

Designing Reliable and
Efficient Networks on Chips

Lecture Notes in Electrical Engineering
Volume 34

For other titles published in this series, go to
www.springer.com/series/7818

Srinivasan Murali

Designing Reliable and
Efficient Networks on Chips

Dr. Srinivasan Murali
INF 331, Station 14, EPFL
1015 Lausanne
Switzerland
srinivasan.murali@epfl.ch

ISBN 978-1-4020-9756-0 e-ISBN 978-1-4020-9757-7

DOI 10.1007/978-1-4020-9757-7

Library of Congress Control Number: 2008944292

© 2009 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

The complexity of Multiprocessor Systems on Chips (MPSoCs) is growing rapidly
with the advances in semiconductor technology. The number of processors, hard-
ware cores, and memories on a single chip is increasing and a highly-scalable com-
munication infrastructure is required to connect them. To effectively tackle the in-
terconnect complexity of current and future MPSoCs, a communication-centric de-
sign approach, Networks on Chips (NoCs), has recently emerged. NoCs bring the
networking principles for data transfer, such as those used in large area networks
(e.g., the Internet), to the on-chip domain.

Developing NoC-based systems tailored to a particular application domain, sat-
isfying the application performance constraints with minimum power-area overhead
is a major challenge. With technology scaling, as the geometries of on-chip devices
reach the physical limits of operation, another important design challenge for NoCs
will be to provide dynamic (run-time) support against permanent and intermittent
faults that can occur in the system.

The purpose of this book is to provide state-of-the-art methods to solve some of
the most important and time-intensive problems encountered during NoC design.
We present methods for topology synthesis, mapping of cores onto NoC topologies,
crossbar sizing, route generation, resource reservation, achieving fault-tolerance,
RTL code, and layout generation. We show how the different design methods can be
integrated to make a complete tool flow for designing reliable and efficient NoCs for
application-specific MPSoCs and chip multiprocessors. To have less design respins
and faster time-to-market, we show how the architectural synthesis models can be
integrated with back-end physical design tools and models, thereby bridging a big
design gap in on-chip interconnect synthesis.

Key features of book:

• Presents in depth the state-of-the-art algorithms and optimization models for per-
forming system-level design of NoCs

• Presents an integrated flow to design interconnect architectures that can lead to
faster time-to-market and design closure

• Shows evolution of design methods from complex crossbar based buses to NoCs
• Presents static and run-time methods for achieving reliable operation of the NoC

and the entire system

This book should be of interest to:

• System level architects and designers: The methods show how to improve design
productivity and achieve design closure of SoCs.

• Communication architecture/interconnect designers: The methods show trade-off
analysis and explorations of NoCs.

vi Preface

• Design automation engineers: The high-level synthesis methods and mathemati-
cal models presented in this book can be applied to solve several communication
architecture issues. They are also of general interest to designers working in re-
lated fields, such as sensor, body-area, and automotive networks.

This book is based on my Ph.D. research work done at Stanford University. I am
greatly indebted to my adviser Prof. Giovanni De Micheli and co-adviser Prof. Luca
Benini (University of Bologna), as they were instrumental in shaping the ideas pre-
sented here. The work is a result of collaboration with many researchers. I thank all
my collaborators: Dr. Federico Angiolini and Antonio Pullini of iNoCs, Prof. David
Atienza (EPFL), Dr. Kees Goossens and his team (Dr. Andrei Radulescu, Mar-
tijn Coenen, Andreas Hansson) at NXP research, Prof. Davide Bertozzi (University
of Ferrara), Rutuparna Tamhankar (Marvell Technology), Prof. N. VijayKrishnan,
Prof. Mary Jane Irvin and Dr. Theocharis Theocharides at Pennsylvania State Uni-
versity, Prof. Salvatore Carta, Paolo Meloni and Prof. Luigi Raffo of University of
Cagliari for their contributions to this work.

EPFL, Lausanne, Switzerland Srinivasan Murali

Contents

Preface . v

1 Introduction . 1
1.1 Networks on Chips: Scalable Interconnects for SoCs 1
1.2 NoC Design Challenges . 4
1.3 Book Overview . 5

1.3.1 NoC Design Methods . 5
1.3.2 NoC Reliability Mechanisms 7

1.4 Related Work . 7
1.4.1 NoC Architectures and Design Methods 8
1.4.2 Reliability Support for NoCs 10

Part I NoC Design Methods

2 Designing Crossbar Based Systems 15
2.1 Problem Motivation and Application Traffic Analysis 17

2.1.1 Problem Motivation . 17
2.1.2 Application Traffic Analysis 19

2.2 Design Methodology . 19
2.3 Exact Approach to Crossbar Synthesis 22

2.3.1 Problem Formulation . 22
2.3.2 Exact Crossbar Synthesis Algorithm 24

2.4 Heuristic Approach to Crossbar Synthesis 24
2.5 Experiments and Case Studies . 28

2.5.1 Experimental Platform and Power Models 28
2.5.2 Application Benchmark Analysis 29
2.5.3 Comparisons of Heuristic Engine with the Exact Engine . . 32
2.5.4 Window Sizing . 34
2.5.5 Real-Time Streams & Effect of Binding 36
2.5.6 Overlap Threshold Setting 36

2.6 Summary . 37

3 Netchip Tool Flow for NoC Design 39
3.1 Front-End Design Phase . 39
3.2 Architectural Design Phase: The ×pipes NoC Library 40
3.3 Summary . 42

4 Designing Standard Topologies . 43
4.1 On-Chip Traffic Modeling . 45
4.2 Problem Formulation . 47

vii

viii Contents

4.3 Mapping and Physical Planning Algorithm 50
4.4 Physical Planning . 51
4.5 Experiments and Case Studies . 53

4.5.1 Effect of Physical Planning 53
4.5.2 Design for QoS Guarantees 53
4.5.3 VOPD Design . 54
4.5.4 Buffer Sizing and Network Optimization 54

4.6 Summary . 56

5 Designing Custom Topologies . 57
5.1 Objectives . 57

5.1.1 Background on NoC Topology Synthesis 58
5.1.2 Background on Deadlock-Free NoC Design 59

5.2 Input Models . 60
5.2.1 Area, Power Models . 60
5.2.2 Traffic Models . 62

5.3 Design Algorithms . 62
5.4 Experiments and Case Studies . 68

5.4.1 Experiments on MPSoC Benchmarks 68
5.4.2 Layout-Level Comparisons 70
5.4.3 Impact of Frequency Constraints 72
5.4.4 Handling Dynamic Effects 74

5.5 Summary . 74

6 Supporting Multiple Applications . 77
6.1 The Æthereal NoC Architecture 78

6.1.1 Switch/NI Architecture 79
6.1.2 Dynamic NoC Reconfiguration 79

6.2 Design Methodology . 80
6.3 Use-Case Preprocessing . 82
6.4 Unified Mapping–NoC Configuration 83
6.5 Simulation Results . 89

6.5.1 Experimental Benchmarks 89
6.5.2 Effect of Mapping for SoC Benchmarks 90
6.5.3 Frequency-Area Trade-offs 90
6.5.4 Dynamic Configuration 92
6.5.5 Parallel Use-Cases . 93

6.6 Summary . 93

7 Supporting Dynamic Application Patterns 95
7.1 NoC Design Challenges for CMPs 95
7.2 Basics of the Synthesis Approach 97
7.3 Design Flow . 98
7.4 Problem Formulation . 99
7.5 Synthesis Algorithm . 101

7.5.1 NoC Link Sizing . 102

Contents ix

7.5.2 Timing Feasibility Check 105
7.5.3 Algorithm Run-Time . 105

7.6 Experimental Results . 105
7.6.1 Experiments on a Mesh Topology 106
7.6.2 Effect of Core Injection Rates 107
7.6.3 Effect of Different NoC Sizes 108
7.6.4 Effect of Link Length . 110
7.6.5 Application to Torus Topology 110
7.6.6 Validating Design Flow Predictability 111

7.7 Summary . 112

Part II NoC Reliability Mechanisms

8 Timing-Error Tolerant NoC Design 117
8.1 The Double Sampling Technique 118
8.2 Using Links as a Storage Medium 120
8.3 T-error Link Designs . 123

8.3.1 Scheme 1: Low overhead T-error Links 123
8.3.2 Scheme 2: High-Performance T-error Links 126

8.4 Aggressive Switch/NI Design . 128
8.4.1 Output Buffer Changes 128
8.4.2 Input Buffer Changes . 129

8.5 Dynamic Configuration of the NoC 130
8.6 Experimental Results . 131

8.6.1 Simulation Platform . 131
8.6.2 Experiments on a Multi-Media Benchmark 131
8.6.3 Effect of Application-Level Power Management 134
8.6.4 Experiments on Other Benchmarks 134
8.6.5 Effect of NoC Configuration 138
8.6.6 Choice of Link Design Schemes 138
8.6.7 Synthesis Results . 139

8.7 Summary . 139

9 Analysis of NoC Error Recovery Schemes 141
9.1 Switch Architecture Design . 142

9.1.1 End-to-End Error Detection 142
9.1.2 Switch-to-Switch Error Detection 143
9.1.3 Hybrid Single Error Correcting, Multiple Error Detecting

Scheme . 143
9.2 Energy Estimation and Models 144

9.2.1 Energy Estimation . 144
9.2.2 Error Models . 144

9.3 Experiments and Simulation Results 144
9.3.1 Power Consumption of Schemes for Fixed Residual Error

Rates . 144
9.3.2 Performance Comparison of Reliability Schemes 146

x Contents

9.3.3 Power Consumption Overhead of Reliability Schemes . . . 146
9.3.4 Effect of Buffering Requirements, Traffic Patterns and

Packet Size . 149
9.4 Summary . 151

10 Fault-Tolerant Route Generation . 153
10.1 Multi-Path Routing with In-Order Delivery 155
10.2 Path Selection Algorithm . 156
10.3 Multipath Traffic Splitting . 160
10.4 Fault-Tolerance Support with Multipath Routing 161

10.4.1 Resilience Against Transient Errors 161
10.4.2 Resilience Against Permanent Errors 162

10.5 Simulation Results . 164
10.5.1 Area, Power and Timing Overhead 164
10.5.2 Case Study: MPEG Decoder 164
10.5.3 Comparisons with Single-Path Routing 165
10.5.4 Effect of Fault-Tolerance Support 166

10.6 Summary . 167

11 NoC Support for Reliable On-Chip Memories 169
11.1 Analysis of Multimedia Software 170
11.2 Baseline SoC Architecture and Extensions 172

11.2.1 SoC Template Architecture 172
11.2.2 Proposed Hardware Extensions 173

11.3 Run-Time Fault Tolerant Schemes 176
11.3.1 Permanent Error Recovery Support 177
11.3.2 Intermittent Error Recovery Support 178

11.4 Experimental Results . 178
11.4.1 Performance Studies . 179
11.4.2 Architectural Exploration of NoC Features 182
11.4.3 Effects of Varying Percentages of Critical Data 183
11.4.4 Synthesis Results . 184

11.5 Summary . 186

12 Conclusions and Future Directions 187
12.1 Putting It All Together . 187

Bibliography . 191

Chapter 1
Introduction

Multiprocessor Systems on Chips (MPSoCs) are high-complexity, high-value semi-
conductor chips comprising general-purpose processors, hardware cores, DSPs, and
memory blocks [1, 5]. Today, the commercial MPSoCs have several tens of cores
on a chip (e.g., the NEC’s TCP/IP offload engine is powered by 10 Tensilica Xtensa
processor cores [71]), and in the next few years technology will support the inte-
gration of several tens to hundreds of cores, making a large computational power
available.

Full exploitation of the increased level of SoC integration requires new para-
digms and significant improvements of design productivity, as current system ar-
chitectures and design styles do not scale up to such dimensions and complexities.
A relevant example regards the system architecture, whose paradigm is progres-
sively shifting from computation-centric to communication-centric. In fact, MPSoC
performance will be increasingly determined by the ability of the communication in-
frastructure to efficiently accommodate the communication needs of the integrated
computation resources.

1.1 Networks on Chips: Scalable Interconnects for SoCs

In several application domains, such as multimedia processing, the bandwidth re-
quirement between the cores in SoCs is increasing. The aggregate communication
bandwidth between the cores is in the GB/s range for many video applications. In
the future, with the integration of many applications onto a single device and with
increased processing speed of cores, the bandwidth demands will scale up to much
larger values [7]. As an example of a media processing application, a Video Object
Plane decoder [8] is shown in Figure 1.1. Each block in the figure corresponds to a
core and the edges connecting the cores are labeled with bandwidth demands of the
communication between them. As seen from the figure, the bandwidth demands are
in the order of hundreds of MB/s.

Traditionally, bus-based architectures have been used to interconnect the various
cores of the MPSoCs. To meet the increasing communication demands, the bus-
based architectures have evolved over time from a single shared bus to multiple
bridged buses and to crossbar-based designs. Current state-of-the art bus architec-
tures, such as the AMBA multilayer [2], enable the instantiation of multiple buses
operating in parallel, thereby providing a crossbar architecture. However, such an
architecture is inherently nonscalable for large number of cores in the design.

To effectively tackle the interconnect complexity of current and future MPSoCs,
a micro-networks based interconnect architecture is needed to connect the cores.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

1

2 1 Introduction

Fig. 1.1 Block diagram of Video Object Plane Decoder, with communication BW (in MB/s)

Fig. 1.2 Example NoC system with pipelined links

A communication-centric design approach, Networks on Chips (NoCs), has recently
emerged as the design paradigm for designing such scalable micronetworks for MP-
SoCs [20–23, 30, 31].

A typical NoC consists of switches, links, and Network Interfaces (NIs), as
shown in Figure 1.2. A NI connects a core to the network and coordinates the trans-
mission and reception of packets from/to the core. A packet is usually segmented
into multiple FLow control unITS (flits). The switches and links are used to connect

1 Introduction 3

the various cores and NIs together. To tackle the delay of long NoC links, a latency
insensitive design approach in which the links are pipelined can be utilized [70].
Link pipelining increases the link throughput and decouples the cycle time of the
communication system from the link length.

The use of a NoC to replace bus-based wiring has several key advantages:

• Better scalability at the architectural and physical levels. NoCs can add bandwidth
as needed and segment wires as required.

• Better performance under high loads. NoCs can operate at high frequencies, cope
with large bandwidth demands, and parallelize traffic streams.

• NoCs facilitate modularity by orthogonalizing the design of the communication
architecture from the computation architecture, thereby leading to reduced design
efforts.

• Quicker design closure. NoC are more predictable: They intrinsically provide
wire segmentation, which helps ensuring that design respins will not be needed
in the last phases of the design flow, when they are more costly.

• Higher energy-efficiency. To support the same traffic load, NoCs can operate at
a lower frequency than bus-based systems and the data transfer can finish faster.
These can lead to a reduction in energy consumption of the system.

Another effect of the shrinking feature size is that the power supply voltage and
device Vt decreases and the wires become unreliable, as they are increasingly sus-
ceptible to various noise sources such as cross-talk, coupling noise, soft errors, and
process variations [130]. The use of aggressive voltage scaling techniques to re-
duce the power consumption of the system further increases the susceptibility of the
system to various noise sources. Moreover, wires are becoming thicker and taller,
but their widths are not increasing proportionally, thereby increasing the effect of
coupling capacitance on the delay of wires. As an example, the delay of a wire
can vary between τ and (1 + 4λ)τ (where τ is the delay of the wire without any
capacitive coupling and λ is the ratio of the coupling capacitance to the bulk capac-
itance) [136]. The wire delay for data transfer on a communication bus depends on
the data patterns transferred on the bus. As presented in [121], the data-dependent
variations in wire delay can be as large as 50% for the different switching patterns.
With technology scaling, the device characteristics fluctuate to a large extent due
to process variations and can cause significant variations in wire delay [122]. Wire
delay is also affected by other forms of interference such as supply bounce, trans-
mission line effects, etc. [123, 124]. Providing resilience from such transient delay
and logic errors is critical for proper system operation.

The variability in process technology and temperature distribution (thermal
hotspots) and the effect of various noise sources such as power supply fluctua-
tions and electromagnetic radiations pose major challenges for the reliable oper-
ation of current and future MPSoCs. While some of these noise sources (such as
thermal effects) cause intermittent or temporary failures in the system, some others
(such as process variations) can cause permanent failures of hardware components.
With the increased uncertainty of device operation, the time-to-failure period for
the hardware components varies widely, with some components having a shorter

4 1 Introduction

lifetime than expected. Therefore, new design methodologies and architectural so-
lutions need to be developed to ensure proper system operation. NoCs facilitate the
use of error recovery schemes developed for networks to achieve a reliable system
operation.

1.2 NoC Design Challenges

Designing an efficient NoC architecture, while satisfying the application perfor-
mance constraints is a complex process. The design issues span several abstraction
levels, ranging from high-level application modeling to physical layout level imple-
mentation. Some of the most important phases in designing the NoC include: mod-
eling the application traffic, synthesis of NoC topology for the application, mapping
of cores onto the topology, finding paths and reserving resources, verifying perfor-
mance of the system, developing simulation and synthesis models, and achieving
reliable operation of the interconnect.

In order to handle the design complexity and meet the tight time-to-market con-
straints, it is important to automate most of these NoC design phases. To achieve
design closure, the different phases should also be integrated in a seamless man-
ner. The NoC design challenge lies in the capability to design hardware-optimized,
customizable platforms for each application domain.

Computer-aided synthesis of NoCs is particularly important in the case of
application-specific systems on chip, which usually comprise computing and stor-
age arrays of various dimensions as well as links with various capacity requirements.
Moreover, designers may use NoC synthesis as a means for constructing solutions
with various characteristics that can be compared effectively only when a detailed
model is available. Thus, synthesis of NoCs can be used for comparing prototypes.
Needless to say, synthesis may also be very efficient for designing NoCs with regu-
lar topologies as, for example, multiprocessing systems with homogeneous cores.

NoC architectures are pushing the evolution of traditional circuit design method-
ologies to deal effectively with functional diversity and complexity. At the appli-
cation level, the key design challenge is to expose task-level parallelism and to
formally capture concurrent communication in models of computation [28]. Then
high-level concurrent tasks have to be mapped to the underlying communication
and computation resources. At this level, an abstract model of the hardware archi-
tecture is usually exposed to the mapping tool, so that area and power estimates
can be given in the early design stage, and different objective functions (e.g., mini-
mization of communication energy) can be considered to evaluate the feasibility of
alternative mappings. In this context, a critical step in communication mapping is
the NoC architecture synthesis for its significant impact on overall system perfor-
mance, which is increasingly communication-dominated.

Finally, it is important to achieve a reliable NoC operation by providing resilience
from permanent and transient delay and logic errors in the system. In order to protect
the system from errors that occur in the communication subsystem, we can use error

1 Introduction 5

recovery mechanisms that are used in traditional macro-networks. As the error de-
tection/correction capability, area-power overhead, and performance of the various
error detection/correction schemes differ, the choice of the error recovery scheme
for an application involves multiple power-performance-reliability trade-offs that
have to be explored.

1.3 Book Overview

In this book, we present methodologies to design reliable and efficient NoCs. We
present algorithmic methods to solve many of the important NoC design problems.
The novel, state-of-the-art optimization methods provide near optimal solutions for
many of the NoC design problems. These methods will be useful for designers to
tackle specific problems in NoC design or can even be applied to solve analogous
problems in other domains. Most of the time-intensive steps of NoC design are
automated and integrated into a complete tool flow. The tool flow can also be used
to perform design space exploration of different communication architectures. The
proposed tool bridges an important design gap that exists today, in building efficient
communication architectures for MPSoCs.

In the rest of this section, a detailed overview of the book is presented.

1.3.1 NoC Design Methods

We first present (in Chapter 2) methods for synthesizing state-of-the-art crossbar
based communication architectures. While methodologies that target the design of
NoCs are required in the long run, providing design support for the state-of-the-art
crossbar based bus designs pose an immediate and pressing problem. Also, as the
NoC design process is more complex in nature, synthesis of crossbar-based com-
munication architectures is an ideal starting point for illustration. Moreover, even in
complex NoCs, the communication architecture will be hierarchical in nature, with
local cores communicating through crossbars and the global communication taking
place through a scalable network. In fact, this trend is already followed in many chip
multiprocessors, such as the Stanford Smart Memories [101]. From Chapter 3 on,
we present the design of NoC architectures.

The NoC topology defines the interconnection of the different network switches
with the cores and among each other. The NoC topologies can be broadly classified
into two main categories: standard and application-specific custom topologies. In the
standard topologies, the interconnection structure ensures full connectivity between
the cores: that is, any core is reachable from any other core. Examples of such
topologies include mesh, torus, hypercube, Clos, and butterfly. In an application-
specific custom topology, the interconnection between the switches and cores are
optimized to match the application traffic patterns. If an application does not require

6 1 Introduction

full connectivity between the cores, then the topology is optimized to provide only
the required connectivity.

The use of a custom topology for an application almost always leads to a bet-
ter performance and reduction in area/power overhead. However, there are some
situations where a standard topology is desirable for the design:

• When the NoC is to be used across multiple product generations, a standard topol-
ogy ensures that the same NoC can be reused easily across the different genera-
tions. However, when using a custom topology, the designer has restricted options
when adding cores in the future, as the NoC may not provide full connectivity.

• When the cores are almost regular (similar sizes), the use of a standard topology
leads to better wiring structure, as the floorplan is more predictable.

In this book, we address the design of both standard and application-specific
custom topologies.

In Chapter 3, we present Netchip, a CAD tool flow for designing NoCs. The
Netchip tool flow has three main phases and several tools integrated together:

• Front-End Design Phase: In this phase, several key NoC features such as the
interconnect structure (or topology), routing scheme, paths for traffic flow, val-
ues for the NoC architectural parameters are determined. We present two tools:
SUNMAP and SUNFLOOR to design application-specific standard and custom
topologies, thereby automating this phase. The synthesis methods used in these
tools are the subject of discussions in Chapters 4 and 5.

• Architectural Design Phase: In this phase, the RTL code of the NoC architec-
ture is instantiated. For this, ×pipes, a library of soft-macros for the network
components and ×pipesCompiler, a tool to generate the RTL design using the
component library are developed. This is further explained in Chapter 3.

• Back-End Phase: In this phase, simulation, FPGA emulation, and layout gener-
ation of the NoC are carried out. For this, several standard industrial tool chains
have been integrated with the tool flow, so that most of the back-end processes
can be automatically obtained. This is also further explained in Chapter 3.

The NoC design process in Netchip is tuned to satisfy the requirements of the
specific application that is to be run on the SoC. However, in today’s systems,
multiple applications (or use-cases) can run on the same chip. As an example, a
set-top box SoC has multiple resolution video processing capabilities (like high de-
finition, standard definition), multiple picture modes (like split-screen, picture-in-
picture), video recording features, high speed Internet access, file transfer services,
etc. In Chapter 6, we present the extensions to the synthesis process to handle the
multiple use-case scenario. Even though, in Chapters 3–5, we present the NoC syn-
thesis processes for the ×pipes architecture, the methods are quite general in nature
and can be applied to any architecture. Toward this end, in Chapter 6, we show the
process of designing the NoC for the Æthereal architecture (from NXP research).

So far, for the design process, we have assumed that the application traffic is
statically known. However, what happens if there are large dynamic variations in
traffic or if the traffic cannot be precharacterized at all? As an example, this would

1 Introduction 7

be the case when tasks are assigned dynamically to the different cores. In Chapter 7,
we present methods to design the NoC architecture for handling dynamic traffic
patterns, while still yielding predictable performance.

Thus, in the first part of the book, we will be covering methods to synthesize
NoCs under almost all possible design conditions.

1.3.2 NoC Reliability Mechanisms

In the second part, we will be presenting the different mechanisms that can be used
to obtain a reliable NoC and system operation.

With technology scaling, the device characteristics fluctuate to a large extent due
to process variations and can cause significant variations in wire delay [122]. Wire
delay is also affected by other forms of interference such as supply bounce, trans-
mission line effects, etc. [123, 124]. As such delay variations can affect multiple bits
simultaneously, special mechanisms are needed to handle timing errors. In Chap-
ter 8, we present T-error, a timing-error tolerant mechanism to make the intercon-
nect resilient against timing errors arising due to such delay variations on wires.

Once the NoC components are made timing-error tolerant, we need to still handle
other transient and permanent errors that can occur in the system, such as soft-
errors. To handle such errors, we need support at the design level, as well as at
the architectural level. In Chapter 9, we present an analysis of the power efficiency
of traditional error detection/correction mechanisms, to choose the best scheme for
the application, so that we can achieve the required reliability level with minimum
area-power overhead. In Chapter 10, we present routing mechanisms that achieve
an application-specific reliability level against temporary and permanent failures.

NoCs not only allow a reliable interconnect operation, but also facilitate achiev-
ing a reliable operation of the entire system. The high flexibility of NoCs allows
the designer to add redundant cores in the same chip (e.g., processing elements,
backup memories) without largely increasing the design complexity. In Chapter 11,
we show how the NoC can be used to support the design of a reliable on-chip mem-
ory subsystem.

Finally, in Chapter 12, we conclude the book by integrating the reliability mech-
anisms with the design methods and showing how a complete NoC can be designed
using the tool chain.

1.4 Related Work

In this section, we summarize some of the research that has been performed in the
fields of NoC design and interconnect reliability.

The design issues in macro-networks (e.g., the LAN, WAN, Internet) have re-
ceived unprecedented focus in the last several decades. In the last decade, the design

8 1 Introduction

of chip-to-chip interconnection networks for parallel processing has also received
considerable focus.

However, the challenges encountered in the design of on-chip networks for SoCs
is quite different from the design of such macro-networks. Some major differences
are: (1) The communication between the various cores can be statically analyzed
for many SoCs and the NoC can be tailored for the particular application behavior.
Whereas in the case of macro-networks, it is impossible to obtain a global knowl-
edge of the traffic patterns of all the users. (2) The design objectives and constraints
are different. As most SoCs are used in mobile and hand-held devices, having a net-
work with minimum power consumption becomes an important design objective.
Many SoCs also need to respond in real-time for certain inputs, for which the NoC
has to support different criticality levels for the different traffic streams. (3) The
design process should also consider VLSI issues, such as the structure (floorplan
requirements) and wiring complexity of the resulting interconnect.

In this section, we present the state-of-the-art in the domain of NoC architectures,
design methodologies, and fault-tolerant communication architectures.

1.4.1 NoC Architectures and Design Methods

The most advanced state-of-the-art SoC communication architectures represent evo-
lutionary solutions with respect to shared buses. Sonics MicroNetwork [4] is a
TDMA-based bus which can easily adapt to the data-word width, burst attributes, in-
terrupt schemes, and other critical parameters of the integrated cores, while provid-
ing very high bandwidth utilization. STBus interconnect [3] is a high performance
communication infrastructure that allows to instantiate shared buses as well as more
advanced topologies such as partial or full crossbars. Although evolutionary from a
topology viewpoint, these solutions can rely on advanced and highly automated de-
sign methodologies for the implementation of generic communication subsystems,
allowing designers to rapidly assemble, synthesize, and verify their SoCs using the
MicroNetwork or the STBUS interconnect as integration platforms.

However, the early works in [20, 22] pointed out the need for more scalable
architectures for on-chip communication and, therefore, to progressively replace
shared buses with on-chip networks. Many NoC architectures have therefore been
proposed in the open literature so far, but in most cases, the design methodologies
and tools are still in the early stage.

One of the earliest contributions in this area is the Maia heterogeneous signal
processing architecture, proposed by Zhang et al., based on a hierarchical mesh
network [24]. Unfortunately, Maia’s interconnect is fully instance-specific. Further-
more, routing is static at configuration time and communication is based on circuit
switching, as opposed to packet switching. In this direction, Dally and Lacy sketch
the architecture of a VLSI multi-computer using 2009 technology [9]. A chip with
64 processor-memory tiles is envisioned. Communication is based on packet switch-
ing. This seminal work draws upon past experiences in designing parallel computers
and reconfigurable architectures (FPGAs and their evolutions) [65, 66].

1 Introduction 9

Most proposed NoC platforms are packet switched and exhibit regular structure.
An example is a mesh interconnection, which can rely on a simple layout and the
switch independence on the network size.

The Scalable Programmable Integrated Network (SPIN) described in [31] is a
regular, fat-tree-based network architecture. It adopts cut-through switching to min-
imize message latency and storage requirements in the design of network switches.

The NOSTRUM network described in [32] also takes this approach: The plat-
form includes both a mesh topology and the relative design methodology, wherein
a concrete architecture is derived from a general NoC template, then application
mapping follows.

The Linkoeping SoCBUS [69] is a two-dimensional mesh network which uses
a packet connected circuit (PCC) to set up routes through the network: a packet is
switched through the network locking the circuit as it goes. This notion of virtual
circuit leads to deterministic communication behavior, but restricts routing flexibil-
ity for the rest of the communication traffic.

In [10], the use of octagon communication topology for network processors is
presented. Instead, the implementation of a star-connected on-chip network support-
ing plesiochronous communication among system components is described in [27].

The Æthereal NoC design framework presented in [30] aims at providing a com-
plete infrastructure for developing heterogeneous NoC with end-to-end quality of
service guarantees. The network supports guaranteed throughput (GT) for real time
applications and best effort (BE) traffic for timing unconstrained applications. Sup-
port for heterogeneous architectures requires highly configurable network building
blocks, customizable at instantiation time for a specific application domain. For
instance, the Proteo NoC [26] consists of a small library of predefined, parameter-
ized components that allow the implementation of a large range of different topolo-
gies, protocols, and configurations. ×pipes interconnect [61] and its synthesizer
×pipesCompiler [62] push this approach to the limit, by instantiating an appli-
cation specific NoC from a library of composable soft macros (network interface,
link, and switch).

Today, several NoC architectures have been developed [42, 74–76] with each
architecture having a different structure, switch/NI design, routing scheme, QoS
support, and clocking methodology. In [73], the state-of-the-art in the NoC field is
presented in detail.

The synthesis and instantiation of single bus and multiple bridged buses has been
explored in many research works such as [35–38, 47, 77]. In [39], the authors present
an approach for mapping the system’s communication requirements and optimizing
the protocols for a given communication architecture template. In [40], the use of
communication architecture tuners to adapt to runtime variability needs of a system
is presented. A floorplan aware method for designing point-to-point links and buses
are presented in [77] and [53]. In [56], the authors present an exact approach to
crossbar synthesis, where they integrate the NoC architecture parameter setting with
the synthesis process.

Methods to collect and analyze traffic information that can be fed as input to the
bus and NoC design processes have been presented in [39]. Mappings of cores onto

10 1 Introduction

standard NoC topologies have been explored in [43, 44]. In [6], a unified approach
to mapping, routing, and resource reservation has been presented.

Important research in macro-networks has considered the topology generation
problem [41]. As the traffic patterns on these networks are difficult to predict, most
approaches are tree-based (like spanning or Steiner trees) and only ensure connec-
tivity with node degree constraints [41]. Hence, these techniques cannot be directly
extended to address the NoC synthesis problem. Application-specific custom topol-
ogy design has been explored in [25, 48–51]. In [49], a physical planner is used
during topology design to reduce power consumption on wires. A method to obtain
application-specific NoC topologies with floorplan estimation is presented in [78].
In [67], memory optimization in single chip network fabrics is explored. In [96],
a tool flow to design NoCs with QoS guarantees is presented.

In [12], a low latency router architecture for supporting dynamic routing is pre-
sented. In [13], a routing scheme that switches between deterministic and adaptive
modes, depending on the application requirements is presented. Several works in the
multiprocessor field have focused on the design of efficient routing strategies [94].
In the Avici router [16], packets that need to be in-order at the receiver are grouped
together into a flow. Packets of a single flow follow a single path, while different
flows can use different paths. In the IBM SP2 network [17], source-based oblivi-
ous routing is used for a multi-stage interconnection network. In [14], the authors
present a source-based dynamic routing algorithm for multi-stage networks. Build-
ing area and power models for on-chip networks has been addressed in [68, 79–81].

In this book, we present a streamlined design methodology for NoC topology
synthesis that is completely integrated with the state-of-the-art commercial tools for
back-end physical design. We present a floorplan aware topology design method
for NoCs that leads to detecting timing violations on the NoC links early in the
design cycle, with the resulting designs fully verified for timing correctness using
standard place&route tools. Our custom NoC topology synthesis process guaran-
tees a complete deadlock-free network operation without requiring special hard-
ware mechanisms, which is critical for using NoCs in real designs. The topology
synthesis process is integrated with NoC architectural parameter setting and uses
accurate switch area, power models, and link power models that are obtained from
layouts of the components. We address the design of both regular and custom NoC
topologies and present methods to design NoCs under different application scenar-
ios. Moreover, we also address the design of NoCs, when the application traffic
characteristics cannot be predicted in advance. The presented design processes are
both performance and power consumption aware, which are two of the important
design objectives in SoC design.

1.4.2 Reliability Support for NoCs

The quest for reliable and energy efficient NoC architectures has been the focus
of multiple researchers. Error protection can be applied at several levels within

1 Introduction 11

a NoC design. For example, fault-tolerant routing algorithms have been proposed
in [138, 140]. The use of nonintersecting paths for achieving fault-tolerant routing
has been utilized in many designs, such as the IBM Vulcan [94]. The use of tem-
poral and spatial redundancy in NoCs to achieve resilience from transient failures
is presented in [15]. In this work, we present a fault-tolerant routing scheme and
an associated design method for NoCs, which has low area-power overhead when
compared to the existing schemes and is practical to be used in the on-chip domain.

A methodology for trading off power and reliability using error control codes for
Systems on Chip (SoC) signaling is presented in [126, 147]. In [127], the energy
behavior of different error detection and correction schemes for on-chip data buses
is explored. In [129], a fault model notation is presented and the use of multiple en-
coding schemes for different parts of a packet is explored. In [128], the use of single
error correction and parity based error detection schemes for NoCs is explored. Even
though some of these works consider the use of error recovery schemes for NoCs,
there is no framework available today for systematic analysis of the different er-
ror recovery schemes. To tackle this issue, we present a systematic power-reliability
analysis methodology for the different error detection/correction schemes for NoCs.
The presented method will be useful to NoC designers for choosing the appropriate
error-recovery scheme for their applications.

In [139], the supply voltage is varied dynamically based on the error rate on the
links. In [132], the data bus is monitored to detect adverse switching patterns (that
increase the wire delay) and the clock frequency is changed dynamically to avoid
timing errors on the bus. Many bus encoding techniques such as [134] have been
proposed that decrease cross-talk between wires and avoid adversarial switching
patterns on the data bus. There have been several approaches in the design space
to detect and correct timing errors. The use of double data sampling techniques
has been shown in self-checking testing circuits [116, 117] and for clock recovery
in digital systems [120]. Recently, these techniques have been used for online tim-
ing and soft-error recovery in systems. The TEAtime [115] architecture tracks logic
delay variations and dynamically adjusts the clock frequency to accommodate the
changes in logic delay.

In Razor [113, 114], an aggressive, better than worst-case design approach is
presented for processor pipelines. In this work, double sampling of data is used
to control supply voltage (and hence power consumption) by monitoring the error
rate. Favalli et al. [117] assume an encoded data signal which is checked by a small
decoder present at the input of each flip-flop. In case of an error, the clock is delayed
for one cycle, until the correct value of data settles. Mousetrap [118] is a high speed
asynchronous pipeline which ensures correct data availability to consecutive stages.
The Iroc [119] design uses a latch with delayed clock to detect transient faults due
to soft errors. In [72], a method to reuse the scan flip-flops to achieve soft-error
tolerance is presented. The method significantly reduces the soft-error rate of the
system, with minimal overhead.

In this book, we present the application of the double sampling data technique to
NoCs. By efficiently integrating the technique with the flow control of the NoCs,
we show that large power/area savings can be achieved, when compared to the

12 1 Introduction

general double sampling techniques. We also present ways to dynamically acti-
vate/deactivate the technique to adapt to the application error rates. We present novel
methods for achieving error protection at both design level and architectural level.
We also show how NoCs can be used to provide error resiliency for the entire SoC.
Finally, we integrate the different error recovery methods presented in this thesis
with the NoC design flow, thereby automating the design of fault-tolerant NoC ar-
chitectures.

Part I
NoC Design Methods

Chapter 2
Designing Crossbar Based Systems

Over the last decade, the communication architecture of SoCs has evolved from
single shared bus systems to multi-bus systems. Today, state-of-the-art bus based
systems, such as the AMBA AXI [2] or the STBUS platform [3] supports the in-
stantiation of crossbar matrices, where multiple buses operate in parallel, providing
a high bandwidth communication infrastructure. While methodologies that target
the design of NoCs are required in the long run, providing design support for the
state-of-the-art crossbar based bus designs pose an immediate and pressing prob-
lem.

A crossbar matrix can be viewed as an evolutionary NoC architecture, where a
single switch is used for the communication traffic flows. As the design process
for building a general NoC is more complex in nature, synthesis of crossbar-based
communication architectures is an ideal starting point for illustration of the design
methods.

Despite some similarities, there is one important difference between the design
of a crossbar matrix and a general NoC architecture. As the crossbar matrix design is
simpler, exact algorithms can be utilized to build the system, thereby leading to fully
optimum solutions. Even in cases where completely optimum solutions cannot be
obtained, a large portion of the design space can be explored. Thus, we can design
the crossbar system to handle more efficiently the local variations in traffic rates and
burstiness in traffic flows, when compared to a general NoC system.

Even in complex NoCs, the communication architecture will be hierarchical in
nature, with local cores communicating through crossbars and the global communi-
cation taking place through a scalable network. Thus, it is important to have efficient
methods to design such crossbar systems.

In this chapter, we present the design of state-of-the-art crossbar based bus sys-
tems. We present methods to automatically design the most power efficient crossbar
configuration for a MPSoC, satisfying the performance characteristics of the appli-
cations [52]. The communication architecture for the design should closely match
the application traffic characteristics and performance requirements.

As an example, let us consider an image-processing MPSoC (detailed explana-
tion of the MPSoC and experimental set-up is presented later in Section 2.5) with
three different communication architectures used to connect the cores: a shared bus
(all the cores are connected to a single bus), a full crossbar (each core is connected to
a separate bus), and a partial crossbar (some of the cores share a bus). In Table 2.1,
the average and maximum latencies incurred for a transaction (transfer of a sin-
gle data word), obtained from SystemC simulation of the design using the different
communication architectures are presented. The sizes of the crossbars (in terms of
number of components used) normalized with respect to the size of the shared bus
are also presented in the table. As seen from the table, as expected, both the average

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

15

16 2 Designing Crossbar Based Systems

Table 2.1 Crossbar
performance and cost for an
example image-processing
MPSoC

Type Average Maximum Size

latency latency ratio

(cycles) (cycles)

Shared bus 35 51 1

Full crossbar 6 9 11

Partial crossbar 10 20 4

and the maximum transaction latencies are much higher for a single shared bus than
the partial or full crossbars. However, it is interesting to note that an optimal partial
crossbar gives almost the same performance as a full crossbar, even though it uses
fewer resources than a full crossbar.

The proposed design methodology is based on actual functional traffic analysis
of the application, and the generated crossbar configuration is validated by cycle-
accurate SystemC simulation of the application using that crossbar. Most previous
works on bus generation and NoC topology generation (which are somewhat similar
to crossbar generation) are either based on average communication traffic flow be-
tween the various cores or based on statistical traffic generating functions [43–51].
While the former approaches fail to capture local variations in traffic patterns (as the
average bandwidth of communication is a single metric that is calculated based on
the entire simulation time), the latter approaches are only based on approximations
to the functional traffic.

The proposed design methodology differs from existing approaches [43–50] in
the fact that it is based on the analysis of simulated traffic patterns in windows.
The entire simulation period is divided into a number of fixed-sized windows. The
crossbar is designed such that, within each window, the application communication
requirements (such as the bandwidth requirements) are met. Moreover, the over-
lap among traffic streams mapped onto the same resource is minimized, thereby
reducing the latency for data transfer. The criticality and real-time requirements of
streams are also considered and the overlapping critical streams are mapped onto
different crossbar resources.

The methodology spans an entire design space spectrum with the analysis based
on average communication traffic (as done in many previous works [43–50]) and
on-peak bandwidth (as done in [51]) being the two extreme design points. Thus,
the methodology also applies to cases where application traces are not available and
only rough estimates of the traffic flows between the various cores are known. The
design point in the spectrum is varied by controlling the window size used for the
traffic analysis and design.

We also integrate the setting up of several communication architecture parame-
ters (such as the frequency of operation) with the crossbar synthesis phase. The
wiring complexity of the interconnect should also be considered during the com-
munication architecture synthesis procedure. For this, the floorplan of the design is
performed, where the accurate physical locations of the cores and the crossbar ma-
trix are determined. From the resulting floorplan, the wire-lengths in the design are

2 Designing Crossbar Based Systems 17

obtained. Based on the length of the wires and the operating frequency of the cross-
bar (which is automatically tuned by the synthesis procedure), any timing violations
on the wires are obtained early in the design cycle. Thus, the crossbar architecture
generated by the procedure is also validated for timing correctness, which is a key
step to bridge the gap between the higher level architectural models and the actual
physical design models of the crossbar architecture. From the wire-length estimates,
accurate estimates of the power consumption of the interconnect wires are also ob-
tained. The crossbar matrix power consumption values are based on the synthesis
of the RTL models of the design, obtained using industry standard tools. From the
wire and crossbar matrix power consumption, the total communication architecture
power consumption is obtained, which is used to guide the synthesis procedure to
obtain the most power efficient crossbar architecture.

We present experiments on several different MPSoC designs that show large re-
duction in power consumption of the communication architecture (45.3% on aver-
age) and total wire-length of the crossbar buses (38.0% on average) when compared
to the traditional full crossbar based design approaches. Compared to the existing
design methods, the proposed methodology results in crossbar platforms that lead to
large reduction in transaction latencies (up to 7×). The experiments also show that
the proposed approach is highly scalable to a large number of cores and to a large
number of simulation windows in the design.

2.1 Problem Motivation and Application Traffic Analysis

2.1.1 Problem Motivation

There are three possible ways in which a crossbar can be instantiated: as a shared
bus, a partial crossbar, or a full crossbar. The partial and full crossbars are actu-
ally composed of many buses to which the processor/memory cores are connected.
Examples of partial and full crossbars are presented in Figure 2.1. In the partial
crossbar architecture, some of the cores (such as the Master 0 and Master 1) share
the same bus, while in the full crossbar, each core is connected to a separate bus.
The objective of the crossbar synthesis procedure is to obtain an efficient clustering

Fig. 2.1 STbus crossbars

18 2 Designing Crossbar Based Systems

Fig. 2.2 Power consumption
of switch matrix and wires

of the master and slave cores onto the crossbar buses, such that a communication
architecture with low power consumption is obtained.

When choosing the most power efficient crossbar configuration, it is also im-
portant to account for the wiring complexity of the different configurations. As an
example, the power consumption of the crossbar components (switch matrix and
arbiters) for two different configurations and the power consumption of the wires
for two different total wire-lengths (assuming a design with 30 cores and data width
of 32-bits for the crossbar buses) are presented in Figure 2.2. For most MPSoC de-
signs, the total length of the wires of the crossbar buses is of the order of few tens
of millimeters. For the power consumption values presented in the figure, a 130 nm
process technology is used, with an operating frequency of 500 MHz and an oper-
ating voltage of 1.2 V. The methods and assumptions used for estimating the power
consumption of the crossbar matrices and wires are presented in detail in the exper-
imental section. From the figure, we can infer that the wire power consumption is a
significant fraction of the total communication architecture power consumption for
crossbar based systems. Thus, it is important to consider the length of wires dur-
ing the synthesis process, as the design point can be far from the optimum design
point if such information is not accounted for. In order to have accurate wire-length
estimates, we need to have accurate floorplan information of the design.

Another point worth noting is that in many crossbar architectures, the underlying
protocol may not support pipelining of the buses (as an example, the Type 1 pro-
tocol of STbus [3]). In this case, the frequency of operation of the communication
architecture is limited by the length of the longest bus in the design. For a chosen
frequency point, it is then important to evaluate whether the length of the wires are
lower than the threshold limit, so that they can be traversed in one clock cycle. We
would also require the accurate floorplan and wire-length estimates to apply such
feasibility checks.

2 Designing Crossbar Based Systems 19

Fig. 2.3 Application traffic
analysis

2.1.2 Application Traffic Analysis

In this subsection, we explore the traffic characteristics of applications to model
the performance constraints to be satisfied by the crossbar designed for the sys-
tem. As an example, consider the 21-core image processing application, shown in
Figure 2.3(a). In this example, there are 9 ARM cores, 11 on-chip memories, with
some of the memories used for interprocessor communication and an interrupt de-
vice. The ARM cores act as masters and the memory cores act as slaves. The ARM
cores run a set of image processing benchmarks that involve accesses to different
memories. A cycle-accurate simulation of the system with a full crossbar design
was performed, using the STbus crossbar architecture. A small trace of the traffic to
three of the cores is shown in Figure 2.3(b).

