
Chapter 7
Supporting Dynamic Application Patterns

To efficiently utilize the large number of transistors that are available on the chip
with manageable design complexity and wiring requirements, Chip Multiprocessors
(CMPs) have been recently proposed [100–103]. In CMPs, the chip area is divided
into a number of regular and identical tiles, where each tile represents a proces-
sor/memory core. The use of a simpler architecture for the processor in a single tile,
coupled together with the reuse of the tile across the chip, results in a reduced design
complexity, when compared to conventional single-core processor systems.

7.1 NoC Design Challenges for CMPs

The systems that utilize NoCs can be broadly classified into two types: Application-
Specific Systems-on-Chip (ASSoCs) and CMPs. In ASSoCs, single or a fixed set of
applications are statically mapped onto the different processor and hardware cores
in the design. The communication between the various cores is known and the inter-
connect architecture can be tailor-made to suit the application traffic characteristics.
In all the preceding chapters, we targeted the design of such ASSoCs. On the other
hand, in CMPs, general-purpose processor cores are used to run software tasks of
different applications (an example shown in Figure 7.1). In such systems, the com-
munication between the cores cannot be precharacterized, as the different applica-
tion processes can be mapped differently to the cores, typically with the support of
the compiler [100]. As the total system performance of CMPs is increasingly domi-
nated by the interconnect performance [100], designing an interconnect architecture
with predictable performance is critical.

In NoC-based systems for CMPs, to provide predictable performance and opti-
mal network throughput, the bandwidth capacity of the different links of the NoC
should be sufficient to support the peak rate of traffic on the links. If the network
links cannot support the peak traffic that can be routed on them, then the network
might experience traffic congestion. In a congested network, the latency for the
traffic streams, and hence the interconnect performance will become unpredictable,
which needs to be avoided for dependable system operation.

In traditional multiprocessor interconnection networks (the chip-to-chip net-
works), the bandwidth on the network links is limited by the number of pins that
are available on the chip and all the links of the network have the same bandwidth
capacity [107]. For most interconnect topologies and routing patterns, the load on
the different links of the network is nonuniform. Thus, in traditional multiproces-
sor networks, the interconnect throughput is limited by the bottleneck links of the
network [107].
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Fig. 7.1 Example tile-based
CMP architecture

On the other hand, CMPs have enormous wiring resources at their disposal [22].
The links in different parts of the network can be sized differently, so that the net-
work throughput is no longer limited by few bottleneck links. As chip designs are
increasingly power consumption limited, when sizing the links, it is important to
achieve a NoC design with the least power consumption.

However, in order to design such a network, there are several challenges that have
to be addressed:

• The first challenge is that the exact traffic pattern of the CMP cannot be prechar-
acterized. Usually, to evaluate the quality of the interconnection network in mul-
tiprocessors, the network is simulated with different traffic patterns, such as uni-
form, nearest neighbor, hot-spot, etc. If such a template of traffic patterns is used
to size the links of the NoC, there is a huge drawback that the methodology is ad
hoc and does not guarantee network throughput for other traffic patterns that can
occur when real applications are executed.

• The second challenge is to efficiently utilize the link bandwidth (which is a prod-
uct of link width and frequency) available. Traditionally, links with different
bandwidth capacities are obtained by varying either their frequency of opera-
tion or their width. However, both schemes require complex frequency and width
converters for potentially every input of every switch in the design. This dras-
tically increases the design complexity and NoC area. Moreover, such designs
incur significant serialization and parallelization delay at every switch, which re-
sults in high packet latencies. Thus, a way to efficiently utilize the link bandwidth
is needed.

• Finally, the interconnect has to maintain a regular structure, so that a predictable
and modular architecture is obtained.

In this chapter, we address the important problem of synthesizing the most power
efficient NoC for CMPs that have dynamic traffic patterns, providing theoretically
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guaranteed optimum throughput and predictable performance for any application to
be executed on the CMP.

