials structural elements range through many scales, from nano to
macro.

The mechanical properties of biological materials have wide ranging implica-
tions for biology. In cells for instance, mechanical sensing is used to transmit signals
from the environment to the cell nucleus or to control tissue formation and regen-
eration [1, 14]. The structural integrity and shape of cells is controlled by the cell’s
cytoskeleton, which resembles an interplay of complex protein structures and sig-
naling cascades arranged in a hierarchical fashion [1]. Bone and collagen, providing
structure to our body, or spider silk, used for prey procurement, are examples of
materials that have incredible elasticity, strength and robustness unmatched by many
synthetic materials, mainly attributed to its structural formation with molecular pre-
cision [4, 15–22]. The transfer of concepts observed in biology into technological
applications and new materials design remains a big challenge with potential big
payoff. In particular, the combination of nanostructural and hierarchical features
into materials developments could lead to significant breakthroughs to develop new
materials that mimic or exceed the properties found in biological analogs.

The characterization of material properties for biological protein materials may
also play a crucial role in developing a better understanding of diseases. Injuries
and genetic diseases are often caused by structural changes in protein materials
(e.g. defects, flaws, changes to the molecular structure), resulting in failure of the
material’s intended function. This approach enables one to probe how mutations in
structure alter the properties of protein materials. In the case of osteogenesis imper-
fecta (brittle bone disease), for instance, molecular-scale models predict a softening
of bone’s basic collagen constituent [23]. These observations may eventually pro-
vide explanations to the molecular origin of certain diseases. Additionally, these
findings provide evidence that material properties play an essential role in biologi-
cal systems, and that the current paradigm of focusing on biochemistry alone as the
cause of diseases is insufficient. It is envisioned that the long-term potential impact
of this work can be used to predict diseases in the context of diagnostic tools by
measuring material properties rather than focusing on symptomatic chemical read-
ings alone. Such approaches have been explored for cancer and malaria, for instance
[24, 25].

17.1.2. Strategy of Investigation

What are the most promising strategies in order to analyze biological protein
materials? An integrated approach that uses experiment and predictive simula-
tion concurrently has evolved into a successful research paradigm in materiomics.
Experimental techniques have now gained unparalleled accuracy in both length-
and time scales (see Figure 17-2), as reflected in development and utilization of
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Figure 17-2. Overview over computational and experimental tools. Hierarchical coupling of different
computational tools can be used to traverse throughout a wide range of length- and time scales. Such
methods enable one to provide a fundamental insight into deformation and fracture phenomena, across
various time- and length-scales. Handshaking between different methods enables one to transport infor-
mation from one scale to another. Eventually, results of atomistic, molecular or mesoscale simulation may
feed into constitutive equations or continuum models. While continuum mechanical theories have been
very successful for crystalline materials, biological materials require statistical theories. Experimental
techniques such as Atomic Force Microscope (AFM), Molecular Force Spectroscopy (MFS), nanoinden-
tation or magnetic/optical tweezers now overlap into atomistic and molecular approaches, enabling direct
comparison of experiment and simulation. Techniques such as x-ray diffraction, infrared spectroscopy
or NMR provide atomic-scale resolution information about the 3D structure of protein molecules and
protein assemblies

Atomic Force Microscope (AFM) [26, 27], magnetic and optical tweezers [28, 29]
or nanoindentation [30] to analyze biological protein materials [31]. At the same
time, modeling and simulation have evolved into predictive tools that complement
experimental analyses (see Figure 17-2) at comparable length- and time-scales.

It is now achievable to start from smallest scales – considering electrons and
atoms [32], to reach all the way up to larger mesoscopic and macroscopic scales
of biological filaments, fibrils, fibers and entire tissues, by explicitly considering
the characteristic structural features at multiple material scales. Even though there
are still major challenges ahead of us, this progress is amazing and provides one
with a large number of opportunities, transforming materials science as a discipline
through increased integration of computational approaches in scientific research.

17.1.3. Impact of Materiomics

The use of a materials science approach to studying biological protein materials
may have broader impact beyond the areas identified above. In particular, within the
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biological sciences, the field of genomics has advanced our knowledge base through
the successful sequencing of entire genomes. In recent years however, extensive
efforts have been initiated to move beyond genomics, where fields such as systems
biology provide explanation to mechanisms of how genes affect phenotypes and
biological function.

The analysis of biological protein materials from a materials science perspec-
tive contributes to this realm of efforts by focusing on the material properties of
hierarchical multi-scale protein structures. Materiomics investigates the structure-
property-link of biological materials, focusing on developing models that quantify
stability, loss of stability, and robustness (degree of separation between stabil-
ity and loss of stability). This general framework can be applied to a variety of
material properties (optical, electrical, chemical, and biological). Here we focus
on mechanical properties at nano- and mesoscale, as the “mechanics” of chemical
bonding provides a general basis for many biologically relevant material properties
(Figure 17-3).

Figure 17-3. Chemistry is the most fundamental “language” of materials science and nanomechanics of
biological protein materials. Many other disciplines can link up with the notion of a chemical bond that
defines the basic structure and eventually all properties of materials, thereby representing a joint root for
these disciplines. Subplot (a) shows the central role of chemistry and molecular dynamics schematically.
Subplot (b) shows for the example of lysozyme how an array of chemical bonds defines the struc-
ture of proteins at the most fundamental level (the chemical bonds include covalent bonds (C–C, C–O,
C–H, C–N), electrostatic interactions (between charged amino acid side chains), H-bonds (e.g. between H
and O or interperpeptide H-bonds in alpha-helices or beta-sheets), as well as vdW interactions (between
uncharged parts of molecules)
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17.1.4. Transfer from Biological Protein Materials to Synthetic Materials

Biological materials, particularly those used for structural and load-carrying appli-
cations, often feature complex hierarchical structures. The constituents of these
materials can be soft proteins and hard and brittle minerals, combined in a particular
fashion to produce tough strong structures. Studies of their structural morphology
and how it contributes to their intriguing properties can provide us with design ideas
for using commonly available materials judiciously such as metals or ceramics to
obtain strong materials and structures.

A recurring design element in biological hierarchical structures is the prevalence
of structural complexity, as seen in several length-scales of organized structure from
nano- to macro-scale in a single material, e.g. in bone. The complexity of structure
seems to be of great significance in these materials, and has been linked to robust-
ness against perturbations, both environmental and internal, and to the ability of
materials to self-heal [22, 33, 34]. This complexity also requires a high degree of
self-organization, typically established through self-assembly mechanisms driven
by intermolecular interactions of the basic protein constituents.

The importance of hierarchical structures to improving divergent mechanical
properties in these materials has also been proposed by several authors. For example,
the structural hierarchy seen in skeleton of sea sponge [35–38] has been suggested
to be responsible for its high strength and crack resistance, despite being made
almost completely of brittle silica constituents. Hierarchical arrangements in pro-
tein structures from amino acids up to secondary structures have been proposed as
an arrangement for improving robustness of protein materials [39–41].

The ability to transfer hierarchical design from biological to synthetic materials
may eventually allow us to extend these properties to conventional manufacturing
materials [42]. Through this approach, metals or ceramics can be developed that
possess contrasting properties such as high stiffness and toughness, and that can
simultaneously be robust against damage caused by large external mechanical loads.

17.2. ATOMISTIC SIMULATION METHODS

In the following sections we briefly review basic atomistic and molecular simulation
approaches, focusing on molecular dynamics simulation, a selection of force fields,
and a brief discussion of multi-scale approaches through coarse-graining.

17.2.1. Molecular Dynamics Formulation

Atomistic molecular dynamics (MD) is a suitable tool for elucidating the atomistic
mechanisms that control deformation and rupture of chemical bonds at nano-scale,
and to relate this information to macroscopic materials failure phenomena (see, e.g.
review articles and books [43–45], and recent articles from our group that describes
large-scale MD simulation of brittle fracture mechanisms [46–50]). The basic con-
cept behind atomistic simulation via MD is to calculate the dynamical trajectory
of each atom in the material, by considering their atomic interaction potentials,
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Figure 17-4. Basic formulation of molecular dynamics. This numerical approach predicts the position,
velocity and force (acceleration) vector of a set of N particles in a system

by solving each atom’s equation of motion according to F = ma, leading to posi-
tions ri(t), velocities vi(t) and accelerations ai(t). The basic approach is shown in
Figure 17-4. The numerical integration of Newton’s law by considering proper
interatomic potentials to obtain interatomic forces enables one to simulate a large
ensemble of atoms that represents a larger material volume, albeit typically limited
to several nanoseconds of time scale. The availability of interatomic potentials for
a specific material (based on the characteristic type of chemical bonding) is often a
limiting factor for the applicability of this method.

Classical molecular dynamics generates the trajectories of a large number of
particles, interacting with a specific interatomic potential. Thereby, the complex
3D structure of an atom (composed of electrons and a core of neutrons and pro-
tons) is approximated by a point particle (Figure 17-5a). Molecular dynamics is an
alternative approach to methods like Monte-Carlo, with the distinction that MD pro-
vides full dynamical information and deterministic trajectories, which is crucial to
describe highly driven phenomena such as catastrophic failure of a protein domain
due to laterally applied loads. It is emphasized that Monte-Carlo schemes provide
certain advantages as well; however, this point will not be discussed further here
as most simulation studies reviewed here are carried out with a MD approach. The
total energy of the system is written as the sum of kinetic energy (K) and potential
energy (U ),

E = K + U, (17-1)

where the kinetic energy is

K = 1

2
m

N∑

j=1

v2
j , (17-2)

and the potential energy is a function of the atomic coordinates rj,

U = U(rj), (17-3)
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Figure 17-5. Illustration of the concept of point representation as used in molecular dynamics and devel-
opment of force field models for organic molecules. Subplot (a): Effective interatomic potentials (as
shown in lower part of the figure) provide a description of the energy landscape of the atoms, capturing
the overall effect of the interactions of the atoms due to their specific quantum mechanical structure (elec-
trons, neutrons, protons, as shown in the upper left part). Subplot (b): Illustration of how the chemical
bonding characteristics is modeled by decomposing into energy contributions due to bending, stretching,
rotation and other interactions (similar as the approach used in the definition of the CHARMM model
and other related force fields)

with a properly defined potential energy surface U(rj). The numerical problem to be
solved is a system of coupled second order nonlinear differential equations:

m
d2rj

dt2
= −∇rjU(rj) j = 1..N, (17-4)

which can only be solved numerically for more than two particles, N > 2. Typically,
MD is based on updating schemes that yield new positions from the old positions,
velocities and the current accelerations of particles:

ri(t0 + �t) = −ri(t0 − �t) + 2ri(t0)�t + ai(t0) (�t)2 + ... . (17-5)
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The forces and accelerations are related by ai = fi/m. The forces are obtained from
the potential energy surface – sometimes also called force field – as

F = m
d2rj

dt2
= −∇rj U(rj) j = 1... N. (17-6)

This technique can also be used for not only single atoms but also groups of atoms
as in the case of coarse-grained meso-scale approaches. Provided interatomic poten-
tials are available, MD is capable of directly simulating a variety of materials
phenomena, for instance the response of an atomic crystal lattice to applied load-
ing under the presence of a crack-like defect, or the deformation mechanisms of
biological molecules including nucleic acids and proteins.

One of the strengths and a unique feature of atomistic methods is its very fun-
damental viewpoint of materials phenomena. The only physical law that is put
into the simulations is Newton’s law and a definition of how atoms interact with
each other. Despite this very simple basis, very complex phenomena can be simu-
lated. Unlike many continuum mechanics approaches, atomistic techniques require
no a priori assumption on the defect dynamics. Once the atomic interactions are
chosen, the complete material behavior is determined. Choosing appropriate mod-
els for interatomic interactions provides a rather challenging and crucial step that
remains subject of a very active discussion in the scientific community. A variety
of different interatomic potentials are used in the studies of biological materials at
different scales, and different types of protein structures may require the use of dif-
ferent atomistic models. A drawback of atomistic simulations is the difficulty of
analyzing results and the large computational resources necessary to perform the
simulations. Due to computational limitations, MD simulations are restricted with
respect to the time scales that can be reached, limiting overall time spans in such
studies to tens of nanoseconds, or in very long simulation studies to fractions of
microseconds. Therefore, many MD simulation results of dynamically stretching
protein molecules, for instance, have been carried out at large deformation rates,
exceeding several m/s.

Recent advances in computational power now enable the simulation of billions
of particles in MD simulations, reaching dimensions on the order of micrometers.
Figure 17-6 depicts the historical development of computational power over the past
decades.

In the next two sections, we provide a brief review of popular interatomic
force fields and modeling approaches suitable for simulating the behavior of pro-
tein structures. We refer the reader to more extensive review articles for additional
information, in particular regarding force field models [51–54].

17.2.2. CHARMM Force Field

All-atom force fields are predominantly used in molecular dynamics simulations
of biological materials at the nanoscale as they generally are the most reliable yet
computationally efficient way of studying dynamics of macromolecules. A wide
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Figure 17-6. Development of computing power over the past decades. The development illustrates the
emergence of petaflop computers in the next few years. The plot also summarizes the number of atoms
that can be treated with these computing systems; these numbers are developed for simple interatomic
potentials with short cutoffs. For CHARMM, the number of atoms is significantly smaller figure. Adopted
from Ref. [45]

range of force fields and simulation programs are currently available, most notably
the AMBER, the CHARMM force fields and programs, the OPLS force field, the
GROMOS/GROMACS [55] packages are commonly used in all-atom molecular
dynamics. The NAMD [56] program is a popular code that can carry out compu-
tations using CHARMM and other force fields. For the sake of brevity, the main
aspects of the CHARMM force field and its implementation in NAMD will be dis-
cussed here; the basic concepts of the MD technique and force field formulations
are common to all packages used in the field (for a general review, see for instance
[52, 57].

The CHARMM force field is widely used in the protein and biophysics com-
munity, and provides a reasonable description of the behavior of proteins. The
parameters in force fields are often determined from more accurate, quantum
chemical simulation models by using the concept of force field training [32] (see
the hierarchical coupling schematic shown in Figure 17-2). Parameters for the
CHARMM force field have been meticulously optimized and revised over the
years taking into consideration a wide variety of input including ab initio results,
experimental crystal structures and geometries, as well as vibrational spectra [58].

The potential includes bonding and non-bonding (interaction) terms to describe
short and long-range forces between particles. In the CHARMM model, the math-
ematical formulation for the empirical energy function that contains terms for both
internal and external interactions has the form:

U(�R) =
∑

bonds

Kb(b − b0)2 +
∑

UB

KUB(S − S0)2 +
∑

angle

Kθ (θ − θ0)2+
∑

dihedrals

Kχ (1 + cos (nχ − δ))+
∑

impropers

Kimp(φ − φ0)2+
∑

nonbond

ε

[(
Rmin (i,j)

rij

)12

−
(

Rmin (i,j)

rij

)6
]

+ qiqj

ε1rij

(17-7)

where Kb, KUB, Kθ , Kχ , and Kimp are the bond, Urey-Bradley, angle, dihedral angle,
and improper dihedral angle force constants, respectively; b, S, θ , χ and φ are the
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bond length, Urey-Bradley 1,3-distance, bond angle, dihedral angle, and improper
torsion angle, respectively, with the subscript zero representing the equilibrium posi-
tions for the individual terms. Figure 17-5b shows a schematic of the individual
energy contributions listed in Eq. (17-7).

The Coulomb and Lennard-Jones 6-12 terms constitute the external or non-
bonded interactions; ε is the Lennard-Jones well depth and Rmin(i,j) is the distance
at the Lennard-Jones minimum, qi is the partial atomic charge, ε1 is the effective
dielectric constant, and rij is the distance between atoms i and j. In the CHARMM
force field, no additional terms are used for H-bonds, since the combination of
charge and Lennard-Jones contributions were verified to be adequate for describ-
ing protein, solvent and interface hydrogen bonding. In all-atom force fields, water
molecules are generally also treated explicitly. Parameters of the force field gener-
ally are specified considering a specific water model (e.g. TIP3P dimer model for
CHARMM) [52, 57].

The CHARMM force field belongs to a class of models with similar descriptions
of the interatomic forces; other models include the DREIDING force field [59], the
UFF force field (=“Universal Force Field”) [60], or the AMBER model [51, 61].
In CHARMM and other classical force fields, bonded terms are modeled with har-
monic springs or its variations, and therefore cannot be modified (e.g. towards a
different chemical state, such as from sp2 to sp3) or broken once defined by the con-
nectivity input obtain from the topology of the molecule. Further, the atomic charges
are fixed and cannot change during a simulation. These simplifications improve the
simulation speed drastically and are not a major issue for most simulations study-
ing conformational changes of proteins under ambient physiological conditions. On
the other hand, simulations in extreme conditions such as mechanical perturbations
(e.g. protein unfolding studies) or harsh chemical environments require reactive
force fields that can take into account changes in fixed charges of the molecules,
formation/breaking of new bonds and variations in bond order.

17.2.3. ReaxFF Force Field

Reactive force fields represent a milestone in overcoming the limitations of classical
force fields: Their lack of the ability to describe rupture and formation of covalent
bonds. This is because the covalent bond terms are described using harmonic terms,
which do not provide an accurate description of the bond energetics at large bond
stretch. For mechanical properties of materials (that is, the large-deformation and
rupture mechanisms), this translates into the properties of molecules at large-strain,
a phenomenon referred to as hyperelasticity (these effects can have profound impact
for materials failure mechanisms, as illustrated in [47, 62] for crystalline materials).
Figure 17-7a and b illustrates this effect, explaining how nonreactive force fields
are not capable of describing transition state energies during bond formation and
rupture.

Several flavors of reactive potentials have been proposed in recent years [63–65].
Reactive potentials can overcome the limitations of empirical force fields and enable
large-scale simulations of thousands of atoms with quantum mechanics accuracy.
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Figure 17-7. Basic concept of the reactive force field formulation (figures adapted from references [63]
and [74]). Subplots (a) and (b) displays the difference between reactive and nonreactive descriptions,
showing the ability of reactive models to describe the energy of transition states. Subplot (c) shows the
concept of defining all energies based on bond orders rather than developing direct relationships between
the bond length and energy. Subplot (d) illustrates the concept of bond orders, here in an example for a
C–C bond. Depending on the distance between atoms, different bond orders are obtained, through a bond
order mapping function. This enables to distinguish different quantum chemical states such as sp3 (single
bond), sp2 (double bond) and sp (triple bond). The continuous change of bond orders as a function of
distance ensures that reactive force fields are energy continuous, which is critical to carry our constant
energy simulations. At large distances, the bond order vanishes, indicating breaking of the covalent bond.
In ReaxFF, the spring constant that characterizes the strength of atomic bonding is modulated by the
bond order, leading to vanishing bond strength or dissociation at large stretch. The continuous mapping
function is displayed in subplot (e)

The reactive potentials, originally only developed for hydrocarbons [49, 50, 66–74],
have been extended recently to cover a wide range of materials, including metals,
semiconductors and organic chemistry in biological systems such as proteins [63].
Here we focus in particular on the ReaxFF formulation [63, 71]. In some of the
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studies reviewed in this article, a particular flavor of the ReaxFF potentials as sug-
gested in [75], with slight modifications to include additional QM data suitable for
protein modeling is used.

Reactive potentials are based on a more sophisticated formulation than most non-
reactive potentials. A bond length-bond order relationship is used to obtain smooth
transition from non-bonded to single, double, and triple bonded systems, as shown
in Figure 17-7c–e. All connectivity-dependent interactions (that means, valence and
torsion angles) are formulated to be bond-order dependent. This ensures that their
energy contributions disappear upon bond dissociation so that no energy discon-
tinuities appear during reactions. The reactive potential also features non-bonded
interactions (shielded van der Waals and shielded Coulomb). The reactive formula-
tion uses a geometry-dependent charge calculation (QEq) scheme [76] that accounts
for polarization effects and modeling of charge flow, assigning a partial charge to
each atom at each integration step. This is considered a critical advance leading
to a new bridge between QM and empirical force fields. All interactions feature a
finite cutoff distance for computational efficiency, and all interactions are tapered
off smoothly at the cutoff distance.

Further discussion regarding reactive force fields for proteins can be found else-
where [74], including a selection of examples that illustrate the differences between
nonreactive and reactive models in describing protein unfolding. For instance, con-
ventional nonreactive models are not able to describe rupture of disulfide cross-links
between different protein domains (exemplified for a lysozyme protein structure). In
contrast, the reactive model is capable of describing these processes.

The inclusion of covalent bond breaking into the model has major implica-
tions on the resulting force-extension curves, as shown in Figure 17-8. This figure
shows the force-extension profile during unfolding of a small protein α-conotoxin
PnIB from conus pennaceus (PDB ID 1AKG), comparing a nonreactive CHARMM
model (blue curve) with the reactive ReaxFF model (red curve) [74]. Clearly, the
CHARMM model can not capture the bond breaking events at large deformation,
and deviates significantly from the ReaxFF description. Similar studies have been
carried out for unfolding of lysozyme, as reported in reference [74].

17.2.4. Coarse-Graining Approaches of Protein Structures

Albeit being a very accurate description of macromolecules, all-atom modeling
approaches have historically been prohibitively extensive when large systems and
long simulation times must be considered. This lead to the development of coarse-
grained models [77] (see Figure 17-9), which provide simplified representations of
macromolecules employing less degrees of freedom and simple bonded and non-
bonded interactions that can be rapidly calculated in each time step. Coarse-grained
models have so far been successfully applied to a wide range of problems including
protein folding, allostery, aggregation, molecular biomechanics as well as multi-
scale description of complex materials such as bone. The various approaches are
briefly reviewed here.
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Figure 17-8. Force-extension profile (unfolding of a small protein α-conotoxin PnIB from conus pen-
naceus (PDB ID 1AKG)), comparing a nonreactive CHARMM model (blue curve) with the reactive
ReaxFF model (red curve) [74]. It is apparent that although the ReaxFF and CHARMM descriptions
agree for small deformation (below ≈ 7 Å), they disagree strongly for larger deformation. The difference
can be explained based on the fact that the CHARMM potential is incapable of describing breaking of
the disulfide bonds

17.2.4.1. Single-Bead Models

Single bead models are perhaps the earliest approach taken for studying macro-
molecules. The term single-bead derives from the idea of using single beads
(masses) for describing each amino acid in a protein structure. Elastic Network
Model (ENM) [78], Gaussian Network Model (GNM) [79] and Go-model [80] are
well known examples of this simplistic approach.

Simple models such as ENM and Go-like models treat each amino acid as a
single bead located at the Cα position with mass equal to the mass of the amino
acid. The beads are interconnected by harmonic or nonlinear springs represent-
ing the covalently bonded protein backbone. In the Go-like models, an additional
Lennard-Jones term is included in the potential to describe short-range non-bonded
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Figure 17-9. Overview over various coarse-graining techniques [77]. The figure illustrates commonly
used coarse-graining applications in biomolecular simulations. A schematic representation of the model,
indicative number of parameters, methods of solution, main characteristics and applications are shown.
Axes indicate increasing complexity of the models in parameterization and molecular representations.
Figure reprinted from “Current Opinions in Structural Biology”, “Coarse-grained models for proteins”,
Vol. 15, pp. 144–150, Copyright © 2005, with permission from Elsevier [77]

native interactions between atoms within a cutoff distance. Despite their simplicity,
these models have been extremely successful in explaining thermal fluctuations of
proteins [77] and have also been implemented to model the unfolding problem to
elucidate atomic-level details of deformation and rupture that complement experi-
mental results [81–83]. A more recent direction is coupling of ENM models with
a finite element-type framework for mechanistic studies of protein structures and
assemblies [84].

Due their simplicity, single-bead models have several shortcomings. With classic
ENM, only harmonic deviations from the initial configuration are possible. In the
Go-model, native interaction definitions lead to a minimally frustrated landscape
which his highly biased towards the input configuration of the molecule. Such mod-
els can therefore not predict folding/unfolding intermediates and meta-stable states.
The explicit treatment of protein-solvent interactions, nonnative interactions and
H-bonds is also not possible with single-bead models. It is now widely accepted that
for protein unfolding studies, the results obtained using such models are only qual-
itative at best, although they may reveal important aspects of topology dependent
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mechanical resistance [81–83], and can thus be used to improve our understanding
of structure-property links.

17.2.4.2. Multi-Bead Models

Using more than one bead per amino acid can lead to a more detailed descrip-
tion of macromolecules. In the simplest case, the addition of another bead can
be used to describe specific side-chain interactions [85]. Four to six bead models
capture even higher amount of detail by explicit or united atom description for
backbone carbon atoms, side chains, carboxyl and amino groups of amino acids.
A great example of this approach is the coarse-grained models developed in Carol
Hall’s group for studying folding and aggregation in proteins using discontinuous
molecular dynamics [86, 87].

Although multi-bead models have superior qualities compared to single-bead
descriptions, dozens of additional energetic terms involving pseudobonds and other
means to avoid complex dihedral/improper potentials that stabilize the confor-
mation of the polypeptide chain have to be introduced for generic models (see
Figure 17-9). Even with the introduction of these terms, some of which are phys-
ically not intuitive, the models offer limited applicability, as specific side chain
interactions are only valid for simple residues such as glycine and alanine. More
complex yet computationally efficient potentials that intrinsically take into account
sequence specificity are extremely challenging to develop, thus making readily
available all-atom descriptions and simulation packages more favorable for most
applications.

17.2.4.3. Coarser Models

More recently, coarser-level modeling approaches have been applied to model
biomolecular systems at larger time- and length-scales. These models typically
employ superatom descriptions that treat clusters of amino acids as “beads”, as
shown schematically in Figure 17-10 (for the case of tropocollagen molecules).
In such models, the elasticity of the polypeptide chain is captured by simple
harmonic or anharmonic (nonlinear) bond and angle terms. These methods are com-
putationally quite efficient and capture shape dependent mechanical phenomena
in large biomolecular structures [88], and can also be applied to collagen fib-
rils in connective tissue [89] as well as mineralized composites such as nascent
bone [90].

17.2.4.4. Implicit Solvent

Most biomolecular simulations have either an implicit or explicit treatment of sol-
vent around the molecule, since performing simulations in vacuum can provide
misleading results since viscous and hydrophobic effects and dielectric screening
properties of solvent are not appropriately described. In particular, the explicit treat-
ment of water is a severe obstacle against scaling up in biological simulations, since
a large water box or water sphere needs to be used to keep the protein away from
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Figure 17-10. Illustration of coarse-graining approach for a simple one-dimensional fibrillar protein
filament. This schematic illustrates how a full atomistic representation is coarse-grained and used in a
mesoscale model formulation. As shown in Figure 17-3, the mesoscale model formulation enables one
to reach much larger time- and length-scales. The systematic parameterization from the bottom up pro-
vides a rigorous link between the chemical structure of proteins (for example, through their amino acid
sequence) and the overall functional material properties. This computational approach is a key compo-
nent in the advancement of materiomics as it provides us with the ability to reach microsecond- and
micrometer length-scales

fluctuating boundaries. This means that most of the computational effort goes into
simulating the motion of the solvent, albeit typically the behavior of the solute (e.g.
the protein) is of more interest. This has lead to the development of implicit sol-
vent models, which treat water as a continuum and calculate its effective influence
on the solute. In certain cases, implicit solvent techniques can be as much as 50%
slower than simulations performed in vacuum. However, simulations done in vac-
uum are generally hundreds of times faster than explicit solvent runs, thus providing
an overall highly efficient approach with significant speedups. These methods take
into account free energy of solvation by calculating the accessible surface area of the
protein. Such methods can be used in combination with the generalized Born (GB)
formulation (numerical approximation to the exact Poisson-Boltzmann equation that
is solved in a continuum electrostatic model) to accurately capture the electrostatic
and non-polar effects of water on folding mechanisms of proteins [91]. The viscosity
of water molecules can also be implemented in such implicit solvent simulations by
implementing Langevin dynamics. Recent developments in the analytical treatment
of solvent have rendered implicit solvation a reasonable alternative to explicit treat-
ment of water. For more information on the mathematical basis and further details
of different solvent models, we refer the reader to the more comprehensive literature
reviews in this field [57, 92, 93].

17.2.4.5. Case Study: Coarse-Grained Model of Alpha-Helical
Protein Domains

Alpha-helical (AH) protein domains are the key building blocks of cytoskeletal
networks as well as hair, hoof and wool. Here we review the development of a
coarse-grained model for alpha-helical protein domains with parameters derived
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Figure 17-11. Coarse-graining model development of an alpha-helix [94]. Subplot (a) shows a
schematic of the coarse-graining procedure, changing the full atomistic representation arriving at the
mesoscopic bead model. One bead represents one turn (also called convolution) of the alpha-helix so
3.6 residues and has the same mass. Subplot (b) shows the two well profile of the bond potential for the
mesoscale model. The equilibrium states and energy barriers are obtained from full atomistic simula-
tions. The transition state (peak of the potential) corresponds to the breaking of the 3.6 H-bonds between
two convolutions of the alpha-helix. In pulling experiments, after failure of these weak bonds, the con-
volution unfolds to a second equilibrium state with larger interbead distance, and under further loading,
its covalent bonds begin to be stretched which leads to a second increase of the potential

from full atomistic simulations [94]. To achieve the coarse-grained description, the
entire sequence of amino acids that makes up the alpha helical structure is replaced
by a collection of beads (see Figure 17-11a). In this model, one bead represents
one turn (also called convolution) of the alpha-helix, so 3.6 residues, and has the
mass corresponding to the one of the protein segment it represents. The beads inter-
act according to a bond potential and an angle potential. The parameters of these
interactions are determined from full atomistic simulations of tensile and bending
loadings of an alpha helix protein domain.

Figure 17-11b shows the interbead bond potential profile used for the mesoscale
model. The potential is a two well potential. The equilibrium states and energy
barriers are obtained from full atomistic simulations of tensile loadings. The first
equilibrium (first potential minimum) corresponds to the folded state of the turn
under no force. The transition state (peak of the potential between two wells) corre-
sponds to the breaking of the 3.6 H-bonds between two turns of the alpha-helix. In
pulling experiments, after failure of these weak bonds, the turn unfolds to a second
equilibrium state. This corresponds to the second potential minimum with larger
interbead distance. Under further loading, its backbone bonds begin to be stretched
which leads to a second increase of the potential. Unlike the bond potential, the
angle potential profile is a simple harmonic potential. The angle potential constant
is determined from bending loading simulations.
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Figure 17-12. Validation of the mesoscopic model by comparison with full atomistic results [94].
Subplot (a) shows the entire force-strain curve for a stretching experiment on the 14 beads mesoscopic
model of an alpha-helix (with a length of 70.2 Å at a temperature of 300 K). The curve shows the three
typical regimes observed in full atomistic simulations: an elasticity regime, an energy dissipation regime
which corresponds to the unfolding of the 13 bonds (13 peaks on the curve), and the regime of stretching
of the backbone bonds. Subplot (b) shows the rate dependence of the unfolding force for both the meso-
scopic and atomistic models. The mesoscale model is in very good agreement with the full atomistic
simulations so that it validates the fitting of the mesoscopic bond potential

Figure 17-12 presents the validation of our mesoscale model by direct compar-
ison with full atomistic results of the rupture mechanics of an alpha helix protein
domain. Figure 17-12a depicts the entire force-strain curve for a stretching experi-
ment on the 14 beads mesoscopic model of an alpha-helix with a length of 70.2 Å,
at a temperature of 300 K. The curve shows the three typical regimes observed in
full atomistic simulations: an elasticity regime at low strain, an energy dissipation
regime which corresponds to the unfolding of the 13 bonds (13 peaks on the curve),
and the subsequent regime of stretching of the backbone bonds. The unfolding of the
13 bonds occurs at a steady force which defines the unfolding force. Figure 17-12b
reveals the rate dependence of the unfolding force for both the mesoscopic and
atomistic models. The mesoscale model is in very good quantitative agreement with
the full atomistic simulations. These results validate the fitting of the bond poten-
tial, and show that coarse-graining can be used to accurately describe the behavior
of protein domains across multiple time-scales, at much reduced computational
cost.
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In summary, the coarse-grained model enables modeling of the dynamics of
large systems over a large range of length- and time-scales. This model enables
us to reach time-scales of several microseconds and longer with a quantita-
tive accuracy comparable with full atomistic MD simulations, within several
days of computational time (on a single Intel Xeon CPU). In comparison, MD
simulations of the dynamical behavior at fractions of microseconds can take
weeks and months of computational time (even on a large parallelized simulation
setup). This reflects a considerable speedup due to the coarse-graining approach.
Potential applications of the coarse-grained alpha-helix protein domain model
reviewed here could be studies of length-scale effects on alpha helix strength,
elasticity and effects of hierarchical arrangements of alpha-helical based protein
domains [94].

