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Foreword

Dan Rosenkrantz and I were colleagues for about 40 years, first at the General
Electric Research and Development Center and then at the University at Al-
bany. Thus I witnessed his career first hand and had the privilege of working
with him on a number of topics.

Dan was very productive throughout his entire career and even into retire-
ment. He worked in a variety of areas from the very theoretical to the very
practical. This diversity is evident from the selection of papers in this book.

Dan is friendly and easy to work with. He is able to ask penetrating ques-
tions and get to the heart of a problem. He is also famous for his ability to find
counter-examples. These exceptional qualities make him attractive as a collab-
orator and fun to work with. Consequently, he was successful in collaborating
with a variety of researchers and producing papers with them.

Dan has excellent communication skills. This is evident in the clarity of
his writing. These skills also made him effective as a teacher. Because of his
teaching skills and his prowess as a researcher, students often sought him out
as an advisor.

In summary, this book is a tribute to a great person, a great mentor, and a
great career.

RICHARD E. STEARNS

Winner of ACM Turing Award (1993)
Distinguished Professor Emeritus
Department of Computer Science
University at Albany—SUNY
Albany, NY, USA



Preface and Introduction
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Overview

The purpose of this volume is to honor Professor Daniel Jay Rosenkrantz
(“Dan” to his friends) for his extensive research contributions which have en-
riched the field of Computer Science. The volume includes reprinted forms of
ten of Dan’s publications in archival journals and eight contributed chapters by
various researchers.

A Biographical Sketch

Dan was born on March 5, 1943 in Brooklyn, New York. He attended Evan-
der Childs High School in Bronx, New York, before proceeding to Columbia
University for his undergraduate and graduate degrees in Electrical Engineer-
ing. He received his Bachelor’s degree in 1963. He was a National Science
Foundation Cooperative Graduate Fellow at Columbia University and received
his Master’s degree in 1964. His Ph.D. thesis, completed in 1967, was super-
vised by Professor Stephen H. Unger. Dan spent the last year of his graduate
studies at Bell Telephone Laboratories in Murray Hill, New Jersey.

After receiving his Ph.D., Dan joined the General Electric Corporate Re-
search and Development Center (GECRD) in Schenectady, New York. During
his ten years at GECRD, Dan worked with Philip M. Lewis II and Richard
E. Stearns on a number of fundamental research problems in many areas in-
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cluding formal languages, compilers, algorithms and database systems. Their
research led to numerous seminal papers, four of which are reprinted in Part I
of this book. Another outcome of their collaboration is an early and highly
regarded textbook on compiler design [13], which made the topic accessible
to undergraduate students in Computer Science. The following quote from the
contributed chapter1 by Phil Lewis, nicely summarizes the years spent by Dan
at GECRD:

“Those were magic years for Computer Science at G.E., and
Dan made important contributions to that magic.”

In 1977, Dan moved to the Computer Science Department at the Univer-
sity at Albany–State University of New York (UAlbany) as a Full Professor.
Dan was a member of the Computer Science faculty at UAlbany for 28 years
before retiring in June 2005. From 1983 to 1985, when he was on leave from
UAlbany, Dan worked as a Principal Computer Scientist for Phoenix Data Sys-
tems, a company which developed design automation tools for very large scale
integrated (VLSI) systems. During his tenure at UAlbany, Dan supervised or
co-supervised seven Ph.D. students and a large number of Master’s students.
He also served as the Chair of the Computer Science Department during the
period 1993 to 1999.

Dan’s first paper was published in IEEE Transactions on Electronic Com-
puters in 1966. For more than 40 years since his first publication, Dan has
published extensively in prestigious conferences and journals. As of Septem-
ber 2008, Dan’s publication list includes more than 140 papers with 38 collab-
orators. These publications cover many different areas of Computer Science
including formal languages, compilers, algorithms, database systems, VLSI
design and testing, fault-tolerant computing, hierarchical specifications, soft-
ware engineering, high performance computing, operations research, discrete
dynamical systems and data mining. A beautifully concise statement which
captures the nature of Dan’s research contributions is the following partial
quote2 provided by Jeffrey Ullman (Computer Science Department, Stanford
University):

“His work has been a model for how one uses theoretical skills to
make an impact on real problems, . . .”

Like his research record, Dan’s record of service to the Computer Science
community is also extensive. He was the Area Editor for Formal Languages
and Models of Computation for the Journal of the Association for Comput-
ing Machinery (JACM) from 1981 to 1986 and then the Editor-in-Chief of the

1 This chapter appears in Part II of this book.
2 The full version of this quote appears on the back cover of this book.
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same journal from 1986 to 1990. During his tenure as the Editor-in-Chief,
three new areas (Logic in Computer Science, Computational Geometry and
Deductive Systems and Equational Reasoning) were added to the journal [24].
Dan has served on the program committees of many well known conferences
including IEEE Symposium on Foundations of Computer Science (FOCS)
and its previous incarnation (IEEE Symposium on Switching and Automata
Theory), ACM International Symposium on Principles of Database Systems
(PODS), International Conference on the Management of Data (SIGMOD),
IEEE Symposium on Reliable Distributed Systems (SRDS) and ACM Sympo-
sium on Programming Language Principles (POPL). He was the Chairman of
the Program Committee for FOCS 1975 and also served as the Secretary of
ACM SIGACT (Special Interest Group on Automata and Computability The-
ory) from 1977 to 1979. He was the General Chairman for PODS in 1984,
1990 and 1991 and served as a member of the PODS Executive Committee
from 1990 to 1995. In addition, Dan has served on evaluation panels for the
National Science Foundation (NSF) and the National Aeronautics and Space
Administration (NASA).

Dan has received many awards in recognition of his research contributions.
He was elected a Fellow of the Association for Computing Machinery (ACM)
in 1995. His fellowship citation reads as follows:

“For pioneering contributions to formal languages, compiler design,
algorithm analysis, databases, parallel and fault-tolerant computing
and for exemplary ACM service including Editorship of JACM.”

In 2001, Dan received the “Contributions Award” from the ACM Special
Interest Group on Management of Data (SIGMOD). In 1991, he received the
“Excellence in Research Award” from the University at Albany–State Univer-
sity of New York. Dan has been listed in Who’s Who in America since 1990.
His academic honors include Sigma Xi, Eta Kappa Nu and Tau Beta Pi.

Summary of Part I

The collection of papers which are reprinted in Part I of this book cover four
decades (1967 to 2008) of Dan’s research career. Many of the papers in this
collection represent seminal contributions to Computer Science.

Chapter 1 (“Matrix Equations and Normal Forms for Context-Free Gram-
mars”) is the reprinted form of Dan’s second journal paper, which originally
appeared in JACM in 1967. This paper shows how the Greibach Normal Form
[11] of a context-free grammar, where the right side of each production be-
gins with a terminal symbol,3 can be constructed efficiently by exploiting the

3 The grammar may also have productions of the form A → λ, where λ represents the null string.
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correspondence between the productions of the grammar and a set of linear
equations. The approach used in the paper obviates the need for generating
regular expressions from a directed graph representation of the linear equa-
tions. Moreover, the paper also shows how the grammar can be modified so
that each production starts and ends with a terminal symbol. A detailed dis-
cussion of the algorithm appears in the classic text on formal languages by
Harrison [12, Sect. 4.9].

Chapter 2 (“Attributed Translations”) is reprinted from the Journal of Com-
puter and System Sciences (1974). This paper formalized the notion of at-
tributed translation which plays a central role in the design of compilers for
high-level languages. The classic text on compiler design by Aho and Ullman
[1, p. 295] mentions that this paper developed one of the “classes of translation
schemes for which attributed and synthesized translations can be implemented
efficiently”.

Chapter 3 (“An Analysis of Several Heuristics for the Traveling Salesman
Problem”) is an early paper on the analysis of approximation algorithms. This
paper, which originally appeared in SIAM Journal on Computing (1977) is
considered a classic and has been cited in virtually every subsequent paper on
the topic. The paper established a tight performance guarantee of Θ(log n) for
the well known “near-neighbor” heuristic for the problem, where n represents
the number of cities. This paper also introduced the minimum spanning tree
based heuristic which provides a performance guarantee of 2(1− 1/n).

Chapter 4 (“System Level Concurrency Control for Distributed Database
Systems”) and Chap. 5 (“Consistency and Serializability in Concurrent Data-
base Systems”) represent seminal contributions to the area of transaction
processing in concurrent databases. The ideas presented in these papers are
discussed in standard texts on database concurrency control [8, 22]. The first of
these papers, which is reprinted from ACM Transactions on Database Systems
(1978), presents several designs for concurrency control schemes and formally
proves that the schemes are free from phenomena such as deadlocks. The sec-
ond paper, which is reprinted from SIAM Journal on Computing (1984), shows
formally that serializability is both necessary and sufficient for consistency in
concurrent databases. The book by Bernstein et al. [8, p. 23] calls the con-
ference version of this paper [25] an “influential early paper” on the topic of
concurrency control.

Chapter 6 (“An Efficient Method for Representing and Transmitting Mes-
sage Patterns on Multiprocessor Interconnection Networks”), reprinted from
the Journal of Parallel and Distributed Computing (1991), discusses research
done jointly by Dan and his first Ph.D. student (Philip Bernhard). This paper
describes a representation (called a mask) for messages in multiprocessor in-
terconnection networks and shows how a number of properties of the messages
can be determined efficiently from the corresponding mask. (An example of



Preface and Introduction xi

such a property is whether the messages represented by a given mask will cause
congestion.) In addition, it is shown that under this representation, the problem
of partitioning a given set of messages into a minimum number of conflict-free
rounds can be solved efficiently.