Even though the aggregate traffic (measured over the entire simulation period) to
the three cores is lower than that can be supported by a single bus, using a single
bus to connect all three cores will lead to high average and peak latency due to
overlap in traffic patterns during some regions of the simulation. Another related
point is that if overlaps are not considered, connecting ARM 0 and ARM 1 on to the
same bus is better than connecting ARM 0 and ARM 2 onto the same bus, as the
former results in lower bandwidth needs. However, the latter solution will result in
better performance (reduced transaction latency) while still satisfying the bandwidth
needs. Note that using peak bandwidth instead of the average bandwidth will solve
this problem, but lead to an over-design of the crossbar (in terms of number of
buses needed or their frequency of operation). The design methodology needs to
consider overlap among the various traffic streams into account and should consider
local variations in traffic rates. Also, some of the traffic streams can be critical and
to facilitate providing real-time guarantees; real-time traffic streams that overlap in
time should not be mapped onto the same crossbar bus.

2.2 Design Methodology

The design flow for the crossbar design is shown in Figure 2.4, which consists of
four distinct phases. In the first phase, the application is initially designed using a

20 2 Designing Crossbar Based Systems

Fig. 2.4 Crossbar design
methodology

full crossbar communication architecture and a SystemC simulation of the design is
carried out. As the full crossbar architecture is nonblocking in nature (no contention
between the cores if they are accessing different cores), it helps in modeling the
application traffic requirements under ideal operating conditions. For the simula-
tions, we use the MPARM simulation environment [57] that allows interconnection
of ARM cores to several interconnection platforms (such as AMBA, STbus, . . .) and
to perform cycle accurate simulations for a variety of benchmark applications.

To effectively capture local variations in traffic patterns and to perform overlap
calculations, we define a window-based traffic analysis. The entire simulation period
is divided into a number of windows and the traffic characteristics to the various
cores in each window are obtained. The traffic characteristics recorded include: the
amount of data sent and received by each core in every window, amount of pair-wise
overlap between the traffic streams between the different cores in every window,
the real-time requirements of traffic streams, etc. Without loss of generality, in the
rest of this chapter, we assume that all the windows are of equal size, although the
methodology also applies to windows with varying sizes. The size of the window
is parameterizable and depends on the application characteristics and performance
requirements.

After the data collection phase, a preprocessing phase is carried out in which the
cores that have traffic flows with large overlaps in any window and need to be put
on different buses are identified. In this phase, the overlapping critical streams that
need to be on separate buses are also identified.

In the next phase, the optimal crossbar configuration for the application, satis-
fying the performance constraints is synthesized. To generate the optimal crossbar
configuration, we use the traffic information collected in each window and check
whether the bandwidth, overlap, and criticality constraints are satisfied in each win-
dow. In the final phase, the designed crossbar matrix is instantiated in the MPARM
environment and SystemC simulations are carried out.

The details of the crossbar synthesis phase are presented in Figure 2.5. In the
outer loop of the synthesis process, the communication architectural parameters
(such as the frequency of operation and bus width) are varied in several user de-
fined steps. The interesting range for the parameters are obtained from the user. For
each architectural parameter point, the most power efficient crossbar configuration
is synthesized. For synthesis, we present two approaches: one approach is based
on solving the problem exactly using Integer Linear Program (ILP) formulation,
which is applicable for small problem instances, and the other is a more scalable ap-
proach based on fast and efficient heuristics. In the next step of the synthesis phase,

2 Designing Crossbar Based Systems 21

Fig. 2.5 The crossbar synthesis phase

floorplan of the synthesized design is performed. Floorplanning is the process of
determining the exact 2D positions of the different cores and the switch matrix in
the design. For obtaining the floorplan, we use Parquet [92], a fast and accurate
floorplanner that minimizes the design area as well as the average wire-length. As
the cores in the MPSoC are usually predesigned hardware blocks, we realistically
assume that the size of the cores (either the width and height or the aspect ratio and
area) are provided as an input to the synthesis process.

From the floorplan of the design, the length of the wires (based on the Manhattan
distance), and hence the power consumption on the wires are obtained. In the next
step, for the chosen frequency point, the wire-lengths are checked to see whether
the maximum wire-length exceeds the length that the data can traverse in a single
clock cycle. In the next step, from the switch matrix power consumption and the
wire power consumption, the power consumption of the synthesized communication
architecture is obtained. From the set of generated crossbar architectures for each
architectural design point, the most power efficient architecture that satisfies the
performance and timing constraints is chosen.

22 2 Designing Crossbar Based Systems

2.3 Exact Approach to Crossbar Synthesis

In this section, we formulate the mathematical models of the crossbar design prob-
lem and present the exact ILP formulation to synthesize the most efficient architec-
ture for a chosen architectural parameter design point.

2.3.1 Problem Formulation

Definition 1 The set of all cores in the design is represented by the set T . The set
of all windows used for traffic analysis is represented by the set W , with the band-
width available (product of frequency of operation and bus width) in each window
represented by WS. The set of buses used in the crossbar is represented by the set B .

Definition 2 The bandwidth requirement of each core ti , ∀i ∈ 1, . . . , |T |, in every
window m, ∀m ∈ 1, . . . , |W |, is represented by commi,m.1 The amount of data over-
lap between every pair of cores (ti , tj) in each window m is represented by woi,j,m.

The overlap between every pair of cores ti and tj , over the entire simulation
period is obtained by summing the overlap between them in all the windows and
represented by the entries of the overlap matrix OM:

omi,j =
∑

m

woi,j,m ∀i, j (2.1)

In the preprocessing phase of the design flow (refer to Figure 2.4), those pair of
cores that have overlap exceeding the threshold value (which is parameterizable) in
any window are identified. By mapping the traffic flows of such cores onto separate
buses, the maximum and average latency of data transmission can be reduced, and
in some cases can also speed up the process of finding the optimal crossbar con-
figuration. Also, in this preprocessing step, the real-time traffic streams that overlap
with each other in any window are identified. Such cores with overlapping real-time
streams should not be placed on the same bus, as real-time communication guaran-
tee to the streams cannot be given in this case. Also, as noted earlier, most crossbar
architectures do not allow masters and shared slaves of the design to be mapped
onto the same bus. The set of all cores that cannot be on the same bus by the conflict
matrix is defined by:

ci,j =
{

1, if ti & tj should be on different buses
0, otherwise

∀i, j (2.2)

The performance constraints that need to be satisfied by the crossbar configura-
tion in each window are modeled as constraints of an ILP.

1In the rest of this chapter, we follow the convention that variables i and j are defined for
1, . . . , |T |, variable k is defined for 1, . . . , |B|, and m for 1, . . . , |W |.

2 Designing Crossbar Based Systems 23

Definition 3 The set X represents the set of binding variables xi,k , such that xi,k is
one when core ti is connected to the bus bk and zero otherwise.

In the crossbar design, each core has to be connected to a single bus (while a
single bus can connect multiple cores). This is implemented by the following con-
straint:

∑

k

xi,k = 1 ∀i (2.3)

In every window used for traffic analysis, the individual buses of the crossbar
have to support the traffic through them in that window. By evaluating the band-
width constraints over a smaller sample space of a window (which is typically a few
hundred or thousand cycles), instead of the entire simulation sample space (which
can be millions of cycles), we are better able to track the local variations in the traffic
characteristics.

This window-based bandwidth constraint is represented by the equation:
∑

i

commi,m × xi,k ≤ WS ∀k,m (2.4)

Definition 4 The set SB represents the set of sharing variables sbi,j,k , such that
sbi,j,k is one when cores ti and tj share the same bus bk and zero otherwise. The
set S represents the set of sharing variables si,j , such that si,j is one when cores ti
and tj share any of the buses of the crossbar and zero otherwise.

The sbi,j,k can be computed as a product of xi,k and xj,k . However, this results
in nonlinear (quadratic) equality constraints. To break the quadratic equalities into
linear inequalities, the following set of inequalities are used:

sbi,j,k ∈ {0,1}
xi,k + xj,k − 1 ≤ sbi,j,k

0.5xi,k + 0.5xj,k ≥ sbi,j,k ∀i, j, k

(2.5)

and the si,j are computed using the equation:

si,j =
∑

k

sbi,j,k ∀i, j (2.6)

The condition that certain cores are forbidden to be on the same bus, obtained
from equation (2.2), is represented by:

ci,j × si,j = 0 ∀i, j (2.7)

The fact that all the integer variables introduced above take values of either 0 or
1 only, is represented by:

xi,k, si,j , ci,j ∈ {0,1} ∀i, j, k (2.8)

24 2 Designing Crossbar Based Systems

2.3.2 Exact Crossbar Synthesis Algorithm

The exact algorithm for the crossbar design has two major steps: the first is to find
the best crossbar configuration that satisfies the performance constraints (that were
presented in the above subsection) and the second step is to find the optimal binding
of the cores to the chosen crossbar configuration.

In order to find the best crossbar configuration, we vary the number of buses in
the design, from the maximum number (equal to the number of cores in the design,
modeling a full crossbar) to one (modeling a single shared bus), in a binary search
manner. For each configuration of bus count, we check whether a feasible solution
that satisfies the constraints of the ILP (formed by the set of inequalities from equa-
tions (2.3) to (2.8)) exists. Once the minimum number of buses have been identified
from applying the ILP, possibly multiple times, the buses used by the masters and
slaves of the design are separated, thereby generating the optimal crossbar configu-
ration.

Once the best crossbar configuration is obtained in the next step, the optimal
binding of the cores onto buses of the crossbar is obtained. A binding of cores to
the buses that minimizes the amount of overlap of traffic on each bus will result in
lower average and peak latency for data transfer.

For this, the above ILP is solved with the objective of reducing the maximum
overlap on each of the bus (the maximum overlap over all the buses is represented
by the variable maxov), and satisfying the performance constraints as follows:

min maxov

s.t.
∑

i

∑

j

omi,j × sbi,j,k ≤ maxov ∀k

and subject to equations (2.3) to (2.8) (2.9)

By splitting the problem into two ILPs, the execution time of the algorithm is
reduced, as solving ILP 1 for feasibility check is usually faster than solving the
ILP 2 with objective function and additional constraints. The ILPs are solved using
the CPLEX package [59].

2.4 Heuristic Approach to Crossbar Synthesis

As the exact ILP approach is not scalable to large problem instances, either when
the number of cores in the design is large or when the number of simulation win-
dows used for analysis is large, in this section we present fast and efficient heuristic
approach for crossbar synthesis.

The problem of assigning cores to the minimum number of buses, subject to the
performance constraints is a special instance of the general problem of constrained
bin-packing [60]. There are several efficient heuristics that have been developed for

2 Designing Crossbar Based Systems 25

the bin-packing problem [60]. In this work, we use an approach that is based on the
first-fit heuristic to bin-packing. We chose this heuristic for several reasons. When
the performance constraints are removed, the heuristic procedure is theoretically
guaranteed to provide solutions that are within two times the optimum solution that
would be obtained by an exact algorithm [60]. Practically, we found that the solu-
tions obtained by the heuristic are close to the optimum solution possible for exper-
iments on several SoC benchmarks. Moreover, the heuristics are relatively simple to
implement and have a very low run-time complexity, making the approach scalable
to large designs and allowing the use of large number of simulation windows for
analysis.

The heuristic algorithm for crossbar synthesis is presented in Algorithm 1. In the
first step of the algorithm, the bandwidth available in each simulation window is
calculated. In the next step, all the cores are initialized as unmapped, as they are
yet to be mapped onto buses. Then the number of buses in the crossbar is initialized
to zero (step 5). In steps 6 to 25, the assignment of the cores onto the buses of the
crossbar is performed. The basic approach used is the following: We try to map as
many cores as possible onto a single bus. While mapping the cores, from the set
of all cores that satisfy the bandwidth and conflict constraints, we choose the one
that minimizes the pair-wise traffic overlap with the cores that have been already
mapped onto the current bus. When no more cores can be assigned to the current
bus, either because the bandwidth of the bus in any of the simulation window has
been saturated, or because of conflicts with the cores already mapped onto the bus,
a new bus is instantiated. The process is repeated until all the cores in the design
have been mapped onto a bus.

From the resulting number of buses, the buses onto which masters are attached
and those onto which the slaves are attached are separated. From this, the efficient
crossbar configuration for the design is obtained.

Example 1 Let us consider a small example with 5 cores, with 3 of them being
masters and the rest being slaves. For illustrative purposes, let us assume that two
simulation windows are used for analysis (although in real systems usually several
thousand windows are used). The communication traffic rates for each of the cores
(in MB/s) for the two simulation windows are presented in Table 2.2 and the amount
of traffic overlap between the different cores over all the windows is presented in
Table 2.3. Let us assume that the current frequency design point is 100 MHz and
the bus width is 32 bits, which are automatically tuned by the crossbar synthesis
procedure (as presented in Figure 2.5). In the first step of the heuristic algorithm,
the bandwidth of the bus in each simulation window is calculated to be 400 MB/s
(frequency × data-width). Initially, a single bus is instantiated and core_0 is chosen
to be mapped onto the bus, as it has the maximum bandwidth requirements of the
different cores, across all the simulation windows (see Figure 2.6(a)).

Then from the set of all cores, those cores that satisfy the bandwidth and conflict
constraints are chosen. As cores that are masters and slaves are not allowed to be
mapped onto the same bus (specified as part of the conflict constraints), the set
of assignable cores to the bus are core_1 and core_2. From these two, core_2 is

26 2 Designing Crossbar Based Systems

Algorithm 1 Heuristic-synthesis(frequency, buswidth)
1: Bandwidth available in each window, WS = frequency × buswidth
2: for i = 1, . . . , |T | do
3: mapped(i) = false
4: end for
5: Initialize number of buses used, k to 0
6: while ∃i ∈ 1, . . . , |T |, such that mapped(i) = false do
7: Increment the bus count k by 1 and instantiate new bus. Initialize bandwidth

available on bus on all windows: BW(k,m) = WS,∀m ∈ 1, . . . , |W |
8: Choose unmapped core i, ∀i ∈ 1, . . . , |T |, with maximum bandwidth require-

ments on any window and map it onto bus k

9: Initialize the set chosen_set to φ

10: for i = 1, . . . , |T | do
11: if mapped(i) = false and core i does not have conflicts with cores already

mapped onto bus k then
12: bw_satisfied = true
13: for m = 1, . . . , |W | do
14: if BW(k,m) < commi,m then
15: bw_satisfied = false
16: end if
17: end for
18: if bw_satisfied = true then
19: chosen_set = chosen_set ∪ i

20: end if
21: end if
22: end for
23: Choose core i, ∀i ∈ 1, . . . , |chosen_set|, with minimum overlap with cores

mapped onto bus k and map it to bus k. Update available bus bandwidth as:
BW(k,m) = BW(k,m) − commi,m, ∀m ∈ 1, . . . , |W |

24: Repeat steps 9–23 until chosen_set is empty
25: end while
26: Separate the buses onto which masters and slaves are mapped and generate the

crossbar configuration

Table 2.2 Communication
requirements of example
system: (M-Master, S-Slave)

Name Type BW BW

(win 1) (win 2)

MB/s MB/s

core_0 M 300 180

core_1 M 200 270

core_2 M 80 210

core_3 S 60 110

core_4 S 150 70

2 Designing Crossbar Based Systems 27

Fig. 2.6 Example application of the heuristic algorithm

Table 2.3 Amount of traffic overlap between cores (in MB/s) of example system

core_0 core_1 core_2 core_3 core_4

core_0 × 30 10 × ×
core_1 30 × 27 × ×
core_2 10 27 × × ×
core_3 × × × × 15

core_4 × × × 15 ×

28 2 Designing Crossbar Based Systems

chosen, as it has minimum overlap with the cores already mapped onto the bus (i.e.,
with core_0) and assigned onto this bus (Figure 2.6(b)). When no more cores can
be assigned to the current bus, a new bus is instantiated. The different steps of the
procedure for the 5-core example are presented in Figures 2.6(a)–(f). At the end of
the procedure, those buses that are used by the masters and those that are used by the
slaves are separated, which gives the best crossbar configuration. In this example,
we have 2 buses used by the masters and 1 used by the slaves, resulting in a 2 × 1
crossbar design, as shown in Figure 2.6(f).

2.5 Experiments and Case Studies

In this section, we present the experimental case studies performed to validate the
proposed crossbar design methodology.

2.5.1 Experimental Platform and Power Models

For performing the SystemC simulations on MPSoC benchmarks, we use the
MPARM simulation platform [57]. The platform is a representative of a large class
of multiprocessor SoC platforms and consists of a configurable number of 32-bit
ARM processors, memory cores, hardware devices or traffic generators, and a hard-
ware interrupt unit. The platform allows the use of different interconnect architec-
tures, such as the AMBA, STbus to interconnect the various hardware cores. It also
supports a variety of MPSoC benchmarks that have been efficiently parallelized to
run on the ARM cores.

For power consumption estimations of the switch matrix, we implemented sev-
eral configurations of the AMBA multilayer crossbar, varying the number of input
and output ports of the matrix. The different configurations were implemented using
the AMBA DesignWare libraries obtained from Synopsys CoreAssembler tool [98].
The tool generates RTL code of the different configurations, which were then syn-
thesized using Synopsys Design Compiler [98]. For synthesis, we utilize a 130 nm
process technology, an operating voltage of 1.2 V and an operating frequency of
500 MHz. Based on the power consumption values obtained from the synthesis
process, analytical models for the switch matrix power consumption are built us-
ing linear regression. During the crossbar design process, the power numbers from
the analytical models are linearly scaled, based on the crossbar operating frequency
(which is automatically tuned by the design process). We estimate the wiring ca-
pacitance and wire power consumption based on the models from [58]. The power
consumption values of some of the crossbar components were presented earlier in
Figure 2.2.

2 Designing Crossbar Based Systems 29

2.5.2 Application Benchmark Analysis

We apply the crossbar design methodology on several SoC designs implemented
using the MPARM platform: IMage Processing design 1 (IMP1-25 cores), IM-
age Processing design-2 (IMP2-21 cores), FFT based SoC (FFT-29 cores), Data
Processing SoC (DP-15 cores) and SoC implementing a DES encryption system
(DES-19 cores). The traffic characteristics of the applications were scaled to project
the traffic requirements of future MPSoCs, as presented in [31]. For traffic analy-
sis, we use 1000 simulation windows for the different designs, with each simulation
window accounting for few hundred simulation cycles.

The interesting range of operating frequencies and bus data-widths are obtained
as inputs from the designer. Practically, the data-width of the bus is set-up based on
the data-widths of the different processors in the design. In the SoC designs used
here, all the processors have the same data-width (of 32-bits), and hence we feed
this value as an input to the synthesis engine. The interesting range of operating
frequencies are defined to be between 100 MHz to 500 MHz, with each frequency
point being a multiple of 100 MHz. With this set-up, we apply the heuristic synthesis
engine to design the crossbar architecture for the designs.

We first briefly analyze the quality of the crossbar design obtained for the IMP2
SoC design. The communication between the cores of the IMP2 design was pre-
sented earlier in Figure 2.3(a). The communication requirements of some of the
cores for the first few simulation windows are presented in Table 2.4. In this bench-
mark, there are 9 ARM cores (ARM 0 to ARM 8), 11 memory cores (MEM 0 to
MEM 10), and an interrupt device (INT). The ARM cores act as masters and the
others are slave cores that respond to the requests of the masters. There is substan-
tial temporal overlap between the traffic flows from the various ARM cores to the
memories, as the ARM cores perform similar computations, and thus access their
memories at almost the same time. The power consumption of the synthesized cross-
bar designs for the different frequency design points are plotted in Figure 2.7. As
the maximum bandwidth requirements of most of the cores were above 800 MB/s,
the minimum frequency design point that gives a feasible solution is 300 MHz (at
200 MHz, the available bus bandwidth of 800 MB/s cannot support the requirements
of most cores). At lower operating frequencies (such as 300 MHz), a larger crossbar

Table 2.4 Traffic
characteristics of IMP2 Core Win. 1 Win. 2

(MB/s) (MB/s)

ARM 0 810 210

ARM 1 740 234

MEM 0 790 150

MEM 1 730 220

MEM 9 180 50

MEM 10 180 50

30 2 Designing Crossbar Based Systems

Fig. 2.7 Power consumption
for different crossbar
frequencies

configuration is required to satisfy the bandwidth constraints. A larger crossbar con-
figuration usually also leads to an increased wiring complexity. These two factors
coupled together results in larger power consumption for the communication archi-
tecture. At very high operating frequencies, the power consumption of the commu-
nication architecture is higher, as the power consumption increases linearly with the
operating frequency of the system. For the IMP2 design, the crossbar architecture
with lowest power consumption is obtained at 400 MHz.

The synthesized crossbar architecture (a 5 × 6 crossbar) for the IMP2 design is
presented in Figure 2.8. In order to satisfy the window bandwidth constraints, only
few of the cores can share a single bus, and thus each of the buses used in the cross-
bar have at most 2 cores attached to them. The bindings are such that the cores with
highly overlapping streams are placed on different buses. As a result, the designed
crossbar has acceptable performance (in terms of average and maximum latency
constraints) with 1.9× reduction in the number of buses used, when compared to a
full crossbar. The floorplan of the IMP2 SoC with the designed crossbar, as obtained
from the Parquet floorplanner is presented in Figure 2.9.

The size and power consumption of the synthesized crossbar architectures for
the different SoC designs and for full crossbar configurations are reported in Ta-
ble 2.5. The power consumption of both the switch matrix and the crossbar bus
wires are reported in the table. The methodology results in a large reduction in the
crossbar architecture power consumption (45.3% on average) when compared to
the traditional full crossbar based systems. The synthesized crossbar configurations
also lead to large reduction in the total length of the buses used in the design (38.0%
on average, refer to Figure 2.11), as there are fewer buses in the design. Reducing
wiring congestion is essential to have a faster physical design process and to achieve
faster design closure.

The normalized average and maximum read/write transaction latencies (to read
or write one data word) for the designs obtained using the methodology based on
average traffic flows and using the proposed methodology (referred to as “slot” in the

2 Designing Crossbar Based Systems 31

Fig. 2.8 Synthesized crossbar for the IMP2 SoC design

Fig. 2.9 Generated floorplan
and buses for the IMP2 SoC
design

32 2 Designing Crossbar Based Systems

Table 2.5 Crossbar size and power consumption for SoC designs

Design Full
crossbar
size

Synthesized
crossbar
size

Full crossbar power
consumption
(mW)

Synthesized crossbar
power consumption
(mW)

Matrix Wire Total Matrix Wire Total

IMP1 11×14 6×7 156.7 228.0 384.7 60.2 146.1 206.3

IMP2 9×12 5×6 128.4 198.2 326.6 45.2 125.0 170.2

FFT 13×16 7×8 175.1 301.4 476.5 75.9 191.8 276.7

DP 6×9 3×5 38.7 51.3 90.0 12.1 36.9 49.0

DES 8×11 4×6 56.0 82.1 138.1 18.8 54.1 72.9

Fig. 2.10 Comparisons of heuristic engine vs. exact engine

figures, signifying the use of the proposed slot or window based methodology), are
presented in Figures 2.12(a) and (b). As seen from the figures, the latencies incurred
by crossbar designs based on average traffic flows are 4× to 7× higher than the
crossbars designed using the presented scheme. Also, the latencies incurred in the
designs generated by our scheme are within acceptable bounds from the minimum
possible latencies (of a full crossbar). Moreover, depending on the design objective,
crossbar size-performance trade-offs can be explored in this approach by tuning the
analysis parameters (such as the window size, overlap threshold, etc.), as explained
in further subsections.

2.5.3 Comparisons of Heuristic Engine with the Exact Engine

In this subsection, we explore the quality of the solutions produced by the heuris-
tic engine with respect to the exact ILP engine. As the exact engine takes several
hours to compute solutions for designs with more than few hundred windows, we

2 Designing Crossbar Based Systems 33

Fig. 2.11 Average
wire-length of the crossbar
buses for the designs

Fig. 2.12 Application relative latencies

reduced the number of windows to 100 for the designs and applied the two en-
gines for the SoC designs. The size (total number of buses) of the crossbar syn-
thesized by the heuristic engine normalized with respect to the size of the cross-
bar synthesized by the exact engine for the different designs is presented in Fig-
ure 2.10(a). The normalized power consumption of the synthesized crossbar de-
signs for the different SoC designs is presented in Figure 2.10(b). Compared to the
exact solutions, the solutions obtained by the heuristic engine incur only a modest
increase in crossbar size (1.21× on average) and power consumption (1.26× on
average).

The total run-time of the heuristic engine (including the time for performing
floorplanning) for the biggest SoC design (the FFT SoC) for different number of
window sizes is presented in Table 2.6. The experiments were performed on a Linux
workstation, with 3.2 GHz processor, and 4 GB RAM. The run-time also includes
the time to perform the sweep over the architectural parameters (frequency of oper-
ation and bus width) of the crossbar design. As seen from the table, the algorithms
have a very low run-time complexity even for large designs and when large number

34 2 Designing Crossbar Based Systems

Table 2.6 Heuristic
procedure run-time for FFT
design

Number of Run-time

windows (in s)

1000 4.85

10000 5.46

50000 8.31

100000 11.91

500000 41.40

Table 2.7 Run-time for
different number of cores Number Run-time

of cores (in s)

29 41.40

40 67.22

50 96.73

60 130.03

of windows are used for analysis. On the other hand, the exact ILP procedure did
not produce results in reasonable time for the design when more than few hundred
windows were used for analysis. To show the scalability of the heuristic procedure
with the number of cores in the design, we produced synthetic benchmarks based
on the scaled versions of the FFT SoC. The execution times of the engine for the
different benchmarks (with the number of windows set to 500,000) are presented in
Table 2.7. From the table, we see that even for a very large design (60 cores with
500,000 windows used for analysis), the heuristic process completes in few minutes,
thereby showing the scalability of the procedure.

2.5.4 Window Sizing

The size of the window used during the design process is an important parameter
that determines the efficiency of the design methodology to capture the application
performance parameters. A small window size results in much finer control of the
application performance parameters and the resulting crossbars have lower laten-
cies. However, a very small window size will lead to over-design of the network
components. On the other hand, a large window size results in lesser control over
the performance parameters of the application, but results in a more conservative
design approach where higher transaction latencies can be tolerated.

To illustrate these effects, we applied the design methodology with different win-
dow sizes for a synthetic benchmark with 20 cores. Please note that we use a syn-
thetic benchmark for this experiment (instead of the real SoC designs), so that we
can vary the burst sizes (we refer to a burst as a stream of words generated by the

2 Designing Crossbar Based Systems 35

same core) in the application to study its impact on the crossbar synthesis process.
The typical burst sizes for the benchmark is initially set to 100 cycles. When the
window size is much smaller than the burst size, the size of the crossbar generated
is very close to that of a full crossbar (refer Figure 2.13). When the window size
is around few times that of the burst size (from 1–4 times), the synthesized cross-
bar has much smaller size (typically around 25%) and acceptable latencies (around
1.5×) of that of a full crossbar. For aggressive designs, the window size can be set
closer to the burst size and for conservative designs (where larger transaction laten-
cies can be tolerated), the window size can be set to few times the typical burst size.
The acceptable window sizes for various burst sizes is presented in Figure 2.14. It
can be seen from the plot that the window size varies almost linearly with the burst
size, consolidating the above arguments.

Fig. 2.13 Effect of window size on crossbar size and power consumption

Fig. 2.14 Burst vs. window
size

36 2 Designing Crossbar Based Systems

2.5.5 Real-Time Streams & Effect of Binding

In each simulation window, the critical traffic streams that require real-time guar-
antees are recorded. During the preprocessing step of the design flow (refer to Fig-
ure 2.4), the real-time traffic streams that overlap with each other in any window
are identified. In order to provide real-time guarantees to such streams, the cores
with critical streams that have temporal overlap are placed onto separate buses of
the crossbar. Experimental results on the benchmark applications show a very low
transaction latency (almost equal to the latency of perfect communication using a
full crossbar) for such streams. Please note that in order to provide hard real-time
guarantees, the underlying crossbar architecture should also provide support for hav-
ing priorities for the different traffic streams, so that the real-time streams are given
higher priorities over other streams. In many crossbar architectures, such as the ST-
bus, such support is provided in the crossbar architecture by utilizing priority based
arbitration mechanisms.

After finding the best crossbar configuration, we do an optimal binding of the
cores onto the buses of the crossbar, minimizing the total overlap on each bus. By
minimizing the overlap on each bus, the transaction latencies reduce significantly.
To illustrate this effect, we compare the crossbars designed using the proposed ap-
proach with two binding schemes: random binding of cores onto the buses, satis-
fying the design constraints (equations (2.3)–(2.8)) and optimal binding that min-
imizes overlap on each bus, satisfying the design constraints. The average latency
incurred by the random binding scheme for the benchmark applications was on av-
erage 2.1× higher than that incurred by the optimal binding scheme.

2.5.6 Overlap Threshold Setting

By varying the two parameters: window size and overlap threshold, the crossbar can
be designed such that the average and the maximum transaction latencies incurred
in the design are acceptable. The effect of the overlap threshold parameter on the
size and power consumption of the crossbar generated for the synthetic benchmark
are presented in Figures 2.15(a) and (b). The crossbar size and power numbers are
normalized with respect to the case when the overlap threshold is set to 0%, which
leads to a full crossbar configuration (as no two cores can share a bus in this case).
The plots end at 50% overlap between cores because, if the pair-wise overlap be-
tween two cores exceeds 50% of the window size (in any of the windows), then the
window bandwidth constraints cannot be satisfied. So, the maximum value of the
overlap parameter can be set at 50% of the window size. This will also speed-up the
process of finding the best crossbar configuration, as such overlapping cores will be
identified in the preprocessing phase (refer to Figure 2.4) and will be forbidden to
be on the same bus of the crossbar. From experiments, we found that for aggressive
designs (where there are tight requirements on the maximum latencies) the thresh-
old can be set to around 10% and for conservative designs, the threshold can be set
to 30%–40% of the window size.

2 Designing Crossbar Based Systems 37

Fig. 2.15 Effect of overlap threshold parameter

2.6 Summary

Today, a streamlined methodology to design crossbar based architectures is not yet
fully developed. Toward this end, in this chapter, we have presented methods that
address this important problem of designing optimal crossbar based systems for
SoCs. The approaches consider the real application traffic, accounting for the local
variations and temporal overlap of the traffic streams. As a crossbar system is wiring
dominated, it is important to consider the wiring complexity during the design of
the architecture. We consider this by utilizing physical design aware methods that
consider the layout of the design. We have validated the methods using two state-
of-the-art industrial platforms: STBus and AMBA AXI, that are widely deployed
in several industrial designs. Equipped with this knowledge of designing bus-based
systems, in the subsequent chapters, we will proceed to design general NoC systems
that can handle the global traffic requirements of SoCs.

Chapter 3
Netchip Tool Flow for NoC Design

The crossbar based systems we considered in the previous chapter can provide a
very high bandwidth communication infrastructure. However, they are still inher-
ently nonscalable, as all the cores need to connect to a single crossbar matrix. To
provide a scalable infrastructure, we need to utilize many such crossbar matrices
in the design. NoCs can be viewed as a logical extension of this concept, where
multiple switches are used to connect the cores of the SoC. The switches, while
providing the functionality of a crossbar matrix, also support decentralized control
of the traffic flows.

A NoC consists of three main components: switches, Network Interfaces (NIs),
and links. The NoC is instantiated by deploying a set of these components in an
arbitrary topology and by configuring them.

In this chapter,1 we present NetChip, a design flow [33] that automates most
of the complex and time-intensive design steps in NoC synthesis. It provides de-
sign support for application-specific standard and custom network topologies and,
therefore, lends itself to the implementation of both homogeneous and heteroge-
neous system interconnects. Netchip assumes that the application has already been
mapped onto cores by using preexisting tools and the resulting cores together with
their communication requirements are taken as an input. The tool-assisted design
and generation of a customized NoC-based communication architecture is the ulti-
mate goal of Netchip.

The design flow of Netchip is presented in Figure 3.1. The Netchip tool flow has
3 main phases and several tools integrated together:

• Front-End Design Phase: In this phase, several key NoC features such as the
interconnect structure (or topology), routing scheme, paths for traffic flow, values
for the NoC architectural parameters are determined.

• Architectural Design Phase: In this phase, the RTL code of the NoC architecture
is instantiated.

• Back-End Phase: In this phase, simulation, FPGA emulation, and layout genera-
tion of the NoC are carried out.

3.1 Front-End Design Phase

We have developed two tools: SUNMAP [11, 45, 46], and SUNFLOOR [82, 83]
to design application-specific standard and custom topologies, thereby automating
this phase. Based on the user’s choice, either a custom topology is synthesized using
SUNFLOOR or mapping onto a regular topology is performed using SUNMAP.

1We would like to acknowledge Dr. Federico Angiolini for his contributions.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

39

40 3 Netchip Tool Flow for NoC Design

Fig. 3.1 Design flow of Netchip

SUNMAP maps the input core graph onto various standard topologies (mesh,
torus, hypercube, Clos, and butterfly) defined in the topology library. This tool is
further explained in Chapter 4.

The SUNFLOOR tool is used to synthesize a custom irregular topology that is
tailor-made for a specific application. This tool is further explained in Chapter 5.

3.2 Architectural Design Phase: The ×pipes NoC Library

Among the many NoC architectures proposed in the literature, we choose the
×pipes NoC architecture, which incorporates features that have been successful
in many NoC designs and represents a reasonable design point. The ×pipes NoC
[34, 88] is an example of a highly flexible library of component blocks (Figure 3.2).

To show the generality of the methods, we also apply them to the Æthereal ar-
chitecture [30] (which is presented later in this chapter). We chose this architecture,
as it represents a different design point in the NoC spectrum. It supports a pre-
dictable communication behavior, by providing connections with throughput guar-
antees. This is in contrast with the ×pipes architecture, where the packets are routed
in a best-effort manner.

The backbone of the NoC consists of switches, whose main function is to route
packets from sources to destinations. Arbitrary switch connectivity is possible, al-
lowing for implementation of any topology. Switches provide buffering resources to
lower congestion and improve performance; in ×pipes, output buffering is chosen,
i.e., FIFOs are present on each output port. Switches also handle flow control [90]
issues (we use the ACK/NACK protocol in this thesis), and resolve conflicts among
packets when they overlap in requesting access to the same physical links.

3 Netchip Tool Flow for NoC Design 41

Fig. 3.2 ×pipes building blocks: (a) switch, (b) NI, (c) link

An NI is needed to connect each IP core to the NoC. NIs convert transaction re-
quests/responses into packets and vice versa. Packets are then split into a sequence
of flits (FLow control unITS) before transmission, to decrease the physical wire par-
allelism requirements. In ×pipes, two separate NIs are defined, an initiator and a
target one, respectively, associated to system masters and system slaves. A mas-
ter/slave device will require an NI of each type to be attached to it. The interface
among IP cores and NIs is point-to-point as defined by the Open Core Protocol
OCP 2.0 [91] specification, guaranteeing maximum reusability. NI Look-Up Tables
(LUTs) specify the path that packets will follow in the network to reach their desti-
nation (source routing). Two different clock signals can be attached to NIs: one to
drive the NI front-end (OCP interface), the other to drive the NI back-end (×pipes
interface). The ×pipes clock frequency must be an integer multiple of the OCP one.
This arrangement allows the NoC to run at a fast clock even though some or all of
the attached IP cores are slower, which is crucial to keep transaction latency low.
Since each IP core can run at a different divider of the ×pipes frequency, mixed-
clock platforms are possible.

In the topology generation phase, Netchip reads the topology and routing infor-
mation file and generates SystemC description of network components for the topol-
ogy using ×pipesCompiler. The ×pipesCompiler instantiates a network of building
blocks from the ×pipes library.

Once the SystemC code is available, it can be used in multiple ways. To get
accurate simulation in a flexible environment, we integrate the NoC in the MPARM
simulation platform [33]. MPARM allows for accurate injection of functional traffic

42 3 Netchip Tool Flow for NoC Design

patterns as generated by real IP cores (processors, DMA engines, etc.) during a
benchmark run. Further, it provides facilities for debugging, statistics collection,
and tracing.

The RTL code of the platform can also be used to synthesize it, either on FPGA
or on a custom chip via the use of technology libraries.

After synthesis phase, a place&route of the design can be performed using stan-
dard tools, such as Synopsys Astro or Cadence SoC encounter. The placement tool
is fed with a floorplan specification file automatically generated by SUNFLOOR.
This file contains information about the layout fences, i.e., sets of constraints on
where the cells of each NoC module and the black boxes representing the IP cores
can be placed. This approach lets the designer skip, if desired, the tedious activity
of manually placing blocks on the floorplan, and iteratively improving the result
by means of trial-and-error tighter packing. The tool automatically places the cells
within the fences, and subsequently performs the wire routing steps. The final output
is a complete layout of the NoC design that can be sent to a foundry.

3.3 Summary

In this chapter, we presented the basics of the Netchip design flow that automates the
design of application-specific NoCs. The design flow integrates the front-end design
phase, where the NoC topology is synthesized, with the architectural and back-end
phases. The front-end phase has two major tools: SUNMAP and SUNFLOOR to
design regular and custom topologies. In the subsequent chapters, we will present a
detailed description of these tools.

Chapter 4
Designing Standard Topologies

The NoC topology defines the interconnection of the different network switches
with the cores and among each other. The NoC topologies can be broadly classified
into two main categories: standard and application-specific custom topologies. In the
standard topologies, the interconnection structure ensures full connectivity between
the cores: that is, any core is reachable from any other core. Examples of such
topologies include mesh, torus, hypercube, Clos, and butterfly. In an application-
specific custom topology, the interconnection between the switches and cores are
optimized to match the application traffic patterns. If an application does not require
full connectivity between the cores, then the topology is optimized to provide only
the required connectivity.

The use of a custom topology for an application almost always leads to a bet-
ter performance and reduction in area/power overhead. However, there are some
situations where a standard topology is desirable for the design:

• When the NoC is to be used across multiple product generations, a standard topol-
ogy ensures that the same NoC can be reused easily across the different genera-
tions. However, when using a custom topology, the designer has restricted options
when adding cores in the future, as the NoC may not provide full connectivity.

• When the cores are almost regular (similar sizes), the use of a standard topology
leads to better wiring structure, as the floorplan is more predictable.

In this chapter, we present SUNMAP, a tool for synthesizing the best standard
topology for applications.

SoCs are aggressively designed to meet the performance requirements of diverse
applications that need to be supported. In most cases, the cores in the SoC are het-
erogeneous in nature with each core performing a set of specialized functions in
order to maximize performance and satisfy design constraints such as Quality-of-
Service (QoS) for the applications. As an example, consider an efficient design of
an MPEG4 decoder shown in Figure 4.1(a) [8]. In this design, there are several
processors (e.g., RISC), several hardware cores (e.g., Upsampler), and memory
cores (e.g., SDRAM). Each core has different functionality, size, and communica-
tion requirements. Some of the cores are hard cores, with size fixed during design
(e.g., RISC) and some of the cores are soft cores, whose size can be varied with
some restrictions on the aspect ratios (e.g., Upsampler).

Figure 4.1(b) shows the design area for the best mappings of the MPEG4 onto a
mesh topology for two schemes: in the first scheme, the mapping of the cores is done
logically (without considering the physical planning of the cores) followed by a sep-
arate physical planning phase, and in the second scheme the mapping and physical
planning are done together, so that the mapping process takes the physical planning
information, i.e., the position of the cores and network components (e.g., switches,

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

43

44 4 Designing Standard Topologies

Fig. 4.1 MPEG4 mapping schemes and an example of butterfly topology

links) and the size of soft cores and switches in the 2D plane. There is significant
area improvement in the second scheme where mapping and physical planning are
integrated together.

This improvement will be even more pronounced for indirect topologies such
as the butterfly network shown in Figure 4.1(c). In a butterfly topology, logically,
the switches are arranged as stages with the switches in the first and last stages
connected to the cores. Ideally, we would like to distribute the switches around the
cores so that performance of the NoC is maximized and mappings onto the butterfly
should take this physical planning information into account.

Another important design consideration for SoCs is to guarantee Quality-of-
Service (QoS) for the application. As an example, in many video applications, data
should be communicated in such a way that the system supports a predetermined
frame rate (e.g., 30 frames/s in many video displays). The network should support
the QoS requirements of the applications satisfying the delay constraints of the traf-

4 Designing Standard Topologies 45

fic streams. It should also provide support for real-time communication. These QoS
guarantees need to be considered during the mapping process. Moreover, the bursti-
ness in the traffic streams (that makes providing QoS guarantees harder) needs to be
considered.

In SUNMAP, we provide an integrated approach to mapping and physical plan-
ning, where we determine the 2D position of the cores and network components and
the size of soft cores and switches during the mapping process. The physical plan-
ning phase also automatically computes the switch buffers needed to support the ap-
plication traffic and integrates this in the switch size computation. We also present a
method to provide QoS guarantees for the application during the mapping-physical
planning phase. For QoS guarantees, we consider the burstiness in the application
traffic, delay/jitter constraints of the individual traffic streams, and provide support
for real-time communication. The additional power-area overhead in obtaining the
QoS guarantees is negligible. The mapping and physical planning of the cores is
applied to several topologies defined in a topology library and the best topology for
the application is automatically selected. In the resulting topology, the switches and
links are optimized for the traffic characteristics, followed by automatic instantia-
tion of the topology. Thus, the integrated design methodology automates mapping,
physical planning, and topology selection for an application providing QoS guaran-
tees, thereby bridging an important design gap in building NoCs based on standard
topologies.

4.1 On-Chip Traffic Modeling

In this section, we develop traffic models to characterize the application traffic, pro-
viding QoS guarantees for the application. As an example, consider the traffic flow-
ing between the Filter core and the ARM core in a DSP Filter application (refer to
Figure 4.2). Without loss of generality, assume that the packet size is such that a
packet is sent in one cycle, although the following discussion also applies when a
packet is sent over multiple cycles (i.e., when a packet has multiple flits). There are
three important features to be noted from Figure 4.2(b).

• Bursty Traffic Flows: The application traffic from Filter to ARM core is bursty
in nature, with a burst period of 100 cycles followed by 900-cycles of silence
period. The peak-bandwidth of the traffic (100 packets/100 cycles) is an order of
magnitude higher than the average bandwidth (100 packets/1000 cycles).

• Delay/Jitter Constraints: Each burst from the Filter core has a delay constraint by
which it should reach the ARM core. In this example, we assume that the burst B1
has to reach the ARM core by 500 cycles, which is obtained from the application
characteristics.

• Real Time Constraints: The ARM core issues a control stream to the Filter which
is assumed to be critical and needs to reach the Filter as quickly as possible. These
real-time requirements need to be satisfied by the network.

46 4 Designing Standard Topologies

Fig. 4.2 DSP Filter
application and traffic flow
between ARM & Filter cores

Table 4.1 Link
implementation Scheme BW Delay

(pk/cy) (cyles)

1. Avg. 100 1000

2. Peak 1000 100

3. Opt. 200 500

Consider three implementations of the communication link (refer to Table 4.1)
between the Filter core and ARM core (for illustrative purposes assume other cores
do not send traffic on this link). In the first case, the link is designed to support
the average bandwidth of traffic flowing between Filter and ARM. As seen from
Table 4.1, the delay incurred in this scheme for the burst B1 violates the delay con-
straint for the stream. In the second case, the link is designed for the peak bandwidth
requirements and the delay constraints are met. However, the link is over-designed
with 5× the capacity that is needed to support the delay constraints of the burst. In
the third case, the link is optimally designed to support the burst without violating
the delay constraints.

From this example, it is clear that the communication links should be designed
optimally in a way such that they support the traffic flowing through them, satis-
fying the delay/jitter constraints of the traffic streams. Moreover, there should be a
mechanism that ensures that each core sends traffic so that the links can support the
traffic and the delay constraints are met. Clearly, these two objectives complement
each other and to ensure that the objectives are met we propose the use of traffic reg-

4 Designing Standard Topologies 47

Fig. 4.3 A (σ,ρ) regulator

ulators for NoCs. Traffic regulators are widely used in ATM networks to guarantee
QoS to applications [94]. A traffic regulator can be abstracted as a hardware block
with two parameters: σ and ρ. The parameter ρ represents the bandwidth required
to support the traffic streams so that the delay constraints are met and the parame-
ter σ represents the variations permitted over the ρ value. Such a regulator is also
called as a (σ,ρ) regulator [94]. The traffic flow between each source-destination
is represented by a (σ,ρ) value. As an example, the Filter to ARM communication
is represented by (0, 0.2), which means that one packet can be sent every 5 cycles
(i.e., one packet can be sent every 1/ρ = 1/0.2 = 5 cycles) and no variations over
the required rate is permitted (as the σ value is 0). A (1, 0.2) regulator would allow
a burst of one packet over the required packet rate. In the rest of this chapter, we
assume that the σ value is chosen to be equal to 0, so that no variation is permitted
over the required rate.

