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Abstract: This chapter surveys the QSAR modeling approaches (developed by the author’s research
group) for the validated prediction of environmental properties of organic pollutants.
Various chemometric methods, based on different theoretical molecular descriptors, have
been applied: explorative techniques (such as PCA for ranking, SOM for similarity
analysis), modeling approaches by multiple-linear regression (MLR, in particular OLS),
and classification methods (mainly k-NN, CART, CP-ANN). The focus of this review
is on the main topics of environmental chemistry and ecotoxicology, related to the
physico-chemical properties, the reactivity, and biological activity of chemicals of high
environmental concern. Thus, the review deals with atmospheric degradation reactions
of VOCs by tropospheric oxidants, persistence and long-range transport of POPs, sorp-
tion behavior of pesticides (Koc and leaching), bioconcentration, toxicity (acute aquatic
toxicity, mutagenicity of PAHs, estrogen binding activity for endocrine disruptors com-
pounds (EDCs)), and finally persistent bioaccumulative and toxic (PBT) behavior for
the screening and prioritization of organic pollutants. Common to all the proposed mod-
els is the attention paid to model validation for predictive ability (not only internal, but
also external for chemicals not participating in the model development) and checking of
the chemical domain of applicability. Adherence to such a policy, requested also by the
OECD principles, ensures the production of reliable predicted data, useful also in the new
European regulation of chemicals, REACH.

Keywords: QSAR, Chemometric methods, Theoretical molecular descriptors, MLR, Classification,
Environmental pollutants, Ranking

12.1. INTRODUCTION

The QSAR world has undergone profound changes since the pioneering work of
Corwin Hansch, considered the founder of modern QSAR modeling [1, 2]. The
main change is reflected in the growth of a parallel and quite different conceptual
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approach to the modeling of the relationships among a chemical’s structure and its
activity/properties.

In the Hansch approach, still applied widely and followed by many QSAR
modelers (for instance, [3–5]), molecular structure is represented by only a few
molecular descriptors (typically log Kow,1 Hammett constants, HOMO/LUMO,
some steric parameters) selected personally by the modeler and inserted in the
QSAR equation to model a studied endpoint. Alternatively, in a different approach
chemical structure is represented, in the first preliminary step, by a large num-
ber of theoretical molecular descriptors which are then, in a second step, selected
by different chemometric methods as the best correlated with the response and,
finally, included in the QSAR model (the algorithm), the fundamental aim being
the optimization of model performance for prediction.

According to the Hansch approach, descriptor selection is guided by the mod-
eler’s conviction to have a priori knowledge of the mechanism of the studied
activity/property. The modeler’s presumption is to assign mechanistic meaning to
any used molecular descriptor selected by the modeler from among a limited pool of
potential modeling variables. These descriptors are normally well known and used
repeatedly (for instance, log Kow is a universal parameter mimicking cell membrane
permeation, thus it is used in models for toxicity, but it is also related to various
partition coefficients such as bioconcentration/bioaccumulation, soil sorption coef-
ficient; HOMO/LUMO energies are often selected for modeling chemical reactivity,
etc.).

On the other hand, the “statistical” approach, an approach parallel to the previous
so-called “mechanistic” one, is based on the fundamental conviction that the QSAR
modeler should not influence, a priori and personally, the descriptor selection
through mechanistic assumptions. Instead they should apply unbiased mathemat-
ical tools to select, from a wide pool of input descriptors, those descriptors most
correlated to the studied response. The number and typology of the available input
descriptors must be as wide and different as possible in order to guarantee the possi-
bility of representing any aspect of the molecular structure. Different descriptors are
different ways or perspectives to view a molecule. Descriptor selection should be
performed by applying mathematical approaches to maximize, as an optimization
parameter, the predictive power of the QSAR model, as the real utility of any model
considered is its predictivity.

The first aim of any modeler should be the validation for predictive purposes
of the QSAR model, for both the mechanistic and statistical approaches; in fact, a
QSAR model must, first of all, be a real model, robust and predictive, to be consid-
ered a reliable model; only a stable and predictive model can be usefully interpreted
for its mechanistic meaning, even so this is not always easy or feasible [6]. However,
this is a second step in the statistical QSAR modeling.

1 The symbol refers to the same property as log P (namely to the n-octanol/water partition coefficient).
However, in many environmental studies this partition coefficient is abbreviated by “log Kow” to be
consistent with the other environmentally relevant coefficients, e.g., n-octanol/air partition coefficient
(Koa), air/water partition coefficient (Kaw).
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QSAR model validation has been recognized by specific OECD expert groups
as a crucial and urgent requirement in recent years, and this has led to the
development, for regulatory purposes, of the “OECD principles for the val-
idation of (Q)SAR models” (http://www.oecd.org/document/23/0,3343,fr_2649_
34365_33957015_1_1_1_1,00.html).

The need for this important action was mainly due to the recent new
chemicals policy of the European Commission (REACH: Registration, Eval-
uation, Authorization and restriction of Chemicals) (http://europa.eu.int/comm/
environment/chemicals/reach.htm) that explicitly states the need to use (Q)SAR
models to reduce experimental testing (including animal testing). Obviously, to meet
the requirements of the REACH legislation (see also Chapter 13) it is essential to
use (Q)SAR models that produce reliable estimates, i.e., validated (Q)SAR mod-
els. Thus, reliable QSAR model must be associated with the following information:
(1) a defined endpoint; (2) an unambiguous algorithm; (3) a defined domain of appli-
cability; (4) appropriate measures of goodness-of-fit, robustness and predictivity;
(5) a mechanistic interpretation, if possible.

Some crucial points of the statistical approach of QSAR modeling, applied by
the author’s group, are put into context, according to the guidelines of the OECD
principles, which are the chemometric approach steps.

12.2. A DEFINED ENDPOINT (OECD PRINCIPLE 1)

The most common regulatory endpoints, associated with OECD test guidelines, are
related to (a) physico-chemical properties (such as melting and boiling points, vapor
pressure, Kow, Koc, water solubility); (b) environmental fate (such as biodegrada-
tion, hydrolysis, atmospheric oxidation, bioaccumulation); (c) human health (acute
oral, acute inhalation, acute dermal, skin irritation, eye irritation, skin sensitiza-
tion, genotoxicity, reproductive and developmental toxicity, carcinogenicity, specific
organ toxicity (e.g., hepatotoxicity, cardiotoxicity)); and (d) ecological effects (acute
fish, acute daphnid, alga, long-term aquatic, and terrestrial toxicity) of chemicals.

The various experimental endpoints that have been modelled by the QSAR
Research Unit of Insubria University are described in the following sections, after
the discussion on the main methodological topics. A distinction will be made
between single endpoints and cumulative endpoints, which take into account a
contemporaneous contribution of different properties or activities.

12.3. AN UNAMBIGUOUS ALGORITHM (OECD PRINCIPLE 2)

The algorithms used in (Q)SAR modeling should be described thoroughly so that
the user will understand exactly how the estimated value was produced and can
reproduce exactly the calculations also for new chemicals, if desired.

When the studied endpoint needs to be modelled using more than one descriptor
(selected by different approaches) multivariate techniques are applied. As there can
be multiple steps in estimating the endpoint of a chemical, it is important that the
nature of the used algorithms be unambiguous, as required by OECD Principle 2.
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12.3.1. Chemometric Methods

12.3.1.1. Regression Models

Regression analysis is the use of statistical methods for modeling a dependent vari-
able Y, a quantitative measures of response (e.g., boiling point, LD50), in terms of
predictors X (independent variables or molecular descriptors).

There are many different multivariate methods for regression analysis, more
or less widely applied in QSAR studies: multiple linear regression (MLR), prin-
cipal component regression (PCR), partial least squares (PLS), artificial neural
networks (ANNs), fuzzy clustering and regression are among more commonly used
approaches for regression modeling.

Although all QSAR models (linear and not linear) are based on algorithms, the
most common regression method, which describes models by completely transpar-
ent and easily reproducible mathematical equations, is multiple linear regression
(MLR), in particular ordinary least squares (OLS) method. This method has been
applied by the author in her QSAR studies; to cite some most recent papers, see
[7–28] and Chapter 6. Some of these models are commented on in the following
paragraphs.

The correlation of the variables in the modeling must be controlled carefully
(for instance, by applying the QUIK rule [29]) and the problem of possible over-
fitting [30], common also to other modeling methods, must also be checked by
statistical validation methods to verify robustness and predictivity. The selection
of descriptors in MLR can be performed either a priori by the model developer on a
mechanistic basis or by evolutionary techniques such as genetic algorithms. In this
second approach, the model’s developer should try to interpret mechanistically the
descriptors selected, but only after model development and statistical validation for
predictivity.

12.3.1.2. Classification Models

Another common problem in QSAR analysis is prediction of the group membership
from molecular descriptors. In the simplest case, chemicals are categorized into one,
two, or more groups depending on their activity, indicated by the same value of a
categorical variable: active/inactive or, for instance, toxic/non-toxic.

Classification models are quantitative models based on relationships between
independent variables X (in this case molecular descriptors) and a categorical
response variable of integer numerical values, each representing the class of the
corresponding sample.

The term “quantitative” is referred to the numerical value of the variables neces-
sary to classify the chemicals in the qualitative classes (a categorical response) and
it specifies the quantitative meaning of a QSAR-based classification process.

Such classification, also called supervised pattern recognition, is the assignment,
on the basis of a classification rule, of chemicals to one of the classes defined a priori
(or of groups of chemicals in the training set). Thus, the goal of a classification
method is to develop a classification rule (by selecting the predictor variables) based
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on a training set of chemicals of known classes so that the rule can be applied to a
test set of compounds of unknown classes. A wide range of classification methods
exists, including discriminant analysis (DA; linear quadratic, and regularized DA),
soft independent modeling of class analogy (SIMCA), k-nearest neighbors (k-NN),
classification and regression tree (CART), artificial neural network, support vector
machine, etc.

The QSAR Research Unit of Insubria University has developed some satisfac-
tory, validated, and usable classification models (for instance, among the more
recent [16, 31–35]) by applying different classification methods, mainly classifi-
cation and regression tree (CART) [36, 37], k-nearest neighbor (k-NN) [38], and
artificial neural networks (in particular, Kohonen maps or self-organizing maps
(SOM) [39–41]).

CART is a non-parametric unbiased classification strategy to classify chemi-
cals with automatic stepwise variable selection. As the final output, CART displays
a binary, immediately applicable, classification tree; each non-terminal node cor-
responds to a discriminant variable (with the threshold value of that molecular
descriptor) and each terminal node corresponds to a single class. To classify a chem-
ical, at each binary node, the tree branch, matching the values of the chemical on
the corresponding splitting descriptor, must be followed.

The k-NN method is a non-parametric unbiased classification method that
searches for the k-nearest neighbors of each chemical in a data set. The compound
under study is classified by considering the majority of classes to which the kth near-
est chemicals belong. k-NN is applied to autoscaled data with a priori probability
proportional to the size of the classes; the predictive power of the model is checked
for k nearest neighbors between 1 and 10.

Counter-propagation artificial neural networks (CP-ANNs), particularly
Kohonen maps, are supervised classification methods. Input variables (molecular
descriptors) calculated for the studied chemicals provide the input for the net or
the Kohonen layer. The architecture of the net is constituted by N × N × p, where
p is the number of input variables and each p-dimensional vector is a neuron (N).
Thus, the neurons are vectors of weights, corresponding to the input variables.
During the learning, n chemicals are presented to the net – one at a time – a
fixed number of times (epochs); each chemical is then assigned to the cell for
which the distance between the chemical vector and the neuron is minimum. The
target values (i.e., the classes to be modelled) are given to the output layer (the
top-map: a two-dimensional plane of response), which has the same topological
arrangement of neurons as the Kohonen layer. The position of the chemicals is
projected to the output layer and the weights are corrected in such a way that they
fit the output values (classes) of corresponding chemicals. The Kohonen-ANN
automatically adapts itself in such a way that similar input objects are associated
with topologically close neurons in the top-map. The chemical similarity decreases
with increasing of the topological distance.

The trained network can be used for predictions; a new object in the Kohonen
layer will lie on the neuron with the most similar weights. This position is then
projected to the top-map, which provides a predicted output value. It is important
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to remember that the Kohonen top-map has toroid geometry; each neuron has the
same number of neighbors, including the neurons on the borders of the top-map.