The paper reprinted as Chap. 7 (“Representability of Design Objects by
Ancestor-Controlled Hierarchical Specifications”) originally appeared in SIAM
Journal on Computing (1992). This was coauthored with Dan’s second Ph.D.
student (Lin Yu). This paper developed a model called versioned dag (VDAG)
for succinctly representing hierarchically specified design data. The paper pro-
vides a complete characterization of the expressive power of the VADG model
and presents complexity results for a number of related problems.

Chapter 8 (“The Complexity of Processing Hierarchical Specifications”),
reprinted from SIAM Journal on Computing (1993), represents another im-
portant contribution to the topic of hierarchically specified objects. In that
paper, it is shown that any hierarchically specified acyclic circuit can be sim-
ulated deterministically in space that is linear in the size of the representa-
tion, even when the description is not explicitly acyclic. This result settled
an open problem due to Lengauer [21]. Further, it is shown that the problem
of simulating a hierarchically specified acyclic monotone circuit is PSPACE-
complete and that the simulation of any hierarchically specified acyclic circuit
(even if it is not monotone) can be carried out in deterministic time 2O(

√
n),

where n represents the size of the description. In addition, it is shown that the
simulation problem for hierarchically specified cyclic circuits is EXPSPACE-
complete.

Chapter 9 (“Approximation Algorithms for Degree-Constrained Minimum-
Cost Network-Design Problems”) is reprinted from Algorithmica (2001). This
paper is one of the first to consider the idea of approximating several objectives
simultaneously. The definition of multiobjective approximation introduced in
the conference version of this paper [23] is widely used today. The paper
considered several variants of the problem of constructing spanning trees that
minimize two objectives, namely the total cost and the maximum node de-
gree. Since the publication of this paper, the problem and its variants have
been studied by many researchers (see for example [2] and the references cited
therein).

Chapter 10 (“Efficient Algorithms for Segmentation of Item-Set Time Se-
ries”), reprinted from Data Mining and Knowledge Discovery (2008), repre-
sents Dan’s joint work with another Ph.D. student (Parvathi Chundi). This pa-
per considers the problem of mining a special form of time series data, called
item-set time series. In such data sets, the information stored for each time
instant is a group of items rather than a single item. For example, in a software
repository, the data stored for each time instant may be the names of files that
were changed at that time or the names of people who modified those files.
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One way to extract useful patterns from such data sets is to first divide them
into appropriate segments. The paper defines the notion of an optimal segmen-
tation under different objectives and presents polynomial time algorithms that
construct such segmentations. The paper also includes extensive experimental
results obtained by applying the algorithms to several data sets.

Summary of Part II

Part II of this book contains eight chapters contributed by various research-
ers. Like Dan’s research record, these chapters also cover a wide variety of
areas.

Chapter 11 (“Structure Trees and Subproblem Independence”) by Richard
E. Stearns and Harry B. Hunt III shows that many constraint satisfaction prob-
lems (such as different versions of the Boolean Satisfiability problem, their
counting versions, several graph theoretic problems, etc.) can be captured us-
ing a very general framework called the sum-of-products form. This frame-
work enables one to formalize the notion of subproblem independence, which
has important implications on the time needed to solve the corresponding prob-
lem. The chapter shows that when instances of the problem have bounded
treewidth, one can readily obtain an efficient algorithm from the general frame-
work. The topic of developing efficient algorithms for treewidth-bounded
problem instances has been of interest to Dan since the 1990’s, and he has
published many papers on that topic (e.g. [6, 7, 19]).

The next two chapters are on transaction processing in concurrent databases.
As mentioned earlier, this is a topic to which Dan has made several seminal
contributions. Chapter 12 (“An Optimistic Concurrency Control Protocol for
Replicated Databases”) by Yuri Breitbart, Henry Korth and Abraham Silber-
schatz discusses a concurrency control protocol that guarantees serializability
and freedom from deadlock for multi-site transactions. An important char-
acteristic of the protocol is that it does not rely on any special properties of
the database systems running at the individual sites. Further, the new proto-
col reduces the communication overhead needed to achieve serializability and
deadlock freedom. Breitbart et al. compare their approach with the approach
presented in one of Dan’s papers on the topic [10].

Chapter 13 (“SNAPSHOT Isolation: Why do Some People Call it SERIAL-
IZABLE?”) by Philip M. Lewis is based on his popular lecture entitled “Why
Does Oracle Make Fun of Theoreticians?”. He points out that several commer-
cial database systems use a relaxed consistency requirement called snapshot
isolation (instead of serializability) for running concurrent transactions. It is
known that snapshot isolation can result in nonserializable schedules. How-
ever, users of such systems do not complain about getting incorrect results
from their transactions. The chapter offers a possible explanation for this phe-
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nomenon: those transactions are based on certain design patterns for which
snapshopt isolation is sufficient to produce correct results. The chapter also
presents an example of such a design pattern.

Chapter 14 (“A Richer Understanding of the Complexity of Election Sys-
tems”) by Piotr Faliszewski, Edith Hemaspaandra, Lane Hemaspaandra and
Jörg Rothe presents a detailed survey of recent results on the complexity of
various election systems. They point out that in addition to political elections,
the topic of voting arises naturally in a number of other contexts such as spam
detection, web search engines, etc. They consider the effect of control, ma-
nipulation and bribery on the complexity of the underlying election problems.
The chapter provides the necessary background on various election systems
and an outline of the techniques used to establish the complexity results. The
chapter also includes an extensive list of references. Dan has studied the com-
plexity of problems arising in many different areas since the mid 1970’s and
has published extensively on the topic (e.g. [9, 14–18]).

The next two chapters deal with different forms of approximation algorithms
for NP-hard problems, a topic in which Dan has had an active interest since the
1970’s. Chapter 15 (“Fully Dynamic Bin Packing”) by Zoran Ivković and
Errol L. Lloyd considers the fully dynamic version of the online bin packing
problem. In that version, requests to insert and delete new items arrive one
at a time, and the online algorithm is required to maintain a packing with a
small number of bins. To process a request, the online algorithm is allowed to
do a limited amount of repacking. The performance of such an algorithm is
measured by its competitive ratio, which is the worst-case ratio of the number
of bins used by the algorithm to the minimum number of bins used by an
optimal offline algorithm. The authors consider several variants of the problem
and establish lower and upper bounds on achievable competitive ratios.

Chapter 16 (“Online Job Admission”) by Sven O. Krumke, Rob van Stee
and Stephen Westphal addresses an online scheduling problem. In this prob-
lem, each job has a release time and execution time which are revealed to the
online algorithm only when the job arrives. A time horizon T is specified and
the jobs must be scheduled up to time T in a nonpreemptive fashion on a given
number of processors. As each job arrives, the online algorithm must make
a decision whether to accept or reject the job without any knowledge of the
future jobs. The goal is to accept a subset of jobs such that the total execution
time of the accepted jobs is close to the maximum possible value obtainable
using an optimal offline algorithm. The authors first present a lower bound on
the achievable competitive ratio. Then they present deterministic and random-
ized algorithms which achieve competitive ratios that are close to the lower
bound.

Chapter 17 (“A Survey of Graph Algorithms Under Extended Streaming
Models of Computation”) by Thomas C. O’Connell summarizes many known
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results on graph algorithms when the input to the algorithm is in the form
of a data stream; thus, an algorithm can only make one pass over the entire
input. In addition, there is a restriction on how much of the stream data can
be stored by the algorithm. Using ideas from communication complexity [20],
many natural graph problems have been shown to be inherently difficult under
this streaming model. Therefore, researchers have proposed extensions of the
streaming model under which one can solve some of the graph problems. The
chapter provides descriptions of the various extensions and outlines known
algorithms for several graph problems (e.g. finding connected components,
computing shortest paths) under those models. Thomas O’Connell was a Ph.D.
student in the Computer Science Department at UAlbany when Dan served as
the Chair of the department.

Chapter 18 (“Interactions Among Human Behavior, Social Networks and
Societal Infrastructures: A Case Study in Computational Epidemiology”) was
contributed by a group of researchers (Christopher Barrett, Keith Bisset,
Jiangzhuo Chen, Stephen Eubank, Bryan Lewis, V. S. Anil Kumar, Madhav
Marathe and Henning Mortveit) at the Network Dynamics and Simulation Sci-
ence Laboratory (NDSSL), which is a part of the Virginia Bioinformatics Insti-
tute and Virginia Tech. This chapter gives an overview of the ongoing research
on large scale simulations and computational epidemiology at NDSSL. The
issues addressed by this research are extremely important in practice. To ad-
dress those issues, ideas and techniques from a number of different fields (e.g.
Computer Science, Mathematics, Biology, Sociology) are needed. The focus
of the chapter is on some questions that are of interest to Computer Science
researchers. Dan has been involved in joint research with several members of
the NDSSL group for many years, and this collaboration has led to a number
of publications (e.g. [3–7]).
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Chapter 1

MATRIX EQUATIONS AND NORMAL FORMS
FOR CONTEXT-FREE GRAMMARS∗

DANIEL J. ROSENKRANTZ

Department of Electrical Engineering, Columbia University, New York, NY, USA

Reprinted from: J. ACM, Vol. 14, No. 3, Jul. 1967, pp. 501–507. c© ACM

Abstract The relationship between the set of productions of a context-free grammar and
the corresponding set of defining equations is first pointed out. The closure
operation on a matrix of strings is defined and this concept is used to formalize
the solution to a set of linear equations. A procedure is then given for rewriting
a context-free grammar in Greibach normal form, where the replacement string
of each production begins with a terminal symbol. An additional procedure is
given for rewriting the grammar so that each replacement string both begins
and ends with a terminal symbol. Neither procedure requires the evaluation of
regular expressions over the total vocabulary of the grammar, as is required by
Greibach’s procedure.