To ensure that each core sends data according to the regulator values, we need to
add small hardware to each core (or to the Network Interface connecting the core
to the network), which is shown in Figure 4.3. The additional hardware consists of
a saturating credit counter and a comparator. The saturating counter is incremented
at rate ρ and saturates when it reaches a count of (1 + σ). A packet is transmitted
only if the credit counter is non-zero and when a packet is transmitted the counter
is decremented by 1. This counter ensures that the amount of traffic transmitted by
the source matches the rate for which the links are designed to handle. For traffic
streams to different destinations, different sets of (σ,ρ) values are used in the reg-
ulator. Note that power-area overhead of such a regulator is negligible as it is just a
counter and a comparator. For supporting real-time constraints, we assume tight la-
tency bounds for the real-time stream and during the mapping process we consider
the criticality of the stream by using a weighted communication graph (called as
weighted core graph), where the weights are a function of the criticality. In the next
section, we explain this in more detail, where we present mathematical models for
modeling the ρ value for the regulators.

4.2 Problem Formulation

The communication between the cores of the SoC is represented by the weighted
core graph:

48 4 Designing Standard Topologies

Fig. 4.4 Weighted core
graph

Definition 5 The weighted core graph is a directed graph, G(V,E) with each vertex
vi ∈ V representing a core and the directed edge (vi, vj), denoted as ei,j ∈ E, rep-
resenting the communication between the cores vi and vj . The weight of the edge
ei,j , denoted by commi,j , represents the average bandwidth of the communication
from vi to vj weighted by the criticality of the communication.

As an example, the weighted core graph of the Filter application is given in
Figure 4.4. The edge weights are a function of the criticality of the stream (which
depends on the application characteristics) and the amount of traffic communicated
in the stream. The value of the weights depends on how critical are the streams
and on the number of classes of streams. In this work, we assume two classes of
streams: noncritical and critical and weigh the critical streams by a factor of 10
compared to noncritical streams. Other approaches such as weighing a stream based
on the amount of slack permitted for the stream can also be used.

Definition 6 In G(V,E), the traffic flow from each source vi to each destination
vj , ∀i, j ∈ V is represented by the set Ti,j . Each Ti,j comprises of Mi,j bursts, with
each burst bi,j,k,∀k ∈ Mi,j , having a burst length of bleni,j,k cycles and a latency
window of blati,j,k cycles.

In the above example, the traffic flow between the Filter and the ARM
(v3 and v2) is represented by the set T3,2. The set T3,2 consists of 1 burst (we as-
sume such a small sampling window for illustrative purposes), with M3,2 equal to 1,
blen3,2,1 equal to 100 cycles and blat3,2,1 equal to 400 cycles. The latency window,
blati,j,k is the deadline (or slack) that is permissible for the burst, which is obtained
from the initial simulation of the application and the application characteristics.

The ρi,j values of the regulator for each source vi to destination vj is obtained
by

ρi,j = max∀k∈Mi,j

(
bleni,j,k

bleni,j,k + blati,j,k

)
∀i, j s.t. ei,j ∈ |E| (4.1)

4 Designing Standard Topologies 49

Fig. 4.5 Constraint
Graph:BW in MB/S

Definition 7 The bandwidth constraint graph CG(Q,R) is a directed graph where
the vertex and edge sets are equal to the vertex and edge sets of G(V,E) but with
edge weights ri,j equal to ρi,j × PacketSize/Cycletime, ∀i, j ∈ s.t. ri,j ∈ |R|.

The bandwidth constraint graph for the above example is given in Figure 4.5. The
edge weights in the graph are ρ×packetsize/Cycletime values for the corresponding
traffic flows. When calculating the ρ values, we neglect the network latency as it is
of the order of tens of cycles, while burst lengths and latency windows are of the
order of hundreds of cycles.

The NoC topology is defined by the adjacency information of nodes in the topol-
ogy and by the capacity of the links. Formally, the NoC topology is defined as
follows.

Definition 8 The NoC topology graph is a directed graph P(U,F) with each vertex
ui ∈ U representing a node in the topology and the directed edge (ui, uj), denoted
as fi,j ∈ F representing a direct communication between the vertices ui and uj .
The weight of the edge fi,j , denoted by bwi,j , represents the bandwidth available
across the edge fi,j .

The mapping of the application cores onto an NoC architecture is defined by the
one-to-one mapping function:

map : V → U, s.t. map(vi) = uj , ∀vi ∈ V, ∃uj ∈ U (4.2)

Each link in the mapped NoC should satisfy the bandwidth constraints corre-
sponding to the constraint graph CG(Q,R). The design objective (area, power, or
hop delay) of a mapping is obtained from the physical planning of the mapping.
This ensures that the heterogeneity in the size of the cores and network components
is taken into account for accurate estimation of the design objectives.

50 4 Designing Standard Topologies

4.3 Mapping and Physical Planning Algorithm

In this section, we present the algorithm for mapping and physical planning. The
general problem of embedding one graph into another is intractable and is a spe-
cial case of the Quadratic Assignment Problem (QAP) [64]. QAP is well studied
in the literature with many heuristic algorithms available [29]. In [29], robust tabu
search is shown to be most effective for many classes of QAP and we use this to
solve the mapping problem. The general structure of the mapping-physical planning
algorithm is shown in Figure 4.6.

In the first step, an initial greedy mapping of the cores onto the topology is ob-
tained. We also assume a greedy mapping of higher dimensional topologies (such
as hypercube) onto the 2D plane. Then for each iteration of the robust tabu search,
we perform the following computations:

• Compute the routes for the traffic flowing between the cores, based upon the
routing function chosen from the library.

• Physical planning for this mapping. This includes computing the positions of the
cores and the switches, sizes of the switches and soft cores, and automatic com-
putation of switch buffers needed for the application. These steps are explained
in detail in the next section.

• Check whether the mapping satisfies the delay/jitter and area constraints. For
delay constraints, the links in the NoC should support the traffic through them,
which is determined by the (σ,ρ) regulator values. We also check whether the
real-time constraints for the critical streams are met by checking whether the hop
delay for the streams are lower than the required value, which is obtained from
the application characteristics.

Fig. 4.6 Mapping and
physical planning algorithm

4 Designing Standard Topologies 51

In each step of the tabu search, we try to optimize the design objective (area, power,
or hop delay) satisfying the QoS and criticality constraints. The area and power val-
ues are obtained from physical planning of that particular mapping. The parameters
of the tabu search (such as the size of tabu list, aspiration function computation, etc.)
are chosen as explained in [29]. This tabu search is applied to all topologies in the
library. The library currently has mesh, torus, hypercube, Clos, and butterfly topolo-
gies, while other topologies can be easily added to the library. The best topology
is selected and the switches and links are optimized to match the application char-
acteristics. In this step, redundant switch ports and links (i.e., the links that do not
carry any traffic and the corresponding switch ports) are eliminated. The links are
sized (by changing the bit-width of the links or frequency of operation) according
to the traffic flowing through them.

4.4 Physical Planning

We use a Mixed Integer Linear Program (MILP) based physical planning algorithm.
An MILP based physical planning for minimizing area, power of a design is pre-
sented in [63]. We modify this approach for NoCs by considering NoC specific
features such as switch positioning, switch buffer calculation, etc.

As the cores are predesigned components, we assume the area and power values
of the cores as an input. We also assume the type of the core (hard or soft) and aspect
ratio constraints as an input. We use area, power libraries for various configuration
of switches that are developed in [62].

For a given mapping, the relative position of the cores with respect to each other
is obtained from the tabu search, but the relative position of the switches is unknown.
The switches in a direct topology (such as mesh, torus, hypercube) can be placed
anywhere around the core to which it is connected. An important constraint to be
considered in the MILP is that the switches and the cores should not overlap each
other. If the switch positions are not restricted to a small region around the core,
solving this overlap calculation as an MILP will be time consuming for large prob-
lem sizes (for >20 cores). To allow scaling of the algorithm, we restrict each switch
to lie in a region of adjacent cores surrounding the core to which it is connected (re-
fer Figure 4.7(a)). By restricting the switch positions to a small region, the overlap
calculations are several orders of magnitude faster and are scalable for large problem
sizes. The solution obtained in this scheme, for all the simulations performed, are
within 1% from the solution obtained without restricting switch sizes as the switch
position tends to be close to the core to which it’s connected.

For the indirect topologies (such as the Clos and butterfly), we distribute the
switches along the cores in a 2D plane, based on their connectivity to the cores and
to other switches (refer Figure 4.7(b)). Here again, we restrict switch locations to
lie within certain regions as shown in the figure. Then during each step of the tabu
search, we compute the actual positions of the switches and cores.

During the physical planning, we also compute the buffering needed at each
switch. We assume that the links are pipelined with the number of pipeline stages

52 4 Designing Standard Topologies

Fig. 4.7 Switch Position
Restriction for direct and
indirect topologies

depending upon the link length. For wormhole (or virtual channel) based switches
with credit based flow control, for maximum throughput, the number of buffers in
the switches should be equal to 2N + M , where N is the number of pipeline stages
in the link and M is the delay incurred for credit processing at the upstream and
downstream switches [94]. As the switch size (power) depends on the number of
buffers, we integrate this as a constraint in the MILP by breaking down the switch
area (power) as a sum of buffer area (power) and crossbar (including logic) area
(power). The buffer area (power) is a function of link length and is automatically
calculated during physical planning.

4 Designing Standard Topologies 53

4.5 Experiments and Case Studies

4.5.1 Effect of Physical Planning

In this subsection, we investigate the effect of combined mapping and physical
planning applied to a variety of video applications. We consider four different
video applications: Video Object Plane Decoder (VOPD-12 cores), MPEG4 de-
coder (mapped onto 12 cores), Picture-In-Picture application (PIP-8 cores), Multi-
Window Application (MWA-14 cores). We assume that the design objective is to
minimize design area subject to delay/jitter and criticality constraints. We consider
two schemes: in the first scheme, the mapping and physical planning phases are
done separately (as in past works), and in the second scheme we use the proposed
integrated approach to mapping and physical planning.

The design area for the video applications as obtained for both the schemes are
presented in Table 4.2. On an average, we have 1.4× area savings in the proposed
approach.

4.5.2 Design for QoS Guarantees

In traditional design methodology, QoS can be guaranteed by designing the network
to support the worst-case bandwidth needs of the application. Such a worst-case
design approach, however, leads to an over-design of the network components. By
using (σ,ρ) traffic regulation methodology for NoCs presented in this chapter, the
network components are designed optimally to support the QoS constraints of the
application.

As an example, for the DSP Filter application (Figure 4.2), the minimum band-
width needed (assuming minimum-path routing) for the design methodology is 5×
lower than a worst-case design approach. Moreover, in the proposed design method-
ology, the network is made to operate at very low contention, thereby reducing con-
tention delay and power. Figure 4.8 shows the packet latency as obtained from the
actual simulations of the DSP Filter application. In the first case, the links are de-
signed to handle the average traffic through them. As the traffic is bursty in nature,

Table 4.2 Design area for
video applications Appln Area-1 Area-2 Ratio

sqr mm sqr mm

VOPD 20.25 18.01 1.12

MPEG 36.00 20.25 1.19

PIP 20.25 10.565 1.92

MWA 33.00 25.00 1.32

Avg. – – 1.39

54 4 Designing Standard Topologies

Fig. 4.8 Avg. latency for
DSP

such a design approach leads to high network contention resulting in large packet la-
tency. In the second case, the links are designed with the design methodology. The
average latency is almost equal to the worst-case design approach (case 3) where
the network components are over designed. As the design methodology for traffic
regulators is based on initial simulation, it is static in nature and does not capture
dynamic variations in the input data streams. But for many SoC applications, the
traffic characteristics do not vary a lot with the input data [43]. Thus, the design
methodology incurs only slight increase in latency (around 10%) due to dynamic
changes in data when compared to the worst-case design approach.

4.5.3 VOPD Design

In this subsection, we explore VOPD mapping and physical-planning with QoS
guarantees. We assume a conservative link bandwidth of 2 GB/S.

The bandwidth constraint graph for the VOPD application, based on the traf-
fic characteristics and QoS needs of the application is presented in Figure 4.9. For
minimum-path mapping, the minimum bandwidth needed to support the application
is 2.4 GB/S and cannot be supported by any of the topologies. So, we apply split-
traffic routing, spreading the traffic between the cores across multiple paths. As a
butterfly network has no path diversity (only one path from any source to any desti-
nation) [94], it cannot support the traffic requirements of the application. All other
topologies produce feasible mappings with split-traffic routing. We assume that the
objective is to minimize power consumption of the design, satisfying QoS, and area
constraints. Figure 4.10 shows the power consumption of the topologies. Mesh has
the least power and is the best topology for VOPD for the chosen design objective.

4.5.4 Buffer Sizing and Network Optimization

During physical planning, the number of buffers needed for the switches is auto-
matically computed based on the link lengths and this is integrated into the area
(power) calculations of the physical planner. When the number of buffers is lower

4 Designing Standard Topologies 55

Fig. 4.9 Bandwidth
constraint graph for VOPD
with bandwidth in MB/S

Fig. 4.10 VOPD design

than the required number, throughput of the network is low. On the other hand, when
the number of buffers is more than needed, the throughput remains the same, but
switch area and power are increased. As an example, let us consider a homogeneous
16-node torus NoC in which each link has 4 pipeline stages. Let us assume that the
credit processing delay (the M value) is 2 cycles, which is typical for most credit-
based switches. Figure 4.11 shows the throughput dependence on the total number
of buffers in the switches for the NoC. As seen, the relative throughput increases
until the optimal count of 702 buffers, after which it remains constant. With the
buffer computation methodology, the physical planner automatically computes this
optimum number of buffers needed to support maximum throughput. Note that in
a heterogeneous SoC, the number of buffers can be different for different switches
and even different for different inputs of the same switch as the link lengths are
nonuniform in nature. Even in this case, the physical planner automatically com-
putes the optimum number of buffers needed at each input of the switch based on
the corresponding link lengths. For the VOPD application, compared to an average-
case design (where all the switches have the same number of buffers) we get 2.2×
reduction in buffer count in this scheme.

After the topology selection phase, the network components (switches and links)
are optimized based on the traffic flowing through them. The links and switch ports
that do not carry any traffic are removed. Other links and switches are optimized to

56 4 Designing Standard Topologies

Fig. 4.11 Throughput vs.
buffer count

Table 4.3 Network
optimization Component Savings

Buffers 2.20×
Wire count 3.77×
Ports 1.60×

match the traffic rate through them by changing the bit-width of the links. The effect
of network optimization on VOPD design is reported in Table 4.3.

For all the experiments, the mapping and physical planning phases are executed
in few minutes on a 1 GHz SUN workstation and the algorithms are scalable for
hundreds of cores.

4.6 Summary

A variety of applications require a regular interconnect structure. In such cases, se-
lecting the most suitable topology for the application, mapping of cores onto that
topology and generating the resulting network are important phases in designing
the NoC. In this chapter, we have presented SUNMAP, a tool that automates all
these steps, bridging an important design gap in building regular NoCs. It explores
various design objectives such as minimizing average communication delay, area,
power dissipation subject to bandwidth, and area constraints. The tool supports dif-
ferent routing functions (dimension ordered, minimum-path, traffic splitting) and
uses floorplanning information early in the topology selection process to provide
feasible mappings. Experiments on several realistic MPSoC applications show that
it can also be used as a powerful design space exploration tool. In the next chapter,
we present the SUNFLOOR tool that automates the design of custom (irregular)
NoC topologies for applications.

Chapter 5
Designing Custom Topologies

In this chapter,1 we present SUNFLOOR, a tool for synthesizing the best custom
(irregular) topology that is tailor-made for a specific application and satisfies the
communication constraints of the design. The tool automates the entire NoC front-
end design process, including topology synthesis, routing, path computation, archi-
tectural parameter setting: thereby bridging an important gap in the design of the
communication architecture for application-specific MPSoCs.

5.1 Objectives

The SUNFLOOR tool has several salient features:

1. The synthesis method is both performance and power consumption aware, which
are two of the important design objectives in MPSoC design. It supports two
objective functions: minimizing network power consumption and hop-count for
data transfer. The designer can optimize for one of the two objectives or a linear
combination of both. The topology design process supports constraints on several
parameters such as the hop-count (when the objective is power minimization),
network power consumption (when the objective is hop-count minimization),
design area, and total wire-length.

2. SUNFLOOR incorporates mechanisms to guarantee the generation of networks
that are free from deadlocks, which is critical for the deployment of custom NoC
topologies in real designs. The deadlock-freedom is achieved without the use of
special hardware mechanisms (refer to Section 5.1.2 for details).

3. The tool uses a floorplan-aware topology design method. It considers the wiring
complexity of the design for accurate timing and power consumption estimation.

4. Accurate analytical models for the area, power, and timing information of the
network components (switches and links) were built from layout level imple-
mentations, which are utilized during the synthesis process. The power values
are obtained from layouts of the network components with back-annotated resis-
tance and capacitance information (at 0.13 µm technology), based on the switch-
ing activity of the components. The area and power models are highly detailed:
they even capture the impact of the frequency used for RTL synthesis on the
area and power values of the components. This is further explained in detail in
Section 5.2.

1We would like to acknowledge the contributions of Dr. Federico Angiolini, Paolo Meloni,
Prof. David Atienza, Prof. Salvatore Carta, Prof. Luigi Raffo, Prof. Luca Benini, and Prof. Gio-
vanni De Micheli.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

57

58 5 Designing Custom Topologies

5. To achieve design closure and fast time-to-market, the actual physical layer mea-
sures are considered during the high-level topology synthesis phase itself. The
timing information of switches and links are accurately characterized from lay-
outs. We model the maximum frequency that can be supported by a switch as a
function of the switch size. During the synthesis process, we steer the algorithms
to only synthesize those switches that would support the desired NoC frequency.
From the floorplan of the NoC design, estimates of the length of the NoC wires
are obtained, which are used to detect timing violations on the interconnects early
in the design cycle.

6. The tool automatically tunes several important NoC architectural parameters
(such as the frequency of operation, flit-width) during the synthesis process.

7. SUNFLOOR is seamlessly integrated with back-end tools. SUNFLOOR di-
rectly feeds the floorplan information of the NoC to standard industrial place-
ment&routing tools. The entire layout of the NoC can then be obtained from the
placement&routing tools.

The layout of a multi-media MPSoC with the NoC designed using the methodol-
ogy is presented later in the chapter (in Section 5.4.2). It achieves a post-layout clock
frequency close to 900 MHz. We could design the NoC architecture from input spec-
ifications to layout in 4 hours, a process that used to take weeks. A layout level com-
parison with a hand-designed architecture for this example is also presented, which
shows that the automatic design methodology produces good results (in terms of
power consumption and performance), matching those of carefully hand-crafted de-
signs. Experiments on several MPSoC benchmarks show large power, performance,
and wire-length improvements when compared to standard topologies. Despite the
very large design space considered, due to the use of fast algorithms and tools,
the design process completes in reasonable time for all the experiments (see Sec-
tion 5.4.1).

5.1.1 Background on NoC Topology Synthesis

The standard topologies (mesh, torus, etc.) that have been used in macro-networks
result in poor performance and have large power and area overhead when used for
MPSoCs. A major motivation for the use of NoCs is the fact that the interconnect
structure and wiring complexity can be well controlled. When the interconnect is
structured, the number of timing violations that occur during the physical design
(floorplanning and wire routing) phase is minimum. Such design predictability is
critical for today’s MPSoCs for achieving timing closure. It leads to faster design cy-
cle, reduction in the number of design respins, and faster time-to-market. As the wire
delay as a fraction of gate delay is increasing with each technological generation,
having shorter wires is even more important for future MPSoCs. Early works on
NoC topology design assumed that using regular topologies (such as mesh) would
lead to regular and predictable layouts [43]. While this may be true for designs with
homogeneous processing cores and memories, this is not true for most MPSoCs

5 Designing Custom Topologies 59

Table 5.1 Topology
comparisons Parameter Mesh Application-specific

Power (mW) 301.78 79.64

Hop-count 2.58 1.67

Total wire-length (mm) 185.72 145.37

Design area (mm2) 51.01 47.68

as they are typically composed of heterogeneous cores. This is due to the fact that
the core sizes of the MPSoC are highly nonuniform and the floorplan of the de-
sign does not match the regular, tile-based floorplan of standard topologies [33].
An application-specific NoC with structured wiring, which satisfies the design ob-
jectives and constraints is required to have feasible NoC designs.

As a motivating example, the network power consumption (switch and link
power consumption), hop-count, wire-length, and design area of two different NoC
topologies for a video processor MPSoC with 42 cores is presented in Table 5.1.
The first topology is a mesh, while the second is a custom topology generated using
SUNFLOOR tool. The wire-lengths and design area are obtained from floorplanning
of the NoC designs. The detailed explanation of the topologies and the floorplanning
process is described later in this chapter (Section 5.3). The custom topology leads
to a 3.8× reduction in network power consumption, a 1.55× reduction in average
hop-count, and a 1.28× reduction in total length of wires when compared to the
mesh.

5.1.2 Background on Deadlock-Free NoC Design

The deadlocks that can occur in NoCs can be broadly categorized into two classes:
routing-dependent deadlocks and message-dependent deadlocks [84–87, 94].
Routing-dependent deadlocks occur when there is a cyclic dependency of resources
created by the packets on the various paths in the network [94].

Message-dependent deadlocks occur when interactions and dependencies are
created between different message types at network endpoints, when they share re-
sources in the network. Even when the underlying network is designed to be free
from routing-dependent deadlocks, the message-level deadlocks can block the net-
work indefinitely, thereby affecting the proper system operation.

Example 2 An example of a situation where a message-dependent deadlock oc-
curs is presented in Figure 5.1. In this case, two of the cores are masters and two
other cores are slaves. In this system, we assume two types of messages: request
and response. Consider the following situation: Master 1 sends a request to Slave 1
(Req 1), Slave 1 is replying to a previously issued request to Master 1 (Resp 1) and
at the same time, Slave 2 sends a response to Master 2 (Resp 2). When requests and
responses share the same links, Resp 2 is waiting for link 1, which is used by Req 1,

60 5 Designing Custom Topologies

Fig. 5.1 Example of
message-dependent deadlock

and Resp 1 waits for link 4 used by Resp 2. Meanwhile, Req 1 is waiting for Slave 1,
the operation of which has been stalled as Resp 1 could not complete. Thus, none of
the messages can move ahead, leading to a deadlock situation. An interesting point
to note here is that message-level deadlocks can be avoided if the receivers have
infinitely large buffering or if they have perfectly ideal operation (consuming all
received data instantly), which would avoid queuing of the packets in the network.
Obviously, such a solution is not feasible in practice.

For proper system operation, it is critical to remove both routing and message-
dependent deadlocks in the network. It is also important to achieve deadlock free-
dom with minimum NoC area and power overhead. In the topology synthesis
process, we integrate methods to find paths that are free from both routing and
message-dependent deadlocks. This is explained in detail in Section 5.3.

5.2 Input Models

5.2.1 Area, Power Models

We have built accurate analytical models for calculating the power consumption,
area, and delay of the ×pipes network components [89]. To get an accurate es-
timate of these parameters, the place&route of the components is performed us-
ing SoC Encounter and accurate wire capacitances and resistances are obtained, as
back-annotated information from the layout, with a 0.13 µm technology library. The
switching activity in the network components is varied by injecting functional traf-
fic. The capacitance, resistance, and the switching activity report are combined to
estimate power consumption using Synopsys PrimePower [98].

5 Designing Custom Topologies 61

A large number of implementation runs were performed, varying several para-
meters, such as the number of input, output ports, link-width, and the amount of
switching activity at the layout level for the NoC switches. When the size of a NoC
switch increases, the size of the arbiter and the crossbar matrix inside the switch also
increases, thereby increasing the critical path of the switch. To have accurate delay
estimates of the switches, we model the maximum frequency that can be supported
by the switches, as a function of the switch size, presented in Figure 5.2.

We used linear regression to build analytical models for the area and power con-
sumption of the components as a function of these parameters. Due to the intrinsic
modularity and symmetry of NoC components, the models built are very accurate
(with maximum and mean error of less than 7% and 5%, respectively) when com-
pared to the actual values. Power consumption on the wires is also obtained at the
layout level. As in the ×pipes architecture, each core is connected to a separate
NI [34], we consider the power consumption of the NI to be part of the power con-
sumption of the core.

The impact of the targeted frequency of operation on the area and energy con-
sumption of an example 5 × 5 switch obtained from layout-level estimates is pre-
sented in Figure 5.3. Note that we plot the energy values (in power/MHz) instead of

Fig. 5.2 Maximum
frequency variation with
switch size

Fig. 5.3 Impact of frequency on the area and energy of a 5 × 5 switch, for 0.13 µm technology

62 5 Designing Custom Topologies

the total power, so that the inherent increase in power consumption due to increase
in frequency is not observed in the plot. When the targeted frequency of operation
is below a certain frequency, referred to as the nominal operating frequency (around
250 MHz in the plots), the area and energy values for the switch remains the same.
However, as the targeted frequency increases beyond the nominal frequency, the
area and energy values start increasing linearly with frequency. This is because the
synthesis tool (such as Synopsys DC [98]) tries to match the desired high operating
frequency by utilizing faster components that have large area and energy overhead.
When performing the area, power estimates, we also model this impact of desired
operating frequency on the switch area, power consumption.

5.2.2 Traffic Models

The traffic characteristics of the application are represented by a graph, as presented
in the previous chapter, defined here again for convenience.

Definition 9 The core graph is a directed graph, G(V,E) with each vertex vi ∈ V

representing a core and the directed edge (vi, vj), denoted as ei,j ∈ E, representing
the communication between the cores vi and vj . The weight of the edge ei,j , de-
noted by commi,j , represents the sustained rate of traffic flow from vi to vj weighted
by the criticality of the communication. The set F represents the set of all traffic
flows, with value of each flow, fk , ∀k ∈ 1, . . . , |F |, representing the sustained rate
of flow between the source (sk) and destination (dk) vertices of the flow.

The edges of the core graph are annotated with the sustained rate of traffic flow,
multiplied by the criticality level of the flow, as done in the previous chapter.

Definition 10 The message type for each flow fk , ∀k ∈ 1, . . . , |F |, is represented
by mtypek .

As an example, when a system has request and response message types, the
mtypek value can be set to 0 for request messages and 1 for response messages.

5.3 Design Algorithms

The algorithms for the topology design process are explained in this section. In the
first step of Algorithm 2, a design point θ is chosen from the set of available or
interesting design points φ for the NoC architectural parameters. In the current im-
plementation, the synthesis engine automatically tunes two critical NoC parameters:
operating frequency (freqθ) and link-width (lwθ). As both frequency and link-width
parameters can take a large set of values, considering all possible combinations of
values would be infeasible to explore. The system designer has to trim down the

5 Designing Custom Topologies 63

Algorithm 2 Topology Design Algorithm
1: Choose design point θ from φ: freqθ , lwθ

2: for i = 1 to |V | do
3: Find i min-cut partitions of the core graph
4: Establish a switch with Nj inputs and outputs for each partition, ∀j ∈

1, . . . , i. Nj is the number of vertices (cores) in partition i. Check for band-
width constraint violations

5: Build Switch Cost Graph (SCG) with edge weights set to 0
6: Build Prohibited Turn Set (PTS) for SCG to avoid deadlocks
7: Set ρ to 0
8: Find paths for flows across the switches using function PATH_COMPUTE

(i, SCG, ρ, PTS, θ)
9: Evaluate the switch power consumption and average hop-count based on the

selected paths
10: Repeat steps 8 and 9 by increasing ρ value in steps, until the hop-count con-

straints are satisfied or until ρ reaches ρthresh
11: If ρthresh reached and hop-count not satisfied, go to step 2
12: Perform floorplan and obtain area, wire-lengths. Check for timing violations

and evaluate power consumption on wires
13: If target frequency matches or exceeds freqθ , and satisfies all constraints, note

the design point
14: end for
15: Repeat steps 2–14 for each design point available in θ

16: For the best topology and design point, generate information for
×pipesCompiler and Cadence SoC Encounter

exploration space and give the interesting design points for the parameters. The de-
signer usually has knowledge of the range of these parameters. As an example, the
designer can choose the set of possible frequencies from minimum to a maximum
value, with allowed frequency step sizes. Similarly, the link data widths can be set to
multiples of 2, within a range (say from 16 bits to 128 bits). Thus, we get a discrete
set of design points for φ, as done in [53]. In all the experiments, 8 frequency steps
and 4 link-width steps are used, providing 32 discrete design points in the set φ. The
rest of the topology design process (steps 3–15 in Algorithm 2) is repeated for each
design point in φ.

As the topology synthesis and mapping problem is NP-hard [48], we present
efficient heuristics to synthesize the best topology for the design. For each design
point θ , the algorithm synthesizes topologies with different numbers of switches,
starting from a design where all the cores are connected through one big switch
until the design point where each core is connected to only one switch. The reason
for synthesizing these many topologies is that it cannot be predicted beforehand
whether a design with few bigger switches would be more power efficient than a
design with more smaller switches. A larger switch has more power consumption
than a smaller switch to support the same traffic, due to its bigger crossbar and

64 5 Designing Custom Topologies

Fig. 5.4 Algorithm examples

arbiter. On the other hand, in a design with many smaller switches, the packets may
need to travel more hops to reach the destination. Thus, the total switching activity
would be higher than a design with fewer hops, which can lead to higher power
consumption.

For the chosen switch count i, the input core graph is partitioned into i min-cut
partitions (step 3). The partitioning is done in such a way that the edges of the graph
that are cut between the partitions have lower weights than the edges that are within a
partition (refer to Figure 5.4(a)) and the number of vertices assigned to each partition
is almost the same. Thus, those traffic flows with large bandwidth requirements or
higher criticality level are assigned to the same partition, and hence use the same
switch for communication. Hence, the power consumption and the hop-count for
such flows will be smaller than for the other flows that cross the partitions. For
partitioning, we use Chaco, a hierarchical graph partitioning tool [93].

At this point, the communication traffic flows within a partition have been re-
solved. In steps 5–9, the connections between the switches are established to sup-
port the traffic flows across the partitions. In step 5, the Switch Cost Graph (SCG) is
generated.

Definition 11 The SCG is a fully connected graph with i vertices, where i is the
number of partitions (or switches) in the current topology.

5 Designing Custom Topologies 65

Please note that the SCG does not imply the actual physical connectivity between
the different switches. The actual physical connectivity between the switches is es-
tablished using the SCG in the PATH_COMPUTE procedure, which is explained in
the following paragraphs.

In NoCs, wormhole flow control [94] is usually employed to reduce switch
buffering requirements and to provide low-latency communication [30, 33]. With
wormhole flow control, deadlocks can happen during routing of packets due to
cyclic dependencies of resources (such as buffers) [94]. We preprocess the SCG
and prohibit certain turns to break such cyclic dependencies. This guarantees that
deadlocks will not occur when routing packets. For finding the set of turns that need
to be prohibited to break cycles, we use the turn prohibition algorithm presented in
[6, 87]. The algorithm has polynomial time complexity (very fast in practice; see
Section 7.6) and guarantees that at most 1/3 of the total number of turns would be
prohibited to remove cycles. The algorithm also guarantees connectivity between
all nodes in the SCG after prohibiting the turns. From the algorithm, we build the
Prohibited Turn Set (PTS) for the SCG, which represents the set of turns that are
prohibited in the graph. To provide guaranteed deadlock freedom, any path for rout-
ing packets should not take these prohibited turns. These concepts are illustrated in
the following example.

Example 3 The min-cut partitions of the core graph of the filter example (from
Figure 4.2(a)) for 3 partitions is shown in Figure 5.4(a). The SCG for the 3 partitions
is shown in Figure 5.4(b). After applying the turn prohibition algorithm from [87],
the set of prohibited turns is identified. In Figure 5.4(b), the prohibited turns are
indicated by circular arcs in the SCG. For this example, both the turns around the
vertex P3 are prohibited to break cycles. So, no path that uses the switch P3 as an
intermediate hop can be used for routing packets.

The actual physical connections between the switches are established in step 8 of
Algorithm 2 using the PATH_COMPUTE procedure. The objective of the procedure
is to establish physical links between the switches and to find paths for the traffic
flows across the switches. Here, we only present the procedure where the user’s
design objective is to minimize power consumption. The procedure for the other
two cases (with hop-count as the objective and with linear combination of power
and hop-count as objective) follow the same algorithm structure, but with different
cost metrics.

An example illustrating the working of the PATH_COMPUTE procedure is pre-
sented in Example 4. In the procedure, the flows are ordered in decreasing rate
requirements, so that bigger flows are assigned first. The heuristic of assigning
bigger flows first has been shown to provide better results (such as lower power
consumption and more easily satisfying bandwidth constraints) in several earlier
works [6, 46]. For each flow in order, we evaluate the amount of power that will be
dissipated across each of the switches, if the traffic for the flow used that switch.
This power dissipation value on each switch depends on the size of the switch, the
amount of traffic already routed on the switch and the architectural parameter point

66 5 Designing Custom Topologies

(θ) used. It also depends on how the switch is reached (from what other switch) and
whether an already existing physical channel will be used to reach the switch or a
new physical channel will have to be opened. This information is needed, because
opening a new physical channel increases the switch size, and hence the power con-
sumption of this flow and of the others that are routed through the switch. These
marginal power consumption values are assigned as weights on each of the edges
reaching the vertex representing that switch in the SCG. This is performed in steps
8 and 11 of the procedure.

When opening a new physical link, we also check whether the switch size is
small enough to satisfy the particular frequency of operation. As the switch size
increases, the maximum frequency of operation it can support reduces (as noted
earlier in Section 5.2). This information is obtained from the placement&routing of
the switches, taken as an input to the algorithms. The message type that is supported
by a link between any two switches i and j is represented by MType(i, j). Whenever
a path is established for a flow, the links that are newly instantiated in the path are
assigned the same message type as the flow. When choosing a path for a flow, we
check whether the existing links in the path support the same message type as the
flow (step 7 of Algorithm 3). Thus, flows with different message types are mapped
onto different physical links in the NoC, thereby removing the chances of a message-
level deadlock.

Once the weights are assigned, choosing a path for the traffic flow is equivalent
to finding the least cost path in the SCG. This is done by applying Dijkstra’s shortest
path algorithm [95] in step 15 of the procedure. When choosing the path, only those
paths that do not use the turns prohibited by PTS are considered. The size of the
switches and the bandwidth values across the links in the chosen path are updated
and the process is repeated for other flows.

Example 4 Let us consider the example from Figure 5.4(a). The input core graph
has been partitioned into 4 partitions. We assume 2 different message types: request
and response for the various traffic flows. Each partition pi corresponds to the cores
attached to the same switch. Let us consider routing the flow with a bandwidth value
of 100 MB/S between the vertices v1 and v2, across the partitions p1 and p2. The
traffic flow is of the message type request. Initially no physical paths have been
established across any of the switches. If we have to route the flow across a link
between any two switches, we have to first establish the link. The cost of routing
the flow across any pair of switches is obtained. The edges between the switches
are annotated by the cost (marginal increase in power consumption) of sending the
traffic flow through the switches (Figure 5.4(c)). The cost on the edges from p2 are
different from the others due to the difference in initial traffic rates within p2 when
compared to the other switches. This is because the switch p2 has to support flows
between the vertices v2 and v3 within the partition. The least cost path for the flow,
which is across switches p1 and p2 is chosen. Now we have actually established
a physical path and a link between these switches. We associate the message type
request for this particular link. This is considered when routing the other flows and
only those traffic flows that are of request type can use this particular physical link.

5 Designing Custom Topologies 67

Algorithm 3 PATH_COMPUTE(i, SCG, ρ, PTS, θ)
1: Initialize the set PHY(i1, j1) to false and Bw_avail(i1, j1) to freqθ × lwθ , ∀i1,

j1 ∈ 1, . . . , i

2: Initialize switch_size_in(j) and switch_size_out(j) to Nj , ∀j ∈ 1, . . . , i. Find
switching_activity(j) for each switch, based on the traffic flow within the parti-
tion

3: for each flow fk , k ∈ 1, . . . , |F | in decreasing order of fc do
4: for i1 from 1 to i and j1 from 1 to i do
5: {Find the marginal cost of using link i1, j1}
6: {If physical link exists, can support the flow and is of the same message

type}
7: if PHY(i1, j1) and Bw_avail(i1, j1) ≥ fc and (MType(i1, j1) = mtypek)

then
8: Find cost(i1, j1), the marginal power consumption to reuse the existing

link
9: else

10: {We have to open new physical link between i1, j1}
11: Find cost(i1, j1), the marginal power consumption for opening and us-

ing the link. Evaluate whether switch frequency constraints are satisfied
12: end if
13: end for
14: Assign cost(i1, j1) to the edge W(i1, j1) in SCG
15: Find the least cost path between the partitions in which source (sk) and des-

tination (dk) of the flow are present in the SCG. Choose only those paths that
have turns not prohibited by PTS

16: Update PHY , Bw_avail, switch_size_in, switch_size_out, switching_activity,
MType for chosen path

17: end for
18: Return the chosen paths, switch sizes, connectivity

We also note the size and switching activity of these switches that have changed due
to the routing of the current flow.

The PATH_COMPUTE procedure returns the sizes of the switches, connectivity
between the switches, and the paths for the traffic flows. The objective function
for establishing the paths is initially set to minimizing power consumption in the
switches. Once the paths are established, if hop-count constraints are not satisfied,
the algorithm gradually modifies the objective function to minimize the hop-count
as well, using the parameter ρ (in steps 7, 10, and 11 of Algorithm 2). The upper
bound for ρ, denoted by ρthresh, is set to the value of power consumption of the flow
with maximum rate, when it crosses the maximum size switch in the SCG. At this
value of ρ, for all traffic flows, it is beneficial to take the path with least number of
switches, rather than the most power efficient path. The ρ value is varied in several
steps until the hop-count constraints are satisfied or until it reaches ρthresh.

68 5 Designing Custom Topologies

In the next step (step 12, Algorithm 1), the algorithm invokes the floorplanner
to compute the design area and wire-lengths. The floorplanner minimizes a dual-
objective function of area and wire-length, with equal weights assigned to both.
The floorplanner used [92] also supports soft cores, fixed pin/pad locations, and
aspect ratio constraints for the generated design. From the obtained wire-lengths,
the power consumption across the wires is calculated. Also, the length of the wires
is evaluated to check any timing violations that may occur at the particular fre-
quency (freqθ). In the end, the tool chooses the best topology (based on the user’s
objectives) that satisfies all the design constraints. At the last step, for the synthe-
sized topology, the algorithm automatically generates the information required for
the ×pipesCompiler tool for network instantiation and the SoC Encounter tool to
perform placement&routing.

The presented NoC synthesis process scales polynomially with the number of
cores in the design. The number of topologies evaluated by the methodology also
depends linearly on the number of cores. Thus, the algorithms are highly scalable
to a large number of cores and communication flows. The synthesis time for several
different MPSoC benchmarks is presented in Section 5.4.1.

5.4 Experiments and Case Studies

5.4.1 Experiments on MPSoC Benchmarks

We have applied the topology design procedure to six different MPSoC bench-
marks: video processor (VPROC-42 cores), MPEG4 decoder (12 cores), Video Ob-
ject Plane Decoder (VOPD-12 cores), Multi-Window Display application (MWD-12
cores), Picture-in-Picture application (PIP-8 cores), and IMage Processing appli-
cation (IMP-23 cores).

For comparison, we have also generated mesh topologies for the benchmarks by
modifying the design procedure to synthesize NoCs based on mesh structure. To
obtain mesh topologies, we generate a design with each core connected to a single
switch and restrict the switch sizes to have 5 input/output ports. We also generated
a variant of the basic mesh topology: optimized mesh (opt-mesh), where those ports
and links that are unused by the traffic flows are removed.

The core graph and the floorplan for the custom topology synthesized by the tool
for one of the benchmarks (VOPD) are shown in Figure 5.5. The network power
consumption (power consumption across the switches and links), average hop-count
and design area results for the different benchmarks are presented in Table 5.2. Note
that the average hop-count is the same for mesh and opt-mesh, as in the opt-mesh
only the unused ports and links of the mesh have been removed and the rest of the
connections are maintained. The custom topology results in an average of 2.78×
improvement in power consumption and 1.59× improvement in hop-count when
compared to the standard mesh topologies. The area of the designs with the different
topologies is similar, thanks to efficient floorplanning of the designs. It can be seen

5 Designing Custom Topologies 69

Fig. 5.5 VOPD custom topology floorplan and core graph

Table 5.2 Comparisons with standard topologies

Appl. Topol. Power Avg. Area Time

(mW) hops mm2 (mins)

VPROC Custom 79.64 1.67 47.68 68.45

Mesh 301.82 2.58 51.01

Opt-mesh 136.11 2.58 50.51

MPEG4 Custom 27.24 1.52 13.49 4.04

Mesh 96.82 2.17 15.00

Opt-mesh 60.97 2.17 15.01

VOPD Custom 30.03 1.33 23.56 4.47

Mesh 95.94 2.03 23.85

Opt-mesh 46.48 2.03 23.79

MWD Custom 20.53 1.15 15.00 3.21

Mesh 90.17 2.02 13.62

Opt-mesh 38.60 2.02 13.81

PIP Custom 11.71 1 8.95 2.07

Mesh 59.87 2.02 9.61

Opt-mesh 24.53 2.03 9.34

IMP Custom 52.13 1.44 29.66 31.52

Mesh 198.92 2.11 29.41

Opt-mesh 80.15 2.11 29.41

70 5 Designing Custom Topologies

Fig. 5.6 Performance
comparisons

from Figure 5.5 that only very little slack area is left in the floorplan. This is because
we consider the area of the network elements during the floorplanning process, and
not after the floorplanning of blocks. The total run-time of the topology synthesis
and architectural parameter setting process for the different benchmarks is presented
in Table 5.2. Given the large problem sizes and very large solution space that is
explored (8 different frequency steps, 4 different link-widths, 42 cores for VPROC
and several calls to the floorplanner) and the fact that the NoC parameter setting
and topology synthesis are important phases, the run-time of the engine is not large.
This is mainly due to the use of hierarchical tools for partitioning and floorplanning
and the development of fast heuristics to synthesize the topology.

We also performed comparisons of synthesized topology against several other
standard topologies. For mapping the cores onto the standard topologies, we use the
SUNMAP tool, presented in the previous chapter. We optimized the topologies for
performance, subject to the design constraints. The comparisons against 5 standard
topologies (mesh, torus, hypercube, Clos, and butterfly) for an image processing
benchmark with 25 cores is presented in Figure 5.6. The custom topology synthe-
sized by the method shows large performance improvements (an average of 1.73×)
over the standard topologies.

As an interesting observation, we found that prohibiting certain turns to avoid
deadlocks during routing had a negligible impact on the power and performance re-
sults for all of the benchmarks. This was because even if some turns were avoided,
the path computation procedure could easily find other paths with low cost, as sev-
eral alternative low cost paths exist between each source and destination in the SCG
(refer to Section 5.3).

5.4.2 Layout-Level Comparisons

We had earlier manually developed a NoC design for a MPSoC that runs multi-
media benchmarks [88]. The design consists of 30 cores: 10 ARM7 processors with

5 Designing Custom Topologies 71

Fig. 5.7 (a), (b) Hand-designed topology and layout. M: ARM7 processors, T: traffic generators,
P, S: private and shared slaves (c), (d) Automatically synthesized topology and layout. In (c),
bidirectional links are solid and unidirectional links are dotted

caches, 10 private memories (a separate memory for each processor), 5 custom traf-
fic generators, 5 shared memories and devices to support interprocessor communi-
cation. The hand-designed NoC has 15 switches connected in a 5 × 3 quasi-mesh
network (2 cores connected to each switch), shown in Figure 5.7(a). The design
is highly optimized, with the private memories being connected to the processors
across a single switch and the shared memories distributed around the switches.
The layout of the design (presented in Figure 5.7(b)) was performed using SoC En-
counter and the mesh structure was maintained in the layout. Each of the cores has
an area of 1 mm2 [88] in the design. The entire process, from topology specification

72 5 Designing Custom Topologies

to layout generation took weeks. The post-layout NoC could support a maximum
frequency of operation of 885 MHz, which is determined by the critical path in the
switch pipeline. The power consumption of the topology for functional traffic has
been evaluated to be 368 mW.