17.2.4.6. Case Study: Network Model of Alpha Helices

In this section we review studies of the behavior of a square lattice network
of alpha-helical protein filaments, serving as a simplistic model for the nuclear
lamin network, as shown in Figure 17-13 [95]. This case study provides another
example of how the use of coarse-graining techniques can be used to traverse
through several orders of magnitude of length-scales and thereby provide a link
between the molecular structure of a single protein domain and the overall behav-
ior of a larger protein network at micrometer length-scales. Figure 17-13a depicts
the coarse-graining approach of the AH. Here groups of convolutions are repre-
sented by a bead, and thus this model is much coarser than the one discussed
in the previous section. (In principle, the formulation discussed above could also
be used to study the behavior of protein networks; however, the computational
cost would be challenging in systems that approach fractions of micrometers of
length-scales.)

Through reducing the degrees of freedom in the coarse-graining approach, this
simple model of an alpha-helix enables us to capture the different regimes of defor-
mation at much reduced computational cost. We are now interested in elucidating
the behavior of a protein network on the order of length-scales of micrometers.
Figure 17-13b displays the overall geometry of the protein network considered
here (the overall dimensions that reach 0.4 × 0.35 μm). We consider a square net-
work structure, defined here to resemble the lamin nuclear envelope (admittedly,
this is a simplistic model of this protein network, but is used here to illustrate the
general approach of how such a study could be set up and carried out). The par-
ticular network structure is motivated by the TEM analysis of the lamin nuclear
envelope protein network as shown in Figure 17-13c, which suggests that a square
lattice structure of alpha-helical protein filaments is found in cells [96]. We have
added a penny-shaped defect inside the protein network to mimic the effect of
inhomogeneities of the network architecture. These inhomogeneities can also be
seen in the TEM picture shown in Figure 17-13c; three of them are marked in light
color to illustrate the concept.
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Figure 17-13. Mesoscale protein network model, used here to study the deformation mechanics of a
lamin intermediate filament network [95]. Subplot (a) shows a schematic of the coarse-graining proce-
dure, from a full atomistic representation arriving at the molecular bead model. Subplot (b) depicts a
schematic of the coarse grained protein network used in this study with the applied boundary conditions.
The size of the network equals to 12×12 nm. Thereby each filament is represented by one alpha helix as
shown in the blow-up. A constant strain rate is applied in y-direction. We study networks with and with-
out cracks (here an example with crack; the crack represents geometrical flaws/inhomogeneities as they
appear in vivo). Subplot (c) shows a snapshot of a quasi-regular lamin meshwork as it was observed in
experiment (scale bar 5 μm). Figure in subplot (c) reprinted from Aebi et al., Nature, Copyright © 1986,
with permission from MacMillan Publishers Ltd. [198]. Subplot (d) depicts force-strain curves from MD
simulation results and the approximation used in the mesoscale model. For our mesoscale model we use
force values at the AP, which were calculated at vanishing pulling rates in the AR regime (approximately
200 pN). We assume covalent bond rupture of the backbone at forces of 7,800 pN, as calculated with
ReaxFF reactive force fields in previous studies (not shown here) [199]

As shown in Figure 17-13a, the network is constructed based on a collection
of beads, with a lattice dimension of 10 nm. All pairs of beads (that is, nearest
neighbors) in the system interact via a force field description that behaves as shown
schematically in Figure 17-13d, capturing the various regimes of deformation as
determined from full-atomistic simulation studies. Unlike in the previous case study
where a double well potential was used to describe the unfolding of individual con-
volutions in the alpha helix, here we utilize a multi-linear potential formulations so
that the effective force-extension behavior matches that seen in atomistic simulation
studies (for further information about this approach, see [74]).
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We now investigate how this protein network with a structural flaw behaves under
remotely applied tensile deformation. Tensile load is applied by displacing the upper
and lower part of the slab in the direction of tensile (mode I) loading. Figure 17-14
displays a sequence of snapshots that illustrate how the protein network undergoes
deformation. It can be observed that large portions of the domain undergo large
unfolding deformation. The presence of the flaw in the material is tolerated without
formation of very large stress concentrations, and large strains of more than 100%
strain do not lead to failure of the protein network. Mitigation of these large mechan-
ical strains despite the presence of crack-like defects is due to the particular structure
of the alpha-helical protein building block, which provides the basis to its charac-
teristic behavior. Repeated breaking of clusters of H-bonds (with 3-4 H-bonds each,
as discussed in Section 17.4.1) provides the mechanistic basis for the network struc-
ture to reach large reversible deformation on the order of 150–200% (referred to as
“superelasticity”, as discussed at the molecular level in [97]) before covalent bonds
are stretched and permanent damage occurs in the protein network [97, 98]. This
feature enables this network to return to the undeformed perfect structure and shape

Figure 17-14. Snapshots of the simulation results of tensile deformation of the alpha-helix based protein
network, mimicking the lamin intermediate filament structure [95]. It is observed that large portions of
the domain undergo large unfolding deformation (subplots (a)–(d)). The presence of the flaw in the
material is tolerated and large strains of more than 100% strain do not lead to failure of the protein
network. Thereby, the toleration of these large mechanical strains despite the presence of defects is due
to the particular structure of the alpha-helical protein building block, which provides the basis to its
characteristic behavior. Repeated breaking of clusters of H-bonds provides the structural basis so that
each protein constituent can reach large deformation on the order of 150–200% before covalent bonds
are stretched
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after the load is released, due to the self-healing property of alpha helix based pro-
tein structure because of the underlying H-bonding. Biologically, the significance
of this behavior is that it may explain how alpha-helix based protein networks can
tolerate defects and structural flaws to mitigate the impact of large deformation of
the cell nucleus without failure (to visualize this effect, compare with the imperfect,
inhomogeneous structure shown in Figure 17-13c).

The overall shape of the simulated stress-strain curve is in good agreement with
experimental results (see Figure 17-15, where experimental data recently published
by Fudge et al. on hagfish slime threads [99, 100] is plotted in comparison with the
predictions made by our model). In addition to the overall shape of the mechanical
signature, the levels of strain are in good agreement as well, albeit there exists some
deviation at larger strain levels. Simulation and experiment show a change from
the flat to the steep regime at about 100% strain and the inset of rupture at about
150% strain (it is believed that at sliding sets in experimental studies, a feature not
yet captured in the multi-scale model). The absolute stress levels diverge due to
different geometries of the networks (e.g. length of AHs, and number of parallel
AHs).

Figure 17-15. Subplot (a) shows experimental data on the stress-strain behavior of hagfish slime threads
(replotted data from reference [99]). Hagfish slime threads mainly consist of bundles of alpha helical IFs
and are thus a good model for comparison with results from mesoscale simulations. Our results show very
good agreement with experimental findings regarding the shape of the curve. Both curves have a very flat
regime followed by a very steep increase in stress. The change in both curves appears at approximately
100% strain. At about 150% strain flattening sets in, which was suggested as intermolecular sliding. The
stress levels mainly depend on the geometry of the bundles/networks as shown in Subplot (b). Subplot
(b) shows our results for different network densities. All networks have a size of 120 × 120 nm. The
number indicates how many filaments were arranged in this network in parallel. We observe a strong
dependence between the number of parallel strands and the network stiffness as well as the rupture stress.
With decreasing rupture forces the rupture strain increases continuously. This is an interesting finding as
the stress property itself already represents a force property normalized by the surface area (number of
helices)
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17.3. THEORETICAL STRENGTH MODELS OF PROTEIN
CONSTITUENTS

The strength of biological protein materials is determined by bonds of different
strength and how they interplay in the hierarchical structural arrangement. In partic-
ular weak H-bonds play a crucial role in defining protein constituents’ mechanical
strength, and their behavior is critical in formulating bottom up strength models. In
the following sections, we review the development of theoretical strength models
that emphasize the important role that weak interatomic bonds play in defining the
strength properties of biological protein materials.

17.3.1. Strength of a Single Bond

17.3.1.1. Bell’s Model: A Force Dependent Dissociation Rate

The Bell’s model is a simple and quite popular phenomenological model which
describes the frequency of failure of reversible bonds [101]. The concept of
“reversibility” thereby means that an individual bond can break under no force if
one waits a sufficiently long time, and that it can reform spontaneously. Such bonds
may be associated with electrostatic, van der Waals (vdW), or H-bond interactions.
The frequency of failure, also called dissociation rate or off rate, is defined as the
inverse of the bond lifetime and often used as a concept to discuss the dynamical
behavior of such bonds.

Bell’s theory explains the force dependence of the off rate and thus shows the
significant role of mechanical force in biological chemistry. For instance, this theory
can be applied to describe the forced unbinding of biological adhesive contacts such
as adhesion of cells to cells. Bell’s theory is an extension of the transition state
theory for reactions in gases developed by Eyring and others [102]. Inspired also by
Zhurkov’s work on the kinetic theory of the strength of solids [103], Bell predicted
for the first time that the off rate of a reversible bond, which is the inverse of the
bond lifetime, increases when subjected to an external force f. Indeed, the rupture
of bonds occurs via thermally assisted crossing of an activation barrier Eb which
is reduced by f · xb as the applied force f increases, xb being the distance between
the bound state and the transition state (see Figure 17-16). Thus the Bell off rate
expression is

k = ω0 exp

(
−Eb − f · xb

kB · T

)
, (17-8)

where ω0 is a natural vibration frequency and kB · T the thermal energy. The force
f0 = Eb/xb represents the force to vanish completely the energy barrier and gives a
very rough value of the rupture force.

This conjecture was established long before single molecule experiments were
performed. Later, it became very successful especially to describe forced unfolding
of biological molecules. Indeed, the model enables one to characterize the bonds,
their ruptures and their energy landscape profiles from the fitting with experimental
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Figure 17-16. Evolution of the energy landscape of a bond subjected to a force. The minimum corre-
sponds to the bound state. The transition state is the peak of the potential and corresponds to the bond
rupture. The parameter xb is the distance between the bound state and the transition state. According
Bell’s theory, the rupture of a bond occurs via thermally assisted crossing of an activation barrier Eb
which is reduced by f · xb as the applied force f increases

or simulation results. Lastly, as discussed in a following section, this theory leads
to the development of new theoretical models to explain more complex molecular
bonds such as multiple bonds in parallel.

Although successful, the approach has some limitations which have led to sev-
eral refinements. A few major refinements are reviewed in more details in the next
sections. A major limitation is that the Bell’s theory deals only with constant exter-
nal force and does not explain loading rate dependence of strength. This limitation
is important since we usually cannot apply a constant force in experiments due to
the very short thermal impulse time compared with the measurement time [104].
Another limitation is the fact that xb does not depend on the force. In addition, the
multidimensional nature of the energy landscape of biomolecules which can lead to
multiple unfolding pathways is not taken into account [105].

17.3.1.2. Evans’ Extension: A Loading Rate Dependence of Strength

The Evans extension to the Bell model attempts to solve some of the limitations
of the Bell’s model. It gives a more general relation of the off rate by taking into
account force dependent terms such as xb( f ). Moreover it explains for the first time
the rate dependence of strength.

The general off rate relation derived by Evans is extended from the Brownian
dynamics theory of Kramer. Kramer’s theory deals with reactions kinetics in liquids.
It gives the thermal noise-driven rate of escape of a particle over a potential barrier
using the Fokker-Planck approximation [102, 104]. Evans extended it by including
an external pulling force f. Thus he reduced the dimensions of the reaction path to
one dimension (coordinate x) and added the potential −f · x. Now we briefly present
the steps of derivation of the off rate. The time evolution of the probability density
of the molecular configuration p(x,t) is described by the Fokker-Planck equation.
From the solution, we derive the bond survival probability at time t, referred to S(t),
and the mean first passage time, T, which defines the bond lifetime (mean time of
passage from the bound state to the unbound state). Thus, we obtain the bond off
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Figure 17-17. Subplot (a) illustrates the rupture forces predicted for bonds over time and force in
mechanical probe tests [104]. Loaded by a ramp of force, the off rate increases steadily, but the like-
lihood of bond survival decreases simultaneously. Thus the frequency of failure can reach a maximum
at some time equivalent to force; the peak defines the bond strength f ∗. Subplot (b) shows that rupture
force distributions shift with loading rate rf. Figure adapted based on Ref. [104]

rate as the inverse of the bond lifetime:

k = k0g( f ) exp

(
�Eb( f )

kBT

)
(17-9)

where k0 is a prefactor which contains the Arrhenius dependence on barrier energy
scaled by a characteristic time constant, g( f ) is a function which depends on defor-
mation of energy landscape by external force, and �Eb( f ) is the reduction in energy
barrier height. This off rate relation is more general compared with Bell’s relation.
Indeed, it does not use the linear approximation �Eb( f ) = −f · xb for the reduction
in energy barrier height. Thus it may be physically more relevant since it allows the
positions of transition state and bound state to change under external force.

The second and probably most important contribution of Evans was to demon-
strate that the strength of bonds depends crucially on the loading rate. He theo-
retically showed that, above a critical loading rate, the force of rupture increases
logarithmically with the loading rate, and thus explained what was already observed
by many experiments. Now, we briefly present the steps of derivation to obtain the
rupture force expression at a given loading rate. The force f applied to the bond
increases with time t such as f = rf · t where rf is the loading rate. Because of
thermal fluctuations, the rupture events are stochastic and thus give a rupture force
density distribution p( f ) (see Figure 17-17a). The probability p( f ) = p(t = f /rf )
that the bond breaks at time t is the probability that the bond survives to time t, S(t),
multiplied by the bond off rate k( f ) which is the instantaneous probability that the
bond breaks at time t = f /rf given that it survives to time t:

p( f ) = p(t = f /rf ) = k( f ) · S(t) (17-10)
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The bond strength f ∗ is defined as the most probable rupture force and corre-
sponds to the peak of the force density distribution. Thus we can obtain f ∗ from
the following equation

dp( f )

df

∣∣ f =f ∗ = 0 (17-11)

Provided that xb and Eb remain constant, one can demonstrate the logarithmic
dependence of strength on the loading rate as follows:

f ∗ = kB · T

xb
log

(
rf · xb

kB · T · k0

)
for rf > rc ≡ kB · T · k0

xb
, (17-12)

where k0 is the off rate in the absence of force. For smaller loading, rf < rc, the
most probable rupture force is zero. Figure 17-17b illustrates this increase of the
most probable rupture force with the loading rate.

In force probe techniques, a transducer is usually moved at constant speed rela-
tive to a substrate in which the bond is anchored. The pulling speed v is linked to the
loading rate rf through the stiffness K of the transducer rf = K ·v. Thus, this descrip-
tion of rate dependence is very significant for experiments because it enables to get
the bond constants k0 and xb from a simple linear regression on the force-log(rf)
curve. Moreover it rationalizes the variation among rupture force values obtained
from different experimental and simulation techniques which were using different
loading rates. However, for a wide range of loading rate we may get a non-linear
behavior. An explanation can be that xb and Eb do not remain constant (change of
mechanism, multiple energy barriers), or the elasticity contribution changes with the
loading rate.

17.3.1.3. Other Refinements of Bell’s Model

Several other attempts have been made to extend the very simple Bell’s model. For
instance, it has been shown that rebinding can have a great impact on strength [107–
109]. Similar to a force dependent xb term, the existence of a rebinding rate can
alter the logarithmic rate dependence of rupture force. In non-equilibrium pulling
regime, other models attempt also to explain non-logarithmic rate dependence [109].
Moreover, other extensions try to implement the influence of the transducer stiff-
ness in order to explain the disparities in measured unbinding force among different
methods [110]. As a last example of extension, we can mention the existence of
models which take into account the energy landscape roughness of bonds [105, 111].

17.3.2. Strength of Complex Molecular Bonds

According Bell’s theory, the lifetime of an individual weak bond such as an H-bond
is very low. However in biology weak bonds can provide more significant strength
by forming arrangement of multiple bonds. In this section, we briefly review theoret-
ical models which study strength of various bond arrangements. A common feature
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of these models is that they all implement the Bell’s model to describe the off rate of
a simple bond at a given time t, in other words the probability for the bond to break
at time t given that the bond survives to time t.

17.3.2.1. Multiple Bonds in Parallel

Many attempts have been made to study the strength of multiple parallel bonds [101,
106, 108, 112, 113]. These models try to describe the influence of various parame-
ters on the strength. For instance, interesting parameters can be the potential profile
of a simple bond, the number of bonds, the rebinding rate (neglected, constant, Bell
based, Boltzmann based, etc.), the constant external force, the loading rate and the
stiffness of the transducers. Figure 17-18 presents an example of geometry with a
given set of parameters.

The theoretical description of the rupture of parallel bonds is traditionally
achieved by one of the two approaches presented below, the deterministic approach
and the stochastic approach. We first discuss the deterministic approach. This
method describes the time evolution of the mean number of closed bonds N(t)

dN

dt
= −N(t) · k0 · exp

[
f · xb

kB · T · N(t)

]
+ kr · [N0 − N(t)] (17.13)

with N0 the total number of bonds, f the external force, kr the rebinding rate of a sin-

gle broken bond and k0 · exp
[

f ·xb
kB·T·N(t)

]
the Bell’s relation for the off rate of a single

closed bond. Bell used this approach for a cluster of parallel bonds under constant
external force and demonstrated the existence of a critical force above what rupture
can happen. Seifert extended it by studying the influence of various parameters such
as the loading rate, the rebinding rate and the transducer stiffness. This approach is
attractive because it is simple and gives analytical solutions. However, it may not
be relevant in some cases such as when we consider the cluster rupture irreversible
[112].

Figure 17-18. Example of a schematic representation of an adhesion cluster under constant force [112].
There are N0 (= 5) bonds in parallel, of which i (= 3) are closed and equally share the constant dimen-

sionless force f. Single closed bonds rupture with dissociation rate k = k0 exp
(

f ·xb
kB·T·i

)
and single open

bonds rebind with force-independent association rate kon. This model has three parameters: cluster
size N0, dimensionless rebinding rate γ = kon/k0 and force f. Figure reprinted with permission from
American Physical Society, from Ref. [112]
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Second, we discuss the stochastic approach. This method describes the time evo-
lution of the probability of each possible states. For instance, the probability p(i)
that i bonds are closed at time t can be described as follow [112, 113]:

dpi

dt
= ku(i + 1) · pi+1 + kr(i − 1) · pi−1 − [ku(i) + kr(i)] · pi (17.14)

with ku(i) = i · k0 · exp
[

f ·xb
kB·T·i

]
and kr(i) = kr · (N0 − i) the reverse and forward rates

between the possible states i. Using the stochastic approach, Erdman and Schwarz
studied the bistability of a cluster under no external force applied [114]. Compared
with the deterministic approach, the full stochastic approach is more accurate and
relevant for a wider range of cases. However the analytical calculation of the solu-
tion is more complicated and thus simulation tools such as Monte Carlo methods
may be required.

17.3.2.2. Coupled Strength Models

Structures of biological materials can be quite complex and their strength may rely
on a variety of physical parameters and phenomena such as biopolymer elastic-
ity and the strength of weak and covalent bonds. In order to obtain an accurate
description of the behavior of such materials under mechanical loading, theoretical
models may combine different theories. Here, we illustrate this approach through
two models which were developed by Rief [104, 105].

First we review a model for biopolymer extensibility [115]. This model com-
bines the Worm Like Chain (WLC) elasticity model with a thermodynamic two-state
description extended from Bell’s theory. The polymer is made of a series of folded
protein domains and is stretched at constant speed. The external force is calculated
from the WLC model. From the calculated force and the two-state potential profile,
Bell’s theory provides the probability of unfolding of each domain. Then Monte
Carlo simulation is used to solve the equations and to provide the force versus exten-
sion curve corresponding to a particular protein structure. The model can be used to
measure the parameters of the two-state potential by fitting the simulation curve of
force versus loading rate with the experimental results.

Second, we discuss an elastic bond network model for protein unfolding mechan-
ics [116]. This approach combines an elastic model of a network of bonds with
irreversible bond fracture kinetics. The network is subjected to external forces. The
elastic model considers bonds as identical springs and calculates the force applied
on each bond. Through a Bell theory based model, the unfolding force is predicted.
In general, this model may be applied to a variety of different protein structures. It
further enables one to study anisotropy and protein unfolding mechanics. Also, it
has been suggested that this model can be used with loading rates similar to exper-
imental ones, and thus direct comparisons between experiments and the model are
possible [116]. However, it has limitations such as that fracture is irreversible, and
that low forces observed in protein rupture cannot be explained.



Multiscale Modeling of Biological Protein Materials 503

17.3.2.3. Hierarchical Bell Model

As discussed above, the “original” Bell model (Eq. (17-8)) does not distinguish
between a single chemical bond and protein architectures that include several fun-
damental bonds (e.g. H-bonds). For instance, whether a single H-bond ruptures or
if several H-bonds rupture simultaneously is captured in an effective value of Eb.
However, this change in mechanism is not explicitly noted in the model given in
Eq. (17-8) and subsequent expressions. In order to estimate the strength and the
energy landscape of a protein without performing any simulations or experiments
and thus to make the model predictive, the Bell model has been extended to explic-
itly consider the structural hierarchies of the protein structure with the only input
parameters being the energy of a H-bond and the rupture distance. The arrangements
of H-bonds in protein materials typically represent hierarchical structures, ranging
from individual H-bonds at the lowest, atomistic level to a collection of H-bonds
at the next higher, molecular protein scale. Figure 17-19 illustrates the approach
of representing such hierarchical structures in the Hierarchical Bell Model, and
Figure 17-20 shows the application to three model protein domains based on AHs.

In this model, the system breaking force f hn and the energy barrier E hn
b of a

system consisting of n hierarchies is given by:

f hn = kB · T

xb · cos θ
·
[

ln

(
v

xb · ω0

)
+ ln

(
bn

kn

)
+

n∑

i=2

bi · ln

(
bi−1
ki−1

)]

+

n∏
i=1

ki · E0
b

xb · cos θ
= fv +

n∑

i=1

fhi + fh0

(17.15)

and

Ehn
b =

n∏

i=1

ki · E0
b + kB · T ·

[
n∑

i=2

bi · ln

(
bi−1
ki−1

)
+ ln

(
bn

kn

)]
. (17.16)

These equations enable one to predict the unfolding force at any pulling speed,
once the structural geometry and the energy landscape of a single H-bond is
known.

We note that this model only considers H-bonds as structural elements in the
definition of alpha helix based protein structures, representing a limitation of this
model. Thereby it does not consider hydrophobic effects and other chemical inter-
actions between molecules, which may play a role in influencing the strength
properties. This is a limitation of the model; however, there is currently no method
to explicitly include these effects in the model and thus this task is thus left
to future work. It is expected, however, that the effect of intermolecular adhe-
sion is limited with respect to the prediction of the initial strength values. This
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Figure 17-19. Illustration of different hierarchies and their representation in the Hierarchical Bell
Theory (subplot (a)), as well as representation of the corresponding physical system (subplot (b)).
Thereby in subplot (a) the serial arrangement as it exists in (b) is not shown. The inlay in the lower
part of subplot (a) shows a single alpha helix structure with ≈3 HBs per convolution. The Hierarchical
Bell Theory reported here enables one to predict the strength of such hierarchical bond arrangements as
a function of the deformation speed. Subplot (b) shows the physical system that is represented in the
hierarchical model in subplot (a). Subplot (c): Statistical theory to predict the bond rupture mechanics
[117]. The graph depicts the energy as a function of deformation along a deformation variable, along a
particular pathway that leads to bond rupture. Here F is the applied force, and xb is the displacement in
the direction of the applied force. In the schematic, three HBs (indicated by the red color) break simulta-
neously. Thus, xb corresponds to the lateral displacement that is necessary to overcome the bond breaking
distance of a HB

is based on the observation that in alpha helix based coiled-coil protein struc-
tures, failure initiates first in the individual alpha helices (thus defining its strength
properties) and is later followed by uncoiling of the overall coiled-coil structure
[97]. This suggests that the approach taken here by focusing solely on H-bonds
is a good approximation for the strength properties of alpha helix based protein
domains.
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Figure 17-20. Hierarchical Bell model, representation of several protein domains in this model (here
for: single AH, coiled-coil, as well as a fourfold coiled-coil protein domain)

17.3.3. Size Effects in H-Bond Clusters

A variety of models for the fracture mechanics of ceramics and metals have been
reported over the past decades, involving detailed descriptions of dislocations, plas-
ticity and crack extension mechanisms [11, 12, 117]. However, similar advances
for biological protein materials have thus far remained elusive. Recent multi-scale
nanomechanical studies have revealed insight into the atomistic mechanisms that
govern the mechanical properties of beta-structured materials in protein materials.
A rigorous fracture mechanics approach to describe the fundamental bond rupture
events in protein materials has been used to explain equilibrium slow-rate mechani-
cal strength limit of beta-structured proteins observed in proteins [118]. In analogy
to dislocation nucleation and propagation in ductile metals, rupture processes of H-
bonds have been identified as a fundamental unit mechanism of materials failure in
protein constituents.

The authors have developed a structure-property-function relationship for beta-
sheets, and have shown the size-dependent mechanical and thermodynamical
stability of these assemblies [119]. Figure 17-21 shows this scaling law for shear
deformation of beta-strand protein domains (subplot a) along with an illustration
of the geometry (subplot b), as reported in reference [119]. This result illustrates
that beta-strand structures reach their maximum strength at characteristic dimen-
sion of H-bond clusters of size between 3 and 4. Interestingly, similar size effects
and the existence of a “strongest size” have been observed in metallic polycrys-
tals [120, 121]. Figure 17-22 shows a comparison of the characteristic dimensions
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Figure 17-21. Size effects of the shear strength of beta-sheets (the geometry of a beta-sheet is shown in
the inlay of subplot (a), composed of two polypeptide chains connected through N H-bonds; this number
of H-bonds has a significant effect on the shear strength of the structure) [119]. Subplot (a) depicts the
shear strength as a function of the number of H-bonds of a beta-sheet structure as shown in the right
half. Subplot (b) illustrates the physical significance of this size effect. In the upper plot, only H-bonds
at the boundary participate in the rupture process and provide resistance. In the lower plot of this panel,
all H-bonds throughout the entire structure contribute to the strength, making the overall structure three
times stronger

of H-bond assemblies loaded in parallel in alpha-helices, beta-sheets and beta-
helices with the model prediction of the highest shear strength at the characteristic
dimension. This analysis suggests that similar size effects may drive the forma-
tion and stability of many other basic protein domains found in biological protein
materials.

These findings provide ample evidence for the hypothesis that size-effects govern
the mechanical behavior of beta-structures at the molecular level, hence motivating
further studies in a multi-scale scheme. As discussed in the introduction section,
H-bonds have been identified as key chemical interactions that govern the integrity
of these structures at the nanoscale and control the large deformation and frac-
ture mechanisms of protein materials. These weak bonds are utilized in biology
in geometric confinement and hierarchies to achieve high-strength, robust materi-
als such as spider silk. These findings set the stage for future work in this field,
leading to a multi-scale description of the size-dependent properties of hierarchical
beta-structures in protein materials.

17.3.4. Asymptotic Strength Model for Alpha Helix Protein Domains

Here we review a constitutive model that characterizes the strength of an alpha-
helical (AH) protein domain subjected to tensile deformation, covering more than
ten orders of magnitude of time-scales. The model elucidates multiple phys-
ical mechanisms of failure in dependence of deformation rate, quantitatively
linking atomistic simulation results with experimental strength measurements of
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Figure 17-22. Comparison of the characteristic dimensions of H-bond assemblies loaded in parallel
in alpha-helices, beta-sheets and beta-helices with the model prediction of the highest shear strength
at the characteristic dimension [119]. In conjunction with the theoretical prediction, this plot suggests
that geometric confinement may be a universal strategy to create particularly stable protein structures as
fundamental material building blocks

AHs. The model provides a description of the strength of AHs based on fun-
damental physical parameters such as the H-bond energy and the polypeptide’s
persistence length, showing that strength at high rates is controlled by ener-
getic, nonequilibrium processes and by thermodynamical, equilibrium processes
at low rates. This model provides a novel perspective on the strength of protein
domains at ultra-slow pulling speeds relevant under physiologic and experimental
conditions.

The alpha-helical (AH) protein motif is universally found in structural protein
networks and plays an important role in biophysical processes that involve mechan-
ical signals (e.g. mechanotransduction) and provides mechanical integrity to cells
[1, 122–124]. For instance, alpha helix rich intermediate filament networks forward
mechanical signals from the cell/tissue scale to the DNA [123, 124], aspects that
are important for cell mitosis or apoptosis. The mechanical properties of alpha helix
protein domains and the link to associated atomic-scale chemical reactions are not
only of vital importance in biology, but may also enable the design of synthetic
protein materials [125, 126].

The mechanics of AHs plays a crucial role in biology, ranging through disparate
time-scales reaching from picoseconds to seconds and more [123, 124, 127, 128].
However, currently there exists no model that describes the mechanical strength
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behavior of alpha helix protein domains that considers associated physical mech-
anisms through this range of time-scales; experiments have been carried out at
relatively slow pulling rates, and computer simulations (e.g. molecular dynamics
simulations) have been carried out at much faster deformation rates. The results
of experiments and computational studies have not yet been integrated. Here we
resolve this issue by providing a self-consistent approach that allows us to predict
the strength of AHs over more than ten orders of magnitude in time scales, quan-
titatively linking atomistic simulation results with experimental results, based on
fundamental physical parameters that include the energy and geometry of H-bonds
and the persistence length of the protein’s backbone. The model captures the behav-
ior of AHs from “slow” natural biological processes up to mechanical shock as it
appears during accidents or injuries.