According to the OECD principles, for a QSAR model to be acceptable for use
to make regulatory decisions it must be clearly defined, easily and continuously
applicable in such a way that the calculations for the prediction of the endpoint
can be reproduced by everyone, and applicable to new chemicals. The unambigu-
ous algorithm is characterized not only by the mathematical method of calculation
used, but also by the specific molecular descriptors required in the model math-
ematical equation. Thus, the exact procedure used to calculate the descriptors,
including compound pre-treatment (e.g., energy minimization, partial charge calcu-
lation), the software employed, and the variable selection method for QSAR model
development should be considered integrative parts of the overall definition of an
unambiguous algorithm.

12.3.2. Theoretical Molecular Descriptors

It has become quite common to use a wide set of molecular descriptors of differ-
ent kinds (experimental and/or theoretical) that are able to capture all the structural
aspects of a chemical to translate the molecular structure into numbers. The vari-
ous descriptors are different ways or perspectives to view a molecule, taking into
account the various features of its chemical structure, not only one-dimensional
(e.g., the simple counts of atoms and groups), but also two-dimensional from
a topological graph or three-dimensional from a minimum energy conformation.
Livingstone has published a survey of these approaches [42]. Much of the software
calculates broad sets of different theoretical descriptors, from SMILES, 2D-graphs
to 3D-x,y,z-coordinates. Some of the frequently used descriptor calculation soft-
ware includes ADAPT [43], OASIS [44], CODESSA [45], DRAGON [46], and
MolConnZ [47]. It has been estimated that more than 3000 molecular descriptors
are now available, and most of them have been summarized and explained [48–
50]. The great advantage of theoretical descriptors is that they can be calculated
homogeneously by a defined software for all chemicals, even those not yet syn-
thesized, the only need being a hypothesized chemical structure. This peculiarity
explains their wide and successful use in QSAR modeling. The DRAGON software
has always been used in models developed by the author’s group. In the version
more frequently used by the author (5.4), 1664 molecular descriptors of the follow-
ing different typologies were calculated: (a) 0D-48 constitutional (atom and group
counts); (b) 1D-14 charge descriptors; (c) 1D-29 molecular properties; (d) 2D-119
topological; (e) 2D-47 walk and path counts, (f) 2D-33 connectivity index; (g) 2D-
47 information index; (h) 2D-96 various auto-correlations from the molecular graph;
(i) 2D-107 edge adjacency indices; (j) 2D-64 descriptors of Burden (BCUTs eigen-
values); (k) 2D-21 topological charge indices; (l) 2D-44 eigenvalue-based indices;
(m) 3D-41 Randic molecular profiles; (n) 3D-74 geometrical descriptors; (o) 3D-
150 radial distribution function; (p) 3D-160 Morse; (q) 3D-99 weighted holistic
invariant molecular descriptors (WHIMs) [51–53]; (r) 3D-197 geometry, topology
and atom-weights assembly (GETAWAY) descriptors [54, 55]; (s) 154 functional
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groups; (t) 120 atom-centered fragments. The list and meaning of the molecular
descriptors are provided by the DRAGON package and the calculation procedure is
explained in detail, with related literature references, in the Handbook of Molecular
Descriptors from Todeschini and Consonni [50] and in Chapter 3. The DRAGON
software is continuously implemented with new descriptors.

12.3.3. Variable Selection and Reduction. The Genetic Algorithm Strategy
for Variable Selection

The existence of a huge number of different molecular descriptors, experimental
or theoretical, to describe chemical structure is a great resource as it allows QSAR
modelers (particularly those working with the statistical approach) to have different
X-variables available that take into account each structural feature in various ways.
In principle, all the different possible combinations of the X-variables should be
investigated to find the most predictive QSAR model. However, this can be quite
taxing, mainly for reasons of time.

Sometimes molecular descriptors, which are only different views of the same
molecular aspect, are highly correlated. Thus, when dealing with a large number
of highly correlated descriptors, variable selection is necessary to find a simple and
predictive QSAR model, which must be based on the minimum number of descrip-
tors, and the least correlated, as possible. First, objective selection is applied using
only independent variables (X): descriptors to discard are identified by tests of iden-
tical values and pairwise correlations, looking for descriptors less correlated to one
another.

Secondly, modeling variable selection methods, which additionally use depen-
dent variable values (Y), are applied to this pre-reduced set of descriptors to further
reduce it to the true modeling set, not only in fitting but, most importantly, in
prediction. Such selection is performed by alternative variable selection methods.

Several strategies for variable subset selection have been applied in QSAR (step-
wise regressions, forward selection, backward elimination, simulated annealing,
evolutionary and genetic algorithms, among those most widely applied). A com-
parison of these methods [56] has demonstrated the advantages, and the success, of
genetic algorithms (GAs) as a variable selection procedure for QSAR studies.

GAs are a particular kind of evolutionary algorithms (EAs), shown to be able
to solve complex optimization problems in a number of fields, including chemistry
[57–59]. The natural principles of the evolution of species in the biological world
are applied, i.e., the assumption that conditions leading to better results will pre-
vail over poorer ones, and that improvement can be obtained by different kinds of
recombination of independent variables, i.e., reproduction, mutation, and crossover.
The goodness-of-fit of the selected solution is measured by a function that has to be
optimized.

Genetic algorithms, first proposed as a strategy for variable subset selection
in multivariate analysis by Leardi et al. [60] and applied to QSAR modeling by
Rogers and Hopfinger [61], are a very effective tool with many merits compared to
other methods. GAs are now widely and successfully applied in QSAR approaches,
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where there is quite a number of molecular descriptors, in various modified ver-
sions, depending on the way of performing reproduction, crossover, mutation, etc.
[62–66].

In variable selection for QSAR studies, a bit equal to 1 denotes a variable
(molecular descriptor) present in the regression model or equal to 0 if excluded.
A population, constituted by a number of 0/1 bit strings (each of length equal to
the total number of variables in the model), is evolved following genetic algorithm
rules, maximizing the predictive power of the models (verified by the explained vari-
ance in prediction, Q2

cv or by the root mean squared error of prediction, RMSEcv).
Only models producing the highest predictive power are finally retained and further
analyzed with additional validation techniques.

Whereas EAs search for the global optimum and end up with only one or very few
results [64, 65, 67], GAs simultaneously create many different results of comparable
quality in larger populations of models with more or less the same predictive power.
Within a given population the selected models can differ in the number and kind
of variables. Similar descriptors, which are able to capture some specific aspects of
chemical structure, can be selected by GA in alternative combinations for model-
ing the response. Thus, similarly performing models can be considered as different
perspectives to arrive at essentially the same conclusion. Owing to this, the GA-
based approach has no single “best” set of descriptors related to the Y-dependent
variable; there is a population of good models of similar performance that could
be also combined in consensus modeling approaches [18, 19] to obtain averaged
predictions.

Different rules can be adopted to select the final preferred “best” models. In the
author’s researches the QUIK (Q under influence of K) rule [29] is always applied
as the first filter to avoid multi-collinearity in model descriptors without predic-
tion power or with “apparent” prediction power (chance correlation). According
to this rule, only models with a K multivariate correlation calculated on the X+Y
block, at least 5% greater than the K correlation of the X-block, are considered
statistically significant and checked for predictivity (both internally by different
cross-validations and externally on chemicals which do not participate in model
development).

Another important parameter that must be considered is the root mean squared
error (RMSE) that summarizes the overall error of the model; it is calculated as
the root square of the sum of squared errors in calculation (RMSE) or predic-
tion (RMSEcv and RMSEp) divided by their total number. The best model has the
smallest RMSE and very similar RMSE values for training and external prediction
chemicals, highlighting the model’s generalizability [68].

12.4. APPLICABILITY DOMAIN (OECD PRINCIPLE 3)

The third OECD Principle takes into consideration another crucial problem: the
definition of the applicability domain (AD) of a QSAR model. Even a robust, signif-
icant, and validated QSAR model cannot be expected to reliably predict the property
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modelled for the entire universe of chemicals. In fact, only predictions for chemi-
cals falling within the domain of the developed model can be considered reliable
and not model extrapolations. This topic was dealt with at a recent workshop where
several different approaches for linear and non-linear models were proposed [69],
in relation to different model types.

The AD is a theoretical spatial region defined by the model descriptors and
the response modelled, and is thus defined by the nature of the chemicals in
the training set, represented in each model by specific molecular descriptors. To
clarify recent doubts [70], it is important to note that each QSAR model has
its own specific AD based on the training set chemicals, not just on the kind
of included chemicals but also on the values of the specific descriptors used
in the model itself; such descriptors are dependent on the type of the training
chemicals.

As was explained above, a population of MLR models of similar good qual-
ity, developed by variable selection performed with a genetic algorithm [66] can
include a 100 different models developed on the same training set but based on
different descriptors: even if developed on the same chemicals, the AD for new
chemicals can differ from model to model, depending on the specific descriptors.
Through the leverage approach [71] (shown below) it is possible to verify whether
a new chemical will lie within the model domain (in this case predicted data can be
considered as interpolated and with reduced uncertainty, at least similar to that of
training chemicals, thus more reliable) or outside the domain (thus, predicted data
are extrapolated by the model and must be considered of increased uncertainty, thus
less reliable). If it is outside the model domain a warning must be given. Leverage is
used as a quantitative measure of the model applicability domain and is suitable for
evaluating the degree of extrapolation, which represents a sort of compound “dis-
tance” from the model experimental space (the structural centroid of the training
set). It is a measure of the influence a particular chemical’s structure has on the
model: chemicals close to the centroid are less influential in model building than
extreme points. A compound with high leverage in a QSAR model would reinforce
the model if the compound is in the training set, but such a compound in the test set
could have unreliable predicted data, the result of substantial extrapolation of the
model.

The prediction should be considered unreliable for compounds in the test set with
high-leverage values (h>h∗, the critical value being h∗=3p′/n, where p′ is the num-
ber of model variables plus one and n is the number of the objects used to calculate
the model). When the leverage value of a compound is lower than the critical value,
the probability of accordance between predicted and actual values is as high as that
for the training set chemicals. Conversely, a high-leverage chemical is structurally
distant from the training chemicals, thus it can be considered outside the AD of
the model. To visualize the AD of a QSAR model, the plot of standardized cross-
validated residuals (R) vs. leverage (Hat diagonal) values (h) (the Williams plot)
can be used for an immediate and simple graphical detection of both the response
outliers (i.e., compounds with cross-validated standardized residuals greater than
three standard deviation units, >3σ) and structurally influential chemicals in a model
(h>h∗).
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Figure 12-1. Williams plot for an externally validated model for the toxicity to Pimephales promelas of
polar narcotics. Cut-off value: 2.5 h∗ (with copyright permission from [26])

It is important to note that the AD of a model cannot be verified by studying only
a few chemicals, as in such cases [72] it is impossible to obtain conclusions that can
be generalized on the applicability of the model itself.

Figure 12-1 shows the Williams plot of a model for compounds that act as polar
narcotics to Pimephales promelas [26]; as an example, here the toxicity of chemi-
cal no. 347 is incorrectly predicted (>3σ) and it is also a test chemical completely
outside the AD of the model, as defined by the Hat vertical line (high h leverage
value), thus it is both a response outlier and a high-leverage chemical. Two other
chemicals (squares at 0.35 h) slightly exceed the critical hat value (vertical line) but
are close to three chemicals of the training set (rhombus), slightly influential in the
model development: the predictions for these test chemicals can be considered as
reliable as those of the training chemicals. The toxicity of chemical no. 283 is incor-
rectly predicted (>3σ), but in this case it belongs to the model AD, being within the
cut-off value of Hat. This erroneous prediction could probably be attributed to error
or variability in the experimental data rather than to molecular structure or model.

12.5. MODEL VALIDATION FOR PREDICTIVITY (OECD
PRINCIPLE 4)

Model validation must always be used to avoid the possibility of “overfitted” mod-
els, i.e., models where too many variables, useful only for fitting the training data,
have been selected, and to avoid the selection of variables randomly correlated (by
chance) with the dependent response. Particular care must be taken against overfit-
ting [30], thus subsets with the fewest variables are favored, as the chance of finding
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“apparently acceptable” models increases with increasing X-variables. The propor-
tion of random variables selected by chance correlation could also increase [73].
The ratio of chemicals to variables should always be higher than five for a small
data set, but the number of descriptors must be the lowest as possible for bigger data
sets too (according to the Ockham’s Razor: “avoid complexity if not necessary”).