We apply the topology synthesis process with the objective of minimizing power
consumption to automatically synthesize the NoC for this application. We set the de-
sign constraints and the required frequency of operation to be the same (885 MHz)
as that of the hand-designed topology. The synthesized NoC topology and the layout
obtained using SoC Encounter are presented in Figures 5.7(c) and (d). The synthe-
sized topology has fewer switches (8 switches) than the hand-designed topology. It
can support the same maximum frequency of operation (885 MHz), without any tim-
ing violations on the wires. As we considered the wire-lengths during the synthesis
process to estimate the frequency that could be supported, we could synthesize the
most power efficient topology that would still meet the target frequency. To reach
such a design point manually would require several iterations of topology design
and place&route phases, which is a very time consuming process.

Layout level power consumption calculations on functional traffic show that
the synthesized topology has 277 mW power consumption, which is 1.33× lower
than the hand-designed topology. Given the fact that the hand-designed topology is
highly optimized, with much of the communicating traffic (which is between the
ARM cores and their private memories) traversing only one switch, these savings
are achieved entirely from efficiently spreading the shared memories around the dif-
ferent switches. The layout of the hand-designed NoC was manually optimized to a
large extent (by moving switches, network interfaces) to reduce the area of the de-
sign. The layout of the synthesized topology is obtained completely automatically,
and still the area of the design is close to that of the manual design (only a marginal
4.3% increase in area).

We perform cycle-accurate simulations of the hand-designed and the synthesized
NoCs for two multimedia benchmarks. The total application time for the bench-
marks (including computation time) and the average packet latencies for read trans-
actions for the topologies are presented in Figures 5.8(a) and (b). The custom topol-
ogy not only matches the performance of the hand-designed topology, but provides
an average of 10% reduction in total execution time and of 11.3% in packet latency.

5.4.3 Impact of Frequency Constraints

The maximum frequency of operation that can be supported by the NoC switches
depends on the number of switch I/O ports, as indicated earlier in Figure 5.3(b). In
this subsection, we study the impact of the required NoC frequency on the topology
synthesis process. We consider the multi-media MPSoC considered in Section 5.4.2
and apply the SUNFLOOR tool to synthesize the most power-efficient topology
for different operating frequency constraints. The number of switches and maxi-
mum switch sizes (maximum over the number of input and output ports of all the

5 Designing Custom Topologies 73

Fig. 5.8 Run-time and latency for different cache sizes

Fig. 5.9 Topology size
variations with NoC
frequency

switches) used in the synthesized topologies for different NoC frequencies are pre-
sented in Figures 5.9 and 5.10. From these plots, we can infer that at low operat-
ing frequencies, a topology with few but large switches results in the most power
optimal design. This is due to the fact that the increase in power consumption is
mostly linear with the increase in switch size [89]. Thus, in a design with fewer
switches, the traffic flows traverse shorter paths, thereby leading to more power op-
timal designs. But as the required NoC operating frequency increases, the timing
delay constraints cannot be met by large switches, thereby the optimal design point
moves to a topology with smaller, but more switches. As the tool flow automatically
considers the frequency constraint of the switches as well, we am able to prune
the infeasible design points (that violate the timing constraints) early in the design
process.

74 5 Designing Custom Topologies

Fig. 5.10 Switch size
variations with NoC
frequency

Fig. 5.11 Dynamic effects

5.4.4 Handling Dynamic Effects

When the designed NoC is simulated, there can be some mismatch between the ob-
served traffic patterns and the initial traffic estimates. This may be either because of
inaccurate traffic models or because of dynamic effects, such as congestion. Note
that it will be too time consuming to simulate each topology during the synthesis
process. To bridge the gap between topology synthesis and simulation, we use the
mismatch parameter; the input traffic rates are multiplied by the value of this para-
meter. The parameter is fed as an input to the synthesis engine. It is initially set to 1
and the user can manually tune the parameter and redesign the NoC, until the simu-
lations satisfy the required performance level. The effect of increasing the parameter
on performance for the MPEG4 NoC is presented in Figure 5.11.

5.5 Summary

Having a power and latency efficient NoC architecture that closely matches the ap-
plication traffic characteristics is key to have an efficient MPSoC implementation.
Synthesizing such NoC architecture is nontrivial, given the large design space that

5 Designing Custom Topologies 75

needs to be explored. In this chapter, we have presented SUNFLOOR, a tool that
automates the process, generating efficient NoCs that satisfy the design constraints
of the application. To have fewer design respins and faster time-to-market, we have
integrated the architectural synthesis models with back-end physical design models,
thereby bridging a big design gap in NoC synthesis. The synthesis process also con-
siders the wiring complexity of the NoC to accurately estimate interconnect delay
and power consumption and produces networks that are free from deadlocks. We
have shown a layout-level implementation of the NoC for a multi-media MPSoC,
validating the Netchip design flow.

Chapter 6
Supporting Multiple Applications

In the previous three chapters, we presented approaches to design the NoC to match
the traffic requirements of an application. As technology advances, it becomes cost-
effective to integrate several different applications or use-cases onto a single SoC
chip. As an example, the PNX8550 (Viper2) set-top box SoC based on the Philips
Nexperia platform has multiple resolution video processing capabilities (like high
definition, standard definition), multiple picture modes (like split-screen, picture-in-
picture), video recording features, high speed internet access, file transfer services,
etc.

Current state-of-the-art SoCs also allow several of the use-cases to run in parallel.
As an example, in a set-top box SoC, video display, and recording applications can
run in parallel, where the recorder could potentially record a different program than
what is being displayed on the screen. We refer to such use-cases that run in parallel
as compound modes (Figure 6.1). The transition between the single use-case mode to
compound mode needs to be smooth. As an example, when we start a new function
such as video-recording in a set-top box, the video display that is currently going
on should be unaffected. However, when there is a switching between compound
modes, there can be a configuration time overhead to load the new set of use-cases,
as shown in Figure 6.1. As the different use-cases have different functionalities,
the communication characteristics can be very different across the use-cases. As an
example, in Figure 6.2, a small fragment of the communication constraints for two
different use-cases for the Viper2 set-top box SoC is presented, where the bandwidth
requirements for some of the traffic streams for the use-cases are different.

In this chapter,1 we extend the synthesis approach to design NoCs that support
multiple applications. To show the generality of the methods presented in this and
preceding chapters, we apply the synthesis procedure to a different NoC design: the
Ætheral architecture [30]. We integrate the synthesis tool with the Æthereal design
flow [96], similar to the integration into the Netchip flow presented in last chapter.

The proposed synthesis process performs mapping, path selection, and resource
reservation in the NoC that satisfies the communication constraints of multiple use-
cases of the SoC. We consider compound modes, where two or more use-cases run in
parallel, and automatically compute the communication constraints for such modes
from the constituent use-cases. When there is switching between the use-cases that
are run, there is a possibility of changing the paths and resource reservations in
the NoC across the use-cases. The dynamic network reconfiguration can be applied
when the use-case switching times are large and it helps in reducing the operating

1We would like to acknowledge the contributions of Dr. Andrei Radulescu, Martijn Coenen and
Dr. Kees Goossens.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

77

78 6 Supporting Multiple Applications

Fig. 6.1 Use-cases and
compound modes

Fig. 6.2 Example use-cases

frequency and power consumption of the NoC. In the methodology, we preprocess
the use-cases and identify the set of use-cases that need to share the same NoC
configuration and use-case switching where the NoC configuration can be changed.
We also explore the effect of dynamic voltage and frequency scaling (DVS/DFS)
techniques for reducing the power consumption of the network across the different
use-cases. We apply the methods to several SoC designs (set-top box, TV processor
SoCs) and synthetic benchmarks to validate the design methodology. The methods
are scalable to a large number of use-cases and are applicable even when the use-
cases have very different communication characteristics.

6.1 The Æthereal NoC Architecture

In this section, we present the architecture of the Æthereal NoC, which provides
support for predictable communication behavior and the mechanism for dynamic
NoC configuration.

6 Supporting Multiple Applications 79

6.1.1 Switch/NI Architecture

The Æthereal NoC architecture interconnects IP blocks by connecting them to Net-
work Interfaces (NIs), which convert the IP-block communication view (protocols
such as DTL, AXI, and OCP) to the network communication view, which is packet-
based. The NIs are then interconnected by a switch network, which may consist
of multiple switches in different topologies. Æthereal supports a request-response
transaction scheme, in which a master IP block may send a request (such as a read
or a write) to a slave IP, and the slave IP might return a response (in case of a read,
for example). This transaction scheme is implemented in Æthereal by a connection,
which consists of a request channel and a response channel.

Many applications run on SoCs have real-time requirements, such as audio and
video streaming applications. In order to make sure these applications can meet their
requirements from the communication point-of-view, Æthereal offers so-called GT
connections which provide bandwidth and latency guarantees on that connection. In
order to provide bandwidth and latency guarantees, the Æthereal NoC uses a Time
Division Multiple Access (TDMA) mechanism to divide time in multiple time slots,
and then assigns each GT connection a number of slots. The result is a slot-table in
each NI, stating which GT connection is allowed to enter the network at which time-
slot. Once a GT connection is granted a slot, it is guaranteed a contention-free path
to its destination NI. This is achieved by computing the slot table allocations for
each NI such that two GT packets never use the same output link at any time on any
switch. This slot allocation is computed at design time by a heuristic algorithm [6],
and must be programmed in the NIs at run-time. For example, when a connection is
given half of the slots, it will be granted half of the total bandwidth.

For traffic that has no real-time requirements, Æthereal implements Best-Effort
(BE) connections. BE connections are allowed to enter the network whenever a slot
is not used by a GT connection or when the slot is not allocated. Besides the alloca-
tion of slots for GT connections, both GT and BE connections need to have a path
through the switch network. Æthereal uses a static path routing scheme, in which
paths are inserted at the source NI of the traffic flow. These paths are computed at
design-time, and must be programmed into the NIs at run-time. NoC configuration
thus consists of programming both the slot-allocation and path for each connection.

6.1.2 Dynamic NoC Reconfiguration

When multiple applications (use-cases) must be supported by the NoC and they
have different requirements, the paths and slot-tables allocations for these use-cases
will vary. The tables therefore need to be stored in memory and loaded whenever
a use-case switch is executed. As the on-chip memory available is mostly limited
and as the number of use-cases is usually large, the off-chip memory can be used to
store the paths and slot-tables for the different use-cases.

80 6 Supporting Multiple Applications

We investigated the overhead for the reconfiguration mechanism for the set-top
box SoC. The amount of data required to store the path and slot-table information
for each use-case is around 560 bytes. With 400 use-cases, the memory requirement
for the reconfiguration mechanism is 224 KB. The time required to load the data
from the memory and spread it around the NoC for an use-case is of the order
of micro-seconds and the energy dissipation is of the order of micro-Joules. Using
traditional mechanisms to scale the frequency and voltage of the system may require
few milliseconds for configuration.

6.2 Design Methodology

The communication characteristics and constraints of the various use-cases of a SoC
are the input to the design methodology (U1 · · · Un in Figure 6.3). The communica-
tion design constraints for each use-case includes the required bandwidth for various
connections between the cores in the use-case, the maximum latency allowed for the
connection, the QoS level required for the connection (like GT or BE), etc. An ex-
ample fragment of the input file is presented in Figure 6.4. The user specifies the
set of use-cases that can run in parallel (PUC in the figure). In the first phase of the
design process, new use-cases are generated automatically to represent such parallel
modes of operation.

For a multiple use-case SoC, when the system switches between use-cases, some
timing overhead is incurred in loading the new use-case. This delay is mainly due to
the fact that the new use-case’s data and code need to be loaded, control signals need
to be distributed to different parts of the design, and the already running use-case
need to be gracefully shut down. This switching time varies with different use-cases

Fig. 6.3 Multi use-case NoC design methodology

6 Supporting Multiple Applications 81

Fig. 6.4 Example input file with design constraints for an MPEG application

and depends on the underlying computational architecture. Some use-cases repre-
sent control sequences that are critical and are loaded and run quickly. For many
other use-cases, the switching time is of the order of hundreds of microseconds to
milliseconds. In this time, we can reconfigure the paths and TDMA slot-tables in
the NoC to match the communication characteristics of the use-cases. When the
switching times are in the order of few milliseconds, we can also scale the supply
voltage and NoC frequency to match the use-case characteristics, which can lead to
a reduction in the NoC power consumption.

To accommodate NoC reconfiguration and to apply DVS/DFS, we perform two
different groupings of the various use-cases. If two use-cases have a switching time
of less than few microseconds, then they belong to the same configuration group.
The use-cases within the same configuration group share the same path and slot-
table reservations, as there would not be sufficient time to change the paths and
TDMA time-slots across the use-cases. Similarly, if two use-cases that have switch-
ing time of less than few milliseconds, they belong to the same DVS/DFS group,
that is, they use the same NoC operating frequency and voltage.

When some use-cases can run in parallel, we require a smooth transition be-
tween the single use-case mode to the parallel use-case mode, and thus they would
belong to the same configuration and DVS/DFS group. Other use-cases that are in
the same configuration or DVS/DFS group are given as an input to the design flow
(SUC in Figure 6.3). In the second phase of the design, we preprocess the use-cases
identifying the set of use-cases that can have reconfiguration and those that should

82 6 Supporting Multiple Applications

share the same NoC configuration. We also find the set of use-cases across which
the DVS/DFS schemes can be applied. The detailed description of this phase is pre-
sented in Section 6.5.

In the third phase of the design, we perform mapping and NoC configuration.
The objective of the mapping process is to design the smallest size NoC (in terms of
the number of the switches used) that satisfies the design constraints of all the use-
cases. We assume that all of the use-cases utilize the same mapping of cores onto
the NoC components and only the paths and TDMA slot-tables can be potentially
reconfigured across the different use-cases. This is because, if each individual use-
case has a different mapping, then each core potentially needs to be connected to
several different NIs, which may not be feasible because of physical layout restric-
tions and wiring complexity. The methods presented in this chapter can be easily
extended to support even limited reconfiguration of the mapping across the different
use-cases.

In the last phase of the design, the SystemC/VHDL code for the NoC design is
generated and simulations of the design are performed. The NoC performance for
the GT connections is also verified analytically in this step.

6.3 Use-Case Preprocessing

The set of use-cases that can run in parallel is specified by the user as an input. As the
number of combinations of the use-cases can be large, it is a tedious process for the
user to manually create use-cases to represent the parallel modes. In the first phase
of the methodology, we automatically compute the bandwidth, latency requirements
for such parallel modes from the individual use-cases. The bandwidth of a flow
between two cores in such a compound mode is obtained by summing the bandwidth
of the flows between the two cores across the use-cases that comprise the mode and
the latency requirement of the flow is taken to be the minimum of the requirements
of the flows across the different use-cases in the mode. Such compound modes are
then taken as separate use-cases in the design flow.

To find the set of all use-cases that belong to the same configuration group, and
hence need to have the same NoC configuration, we construct a Switching Configu-
ration Graph (SCG).

Definition 12 The SCG(SV,SE) is an undirected graph, with each vertex svi ∈ SV
representing an use-case and the undirected edge (svi, svj) (or (svj , svi)), repre-
senting the fact that the use-cases svi and svj belong to the same configuration
group.

As an example, in Figure 6.5, a SCG graph for 10 use-cases is presented. The
use-cases U_123, U_45 are automatically generated by the first phase of the design
flow to represent the compound modes of operation where use-cases 1, 2, 3 and 4,
5, respectively, run in parallel. We require a smooth switching between use-cases 6

6 Supporting Multiple Applications 83

Fig. 6.5 Example SCG

Algorithm 4 Use-Case Grouping
1. Initialize svi ∈ SV,∀i ∈ 1, . . . , |SV|, unvisited.
2. Choose unvisited vertex v ∈ SV and mark it visited.
3. Perform depth first search from v on SCG. Group all vertices traversed in the

search and mark them visited.
4. Remove visited vertices and their edges from SG.
5. Repeat steps 2–4 until all vertices in SCG are visited.

and 7, as use-case 7 is considered to be critical. The set of use-cases that need to
have the same NoC configuration have an edge between them in the SCG graph.

To find the set of all use-cases that need to have the same NoC configuration,
we use the algorithm presented in Algorithm 4. In the algorithm, the SCG graph
is traversed and those vertices that are reachable from each other are grouped. The
vertices in the same group represent those use-cases that need to have the same NoC
configuration. This is obtained by performing depth-first search of SCG, possibly
multiple times, until all vertices are traversed. The set of vertices traversed in a
single search are grouped together, as they are reachable from each other. During
the mapping process, the set of use-cases that are in the same group utilize the same
NoC configuration.

A similar approach is used for finding the set of all use-cases that are in the same
DVS/DFS group and need to have the same operating voltage and frequency.

6.4 Unified Mapping–NoC Configuration

In the next steps, we must map the IP cores to NIs and generate configurations for
the NIs which support the various use-cases. To perform the mapping, we formulate
the following definitions.

84 6 Supporting Multiple Applications

Definition 13 Let the set of use-cases be U . The communication between set of all
pairs of cores in an use-case i,∀i ∈ 1, . . . , |U |, is represented by the set Fi . Each
flow in the use-case i, flowi,j ,∀j ∈ 1, . . . , |Fi |, is associated with a bandwidth re-
quirement, commi,j and a latency constraint, lati,j . Let the source core of the traffic
flow flowi,j be source(flowi,j) and the destination core of the flow be dest(flowi,j).

The bandwidth of the flow represents the maximum rate of traffic communicated
in the flow and the latency of the flow represents the maximum delay by which a
transaction of the flow should reach the destination.

We define the NoC topology by the topology graph.

Definition 14 The NoC topology graph is a directed graph P(V,L), with each
vertex vi ∈ V representing a core or core-cluster,2 NI or a switch in the design and
the directed edge (vi, vj), denoted as li,j ∈ L, representing a link between vertices
vi and vj .

As an example, a NoC topology graph with 5 cores, 4 NIs and 4 switches is
shown in Figure 6.6(a). As the connectivity of the cores with the switches and NIs,
which defines a mapping of the cores onto the network components, is an output
of the design methodology; the complete connectivity information of the topology
graph is only obtained after the application of the algorithms.

To facilitate the mapping process, taking into account the possibly different paths
and TDMA slot reservations to be used by the different use-cases, we define a virtual
topology graph for each use-case. The virtual topology graph keeps track of the
current path and slot-allocation per use-case while the algorithm is running.

Fig. 6.6 (a), (b): Example NoC topology graph and VTG for a use-case. In the VTG, the connec-
tions between the switches and the NIs represent actual physical connections, while between the
cores and the NIs represent logical connectivity, signifying that any core can be connected to any
NI. The actual physical connections between the cores and the NIs are obtained as outputs of the
proposed mapping procedure

2The procedure can also consider a cluster of cores that are to be mapped to the same NI.

6 Supporting Multiple Applications 85

Definition 15 The virtual topology graph for use-case i,∀i ∈ 1, . . . , |U | (repre-
sented as VTGi (W,M)) is a directed graph with the same number of vertices as the
topology graph P(V,L). Each edge, mi,i1,j1, ∀i1, j1 ∈ 1, . . . , |M|, in the graph
represents the possibility of an actual physical link. Each vertex representing a core
or a core-cluster is connected to all the vertices that represents NIs, which means ini-
tially each core could potentially be connected to any NI. The connectivity between
the switches and the NIs are determined by the physical switch network architecture,
which is an input to the design methodology. Each edge m ∈ M is associated with
the residual bandwidth capacity value, commm (the amount of bandwidth that is not
yet reserved) and a TDMA time-slot table tm. The source vertex of the edge m is
represented by s(m) and the destination vertex of the edge is represented by d(m).

As an example, the VTG for a use-case, for the example presented in Fig-
ure 6.6(a), is shown in Figure 6.6(b). Please note that an edge between the vertex
representing a core and the vertex representing a NI in the VTG (as an example, the
edge denoted as a logical connection in the figure) does not imply an actual physical
link. The actual physical connections are established by the mapping procedure. In
this work, we assume the connectivity between the switches to be based on a mesh
topology, and the procedure can be easily extended to accommodate other topolo-
gies as well. The connectivity between the NIs and the switches is determined by
the amount of NI to switch clustering that is permitted, which is obtained as an user
input. In the example from Figure 6.6(b), two NIs are connected to each switch and
a 2 × 2 mesh topology is used to interconnect the 4 switches.

Definition 16 A path πi,i1,j1 for a traffic flow from a source vertex wi,i1 to
destination vertex wi,j1 in the graph VTGi is a nonempty sequence of edges
〈m1,m2, . . . ,mk〉, such that

• d(mk1) = s(mk1+1), ∀k1 ∈ 1, . . . , k − 1.
• s(m1) = wi,i1 and d(mk) = wi,j1.

The cost of traversing an edge of the path is determined by the contention on the
edge (based on the residual bandwidth and slot-table availability) and the total cost
of a path is determined by the weighted sum of contention on the edges of the path
and hop-count.

In the mapping procedure, we select a path with a low contention (high prob-
ability of successful allocation) and at the same time try to keep the path length
short, so that we do not consume unnecessarily many resources. As the cost func-
tion of a path depends on two factors (contention and hop-count), we use a weighted
linear combination of the two measures, with the weights for the measures set up
experimentally.

The mapping algorithm for multiple use-cases is presented in Algorithm 5. In the
first step, the maximum NoC operating frequency, the data-width of the links, the
maximum TDMA slot-table size and the number of NIs connected to each switch
are obtained as user inputs. From the data-width and the maximum frequency de-
sign point, the maximum bandwidth available on each link of the NoC is obtained

86 6 Supporting Multiple Applications

Algorithm 5 Unified Mapping and NoC Configuration
1: Obtain the NoC operating frequency, link data-width, maximum TDMA slot-

table size, and number of NIs connected to each switch.
2: Set the maximum bandwidth available across each NoC link (max_bw) as a

product of the NoC frequency and link data-width.
3: First, increase the number of slots until the predetermined maximum with a

valid mapping is obtained. If the maximum slot-table size is reached without
finding a valid mapping, increase the number of switches in the design until a
valid mapping is obtained, or until an user-defined threshold is reached.

4: Generate, VTGi (W,M) for each use-case i,∀i ∈ 1, . . . , |U |.
5: Assign the residual bandwidth value of all edges, bwm ∀m ∈ M , to max_bw.
6: Sort the flows fi,j , ∀i ∈ 1, . . . , |U |, j ∈ 1, . . . , |Fi |, in nonincreasing order of

the bandwidth values, commi,j .
7: Choose the flow in order of the bandwidth value, preferring flows that have

source/destination vertices already mapped. Let fu1,n be the flow chosen.
8: Let wu1,i1 be the vertex representing the core source(fu1,n) and wu1,j1 be the

vertex representing the core dest(fu1,n).
9: Find constrained least cost path πi,i1,j1 from source(fu1,n) to dest(fu1,n) such

that
10: (i) Min∀mk1∈πi,i1,j1bwmk1 ≥ commu1,n (each link has enough bandwidth to

accomodate the flow)
11: (ii) TDMA slots are available in mk1, ∀mk1 ∈ πi,i1,j1.
12: (iii) The latency (hop-delay) constraint of the flow is satisfied.
13: (iv) And the cost of the path is minimum.
14: Reduce the residual bandwidth available (bwmk1) on mk1, ∀mk1 ∈ πi,i1,j1 by

commu1,n and re-compute available TDMA time-slots.
15: Remove edges other than the one present in the chosen path from

source/destination vertices to NIs. Apply this process to all the use-cases.
16: For all other use-cases i, ∀i ∈ 1, . . . , |U |, i /∈ u1, choose the flow f , that has the

same source and destination vertices as fu1,n, if such a flow exists.
17: Choose a least cost path in each use-case that satisfies the constraints and re-

serve resources. For use-cases in same group, choose path for that use-case in
the group that has the maximum bandwidth value for the flow and reserve re-
sources across the path in each use-case.

18: Remove mapped flows and repeat steps 7–17 until all flows are mapped.
19: If no path that satisfies the constraints is available for any flow of any of the

use-cases, go to step 3.
20: Once a valid mapping is obtained, obtain the required frequency of operation

and supply voltage for all the use-cases in each DVS/DFS cluster.
21: Store the paths, slot-table allocations, supply voltage, and operating frequency

for the use-cases.

(step 2). In the next step (step 3), the number of slots and switches in the design are
increased until a valid mapping is obtained in the subsequent steps. The objective of

6 Supporting Multiple Applications 87

the algorithm is to find the smallest NoC design (in terms of the number of switches
and NIs utilized) that satisfies the bandwidth and latency constraints of all the use-
cases. The algorithm declares the mapping as infeasible when the switch/NI count
reaches an user-defined threshold.

For a chosen switch/NI count, the VTG graphs for all the use-cases are con-
structed (step 4). Then the residual bandwidth on all the edges of the VTG graphs
are assigned to the maximum bandwidth value. In the next step (step 6), the traffic
flows are sorted in a non-increasing order of their bandwidth values for all the use-
cases in the design. Then (step 7) the flow with the maximum bandwidth value is
chosen across all the use-cases. The intuition behind choosing the flow that has the
largest bandwidth value first is that it reduces bandwidth fragmentation and larger
flows get to use shorter paths, which is desirable as it leads to lower power con-
sumption [46]. While choosing a flow, we prefer to choose a flow from the already
mapped nodes before other flows, as it further helps in satisfying the bandwidth
constraints.

For the chosen flow, the least cost path that satisfies the bandwidth, TDMA slot-
table and latency constraints is obtained (steps 8–13). For obtaining the least-cost
path, we use Dijkstra’s algorithm that is modified to accommodate the constraints,
applied onto the VTG representing the use-case that has the chosen traffic flow.
Once the least cost path is computed, the residual bandwidth and the TDMA time
slots available on the edges of the path are recomputed (step 14). In the next step,
all edges from the vertex representing the source/destination cores to the vertices
representing the NIs, other than the one in the chosen path, are removed. This is
because, in the Æthereal architecture, each core is connected to only one NI (while
a single NI can connect multiple cores) due to physical layout restrictions. Now, the
edge of the chosen path has established an actual physical connection between the
source/destination cores and the NI.

As all the use-cases use the same mapping of cores onto the NIs, we fix the
physical connection between the source/destination cores and the NIs in all the other
use-cases as well (step 15). Then (step 16) for all the other use-cases, the flows that
have the same source and destination cores as the one that is mapped are chosen
and allocated in a similar manner (as done in steps 8–13). For the flows belonging
to the use-cases from the same configuration group, the flow with the maximum
bandwidth value is chosen first and the path and slot-table reservations for the flow
are obtained. Then for all the other use-cases in the group, the same path, and slot-
table reservations are utilized for the corresponding flows.

The process is repeated until all flows in all the use-cases are mapped in the
NoC (step 18). At any stage, if a flow cannot be mapped (as a path that satisfies the
constraints of the flow is not available), the entire mapping process is repeated using
a bigger NoC design.

Once a valid mapping is obtained, the required operating frequency for the use-
cases in each DVS/DFS group is obtained (step 20). The required operating fre-
quency is computed from the maximum bandwidth requirements of any link across
all the use-cases in a DVS/DFS group, as all the use-cases in a group use the same
operating frequency and voltage. From the operating frequency, the required sup-
ply voltage is also obtained. The paths, slot-table allocations, operating frequency,

88 6 Supporting Multiple Applications

Fig. 6.7 (a), (b), (c): Example use-cases with traffic flows annotated with bandwidth values (in
MB/s). (d), (e), (f): The paths chosen for the three use-cases for a flow between cores C3 and C4

and supply voltage for the use-cases, along with the designed NoC are given as the
outputs of the procedure.

Example 5 Let us consider a small example of the procedure for 3 use-cases shown
in Figure 6.7. Let us assume that use-cases U2 and U3 are in the same configu-
ration and DVS/DFS group, and hence should utilize the same path and slot-table
allocations. Let us also assume that the use-case U1 is in a different configuration
and DVS/DFS group. The largest flow across the 3 use-cases is the flow between the
cores C3 and C4 in U1. A mapping of the cores C3, C4 onto the NoC topology, along
with unified path selection and TDMA slot table reservation for the first use-case is
performed (Figure 6.7(d)). The flow between C3 and C4 in the other two use-cases
are selected next. As U2 and U3 are assumed to be in the same configuration group,
the flow should use the same path and slot-table reservations in both the use-cases.
As the flow from C3 to C4 in U3 is larger than the one in U2, the paths and slot-table
reservations for the flow are obtained in U3 (refer to Figure 6.7(e)). Then the same
allocations are used for the flow in U2 (refer to Figure 6.7(f)). Note that all the use-

6 Supporting Multiple Applications 89

cases use the same mapping of the cores onto the topology, but can use a different
path if NoC reconfiguration is possible when the two use-cases switch. The residual
capacity and time slots on the NoC links are updated separately for the use-cases.
The process is repeated for all the remaining flows in the use-cases. Finally, after
routing all the flows, the required NoC frequency and supply voltage are obtained
for each DVS/DFS group. As an example, let us assume that the NoC link data-
width is 32-bits. Then after routing the flow from C3 and C4, the minimum NoC
frequency required for use-case U1 is computed to be 250 MHz. This is because
the bandwidth of a link is the product of frequency (250 MHz) and link data-width
(4 bytes), which would match the maximum traffic rate for the mapped flow in U1
(1000 MB/s). For the DVS/DFS group consisting of use-cases U2 and U3, the NoC
frequency requirement for the currently mapped flows is 105 MHz (the maximum
requirement across the 2 use-cases).

6.5 Simulation Results

6.5.1 Experimental Benchmarks

To validate the performance of the multiple use-case mapping methodology, we
perform experiments on existing SoC designs and synthetic benchmarks. We con-
sider four simplified versions of real SoC designs: a set-top box SoC with 4 use-
cases (D1), set-top box SoC with 20 use-cases (D2), a video processing SoC used
in TVs with 8-use-cases (D3), and video processing SoC with 20-use-cases (D4).
The designs D2 and D4 are based on scaled versions of the designs D1 and D3 for
supporting more use-cases. Each use-case has a large number of (50 to 150) com-
municating pairs of components. The set-top box SoC and the TV processor have
different functionalities and communication patterns. The set-top box design uses
an external memory for storing and retrieving data and the amount of data com-
municated to the memory is very large when compared to the rest of the design.
The video processor design uses a streaming architecture with local memories on
the chip, thereby distributing the communication load across several components.
We apply the proposed design method to these SoCs with different architectures to
validate the generality of the method.

We also generated synthetic benchmarks for testing the method with more num-
ber and variety of use-cases. The benchmarks are structured to follow the application
patterns of real SoCs. We identify two classes of such benchmarks: (i) Spread com-
munication benchmarks (Sp), where each core communicates to few other cores.
These benchmarks represent designs such as the TV processor that has many small
local memories with communication spread evenly in the design. (ii) Bottleneck
communication benchmarks (Bot), where there are one or more bottleneck vertices
to which most of the communication takes place. These benchmarks characterize
designs using shared memory/external devices such as the set-top box example. We
vary the bandwidth and latency constraints across the different traffic flows of the

90 6 Supporting Multiple Applications

use-cases. Most of the video processing architectures have traffic flows that have
bandwidth/latency values that fall in to few (around 3–4) clusters. As an exam-
ple, the HD video streams have traffic flows with bandwidth requirements of few
hundred MB/s, the SD video streams have few MB/S bandwidth needs, the audio
streams have low bandwidth needs and the control streams have low bandwidth
needs, but are latency critical. We capture such effects in the synthetic benchmarks
generated, with the traffic parameters taking a cluster of values, with small devia-
tions in the values within each cluster.

6.5.2 Effect of Mapping for SoC Benchmarks

In order to compare the quality of mappings produced by the design approach pre-
sented in this work with the worst-case design method (WC method) presented
in [54], we fix the operating frequency and link sizes of the NoC to be the same
(500 MHz, 32 bits) for the methods. We apply the design methods and find the
smallest size network that satisfies the constraints of the use-cases. We fix the num-
ber of cores to be same (equal to 20 with 60–100 connections between cores) for all
the synthetic benchmarks and vary the number of use-cases across the benchmarks
(from 2 to 40 use-cases) to evaluate the quality of the mappings. In Figure 6.8,
the number of switches used in the mesh NoC for the current design methodol-
ogy normalized with respect to the number of switches used in the WC method for
the various benchmarks is presented. For the designs D1, D2 and for the synthetic
benchmarks with small number of use-cases, the WC method performs reasonably
when compared to the method presented in this work. However, as the number of
use-cases increase, the WC method starts to perform poorly, as the worst-case use-
case becomes heavily over-specified and the resulting NoC design becomes big. The
method presented here, on the other hand, performs well even for large number of
use-cases and is scalable. As an example, for the D3 design, the current method-
ology produced a successful mapping of the application onto a 2 × 2 mesh, while
the WC method required a 11 × 11 mesh for the design. For the synthetic bench-
marks (both Sp and Bot) with 40 use-cases, the current methodology resulted in a
2 × 2 mesh, while the WC method failed to produce a valid mapping even onto a
20 × 20 mesh topology (thus they did not plot in Figures 6.8(b) and (c)). Compared
to the Bot benchmarks, for the Sp benchmarks, the current method performs much
better than the WC. This is attributed to the fact that the Sp benchmarks have more
variations in the communication patterns across the different use-cases and the WC
method is unable to adapt to such variations, while the current method does. For all
the benchmarks, both the methods produced the results in less than a few minutes
when run on a Linux workstation.

6 Supporting Multiple Applications 91

Fig. 6.8 The number of switches used for the current method normalized with respect to the WC
method

6.5.3 Frequency-Area Trade-offs

We can perform area-frequency trade-offs using the method presented in this work.
When the NoC frequency is higher, the bandwidth and resources available across the
NoC is higher and a smaller network can satisfy the constraints of the design. On the
other hand, higher frequency of operation implies a higher power consumption in the
network. In Figure 6.9(a), we present the Pareto curve for the area-frequency trade-
off for the D1 design. The area of the switches is obtained from layouts with back-
annotated worst-case timing in 0.13 µm technology. At low operating frequencies
(≤350 MHz), the area of the NoC (which is taken to be the sum of the area of all
the switches)3 is large as an increased number of switches are needed to satisfy the
design constraints. At very high-frequencies (≥1.5 GHz), the area of the NoC is

3Here, we assume that the NI area is taken to be part of the core area.

92 6 Supporting Multiple Applications

Fig. 6.9 (a) Area-Frequency trade-offs, (b) The power savings achieved using DVS/DFS, and (c)
The impact of running use-cases in parallel

very small. The optimum design point can be chosen based on the objectives of the
designer from such a curve.

6.5.4 Dynamic Configuration

The switching time between most use-cases in a SoC is of the order of a few mil-
liseconds. When the use-cases are expected to run for a long time, the frequency of
operation of the NoC can be varied during this switching time to match the com-
munication characteristics of the use-cases, thereby resulting in large power savings
for the system. When the different use-cases require different NoC frequencies, the
voltage of the NoC can also be dynamically changed to match the requirements of
the use-cases. We use a conservative model for voltage scaling, where we assume

6 Supporting Multiple Applications 93

that the square of the voltage scales linearly with the frequency [97]. The dynamic
voltage and frequency scaling technique (DVS/DFS) results in an average of 54%
reduction in power consumption for the different SoC designs when compared to
the design where no DVS/DFS scheme is used (Figure 6.9(b)).

6.5.5 Parallel Use-Cases

As the number of use-cases that can run in parallel increases, the NoC size or fre-
quency also increases. The methodology can be applied by the designer to quickly
perform trade-offs involving the number of use-cases that run in parallel with the
size/frequency required for the NoC to support the parallel use-cases. As an exam-
ple for a 20-core, 10 use-case Sp benchmark, the required NoC frequency as the
number of use-cases run in parallel is varied is presented in Figure 6.9(c). Such a
plot helps the designer in evaluating the trade-offs involved in the NoC for support-
ing multiple parallel use-cases.

6.6 Summary

As the number of applications or use-cases integrated onto a single SoC increases,
the designer is faced with the challenge of building an interconnect structure that
supports the design constraints of all the use-cases. In this chapter, we motivated
the importance of the problem and presented extensions of the design methods
presented in the previous chapters, to handle the multiuse case scenario. We also
presented a way to dynamically configure the interconnect to support multiple use-
cases and integrated Dynamic Voltage and Frequency (DVS/DFS) techniques with
the reconfiguration mechanism.

Chapter 7
Supporting Dynamic Application Patterns

To efficiently utilize the large number of transistors that are available on the chip
with manageable design complexity and wiring requirements, Chip Multiprocessors
(CMPs) have been recently proposed [100–103]. In CMPs, the chip area is divided
into a number of regular and identical tiles, where each tile represents a proces-
sor/memory core. The use of a simpler architecture for the processor in a single tile,
coupled together with the reuse of the tile across the chip, results in a reduced design
complexity, when compared to conventional single-core processor systems.

7.1 NoC Design Challenges for CMPs

The systems that utilize NoCs can be broadly classified into two types: Application-
Specific Systems-on-Chip (ASSoCs) and CMPs. In ASSoCs, single or a fixed set of
applications are statically mapped onto the different processor and hardware cores
in the design. The communication between the various cores is known and the inter-
connect architecture can be tailor-made to suit the application traffic characteristics.
In all the preceding chapters, we targeted the design of such ASSoCs. On the other
hand, in CMPs, general-purpose processor cores are used to run software tasks of
different applications (an example shown in Figure 7.1). In such systems, the com-
munication between the cores cannot be precharacterized, as the different applica-
tion processes can be mapped differently to the cores, typically with the support of
the compiler [100]. As the total system performance of CMPs is increasingly domi-
nated by the interconnect performance [100], designing an interconnect architecture
with predictable performance is critical.

In NoC-based systems for CMPs, to provide predictable performance and opti-
mal network throughput, the bandwidth capacity of the different links of the NoC
should be sufficient to support the peak rate of traffic on the links. If the network
links cannot support the peak traffic that can be routed on them, then the network
might experience traffic congestion. In a congested network, the latency for the
traffic streams, and hence the interconnect performance will become unpredictable,
which needs to be avoided for dependable system operation.

In traditional multiprocessor interconnection networks (the chip-to-chip net-
works), the bandwidth on the network links is limited by the number of pins that
are available on the chip and all the links of the network have the same bandwidth
capacity [107]. For most interconnect topologies and routing patterns, the load on
the different links of the network is nonuniform. Thus, in traditional multiproces-
sor networks, the interconnect throughput is limited by the bottleneck links of the
network [107].

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

95

96 7 Supporting Dynamic Application Patterns

Fig. 7.1 Example tile-based
CMP architecture

On the other hand, CMPs have enormous wiring resources at their disposal [22].
The links in different parts of the network can be sized differently, so that the net-
work throughput is no longer limited by few bottleneck links. As chip designs are
increasingly power consumption limited, when sizing the links, it is important to
achieve a NoC design with the least power consumption.

However, in order to design such a network, there are several challenges that have
to be addressed:

• The first challenge is that the exact traffic pattern of the CMP cannot be prechar-
acterized. Usually, to evaluate the quality of the interconnection network in mul-
tiprocessors, the network is simulated with different traffic patterns, such as uni-
form, nearest neighbor, hot-spot, etc. If such a template of traffic patterns is used
to size the links of the NoC, there is a huge drawback that the methodology is ad
hoc and does not guarantee network throughput for other traffic patterns that can
occur when real applications are executed.

• The second challenge is to efficiently utilize the link bandwidth (which is a prod-
uct of link width and frequency) available. Traditionally, links with different
bandwidth capacities are obtained by varying either their frequency of opera-
tion or their width. However, both schemes require complex frequency and width
converters for potentially every input of every switch in the design. This dras-
tically increases the design complexity and NoC area. Moreover, such designs
incur significant serialization and parallelization delay at every switch, which re-
sults in high packet latencies. Thus, a way to efficiently utilize the link bandwidth
is needed.

• Finally, the interconnect has to maintain a regular structure, so that a predictable
and modular architecture is obtained.

In this chapter, we address the important problem of synthesizing the most power
efficient NoC for CMPs that have dynamic traffic patterns, providing theoretically

7 Supporting Dynamic Application Patterns 97

guaranteed optimum throughput and predictable performance for any application to
be executed on the CMP.

We achieve a predictable interconnect design in two ways: First, the architecture
is designed to provide predictable performance under all application traffic condi-
tions. Second, the synthesis approach considers accurate information of the physi-
cal layer measures (such as wire-lengths, wire delays, network component delays),
thereby bridging the gap between the synthesis models and the actual physical lay-
out implementation. Thus, the design process becomes more predictable, leading to
quicker design convergence.

7.2 Basics of the Synthesis Approach

To efficiently utilize the large on-chip wiring resources that are available, we use
multiple physical channels for each link, namely, a link is segmented into different
physical channels that can be utilized by different traffic flows in parallel. As an
example, a 2 × 3 mesh topology is presented in Figure 7.2. Each vertex in the figure
represents a switch (and the core that is connected to the switch) and a link between
two vertices has one or more physical channels. For example, the link from vertex
v1 to vertex v3 has two physical channels, while the link from vertex v0 to vertex v1
has one physical channel. In the synthesis process, we size the different links with
different number of physical channels, such that each channel supports the load due
to any traffic pattern of the NoC.

When multiple physical channels are used between two switches, if different
channels are dynamically assigned to incoming packets, it may lead to out-of-
delivery of packets. In this case, reorder buffers are required for ordering the packets
at each receiver. Such buffers have large power and area overhead and deterministi-
cally sizing them is infeasible in practice [43]. To avoid such out-of-order delivery,
for the traffic flow from each source to destination, we statically assign a single
channel in every link that is used by the flow. We integrate this mapping of traffic
flows to the different channels in the synthesis procedure.

Fig. 7.2 Example 2 × 3
mesh topology

98 7 Supporting Dynamic Application Patterns

We also tune the setting up of NoC operating frequency during the synthesis
process. To evaluate the quality of the different NoC designs, we use accurate ana-
lytical models for power consumption of the network components. The power con-
sumption values are obtained from layouts with back-annotated resistance and ca-
pacitance information at 0.13 µm technology using standard industrial tools.

During the synthesis of the NoC, we consider the physical layer measures as
well: the delay encountered on the wires in the NoC and the target frequency that
can be supported by the designed network components. The synthesis approach
utilizes the floorplan knowledge of the NoC to detect timing violations on the NoC
links early in the design cycle. This results in a faster design cycle that leads to
a reduction in the number of design re-spins and faster time-to-market, which are
critical for today’s complex chips. We validate the design flow predictability of the
proposed approach by performing a layout of the NoC synthesized for a 25-core
CMP. The approach maintains the regular and predictable structure of the NoC and
is applicable in practice to existing NoC architectures.

7.3 Design Flow

In this section, we present the synthesis flow used to design the NoC (see Fig-
ure 7.3). The network topology, utilized routing function, operating frequency of
the core, core data width and network link width are inputs from the user. In the

Fig. 7.3 NoC synthesis
design flow

7 Supporting Dynamic Application Patterns 99

outer loop of the synthesis process, the operating frequency of the NoC is varied in
a user-defined range. For each frequency point, the number of physical channels on
each link and an assignment of traffic flows to the different physical channels are
computed by the synthesis process.

From the number of physical channels instantiated between the switches, the dif-
ferent switch sizes are obtained. Then we evaluate whether every switch of the NoC
can support the corresponding frequency point (chosen in the outer loop). As the
switch size increases, the maximum frequency of operation it can support reduces
(as the critical path inside the switch gets longer) [34]. This information is obtained
from the layout of the switches for different sizes, which is taken as an input library
for the synthesis method. Then all the links in the NoC are checked for timing delay
violations. For evaluating the wiring delays, we include the floorplan of the NoC
as an input to the synthesis flow. Usually, standard topologies, such as mesh, are
used for CMPs because the floorplan of the NoC is regular and known at design
time. Based on the link lengths and wire models from [58], the delay values on the
NoC links are calculated. Any timing violations on the NoC links are then evaluated
by the method. If the design satisfies the timing constraints on NoC switches and
links, then the power consumption of the NoC is computed, based on the layout-
level power models. From the set of all feasible NoC designs, the design with the
least power consumption is finally chosen by the synthesis process.

7.4 Problem Formulation

The topology of the network that defines the connectivity between the switches and
the cores is taken as input. The number of physical channels used for each link is
to be determined by the synthesis procedure. Formally, the NoC topology is defined
by the topology graph:

Definition 17 The NoC topology graph is a directed graph P(V,L), with each
vertex vi ∈ V representing a core (and the switch to which it is connected) and
the directed edge (vi, vj), denoted as li,j ∈ L, representing a link between vertices
vi and vj . The set of physical channels that are instantiated for each link li,j , is
represented by the set CHi,j .