Received May 1966.

1. Preliminaries

A context-free grammar is a 4-tuple (VT , VN , P , S) where VT is a finite set
of terminal symbols, VN is a finite set of nonterminal symbols disjoint from VT ,
P is a finite set of productions, and S, the distinguished symbol, is a member
of VN . The productions are of the form A → ψ, where A ∈ VN is called the
generatrix of the production and ψ, the replacement string, is a finite string of
symbols from V = VT ∪ VN . For convenience, we assume that ψ is nonnull
and cannot be a single nonterminal symbol, i.e., we cannot have a production

∗ This work was written while the author was a National Science Foundation Graduate Fellow.

S.S. Ravi, S.K. Shukla (eds.), Fundamental Problems in Computing,
c© Springer Science + Business Media B.V. 2009
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of the form A → B where B ∈ VN . The language generated by the grammar
is the set of finite strings of terminal symbols which can result from successive
applications of the productions, beginning with the string consisting of the
distinguished symbol. In applying a production to a string an occurrence in the
string of the generatrix is replaced by the replacement string of the production.

Now a grammar is called right linear if all its rules are right linear (of the
form A → aB with a ∈ VT ) or terminating (of the form A → a) and is
called left linear if every rule is left linear (of the form A → Ba) or terminat-
ing. Every left or right linear grammar generates a finite state language, i.e.,
one corresponding to a regular expression, and every finite state language is
generated by a left linear and by a right linear grammar [4, 5].

2. Systems of Equations

A set of productions from a context-free grammar can be put in the form of
a set of defining equations [4–6]. For instance, consider the following set of
productions (where VN = {x1, x2}).

EXAMPLE 1.

x1 → x1ax2 x2 → x2d
x1 → x2x2 x2 → x2x1a
x1 → b x2 → ax1

x2 → c

These productions correspond to the following two equations:

x1 = x1ax2 + x2x2 + b,

x2 = x2d + x2x1a + ax1 + c.

Each xi can be considered as corresponding to a set of strings1 over VT which
satisfy the equations with “+” standing for set union. Given a grammar with
n nonterminal symbols, we can let x be an n-dimensional column vector, each
of whose components is one of the nonterminals, the first component being the
distinguished symbol. Defining equations can then be written in the form x =
f(x), where each component of f is a sum of terms, each of which corresponds
to a production of the grammar.

1 Each xi can also be considered a formal power series [4, 5], where the “+” stands for addition of formal
power series. The major effect of adopting this viewpoint is that each string of terminal symbols has an
associated coefficient equal to the number of different ways that string can be generated from xi by the
grammar. For instance, under this interpretation of “+,” ab + ab = 2ab.
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3. Regular Expressions and the Closure of a Matrix

The equations for a finite state language whose productions are all right
linear or terminating can be written in the form

x = Ax + b,

where b is an n vector and A is an n× 1 matrix. The components of A and b
are finite sums of strings of terminal symbols. We call an element of a sum a
term. A component can be ϕ, which denotes the empty set of strings. But no
component contains the null length string, denoted by λ, as a term in the sum.

EXAMPLE 2. [
x1

x2

]
=
[
a a + b
ϕ ab

] [
x1

x2

]
+
[

a
ba +bb

]

is equivalent to the equations

x1 = ax1 + ax2 + bx2 + a,

x2 = abx2 + ba + bb.

For the single linear equation y = ay + b where, as before, a and b are
finite sums of terminal strings not containing λ, the solution [1, 3, 2, 8] is
y = a∗b, where ””∗ denotes the closure operation of regular expressions with
a∗ = λ + a + a2 + · · · . Also, the solution to y = ya + b is y = ba∗.

Figure 1.1. Flow graph for Example 2

Now consider the set of linear equations x = Ax + b. These equations can
correspond to a directed graph with a node for each component of x plus an
additional terminal node (labeled t). If Ai,j (the element in the ith row and jth
column of A) is not equal to ϕ then there is a branch from xi to xj whose label
is Ai,j . If b �= ϕ then there is a branch from x1 to t whose label is bi. The
graph for tile above example is shown in Fig. 1.1.

Now xi can be identified with the set of labels corresponding to all the paths
(of all lengths) from node xi to node t. Such a set of paths would satisfy the
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equations; for each path which goes from xi to t does so either directly in one
step (corresponding therefore to a term in bi) or else goes from xi to some
node xj in one step (corresponding to a term in Ai,j) and then from xj to t
(corresponding to a member of xj). A matrix A∗ can now be defined whose
(i, j)-th component, A∗

i,j , is the set of sequences of labels corresponding to
all paths2 from node xi to node xj . Then since each path from xi to t must
go from xi to some node xj (which is the next to last node in the path) and
then from node xj to t in one final step, the path consists of a term from A∗

i,j

concatenated with a term from bj . Thus, the solution to the equation

x = Ax + b is x = A∗b.

Let an identity matrix I be defined as a square n×n matrix with the diagonal
elements equal to λ and the off-diagonal elements equal to ϕ. Then since for
any set of strings p, λp = pλ = p, IB = B for any matrix B with n rows, and
CI = C for any matrix C with n columns.

Now A∗ = I + A + A2 + · · ·. This is because Am
i,j is the set of paths

from node xi to node xj traversing exactly m branches, as can be shown by
induction. First A0

j = Ii,j is the set of paths from node xi to node xj of
length 0. Next, assuming that Am

i,j is the set of paths from xi to xj of length
m, note that

Am+1
i,j =

n∑
k=1

Am
i,k Ak,j .

Each term in the sum denotes a path beginning at xi, going to xk after m steps,
and then having the last step go from xk to xj . Furthermore, each path of m+1
branches appears in the summation since after m branches, a path must be at
node xk for some k.

A∗ can be obtained from A either by signal flow graph reduction tech-
niques [9, 2] or algebraically by successive elimination of variables [1, 3].
In the example,

A∗ =
[
a∗ a∗(a + b)(ab)∗

ϕ (ab)∗

]

and [
x1

x2

]
= A∗b =

[
a∗a + a∗(a + b)(ab)∗(ba + bb)

(ab)∗(ba + bb)

]
.

4. Normal Form with Terminal Production Heads

A context-free grammar can be rewritten so that the head (first symbol) of
the replacement string of each production in the rewritten grammar is a termi-

2 If the formal power series approach is being taken, each sequence of labels in A∗
i,j has an integer associ-

ated with it which equals the number of different paths from xi to xj with that sequence of labels.
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nal symbol, as has been shown by Greibach [7]. However, Greibach’s proce-
dure requires the obtaining of regular expressions from a flow graph. In this
section a procedure is presented which obtains the same normal form in a sys-
tematic manner in which the entire grammar is rewritten at one time and no
regular expression needs to be evaluated.

First, in order to separate the productions which begin with nonterminal
symbols from those beginning with terminal symbols, the defining equations
are written in the form

x′ = x′G + f ′,

where ′ stands for transposition, f ′ is an n vector, and G is an n×n matrix. The
ith component of f ′ is the sum of the productions for xi whose heads (initial
symbols) are terminal symbols, while Gij is the sum of the decapitated (with
the head deleted) productions for xj whose head is xi. For Example 1 the
equations are

[x1 x2] = [x1 x2]
[
ax2 ϕ
x2 x1a + d

]
+ [b ax1 + c].

Now just as the solution to x = Ax+b is A∗b, the solution to x′ = x′A+b′

is b′A∗. Therefore the solution to x′ = x′G + f ′ is x′ = f ′G∗, where G∗ is a
matrix of regular expressions in terms of VT ∪VN . Noting that G∗ = I +GG∗,
we obtain x′ = f ′ + f ′GG∗. Defining a new matrix H = GG∗, the equations
for x′ can be written x′ = f ′ + f ′H . Now we introduce a new nonterminal
symbol, Hi,j , for each component of H and can use x′ = f ′H + f ′ as the new
defining equations for x′.

It is possible for some components of H to be equal to ϕ, in which case they
can be dropped from the grammar. A graph can be constructed from G with n
nodes and an arrow from node i to node j if Gi,j is not equal to ϕ. If there is
no path of any length from node i to node j in this graph, then Hi,j = ϕ since
Hi,j denotes the set of paths from i to j in the graph. In the example H12 = ϕ
and can be omitted from the grammar.

We thus introduce a new nonterminal symbol, Hi,j , for each nonnull com-
ponent of H and use x′ = f ′H + f ′ as the new defining equations for x. In the
example, the defining equations for x in the new grammar are

[x1 x2] = [b ax1 + c]
[
H11 ϕ
H21 H22

]
+ [b ax1 + c].

Since each term in f begins with a terminal symbol, each term in the new
equations begins with a terminal symbol.