Therefore, a set of models of similar performance, verified by leave-one-out
model validation, need to be further validated by leave-more-out cross-validation
or bootstrap [74, 75]. This is done to avoid overestimation of the model’s predictive
power by Q2

LOO [76, 77] and to verify the stability of model predictivity (robustness).
Response permutation testing (Y scrambling) [6] or other resampling techniques
are also applied for excluding that the developed model is based on descriptors that
could be related to the response only by chance. Finally, for the most stringent eval-
uation of model applicability for prediction of new chemicals, external validation
(verified by Q2

EXT or R2
EXT) of all models is recommended as the last step after

model development, and for the assessment of true predictive ability [6, 10, 78].
The preferred model will be that with the highest prediction parameter values

and the most balanced results between the cross-validation parameters on the train-
ing chemicals (Q2

cv, Q2
LMO, Q2

BOOT), verified during descriptor selection, and the
predictive power (Q2

EXT or R2
EXT), verified later on the external prediction chemicals.

The limiting problem for efficient external validation of a QSAR model is, obvi-
ously, data availability. Given the availability of a sufficiently large number (never
less than five or 20% of training set) of really new and reliable experimental data,
the best proof of an already developed model accuracy is to test model performance
on these additional data, at the same time checking the chemical AD. However, it
is usually difficult to have data available for new experimentally tested compounds
(in useful quantity and quality) for external validation purposes, thus, in the absence
of additional data, external validation by a priori splitting the available data can be
usefully applied to define the actual predictive power of the model more precisely.

12.5.1. Splitting of the Data Set for the Construction of an External
Prediction Set

In the absence of new additional data, we assume that there is less data than is
actually available; this is the reason for splitting the data in a reasonable way (com-
mented on below) into a training set and a prediction set of “momentarily forgotten
chemicals.”

Thus, before model development, the available input data set can be split ade-
quately by different procedures into the training set (for model development) and
the prediction set (never used for variable selection and model development, but
used exclusively once for model predictive assessment, performed only after model
development). At this point the underlying goal is to ensure that both the training
and prediction sets separately span the whole descriptor space occupied by the entire
data set, and that the chemical domain in the two data sets is not too dissimilar [77,
79–81] as it is impossible for a model to be applied outside its chemical domain
and obtain reliable predictions. The composition of the training and prediction sets
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is of crucial importance. The best splitting must guarantee that the training and pre-
diction sets are scattered over the whole area occupied by representative points in
the descriptor space (representativity), and that the training set is distributed over an
area occupied by representative points for the whole data set (diversity). The more
widely applied splitting methodologies are based on structural similarity analysis
(for instance, Kennard Stone, duplex, D-optimal distance [11–13, 17, 18, 20, 21,
81, 82], self-organizing map (SOM) or Kohonen-map ANN [17, 18, 20, 21, 26, 27,
35, 39, 41, 80]. Alternatively, to split the available data without any bias for struc-
ture, random selection through activity sampling can be applied. Random splitting is
highly useful if applied iteratively in splitting for CV internal validation and can be
considered quite similar to real-life situations, but it can give very variable results
when applied in this external validation, depending greatly on set dimension and
representativity [80, 83, 84]. In addition, in this last case there is a greater proba-
bility of selecting chemicals outside the model structural AD in the prediction set;
thus, the predictions for these chemicals could be unreliable, simply as they are
extrapolated by the model.

12.5.2. Internal and External Validation

External validation should be applied to any proposed QSAR model to determine
both its generalizability for new chemicals that, obviously, must belong to the model
AD and the “realistic” predictive power of the model [6, 83–85]. The model must be
tested on a sufficiently large number of chemicals not used during its development,
at least 20% of the complete data set is recommended, but the most stable models
(of easily modelled endpoints) can also be checked on a prediction set larger than
the training set [19, 85]; this will avoid “supposed” external validation based on too
few chemicals [72]. In fact, it has been demonstrated that if the test set consists only
of a small number of compounds, there is increased possibility of chance correlation
between the predicted and observed response of the compounds [79].

It is not unusual for models with high internal predictivity, verified by inter-
nal validation methods (LOO, LMO, Bootstrap), but externally less predictive or
even absolutely unpredictive, to be present in populations of models developed
using evolutionary techniques to select the descriptors. The statistical approach to
QSAR modeling always carefully checks this possibility by externally validating
any model, stable in cross-validation, before its proposal. In fact, cross-validation
is necessary but is not a sufficient validation approach for really predictive models
[6, 77–79]. In relation to this crucial point of QSAR model validation, there is a
wide debate and discordant opinions in the QSAR community concerning the dif-
ferent outcomes of internal and external validation on QSAR models. A mini-review
dealing with this problem has been recently published by the author [84], where an
examination is made of the OECD Principles 2, 3, and 4, and particular attention
has been paid to the differences in internal and external validation. The theoretical
constructs are illustrated with examples taken from both the literature and personal
experience, derived also from a recent report for the European Centre for Validation
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of Alternative Methods (ECVAM) on “Evaluation of different statistical approaches
to the validation of Quantitative Structure–Activity Relationships” [83].

Since GAs simultaneously create many different, similarly acceptable models
in a population, the user can choose the “best model” according to need: the
possibility of having reliable predictions for some chemicals rather than others,
the interpretability of the selected molecular descriptors, the presence of different
outliers, etc.

In the statistical approach the best model is selected by maximizing all the CV
internal validation parameters, by applying CV in the proper way and step. Then,
only the good models (Q2

LOO>0.7), stable and internal predictive (with similar
values of all the different CV-Q2), are subjected to external validation on the
a priori split prediction set.

In our works we always select, from among the best externally predictive mod-
els, those with the smallest number of response outliers and structurally influential
chemicals, especially those in the prediction set.

12.5.3. Validation of Classification Models

To assess the predictive ability of classification models, the percentage of misclas-
sified chemicals, as error rate (ER%) and error rate in prediction (ERcv%), are
calculated by the leave-one-out method (where each chemical is taken out of the
training set once and predicted by the model). Comparison with the no-model error
rate (NoMER) is used to evaluate model performance. NoMER represents the object
distribution in the defined classes before applying any classification method, and
is calculated as an error rate by considering all the objects as misclassified into
the greatest class. This provides a reference classification parameter to evaluate the
actual efficiency of a classifier: the greater the difference between NoMER and the
actual ER, the better the model performance.

The outputs of a classification model are the class assignments and the misclas-
sification matrix, which shows how well the classes are separated. The goodness
of the classification models is also assessed by the following parameters: accuracy
or concordance (the proportion of correctly classified chemicals), sensitivity (the
proportion of active chemicals predicted to be active), specificity (the proportion
of non-active chemicals predicted to be non-active), false negatives (the proportion
of active chemicals falsely predicted as non-active) and false positives (the propor-
tion of non-active chemicals falsely predicted as active). Depending on the intended
application of the predictive tool, the classification model can be optimized in either
direction. In drug design the objective is to obtain a high specificity as a false pos-
itive prediction could result in the loss of a valuable candidate. In the regulatory
environment, for safety assessment and consumer protection, the precautionary prin-
ciple must be applied, so an optimization of sensitivity would be desirable, as every
false negative compound could result in a lack of protection and consequently pose
a risk for the user.
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12.6. MOLECULAR DESCRIPTOR INTERPRETATION, IF POSSIBLE
(OECD PRINCIPLE 5)

Regarding the interpretability of the descriptors it is important to take into account
that the response modelled is frequently the result of a series of complex biological
or physico-chemical mechanisms, thus it is very difficult and reductionist to ascribe
too much importance to the mechanistic meaning of the molecular descriptors used
in a QSAR model. Moreover, it must also be highlighted that in multivariate mod-
els such as MLR models, even though the interpretation of the singular molecular
descriptor can certainly be useful, it is only the combination of the selected set of
descriptors that is able to model the studied endpoint. If the main aim of QSAR mod-
eling is to fill the gaps in available data, the modeler’s attention should be focused
on model quality. In relation to this point, Livingstone, in an interesting perspective
paper [42] states: “The need for interpretability depends on the application, since a
validated mathematical model relating a target property to chemical features may, in
some cases, be all that is necessary, though it is obviously desirable to attempt some
explanation of the ‘mechanism’ in chemical terms, but it is often not necessary,
per se.” Zefirov and Palyulin [78] took the same position, differentiating predic-
tive QSARs, where attention essentially concerns the best prediction quality, from
descriptive QSARs where the major attention is paid to descriptor interpretability.

The author’s approach to QSAR modeling will be illustrated in the following
sections of this chapter through the modeling of environmental endpoints. The
approach starts with a statistical validation for predictivity and continues on through
further interpretation for the mechanistic meaning of the selected descriptors, but
only if possible, as set down by the fifth OECD principle [6]. Therefore, the appli-
cation domain of this approach (the “statistical approach”) is mainly related to the
production of predicted data (predictive QSAR), strongly verified for their reliabil-
ity; such data can be more usefully applied to screen and rank chemicals providing
priority lists.

12.7. ENVIRONMENTAL SINGLE ENDPOINTS

12.7.1. Physico-chemical Properties

Organic chemicals now need to be characterized by many parameters, either because
of the registration policy required to chemical industries (see for example, the new
European REACH policy) or for an understanding of the environmental behavior
of chemicals present as pollutants in various compartments. Unfortunately there
is an enormous lack of knowledge for many important endpoints, such as vari-
ous physico-chemical properties (for instance, melting point, boiling point, aqueous
solubility, volatility, hydrophobicity, various partition coefficients), environmental
reactivity and derived persistence, toxicity, mutagenicity. This lack of knowledge
calls for a predictive approach to the assessment of chemicals, such as by QSAR
modeling.
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A set of various physico-chemical properties for important classes of chemicals
present in the environment, pollutant compounds such as PAHs [86] haloaromat-
ics [87], PCBs [88], chemicals of EEC Priority List 1 [89] have been modelled
using the weighted holistic invariant molecular (WHIM) descriptors [51–53, 90, 91].
WHIM descriptors are theoretical three-dimensional molecular indices that contain
information, in terms of size, shape, symmetry, and atom distribution, on the whole
molecular structure. These indices are calculated from the (x, y, z) coordinates of a
molecule within different weighting schemes by principal component analysis and
represent a very general approach to describe molecules in a unitary conceptual
framework, independent from the molecular alignment. Their meaning is defined
by the same mathematical properties of the algorithm used for their calculation, and
their application in QSAR modeling was very successful. A recent paper [92] again
highlighted that, contrary to erroneous statements in the literature [93, 94], one set
of WHIM descriptors, the k descriptors, are very useful in discriminating the shape
of chemicals and can thus be used to study structural similarity.

Since then other physico-chemical properties have been modelled success-
fully by combining different kinds of theoretical molecular descriptors (mono-
dimensional, bi-dimensional, and three-dimensional) calculated by the DRAGON
software [46]: the basic physico-chemical properties of organic solvents [95], esters
[15] and brominated flame retardants, mainly polybromodiphenyl ethers (PBDE)
[24], the soil sorption coefficient (Koc) for pesticides [19, 96] (discussed below in
Section 12.7.1.1).

A general classification of 152 organic solvents has been proposed [95] by
applying the k-nearest neighbor method and counter propagation artificial neu-
ral networks (CP-ANN), in particular Kohonen-maps. A good separation for five
classes was obtained by the net architecture (20×20×4, 200 iterations), based on
simple molecular descriptors (unsaturation index – UI, hydrophilicity factor – Hy,
average atomic composition – AAC, and the number of nitrogen atoms in the molec-
ular structure – nN). The performances were very satisfactory: ER (%)=4.4 and
ERcv (%)=11.4 (to be compared with the error rate without the model NoMER
(%)=69.5.)

12.7.1.1. Soil Sorption of Pesticides

Sorption processes play a major role in determining the environmental fate, distri-
bution, and persistence of chemicals. An important parameter when studying soil
mobility and environmental distribution of chemicals is the soil sorption coeffi-
cient, expressed as the ratio between chemical concentration in soil and in water,
normalized to organic carbon (Koc).

Many QSAR papers on soil sorption coefficient prediction have been published
and reviewed by some authors [85, 96–104].

