
Chapter 8
Timing-Error Tolerant NoC Design

With technology scaling, the device characteristics fluctuate to a large extent due
to process variations and can cause significant variations in wire delay [122]. Wire
delay is also affected by other forms of interference such as supply bounce, trans-
mission line effects, etc. [123, 124]. As such delay variations can affect multiple bits
simultaneously, special mechanisms are needed to handle timing errors. In this chap-
ter, we present T-error, a timing-error tolerant mechanism to make the interconnect
resilient against timing errors arising due to such delay variations on wires.1

Current NoC design methodologies are based on a worst-case design approach
that considers all the delay variations that can possibly occur due to the various noise
sources and environmental effects and targets a safe operation of the system under
all conditions. The system state is considered safe if there are no timing violations
for all operating conditions and in the presence of the various noise sources. Such
a conservative design approach targets timing error free operation of the system.
In Razor [113, 114], an aggressive, better than worst-case design approach was pre-
sented for processor pipelines. In such a design, the voltage margins that traditional
methodologies require are eliminated and the system is designed to dynamically
detect and correct circuit timing errors that may occur when the worst-case noise
variations occur. Dynamic Voltage Scaling (DVS) is used along with the aggressive
design methodology, allowing the system to operate robustly with minimum power
consumption.

The proposed T -error methods are used to aggressively design the NoC compo-
nents (switches, links, and NIs) to support higher operating frequencies than designs
based on conservative approaches. Aggressive design of the communication archi-
tecture has several implications when compared to the design of processor pipelines.
First, the hardware overhead required to recover from timing errors can be mini-
mized by smart utilization of the buffering resources available in the NoC. Second,
the error recovery penalty can be mostly hidden under the network operation, so
that large performance benefits can be obtained. Finally, the switches, NIs should
be redesigned to handle errors, as they may receive a wrong piece of data before the
right one.

In many SoCs, Dynamic Frequency Scaling (DFS) and Dynamic Power Man-
agement (DPM) policies are used to reduce the operating power of the SoC [55].
In such systems, at the application level, the voltage and frequency of the compo-
nents are selected to match the performance level of the application. The NoC can
also be dynamically tuned at runtime. When a communication-intensive application

1We would to acknowledge the contributions of Rutuparna Tamhankar, Stergios Stergiou, Antonio
Pullini, Dr. Federico Angiolini, Prof. Luca Benini, and Prof. Giovanni De Micheli.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

117

118 8 Timing-Error Tolerant NoC Design

requires fast execution, the NoC can be over-clocked to higher operating frequen-
cies. When an application does not require a fast NoC, the frequency of the NoC
can be lowered to reduce the power consumption of the system. Unlike many of the
earlier works [113], where the system’s error rate is constantly monitored to tune
the voltage or frequency, we envision that the T-error based NoCs to be utilized
in systems with application-level DFS/DPM policies. Thus, complex network error
rate monitoring controllers are not needed in the design. Moreover, the large delay
incurred to change the frequency/voltage to reduce errors is avoided. The required
voltage and frequency parameters of the network for the different applications can
be stored in programmable registers or memories and can be accessed by the op-
erating system upon task switches among the applications that are running on the
SoC.

In this context, we distinguish two possible operating modes for the NoC: normal
mode and over-clocked mode. In normal mode, the NoC operates at frequencies less
than or equal to the frequency of a conservative design. Under over-clocked mode,
the frequency of operation can be higher than that of the traditional design. The NoC
under the over-clocked mode incurs some penalty for error resiliency, even when
there are no errors in the system (this is explained in detail in Section 8.4.2). Under
normal mode, the NoC does not need to encounter the additional error resiliency
penalty, as it operates at a safe operating frequency. To remove any additional over-
heads when in normal mode, we present a way to dynamically configure the NoC
between the normal and over-clocked modes of operation at the application level.

The T-error scheme for a NoC link is presented in [137]. In this work, we present
two robust link design methods. In the first scheme, link buffers are efficiently uti-
lized, so that error resiliency is achieved without much additional hardware over-
head. In the second scheme, more hardware resources are used to achieve higher
performance. The two link schemes have the same timing relation and logic inter-
pretation of control signals from/to the switch. The two schemes can be used in a
plug-and-play fashion by the designer to suit the application and NoC architecture
characteristics. We integrate the link designs with NoC flow control and present
T-error schemes for switches/NIs.

We developed cycle-accurate SystemC models of the T-error based switches,
links, and NIs and integrated them onto the ×pipes NoC architecture. Functional
SystemC simulations on several benchmark applications have been carried out. De-
tailed case studies of the T-error design and comparisons with the traditional mech-
anisms are presented. Experiments show large performance improvements (up to
33% reduction in communication delay) for the benchmark applications for the ag-
gressive NoC design methodologies, when compared to traditional design method-
ologies. The application of DVS/DFS techniques result in 57% reduction in the NoC
power consumption when compared to traditional design approaches.