Now H satisfies the equation H = G + GH , which can be used as the
set of defining equations for the components of H . However, we want each
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Figure 1.2. Procedure for rewriting a
grammar so that each production begins
with a terminal symbol

Figure 1.3. Procedure for rewriting a
grammar which is already in Greibach nor-
mal form, so that each production begins
and ends with a terminal symbol

production to begin with a terminal symbol. Therefore if the leftmost symbol
of any term in G is a terminal symbol, leave it alone. If it is a nonterminal,
say xi, replace that symbol by the right-hand side of the new equation which
defines xi (each term of which begins with a terminal symbol). This procedure
gives a new matrix, K, which is equivalent to G. In the example,

K =
[

ax2 ϕ
ax1H22 + cH22 + ax1 + c bH11a + ax1H21a + cH21a + ba + d

]
.

Now use H = K +KH as the defining equations for H . Each term in these
equations begins with a terminal symbol since each term in K begins with a
terminal symbol.

Thus the equations for the new grammar are

x′ = f ′H + f ′,

H = KH + K.

The procedure used to obtain these equations is summarized in Fig. 1.2.
Putting all the nonterminals in the new grammar for our example into one

column vector gives the following final set of defining equations:

x1 = bH11 + ax1H21 + cH21 + b,

x2 = ax1H22 + cH22 + ax1 + c,

H11 = ax2H11 + ax2,

H21 = ax1H22H11 + cH22H11 + ax1H11 + cH11 + bH11aH21
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+ ax1H21aH21 + cH21aH21 + baH21 + dH21 + ax1H22

+ cH22 + ax1 + c,

H22 = bH11aH22 + ax1H21aH22 + cH21aH22 + baH22 + dH22

+ bH11a + ax1H21a + cH21a + ba + d.

5. Normal Form with Terminal Heads and Tails

In this section a procedure is obtained for rewriting the productions of a
context-free grammar into a form where the head (first symbol) and tail (last
symbol) of the replacement string for each production are both terminal sym-
bols. Since the procedure is similar to that of the previous section an example
is not given.

First by using the technique of the previous section obtain a grammar in
the form where each production begins with a terminal symbol. Then use
the procedure outlined in Fig. 1.3 to obtain productions whose tails are also
terminal symbols. This latter procedure begins by writing the equations for the
grammar in the form x = Ax+b, where x is the column vector corresponding
to the nonterminals, bi is the sum of productions for xi which end in a terminal,
and Ai,j is the sum of productions for xi which end in xj ( but with xj deleted).
Each term in A and b begins with a terminal.

Now the solution to the set of equations x = Ax + b is x = A∗b =
b+Ab+ABb, where B = AA∗ and can be defined by B = A+AA+ABA.
A new nonterminal, Bi,j , is introduced for each component of B which is not
equal to ϕ.

The new productions for x are obtained from the new defining equations

x = b + Ab + ABb,

each of whose terms begins and ends with a terminal.
A new matrix, C, is obtained from A as follows. If any term in A ends in

a nonterminal, say xi, then that appearance of xi is replaced by the defining
equation for xi (each term of which ends in a terminal). Thus C is equivalent
to A but each term in C both begins and ends in a terminal symbol.

The defining equations for B are now taken to be

B = C + AC + ABC.

The new grammar is now in the proper normal form.
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Chapter 2

ATTRIBUTED TRANSLATIONS∗

P. M. LEWIS, D. J. ROSENKRANTZ AND R. E. STEARNS

General Electric Company, Research and Development Center, Schenectady, NY 12345, USA

Reprinted from: J. Computer and System Sciences, Vol. 9, No. 3, Dec. 1974,
pp. 279–307. c© Elsevier

Abstract Attributed translation grammars are introduced as a means of specifying a trans-
lation from strings of input symbols to strings of output symbols. Each of these
symbols can have a finite set of attributes, each of which can take on a value
from a possibly infinite set. Attributed translation grammars can be applied in
depth to practical compiling problems.

Certain augmented pushdown machines are defined and characterizations are
given of the attributed translations they can perform both deterministically and
nondeterministically. Classes of attributed translation grammars are defined
whose translation can be performed deterministically while parsing top down
or bottom up.

Received August 30, 1973.

1. Introduction

The purpose of this paper is to develop the concept of an “attributed trans-
lation,” particularly attributed translations which can be described in a syntax-
directed manner. The theory is developed with a particular application in mind,
namely the specification of input-output relations of language processing de-
vices such as the lexical and syntax boxes of a compiler. This application
is reflected in our choice of mathematical terminology and in our illustrative
examples.

∗ A preliminary version of this paper was presented at the 1973 Fifth Annual ACM Symposium on the
Theory of Computing.
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The concept underlying the mathematics of this paper is the concept of an
attributed symbol. A set of attributed symbols is specified by giving a finite
set of basic symbols, a finite set of attributes for each basic symbol, and a
set (possibly infinite) of values for each attribute. A particular attributed sym-
bol consists of a basic symbol together with an associated attribute value for
each attribute. Our customary notation is to display the attribute values as sub-
scripts of the basic symbol. Our customary interpretation is that the values are
“semantic” information associated with a particular occurrence of a basic sym-
bol. Suppose, for example, that one basic symbol is the symbol CONSTANT
specified to have one attribute and suppose it is specified that the attribute can
take any integer as its value. Then the attributed symbol consisting of the ba-
sic symbol CONSTANT with associated attribute value 37 would be written
CONSTANT37. In a particular application, the subscript might be interpreted
as semantic information giving the numerical value of a constant. (In other
applications, an attribute might be interpreted as a pointer to a symbol table
entry.)

By an “attributed translation,” we mean a mapping of certain strings of
attributed “input symbols” (i.e. an input language) into strings of attributed
“action symbols.” The terminology “action symbol” is in deference to the in-
terpretation that an action symbol represents the performance of an arbitrary
semantic action. In the simple applications illustrating this paper, the semantic
actions are simply to emit a corresponding output. Thus for purposes of under-
standing this paper, it is satisfactory to think of the action symbols as “output
symbols.”

The attributed translations studied in this paper are translations that can be
described by a grammar we call an “attributed translation grammar,” which is a
generalization of context-free grammar. The generalization is achieved in two
steps. First a context-free grammar is generalized to a “translation grammar”
describing translations without attributes. Then the attributes are added.

After considering attributed translation grammars as a means of specifying
translations, we concentrate on performing these translations with augmented
pushdown machines. Characterizations are given of the attributed translations
that can be performed by both nondeterministic and deterministic augmented
pushdown machines. Certain classes of attributed translation grammars are
defined whose specified translation can always be performed by a deterministic
augmented pushdown machine while parsing top down or bottom up.

Attributed translations are based on the ideas of attributed grammars [10]
and syntax directed translations [7, 12]. The computation of attributes is also
considered in [1]. Other relevant concepts are property grammars and table ma-
chines [14], attributed grammars with relations [3], and affix grammars [2, 11].



Attributed Translations 15

2. Translation Grammars

We begin by introducing a new mechanism, called a translation grammar.
The translation grammar concept is introduced as a way of specifying transla-
tions of input strings (without attributes) into action or output symbol strings
(without attributes).

A translation grammar is a context free grammar in which the set of ter-
minal symbols is partitioned into a set of input symbols and a set of action
symbols. The strings in the language generated by a translation grammar are
called activity sequences. The input grammar of a translation grammar is the
grammar obtained by deleting all action symbols from the productions of the
given grammar.

Given an activity sequence of input and action symbols, we use the term
input part to refer to the sequence of input symbols obtained from the activity
sequence by deleting all action symbols and we use the term action part to
refer to the sequence of action symbols obtained from the activity sequence by
deleting all input symbols. For each activity sequence, the action part is called
a translation of the input part.

Given a translation grammar, each activity sequence in the language defined
by that grammar pairs an input part with an action part. The set of all pairs that
can be obtained in this way is called the syntax directed translation defined by
that translation grammar.

The set of translations defined by translation grammars is exactly the same
set as defined by the simple syntax directed transductions of [12], because
the translation grammar provides an alternate notation for indicating “simple
transduction elements.” However, the activity sequence is a new mathemati-
cal object amenable to theoretical study. In practice, an activity sequence can
be interpreted as a scenario specifying the operation of a language processor.
An occurrence of an input symbol in an activity sequence can be interpreted
(roughly) as the reading of that symbol by the processor. The occurrence of
an action symbol in an activity sequence can be interpreted as the emitting of
that symbol by the processor. Alternatively, the action symbols can be inter-
preted as the names of action (or semantic) routines that are to be called while
processing the input sequence. The activity sequence can thus be interpreted as
specifying both the sequence of action routine calls (or emitting of symbols)
corresponding to the input sequence, and the timing of these action routine
calls with respect to reading the input symbols.

The primary use of translation grammars in this paper is as a vehicle for
describing translations.
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3. Attributed Translations

We now start the study of translations where the input and action symbols
have associated attributes. As an aid to understanding the objectives of the
theory, we begin with an English description of a particular language processor.

The input set of the processor is the set

{(, ), +, ∗, C}

where C represents a constant. Furthermore, each occurrence of input C pre-
sented to the processor is accompanied by information giving the value of that
constant. The processor accepts input sequences which constitute valid arith-
metic expressions and emits the numerical value of the input expression.

To model the input of this processor as a string of attributed input symbols,
we simply treat the value of the constant as an attribute. Under our convention
that attributes are shown as subscripts, one of the permissible attributed input
strings is

(C2 + C5) ∗ (C11 + C3)

To model the output activity of the processor, we invent the symbol AN-
SWER to represent the action of emitting the answer. We let ANSWER have
an attribute which is to be the numerical answer emitted. The action sequence
corresponding to the above input sequence would therefore be

ANSWER98

In the next section, we present a method of describing certain attributed
translations in a grammatical way. It will then be possible to replace the above
English description of a processor with a precise grammatical specification of
its input-output relation. In later sections, we show how suitable grammatical
specifications can be used to obtain processors for performing the specified
attributed translation.