The proposed models were mainly based on the correlation with octanol/water
partition coefficients (Kow) and water solubility (Sw), others on theoretical molec-
ular structure descriptors. A recent paper by the author dealt with log Koc of a
heterogeneous set of 643 organic non-ionic compounds [19]; the response range
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Figure 12-2. Plot of experimental vs. predicted log Koc for the Eq. (12-1). The values for the training
and prediction set chemicals are labeled differently, the outliers are numbered. The dotted lines indicate
the 3σ interval (with copyright permission from [19])

was more than six log units, and prediction was made by a statistically validated
QSAR modeling approach based on MLR and theoretical molecular descriptors,
selected by GA from DRAGON (see Eq. 12-1). The high generalizability of one of
the proposed models (scatter plot in Figure 12-2) was verified on external chemi-
cals, performed by adequately splitting, by SOM and also randomly, the available
set of experimental data into a very reduced representative training set (even less
than 15% of the original data set) for model development and a large prediction set
(more than 85% of the original data) used only for model performance inspection.

log Koc = −2.19(± 0.30) + 2.10(± 0.14)VED1 − 0.34(± 0.04)nHAcc − 0.31
(± 0.05)MAXDP − 0.33(± 0.12)CIC0

n(training) = 93 R2 = 0.82 Q2
cv = 0.80 Q2

BOOT = 0.79 RMSE
= 0.523 RMSEpLOO = 0.523

n(prediction set) = 550 Q2
EXT = 0.78 RMSEpEXT = 0.560 (12-1)

The proposed models have good stability, robustness, and predictivity when ver-
ified by internal validation (cross-validation by LOO and Bootstrap) and also by
external validation on a much greater data set. The stability of RMSE/RMSEp
for both the training and prediction sets is further proof of model predictivity.
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The chemical applicability domain is verified by the Williams graph: nine out-
liers for response and three structurally influential chemicals have been highlighted
(numbered in Figure 12-2).

The selected molecular descriptors have a clear mechanistic meaning; they are
related to both the molecular size of the chemical and its electronic features relevant
to soil partitioning, as well as to the chemical’s ability to form hydrogen bonds
with water. A combination of different models from the GA-model population also
allowed the proposal of predictions obtained by the better consensus model that,
compared with published models and EPISuite predictions [105], are always among
the best. The proposed models fulfill the fundamental points set down by OECD
principles for the regulatory acceptability of a QSAR and could be reliably used as
scientifically valid models in the REACH program.

The application of a single and general QSAR model, based on theoretical molec-
ular descriptors for a large set of heterogeneous compounds, could be very useful
for the screening of big data sets and for designing new chemicals, environmentally
friendly as safer alternatives to dangerous chemicals.

12.7.2. Tropospheric Reactivity of Volatile Organic Compounds
with Oxidants

The troposphere is the principal recipient of volatile organic compounds (VOCs)
of both anthropogenic and biogenic origin. An indirect measure of the persistence
of organic compounds in the atmosphere, and therefore a necessary parameter in
environmental exposure assessment, is the rate at which these compounds react. The
tropospheric lifetime of most organic chemicals, deriving from terrestrial emissions,
is controlled by their degradation reaction with the OH radical and ozone during the
daytime and NO3 radicals at night.

In recent years, several QSAR/QSPR models predicting oxidation rate constants
with tropospheric oxidants have been published and the different approaches to
molecular description and the adopted methodology have been compared [13, 14,
18, 23, 106–117].

The most used method, implemented in AOPWIN of EPISUITE [118] for
estimating tropospheric degradation by hydroxyl radicals is Atkinson’s fragment
contribution method [107]. New general MLR models of the OH radical reaction
rate for a wide and heterogeneous data set of 460 volatile organic compounds
(VOCs) were developed by the author’s group [18]. The special feature of these
models, in comparison to others, is the selection of theoretical molecular descriptors
by a genetic algorithm as a variable subset selection procedure, their applicability
to heterogeneous chemicals, and their validation for predictive purposes by both
internal and external validation. External validation was performed by splitting the
original data set by two different methods: the statistical experimental design pro-
cedure (D-optimal distance) and the Kohonen self-organizing map (SOM); this was
performed to verify the impact that the structural heterogeneity (in chemicals’ split
into training and prediction sets) has on model performance. The consequences on
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the model predictivity are also compared. D-optimal design, where the most dissim-
ilar chemicals are always selected for the training set, leads to models with better
predictive performance than models developed on the training set selected by SOM.
The chemical applicability domain of the models and the reliability of the predic-
tions are always verified by the leverage approach. The best proposed predictive
model is based on four molecular descriptors and has the following equation (12-2):

log k(OH) = 5.15(± 0.35) − 0.66(± 0.03)HOMO + 0.33(± 0.03)nX − 0.37
(± 0.04)CIC0 + (± 0.02)0.13 nCaH

n(training) = 234 R2 = 0.83 Q2 = 0.82 Q2LMO(50%) = 0.81 RMSE = 0.473

n(test) = 226 Q2
EXT = 0.81 RMSEp = 0.484 Kxx = 33.8% Kxy = 44.6% (12-2)

It is evident from the statistical parameters that the proposed model has good sta-
bility, robustness, and predictivity verified by internal (cross-validation by LOO and
LMO) and also external validation. The influential chemicals are mainly the highly
fluorinated chemicals, which have a strong structural peculiarity that the model is
not able to capture. In Figure 12-3 the experimental values vs. those predicted by
Eq. (12-2) are plotted.

Figure 12-3. Plot of experimental and predicted log k(OH) values for the externally validated model by
experimental design splitting. The training and test set chemicals are labeled differently, the outliers and
influential chemicals are highlighted. The dotted lines indicate the 3σ interval (with copyright permission
from [18])
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The availability in the GA population of several possible models, similarly reli-
able for response prediction, also allowed the proposal of a consensus model which
provides better predicted data than the majority of individual models, taking into
account the more unique aspects of a particular structure.

While good models for OH rate constants are proposed in the literature for var-
ious chemical classes [107, 110–113, 115, 117], the modeling of reactivity with
NO3 radicals is more problematic. Most published QSAR models were obtained
from separate training sets for aliphatic and aromatic compounds and the rate con-
stants of aliphatic chemicals with NO3 radicals were successfully predicted [106,
108, 109]; however, the models for aromatic compounds do not appear to be so
satisfactory, often being only local models built on very small training sets and,
consequently, without any reasonable applicability for data prediction.

New general QSAR models for predicting oxidation rate constants (kNO3) for
heterogeneous sets containing both aliphatic and aromatic compounds, based on
few theoretical molecular descriptors (for instance, HOMO, number of aromatic
rings, and an autocorrelation descriptor, MATS1m), were recently developed by the
author’s group [13, 23]. The models have high predictivity even on external chemi-
cals, obtained by splitting the available data using different methods. The possibility
of having molecular descriptors available for all chemicals (even those not yet syn-
thesized), the good prediction performance of models applicable to a wide variety
of aromatic and aliphatic chemicals, and the possibility of verifying the chemical
domain of applicability by the leverage approach makes these useful models for pro-
ducing reliable estimated NO3 radical rate constants, when experimental parameters
are not available.

The author has also proposed a predictive QSAR model of reaction rate with
ozone for 125 heterogeneous chemicals [14]. The model, based on molecular
descriptors, always selected by GA (HOMO–LUMO gap plus four molecular
descriptors from DRAGON), has good predictive performance, also verified by
statistical external validation on 42 chemicals not used for model development
(Q2

EXT=0.904, average RMS=0.77 log units). This model appears more predictive
than the model previously proposed by Pompe and Veber [114], a six-parameter
MLR model developed on 116 heterogeneous chemicals and based on molecular
descriptors, calculated by the CODESSA software, selected by a stepwise selection
procedure. The predictive performance of this model was verified only internally by
cross-validation with 10 groups of validation (Q2=0.83) and had an average RMS
of 0.99 log units.

12.7.3. Biological Endpoints

12.7.3.1. Bioconcentration Factor

The bioconcentration factor (BCF) is an important parameter in environmental
assessment as it is an estimate of the tendency of a chemical to concentrate and, con-
sequently, to accumulate in an organism. The most common QSAR method, and the
oldest, for estimating chemical bioconcentration is to establish correlations between
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BCF and chemical hydrophobicity using Kow, i.e., the n-octanol/water partition
coefficient. A comparative study of BCF models based on log Kow was performed by
Devillers et al. [119]. Different models for BCF using theoretical molecular descrip-
tors have been developed, among others: [120–124] and also by the author’s group
[8, 9, 27], with particular attention, as usual, to the external predictivity and the
chemical applicability domain.

An example is the model reported by the following equation (12-3):

log BCF = −0.74(± 0.35) + 2.55(± 0.13)VIM
D,deg − 1.09(± 0.11)HIC

−0.42(± 0.03)nHAcc − 1.22(± 0.17)GATS1e − 1.55(± 0.34)MATS1p

n(training) = 179 R2 = 0.81 Q2
LOO = 0.79 Q2

BOOT = 0.79
RMSE(train set) = 0.56 RMSE(cross−val. set) = 0.58

n(prediction) = 59 Q2
EXT = 0.87 RMSE(prediction set) = 0.57 (12-3)

12.7.3.2. Toxicity

Acute aquatic toxicity. The European Union’s so-called “List 1” of priority chem-
icals dangerous for the aquatic environment (more than 100 heterogeneous chem-
icals) was modelled for ecotoxicological endpoints (aquatic toxicity on bacteria,
algae, Daphnia, fish, mammals) [89] by different theoretical descriptors, mainly
WHIM. In addition, WHIM descriptors were also satisfactory in the modeling of
a more reduced set of toxicity data on Daphnia (49 compounds including amines,
chlorobenzenes, organotin and organophosphorous pesticides) [125].

An innovative strategy for the selection of compounds with a similar toxico-
logical mode of action was proposed as a key problem in the study of chemical
mixtures (PREDICT European Research Project) [126]. A complete representation
of chemical structures for phenylureas and triazines by different molecular descrip-
tors (1D-structural, 2D-topological, 3D-WHIM) allowed a preliminary exploration
of structural similarity based on principal components analysis (PCA), multidi-
mensional scaling (MDS), and hierarchical cluster. The use of a genetic algorithm
to select the most relevant molecular descriptors in modeling toxicity data makes
it possible both to develop good predictive toxicity models and select the most
similar phenylureas and triazines. The way of doing this is to apply chemomet-
ric approaches based only on molecular similarity related to toxicological mode of
action.

The Duluth data set of toxicity data to P. promelas was recently studied by
the author group [26] and new statistically validated MLR models were developed
to predict the aquatic toxicity of chemicals classified according to their mode of
action (MOA). Also, a unique general model for direct toxicity prediction (DTP
model) was developed to propose a predictive tool with a wide applicability domain,
applicable independently of a priori knowledge of the MOA of chemicals.
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Figure 12-4. Plot of experimental and predicted toxicity values (Pimephales promelas) of the externally
validated general-DTP log P-free model developed on a training set of 249 compounds (with copyright
permission from [26])

The externally validated general-DTP log P-free model, reported below
(Eq. 12-4) with statistical parameters, was developed on a training set of 249 com-
pounds and applied for the prediction of the toxicity of 200 external chemicals,
obtained by splitting the data by SOM (scatter plot in Figure 12-4):

log(1/LC50)96h = −2.54 + 0.91WA + 6.2Mv + 0.21nCb−
+0.08H − 046 − 0.19MAXDP − 0.33nN

ntraining = 249 R2 = 0.79 Q2
LOO = 0.78 Q2

BOOT = 0.78 RMSE = 0.595

ntest = 200 Q2
EXT = 0.71 RMSEcv = 0.613 RMSEp = 0.64 (12-4)

Chronic toxicity: mutagenicity. The potential for mutagenicity of chemicals of
environmental concern, such as aromatic amines and PAHs, is of high relevance;
many QSAR models, based on the mechanistic approach, have been published on
this topic and reviewed by Benigni [5, 127].