An example topology graph was presented earlier in Figure 7.2, which repre-
sents a 2 × 3 mesh network. The graph has 6 vertices (v0 through v5) and 14 links
(l0,1, . . . , l5,4). The number of physical channels used in each link varies. For exam-
ple, link l0,2 has 2 physical channels. Please note that this number is an output of
the synthesis process. To begin with (when the inputs are fed), all the links are ini-
tialized to have no physical channels. Then the communication among NoC nodes
can be defined as follows.

100 7 Supporting Dynamic Application Patterns

Definition 18 The communication between each pair of cores is treated as a flow of
single commodity, represented as dk , k = 1,2, . . . , |V | × |V |, with the source of the
commodity represented as source(dk) and the destination represented as dest(dk).1

We assume that a deterministic routing function is utilized for routing packets,
as most existing NoC architectures support only a deterministic routing function
[30, 33]. This is because the area-power overhead involved in adaptive routing is
quite high. Moreover, adaptive routing presents several problems such as out-of-
order packet delivery, which are hard to tackle in on-chip networks that need to
have low power overhead. The routing function defines the set of links used by each
commodity as follows.

Definition 19 The routing function R maps the traffic flows of commodities onto
the links of the network, i.e., R : dk → L, ∀k. The set of links utilized by the com-
modity k for the routing function is represented by the set Lk .

In Figure 7.2, links l1,0 and l0,2 are used by the traffic flow that has vertex v1 and
source and vertex v2 as destination, for the dimension-ordered (with x first, y next)
routing scheme.

The maximum rate at which each core injects traffic into the network is also taken
as an input to the synthesis engine. It is defined formally as follows.

Definition 20 The rate of traffic injection of each core, vi , ∀i, is represented by ri .
The rate of each commodity dk , represented as rate(dk), is equal to the rate of traffic
injection of the source core of that commodity, i.e., rsource(dk).

Practically, for most CMPs, each core can inject one data word into the network
every clock cycle. Thus, the injection rate is the product of the operating frequency
of the core and its data width. For instance, if a core has a data width of 32 bits and
operates at 100 MHz, its injection rate is 400 MB/s (i.e., 4 B × 100 MHz).

We also obtain as inputs the set of interesting operating frequencies to explore for
the NoC design, and the data width of the channels (which is usually set to match
the data width of the cores).

Then the Problem Statement is the following:

The synthesis procedure has to determine the number of channels (|CHi,j |) required
for each link (li,j) and a static mapping of each commodity (dk) onto a single chan-
nel (ch ∈ CHi,j) of each link li,j ∈ Lk . The mapping has to satisfy the constraint that
every channel should support the traffic rates of all the commodities mapped onto
that channel for any traffic pattern. The synthesis process should also determine the
NoC operating frequency that results in the most power efficient NoC design.

1In the rest of this chapter, we follow the convention that variables i, j are defined for 1, . . . , |V |
and the variable k is defined for 1, . . . , |V | × |V |.

7 Supporting Dynamic Application Patterns 101

An optimum (100%) throughput can be achieved if each channel supports its
worst-case load, i.e., the channel bandwidth matches or exceeds the channel load.
Here, we would like to point out that to practically achieve the full throughput
value, the NoC architecture should have a predictable communication behavior, as
in [30, 104, 105].

7.5 Synthesis Algorithm

The detailed synthesis algorithm to solve the defined problem is presented in Algo-
rithm 6. In step 1, the NoC frequency of operation is varied in user-defined steps.

Algorithm 6 Synthesis Algorithm
1: for Each NoC frequency (freq) design point in user defined range do
2: for each link li,j ∈ L do
3: Build the Link Loading Graph (LLGi,j) for the link li,j
4: Build the Vertex Conflict Graph (VCGi,j) for the link li,j
5: Initialize number of channels to zero, m = 0
6: Increment m by 1 and instantiate new physical channel chm

7: Find m max-cut partitions of VCG
8: Assign bw_satisfied to true
9: for each max-cut partition do

10: Build Partition Loading Graph (PLG)
11: max_load = maximum_weight_matching(PLG)
12: If (max_load > freq × width), bw_satisfied = false
13: end for
14: if bw_satisfied then
15: Assign those commodities k such that source(dk) is in partition m1 to

channel m1, ∀m1 ∈ 1, . . . ,m

16: Set CHi,j = ⋃
∀m1∈m chm1

17: else
18: Go to step 6
19: end if
20: end for
21: From computed CHi,j , ∀i, and j , compute the switch sizes
22: Evaluate whether the switch size implementations can match the target fre-

quency (freq)
23: Evaluate whether all the links in the NoC can meet the target frequency (freq).

Utilize the NoC floorplan information to estimate the link lengths
24: If target frequency met, obtain the power consumption for the synthesized

NoC
25: end for
26: From the set of synthesized NoCs, choose the design with least power consump-

tion

102 7 Supporting Dynamic Application Patterns

Then in step 2, we consider each link individually to size the different links with
different channels.

7.5.1 NoC Link Sizing

For each link li,j , we first build a Link Loading Graph (LLG) (in step 3), defined as
follows.

Definition 21 The LLGi,j (LV,LL) is a bipartite graph with |LV| = 2×|V | (i.e. with
2 × |V | vertices). An edge exists between vertices lvx and lvy , ∀x ∈ 1, . . . , |V |,
∀y ∈ |V | + 1 · · ·2 × |V |, if ∃k such that source(dk) = lvx and dest(dk) = lvy−|V |
and li,j ∈ Lk . The weight of the edge is the rate of traffic flow of the commodity,
i.e., equal to rate(dk).

The edges of the LLG represent the set of all traffic flows that utilize the link,
depending on whether the link is part of the route for the different traffic flows. The
weights of the edges represent the rate of the traffic flows.

Example 6 The LLG for the link l0,2 (i.e., LLG0,2) of the 2 × 3 mesh example is
presented in Figure 7.4. With x–y routing, the link l0,2 is used by the traffic flows
that originate from vertex v0 to v2 and v4, and by the traffic flows that originate from
vertex v1 to v2 and v4. The maximum rate of all these traffic flows is 400 MB/s. In
the LLG bipartite-graph, each vertex on both the left and the right columns repre-
sents a single core. Those vertices with traffic flows that utilize this particular link
have edges between them. In this example, there are edges between those vertices
that represent core_0 and core_1 with core_2 and core_4, with the edge weights
being the rate of the flows.

Fig. 7.4 Link loading graph.
The edges are annotated with
weights in MB/s

7 Supporting Dynamic Application Patterns 103

The load on a link is equal to the sum of the loads caused by each source-
destination pair using that link. The worst-case link load can be obtained by con-
sidering all possible permutation traffic patterns. In [108] and [109], the authors
show that the worst-case load can be obtained by representing all permutations as
matchings within the LLG bipartite graph. A maximum-weight matching on the
graph yields the exact worst-case permutation for a particular link and the worst-
case (maximum) load on that link. We utilize this basic approach to evaluate the
worst-case load on the different channels.

In the next step of the algorithm (step 4), we build the Vertex Conflict Graph
(VCG), defined as follows.

Definition 22 The VCGi,j (VV,VL)) is an undirected graph with |VV| = |V | (i.e.
with |V | vertices). An edge vli,j exists between two vertices vvi and vvj if
degree(lvi) + degree(lvj) > 0. The weight of the edge is the value of the maxi-
mum weight bipartite matching of modified LLG, where the edges from all vertices
other than lvi and lvj are removed.

The edge-weight assignment in VCG is such that if the traffic flows from a pair
of cores (representing two vertices connected by an edge in VCG) are mapped onto
the same physical channel, then they would together cause a maximum load on the
channel that is given by the edge-weight.

Example 7 The VCG for link l0,2 is presented in Figure 7.5. In LLG0,2, as the two
cores core_0 and core_1 have traffic flows originating from them, the edges from
vertices vv0 and vv1 to all other vertices exist. Let us consider the edge between
vv0 and vv5. The value of the maximum weight matching obtained on the modified
LLG when only edges of vertex lv0 and lv5 are maintained is 400. Thus, the weight
of the edge between vertices vv0 and vv5 is 400, as seen in Figure 7.5.

Then in steps 5–20, physical channels are instantiated for the link and the com-
modities are mapped onto the channels. The number of channels is increased from

Fig. 7.5 Vertex Conflict
Graph (VCG) and example
partitions

104 7 Supporting Dynamic Application Patterns

1 until the load on each channel can be satisfied by the channel. Note that the maxi-
mum number of instantiated physical channels would be |V |. Thus, the traffic flows
from every source that utilizes the link would be assigned to a separate channel.

For a certain number of physical channels, the VCGi,j is divided into that many
number of partitions (step 7 of the algorithm). The partitioning is such that the sum
of the edge weights cut across the partitions is maximized and the total number of
vertices within each partition is almost the same. For partitioning, we use Chaco,
an efficient hierarchical graph partitioning tool [93]. The intuition behind such par-
titioning is that the traffic flows that would cause higher channel loads are assigned
to different channels, and channels are loaded uniformly.

Example 8 The 2 max-cut partitions of the VCG graph for link l0,2 are shown in
Figure 7.5. Note that vertices vv0 and vv1 are in different partitions.

To evaluate the load on each physical channel, we build the Partition Loading
Graph (PLG) for each partition. This bipartite graph is obtained from a modified
LLG, where the edges from all vertices other than those of the partition are removed.
By finding the maximum weight matching of the PLG, the load caused by the parti-
tion on a channel is obtained. Then (in step 12), we check whether the load on each
channel is less than or equal to the bandwidth capacity of the channel. For the chan-
nel bandwidth calculation, the data width of all the channels (width in Algorithm 6)
is taken as an user input.

Example 9 The two PLG graphs for the two partitions for the mesh example are
shown in Figure 7.6. The load on the two physical channels, onto which the flows
from the vertices of the two partitions are mapped is 400 MB/s (obtained from the
value of the maximum weight matching of each of the PLG graphs). If the vertices
vv0 and vv1 had been assigned to the same partition, then the load on the channel
supporting the traffic flows from the vertices of the partition would be 800 MB/s

Fig. 7.6 Example physical
channel loading graphs for
the two partitions

7 Supporting Dynamic Application Patterns 105

(with the load on the other physical channel being 0). Thus, the partitioning process
is steered to uniformly load the different channels of the link.

7.5.2 Timing Feasibility Check

In step 21 of the algorithm, the sizes of the different switches are obtained, which
are based on the number of physical channels instantiated for each link. In the next
step, we evaluate whether all the switches can meet the particular NoC operating
frequency design point. This check is needed because, when switch size increases,
the maximum supported frequency of operation reduces (as the critical path inside
the switch gets longer) [34]. This information is obtained from the Place&Route of
the switches, which is an input to the synthesis algorithm. Based on the frequency
design point and the size of the switches, the power consumption values of the
switches are obtained. For power consumption estimations, the switching activities
of NoC components are obtained from several functional traffic traces. In the next
step (step 26), the different links of the NoC are checked for timing violations. The
length of the links are obtained from the NoC floorplan, which is taken as an input
to the synthesis engine. The timing models for the interconnect wires are obtained
from [58], for 0.13 µm technology.

For each frequency design point (steps 1–25, outer loop), the best NoC topology
is synthesized. Finally, the most power efficient design across all these points is
chosen in step 26.

7.5.3 Algorithm Run-Time

The run-time complexity of the algorithm is dominated by the maximum weight
matching calculations carried out for each channel (as fast heuristics are used for
partitioning, it has a low impact on the algorithm run-time). The maximum weight
matching for a PLG graph can be computed in O(|V |3) time complexity [108] and
the total number of times the matchings are performed (for each frequency design
point) is at most O(|L||V |2). This is because each link can have at most |V | chan-
nels and we need to perform at most O(|V |2) matchings for each link. Overall, the
algorithm finds the best solution for even large CMP designs in few tens of minutes,
running on a 3.2 GHz workstation.

7.6 Experimental Results

In this section, we present the experimental results obtained after applying the pro-
posed synthesis algorithm on NoC designs with different parameter values. First,
we present the application of the method to a 5 × 5 mesh topology. Then we study

106 7 Supporting Dynamic Application Patterns

the impact of varying the data injection rates and the number of processing cores in
the design. Then we perform experiments to show the effect of link lengths on the
solutions produced. The generality of the method (applicability to any CMP NoC
topology and deterministic routing function) is shown next, by applying it on a torus
topology with two different routing functions. Finally, the design flow predictability
is validated by performing a complete layout of the synthesized NoC architecture.

7.6.1 Experiments on a Mesh Topology

In this experiment, we consider a 5 × 5 mesh topology. We assume the operating
frequency of each core is 200 MHz, the data width of the cores and NoC channels
are 32-bits, and dimension-ordered (x-first, y-next) routing is utilized. We assume
that the length of each NoC link to be 1 mm. We assume these as the default values
and in the subsequent subsections we study the impact of varying some of these
parameters.

We vary the NoC operating frequency from 200 MHz to 1 GHz and synthesize
the efficient NoC for each frequency point using the proposed synthesis procedure.
The total power consumption values for the synthesized NoCs (sum of switch and
link power consumption) for the different frequency points are plotted in Figure 7.7.
At operating frequencies lower than 400 MHz, a large number of physical channels
were needed for each link, which resulted in switches with a large number of inputs
and outputs. Hence, the designed switches could not support the required NoC op-
erating frequencies. Similarly, at the 1 GHz frequency point, the designed switches

Fig. 7.7 Power consumption
of 5 × 5 mesh topology

7 Supporting Dynamic Application Patterns 107

Fig. 7.8 Synthesized 5 × 5
mesh

could not support the frequency point. Thus, no feasible NoC design is obtained
below 400 MHz and at 1 GHz. NoCs synthesized at lower operating frequencies
(e.g., 400 MHz) require larger switches, which leads to higher power consumption.
At higher operating frequencies, such as 900 MHz, the switch hardware complexity
is higher (as more logic is needed to achieve faster clock speeds during physical
design) and the clock-net power consumption is also higher. In fact, clock nets ac-
count for approximately 15% of NoC power consumption. Note that for the power
consumption estimations of the NoC components, we run several functional traffic
traces and obtain the average values. Thus, we do account for the fact that the switch
input/output ports and the links of a NoC running at a higher frequency have lower
switching activities than for a NoC design operating at a lower frequency. The most
power optimal frequency point for the 5 × 5 mesh is 600 MHz, and the synthesized
NoC at this frequency is presented in Figure 7.8.

As no previous work has directly addressed NoC design for CMPs, for compari-
son purposes, we evaluate how a direct extension of the approach from [108] would
perform (we call this the Reference approach). When the procedure from [108] is
applied to the 5 × 5 mesh topology, the maximum load on a link is computed to be
4× the traffic rate of each core. Thus, the NoC operating frequency required would
be 800 MHz. As seen from Figure 7.7, the NoC designed using the Reference ap-
proach would consume 1.17× more power than the optimal NoC designed using the
proposed approach.

7.6.2 Effect of Core Injection Rates

When the processor operating frequency increases, the rate of traffic injected on
the NoC links also increases significantly. The actual operating frequency of the

108 7 Supporting Dynamic Application Patterns

Fig. 7.9 Effect of increasing
injection rates

cores varies widely across the different CMP architectures proposed in the litera-
ture. As an example, the RAW architecture has cores operating around few hun-
dred MHz [110], while some of the commercial CMPs operate at much higher op-
erating frequencies [103].

The power consumption requirements for different operating frequencies of the
cores for the Reference and proposed approaches are depicted in Figure 7.9. This
figure shows that the Reference approach does not produce valid NoC designs when
the operating speed of the cores exceeds 200 MHz. This is because the designed
NoCs needed very high operating frequency, which could not be supported by the
switches. As an example, a 4 × 4 switch of the ×pipes architecture can only oper-
ate at a maximum frequency of 1 GHz approximately. While these values strongly
depend on the underlying NoC architecture, the basic fact is that the Reference ap-
proach typically requires the NoC to be several times faster than the cores (4 times
for the 5 × 5 mesh and higher for larger topologies). In systems where the cores
themselves operate at high frequencies, it would not be feasible in practice to clock
the network at such excessively high frequencies. Thus, the Reference approach can-
not produce a valid design. On the contrary, the proposed approach supports a larger
range of core operating speeds and produces more power-efficient designs as well.

7.6.3 Effect of Different NoC Sizes

The different CMP architectures available today have different number of tiles on
the chip, and thus require NoCs of different sizes. As an example, for exploiting fine

7 Supporting Dynamic Application Patterns 109

Fig. 7.10 Effect of different
link lengths

Fig. 7.11 Effect of mesh
sizes

grained parallelism, CMP architectures with 50–100 tiles can be utilized, while to
exploit coarse-grained parallelism, architectures with few tens of tiles are utilized
[102]. In this experiment, we study the impact of different mesh sizes on the quality
of the synthesized NoCs.

The NoC power consumption for different mesh sizes for the proposed synthe-
sis approach is presented in Figure 7.11. The power numbers are normalized with

110 7 Supporting Dynamic Application Patterns

respect to the power consumed by the 10 × 10 mesh design. As expected, when
the mesh size increases, NoC power consumption rapidly grows as well. Even for
the largest 10 × 10 mesh design, the method completed in few tens of minutes on
a 3.2 GHz workstation. This shows that due to the use of fast heuristics and exact
polynomial algorithms, the proposed synthesis method is highly scalable to large
problem instances.

7.6.4 Effect of Link Length

To see the importance of considering wire power consumption during the synthesis
process, we have varied the length of the NoC links in the design. For this experi-
ment, we fixed the NoC topology to be a 5×5 mesh. Thus, the designs with different
link lengths represent designs with different total chip area. For example, when the
link length is 1 mm, the dimensions of the mesh NoC are 5 × 5 mm, but when the
link length is 4 mm, the dimensions are 2 × 20 mm.

The motivation for considering different link lengths is that different CMP ar-
chitectures have wires of different lengths. As an example, in the Smart Memories
architecture [101], the link lengths of the global network are around 4 mm [111],
while the link lengths in a smaller NoC design are from 1 mm to 2 mm [88].

The NoC switch and link power consumption values for different link lengths are
presented in Figure 7.10. As the link length starts to increase, the link power con-
sumption largely augments. This shows that the wire power consumption must be
considered during the NoC synthesis phase, as it is done in this approach. Note that
the power numbers are for 130 nm technology. With more advanced process tech-
nologies (especially at 90 nm and below), the impact of wire power consumption on
the total NoC power consumption is expected to increase considerably [106]. Thus,
the exploration of such technology dependent effects is a necessary direction for
future work in the design of efficient on-chip interconnects.

7.6.5 Application to Torus Topology

The proposed approach is applicable to any NoC topology and deterministic routing
function. We have applied it to a 5 × 5 torus topology and studied the impact of 2
different routing functions: One routing function in which the wrap-around links of
the torus are not used (Routing 1), and another one where the wrap-around channels
are utilized (Routing 2). The NoC power consumed by the synthesized designs for
the two routing functions are shown in Figure 7.12. It shows that the use of the wrap-
around links in the torus topology is beneficial, not only as generally believed for
latency, but also for power. This is because when the wrap-around links are utilized,
the traffic is spread more evenly in the network. Thanks to the proposed synthesis
approach, this type of architectural test can be easily performed, showing its effec-
tiveness for NoC design exploration purposes. Usually, standard NoC topologies,

7 Supporting Dynamic Application Patterns 111

Fig. 7.12 Results for torus
topology

such as mesh and torus, are used for CMPs, as the NoC floorplan for such topolo-
gies is predictable [100, 101]. This is the reason for choosing these topologies for
the experiments. However, the synthesis approach is general and applicable to any
NoC topology.

7.6.6 Validating Design Flow Predictability

Usually, a design gap exists between the architectural level model and the actual
physical layout implementation. Bridging this design gap is key to decrease the
number of design iterations and to achieve quicker design convergence and faster
time-to-market. In this work, we achieve a predictable design flow by bridging this
design gap between the architectural and physical models. This is achieved due to
two factors. First, we consider the physical layer measures, such as wire delays and
accurate NoC component delays, during the synthesis process. Second, the use of
regular NoC topologies results in easily predictable NoC floorplan and link lengths,
which help us to accurately model the wire delays. In fact, achieving a predictable
design flow is one of the most important reasons for utilizing NoC-based intercon-
nects [88]. To validate the predictability of the design flow, we implemented the lay-
out of the optimal 5 × 5 mesh topology synthesized by the procedure at 600 MHz.
The CMP consists of 25 cores, and the area of each core is 1 × 1 mm.

To obtain the layout, we have first generated the RTL code of the designed NoC
components using a custom built tool, ×ipesCompiler [62]. Then we have synthe-
sized the RTL design using Synopsys Design Compiler [98]. After this, we have
performed the place&route phase of the synthesized design using Cadence SoC En-
counter [99]. The resulting layout of the design is presented in Figure 7.13. For the

112 7 Supporting Dynamic Application Patterns

Fig. 7.13 Layout of a 5 × 5
mesh topology

layout, a 0.13 µm process technology with 8 metal layers are used for wire routing.
Among these, 5 metal layers are used for intracell routing inside the cores and the
remaining 3 metal layers are used for over-the-cell routing of NoC links.

We have performed post-layout timing checks on the different switches and links
of the NoC. We could achieve a fully functional design at the target frequency of
600 MHz, without any timing violations. We could design the NoC till layout level
quickly, thanks to the predictability of the design flow.

Finally, we studied the impact of adding multiple physical channels on NoC area.
For the 5×5 mesh topology, the use of multiple physical channels increased the total
switch area from 0.94 mm2 (when only a single physical channel is used for all the
links) to 1.18 mm2, which is negligible when compared to the total chip area of the
CMPs. From the layouts, we also found that sufficient routing area was available
for the multiple physical channels that were instantiated. This is in accordance with
several earlier studies [22, 88], which have shown that sufficient routing area is
available between the switches of regular topologies to route a large number of
wires.

7.7 Summary

Having a predictable interconnect architecture is critical to manage the increasing
interconnect complexity of current Chip Multiprocessors (CMPs). The CMPs differ
from Application Specific SoCs (ASSOCs) in the fact that their traffic characteristics
cannot be predetermined. Thus, the NoC predictability for CMPs needs to be tack-
led at several design levels. On the one hand, from the architectural viewpoint, the

7 Supporting Dynamic Application Patterns 113

interconnect has to provide predictable performance under different operating con-
ditions. On the other hand, from the design flow viewpoint, the design gap between
the architectural model and the physical implementation should be minimized, so
that a quicker design convergence is obtained. Designing an efficient NoC architec-
ture that provides predictable performance for any application running on a CMP is
a challenging task.

In this chapter, we have presented a synthesis method that addresses this im-
portant design issue of synthesizing the most power efficient NoC interconnect for
CMPs, providing guaranteed optimum throughput and predictable performance for
any application to be executed on the CMP. We achieve a predictable interconnect
design in two ways: first, the architecture is designed to provide predictable per-
formance under all application traffic conditions. Second, the synthesis approach
considers accurate information of the physical layer measures, such as wire-lengths,
wire delays, and network component delays, thereby bridging the gap between the
synthesis models and the actual physical layout implementation. This leads to a
faster design cycle and quicker design convergence across the high level synthesis
approach and physical implementation of the design. We have validated the design
flow predictability of the proposed approach by performing a layout of the NoC
synthesized for a 25-core CMP. The proposed synthesis approach can also be used
as a design space exploration tool to evaluate the efficiency of different NoC topolo-
gies and routing functions. Finally, the presented approach maintains the predictable
layout of regular NoC architectures; thus, it can be applied to existing NoC archi-
tectures.

In the preceding chapters, we have seen methods to design NoC architectures un-
der various operating conditions. Now, it is time to proceed to make their operation
reliable. This will be focus of the next part of the book.

Part II
NoC Reliability Mechanisms

Chapter 8
Timing-Error Tolerant NoC Design

With technology scaling, the device characteristics fluctuate to a large extent due
to process variations and can cause significant variations in wire delay [122]. Wire
delay is also affected by other forms of interference such as supply bounce, trans-
mission line effects, etc. [123, 124]. As such delay variations can affect multiple bits
simultaneously, special mechanisms are needed to handle timing errors. In this chap-
ter, we present T-error, a timing-error tolerant mechanism to make the interconnect
resilient against timing errors arising due to such delay variations on wires.1

Current NoC design methodologies are based on a worst-case design approach
that considers all the delay variations that can possibly occur due to the various noise
sources and environmental effects and targets a safe operation of the system under
all conditions. The system state is considered safe if there are no timing violations
for all operating conditions and in the presence of the various noise sources. Such
a conservative design approach targets timing error free operation of the system.
In Razor [113, 114], an aggressive, better than worst-case design approach was pre-
sented for processor pipelines. In such a design, the voltage margins that traditional
methodologies require are eliminated and the system is designed to dynamically
detect and correct circuit timing errors that may occur when the worst-case noise
variations occur. Dynamic Voltage Scaling (DVS) is used along with the aggressive
design methodology, allowing the system to operate robustly with minimum power
consumption.

The proposed T -error methods are used to aggressively design the NoC compo-
nents (switches, links, and NIs) to support higher operating frequencies than designs
based on conservative approaches. Aggressive design of the communication archi-
tecture has several implications when compared to the design of processor pipelines.
First, the hardware overhead required to recover from timing errors can be mini-
mized by smart utilization of the buffering resources available in the NoC. Second,
the error recovery penalty can be mostly hidden under the network operation, so
that large performance benefits can be obtained. Finally, the switches, NIs should
be redesigned to handle errors, as they may receive a wrong piece of data before the
right one.

In many SoCs, Dynamic Frequency Scaling (DFS) and Dynamic Power Man-
agement (DPM) policies are used to reduce the operating power of the SoC [55].
In such systems, at the application level, the voltage and frequency of the compo-
nents are selected to match the performance level of the application. The NoC can
also be dynamically tuned at runtime. When a communication-intensive application

1We would to acknowledge the contributions of Rutuparna Tamhankar, Stergios Stergiou, Antonio
Pullini, Dr. Federico Angiolini, Prof. Luca Benini, and Prof. Giovanni De Micheli.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

117

118 8 Timing-Error Tolerant NoC Design

requires fast execution, the NoC can be over-clocked to higher operating frequen-
cies. When an application does not require a fast NoC, the frequency of the NoC
can be lowered to reduce the power consumption of the system. Unlike many of the
earlier works [113], where the system’s error rate is constantly monitored to tune
the voltage or frequency, we envision that the T-error based NoCs to be utilized
in systems with application-level DFS/DPM policies. Thus, complex network error
rate monitoring controllers are not needed in the design. Moreover, the large delay
incurred to change the frequency/voltage to reduce errors is avoided. The required
voltage and frequency parameters of the network for the different applications can
be stored in programmable registers or memories and can be accessed by the op-
erating system upon task switches among the applications that are running on the
SoC.

In this context, we distinguish two possible operating modes for the NoC: normal
mode and over-clocked mode. In normal mode, the NoC operates at frequencies less
than or equal to the frequency of a conservative design. Under over-clocked mode,
the frequency of operation can be higher than that of the traditional design. The NoC
under the over-clocked mode incurs some penalty for error resiliency, even when
there are no errors in the system (this is explained in detail in Section 8.4.2). Under
normal mode, the NoC does not need to encounter the additional error resiliency
penalty, as it operates at a safe operating frequency. To remove any additional over-
heads when in normal mode, we present a way to dynamically configure the NoC
between the normal and over-clocked modes of operation at the application level.

The T-error scheme for a NoC link is presented in [137]. In this work, we present
two robust link design methods. In the first scheme, link buffers are efficiently uti-
lized, so that error resiliency is achieved without much additional hardware over-
head. In the second scheme, more hardware resources are used to achieve higher
performance. The two link schemes have the same timing relation and logic inter-
pretation of control signals from/to the switch. The two schemes can be used in a
plug-and-play fashion by the designer to suit the application and NoC architecture
characteristics. We integrate the link designs with NoC flow control and present
T-error schemes for switches/NIs.

We developed cycle-accurate SystemC models of the T-error based switches,
links, and NIs and integrated them onto the ×pipes NoC architecture. Functional
SystemC simulations on several benchmark applications have been carried out. De-
tailed case studies of the T-error design and comparisons with the traditional mech-
anisms are presented. Experiments show large performance improvements (up to
33% reduction in communication delay) for the benchmark applications for the ag-
gressive NoC design methodologies, when compared to traditional design method-
ologies. The application of DVS/DFS techniques result in 57% reduction in the NoC
power consumption when compared to traditional design approaches.

8.1 The Double Sampling Technique

In most NoC realizations, when errors are detected, corrupted packets are re-
transmitted. Unfortunately, retransmissions incur significant performance penal-

8 Timing-Error Tolerant NoC Design 119

Fig. 8.1 Double data
sampling technique

Fig. 8.2 Phase shift between
clocks

ties [130]. Moreover, timing delay variations occurring due to higher operating fre-
quencies can potentially affect multiple data bits in a packet, requiring complex
multibit error detecting/correcting codes that may be impractical to use [130].

To recover from timing errors in a digital system, double data sampling tech-
niques have been proposed and used by several researchers [113–120]. In such dou-
ble sampling schemes, each pipeline flip-flop in the design (called main flip-flop)
is augmented with an additional latch/flip-flop (called delayed flip-flop), as shown
in Figure 8.1. Both the main and the delayed flip-flops have the same frequency
of operation. However, the clock to the delayed flip-flop has a phase shift from the
clock to the main flip-flop and it samples data at delayed clock edge, as shown in
Figure 8.2.

Thus, data sampled by the delayed flip-flop has more time to settle, compared
to the main flip-flop. The delayed clock is usually generated locally at the pipeline
stage from the main clock using an inverter chain (delay element). After that the
delayed flip-flop has sampled data, the values of the two flip-flops are compared
through an EXOR gate; if there is any difference, data from the delayed flip-flop is
assumed to be correct and is resent through the main flip-flop in the next clock cycle.
The control circuitry also sends flow control signals to the pipeline stages before and
after the stage where the error occurred, so that they can recover from the error.

Let us consider a bit-line of a NoC link with one pipeline stage, where the
pipeline flip-flop (main flip-flop) is augmented with a delayed flip-flop. Let the max-
imum safe operating frequency of the link for the original design (without using any
double-sampling technique) be 1 GHz. If the double sampling technique is used,
we can have a higher frequency of operation, as the link no longer needs to have
safe operation at the main flip-flop. As an example, if the delay or phase shift be-
tween the clocks to the main and delayed flip-flops (φ/(clock period) in Figure 8.2)
is 50%, the delayed flip-flop will sample the right data even when the link operates
at 1.5 GHz. Even though the main flip-flop may incur timing errors, we can recover
the right data from the delayed flip-flop.

120 8 Timing-Error Tolerant NoC Design

Note that higher operating frequency can also be achieved by having a deeper
pipeline in the NoC components. However, there are several advantages in using the
T-error based design than having a deeper pipeline:

1. When the NoC is operating in the normal mode, a deeper pipeline depth will
result in a fixed increase in latency across the link, while in the T-error based
scheme, this latency is avoided (in fact, T-error design can be viewed as a way to
dynamically change the pipeline depth of the NoC components).

2. As the traditional design frequency is conservative, even in the over-clocked
mode the errors introduced due to over-clocking may not be substantial. Thus,
the T-error design can achieve the same frequency of a deeply pipelined design
with a lower latency for the average case. This is because, in the T-error design,
the pipeline depth changes dynamically according to the error rate, while the
deeply pipelined design always incurs a high latency.

3. Significant redesign, verification, and timing validation of switches and NIs are
needed to increase the pipeline depth, while the T-error design can be incorpo-
rated with lower design efforts. The normal FIFOs used in the links, switches
and NIs need to be replaced by the T-error FIFOs, which can be designed and
used as library elements.

4. T-error can always be used as an add-on to a deeply pipelined NoC system to
improve the operating frequency of the system.

In this work, we present methods that address only the timing delay variations
on the NoC that are introduced due to over-clocking. Coping with other kind of
errors (such as soft errors, capacitive coupling based cross-talk, data upsets, etc.)
is assumed to be done by means of existing techniques (such as [126–135]). By
operating the NoC at higher frequencies, the effect of these errors on the system
may vary and we assume that the techniques used to address them are designed to
handle the maximum over-clocked frequency of operation.

8.2 Using Links as a Storage Medium

Flow control is needed in networks to support full throughput operation. Specifi-
cally, it is needed to ensure that enough buffering is available at each switch to store
the incoming data and the available buffers are utilized efficiently. In traditional de-
signs, queuing buffers are either located at the inputs (input-queued switches) or at
the outputs (output-queued switches). In some switches, the buffers can be located
at both the inputs and the outputs to improve the performance of the NoC [94].
A credit-based or on/off flow control mechanism is typically used to manage the
input buffers of the switch. In such designs, for maximum network throughput, the
number of queuing buffers needed at each input of the switch should be at least
2N + 1 flits [94], where N is the number of cycles needed to cross the link between
adjacent switches. This is because in credit-based flow control, it takes at least 1 cy-
cle to generate a credit, N cycles for the credit to reach the preceding switch, and
N cycles for a flit to reach the switch from the preceding switch [94]. To support

8 Timing-Error Tolerant NoC Design 121

Fig. 8.3 Input queued switch

Fig. 8.4 Modified link
design with 3 stages

Fig. 8.5 Entry 3 buffered in
secondary flip-flop

link pipelining, there need to be N − 1 pipeline buffers on each bit-line of the link
connecting the switches. Thus, effectively we need 3N flit-buffers for each input of
the switch/link (Figure 8.3).

In [70], the use of relay stations and link-level flow control has been presented.
In such a scheme, each pipeline flip-flop on the link is replaced by a 2-entry FIFO
and a link-level flow control is used to ensure full throughput operation. We utilize
such links for the NoC architecture. In the NoC architecture, the switch input buffers
are also replaced by a 2-entry FIFO. Figure 8.4 shows a 3-stage link pipeline using
2-entry FIFO at each pipeline stage (N = 4, as it takes 1 more cycle to reach the
receiver from the last pipeline stage of the link). The scheme has two control signals
(stall and valid) transmitted between sender, receiver, and the link pipeline stages.
The stall signal is sent by the receiver and flows in the opposite direction to that
of the data, while the valid signal is driven by the sender and it flows in the same
direction as that of the data. The sender or receiver may be a switch or a network
interface. The receiver generates a stall signal when its storage capacity is full or
if it receives a stall request from the following stage. The valid signal informs that
the data which was received in the previous cycle (at the previous rising edge of
clock ck) is valid. During normal operation (i.e., when there is no stall request),
only one of the flip-flops in the 2-entry FIFO is used, as shown in Figure 8.4. When
a stall signal is received by the 2-entry FIFO (shown in Figure 8.5), the data on
output of the main flip-flop is stalled and the new data is received by the secondary
flip-flop. The stall signal is propagated to the previous stage, as shown in Figure 8.6.
The schematic of the 2-entry FIFO is shown in Figure 8.7.

This flow control mechanism ensures full throughput operation with performance
similar to that of input-queued switches with credit-based or on/off flow control. As
previously shown, in traditional input-queued schemes (Figure 8.3), the total num-
ber of buffers needed for maximum throughput is 3N , as compared to only 2N

122 8 Timing-Error Tolerant NoC Design

Fig. 8.6 The stall signal
propagated to previous stage

Fig. 8.7 A 2-entry FIFO.
The control circuit is
common for all the bit lines

Fig. 8.8 Modified link and
switch design

buffers (2 × (N − 1) along the link and 2 at the switch input) in this scheme (Fig-
ure 8.8). The traditional input-queued design has one flip-flop at each link pipeline
stage. In the stall/valid protocol, it takes one clock cycle for the stall signal to reach
the preceding pipeline stage. During this time, the data which is in transit from
the preceding pipeline stage cannot be stored when it reaches the current pipeline
stage. Thus, for full throughput operation in such a scheme, the link flip-flops are
not used for queuing data, and instead data is queued at the input of the next switch.
By augmenting the link pipeline stage with one more flip-flop, the full throughput
operation is achieved. As we also utilize the pipeline flip-flops, the scheme leads
to reduced buffering requirements. As the link buffering scheme can be viewed as
merely spreading the FIFO buffers of the switch inputs onto the links, it maintains
the same deadlock and livelock properties of a design with input-queued switches.
Moreover, as all the inputs of a switch have same buffer count in the link-buffer
scheme, the switch design becomes more modular, when compared to the tradi-
tional switch design. Note that the control circuit used at a link pipeline stage in this
scheme is common for all the w data bits in a flit of the NoC, and thus the overall
cost of the control circuit is negligible.

8 Timing-Error Tolerant NoC Design 123

8.3 T-error Link Designs

In this section, we present two link designs to support timing error tolerant oper-
ation needed for over-clocking the links. The first design reuses the link FIFO for
error recovery with very little hardware overhead (the overhead is only for the con-
trol circuitry). This scheme, in the worst case, can incur a 1-cycle penalty for each
error occurrence at a pipeline stage. In the second link design scheme, the 2-entry
FIFOs are augmented with an additional flip-flop. The resulting design is a high-
performance link that incurs a 1-cycle penalty only for the first occurrence of an
error for a continuous stream of data at each pipeline stage. The design is such that
all subsequent errors are automatically resolved.

8.3.1 Scheme 1: Low overhead T-error Links

In the T-error scheme, the 2-entry FIFOs along the links are modified to support
timing error tolerant operation. The modified FIFO structure is shown in Figure 8.9.
The second flip-flop of the FIFO is clocked at a delayed clock (ckd) compared to
the clock ck of the main flip-flop. ckd and ck, however, feature the same period.
The phase shift among them is configured after proper delay analysis, as will be
discussed later.

The incoming data is sampled twice, once by the main flip-flop (at time instant
t0 in Figure 8.11) and then by the delayed flip-flop (at time instant t1). There are
two modes of operation at each pipeline stage of the link: main mode and delayed
mode. Initially all the pipeline FIFOs are set to the main mode and data transmission
begins. In every cycle, at the clock edge ck, the main flip-flop captures and transmits
the incoming data. At clock edge ckd, the delayed flip-flop captures the incoming
data and the error detection control circuit checks whether there is any difference
between the main and the delayed flip-flop values. As shown in Figure 8.9, an EXOR
gate is connected to the outputs of the main flip-flop and delayed flip-flop to detect
a timing error. The err signals of all w bits of the flit (vertically across the width
of the link) at a pipeline stage are ORed and fed as an input to the control circuit.

Fig. 8.9 Low overhead
T -error buffer

124 8 Timing-Error Tolerant NoC Design

Fig. 8.10 Control circuit for
scheme 1

Fig. 8.11 Waveforms for scheme 1

Thus, a timing error in any bit of the flit causes the entire flit to be resampled at the
pipeline stage. The control circuit at each pipeline stage, which is common for all
the bit-lines of the link, is presented in Figure 8.10.

If there is an error in the data sampled by the main flip-flop, the data that was
transmitted at clock edge ck is incorrect. The correct data from the delayed flip-flop
is sent at the next clock edge (at time instant t2). Whenever a timing error occurs
(i.e., err signal is set to one), a stall signal is sent to the previous stage such that the
previous stage is stalled for one cycle. Also, a valid signal is sent to the following
stage, informing that the data sent in the previous cycle was nonvalid.

A FIFO at a pipeline stage of the link enters the delayed mode when a stall
signal from the next stage causes queuing of data at the FIFO. The stall signal can
be issued to handle regular congestion, that is as a flow control wire, or to let the
downstream stage sort out an error condition. When a FIFO is in delayed mode,
all timing errors are automatically avoided, as the incoming data is always sampled
through the delayed flip-flop. Thus, in networks with severe congestion, most timing
errors are automatically avoided. Examples of operation of the FIFOs for a network
with no congestion and with congestion are presented in Figures 8.12 and 8.13.
In the network with no congestion, at each pipeline stage, data is always directly

8 Timing-Error Tolerant NoC Design 125

Fig. 8.12 Network operation without congestion. The data in the FIFOs at time instances t and
(t + 1) are presented in (a) and (b)

Fig. 8.13 Network operation under congestion. The data in the FIFOs at time instances t and
(t + 1) are presented in (a) and (b)

sampled by the main flip-flop and sent out by it. In the network with congestion, the
data from the preceding pipeline stage is always captured by the delayed flip-flop
at the current pipeline stage, and later sent out by the main flip-flop. Since data is
always sent at ck from the preceding stage and sampled at ckd in the current stage,

126 8 Timing-Error Tolerant NoC Design

the wire transitions have more than one clock period to settle, and thus timing errors
are automatically avoided. In the worst case, if the FIFO always operates in the main
mode, each timing error occurrence will incur one clock cycle penalty for recovery.

However, in the worst case, when there is no congestion and the FIFO always
tries to operate in main mode, each timing error occurrence incurs 1 clock cycle
penalty for recovery. The link stage switches from main mode to delayed mode and
back for each faulty piece of data. Detailed performance analysis of this scheme and
comparison with the next link design scheme for several benchmark applications is
presented in Section 8.6.6.

The amount of timing delay that is tolerated by the T-error design depends on
the phase shift between the clocks of the main and the delayed flip-flops. This shift
should be as large as possible, so that the delayed flip-flop is guaranteed to sample
the right data and to provide correct system operation. However, the maximum shift
is constrained by internal repeater delays (the error detection logic must operate be-
tween a ckd edge and the following ck edge). Detailed timing analysis and SPICE
simulations (for a link size of 32 bits) showed that clock ckd can be delayed by
53.3% of the clock period with respect to ck. In this work, we assume that a max-
imum delay of 50% of the clock is tolerable with a T-error enabled system. Thus,
the delayed clock ckd is just the inverted value of the main clock, and delay chains
are not needed to generate it. At the same time, the maximum delay which is toler-
ated on a wire is 150% of the clock period, providing ample margin for timing error
correction. In the T-error scheme, metastability conditions may occur and are cor-
rected using efficient transistor-level implementation of the FIFO circuit, which are
presented in [137]. The control lines (stall, valid) that need to have error-free opera-
tion can be made robust using a variety of methods (such as using wider metal lines,
shielding). We refer the interested reader to [137] for transistor-level implementa-
tion details, timing analysis, and SPICE simulation results of the T-error scheme.

8.3.2 Scheme 2: High-Performance T-error Links

The performance of the above link design can be improved by having an additional
flip-flop to store incoming data whenever a stall is encountered. A 3-entry FIFO,
instead of the 2-entry FIFO previously described, is used in this scheme (refer to
Figures 8.14 and 8.15). The third flip-flop, called auxiliary flip-flop, is added in
series to the delayed and main flip-flops; it also samples data on rising edges of
the delayed clock ckd. The operation is similar to the above design, except that
for a continuous stream of data, even if all incoming pieces of data were to be
corrupted, only a single 1-cycle penalty would incurred to correct timing errors
at a pipeline stage. This is because the FIFO enters the delayed mode upon the
first error occurrence; once in this mode, all subsequent pieces of data are sampled
through the delayed and auxiliary flip-flops, making them automatically error free.
The presence of the auxiliary flip-flop lets the link stage continue operating even
upon fault occurrences; the sender does not perceive any interruption in data flow.

8 Timing-Error Tolerant NoC Design 127

Fig. 8.14 Schematic for scheme 2

Fig. 8.15 Control circuit for scheme 2

Fig. 8.16 Example of 3-entry FIFO operation where for a continuous stream of data, an error
occurrence at a pipeline stage causes further errors to be automatically avoided at that stage

128 8 Timing-Error Tolerant NoC Design

Only at the end of the whole data stream, the stage empties and switches back to
main mode. An example is presented in Figure 8.16. Note that even in absence of
timing errors, the auxiliary flip-flops can still improve general system performance,
as they also behave as queuing buffers to minimize congestion-related penalties.

8.4 Aggressive Switch/NI Design

In this section, we describe the changes needed in the basic architecture to support
the over-clocked mode of operation. The ×pipes NI is composed of two modules:
a front-end interface with the cores and a back-end interface with the switches and
links. The NI back-end is the only part that needs to support NoC over-clocking.
Since its architecture is similar to that of the switches, we describe only the changes
required in the switches.

There are two changes required in the switches to support NoC over-clocking.
The first is that the switches should also be able to operate at higher frequencies
to utilize the faster links. The other is that the switches should be able to handle
the data from the links that may have timing errors. A NoC switch, as shown in
Figure 8.8, consists of input buffers, allocator/arbiter, crossbar and output buffers.
In the link based flow-control, there is a two entry FIFO at the input of the switch,
which can be made timing-error tolerant, similar to the link FIFO T-error schemes
presented in the previous section. The switch design changes will now be presented.