4. Attributed Translation Grammars

We now generalize translation grammars to accommodate attributes. Each
symbol in the translation grammar (input, nonterminal or action symbol) is al-
lowed to have attributes. Rules are then given by which values for the attributes
of all the symbols on a derivation tree can be computed.

An attributed translation grammar is a translation grammar for which the
following additional specifications are made.

1. Each input, nonterminal, and action symbol has an associated finite set
of attributes, and each attribute has a (possibly infinite) set of permissible
values.
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2. Each nonterminal and action symbol attribute is classified as being either
inherited or synthesized.

3. Rules for inherited attributes are specified as follows.

(a) For each occurrence of an inherited attribute on the right-hand side
of a given production, there is an associated rule which says how
to compute a value for that attribute as a function of certain other
attributes of symbols occurring in the left- or right-hand sides of
the given production.

(b) An initial value is specified for each inherited attribute of the start-
ing symbol.

4. Rules for synthesized attributes are specified as follows.

(a) For each occurrence of a synthesized nonterminal attribute on the
left-hand side of a given production, there is an associated rule
which says how to compute a value for that attribute as a function
of certain other attributes of symbols occurring in the left- or right-
hand sides of the given production.

(b) For each synthesized action symbol attribute, there is an associ-
ated rule which says how to compute a value for that attribute as a
function of certain other attributes of the action symbol.

Attributed translation grammars are to be used to define attributed derivation
trees and then attributed activity sequences and attributed translations. The
basic idea is as follows.

1. An unattributed derivation tree is constructed from the underlying trans-
lation grammar.

2. For each occurrence of an input symbol in the derivation tree, arbitrary
permissible values are assigned to its attributes.

3. The attribute rules are then employed wherever possible in an attempt
to supply attribute values for all the attributes of all the occurrences of
non-terminal and action symbols in the derivation tree.

Before discussing the ramifications of Step 3, we first discuss and interpret
the attributed translation grammar definition.

Part 1 of the definition simply says that the input, nonterminal, and action
symbols are to be attributed symbols.

In part 2, a distinction is made between inherited and synthesized attributes
to indicate whether their values are to be computed by rules specified by part 3
or by rules specified by part 4. The terms “inherited” and “synthesized” were
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introduced in [10], as was the term “attribute.” A more detailed comparison
with [10] is given at the end of this section.

Part 3 states what rules are needed to compute values for inherited attributes
in a derivation tree. Each symbol in a derivation tree is either associated with
the right-hand side of a production (i.e. the production which attaches the
symbol to its parent in the tree) or is designated as the root of the tree (in
which case the symbol is an occurrence of the starting symbol). These two
cases account for the two sections A and B of part 3.

Section A says that each inherited attribute associated with a right-hand
occurrence has a rule for computing its value based on some of its parent’s
attribute values, some of its sibling’s attribute values, and even some of its own
attribute values. The term “inherited” is suggestive of the idea that the rule is
based on information obtained from the parent. The evaluation of the attribute
rule can of course only be performed if the attribute values on which the rule
depends have previously been computed.

Section B of part 3 says that initial values must be supplied for inherited
attributes of the root of the derivation tree.

Part 4 states what rules are needed to compute values for synthesized at-
tributes in a derivation tree. The case of a nonterminal attribute and an action
symbol are treated separately.

Section A of part 4 deals with the nonterminal case. Because each nontermi-
nal node in a derivation tree is associated with a left-hand side of a production,
namely the production applied to that node, Section A ensures that there is a
rule for each non- terminal synthesized attribute. The rule computes a value
using some of the attribute values of the nonterminal’s immediate descendants
and possibly some of the non- terminal’s own attribute values. The term “syn-
thesized” is suggestive of the idea that a value is synthesized from the attributes
of the descendants.

Section B of part 4 deals with the action symbol case. Here the rule is
associated with the symbol itself (because the action symbol is not a left-hand
side) and the rule is based solely on other attributes of the symbol (because
the action symbol has no descendants). Synthesized action symbol attributes
are almost completely neglected in the rest of the paper since an equivalent
formulation with only inherited action symbol attributes can always be found
for purposes of specifying a translation. Nevertheless, we believe it natural to
include such attributes in modeling compilers.

Now we return to the problem of adding nonterminal and action symbol
attributes to a derivation tree for which input symbol attribute values have been
supplied. As a first step, values can be assigned to the inherited attributes of
the root in accordance with the initial values required by Section 3B. Then
perhaps rules can be found which depend only on the input attributes or the
inherited attributes of the root, and the resulting values can be added to the tree.
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Hopefully, as attribute values are added to the tree, the arguments of additional
rules will be available, and still more values can be added until finally every
attribute of each symbol on the derivation tree has an assigned value.

We say that an attributed translation grammar is well defined if and only if,
for any derivation tree obtained from the underlying translation grammar, the
process described above can be used to compute a value for each attribute of
each symbol occurring in the derivation tree. This concept of “well defined”
was introduced in [10], and the test given in [10] can be used with straightfor-
ward extensions to test an attributed translation grammar for the “well defined”
condition. For application purposes, we are only interested in well defined at-
tributed translation grammars, and our examples are all from this class.

Given an attributed translation grammar and given a derivation tree obtained
from the grammar, the sequence of attributed input and action symbols ob-
tained from the derivation tree is an attributed activity sequence. The attributed
action part of this activity sequence is called a translation of the attributed in-
put part. The set of attributed input part and action part pairs obtainable from
the given grammar is called the attributed translation specified by the gram-
mar. If an attributed translation grammar has an unambiguous input grammar,
then each attributed input sequence has only one derivation tree and only one
attributed translation.

Comparing the attributed translation grammars presented here with those
of Knuth in [10], the principal difference is that we permit and require a cer-
tain class of terminal symbols (namely the input symbols) to have attributes
whose values are not given by rules. There are also two minor differences.
Knuth restricts terminals to have inherited attributes whereas we also permit
synthesized attributes for our action terminals. Knuth also restricts the starting
symbol to synthesized attributes only whereas we permit initialized inherited
attributes. These two differences are minor in the sense that given any at-
tributed translation grammar, the translation can be specified by an equivalent
attributed translation grammar with all action symbol attributes inherited and
all starting symbol attributes synthesized.

5. Examples

EXAMPLE 1. As a first example, we give an attributed translation grammar
specifying the translation of expressions over constants mentioned previously.

The nonterminals 〈E〉, 〈T 〉, and 〈P 〉, each have an integer valued synthe-
sized attribute. The input symbol C has one integer valued attribute and the
action symbol ANSWER has an inherited integer valued attribute. The start-
ing symbol is 〈S〉.

1. 〈S〉 → 〈E〉a ANSWERb

b← a
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2. 〈E〉d → 〈E〉e + 〈T 〉f
d ← e + f

3. 〈E〉g → 〈T 〉h
g ← h

4. 〈T 〉i → 〈T 〉j ∗ 〈P 〉k
i ← j ∗ k

5. 〈T 〉m → 〈P 〉n
m← n

6. 〈P 〉p → (〈E〉q)
p← q

7. 〈P 〉r → 〈C〉s
r ← s

The notation used to describe the rules for computing attributes is that each
attribute of a symbol in a production is given a name and the rules are written
below the productions in terms of these names. For instance the rule

d ← e + f

below production 2 specifies that attribute d is computed by evaluating the sum
e + f .

In any derivation tree obtained from this grammar, the value of the attribute
of each nonterminal 〈E〉, 〈T 〉 and 〈P 〉 equals the numerical value of the subex-
pression generated by that nonterminal. The value of the attribute of ANSWER
is the numerical value of the entire expression.

The input sequence

(C2 + C5) ∗ (C11 + C3)

has the attributed derivation tree shown in Fig. 2.1. The activity sequence
corresponding to the tree is

(C2 + C5) ∗ (C11 + C3)ANSWER98

and the action sequence is
ANSWER98.

To see that the attribute values in Fig. 2.1 are in fact obtainable by suc-
cessive applications of attribute rules, observe that the values can be added to
the unattributed tree simply by computing the values in a bottom up order. In
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Figure 2.1.

other words, each nonterminal attribute can be computed as soon as the at-
tribute values have been determined for the symbols below it, so its value can
be computed by starting from the terminal attributes and working up the tree.
The value of action ANSWER can be computed as the final step.

EXAMPLE 2. To show how an attributed translation grammar might be used
in a compiler design, we consider the processing of declarations in a hypo-
thetical programming language. The translation is one that the syntax box of
a compiler might be required to perform. The input set consists of the three
symbols:

1. REAL

2. I

3. ,
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where I represents an identifier having one attribute. The value of this attribute
is to be a pointer to a table entry for the identifier. The input language consists
of the word REAL followed by a sequence of identifiers separated by com-
mas. For each identifier, an action routine named ALLOCATE is to be called.
This action routine is to fill in the table entry for the identifier with the run
time location corresponding to the identifier. The identifiers are to be allocated
consecutive locations beginning at location 50. Routine ALLOCATE has two
parameters: a pointer to the table entry for the identifier and the value of the run
time location. To represent the act of calling this routine, we use ALLOCATE
as an action symbol with two inherited attributes, which take on the values of
the routine’s parameters.