8.1 The Double Sampling Technique

In most NoC realizations, when errors are detected, corrupted packets are re-
transmitted. Unfortunately, retransmissions incur significant performance penal-

8 Timing-Error Tolerant NoC Design 119

Fig. 8.1 Double data
sampling technique

Fig. 8.2 Phase shift between
clocks

ties [130]. Moreover, timing delay variations occurring due to higher operating fre-
quencies can potentially affect multiple data bits in a packet, requiring complex
multibit error detecting/correcting codes that may be impractical to use [130].

To recover from timing errors in a digital system, double data sampling tech-
niques have been proposed and used by several researchers [113–120]. In such dou-
ble sampling schemes, each pipeline flip-flop in the design (called main flip-flop)
is augmented with an additional latch/flip-flop (called delayed flip-flop), as shown
in Figure 8.1. Both the main and the delayed flip-flops have the same frequency
of operation. However, the clock to the delayed flip-flop has a phase shift from the
clock to the main flip-flop and it samples data at delayed clock edge, as shown in
Figure 8.2.

Thus, data sampled by the delayed flip-flop has more time to settle, compared
to the main flip-flop. The delayed clock is usually generated locally at the pipeline
stage from the main clock using an inverter chain (delay element). After that the
delayed flip-flop has sampled data, the values of the two flip-flops are compared
through an EXOR gate; if there is any difference, data from the delayed flip-flop is
assumed to be correct and is resent through the main flip-flop in the next clock cycle.
The control circuitry also sends flow control signals to the pipeline stages before and
after the stage where the error occurred, so that they can recover from the error.

Let us consider a bit-line of a NoC link with one pipeline stage, where the
pipeline flip-flop (main flip-flop) is augmented with a delayed flip-flop. Let the max-
imum safe operating frequency of the link for the original design (without using any
double-sampling technique) be 1 GHz. If the double sampling technique is used,
we can have a higher frequency of operation, as the link no longer needs to have
safe operation at the main flip-flop. As an example, if the delay or phase shift be-
tween the clocks to the main and delayed flip-flops (φ/(clock period) in Figure 8.2)
is 50%, the delayed flip-flop will sample the right data even when the link operates
at 1.5 GHz. Even though the main flip-flop may incur timing errors, we can recover
the right data from the delayed flip-flop.

120 8 Timing-Error Tolerant NoC Design

Note that higher operating frequency can also be achieved by having a deeper
pipeline in the NoC components. However, there are several advantages in using the
T-error based design than having a deeper pipeline:

1. When the NoC is operating in the normal mode, a deeper pipeline depth will
result in a fixed increase in latency across the link, while in the T-error based
scheme, this latency is avoided (in fact, T-error design can be viewed as a way to
dynamically change the pipeline depth of the NoC components).

2. As the traditional design frequency is conservative, even in the over-clocked
mode the errors introduced due to over-clocking may not be substantial. Thus,
the T-error design can achieve the same frequency of a deeply pipelined design
with a lower latency for the average case. This is because, in the T-error design,
the pipeline depth changes dynamically according to the error rate, while the
deeply pipelined design always incurs a high latency.

3. Significant redesign, verification, and timing validation of switches and NIs are
needed to increase the pipeline depth, while the T-error design can be incorpo-
rated with lower design efforts. The normal FIFOs used in the links, switches
and NIs need to be replaced by the T-error FIFOs, which can be designed and
used as library elements.

4. T-error can always be used as an add-on to a deeply pipelined NoC system to
improve the operating frequency of the system.

In this work, we present methods that address only the timing delay variations
on the NoC that are introduced due to over-clocking. Coping with other kind of
errors (such as soft errors, capacitive coupling based cross-talk, data upsets, etc.)
is assumed to be done by means of existing techniques (such as [126–135]). By
operating the NoC at higher frequencies, the effect of these errors on the system
may vary and we assume that the techniques used to address them are designed to
handle the maximum over-clocked frequency of operation.

8.2 Using Links as a Storage Medium

Flow control is needed in networks to support full throughput operation. Specifi-
cally, it is needed to ensure that enough buffering is available at each switch to store
the incoming data and the available buffers are utilized efficiently. In traditional de-
signs, queuing buffers are either located at the inputs (input-queued switches) or at
the outputs (output-queued switches). In some switches, the buffers can be located
at both the inputs and the outputs to improve the performance of the NoC [94].
A credit-based or on/off flow control mechanism is typically used to manage the
input buffers of the switch. In such designs, for maximum network throughput, the
number of queuing buffers needed at each input of the switch should be at least
2N + 1 flits [94], where N is the number of cycles needed to cross the link between
adjacent switches. This is because in credit-based flow control, it takes at least 1 cy-
cle to generate a credit, N cycles for the credit to reach the preceding switch, and
N cycles for a flit to reach the switch from the preceding switch [94]. To support

8 Timing-Error Tolerant NoC Design 121

Fig. 8.3 Input queued switch

Fig. 8.4 Modified link
design with 3 stages

Fig. 8.5 Entry 3 buffered in
secondary flip-flop

link pipelining, there need to be N − 1 pipeline buffers on each bit-line of the link
connecting the switches. Thus, effectively we need 3N flit-buffers for each input of
the switch/link (Figure 8.3).