17.3.4.1. Modeling and Results

A cartoon of the alpha helix protein and a schematic of the tensile load bound-
ary conditions used to study the rupture mechanism is shown in Figure 17-23. As
reported in previous work, molecular dynamics (MD) simulations of AHs in explicit
solvent were performed over four orders of magnitudes of pulling speeds (from 0.05
to 100 m/s [39]). The rupture force of the alpha helix structure, identified at the point
of breaking of the first H-bonds, is plotted as a function of the protein domain’s life
time τ in Figure 17-24a. When the system is not in equilibrium, as it is the case

Figure 17-23. Subplot (a) depicts the atomistic-scale protein structure of a single alpha helix (AH)
from a vimentin coiled-coil dimer [129]. The helical backbone is stabilized by parallel arrangements of
hydrogen bonds (HBs, yellow dashed lines). Subplots (b) and (c) show a schematic model system of
an alpha helix strained by an external force before and after onset of rupture, showing the process of
releasing a segment of backbone polypeptide due to the rupture of HBs, thereby increasing the contour
length of the free end entropic chain by dλ
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Figure 17-24. Strength model over more than ten orders of magnitudes in time-scale. Subplot (a) shows
the rupture force versus life time of the AH-system at the onset of failure (=strength properties), includ-
ing all three regimes over more than ten orders of magnitude of time-scales [129]. MD simulation results
(as reported in [39]) suggest a change in mechanism from the fast deformation mode (FDM) to the
slow deformation mode (SDM) at increasing the time scales. At approximately 350 pN the effective
energy barriers under the applied force in the Bell model are comparable, and therefore mark the transi-
tion between FDM and SDM mechanisms. At longer time-scales there is another change in deformation
mechanism from the SDM to the asymptotic regime (AR), predicted here at a time scale of approx-
imately 100 ns when fAR > fSDM . Experimental results confirm this prediction. Thin lines show the
strength behavior for a broad range of HB energy values from 2.5 to 5 kcal/mol (marking error bars for
uncertainties in the H-bond energy). Subplot (b): Dependence of the critical rupture force on E0

B, in the

AR. The strength of the system near equilibrium conditions (AR) depends linearly on E0
B (this parame-

ter determines the energy release rate γ ). The specific value ofE0
B, usually found in a range between 1

and 8 kcal/mol, and varies between different solvent conditions and the specific sequence of the protein
domain
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for fast deformation rates, the relation between τ and the applied force f can be
described by a simple Bell model [130]:

τ = ω−1
0 · exp

(
Eb − f · xb · cos (θ )

kB · T

)
, (17-17)

where Eb is the energy barrier of HB breaking, and xb is the distance between the
equilibrium state and the transition (=rupture) state of the protein domain (note that
v = �x

/
�t = xb

/
τ , where v is the externally applied pulling speed). Further, the

parameter θ ≈16◦ describes the angle between the applied force f and the orientation
of the HBs, kB is the Boltzmann constant, T is the absolute temperature, and ω0 =
1 × 1013s−1 is the natural frequency of bond vibration. It is noted that in addition to
the phenomenological model used here, other stochastic models exist that link time
scales and pulling speeds to bond breaking forces; for a description to other models
we refer to the literature [104, 131–138]. The force as a function of time scale τ and
the energy landscape parameters (ELP, Eb and xb) is given by

f (τ , Eb, xB, θ ) = (xB · cos (θ ))−1 · [Eb − (kB · T · ln (ω0 · τ)] . (17-18)

(for detailed explanations of these equations see [39]). For a given pair of ELPs,
Eq. (17-18) leads to a straight line in the f-ln(τ) space. Direct MD simulation stud-
ies in explicit water [39] confirm this predicted behavior, however, we observe two
distinct regimes, each of which follows the predicted linear logarithmic dependence
of the unfolding force with respect to the life time of the structure. The analysis
of the atomistic mechanisms of rupture together with the analysis based on Bell’s
model shows that the two slopes shown in Figure 17-24a correspond to two dis-
tinct unfolding mechanisms with two different energy barriers (see Table 1) [39].
In the fast deformation mode (FDM), the observed deformation mechanism and
the calculated EFDM

B indicate that single HBs break sequentially, whereas in the
slow deformation mode (SDM) 3-4 HBs break simultaneously (3.6 HBs form one
alpha-helical convolution, which unfolds as a whole). The sequential breaking of
HBs at high pulling speeds (short time scales, FDM) is due to the fact that HB
breaking in the protein remains localized. This is because pulling occurs faster than
the ability of the protein to mediate HB breaking induced “plastic” deformation.
In the SDM regime however, pulling is slow enough so that entire convolutions
rupture under the applied force, leading to effectively higher energy barriers for
unfolding [39].

At increasing time scales in the SDM the Bell model prediction leads to nega-
tive forces, an unphysical prediction. Furthermore, experimental values [139, 140]
clearly do not lie on an extension of the slope predicted from the SDM regime,
and rather suggests that the f-ln(v) curve approaches an asymptotic zero slope (see
Figure 17-2a). Could the Bell model be used to explain this behavior at vanish-
ing pulling rates? Adopting the Bell model to describe this behavior would lead
to an increase of xB (since xB controls the slope of the f-ln(τ ) curve), approach-
ing infinity for slopes approaching zero. It is noted that in other models (e.g. the



Multiscale Modeling of Biological Protein Materials 511

microscopic theory [135, 141]) a similar approach has been taken, where the value
of xb is defined as a function of pulling speed (equivalently, the time-scale), leading
to a continuous change of the slope of the f-ln(v) curve.

The approach of xB to extremely large values is, however, unphysical since the
transition point xB can not be larger than the finite contour length of the protein
domain. This suggests that another mechanism must determine the protein rupture
force. The key to understand this change in mechanism is the realization that at
sufficiently long time scales the deformation of the system goes through equilibrium
and is no longer controlled by a statistically activated process as described in the
Bell model or Eqs. (17-17 and 17-18). Thus the strength does not depend on the
time-scale of loading beyond a critical τ crit, and is independent of pulling rate for
very long time-scales.

At long time scales τ > τ crit entropic effects that stem from conformational
changes of the polypeptide chains are activated and the strength is characterized
by a free energy release rate condition, as recently reported in [142] for another
class of protein domains. Here we apply this model [142] to alpha helix protein
domains. Similar to the Griffith condition used to predict the onset of fracture in
crystals [143], the free energy released by freeing polypeptide chains from their
geometric confinement in helical convolutions, must equal the energy required to
break these HBs. The strength of the alpha helix protein domain is then given by

fAR = kBT

4ξP

[
(1 − αcr)

−2 + 4αcr − 1
]

. (17-19)

with αCR obtained from

G(αcr) = kBT

4ξP

[
αcr · (1 − αcr)

−2 − (1 − αcr)−1 + 2α2
cr + 1

] != γ . (17-20)

Hereby α equals to the ratio of the end-to-end length of the free chain to its contour
length α = x

/
λ (see Figure 17-1 for definition of variables), equivalent to mechan-

ical stretch. The parameter γ describes the HB energy stored per unit length of AH,

γ = E0
B · n

l
= E0

B

L0
, (17-21)

with l as the unit length of one convolution and n as the number of HBs per unit
length.

We calculate L0 = 0.145 nm/HB by measuring the length of the entire protein
(Lx = 6.9 nm) and dividing it by the number of existing HBs (n = 47). This is in
good agreement with results in the literature [122] where Lx = 0.15 nm/HB (cal-
culated from l = 0.54 nm and n = 3.6 HBs per convolution). The strength regime
described by Eq. (17-19) is referred to as asymptotic regime (AR).

Combing all three mechanisms (FDM, SDM, AR), the strength of a alpha helix
domain is:
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(17-22)

The functions fFMD and fSMD can be calculated from Eq. (17-22), fAR can be
calculated from Eqs. (17-19, 17-20, 17-21). We estimate E0

B from the MD simula-
tion in the FDM where the 3.6 H-bonds in one convolution break simultaneously,
thus E0

b=ESDM
b

/
3.6 = 3.1 kcal/mol, thus γ = 2.1 kcal/mol/Å (this provides a

direct link between SDM and AR). This value of E0
b is in good agreement with

earlier experimental and simulation results [144], where E0
b was reported to be

3–6 kcal/mol. We choose the persistence length of a polypeptide chain as suggested
from both experiment and theory to ξP = 4 Å [145]. Based solely on these two
parameters, E0

b and ξP, the force in the AR is calculated to ≈190 pN. The AR
regime is reached at time scales of 100 ns (or equivalently, at pulling speeds v <
0.001 m/s), when fAR > fSDM . The strength value of fAR is plotted in Figure 17-24b
as a function of the HB energy E0

b.
The model given in Eq. (17-22) is validated through quantitative comparison with

experimental results. Experimental results of stretching and breaking single alpha
helix domains [139, 140] (with a length of less than 100 Å) report forces between
140 and 240 pN during unfolding. Figure 17-24a summarizes the described regimes
and shows a quantitative comparison between the model prediction and MD simu-
lation results as well as experimental results. In addition to the values used in this
study that were based on earlier MD results, an envelope curve for E0

b ranging from
2.5 to 5 kcal/mol is included to illustrate how the predictions change under varia-
tions of the energy of HBs. We note that other experimental results [145–149] (not
shown in Figure 17-2) that consider alpha helix spectrin repeats lay slightly below
the predicted force range, on the order of 50 pN, which would require extremely
low values of E0

b ≈1 kcal/mol. A possible explanation for this behavior could be
the difference in the observed unfolding mechanism, which is the unfolding of the
anti-parallel coiled-coil repeat instead of rupture of individual HBs of a alpha helix
domain. For instance, in one of the studies xb was estimated to be 15 Å [145–149],
which is ten times higher than the xb for a single HB thus suggesting an alternative
mechanism.

17.3.4.2. Summary and Discussion

The most important feature of the model reviewed in this section is the development
of a constitutive model (Eq. (17-22)) that describes the strength properties of alpha
helix protein domains over more than 10 orders of magnitudes of time-scales. Up
until now such a model has not been reported, and to the best of our knowledge this
model is the first to quantitatively link MD simulation results [39] and experimen-
tal alpha helix strength values [139, 140] in a simple physical model as shown in
Figure 17-24a. An important feature of the model reported in Eq. (17-22) is that it
only includes basic parameters of the protein structure, that is, the HB energy and
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geometry, as well as persistence length. The strength properties of the alpha helix
protein domain, a universally found biological protein structure, is controlled by
different mechanisms at distinct time scales, with strong strengthening under faster
rates (shorter time-scales).

According to this model, the strength at very slow pulling rates is controlled
by entropic effects of the freed polypeptide backbone and not from a continuously
changing energy barrier that moves along the reaction coordinate xB as suggested
in the microscopic theory. Changes in the reaction coordinate xB are only observed
at relatively fast pulling rates, where it can be directly linked to changes in the
physical mechanism of rupture (that is, the change from FDM to SDM). This study
could motivate new experiments, in particular those that would provide a systematic
variation of deformation rates to probe the transitions between the regimes described
here.

17.4. COMPLEMENTARY EXPERIMENTAL METHODS

The science of the mechanical behavior of protein materials relies on complemen-
tary experimental investigations. Experimental methods, used either to explore the
structures and properties or for the synthesis of novel materials, are of great impor-
tance to balance theoretical studies and are crucial to develop a full understanding
of these materials, throughout all scales.

17.4.1. Structural Characterization

The most important experimental techniques in conjunction with atomistic mod-
eling of protein materials are x-ray diffraction and Nuclear Magnetic Resonance
(NMR) analysis, which provide detailed information on the crystallographic struc-
ture and chemical bonding at the molecular level, including the three-dimensional
atomistic geometry of protein molecules. Furthermore, atomistic modeling can also
feed back to assist structural characterization of protein materials, by providing
information about conformational stability, structural dynamics, as well as the inter-
actions of proteins with solvents. The structure of many proteins, elucidated using
x-ray diffraction or NMR experiments, has been deposited in the Protein Data Bank
[150], providing a rich source of three-dimensional structures that can be used as
the starting point for molecular simulation studies, or for structural analyses of the
geometry of protein components. Experimental techniques based on spectroscopy
and microscopy techniques have also been developed to monitor the dynamics of
chemical bonds and molecules, as illustrated for instance in a recent study of H-bond
dynamics in a protein structure [151].

17.4.2. Manipulation and Mechanical Testing

Recent advances in experimental techniques and nanotechnologies provide more
possibilities to observe, explore, and even mechanically manipulate the functional
components of biological protein materials at the fundamental molecular level. The
so-called force spectroscopy techniques at molecular level, such as atomic force
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microscopy, optical tweezers and nanoindentation, allow one to measure mechan-
ical properties of proteins, macromolecules, and even individual chemical bonds.
These studies can provide valuable insight to analyze the molecular mechanisms
associated with mechanical failure of protein domains and larger-scale filaments
[26–31, 152].

The Atomic Force Microscope (AFM) consists of a micro-cantilever with a sharp
tip at its end, which is used to scan the structure and properties of materials through
interatomic interactions such as van der Waals, electrostatic, or capillary forces.
The mechanical signature of proteins and other single biomolecules can be obtained
by AFM, where the biomolecule (for example, an individual protein domain) is
attached to a surface and manipulated by the tip that pulls the molecule at constant
force or constant pulling speed (the attachment to surfaces can be achieved by uti-
lizing molecules that display strong binding affinity to protein molecules and to the
surface, serving as a molecular link). AFM experiments on protein structures often
lead to a characteristic saw-tooth shaped force-displacement profile, and could be
linked to sequential unfolding of certain domains in the protein (see Figure 17-8,
where such behavior is shown as obtained from a MD simulation study). The Worm
Like Chain model (WLC) [153, 154] is frequently used to describe the entropic
elasticity of these domains (at least in part of the overall deformation regime), as
discussed above.

Optical tweezers apply forces on molecules that result from focused laser beam,
a concept called optical trapping. The force can catch, hold and move dielectric
particles ranging from nanometers to micrometers, at force levels of up to sev-
eral hundred pN with pN resolution. This technique is very precise, flexible and
damage-free, so has been widely used in the fields of cell biology and biophysics,
for example to unravel the mechanism of DNA condensation [155] and many other
studies (see, e.g. an overview article [156]). These single-molecular level tech-
niques provide extremely useful information to guide and validate atomistic-based
multi-scale computer simulation.

In nanoindentation, a small tip is pressed into the material and the load-
displacement relation is recorded. With the help of elasticity theory, the indentation
results are analyzed and provide hardness and elastic modulus of the materials.
Because of the small size of indentation tip, small-scale, highly localized properties
of materials can be measured. Using this method, spatially dependent mechanical
properties from bone, teeth to soft tissues have been measured successfully [157],
with high spatial and force resolution.

We refer the reader to other articles regarding details of these nanomechanical
experimental approaches (see, e.g. [27–29, 31, 158–161]). A selection of exper-
imental techniques is summarized in Figure 17-2, illustrating the overlap with
multi-scale simulation methods. Since these advances in experimental methods now
enable one to probe time- and length-scales that are also directly accessible to
large-scale atomistic based simulation, the combination of experiment and simu-
lation might lead to a particularly fruitful interaction. This is particularly promising
since the kind of information obtained from experiment and simulation might be
complementary.
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17.4.3. Synthesis Methods for Hierarchical Materials

Materials science studies of nanoscale and biological materials benefit signifi-
cantly from conventional synthesis methods such as lithography, catalytic vapor
deposition, and templated growth. Materials synthesized using these techniques
range from crystals (e.g. metals, ceramics), thin films (e.g. coatings, electronic
devices), to nanostructures of various kinds (e.g. carbon nanotubes, nanowires).
These materials are widely used as the functional elements in nanoscale devices. For
example, the chemical synthesis of carbon nanotubes was used as cantilever beam
in high-frequency nano-resonators [162], and nano/micro-channels created through
lithography methods form the basis of microfluidic devices [163].

However, many of the methods that provided great success for the synthesis
of “conventional” nanostructures (e.g. CNTs, nanowires, etc.) face difficulties for
the synthesis of hierarchical nanostructures, since the absence of precise manipu-
lation methods at multiple levels restricts the controlled buildup of such structures.
Therefore, self-assembly processes inspired from biological protein materials repre-
sent great opportunities for this purpose [164]. Through self-assembly processes, it
is possible to form hierarchical nanostructures through interactions such as hydro-
gen bonding, metal coordination, hydrophobic interactions, van der Waals and/or
electrostatic forces. Following this self-assembly approach, programmable protein
or nanowires arrays have been constructed [165]. However, self-assembly processes,
either static or dynamical, can be very complex. Currently there clearly exists a
lack of understanding of fundamental underlying mechanisms [164]. To success-
fully apply the self-assembly concept for the design and synthesis of hierarchical
materials synthesis, we must understand the mechanism of self-assembly, in terms
of the constitutive functional elements, in particular their properties and interac-
tions. To facilitate the engineering process and the design of de novo hierarchical
structures, we must also develop rational design concepts of materials based on our
understanding of structure-property-processing relationships.

17.5. DE NOVO DESIGN OF BIOINSPIRED AND BIOMIMETIC
NANOMATERIALS

The search for materials possessing contrasting properties, such as high strength
and high toughness, has driven the design of many alloys and composite mate-
rials. However, most synthetic materials are seen to lie on the so-called “banana
curve” in regard to these properties, thus possessing one property at the cost of
the other (see Figure 17-25a). Biological structural materials, on the other hand, in
particular bone [166], nacre [167, 168] and dentin [169] (which are found in the
endo- and exoskeleton systems of animals), are stiff and tough simultaneously (see
Figure 17-25). Though composed of protein and mineral, they are almost as tough
as the protein phase and as stiff as the mineral phase. To introduce a representa-
tive example among biological structural materials, we provide a brief review of
the structure of cortical bone and an outline of how its contrasting properties and
its hierarchical structure are intimately linked. Bone has excellent toughness and
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Figure 17-25. (a) Toughness versus stiffness for a number of biological materials (figure based on the
data compilation in reference [200]). Biological composites, such as antler, dentin, bone and enamel
combine the “good” properties of the protein and mineral components and are typically both stiff and
tough. Generally speaking, the stiffness increases and the toughness decreases with mineral content from
antler to dentin/bone and enamel [201]; (b) Toughness versus stiffness for metals, alloys and ceramics,
lie on the “banana-curve”, an inverse relation between increasing toughness and decreasing stiffness. The
circular region shows the property region of high toughness and stiffness that may be accessible through
designing bio-inspired composite structures

fatigue strength properties while being light weight and stiff for load-carrying. Its
structure is composed of 7 levels of hierarchical arrangements [166]. This is thus
an ideal material that may provide the basis for mimicking concepts to achieve high
toughness.

Bone is a composite of organic and inorganic constituents: 30% bone is organic;
of which 90–95% is collagen, and the remainder consists of non-collagenous
proteins. The remaining 70% of bone is made up of the inorganic mineral hydrox-
yapatite, which includes calcium phosphate, calcium carbonate, calcium fluoride,
calcium hydroxide and citrate [3, 170, 171]. At the nanoscale, bundles of collagen
molecules are arranged in fibrils, which are twisted in a coil, making a collagen fiber.
The inorganic component is predominantly crystalline. The crystals are platelets or
rods, about 8–15 Å thick, 20–40 Å wide and 200–400 Å long and arranged in a reg-
ular array at the nanoscale (Figure 17-26a). These mineralized collagen fibers form
into planar arrangements called lamellae (3–7 μm wide). These sheets (lamellae) of
mineralized collagen fibers wrap in concentric layers around a central bone canal to
form osteons. Osteons appear like cylinders with 200–250 μm in diameter, running
parallel to the long axis of the bone. Figure 17–26a shows these levels of hierarchy
in bone from the nanoscale up to the macroscale.

Bone is known for its combination of superior mechanical properties compared
to both of its constituents. Simple reinforced composite models for elastic properties
do not give correct results for bone, showing us that the explicit consideration of the
hierarchical structure is important [170]. A major property of bone is its increased
fracture resistance and toughness, despite being highly mineralized. This has been
attributed to distinct deformation mechanisms on different length scales in bone. At
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Figure 17-26. Subplot (a) shows hierarchical structural organization of bone: (i) cortical and cancellous
bone (different types of bone); (ii) osteons; (iii) lamellae; (iv) collagen fiber assemblies of collagen fibrils;
(v) bone mineral crystals, collagen molecules, and non-collagenous proteins. Figure reprinted from [166].
Copyright © 1998, with permission from Elsevier. Subplot (b) shows two-dimensional, simple schematic
model of hard-soft phases nanocomposite based on the ultrastructure of bone. In bone, the inorganic
platelets are 2–4 nm thick and up to 100 nm long embedded in a collagen-rich protein matrix

the micron length scale, where the bone structure consists of osteons, this has been
attributed to two mechanisms (a) crack bridging, and (b) microcracking [172]. It is
hypothesized that microcracks tend to originate around osteons due to debonding at
osteon-matrix interface or osteon pull-out. The presence of microcracks in the wake
of a crack have been shown to result in the residual opening of the crack tip, and a
redistribution of stresses in the crack tip region, which reduces the crack extension
force and increase the toughness of the material. Crack bridging in the wake of a
crack has also been proposed as a crack tip shielding mechanism. Crack bridging
involves formation of unbroken regions that span the crack in the wake of the crack
tip and act to resist crack opening. Such bridging can results from un-cracked liga-
ments and intact collagen fibrils. On the nanometer length scale, bone toughness has
been attributed to the flaw tolerance of size of mineral platelets [173]. The nanos-
tructure of bone is shown in Figure 17-26b, consisting of mineral platelets arranged
in a staggered pattern in a collagen matrix. This structural motif of long embedded
mineral platelets in a soft matrix is seen in other biological materials too (e.g. nacre),
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and the commonality of this structural motif suggests some intrinsic properties in
the design that improve mechanical properties. A mechanism has been proposed by
Gao, Fratzl et al. [46], whereby under tensile loading, staggered mineral platelets
carry tensile load and the protein matrix transfers the load between mineral crystals
via shear. In this model, it has been showed that the nanoscale width of the mineral
platelets embedded in the collagen matrix is such that the material becomes insen-
sitive to crack like flaws at this length scale (approximately tens of nanometers) and
fails under tension at the theoretical strength for a perfect crystal [173]. The opti-
mum aspect ratio (height/width) of these platelets can be obtained by assuming that
protein and mineral fail at the same time. However, some shortcomings of this sim-
plified model are that it does not take into account the complex non-stoichiometric
chemistry at mineral-protein interfaces [174, 175] and size limitations of minerals
owing to chemical boundary conditions. The modular domain nature of the organic
matrix at different scales, and its stepwise unfolding has been proposed as a mecha-
nism for the intrinsic toughness of the matrix [16, 176], illustrating the hierarchical
nature of the matrix collagen itself.

This brief review of the physics of toughness and fracture strength of bone
show the importance of hierarchical levels in optimizing mechanical properties.
Mechanisms that operate in at least two very distinct length scales are seen to play
a prominent role in ensuring the large toughness of bone.

17.5.1. Development of Bioinspired Metallic Nanocomposites

The nanostructural motif (Figure 17-26b) and concept of hierarchical arrangement
can be transferred to conventional metal-metal or metal-ceramic nano-composites.
Such materials would be light-weight, very strong and energy dissipative. A study
of the applicability and transferability of the key design concepts that provide bone
with its strength and toughness could for instance be achieved through computa-
tional design experiments carried out via molecular dynamics simulation. The use
of molecular dynamics provides a detailed description of the atomistic deforma-
tion processes under loading at the nanoscale and may serve as a tool to enable the
nanoengineering of hierarchical bioinspired materials.

A model nanocomposite material based on the design geometry of bone has been
studied using a Ni-Al nanostructure and a modified EAM/EAM alloy potential. This
approach has been used to design a composite structure that features a maximized
flow stress (results shown in Figure 17-27) [177]. For the Ni-Al nanostructure, in
which Ni represents the harder metal, is used as platelet reinforcements in a soft
Al matrix. Systematic studies of size variations have shown the existence of a
“strongest size” for the platelet size on flow strength under tensile loading [177]. The
dominant contribution to plasticity switches over from interfacial sliding and bulk
plasticity at this length-scale [177]. Similarly, a model EAM/EAM alloy with Cu
metal as matrix material with a modified harder Cu EAM potential as platelets has
been used for geometrical parameter studies for strength under tensile deformation
and toughness under shock loading of the nanocomposite. The primary deformation
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Figure 17-27. Size dependence of the average flow stress (=strength) of a bioinspired metallic
nanocomposite, illustrating the concept of a “strongest size” at a characteristic length-scale of mate-
rial nanostructure [44, 45]. The increase in strength scales very well according to the Hall-Petch (HP)
relationship, and the reduction of strength at small building block sizes below approximately 50 nm
represents an inverse Hall-Petch regime (IHP)

modes are observed to change over the length scales and geometrical arrange-
ments of the nanocomposite. The possible deformation modes under observation
were bulk and platelet plasticity, platelet-matrix decohesion, and interfacial sliding.
Low temperature phenomena have been studied, thus discounting diffusional creep
mechanisms.

17.5.2. Nanostructure Design Effects Under Tensile and Shock Loading

Atomistic simulations have been carried out that revealed which types of shape,
confinement/length-scales and spacing of second phase platelets produces the max-
imum strength, and what changes in deformation mechanisms are observed due
to these geometric changes. Specifically, the effect of varying various geometric
parameters across their range have been studied, and parameters have been identi-
fied that have significant effect on strength [178]. This approach has been applied
to explore the yield mechanics of a nanocomposite with hard platelet inclusions
embedded in a soft ductile metal matrix (in a model system of Ni-Al). The main
finding of this large-scale atomistic simulation study is that there exists an optimal
size of the platelet inclusions that leads to maximum flow stress. The dominant con-
tribution to plasticity is seen to switch over from bulk plasticity to interfacial sliding
at this length-scale.

The result is significant in two ways: (i), it shows that the large-deformation
mechanical properties can be tuned and dissipation optimized by tailoring the nanos-
tructure, and (ii), it shows that there exists an optimal length scale at which the flow
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stress and thus dissipation reach a maximum. The critical geometric parameters
for maximum flow stress at large deformation have been determined. The studies
provide mechanistic insight into the nanoscopic stress distribution and its relation to
the toughening mechanism. This result is significant since it reveals that not only the
size, but also the details of the platelet arrangement are significant in determining
the overall larger-scale mechanical behavior. The reinforcement platelet offset from
one row to another turns out to be a particularly important parameter. For little to no
offset, there is no significant strengthening effect (Figure 17-28). For platelet offset
larger than one fourth, the flow stress reaches a plateau value and does not increase
further. Studies of the effect of platelet shape, as in size aspect ratio, have revealed
that elongated platelets in the direction of loading axis provide an increased flow
stress (Figure 17-28). However, beyond a critical aspect ratio of elongated platelets,
there is no further improvement in strength. On the other hand, keeping the aspect
ratio fixed and changing shape of platelets to elliptical, triangular and others shows
virtually no effect on the flow stress (Figure 17-28).

The model system of stiff particles embedded in a soft matrix with simi-
lar nanoscopic structural features as bone has also been tested under shockwave

Figure 17-28. Flow stress under tensile loading of bioinspired metallic nanocomposite; (a) shows no
significant effect of reinforcing platelet phase particle shape on flow stress with fixed volume fraction
and aspect ratio; (b) shows increase in flow stress as a function of platelet aspect ratio until a critical
value, keeping volume fraction and platelet spacing the same. This shows elongated platelets lead to
higher flow stresses; (c) shows large effect on flow stress of platelet offset from one row to another. For
little to no offset, there is no significant strengthening effect. For platelet offset larger than a 1/4th, the
flow stress reaches a plateau value
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Figure 17-29. Response to shock loading of bioinspired metallic nanocomposites of varying interfacial
adhesion between matrix and platelet phases; (a) shows dislocation core density for “strong” (interface1)
and “weak” (interface2) interfacial strengths. We find that interfacial sliding between the composite’s
constituents is a major source of plasticity under shock loading, as seen in the horizontal dislocation core
lines at the matrix-platelet interfaces for the “weak” interface case; (b) shows larger fraction of sessile
dislocation activity for the “weak” interface case too pointing towards increased hardening. These results
point towards controlling the interfacial strength to design a material with larger shock absorption

loading using large scale molecular dynamics. It is found that the geometric arrange-
ment and the specific length scales of design elements at nanoscale does not have
a significant effect on shock dissipation, in contrast to the case of tensile loading
where the nanostructural length scales strongly influence the mechanical properties.
Interfacial sliding between the composite’s constituents is a major source of plastic-
ity under shock loading [179]. Thus controlling the interfacial strength can be used
to design a material with larger shock absorption (Figure 17-29).

These results, obtained by using large-scale MD simulations in the spirit of an
engineering design approach, could guide laboratory processing techniques in the
design of novel nanocomposites.

17.5.3. Outlook and Opportunities

The design attempts to mimic biological structures into synthetic materials can
extend beyond optimizing contrasting mechanical properties and improving robust-
ness. Self-organization at various length scales can be mimicked to obtain reversible
structures that assemble or disassemble in complex fashions under stimuli [180,
181]. In particular, one of the challenges facing technological advances in devel-
oping novel micro- and nano-devices is the effect of miniaturization on thermal
management. Miniaturization and higher integration and closer packing of com-
ponents in electronic devices lead to high-density, point load heat sources at sub
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100 nm scales that can lead to failure of NEMS/MEMS devices, significantly reduc-
ing their reliability. In these applications, the use of self-assembling heat dissipating
structures could possible eliminate the need for the a priori knowledge of the loca-
tion of heat sources, and enable an adaptive, low weight, self-repairing network.
Self-assembling branched fluidic structures mimicking vascular networks of real liv-
ing tissue were already used to optimize heat management efficiency [182]. Recent
nanotechnology based efforts have validated extremely high thermal conductivity
(≈ 3,000–6,000 W/mK) in materials such as carbon nanotubes [183] and graphene
[184]. However without integration, these nanostructures themselves can hardly be
applied to macroscale and feature a lack of controllability. Through controllable
fabrication of hierarchical structures [185] or combining with bio-inspired self-
assembly strategies based on these conventional high thermal conductivity materials
such as nanowires, nanotubes [186] and polymeric inter-links, hierarchical highly
dissipative structures can be created for the use in NEMS/MEMS devices, laser
diodes and many other applications.

17.6. DISCUSSION AND CONCLUSION

Over the last centuries, engineers have developed quantitative analytic and syn-
thetic understanding of how to create complex structures out of a diverse range
of constituents, at various scales (machines, buildings, airplanes, nuclear reactors
and many others). Research in the area of material properties of biological materi-
als will extend our ability to carry out structural engineering, as used for buildings
or bridges today, to the ultimate scale – nanoscale, and may be a vital component
of the realization of nanotechnology through the merger of material and structure
[117] (Figure 17-30). The merits of polymers, membranes and other nanostructures
could not be utilized sufficiently unless the signal or motion at atomistic scale can
be represented though macroscopic functions. Materiomics, the systematic anal-
ysis of biological protein materials within the materials science paradigm, may
provide a new approach in engineering to create materials that have low impact
on environment and energy utilization but are highly effective and functional (e.g.
mechanomutable, controllable, changeable).