With regard to this important topic, our group has published useful MLR mod-
els, always verified for their external predictivity on new chemicals, for the Ames
test results on amines [12] and nitro-PAHs [20]. Externally validated classification
models, by k-NN and CART, were also developed for the mutagenicity of benzo-
cyclopentaphenanthrenes and chrysenes, determined by the Ames test [128], and
PAH mutagenicity, determined on human B-lymphoblastoid [35].
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Endocrine Disruption. A large number of environmental chemicals, known
as endocrine disruptor chemicals (EDCs), are suspected of disrupting endocrine
functions by mimicking or antagonizing natural hormones. Such chemicals may
pose a serious threat to the health of humans and wildlife; they are thought to
act through a variety of mechanisms, mainly estrogen receptor-mediated mecha-
nisms of toxicity. Under the new European legislation REACH (http://europa.eu.int/
comm/environment/chemicals/reach.htm) EDCs will require an authorization to be
produced and used, if safer alternative are not available. However, it is practically
impossible to perform thorough toxicological tests on all potential xenoestro-
gens, thus QSAR modeling has been applied by many other authors in these last
years [129–142] providing promising methods for the estimation of a compound’s
estrogenic activity.

QSAR models of the estrogen receptor binding affinity of a large data set of het-
erogeneous chemicals have been built also in our laboratory using theoretical molec-
ular descriptors [21, 33] giving full consideration, during model construction and
assessment, to the new OECD principles for the regulatory acceptance of QSARs. A
data set of 128 NCTR compounds (EDKB, http://edkb.fda.gov/databasedoor.html)
including several different chemical categories, such as steroidal estrogens,
synthetic estrogens, antiestrogens, phytoestrogens, other miscellaneous steroids,
alkylphenols, diphenyl derivatives, organochlorines, pesticides, alkylhydroxyben-
zoate preservatives (parabens), phthalates, and a number of other miscellaneous
chemicals, was studied. An unambiguous multiple linear regression (MLR) algo-
rithm was used to build the models by selecting the modeling descriptors by a
genetic algorithm. (Table 12-1 presents the statistical parameters of the best-selected
model.) The predictive ability of the model was validated, as usually, by both
internal and external validation, and the applicability domain was checked by the
leverage approach to verify prediction reliability.

Twenty-one chemicals of the Kuiper data set [143] were used for external val-
idation, with the following highly satisfying results: R2

pred=0.778, Q2
EXT=0.754,

RMSE of prediction of 0.559 (Figure 12-5).
The results of several validation paths using different splitting methods per-

formed in parallel (D-optimal design, SOM, random on activity sampling) give
additional proof that the proposed QSAR model is robust and satisfactory (R2

pred
range: 0.761–0.807), thus providing a feasible and practical tool for the rapid screen-
ing of the estrogen activity of organic compounds, supposed endocrine disruptors
chemicals.

On the same topic, satisfactory predictive models for the EDC classification
based on different classification methods have been developed and recently pro-
posed [33]. In this study, QSAR models were developed to quickly and effectively
identify possible estrogen-like chemicals based on 232 structurally diverse chemi-
cals from the NCTR database (training set) by using several non-linear classification
methodologies (least square support vector machine (LS-SVM), counter propa-
gation artificial neural network (CP-ANN), and k-nearest neighbor (kNN)) based
on molecular structural descriptors. The models were validated externally with 87
chemicals (prediction set) not included in the training set. All three methods gave
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Table 12-1. The MLR model between the structural descriptor and the log RBA of estrogens

Variable Full name of variable Reg.coeff . Err.coeff . Std.coeff .

Intercept 15.83 2.20 0.00
X2A Average connectivity index chi-2 −43.75 5.28 −0.49

TIC1
Total information index
(neighborhood symmetry first-order)

0.04 0.00 0.89

EEig02d
Eigenvalue 2 from edge adjacency
matrix weighted dipole moments

−2.67 0.31 −0.56

JGI10
Mean topological charge index of
order 10

79.92 10.85 0.32

SPH Spherosity index 2.60 0.56 0.24

E1u
The first component accessibility
directional WHIM index/unweighted

−7.12 1.57 −0.25

RTm+
R maximal index weighed by atomic
masses

4.78 0.74 0.28

nArOR The number of aromatic ether groups −1.25 0.15 −0.39

Model parameters: n=128, R2=0.824, R2
adj=0.812, Q2

LOO=0.793, Q2
BOOT=0.780, RMSEcv=0.7484,

RMSEp=0.8105, Kx=35.13, Kxy=37.89, and s=0.7762.

Figure 12-5. Predicted Log RBA values vs. experimental values for the original data set of estrogens
(NCTR data set) and external prediction set (Kuiper’s data set) (with copyright permission from [21])

satisfactory prediction results both for training and prediction sets; the most accu-
rate model was obtained by the LS-SVM approach. The highly important feature
of all these models is their low false negative percentage, useful in a precautionary
approach. Our models were also applied to about 58,000 discrete organic chemicals
from US-EPA; about 76% were predicted, by each model, not to bind to an estrogen
receptor.
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The obtained results indicate that the proposed QSAR models are robust, widely
applicable, and could provide a feasible and practical tool for the rapid screen-
ing of potential estrogens. It is very useful information to prioritize chemicals for
more expensive assays. In fact, the common 40,300 negative compounds could be
excluded from the potential estrogens without experiments and a high accuracy (low
false negative value).

A review on the applications of machine learning algorithms in the modeling of
estrogen-like chemicals has been recently published [144].

12.8. MODELING MORE THAN A SINGLE ENDPOINT

12.8.1. PC Scores as New Endpoints: Ranking Indexes

The environment is a highly complex system in which many parameters are of con-
temporaneous relevance: the understanding, rationalization, and interpretation of
their covariance are the principal pursuit of any environmental researcher. Indeed,
environmental chemistry deals with the behavior of chemicals in the environment,
behavior which is regulated by many different variables such as physico-chemical
properties, chemical reactivity, biological activity.

The application of explorative methods of multivariate analysis to various top-
ics of environmental concern allows a combined view that generates ordination
and grouping of the studied chemicals, in addition to the discovering of variable
relationships. Any problem related to chemical behavior in the environment can
be analyzed by multivariate explorative techniques, the outcome being to obtain
chemical screening and ranking according to the studied properties, reactivities, or
activities and, finally, the proposal of an index.

This was the starting point, and also the central core, of most of the author 15-
year research of QSAR modeling at Insubria University.

The significant combination of variables from multivariate analysis can be used
as a score value (a cumulative index), and modelled as a new endpoint by the QSAR
approach to exploit already available information concerning chemical behavior,
and to propose models able to predict such behavior for chemicals for which the
same information is not yet known, or even for new chemicals before their synthesis.
In fact, our QSAR approach, both for modeling quantitative response by regression
methods and qualitative response by classification methods, is based on theoretical
molecular descriptors that can be calculated for any drawn chemicals starting from
the atomic coordinates, thus without the knowledge of any experimental parameter.

12.8.2. Multivariate Explorative Methods

The principal aim of any explorative technique is to capture the information avail-
able in any multivariate context and condense it into a more easily interpretable view
(a score value or a graph). Thus, from these exploratory tools a more focused investi-
gation can be made into chemicals of higher concern, directing the next investigative
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steps or suggesting others. Some of the more commonly used exploratory techniques
are commented on here and applied in environmental chemistry and ecotoxicology.

12.8.2.1. Principal Component Analysis

Probably the most widely known and used explorative multivariate method is princi-
pal component analysis (PCA) [145, 146] (Chapter 6). In PCA, linear combinations
of the studied variables are created, and these combinations explain, to the greatest
possible degree, the variation in the original data. The first principal component
(PC1) accounts for the maximum amount of possible data variance in a single
variable, while subsequent PCs account for successively smaller quantities of the
original variance. Principal components are derived in such a way that they are
orthogonal. Indeed, it is good practice, especially when the original variables have
different ranges of scales, to derive the principal components from the standard-
ized data (mean of 0 and standard deviation of 1), i.e., via the correlation matrix. In
this way all the variables are treated as if they are of equal importance, regardless
of their scale of measurement. To be useful, it is desirable that the first two PCs
account for a substantial proportion of the variance in the original data, thus they
can be considered sufficiently representative of the main information included in
the data, while the remaining PCs condense irrelevant information or even experi-
mental noise. It is quite common for a PCA to be represented by a score plot, loading
plot, or biplot, defined as the joint representation of the rows and columns of a data
matrix; points (scores) represent the chemicals and vectors or lines represent the
variables (loadings). The lengths of the vectors indicate the information associated
with the variable, while the cosine of the angle between the vectors reflects their
correlation. In our environmental chemistry studies, PCA has been widely used for
screening and ranking purposes in many contexts: (a) tropospheric degradability of
volatile organic compounds (VOCs) [11, 17, 106]; (b) mobility in the atmosphere or
long-range transport of persistent organic pollutants (POPs) [16, 31, 147]; (c) envi-
ronmental partitioning tendency of pesticides [7, 32]; (d) POP and PBT screening
[10, 24, 34, 147–149].

In addition, this multivariate approach was adopted to study aquatic toxicity
of EU-priority listed chemicals on different endpoints [150] and esters [25], the
endocrine disrupting activity based on three different endpoints [33] and the abiotic
oxidation of phenols in an aqueous environment [9].

12.8.2.2. QSAR Modeling of Ranking Indexes

Tropospheric Persistence/Degradability of Volatile Organic Compounds (VOCs).
Studies has been made of the screening/ranking of volatile organic chemicals
according to their tendency to degrade in the troposphere. Indeed, as the atmospheric
persistence of a chemical is mainly dependent on the degradation rates of its reaction
with oxidants, the contemporaneous variation and influence of the rate constants for
their degradation by OH, NO3 radicals, and ozone (kOH, kNO3, and kO3), in deter-
mining the inherent tendency to degradability, was explored by principal component
analysis (PCA).
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Figure 12-6. Score plot and loading plot of the two principal component analysis of three rate
constants (kOH, kNO3, kO3) for 399 chemicals (labeled according to chemical classes). ATDIN:
ATmospheric Degradability INdex. Cumulative explained variance: 95.3%. Explained Variance of PC1
(ATDINdex)=80.9% (with copyright permission from [17])

In a preliminary study, the experimental data allowed the ranking of a set of 65
heterogeneous VOCs, for which all the degradation rate constants were known; an
atmospheric persistence index (ATPIN) had been defined and modelled by theoreti-
cal molecular descriptors [11]. Later, the application of our MLR models, developed
for each studied degradation rate constant (kNO3, kO3, and kOH) [13, 14, 18],
allowed a similar PC analysis (Figure 12-6) of a much larger set of 399 chemicals.

This new more informative index (PC1 score of Figure 12-6, 80.9% of explained
variance, newly defined ATDIN – atmospheric degradability index), based on a
wider set of more structurally heterogeneous chemicals, was also satisfactorily mod-
elled by MLR based on theoretical molecular descriptors and externally validated
(Q2 0.94; Q2

EXT 0.92) (scatter plot in Figure 12-7) [17].
Mobility in Atmosphere and Long-Range Transport of Persistent Organic

Pollutants (POPs). The intrinsic tendency of compounds toward global mobility in
the atmosphere has been studied, since it is a necessary property for the evaluation
of the long-range transport (LRT) of POPs [16, 31]. As the mobility potential of a
chemical depends on the various physico-chemical properties of a compound, prin-
cipal component analysis was used to explore the contemporaneous variation and
influence of all the properties selected as being the most relevant to LRT potential
(such as vapor pressure, water solubility, boiling point, melting point, tempera-
ture of condensation, various partition coefficients among different compartments;
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Figure 12-7. Regression line for the externally validated model of ATPIN (ATmospheric Persistence
Index: the opposite of ATDIN). The training and test set chemicals are differently highlighted, the outliers
and influential chemicals are named (with copyright permission from [17])

for instance, Henry’s law constant, octanol/water partition coefficient, soil sorption
coefficient, octanol/air partition coefficient).

A simple interpretation of the obtained PC1 is as a scoring function of intrinsic
tendency toward global mobility. We have proposed this PC1 scoring as the rank-
ing score for the 82 possible POPs in four a priori classes: high, relatively high,
relatively low, and low mobility.

These classes have been successfully modelled by the CART method, based
on four theoretical molecular descriptors (two Kier and Hall connectivity indexes,
molecular weight, and sum of electronegativities) with only 6% of errors in cross-
validation. The main aim was to develop a simple and rapid framework to screen,
rank, and classify also new organic chemicals according to their intrinsic global
mobility tendency, just from the knowledge of their chemical structure.

An analogous approach was previously applied to a subset of 52 POPs to define
a long-range transport (LRT) index derived from the PC1 score, on the basis of
physico-chemical properties and additionally taking into account atmospheric half-
life data [147].