We achieve a predictable interconnect design in two ways: First, the architecture
is designed to provide predictable performance under all application traffic condi-
tions. Second, the synthesis approach considers accurate information of the physi-
cal layer measures (such as wire-lengths, wire delays, network component delays),
thereby bridging the gap between the synthesis models and the actual physical lay-
out implementation. Thus, the design process becomes more predictable, leading to
quicker design convergence.

7.2 Basics of the Synthesis Approach

To efficiently utilize the large on-chip wiring resources that are available, we use
multiple physical channels for each link, namely, a link is segmented into different
physical channels that can be utilized by different traffic flows in parallel. As an
example, a 2 × 3 mesh topology is presented in Figure 7.2. Each vertex in the figure
represents a switch (and the core that is connected to the switch) and a link between
two vertices has one or more physical channels. For example, the link from vertex
v1 to vertex v3 has two physical channels, while the link from vertex v0 to vertex v1
has one physical channel. In the synthesis process, we size the different links with
different number of physical channels, such that each channel supports the load due
to any traffic pattern of the NoC.

When multiple physical channels are used between two switches, if different
channels are dynamically assigned to incoming packets, it may lead to out-of-
delivery of packets. In this case, reorder buffers are required for ordering the packets
at each receiver. Such buffers have large power and area overhead and deterministi-
cally sizing them is infeasible in practice [43]. To avoid such out-of-order delivery,
for the traffic flow from each source to destination, we statically assign a single
channel in every link that is used by the flow. We integrate this mapping of traffic
flows to the different channels in the synthesis procedure.

Fig. 7.2 Example 2 × 3
mesh topology
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We also tune the setting up of NoC operating frequency during the synthesis
process. To evaluate the quality of the different NoC designs, we use accurate ana-
lytical models for power consumption of the network components. The power con-
sumption values are obtained from layouts with back-annotated resistance and ca-
pacitance information at 0.13 µm technology using standard industrial tools.

During the synthesis of the NoC, we consider the physical layer measures as
well: the delay encountered on the wires in the NoC and the target frequency that
can be supported by the designed network components. The synthesis approach
utilizes the floorplan knowledge of the NoC to detect timing violations on the NoC
links early in the design cycle. This results in a faster design cycle that leads to
a reduction in the number of design re-spins and faster time-to-market, which are
critical for today’s complex chips. We validate the design flow predictability of the
proposed approach by performing a layout of the NoC synthesized for a 25-core
CMP. The approach maintains the regular and predictable structure of the NoC and
is applicable in practice to existing NoC architectures.

7.3 Design Flow

In this section, we present the synthesis flow used to design the NoC (see Fig-
ure 7.3). The network topology, utilized routing function, operating frequency of
the core, core data width and network link width are inputs from the user. In the

Fig. 7.3 NoC synthesis
design flow
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outer loop of the synthesis process, the operating frequency of the NoC is varied in
a user-defined range. For each frequency point, the number of physical channels on
each link and an assignment of traffic flows to the different physical channels are
computed by the synthesis process.

From the number of physical channels instantiated between the switches, the dif-
ferent switch sizes are obtained. Then we evaluate whether every switch of the NoC
can support the corresponding frequency point (chosen in the outer loop). As the
switch size increases, the maximum frequency of operation it can support reduces
(as the critical path inside the switch gets longer) [34]. This information is obtained
from the layout of the switches for different sizes, which is taken as an input library
for the synthesis method. Then all the links in the NoC are checked for timing delay
violations. For evaluating the wiring delays, we include the floorplan of the NoC
as an input to the synthesis flow. Usually, standard topologies, such as mesh, are
used for CMPs because the floorplan of the NoC is regular and known at design
time. Based on the link lengths and wire models from [58], the delay values on the
NoC links are calculated. Any timing violations on the NoC links are then evaluated
by the method. If the design satisfies the timing constraints on NoC switches and
links, then the power consumption of the NoC is computed, based on the layout-
level power models. From the set of all feasible NoC designs, the design with the
least power consumption is finally chosen by the synthesis process.