A better understanding of the mechanics of biological and natural materials,
integrated within complex technological systems will make it possible to com-
bine living and non-living environments to develop sustainable technologies. New
materials technologies such as protein-based materials produced by recombinant
DNA techniques represent new frontiers in materials design and synthesis [187,
188]. These questions have high impact in the understanding and design of envi-
ronmentally friendly technologies and may enhance the quality of life of millions
of people, through advances in the medical sciences as well as through improve-
ments of the living environment. A currently pressing question is the development
of new technologies to address the energy problem. Advances may be possible by
utilization of bacteria to produce and process fuel from crops, by enabling the syn-
thesis of materials at reduced processing temperature or through fabricating artificial
light-harvesting networks.
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Figure 17-30. Merger of structure and material in engineering design. The long term impact of this work
is that it could extend our ability to perform structural engineering at macroscale, to the ultimate scale,
the nanoscale. Opening the structural material scale as design space for new material development may
open great possibilities for development of robust, adaptive, active and smart materials

Nanoscience and nanotechnology enable us to make structures with unique mate-
rial properties at the ultimate scale (self assembly, recombinant DNA, utilization
of motor proteins for nano-machines and many others). This will perhaps lead to
novel complex structural and multi-functional materials, designed from nano to
macro. The theoretical progress in understanding hierarchical biological materials
will facilitate the use of an extended physical space, through the use of multiple
hierarchies, in an efficient and controlled manner, that is, lead to a bottom-up struc-
tural design on the sub-macroscopic scale, instead of trial-and-error approaches. For
example, the extended design space might serve as mean to realize new physical
realities that are not accessible to a single scale, such as material synthesis at mod-
erate temperatures, or fault tolerant hierarchical assembly pathways [189], which
enable biological systems to overcome the limitations to particular chemical bonds
(soft) and chemical elements (organic) present under natural conditions [190]. The
increased understanding of the hierarchical design laws might further enable the
development and application of new organic and organic-inorganic multi-featured
composites (such as assemblies of carbon nanotubes and proteins or polymer-
protein composites [191–193]), which will mainly consist of chemical elements
that appear in our environment in an almost unlimited amount (C, H, N, O, S).
These materials might consequently help to solve our energy and resource problems
(e.g. fossil resources, iron etc.), and allow us to manufacture nano-materials and
devices, which will be produced in the future by techniques like recombinant DNA
[187, 194, 195] or peptide self-assembly [188, 196, 197], techniques where the bor-
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ders between materials, structures and machines vanish. An exciting aspect of the
materials science of biological materials is that it is interdisciplinary, by nature.
Performing research in this field thus often means to overcome barriers between sci-
entific disciplines and to develop strategies that enable us to communicate concepts
more efficiently. Structures in universities and research institutions may have to be
modified to facilitate such investigations. To investigate through the materiomics
approach towards engineering bio-inspired materials or biological nanomachines,
the organization of functional elements at different hierarchical levels, their commu-
nications and dynamics must be understood well and held under accurate control.
The integration of computational approaches in the design process may play a
crucial role in developing these scientific and technological advances.

Applications of these new materials and structures are new biomaterials,
new polymers, new composites, engineered spider silk, new scaffolding tissues,
improved understanding of cell-ECM interactions, cell mechanics, hierarchical
structures and self-assembly. In addition to the long-term impact in biology, bio-
engineering and medicine, this research may eventually contribute to our theoretical
understanding of how structural features at different scales interact with one another.
This may transform engineering approaches not only for materials applications,
but also in manufacturing, transportation or designs of networks and further the
development of the technological approaches.
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Abstract: Understanding the mechanism of mechanobiological processes at the molecular level
is an important challenge in modern biophysics. Despite recent advances in experi-
mental and numerical techniques, the intrinsic multiscale nature of mechanobiological
processes makes it difficult to meet such challenge in many systems of interest. Recently,
a continuum-mechanics based hierarchical modeling and simulation framework has been
established and applied to study the mechanical responses and gating behaviors of a pro-
totypical system, the mechanosensitive channel of large conductance (MscL) in bacteria
Escherichia coli (E. coli), from which several putative gating mechanisms have been
testified and new insights deduced. This article reviews these latest findings and sug-
gests possible improvements for future modeling work. The computationally efficient
and versatile continuum-based protocol is expected to make contributions to a variety of
mechanobiology problems

Keywords: Molecular biomechanics, Computation, Mechanosensitive channel

18.1. INTRODUCTION

Many challenging problems in molecular biomechanics require the development
of new efficient computational tools. For example, cellular mechanotransduction,
which is the mechanism by which cells convert mechanical stimuli into biochemi-
cal responses, has been a research focus for several decades owing to its significance
in many physiological functions in living organisms, such as touching, balance, and
hearing, among others [1–4]. Despite its significance, the intrinsic mechanisms by
which the cell responses to external stimuli are not yet well understood. During
mechanotransduction, the external force at macroscopic scale can transcend down
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multiple length scales to the microscopic mechanical behaviors of biomolecules and
their assemblies. Therefore, understanding the molecular basis for mechanotrans-
duction requires bridging multiple length- and time-scales along with an efficient
treatment of the complex structure of biomolecules; this is still challenging for
experimental studies, and thus important insights are sought from modeling and sim-
ulations. The present numerical schemes based on all-atom simulations are limited
to simple loading modes occurring at nanometer and nanosecond scales. An efficient
multiscale framework that can both capture sufficient molecular details and deal
with complex loadings over multiple scales is undoubtedly a valuable supplement
to the conventional experimental and modeling methods.

Recently, a top-down computational framework has been developed and referred
to as the molecular dynamics-decorated finite element method (MDeFEM) [5–7]. In
essence, MDeFEM effectively models the biomolecule and its assemblies as inte-
grated structures; the mechanical properties of each structural component as well
as their interactions are derived from atomistic simulations, and the entire struc-
ture is then solved using FEM. This multiscale approach can effectively bridge the
gap of previous numerical techniques, allowing important mechanistic insights of
mechanobiology to be deduced.

In this chapter, based on the model system of mechanosensitive channel of large
conductance (MscL) in E. coli, the fundamental gating mechanisms are deduced
using the continuum-based MDeFEM framework [5–7]. The results are compared
with pervious studies from experimental, theoretical and numerical perspectives,
and the obtained insights are potentially relevant to understanding a host of other
biomolecular systems, including the mechanosensitive (MS) channels in higher
organisms. Further improvements of the present multiscale model are also pro-
posed and it is envisioned that such an improved framework will find great value
in computational molecular biomechanics.

18.2. BRIEF OVERVIEW OF MECHANOSENSITIVE
(MS) CHANNELS

18.2.1. Structural Components of MS Channel of Large
Conductance (MscL)

Although some long-term mechanotransduction events such as tissue remodeling
involve the consequence of altered gene expression, most cellular responses to
mechanical forces are due to the MS channels [1, 4, 8]. In bacteria, MS channels
respond to load perturbation applied to the cell membrane or other membrane-
associated components and act as “safety” valves and facilitate the permeation of
small ions and water molecules [4]. One of the most studied MS channels up to
date is bacterial MscL, for which the structure has been characterized at atomic
scale by x-ray crystallography [9] or homology modeling [10]. In Figure18-1a
and b (top/side views), the structure of E. coli-MscL in the closed state is shown,
which was developed by homology modeling [10, 11] based on the X-ray crystal
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Figure 18-1.E. coli-MscL: (a) top view and (b) side view of the closed structure of the homology model
(c) top view and (d) side view of the MDeFEM model; (e) mesh of the protein. The dash line indicates
the initial location of lipid membrane. The protein components include: the transmembrane TM1 bundle
(sky blue) and TM2 subunits (yellow), cytoplasmic S1 helices (green) and S3 helices (grey), and they are
connected by periplasmic and cytoplasmic loops (black)

structure of MscL in bacteria Mycobacterium Tuberculosis (Tb) [9] and other avail-
able experimental data [12]. The structure of E. coli-MscL is of five-fold symmetry,
and the residues on top of the transmembrane helices are connected by periplas-
mic loops (black), whereas those at the bottom of the transmembrane helices are
linked to cytoplasmic helices via cytoplasmic loops (black). Among the transmem-
brane helices that directly interact with the membrane, the TM1 bundle (sky blue)
consists of five longer subunits that form an inner gate, and the five TM2 subunits
(yellow) form the outer bundle. The dash line in Figure 18-1b indicates the initial
location of lipid membrane. In E. coli-MscL, TM1 and TM2 helices correspond to
residues Asn 15-Gly 50 and Val 77-Glu 107, respectively. There is a break in TM1
due to Pro43 (red) near the top of the TM1 helix; in the literature, the segment above
Pro43 is sometimes referred to as the S2 helices [10]. The cytoplasmic domain is
composed of gates formed by S1 helices (green) and S3 helices (grey), which corre-
spond to residues Ile 3-Met 12 and Lys 117-Arg 135, respectively. Among the three
inner valves formed by the TM1, S1 and S3 helix bundle, the transmembrane pore
enclosed by TM1 helices is the most important, which determines the ion flux that
passes through and can be estimated by measuring the electric current experimen-
tally [12]. Hence, an effective radius of the channel could becalculated from the area
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of the pentagon projection on the membrane plane formed by the principle axes of
the TM1 helix bundle, which is ˜6.5 Å for the E. coli-MscL in its closed state.

The gating transitions of MS channels can be stimulated by external force
through the lipid environments. Membrane-activated gating behaviors were first
found by Kung’s group by carrying out patch-clamp experiment on lipid vesicles
[13]; since cytoskeleton and other membrane proteins were removed, the mechani-
cal deformation of lipid was demonstrated as the key factor for MS channel gating.
The crucial role of membrane was also validated using a thermodynamics analysis
[14], where the free-energy of the lipid bilayer deformation was shown to be on the
same order as the energy barrier required for gating. Other experiments [15, 16] and
numerical studies [17, 18] showed that MS channels are sensitive to lipid composi-
tion. Therefore, a study that explicitly considers lipid membrane is required for the
mechanistic analysis of gating of MS channels.

A lipid bilayer membrane is composed of phospholipids and it forms a natural
barrier between the inside and outside of the cell [19]. The exposed head groups
of phospholipids are hydrophilic, and the tails are hydrophobic toward the center
of lipid bilayer. An example of dilauroyl-phosphatidylethanolamine (DLPE) lipid
is shown in Figure 18-2a, which bounds an E. coli-MscL. Under the physiologi-
cal condition, the lipid bilayer is fluidic-like: it is incapable of bearing shear stress
and cannot sustain large strains, and several percent of area expansion may rupture

Figure 18-2. The assembled protein/lipid system: (a) the “cartoon” representation of E. coli-MscL and
all-atom representation of a lipid, with a schematic of equi-biaxial loading applied at the lipid boundary.
(b) continuum-mechanics based model of E. coli-MscL-lipid system. The finite element mesh of the tri-
layer lipid is shown in the zoom-in view. The integrated protein structure (established from the continuum
approach) is embedded in a continuum lipid slab (based on a sandwich model). The effective mechanical
properties of the continuum components as well as their interactions are derived from MD simulations
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the membrane [1]. Nevertheless, under the assumption that it behaves like an elas-
tic solid, the effective mechanical properties of lipid (upon tension, bending, etc.)
can be estimated through relevant loads and deformation perturbations, and used
for modeling purposes [14]. For instance, the area expansion coefficient of a lipid
bilayer is the membrane tension per relative change of its unit area and is related
with an effective Young’s modulus of the membrane. Lipid membrane is nearly
incompressible [20], which implies that its effective Poisson’s ratio is close to 0.5.
Besides in-plane tension, bending of lipid bilayer affects its curvature, and such con-
tribution from an effective bending stiffness has been suggested to be important for
the gating of MS channels [21]. In addition, the lipid property may be inhomoge-
neous across the thickness, since distinct peaks of lateral pressure are found in the
head group and tail regions [18], and modification the pressure profile can lead to
different channel gating characteristics [22–25].

Under the physiological condition, diverse external stimuli [1] may be exerted
on a cell including but not limited to steady-state contacts, high-frequency vibra-
tions, fluid shear stresses, etc.; these external stimuli may be superimposed with
those generated internally, such as cytoskeletal polymerization, osmotic and hemo-
dynamic pressure. It is interesting to investigate which stimulus is more relevant
to mechanotransduction pathways. Since the forces acting on a MS channel are
transferred through the lipid, the effect of various membrane deformation modes
(e.g., in-plane tension, bending, etc.) vs. gating transitions may be explored. The
schematic in Figure 18-2a shows the example of equi-biaxial tension, which is the
most studied membrane deformation mode that can be triggered by variation of the
osmotic pressure.

18.2.2. Previous Experimental and Theoretical Investigations

Pressure-activated, voltage dependent and ion selective properties of E. coli-MscL
have been extensively studied [26], as well as their gating behaviors using elec-
trophysiological characterization [13]. The relationship between channel opening
probabilities and membrane tension was reported in [27] and a five-subconductance-
states model was established, which showed that the tension-dependent confor-
mational transition is primarily attributed to the pore area variation that occurred
between the closed state and the first subconductance state [12]. Based on exper-
imental constraints and known structural features of channel proteins, structural
models for the gating transition of Tb-MscL and E. coli-MscL upon equi-biaxial
tension have been established [28]. These models include 13 conformational states
ranging from the fully closed state (when the effective pore radius a is about 6.5 Å)
to an open conformation (where the maximum conductance can be measured exper-
imentally) with a=19 Å; these models are consistent with results from cysteine
cross-linking experiments [10].

Theoretical studies are useful for postulating the principles behind the gating
transition of MscL. Philips et al. established a lipid-centric model [14] where the
system is dominated by hydrophobic mismatch and lipid tension; the protein defor-
mation was completely ignored. This model was improved by incorporating other
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triggers, such as the change of membrane curvature and mid-plane deformation
between the closed and opened states [24]; more recently, it was further extended
to study the issue of gating co-operativity [29]. Although these thermodynamics-
based models provided useful insights (such as the importance of lipid deformation)
into the common features of MS channels, the lack of sufficient structural details
makes it difficult to evaluate their validity for a specific system (which is particu-
larly important in biological systems where certain atomistic features are crucial to
function). For example, the proteins were treated as either rigid or overly simpli-
fied objects [14, 24, 29], thus their deformation energy contributions were largely
ignored. Moreover, key parameters in these models were usually not derived from
detailed simulations or experiments.

18.2.3. Previous Numerical Approaches

Effective numerical simulations are a powerful alternative for exploring the funda-
mental principles of molecular biomechanics. Comparing to analytical modeling,
numerical simulation can incorporate sufficient structural details to propose or
verify various theoretical hypotheses as well as to improve the model. In addi-
tion, numerical experiments can be manipulated in a precise way, which may help
interpret experimental data and stimulate new experiments.

All-atom simulations based on molecular dynamics (MD) are useful to explore
the gating transitions at the finest scale [30]. However, they are prohibitively expen-
sive especially when the protein, lipid membrane, and surrounding solvent are
explicitly considered [31]. MD simulation was first applied to study the gating of
Tb-MscL [32]; limited by the accessible time-scale (3 ns), the pore size was barely
changed. To accelerate structural transitions, the protein deformation was decou-
pled from the membrane, and external forces were applied directly to the protein
so as to assist gating. Steered molecular dynamics (SMD) was employed to study
E. coli-MscL upon equi-biaxial tension [30], where the steering forces, estimated
from the lateral and normal pressure profiles exerted by the deformed bilayer, were
added to selected boundary atoms of the protein. Despite such bias, the channel
merely opened to a=9.4 Å after 12 ns of simulation, which highlights the limitation
of atomistic MD simulations in the context of probing the channel gating process.

Another artificially accelerated approach was based on the targeted MD (TMD)
[33]. The lipid bilayer membrane was completely ignored and a holonomic con-
straint was used to drive the opening of an E. coli-MscL. The constraining force,
however, can be unrealistically large [34] which makes the targeted MD useful
only in a qualitative sense [33]. A similar approach was carried out by Bilston and
coworkers [35] on a Tb-MscL without explicit lipid membrane, and the opening of
MscL was negligible after 150 ps of simulation.

During a simulation with short physical time, the applied external forces can lead
to unrealistic protein motions [16]. To circumvent such problem, Meyer et al. [36]
studied the conformational transitions of E. coli-MscL in a pre-curved lipid mem-
brane. Interesting observations were made through the 9.5 ns simulation, where the
major structural rearrangements occurred in the periplasmic loops and extracelluar
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helices. Although the channel radius increment was still limited, this technique has
successfully combined bending and equi-biaxial tension modes, and the transition
of E. coli-MscL occurred locally in absence of global external forces.

Despite various improvements, the all-atom-based simulations are still compu-
tationally intensive and the short simulation time may be inadequate for statistical
sampling. Hence, to overcome the shortcomings of the all-atom simulations, multi-
scale approach must be adopted. The concurrent simulations developed for crystals
[37], however, encounters difficulties on biomaterials especially for the coarse grain
modeling of soft tissues. A coarse grained model [38] was developed recently based
on a thermodynamics parameterization and the gating of Tb-MscL was simulated;
however, further validation of the coarse-grained force field is needed. The com-
putational cost of the particle-based multiscale model is still high, and these types
of models are difficult to employ for studying deformations involving large length
scales or complex loading modes.

The limitations of present atomistic and coarse-grained simulations motivated us
to develop a novel continuum mechanics-based modeling and simulation framework
for mechanobiology [5], which can not only bridge multiple length scales and adapt
complex loadings, but also include sufficient molecular details to capture some of
the most important characteristics of the specific system. Being top-down in nature,
the molecular dynamics-decorated finite element method (MDeFEM) complements
the traditional bottom-up all-atom/coarse-grained simulations. In the hierarchical
approach, the biomolecule and its assemblies are modeled as integrated continuum
structures incorporating some of the most important structural details (and redun-
dant atomic details are ignored). This is motivated by the fact that the mechanical
deformation of a biomolecular system is likely dictated by the superposition of
low-energy modes, which can be well described by the “collective” behavior of its
structural motifs (via phenomenological mechanical properties) and the local chem-
ical/atomistic details are likely less important. Thus, the MDeFEM can efficiently
treat large deformations at length scales and complex deformation modes not acces-
sible to conventional MD simulations, while still retaining some key features from
the atomic scale; the method can also be improved by choosing different levels of
refinement (or decoration) based on atomistic simulations.

In this chapter, we discuss the gating mechanism of E. coli-MscL based on
numerical simulations with MDeFEM (Figure 18-2b) [5, 7]; more details of mod-
eling and computational methods are described below. The underlying gating
mechanisms of E. coli-MscL [7] may provide useful insights for the function of
other mechanosensitive channels and cellular mechanotransduction.

18.3. CONTINUUM-BASED APPROACH: MODEL AND METHODS
FOR STUDYING MSCL

In Figure 18-1c and d, the top/side views of the continuum model of E. coli-
MscL are shown [5]; the geometries of all continuum components are measured
from the closed structure of the homology model [11] (Figure 18-1a and b). Each
helix (TM1/TM2/S1/S2/S3) is modeled as a three-dimensional elastic cylinder with
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diameter 5 Å (a typical value for the main chain of an α-helix). As a first order
approximation, the helix is taken to be homogeneous and isotropic, and the elastic
properties remain constant during the gating transition. Due to its possible impor-
tant contribution, Pro43 [10] is treated explicitly in the helix model. The materials
properties of the helices are calibrated by matching results of normal mode anal-
ysis (NMA) at the atomistic and continuum levels. The atomistic NMA is carried
out using the CHARMM19 force field [39, 40], which is more appropriate here
because the calculations are done in vacuum; the effect of solvation is approximated
by adopting a distance-dependent dielectric constant in electrostatic calculations,
and no solvent damping effect is considered to be consistent with the continuum
calculations. The Young’s modulus is varied such that the eigenvalues and eigen-
vectors for the three lowest-frequency modes computed at the continuum level
best fit the results from the atomistic normal mode calculation [5]. In general,
the Young’s moduli of helices are within the range found in previous simulation
studies [41].

The loops are taken to be quasi-one dimensional elastic springs, whose mechani-
cal properties are also assumed to residue-independent. Their mechanical properties
are also assumed to be homogeneous and obtained by the similar normal mode fit-
ting at the atomistic and continuum levels as discussed above for the helices [5]. The
spring constants for the loops are rather stiff, which is also consistent with previous
studies [30] and supports their possible importance during gating.

A lipid bilayer can be effectively modeled as a sandwich plate structure (Figure
18-2b) by considering the different roles played by the head and tail regions in
transducing mechanical stress [17, 18]. This is motivated by the natural difference
between the chemical and physical properties in these regions; e.g., it has been well
established that the lateral pressure profile of lipid bilayers has distinct peaks at the
interface (neck) between the head and tail regions, and that modifying the pressure
profile can lead to different gating characteristics for the MS channels [18]. Each
layer (head group or tail) is assumed to be homogeneous and elastic, whose effective
thickness and elastic constants are fitted based on published MD results [18] by
letting the strain energies to be equivalent during in-plane expansion. To host the
MS channel, a cavity with conforming shape is created in the membrane. Based on
such a continuum model, the assembled continuum structure of an E. coli-MscL
inside a lipid bilayer is shown in Figure 18-2b.

With a continuum-mechanics based representation, the interactions among atoms
within each continuum component are not computed explicitly because the cor-
responding energy is implicitly represented via the phenomenological mechanical
properties described in the last subsection; this is one reason that the computational
cost associated with the continuum framework is substantially lower than all-atom
simulations.

In MDeFEM, the structural components of biomolecules are integrated together
through non-bonded interactions (electrostatic and van der Waals). For different
pairs of interactions (e.g. between helices and those between helix and lipid), pair-
wise Lennard-Jones potentials are employed to describe the non-bonded forces [5],
which can be calibrated by calculating and matching potential energies at atomistic
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and continuum levels. Specifically, the non-bonded interactions between helices and
that between helix and lipid can be represented by,

Eint(α) = C

[
n

m

(
d0

α

)m

−
(

d0

α

)n]
,

where Eint(α) is the non-bonded interaction energy between the surfaces of two con-
tinuum components, which include contributions from both electrostatic forces and
van der Waals interactions. For any given pair of interaction, d0 is the (shortest)
initial equilibrium distance between the two surfaces, and α is the surface distance
between two deformed surfaces. Both m and n are positive integers that account for
repulsive and attractive terms, respectively, with n < m in general. The value of d0
depends on the different types of continuum components involved. The parameters
including the “well-depth”, C, and the exponents (n, m), are calculated based on
fitting to energy calculations using atomistic molecular mechanics force field [5].
For each pair of helices, the interaction energy in the vacuum is calculated using the
polar-hydrogen set of CHARMM19 force field. Calculations are done for different
combinations of helical pairs, which have effectively sampled many relative ori-
entations. To estimate the helix-lipid interactions, the insertion energy profiles are
computed when a single helix (TM1 or TM2) is gradually transferred in and out of
an implicit membrane with varying orientations; an implicit dielectric model is used
for the membrane to avoid the need of sampling a large set of lipid configurations.

Parameterization of helices, loops, lipid, and interactions is described in Ref. [5].
The integrated system is then meshed with finite elements (see example in Figure
18-1e for the mesh of protein bundle and that in Figure 18-2b for the elements near
lipid cavity). Commercial software ABAQUS [42] is used for FEM analyses; the
typical simulation time is only a few hours on a regular workstation with a single
CPU.

18.4. GATING MECHANISMS OF MSCL AND INSIGHTS FOR
MECHANOTRANSDUCTION

18.4.1. Effect of Different Loading Modes

In previous experimental and theoretical studies [16, 21, 24, 25, 27, 30], several
loading modes have been postulated to be the triggers of MscL gating, including
dilatational gating (equi-biaxial tension) and gating-by-tilting (axisymmetric bend-
ing). These potential gating mechanisms are examined with MDeFEM simulations
[7] to explore mechanotransduction pathways under different deformation modes.

18.4.1.1. Gating Behaviors Upon Equi-Biaxial Tension

An equi-biaxial strain up to 21% is applied as a displacement boundary condition on
the membrane [7]. Such a large strain is a result of modeling the lipid as a solid slab;
despite such bias, an appropriate expansion of lipid cavity can be achieved, which
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Figure 18-3. Snapshots of gating pathways of a single E. coli-MscL at half- and fully-opened states
upon equi-biaxial tension: comparisons between the structural model and MDeFEM simulation (with
maximum membrane strain 21%). Gating is primarily realized through the interaction between trans-
membrane helices and lipid, where the pore enclosed by the light blue TM1 helices is pulled open. Other
cytoplasmic helices and loops follow the trajectories of the transmembrane helices

is necessary to accommodate the fully opened channel and enables us to explore the
important aspects of the gating process that concern protein conformations.

The snap shots of the morphological transition of E. coli-MscL at intermediate
(half-opened) and opened states [7] are given in Figure 18-3; they compare favor-
able to the structural model of Guy et al. [11], which reflects the effectiveness of
the MDeFEM approach. It is not surprising that with the increase of membrane
strain, the lipid cavity expands and the forces are transmitted to the transmembrane
helices of the protein structure via non-bonded interactions. Consequently, the trans-
membrane region suffers most conformational changes characterized by their radial
expansions, and the pore enclosed by the TM1 bundle opens up.

Besides the lateral expansion, visible shrinking in the thickness direction is also
observed for the transmembrane region, which is related with significant tilting
of the helices. The longer and more flexible TM1 bends more than TM2 helices;
such significant deformation, which is required to maintain mechanical equilibrium
during the gating process [7], remains to be verified by experimental studies with
sufficient resolution (although the structural model [11] has predicted similar helix
bending curvature, Figure 18-3).

The MscL pore is defined by the TM1 helices; thus the loops connecting TM1
and TM2 helices also impose constraints on the size of the pore. In addition, the S1
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helices also affect the pore conformation via interaction with TM1 helices; during
gating, the S1 bundle expands in the radial direction and they are lifted up towards
the transmembrane region, which confirms the “swing-like” motions of N-terminus
[43]. The expansion of the S1 helices, however, is smaller than that in the struc-
tural model; this might have been caused by the neglect of solvation contributions
in the current model (see Section 18.6). Being far away from the transmembrane
helices, the S3 assembly remains essentially unchanged; this finding is in agree-
ment with the later version of the structural model [11] (as opposed to the previous
version [28]), suggesting that the S3 helices may be less important in terms of their
mechanics roles (although they may bear other biochemical functions). The present
system is resilient and can recover its closed state when the membrane stress is
removed.

In Figure 18-4a, the percentage increment of the effective pore radius of E. coli-
MscL, a, is calculated from MDeFEM simulation as a function of membrane strain
(the open-square curve) [7]. According to elasticity theory, the relationship between
membrane strain and lipid cavity expansion is linear [5], and that results in the
monotonic behavior of pore radius increment; the minor iris-like features in Figure
18-4a are due to the many-body interactions that affect equilibrium.

At small strain, the variation of channel radius agrees well between MDeFEM
[7] and SMD simulations (the open-circle curve in Figure 18-4a) [30]. This
demonstrates that at least qualitatively, the continuum-based approach model has
a reasonable description for the forces involved in the gating process, and it can
reach the fully opened state with a fraction of computational cost (several hours on
a PC workstation vs. months on a supercomputer). Thus, MDeFEM holds promis-
ing advantages over all-atom simulations in terms of the accessible length- and
time-scales.

Figure 18-4. Equi-biaxial tension: (a) the evolution of the effective pore radius (enclosed by TM1
helices) of E. coli-MscL versus membrane strain (b) the change of TM1 helix tilting angle as a func-
tion of the effective MS channel radius. The results obtained from MDeFEM simulation are compared
with those from steered MD simulation (at small strains) and the structural model. In addition, various
structural motifs are removed to explore the effect of these protein components during gating
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Another parameter useful for characterizing the pore shape variation is the aver-
aged tilting angle of TM1 helices (with respect to the membrane plane), which
decreases monotonically with pore radius (open-square curve in Figure 18-4b) [7].
Again, the MDeFEM results agree qualitatively with that of the structural model in
the intermediate and opened states (solid-diamond symbols) [11]. It is worth noting
that the MDeFEM model is based mostly on the closed structure of MscL (unlike
that in many other simulations where the final state must also be given to explore
the pathways in between [33]), and thus such an agreement is quite remarkable.

Although the MDeFEM study has demonstrated some promising results and
agreements with the structural model, the largely monotonic behaviors of pore
radius and helix tilting angle in Figure 18-4 illustrate a main limitation of the current
model, for which the effective energy surface is essentially downhill toward the open
state in the presence of external load. This is inconsistent with the free energy pro-
file estimated in Ref. [12], which involves various intermediate states separated by
notable energy barriers; moreover, at the opened state, the channel radius is essen-
tially insensitive to a wide range of tensions in experiments. We believe that further
refinements, such as incorporating the effect of solvation forces [38, 44, 45], may
help to make the MDeFEM approach more realistic (see Section 18.6).

18.4.1.2. Gating Behaviors Upon Bending

Membrane bending is a commonly encountered deformation mode in a flexible
cellular structure and becomes prominent during cell adhesion/contact. In order to
study the pure bending behavior (i.e., decoupled with membrane stretching), a four-
point bend flexure of a circular membrane is studied [7]. With respect to the insert in
Figure 18-5a, one can define the cone angle, β, with reference to the effective radii
of the five TM1 helices at the locations that correspond to the surfaces of the lipid
membrane. When the membrane is bent upwards, the cone angle decreases almost
monotonically with bending moment, and the TM1 helices become more upright at
the final bending stage (Figure 18-5a).

Figure 18-5. Axisymmetric pure bending as the membrane is bent upwards: (a) change of the TM1 helix
bundle cone angle β as a function of the line bending moment, with the inserts showing configurations
of the TM1 bundle at different instants (b) increment of the effective pore radius versus the line bending
moment, with the inserts showing configurations (top view) of the MscL at different instants
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Whether pure bending is an effective mode to promote gating can be explored
from the effective pore radius evolution with bending moment as shown in Figure
18-5b. Despite the rotation of the wall of the lipid cavity, the averaged cavity radius
throughout thickness remains about the same during pure bending; therefore, the
overall variation of the channel radius is small. The snapshots of the channel at
half and maximum bending moment are also given in Figure 18-5b, which show
that despite the protein conformational change, the transmembrane pore radius is
only moderately enlarged. The evolution of pore radius shows a zigzag pathway
with bending moment, which is attributed to the many-body interactions among the
helices. Overall, without the stretching component, pure bending is not an effec-
tive mode to open the channel. If excessive bending could occur and couples with
significant in-plane stretching [16, 24, 36], then the curvature effect might become
important (it is noted that the structural rearrangements found by Meyer et al. [36]
are different from our observations [7], since the curvatures of the lipids in these
two studies are opposite).

18.4.1.3. Insights of Loading Modes Vs. Mechanotransduction

When an equi-biaxial tension is applied on the membrane, gating is realized pri-
marily by an iris-like expansion of TM1/TM2 helices in the radial direction, as
well as tilting of the subunits, whose conformational transitions are directly cou-
pled to the lipid deformation. The S1 pore is also pulled open, in part due to its
non-bonded interactions with the transmembrane helices, and in part because of the
loop “linkers”. The conformational transitions of the intermediate and open struc-
tures obtained from the MDeFEM simulation are similar to the structural models
[11]. In addition, the simulation results match well with that obtained from all-
atom computations [30]. The results demonstrate that the gating process is likely
dominated by mechanics principles, including lipid membrane deformation and the
deformation/interaction of the helices/loops.

The bending mode is shown to only slightly change in the overall channel radius.
Thus, channel gating is relevant to some basic deformation modes (e.g. equi-biaxial
tension) but not others (e.g. pure bending). Other deformation modes have also
been studied [7] and from the mechanistic point of view, equi-biaxial tension is
the most efficient way of achieve full gating. Nevertheless, when these basic modes
are combined, such as when bending is coupled with tension, the contribution of
bending (membrane curvature) can be important for conformational transitions of
the protein.