The grammar has two nonterminals, 〈DECLARATION〉 and 〈IDENTIFIER
LIST〉, of which the first is the starting symbol. Each nonterminal has two
pointer-valued attributes, of which the first is inherited and the second is syn-
thesized. The initial value of the inherited attribute of the starting symbol is 50.

The grammar is:

1. 〈DECLARATION〉x1,z2 → REALIa1ALLOCATEa2,x2〈IDENTIFIER LIST〉y,z1

a2 ← a1 y ← x1 + 1
x2 ← x1 z2← z1

2. 〈IDENTIFIER LIST〉x1,z2 → Ia1ALLOCATEa2,x2〈IDENTIFIER LIST〉y,z1

a2 ← a1 y ← x1 + 1
x2 ← x1 z2← z1

3. 〈IDENTIFIER LIST〉x,z → ε
z ← x

The inherited attribute of each nonterminal equals the run time location
available for the first identifier generated from the nonterminal. The synthe-
sized attribute equals the next available runtime location after space has been
allocated to all the identifiers generated from the nonterminal. In this example,
the synthesized attributes do not affect the attributes of the action symbols, but
they might if this grammar were part of some larger grammar.

The input sequence
REAL I3, I9, I2

has the derivation tree shown in Fig. 2.2. The activity sequence is

REAL I3 ALLOCATE3,50, I9 ALLOCATE9,51, I2 ALLOCATE2,52

The attribute values shown in Fig. 2.2 were obtained by first computing the
inherited values and then the synthesized attributes. The inherited attributes
were evaluated starting with the initial value of the top node and evaluating
each attribute after those above and to the left were evaluated. The first synthe-
sized attribute evaluated was the one lowest on the tree and then the other syn-
thesized attributes were evaluated working up the tree. The order of evaluation



Attributed Translations 23

Figure 2.2.

illustrates a technique of sending information down the tree using inherited at-
tributes and then sending it back up using synthesized attributes. Observe how
the downward information is turned back up with the application of produc-
tion 3.

EXAMPLE 3. As another example, we consider the translation of assignment
statements in a hypothetical programming language. The input set is

{(, ), +, ∗, I, =}

where I represents an identifier having one attribute whose value is to be a
pointer to a table entry for the identifier.

The set of action symbols is

{ADD, MULTIPLY, ASSIGN}

where ADD and MULTIPLY each have three inherited attributes and ASSIGN
has two inherited attributes. The attributes of ADD and MULTIPLY are to be
pointers to the table entries for the left operand, right operand, and result of the
operator. The attributes of ASSIGN are to be pointers to the table entries for
an identifier being assigned to and the expression which is being assigned to
the identifier.

The nonterminal set is

{〈S〉, 〈E〉, 〈T 〉, 〈P 〉, 〈E-LIST〉, 〈T -LIST〉}.

Nonterminal 〈S〉 has no attributes. Nonterminals 〈E〉, 〈T 〉, and 〈P 〉 each have
one attribute, which is synthesized. This attribute is to be a pointer to the
table entry for the result of the subexpression generated by the nonterminal.
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Nonterminals 〈E-LIST〉 and 〈T -LIST〉 each have two attributes, of which the
first is inherited and the second is synthesized.

The attributed grammar is the following, with starting symbol 〈S〉.

1. 〈S〉 → Ia1 = 〈E〉b1ASSIGNa2,b2

a2 ← a1 b2 ← b1

2. 〈E〉b2 → 〈T 〉a1〈E-LIST〉a2,b1

a2 ← a1 b2 ← b1

3. 〈E-LIST〉a1,d2 → +〈T 〉b1ADDa2,b2,c1〈E-LIST〉c2,d1

a2 ← a1 c2 ← c1
b2← b1 d2 ← d1
c1 ← GETNEW

4. 〈E-LIST〉a1,a2 → ε

a2 ← a1

5. 〈T 〉b2 → 〈P 〉a1〈T -LIST〉a2,b1

a2 ← a1 b2 ← b1

6. 〈T -LIST〉a1,d2 → ∗〈P 〉b1MULTIPLYa2,b2,c1〈T -LIST〉c2,d1

a2 ← a1 c2 ← c1
b2← b1 d2 ← d1
c1 ← GETNEW

7. 〈T -LIST〉a1,a2 → ε

a2 ← a1

8. 〈P 〉a2 → Ia1

a2 ← a1

9. 〈P 〉a2 → (〈E〉a1)
a2 ← a1

GETNEW is assumed to be a parameterless function procedure which sup-
plies a pointer to some unused table entry that can be used to keep track of a
partial result. Because different calls on GETNEW return different answers,
GETNEW is not strictly speaking a function. Thus in using GETNEW, we are
taking a small liberty with our formal definition. As an alternative to using
GETNEW, extra attributes could be used to keep track of available table en-
tries. However, the use of GETNEW is simpler and would be the likely choice
in an actual design application.
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Nonterminal 〈E-LIST〉 can be thought of as generating a list consisting of
+〈T 〉 ADD repeated zero or more times. The inherited attribute of 〈E-LIST〉
corresponds to the left operand of the first + (if any) on the list. The syn-
thesized attribute of 〈E-LIST〉 corresponds to the result of the subexpression
obtained by appending the string generated from 〈E-LIST〉 to the string repre-
senting the left operand. Nonterminal 〈T -LIST〉 is similar to 〈E-LIST〉.

For illustrative purposes, assume that GETNEW supplies consecutive loca-
tions beginning with location 200. Then the input sequence

I7 = I5 + I2 ∗ I3

has the derivation tree shown in Fig. 2.3. The activity sequence is

I7 = I5 + I2 ∗ I3MULTIPLY2,3,200ADD5,200,201ASSIGN7,201

and the action sequence is

MULTIPLY2,3,200ADD5,200,201ASSIGN7,201

Figure 2.3.

The order of attribute evaluation in Fig. 2.3 is more complex than in the
previous two examples. The most systematic order is to evaluate the inherited
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attributes of a given symbol before evaluating attributes of its descendants, to
evaluate the synthesized attributes of a symbol after evaluating attributes for
the descendants, and to evaluate all attributes of a left sibling before a right
sibling. The 〈E-LIST〉 and 〈T -LIST〉 portions of the tree again illustrate the
technique of sending down inherited information and then passing back up
synthesized information. Productions 4 and 7 are the productions which turn
this information around.

6. Attributed Pushdown Machines

We are interested in devices that “perform” the attributed translation speci-
fied by an attributed translation grammar. By a device performing an attributed
translation we mean the device reads the input symbols including their at-
tributes, verifies that the input sequence is in the language specified by the
input grammar and outputs the attributed action symbols specified by the ac-
tivity sequence corresponding to the input sequence.

We are particularly interested in performing attributed translations with at-
tributed pushdown machines. Attributed pushdown machines are similar to or-
dinary pushdown machines, except that the symbols and states of the machine
have attributes that can be manipulated during the moves of the machine. Infor-
mally, an attributed pushdown machine is the same as a conventional pushdown
machine except that:

1. Each input symbol, output symbol, state, and stack symbol has an asso-
ciated fixed number of attributes.

2. Associated with each move of the machine is a specification of the at-
tributes of the new state, the new top stack symbols (if the move is not
a pop) and the outputs (if any) as a function of the attributes of the old
state, top stack symbol and input symbol (if the move is not an ε-move).

Formally, a (nondeterministic) attributed pushdown transducer is an 11-
tuple

(Q, I, Y, Γ, δ, q, Z, A, C, u, v)

where:

Q is a finite state of states.

I is a finite set of input symbols.

Y is a finite set of output symbols, disjoint from I .

Γ is a finite set of stack symbols.

q in Q is the initial state.
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Z in Γ is the initial stack symbol.

A is the set of possible attribute values.

C is a function from Q ∪ I ∪ Y ∪ Γ to the nonnegative integers, specifying
how many attributes each of these symbols have. We let C̄ denote the
extension of C to (Q ∪ I ∪ Y ∪ Γ)∗ defined by C̄(ε) = 0 and C̄(αβ) =
C(α) + C̄(β) for α a single symbol.

u in AC(q) is the attribute set of the starting state.

v in AC(Z) is the attribute set of the starting stack symbol.

δ is a mapping of Q × (I ∪ {ε}) × Γ into a finite set of 4-tuples such that if
δ(r, a, β) contains (p, γ, ξ, f) then p is in Q, γ is in Γ∗, ξ is in Y ∗, and f

is a computable function from AC(r)+C̄(a)+C(β) into AC(p)+C̄(γ)+C(ξ).
Furthermore each pair of 4-tuplets in δ(r, a, β) differs in at least one of
the first three components.

We say that an attributed pushdown transducer is deterministic if

1. For each r in Q and β in Γ, whenever δ(r, ε, β) is nonempty, then
δ(r, a, β) is empty for all a in I;

2. δ never maps its argument into more than one element.

A configuration of an attributed pushdown translator is a 4-tuple (r, x, γ, y)
where r is an attributed state, x is a string of attributed input symbols, γ is a
string of attributed stack symbols, and y is a string of attributed output sym-
bols. If a configuration is of the form (rg, ahx, βiγ, y) where r is a state with
attributes g, a is in I ∪ {ε} and has attributes h, β is a stack symbol with at-
tributes i, and δ(r, a, β) contains (p, η, ξ, f) then we write (rg, ahx, βiγ, y) �
(p̄, x, η̄γ, yξ̄) where p̄, η̄, and ξ̄ are p, η, and ξ respectively with attributes com-
puted by applying the function f to the attributes obtained by composing g, h,
and i.