7.4 Problem Formulation

The topology of the network that defines the connectivity between the switches and
the cores is taken as input. The number of physical channels used for each link is
to be determined by the synthesis procedure. Formally, the NoC topology is defined
by the topology graph:

Definition 17 The NoC topology graph is a directed graph P(V,L), with each
vertex vi ∈ V representing a core (and the switch to which it is connected) and
the directed edge (vi, vj ), denoted as li,j ∈ L, representing a link between vertices
vi and vj . The set of physical channels that are instantiated for each link li,j , is
represented by the set CHi,j .

An example topology graph was presented earlier in Figure 7.2, which repre-
sents a 2 × 3 mesh network. The graph has 6 vertices (v0 through v5) and 14 links
(l0,1, . . . , l5,4). The number of physical channels used in each link varies. For exam-
ple, link l0,2 has 2 physical channels. Please note that this number is an output of
the synthesis process. To begin with (when the inputs are fed), all the links are ini-
tialized to have no physical channels. Then the communication among NoC nodes
can be defined as follows.
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Definition 18 The communication between each pair of cores is treated as a flow of
single commodity, represented as dk , k = 1,2, . . . , |V | × |V |, with the source of the
commodity represented as source(dk) and the destination represented as dest(dk).1

We assume that a deterministic routing function is utilized for routing packets,
as most existing NoC architectures support only a deterministic routing function
[30, 33]. This is because the area-power overhead involved in adaptive routing is
quite high. Moreover, adaptive routing presents several problems such as out-of-
order packet delivery, which are hard to tackle in on-chip networks that need to
have low power overhead. The routing function defines the set of links used by each
commodity as follows.

Definition 19 The routing function R maps the traffic flows of commodities onto
the links of the network, i.e., R : dk → L, ∀k. The set of links utilized by the com-
modity k for the routing function is represented by the set Lk .

In Figure 7.2, links l1,0 and l0,2 are used by the traffic flow that has vertex v1 and
source and vertex v2 as destination, for the dimension-ordered (with x first, y next)
routing scheme.

The maximum rate at which each core injects traffic into the network is also taken
as an input to the synthesis engine. It is defined formally as follows.

Definition 20 The rate of traffic injection of each core, vi , ∀i, is represented by ri .
The rate of each commodity dk , represented as rate(dk), is equal to the rate of traffic
injection of the source core of that commodity, i.e., rsource(dk).

Practically, for most CMPs, each core can inject one data word into the network
every clock cycle. Thus, the injection rate is the product of the operating frequency
of the core and its data width. For instance, if a core has a data width of 32 bits and
operates at 100 MHz, its injection rate is 400 MB/s (i.e., 4 B × 100 MHz).

We also obtain as inputs the set of interesting operating frequencies to explore for
the NoC design, and the data width of the channels (which is usually set to match
the data width of the cores).

Then the Problem Statement is the following:

The synthesis procedure has to determine the number of channels (|CHi,j |) required
for each link (li,j ) and a static mapping of each commodity (dk) onto a single chan-
nel (ch ∈ CHi,j ) of each link li,j ∈ Lk . The mapping has to satisfy the constraint that
every channel should support the traffic rates of all the commodities mapped onto
that channel for any traffic pattern. The synthesis process should also determine the
NoC operating frequency that results in the most power efficient NoC design.

1In the rest of this chapter, we follow the convention that variables i, j are defined for 1, . . . , |V |
and the variable k is defined for 1, . . . , |V | × |V |.
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An optimum (100%) throughput can be achieved if each channel supports its
worst-case load, i.e., the channel bandwidth matches or exceeds the channel load.
Here, we would like to point out that to practically achieve the full throughput
value, the NoC architecture should have a predictable communication behavior, as
in [30, 104, 105].

7.5 Synthesis Algorithm

The detailed synthesis algorithm to solve the defined problem is presented in Algo-
rithm 6. In step 1, the NoC frequency of operation is varied in user-defined steps.