The present study deals with “external” load acting on the membrane only. In
fact, during gating when the hydrophobic residues of the protein are exposed to
water, the solvation force that generated “internally” may also play an important
role in stabilizing the channel and affecting gating. This important contribution is
missing in the present MDeFEM model (see discussions below on future improve-
ments). Thus, the present agreement between MDeFEM and previous experimental
and numerical studies may be in part due to error cancellation.
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18.4.2. Effects of Structural Motifs

One of the focal points of biophysical studies of mechanotransduction is to under-
stand the diverse roles played by different structural components, such as the helices
and loops in MS channels [11, 28]. To that end, one may remove individual group of
structural motifs [7] and explore the change of gating behaviors. Since equi-biaxial
tension is proved to be the most effective for opening the MS channel, in the fol-
lowing we focus on this basic loading mode. The membrane strain is controlled at
21%, which is required for maximum gating for the full (reference) protein model
shown in Figure 18-6a.

In Figure 18-6b [7], after the removal of the loops connecting TM1 and TM2
helices, the constraining effect is reduced and the averaged TM1 tilting angle is
decreased by about 10◦. The bending curvature of TM1 and TM2 helices also seems
to be increased, which further affects the shape of S1 and S3 bundles. Thus, the
periplasmic loops are moderately important. Removal of the S3 helix bundle caused
insignificant effect on the deformation of the TM1/TM2/S1 helices (Figure 18-6c)
[7]; this is because S3 helices are far away from the other protein components.
When all structural components are kept except the loops that connect TM1 and
S1 helices, the S1 pore becomes distorted, which also affects both TM1 and TM2
helices (Figure 18-6d) [7], illustrating the importance of these loops. These findings
are in qualitative agreement with features of the structural model [28].

These trends can also be quantitatively verified in Figures 18-4a and b, where
after the S3 helices are removed, both the evolutions of pore radius and the TM1

Figure 18-6. Effects of protein structural motifs: (a) Full protein (b) without TM1-TM2-loop (c) without
S3 helix bundle (d) without TM1-S1 loop. It is found that moderate structural variations are caused by
the removal of the loops, whereas the structural conformation is essentially insensitive to the removal of
the S3 bundle. Thus, the continuum simulations show that the S3 bundle plays a relatively minor role
during the mechanical gating event whereas the loops could constrain gating
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helix tilting angle are significantly perturbed (comparing with that of the full protein
model); when the loops (either TM1/TM2 or S1/TM1 linker) are taken away, the
reduced constraining effect leads to a wider pore in the opened state [7].

The relative inactive role of the cytoplasmic S3 helices show that during the
gating, different protein components bear diverse mechanical functions. The loops
between TM1-TM2 helices and the loops between TM1-S1 helices, for example,
may moderately affect the configuration of the channel in the fully open state. The
most important helical components are the transmembrane helices, which directly
interact with the membrane and “sense” the forces. These findings [7] are consistent
with discussions in previous experimental studies [28], which again illustrate the
importance of underlying mechanical principles.

18.4.3. Co-operativity of MS Channels

The biological membrane is highly heterogeneous and rich in proteins and
other biomolecules such as polysaccharides. Consider the most fundamental co-
operativity problem where two MscLs are in the proximity of each other [7]. The
configurations of the channel at membrane strain of 21% are given in Figure 18-7

Figure 18-7. The interaction between two E. coli-MscLs: the structural configurations of E. coli-MscL
with the center-to-center separation λ= 90 and 60 Å (at equi-biaxial membrane strain of 21%). The pore
enclosed by TM1 helices becomes increasingly distorted as the channel separation is reduced, indicating
stronger magnitude of channel interactions
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as the center-to-center separation between the MscLs is varied. When the two pro-
teins are separated far apart, they do not affect each other’s conformation. When the
separation is reduced to 90 Å, the first column of Figure 18-7 shows that the TM1
pore becomes slightly distorted (with respect to that shown in Figure 18-3) which
implies that the MscL starts to sense the existence of its neighbor. When the two
channels become closer (with separation 60 Å), the second column of Figure 18-7
demonstrates that the TM1 pore becomes more elliptical and the channel interaction
is significant.

In order to determine the critical distance at which co-operativity starts to occur,
in Figure 18-8 we plot the bias ratio of the pore (the ratio between the shortest
and longest axis) at maximum membrane strain as a function of channel separation.
When the two channels are far apart, the bias ratio is 1. The bias ratio decreases grad-
ually with separation, and when the channel center-to-center distance λ falls below
about 100 Å, the reduction of the bias ratio is more significant; this leads to a critical
separation of about 100 Å [7], which is roughly 4 times the radius of the undeformed
lipid cavity (c). This finding is consistent with the thermal dynamics analysis by
Ursell et al. [29], which can be explained by lipid elastic deformation: according to
the plane stress solution [46], the normalized stress concentration factor of a plate
contains two circular hole is increased sharply when the distance between these two

Figure 18-8. Co-operativity between two E. coli-MscLs: the bias ratio varies with channel separation,
and the results are compared with estimation by elasticity theory (the normalized stress intensity factor,
S.C.F., of an elastic sheet containing two circular holes). The bias ratio is the short/long axes ratio of
the distorted TM1 pore. The critical separation is about 100 Å below which the two channels strongly
interact with each other
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holes is below 4 times the hole radius (shown as open-square curve in Figure 18-8).
Thus, it is verified again that the mechanical deformation and underlying mechanics
principles play a dominant role in MS channel co-operativity.

The above study may provide important insights regarding whether co-operative
gating is favored or not. In [29], Ursell et al. used a lipid-centric mechanics model
and found that the total membrane energy containing two “open” channels can
be reduced when they are close to each other. Note that the protein deformation
free energy and structural distortion were not considered in their studies [29], thus
whether such co-operative gating is realistic remains to be verified. The MDeFEM-
based approach [7] shows that it is possible that the gating threshold is lowered due
to co-operativity while the pore shape is distorted; if this is true, a carefully designed
channel recording study can be employed to check the current through each channel
to explore that with the presence of multiple closely-spaced MS channels, whether
the current is smaller due to pore distortion and whether the required energy barrier
for gating is reduced.

18.4.4. Large Scale Simulations of Lab Experiments

The advantage of the MDeFEM framework may be demonstrated via the simula-
tion of large scale experiments [7], such as the patch clamp experiment [12, 13,
27] which has historically provided very important information for mechanotrans-
duction. From experiment [12], the geometry of the relatively rigid pipette can be
measured (Figure 18-9a) and the opening of the pipette was 1 μm. Frictionless con-
tact is assumed between the vesicle and pipette. Without losing generality, the lipid
vesicle may be modeled as an impermeable shell [27] filled with cytoplasm with a
bulk modulus that is the same as that of pure water (2.2 GPa) [47]. The averaged size
of the liposome used in patch clamp experiment was about 5 μm [27]. To facilitate
gating as well as to simplify the analysis, we assume that an E. coli-MscL is located
at the north pole of the vesicle [7], which would lead to an equi-biaxial stress field
and makes the problem axisymmetric.

Figure 18-9a illustrates the undeformed and deformed liposome configurations.
By applying a suction pressure, the top portion of the vesicle membrane is attracted
into the pipette and forms a bulge shape. The stress is also increased nonlinearly
with the suction pressure; at about 0.7 bar of pressure, the local stress near the
channel leads to MscL pore opening that is close to full gating (Figure 18-9b). The
results also qualitatively agree with the value measured from experiments [7, 12].
The configuration of the final state of the channel is very close to that found in
the simulation with equi-biaxial tension on a flat membrane (Figure 18-3), which is
expected since the pipette opening is much larger than the protein dimension.

These types of numerical simulations of lab experiments at the cellular scale
clearly demonstrate the great value of the multiscale approach. The versatile
continuum-based simulation framework may explain, guide, and stimulate new
experiments, where the protein location, number, species, and vesicle geometry can
be varied. For example, spheroidal or ellipsoidal vesicle geometries may be taken,
and the resulting membrane tension stress will depend on the principal curvatures;
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Figure 18-9. Simulation of the patch clamp experiment: (a) schematic of the experiment and location
of MscL in the lipid vesicle; undeformed and deformed configurations of the lipid vesicle are compared.
(b) Increment of the effective pore radius as a function of the suction pressure (until full gating)

under such circumstance, the change of MscL locations will lead to different gating
behaviors, and the pore is distorted upon non-equi-biaxial stress state. In addition to
patch clamp, other experiments such as nanoindentation [7, 48] can be explored
as alternative lab tools. In addition, multiple MS channels can be incorporated
and the complex stress state under these situations can be very different from the
equi-biaxial tension discussed in Section 5.3, since the stress resulted from channel
interaction is superimposed with that generated from complex vesicle geometry and
loading mode. Refined cytoplasm model can also be undertaken which also affect
local stress and strain fields and hence the gating behavior. Eventually, we envision
that with continued improvements including those described below, the MDeFEM
framework can be readily employed to simulate experiments at a reasonably realistic
cellular level that involve MS channels and other membrane proteins.

18.5. FUTURE LOOK AND IMPROVEMENTS OF CONTINUUM
FRAMEWORK

For the MDeFEM approach to be quantitatively useful, a number of improvements
is needed. In essence, the continuum model can be made increasingly realistic by
incorporating more refinements based on atomistic studies. Most improvements out-
lined below are still based on a MS channel as the model system, although similar
insights can be readily applied to a host of other mechanobiology problems.

A more sophisticated model of protein can be adopted along with more het-
erogeneous mechanical and chemical features. In Figure 18-10a, the molecular
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Figure 18-10. A single subunit (TM1/TM2/S1/S2/S3 helices and loops) in E. coli-MscL: (a) the solvent
accessible surface area (SASA) in molecular representation (b) the finite element mesh of the continuum
model. Such representation is useful for calculating the solvation forces as a further improvement of the
continuum-based MDeFEM approach

structure of a subunit chain (containing TM1/TM2/S1/S2/S3 helices and loops)
of E. coli-MscL is shown. Although the main chain of protein helices can be
treated as a cluster of cylindrical cylinders (as in the present MDeFEM model,
Figure 18-1), this model makes it difficult to calculate the contribution of solva-
tion forces. With respect to Figure 18-10a, the real helices have irregular atomic
“surfaces” dominated by side chain atoms that interact extensively with each other
as well as with the environment. A more realistic protein model that reflects its
surface topology can be established; an example that uses the solvent accessible
surface area (SASA) [49] is shown in Figure 18-10b, similar to the recent study of
Bathe [50].

The adaptation of the realistic protein surface morphology enables the calcu-
lation of the solvation contribution (electrostatic plus non-polar solvation forces)
using popular implicit solvation models (e.g. the Poisson-Boltzmann (PB) [51],
Generalized Born (GB) [52], or other implicit methods [53]). The dielectric proper-
ties of the protein environment in these calculations can be readily assigned based on
the geometry of the elastic membrane (e.g., thickness of the low-dielectric region).
It is suspected that the solvation term can cause local lipid membrane bending and
stabilize open conformations [44, 45], thereby greatly reduce the required external
membrane strain (which was unrealistic in [7]).
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Besides incorporating the actual morphologies of the biomolecules, more sophis-
ticated parameterization procedures can also be taken into account. For helices,
a critical improvement is to treat them as heterogeneous (e.g. residue sequence-
dependent) and anisotropic; although the collective motions of a helix is less
sequence dependant, the local deformations can be greatly affected by its hetero-
geneous and anisotropic properties. Such decoration is essential for describing helix
kinking, which is known to play an important role in the gating transition of several
channels [54]. For lipid, anisotropic properties are necessary to model the mem-
brane in a more realistic fashion; e.g., the fact that lipid bilayer is unable to bear
in-plane shear deformation can be modeled using the transverse isotropic material
option. In addition, local residual stress and curvature, as well as hyperelastic and
time-dependent viscoelastic features of lipid provide ways to avoid excessive strain
and stress observed in simulations using the solid slab membrane model [5]. To
parameterize these physical properties, both MD and FEM calculations need to be
carried out for different constituents (residues) in helices and (heads and tails) in
lipids by either normal model analysis or applying perturbed forces/displacements
in different directions. Although these refinements can be quite complicated, they
would not significantly compromise the computational efficiency in the mechanical
simulations, which are mainly affected by mesh size and density.

The interactions among continuum components can also be treated in a more
sophisticated fashion. For example, different interaction parameters can be assigned
to hydrophilic and hydrophobic surface regions of protein/lipid. Moreover, the lat-
eral interaction component can be incorporated, which is suspected to be able to
stabilize the system and help to create local energy minima (i.e. making certain
intermediate states more stable).

Finally, explicit time-dependence in the continuum simulation can be introduced
at constant temperature. The temperature may be maintained constant by modifying
the equations of motion to include dissipative and zero-mean random force terms,
in the spirit of Langevin dynamics, as commonly done in particle based simulations.
The frictional coefficients associated with the elements and the distribution of the
random force follow the well-known fluctuation-dissipation theorem [55].

18.6. CONCLUSION

In this chapter, we describe a continuum-based approach, the MDeFEM, and illus-
trate how this framework is particularly useful in the study of gating transitions
of E. coli-MscL. It is demonstrated that mechanics principles play an important
role governing the conformational response of the MS channel to external mechan-
ical perturbations [7]. Based on the results, the advantage, limitation, and future
improvements of the continuum-based approach are discussed.

With the experience in applying the MDeFEM approach to MscL and contin-
ued efforts of improving the continuum model, similar studies can be made to
systems that remain poorly understood, especially those with complex geometry
and undergo perturbations inaccessible to conventional all-atom simulations. The
multiscale framework can also be applied to contrast the gating mechanisms of
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different types of MS channels upon various external stimuli, such as the Shaker
potassium channel [56, 57] and the MS channel of small conductance (MscS)
[45] to identify unique structural and energetic features of mechanosensitive chan-
nels. It is envisioned that these studies will lead to further exciting researches to
uncover the basic principles of mechanosensations, mechanotransductions and other
mechanobiological processes.
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Abstract: Tissues are structurally and compositionally complex materials that must function in a
coordinated fashion at multiple length scales. Many of the structural proteins in soft
tissues and in cells form biopolymer networks that provide mechanical benefits and coor-
dinate cell-directed physiological activities. Complicated phenomena operate at multiple
scales and are governed to varying degrees by the properties of networks; thus, mechan-
ical models are a necessary tool to unravel the relationships among individual network
components and to determine the aggregate properties and functions of cells and tissues.
In this work, we review major biopolymers, their function, and the general mechani-
cal behavior of biopolymer gels. We then discuss some network imaging techniques
and methods for constructing and modeling networks /in silico/ – including multi-scale
methods. Finally, we return to the specific biopolymers, including actin, microtubules,
intermediate filaments, spectrin, collagen I and IV, laminin, fibronectin, and fibrin, and
discuss what has been learned from the different models. Biopolymer network models,
especially when combined with ever-improving experimental methods, have the potential
to answer many fundamental questions in mechanobiology

Keywords: Collagen, Actin, Multi-scale

19.1. INTRODUCTION

Tissues are complex materials composed of cells and extracellular matrix (ECM)
proteins that must function in a coordinated fashion at multiple length scales.
Biopolymer networks that form the ECM vary in composition and organization in a
manner that confers suitable mechanical properties to the tissue and allows tissues
to function in their physiological capacity. Mechanical loads and constraints applied
to the whole tissue are transmitted down through the matrix and into the cells. The
cells, which are stabilized and detect mechanical forces through the cytoskeleton –
an intracellular network – then respond through a variety of dynamic activities that
can lead to growth, remodeling, and adaptation.

557

T. Dumitrica (ed.), Trends in Computational Nanomechanics, 557–602.
DOI 10.1007/978-1-4020-9785-0_19, C© Springer Science+Business Media B.V. 2010



558 E.A. Sander et al.

The network architecture provides many beneficial properties to cells and tis-
sues. Networks produce strong and stable structures with a minimum investment in
materials. Their open configuration enables various transport processes (e.g. nutrient
diffusion) to occur with less hindrance, and permits cell locomotion when appropri-
ate (e.g. white blood cells). Also intrinsic to networks is the ability to communicate
signals rapidly and at a distance. In terms of mechanical signaling, such a system
may provide a means to coordinate cell behavior within tissues [1, 2].

With many complicated phenomena operating at multiple scales and governed to
varying degrees by the properties of networks, mechanical models become a neces-
sary tool for unraveling the relationships between individual network components
and the aggregate properties and function of cells and tissues. A sampling of the
kinds of questions about cell and tissue function that mechanical models can provide
answers to includes:

• How do tissue material parameters depend on the biopolymers and networks
structure, e.g. what components and deformations contribute to the elastic
response and where does time-dependent viscous behavior come from?

• How does the ECM microstructure reorganize to accommodate macroscopic
strain? Do fibers rotate, stretch, bend, or buckle?

• What do those rearrangements mean in terms of mechanical signals that can be
sensed by cells?

• How does a cell sense mechanical force and translate that into a decision to act
in a certain way? For example, how do stimuli cause synthesis or degradation?

• How do mechanical changes in the ECM lead to different diseases, and how
might they be prevented?

• What components and what structural arrangements are necessary to produce a
functional engineered-tissue?

The questions listed above are all inherently multiscale, with the tissue scale
(∼10–3 m), cell scale (∼10–5 m), ECM fiber scale (∼10–7 m), biomacromolecular
scale (∼10–9–10–8 m), and atomic scale (∼10–10 m). Although not all scales neces-
sarily need to be studied to answer every question, any approach to understanding
mechanobiology and biomechanics from a structural standpoint must respect their
scale-spanning nature.

In this work, which emphasizes network mechanics, we focus on the transitions
from biopolymer to cell (as in the cytoskeleton), biopolymer to tissue (as in base-
ment membrane), and fiber to tissue (as in ECM or bioartificial tissues). In each case,
the network consists of long, thin units connected in a structured or unstructured
manner.

In the next section, we briefly review the major biopolymers and their function,
followed by some general mechanical properties of biopolymer gels. We then dis-
cuss various methods to analyze images of networks and construct computer models
there of. Next, we discuss the current approaches to network modeling in the gen-
eral case and different methods that have emerged. Finally, we return to the specific
biopolymers and discuss what has been learned from the different models.
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19.2. BIOPOLYMERS OF INTEREST

Cells interact with the physical world, and that interaction depends on networks
inside and outside the cell. Inside the cell, a network of actin filaments, micro-
tubules, intermediate filaments, and other proteins come together to form the
cytoskeleton. This ensemble of intracellular proteins stabilizes the cell structure and
plays a role in many cellular phenomena, including changes in cell shape and cell
division. In addition, the cytoskeleton appears to play a prominent role in translating
environmental cues, both mechanical and chemical, into a cellular response, which
may take the form of biosynthetic activity [3–6] or even programmed cell death
(apoptosis) [7, 8].

Outside the cell, a network of proteins, most commonly with collagen as the
backbone, forms the extracellular matrix. The ECM composition and organiza-
tion confers functionality to a tissue and provides a conduit for mechanical signals
to alter cellular response. In many tissues, the ECM is in a constant state of
turnover. The cells in the host tissue respond to changes in the microenvironment
by degrading and synthesizing ECM proteins. Such changes can lead to growth and
adaptation, e.g. tissue growth with exercise [9], or can lead to disease, for exam-
ple glaucomatous damage to the optic nerve head [10] or hypertensive arterial wall
thickening [11]. Other-ECM related diseases are congenital and result in impaired
tissue function with devastating consequences. In Alport’s syndrome, for example,
the genes encoding for a crucial component of the basement membrane malfunction
[12]. The basement membrane structure is altered, which greatly impairs the molec-
ular sieve structure of the kidney glomerulus, making it vulnerable to high pressures
and more susceptible to proteolytic attack. Consequently, understanding the inter-
play between molecular interactions and macroscopic tissue mechanics is crucial to
understanding many pathologies.

In this section, we introduce and briefly describe some of the monomers that form
key intracellular and extracellular networks. The interested reader should consult the
references listed in Table 19-1 for a more comprehensive review on each protein.

19.2.1. Intracellular Networks

19.2.1.1. Actin

Actin filaments (F-actin) are composed of a linear chain of G-actin subunits that
are constantly and dynamically added to or removed from the ends of F-actin in a
manner dependent on the local G-actin concentration. This process enables the cell
to reorganize the cytoskeleton, migrate, attach to a substrate, and respond to sig-
naling [13–17]. The G-actin subunits, which are approximately 2–3 nm in diameter
[18] form semiflexible F-actin filaments that are approximately 5–7 nm in diame-
ter and can ultimately assemble into hierarchical bundles and networks that span
the interior of the cell. For a single actin filament, the stretching stiffness is Ks =
4.4×10–8 N [19], the bending stiffness is Kb = 7.3×10–26 Nm2, and the persistence
length (defined later) is lp = 17 mm [20]. Actin molecules associate readily with
divalent cations (Mg2+ and Ca2+ in particular) giving the molecule the capacity to
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Table 19-1 Intracellular and extracellular biopolymers

Type
Approximate
dimensions

Macromolecular
structure Mechanical function Reference

Intracellular
Actin 5 nm dia, 10–20 μm

length
Bundles and

networks
Cytoskeletal tension

component
[14]

Microtubules 25 nm dia, 10–20 μm
length

Hollow tubes
emanating from
MTOCa

Cytoskeletal
compression
component

[231]

Intermediate
filaments

Variable, between 5
and 25 nm dia

Filaments coupled
to cytoskeletal
junctions

Cytoskeletal
junctional
component

[28]

Spectrin 200 nm long
head-to-tail
tetramers

Intertriangulated
network with
Actin

Cytoskeletal
compression
component

[232]

Extracellular
Collagen I ∼300 nm long, 1.5

nm diab, assembles
into higher order
fiber structures

Fibers Extracellular matrix
component

[33]

Collagen
IV

800 nm long
hexameric units

Polygonal
network

Extracellular matrix
component

[12]

Laminin Cruciform, 75 nm
wide, 115 nm long

Ionically
cross-linked
network

Extracellular matrix
component

[50]

Fibronectin 2–3 nm dia, 60–70 nm
length

Fibrillar network Extra- to intracellular
mechano-
transduction

[52]

Fibrin Fibrinogen monomer
5–7 nm dia, 45 nm
length, assembles
into larger fibrin
fibers upto hundreds
of nm in dia

Branched network Clot formation [56, 233]

aMTOC (microtubule organizing center).
bTropocollagen.

complex with ADP and ATP. The conversion of ATP to ADP via hydrolysis through
the ATPase myosin results in a conformational change in the F-actin molecule. This
mechanochemical phenomenon driven by myosin has led to the colloquial reference
of myosin as a motor protein and gives F-actin the capability to induce mechanical
forces within the interior of a cell [21–23]. Furthermore, the protein ARP23 causes
branching of actin filaments, contributing to the network structure [24].

19.2.1.2. Microtubules

Microtubules are another major cytoskeletal component critical to cell function.
They are created when tubulin, a heterodimer of α-tubulin and β-tubulin, polymer-
izes to form stiff hollow tubes ∼25 nm in diameter. Microtubules are also controlled
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by the polymerization/depolymerization of their subunits. Microtubules are involved
in a number of cellular processes including vesicle transport and cell division [25].
Their rigidity helps support organelles and maintain cell shape. Microtubules may
also oppose the tensile forces generated by F-actin [26, 27].

19.2.1.3. Intermediate Filaments

Intermediate filaments (IFs) comprise a third classification of cytoskeletal compo-
nents that are more stable structures than F-actin and microtubules [28]. IFs, which
are ∼10 nm in diameter, are “intermediate” in size when compared to F-actin and
microtubules. Intermediate filaments can be found at the transcellular junctions (e.g.
gap junctions, tight junctions, desmosomes and adherens junctions) as well as at
anchoring plaques to the extracellular matrix (e.g. focal adhesions and hemidesmo-
somes). IFs are also linked to F-actin on the interior of a cell creating a pathway for
the mechanotransduction of extracellular mechanical phenomena.

19.2.1.4. Spectrin

Spectrin, a cytoskeletal component specific to the red blood cell, is composed of a
dimer of either α-spectrin or β-spectrin, both of which are ∼250 kDa. The dimers
arrange in an anti-parallel arrangement forming tetramers that associate with short
actin filaments (∼15 subunits) creating an inter-triangulated actin-spectrin network
conferring mechanical stability and enabling a blood cell to compress and subse-
quently expand [29, 30]. The spectrin-actin network is intrinsically important to the
transport of erythrocytes, allowing the erythrocyte to modulate shape as it passes
through narrow capillaries [31].

19.2.2. Extracellular Networks

The ECM functions as a support and anchoring structure for cells and as a means
of tissue compartmentalization. The following components represent the major
network-forming ECM molecules, and include type I collagen, type IV collagen,
laminin, fibrin and fibronectin.

19.2.2.1. Collagen I

Collagen – the most abundant protein in the body – refers to a family of structurally
and functionally related proteins that consist of three helically wrapped polypep-
tide chains [32, 33]. Type I collagen is a fibrillar collagen and accounts for 90%
of all collagen (other fibrillar collagens include types II, III, V, IX). The funda-
mental unit of collagen, tropocollagen, is 280 nm in length and 1.5 nm in diameter
[34]. Tropocollagen is composed of three polypeptide chains, or α-chains, that wrap
around each other to form a right-handed triple helix. Tropocollagen is secreted into
the ECM where it is modified enzymatically, assembled into quarter-staggered sub-
fibrils, and covalently cross-linked [35]. Subfibrils associate laterally into fibrils and
fibers, a distinction based mainly on size. Fibril diameters range from 10 nm to sev-
eral hundred nm. They can organize into higher-order fibril bundles or fibers that
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can be hundreds of nanometers in diameter [36] and hundreds of micrometers in
length [37]. For collagen-I, the properties of the triple helical monomer have been
measured to be Ks = 5.08×10–10 N, Kb = 3.36×10–37 N-m2, and a persistence
length lp = 14.5 nm [38]. In aqueous conditions, collagen fibers have been reported
to have Young’s Moduli ranging from 32 to 900 MPa [39–42]. The bending stiffness
for native collagen fibers ranges from 3×10–15 N-m2 to 6×10–15 N-m2 [43]. Many
collagen fibers are heterotypic, meaning they are composed of more than one type
of collagen [44]. Due to the complexity of native tissues, reconstituted collagen gels
have served as simple but important in vitro tissue models [45–47].

19.2.2.2. Collagen IV

Unlike the fibrillar collagens, type IV collagen assembles into a mesh-like net-
work that serves as the scaffolding for basement membranes. Basement membranes
anchor and support endothelial and epithelial cells to connective tissue and pro-
vide physical barriers that allow for tissue compartmentalization. Collagen IV is
comprised of three polypeptide chains associated as a triple helix and measuring
approximately 400 nm in length [12, 48]. Six genetically distinct type IV collagen
chains exist and are denoted as α1–α6. The chains assemble specifically forming
three heterotrimers [α1(IV)]2,α2(IV), α3(IV), α4(IV),α5(IV), and α5(IV)]2,α6(IV)].
The relative concentration of each heterotrimer is dependent upon the tissue and
the functional requirements of the collagen IV network. Type IV collagen interacts
cooperatively with a variety of proteins and glycoproteins in forming the membrane
[49]. Additionally, collagen IV can be reconstituted in vitro [49].

19.2.2.3. Laminin

Laminin has many functional roles in the ECM that relate primarily to cell attach-
ment, including induction and maintenance of cell polarity, establishment of tissue
barriers and compartments, organization of cells into tissues, and prohibition of
attachment-induced cell death [50]. Laminin is a cross-shaped heterotrimer of gly-
coproteins comprised of several combinations of α, β, and γ subunits resulting in
15 distinct heterotrimers. In general, the molecule is comprised of three short arms
of ∼37 nm and a long arm of ∼77 nm. All ends of the molecule have a globu-
lar domain providing functionality. In vitro, laminin can aggregate into networks
in a concentration-dependent and thermally-reversible manner in the presence of
divalent ions such as Ca2+ and Mg2+ [48].

19.2.2.4. Fibronectin

Fibronectin (FN) is a cell-secreted, soluble dimer, which polymerizes into an insol-
uble fibrillar network that facilitates cell attachment to the ECM (collagen types
I–III and V, in particular) [51]. The fibronectin subunit, a dimer of polypeptide
subunits 60–70 nm in length and 2–3 nm in diameter, associate into dimers that inter-
act directly with integrins on a cell surface [22, 52]. Cytoskeletal tension created
across the integrin stretches the FN dimer and exposes FN-FN binding sites to other
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interstitial FN dimers, resulting in FN fibril and network formation. Because FN
directly attaches to the cytoskeleton, and the FN network is assembled by mechani-
cal mediation, it is thought that FN plays an important role in influencing cell shape,
organization, and locomotion. Additionally, FN deposition is observed in a wide
variety of wound healing processes, usually preceding the deposition of a more
permanent collagen matrix [53].

19.2.2.5. Fibrin

Fibrin networks form during blood clotting as part of the wound healing process.
Fibrin is formed from the assembly of fibrinogen, a trinodular ∼340 kDa protein
present in plasma that is 45 nm in total length [54]. Polymerization is catalyzed
by thrombin, which enzymatically cleaves the N-termini of the α and β chains
creating the “A” and “B” polymerization sites, respectively. The fibrin monomers
arrange in a half-staggered arrangement aligning complimentary bonding sites cre-
ating oligomers that arrange in pairs creating dual-stranded protofibrils. Protofibrils
associate laterally-forming fibers which ultimately aggregate, constrained by the
ionic conditions, into bundles with a paracrystalline structure and distinctive banded
pattern [55]. The bundles undergo branching creating a three-dimensional network
that is covalently cross-linked by factor VIIIa concomitantly with the release of fib-
rinopeptide B [56]. In addition to its in vivo function, fibrin has also emerged as an
attractive scaffold for tissue engineering [57, 58].

19.2.3. The Mechanical Behavior of Biopolymers

The biopolymers above can be examined in their native state, but frequently are
purified and reconstituted in gel form. The in vitro gel is a much simpler system
than cells and tissues, while still providing many of the rich mechanical properties
observed in the in vivo systems. The bulk properties of gels are frequently mea-
sured with a rheometer. A common test performed involves casting a biopolymer
gel between two surfaces, often parallel plates, and oscillating one plate back and
forth at frequency ω while the other is held fixed. In the small strain limit of a linear
viscoelastic material, the stress-strain response is given by

σ (ω,t) = G′(ω)γ (ωt) + G′′(ω)
γ̇ (ωt)

ω
, (19-1)

where σ denotes the stress, γ denotes the strain, G′ denotes the elastic modulus and
G′′ denotes the loss modulus. For a perfectly elastic material G′′ = 0, and for a per-
fectly viscous material G′ = 0. For typical biopolymers such as actin and collagen,
the elastic character of the gel dominates at low frequencies (less than 100 Hz) – G′
is an order of magnitude greater than G′′ [59, 60] – thus making it possible to mea-
sure the elastic properties of the network with these tests. The viscoelastic character
of the gels stems from molecular-level rearrangements and fluid-solid interactions
(poroelasticity). The viscoelastic behavior is important but will not be discussed
here. For more information see [47, 61–65].
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The gel’s elastic character depends on the biopolymer concentration c and the
cross-links formed. One typically observes power-law scaling of the form G′ ∼ cx,
where for actin x = 1.4 when no cross-linker is present [66], and x = 2.5 in the pres-
ence of very strong and stiff cross-linkers [60]. Another parameter of significance
is the ratio of cross-linker to polymer concentration, R. Again, there is typically
power-law scaling of the form G′∼Ry, but a transition point exists, where at small
R, y = 0.1, whereas at larger R,y may range from 0.4 [67] to 2.0 [68], depending
on the stiffness of the cross-linker. Recently, it has also been observed that when
sheared, these materials tend to compress and pull the shear plates together [69].