8.4.1 Output Buffer Changes

In an input-queued switch, normally a single register is used at each output to store
data, before sending the data onto the links. Note that in some designs, the output
buffer can be taken to be part of the link design, depending on the targeted operating
frequency of the switch. In some other cases, more than one buffer may be used at
each output, so that the performance of the NoC can be improved. In the ×pipes
architecture, the number of buffers at the output is a parameter that can be configured
by the user according to his or her application needs.

As a starting point, the architecture of a ×pipes switch with a single output buffer
is shown in Figure 8.8. The ×pipes switch already supports distributed buffering
along the links. In this architecture, the switch has a latency of 2 cycles for data
transfers. There are two sets of flip-flops in the switch that may cause timing vi-
olations when over-clocked: output buffers and flip-flops that are used to maintain
the allocator/arbiter states. From synthesis of the ×pipes architecture, we found the
operating frequency of the original switch to be 1 GHz. The path from the input of
the switch to the state flip-flops was 0.4 ns, while the critical path was from the input
to the output (which also samples the arbiter/allocator states). With over-clocking,
we target a 1.5× increase in frequency (i.e., 1.5 GHz operating frequency) of the

8 Timing-Error Tolerant NoC Design 129

Fig. 8.17 Over-clocked
switch design with output and
input buffer changes

switches. Therefore, we found that the state flip-flops are safe even under over-
clocking, since the available cycle time is 0.66 ns, and that only the output buffers
need to be made timing error tolerant. Note that in other switch architectures, if the
state flip-flops are not safe when over-clocked, they should be T-error enabled as
well. Otherwise, the amount of over-clocking will be limited by them. Also, if the
switch has more pipeline stages, the T-error principle needs to be applied to each
pipeline stage.

In order to over-clock the switch, we apply the T-error design to the head flip-flop
of the output FIFO and the other flip-flops in the output FIFO are made to sample
data at ckd. Figure 8.17 shows the changes in the output buffer of the switch. Note
that errors can occur only when the data is sampled through the head of the FIFO
and when the NoC operates in the over-clocked mode.

8.4.2 Input Buffer Changes

When timing errors occur at a link pipeline stage, wrong data can reach the switch
input before the correct data is received. If the switch samples wrong data, several
complications can arise. As an example, timing errors on the routing fields of the
header flit may result in misrouting a packet. In order for the switch to handle data
errors, there are several cases to be considered and recovering the switch state from
such cases require complex hardware and control circuits [94]. Another way to de-
tect wrong data at the switch input is to use some error detecting code (such as
cyclic redundancy check) for each flit of the packet. However, in the over-clocked
mode, all the bits of the data could encounter timing errors and such schemes may
be inefficient. Thus, to simplify the switch hardware, we use a look-ahead stage at
the input of the switch that ensures that correct data is always fed to the internal
switch logic (see again Figure 8.17). The look-ahead stage stores an incoming flit
for one clock cycle, i.e., until the valid line indicates whether the received data was
correct or not. In case of correct reception, data is fed to the switch arbiter/allocator.
Otherwise, it is discarded by the look-ahead stage. Note that even when there are no
errors occurring in the system, a latency penalty could arise from insertion of the
look-ahead buffers, unless properly tackled, as explained in the next section.

130 8 Timing-Error Tolerant NoC Design

8.5 Dynamic Configuration of the NoC

When the frequency of the NoC is varied based upon DFS/DPM techniques, the
NoC may operate at frequencies lower than or equal to the conservative design
frequency. In such a normal operating mode, the error resiliency penalty due to
T-error needs to be completely hidden. The T-error mechanism at the link FIFO and
the switch/NI output buffers incur error resilience penalty only when an error oc-
curs. Thus, they dynamically adjust to the errors happening in the system. However,
the look-ahead stage at the input of the switch incurs a 1-cycle penalty even under
the normal operating mode. To avoid this 1-cycle penalty in the normal mode, we
use a global BOOST signal that is issued at the application level by (one or more)
processing cores. A value of BOOST = 1 indicates that the NoC is in over-clocked
mode, while BOOST = 0 indicates normal mode of operation. The BOOST signal
may take several clock cycles (tens of cycles) to spread to all the switches and NIs
in the NoC. The actual transition between the normal and over-clocked modes occur
after the BOOST signal is completely spread around the NoC.

The input buffer control logic is modified such that the look-ahead stage is used
only when BOOST = 1, as shown in Figure 8.18. The transition from the normal
mode to over-clocked mode is smooth in the design, as the look-ahead is started
when the BOOST signal is spread. However, transition from the over-clocked mode
to the normal mode requires special care, as there may be some residual errors in
the NoC. To make a smooth transition dynamically (i.e., without flushing all the
data in the network), we use the following design change. In the T-error NoC, all
residual errors are maintained on the links between the switches, as the switches
always receive the right data due to the look-ahead mechanism. When a transition
to the normal mode occurs, the look-ahead stage is bypassed only when there is no
incoming data from the link. Thus, any data from the output buffer of the switch
or the link that may have residual errors goes through the look-ahead stage, which
ensures that the right data is fed to the switch inputs. As the transitions between
normal and over-clocked modes occur at the application level (which may occur
every tens of thousands of cycles), the performance overhead incurred due to this
dynamic configuration is negligible.

Fig. 8.18 The look ahead
stage at the switch input

8 Timing-Error Tolerant NoC Design 131

8.6 Experimental Results

In this section, we present the simulation case studies for the T-error designs.

8.6.1 Simulation Platform

The simulation platform consists of cycle-accurate SystemC models of the T-error
designs for the switches, links, and NIs, incorporated on the ×pipes architecture.
Functional SystemC simulations were carried out on a variety of application bench-
marks.

8.6.2 Experiments on a Multi-Media Benchmark

We plugged 3 ARM7 processors, 3 private memories (one for each processor), and
3 shared memories for interprocessor communication on the MPARM platform. We
ran functional benchmarks modeling multimedia processing on the general purpose
cores. The benchmarks include heavy synchronization activity through the shared
memories, since they model producer/consumer pipelines of multimedia processing.
The benchmarks create a large number of connections (around 30) between the var-
ious cores. We hand-mapped the application onto two topologies (Figures 8.19(a)
and (b)): a 3×2 mesh topology, with the processors connected to their private mem-
ories using a single switch, and a custom topology with 2 switches. The mappings
were performed such that the most demanding traffic flows traverse fewer switches
in the NoC.

We assume the size of each predesigned processor and memory core to be
2 × 2 mm, typical of today’s small processors and on-chip memories. From the
approximate floorplans of the topologies, we conservatively assume that the links of
the mesh topology have 1 pipeline stage, while those of the custom topology have 2
pipeline stages.

We perform experiments on 3 schemes: a traditional CONServative (CONS) de-
sign approach, a General Double-Sampling (GDS) scheme that is not integrated
with the network flow control (such as presented in the earlier works [113] and
the T-error scheme with 3-stage FIFO presented in this work. From synthesis of the
original ×pipes architecture, the conservative NoC’s maximum operating frequency
is found to be 1 GHz. With 50% delay between the clocks to the main and delayed
flip-flops, the GDS and T-error designs’ maximum frequency (under over-clocked
mode) is assumed to be 1.5 GHz. To evaluate the designs, we define a new metric:
Potential Error-Rate (PER). The PER represents the percentage chance that a flit
reaching a FIFO incurs one or more timing errors if sampled directly on a ck edge.
Note that even if the PER is 100%, the actual errors happening at the T-error FIFO
can be very few, as most of the errors after the first are automatically avoided by

132 8 Timing-Error Tolerant NoC Design

Fig. 8.19 Mesh and custom topology mappings and comparison of traditional schemes with
T-error

the design. This is because in most scenarios, data is sampled first by the delayed
flip-flop and only afterward sent out by the main flip-flop, avoiding all potential er-
rors. For an over-clocked system, the PER value depends on how much the system is
over-clocked, the actual operating conditions of the system (such as effect of process
variations on the FIFO, operating temperature, other noise effects), actual data pat-
terns on the link, etc. As an example, if bus encoding techniques are not used to
reduce the effects of capacitive cross-talk, the conservative design is capable of op-
erating with the worst-case data patterns on the links. In such a case, even at the
highest frequency in the over-clocked mode, if the adversarial switching patterns do

8 Timing-Error Tolerant NoC Design 133

Fig. 8.20 Custom topology
results

not occur on the link, the PER can be 0%. The T-error design dynamically adapts
to all these effects and operates under the entire range of PER values. For simula-
tions, we vary the PER values and we inject potential errors at each T-error FIFO
randomly based on the chosen PER value.

The average packet latency for the mesh and custom topologies for the various
schemes for different PER values are presented in Figures 8.19(c) and 8.20. As we
over-clock only the communication architecture, we compare the schemes based on
the average packet latency for communication, instead of comparing the total appli-
cation run-time. When compared to the traditional conservative design (CONS), the
T-error design results in significant performance improvements. Latency is reduced
by 33.33% in the best case (0% PER) and by 23.42% in the worst case (100% PER).
When compared to the general double sampling scheme (GDS), the T-error scheme
still shows up to 21.2% reduction in latency, as much of the error recover penalty
is hidden under the network operation. When compared to the GDS technique ap-
plied to input-queued switches, the T-error scheme (with 3-stage FIFOs at the links)
also results in 30% reduction in the number of queuing buffers used. In fact, the
3-entry T-error FIFO scheme utilizes 3 × (N − 1) buffers on each link (where N is
the number of cycles needed to traverse the link) and 2 buffers at the switch input,
while the input queued switches with the general double sampling technique needs
2N + 1 buffers at the input of the switch and 2 × (N − 1) buffers on the links (refer
to Section 8.2, where results for 2-entry FIFOs are presented).

To see the impact of the length of the links on the T-error scheme, we simu-
lated the design mapped onto the custom topology with varying number of pipeline
stages on the links. As seen from Figure 8.21, even on significantly long links, the

134 8 Timing-Error Tolerant NoC Design

Fig. 8.21 Effect of pipeline
depth

T-error scheme gives a large improvement in performance when compared to the
conservative design approach.

8.6.3 Effect of Application-Level Power Management

We conducted experiments on the multimedia benchmarks to show the usefulness
of the application-level DPM policies. We model 4 different application scenarios
in the platform: Standard Definition video decoding and display (SD), High De-
finition video decoding and display (HD), Picture-in-Picture Standard Definition
(PiP-SD), and Picture-in-Picture High Definition (PiP-HD). The voltage and fre-
quency of operation of the network was tuned individually for each application. The
power consumption of the network for the various applications when the DPM poli-
cies are used, normalized with respect to that of the base system (where no DPM
policy is used), is presented in Figure 8.22. The use of application level DPM poli-
cies results in an average of 57% reduction in power consumption of the NoC.

8.6.4 Experiments on Other Benchmarks

We performed experiments on the conservative and T-error designs on several other
benchmarks:

8 Timing-Error Tolerant NoC Design 135

Fig. 8.22 Effect of DPM
policies

• Matrix multiplication benchmark suite without shared memory (MAT1)
• Matrix multiplication benchmark suite with shared memory (MAT2)
• Fast Fourier transform benchmark suite using fixed point arithmetic (FFT)
• Quick sort benchmark suite (Qsort)

Many of these benchmarks are application kernels that can be used to inject different
traffic rates onto the NoC and test various aspects of the NoC. We assume the delay
to traverse the links in the NoC to be 2 cycles, i.e., the links have 2 pipeline stages.
We conducted experiments varying the number of processor/memory cores used by
the applications (application partitioning) and topologies of the NoC. For all the
experiments, except for those presented in Section 8.6.6, we use the 3-entry T-error
FIFO design. In Section 8.6.6, we compare the performance of the two T-error link
designs.

In Figures 8.23(a) and (b), the average packet latency (in ns) observed for the
conservative and T-error design for the MAT2 benchmark for read (Figure 8.23(a))
and write transactions (Figure 8.23(b)) is presented. The read transactions require
two way data transfer on the network: a request is sent by the processor and a re-
sponse with the data item is sent back by the memory. The write transactions require
only one way data transfer: the processor sends the data to be written to the mem-
ory. We denote the entire transaction latency for each data word by the average
packet latency metric. Thus, the read transactions incur a higher latency for com-
munication. As seen from the figures, for the MAT2 benchmark, the T-error design
results in a significant performance improvement, with the best case of 28.5% re-
duction in read latency (for 0% PER) and worst-case of 19.6% (for 100% PER).

136 8 Timing-Error Tolerant NoC Design

Fig. 8.23 Performance comparison of conservative and T-error designs for different PER values
for read and write transactions

For the write transactions, the average reduction in latency for the T-error designs
vary from 32.5% (for 0% PER) to 31.1% (for 100% PER). Note that the increase in
latency due to the higher PER values is not overly significant, showing that the T-
error scheme effectively hides much of the error recovery penalty under the network
operation.

The performance of the T-error system for various topologies for the MAT2
benchmark for read and write transactions are presented in Figures 8.23(a)
and 8.24(a). The designs compared vary from small 7-core NoCs to 51-core NoCs
with different application partitioning. The topologies vary from regular (like mesh)

8 Timing-Error Tolerant NoC Design 137

Fig. 8.24 (a) and (b) Performance comparison for various topologies, benchmarks, and (c) Effect
of dynamic NoC configuration

to custom, manually developed ones. As seen from the figures, for all the topologies
for both read and write transactions, the T-error design results in significant perfor-
mance improvement over the conservative design. In Figure 8.24(b), we present the
average packet latencies (averaged across both read and write transactions) for the
designs for several benchmark applications. The average reduction in latency for the
benchmarks for the T-error designs varies from 25.7% (for 0% PER) to 12.7% (for
100% PER).

138 8 Timing-Error Tolerant NoC Design

Fig. 8.25 (a) NoC configuration and (b) Choice of link design schemes

8.6.5 Effect of NoC Configuration

Dynamic configuration of the NoC is designed to avoid any latency penalty for
the switch look-ahead mechanism under the normal mode, where the frequency of
operation is ≤1 GHz. In Figures 8.24(c) and 8.25(a), we present the packet latencies
for the NoC with and without the configuration mechanism for various topologies
and benchmarks. The configuration mechanism results in significant reduction in
packet latency (up to 13.8%) for the applications. This reduction is attributed to two
reasons: one is the reduction in pipeline depth of the NoC (i.e., reduction in the
number of cycles needed to transfer a packet under zero load conditions) and the
other is the fact that congestion in the NoC reduces, as packets spend less time in
the network.

8.6.6 Choice of Link Design Schemes

In Section 8.3, we presented two link design schemes with scheme 1 having very
little hardware overhead and scheme 2 having higher performance. The efficiency
of the schemes depends on the congestion levels in the NoC and the application’s
traffic patterns. For heavily congested NoCs, most of the traffic would be sampled
through the delayed flip-flops in both schemes, resulting in similar performance.
For uncongested networks supporting bursty application traffic, scheme 2 has much
higher performance than the scheme 1 design. These effects are illustrated in Fig-
ure 8.25(b), where the average packet latencies in a mesh network using scheme 1
design are presented. The latency values are normalized with respect to the latency

8 Timing-Error Tolerant NoC Design 139

Table 8.1 Area overhead
Design Area

(mm2)

Base NoC 4.90

T-error scheme 1 NoC 4.95

T-error scheme 2 NoC 5.10

incurred by the scheme 2 design for an uncongested NoC. The traffic pattern is such
that each core injects bursty traffic onto the NoC. For such a bursty traffic pattern,
scheme 2 design has minimum overhead for all congestion levels, while the perfor-
mance of the scheme 1 design depends on the particular congestion level. We varied
the congestion in the network, which is represented in Figure 8.25(b) by the percent-
age of time data is sampled by the delayed flip-flop. As seen, as the congestion in
the network starts to increase, the performance of scheme 1 design approaches that
of the scheme 2 design. The different link design schemes can be used in different
parts of the same NoC if needed, as they have the same interface to the switches/NIs.
Thus, particular links that need higher performance can be designed using scheme 2.

8.6.7 Synthesis Results

Using Synopsys Design Compiler, we synthesized the T-error schemes to get area
estimates of the proposed schemes. For synthesis, we use a UMC 0.13 µm tech-
nology library, a base NoC operating frequency of 1 GHz and an operating voltage
of 1.2 V. Table 8.1 shows the area overhead for the different T-error schemes for
32-bit flit-size for a 5 × 5 mesh NoC. The base NoC area is the sum of the areas of
switches, links, and NIs without the T-error design changes. As seen from the table,
the schemes incur only a modest increase in area (around 4% increase in the base
NoC area).

8.7 Summary

The use of conservative methods to design NoCs, that target safe operation under
all conditions leads to suboptimal system performance. In this chapter, we have
presented aggressive Timing Error-Tolerant (T -error) design methodologies for de-
signing the switches, links, and NIs of NoCs. The NoC in the T-error system is
designed aggressively to operate at frequencies higher than conservative designs
and to recover from the resulting timing errors in an efficient manner. The error re-
covery mechanism is integrated with a new link-based flow control mechanism, so
that most of the error recovery penalty is hidden under the network operation. Ex-
periments show large performance improvements (up to 1.5×) for the communica-
tion architecture in the proposed system, when compared to traditional conservative
designs. The methods are also applicable to remove timing errors in conservative
designs.

Chapter 9
Analysis of NoC Error Recovery Schemes

Once the NoC components are made timing-error tolerant, we need to still handle
other transient and permanent errors that can occur in the system, such as soft-
errors. To handle such errors, we need support at the design level, as well as at the
architectural level. In this chapter,1 we present architectural level support for fault-
tolerance, while in the next chapter, we present design level support. Please note
that an additional level of error protection at the application level can also be used
in conjunction with these two levels.

In order to protect the system from transient errors that occur in the communi-
cation sub-system, we can use error detection/correction mechanisms that are used
in traditional macronetworks. The error detection/correction schemes can be based
on end-to-end flow control (network level) or switch-to-switch flow control (link-
level). In a simple retransmission scheme, error detection codes (parity or Cyclic
Redundancy Check (CRC) codes) can be added to the original data by the sender
and the receiver can check for the correctness of the received data. If an error is
detected, it can request the sender to retransmit the data.

Alternatively, error correcting codes (such as Hamming codes) can be added to
the data and errors can be corrected at the receiver. Hybrid schemes with combined
retransmission and error correction capabilities can also be envisioned. As the error
detection/correction capability, area-power overhead and performance of the various
error detection/correction schemes differ, the choice of the error recovery scheme for
an application involves multiple power-performance-reliability trade-offs that have
to be explored.

In this work, we collectively relate these three major design constraints in an
attempt to characterize efficient error recovery mechanisms for the NoC design en-
vironment. We explore error control mechanisms at the data link and network layers
and present the architectural details of the schemes. We investigate the energy ef-
ficiency, error protection efficiency, and impact on performance of various error
recovery mechanisms.

The objective of the work presented in this chapter is twofold: One is to identify
the major power overhead issues of various error recovery schemes, so that efficient
mechanisms can be designed to address them. The other objective is to provide
the designer with the necessary information, aiding in the choice of appropriate er-
ror control mechanism for the targeted application. In practice, different network
architectures (topologies, switch architecture, routing, flow control) exist, making
generalized quantitative comparisons difficult. Nevertheless, this work presents a

1We would like to acknowledge the contributions of Dr. Theocharis Theocharides, Prof. N. Vi-
jayKrishnan, Prof. Mary J. Irwin, Prof. Luca Benini, and Prof. Giovanni De Micheli.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

141

142 9 Analysis of NoC Error Recovery Schemes

general methodology and attempts to provide comparisons based on reasonable as-
sumptions on network architecture, incorporating features that have been successful
in most existing NoC design methodologies. In this work, we explore error control
mechanisms at the data link and network layers and investigate the energy efficiency,
error protection efficiency, and impact on performance of the various schemes.

9.1 Switch Architecture Design

We identify 3 different classes of error recovery schemes as explained in the follow-
ing subsections.

9.1.1 End-to-End Error Detection

In the end-to-end error detection (ee) scheme, parity (ee-par) or CRC codes
(ee-crc) are added to the packet (refer to Figure 9.1(a)). A CRC or parity encoder
is added to the sender NI and decoders are added at the receiver NI. The sender NI
has one or more packet buffers in which it stores the packets that are transmitted.
The receiver NI sends a NACK or an ACK signal back to the sender, depending on
whether the data had an error or not. The ACK/NACK signal can be piggy-backed
on the response packet, if this is a request-response transaction (as in Open Core

Fig. 9.1 Architecture for
end-to-end and
switch-to-switch
retransmission

9 Analysis of NoC Error Recovery Schemes 143

Protocol [91]). To account for errors on the ACK/NACK packets, we also have a
time-out mechanism for retransmission at the sender. We use sequence identifiers
for packets to detect reception of duplicate packets. As header flit carries critical
information (like routing information), it is protected with parity/CRC codes that
are checked at each hop traversal. If a switch detects an error on the header flit of
a packet, then it drops the packet. Also, the flit-type (that identifies header, body or
tail flit) bits are protected using redundancy.

9.1.2 Switch-to-Switch Error Detection

In switch-to-switch error detection schemes, the error detection hardware is added
at each switch input and retransmission of data is between adjacent switches. Here,
we identify two different schemes: parity/CRC at flit-level and at packet level. The
switch architecture is modified to support these schemes, as shown in Figure 9.1(b).
The additional buffers added at each input of the switch are used to store packets
until an ACK/NACK comes from the next switch/NI. The number of buffers needed
to support switch-to-switch retransmission depends on whether error detection is
done at the packet level or flit level.

In the switch-to-switch flit-level error detection (ssf) scheme, the parity/CRC
bits are added to each flit of the packet by the sender NI. At each input of the switch,
there are two set of buffers: queuing buffers that are used for the credit-based flow
control as in the base switch architecture and retransmission buffers for supporting
switch-to-switch retransmission mechanism. Similar to the case of queuing buffers,
the retransmission buffers at each switch input should have a capacity of 2Nl + 1
flits for full throughput operation. We use redundancy (such as Triple Modular Re-
dundancy (TMR)) to handle errors on the control lines (such as the ACK line).

In the packet level error detection (ssp) scheme, the parity/CRC bits are added
to the tail flit of the packet. For this scheme, the number of retransmission buffers
needed at each switch input is 2Nl +f , where f is the number of flits in the packet,
as the error checking is done only when the tail flit reaches the next switch. We also
need header flit protection, as in the ee scheme.

9.1.3 Hybrid Single Error Correcting, Multiple Error Detecting
Scheme

In this scheme (ec+ed), the receiver corrects any single bit error on a flit, but for
multiple bit errors, it requests end-to-end retransmission of data from the sender NI.
We do not consider pure error correcting schemes in this work, as in such a scheme
when a packet is dropped by a switch (due to errors in the header flit), it is difficult
to recover from the situation as there is no mechanism for the sender to retransmit
the packet.

144 9 Analysis of NoC Error Recovery Schemes

9.2 Energy Estimation and Models

9.2.1 Energy Estimation

A generic energy estimation model in [148] relates the energy consumption of each
packet to the number of hop traversals and the energy consumed by the packet at
each hop. We expanded this estimation a step further by designing and characteriz-
ing the circuit schematics of individual components of the switch in 70 nm technol-
ogy using Berkeley Predictive Technology Model [125]. From this, we estimated
the average dynamic power as well as the leakage power per flit per component. We
imported these values into the architectural level cycle-accurate NoC simulator and
simulated all individual components in unison to estimate both dynamic and leakage
power in routing a flit.

For correct functionality of the system, the error detection/correction circuitry
and the retransmission buffers need to be error-free. We use relaxed scaling rules
and soft-error tolerant design methodologies for designing these components [146].
In the power estimations, we take into account the additional overhead incurred in
making these components error-free (which increases the power consumption of
these components by around 8–10%).

9.2.2 Error Models

In order to analyze the error recovery schemes, we fix a constraint on the residual
flit error probability, that is we impose each scheme to have the same probability of
an undetected error (per flit) at the decoder side. We assume that an undetected error
in the system causes the system to crash.

We consider two set of experiments: in one set of experiments we assume the
operating voltage of the system (with different error recovery schemes) is varied
to match a certain residual flit-error rate requirement. For this, we make use of the
error models from [127]. In another set of experiments, we assume the voltage for
the various schemes to be the same, but investigate the effect of different error rates
on the schemes.

9.3 Experiments and Simulation Results

9.3.1 Power Consumption of Schemes for Fixed Residual Error
Rates

In this subsection, we assume that the power supply voltage is chosen for each of
the error detection/correction schemes based on the residual flit-error rate that the

9 Analysis of NoC Error Recovery Schemes 145

Fig. 9.2 Power consumption
of schemes

system needs to support. We compare the power consumption of systems with par-
ity based encoding, CRC based encoding and hybrid single error correcting multiple
error detecting encoding with that of the original system (without error protection
codes). As the objective is to compare the error protection efficiency of various cod-
ing schemes, we consider only end-to-end schemes in this subsection. We consider
a 4 × 4 mesh network with 16 cores and 16 switches. We assume the number of flits
in a packet to be 4 and the flit-size to be 64 bits. The network power consumption for
the various schemes are presented in Figure 9.2, for an injection rate of 0.2 flits/cycle
from each core and for uniform traffic pattern. The residual flit-error rates in the
x-axis represent the Mean Time To Failure (MTTF) for the systems. As an example,
a residual flit-error rate of 10−12 signifies that on average the system operates for
3.1211 cycles (assuming 16 cores, with each core injecting 0.2 flits/cycle, so that
1012 flits are generated in 3.1211 cycles), before an undetected error causes the sys-
tem to crash. For a 200 MHz system, this represents an MTTF of 26 minutes. Note
that for most applications reasonable MTTF values would be of the order of months
or years. The power numbers are plotted for the original system (orig) that has no
error control circuitry, parity-based end-to-end error detection scheme (ee-par),
CRC based error detection scheme (ee-crc) and hybrid single error correcting,
multiple error detecting scheme (ec+ed).

The orig and ee-par schemes have higher power consumption than the
ee-crc and ec+ed schemes, as the error detection capability of these schemes is
lower and hence they require a higher operating voltage to achieve the same resid-
ual flit-error rate. The hybrid ec+ed scheme has lower power consumption at high
residual flit error rates and the ee-crc has lower power consumption for lower
residual error rates. This is because at high error rates, in the ee-crc scheme there
is more traffic injected in the network, thereby causing more power consumption
than the ec+ed scheme. At lower error rates, the power overhead due to error cor-
rection in the ec+ed scheme is more than the power consumed in retransmission
in the ee-crc scheme. Also, in the ec+ed scheme, the number of bits needed for
error correction and detection codes is more than the pure detection scheme.

146 9 Analysis of NoC Error Recovery Schemes

Fig. 9.3 Latency of error
detection and correction
schemes

9.3.2 Performance Comparison of Reliability Schemes

In this subsection, we investigate the performance of pure end-to-end and switch-
to-switch error detection schemes (ee, ssf, ssp) and the hybrid error detec-
tion/correction scheme (ec+ed). We perform experiments on the 16-core mesh with
varying injection rates for uniform traffic pattern. In this and following experiments,
we assume that the operating voltage for the system is fixed at design time (to be
equal to 0.85 V) and investigate the effect of varying error rates in the system. We
use the flit-error rate (flit error rate is defined as the probability of one or more errors
occurring in a flit) metric for defining the error rate of the system.

For low flit-error rate and low injection rate, the average packet latency for the
various schemes (Figure 9.3) are almost same. However, as the error rate and/or
the flit injection rate increases, the end-to-end retransmission scheme (ee) incurs
a large latency penalty compared to the other schemes. The packet-based switch-
to-switch retransmission scheme (ssp) has slightly higher packet latency than the
flit-based switch-to-switch retransmission scheme (ssf), as in the flit-based scheme
errors on packets are detected earlier. As expected, the hybrid single error correcting
multiple error detecting scheme (ec+ed) has the least average packet latency of the
schemes.

9.3.3 Power Consumption Overhead of Reliability Schemes

The power consumption of a switch (with 5 inputs, 5 outputs, Nl = 2), error detec-
tion/correction coders, retransmission, and packet buffers (for 50% switching ac-
tivity at each component, each cycle) are presented in Table 9.1. We assume an
operating frequency of 200 MHz, flit-size of 64 bits and packet size of 4 flits. In
this chapter, we assume that the base NI power consumption (when there are no
packet buffers for retransmission) is taken to be part of the processor/memory core
power consumption, as it is invariant for all the schemes. To facilitate comparison of

9 Analysis of NoC Error Recovery Schemes 147

Table 9.1 Component-wise
power consumption Component Dynamic Static

power (mW) power (mW)

Switch (5 × 5)

Buffers 13.10 1.69

Crossbar 4.57 –

Control 1.87 0.02

Total (Psw) 19.54 1.71

CRC encoder (Pcrce) 0.12 –

CRC decoder (Pcrcd) 0.15 –

SEC encoder (Psece) 0.15 –

SEC decoder (Psecd) 0.22 –

Switch retrans. 0.52 0.07

Flit buffer (1 flit) (Psrfb)

Packet buffer (1 packet) (Ppb) 2.29 0.31

the various error recovery schemes, we analyze the power overhead associated with
the schemes for error detection and recovery. We need the following definitions to
formulate analytical expressions for the power overhead for the schemes.

Let inj_rate be the traffic injected by each of the NI. For the ee, ec+ed schemes,
let the number of packet buffers required at each NI for retransmission be Npb. Let
sw_traf be the rate of traffic injected at each switch. For the ee scheme, let the in-
crease in traffic at each switch due to retransmission be represented by sw_incrtraf .
Let Ppacketsizeinc be the total power overhead due to increase in packet size due to
addition of code words and other control bits.

In the formulation of the power overhead, for simplicity of notation, we represent
the parameters (such as traffic rate, link length, buffering) to be same for all the NIs
and all the switches. Also, for simplicity of notation we represent both dynamic and
static power consumption by single set of variables (refer Table 9.1 for notations).
It is assumed that when the power numbers are scaled based on the traffic through
the components, only the component of dynamic power consumption is scaled.

In the above set of parameters, the traffic rates from/to the NIs, switches and the
traffic overhead for retransmission (in ee, ec+ed schemes) are obtained from simu-
lations. The link lengths are decided by the physical implementation of the topology.
The number of packet buffers required in the ee scheme to support an application
performance level can be obtained from (possibly multiple sets of) simulations.

The power overhead associated with the ee scheme is given by:

Poverhead_ee =
∑

∀ NIs

(
inj_rate × (Pcrce + Pcrcd + Npb × Ppb)

)

+
∑

∀ Switches

(sw_incrtraf × Psw) + Ppacketsizeinc (9.1)

148 9 Analysis of NoC Error Recovery Schemes

In this equation, there are two major components of power overhead: One is the
power overhead associated with the packet buffers at the NIs for retransmission and
the other is due to the increase in power consumption due to increased network
traffic. For the ee scheme to work, we need to have sequence identifiers for pack-
ets and mechanisms to detect reception of duplicate packets. We consider the power
consumption due to look-up tables and control circuitry associated with these mech-
anisms to be part of the packet buffer power consumption (these typically increase
packet buffer power overhead by 10%). The increase in traffic in the ee scheme is
due to two reasons:

(a) when ACK/NACK packets cannot be piggy-backed to the source (as an ex-
ample, “writes” to memory locations normally do not require response back to the
source), they need to be sent as separate packets. An optimization can be performed
in this case, as the ACK/NACK packet needs to be only one flit long. Even with this
optimization, we found that total power consumption increases by 10–15% due to
this overhead.

(b) at higher error rates, the network traffic increases due to retransmission of
packets. However, even at flit error rates of 1%, we found that this increase has
much lower impact than the above case.

As the Ppacketsizeinc affects the schemes almost in a similar manner (as the ssf
needs code bits on each flit, while the ee scheme needs additional information for
packet identification, header flit protection, and packet code words) this has lesser
effect on deciding the choice of scheme.

The power overhead of the ssf scheme is represented by:

Poverhead_ssf =
∑

∀ NIs

(inj_rate × Pcrce)

+
∑

∀ switches

(
sw_traf × (

(2Nl + 1) × Psrfb + Pcrcd
))

+ Ppacketsizeinc (9.2)

The power consumption of the switch retransmission buffers is the major compo-
nent of the overhead, and it depends linearly on the link lengths. The power overhead
of (ssp) and ec+ed schemes can be easily derived from the overhead equations
for ssf and ee schemes, respectively.

The network power consumption for the various error recovery schemes for the
16-core mesh network is presented in Figure 9.4. We assumed the link lengths
to be 2 cycles long. We performed simulations with uniform traffic pattern, with
each core injecting 0.1 flits/cycle. For the ee and ec+ed schemes, the number
of packet retransmission buffers needed to support the application performance
level were obtained from simulations (which turned out to be 2 packet buffers/NI).
For this experiment, we observe that the power consumption of switch-based error
detection schemes (ssf, ssp) is higher than end-to-end retransmission schemes
(ee, ec+ed). This is attributed to two factors: (a) the switch buffering needed for
retransmission in ssf, ssp schemes for this set-up is large compared to the packet
buffering needs of the ee, ec+ed schemes (b) due to uniform traffic pattern, the

9 Analysis of NoC Error Recovery Schemes 149

Fig. 9.4 Power consumption
of error recovery schemes
(0.1 flits/cycle)

traffic through each switch is more (as the average number of hops is more), thus
increasing ssf and ssp retransmission overhead. We examine these two points in
detail in the following subsection.

9.3.4 Effect of Buffering Requirements, Traffic Patterns and
Packet Size

One of the major power overheads for the schemes is the amount of packet and
switch buffering needed for retransmission. To see the impact of buffering require-
ments, we performed experiments on the mesh network, varying the number of
packet buffers and link lengths (and hence the number of retransmission buffers for
ssf scheme). The results are presented in Tables 9.2 and 9.3. For small link lengths
and when the packet buffering requirements of the ee scheme is large, the ssf
scheme is more power efficient than the ee scheme. On the other hand, when the
link lengths are large, ee scheme is more power efficient. But in the realm where
link lengths are short and packet buffering needs are small, it is difficult to make
generalization on the efficiency of the schemes. However, if the parameters (such
as link length, packet buffering needs, etc.) are obtained from user input and simu-
lations, they can be fed into the above methodology to compare the error recovery
schemes.

Another important parameter that affects the choice of the schemes is the ap-
plication traffic characteristics. To see the impact of various traffic scenarios, we
performed experiments varying the average hop delay for data transfer. The power
overhead of the ee and ssf schemes (assuming Npb = 2,Nl = 2) for the different
scenarios is shown in Figure 9.5. In the figure, average hop count of 2 corresponds
to neighbor traffic pattern and other hop delay numbers can be interpreted as repre-
senting other traffic patterns. As the average hop count for data transfer increases,
the power overhead of ssf increases rapidly, as more traffic passes through each

150 9 Analysis of NoC Error Recovery Schemes

Table 9.2 Packet buffers,
with Nl = 2 Npb ee

power (mW)

1 76

2 84

3 93

4 102

5 111

6 120

Table 9.3 Link length
Nl (cycles) ee, Npb = 2 ssf

power (mW) power (mW)

1 65.1 59.2

2 84.0 97.0

3 102.8 134.8

4 121.8 172.5

5 141.2 216.5

Fig. 9.5 Effect of hop count

switch, thereby consuming more power on the switch retransmission buffers. Thus,
for traffic flows that traverses longer number of hops or when the network size is
large, switch-to-switch retransmission schemes incur a large power penalty.

The power consumption of the flit-based (ssf) and packet-based (ssp) schemes
for varying number of flits/packet is presented in Figure 9.6. In this experiment, we
assume that the packet size is kept constant (256 bits) and we vary the number
of flits/packet. As the number of flits/packet increases, the buffering needs of the
packet-based scheme increases, hence the power consumption of the packet based
scheme increases rapidly. The flit-based scheme also incurs more power consump-

9 Analysis of NoC Error Recovery Schemes 151

Fig. 9.6 Flit vs. packet
schemes

Table 9.4 NoC area
Scheme Area mm2

orig 3.36

ee 4.41

ssf 5.76

ec+ed 5.32

tion with increasing flits/packet as the ratio of useful bits to overhead bits (i.e., the
CRC code bits) decreases as flits/packet increases. However, for reasonable flit-
sizes, we found that flit-based scheme is more power efficient than the packet based
scheme.

The area of network components (of switches and the additional hardware for er-
ror recovery) for various schemes for the 16-node mesh network (with Npb = 2 and
Nl = 2) is presented in Table 9.4. The area overhead of the schemes are comparable.

9.4 Summary

For the ee and ec+ed schemes, the major components of power overhead are
the packet buffering needs at the NIs and the increase in network traffic due to
ACK/NACK packets. For the ssf and ssp schemes, the major power overhead is
due to the retransmission buffers needed at the switches. Design methodologies that
trade-off application performance for the buffering needs would result in smaller
power overhead. Methods from queuing theory can be explored to design these
buffers. Methods that reduce the ACK/NACK traffic (such as multiple packets shar-
ing a single ACK/NACK signal) would be interesting to explore. Another avenue is
to explore mechanisms that reduce the control overhead associated with duplicate
packet reception in the ee scheme.

152 9 Analysis of NoC Error Recovery Schemes

From the experiments, we observe that for networks with long link lengths or
hop counts, end-to-end detection schemes are power efficient. Switch level detection
mechanisms are power-efficient when the link lengths are small and when the end-
to-end scheme needs large packet buffering at the NIs. At low error rates, the average
latencies incurred in all the schemes are similar. At higher error rates, a hybrid error
detection and correction mechanism has higher performance than other schemes.
As the ee scheme uses a subset of the hardware resources used for the ec+ed
scheme, depending on the error rates prevailing in the system, the error correction
circuitry can be selectively switched on/off. For hierarchical networks, switch based
error control can be implemented for local communication and end-to-end error
control can be implemented for global communication (that traverses longer links
and hop counts).

Chapter 10
Fault-Tolerant Route Generation

In this chapter, we present design level support for handling temporary and perma-
nent errors in the NoCs. We present routing mechanisms that achieve an application-
specific reliability level against temporary and permanent failures.

The routing scheme used in the NoC can be either static or dynamic in nature.
In static routing, one or more paths are selected for the traffic flows in the NoC at
design time.

In the case of dynamic routing, the paths are selected based on the current traf-
fic characteristics of the network. Due to its simplicity and the fact that application
traffic can be well characterized for most SoC designs, static routing is widely em-
ployed for NoCs [43]. When compared to static single-path routing, the static mul-
tipath routing scheme improves path diversity, thereby minimizing network conges-
tion and traffic bottlenecks. When the NoC is predesigned, with the NoC having a
fixed operating frequency, data width, and hence bandwidth (bandwidth available
on each network link is the product of the link data width and the NoC operating
frequency), reducing congestion results in improved network performance.

For most SoC designs, the NoC operating frequency can be set to match the ap-
plication requirements. In this case, reducing the traffic bottlenecks leads to lower
required NoC operating frequency, as traffic is spread evenly in the network, thereby
reducing the peak link bandwidth needs. A reduced operating frequency translates
to a lower power consumption in the NoC. As an example, consider a MPEG video
application mapped onto a 4 × 3 mesh NoC. Detailed analysis of the application
and the performance of traditional single path schemes and the proposed multipath
scheme are presented later in this chapter. When the NoC operating frequency for
the schemes is set so that both schemes provide the same performance level (same
average latency for traffic streams), the multipath scheme results in 35% reduc-
tion in network operating frequency, leading to 22.22% reduction in network power
consumption (after accounting for the overhead involved in the multipath scheme).
Another important property of the multipath routing strategy is that there is spatial
redundancy for transporting a packet in the on-chip network. A packet can be sent
across multiple paths for achieving resiliency against transient or permanent failures
in the network links.

Many of today’s NoC architectures are based on static single path routing. This
is because with multipath routing, packets can reach the destination in an out-of-
order fashion due to the difference in path lengths or due to difference in conges-
tion levels on the paths. For many applications, such out-of-order packet delivery
is not acceptable and packet reordering is needed at the receivers. As an exam-
ple, in chip multiprocessor applications for maintaining coherency and consistency,
packets reaching the destination need to be in-order. In video and other multimedia

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

153

154 10 Fault-Tolerant Route Generation

Table 10.1 Re-order buffer
overhead Design Area Power

(sq mm) (mW)

1. Base NoC 1.04 183.75

2. 2 buffers/core 1.14 201.02

3. 10 buffers/core 1.65 281.25

applications, packet ordering needs to be maintained for displays and for many of
the processing blocks in the application.

With multipath routing, packet reorder buffers can be used at the receiver to re-
order the arriving packets. However, the reorder buffers have large area and power
overhead and deterministically choosing the size of them is infeasible in practice. In
Table 10.1, the area and power consumption of a 4 × 3 mesh NoC (the area-power
values include the area-power of the switches, links, Network Interfaces (NIs)) with
different number of packet buffers in the receiving NIs is presented. The network
operating frequency is assumed to be 500 MHz with 50% switching activity at the
subcomponents. The flit size is assumed to be 16 bits, with the base switch/NI hav-
ing 4 flit queuing buffers at each output. The base NoC component area, power
values are obtained from synthesizing the component designs that are based on the
architecture presented in Chapter 2. As seen from the table, a NoC design with 10
packet reorder buffers/core has 59% higher NoC area and 43% higher NoC power
consumption when compared to the base NoC without reorder buffers. Another im-
portant point is that at design time it is not possible to size the reorder buffers to
prevent packets from being dropped at the receiver. As an example, if a packet trav-
els a congested route and takes an arbitrarily long time to reach the destination,
several subsequent packets that take a different route can reach the destination be-
fore this packet. In this case, the reorder buffers, unless they have infinite storage
capacity, can be full for a particular scenario and can no longer receive packets. This
leads to dropping of packets to recover from the situation and requires end-to-end
ACK/NACK protocols for resuming the transaction.

End-to-end ACK/NACK protocols are used in most macronetworks for error re-
covery, and in such networks these protocols are extended to handle this packet
buffering problem as well [112]. However, such protocols have significant overhead
in terms of network resource usage and congestion. Thus, they are not commonly
used in the NoC domain [112, 130]. Moreover, the performance penalty to recover
from such a situation can be very high and most applications cannot tolerate such
variations in performance. This motivates the need to find efficient solutions to the
packet reordering problem for the on-chip domain.

In this chapter, we present a multipath routing strategy with guaranteed in-order
packet delivery (without packet dropping) for on-chip networks [19]. It is based on
the idea of routing packets on nonintersecting paths and re-building packet order at
path reconvergent nodes. By using an efficient flow control mechanism, the routing
strategy avoids the packet dropping situation that arises in the traditional multipath
routing schemes. We present algorithms to find the set of paths in a NoC topology

10 Fault-Tolerant Route Generation 155

to support the routing strategy and present a method to split the application traffic
across the paths to obtain a network with minimum power consumption. We explore
the use of temporal and spatial redundancy during multipath routing to provide re-
silience against temporary and permanent errors in the NoC links. When sending
multiple copies of a packet, it is important to achieve the required reliability level for
packet delivery with minimum data replication. We integrate reliability constraints
in the multipath design methods to provide a reliable NoC operation with the least
increase in network traffic.

Experiments on several benchmarks show large power savings for the proposed
scheme when compared to traditional single-path schemes and multi-path schemes
with reorder buffers. The area overhead of the proposed scheme is small. Hence, it
is practical to be used in the on-chip domain.

10.1 Multi-Path Routing with In-Order Delivery

In this section, we present the conceptual idea of the multipath routing strategy with
in-order packet delivery. For analysis purposes, we define the NoC topology by the
NoC topology graph.

Definition 23 The topology graph is a directed graph G(V,E) with each vertex
vk ∈ V representing a switch/NI in the topology and the directed link (or edge)
el ∈ E representing a direct communication between two switches/NIs. We repre-
sent the traffic flow between a pair of cores in the NoC as a commodity i, with the
source switch/NI of the commodity being si , and the destination of the commodity
being di . Let the total number of commodities be I . The rate of traffic transferred
by commodity i is represented by ri .

The traffic rate for each commodity (ri) can either be the average rate of commu-
nication between the source and destination of the commodity or can be obtained
in an efficient manner that considers the Quality-of-Service (QoS) provisions for the
application. We define the paths for the traffic flow of a commodity as follows.

Definition 24 Let the set SPi represent the set of all paths for the commodity i,
∀i ∈ 1, . . . , I . Let P

j
i be an element of SPi , ∀j ∈ 1, . . . , |SPi |. Thus, P

j
i represents

a single path from the source to destination for commodity i. Each path P
j
i consists

of a set of links.

We define a set of paths to be nonintersecting if the paths originate from the same
source vertex, but do not intersect each other in the network, except at the destination
vertex.Consider packets that are routed on the two non-intersecting paths. Note that
with worm-hole flow control [94], packets of a commodity on a particular path are
in-order at all time instances. However, packets on the two different paths can be
out-of-order.