Let
∗
� denote the transitive reflexive closure of �. Then if

(qu, x, Zv, ε)
∗
� (p, ε, ε, y)

we say that y is a translation of x performed by the machine. The translation
performed by the machine is the set of all such pairs (x, y).

We say that a machine has an endmarker � for � in I if C(�) = 0 and all
input sequences for which the machine performs a translation are of the form z�
where z is in (I− �)∗. Note that the machine reads the endmarker in producing
a translation. If a machine has endmarker �, then we say that the translation
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performed using an endmarker by the machine is the set of pairs (z, y) such
that (z�, y) is in the translation performed by the machine.

Note that the set of translations performed by nondeterministic attributed
pushdown machines is identical to the set of translations performed using an
endmarker by nondeterministic attributed pushdown machines.

7. Performing Translations Nondeterministically

We define a subclass of attributed translation grammars and relate it to at-
tributed pushdown machines.

An attributed translation grammar is called L-attributed if and only if the
following three conditions hold.

1. For each attribute evaluation rule associated with an inherited attribute
of some given symbol in the right-hand side of some given production,
each argument of that rule is either an inherited attribute of the left-hand
side or an arbitrary attribute of some right-hand side symbol appearing
to the left of the given symbol.

2. For each attribute evaluation rule associated with a synthesized attribute
of the left-hand side of some given production, each argument of that
rule is either an inherited attribute of the given left-hand side or an arbi-
trary attribute of some right-hand side symbol.

3. For each attribute evaluation rule associated with a synthesized attribute
of an action symbol, each argument of that rule is an inherited attribute
of the given action symbol.

Comparing the above three conditions with the definition of attributed trans-
lation grammars, we see that 1, 2, and 3 above are restrictions on Sections 3A,
4A, and 4B, respectively. The only evaluation rules not constrained by the
above three conditions are the initialization rules of Section 3B.

The L in the name “L-attributed” refers to the restriction (in condition 1
of the definition) that a rule for the inherited attribute of a given symbol in a
production can use attributes of symbols to the left of the given symbol, but not
attributes of symbols to the right. The intent of condition 1 is that the inherited
attributes of a given node in the derivation tree should depend (either directly or
indirectly) only on those input symbol attributes occurring to left of the given
node, and be independent of the input symbol attributes below or to the right of
the given node. A consequence of this intent is that the synthesized attributes
of the given node should only depend on the input symbol attributes to the left
or below the given node, and be independent of input symbol attributes to the
right of the given node.

The purpose of conditions 2 and 3 is to ensure that the grammar is well
defined. Together, the three conditions ensure that given a production such as
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A → BC, the attributes of A, B, and C can be evaluated in the following
order:

1. Inherited attributes of A,

2. Inherited attributes of B,

3. Synthesized attributes of B,

4. Inherited attributes of C,

5. Synthesized attributes of C,

6. Synthesized attributes of A.

THEOREM 1. Any translation specified by an L-attributed translation gram-
mar can be performed by a nondeterministic attributed pushdown machine.

Proof. We construct a one state machine which operates in a top down fashion.
Let the translation grammar have input set I , action set Y , and nonterminal
set N . If there are m productions, order them from 1 to m and let the ith
production in the translation grammar have ni symbols.

The machine is

({q}, I, Y, {Z} ∪ {(i, j)|1 ≤ i ≤ m and 0 ≤ j ≤ ni}, δ, q, Z, A, C, u, v)

where q and Z are arbitrary new names, A is the set of values that the attributes
of the grammar can take us on, u is arbitrary, and C, v, and δ will be specified
below.

For each symbol α in I ∪ Y , C(α) equals the number of attributes α has
in the grammar. For Z, C(Z) equals 0, and so v is trivially a null vector.
For q, C(q) equals the maximum number of attributes of any symbol in the
grammar. For each stack symbol of the form (i, j), C((i, j)) is equal to the
sum of the number of attributes of the first j − 1 symbols on the right-hand
side of production i plus the number of inherited attributes of the left-hand
nonterminal.

The machine parses top down, with stack symbol (i, j) representing a pre-
diction of the rest of production i after the first j symbols. The machine op-
erates so that when the top stack symbol is (i, j), the attributes of the stack
symbol equal the inherited attributes of the left-hand nonterminal of produc-
tion i, and the attributes of the first j− 1 symbols on the right-hand side. Also,
when j > 0 an appropriate number of attributes of the state will equal the at-
tributes of the jth symbol on the right-hand side. Thus when (i, j) is on top of
the stack the inherited attributes of the left-hand side of production i and all the
attributes of the first j symbols of the right-hand side are available as attributes
of the state and top stack symbol.
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Stack symbol Z is used only to initialize the stack and disappears forever
with the first machine operation. The first operation is to predict the produc-
tion i applied to the starting symbol and replace the Z with the corresponding
(i, 0). Symbol (i, 0) has an attribute for each inherited attribute of the starting
symbol (left-hand side of production i) and these are initialized with the values
specified as part of the grammar. Stated symbolically,

δ(q, ε, Z) = {(q, (i, 0), ε, fi) for all productions i with the starting symbol

as left-hand side}

where fi assigns the initial starting symbol inherited attribute values to the
attributes of (i, 0) and assigns arbitrary values to attributes of q.

When the top stack symbol of the machine has the form (i, j) where j = ni,
the machine predicts that an example of production i is over. The machine
operation is to assign the attribute values of the left-hand side to a subset of
the state attributes and to pop the stack to the symbol below. The inherited
attributes of the left-hand side are immediately known since their values are
given by corresponding attributes of (i, j). The synthesized attributes must
now be computed, but this is easily done because of condition 2 of the L-
attributed definition which says they can be computed from attribute values of
the top stack symbol and the attributes of q.

δ(q, ε, (i, ni)) is the one element set {(q, ε, ε, f)}

where f is a function computing the left-hand side attributes of production i
and assigning them to attributes of q (and assigning arbitrary values to any
remaining state q attributes).

For a stack symbol of the form (i, j) where j < ni we consider three cases,
depending on whether the (j + 1)st symbol on the right-hand side production
i is in I , Y , or N . All three cases have the property that (i, j) is to be replaced
with (i, j + 1) and that the attribute values for this replacement symbol are
already computed and are available as attributes of (i, j) and q. The actions
taken in each case must also provide that the attributes for the j’th symbol are
assigned to q, but the mechanism is different in each case. Letting α be the
(j + 1)st symbol of production i, the three cases are as follows.

Case 1. α is an input symbol. In this case, the machine has an operation if
and only if predicted input symbol α matches the current input. The obligation
to make the attributes of state q equal the attributes of α is met simply by
assigning the attributes of the machine input to q. Symbolically,

δ(q, α, (i, j)) is the one element set {(q, (i, j + 1), ε, f)}

where f fills in the values of (i, j + 1) and q as described above.
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Case 2. α is an action symbol. Conditions 1 and 3 of the L-attributed
definition ensure that the attributes of α can be computed from the information
at hand and be assigned as attributes of the state. Condition 1 says that the
inherited attributes of α can be computed from the attribute values of top stack
symbol (i, j) and the attributes of q. Condition 3 says that the synthesized
attributes of α can then be computed from the inherited attributes. One other
action associated with α is to put out α with its attribute values. Symbolically,

δ(q, ε, (i, j)) is the one element set {(q, (i, j + 1), α, f)}

where f fills in the values of stack symbol (i, j + 1), state q, and output α as
described above.

Case 3. α is a nonterminal symbol. Condition 1 of the L-attributed defin-
ition ensures that the inherited attributes can be computed from the attributes
of the state and top stack symbol. The machine predicts a production k that
generates the predicted occurrence of α, and places a symbol (k, 0) on top
of the stack (above the (i, j + 1)) assigning to its attributes the inherited at-
tributes of α. Later, when the symbol (i, j + 1) is exposed (due to popping
a (k, nk)), the attributes of α will appear as attributes of the state thus fulfill-
ing the obligation to have (i, j + 1) appear with the attributes of α as state
attributes. Symbolically,

δ(q, ε, (i, j)) equals {(q, (k, 0)(i, j + 1), ε, fk) for all productions k with
left-hand nonterminal α}

where fk computes the attributes of (k, 0) and (i, j + 1) and arbitrary values
for q as described above.

This completes the construction. We have given arguments at each step
to show that appropriate attribute values are always available and computed.
The machine is otherwise a standard top down translator so we omit further
arguments that it performs the desired attributed translation. �

EXAMPLE 4. Consider the following L-attributed translation grammar with
input set {a, b}, action set {d}, nonterminal set {S, B}, and starting symbol S.
Symbols a and b each have one attribute; S and d each have one inherited
attribute; and B has two attributes, of which the first is inherited and the second
synthesized. The starting value of the attribute of S is 4. The productions are

1. Sr → asBt,udv

t← r + s v ← 3 ∗ u

2. Br,s → bt

s ← r ∗ t
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The machine constructed by the procedure described above would have the
following sequence of configurations for input sequence a2b5. Wherever the
machine can specify an arbitrary value for an attribute, the value 0 has been
specified. The output sequence is d90.

(q0,0, a2b5, Z, ε) � (q0,0, a2b5, (1, 0)4, ε)
� (q2,0, b5, (1, 1)4, ε) � (q0,0, b5, (2, 0)6(1, 2)4,2, ε)
� (q5,0, ε, (2, 1)6 (1, 2)4,2, ε) � (q6,30, ε, (1, 2)4,2, ε)
� (q90,0, ε, (1, 3)4,2,6,30, d90) � (q4,0, ε, ε, d90)

THEOREM 2. Any translation performed by a nondeterministic attributed
pushdown machine can be specified by an L-attributed translation grammar.