In [70], the use of relay stations and link-level flow control has been presented.
In such a scheme, each pipeline flip-flop on the link is replaced by a 2-entry FIFO
and a link-level flow control is used to ensure full throughput operation. We utilize
such links for the NoC architecture. In the NoC architecture, the switch input buffers
are also replaced by a 2-entry FIFO. Figure 8.4 shows a 3-stage link pipeline using
2-entry FIFO at each pipeline stage (N = 4, as it takes 1 more cycle to reach the
receiver from the last pipeline stage of the link). The scheme has two control signals
(stall and valid) transmitted between sender, receiver, and the link pipeline stages.
The stall signal is sent by the receiver and flows in the opposite direction to that
of the data, while the valid signal is driven by the sender and it flows in the same
direction as that of the data. The sender or receiver may be a switch or a network
interface. The receiver generates a stall signal when its storage capacity is full or
if it receives a stall request from the following stage. The valid signal informs that
the data which was received in the previous cycle (at the previous rising edge of
clock ck) is valid. During normal operation (i.e., when there is no stall request),
only one of the flip-flops in the 2-entry FIFO is used, as shown in Figure 8.4. When
a stall signal is received by the 2-entry FIFO (shown in Figure 8.5), the data on
output of the main flip-flop is stalled and the new data is received by the secondary
flip-flop. The stall signal is propagated to the previous stage, as shown in Figure 8.6.
The schematic of the 2-entry FIFO is shown in Figure 8.7.

This flow control mechanism ensures full throughput operation with performance
similar to that of input-queued switches with credit-based or on/off flow control. As
previously shown, in traditional input-queued schemes (Figure 8.3), the total num-
ber of buffers needed for maximum throughput is 3N , as compared to only 2N

122 8 Timing-Error Tolerant NoC Design

Fig. 8.6 The stall signal
propagated to previous stage

Fig. 8.7 A 2-entry FIFO.
The control circuit is
common for all the bit lines

Fig. 8.8 Modified link and
switch design

buffers (2 × (N − 1) along the link and 2 at the switch input) in this scheme (Fig-
ure 8.8). The traditional input-queued design has one flip-flop at each link pipeline
stage. In the stall/valid protocol, it takes one clock cycle for the stall signal to reach
the preceding pipeline stage. During this time, the data which is in transit from
the preceding pipeline stage cannot be stored when it reaches the current pipeline
stage. Thus, for full throughput operation in such a scheme, the link flip-flops are
not used for queuing data, and instead data is queued at the input of the next switch.
By augmenting the link pipeline stage with one more flip-flop, the full throughput
operation is achieved. As we also utilize the pipeline flip-flops, the scheme leads
to reduced buffering requirements. As the link buffering scheme can be viewed as
merely spreading the FIFO buffers of the switch inputs onto the links, it maintains
the same deadlock and livelock properties of a design with input-queued switches.
Moreover, as all the inputs of a switch have same buffer count in the link-buffer
scheme, the switch design becomes more modular, when compared to the tradi-
tional switch design. Note that the control circuit used at a link pipeline stage in this
scheme is common for all the w data bits in a flit of the NoC, and thus the overall
cost of the control circuit is negligible.

8 Timing-Error Tolerant NoC Design 123

8.3 T-error Link Designs

In this section, we present two link designs to support timing error tolerant oper-
ation needed for over-clocking the links. The first design reuses the link FIFO for
error recovery with very little hardware overhead (the overhead is only for the con-
trol circuitry). This scheme, in the worst case, can incur a 1-cycle penalty for each
error occurrence at a pipeline stage. In the second link design scheme, the 2-entry
FIFOs are augmented with an additional flip-flop. The resulting design is a high-
performance link that incurs a 1-cycle penalty only for the first occurrence of an
error for a continuous stream of data at each pipeline stage. The design is such that
all subsequent errors are automatically resolved.

8.3.1 Scheme 1: Low overhead T-error Links

In the T-error scheme, the 2-entry FIFOs along the links are modified to support
timing error tolerant operation. The modified FIFO structure is shown in Figure 8.9.
The second flip-flop of the FIFO is clocked at a delayed clock (ckd) compared to
the clock ck of the main flip-flop. ckd and ck, however, feature the same period.
The phase shift among them is configured after proper delay analysis, as will be
discussed later.

The incoming data is sampled twice, once by the main flip-flop (at time instant
t0 in Figure 8.11) and then by the delayed flip-flop (at time instant t1). There are
two modes of operation at each pipeline stage of the link: main mode and delayed
mode. Initially all the pipeline FIFOs are set to the main mode and data transmission
begins. In every cycle, at the clock edge ck, the main flip-flop captures and transmits
the incoming data. At clock edge ckd, the delayed flip-flop captures the incoming
data and the error detection control circuit checks whether there is any difference
between the main and the delayed flip-flop values. As shown in Figure 8.9, an EXOR
gate is connected to the outputs of the main flip-flop and delayed flip-flop to detect
a timing error. The err signals of all w bits of the flit (vertically across the width
of the link) at a pipeline stage are ORed and fed as an input to the control circuit.