Algorithm 6 Synthesis Algorithm
1: for Each NoC frequency (freq) design point in user defined range do
2: for each link li,j ∈ L do
3: Build the Link Loading Graph (LLGi,j ) for the link li,j
4: Build the Vertex Conflict Graph (VCGi,j ) for the link li,j
5: Initialize number of channels to zero, m = 0
6: Increment m by 1 and instantiate new physical channel chm

7: Find m max-cut partitions of VCG
8: Assign bw_satisfied to true
9: for each max-cut partition do

10: Build Partition Loading Graph (PLG)
11: max_load = maximum_weight_matching(PLG)
12: If (max_load > freq × width), bw_satisfied = false
13: end for
14: if bw_satisfied then
15: Assign those commodities k such that source(dk) is in partition m1 to

channel m1, ∀m1 ∈ 1, . . . ,m

16: Set CHi,j = ⋃
∀m1∈m chm1

17: else
18: Go to step 6
19: end if
20: end for
21: From computed CHi,j , ∀i, and j , compute the switch sizes
22: Evaluate whether the switch size implementations can match the target fre-

quency (freq)
23: Evaluate whether all the links in the NoC can meet the target frequency (freq).

Utilize the NoC floorplan information to estimate the link lengths
24: If target frequency met, obtain the power consumption for the synthesized

NoC
25: end for
26: From the set of synthesized NoCs, choose the design with least power consump-

tion
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Then in step 2, we consider each link individually to size the different links with
different channels.

7.5.1 NoC Link Sizing

For each link li,j , we first build a Link Loading Graph (LLG) (in step 3), defined as
follows.

Definition 21 The LLGi,j (LV,LL) is a bipartite graph with |LV| = 2×|V | (i.e. with
2 × |V | vertices). An edge exists between vertices lvx and lvy , ∀x ∈ 1, . . . , |V |,
∀y ∈ |V | + 1 · · ·2 × |V |, if ∃k such that source(dk) = lvx and dest(dk) = lvy−|V |
and li,j ∈ Lk . The weight of the edge is the rate of traffic flow of the commodity,
i.e., equal to rate(dk).

The edges of the LLG represent the set of all traffic flows that utilize the link,
depending on whether the link is part of the route for the different traffic flows. The
weights of the edges represent the rate of the traffic flows.

Example 6 The LLG for the link l0,2 (i.e., LLG0,2) of the 2 × 3 mesh example is
presented in Figure 7.4. With x–y routing, the link l0,2 is used by the traffic flows
that originate from vertex v0 to v2 and v4, and by the traffic flows that originate from
vertex v1 to v2 and v4. The maximum rate of all these traffic flows is 400 MB/s. In
the LLG bipartite-graph, each vertex on both the left and the right columns repre-
sents a single core. Those vertices with traffic flows that utilize this particular link
have edges between them. In this example, there are edges between those vertices
that represent core_0 and core_1 with core_2 and core_4, with the edge weights
being the rate of the flows.

Fig. 7.4 Link loading graph.
The edges are annotated with
weights in MB/s
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The load on a link is equal to the sum of the loads caused by each source-
destination pair using that link. The worst-case link load can be obtained by con-
sidering all possible permutation traffic patterns. In [108] and [109], the authors
show that the worst-case load can be obtained by representing all permutations as
matchings within the LLG bipartite graph. A maximum-weight matching on the
graph yields the exact worst-case permutation for a particular link and the worst-
case (maximum) load on that link. We utilize this basic approach to evaluate the
worst-case load on the different channels.

In the next step of the algorithm (step 4), we build the Vertex Conflict Graph
(VCG), defined as follows.

Definition 22 The VCGi,j (VV,VL)) is an undirected graph with |VV| = |V | (i.e.
with |V | vertices). An edge vli,j exists between two vertices vvi and vvj if
degree(lvi) + degree(lvj ) > 0. The weight of the edge is the value of the maxi-
mum weight bipartite matching of modified LLG, where the edges from all vertices
other than lvi and lvj are removed.

The edge-weight assignment in VCG is such that if the traffic flows from a pair
of cores (representing two vertices connected by an edge in VCG) are mapped onto
the same physical channel, then they would together cause a maximum load on the
channel that is given by the edge-weight.