Environmental partitioning tendency of pesticides. The partitioning of pesticides
into different environmental compartments depends mainly on the physico-chemical
properties of the studied chemical, such as the organic carbon partition coefficient
(Koc), the n-octanol/water partition coefficient (Kow), water solubility (Sw), vapor
pressure (Vp), and Henry’s law constant (H). To rank and classify the 54 studied
pesticides, belonging to various chemical categories, according to their distribution
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Figure 12-8. Score plot and loading plot of the two first principal components of PCA of five physico-
chemical properties (Koc, Kow, Sw, Vp, and Henry’s law constant) for 54 pesticides. Cumulative
explained variance: 94.6%; explained variance of PC1: 70.1% (with copyright permission from [32])

tendency in various media, we applied [32] a combination of two multivariate
approaches: principal component analysis (Figure 12-8) for ranking and hierarchical
cluster analysis for the definition of the four a priori classes, according to their envi-
ronmental behavior (1. soluble, 2. volatile, 3. sorbed, and 4. non-volatile/medium
class) (circles in Figure 12-8).

The pesticides were finally assigned to the defined four classes by different
classification methods (CART, k-NN, RDA) using theoretical molecular descrip-
tors (for example, the CART tree is reported in Figure 12-9). Two of the selected
molecular descriptors are quite easily interpretable, in particular (a) MW encodes
information on molecule dimension; it is well known that big molecules have the
greatest tendency to bind, by van der Waals forces, to the organic component of
the soil, becoming the most sorbed in organic soils but the least soluble in water
(Class 3) and (b) the possibility of a chemical to link by hydrogen bonds to water
molecules (encoded in the molecular descriptor nHDon) results in the higher solu-
bility of the Class 1 pesticides; furthermore, chemicals with fewer intramolecular
hydrogen bonds are the most volatile (Class 2). The last topological descrip-
tor J, that discriminates Class 4 of the medium-behavior pesticides, is not easily
interpretable.

A wider, heterogeneous, and quite representative data set of pesticides of dif-
ferent chemical classes (acetanilides, carbamates, dinitroanilines, organochlorides,
organophosphates, phenylureas, triazines, triazoles), already studied for their Koc
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Figure 12-9. Classification tree by classification and regression tree (CART) of mobility classes for
54 pesticides. Error rate (ER) 11.11%; ER in prediction: 18.53%; NoMER: 62.96% (with copyright
permission from [32])

modeling [96] has also undergone PC analysis of various environmental partitioning
properties (solubility, volatility, partition coefficients, etc.) to study leaching ten-
dency [7]. The resultant macrovariables, PC1 and PC2 scores, called the leaching
index (LIN) and volatility index (VIN), have been proposed as cumulative environ-
mental partitioning indexes in different media. These two indexes were modelled
by theoretical molecular descriptors with satisfactory predictive power (Q2 leave-
30%-out=0.85 for LIN). Such an approach allows a rapid pre-determination and
the screening of the environmental distribution of pesticides, starting only from
the molecular structure of the pesticide without any a priori knowledge of the
physico-chemical properties.

The proposed index LIN was used in a comparative analysis with GUS and
LEACH index for highlighting the pesticides most dangerous to the aquatic com-
partment among those widely used in Uzbekistan, in the Amu-Darya river basin
[151].

POPs and PBTs. QSAR approaches, based on molecular structure for the prioriti-
zation of chemicals for persistence, particularly persistent organic pollutants (POPs)
screening and ranking method for global half-life, have recently been proposed [10,
24, 148, 149].

Persistence in the environment is an important criterion in prioritizing hazardous
chemicals and in identifying new persistent organic pollutants (POPs). Degradation
half-life in various compartments is among the more commonly used criteria for
studying environmental persistence, but the limited availability of experimental data
or reliable estimates is a serious problem. Available half-life data for degradation in
air, water, sediment, and soil, for a set of 250 organic POP-type chemicals, have



356 P. Gramatica

Figure 12-10. Principal component analysis on half-life data for 250 organic compounds in the various
compartments (air, water, sediment, and soil) (PC1–PC2: explained variance=94%). P=persistent (with
copyright permission from [10])

been combined in a multivariate approach by principal component analysis. This
PCA distributes the studied compounds according to their cumulative, or global,
half-life and relative persistence in different media, to obtain a ranking of the studied
organic pollutants according to their relative overall half-life.

The biplot relative to the first and second components is reported in Figure 12-10,
where the chemicals (points or scores) are distributed according to their environ-
mental persistence, represented by the linear combination of their half lives in the
four selected media (loadings shown as lines). The cumulative explained variance
of the first two PCs is 94%, and the PC1 alone provides the largest part, 78%, of the
total information. The loading lines show the importance of each variable in the first
two PCs.

It is interesting to note that all the half-life values (lines) are oriented in the same
direction along the first principal component, thus PC1, derived from a linear combi-
nation of half-life in different media, is a new macro-variable condensing chemical
tendency to environmental persistence. PC1 ranks the compounds according to their
cumulative half-life and discriminates between them with regard to persistence;
chemicals with high half-life values in all the media (highlighted in the PCA graph)
are located to the right of the plot, in the zone of global higher persistence (very
persistent chemicals anywhere); chemicals with a lower global half-life fall to the
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left of the graph, not being persistent in any medium (labeled in Figure 12-10) or
persistent in only one medium; chemicals persistent in 2 or 3 media are located in
the intermediate zone of Figure12-10.

PC2, although less informative (E.V. 16%), is also interesting; it separates the
compounds more persistent in air (upper parts in Figure 12-10, regions 1 and 2),
i.e., those with higher LRT potential from those more persistent in water, soil, and
sediment (lower parts in Figure 12-10, regions 3 and 4).

A deeper analysis of the distribution of the studied chemicals gives some inter-
esting results and confirms experimental evidence: to the right, among the very
persistent chemicals in all the compartments (full triangles in Figure 12-10), we
find most of the compounds recognized as POPs by the Stockholm Convention
[152]. Highly chlorinated PCBs and hexachlorobenzene are among the most per-
sistent compounds in our reference scenario. All these compounds are grouped in
Region 1 owing to their global high persistence, especially in air. The less chlori-
nated PCBs (PCB-3 and PCB 21) fall in the zone of very persistent chemicals, but
not in the upper part of Region 1, due to their lower persistence in air compared
with highly chlorinated congeners. p,p′-DDT, p,p′-DDE, o,p′-DDE, highly chlori-
nated dioxins and dioxin-like compounds, as well as pesticides toxaphene, lindane,
chlordane, dieldrin, and aldrin fall in Region 3 (highly persistent chemicals mainly
in compartments different from air).

A global half-life index (GHLI) obtained from existing knowledge of generalized
chemical persistence over a wide scenario of 250 chemicals, which reliability was
verified through comparison with multimedia model results and empirical evidence,
was proposed from this PC analysis [10]. This global index, the PC1 score, was then
modelled as a cumulative endpoint using a QSAR approach based on theoretical
molecular descriptors; a simple and robust regression model externally validated for
its predictive ability [6, 84] has been derived. The original set of available data was
first randomly split into training and prediction sets; 50% of the compounds were
put into the prediction set (125 compounds) while the other 50% was used to build
the QSPR model by MLR. Given below (Eq. 12-5) is the best QSPR model, selected
by statistical approaches and its statistical parameters (Figure 12-11 shows the plot
of GHLI values from PCA vs. predicted GHLI values):

GHL Index = −3.12(± 0.77) + 0.33(± 4.5E − 2)X0v + 5.1(± 0.99)Mv − 0.32
(± 6.13E − 2)MAXDP − 0.61(± 0.10)nHDon − 0.5(± 1.15)CIC0
−0.61(± 0.13)O − 060

ntraining = 125 R2 = 0.85 Q2
LOO = 0.83 Q2

BOOT = 0.83
RMSE = 0.76 RMSEcv = 0.70;

nprediction = 125 R2
EXT = 0.79 RMSEp = 0.78 (12-5)

This model presents good internal and external predictive power, a result that
must be highlighted as proof of model robustness and real external predictivity.
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Figure 12-11. Scatter plot of the GHLI values calculated by PCA vs. predicted values by the model. The
GHLI values for the training and prediction set chemicals are labeled differently. The diagonal dotted
lines indicate the 2.5σ interval and response outliers are numbered. Vertical and horizontal dotted lines
identify the cut-off value of GHLI=1 for high-persistent chemicals (with copyright permission from
[10])

The only really dangerous zone in the proposed model is the underestimation zone
(circled in Figure 12-11).

The application of this model, using only a few structural descriptors, could allow
a fast preliminary identification and prioritization of not yet known POPs, just from
the knowledge of their molecular structure. The proposed multivariate approach is
particularly useful not only to screen and to make an early prioritization of envi-
ronmental persistence for pollutants already on the market, but also for compounds
not yet synthesized, which could represent safer alternative and replacement solu-
tions for recognized POPs. No method other than QSAR is applicable to detect the
potential persistence of new compounds.

Similarly, highly predictive classification models, based on k-NN, CART, and
CP-ANN, have been developed and can be usefully applied for POP pre-screening.
The a priori classes have been defined by applying hierarchical cluster analysis to
the half-life data [34].

An approach analogous to GHLI has been successfully applied to the PCA-
combination of data obtained from the above cumulative half-lives for persistence
GHLI, bioconcentration data of fish, and acute toxicity data of P. promelas in order
to propose, and then model by QSPR approach, a combined index of PBT behavior
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[24, 148, 149]. A simple model, based on easy calculable molecular descriptors and
with high external predictivity (Q2

EXT>0.8), has been developed and will be pub-
lished. This PBT index can be applied also to chemicals without any experimental
data and even to not yet synthesized compounds.

These QSAR-based tools, validated for their predictivity on new chemicals,
could help in highlighting the POP and PBT behavior also of chemicals not yet syn-
thesized, and could be usefully applied for the new European Regulation REACH,
which requires most demanding authorization steps for PBTs and the design of safer
alternatives. The results of our predictions were comparable with those from the
US-EPA PBT profiler (http://www.epa.gov/pbt/tools/toolbox.htm).

12.9. CONCLUSIONS

A statistical approach to QSAR modeling, based on heterogeneous theoretical
molecular descriptors and chemometric methods and developed with the funda-
mental aim of predictive applications, has been introduced and discussed in this
review. Several applications to environmentally relevant topics related to organic
pollutants, performed by the Insubria QSAR Research Unit in last 15 years, have
been presented. Different endpoints related to physico-chemical properties, per-
sistence, bioaccumulation, and toxicity have been modelled, not only singularly,
but also as combined endpoints, obtained by multivariate analysis; the approach is
innovative and highly useful for ranking and prioritizing purposes. All the proposed
models characteristically check the predictive performance and applicability domain
of the chemicals, even new chemicals that never participated in the model develop-
ment. The fulfillment of the “OECD principles for QSAR validation” is a guarantee
for the reliability of the predicted data obtained by our models and their possible
applicability in the context of REACH.

ACKNOWLEDGEMENT

Many thanks to my collaborators who participated in the research, reviewed here,
carried out over the past 15 years, particularly Ester Papa and Pamela Pilutti. Thanks
are also due to Roberto Todeschini who was my teacher of chemometric QSAR.