Fig. 8.9 Low overhead
T -error buffer

124 8 Timing-Error Tolerant NoC Design

Fig. 8.10 Control circuit for
scheme 1

Fig. 8.11 Waveforms for scheme 1

Thus, a timing error in any bit of the flit causes the entire flit to be resampled at the
pipeline stage. The control circuit at each pipeline stage, which is common for all
the bit-lines of the link, is presented in Figure 8.10.

If there is an error in the data sampled by the main flip-flop, the data that was
transmitted at clock edge ck is incorrect. The correct data from the delayed flip-flop
is sent at the next clock edge (at time instant t2). Whenever a timing error occurs
(i.e., err signal is set to one), a stall signal is sent to the previous stage such that the
previous stage is stalled for one cycle. Also, a valid signal is sent to the following
stage, informing that the data sent in the previous cycle was nonvalid.

A FIFO at a pipeline stage of the link enters the delayed mode when a stall
signal from the next stage causes queuing of data at the FIFO. The stall signal can
be issued to handle regular congestion, that is as a flow control wire, or to let the
downstream stage sort out an error condition. When a FIFO is in delayed mode,
all timing errors are automatically avoided, as the incoming data is always sampled
through the delayed flip-flop. Thus, in networks with severe congestion, most timing
errors are automatically avoided. Examples of operation of the FIFOs for a network
with no congestion and with congestion are presented in Figures 8.12 and 8.13.
In the network with no congestion, at each pipeline stage, data is always directly

8 Timing-Error Tolerant NoC Design 125

Fig. 8.12 Network operation without congestion. The data in the FIFOs at time instances t and
(t + 1) are presented in (a) and (b)

Fig. 8.13 Network operation under congestion. The data in the FIFOs at time instances t and
(t + 1) are presented in (a) and (b)

sampled by the main flip-flop and sent out by it. In the network with congestion, the
data from the preceding pipeline stage is always captured by the delayed flip-flop
at the current pipeline stage, and later sent out by the main flip-flop. Since data is
always sent at ck from the preceding stage and sampled at ckd in the current stage,

126 8 Timing-Error Tolerant NoC Design

the wire transitions have more than one clock period to settle, and thus timing errors
are automatically avoided. In the worst case, if the FIFO always operates in the main
mode, each timing error occurrence will incur one clock cycle penalty for recovery.

However, in the worst case, when there is no congestion and the FIFO always
tries to operate in main mode, each timing error occurrence incurs 1 clock cycle
penalty for recovery. The link stage switches from main mode to delayed mode and
back for each faulty piece of data. Detailed performance analysis of this scheme and
comparison with the next link design scheme for several benchmark applications is
presented in Section 8.6.6.

The amount of timing delay that is tolerated by the T-error design depends on
the phase shift between the clocks of the main and the delayed flip-flops. This shift
should be as large as possible, so that the delayed flip-flop is guaranteed to sample
the right data and to provide correct system operation. However, the maximum shift
is constrained by internal repeater delays (the error detection logic must operate be-
tween a ckd edge and the following ck edge). Detailed timing analysis and SPICE
simulations (for a link size of 32 bits) showed that clock ckd can be delayed by
53.3% of the clock period with respect to ck. In this work, we assume that a max-
imum delay of 50% of the clock is tolerable with a T-error enabled system. Thus,
the delayed clock ckd is just the inverted value of the main clock, and delay chains
are not needed to generate it. At the same time, the maximum delay which is toler-
ated on a wire is 150% of the clock period, providing ample margin for timing error
correction. In the T-error scheme, metastability conditions may occur and are cor-
rected using efficient transistor-level implementation of the FIFO circuit, which are
presented in [137]. The control lines (stall, valid) that need to have error-free opera-
tion can be made robust using a variety of methods (such as using wider metal lines,
shielding). We refer the interested reader to [137] for transistor-level implementa-
tion details, timing analysis, and SPICE simulation results of the T-error scheme.

8.3.2 Scheme 2: High-Performance T-error Links

The performance of the above link design can be improved by having an additional
flip-flop to store incoming data whenever a stall is encountered. A 3-entry FIFO,
instead of the 2-entry FIFO previously described, is used in this scheme (refer to
Figures 8.14 and 8.15). The third flip-flop, called auxiliary flip-flop, is added in
series to the delayed and main flip-flops; it also samples data on rising edges of
the delayed clock ckd. The operation is similar to the above design, except that
for a continuous stream of data, even if all incoming pieces of data were to be
corrupted, only a single 1-cycle penalty would incurred to correct timing errors
at a pipeline stage. This is because the FIFO enters the delayed mode upon the
first error occurrence; once in this mode, all subsequent pieces of data are sampled
through the delayed and auxiliary flip-flops, making them automatically error free.
The presence of the auxiliary flip-flop lets the link stage continue operating even
upon fault occurrences; the sender does not perceive any interruption in data flow.