At small strains, typically less than 10%, it is reasonable to treat biopolymer gels
as linear viscoelastic materials. At larger strains, however, they typically stiffen,
with a modulus that can increase by 2–3 orders of magnitude [70]. A number of
models give alternative explanation for this stiffening. At very large strains, the
material breaks, undergoing irreversible deformation. Some materials, including
actin, fail earlier at increasing densities [60] while other materials, like collagen,
break at the same strain regardless of the density [71]. These mechanical properties
are summarized in Figures 19-1, 19-2 and 19-3.

In addition to shear, extension and compression tests have also been con-
ducted on biopolymer networks (mostly collagen) – for a review see [47].
In uniaxial extension, unconstrained network fibers rotate and align with the
displacement axis before the network stiffens due to fiber resistance to axial

Figure 19-1. G′ Properties of actin from. The elastic modulus (G′) and maximum strain (γmax) for actin
networks cross-linked with scurin, as a function of actin concentration (cA) and cross-linker/actin ratio
(R). From [204] with permission
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Figure 19-2. Strain stiffening properties of biopolymers. From [70] with permission

stretch [72–75] thereby producing the characteristic J-shaped stress-strain curve
observed in soft tissues [71, 76, 77]. The rapidity of stiffening is dependent
on network properties and constraints. For example, a more cross-linked net-
work stiffens faster at a lower extension, as does a network that is constrained

Figure 19-3. Nonaffine-affine transition in mechanical beam networks. G′ scaling with L/λ, where
λ = lc(lc/lb)1/3. Note that when the spacing between cross-links is large, the network is much less stiff
than the nonaffine network. (Reprinted with permission from Head et al. [143]. Copyright (2003) by the
American Physical Society. http://prola.aps.org/abstract/PRE/v68/i6/e061907)
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transversely from contracting inward when stretched. Soft tissues and colla-
gen gels exhibit a reduction in the peak stress and the amount of hysteresis
between the loading/unloading curves that converges to a stable value when the
stretch protocol is repeated at the same rate and to the same extent (preconditioning).
It has been suggested that this behavior is due to microstructural rearrangements,
although the specific cause remains unknown. One possibility is that non-covalent
interactions between fibers continue to break as a result of the cyclic stretch until a
stable configuration is reached.

The gel response to compression testing is more complicated, and the dissipation
mechanisms involve molecular interactions and interstitial flow. Gels are often con-
fined laterally in a chamber and compressed with a porous piston to allow fluid flow
out of the gel [65, 78], an experiment inspired by the articular cartilage community
[79, 80]. In collagen gels, the network response was found dependent on the time
scale of the deformation, with step and ramp tests resulting in fiber collapse near the
piston or fiber bending that induced network restructuring throughout the gel [62].

Higher collagen concentration generally translates to better mechanical proper-
ties, but again it is unclear whether the underlying cause is more cross-links, larger
fibers, or other changes to the network architecture. It is well known that colla-
gen fiber and network architecture is highly dependent on the gelation conditions,
including pH, temperature, and ionic concentration [71, 81, 82]. In the absence of
cross-linker, it has been found that the storage modulus scales with collagen den-
sity cc by G′ ∼ c(2.45±0.25)

c [83, 84]. This is markedly different from the G′ ∼ c1.4
a

for uncrosslinked actin, which suggests that even in the absence of chemical cross-
linkers, the fibers naturally cross-link, a conclusion in agreement with macroscale
observations as well [62].

As already noted, tissues are compositionally and architecturally more com-
plex than single-phase biopolymer networks. As a result, other ECM components,
including proteoglycans, elastin, laminin, and fibronectin, have been added to col-
lagen gels in order to assess their impact on tissue mechanics [85, 86]. In general,
the changes in G′ and G′′ were concentration dependent with the additives either
aggregating collagen fibers together, as was the case with the proteoglycans studied,
or thickening the fibers by coating them. Regardless of the macromolecule added,
interpreting the results of such experiments is difficult because it is not known how
the proteins affect network assembly or how the resulting structure compares to
native tissues.

Nevertheless, these studies are relevant to understanding how tissues are built,
particularly skin and cartilage, which share similar structural arrangements. Tissues
like tendons, on the other hand, are highly organized and cross-linked into a
hierarchical structure designed to resist high tensile load and store energy and
do not behave like collagen gels. A discussion on the mechanical properties of
soft tissues is quite involved and beyond the scope of this review. The inter-
ested reader is referred to the works of Fung [76] and Humphrey [87] for more
information.
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19.3. NETWORK IMAGING, EXTRACTION, AND GENERATION

19.3.1. Imaging

19.3.1.1. Fiber-Level Imaging

To produce an accurate representation of a biopolymer network, one must first
obtain images of the microstructure. The difficulties involved are many, and each
imaging technique has its advantages and disadvantages. The most common means
for obtaining microstructural information relies on light level histology techniques
[34]. Different colored dyes or stains are applied to thin, fixed sections of tissue to
visualize the different matrix components. Histology is relatively inexpensive and
easy to do, and it can provide spatial information for multiple species. Histology’s
main detractions are that it is labor intensive and only moderate in resolution (submi-
cron). In addition, the information obtained is two-dimensional and prone to artifact,
which can arise during fixation, dehydration, sectioning, or staining. More specific
staining can be achieved, often through the use of fluorescent antibodies that bind
specifically to the target molecule. When the sample is illuminated with a specific
bandwidth of light, only the tagged molecules are imaged. Serial sections through a
sample can be reconstructed into 3d datasets of the tissue’s microstructure [88, 89],
or to obtain fiber orientation [90]. These methods are again labor intensive and
often produce artifacts, and the 3D reconstructions are computationally demand-
ing. More importantly, the real-time microstructural response to macroscopic loads
is not accessible.

More advanced imaging technologies have emerged, which are also capable of
providing 3D data sets. Magnetic resonance imaging (MRI) [91], computed tomog-
raphy (CT) and micro CT (μCT) [92–94], and optical coherence tomography (OCT)
[95–98] have all been applied to tissues, most notably bone. These techniques allow
3-D imaging of living tissues, but are limited in their ability to identify differences
in soft tissues and do not provide sufficient resolution to image at the scale of the
microstructure [99].

In the case of purified gels, confocal microscopy [75, 100–102], and multiphoton
microscopy [82] can be used obtain 3-D images of the networks without destroying
their network architecture. Typically, the point spread function of the system is on
the order of 500 nm, whereas for collagen, the fiber radius is often less than 100 nm
[83]. Thus while fibers of small diameters are visible, the precise radii of the fibers
and details of the fibril architecture cannot be resolved.

Electron microscopy (EM) provides a range of techniques useful for visualiz-
ing the microstructure in detail because resolution is on the nm scale. EM has
been used to directly observe a variety of biomolecules, including type IV colla-
gen [103], laminin [104], and spectrin [105]. Scanning electron microscopy (SEM)
is often used because of its superior depth of field, which also has the disadvantage
that quantification of fiber dimensions is difficult without resorting to stereoscopic
techniques. Transmission electron microscopy (TEM) is much more suited to quan-
titative measurements because the sample is sectioned into thin slices. TEM can
also be combined with other preparatory techniques, such as quick-freeze/deep
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etch, where a replica coating of the sample is imaged instead of the sample itself
[106, 107]. Sample preparation in EM is also difficult and sample artifacts sim-
ilar to those that occur in light level techniques are also present. Because of the
higher resolution, however, artifacts are magnified and present greater difficulties
in extracting the true microstructure. Cryo-(SEM) presents a more pristine picture
than conventional SEM because water-associated structures are not dehydrated. In
this technique, the sample is rapidly frozen so that the water vitrifies [108, 109].
3-D reconstructions are also possible using electron tomography, which has been
used to reconstruct cell structures [110] and single molecules, including collagen
and fibrillin [111].

19.3.1.2. Indirect (Population-Level) Imaging

Non-invasive, indirect measurements of the fiber microstructure are possible by
probing the sample’s optical properties. Techniques, such as small-angle light scat-
tering (SALS) [112] and polarimetric fiber alignment imaging (PFAI) [72, 113] do
not image the fibers directly, but instead make quantitative measurements of the
fiber population based on the optical properties of submicroscopic fiber networks.
In SALS, the pattern of scattered laser light transmitted through a sample provides
a local fiber orientation distribution, which can be used to generate dynamic align-
ment maps during mechanical testing of tissues [114]. PFAI exploits the birefringent
properties of the fiber and the difference in refractive index between fiber and solu-
tion to assess principal fiber direction and degree of alignment by measuring the
change in amplitude and phase of the elliptically polarized light transmitted through
the sample. Consequently, it can only be employed if the biopolymer network is
birefringent, as is the case with collagen and fibrin. PFAI has been used exten-
sively to generate 2-D network alignment maps in a variety of static [72, 115,
116] and dynamic [62, 117, 118] bioartificial tissue systems. Indirect techniques
do not have the resolution that confocal methods have but they are easier to imple-
ment and can survey whole tissue samples under a variety of loading schemes. One
limitation, however, is that the samples must be sufficiently transparent (i.e. thin
enough). Otherwise sample sectioning or optically clearing the tissue with a hyper-
osmotic solution may be required [114]. Another issue is that neither method can
discriminate between different fiber populations. For example, a fiber orientation
distribution obtained from a remodeled fibrin gel cannot distinguish fibrin fibers
from newly formed collagen fibers. Regardless of the real-time imaging method
used, gaps between scales still exist which can only be addressed with multi-scale
computational models and a cohort of imaging techniques.

19.3.2. Network Extraction

Another issue is how to describe the microstructure once an image or representa-
tion of the microstructure is obtained. Morphometric and stereologic methods have
often been employed to describe tissue microstructure [119, 120]. These descrip-
tors can provide exact quantities, such as volume fraction and number of objects, or
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distributions, such as fiber length, width, and orientation angle. Several tensor repre-
sentations have been employed to describe material anisotropy and micro-structural
alignment [121, 123]. They can be constructed from image-based measurements,
such as mean intercept length [119, 124] or from Fourier transform methods (FTM)
[125], and are convenient for capturing the principal direction and strength of fiber
alignment.

Other image processing techniques have also been used to extract fiber and net-
work features, as well as to map myocardial fiber orientation [126] and to quantify
cytoskeletal reorganization in response to shear [127], stretch [128], and wound
healing [129]. Some of these methods involve first thresholding the intensity image
into a binary image. Additional processing might include the use of filters for edge
detection and gradient calculation [126], or skeletonization and tracking [130] to
determine fiber orientation and magnitude, or to reconstruct the network [83, 131,
132]. In addition, Fourier methods [125, 129, 133, 134] and the Hough transform
[135, 136] have proven useful for obtaining fiber distributions. The majority of these
methods have been developed for 2-D images, and some have been extended to
3-D [83, 131, 132, 137] For more information on image processing techniques see
Gonzalez et al. [138].

19.3.3. Model Network Generation

A variety of methods have been implemented to create networks, not all based on
measurements of the microstructure. The simplest network model assumes an ideal-
ized geometry representative of the material, such as a hexagonal cellular solid unit
cell [139]. Another possibility is to use an established algorithm, such as Voronoi
tessellation or Delauney triangulation, to subdivide a region into a mesh. Methods
of this type are useful but generate more ordered, cellular-solid-like networks,
which only share some features with fibrous networks [140, 141]. Consequently,
one should consider whether the material to be modeled is more appropriately
described as a cellular solid or fiber network when creating the network geometry
(Figure 19-4).

The generation of random 2-D straight-fiber networks, known as a Mikado
model, involves randomly selecting network properties from a distribution func-
tion (e.g. uniform, von Mises, etc.). Typically, fiber position and angle are selected
randomly, and locations where fibers intersect are made into cross-links [141–144].
Other distributed networks properties can be used to shape the network including
fiber length and aspect ratio [145, 146]. In some cases the networks created are
periodic, meaning that fibers that overlap the box boundaries are made to wrap
back around to the other side [145, 147]. Periodic boundaries are generally used
to remove end effects and to more easily impose network properties, such as total
fiber length and network volume fraction [145].

These techniques can be extended to generate 3-D networks but an additional
angle (ranging from 0 to π ) must be included. Automatic 3-D skeletonization algo-
rithms have been developed for extracting the network structure [83, 131, 132] from
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Figure 19-4. Cellular vs. Fibrous Networks. (a) A random cellular network produced via Voronoi tes-
sellation using random points. (b) A random fiber network created from a random growth algorithm. See
Huessinger [139] for details on the differences

images and recently, Stein et al. [83] have validated that the architectures extracted
by these algorithms have realistic geometric and mechanical properties.

Most of our work has focused on the mechanics of biopolymer gels and tissue
equivalents [74, 117, 148–150]. In these studies, 3-D fiber networks were created
in a stochastic process that resembles the process of collagen fiber formation in
gels. First, a number of seed points are generated inside of a box. A fiber grows
bidirectionally from each seed point until intersecting the boundary or another fiber.
We have recently set up the method to generate statistically equivalent networks
to those obtained from polarized light imaging by adjusting the random direction
distribution and checking to match the observed structure [117].

19.3.4. Network Generation via Energy Minimization

Networks can also be generated through energy minimization techniques such as
the Metropolis-Hastings (MH) importance sampling algorithm [151, 152] (a Monte
Carlo technique). MH is used to generate the structure and interactions of dynamic
chemical systems from time-independent and stochastic rules [153–155]. If the rules
of the simulation are posed adequately, two differing and commensurate sequences
of random numbers should generate statistically equivalent results (i.e. the results
will agree to within a small “statistical error”). Consequently, the MH algorithm
is a powerful tool to bridge how nanoscale chemical energetics yield macroscopic
networks with determinable mechanical properties.

The underlying principle of the MH algorithm is to calculate a thermodynamic
minimal average energy 〈U〉, of an ensemble of m molecules, {n1,...,nm}, at a given
temperature, T, using the following equations:

〈U〉 = 1

Q

∫
U (n1,...,nm) exp

[−U (n1,...,nm)
/

kT
]

dn1...dnm, (19-2)

Q =
∫

exp
[−U (n1,...,nm)

/
kT

]
dn1...dnm, (19-3)
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where k is the Boltzmann constant. The difficulty in performing such a calculation
is that the normalizing quotient, Q, is generally not known for complex systems
such as molecular biofibril networks. To circumvent the lack of knowledge of the
normalizing quotient, instead an estimate of 〈U〉 can be made based upon a series
of K unique configurations of molecules, &j {n1,...,nm}for j=1,. . .,J, such that

〈U〉 = 1

J

J∑

j=1

U
(
&j

)
. (19-4)

As K becomes large, the estimate of 〈U〉 approaches the expected minimum value
of the internal energy of an ensemble of molecules. The simulation space must be
initially seeded with molecules in a way that precludes infinite energy interactions
(e.g. interactions that violate volume exclusion). After initially seeding of the sim-
ulation space, an initial energy is calculated based on the thermal properties of
the system, the interaction potentials, and distances of the interaction sites. Next
a molecule is chosen randomly and displaced a random distance generating a new
configuration. The energy of the new configuration is calculated. As long as the quo-
tient of thermodynamic probability of the new configuration is less than a random
number ζ , generated on the interval of (0,1), the new configuration and associated
energy are accepted. Otherwise, the molecule is returned to the starting position.
The acceptance criteria is explicitly demonstrated by

ζ ≤ exp
[− (

U′
j − U ( j )

)/
kT

]
, (19-5)

where U( j ) denotes the baseline energy prior to reconfiguration and U′
j is the

energy of the new system following the displacement of the randomly chosen
molecule.

Figure 19-5. Collagen IV Network Generated with MH algorithm. The network is initialized as a col-
lection of α1α1α2 (∼80%) and α3α4α5 (∼20%) monomers randomly selected in the simulation space.
System energy is decreased as 7S domains are brought within bonding proximity of other 7S domains
(∼3 nm). Over the course of 5×106 Metropolis steps, the system begins to converge upon the global
energy minimum of the system. (a) Initial network before energy minimization and (b) network fol-
lowing energy minimization via the Metropolis-Hastings algorithm. Notice the increase in heterogeneity
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As the algorithm proceeds, the result is convergence to the minimal energy
configuration of a network comprised of the initial fiber set. The algorithm is
designed to prohibit convergence upon local energy minima and is sensitive to
the level of correlation between random numbers. Consequently, a high-quality
pseudo-random-number-generating algorithm is critical to ensure that results are
statistically valid (see [153, 154] for a more thorough discussion on this topic). This
application of the MH algorithm is thus a means to generate a network from the
associated fundamental subunits using an energy minimization approach. An exam-
ple of a collagen IV network generated using the MH algorithm is demonstrated in
Figure 19-5.

19.4. GENERAL MODELING APPROACHES FOR BIOPOLYMER
NETWORKS

19.4.1. Definitions

In the following, we define a biopolymer network to be a collection of intercon-
nected fibers. Depending on the biopolymer of interest, a fiber may consist of a true
fiber, a fibril, a filament, or a bundle of filaments, which themselves are composed
of monomers, depending on the network of interest. Where two fibers interact, we
define there to be a node. There are two major types of nodes: entanglements and
cross-links. An entanglement is a point at which two or more fibers are in close
proximity, such that the possibility of contact alters the deformation properties of
the network. A cross-link is defined to be a point where two fibers are chemically
linked together. A segment of length ls is defined to be a piece of the fiber between
two neighboring nodes.

We also define various types of polymer networks based on the flexibility of the
fibers that make up the network. Flexibility is determined by the persistence length
lp of a fiber, which gives the typical length over which a fiber remains straight. For
a fiber of length L parameterized by s, lp is given by

〈cos [θ (s) − θ (0)]〉 = exp
[−s/lp

]
, (19-6)

where θ(s) is the tangent angle of the fiber with respect to its main axis [156]
and 〈x〉 is the expected value of x. It can also be shown that lp = Kb

/
kT , where

Kb is the bending stiffness, k is the Boltzmann constant, and T is the temperature
[156]. The bending stiffness is a function of the fiber’s Young’s modulus and the
moment of inertia of the cross-sectional area. A flexible network, like rubber, is
one where lp << ls. Such networks are dominated by the entropic stiffness of the
segments [157]. For a semi-flexible polymer network, such as actin, lp ≈ ls [63,
64, 158]. These networks are considerably more complex because both mechanical
and entropic properties of the fibers play a role in the network dynamics. On the
other extreme are mechanical networks, such as collagen-I gels where lp >> ls, and
the fibers have very long thermal persistence lengths and the entropic effects are
negligible [84].
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19.4.2. Affine Theory

A variety of approaches exist for modeling biopolymer networks. One common
assumption employed is that the network deformation can be described as an affine
transformation. An affine transformation preserves the collinearity of points and the
ratio between distances. A typical example is that of simple shear, which maps the
point (x,y) to (x+γ y,y).

Affine theories have been used to describe the properties of flexible gels, such
as rubber [157], where the persistence length is much shorter than the distance
between nodes. Here, it has been found that the elastic modulus, G′, scales with
the cube of the mesh size, ξ . Mesh size is defined as the average of sphere diameter
that fits inside the network without touching the fibers. For semiflexible biopoly-
mer networks, the persistence length is on the same order of the mesh size, and the
entanglement length le is used to describe the network. MacKintosh et al. [158]
and Morse [63, 64] have developed an affine deformation theory for semiflexible
biopolymer networks. By treating the polymer as an entropic worm-like-chain, they
derive a force-displacement curve for an individual polymer chain to be:

F ∼ K2
b

kT

dl

l4e
, (19-7)

where dl is the length change of a segment. The force-displacement curve is related
to the modulus of the material by assuming there are ξ2 fibers per area, and that
dl = γ le, where γ is the shear strain. This gives

G′ ∼ K2
b

kT

dl

ξ2l3e
. (19-8)

To relate G′ to the polymer concentration, one must first determine the depen-
dency of Kb, ξ , and le on concentration. MacKintosh et al. [158], assume the fibers
do not bundle and thus Kb is independent of c. Previous experiments [66] indi-
cate that for non-cross-linked actin, ξ ∼ c−1/2. For le, various relationships have
been used. For a densely cross-linked gel, le ∼ ξ , and G′ ∼ c2.5. However, the
precise relationship between le and ξ may be more complex. On the other hand,
modeling the chain as a fluctuating rod gives le ∼ ξ4/5 [158], whereas if one also
assumes that the bending stiffness of the polymer depends on the polymer length,
as is the case when polymer bending is dominated by shear (discussed below),
then le ∼ ξ4/3. The affine theory has also been used to explain strain stiffening of
biopolymer gels [70] as well as the negative normal stresses observed during shear
[69]. Affine-deformation models have also been used to simulate the mechanical
response of fibrillar tissues [159], including heart valve [160], cornea [161], skin
[162], and articular cartilage [163], accounting for multiple co-existing networks or
non-fibrillar tissue components as needed.

While the affine model predicts behavior in line with what has been observed
experimentally, it is not clear that the assumption of affine deformation is valid at
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the length scale of the fibers. The nonaffinity of a deformation can be measured in
a number of ways [164] and is typically done by looking at the difference in length,
angle, or vector difference between the observed deformation and that predicted for
a purely affine deformation. Nonaffine deformations have been observed in practice
[72, 102, 114, 117, 165, 166] but disagreement still exists on the applicability of the
affine assumption for biopolymer networks [167, 168].

One difficulty with the affine assumption is that the network segments deform
independently, and thus the details of network interactions are lost. Such an assump-
tion allows a simpler material description that in some applications may be sufficient
for the problem. Within this framework, however, there is no obvious way to account
for fiber synthesis or degradation, nor does it allow one to model failure at the cross-
links or in individual network fibers. The need for more detailed understanding of
networks has led to the development of various non-afifne models, described in the
next section.

19.4.3. Nonaffine Models

In modeling non-affine networks, there are three main choices the modeler must
make: (1) the constitutive model for the individual fiber segments, (2) the properties
of the nodal interactions, and (3) the network organization of the segments. The
choice, in part, depends on what type of questions the modeler intends to answer.
The individual segments may be treated as linear or nonlinear springs, which only
stretch, or as beams or worm-like-chains, which also resist bending and torsion.
Additional relationships may be needed to account properly for the bending stiffness
if the segment is composed of a bundle of interacting filaments.

Nodes can be treated either as cross-links or entanglements. While macroscopic
scaling theories account for both (discussed later), with the exception of Rodney
et al. [169], all microstructural models presented here assume that fibers are chem-
ically cross-linked, or sufficiently entangled that on the time scale of interest they
are and unable to slip at the nodes. In addition, the analysis is greatly simplified by
neglecting steric interactions between fibers, which may contribute to the mechan-
ical response. Nodes may be treated as freely rotating pin joints, welded joints of
fixed angle, or linear or torsional springs.

19.4.3.1. Spring Model

We begin by exploring networks of randomly oriented springs, studied by Kellomaki
et al. [144]. In this model, each segment acts as a linear spring, and the springs are
connected at freely rotating pin joints. Kellomaki et al. [144] showed that under
small deformations, such a network is floppy and has zero shear modulus. That is,
under small deformations, the network is able to rearrange itself without changing
the length of any of the springs. The floppiness of the network can be explained
in two ways. One is that for a network cluster to be rigid, it must be composed of
triangles that share a common side. Such a structure requires the existence of points
where three fibers overlap. In a randomly generated Mikado network, the probability
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of three fibers intersecting at a single point is almost surely zero, so it is impossi-
ble for a stiff cluster of fibers to percolate the network. An alternative framework
for analyzing network properties is based on Maxwell counting [170]. Consider a
d dimensional space composed of Nv vertices connected by Nc segments. The con-
dition number is defined to be the average number of segments that connect to a
single node and is given by z = 2Nc/Nv. The total number of degrees of freedom
in the network (ignoring rigid motions) is given by Nf = Nvd − Nc, where d is the
spatial dimensionality. For a rigid network Nf = 0, giving Nc = Nvd, and requiring
z = 2d, where d is the spatial dimensionalty. For a network of Mikado model struc-
ture, even if the free ends are removed (of condition number 1), we are left with
vertices that are connected by 2–4 springs. Because the condition number is less
than four the network is floppy. An important implication of this model is that the
assumptions associated with the affine model discussed above are inconsistent. If a
biopolymer gel is modeled as a network of randomly oriented springs, even if the
springs are nonlinear, the network cannot resist shear at infinitesimal deformation.
In contrast, springs in the affine model stretch immediately. Furthermore, the spring
network does not deform affinely because it is able to rearrange itself under small
deformations without changing the length of its springs.

Chandran and Barocas [73] have also studied random spring networks with the
goal of modeling collagen gels. They studied networks generated by an artificial
polymerization algorithm, described above, and these networks also have a condi-
tion number that is less than 4. Similar to Kellomaki et al. [144], they find that the
network deformations are significantly different from affine and in particular, fibers
are likely to reorient rather than stretch, thus leading to smaller stretch ratios than
would be seen in the affine case even though the fiber orientation averaged over the
entire population remained close to the affine value.

The Mikado and polymerization models are attractive in that the network archi-
tecture is reminiscent of biopolymer networks, but their main problem is that
networks of zero modulus at small strains are unrealistic. To study rigid spring net-
works, Wyart et al. [171] explore the strain stiffening properties of networks formed
by an alternative algorithm, in which the space is seeded with a number of nodes and
then a condition number is imposed by connecting vertices that are close. Buxton
and Clarke [172] have also studied beam networks formed in this way. This method
allows one to explore the transition from floppy to rigid networks as the condition
number increases. However, because this network architecture is not representative
of most biopolymer networks, we do not discuss its properties further.

A fourth architecture for modeling biopolymers is the Arruda-Boyce eight-chain
network model, used by Palmer and Boyce [173] for modeling actin networks. The
model represents the network as a unit cell containing eight segments, each con-
necting a corner of the box to the center. Incompressibility is imposed on the cell
such that even though the network alone is floppy, the network in combination with
the incompressibility constraint is stiff. These models have the advantage of being
easy to solve, but like the random networks of Wyart et al. above, they are not
representative of true biopolymer networks. Nevertheless, by tuning the segment
parameters, one can match experimental data for skin [174] and actin networks
[173]. In modeling actin, Palmer and Boyce [173] based their force-displacement
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curves on the theory of MacKintosh [158], described above. This modeling frame-
work allows consideration of prestress, but unfortunately, gives no way to predict it
in the network, so the prestress must be fit to each data set individually.

19.4.3.2. Beam Models

In light of the above the result that realistic, spring networks have G ′= 0, it is nec-
essary to account for the bending energy of the segments as well, or, at a minimum,
to introduce torsional springs at the nodes [74]. Explicitly accounting for fiber bend-
ing is typically accomplished by treating each segment as a worm-like-chain (WLC)
that contains both stretching and bending energy. Numerically, segment bending can
be implemented either by using a discrete WLC model [175] or a finite element
algorithm [145, 176], where the segments are represented as beams having both a
stretching stiffness Ks, and a bending stiffness Kb. Often, the segments are treated as
elastic rods using Euler-Bernoulli beam theory, and thus the mechanical stretching
stiffness is given by Ks = EA and Kb = EI, where E is the Young’s modulus of an
individual fiber, A = πR2 is the cross-sectional area, R is the rod radius, and I is the
area moment of inertia of the rod. The total energy in a filament is given by,

H = 1

2
Kb

L∫

0

(
∇2u

)2
dl + 1

2
Ks

L∫

0

ε2dl, (19-9)

where the segment is of length L, the transverse displacement is given by u, the
curvature is given by ∇2u, and the axial strain given by ε. From the above expres-
sions, one can also define a spring stiffness for a segment. The mechanical stretching
stiffness for a cylindrical fiber segment is given by ks = Ks

/
lc, while the bending

stiffness is kb = Kb
/

l3c , where lc is the mean spacing between nodes.
If the segment consists only of a single isotropic, linear elastic filament of

radius r, then I = Ifil = πr4
/

4. However, in many biopolymer networks, includ-
ing actin and collagen, the segment is in fact a bundle of fibers. If the bundles are
tightly coupled together by a stiff and rigid cross-linker, as is the case for actin
cross-linked by scurin [177], then a similar formula applies, I = πR4

/
4, with R the

radius of the bundle. In the case of loose intrasegment coupling, we instead have
I = NfilIfil = R2/r2Ifil = π(Rr)2/

4. In this case, the bundle is much more flexible
as I ∼ R2r2 instead of R4. There also exists a third, intermediate regime, determined
by the nondimensional parameter α = kxL2

/
(EAδ) [178, 179], in which kx is the

cross-link stiffness at a node, L is the segment length, and δ is the mean spacing
between nodes. For small α, the coupling is weak and Kb ∼ E (Rr)2. For very large
α, the coupling is strong and Kb ∼ ER4. For intermediate values of α, the formula
for Kb is more complicated, depending upon L, δ, and kx [178]. In the case of actin
bundles, three regimes have been observed, depending upon the cross-linker used
[179].

The first step in understanding the mechanical properties of these networks is to
explore the G′ behavior as a function of the network density. For the Mikado model,
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we define two densities: a nondimensional density q = NL2
/

A, and a dimensional
density ρ = NL/A, where N is the number of fibers of length L (possibly contain-
ing multiple segments) in a box of area A, and ρ has units of [1/length]. In two
dimensions, it is possible to link lc directly to N, L, and A and at large q, it is
given by lc = 2/qπ [180]. The mechanical properties of these networks have been
shown to depend critically on q [181], and also on the average number of nodes per
segment L

/
lc [143]. Here, we choose to describe the network mechanics in terms

of L
/

lc, though the two choices are equivalent [180]. For low L
/

lc, the system is
made up of isolated rods and small, unconnected clusters. In such a system, there
is no connected path from one side to the other and G′ = 0. At L

/
lc= 5.42 [143],

conductivity percolation occurs, meaning that a path exists connecting two oppo-
site sides of the network. In the case that the nodes can resist rotation (e.g. welded
joints), the system has also achieved rigidity percolation, and the connected compo-
nent can resist deformation. In the case that the nodes are treated as freely rotating
pin joints, rigidity percolation does not occur until L

/
lc = 5.93 [143].

Above rigidity percolation, there are two mechanical regimes, based on whether
the deformations are affine or nonaffine. In the case of kb << ks, the fibers are long
and thin, and the spacing between cross-links is large. Since the bending stiffness
is relatively low, the network responds to deformation by the bending of its fibers,
which is inherently non-affine. For freely rotating cross-links, it has been shown
both through simulation and through a self consistent analysis of the floppy modes
of the system that G′ ∼ kb

(
L

/
lc

)3.67 ∼ Kbρ
6.67L3.67 [141], exhibiting an extreme

sensitivity to the network density. The system behaves fundamentally differently
when ks >> kb. In this regime, deformations are affine and G′ ∼ ks ∼ EAρ, and the
modulus depends only linearly on density. The critical length at which the transition
occurs is given by lcrti = L

[(
ρ − ρf

)
L

]−2.84. Thus far, this scaling transition has
not been fully explored in three-dimensional simulations. However, Huisman et al.
[182] have studied artificially generated networks designed to be similar to actin,
and Stein et al. [84] have studied collagen networks of realistic architecture. Both
have found that at small deformations, the primary mode of energy storage is in
bending, and at small strains the deformations are highly non-affine. This result
lends further support to the idea that the affine assumption is erroneous for most
biopolymer networks.