REFERENCES

1. Hansch C, Fujita T (1964) p-s-p analysis. A method for the correlation of biological activity and
chemical structure. J Am Chem Soc 86:1616–1626

2. Hansch C, Leo A (1995) Exploring QSAR: Fundamentals and applications in chemistry and
biology. American Chemical Society, Washington, DC 490–496

3. Schultz TW, Cronin MTD, Netzeva TI et al. (2002) Structure–toxicity relationships for aliphatic
chemicals evaluated with Tetrahymena pyriformis. Chem Res Toxicol 15:1602–1609

4. Veith GD, Mekenyan O (1993) A QSAR approach for estimating the aquatic toxicity of soft
electrophiles (QSAR for soft electrophiles). Quant Struct -Act Relat 12:349–356

5. Benigni R (2005) Structure–activity relationship studies of chemical mutagens and carcinogens:
Mechanistic investigations and prediction approaches. Chem Rev 105:1767–1800



360 P. Gramatica

6. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: Validation is the

absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci

22:69–77

7. Gramatica P, Di Guardo A (2002) Screening of pesticides for environmental partitioning tendency.

Chemosphere 47:947–956

8. Gramatica P, Papa E (2003) QSAR modeling of bioconcentration factor by theoretical molecular

descriptors. QSAR Comb Sci 22:374–385

9. Gramatica P, Papa E (2005) An update of the BCF QSAR model based on theoretical molecular

descriptors. QSAR Comb Sci 24:953–960

10. Gramatica P, Papa E (2007) Screening and ranking of POPs for global half-life: QSAR approaches

for prioritization based on molecular structure. Environ Sci Technol 41:2833–2839

11. Gramatica P, Pilutti P, Papa E (2002) Ranking of volatile organic compounds for tropospheric

degradability by oxidants: A QSPR approach. SAR QSAR Environ Res 13:743–753

12. Gramatica P, Consonni V, Pavan M (2003) Prediction of aromatic amines mutagenicity from

theoretical molecular descriptors. SAR QSAR Environ Res 14:237–250

13. Gramatica P, Pilutti P, Papa E (2003) Predicting the NO3 radical tropospheric degradability of

organic pollutants by theoretical molecular descriptors. Atmos Environ 37:3115–3124

14. Gramatica P, Pilutti P, Papa E (2003) QSAR prediction of ozone tropospheric degradation. QSAR

Comb Sci 22:364–373

15. Gramatica P, Battaini F, Papa E (2004) QSAR prediction of physico-chemical properties of esters.

Fresenius Environ Bull 13:1258–1262

16. Gramatica P, Papa E, Pozzi S (2004) Prediction of POP environmental persistence and long range

transport by QSAR and chemometric approaches. Fresenius Environ Bull 13:1204–1209

17. Gramatica P, Pilutti P, Papa E (2004) A tool for the assessment of VOC degradability by

tropospheric oxidants starting from chemical structure. Atmos Environ 38:6167–6175

18. Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degrada-

tion of VOCs: Splitting into training-test sets and consensus modeling. J Chem Inf Comput Sci

44:1794–1802

19. Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: A

QSPR case study for Koc prediction. J Mol Graph Model 25:755–766

20. Gramatica P, Pilutti P, Papa E (2007) Approaches for externally validated QSAR modelling of

nitrated polycyclic aromatic hydrocarbon mutagenicity. SAR QSAR Environ Res 18:169–178

21. Liu H, Papa E, Gramatica P (2006) QSAR prediction of estrogen activity for a large set of diverse

chemicals under the guidance of OECD principles. Chem Res Toxicol 19:1540–1548

22. Liu H, Papa E, Gramatica P (2008) Evaluation and QSAR modeling on multiple endpoints of

estrogen activity based on different bioassays. Chemosphere 70:1889–1897

23. Papa E, Gramatica P (2008) Externally validated QSPR modelling of VOC tropospheric oxidation

by NO3 radicals. SAR QSAR Environ Res 19:655–668

24. Papa E, Gramatica P (2009) QSPR as a support to the EU REACH legislation: PBTs identification

by molecular structure. Environ Sci Technol (in press)

25. Papa E, Battaini F, Gramatica P (2005) Ranking of aquatic toxicity of esters modelled by QSAR.

Chemosphere 58:559–570

26. Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based on theoretical descrip-

tors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (Fathead

Minnow). J Chem Inf Model 45:1256–1266

27. Papa E, Dearden JC, Gramatica P (2007) Linear QSAR regression models for the prediction

of bioconcentration factors by physicochemical properties and structural theoretical molecular

descriptors. Chemosphere 67:351–358



Chemometric Methods 361

28. Papa E, Kovarich S, Gramatica P (2009) Development, validation and inspection of the applicabil-

ity domain of QSPR models for physico-chemical properties of polybrominated diphenyl ethers.

QSAR Comb Sci. doi: 10.1002/qsar.200860183

29. Todeschini R, Maiocchi A, Consonni V (1999) The K correlation index: Theory development and

its application in chemometrics. Chemom Int Lab Syst 46:13–29

30. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12

31. Gramatica P, Pozzi S, Consonni V et al. (2002) Classification of environmental pollutants for

global mobility potential. SAR QSAR Environ Res 13:205–217

32. Gramatica P, Papa E, Battaini F (2004) Ranking and classification of non-ionic organic pesticides

for environmental distribution: A QSAR approach. Int J Environ Anal Chem 84:65–74

33. Liu H, Papa E, Walker JD et al. (2007) In silico screening of estrogen-like chemicals based on

different nonlinear classification models. J Mol Graph Model 26:135–144

34. Papa E, Gramatica P (2008) Screening of persistent organic pollutants by QSPR classification

models: A comparative study. J Mol Graph Model 27:59–65

35. Papa E, Pilutti P, Gramatica P (2008) Prediction of PAH mutagenicity in human cells by QSAR

classification. SAR QSAR Environ Res 19:115–127

36. Breiman L, Friedman JH, Olshen RA et al. (1998) Classification and regression trees. Chapman

& Hall/CRC, Boca Raton, FL

37. Frank JE, Friedman JH (1989) Classification: Oldtimers and newcomers. J Chemom 3:463–475

38. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New York

39. Gasteiger J, Zupan J (1993) Neural networks in chemistry. Angew Chem Int Ed Engl 32:503–527

40. Hecht-Nielsen R (1988) Applications of counter-propagation networks. Neural Netw 1:131–139

41. Zupan J, Novic M, Ruisanchez I (1997) Kohonen and counter-propagation artificial neural

networks in analytical chemistry. Chemom Int Lab Syst 38:1–23

42. Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A

survey. J Chem Inf Comput Sci 40:195–209

43. Stuper AJ, Jurs PC (1976) ADAPT: A computer system for automated data analysis using pattern

recognition techniques. J Chem Inf Comput Sci 16:99–105

44. Mekenyan O, Bonchev D (1986) OASIS method for predicting biological activity of chemical

compounds. Acta Pharm Jugosl 36:225–237

45. Katritzky AR, Lobanov VS (1994) CODESSA. Ver. 5.3, University of Florida, Gainesville

46. Todeschini R, Consonni V, Mauri A et al. (2006) DRAGON – software for the calculation of

molecular descriptors. Ver. 5.4 for Windows, Talete srl, Milan, Italy

47. MollConnZ (2003) Ver. 4.05. Hall Ass. Consult., Quincy, MA

48. Devillers J, Balaban AT (1999) Topological indices and related descriptors in QSAR and QSPR.

Gordon and Breach Science Publishers, Amsterdam

49. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-InterScience, New York

50. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim,

Germany

51. Todeschini R, Lasagni M (1994) New molecular descriptors for 2D and 3D structures. J Chemom

8:263–272

52. Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors.5. Theory

development and chemical meaning of WHIM descriptors. Quant Struct Act Relat 16:113–119

53. Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors.6.

Application of WHIM descriptors in QSAR studies. Quant Struct Act Relat 16:120–125

54. Consonni V, Todeschini R, Pavan M et al. (2002) Structure/response correlations and similar-

ity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors.

J Chem Inf Comput Sci 42:682–692.



362 P. Gramatica

55. Consonni V, Todeschini R, Pavan M et al. (2002) Structure/response correlations and simi-
larity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular
descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705

56. Xu L, Zhang WJ (2001) Comparison of different methods for variable selection. Anal Chim Acta
446:477–483

57. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York
58. Hibbert DB (1993) Genetic algorithms in chemistry. Chemom Int Lab Syst 19:277–293
59. Wehrens R, Buydens LMC (1998) Evolutionary optimisation: A tutorial. TRAC 17:193–203
60. Leardi R, Boggia R, Terrile M (1992) Genetic algorithms as a strategy for feature-selection. J

Chemom 6:267–281
61. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantita-

tive structure–activity relationships and quantitative structure–property relationships. J Chem Inf
Comput Sci 34:854–866

62. Devillers J (1996) Genetic algorithms in computer-aided molecular design. In: Devillers J (ed)
Genetic algorithms in molecular modeling. Academic Press Ltd, London

63. Leardi R (1994) Application of a genetic algorithm to feature-selection under full validation
conditions and to outlier detection. J Chemom 8:65–79

64. Kubinyi H (1994) Variable selection in QSAR studies. 1. An evolutionary algorithm. Quant Struct
Act Relat 13:285–294

65. Kubinyi H (1994) Variable selection in QSAR studies. 2. A highly efficient combination of
systematic search and evolution. Quant Struct Act Relat 13:393–401

66. Todeschini R, Consonni V, Pavan M et al. (2002) MOBY DIGS. Ver. 1.2 for Windows, Talete srl,
Milan, Italy

67. Kubinyi H (1996) Evolutionary variable selection in regression and PLS analyses. J Chemom
10:119–133

68. Guha R, Serra JR, Jurs PC (2004) Generation of QSAR sets with a self-organizing map. J Mol
Graph Model 23:1–14

69. Netzeva TI, Worth AP, Aldenberg T et al. (2005) Current status of methods for defining the appli-
cability domain of (quantitative) structure–activity relationships – the report and recommendations
of ECVAM Workshop 52. ATLA 33:155–173

70. Tunkel J, Mayo K, Austin C et al. (2005) Practical considerations on the use of predictive models
for regulatory purposes. Environ Sci Technol 39:2188–2199

71. Atkinson AC (1985) Plots, transformations and regression. Clarendon Press, Oxford
72. Hulzebos EM, Posthumus R (2003) (Q)SARs: Gatekeepers against risk on chemicals? SAR QSAR

Environ Res 14:285–316
73. Jouan-Rimbaud D, Massart DL, deNoord OE (1996) Random correlation in variable selection for

multivariate calibration with a genetic algorithm. Chemom Int Lab Syst 35:213–220
74. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am

Stat 37:36–48
75. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, London
76. Shao J (1993) Linear-model selection by cross-validation. J Am Stat Assoc 88:486–494
77. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of

experimental datasets for the training and test set selection. J Comput Aid Mol Des 16:357–369
78. Zefirov NS, Palyulin VA (2001) QSAR for boiling points of “small” sulfides. Are the “high-quality

structure-property-activity regressions” the real high quality QSAR models? J Chem Inf Comput
Sci 41:1022–1027

79. Golbraikh A, Shen M, Xiao ZY et al. (2003) Rational selection of training and test sets for the
development of validated QSAR models. J Comput Aid Mol Des 17:241–253

80. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive
QSAR models. QSAR Comb Sci 25:235–251



Chemometric Methods 363

81. Sjostrom M, Eriksson L (1995) Chemometric methods in molecular design. van de Waterbeend H
(ed) Vol. 2. VCH, New York, p 63

82. Marengo E, Todeschini R (1992) A new algorithm for optimal, distance-based experimental-
design. Chemom Int Lab Syst 16:37–44

83. Gramatica P (2004) Evaluation of different statistical approaches to the validation of quanti-
tative structure-activity relationships. http://ecb.jrc.it/DOCUMENTS/QSAR/Report_on_QSAR_
validation_methods.pdf Accessed April 2008

84. Gramatica P (2007) Principles of QSAR models validation: Internal and external. QSAR Comb
Sci 26:694–701

85. Kahn I, Fara D, Karelson M et al. (2005) QSPR treatment of the soil sorption coefficients of
organic pollutants. J Chem Inf Model 45:94–105

86. Todeschini R, Gramatica P, Provenzani R et al. (1995) Weighted holistic invariant molecular
descriptors. 2. Theory development and applications on modeling physicochemical properties of
polyaromatic hydrocarbons. Chemom Int Lab Syst 27:221–229

87. Chiorboli C, Gramatica P, Piazza R et al. (1997) 3D-modelling and prediction by WHIM descrip-
tors. Part 7. Physico-chemical properties of haloaromatics: Comparison between WHIM and
topological descriptors. SAR QSAR Environ Res 7:133–150

88. Gramatica P, Navas N, Todeschini R (1998) 3D-modelling and prediction by WHIM descriptors.
Part 9. Chromatographic relative retention time and physico-chemical properties of polychlori-
nated biphenyls (PCBs). Chemom Int Lab Syst 40:53–63

89. Todeschini R, Vighi M, Finizio A et al. (1997) 3D-modelling and prediction by WHIM descriptors.
Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI
and 3D-WHIM descriptors. SAR QSAR Environ Res 7:173–193

90. Todeschini R, Gramatica P (1997) The WHIM theory: New 3D-molecular descriptors for QSAR
in environmental modelling. SAR QSAR Environ Res 7:89–115