8 Timing-Error Tolerant NoC Design 127

Fig. 8.14 Schematic for scheme 2

Fig. 8.15 Control circuit for scheme 2

Fig. 8.16 Example of 3-entry FIFO operation where for a continuous stream of data, an error
occurrence at a pipeline stage causes further errors to be automatically avoided at that stage

128 8 Timing-Error Tolerant NoC Design

Only at the end of the whole data stream, the stage empties and switches back to
main mode. An example is presented in Figure 8.16. Note that even in absence of
timing errors, the auxiliary flip-flops can still improve general system performance,
as they also behave as queuing buffers to minimize congestion-related penalties.

8.4 Aggressive Switch/NI Design

In this section, we describe the changes needed in the basic architecture to support
the over-clocked mode of operation. The ×pipes NI is composed of two modules:
a front-end interface with the cores and a back-end interface with the switches and
links. The NI back-end is the only part that needs to support NoC over-clocking.
Since its architecture is similar to that of the switches, we describe only the changes
required in the switches.

There are two changes required in the switches to support NoC over-clocking.
The first is that the switches should also be able to operate at higher frequencies
to utilize the faster links. The other is that the switches should be able to handle
the data from the links that may have timing errors. A NoC switch, as shown in
Figure 8.8, consists of input buffers, allocator/arbiter, crossbar and output buffers.
In the link based flow-control, there is a two entry FIFO at the input of the switch,
which can be made timing-error tolerant, similar to the link FIFO T-error schemes
presented in the previous section. The switch design changes will now be presented.

8.4.1 Output Buffer Changes

In an input-queued switch, normally a single register is used at each output to store
data, before sending the data onto the links. Note that in some designs, the output
buffer can be taken to be part of the link design, depending on the targeted operating
frequency of the switch. In some other cases, more than one buffer may be used at
each output, so that the performance of the NoC can be improved. In the ×pipes
architecture, the number of buffers at the output is a parameter that can be configured
by the user according to his or her application needs.

As a starting point, the architecture of a ×pipes switch with a single output buffer
is shown in Figure 8.8. The ×pipes switch already supports distributed buffering
along the links. In this architecture, the switch has a latency of 2 cycles for data
transfers. There are two sets of flip-flops in the switch that may cause timing vi-
olations when over-clocked: output buffers and flip-flops that are used to maintain
the allocator/arbiter states. From synthesis of the ×pipes architecture, we found the
operating frequency of the original switch to be 1 GHz. The path from the input of
the switch to the state flip-flops was 0.4 ns, while the critical path was from the input
to the output (which also samples the arbiter/allocator states). With over-clocking,
we target a 1.5× increase in frequency (i.e., 1.5 GHz operating frequency) of the

8 Timing-Error Tolerant NoC Design 129

Fig. 8.17 Over-clocked
switch design with output and
input buffer changes

switches. Therefore, we found that the state flip-flops are safe even under over-
clocking, since the available cycle time is 0.66 ns, and that only the output buffers
need to be made timing error tolerant. Note that in other switch architectures, if the
state flip-flops are not safe when over-clocked, they should be T-error enabled as
well. Otherwise, the amount of over-clocking will be limited by them. Also, if the
switch has more pipeline stages, the T-error principle needs to be applied to each
pipeline stage.

In order to over-clock the switch, we apply the T-error design to the head flip-flop
of the output FIFO and the other flip-flops in the output FIFO are made to sample
data at ckd. Figure 8.17 shows the changes in the output buffer of the switch. Note
that errors can occur only when the data is sampled through the head of the FIFO
and when the NoC operates in the over-clocked mode.

8.4.2 Input Buffer Changes

When timing errors occur at a link pipeline stage, wrong data can reach the switch
input before the correct data is received. If the switch samples wrong data, several
complications can arise. As an example, timing errors on the routing fields of the
header flit may result in misrouting a packet. In order for the switch to handle data
errors, there are several cases to be considered and recovering the switch state from
such cases require complex hardware and control circuits [94]. Another way to de-
tect wrong data at the switch input is to use some error detecting code (such as
cyclic redundancy check) for each flit of the packet. However, in the over-clocked
mode, all the bits of the data could encounter timing errors and such schemes may
be inefficient. Thus, to simplify the switch hardware, we use a look-ahead stage at
the input of the switch that ensures that correct data is always fed to the internal
switch logic (see again Figure 8.17). The look-ahead stage stores an incoming flit
for one clock cycle, i.e., until the valid line indicates whether the received data was
correct or not. In case of correct reception, data is fed to the switch arbiter/allocator.
Otherwise, it is discarded by the look-ahead stage. Note that even when there are no
errors occurring in the system, a latency penalty could arise from insertion of the
look-ahead buffers, unless properly tackled, as explained in the next section.