As discussed in more detail below, cross-linked biopolymer networks typically
scale by G′ ∼ c2−3, where c is the polymer concentration. This is quite different
than either scaling regime for the Mikado model. Thus the importance of the above
results is not in the specific scaling laws derived, but in the observation that there
are two distinct mechanical regimes, one dominated by affine stretching and another
dominated by nonaffine bending.

19.4.3.3. Entropic Beam Model

An additional level of detail that can be added to the model is the entropic com-
ponent of the stretching stiffness of an individual filament. In this framework, the
stretching stiffness ks of a segment is modeled as two springs connected in series:
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an elastic element kel = EA
/

lc, and an entropic element given by ken = K2
b

/
kTl4c .

The total stretching stiffness is given by k−1
s = k−1

el + k−1
en and is dominated by

the more compliant of the two elements. In the case that the entropic stiffness is
weakest, we have ks ∼ l−4

c , which is markedly different from ks ∼ l−1
c for purely

mechanical networks. Fibrous networks exhibit G′ scaling that is very sensitive to
the cross-link behavior. For rigid cross-links, G′ ∼ Aks + Bkb, where rather than
acting in series, the stretching elements now act in parallel, with the stronger of the
two dominating the elastic response. For flexible cross-links, however, in the case of
inextensible fibers (kel → ∞), k0.5

b k0.5
s . For these systems too, it is found that there

is a critical average segment length lcrit, such that for networks with lc < lcrit, the
deformations are affine and when lc > lcrit, the deformations are nonaffine. Thus
including the entropic properties of the network gives qualitatively different scaling
laws for G′, but the nonaffine/affine transition is still present.

19.4.4. Finite Strain

19.4.4.1. Strain Stiffening

The above section focused on the small-strain behavior of networks. Soft tissues, in
particular, routinely deform beyond the small strain limit, ranging anywhere from
2% to over 40% strain depending on the tissue [76]. The typical load-deformation
response of cells and soft tissues in uniaxial tension is non-linear, starting with a
long, extensible toe region, followed by a linear and then exponential increase in
the force. The stiffening observed at high strains is universal, but the cause of strain
stiffening is unclear; the proposed mechanisms underlying it are dependent on the
type of model used, and the mechanisms may be different for different biopolymers.

Storm et al. [70] have used the affine theory developed by MacKintosh [158]
to show that the strain stiffening of a large number of polymers could qualitatively
be explained by an affine deformation of a network of strain stiffening filaments.
Similar behavior can also be produced by network reorganizations in which fibers
are free to rotate with the deformation, both in spring [74, 149] and beam mod-
els [84, 146, 147, 182, 183]. It is likely that the precise nature of strain stiffening
depends upon the specific properties of the biopolymers, as well as the manner in
which they are organized. Tissues are denser and more cross-linked than gels, and
their strain stiffening response may derive from both molecular entropic effects and
ECM geometry. In some instances, the scale of a problem involving tissues may
warrant the use of affine theories [166], although experiments show that at least
some tissue fiber deformations are not affine [114, 166, 184].

19.4.5. Bridging Scales – Multiscale Behavior of Networks

19.4.5.1. Representative Volume Element

A common approach used in relating the macroscopic behavior of a material to its
microstructure is to find a region in which the microstructure is structurally typical
to the entire sample [185]. Such a region is referred to as a representative volume
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element (RVE). RVEs possess a characteristic length scale that is at least an order of
magnitude larger (and preferably larger) than the length scale of heterogeneity in the
microstructure. As a result, the whole material can be subdivided into a repeating
array of RVEs, joined at their boundaries. Because the RVE is periodic and it is
similar mechanically to the whole material, analysis can be conducted on the RVE
alone.

Once an RVE has been selected, the analysis that follows assumes that the
microstructure deforms continuously with the macroscopic strain field (the affine
assumption). Such is the approach taken with cellular solid models [139, 186],
which have been used to study a variety of materials, including metals and plas-
tics [139], bone [187–189], and connective tissue in the optic nerve head [190].
Cellular networks can be setup with idealized, regular geometries that permit ana-
lytical solutions, or they can be created with irregular structures and probed with the
finite element method [141, 191]. Either way, the bulk properties of the material can
be related to the microstructure.

The analysis, however, is not limited to the behavior of one archetypal RVE. The
RVE mechanical response can vary spatially, as in homogenization theory, where
RVEs in the material develop different levels of strain to accommodate the inhomo-
geneous macroscopic displacement field [192–194]. The strategies to link scales in
soft tissues are more challenging because large deformations are possible; hence,
techniques based on a small strain assumption, such as many forms of homogeniza-
tion, will fail. More importantly, linking strategies that rely on periodicity cannot
incorporate macroscopic heterogeneity.

Our group has developed a multi-scale computational model that relies on the
method of volume averaging [195] to link the macroscopic level to the micro-
scopic level [74, 117, 149]. Because a material average volume is formulated (i.e.
a volume that deforms with the material) large deformations are easily addressed.
Furthermore, macroscopic heterogeneity, manifested as regional differences in the
local ECM microstructure, can be accommodated naturally by employing different
RVE network structures, provided that the regional differences are larger than the
scale of the RVE. To clarify, the RVE domain should be bigger than the scale of
microscopic gradients but smaller than that of macroscopic gradients [196]. As a
result, the model provides a means to study the dependency of macroscopic tissue
mechanics on the underlying ECM microstructure, which for our purposes is typi-
cally represented as a network of collagen fibers contained within an RVE [74, 117,
149, 150]. Consequently, the remainder of this discussion applies to collagen fiber
networks, but other networks (e.g. electrospun fibers [195]) can also be examined
with the method provided their attributes are accounted for in the fiber constitutive
equation and volume averaging equation detailed below.

19.4.5.2. Volume Averaging

In the model, the macroscopic domain is represented with a Galerkin finite element
(FE) model (Figure 19-6). However, in place of a macroscopic constitutive equation,
the stress needed for the FE solution is obtained by solving the force balance on the
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Figure 19-6. Multiscale modeling with volume averaging. The multiscale model relies on volume aver-
aging theory to link scales. The macroscopic problem is represented using the Galerkin finite element
method. RVEs containing fiber networks are centered at the integration points in the element, and the
RVE boundaries are deformed with the macroscopic deformation field. Fiber forces in the network are
volume averaged and the resulting macroscopic stress tensor is used in the macroscopic stress balance
to solve for the new macroscopic displacement field. This process iterates going back and forth between
scales until convergence is achieved

fiber network contained within an RVE. The RVEs are centered at the FE integration
points, and their boundaries are displaced based on the macroscopic deformation
field. Boundary displacements produce forces in the fibers that are transmitted via
fiber crosslinks, with the result that the fibers in the network reorganize to achieve
force equilibrium. The network fiber stress is averaged over the RVE to obtain the
macroscopic average Cauchy stress tensor, which is then used in the macroscopic
stress balance to determine the new macroscopic deformation field, and the process
iterates until convergence is achieved.

The method utilizes three basic equations: (1) a constitutive equation to relate
fiber stress to fiber strain (2) an equation that relates the average macroscopic stress
to the volume average of the local fiber stresses (3) and an equation for the force
balance at the macroscopic level. A fourth expression to incorporate rotational stiff-
ness at the nodes can also be used [74]. A number of constitutive equations have
been proposed for collagen fibers [160, 193, 198] that represent the fiber as strong
in tension and weak in compression. In previous work [73, 149], we have found that
the fiber constitutive equation used only has a minor influence on the macroscopic
behavior. For convenience, we employ an exponential constitutive equation [160] to
relate the fiber force, F, as

F = Ef Af

B

[
exp (Bεf ) − 1

]
, (19-10)
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where Ef and B are constitutive constants, and Af is the fiber cross-sectional area.
The Green’s strain of the fiber, εf, is given in terms of the fiber stretch ratio, λf,

as εf = 0.5
(
λ2

f − 1
)

. Equation (19-10), at the low-strain limit, reduces to a linear

model with elastic modulus Ef.
In volume averaging [195, 199], the macroscopic Cauchy stress tensor, Sij, is

determined by averaging the microscopic stress field, sij, over the RVE volume, V,

Sij = 1

V

∫

V

sijdV . (19-11)

Here we use index notation with uppercase and lowercase letters to refer to
macroscopic and microscopic variables, respectively. The microscopic stress can
be rewritten as sij = skjδik, where δik is the Kronecker delta. Because the gradient
of the direction vector, x, is equivalent to δik (∇x = xi,j = δij), Eq. (19-11) can be
rewritten as

Sij = 1

V

∫

V

skjxi,kdV = 1

V

∫

V

(
skjxi

)
, k dV− 1

V

∫

V

skj,kxidV . (19-12)

The second term on the RHS vanishes because microscopic equilibrium requires
that skj,k = 0. Applying the divergence theorem allows the macroscopic stress to be
calculated as integral of the RVE surface tractions, tj, over the RVE surface,

Sij = 1

V

∮

∂V

nkskjxidA = 1

V

∮

∂V

xitjdA. (19-13)

The tractions occur at the locations where network segments intersect the RVE
boundary (cross-links). For thin segments, x varies little over the segment-boundary
intersection. Thus,

∫
nkskjxidA ≈ xi

∫
nkskjdA = xiFj, and the components of Sij are

given in terms of the crosslink positions, x, and forces, F, as

Sij = 1

V

∑

boundary nodes

xiFj, (19-14)

The final equation needed is the macroscopic stress balance. Since the averag-
ing volume is material and changes with the macroscopic displacement, additional
terms must be incorporated (see Chandran [74]). The advantages of material
description are (1) it is consistent with how the microstructure deforms, (2) it sat-
isfies the mass balance implicitly, and (3) the macroscopic gradients are naturally
applied as the boundary conditions of the RVE [74].
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The macroscopic stress balance is given as

Sij,i = 1

V

∮

∂V

(
sij − Sij

)
uk,inkdA, (19-15)

where u is RVE boundary displacement and n is the unit normal vector. The right
hand side of Eq. (19-8) arises from the correlation between inhomogeneous dis-
placement of the RVE boundary and local inhomogeneities in the stress field. In the
case of a fixed RVE, the RHS would be zero.

19.5. APPLICATIONS TO BIOPOLYMERS

Now that the general methods used to model biopolymer networks have been
discussed, we examine the application of network models to specific problems.

19.5.1. Actin

Actin is a popular choice for microstructural analysis due to its critical role in a
number of cellular events and biological processes, including cell motility [179].
Of particular interest is the wide spectrum of actin cross-linkers, whose effect
on network formation and mechanics has important implications for normal cell
function. When no cross-linker is present, the networks are extremely compliant
(G′ < 0.5 Pa) and elasticity scales with concentration as G′ ∼ c7/5

a [200]. The
addition of a cross-linker can bring the modulus to 100 Pa or larger, clearly demon-
strating their importance in network formation. Cross-linkers, however, can serve
two functions. First, they can group individual filaments into a larger bundle, which
can strongly influence the bending stiffness [179, 201]. Second, they can connect
filaments and bundles together to form a network. Cross-linkers vary in length
with shorter molecules, such as scurin and fascin, forming relatively tight bundles
whereas longer molecules, such as filamin and α-actinin form looser bundles. Heavy
meromyosin cross-links while forming no bundles at all. The effect that various
cross-linkers have on the actin networks is summarized in Table 19-2. Remarkably,
scurin [60, 68], fascin [202], and HMM [203] all have similar effects in terms of
the scaling of G′ with respect to the actin concentration and cross-linker ratio, with

Table 19-2. Effect of cross-linkers on actin network properties

Cross-linker None Filamin [67] HMM [201] Fascin [61] Scurin [60, 68]

Bundle formation None Loose None Tight Tight
G′ (Pa) 0.1–0.5 1–10 0.1–100 0.1–100 0.1–100
G′ ∼ cA

x 1.4 2.2 2.4 2.5
G′ ∼ Rx (large R) N/A 0.4 1.2 1.5 2
G′ ∼ γ crit

x N/A –1.0 –0.4 –0.6
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G′ ∼ c(2.35±0.15)
a R(1.6±0.4). An additional parameter that is tracked is the critical

strain γcrit ∼ R(−0.7±0.3), which indicates the onset of strain stiffening, and again is
relatively similar for the three different cross-linkers.

Many models exist that have been used to explain some of these data, including
the affine stretching model of worm-like chains [68, 158], the nonaffine 8-chain
model [173], and the nonaffine bending model [167, 202]. All three models have
also been able to explain the strain stiffening behavior of biopolymers [70, 147,
173]. In vivo, turnover of the actin network may contribute to its apparent viscosity.
That is, a stressed fiber may disassemble and be replaced by new, unstressed fibers.
The significance of this phenomenon varies with cell type, phenotype, and activity.
While non-affinity has been directly observed at short length scales in scurin-cross-
linked actin networks [102], the community does not yet agree upon whether such
nonaffinity is sufficient to invalidate the affine theory [168]. The 8-chain model of
Palmer and Boyce [173] requires one to refit the network prestress at each actin
density. Thus their model makes the prediction that lower density networks have
higher degrees of prestress, but such a prediction has yet to be validated.

Finally, it has been observed that the maximum strain that a gel can withstand
decreases with increasing density [204]. This is hypothesized to be due to a short-
ening of the space between cross-links, which according to entropic stiffening
hypothesis, means that the fibers reach their maximum state of strain sooner [158].

19.5.2. Microtubules, IFs, and the Cytoskeleton

Microtubules and IFs have been cast into gels and subjected to rheology tests to
determine their individual mechanical characteristics [205, 206]. However, the net-
works were formed in vitro from purified monomer and may differ substantially
from those formed inside a cell. It is important to understand the individual proper-
ties of these proteins, but how they integrate with actin to form the cytoskeleton is
the ultimate goal, and much remains to be learned.

Wang and Stamenovic explore the contribution of IFs to cellular mechanics
by measuring cell stiffness to applied stress in adherent wild-type and vimentin-
deficient fibroblasts through magnetic twisting cytometry [207]. At high applied
stress (>> 10 dynes/cm2), the stiffness of the vimentin-deficient fibroblasts is much
smaller than the wild-type fibroblasts, while at a stress of 10 dynes/cm2, the stiffness
is comparable. A six-strut tensegrity model (discussed below) was able to replicate
the stiffening that resulted from cytoskeletal fiber realignment.

Microtubules and IFs are integrated into the cytoskeleton, and therefore can
affect the properties of the whole cell. One perspective on the structure-function
relationship between the cell, its cytoskeleton, and the extracellular matrix is the
hypothesis that the cell is a tensegrity (tensional integrity) structure [26, 208, 209].
In this model, the stability of the cytoskeleton is derived from a balance between
a continuous filament network (actin and intermediate filaments) under tension
and isolated compression-resistant elements (microtubules and thick actin bundles).
Without internal tension, or “prestress”, which can be generated through the cell’s
contractile machinery, the cytoskeleton would collapse. External forces, which are
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transmitted from the ECM to the cytoskeleton through focal adhesions, cause the
cytoskeleton to reorganize and stabilize until equilibrium is achieved. Support for
this view appears to be based largely on its intuitive appeal and model predictions
that match cell stiffening behavior with increasing tension and surface attachments
[210, 211]. The non-linear behavior observed derives from geometric changes in
the network, a behavior also observable in random fiber networks without compres-
sion elements. Although the concept of tensegrity is attractive, and experimental
evidence shows that microtubules can buckle under cellular loading [212], the exact
nature of the complex interactions that define cytoskeletal mechanics remains poorly
understood.

19.5.3. Spectrin

Spectrin has been studied as triangulated networks of Hookean springs of non-zero
force-free length and finite maximum length [212]. Triangulated networks are gen-
erated from infinitely thin hard rods with six-fold vertices. Under compression, the
six-fold symmetric structures undergo a phase transition to two-fold network sym-
metry as studied analytically at zero temperature or through Monte Carlo simulation
with a non-zero temperature [212]. In subsequent studies, a six-fold symmetric
network of polymer chains, representing the actin-spectrin cytoskeleton of the ery-
throcyte, is generated and the geometrical and elastic properties are determined
[214] and found to be in agreement with the shear modulus, of 6.6×10–3 dynes/cm
at 25◦C, for the erythrocyte cytoskeleton as determined from micromechanical
techniques [215].

With respect to modeling the macroscopic erythrocyte structure, an intertriangu-
lated network of chains becomes unwieldy. Consequently, Boey, et al., represented
the spectrin chains using a worm-like chain potential providing a tractable and more
physically realistic representation of an intertriangulated spectrin network than the
original Hookean spring representation [214]. An ensemble-averaging technique
was applied to non-axisymmetrical deformed shapes, analogous to an erythrocyte
undergoing micropipette aspiration, demonstrating how the triangulated mesh of
the spectrin-actin cytoskeleton imposes the macroscopic geometry of the erythro-
cyte [216]. Discher and colleagues’ simulation results from three structural models
of the spectrin network attached to a bilayer suggest that the network exists in a
prestressed condition of compression balanced through tension created by the lipid
bilayer [216]. Lee et al. later confirmed that the prestressed erythryocyte mem-
brane is capable of sustaining large anisotropic strains using fluorescently-patterned
photobleaching of a rhodamine phalloidin-labeled spectrin-actin cytoskeleton [214,
217].

Additionally, the equilibrium shape of the human erythrocyte has been investi-
gated using spectrin-level energetics [218]. Li and colleagues populated spherical
and biconcave structures with spectrin networks capable of 2,3,. . .,9 element junc-
tions. After the initial shape was populated, cytosol was removed allowing the shape
to deflate with fixed spectrin connectivities. Coarse-grained molecular dynamics
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was employed to find the equilibrium shape of the deflated RBC employing a worm-
like chain free energy model for the spectrin tetramer links. As a consequence of
the hypothesis that spectrin networks are constantly undergoing remodeling at some
sufficiently small characteristic time scale, Li et al., employed a liquefied network
structure evolution algorithm to relax the in-plane shear elastic energy of the macro-
scopic network shape which permits the evolution to discocyte and stomacyte shapes
based on the approach of Discher and colleagues [213, 214, 216, 217].

19.5.4. Collagen I

Similarly to actin, collagen I has been modeled extensively due to its abundance
and central structural role in many tissues. For this review, we focus on network
models, where the fibers are modeled as tension resisting springs [73] or tension
and moment resisting beams [84]. As with the networks applied to actin, these mod-
els show that significant matrix restructuring occurs in a highly non-affine manner.
In addition, uniaxial deformations applied to random networks result in nonlinear
stiffening, which arises from fiber rotations that gradually lead to fiber stretch. In
the small-strain limit, most of the energy in the network is stored in fiber and cross-
link bending (when bending is accounted for). At large strains the primary energy
storage mode is fiber stretching, and thus the large strain modulus scales linearly
with density [84].

Our multiscale model was originally developed for collagen gels, which appear
smooth and continuous on the macroscopic scale but are in fact composed of discrete
fibers. The model was applied to collagen gels [74, 149] and extended to complex
geometries [219] by means of a sophisticated computational environment. A rep-
resentative example can be seen in Figure 19-7, which shows the stretching of a

Figure 19-7. Heterogeneous test sample. A model system was constructed with a highly aligned central
“wound” region and a more isotropic surrounding region. The sample was stretched uniaxially to 30%
strain. The highly aligned central region deformed less than the surrounding isotropic region. Images are
2-D projections of a 3-D result
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Figure 19-8. Image based multiscale modeling. One quadrant of a cell-seeded, compacted collagen gel
was tested mechanically while microstructural orientation and strength of alignment was measured using
polarized light. A unique 3-D, interconnected fiber network was generated for each finite element to
match the average experimental values in the corresponding location in the experiment. (a) The model
predictions (red ) are overlaid on the experiment in white. For an off-axis hold test, in which the hori-
zontal axis remained stationary while the vertical axis was displaced to a stretch ratio of 1.3, the model
reasonably captured the local kinematics with some obvious differences. (b) The networks underwent
significant restructuring in a location dependent manner. The network near the top right corner started
off with moderate alignment in the horizontal direction. Fibers were free to rotate towards the vertical
and stretch to accommodate the strain created by movement of the vertical grip. (c) This network, which
was already aligned in the vertical direction increased in alignment with the stretch

sample with inhomogeneous structure. The model was also applied to electrospun
synthetic polymer networks [197], demonstrating its generality.

As noted earlier, an important challenge in such modeling is acquiring structural
information, and as the sophistication of the model increases, so too does its need
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for structural specification. Sander et al. [117] have recently shown that the mul-
tiscale scheme can be specified based on polarized-light imaging, with each finite
element in the model set at the average orientation measured for it in a sample.
The sample was subsequently stretched in an off-axis hold test, which was concur-
rently simulated. The force and strain results were compared between the model and
experiment, and agreement was good with fitting parameters based only on the con-
stitutive equation for the fibers (an example of this kind of simulation is presented
in Figure 19-8).

Because many tissues contain multiple components, a rule-of-mixtures model
was applied to arterial wall mechanics [150], with a network phase representing the
collagen fibrils in the vessel wall and an incompressible continuous phase repre-
senting the non-collagenous tissue (Figure 19-9 shows typical simulation results
and comparison to Experiment). The model agreed well with experimental data
on decellularized porcine carotid artery [220] and contained an important result:
it was predicted that the non-collagenous material is in compression even when
the vessel is inflated. That is, the role of the non-collagenous material in the
model is to prevent vessel wall and/or lumen collapse, not solely to provide elastic
recoil.

In some tissues, it has been observed that collagen fibrils/fibers/bundles are
undulated and possess “crimp”, and it has been hypothesized that their nonlinear
stress-strain response is in part the result of collagen fibers straightening out [221].
When undulations were incorporated into a network model, the effect was to delay
the stiffening response [147].

Affine theories for collagen have also fit well to some experimental data when
fiber-level properties are not required to match fiber level measurements [160, 222,
223].

Figure 19-9. Simulated inflation of a decellularized artery [150]. (a) The simulation involves four steps:
an initial open artery is constructed, it is closed to produce a prestressed artery, the artery is stretched lon-
gitudinally, and finally it is inflated. (b) Pressure-diameter curve for the simulation (line) and experiment
(dots, [220]) are in good agreement with only two fitting parameters, the fiber stiffness and the matrix
stiffness
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19.5.5. Type IV Collagen

In spite of the importance of basement membrane, structural modeling has lagged
behind that of collagen I or actin. A notable exception is the recent work of Burd
[224]. Burd examined two phenomenological models (a linear elastic model and
a Fung-type hyperelastic model), concluding neither model correlates satisfactorily
with the mechanical properties of the collagen IV network present in the human lens
capsule. Instead, a regular hexagonal lattice of pin-jointed bars was created and sub-
sequently perturbed randomly to create an irregular polygonal structure, as used by
Cavalcante et al. [225] for collagen-elastin networks. Representing the lens capsule
as an irregular lattice of collagen IV embedded in a hyperelastic sheet correlated
well with published data.

19.5.6. Fibronectin, Laminin, and the ECM

DiMilla and colleagues studied cell migration through a mathematical model elu-
cidating the dependence of migration velocity on cellular mechanics and surface
receptors binding with complementary ligands present in the extracellular substra-
tum such as fibronectin and laminin [226]. They conclude that cytoskeletal force
generation, cellular polarity, and adhesion dynamics are required for persistent cell
motility. The model predicts how cell speed varies with a variety of phenomena
including cytoplasmic rheology, intracellular contractile force, receptor/ligand den-
sities and kinetics [226]. Ingber and Wang explored how the mechanical tension
and the extracellular matrix through adhesion to the ligand fibronectin influence
cytoskeletal mechanics [227]. Magnetic beads were coated with fibronectin of vary-
ing density, and a mechanical tension was applied to adherent endothelial cells
through a magnetic twisting device. Ingber and Wang find that the cytoskeletal
stiffness increases proportionally with the applied stress controlled by the magnetic
twisting device and fibronectin density. A model is presented coupling cell mechan-
ics to the applied stress [227]. Bischofs et al. developed a tension-elasticity model
to correlate cell morphology as a consequence of adhesion to fibronectin-patterned
substrates [227]. Bischofs derived a modified Laplace law from analytical results
and computer simulation to describe filamentous network mechanics and contractil-
ity [227]. Such results demonstrate the coupling of extracellular adhesion influences
cytoskeletal organization and cell shape.

19.6. SUMMARY

Two major challenges, in our opinion, remain for the community. The first is
describing the segments and nodes in the network. Much work is now being done
at the molecular scale [229], but we do not yet have network-level models that
can incorporate molecular-level information. A similar rise in single-molecule and
single-fiber experimental methods [19, 20, 41, 230] has not yet resulted in better
fiber models in networks, which are still largely restricted to simple descriptions
(springs, beams, or worm-like chains, none of which truly captures the full range
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of behaviors seen at the molecular/fiber level). The challenge is even greater when
nodes are considered. Pin joints, rigid crosses, and moment springs are all idealiza-
tions that do not capture the complex molecular interactions that characterize the
junction between two fibers, and they are assuredly different for different biopoly-
mers. It is expected that future scientists, armed with improved computer hardware
and software, will incorporate our new knowledge of molecular detail as it arises.

The other major challenge, as suggested by our choice of title, is understanding
how a network of many components can be interpreted in terms the one continu-
ous material it appears to be on the macroscopic scale. We have seen in this paper
how numerous researchers have explored the relationship between fibers and how
the network properties vary with, for example, fiber or cross-link density, but a vast
majority of the work has focused on these phenomena from a physical or mate-
rial standpoint, working on the assumption of macroscopic homogeneity and often
emphasizing a single component. While these studies represent a critical first step
in any analysis, we need methods to incorporate multiple components and, as often
occurs in biological systems, heterogeneity at all length scales. Only when these
phenomena are understood will we truly be able to understand the behavior of the
one tissue in terms of its many components.

19.7. NOMENCLATURE

A Cross-sectional area of a fiber, [m2]
B Constitutive constant relating to fiber force
c Concentration of polymer, [mol/L]
d Spatial dimension
dl Differential change in fiber length, [m]
E Young’s modulus of an individual fiber, [Pa]
U(j) Exact energy of an ensemble of molecules in configuration j, [J]
Ef Fiber constitutive constant, [N]
U

′
j Exact energy of an ensemble of molecules in configuration j with

a slight perturbation to one randomly chosen molecule, [J]
〈U〉 Expected average energy of an ensemble of molecules, [J]
F Force along a fiber, [N]
G

′
(ω) Elastic modulus, [Pa]

G
′ ′
(ω) Loss modulus, [Pa]

H Total energy of a filament, [J]
I Area moment of inertia of a rod, [m4]
Ifil Area moment of inertia of a filament, [m4]
J The last configuration for an ensemble of molecules undergoing

an energy minimization scheme
Kb Bending stiffness of a material, [N•m2]
Ks Stretching stiffness of a material, [N]
j A series of configurations for an ensemble of molecules
k Boltzmann constant, 1.3806503×10–23 [J/K]
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kb Bending stiffness of an individual fiber segment of length ls,
[N/m]

kel Elastic component of stretching stiffness of an individual fiber of
length ls, [N/m]

ken Entropic component of stretching stiffness of an individual fiber
of length ls, [N/m]

ks Stretching stiffness of an individual fiber in a network, [N]
kx Cross-link stiffness at a node, [N]
L Length of a segment in a fiber network, [m]
lc Mean displacement between nodes in a network, [m]
lcrit Critical length between cross-links through which a transition

between affine and non-affine deformations, [m]
le Entanglement length for a fiber, [m]
lp Persistence length for a fiber, [m]
ls Length of a fiber segment [m]
m General representation to denote the last molecule in an ensemble

of molecules
N Number of fibers in a network
Nc Number of connecting segments for N vertices in a d dimensional

space
Nf Number of network degrees of freedom in a network
Nfil Number of filaments in a network
Nν Number of nodes in a network
ni Denotes the ith molecule of an ensemble of m molecules
nk Normal vector
Q Normalization quotient for calculating the average energy of an

ensemble of molecules
q A non-dimensional network density
R Ratio of cross-linking component to actin concentration in a

solution, or the radius of an individual fiber, [m]
r Radius of an elastic filament, [m]
Sij Cauchy stress tensor, [Pa]
s Axial parameterization of fiber length, [m]
sij Microscopic stress field, [Pa]
T Absolute temperature, [K]
t Time, [sec]
tj Surface traction, [Pa]
u Transverse displacement, [m]
uk,i Boundary displacement, [m]
∇2u Curvature, [m–1]
V Volume, [m3]
x Power law exponent relating biopolymer concentration to elastic

modulus
y Power law exponent relating cross-linker-polymer ratio and elas-

tic modulus
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z Condition number of a network (average number of fibers that
connect to a node)

α Dimensionless parameter
δ Mean spacing between nodes in a fiber network, [m]
δik Kronecker delta
ε Axial strain
εf Green’s strain of a fiber
γ (ωt) Shear strain
γ̇ (ωt) Shear strain rate, [s–1]
&k {n1,...,nm} An individual configuration of m molecules
σ (ω,t) Stress, [Pa]
λf Stretch ratio of a fiber
θ Angular parameterization of the tangent angle of a fiber with

respect to the longitudinal fiber axis, [radians]
ρ Total fiber length per unit area of a 2-D Mikado network, [m–1]
ρc Critical fiber length per unit area of a 2-D Mikado network at

which percolation occurs, [m–1]
ξ A random number on the interval (0,1), or the mesh size of a

network
ω Frequency, [radians/s]
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(BPMs)

Boltzmann method, see Lattice Boltzmann
method (LBM)

Bonding and nonbonding interaction
CNTs, 403
See also Quasi-continuum simulations

(CNT deformations)
Bone, 516–518

See also Multiscale modeling (biological
protein materials)

Bravais multilattice, 394–395
Brenner potential

multiscale CNT modeling and, 372–374
Tersoff-Brenner potential, 416

Bridging domain method (CNTs), 370–372
Bridging scales method

representative volume element, 578–579
volume averaging, 579–581

Brittle fracture
LOTF scheme and, 12–15
See also Hydrogen-induced platelets (HIP);

Screw dislocation study
Buckling

instability
bending behavior (CNTs), 277
compressive behavior (CNTs), 271, 272
torsional behavior (CNTs), 282, 283

SWCNTs mechanical properties under
large strains (nonlinear stick-spiral
model), 311

Bulk Cauchy-Born (BCB) model
diamond cubic lattices formulation,

203–205
surface stress effects on silicon nanowires

resonant properties (constant cross
sectional area), 215–217

See also Surface Cauchy-Born (SCB)
model

Bulk energy densities, 197–198

C
Carbon nanotubes (CNTs), 255

atomic-scale simulations (MD simulations),
255–256

interatomic potentials, 257–260
methods for mechanical behavior,

263–264
periodic boundary conditions, 260
predictor-corrector algorithm, 262–263
temperature control, 261–262

electrical conduction, see Electrical
conduction (CNTs)

electronic properties, see Electronic
properties (CNTs)

heat conduction in solids and
nanostructures, 107–109

hetero SWCNT (HSWCNT), 422
mechanical behavior

simulations methods for, 263–264
stick-spiral model for, 297, 302–314
theoretical modeling on geometry

dependent mechanical properties,
300–302

mechanical behavior (bending behavior)
bending modulus, 276
buckling instability, 277
external gases effects, 278–279
filling, functionalization, and

temperature effects, 277
mechanical behavior (compressive

behavior)
buckling instability, 271–272
crystalline bundle, 276
filling, functionalization, and

temperature effects, 273–274
nanotube proximal probe tips, 275

mechanical behavior (tensile behavior),
265

combined loads effect, 268–271
filling, functionalization, and

temperature effects, 267–268
fracture or plastic behavior, 266
Young’s modulus, 265–266

mechanical behavior (torsional behavior)
buckling instability, 282–283
combined loads effects, 286–290
crystalline bundle, 291
filling, functionalization, and

temperature effects, 283–285
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shear modulus and stiffness, 280–282
multiscale modeling, see Multiscale

modeling (CNTs)
See also Multi-walled CNTs (MWCNTs);