Example 7 The VCG for link l0,2 is presented in Figure 7.5. In LLG0,2, as the two
cores core_0 and core_1 have traffic flows originating from them, the edges from
vertices vv0 and vv1 to all other vertices exist. Let us consider the edge between
vv0 and vv5. The value of the maximum weight matching obtained on the modified
LLG when only edges of vertex lv0 and lv5 are maintained is 400. Thus, the weight
of the edge between vertices vv0 and vv5 is 400, as seen in Figure 7.5.

Then in steps 5–20, physical channels are instantiated for the link and the com-
modities are mapped onto the channels. The number of channels is increased from

Fig. 7.5 Vertex Conflict
Graph (VCG) and example
partitions
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1 until the load on each channel can be satisfied by the channel. Note that the maxi-
mum number of instantiated physical channels would be |V |. Thus, the traffic flows
from every source that utilizes the link would be assigned to a separate channel.

For a certain number of physical channels, the VCGi,j is divided into that many
number of partitions (step 7 of the algorithm). The partitioning is such that the sum
of the edge weights cut across the partitions is maximized and the total number of
vertices within each partition is almost the same. For partitioning, we use Chaco,
an efficient hierarchical graph partitioning tool [93]. The intuition behind such par-
titioning is that the traffic flows that would cause higher channel loads are assigned
to different channels, and channels are loaded uniformly.

Example 8 The 2 max-cut partitions of the VCG graph for link l0,2 are shown in
Figure 7.5. Note that vertices vv0 and vv1 are in different partitions.

To evaluate the load on each physical channel, we build the Partition Loading
Graph (PLG) for each partition. This bipartite graph is obtained from a modified
LLG, where the edges from all vertices other than those of the partition are removed.
By finding the maximum weight matching of the PLG, the load caused by the parti-
tion on a channel is obtained. Then (in step 12), we check whether the load on each
channel is less than or equal to the bandwidth capacity of the channel. For the chan-
nel bandwidth calculation, the data width of all the channels (width in Algorithm 6)
is taken as an user input.

Example 9 The two PLG graphs for the two partitions for the mesh example are
shown in Figure 7.6. The load on the two physical channels, onto which the flows
from the vertices of the two partitions are mapped is 400 MB/s (obtained from the
value of the maximum weight matching of each of the PLG graphs). If the vertices
vv0 and vv1 had been assigned to the same partition, then the load on the channel
supporting the traffic flows from the vertices of the partition would be 800 MB/s

Fig. 7.6 Example physical
channel loading graphs for
the two partitions



7 Supporting Dynamic Application Patterns 105

(with the load on the other physical channel being 0). Thus, the partitioning process
is steered to uniformly load the different channels of the link.

7.5.2 Timing Feasibility Check

In step 21 of the algorithm, the sizes of the different switches are obtained, which
are based on the number of physical channels instantiated for each link. In the next
step, we evaluate whether all the switches can meet the particular NoC operating
frequency design point. This check is needed because, when switch size increases,
the maximum supported frequency of operation reduces (as the critical path inside
the switch gets longer) [34]. This information is obtained from the Place&Route of
the switches, which is an input to the synthesis algorithm. Based on the frequency
design point and the size of the switches, the power consumption values of the
switches are obtained. For power consumption estimations, the switching activities
of NoC components are obtained from several functional traffic traces. In the next
step (step 26), the different links of the NoC are checked for timing violations. The
length of the links are obtained from the NoC floorplan, which is taken as an input
to the synthesis engine. The timing models for the interconnect wires are obtained
from [58], for 0.13 µm technology.

For each frequency design point (steps 1–25, outer loop), the best NoC topology
is synthesized. Finally, the most power efficient design across all these points is
chosen in step 26.

7.5.3 Algorithm Run-Time

The run-time complexity of the algorithm is dominated by the maximum weight
matching calculations carried out for each channel (as fast heuristics are used for
partitioning, it has a low impact on the algorithm run-time). The maximum weight
matching for a PLG graph can be computed in O(|V |3) time complexity [108] and
the total number of times the matchings are performed (for each frequency design
point) is at most O(|L||V |2). This is because each link can have at most |V | chan-
nels and we need to perform at most O(|V |2) matchings for each link. Overall, the
algorithm finds the best solution for even large CMP designs in few tens of minutes,
running on a 3.2 GHz workstation.