130 8 Timing-Error Tolerant NoC Design

8.5 Dynamic Configuration of the NoC

When the frequency of the NoC is varied based upon DFS/DPM techniques, the
NoC may operate at frequencies lower than or equal to the conservative design
frequency. In such a normal operating mode, the error resiliency penalty due to
T-error needs to be completely hidden. The T-error mechanism at the link FIFO and
the switch/NI output buffers incur error resilience penalty only when an error oc-
curs. Thus, they dynamically adjust to the errors happening in the system. However,
the look-ahead stage at the input of the switch incurs a 1-cycle penalty even under
the normal operating mode. To avoid this 1-cycle penalty in the normal mode, we
use a global BOOST signal that is issued at the application level by (one or more)
processing cores. A value of BOOST = 1 indicates that the NoC is in over-clocked
mode, while BOOST = 0 indicates normal mode of operation. The BOOST signal
may take several clock cycles (tens of cycles) to spread to all the switches and NIs
in the NoC. The actual transition between the normal and over-clocked modes occur
after the BOOST signal is completely spread around the NoC.

The input buffer control logic is modified such that the look-ahead stage is used
only when BOOST = 1, as shown in Figure 8.18. The transition from the normal
mode to over-clocked mode is smooth in the design, as the look-ahead is started
when the BOOST signal is spread. However, transition from the over-clocked mode
to the normal mode requires special care, as there may be some residual errors in
the NoC. To make a smooth transition dynamically (i.e., without flushing all the
data in the network), we use the following design change. In the T-error NoC, all
residual errors are maintained on the links between the switches, as the switches
always receive the right data due to the look-ahead mechanism. When a transition
to the normal mode occurs, the look-ahead stage is bypassed only when there is no
incoming data from the link. Thus, any data from the output buffer of the switch
or the link that may have residual errors goes through the look-ahead stage, which
ensures that the right data is fed to the switch inputs. As the transitions between
normal and over-clocked modes occur at the application level (which may occur
every tens of thousands of cycles), the performance overhead incurred due to this
dynamic configuration is negligible.

Fig. 8.18 The look ahead
stage at the switch input

8 Timing-Error Tolerant NoC Design 131

8.6 Experimental Results

In this section, we present the simulation case studies for the T-error designs.

8.6.1 Simulation Platform

The simulation platform consists of cycle-accurate SystemC models of the T-error
designs for the switches, links, and NIs, incorporated on the ×pipes architecture.
Functional SystemC simulations were carried out on a variety of application bench-
marks.

8.6.2 Experiments on a Multi-Media Benchmark

We plugged 3 ARM7 processors, 3 private memories (one for each processor), and
3 shared memories for interprocessor communication on the MPARM platform. We
ran functional benchmarks modeling multimedia processing on the general purpose
cores. The benchmarks include heavy synchronization activity through the shared
memories, since they model producer/consumer pipelines of multimedia processing.
The benchmarks create a large number of connections (around 30) between the var-
ious cores. We hand-mapped the application onto two topologies (Figures 8.19(a)
and (b)): a 3×2 mesh topology, with the processors connected to their private mem-
ories using a single switch, and a custom topology with 2 switches. The mappings
were performed such that the most demanding traffic flows traverse fewer switches
in the NoC.

We assume the size of each predesigned processor and memory core to be
2 × 2 mm, typical of today’s small processors and on-chip memories. From the
approximate floorplans of the topologies, we conservatively assume that the links of
the mesh topology have 1 pipeline stage, while those of the custom topology have 2
pipeline stages.

We perform experiments on 3 schemes: a traditional CONServative (CONS) de-
sign approach, a General Double-Sampling (GDS) scheme that is not integrated
with the network flow control (such as presented in the earlier works [113] and
the T-error scheme with 3-stage FIFO presented in this work. From synthesis of the
original ×pipes architecture, the conservative NoC’s maximum operating frequency
is found to be 1 GHz. With 50% delay between the clocks to the main and delayed
flip-flops, the GDS and T-error designs’ maximum frequency (under over-clocked
mode) is assumed to be 1.5 GHz. To evaluate the designs, we define a new metric:
Potential Error-Rate (PER). The PER represents the percentage chance that a flit
reaching a FIFO incurs one or more timing errors if sampled directly on a ck edge.
Note that even if the PER is 100%, the actual errors happening at the T-error FIFO
can be very few, as most of the errors after the first are automatically avoided by

132 8 Timing-Error Tolerant NoC Design

Fig. 8.19 Mesh and custom topology mappings and comparison of traditional schemes with
T-error

the design. This is because in most scenarios, data is sampled first by the delayed
flip-flop and only afterward sent out by the main flip-flop, avoiding all potential er-
rors. For an over-clocked system, the PER value depends on how much the system is
over-clocked, the actual operating conditions of the system (such as effect of process
variations on the FIFO, operating temperature, other noise effects), actual data pat-
terns on the link, etc. As an example, if bus encoding techniques are not used to
reduce the effects of capacitive cross-talk, the conservative design is capable of op-
erating with the worst-case data patterns on the links. In such a case, even at the
highest frequency in the over-clocked mode, if the adversarial switching patterns do

8 Timing-Error Tolerant NoC Design 133

Fig. 8.20 Custom topology
results

not occur on the link, the PER can be 0%. The T-error design dynamically adapts
to all these effects and operates under the entire range of PER values. For simula-
tions, we vary the PER values and we inject potential errors at each T-error FIFO
randomly based on the chosen PER value.