91. Todeschini R, Gramatica P (1998) 3D-QSAR in drug design. Kubiny H, Folkers G, Martin YC
(eds) vol. 2. KLUWER/ESCOM, Dordrecht, p 355

92. Gramatica P (2006) WHIM descriptors of shape. QSAR Comb Sci 25:327–332
93. Patel H, Cronin MTD (2001) A novel index for the description of molecular linearity. J Chem Inf

Comput Sci 41:1228–1236
94. Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity – a review. QSAR

Comb Sci 22:1006–1026
95. Gramatica P, Navas N, Todeschini R (1999) Classification of organic solvents and modelling

of their physico-chemical properties by chemometric methods using different sets of molecular
descriptors. TRAC 18:461–471

96. Gramatica P, Corradi M, Consonni V (2000) Modelling and prediction of soil sorption coefficients
of non-ionic organic pesticides by molecular descriptors. Chemosphere 41:763–777

97. Sabljic A, Gusten H, Verhaar H et al. (1995) QSAR modeling of soil sorption – improvements and
systematics of Log Koc vs Log Kow correlations. Chemosphere 31:4489–4514

98. Gawlik BM, Sotiriou N, Feicht EA et al. (1997) Alternatives for the determination of the
soil adsorption coefficient, Koc, of non-ionicorganic compounds – a review. Chemosphere 34:
2525–2551

99. Doucette WJ (2003) Quantitative structure–activity relationships for predicting soil-sediment
sorption coefficients for organic chemicals. Environ Toxicol Chem 22:1771–1788

100. Tao S, Piao HS, Dawson R et al. (1999) Estimation of organic carbon normalized sorption
coefficient (Koc) for soils using the fragment constant method. Environ Sci Technol 33:2719–2725

101. Huuskonen J (2003) Prediction of soil sorption coefficient of a diverse set of organic chemicals
from molecular structure. J Chem Inf Comput Sci 43:1457–1462

102. Huuskonen J (2003) Prediction of soil sorption coefficient of organic pesticides from the atom-type
electrotopological state indices. Environ Toxicol Chem 22:816–820



364 P. Gramatica

103. Andersson PL, Maran U, Fara D et al. (2002) General and class specific models for prediction of

soil sorption using various physicochemical descriptors. J Chem Inf Comput Sci 42:1450–1459

104. Delgrado EJ, Alderete JB, Gonzalo AJ (2003) A simple QSPR model for predicting soil sorp-

tion coefficients of polar and nonpolar organic compounds from molecular formula. J Chem Inf

Comput Sci 43:1928–1932

105. EPI Suite. Ver. 3.12 (2000) Environmental Protection Agency, USA http://www.epa.gov/opptintr/

exposure/docs/EPISuitedl.htm. Accessed 9 February 2007

106. Gramatica P, Consonni V, Todeschini R (1999) QSAR study on the tropospheric degradation of

organic compounds. Chemosphere 38:1371–1378

107. Atkinson R (1987) A structure-activity relationship for the estimation of rate constants for the

gas-phase reactions of OH radicals with organic compounds. Int J Chem Kinet 19:799–828

108. Sabljic A, Gusten H (1990) Predicting the nighttime NO3 radical reactivity in the troposphere.

Atmos Environ A-General Topics 24:73–78

109. Müller M, Klein W (1991) Estimating atmospheric degradation processes by SARS. Sci Total

Environ 109:261–273

110. Medven Z, Gusten H, Sabljic A (1996) Comparative QSAR study on hydroxyl radical reactivity

with unsaturated hydrocarbons: PLS versus MLR. J Chemom 10:135–147

111. Klamt A (1996) Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds

based on molecular orbital calculations. Chemosphere 32:717–726

112. Bakken G, Jurs PC (1999) Prediction of hydroxyl radical rate constants from molecular structure.

J Chem Inf Comput Sci 39:1064–1075

113. Güsten H (1999) Predicting the abiotic degradability of organic pollutants in the troposphere.

Chemosphere 38:1361–1370

114. Pompe M, Veber M (2001) Prediction of rate constants for the reaction of O-3 with different

organic compounds. Atmos Environ 35:3781–3788

115. Meylan WM, Howard PH (2003) A review of quantitative structure–activity relationship meth-

ods for the prediction of atmospheric oxidation of organic chemicals. Environ Toxicol Chem 22:

1724–1732

116. Pompe M, Veber M, Randic M et al. (2004) Using variable and fixed topological indices for

the prediction of reaction rate constants of volatile unsaturated hydrocarbons with OH radicals.

Molecules 9:1160–1176

117. Oberg T (2005) A QSAR for the hydroxyl radical reaction rate constant: Validation, domain of

application, and prediction. Atmos Environ 39:2189–2200

118. AOPWIN. Ver. 1.90 (2000) Environmental Protection Agency, USA

119. Devillers J, Bintein S, Domine D (1996) Comparison of BCF models based on log P. Chemosphere

33:1047–1065

120. Meylan WM, Howard PH, Boethling RS et al. (1999) Improved method for estimating biocon-

centration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem

18:664–672

121. Lu XX, Tao S, Hu HY et al. (2000) Estimation of bioconcentration factors of nonionic organic

compounds in fish by molecular connectivity indices and polarity correction factors. Chemosphere

41:1675–1688

122. Dearden JC, Shinnawei NM (2004) Improved prediction of fish bioconcentration factor of

hydrophobic chemicals. SAR QSAR Environ Res 15:449–455

123. Dimitrov S, Dimitrova N, Parkerton T et al. (2005) Base-line model for identifying the bioaccu-

mulation potential of chemicals. SAR QSAR Environ Res 16:531–554

124. Zhao CY, Boriani E, Chana A et al. (2008) A new hybrid system of QSAR models for predicting

bioconcentration factors (BCF). Chemosphere 73:1701–1707



Chemometric Methods 365

125. Todeschini R, Vighi M, Provenzani R et al. (1996) Modeling and prediction by using
WHIM descriptors in QSAR studies: Toxicity of heterogeneous chemicals on Daphnia magna.
Chemosphere 32:1527–1545

126. Gramatica P, Vighi M, Consolaro F et al. (2001) QSAR approach for the selection of congeneric
compounds with a similar toxicological mode of action. Chemosphere 42:873–883

127. Benigni R, Giuliani A, Franke R et al. (2000) Quantitative structure–activity relationships of
mutagenic and carcinogenic aromatic amines. Chem Rev 100:3697–3714

128. Gramatica P, Papa E, Marrocchi A et al. (2007) Quantitative structure–activity relationship model-
ing of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic
theoretical molecular descriptors. Ecotoxicol Environ Saf 66:353–361

129. Shi LM, Fang H, Tong W et al. (2001) QSAR models using a large diverse set of estrogens. J
Chem Inf Comput Sci 41:186–195

130. Hong H, Tong W, Fang H et al. (2002) Prediction of estrogen receptor binding for 58,000 chem-
icals using an integrated system of a tree-based model with structural alerts. Environ Health
Perspect 110:29–36

131. Tong W, Fang H, Hong H et al. (2003) Regulatory application of SAR/QSAR for priority setting
of endocrine disruptors: A perspective. Pure Appl Chem 75:2375–2388

132. Tong W, Welsh WJ, Shi LM et al. (2003) Structure–activity relationship approaches and
applications. Environ Toxicol Chem 22:1680–1695

133. Fang H, Tong W, Sheehan DM (2003) QSAR models in receptor-mediated effects: the nuclear
receptor superfamily. J Mol Struct (THEOCHEM) 622:113–125

134. Saliner AG, Amat L, Carbo-Dorca R et al. (2003) Molecular quantum similarity analysis of
estrogenic activity. J Chem Inf Comput Sci 43:1166–1176

135. Saliner AG, Netzeva TI, Worth AP (2006) Prediction of estrogenicity: Validation of a classification
model. SAR QSAR Environ Res 17:195–223

136. Coleman KP, Toscano WA, Wiese TE (2003) QSAR models of the in vitro estrogen activity of
bisphenol A analogs. QSAR Comb Sci 22:78–88

137. Roncaglioni A, Novic M, Vracko M et al. (2004) Classification of potential endocrine disrupters
on the basis of molecular structure using a nonlinear modeling method. J Chem Inf Comput Sci
44:300–309

138. Asikainen A, Ruuskanen J, Tuppurainen K (2003) Spectroscopic QSAR methods and self-
organizing molecular field analysis for relating molecular structure and estrogenic activity. J Chem
Inf Comput Sci 43:1974–1981

139. Asikainen A, Kolehmainen M, Ruuskanen J et al. (2006) Structure-based classification of active
and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere
62:658–673

140. Devillers D, Marchand-Geneste N, Carpy A et al. (2006) SAR and QSAR modeling of endocrine
disruptors. SAR QSAR Environ Res 17:393–412

141. Roncaglioni A, Benfenati E (2008) In silico-aided prediction of biological properties of chemicals:
Oestrogen receptor-mediated effects. Chem Soc Rev 37:441–450

142. Roncaglioni A, Piclin N, Pintore M et al. (2008) Binary classification models for endocrine
disrupter effects mediated through the estrogen receptor. SAR QSAR Environ Res 19:697–733

143. Kuiper GG, Lemmen JG, Carlsson B et al. (1998) Interaction of estrogenic chemicals and
phytoestrogens with estrogen receptor ß. Endocrinology 139:4252–4263

144. Liu H, Yao X, Gramatica P (2009) The applications of machine learning algorithms in the model-
ing of estrogen-like chemicals. Comb Chem High Throughput Screen (special issue on “Machine
learning for virtual screening) 12(5) (in press)

145. Joliffe IT (1986) Principal component analysis. Springer-Verlag, New York 490–496
146. Jackson JE (1991) A user’s guide to principal components. John Wiley & Sons, New York



366 P. Gramatica

147. Gramatica P, Consolaro F, Pozzi S (2001) QSAR approach to POPs screening for atmospheric
persistence. Chemosphere 43:655–664

148. Papa E, Gramatica P (2005) PBTs screening by multivariate analysis and QSAR modeling
platform presented at 10th EuCheMS-DLE Intern. Conf., Rimini, Italy

149. Papa E, Gramatica P (2006) Structurally-based PBT profiler: The PBT index from molecular
structure. Presented at 16th Annual Meeting SETAC-Europe, The Hague, Holland.

150. Vighi M, Gramatica P, Consolaro F et al. (2001) QSAR and chemometric approaches for setting
water quality objectives for dangerous chemicals. Ecotoxicol Environ Saf 49:206–220

151. Papa E, Castiglioni S, Gramatica P et al. (2004) Screening the leaching tendency of pesticides
applied in the Amu Darya Basin (Uzbekistan). Water Res 38:3485–3494

152. UNEP (2001) Stockholm convention on persistent organic pollutants. United Nations
Environmental Program, Geneva, Switzerland. http://www.pops.int. Accessed 9 February 2007


	12 Chemometric Methods and Theoretical Molecular Descriptors in Predictive QSAR Modeling of the Environmental Behavior of Organic Pollutants
	12.1 Introduction
	12.2 A Defined Endpoint (OECD Principle 1)
	12.3 An Unambiguous Algorithm (OECD Principle 2)
	12.3.1.Chemometric Methods
	12.4.1.1 Regression Models
	12.4.1.2 Classification Models

	12.3.2.Theoretical Molecular Descriptors
	12.3.3.Variable Selection and Reduction. The Genetic Algorithm Strategy for Variable Selection

	12.4 Applicability Domain (OECD Principle 3)
	12.5 Model Validation for Predictivity (OECD Principle 4)
	12.5.1.Splitting of the Data Set for the Construction of an External Prediction Set
	12.5.2.Internal and External Validation
	12.5.3.Validation of Classification Models

	12.6 Molecular Descriptor Interpretation, If Possible (OECD Principle 5)
	12.7 Environmental Single Endpoints
	12.7.1.Physico-chemical Properties
	12.8.1.1 Soil Sorption of Pesticides

	12.7.2.Tropospheric Reactivity of Volatile Organic Compounds with Oxidants
	12.7.3.Biological Endpoints
	12.8.3.1 Bioconcentration Factor
	12.8.3.2 Toxicity


	12.8 Modeling More than a Single Endpoint
	12.8.1.PC Scores as New Endpoints: Ranking Indexes
	12.8.2.Multivariate Explorative Methods
	12.9.2.1 Principal Component Analysis
	12.9.2.2 QSAR Modeling of Ranking Indexes


	12.9 Conclusions
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