7.6 Experimental Results

In this section, we present the experimental results obtained after applying the pro-
posed synthesis algorithm on NoC designs with different parameter values. First,
we present the application of the method to a 5 × 5 mesh topology. Then we study
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the impact of varying the data injection rates and the number of processing cores in
the design. Then we perform experiments to show the effect of link lengths on the
solutions produced. The generality of the method (applicability to any CMP NoC
topology and deterministic routing function) is shown next, by applying it on a torus
topology with two different routing functions. Finally, the design flow predictability
is validated by performing a complete layout of the synthesized NoC architecture.

7.6.1 Experiments on a Mesh Topology

In this experiment, we consider a 5 × 5 mesh topology. We assume the operating
frequency of each core is 200 MHz, the data width of the cores and NoC channels
are 32-bits, and dimension-ordered (x-first, y-next) routing is utilized. We assume
that the length of each NoC link to be 1 mm. We assume these as the default values
and in the subsequent subsections we study the impact of varying some of these
parameters.

We vary the NoC operating frequency from 200 MHz to 1 GHz and synthesize
the efficient NoC for each frequency point using the proposed synthesis procedure.
The total power consumption values for the synthesized NoCs (sum of switch and
link power consumption) for the different frequency points are plotted in Figure 7.7.
At operating frequencies lower than 400 MHz, a large number of physical channels
were needed for each link, which resulted in switches with a large number of inputs
and outputs. Hence, the designed switches could not support the required NoC op-
erating frequencies. Similarly, at the 1 GHz frequency point, the designed switches

Fig. 7.7 Power consumption
of 5 × 5 mesh topology
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Fig. 7.8 Synthesized 5 × 5
mesh

could not support the frequency point. Thus, no feasible NoC design is obtained
below 400 MHz and at 1 GHz. NoCs synthesized at lower operating frequencies
(e.g., 400 MHz) require larger switches, which leads to higher power consumption.
At higher operating frequencies, such as 900 MHz, the switch hardware complexity
is higher (as more logic is needed to achieve faster clock speeds during physical
design) and the clock-net power consumption is also higher. In fact, clock nets ac-
count for approximately 15% of NoC power consumption. Note that for the power
consumption estimations of the NoC components, we run several functional traffic
traces and obtain the average values. Thus, we do account for the fact that the switch
input/output ports and the links of a NoC running at a higher frequency have lower
switching activities than for a NoC design operating at a lower frequency. The most
power optimal frequency point for the 5 × 5 mesh is 600 MHz, and the synthesized
NoC at this frequency is presented in Figure 7.8.

As no previous work has directly addressed NoC design for CMPs, for compari-
son purposes, we evaluate how a direct extension of the approach from [108] would
perform (we call this the Reference approach). When the procedure from [108] is
applied to the 5 × 5 mesh topology, the maximum load on a link is computed to be
4× the traffic rate of each core. Thus, the NoC operating frequency required would
be 800 MHz. As seen from Figure 7.7, the NoC designed using the Reference ap-
proach would consume 1.17× more power than the optimal NoC designed using the
proposed approach.

7.6.2 Effect of Core Injection Rates

When the processor operating frequency increases, the rate of traffic injected on
the NoC links also increases significantly. The actual operating frequency of the
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Fig. 7.9 Effect of increasing
injection rates

cores varies widely across the different CMP architectures proposed in the litera-
ture. As an example, the RAW architecture has cores operating around few hun-
dred MHz [110], while some of the commercial CMPs operate at much higher op-
erating frequencies [103].