The average packet latency for the mesh and custom topologies for the various
schemes for different PER values are presented in Figures 8.19(c) and 8.20. As we
over-clock only the communication architecture, we compare the schemes based on
the average packet latency for communication, instead of comparing the total appli-
cation run-time. When compared to the traditional conservative design (CONS), the
T-error design results in significant performance improvements. Latency is reduced
by 33.33% in the best case (0% PER) and by 23.42% in the worst case (100% PER).
When compared to the general double sampling scheme (GDS), the T-error scheme
still shows up to 21.2% reduction in latency, as much of the error recover penalty
is hidden under the network operation. When compared to the GDS technique ap-
plied to input-queued switches, the T-error scheme (with 3-stage FIFOs at the links)
also results in 30% reduction in the number of queuing buffers used. In fact, the
3-entry T-error FIFO scheme utilizes 3 × (N − 1) buffers on each link (where N is
the number of cycles needed to traverse the link) and 2 buffers at the switch input,
while the input queued switches with the general double sampling technique needs
2N + 1 buffers at the input of the switch and 2 × (N − 1) buffers on the links (refer
to Section 8.2, where results for 2-entry FIFOs are presented).

To see the impact of the length of the links on the T-error scheme, we simu-
lated the design mapped onto the custom topology with varying number of pipeline
stages on the links. As seen from Figure 8.21, even on significantly long links, the

134 8 Timing-Error Tolerant NoC Design

Fig. 8.21 Effect of pipeline
depth

T-error scheme gives a large improvement in performance when compared to the
conservative design approach.

8.6.3 Effect of Application-Level Power Management

We conducted experiments on the multimedia benchmarks to show the usefulness
of the application-level DPM policies. We model 4 different application scenarios
in the platform: Standard Definition video decoding and display (SD), High De-
finition video decoding and display (HD), Picture-in-Picture Standard Definition
(PiP-SD), and Picture-in-Picture High Definition (PiP-HD). The voltage and fre-
quency of operation of the network was tuned individually for each application. The
power consumption of the network for the various applications when the DPM poli-
cies are used, normalized with respect to that of the base system (where no DPM
policy is used), is presented in Figure 8.22. The use of application level DPM poli-
cies results in an average of 57% reduction in power consumption of the NoC.

8.6.4 Experiments on Other Benchmarks

We performed experiments on the conservative and T-error designs on several other
benchmarks:

8 Timing-Error Tolerant NoC Design 135

Fig. 8.22 Effect of DPM
policies

• Matrix multiplication benchmark suite without shared memory (MAT1)
• Matrix multiplication benchmark suite with shared memory (MAT2)
• Fast Fourier transform benchmark suite using fixed point arithmetic (FFT)
• Quick sort benchmark suite (Qsort)

Many of these benchmarks are application kernels that can be used to inject different
traffic rates onto the NoC and test various aspects of the NoC. We assume the delay
to traverse the links in the NoC to be 2 cycles, i.e., the links have 2 pipeline stages.
We conducted experiments varying the number of processor/memory cores used by
the applications (application partitioning) and topologies of the NoC. For all the
experiments, except for those presented in Section 8.6.6, we use the 3-entry T-error
FIFO design. In Section 8.6.6, we compare the performance of the two T-error link
designs.

In Figures 8.23(a) and (b), the average packet latency (in ns) observed for the
conservative and T-error design for the MAT2 benchmark for read (Figure 8.23(a))
and write transactions (Figure 8.23(b)) is presented. The read transactions require
two way data transfer on the network: a request is sent by the processor and a re-
sponse with the data item is sent back by the memory. The write transactions require
only one way data transfer: the processor sends the data to be written to the mem-
ory. We denote the entire transaction latency for each data word by the average
packet latency metric. Thus, the read transactions incur a higher latency for com-
munication. As seen from the figures, for the MAT2 benchmark, the T-error design
results in a significant performance improvement, with the best case of 28.5% re-
duction in read latency (for 0% PER) and worst-case of 19.6% (for 100% PER).

136 8 Timing-Error Tolerant NoC Design

Fig. 8.23 Performance comparison of conservative and T-error designs for different PER values
for read and write transactions

For the write transactions, the average reduction in latency for the T-error designs
vary from 32.5% (for 0% PER) to 31.1% (for 100% PER). Note that the increase in
latency due to the higher PER values is not overly significant, showing that the T-
error scheme effectively hides much of the error recovery penalty under the network
operation.