Single-walled CNTs (SWCNTs)
CdSe nanocrystals

wurtzite to rocksalt transformation in,
78–81

See also Nanocrystals under pressure
Centro-symmetry parameter

for defects and grain boundaries
visualization, 160

See also Nanoscale contact (nanocrystalline
films)

CHARMM force field
BPM modeling and, 482–484
computational molecular biomechanics

(MscL), 542–543
See also ReaxFF force field

Chemical reactions of vacancy-defected
SWCNTs, see under Electronic
properties (CNTs)

Classical model, 2
heat conduction in solids, 95–97
See also under Quantum/classical modeling

(hybrid)
Coarse-grained MD (CGMD), 28–29

adaptive multiscale MD
equations of motion, 37–38
liquid methane case study, 40–42
stage 1(coupling of regions), 31–37
stage 2 (freezing of intra-bead motions),

38–40
adaptive resolution dynamics scheme, 43
atomistic/continuum interface boundary

conditions (heat conduction aspects)
diffuse interface methods, 118–119
memory kernel methods, 117–118

heat conduction in solids and, 86, 109
atomistic/continuum interface boundary

conditions, 117–119
CG dynamics, 111–115
CG nodes dynamics, 110
CG thermal properties, 115–117
isothermal dynamic multiscale

methods, 121–122
smooth information transfer, 111
thermodynamic properties of continuum

and atomistic model, consistency
between, 110

mixed resolution dynamics scheme, 43
rigid body rotational dynamics, 43

coupling between rotational dynamics
and CGMD, 48–50

polyethylene chain case study, 50–53
rotational dynamics, 47–48
rotational optimization, 44–47

reverse mapping problem (mapping
between different representations),
29–30

rotational reverse mapping
and hybrid MD, 53–54
hybrid simulation of polyethylene

chain, 54–57
See also Atomistic MD; Multiscale MD

Coarse-grained modeling
heat conduction and dynamic models for

metals, 128–129
protein structures (BPM modeling), 486

CG model of alpha-helical protein
domains (case study), 490–493

coarser models, 489
implicit solvent, 489–490
multi-bead models, 489
single-bead models, 487–488

See also Multiscale modeling; Non-
isothermal concurrent multiscale
models

Collagen
collagen I

applications, 585–587
extracellular network, 561–562

collagen IV
applications, 588
extracellular network, 562

See also Biopolymer networks
Committor, 69–71

defined, 69
See also Transition path sampling (TPS)

Compressive behavior (CNTs)
buckling instability, 271–272
crystalline bundle, 276
filling, functionalization, and temperature

effects, 273–274
nanotube proximal probe tips, 275
See also Tensile behavior (CNTs)

Computational molecular biomechanics, 535
continuum framework (future look and

improvements aspects), 552–554
gating mechanisms and

mechanotransduction insights
effects of structural motifs, 548–549
gating behaviors upon bending,

546–547
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gating behaviors upon equi-biaxial
tension, 543–546

loading modes vs.
mechanotransduction, 547

large scale simulations of lab experiments,
551–552

MDeFEM, 536
mechanosensitive (MS) channels, 536

continuum-based approach, 541–543
co-operativity of channels, 549–551
E. coli-MscL, 536–538
MD model, 540–541
M. Tuberculosis-MscL, 537
previous experimental and theoretical

investigations, 539–540
previous numerical approaches, 540
structural components of MscL,

536–539
Concurrent multiscale methods (heat con-

duction in solids), see Isothermal
concurrent multiscale models

Configurational temperature
equilibrium molecular dynamics and, 88
See also Heat conduction (solids)

Contact resistance
defined, 135
See also Interfacial resistance

Contact-induced plasticity, 151–153
atomistic modeling, 154

defects and grain boundaries
visualization tools, 160–161

local stresses and mean contact
pressures calculations, 158–160

molecular dynamics simulations, 155
quasicontinuum (QC) method, 155–156
spherical/cylindrical contact, 156–158

defects and grain boundaries visualization
tools

centro-symmetry parameter, 160
local crystal structure by Ackland and

Jones, 161
grain boundary

motion mechanisms during contact
plasticity, 166–170

network effect on incipient plasticity
during nanoscale contact, 164–166

interatomic potentials effects on
equilibrium microstructures,
161–163

Continuum modeling
computational molecular biomechanics

continuum-based approach (MscL),
541–543

future look and improvements aspects,
552–554

continuum limits and nanoscale thermal
transport and, 138

higher-order (multiscale CNT modeling),
376

constitutive relationship, 379
higher-order gradient continuum,

377–378
mesh-free numerical simulation,

380–381
surface effects (multiscale modeling),

196–198
See also Quasi-continuum (QC) modeling

Coupling scheme
multiscale (CNT modeling), 381–382

Crystalline bundle
compressive behavior (CNTs), 276
effect on torsional behavior of CNTs, 291

Cytoskeleton, 583–584

D
Debye model

phonon heat transport (quantum model),
93–94

See also Einstein model
Deformations (CNTs)

bending behavior, 276–279
compressive behavior, 271–276
simulations methods, 263–264

atomic-scale simulations (MD
simulations), 255–264

stick-spiral model, 297, 302–314
theoretical modeling on geometry

dependent mechanical properties,
300–302

tensile behavior, 265–271
torsional behavior, 282–291
See also Quasi-continuum simulations

(CNT deformations)
Density functional theory (DFT)

electronic properties (CNTs), 426
nanostructures atomic configuration

prediction, 241–242
silicon nanowires (SiNWs) methodological

considerations, 176
See also Global optimization meth-

ods (nanostructures atomic
configuration prediction)

Density functional tight binding (DFTB)
hydrogen-induced platelets in silicon

(chemical complexity aspects),
16–17
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See also Learn on the fly (LOTF) scheme
Density-matrix tight-binding methodology

(DM-TBTE), 184
Diamond cubic lattices formulation

BCB model for silicon, 203–205
SCB model for silicon, 206–208
See also Surface effects (multiscale

modeling)
Diamond-structure nanowires, 184

See also Silicon nanowires (SiNWs)
Diffuse interface methods

heat conduction in solids and, 118–119
See also Memory kernel methods

Dispersion relation
lattice vibrations, 91
See also Heat conduction (solids)

Doped SWCNTS
B- and N-doped, 445
chalcogen Se- and Te-doped, 448
gas adsorptions on Pt-doped, 451–453
Ni-, Pd-, and Sn-doped, 445–447
Pt-doped, 448–451

Dynamic coarse-grained models
for metals, 128–129
See also Non-isothermal concurrent

multiscale models
Dynamic phonon models

for insulators, 126–127
See also Non-isothermal concurrent

multiscale models

E
Einstein model

phonon heat transport quantum model,
94–95

See also Debye model
Elastic properties (SWCNTs)

stick-spiral model, 306–308
See also Mechanical behavior

Elastic Network Model (ENM), 487–488
Electrical conduction (CNTs)

under mechanical deformations (modeling
procedures), 335–339

carbon nanotube wall, 340–342
electrical transport model, 344–345
initial internal stress state, 342–343
inter-layer shear resistance model, 344
special interaction elements

construction, 343–344
under mechanical deformations (numerical

results)
bent (10, 0) SWNT, 353–354
laboratory experiments simulation on

MWNT, 354–356

laterally-squeezed (8, 8) SWNT,
351–353

MWNTs deformation under bending,
347–351

non-linear I-V response, 361–362
outer diameter effect on MWNTs

conductance under bending,
356–359

outer diameter effect on MWNTs
conductance under stretching,
360–361

SWNTs bending, 345–346
tube-tube-substrate interaction, 346

Electronic properties (CNTs), 421–423
chemical reactions of vacancy-defected

SWCNTs, 453
chemical reaction of NO d, 454–456
chemical reaction of O3, 457, 458–464
computational details and model

selection, 453
doped SWCNTS

B- and N-doped, 445
chalcogen Se- and Te-doped, 448
gas adsorptions on Pt-doped, 451–453
Ni-, Pd-, and Sn-doped, 445–447
Pt-doped, 448–451

open-end SWCNT segment, 431
perfect SWCNT rods, 428–431
theoretical methods

DFT methods, 426
first-principles calculations, 423–424
molecular dynamical simulations,

427–428
ONIOM model, 426–427
semiempirical quantum mechanical

methods, 424–425
vacancy-defected fullerenes, 431–438
vacancy-defected SWCNTs, 431

(5,5) and (10,0), 439–443
(5,5) SWCNT clip, 444–445

Embedded atom method (EAM)
surface effects (multiscale modeling),

199–202
potentials, 155, 161–163
See also Nanoscale contact (nanocrystalline

films)
Empirical models

silicon nanowires (SiNWs)
methodological considerations,

177–178
structural properties (empirical methods

application), 180–183
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See also First principle approach;
Semi-empirical models

Energy densities
surface and bulk, 197–198

Energy minimization
biopolymer model network generation via,

570–572
Equilibrium MD

heat conduction in solids and, 87–88
See also Non-equilibrium MD (NEMD)

Evans extension
BPM strength model, 498–500
See also Multiscale modeling (biological

protein materials)
Extracellular matrix (ECM), 557–561

applications, 588
See also Extracellular networks under

Biopolymer networks
Extraction

biopolymer networks imaging, 568–569
See also Biopolymer networks

F
FCC metals, 199–202

See also Surface effects (multiscale
modeling)

Fibrin, 563
Fibronectin (FN)

applications, 588
extracellular network, 562–563
See also Biopolymer networks

Filling
effect on CNTs

bending behavior, 277
compressive behavior, 273–274
tensile behavior, 267–268
torsional behavior, 283–285

See also Mechanical behavior
Finite element method (FEM)

atomic-scale FEM (AFEM), 325–326
MD-decorated FEM (MDeFEM), 536
surface effects (multiscale modeling)

FE eigenvalue problem for nanowire
resonant frequencies, 209–210

variational formulation, 208–209
See also Computational molecular

biomechanics
First principle approach

electronic properties (CNTs), 423–424
silicon nanowires (SiNWs)

methodological considerations,
176–177

principle application in thin silicon
nanowires morphology, 184

See also Empirical models; Semi-empirical
models

Fracture behavior (CNTs tensile behavior), 266
Freezing

intra-bead motions, 38–40
See also Adaptive multiscale MD

Fullerenes
like nanowires, 185–187
vacancy-defected, 431–438
See also Silicon nanowires (SiNWs)

Functionalization
effect on CNTs

bending behavior, 277
compressive behavior, 273–274
tensile behavior, 267–268
torsional behavior, 283–285

See also Carbon nanotubes (CNTs);
Mechanical behavior

G
Gating

behaviors upon bending, 546–547
behaviors upon equi-biaxial tension,

543–546
See also Mechanotransduction

Genetic algorithm (GA)
nanowires structures

atomic configuration prediction, future
directions, 250–251

slicon surfaces reconstruction problems
and, 239–240

nanowires structures (1-D), 243–245
boundary conditions, 245
cross-over operations, 245
growth into global minima under radial

confinement, 247–249
mutations, 245

See also Parallel-tempering Monte Carlo
(PTMC) simulations

Global optimization methods (nanostructures
atomic configuration prediction),
231–234

freestanding nanowires structure
1-D nanostructures growth into global

minima under radial confinement,
247–249

genetic algorithm (GA), 243–245
magic structures of H-passivated

Si-[110] nanowires, 246–247
future directions, 250–251
slicon surfaces reconstruction problems,

234
genetic algorithm (GA), 239–240
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PTMC simulations, 235–238
selected results on Si(114), 241

See also Density functional theory (DFT)
Grain boundaries (GBs)

contact-induced plasticity
grain boundary motion mechanisms

during contact plasticity, 166–170
network effect on incipient plasticity

during nanoscale contact, 164–166
nanocrystalline metals, 152–153
visualization (nanocrystalline films),

160–161
See also Coarse-grained MD (CGMD)

Green-Kubo method
heat conduction in solids, 100
See also Non-equilibrium MD (NEMD)

H
Heat conduction (solids)

MD simulations
classical limit, 95–97
CGMD, 86, 109–122
configurational temperature, 88
equilibrium MD, 87–88
heat transport in metals, 98
isothermal concurrent multiscale

models, 109–110
isothermal dynamic multiscale models,

121–122
kinetic temperature, 88
lattice vibrations, 90–91
nonequilibrium MD, 99–109
non-isothermal concurrent multiscale

methods, 122–129
phonon heat transport (quantum model),

91–95
temperature control (thermostat), 89–90

nonequilibrium MD (NEMD)
direct method, 100–106
Green-Kubo method, 100
size effects, 106–109
temperature control (thermostat),

103–106
thermostat

Berendsen, 90
Langevin, 89
Nosé-Hoover, 89

See also Nanoscale thermal transport
Hetero SWCNT (HSWCNT), 422, 445

See also Doped SWCNTs; Multi-walled
CNTs (MWCNTs); Single-walled
CNTs (SWCNTs)

Hierarchical

Bell model, 503–504
materials (BPM), synthesis methods for,

515
High-density nanowires, 185

See also Silicon nanowires (SiNWs)
Higher-order continuum model

multiscale CNT modeling and, 376–381
See also Continuum modeling

Hybrid modeling, 27
LOTF, see Learn on the fly (LOTF) scheme
molecular dynamics (MD)

hybrid simulation of polyethylene
chain, 54–57

rotational reverse mapping with hybrid
MD, combining, 53–54

multiscale methodology, nanoscale thermal
transport and, 143–146

See also Multiscale MD; Quantum/classical
modeling (hybrid); Reverse
mapping

Hydrogen
bond clusters (size effects in and BPM

strength modeling), 505–506
passivated Si-[110] nanowires magic

structures, 246–247
Hydrogen-induced platelets (HIP)

in silicon (chemical complexity apsects),
15

atom-resolved stress tensor, 18–21
LOTF scheme, 16–18

in silicon (chemical complexity apsects),
15

See also Brittle fracture

I
Ideal gas pressure bath, see under Nanocrystals

under pressure
Imaging, see under Biopolymer networks
Indentation, see Nanoindentation
Insulators

dynamic phonon models for, 126–127
quasi-static phonon models for, 123–126
See also Metals; Non-isothermal

concurrent multiscale models
Interfacial resistance

defined, 136
modulation strategies, 137
See also Nanoscale thermal transport

Intermediate filaments (IFs), 561
applications, 583
See also Biopolymer networks

Interpolation function, 396–398
See also Quasi-continuum simulations

(CNT deformations)
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Intracellular networks, see under Biopolymer
networks

Isothermal concurrent multiscale models
heat conduction in solids and, 109–119
See also Non-isothermal concurrent

multiscale models
Isothermal dynamic multiscale models

heat conduction in solids and, 121–122
See also Coarse-grained MD (CGMD)

I-V response
non-linear, 361–362
See also Electrical conduction (CNTs)

K
Kapitza effect, 102–103

See also Non-equilibrium MD (NEMD)
Kinetic temperature

equilibrium molecular dynamics and, 88
See also Heat conduction (solids)

L
Laminin

applications, 588
extracellular network, 562
See also Biopolymer networks

Langevin thermostat
heat conduction in solids and, 89
See also Temperature control (thermostat)

Lattice Boltzmann method (LBM)
nanoscale thermal transport and, 142–146
MD and LBM, coupling of, 144–146

Lattice vibrations
acoustic mode, 90
dispersion relation, 91
optical mode, 90
See also Heat conduction (solids)

Lattices formulation, see Diamond cubic
lattices formulation

Learn on the fly (LOTF) scheme, 1
boundary reconciliation between QM and

classical regions, 2–3
DFTB formalism, 17
forces matching, 5

adjustable potential (AP), 6–7
classical Hamiltonian parameters, 5

HIP in silicon (chemical complexity
aspects), 16–18

predictor-corrector scheme, 7–10
QM forces evaluation, 4
QM region selection aspects

brittle fracture, 13
screw dislocation study, 11–12

See also Molecular dynamics (MD)
Lennard-Jones potential

effect of lattice registry on, 327–329
effect on CNT deformation, 329–332
See also Van der Waal interaction

(nano-scale computation)
Linear stick-spiral model

elastic mechanical properties of SWCNT,
306–308

explicit expressions for vibrating fre-
quencies of some Raman modes,
308–310

Liquid methane
case study, 40–42
See also Adaptive multiscale MD

Loads
combined loads effect of CNTs, 268–271
effect on torsional behavior of CNTs,

286–290
loading modes (computational molecular

biomechanics)
gating behaviors upon bending,

546–547
gating behaviors upon equi-biaxial

tension, 543–546
loading modes vs.

mechanotransduction, 547

M
Magic structures

H-passivated Si-[110] nanowires, 246–247
See also Global optimization meth-

ods (nanostructures atomic
configuration prediction)

Materials science, see Multiscale modeling
(biological protein materials)

Mechanical behavior
CNTs under mechanical deformations

atomic-scale simulations (MD
simulations), 255–264

bending behavior, 276–279
compressive behavior, 271–276
simulations methods, 263–264
stick-spiral model, 297, 302–314
tensile behavior, 265–271
theoretical modeling on geometry

dependent mechanical properties,
300–302

torsional behavior, 282–291
biopolymers, 563–566
BPM mechanical testing, 513–514

Mechanosensitive (MS) channels, see
under Computational molecular
biomechanics

Mechanotransduction
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effects of structural motifs, 548–549
loading modes vs. mechanotransduction,

547
See also Gating

Memory kernel methods
heat conduction in solids and, 117–118
See also Diffuse interface methods

Metals
heat transport in, 98–99, see also under

Heat conduction (solids)
non-isothermal concurrent multiscale

models
dynamic CG models for, 128–129
quasi-static models for, 127–128

See also Insulators; Nanocrystalline metals
Micro electromechanical systems (MEMS),

151–152
See also Contact-induced plasticity

Microtubules, 560–561
applications, 583
See also Biopolymer networks

Mixed resolution dynamics, 43
See also Adaptive multiscale MD

Molecular biomechanics see Computational
molecular biomechanics

Molecular dynamics (MD)
BPM, 479–482
chemical reaction of NO with

vacancy-defected SWCNT,
462–464

CNTs, 255, 256
atomic-scale simulations, 255–264
electronic properties, 427–428
interatomic potentials, 257–260

computational molecular biomechanics
future look and improvements aspects,

552–554
gating behaviors upon bending, 547
gating behaviors upon equi-biaxial

tension, 543–546
loading modes vs.

mechanotransduction, 547
MDeFEM, 536
mechanosensitive (MS) channels,

540–543
decorated finite element method

(MDeFEM), 536, 541
for solid-solid transformation of

nanocrystals under pressure
ideal gas bath, 77
wurtzite to rocksalt transformation in

CdSe nanocrystals, 79–80
heat conduction in solids and

classical limit, 95–97
CGMD, 86, 109–122
equilibrium MD, 87–88
heat transport in metals, 98
isothermal concurrent multiscale

models, 109–110
isothermal dynamic multiscale models,

121–122
lattice vibrations, 90–91
nonequilibrium MD, 99–109
non-isothermal concurrent multiscale

methods, 122–129
phonon heat transport (quantum model),

91–95
temperature control (thermostat), 89–90

nanoscale contact in nanocrystalline films,
155

nanoscale thermal transport and, 141–142,
144–146

See also Atomistic MD; Coarse-grained
MD (CGMD); Equilibrium MD;
Multiscale MD; Non-equilibrium
MD (NEMD)

Molecular phenomena
multiscale, 26
See also Multiscale MD

Molecular statics (MS)
comparison with SCB model, 210–212
See also Surface Cauchy-Born (SCB)

model
Monte Carlo simulations

global optimization methods (nanos-
tructures atomic configuration
prediction)

PTMC simulations, 235–238
slicon surfaces reconstruction problems,

235–238
in trajectory space (TPS aspects), 66

Multi-bead models
CG protein structures modeling, 489
See also Multiscale modeling (biological

protein materials)
Multiscale coupling scheme, 381–382
Multiscale MD, 25–26

adaptive, 30–31
equations of motion, 37–38
liquid methane case study, 40–42
stage 1 (coupling atomistic and

coarse-grained regions), 31–37
stage 2 (freezing of intra-bead motions),

38–40
adaptive boundaries within, 27
atomistic and CGMD, 28–29
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adaptive multiscale molecular
dynamics, 31–42

adaptive resolution dynamics scheme,
43

mapping between different representa-
tions (reverse mapping problem),
29–30

mixed resolution dynamics scheme, 43
rigid body rotational dynamics, 43–53
rotational reverse mapping with hybrid

MD, 53–57
nanoscale thermal transport and, 141–146
reverse mapping problem, 29–30

adaptive multiscale molecular dynamics
algorithm for, 30–42

rigid body rotational dynamics, 43–53
rotational reverse mapping with hybrid

MD, 53–57
rigid body rotational dynamics, 43–53

coupling between rotational dynamics
and CGMD, 48–50

rotational dynamics, 47–48
rotational optimization, 44–47

rotational reverse mapping with hybrid
MD, combining, 53–57

See also Atomistic MD
Multiscale modeling, 2

biopolymer networks, 578–582
contact-induced plasticity in

nanocrystalline metals, 151
heat conduction in solids

isothermal concurrent multiscale
models, 109–119

isothermal dynamic multiscale models,
121–122

non-isothermal concurrent multiscale
models, 122–129

nanoscale thermal transport
atomistic and multiscale simulations,

139–141
example problems, 146
hybrid multiscale methodology,

143–144
Lattice Boltzmann method (LBM),

142–143
MD and LBM, coupling of, 144–146
molecular dynamics (MD) simulations,

141–142
surface effects, see Surface effects

(multiscale modeling), 193
See also Learn on the fly (LOTF) scheme;

Multiscale modeling (biological

protein materials); Multiscale
modeling (CNTs)

Multiscale modeling (biological protein
materials), 473–524

atomistic simulation methods
CHARMM force field, 482–484
CG approaches of protein structures,

486–493
MD formulation, 479–482
network model of alpha helices,

493–496
ReaxFF force field, 484–486

complementary experimental methods
manipulation and mechanical testing,

513–514
structural characterization, 513
synthesis methods for hierarchical

materials, 515
de novo design of nanomaterials, 515–21

bioinspired metallic nanocomposites
development, 518–519

nanostructure design effects under
tensile and shock loading, 519–521

outlook and opportunities, 521–522
investigation strategy, 476–477
materiomics impact, 477–478
strength models

asymptotic strength model for alpha
helix protein domains, 506–513

complex molecular bonds, 500–504
single bond, 497–500
size effects in H-bond clusters),

505–506
Multiscale modeling (CNTs), 367–368

atomic simulation method, 374–376
Brenner potential, 372–374
bridging domain method, 370
bridging scale method, 371–372
examples

bending test, 383–384
SWCNTs tensile failure with

single-atom vacancy defect,
384–386

higher-order continuum model, 376
constitutive relationship, 379
higher-order gradient continuum,

377–378
mesh-free numerical simulation,

380–381
multiscale coupling scheme, 381–382
quasi-continuum method, 369–370
See also Quasi-continuum simulations

(CNT deformations)
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Multi-walled CNTs (MWCNTs)
electrical conduction in CNTs, 347–351

laboratory experiments simulations,
354–356

non-linear I-V response, 362
outer diameter effect, 356–359
under mechanical deformations,

336–339
outer diameter effect on conductance

under bending, 356–359
under stretching, 360–361

quasicontinuum simulations of CNT
deformations, 402–403

theoretical modeling on geometry
dependent mechanical properties,
301

See also Single-walled CNTs (SWCNTs)

N
Nanocomposites

bioinspired metallic nanocomposites
development, 518–519

See also Bioinspired materials;
Nanomaterials (bioinspired and
biomimetic); Nanostructures

Nanocrystalline metals
contact-induced plasticity modeling in, 151
grain boundaries (GBs), 153
See also Contact-induced plasticity;

Insulators; Nanoscale contact
(nanocrystalline films); Nanoscale
contact (nanocrystalline metals)

Nanocrystals under pressure
ideal gas pressure bath

algorithm, 74–76
MD algorithm, 77

simple shooting moves, 77–78
solid-solid transformation

nanocrystals in pressure bath, 74–78
wurtzite to rocksalt transformation,

78–81
wurtzite to rocksalt transformation in CdSe

nanocrystals, 78
main mechanism revelation by TPS, 81
straightforward MD simulations, 79–80

See also Transition path sampling (TPS)
Nanoindentation, 152–154

See also Contact-induced plasticity
Nanomaterials (bioinspired and biomimetic)

bioinspired metallic nanocomposites
development, 518–519

de novo design of, 515–518
nanostructure design effects under tensile

and shock loading, 519–521

outlook and opportunities, 521–522
See also Multiscale modeling (biological

protein materials)
Nano-scale computation, see Van der

Waal interaction (nano-scale
computation)

Nanoscale contact (nanocrystalline films)
atomistic modeling, 154

defects and grain boundaries
visualization aspects, 160–161

local stresses and mean contact
pressures calculations, 158–160

molecular dynamics simulations, 155
quasicontinuum (QC) method, 155–156
spherical/cylindrical contact, 156–158

defects and grain boundaries visualization
tools

centro-symmetry parameter, 160
local crystal structure by Ackland and

Jones, 161
Nanoscale contact (nanocrystalline metals)

grain boundary
motion mechanisms during contact

plasticity, 166–170
network effect on incipient plasticity

during nanoscale contact, 164–166
interatomic potentials effects on

equilibrium microstructures,
161–163
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continuum limits, 138
interfacial resistance, 136–137
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atomistic and multiscale simulations,
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hybrid multiscale methodology,
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configuration prediction)

structure
genetic algorithm (GA) for 1-D
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See also Silicon nanowires (SiNWs);
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modeling)
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See also Coarse-grained MD (CGMD)
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See also Multiscale modeling (biological

protein materials)
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chemical reaction with vacancy-defected
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See also Oxygen (O3)
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beam model, 576–577
entropic beam model, 577–578
spring model, 574–575
See also Affine theory
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direct method, 100–106
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size effects, 106–109
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See also Equilibrium MD
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123–126
See also Heat conduction (solids);
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Nonlinear stick-spiral model, 310
mechanical properties of SWCNT under

large strains, 311–314
See also Mechanical behavior

Nosé-Hoover thermostat
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See also Temperature control (thermostat)

O
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P
Parallel-tempering Monte Carlo (PTMC)
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nanostructures atomic configuration

prediction
future directions, 250
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and, 235–238
See also Genetic algorithm (GA)

Phonons
Bose-Einstein distribution, 92
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defined, 91
density of states, 92
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heat transport (quantum model)
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Einstein model, 94–5
Umklapp scattering, 93

mean free path, 92
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particles, 91
partition function, 92
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See also Contact-induced plasticity
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case study
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rigid body rotation), 50–53
See also Adaptive multiscale MD

Predictor-corrector algorithm
CNTs MD simulations, 262–263
scheme, 7–10
See also Learn on the fly (LOTF) scheme

Protein, see Multiscale modeling (biological
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Pt-doped SWCNTs, see under doped SWCNTs

Q
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Debye model, 93–94
Einstein model, 94–95

See also Heat conduction (solids)
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adaptive meshing scheme, 402
Bravais multilattice and inner displacement,
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green strain in CNT deformation, 414–415
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CNT, 403

SWCNT bending simulations, 404–406
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398–401
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explicit expressions for vibrating
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See also Stick-spiral model (CNT
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Reactive empirical bond-order (REBO)
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ReaxFF force field
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Registry-dependent interlayer potential, 324
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See also Van der Waal interaction
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Representative volume element (RVE),
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See also Bridging scales method
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mixed, 43

Resonant properties
FE eigenvalue problem for nanowire
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surface stress effects on SiNWs, 212–214

constant cross sectional area, 215–217
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43
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29–30

mixed resolution dynamics scheme, 43
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tensile failure with single-atom vacancy

defect, 384–386
theoretical modeling on geometry

dependent mechanical properties,
301–302
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574–575
See also Nonaffine models

Stadium damping, 118
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explicit expressions for vibrating
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308–310
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See also Mechanical behavior
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SWCNTs mechanical properties under

large strains (nonlinear stick-spiral
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single bond
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and minimization of energy, 398–401
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applications, 210
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for silicon (diamond cubic lattices

formulation), 206–208
surface stress effects on SiNWs resonant
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embedded atom method/FCC metals
formulation, 199–202

FE formulation and implementation
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resonant frequencies, 209–210
variational formulation, 208–209

on SiNWs elastic properties, 219–223
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applications, 210
direct SCB/ molecular statics

comparison, 210–212
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torsional behavior, 283–285

See also Mechanical behavior
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Berendsen thermostat, 90
CNTs MD simulations, 261–262
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fracture or plastic behavior, 266
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Tersoff-Brenner potential, 416
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Thermal transport, see Nanoscale thermal
transport

Thermostat, see Temperature control
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Tight-binding (TB) approach, 175
DM-TBTE, 184
TB application in thin silicon nanowires
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thin silicon nanowires morphology, 184
See also Nanowires

Tight-binding total energy (TBTE)
formulations, 178–180
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buckling instability, 282–283
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shear modulus and stiffness, 280–282
See also Mechanical behavior

Trajectory space, see under Transition path
sampling (TPS)

Transition path sampling (TPS), 61
Monte Carlo in trajectory space, 67
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of
ideal gas pressure bath, 74–77
simple shooting moves, 77–78
wurtzite to rocksalt transformation in

CdSe nanocrystals, 78–81
rare events in computer simulations and,

63–64
rate constants calculation, 71–74
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Two Temperature Method (TTM)
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multiscale models
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Umklapp scattering (U-process), 93

See also Phonons

V
Vacancy-defected fullerenes, 432–438
Vacancy-defected SWCNTs

(5,5) and (10,0) SWCNTs, 439–443
(5,5) SWCNT clip, 444–445

Van der Waal interaction (nano-scale
computation), 323

atomic-scale finite element method
(AFEM), 325–326

potentials comparison
on CNT deformation, 329–332
on lattice registry effect, 327–329

potentials for interaction
Lennard-Jones potential, 324
registry-dependent interlayer potential,

324
Variable node elements (VNE), see under

Quasi-continuum simulations (CNT
deformations)

Variational formulation

FE formulation and implementation
aspects, 208–209

See also Surface effects (multiscale
modeling)

Volume averaging, 579–581
See also Bridging scales method

W
Wurtzite to rocksalt transformation

in CdSe nanocrystals, 78
MD simulations, 79–80
TPS and transformation mechanism

revelation, 81
See also Nanocrystals under pressure

Y
Young’s modulus

CNTs tensile behavior, 265, 266
stick-spiral model for CNT mechanical

properties (linear stick-spiral
model), 306–308

surface stress effects on nanowires elastic
properties, 219–223

See also Carbon nanotubes (CNTs);
Mechanical behavior; Surface
effects (multiscale modeling)

Z
Zero-temperature model

heat conduction in solids and, 110, 114,
116–117, 119, 122

zero-temperature dynamics, 117, 122
See also Isothermal concurrent multiscale

models; Isothermal dynamic
multiscale models multiscale
models
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