The power consumption requirements for different operating frequencies of the
cores for the Reference and proposed approaches are depicted in Figure 7.9. This
figure shows that the Reference approach does not produce valid NoC designs when
the operating speed of the cores exceeds 200 MHz. This is because the designed
NoCs needed very high operating frequency, which could not be supported by the
switches. As an example, a 4 × 4 switch of the ×pipes architecture can only oper-
ate at a maximum frequency of 1 GHz approximately. While these values strongly
depend on the underlying NoC architecture, the basic fact is that the Reference ap-
proach typically requires the NoC to be several times faster than the cores (4 times
for the 5 × 5 mesh and higher for larger topologies). In systems where the cores
themselves operate at high frequencies, it would not be feasible in practice to clock
the network at such excessively high frequencies. Thus, the Reference approach can-
not produce a valid design. On the contrary, the proposed approach supports a larger
range of core operating speeds and produces more power-efficient designs as well.

7.6.3 Effect of Different NoC Sizes

The different CMP architectures available today have different number of tiles on
the chip, and thus require NoCs of different sizes. As an example, for exploiting fine
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Fig. 7.10 Effect of different
link lengths

Fig. 7.11 Effect of mesh
sizes

grained parallelism, CMP architectures with 50–100 tiles can be utilized, while to
exploit coarse-grained parallelism, architectures with few tens of tiles are utilized
[102]. In this experiment, we study the impact of different mesh sizes on the quality
of the synthesized NoCs.

The NoC power consumption for different mesh sizes for the proposed synthe-
sis approach is presented in Figure 7.11. The power numbers are normalized with
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respect to the power consumed by the 10 × 10 mesh design. As expected, when
the mesh size increases, NoC power consumption rapidly grows as well. Even for
the largest 10 × 10 mesh design, the method completed in few tens of minutes on
a 3.2 GHz workstation. This shows that due to the use of fast heuristics and exact
polynomial algorithms, the proposed synthesis method is highly scalable to large
problem instances.

7.6.4 Effect of Link Length

To see the importance of considering wire power consumption during the synthesis
process, we have varied the length of the NoC links in the design. For this experi-
ment, we fixed the NoC topology to be a 5×5 mesh. Thus, the designs with different
link lengths represent designs with different total chip area. For example, when the
link length is 1 mm, the dimensions of the mesh NoC are 5 × 5 mm, but when the
link length is 4 mm, the dimensions are 2 × 20 mm.

The motivation for considering different link lengths is that different CMP ar-
chitectures have wires of different lengths. As an example, in the Smart Memories
architecture [101], the link lengths of the global network are around 4 mm [111],
while the link lengths in a smaller NoC design are from 1 mm to 2 mm [88].

The NoC switch and link power consumption values for different link lengths are
presented in Figure 7.10. As the link length starts to increase, the link power con-
sumption largely augments. This shows that the wire power consumption must be
considered during the NoC synthesis phase, as it is done in this approach. Note that
the power numbers are for 130 nm technology. With more advanced process tech-
nologies (especially at 90 nm and below), the impact of wire power consumption on
the total NoC power consumption is expected to increase considerably [106]. Thus,
the exploration of such technology dependent effects is a necessary direction for
future work in the design of efficient on-chip interconnects.

7.6.5 Application to Torus Topology

The proposed approach is applicable to any NoC topology and deterministic routing
function. We have applied it to a 5 × 5 torus topology and studied the impact of 2
different routing functions: One routing function in which the wrap-around links of
the torus are not used (Routing 1), and another one where the wrap-around channels
are utilized (Routing 2). The NoC power consumed by the synthesized designs for
the two routing functions are shown in Figure 7.12. It shows that the use of the wrap-
around links in the torus topology is beneficial, not only as generally believed for
latency, but also for power. This is because when the wrap-around links are utilized,
the traffic is spread more evenly in the network. Thanks to the proposed synthesis
approach, this type of architectural test can be easily performed, showing its effec-
tiveness for NoC design exploration purposes. Usually, standard NoC topologies,
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Fig. 7.12 Results for torus
topology

such as mesh and torus, are used for CMPs, as the NoC floorplan for such topolo-
gies is predictable [100, 101]. This is the reason for choosing these topologies for
the experiments. However, the synthesis approach is general and applicable to any
NoC topology.