The performance of the T-error system for various topologies for the MAT2
benchmark for read and write transactions are presented in Figures 8.23(a)
and 8.24(a). The designs compared vary from small 7-core NoCs to 51-core NoCs
with different application partitioning. The topologies vary from regular (like mesh)

8 Timing-Error Tolerant NoC Design 137

Fig. 8.24 (a) and (b) Performance comparison for various topologies, benchmarks, and (c) Effect
of dynamic NoC configuration

to custom, manually developed ones. As seen from the figures, for all the topologies
for both read and write transactions, the T-error design results in significant perfor-
mance improvement over the conservative design. In Figure 8.24(b), we present the
average packet latencies (averaged across both read and write transactions) for the
designs for several benchmark applications. The average reduction in latency for the
benchmarks for the T-error designs varies from 25.7% (for 0% PER) to 12.7% (for
100% PER).

138 8 Timing-Error Tolerant NoC Design

Fig. 8.25 (a) NoC configuration and (b) Choice of link design schemes

8.6.5 Effect of NoC Configuration

Dynamic configuration of the NoC is designed to avoid any latency penalty for
the switch look-ahead mechanism under the normal mode, where the frequency of
operation is ≤1 GHz. In Figures 8.24(c) and 8.25(a), we present the packet latencies
for the NoC with and without the configuration mechanism for various topologies
and benchmarks. The configuration mechanism results in significant reduction in
packet latency (up to 13.8%) for the applications. This reduction is attributed to two
reasons: one is the reduction in pipeline depth of the NoC (i.e., reduction in the
number of cycles needed to transfer a packet under zero load conditions) and the
other is the fact that congestion in the NoC reduces, as packets spend less time in
the network.

8.6.6 Choice of Link Design Schemes

In Section 8.3, we presented two link design schemes with scheme 1 having very
little hardware overhead and scheme 2 having higher performance. The efficiency
of the schemes depends on the congestion levels in the NoC and the application’s
traffic patterns. For heavily congested NoCs, most of the traffic would be sampled
through the delayed flip-flops in both schemes, resulting in similar performance.
For uncongested networks supporting bursty application traffic, scheme 2 has much
higher performance than the scheme 1 design. These effects are illustrated in Fig-
ure 8.25(b), where the average packet latencies in a mesh network using scheme 1
design are presented. The latency values are normalized with respect to the latency

8 Timing-Error Tolerant NoC Design 139

Table 8.1 Area overhead
Design Area

(mm2)

Base NoC 4.90

T-error scheme 1 NoC 4.95

T-error scheme 2 NoC 5.10

incurred by the scheme 2 design for an uncongested NoC. The traffic pattern is such
that each core injects bursty traffic onto the NoC. For such a bursty traffic pattern,
scheme 2 design has minimum overhead for all congestion levels, while the perfor-
mance of the scheme 1 design depends on the particular congestion level. We varied
the congestion in the network, which is represented in Figure 8.25(b) by the percent-
age of time data is sampled by the delayed flip-flop. As seen, as the congestion in
the network starts to increase, the performance of scheme 1 design approaches that
of the scheme 2 design. The different link design schemes can be used in different
parts of the same NoC if needed, as they have the same interface to the switches/NIs.
Thus, particular links that need higher performance can be designed using scheme 2.

8.6.7 Synthesis Results

Using Synopsys Design Compiler, we synthesized the T-error schemes to get area
estimates of the proposed schemes. For synthesis, we use a UMC 0.13 µm tech-
nology library, a base NoC operating frequency of 1 GHz and an operating voltage
of 1.2 V. Table 8.1 shows the area overhead for the different T-error schemes for
32-bit flit-size for a 5 × 5 mesh NoC. The base NoC area is the sum of the areas of
switches, links, and NIs without the T-error design changes. As seen from the table,
the schemes incur only a modest increase in area (around 4% increase in the base
NoC area).

8.7 Summary

The use of conservative methods to design NoCs, that target safe operation under
all conditions leads to suboptimal system performance. In this chapter, we have
presented aggressive Timing Error-Tolerant (T -error) design methodologies for de-
signing the switches, links, and NIs of NoCs. The NoC in the T-error system is
designed aggressively to operate at frequencies higher than conservative designs
and to recover from the resulting timing errors in an efficient manner. The error re-
covery mechanism is integrated with a new link-based flow control mechanism, so
that most of the error recovery penalty is hidden under the network operation. Ex-
periments show large performance improvements (up to 1.5×) for the communica-
tion architecture in the proposed system, when compared to traditional conservative
designs. The methods are also applicable to remove timing errors in conservative
designs.

	Timing-Error Tolerant NoC Design
	The Double Sampling Technique
	Using Links as a Storage Medium
	T-error Link Designs
	Scheme 1: Low overhead T-error Links
	Scheme 2: High-Performance T-error Links

	Aggressive Switch/NI Design
	Output Buffer Changes
	Input Buffer Changes

	Dynamic Configuration of the NoC
	Experimental Results
	Simulation Platform
	Experiments on a Multi-Media Benchmark
	Effect of Application-Level Power Management
	Experiments on Other Benchmarks
	Effect of NoC Configuration
	Choice of Link Design Schemes
	Synthesis Results

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