156 10 Fault-Tolerant Route Generation

To implement the reordering mechanism at network reconvergent nodes, the fol-
lowing architectural changes to the switches/NIs of the NoC are required (shown in
Figure 10.1). We assume that the packet is divided into multiple flow control units
called flits. The first flit of the packet (known as the header flit) has the routing in-
formation for the packet. To support multi-path routing, individual packet identifiers
are used for packets belonging to a single commodity. At the reconvergent switch,
we use a look-up table to store the identifier of the next packet to be received for the
commodity. Initially (when the NoC is reset), the identifiers in the look-up tables are
set to 1 for all the commodities. When packets arrive at the input of the reconver-
gent switch, the identifier of the packet is compared with the corresponding look-up
table entry. If the identifiers match, the packet is granted arbitration and the look-up
table identifier value for this commodity is incremented by 1. If the identifiers do
not match, then this is an out-of-order packet and access to the output is not granted
by the arbiter circuit, and it remains at the input buffer.

As the packets on a particular path are in-order, the mechanism only stalls pack-
ets that would also be out-of-order if they reach the switch. Due to the disjoint
property of the paths reaching the switch, the actual packet (matching the identifier
on the look-up table) that needs to be received by the switch is on a different path.
As a result, such a stalling mechanism (integrated with credit-based or on-off flow
control mechanisms [94]) does not lead to packet dropping, which is encountered
in traditional schemes when the reorder buffers at the receivers are full. Note that
routing-dependent deadlocks that can occur in the network can be avoided using
virtual channel flow control [94].

To avoid deadlocks, when more than one commodity converges at the same
switch/NI, we may need to use separate input queues for each commodity. Also,
in such a scheme, the waiting packets do not block other packets that are traversing
the switch.

10.2 Path Selection Algorithm

In this section, we describe the algorithms that can be used to efficiently find non-
intersecting paths for each commodity of the NoC. As, in general, the number of
paths between a source and destination vertex of a graph is exponential, we present
heuristic algorithms to compute the paths [95]. For each commodity, we first find
the set of all possible paths for the commodity. Then from the chosen paths, we find
those paths that are nonintersecting. We use such a two-phase approach to achieve
fast heuristic solutions to tackle the exponential problem complexity.

Consider a source vertex si (which corresponds to the source core/NI that sends
a packet) and destination vertex di of a commodity i. Algorithm 7 is used to find
the set of possible paths between the two vertices. The Example 10 presented below
illustrates how the working algorithm works. The objective of the algorithm is to
find maximum number of paths possible, so that large path diversity is available for
the traffic flow. In the algorithm, after finding a path, we remove one of the edges of
the path so that the same path is not considered in further iterations. As most NoC

10 Fault-Tolerant Route Generation 157

F
ig

.1
0.

1
Sw

itc
h

D
es

ig
n

to
su

pp
or

tm
ul

tip
at

h
ro

ut
in

g
w

ith
in

-o
rd

er
pa

ck
et

de
liv

er
y

158 10 Fault-Tolerant Route Generation

Fig. 10.2 Path selection and
compatibility graph
generation

vertices have only a small degree, we remove one of the middle edges (instead of
the edges at the source and destination), because it helps in increasing the number
of paths found. As in each iteration of the algorithm we remove an edge, the number
of iterations (and hence the maximum number of paths found) is at most |E| for one
pair of source and destination vertices.

Example 10 Consider the NoC topology graph presented in Figure 10.2(a). The ver-
tices represent switches/NIs in the NoC. Let v1 and v7 be the source and destination
vertices of a traffic flow. In the first iteration of the algorithm, one of the paths (e.g.,
the path v1 − v2 − v3 − v7) is chosen and the middle edge (edge from v2 − v3) is
removed. In the next iteration of the algorithm, another path (v1 − v4 − v3 − v7)
is chosen and the edge v4 − v3 is removed. In the last iteration v1 − v5 − v6 − v7
is chosen and the edge v5 − 6 is removed, after which no more paths exist from v1
to v7. Note that if we had removed the edge v1 − v2 or v3 − v7 in the first iteration,
we would have obtained only two paths (instead of three paths).

The paths resulting from the algorithm may converge at one or more vertices. In
order to obtain nonintersecting paths, we form a compatibility graph, with each ver-
tex of the graph representing a path. An edge between two vertices in the graph
implies that the corresponding paths do not intersect. An example compatibility
graph for the paths from Example 1 is shown in Figure 10.2(b). The objective is
to obtain the maximum number of nonintersecting paths from the set of paths. This
is equivalent to finding the maximum size clique1 in the compatibility graph, which
is a well-known NP-Hard problem [95]. We use a commonly used heuristic algo-
rithm for finding the maximum clique (refer Algorithm 8) [18]. The working of the
algorithm is illustrated in Example 2. We repeat the two algorithms for all the com-
modities in the NoC. When applying Algorithm 7 for each commodity, we start with
the original topology graph.

1Clique of a graph is a fully connected subgraph.

10 Fault-Tolerant Route Generation 159

Algorithm 7 Path selection algorithm for a single commodity
1. Choose a path from the source to destination of the commodity using Depth
First Search (DFS).
2. Remove one of the middle edges of the chosen path.
3. Repeat the above steps until there are no paths between the vertices.

Algorithm 8 Determining nonintersecting paths for a single commodity
1. Build a compatibility graph for the paths and initialize the set MAX_CLIQUE
to NULL.
2. Add vertex with largest degree to MAX_CLIQUE.
3. From remaining vertices, choose vertex that is adjacent to all vertices in set
MAX_CLIQUE and add it to the set.
4. Repeat the above step until no more vertex can be added.

Example 11 The compatibility graph for the 3 paths from Example 10 is shown in
Figure 10.2(b). The vertex p1 represents the path v1 − v2 − v3 − v7, p2 represents
the path v1 − v4 − v3 − v7 and p3 represents the path v1 − v5 − v6 − v7. As the
paths v1 − v2 − v3 − v7 and v1 − v5 − v6 − v7 do not intersect each other, there
is an edge between p1 and p3 in the compatibility graph. Similarly, for the paths
v1−v4−v3−v7 and v1−v5−v6−v7, there is an edge between p2 and p3. There
are two maximum size cliques in the graph (formed by p1,p3 and p2,p3) and one
of them is arbitrarily chosen (say, p1,p3). Thus, the paths v1 − v2 − v3 − v7 and
v1 − v5 − v6 − v7 are used for the traffic flow between vertices v1 and v7.

The time complexity of each iteration in Algorithm 7 is dominated by the Depth-
First Search (DFS) procedure and is O(|E| + |V |) [95]. The number of iterations
is O(|E|). The time complexity of the maximum clique calculation step is O(|E|2).
The algorithms are repeated once for each commodity. Therefore, the run time of
the nonintersecting path finding algorithms is O(|I ||E|(|E| + |V |)). In practice, the
run-time of the algorithms is less than few minutes for all the experimental studies
we have performed.

In cases where we are interested in having as many minimum paths as possible,
we can modify the call to DFS in Algorithm 7 to a call to Dijkstra’s shortest path
algorithm, choosing shorter paths first. Then Algorithm 8 can also be modified to
first choose the minimum paths that are nonintersecting and then choosing nonmin-
imum paths that are nonintersecting with each other and with the chosen minimum
paths. Note that in situations where we only need few paths for each commodity (to
have small route look-up tables), we can select the needed number of paths from
the above algorithms. Similarly, for networks that require deadlock avoidance using
restricted routing functions, we can use turn models to select the paths [43, 94], with
only a marginal increase in the complexity of the presented algorithms.

160 10 Fault-Tolerant Route Generation

10.3 Multipath Traffic Splitting

Once we have obtained the set of nonintersecting paths for each commodity, we
need to determine the amount of flow of each commodity across the paths that min-
imizes congestion. Then we can assign probability values for each path of every
commodity, based on the traffic flow across that path for the commodity. At run
time, we can choose the path for each packet from the set of paths based on the
probability values assigned to them. To achieve this traffic splitting, we use a Linear
Programming (LP) based method to solve the corresponding multicommodity flow
problem. The objective of the LP is to minimize the maximum traffic on each link
of the NoC topology, satisfying the bandwidth constraints on the links and routing
the traffic of all the commodities in the NoC. The LP is represented by the following
set of equations:

min t (10.1)

s.t.
∑

∀j∈1,...,|SPi |
f

j
i = ri ∀i (10.2)

∑

∀i

∑

∀j,el∈P
j
i

f
j
i = flowel

∀el (10.3)

flowel
≤ bandwidthel

∀el (10.4)

flowel
≤ t ∀el ∈ P

j
i , ∀i, j (10.5)

f
j
i ≥ 0 (10.6)

In the objective function, we use the variable t to represent the maximum flow on
any link in the NoC (refer to equations (10.1) and (10.5)). Equation (10.2) represents
the constraint that the NoC has to satisfy the traffic flow for each commodity, with
the variable f

j
i representing the traffic flow on the path P

j
i of commodity i. The

flow on each link of the NoC and the bandwidth constraints are represented by
equations (10.3) and (10.4). Other objectives (such as minimizing the sum of traffic
flow on the links) and constraints (like latency constraints for each commodity) can
also be used in the LP. As an example, the latency constraints for each commodity
can be represented by the following equation:

∑

∀j∈1,...,|SPi |

(
f

j
i × lj

)/ ∑

∀j∈1,...,|SPi |
f

j
i ≤ di (10.7)

where di is the hop delay constraint for commodity i and lj is the hop delay of
path j . Once the flows on each path of a commodity are obtained, we can order or
assign probability values to the paths based on the corresponding flows.

10 Fault-Tolerant Route Generation 161

10.4 Fault-Tolerance Support with Multipath Routing

The errors that occur on the NoC links can be broadly classified into two categories:
transient and permanent errors.

10.4.1 Resilience Against Transient Errors

To recover from transient errors, error detection or correction schemes can be uti-
lized in the on-chip network [130]. Forward error correcting codes such as Ham-
ming codes can be used to correct single-bit errors at the receiving NI. However,
the area-power overhead of the encoders, decoders, and control wires for such error
correcting schemes increases rapidly with the number of bit errors to be corrected.
In practice, it is infeasible to apply forward error correcting codes to correct multi-
bit errors [130]. To recover from such multibit errors, switch-to-switch (link-level),
or end-to-end error detection and retransmission of data can be performed. This is
applicable to normal data packets. However, control packets such as interrupts carry
critical information that need to meet real-time requirements. Using retransmission,
mechanisms can have significant latency penalty that would be unacceptable to meet
the real-time requirements of critical packets. Error resiliency for such critical pack-
ets can be achieved by sending multiple copies of the packets across one or more
paths. At the receiving switch/NI, the error detection circuitry can check the packets
for errors and can accept an error free packet. When sending multiple copies of a
packet, it is important to achieve the required reliability level for packet delivery
with minimum data replication. We formulate the mathematical models for the re-
liability constraints and consider them in the LP formulation presented in previous
section, as follows.

Definition 25 Let the transient Bit-Error Rate (BER) encountered in crossing a path
with maximum number of hops in the NoC be βt . Let the bit-width of the link (also
equal to the flit-width) be W .

The maximum probability of a single-bit error when a flit reaches the destination
is given by:

P(Single-bit error in a flit) = CW
1 × β1

t × (1 − βt)
W−1 (10.8)

That is, any one of the W bits can have an error, while the other bits should be
error free.

We assume a single-bit error correcting Hamming code is used to recover from
single-bit errors in the critical packets and packet duplication is used to recover from
multibit errors. The probability of having two or more errors in a flit received at the
receiving NI is given by

P(≥2 errors) = γt =
W∑

k=2

CW
k × βk

t × (1 − βt)
W−k (10.9)

162 10 Fault-Tolerant Route Generation

We assume that the error rates on the multiple copies of a flit are statistically
independent in nature, which is true for many transient noise sources such as soft
errors (for those transient errors for which such statistical independence cannot be
assumed, we can apply the method for recovering from permanent failures presented
later in this section). When a flit is transmitted nt times, the probability of having
two or more errors in all the flits is given by

θt = γ
nt
t (10.10)

As in earlier works [126–130], we assume that an undetected or uncorrected er-
ror causes the entire system to crash. The objective is to make sure that the packets
received at the destination have a very low probability of undetected/uncorrected
errors, ensuring the system operates for a pre-determined Mean Time To Failure
(MTFF) of few years. The acceptable residual flit error-rate, defined as the proba-
bility of one or more errors on a flit that can be undetected by the receiver is given
by the following equation:

Errres = Tcycle/(MTTF × Nc × inj) (10.11)

where Tcycle is the cycle time of the NoC, Nc is the number of cores in the system
and inj is the average flit injection rate per core. As an example, for 500 MHz system
with 12 cores, with an average injection rate of 0.1 flits/core and MTTF of 5 years,
the Errres value is 1.07 × 10−17. Each critical packet should be duplicated as many
times as necessary to make the θt value to be greater than the Errres value, i.e.,

θt = γ
nt
t ≥ Errres

i.e., nt ≥ ln(Errres)/ ln(γt)

The minimum number of times the critical packets should be replicated to satisfy
the reliability constraints is given by

nt = ⌈
ln(Errres)/ ln(γt)

⌉
(10.12)

To consider the replication mechanism in the LP, the traffic rates of the critical
commodities are multiplied by nt and equation (10.2) is modified for such com-
modities as follows:

∑

∀j∈1,...,|SPi |
f

j
i = nt × ri ∀i, critical (10.13)

10.4.2 Resilience Against Permanent Errors

To recover from permanent link failures, packets need to be sent across multiple
nonintersecting paths. The nonintersecting nature of the paths makes sure that a

10 Fault-Tolerant Route Generation 163

link failure on one path does not affect the packets that are transmitted on the other
paths. As in the transient error recovery case, the critical packets can be sent across
multiple paths. For noncritical packets, we assume that hardware mechanisms such
as presented in [17] exist to detect and inform the sender of a permanent link failure
in a path. Then the sender does not consider the faulty path for further routing and
retransmits the lost flits across other nonintersecting paths. The probability of a path
failure in the NoC is given by

P(path failure) = γp =
W∑

k=1

CW
k × βk

p × (1 − βp)W−k (10.14)

where βp is the maximum permanent bit-error rate of any path in the NoC.
The maximum number of permanent path failures for each commodity (denoted

by np) can be obtained similar to the derivation of nt , and is given by

np = ⌈
ln(Errres)/ ln(γp)

⌉
(10.15)

Let the total number of paths for a commodity i be denoted by ntot,i . Once the
number of possible path failures is obtained, we have to model the system such that
for each commodity, any set of (ntot,i − np) paths should be able to support the
traffic demands of the commodity. Thus, even when np paths fail, the set of other
paths would be able to handle the traffic demands of the commodity and proper
system operation would be ensured. We add a set of ntot,i !/(np! × (ntot,i − np)!)
linear constraints in place of equation (10.2) for each commodity in the LP, with
each constraint representing the fact that the traffic on (ntot,i − np) paths can handle
the traffic demands of the commodity. As an example, when ntot,i is 3 and np is 1
(which means that any 1 path can fail from the set of 3 paths) for a commodity i,
we need to add the following 3 constraints:

f 1
i + f 2

i ≥ ri

f 2
i + f 3

i ≥ ri

f 1
i + f 3

i ≥ ri

Thus, the paths of each commodity can support the failure of np paths for the
commodity, provided more than np paths exist. When we introduce these additional
linear constraints, the impact on the run-time of the LP is small (for the experiments,
we did not observe any noticeable delay in the run-time). This is due to the fact that
the number of paths available for each commodity is usually small (less than 4
or 5), and hence only a few tens of additional constraints are introduced for each
commodity. Note that we can modify the mapping procedures to ensure that each
commodity has more than np paths available for data transfer. In cases where the
mapping procedure cannot produce more than np paths for some commodities, we
can introduce additional links between switches to get such additional paths for the
commodity. Modifying the NoC mapping and topology design processes to achieve
these effects is beyond the scope of this chapter.

164 10 Fault-Tolerant Route Generation

10.5 Simulation Results

10.5.1 Area, Power and Timing Overhead

The estimated power overhead (based on gate count and synthesis results for
switches/NIs) at the switches/NIs to support the multipath routing scheme for the
4 × 3 mesh network considered earlier (in Table 10.1) is found to be 18.09 mW,
which is around 5% of the base NoC power consumption. For the power estimation,
without loss of generality, we assume that 8 bits are used for representing the source
and destination addresses and 8-bit packet identifiers are utilized. The power over-
head accounts for the look-up tables and the combinational logic associated with
multipath routing scheme. The numbers assume a 500 MHz operating frequency
for the network. The estimated area overhead (from gate and memory cell count)
for the multipath routing scheme is low (less than 5% of the NoC component area).
The maximum possible frequency estimate of the switch design with support for the
multipath routing tables is above 500 MHz.

10.5.2 Case Study: MPEG Decoder

We assume that the tasks of the MPEG application are assigned to proces-
sor/memory cores and the best mapping (minimizing the average communication
hop delay) onto a mesh network is obtained using the SUNMAP tool (presented in
Chapter 2). The communication between the various cores and the resulting mapped
NoC are presented in Figures 10.3 and 10.4. The various paths obtained using the al-
gorithms presented earlier, for some of the commodities, are presented in Table 10.2.
Applying the LP procedure to split the traffic across the obtained paths results in
35% reduction in the bandwidth requirements for the application when compared to
single-path routing (both dimension-ordered and minimum-path routing). The band-
width savings translates to 35% reduction in the required NoC operating frequency.
For 16-bit link data width, the multipath routing requires 300 MHz frequency for
the NoC to support the application traffic, while the single-path routing schemes re-
quire a NoC frequency of 405 MHz. The NoC frequency reduction leads to 22.22%
reduction in power consumption of the NoC for the multi-path scheme compared
to single-path schemes, after accounting for the power overhead of the multipath
scheme. The average packet latencies incurred for the MPEG NoC for dimension
ordered (Dim), minimum path (Min) and the proposed multipath (Multi) strategy
for the MPEG NoC is presented in Figure 10.5(a). The simulations are performed
on a flit-accurate NoC simulator designed in C++. The multi-path routing strat-
egy results in reduced frequency requirements to achieve the same latency as the
single-path schemes for a large part of the design space.

When compared to the multipath routing scheme with re-order buffers (10 packet
buffers/receiver), the current scheme results in 28.25% reduction in network power
consumption.

10 Fault-Tolerant Route Generation 165

Fig. 10.3 A MPEG decoder
application

Fig. 10.4 Mapped onto a
mesh NoC. The edges of the
mesh are numbered

Table 10.2 Sample paths
Comm. Source Dest. Paths

(edges traversed)

1 au sdram 32–12, 10–29

2 mcpu sdram 12, 23–10–29, 33–14–21

3 upsamp sram2 27, 3–30–13

4 risc sram2 19, 7–22–13

10.5.3 Comparisons with Single-Path Routing

The network power consumption for the various routing schemes for different ap-
plications is presented in Figure 10.5(b). The numbers are normalized with respect
to the power consumption of dimension-ordered routing. We use several bench-
mark applications for comparison: Video Object Plane Decoder (VOPD-mapped
onto 12 cores), MPEG decoder (MPEG-12 cores), Multi-Window Display applica-
tion (MWD-12 cores) and Picture-in-Picture (PIP-8 cores) application. Without loss
of generality, we assume that the applications are mapped onto mesh topologies, al-
though the multipath routing strategy can be used for any topology. By using the
proposed routing scheme, on average we obtain 33.5% and 27.52% power savings
compared to the dimension ordered and minimum path routing, respectively. The to-
tal run time for applying the proposed methodology (includes the run time for path
selection algorithms for all commodities and for solving the resulting LP) is less
than a few minutes for all the benchmarks, when run on a 1 GHz Sun workstation.

166 10 Fault-Tolerant Route Generation

Fig. 10.5 (a) Performance of routing schemes for MPEG NoC. (b), (c) Effect of routing and
fault-tolerance on NoC power consumption

10.5.4 Effect of Fault-Tolerance Support

The amount of power overhead incurred in achieving fault-tolerance against tempo-
rary errors depends on the transient bit-error rate (βt) of each link and the amount
of data that is critical and needs replication. The effect of both factors on power
consumption for the MPEG decoder NoC is presented in Figure 10.5(c). The power
consumption numbers are normalized with respect to the base NoC power consump-
tion (when no fault-tolerance support is provided). As the amount of critical traffic
increases, the power overhead of packet replication is significant. Also, as the bit-
error rate of the NoC increases (higher BER value in the figure, which imply a higher
probability of bit-errors happening in the NoC), the amount of power overhead in-
creases. We found that for all BER values lower than or equal to 1e−6, having a
single duplicate for each packet was sufficient to provide the required MTTF of
5 years. Adding support for resiliency against a single-path permanent failure for

10 Fault-Tolerant Route Generation 167

each commodity of the MPEG NoC resulted in a 2.33× increase in power con-
sumption of the base NoC.

10.6 Summary

In this chapter, we have presented a multipath routing strategy that guarantees in-
order packet delivery at the receiver. We introduced a methodology to find paths
for the routing strategy and to split the application traffic across the paths to obtain
a network operation with minimum power consumption. With technology scaling,
reliable operation of on-chip wires is also rapidly deteriorating and various transient
and permanent errors can affect them. With the proposed multipath routing strategy,
we explored the use of spatial and temporal redundancy to tolerate transient as well
as permanent errors occurring on the NoC links. The proposed method results in
large NoC power savings for several SoC designs when compared to traditional
single-path systems.

Chapter 11
NoC Support for Reliable On-Chip Memories

One of the key elements in MPSoCs that are affected by variability in sub-micron
technologies are on-chip memories [142]. The on-chip memories are especially sus-
ceptible to Single Event Upsets (SEUs) such as soft errors, as the transient noise
sources can flip the bits in the memory cells. Since the memories store the instruc-
tions and data that are used by the processors, having permanent or temporary fail-
ures in memories can result in complete failure of the system. Current memories
already include extensive mechanisms to correct transient single-bit errors, e.g.,
by using error-correcting codes such as Hamming code [143] in the memory ar-
rays. However, these mechanisms are expensive and the overhead in area, power,
and delay to be implemented massively inside memories to automatically recover
from multi-bit errors would be very high [142]. Hence, suitable system-level sup-
port to provide efficient fault-tolerant mechanisms for memories will be mandatory
to ensure proper operation of future MPSoC designs.

From the hardware point of view, the use of NoCs helps the designer to over-
come the reliability issues of future technologies. The high flexibility of NoCs al-
lows the designer to add redundant cores in the same chip (e.g., processing ele-
ments, backup memories) without largely increasing the design complexity. From
the software point of view, the type of applications that will be present in future
MPSoC designs are various multimedia services, such as scalable video rendering,
video-games, etc. In order to provide the required reliability level for the system,
the characteristics of these applications need to be studied in detail.

As a major contribution of this chapter,1 we address the design of a reliable on-
chip memory subsystem. The key idea of the proposed approach is to automatically
keep backup copies of critical data on a reliable memory; upon a fault event, data is
transparently fetched from the backup copy in hardware, without any software in-
tervention. To achieve this, we present a novel hardware solution that utilizes NoCs
to provide a scalable, efficient and transparent mechanism for fault tolerance. At the
software level, we characterize the application data into two different types: critical
and non-critical. We show that for many multimedia applications, for proper system
operation, we only need to back up the critical data (and the instructions), which is
a small fraction of the total. We validate this by presenting case studies on two real-
life multimedia applications. We handle two kinds of faults in the memories: inter-
mittent and permanent. When a permanent or intermittent fault occurs on the main
memory, the NoC is dynamically reconfigured to switch all critical transactions to
the backup memory. For an intermittent failure, when the main memory recovers
from the failure, the NoC switches back all transactions to the main memory.

1This chapter is primarily based on the work by Dr. Federico Angiolini.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

169

170 11 NoC Support for Reliable On-Chip Memories

The use of NoCs to provide fault tolerance has several implications. First, we
achieve a modular and scalable design. Thus, backup devices can be added to ex-
isting designs without increasing the design complexity. It also allows us to add
communication bandwidth where needed in the chip, so that performance bottle-
necks due to replicated traffic is minimized. Second, we are able to provide dy-
namic fault tolerance support that is decoupled from the software. This implies that
the processors are unaware of the memory failures. Thus, for reliability support,
only a limited effort by the application designer is required. Third, the NoC para-
digm makes it very easy to place the main and backup memories far away in the
chip floorplan; this is a key point to counter failures due to phenomena such as ther-
mal hot-spots. Finally, the NoC architecture enables the decoupling of the frequency
of the interconnect from those of the attached cores, allowing for clocking backup
memories at a lower frequency. Thus, we can use backup memories that are slower
and hence more reliable than the main memories, without additional components
for clock conversion.

We implement the proposed fault tolerance mechanism on top of the existing
NoC platform and integrate it within the Netchip tool flow (presented in Chapter 2).
We perform experiments on realistic multimedia applications, which show that the
performance penalty in adding the fault tolerance support is negligible. We present
several experiments to explore various parameters that impact the performance and
area overhead of the fault tolerance mechanism. We synthesize the additional hard-
ware components that are added in the NoC to provide the fault tolerance support.
The silicon overhead is less than 10% the area of an extra backup memory bank
itself (assuming a 32 kB size), which represents the baseline requirement for any
replication-based fault tolerance strategy.

11.1 Analysis of Multimedia Software

New multimedia applications cover a wide range of functionality (video process-
ing, video conferencing, games, etc.); one of their main common features is that
they process large amounts of incoming data in a streaming-based way (e.g., a
continuous flow of frames). We can observe that certain parts of these streams
are essential to produce a correct output, while others are not so critical and
only partially affect the deployed quality to the user. In many multimedia appli-
cations, it is possible to distinguish critical from non-critical data because each
type is stored in different classes and variables within the applications. Let us
briefly illustrate these characteristics in the implementation of a real-life multi-
media application that is used as one of the case studies in Section 11.4, i.e., an
MPEG-4 Video Texture Coder (VTC). VTC is the part of the MPEG4 standard
that deals with still texture object decoding. It is a wavelet transform coder, which
can be seen as a set of filter-banks [144] sent in a stream of packets. Each packet
represents a portion of an image in different subbands, i.e., at different resolu-
tions.

11 NoC Support for Reliable On-Chip Memories 171

Fig. 11.1 Complete 2D wavelet decomposition in VTC for one image encoded with DC and 3 AC
levels

As an example, a portion of an input image with 3 levels of resolution is shown
in Figure 11.1. As this figure depicts, the first packet of the stream includes the basic
elements of the image, but at low resolution. This part is called the DC SUBBAND

of the wavelet (top-left corner of Figure 11.1). If the data that represents the DC
subband is lost, the image cannot be reconstructed. As typical of critical data in
streaming applications, it is very small in size (few kBytes for 800 × 640 images)
and is stored in a dedicated variable and class within the VTC code.

The following packets of the stream are called AC OR SPATIAL LEVELS and
contain additional details about the image. They have a much larger size than the
DC subband, but they only refine the image represented by the DC subband. If data
representing these levels is lost, the user still sees an image, just at lower resolution.
Moreover, whenever a new frame arrives, the previous (faulty) picture is to be up-
dated with the newly received information. Hence, any low resolution output only
lasts a very limited amount of time.

From this example, we can derive fault tolerance requirements for the data set of
typical multimedia applications. Only a small subset of the data structures is critical
to the quality of output as perceived by the user, while most of the data set to be
processed is actually of little importance in this respect. Therefore, it is essential to
preserve correct copies only of the former data set, while faults in the latter may be
safely accepted.

172 11 NoC Support for Reliable On-Chip Memories

Fig. 11.2 General view of a NoC

11.2 Baseline SoC Architecture and Extensions

11.2.1 SoC Template Architecture

The reference SoC that we consider is composed of computation cores, a commu-
nication backbone implemented by means of the ×pipes NoC, and a set of system
memories.

A typical NoC is built around three main conceptual blocks: NETWORK INTER-
FACE (NI), SWITCH (also called router) and LINK (Figure 11.2). Network interfaces
perform protocol conversion from the native pin-out of IP cores to NoC packets;
routers deliver packets to their recipients; and finally, links connect the previous
blocks to each other, handling propagation delay issues. We modify the NoC archi-
tecture by extending its building blocks to support reliability-aware features.

For the reference system, we assume the availability of at least two specific
classes of memories: “error-detecting” and “reliable.” While not specifically de-
signed to prevent data corruption, error-detecting memories, which can be com-
monly found today, are at least capable of detecting such occurrences, for example,
by CRC codes, and notifying them to their controller. We also postulate the avail-
ability of memories with much higher reliability for backing up critical data. This
assumption is motivated by ad-hoc circuit level solutions and strengthened by three
design choices we enable for these memories: (i) they have a small capacity, (ii) they
are run at a lower-than-usual clock frequency (in this chapter, we assume one-half
that of regular memories), (iii) during typical system operation, they face a smaller
workload than regular memories.

We assume the existence of main memories having error detection capability;
normal SoC operation leverages upon them, including storage of critical and non-
critical data. We add smaller spare backup memories, featuring higher reliability, to

11 NoC Support for Reliable On-Chip Memories 173

hold shadow copies of critical data only. Each main memory requires the existence
of one such backup, although a single storage device can hold backups for multiple
main memories.

To identify the critical data set, we assume that the programmer defines the set of
variables to be backed up, and maps them to a specific memory address range. This
address range is then used to configure the NoC, either at design time or at runtime
during the boot of the system. The accesses to this particular memory region are
thereafter handled with the proposed schemes, improving the fault tolerance of the
MPSoC design. Application code is assumed to be a vital resource, too. Therefore,
instructions are always treated in the same way as the critical data; in the remainder
of the chapter, we will not mention this distinction for the sake of simplicity. Note
that the classification of data into critical and noncritical can also be done using
efficient compiler support. In this case, the user can define the critical data using
special macros and the compiler can map the data to a specific address range.

The size of the critical data set will depend on the application at hand, and is
impossible to predict in general. We aim this work at streaming applications, mostly
in the multimedia field, for which the amount of critical information can be safely
assumed to be small in percentage. These applications do however represent a sig-
nificant slice of the embedded device market.

11.2.2 Proposed Hardware Extensions

To implement the approach, we perform changes to the NoC building blocks. The
flexible packet-switching design of NoCs ensures that these changes are transparent
to the transport layer (switches and links), but NIs need to be made aware of fault
events. Two NIs exist natively: initiator NI (attached to a system master, such as a
processor) and target NI (attached to a system slave, such as a memory). Both follow
some connection protocol specification at the IP core side, such as OCP 2.0 [91], and
perform source routing by checking the target of the transaction against a routing
lookup table.

The target NI is devoted most of the attention, as can be seen by comparing Fig-
ure 11.3(a) (native) and Figure 11.3(b) (extended for reliability purposes). The origi-
nal target NI is still plugged to backup memories, while the extended version is used
for main memories. A plain target NI features an input request channel, where re-
quest transactions from system masters are conveyed, and an output response chan-
nel, where memory responses are packeted and pushed toward the NoC. A third
channel (redundancy channel) is now added in the extended target NI; this channel
is an output, and reinjects some of the request packets back again into the NoC.
By this arrangement, critical-data accesses to the memory (i.e., within a predefined
address range) can be forwarded to the backup storage element. Not all packets are
forwarded; during normal operation, that is until a fault is detected, only writes to
critical address regions follow this path. This ensures that the backup memory is
kept up to date with changes in critical data, but minimizes network traffic overhead

174 11 NoC Support for Reliable On-Chip Memories

Fig. 11.3 (a) Plain target NI architecture, (b) Extended target NI architecture

and increases reliability of the backup memory, which faces less workload than the
main device. Since the backup memory only receives write commands, it remains
silent, i.e., it does not send unneeded messages onto the NoC. This prevents con-
flicts such as two memories responding to the same processor request. As a result,
the flow of packets with the forwarding mechanism being active during normal op-
eration is depicted in Figure 11.4(a). The forwarding behavior is controlled by a
DISPATCHER block that sits in the middle of the NI and supervises input and output
packet flows. This block also takes care of flow control issues. For example, when
a packet has to go toward both the memory and the redundancy channel, and one of
them is busy, the dispatcher issues the proper stalls. For the purposes of packet for-
warding, we add an extra routing lookup table, which however consists of a single
entry since there is only one backup memory per each main memory.

The extended target NI also features an extra interrupt interface by the memory
side. Whenever a fault is detected, the memory can raise its interrupt wire. This

11 NoC Support for Reliable On-Chip Memories 175

Fig. 11.4 Handling of packet flow in the system. (a) Normal operation with backup, (b) First phase
of recovery for permanent and transient failures: read transaction handling upon fault occurrence,
(c) Final operation mode after recovery from permanent failure, and (d) Operation mode while a
transient failure is pending

triggers a change in the activity of the dispatcher, which responds by beginning to
forward critical read packets to the backup memory according to the extra routing
table entry. In this way, reads that would fail due to data corruption are instead

176 11 NoC Support for Reliable On-Chip Memories

transparently forwarded to the backup memory and safely handled (see Section 11.3
for more details). Critical writes continue to be forwarded, as they already were
before the fault occurrence.

The initiator NI is also extended in two ways. First, it checks all outgoing re-
quests for their target address. If the address falls in the specific range provided by
the application designer as storage of critical data, then a flag bit is set in the packet
header. This allows the dispatcher in the extended target NI to very easily decide
whether to forward packets or not. A second change in this NI involves an extra en-
try in its routing lookup table, and a very small amount of extra logic that checks the
header field of response packets. Like request packets, response packets contain a
SourceID field. This means that the initiator NI can detect whether a read request
it sent got a response from the intended slave or from a different one. As we will
show in this approach, upon a fault, critical reads receive responses from the backup
memory instead of the main one. Therefore, noticing a mismatch is an indirect in-
dicator of whether there was a fault in the main memory. This can trigger different
actions depending on the type of error that needs to be handled, as described in
Section 11.3.

11.3 Run-Time Fault Tolerant Schemes

Two types of errors can occur in on-chip memories of MPSoC designs, namely,
intermittent or permanent. We assume that the system is able to recognize transient
errors by detecting some known combination of parameters, either upon the error
event itself or even before any error appears. For example, a thermal sensor detecting
that a threshold overheating temperature has been surpassed may signal a “transient
error” condition before any real fault is observed. The “transient error” condition
would be deasserted once the temperature returns to acceptable levels. The same
prevention or detection principle could be applied to other electrical or functional
parameters that may indicate that a critical point of operation is being approached,
such as an increased delay in the toggling of some wires, or possibly the insertion
of more wait states by the memory before responding. In the case of highly fault
tolerant systems where the main memory is itself equipped with error correction (not
only detection) logic, any internal correction event could be pessimistically assumed
as a hint of a possible imminent failure; this hypothesis could be reversed after a
configurable period of time, once the isolated correction event can be safely assumed
to be an occasional glitch, or when the functionality of the main memory can be
somehow again assumed as reliable, e.g., thanks to some (self-)testing routine. Any
known-critical or unexpected events should however be treated by the system as
permanent faults, and accordingly handled.

In the following subsections, we describe how the proposed extensions can be
used to design schemes capable of handling both transient and permanent failures
in a way that is transparent to the software designer. As a common feature in both
cases, the backup memories do not contain any data at the beginning of the execution
and are filled at run-time by copying data from the coupled main memory. The
recovery process is carried on in two phases.

11 NoC Support for Reliable On-Chip Memories 177

11.3.1 Permanent Error Recovery Support

In the case of permanent errors, as soon as the error is identified, the recovery be-
gins. During the first phase, critical write operations continue to be forwarded to
the main memory as in normal operation (see Section 11.2.2), but the extended tar-
get NI now also starts diverting the read requests to the associated backup memory.
From this moment on, the backup memory, which had been silent, begins to gen-
erate responses as a reaction to the master reads. At the same time, requests being
diverted, the main memory stops replying to the initiator for accesses into the crit-
ical address range. Since NoC responses are sent to a device or another depending
on the SourceID field of request packets, and the diverted packets keep this field
unchanged, the backup memory automatically sends its reply to the system master
that had originally asked for it. This does not require any lookup conversion in the
NIs of the backup memories. Figure 11.4(b) shows the handling mechanism of a
read transaction upon a fault.

Since going through the main memory and then the backup memory to fetch
data is time consuming, the second phase of the recovery process for permanent
faults tries to minimize the performance impact of this three-way handling of crit-
ical reads. To this end, the extended initiator NI (Section 11.2.2) is able to iden-
tify whether the source of read responses is the main or the backup memory. The
first critical read after the fault occurrence triggers a mismatch detection, which in
turn forces the initiator NI to access a different entry within its routing lookup ta-
ble. Hence, all following memory reads within the critical address range are directly
sent to the backup memory after the fault. This clearly improves latencies during the
remainder of operations. The resulting flow of packets is shown in Figure 11.4(c).

It is worth to stress that the approach does not introduce any data coherency issue.
During normal operation, the forwarding of write transactions guarantees that criti-
cal data is always consistent among the main and backup memories. Writes are for-
warded just before hitting the main memory bank, not after having been performed;
in this way, a faulty main memory has no chance of polluting the backup copy of the
data. The contents of the backup memory are updated after a slight delay, but this
causes no issue as the sequence of packets is strictly maintained. Upon a fault oc-
currence, transactions are initially directed to the main memory, and only afterward,
when needed, are routed to the backup device; this arrangement avoids skipping
transactions and guarantees that all pending transactions (reads and/or writes) are
completed on the correct copy of the data. Therefore, proper functionality is strictly
maintained when introducing the extra storage bank.

Similarly, when adding the backup memory to the NoC, deadlock issues do not
arise given a proper design of the NoC routing scheme. In this respect, the NoC
designer must accommodate for one extra IP core and some extra routing paths
during the deadlock-free NoC mapping stage. Remarkably, under certain common
circumstances (such as X–Y routing on regular mesh topologies), no extra effort is
required to the designer at all. No specific traffic priority mechanisms are required
in the NoC, even though the designer may choose to prioritize some traffic flows
according to specific needs, as in any interconnect fabric.

178 11 NoC Support for Reliable On-Chip Memories

11.3.2 Intermittent Error Recovery Support

In the case of transient errors (e.g., due to overheating detection), the first phase
of the recovery process is the same as in the case of the permanent errors, namely,
the read transactions are automatically forwarded to the backup memory, which au-
tomatically responds to the initiator. However, the second phase differs due to the
nature of transient failures, where the main memory is supposed to recover com-
plete functionality at a certain moment in time. All traffic, including the critical one,
continues to be sent from the processor to the main memory. The extended target
NI, being aware that a fault condition is pending, diverts all critical reads toward
the backup memory, but let’s critical writes be performed toward both the main and
backup locations. When the main memory detects that it is able to return to normal
operation (e.g., after the temperature has returned to normal levels), it is allowed to
issue a different interrupt to indicate the new condition. The extended target NI at
this point resumes normal operation.

The main assumption in this approach is that updates to the critical data set in
main memory can be successfully performed even during the “transient fault” state.
This might be allowed, e.g., by choosing conservative temperature thresholds to as-
sert the fault warning. Otherwise, if this solution is not acceptable and the designer
does not want to consider the fault permanent, we assume that a higher-level pro-
tocol (e.g., MAC or Network layer) will transfer the safe backup copies of critical
data back to the main memory after its return to full functionality.

11.4 Experimental Results

To assess the validity of the approach, we employ two different benchmarks from
the multimedia domain. The first one is the MPEG-4 VTC application already de-
scribed in Section 11.1. As a second test, we use one of the subalgorithms of a 3D
Image Reconstruction algorithm [145], 3DR for short, where the relative displace-
ment between every two frames is used to reconstruct the third dimension. Similarly
to the VTC benchmark, the amount of critical data that stores control information
about the matching process (e.g., 160 kB for images of 640 × 480 pixels) is much
smaller than the overall input data per each 2-frame matching process (2 MB of
data at the same resolution), and it is stored in two data structures which are easily
identifiable by the application designer.

In the experiments, we run the 3DR and the VTC benchmarks on top of three
reliability-enhanced topologies, as shown in Figure 11.5. Both benchmarks are im-
plemented using 10 processing cores and a single main memory. The first topology
is a NoC crossbar, the second is a star, and the third is a mesh. The topologies and
benchmarks are chosen to illustrate different situations of performance penalty for
adding reliability support, since the applications demand different features. In fact,
3DR tends to saturate the main memory bandwidth, while VTC is less demanding.
The NoC is simulated within a cycle-true simulation environment. We clock the
NoCs at 900 MHz, twice the frequency of the cores and memories.

11 NoC Support for Reliable On-Chip Memories 179

Fig. 11.5 The three topologies under test: (a) crossbar, (b) star, and (c) mesh

11.4.1 Performance Studies

We run the benchmarks in five different setups. The first two are reference baselines,
the remaining ones represent the proposed scheme.

• Reference-Unreliable: The reference run is a system without reliability support at
all, where accesses are to a fast (450 MHz) main memory. No faults are supposed
to happen.

• Reference-Robust: we model the same system with a reliable main memory run-
ning at a lower frequency, therefore, minimizing error occurrences [141] and ac-
counting for the overhead of extra circuitry. System performance is obviously
impacted, but robust operation can be assumed.

• Proposed-Replication: We create a system with a fast main memory and deploy
a slow backup memory, but we do not yet inject any fault in the system. As a

180 11 NoC Support for Reliable On-Chip Memories

result, the overhead for the backup of critical data can be observed. We assume
the backup memory to be clocked at half the clock speed of regular memories, for
the same reasons outlined in the previous setup.

• Proposed-Permanent: We create a system with a fast main memory and deploy
a slow backup memory, then inject a permanent fault right at the beginning of
the simulation. This enables the evaluation of the impact of accessing the backup
copy of critical data.

• Proposed-Transient: We create a system with a fast main memory and deploy a
slow backup memory, then inject a transient fault right at the beginning of the
simulation, and never recover from it. This analysis helps to understand what
happens to system performance during the period where the main memory is
accessed first, but critical traffic needs to be rerouted to the backup memory.

Figure 11.6 reports performance, measured in completed transactions per second,
for all three topologies, both benchmarks and all five fault scenarios.

The system throughput of most of the scenarios is close, with Reference-Robust
being much worse than average and Proposed-Permanent performing much better,
at least in the 3DR case, than even the Reference-Unreliable scenario. We explain
these major effects by observing that both benchmarks, like most multimedia appli-
cations, place heavy demands in terms of memory bandwidth; this is a very logical
consequence of parallel computing on a 10-core system. In Reference-Robust the
available memory bandwidth is decreased to provide more reliability, which causes
performance to worsen dramatically. In the tests, VTC throughput drops by about
24% and 3DR by as much as 43%, since 3DR is even more demanding. For the
same reasons, the Proposed-Permanent scenario, where critical data is stored in a
separate device, actually guarantees a performance boost related to load balancing
among the two memories; the boost is barely 1% for VTC, but around 40% for 3DR,
which is more bandwidth-limited and more heavily accesses the memory regions
tagged as critical. Under less demanding applications, we expect Reference-Robust
to get closer to the reference system and Proposed-Permanent to perform more or
less on par with it.

The Proposed-Replication scenario exhibits a minimal penalty compared to the
unreliable case, since the traffic associated to shadowing of the critical writes is
well handled by the NoC. VTC rarely accesses critical addresses, so no overhead
is noticeable, while in 3DR the throughput decrease is of 1% to 9%, with the star
topology experiencing the worst congestion.

The Proposed-Transient case exhibits a performance level close to Reference-
Unreliable, because noncritical traffic behaves exactly as in the base scenario, but
several effects related to critical traffic have to be accounted for. On the one side,
critical traffic creates NoC congestion and incurs a latency overhead. On the other
hand, the main memory does not have to process critical reads, therefore the non-
critical transactions can be executed with less delay. In VTC, the overall balance
is roughly even. In 3DR, where a larger amount of critical reads (e.g., instruction
cache refills) takes place, the main memory benefits from large latency gains, boost-
ing performance.

11 NoC Support for Reliable On-Chip Memories 181

Fig. 11.6 Comparative performance of adding reliability support for (a, b, c) the VTC benchmark
on crossbar, star, and mesh topologies, respectively, (d, e, f) the 3DR benchmark on crossbar, star,
and mesh topologies, respectively

182 11 NoC Support for Reliable On-Chip Memories

Experimental results show that in order to improve system reliability, deploy-
ing a single highly fault tolerant main memory (Reference-Robust) may not be a
wise choice in terms of performance within complex multimedia systems. In the
proposed architecture, the main memory is left running at a high frequency, and
a slower secondary memory bank is added. This choice incurs minor throughput
overheads both during normal operation and after fault occurrences. These results
justify the feasibility of deploying the architecture even in throughput-constrained
environments.