7.6.6 Validating Design Flow Predictability

Usually, a design gap exists between the architectural level model and the actual
physical layout implementation. Bridging this design gap is key to decrease the
number of design iterations and to achieve quicker design convergence and faster
time-to-market. In this work, we achieve a predictable design flow by bridging this
design gap between the architectural and physical models. This is achieved due to
two factors. First, we consider the physical layer measures, such as wire delays and
accurate NoC component delays, during the synthesis process. Second, the use of
regular NoC topologies results in easily predictable NoC floorplan and link lengths,
which help us to accurately model the wire delays. In fact, achieving a predictable
design flow is one of the most important reasons for utilizing NoC-based intercon-
nects [88]. To validate the predictability of the design flow, we implemented the lay-
out of the optimal 5 × 5 mesh topology synthesized by the procedure at 600 MHz.
The CMP consists of 25 cores, and the area of each core is 1 × 1 mm.

To obtain the layout, we have first generated the RTL code of the designed NoC
components using a custom built tool, ×ipesCompiler [62]. Then we have synthe-
sized the RTL design using Synopsys Design Compiler [98]. After this, we have
performed the place&route phase of the synthesized design using Cadence SoC En-
counter [99]. The resulting layout of the design is presented in Figure 7.13. For the
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Fig. 7.13 Layout of a 5 × 5
mesh topology

layout, a 0.13 µm process technology with 8 metal layers are used for wire routing.
Among these, 5 metal layers are used for intracell routing inside the cores and the
remaining 3 metal layers are used for over-the-cell routing of NoC links.

We have performed post-layout timing checks on the different switches and links
of the NoC. We could achieve a fully functional design at the target frequency of
600 MHz, without any timing violations. We could design the NoC till layout level
quickly, thanks to the predictability of the design flow.

Finally, we studied the impact of adding multiple physical channels on NoC area.
For the 5×5 mesh topology, the use of multiple physical channels increased the total
switch area from 0.94 mm2 (when only a single physical channel is used for all the
links) to 1.18 mm2, which is negligible when compared to the total chip area of the
CMPs. From the layouts, we also found that sufficient routing area was available
for the multiple physical channels that were instantiated. This is in accordance with
several earlier studies [22, 88], which have shown that sufficient routing area is
available between the switches of regular topologies to route a large number of
wires.

7.7 Summary

Having a predictable interconnect architecture is critical to manage the increasing
interconnect complexity of current Chip Multiprocessors (CMPs). The CMPs differ
from Application Specific SoCs (ASSOCs) in the fact that their traffic characteristics
cannot be predetermined. Thus, the NoC predictability for CMPs needs to be tack-
led at several design levels. On the one hand, from the architectural viewpoint, the
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interconnect has to provide predictable performance under different operating con-
ditions. On the other hand, from the design flow viewpoint, the design gap between
the architectural model and the physical implementation should be minimized, so
that a quicker design convergence is obtained. Designing an efficient NoC architec-
ture that provides predictable performance for any application running on a CMP is
a challenging task.

In this chapter, we have presented a synthesis method that addresses this im-
portant design issue of synthesizing the most power efficient NoC interconnect for
CMPs, providing guaranteed optimum throughput and predictable performance for
any application to be executed on the CMP. We achieve a predictable interconnect
design in two ways: first, the architecture is designed to provide predictable per-
formance under all application traffic conditions. Second, the synthesis approach
considers accurate information of the physical layer measures, such as wire-lengths,
wire delays, and network component delays, thereby bridging the gap between the
synthesis models and the actual physical layout implementation. This leads to a
faster design cycle and quicker design convergence across the high level synthesis
approach and physical implementation of the design. We have validated the design
flow predictability of the proposed approach by performing a layout of the NoC
synthesized for a 25-core CMP. The proposed synthesis approach can also be used
as a design space exploration tool to evaluate the efficiency of different NoC topolo-
gies and routing functions. Finally, the presented approach maintains the predictable
layout of regular NoC architectures; thus, it can be applied to existing NoC archi-
tectures.

In the preceding chapters, we have seen methods to design NoC architectures un-
der various operating conditions. Now, it is time to proceed to make their operation
reliable. This will be focus of the next part of the book.
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