The gains we outline for the Proposed-Permanent scenario suggest that always
mapping critical information to a separate reliable memory, without intermemory
transactions, may be a simpler yet efficient, due to load balancing, approach. How-
ever, such a choice does not improve reliability as much as the backup mechanism,
due to two main factors. First, having two copies of critical data is certainly more
reliable than having a single one. Second, using the main memory as the default
resource permits a lower workload for the backup memory during normal operation
(only write transactions need to be processed), which further increases its reliabil-
ity. Since the focus of this work is high fault tolerance, we feel that a redundant
data mapping is justified, and our aim is simply to verify that performance is not
seriously impacted as a result. Performance optimizations through reduction of lo-
cal congestion can, in any case, be achieved by the system designer by tuning the
memory hierarchy, which includes deploying multiple storage elements; these steps
can be taken in combination with the proposed approach, and are out of the scope
of this work.

11.4.2 Architectural Exploration of NoC Features

We extend the analysis to different NoC-based hardware architectures using the
same NoC backbone. We vary some parameters of the baseline topologies. First, we
modify the star topology of Figure 11.5(b) by attaching the backup memory beyond
a further dedicated switch. The total distance from the central hub is therefore of
two hops instead of one. In this way, we model backup memories further apart from
main memories in the chip floorplan, which improves tolerance in case of overheat-
ing. Performance is unchanged under the Reference scenarios, where the backup
memory is never accessed. In Proposed scenarios, where the backup storage is in
fact accessed, throughput worsens by less than 0.3%. This is because the latency
to go through an extra hop in the NoC is very small, provided there is limited con-
gestion as in this star topology. If the number of hops needed to reach the backup
memory is large enough to potentially affect latency, or if such hops suffer from
heavy congestion, the topology designer may want to add dedicated NoC links.

To test the dependency of performance on the buffer depth of the redundancy
channel, we try a sweep by setting this parameter within the extended target NI
from 3 to 6 stages. The results indicate that, both in VTC and 3DR, deep FIFOs only
improve system performance by less than 2%, which indicates that large buffering
is not mandatory in the extended target NI. Hence, area can be saved.

11 NoC Support for Reliable On-Chip Memories 183

To validate the effectiveness of the routing shortcut that is enabled in the initiator
NI after permanent faults, we measure the latency of two different transactions on
the star topology: (1) a critical read going from the core to a faulty main memory,
bouncing toward the backup memory, and from there to the processor again and
(2) a read directly toward the backup memory after the processor has updated its
internal lookup tables. The minimum latency is cut from 78 to 68 (−13%) clock
cycles, and the average one goes down from 103 to 95 (−8%). Although this metric
is topology-dependent, it shows the advantage of updating the routing decisions of
the initiator upon the occurrence of permanent faults.

11.4.3 Effects of Varying Percentages of Critical Data

An important topic is the exploration of different reliability/performance trade-offs
according to the amount of variables that are considered critical: the more data needs
to be backed up, the larger the safe backup memories need to be. Since backup mem-
ories are supposed to be reliable also thanks to being smaller, slower, and relatively
little accessed, the effect of having large backups upon reliability is unclear. To
shed some light onto the performance side of the issue, we analyze the behavior
under different rates of possible critical vs. noncritical data in Figure 11.7. The star
topology is taken as an example. In the plots, the Reference-Unreliable bar can be
assumed to represent an ideal case where no data is critical. For the Proposed cases,
we configure two different memory spaces to be protected against faults: the actual
critical set of the benchmark (the same of the studies in Figure 11.6, labeled “critical
set”), and as an extreme bound, the whole address space (“all set”).

The first interesting remark is that the Proposed-Replication performance, i.e.,
the system throughput before any fault occurrence, but in presence of the backup
overhead, is only moderately impacted by the size of the critical data set. In VTC,
Proposed-Replication performance is always close to the baseline case; in 3DR,
which is more bandwidth-limited, even backing up the whole address space incurs
a penalty of just 18%.

As expected, in case of a fault occurrence, the size of the protected memory space
is a key performance parameter. While choosing a small critical set allows for very
good throughput, extending the fault tolerance to the whole main memory content
incurs a dramatic penalty. This is however to be fully expected. In the Proposed-
Permanent case, all traffic is redirected to the backup memory, which is running at a
lower frequency: Therefore, throughput becomes identical to the Reference-Robust
baseline. The Proposed-Transient scenario is even slightly worse, since the same
traffic has to go through an extra hop first.

This bracket of results frames the applicability of this approach. If the critical set
of the application can be kept small, throughput penalties are minimal and advan-
tages are clear. Otherwise, performance degrades up to a worst case equivalent to a
system with a single reliable memory.

184 11 NoC Support for Reliable On-Chip Memories

Fig. 11.7 Impact of adding reliability support on the star, with different sizes of the critical data
set for (a) VTC and (b) 3DR

11.4.4 Synthesis Results

Regarding the modifications in the NoC to support a backup memory, four changes
are needed: (i) the NI associated to the main memory must be augmented, (ii) the
backup memory needs an extra (plain) target NI device, (iii) the initiator NI becomes
a bit more complex, and (iv) extra links and switch ports may be needed for routing
data to the backup memory.

11 NoC Support for Reliable On-Chip Memories 185

Fig. 11.8 Comparative (a) maximum operating frequency and (b) area for plain and extended
target NIs

To assess the silicon cost of adding reliability features to the NIs, we perform a
full synthesis of both the original and extended ones with a 0.13 µm UMC technol-
ogy library. Initiator NIs (not depicted) experience no operating frequency penalty
to support the reliability functionality, while area increases by about 7% (0.031 mm2

against 0.029 mm2). Results for target NIs are plotted in Figure 11.8(a) and (b). The
two figures show the results for a reference target NI with a 4-slot output buffer
in the response channel, contrasted against the extended target NIs, having 3- to
9-slot buffers in the extra redundancy channel. The impact on maximum achiev-
able frequency is just of 2% to 6%. This penalty can be negligible in a NoC where
the maximum frequency is determined by the switches and not by the NIs [88]. By

186 11 NoC Support for Reliable On-Chip Memories

adopting a buffer as deep as that of the response channel (4 slots), area is increased
from 0.032 mm2 to 0.039 mm2.

As a result, the area cost due to NI changes is 0.041 mm2. Overall, even including
other possible overheads in the NoC (i.e., extra ports in switches and extra links), the
final overhead is still small in comparison to the area of the extra backup memory
bank itself, which can take on average 1 mm2 of area for a 32 kB on-die SRAM in
0.13 µm technology.

11.5 Summary

One of the main challenges for designers will be the deployment of fault tolerant
architectures. In this chapter, we have presented a complete approach to countering
transient and permanent failures in on-chip memories, by taking advantage of the
communication infrastructure provided by the reliable NoC backbone presented in
the preceding chapters. The design is based on modular extensions of the network
interfaces of the cores, and is transparent to the software designer. The only activity
required by the programmer is minimal code annotation to tell the compiler which
parts of the data set are critical. The extensions are integrated within the NoC map-
ping flow, which transparently handles instantiation issues. The experimental results
show that the proposed approach has a very limited area overhead compared to non-
reliable designs, while being scalable for any number of cores. The experiments also
show the power of NoCs in handling reliability and scalability challenges of SoCs.

Chapter 12
Conclusions and Future Directions

In this chapter, we summarize the major contributions of this thesis and show how
the NoC design methods and reliability mechanisms are integrated in the design
flow.

12.1 Putting It All Together

The reliability enhanced Netchip tool flow is presented in Figure 12.1. Initially,
along with the application traffic characteristics, the system reliability specifications
and requirements are also taken as inputs to the tool flow. In Chapter 11, we had
presented the mechanisms to provide NoC support for using back-up memories.
The number of back-up memories used and the additional traffic flow rates related
to them are given as part of the system reliability specifications. In the Netchip flow,
we automatically design the NoC to meet the bandwidth demands of the additional
traffic that is generated due to the use of multiple memories. The tool flow also
ensures that the traffic streams to the back-up memories do not create deadlocks
with the other traffic flows.

We had presented methods to achieve tolerance against temporary errors in Chap-
ters 8 and 9. The T -error scheme presented in Chapter 8, is required when multi-
bit timing errors can occur in the system. Based on the error-rates of the system,
which is given as part of the system reliability specifications, we determine whether
T -error scheme is needed for the NoC. We also determine the most power optimal
encoding needed to tolerate other transient errors in the system (such as soft-errors).
To determine the best scheme, we use the analysis method presented in Chapter 9.

Once the error recovery schemes needed for the NoC components are deter-
mined, we proceed with the design of the NoC topology. The systems that utilize
NoCs can be broadly classified into two types: Application-Specific Systems-on-
Chip (ASSoCs) and Chip Multiprocessors (CMPs). In ASSoCs, single or a fixed
set of applications are statically mapped onto the different processor and hardware
cores in the design. In CMPs, software tasks are dynamically assigned to the cores.
We distinguish three major application classes for NoCs here: (1) ASSoCs that run
a single application, (2) ASSoCs that run multiple applications, and (3) CMPs that
run general software tasks.

For designing ASSoCs that run a single application, we apply the SUNMAP and
SUNFLOOR tools presented in Chapters 4 and 5. The SUNMAP tool is used to
design a standard topology (such as a mesh, torus) for the application, while the
SUNFLOOR tool designs a custom topology. For designing ASSoCs that support
multiple applications, we apply the extended synthesis procedure presented in Chap-
ter 6. When the design is a CMP that runs software tasks, we apply the synthesis

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

187

188 12 Conclusions and Future Directions

F
ig

.1
2.

1
R

el
ia

bi
lit

y
en

ha
nc

ed
N

et
ch

ip
de

si
gn

flo
w

12 Conclusions and Future Directions 189

approach presented in Chapter 7. The individual crossbar switches of the NoC can
be further optimized using the method presented in Chapter 2.

When choosing paths for traffic flows, we determine whether it is efficient to
apply the multipath routing presented in Chapter 10. We also determine the fault-
tolerance level achievable using such a method. We iterate between the error recov-
ery methods chosen in the previous steps with the multipath method, until a design
with least area-power overhead that still satisfies the reliability constraints is ob-
tained.

Once a NoC topology that satisfies the reliability constraints is obtained, we pro-
ceed to generate the RTL design of the NoC components, as presented in Chapter 3.
For this, we use ×pipes, a library of SystemC soft macros for the network com-
ponents, and the associated tool ×pipesCompiler to generate the entire design. We
proceed with the RTL simulation, synthesis, emulation and layout of the design us-
ing standard tool chains. This automates some of the most critical and time intensive
NoC design steps such as topology synthesis, core mapping, crossbar sizing, route
generation, resource reservation, achieving fault-tolerance, RTL code, and layout
generation.

Bibliography

1. W. Wolf, “The future of multiprocessor systems-on-chips”, Proc. DAC, pp. 681–685, June
2004.

2. More information on AMBA AXI from ARM corporation is available at http://www.arm.
com/products/solutions/AMBAHomePage.html.

3. More information on STBus from STMicrolectronics is available at http://www.st.com/
stonline/prodpres/dedicate/soc/cores/stbus.htm.

4. http://www.sonicsinc.com/.
5. W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo,

A. A. Jerraya, M. Diaz-Nava, “Component-based design approach for multi-core SoCs”,
Proc. DAC, pp. 789–794, June 2002.

6. A. Hansson et al., “A unified approach to constrained mapping and routing on network-on-
chip architectures”, pp. 75–80, Proc. ISSS, 2005.

7. P. Guerrier, A. Greiner, “A generic architecture for on-chip packet switched interconnec-
tions”, DATE 2000, pp. 250–256, March 2000.

8. E. B. Van der Tol, E. G. T. Jaspers, “Mapping of MPEG-4 decoding on a flexible architecture
platform”, SPIE 2002, pp. 1–13, January 2002.

9. W. J. Dally, S. Lacy, “VLSI architecture: past, present and future”, Conf. Adv. Research in
VLSI, pp. 232–241, 1999.

10. F. Karim et al., “On-chip communication architecture for OC-768 network processors”, De-
sign Automation Conference, pp. 678–678, June 2001.

11. S. Murali et al., “Mapping and physical planning of networks on chip architectures with
quality-of-service guarantees”, Proc. ASPDAC, 2005.

12. J. Kim et al., “A low latency router supporting adaptivity for on-chip interconnects”, Proc.
DAC, June 2005.

13. J. Hu, R. Marculescu, “DyAD—smart routing for networks-on-chip”, Proc. DAC, June 2004.
14. Y. Aydogan et al., “Adaptive source routing in multistage interconnection networks”, Pro-

ceedings of the 10th International Parallel Processing Symposium, 1996.
15. S. Manolache et al., “Fault and energy-aware communication mapping with guaranteed for

applications implemented on NoC”, Proc. DAC, 2005.
16. W. J. Dally et al., “The Avici terabit switch/router”, Proc. Hot Interconnects, August 1998.
17. B. G. Stunkel et al., “The SP2 communication subsystem”, IBM Technical Report, August

22, 1994.
18. G. De Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-Hill, New York,

1994.
19. S. Murali, D. Atienza, L. Benini, G. De Micheli, “A multi-path routing strategy with guaran-

teed in-order packet delivery and fault-tolerance for networks on chip”, DAC, 2006.
20. L. Benini, G. De Micheli, “Networks on chips: a new SoC paradigm”, IEEE Computers,

pp. 70–78, January 2002.
21. D. Wingard, “MicroNetwork-based integration for SoCs”, Proc. DAC, pp. 673–677, January

2001.
22. W. Dally, B. Towles, “Route packets, not wires: on-chip interconnection networks”, Proc.

DAC, pp. 684–689, June 2001.
23. M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A. Sangiovanni-Vincentelli,

“Addressing the system-on-a-chip interconnect woes through communication-based design”,
Proc. DAC, pp. 667–672, June 2001.

24. H. Zhang et al., “A 1 V heterogeneous reconfigurable DSP IC for wireless baseband digital
signal processing”, IEEE Journal of Solid State Circuits, Vol. 35, No. 11, pp. 1697–1704,
2000.

S. Murali, Designing Reliable and Efficient Networks on Chips,
Lecture Notes in Electrical Engineering 34,
© Springer Science + Business Media B.V. 2009

191

http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.st.com/stonline/prodpres/dedicate/soc/cores/stbus.htm
http://www.st.com/stonline/prodpres/dedicate/soc/cores/stbus.htm
http://www.sonicsinc.com/

192 Bibliography

25. X. Zhu, S. Malik, “A hierarchical modeling framework for on-chip communication architec-
tures”, ICCD 2002, pp. 663–671, November 2002.

26. I. Saastamoinen, D. Siguenza-Tortosa, J. Nurmi, “Interconnect IP node for future system-on-
chip designs”, Proc. of The First IEEE International Workshop on Electronic Design, Test
and Applications, pp. 116–120, January 2002.

27. S. J. Lee et al., “An 800 MHz star-connected on-chip network for application to systems on
a chip”, Digest of Technical Papers, ISSCC 2003, pp. 468–469, February 2003.

28. A. Jantsch, H. Tenhunen, “Networks on Chip”, Kluwer Academic, Dordrecht, 2003.
29. E. D. Taillard, “Robust tabu search for the quadratic assignment problem”, Parallel Comput-

ing, Vol. 17, pp. 443–455, 1991.
30. E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen, P. Wielage, E. Wa-

terlander, “Trade-offs in the design of a router with both guaranteed and best-effort services
for networks on chip”, Proc. DATE, pp. 350–355, March 2003.

31. P. Guerrier, A. Greiner, “A generic architecture for on-chip packet switched interconnec-
tions”, Proc. DATE, pp. 250–256, March 2000.

32. S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J.-P. Soininen, M. Forsell, K. Tiensyrja, A. He-
mani, “A network on chip architecture and design methodology”, ISVLSI 2002, pp. 105–112,
2002.

33. D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, G. De Micheli,
“NoC synthesis flow for customized domain specific multiprocessor systems-on-chip”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 16, No. 2, pp. 113–129, 2005.

34. S. Stergiou et al., “×pipesLite: a synthesis oriented design library for networks on chips”,
Proc. DATE, pp. 1188–1193, 2005.

35. T. Yen, W. Wolf, “Communication synthesis for distributed embedded systems”, Proc. IC-
CAD, pp. 288–294, November 1995.

36. J. Daveau, T. Ismail, A. Jerraya, “Synthesis of system-level communication by an allocation
based approach”, Proc. ISSS, pp. 150–155, September 1995.

37. M. Gasteier, M. Glesner, “Bus-based communication synthesis on system level”, ACM
Transactions on Design Automation of Electronic Systems, ACM TODAES, Vol. 4, No. 1,
pp. 1–11, 1999.

38. K. Ryu, V. Mooney, “Automated bus generation for multiprocessor SoC design”, Proc.
DATE, pp. 282–287, March 2003.

39. K. Lahiri, A. Raghunathan, S. Dey, “Design space exploration for optimizing on-chip com-
munication architectures”, IEEE TCAD, Vol. 23, No. 6, pp. 952–961, 2004.

40. K. Lahiri, A. Raghunathan, G. Lakshminarayana, S. Dey, “Design of high-performance
system-on-chips using communication architecture tuners”, IEEE TCAD, Vol. 23, No. 5,
pp. 620–636, 2004.

41. R. Ravi et al., “Approximation algorithms for degree-constrained minimum-cost network
design problems”, Algorithmica, Vol. 31, No. 1, pp. 58–78, 2001.

42. E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, “QNoC: QoS architecture and design process
for network on chip”, The Journal of Systems Architecture, Vol. 50, No. 2–3, pp. 105–128,
2004.

43. J. Hu, R. Marculescu, “Energy-aware mapping for tile-based NOC architectures under per-
formance constraints”, Proc. ASPDAC, pp. 233–239, January 2003.

44. J. Hu, R. Marculescu, “Exploiting the routing flexibility for energy/performance aware map-
ping of regular NoC architectures”, Proc. DATE, pp. 10688–106993, March 2003.

45. S. Murali, G. De Micheli, “Bandwidth constrained mapping of cores onto NoC architec-
tures”, Proc. DATE, pp. 20896–20902, February 2004.

46. S. Murali, G. De Micheli, “SUNMAP: a tool for automatic topology selection and generation
for NoCs”, Proc. DAC, pp. 914–919, June 2004.

47. A. Pinto, L. Carloni, A. Sangiovanni-Vincentelli, “Constraint-driven communication synthe-
sis”, Proc. DAC, pp. 783–788, June 2002.

48. A. Pinto, L. Carloni, A. Sangiovanni-Vincentelli, “Efficient synthesis of networks on chip”,
Proc. ICCD, pp. 146–150, October 2003.

Bibliography 193

49. T. Ahonen, D. Signza-Tortosa, H. Bin, J. Nurmi, “Topology optimization for application
specific networks on chip”, Proc. SLIP, pp. 53–60, February 2004.

50. K. Srinivasan, K. Chatha, G. Konjevod, “An automated technique for topology and route
generation of application specific on-chip interconnection networks”, Proc. ICCAD, pp. 231–
237, November 2005.

51. W. H. Ho, T. M. Pinkston, “A methodology for designing efficient on-chip interconnects on
well-behaved communication patterns”, Proc. HPCA, pp. 377–388, February 2003.

52. S. Murali, G. De Micheli, “An application-specific design methodology for STBus crossbar
generation”, Proc. DATE, pp. 1176–1181, March 2005.

53. S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane, “Floorplan-aware automated syn-
thesis of bus-based communication architectures”, Proc. DAC, pp. 65–70, June 2005.

54. S. Murali, M. Coenen, A. Radulescu, K. Goossens, G. De Micheli, “Mapping and configura-
tion methods for multi-use-case networks on chips”, Proc. ASPDAC, pp. 146–151, January
2006.

55. S. Murali, M. Coenen, A. Radulescu, K. Goossens, G. De Micheli, “A methodology for
mapping multiple use-cases onto networks on chips”, Proc. DATE, March 2006.

56. S. Pasricha, N. Dutt, M. Ben-Romdhane, “Constraint-driven bus matrix synthesis for MP-
SoC”, Proc. ASPDAC, pp. 30–35, January 2006.

57. M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, R. Zafalon, “Analyzing on-chip communica-
tion in a MPSoC environment”, Proc. DATE, pp. 20752–20757, February 2004.

58. R. Ho, K. Mai, M. Horowitz, “The future of wires”, Proc. of the IEEE, pp. 490–504, April
2001.

59. ILOG CPLEX, http://www.ilog.com/products/cplex/.
60. V. Vaizirani, “Approximation Algorithms”, Springer, Berlin, 2004.
61. M. Dallosso et al., “×pipes: a latency insensitive parameterized network-on-chip architec-

ture for multi-processor SoCs”, ICCD, pp. 536–539, 2003.
62. A. Jalabert et al., “×pipesCompiler: a tool for instantiating application specific networks

on chips”, Proc. DATE, 2004.
63. J. G. Kim, Y. D. Kim, “A linear programming-based algorithm for floorplanning in VLSI

design”, IEEE Transactions on CAD, Vol. 22, No. 5, pp. 584–592, 2003.
64. M. Garey, D. Johnson, “Computers and Intractability, a Guide to the Theory of Np-

Completeness”, Freeman, New York, 1979.
65. D. Culler, J. P. Singh, A. Gupta, “Parallel Computer Architecture, a Hardware/Software Ap-

proach”, Morgan Kaufmann, San Mateo, 1999.
66. K. Compton, S. Hauck, “Reconfigurable computing: a survey of system and software”, ACM

Computing Surveys, Vol. 34, No. 2, pp. 171–210, 2002.
67. D. Whelihan, H. Schmit, “Memory optimization in single chip network fabrics”, Proc. DAC

2002, pp. 530–535, June 2002.
68. H. S. Wang et al., “Orion: a power-performance simulator for interconnection networks”,

MICRO, November 2002.
69. D. Wiklund, D. Liu, “SoCBUS: switched network on chip for hard real time embedded sys-

tems”, Proc. International Parallel and Distributed Processing Symposium 2003, pp. 78–85,
2003.

70. L. P. Carloni, K. L. McMillan, A. L. Sangiovanni Vincentelli, “Theory of latency-insensitive
design”, IEEE Transactions on CAD of ICs and Systems, Vol. 20, No. 9, pp. 1059–1076,
2001.

71. Tensilica Offload Engine, http://www.tensilica.com/html/pr_2003_05_12.html.
72. S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. S. Kim, “Robust system design with built-in soft

error resilience”, IEEE Computer, Vol. 38, No. 2, pp. 43–52, 2005.
73. G. De Micheli, L. Benini, “Networks on Chips: Technology and Tools”, First Edition, Mor-

gan Kaufmann, San Mateo, 2006.
74. J. Liang, S. Swaminathan, R. Tessier, “aSOC: a scalable, single-chip communications ar-

chitecture”, The IEEE International Conference on Parallel Architectures and Compilation
Techniques, pp. 524–529, October 2000.

http://www.ilog.com/products/cplex/
http://www.tensilica.com/html/pr_2003_05_12.html

194 Bibliography

75. C. A. Zeferino, A. A. Susin, “SoCIN: a parametric and scalable network-on-chip”, Proceed-
ings 16th Symposium on Integrated Circuits Systems 03, pp. 169–174, September 2003.

76. T. Bjerregaard, J. Spars, “A router architecture for connection-oriented service guarantees in
the MANGO clockless network-on-chips”, Proc. DATE 2005, pp. 1226–1231, March 2005.

77. J. Hu et al., “System-level point-to-point communication synthesis using floorplanning in-
formation”, Proc. ASPDAC ’02.

78. J. Xu, W. Wolf, J. Henkel, S. Chakradhar, “A design methodology for application-specific
networks-on-chip”, ACM Transactions on Embedded Computing Systems (TECS), Vol. 5,
No. 2, pp. 263–280, 2006.

79. T. T. Ye et al., “Analysis of power consumption on switch fabrics in network routers”, Proc.
DAC ’03.

80. N. Banerjee et al., “A power and performance model for network-on-chip architectures”,
Proc. DATE ’04.

81. G. Palemoro, C. Silvano, “PIRATE: a framework for power/performance exploration of
network-on-chip architectures”, PATMOS, 2004.

82. S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G. De Micheli, L. Raffo,
“Designing application-specific networks-on-chips with floorplan information”, ICCAD,
November 2006.

83. S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G. De Micheli, L. Raffo,
“Designing message-dependent deadlock free networks on chips for application-specific sys-
tems on chips”, VLSI-SoC, October 2006.

84. Y. H. Song, T. M. Pinkston, “A progressive approach to handling message-dependent dead-
lock in parallel computer systems”, IEEE TPDS, Vol. 14, No. 3, pp. 259–275, 2003.

85. G. Chiu, “The odd-even turn model for adaptive routing”, IEEE TPDS, Vol. 11, No. 7,
pp. 729–738, 2000.

86. J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks”, IEEE
TPDS, Vol. 8, No. 8, pp. 790–802, 1997.

87. D. Starobinksi et al., “Application of network calculus to general topologies using turn-
prohibition”, IEEE/ACM Transactions on Networking, Vol. 11, No. 3, pp. 411–421, 2003.

88. F. Angiolini et al., “Contrasting a NoC and a traditional interconnect fabric with layout
awareness”, Proc. DATE, pp. 124–129, 2006.

89. P. Meloni, S. Carta, R. Argiolas, L. Raffo, F. Angiolini, “Area and power modeling method-
ologies for networks-on-chip”, Proc. of Nanonets, September 2006.

90. A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, “Fault tolerance overhead in network-on-chip
flow control schemes”, Proc. SBCCI, pp. 224–229, 2005.

91. www.ocpip.org.
92. S. N. Adya, I. L. Markov, “Fixed-outline floorplanning: enabling hierarchical design”, IEEE

Transactions on VLSI Systems, Vol. 11, No. 6, pp. 1120–1135, 2003. URL: http://vlsicad.
eecs.umich.edu/BK/parquet/.

93. B. Hendrickson, R. Leland, “The Chaco user’s guide: Version 2.0”, Sandia Tech Report
SAND94–2692, 1994. URL: http://www.cs.sandia.gov/~bahendr/chaco.html.

94. W. J. Dally, B. Towles, “Principles and Practices of Interconnection Networks”, Morgan
Kaufmann, San Mateo, 2003.

95. T. H. Cormen et al., “Introduction to Algorithms”, MIT Press, Cambridge, 1990.
96. K. Goossens et al., “A design flow for application-specific networks on chip with guaranteed

performance to accelerate SOC design and verification”, DATE, pp. 1182–1187, 2005.
97. J. Rabaey et al., “Digital Integrated Circuits”, Prentice Hall, New York, 2002.
98. www.synopsys.com.
99. www.cadence.com.

100. M. Taylor et al., “The raw microprocessor: a computational fabric for software circuits and
general purpose programs”, IEEE Micro, April 2002.

101. K. Mai et al., “Smart memories: a modular reconfigurable architecture”, Proc. ISCA, June
2000.

102. K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the polymorphous TRIPS ar-
chitecture”, IEEE Micro, November/December 2003.

http://www.ocpip.org
http://vlsicad.eecs.umich.edu/BK/parquet/
http://vlsicad.eecs.umich.edu/BK/parquet/
http://www.cs.sandia.gov/~bahendr/chaco.html
http://www.synopsys.com
http://www.cadence.com

Bibliography 195

103. R. Kalla et al., “IBM Power5 chip: a dual-core multithreaded processor”, IEEE Micro,
March/April 2004.

104. T. Bjerregaard, J. Sparso, “Virtual channel designs for guaranteeing bandwidth in asynchro-
nous network-on-chip”, Proc. NORCHIP, pp. 269–272, November 2004.

105. M. Millberg et al., “Guaranteed bandwidth using looped containers in temporally disjoint
networks within the Nostrum network on chip”, Proc. DATE, 2004.

106. H. Wang et al., “A technology-aware and energy-oriented topology exploration for on-chip
networks”, Proc. DATE, 2005.

107. W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks”, IEEE TPDS,
pp. 775–785, June 1990.

108. B. Towles, W. J. Dally, “Worst-case traffic for oblivious routing functions”, Proc. SPAA,
pp. 1–8, August 2002.

109. B. Towles et al., “Throughput-centric routing algorithm design”, Proc. SPAA, pp. 200–209,
June 2003.

110. M. B. Taylor, “The RAW processor specification”, available at http://cagwww.lcs.mit.edu/
raw/documents/index.html.

111. R. Ho, K. Mai, M. Horowitz, “Efficient on-chip global interconnects”, IEEE Symposium on
VLSI Circuits, June 2003.

112. V. Karamcheti, A. A. Chien, “Do Faster Routers Imply Faster Communication?”, Lecture
Notes in Computer Science, Vol. 853, pp. 1–15, Springer, Berlin, 1994.

113. D. Ernst, N. S. Kim, S. Pant, S. Das, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, T. Mudge, “Razor: a low-power pipeline based on circuit-level timing specu-
lation”, Proc. of the International Symposium on Microarchitecture, pp. 7–18, December
2003.

114. T. Austin, D. Blaauw, T. Mudge, K. Flautner, “Making typical silicon matter with razor”,
IEEE Computer, Vol. 37, No. 3, pp. 57–65, 2004.

115. A. Uht, “Going beyond worst-case specs with TEAtime”, IEEE Computer, Vol. 37, No. 3,
pp. 51–56, 2004.

116. P. Franco, E. J. McCluskey, “On line delay testing of digital circuits”, Proc. VLSI Test Sym-
posium, pp. 167–173, 1994.

117. M. Favalli, C. Metra, “Low-level error recovery mechanism for self-checking sequential cir-
cuit”, Proc. DFT, pp. 234–242, October 1997.

118. M. Singh, S. M. Nowick, “MOUSETRAP: ultra-high-speed transition signaling asynchro-
nous pipelines”, Proc. ICCD, pp. 9–17, September 2001.

119. E. Dupont, M. Nicolaidis, P. Rohr, “Embedded robustness IPs for transient error free ICs”,
IEEE Design and Test of Computers, Vol. 19, No. 3, pp. 56–70, 2002.

120. W. J. Dally, J. W. Poulton, “Digital Systems Engineering”, Cambridge University Press,
Cambridge, 1998.

121. Y. Eo, S. Shin, W. Eisenstadt, J. Shim, “A decoupling technique for efficient timing analysis
of VLSI interconnects with dynamic current switching”, IEEE Transactions on CAD, Vol. 23,
No. 9, pp. 1321–1337, 2004.

122. D. Wang, W. McNall, “A statistical model based ASIC skew selection method”, IEEE Work-
shop on Microelectronics and Electron Devices, pp. 64–66, 2004.

123. L. Chen, M. Marek-Sadowska, F. Brewer, “Coping with buffer delay change due to power
and ground noise”, Proc. DAC, pp. 860–865, June 2002.

124. P. J. Restle, K. A. Jenkins, A. Deutsch, P. W. Cook, “Measurement and modeling of on-
chip transmission line effects in a 400 MHz microprocessor”, IEEE Journal of Solid-State
Circuits, Vol. 33, No. 4, pp. 662–665, 1998.

125. “Berkeley predictive technology model”, available at http://www-device.eecs.berkeley.
edu/~ptm/.

126. R. Hegde, N. R. Shanbhag, “Toward achieving energy efficiency in presence of deep submi-
cron noise”, IEEE Transactions on VLSI Systems, Vol. 8, No. 4, pp. 379–391, 2000.

127. D. Bertozzi, L. Benini, G. De Micheli, “Low power error-resilient encoding for on-chip data
buses”, Proc. DATE, pp. 102–109, March 2002.

http://cagwww.lcs.mit.edu/raw/documents/index.html
http://cagwww.lcs.mit.edu/raw/documents/index.html
http://www-device.eecs.berkeley.edu/~ptm/
http://www-device.eecs.berkeley.edu/~ptm/

196 Bibliography

128. P. Vellanki, N. Banerjee, K. Chatha, “Quality-of-service and error control techniques for
network on chip architectures”, Proc. GLSVLSI, pp. 45–50, April 2004.

129. H. Zimmer, A. Jantsch, “A fault model notation and error-control scheme for switch-to-
switch buses in a network-on-chip”, Proc. ISSS/CODES, pp. 188–193, September 2003.

130. S. Murali, T. Theocharides, N. VijayKrishnan, M. J. Irwin, L. Benini, G. De Micheli, “Analy-
sis of error recovery schemes for networks-on-chips”, IEEE Design and Test of Computers,
Vol. 22, No. 5, pp. 434–442, 2005.

131. M. R. Stan, W. P. Burleson, “Bus-invert coding for lowpower I/O”, IEEE Transactions on
VLSI, Vol. 3, No. 1, pp. 49–58, 1995.

132. L. Li, N. VijayKrishnan, M. Kandemir, M. J. Irwin, “A cross-talk aware interconnect with
variable cycle transmission”, Proc. DATE, pp. 1012–1017, February 2004.

133. K. Patel, I. Markov, “Error-correction and cross-talk avoidance in DSM busses”, IEEE Trans-
actions on VLSI, Vol. 12, No. 10, pp. 1076–1080, 2004.

134. S. Srinivas, N. R. Shanbhag, “Coding for system-on-chip networks: a unified framework”,
Proc. DAC, pp. 103–106, June 2004.

135. K. Hirose, H. Yasuura, “A bus delay reduction technique considering cross-talk”, Proc.
DATE, pp. 441–445, March 2000.

136. P. Sotiriadis, “Interconnect modeling and optimization in deep sub-micron technologies”,
Ph.D. Dissertation, Massachusetts Institute of Technology, 2002.

137. R. Tamhankar, S. Murali, G. De Micheli, “Performance driven reliable link design for net-
works on chips”, Proc. ASPDAC, pp. 749–754, January 2005.

138. R. Marculescu, “Networks-on-chip: the quest for on-chip fault-tolerant communication”,
Proc. IEEE ISVLSI, pp. 8–12, February 2003.

139. F. Worm, P. Ienne, P. Thiran, G. De Micheli, “A robust self-calibrating transmission scheme
for on-chip networks”, IEEE Transactions on VLSI, Vol. 13, No. 1, pp. 126–139, 2005.

140. M. Pirretti, G. Link, R. Brooks, N. VijayKrishnan, M. Kandemir, M. J. Irwin, “Fault tolerant
algorithms for network-on-chip interconnect”, Proc. ISVLSI, pp. 46–51, February 2004.

141. T. M. Austin et al., “Opportunities and challenges for better than worstcase design”, Proc.
ASP-DAC, 2005.

142. H. Wang et al., “Systematic analysis of energy and delay impact of very deep submicron
process variability effects in embedded sram modules”, DATE, 2005.

143. S. Xiao et al., “A generalization of the single b-bit byte error correcting and double bit error
detecting codes for high-speed memory systems”, IEEE Transactions on Computer, 1996.

144. I. Sodagar et al., “Scalable wavelet coding for synthetic and natural hybrid images”, IEEE
Transactions on Circuits and Systems for Video Technology, 1999.

145. M. Pollefeys et al., “Metric 3D surface reconstruction from uncalibrated image sequences”,
Proc. SMILE, 1998.

146. V. Narayanan, Y. Xie, “Computing in the presence of soft errors”, Tutorial, ASPLOS XI,
October 2004.

147. N. R. Shanbhag, “A mathematical basis for basis for power-reduction in digital VLSI sys-
tems”, IEEE Transactions on Circuits and Systems, Part II, Vol. 44, No. 11, pp. 935–951,
1997.

148. H. S. Wang et al., “Power-driven design of router micro-architectures in on-chip networks”,
Proc. of the 36th MICRO, November 2003.

The list of papers in which the author has been involved and that are related to the chapters in

this book:

Journal Publications

J1. Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna Tamhankar, Stergios Ster-
giou, Luca Benini, Giovanni De Micheli, “NoC synthesis flow for customized domain spe-

Bibliography 197

cific multiprocessor systems-on-chip”, IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 16, No. 2, pp. 113–129, Feb. 2005.

J2. Srinivasan Murali, Theocharis Theocharides, Luca Benini, Giovanni De Micheli, N. Vijaykr-
ishan, Mary Jane Irwin, “Analysis of error recovery schemes for networks on chips”, IEEE
D&T, Vol. 22, No. 5, pp. 434–442, Sep./Oct. 2005.

J3. Rutuparna Tamhankar, Srinivasan Murali, Stergios Stergiou, Antonio Pullini, Federico Angi-
olini, Luca Benini, and Giovanni De Micheli, “Timing error tolerant network-on-chip design
methodology,” IEEE Transactions on Computer Aided Design, Vol. 26, No. 7, pp. 1297–
1310, July 2007.

J4. Srinivasan Murali, Paolo Meloni, David Atienza, Salvatore Carta, Luca Benini, Giovanni De
Micheli, Luigi Raffo, “Synthesis of predictable networks-on-chip based interconnect archi-
tectures for chip multi-processors,” IEEE Transactions on VLSI, Vol. 15, No. 8, pp. 869–880,
August 2007.

J5. Srinivasan Murali, Luca Benini, Giovanni De Micheli, “An application-specific design
methodology for on-chip crossbar generation,” IEEE Transactions on Computer Aided De-
sign, Vol. 26, No. 7, pp. 1283–1296, July 2007.

J6. Srinivasan Murali, David Atienza, Luca Benini, and Giovanni De Micheli, “A method for
routing packets across multiple paths in nocs with in-order delivery and fault-tolerance guar-
antees,” VLSI-Design Journal, Hindawi Publications, 2007.

Conference Publications

C1. Antoine Jalabert, Srinivasan Murali, Luca Benini, Giovanni De Micheli, “xpipesCompiler:
a tool for instantiating application specific networks on chip”, Proc. DATE 2004.

C2. Srinivasan Murali, Giovanni De Micheli, “Bandwidth constrained mapping of cores onto
networks on chips”, Proc. DATE 2004.

C3. Srinivasan Murali, Giovanni De Micheli, “SUNMAP: a tool for automatic topology selection
and generation for NoCs”, Proc. DAC 2004.

C4. Srinivasan Murali, Luca Benini, Giovanni De Micheli, “Mapping and physical planning of
networks on chip architectures with quality-of-service guarantees”, Proc. ASPDAC 2005.

C5. Rutuparna Tamhankar, Srinivasan Murali, Giovanni De Micheli, “Performance driven reli-
able link design for networks on chips”, Proc. ASPDAC 2005.

C6. Srinivasan Murali, Giovanni De Micheli, “An application specific design methodology for
stbus crossbar generation”, Proc. DATE 2005.

C7. Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, Giovanni De
Micheli, “Mapping and configuration methods for multi-use-case networks on chips”, ASP-
DAC 2006.

C8. Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, Giovanni De
Micheli, “A methodology for mapping multiple use-cases onto networks on chips”, DATE
2006.

C9. Srinivasan Murali, David Atienza, Luca Benini, Giovanni De Micheli, “A multi-path routing
strategy with guaranteed in-order packet delivery and fault tolerance for networks on chips”,
DAC 2006.

C10. Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salvatore Carta, Luca
Benini, Giovanni De Micheli, Luigi Raffo, “Designing message-dependent deadlock free
networks on chips for application-specific systems on chips”, VLSI-SoC 2006.

C11. Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salvatore Carta, Luca
Benini, Giovanni De Micheli, Luigi Raffo, “Design of application-specific networks on chips
with floorplan information”, Proc. ICCAD 06.

198 Bibliography

C12. Federico Angiolini, David Atienza, Srinivasan Murali, Luca Benini, Giovanni De Micheli,
“Reliability support for on-chip memories using networks-on-chips”, Proc. ICCD 06.

C13. Srinivasan Murali, Rutuparna Tamhankar, Federico Angiolini, Antonio Pullini, David
Atienza, Luca Benini, Giovanni De Micheli, “Comparison of a timing-error tolerant scheme
with a traditional re-transmission mechanism for networks on chips,” International Sympo-
sium on Systems on Chips, 2006.

	Preface
	Contents
	Introduction
	Networks on Chips: Scalable Interconnects for SoCs
	NoC Design Challenges
	Book Overview
	NoC Design Methods
	NoC Reliability Mechanisms

	Related Work
	NoC Architectures and Design Methods
	Reliability Support for NoCs

	NoC Design Methods
	Designing Crossbar Based Systems
	Problem Motivation and Application Traffic Analysis
	Problem Motivation
	Application Traffic Analysis

	Design Methodology
	Exact Approach to Crossbar Synthesis
	Problem Formulation
	Exact Crossbar Synthesis Algorithm

	Heuristic Approach to Crossbar Synthesis
	Experiments and Case Studies
	Experimental Platform and Power Models
	Application Benchmark Analysis
	Comparisons of Heuristic Engine with the Exact Engine
	Window Sizing
	Real-Time Streams & Effect of Binding
	Overlap Threshold Setting

	Summary

	Netchip Tool Flow for NoC Design
	Front-End Design Phase
	Architectural Design Phase: The xpipes NoC Library
	Summary

	Designing Standard Topologies
	On-Chip Traffic Modeling
	Problem Formulation
	Mapping and Physical Planning Algorithm
	Physical Planning
	Experiments and Case Studies
	Effect of Physical Planning
	Design for QoS Guarantees
	VOPD Design
	Buffer Sizing and Network Optimization

	Summary

	Designing Custom Topologies
	Objectives
	Background on NoC Topology Synthesis
	Background on Deadlock-Free NoC Design

	Input Models
	Area, Power Models
	Traffic Models

	Design Algorithms
	Experiments and Case Studies
	Experiments on MPSoC Benchmarks
	Layout-Level Comparisons
	Impact of Frequency Constraints
	Handling Dynamic Effects

	Summary

	Supporting Multiple Applications
	The Æthereal NoC Architecture
	Switch/NI Architecture
	Dynamic NoC Reconfiguration

	Design Methodology
	Use-Case Preprocessing
	Unified Mapping-NoC Configuration
	Simulation Results
	Experimental Benchmarks
	Effect of Mapping for SoC Benchmarks
	Frequency-Area Trade-offs
	Dynamic Configuration
	Parallel Use-Cases

	Summary

	Supporting Dynamic Application Patterns
	NoC Design Challenges for CMPs
	Basics of the Synthesis Approach
	Design Flow
	Problem Formulation
	Synthesis Algorithm
	NoC Link Sizing
	Timing Feasibility Check
	Algorithm Run-Time

	Experimental Results
	Experiments on a Mesh Topology
	Effect of Core Injection Rates
	Effect of Different NoC Sizes
	Effect of Link Length
	Application to Torus Topology
	Validating Design Flow Predictability

	Summary

	NoC Reliability Mechanisms
	Timing-Error Tolerant NoC Design
	The Double Sampling Technique
	Using Links as a Storage Medium
	T-error Link Designs
	Scheme 1: Low overhead T-error Links
	Scheme 2: High-Performance T-error Links

	Aggressive Switch/NI Design
	Output Buffer Changes
	Input Buffer Changes

	Dynamic Configuration of the NoC
	Experimental Results
	Simulation Platform
	Experiments on a Multi-Media Benchmark
	Effect of Application-Level Power Management
	Experiments on Other Benchmarks
	Effect of NoC Configuration
	Choice of Link Design Schemes
	Synthesis Results

	Summary

	Analysis of NoC Error Recovery Schemes
	Switch Architecture Design
	End-to-End Error Detection
	Switch-to-Switch Error Detection
	Hybrid Single Error Correcting, Multiple Error Detecting Scheme

	Energy Estimation and Models
	Energy Estimation
	Error Models

	Experiments and Simulation Results
	Power Consumption of Schemes for Fixed Residual Error Rates
	Performance Comparison of Reliability Schemes
	Power Consumption Overhead of Reliability Schemes
	Effect of Buffering Requirements, Traffic Patterns and Packet Size

	Summary

	Fault-Tolerant Route Generation
	Multi-Path Routing with In-Order Delivery
	Path Selection Algorithm
	Multipath Traffic Splitting
	Fault-Tolerance Support with Multipath Routing
	Resilience Against Transient Errors
	Resilience Against Permanent Errors

	Simulation Results
	Area, Power and Timing Overhead
	Case Study: MPEG Decoder
	Comparisons with Single-Path Routing
	Effect of Fault-Tolerance Support

	Summary

	NoC Support for Reliable On-Chip Memories
	Analysis of Multimedia Software
	Baseline SoC Architecture and Extensions
	SoC Template Architecture
	Proposed Hardware Extensions

	Run-Time Fault Tolerant Schemes
	Permanent Error Recovery Support
	Intermittent Error Recovery Support

	Experimental Results
	Performance Studies
	Architectural Exploration of NoC Features
	Effects of Varying Percentages of Critical Data
	Synthesis Results

	Summary

	Conclusions and Future Directions
	Putting It All Together

	Bibliography
	Journal Publications
	Conference Publications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