Proof. We modify a standard technique for picking a grammar off a ma-
chine [6]. Let the machine be (Q, I, Y, Γ, δ, q, Z, A, C, u, v). The grammar
has input set I , action set Y , and nonterminal set (Q × Γ × Q) ∪ {S} where
S is a new symbol and is also the starting nonterminal. The productions are of
two forms

1. S → (q, Z, p) for each p in Q,

2. (r, A, p) → aξ(q1, B1, q2)(q2, B2, q3) · · · (qm, Bm, qm+1) for each r,
q1, q2, . . . , qm+1 in Q where p = qm+1, each a in I ∪ {ε}, and A, B1,
B2, . . . , Bm in Γ, such that δ(r, a, A) contains (q1, B1B2 · · ·Bm, ξ, f).
(If m = 0 then q1 = p, δ(r, a, A) contains (p, ε, ξ, f) and the production
is (r, A, p) → aξ).

Each input and action symbol in the grammar has the same number of at-
tributes as the corresponding symbol in the machine, and all action symbol
attributes are inherited. Nonterminal S has no attributes. A nonterminal of
the form (r, A, p) has C(r) + C(A) inherited attributes and C(p) synthesized
attributes.

For a form 1 production, the rules for the inherited attributes of (q, Z, p) are
that they equal u and v.

For a form 2 production, the function f from the machine specifies the at-
tributes of q1, ξ and B1B1 · · ·Bm in terms of the attributes of r, a, and A. The
rules associated with the production for computing the inherited attributes of ξ
are obtained from f , with the inherited attributes of the left-hand non-terminal
used instead of the attributes of the symbols r and A in the machine. If m = 0
the rules for computing the synthesized attributes of the left-hand nonterminal
are similarly obtained from f . If m > 0, the rules for the synthesized attributes
of the left-hand nonterminal specify that they equal the synthesized attributes
of (qm, Bm, qm+1). The rules for computing the inherited attributes of symbol
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(qi, Bi, qi+1) use the rules from f to compute the attributes corresponding to
Bi. For i = 1, the rules for the inherited attributes corresponding to qi are
obtained from f . For i > 1, the inherited attribute rules specify that these
attributes equal the synthesized attributes of the symbol (qi−1, Bi−1, qi). �

Note that the grammar is L-attributed.

THEOREM 3. There exists a translation specified by an attributed translation
grammar that cannot be performed by any nondeterministic attributed push-
down machine.

Proof. The proof uses the following grammar, which is not L-attributed. The
input set is {a, b, c}, action set is {1, 2, 3}, and starting nonterminal is S.

S → 1yAcx

y ← x

A → a2A

A → b3A

A → ε

Suppose this translation can be performed by a nondeterministic machine
and that for some input string, the machine can produce the translation by
emitting the 1 before reading the c, i.e.,

(q, stcj , Z, ε)
∗
�(p, tcj , γ, 1jξ)

∗
�(r, ε, ε, 1jξη)

But then for some other attribute k

(q, stck, Z, ε)
∗
�(p, tck, γ, 1jξ)

∗
�(r, ε, ε, 1jξη)

which is an incorrect translation.
If, on the other hand, 1 is never emitted before reading the c, then no output

is produced until all inputs are read (1 being the first output symbol and c
the last input symbol). Picking a grammar off this machine by the proof of
Theorem 2, the underlying translation grammar would generate the set

L = {wc1h(w)|w in {a, b}∗}

where h is the string homomorphism mapping a into 2 and b into 3. There
is a string homomorphism which maps L into {ww|w in {a, b}∗}, which is
known to be not context free. Since context free languages are closed under
homomorphisms, L is not a context free language. We conclude that no such
grammar can be picked off a machine and hence no such machine can exist. �
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8. Performing Translations Deterministically

In this section we study the attributed translations that can be performed
using an endmarker by deterministic attributed pushdown machines. First we
note that any translation that can be performed by a deterministic machine can
also be performed using an endmarker by a deterministic machine. However,
there are translations that can be performed using an endmarker by a determin-
istic machine, but that cannot be performed by a deterministic machine, simply
because more languages can be accepted when the endmarker is used [5]. First
we consider the case when the input grammar is LL(k) [12, 13], i.e., can be
parsed top down without backtrack.

THEOREM 4. Any translation specified by an L-attributed translation gram-
mar with an LL(k) input grammar can be performed using an endmarker by
a deterministic attributed pushdown machine.

Proof. First construction 1 of [13] can be applied to the grammar so that the in-
put grammar is strong LL(k). For this input grammar, the next k input symbols
always determine which production should be applied to a nonterminal [13].
Now a construction similar to that for Theorem 1 can be used to obtain the at-
tributed pushdown machine, assuming that the machine is capable of looking
ahead at the next k input symbols when selecting a move. The construction
is modified so that the next k input symbols are used to determine which pro-
duction to apply to a nonterminal. The resulting machine is deterministic and
performs the attributed translation.

Since attributed pushdown machines as defined in this paper are not capable
of lookahead, the standard lookahead machine must be simulated by the type
of machine defined in this paper. This can be done in a straightforward manner
using the machine state to remember k inputs and the attributes of the state to
remember the attributes of k inputs. The simulating machine needs an end-
marker and so the translation is performed using an endmarker by the resultant
deterministic machine. �

Note that Examples 2, 3, and 4 are all L-attributed and all have an LL(1)
input grammar.

L-attributed translations with an LL(k) input grammar can also be per-
formed using the method of recursive descent [4]. In this method there is
a procedure for recognizing each nonterminal in the grammar. To perform
an attributed translation, the procedure has a parameter for each attribute of
the corresponding nonterminal. In terms of ALGOL 60, the parameters cor-
responding to inherited attributes can be called by value, and the parameters
corresponding to synthesized values must be called by name. In the call of one
of the procedures, an actual parameter corresponding to an inherited attribute
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is the value of the attribute, and an actual parameter corresponding to a syn-
thesized attribute is a variable to which the value of the synthesized attribute
should be assigned during the execution of the called procedure.

As an example, the following ALGOL-like program is a recursive descent
processor based on the grammar of Example 4, assuming the attribute values
are integers.

begin
procedure S(r); value r; integer r;

comment This procedure translates an example of nonterminal S.
All examples of S begin with input symbol a;
if input symbol = a
then begin integer s, t, u, v;

s := attribute of input symbol;
advance to next input symbol;
t := r + s;
B(t, u);
v := 3 ∗ u;
output (“d”, v)
end

else reject;
procedure B(r, s); value r; integer r, s;

comment This procedure translates an example of nonterminal B.
All examples of B begin with input symbol b;
if input symbol = b
then begin integer t;

t := attribute of input symbol;
advance to next input symbol;
s := r ∗ t;
end

else reject;
comment execution starts here;
S(4);
if input symbol = end marker then accept else reject
end

Bochman [1] independently shows that, in his model, if the attribute rules
satisfy conditions similar to those in our definition of L-attributed grammars,
the attributes can be evaluated in a top down scan of a derivation tree by calling
recursive procedures.

We now study attributed translations that can be performed while parsing
bottom up. First we need the following definition.



36

An attributed grammar is called Polish if and only if all action
symbols occur only at the extreme right end of the right-hand sides
of productions.

Any unattributed translation specified by a Polish translation grammar with
an LR(k) input grammar can be performed using an endmarker by a deter-
ministic pushdown machine [12]. However this result does not hold when the
grammar is L-attributed.

THEOREM 5. There exists a translation specified by an L-attributed Polish
translation grammar with an LR(0) input grammar that cannot be performed
by any deterministic attributed pushdown machine.

Proof. Consider the following L-attributed grammar with input set {a, b, c, d},
action set {0, 1, 2} and nonterminal set {S}. Nonterminal S has one inherited
attribute for which the initial value is 1. Action symbol 2 has an inherited
attribute.

Sx → aSyc0
y ← 2 ∗ x

Sx → aSyd1
y ← 2 ∗ x + 1

Sx → b2y

y ← x

Suppose this translation can be performed by a deterministic machine. The
attribute of action symbol 2 cannot be determined by the machine until after the
entire input sequence has been read, and so the machine cannot produce any
output until after it reads the entire input sequence. The machine must there-
fore be able to read a sequence in {c, d}∗ and then output the same sequence
with c replaced by zero and d by 1. However when the machine reaches the
end of the input string, the first part of its output string is determined by the
upper portion of its stack contents, and this upper portion can only reflect the
end of the sequence in {c, d}∗. Therefore such a deterministic machine does
not exist. �

An L-attributed grammar is called S-attributed if and only if all
attributes of nonterminals are synthesized.

Many compilers that parse bottom up use a design method that only permits
the call of a “semantic action” when a production is recognized. If further-
more, the information available to the semantic action is associated with the
right-hand side of the recognized production, and the information returned by
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the semantic action is associated with the left-hand side, the design method
corresponds to S-attributed Polish translation grammars.

THEOREM 6. Any translation specified by an S-attributed Polish translation
grammar with an LR(k) input grammar can be performed using an endmarker
by a deterministic attributed pushdown machine.

Proof. The machine is based on the standard LR(k) machine [6, 8] for recog-
nizing the unattributed version of the input grammar in a bottom up fashion.
Each stack symbol has a set of attributes equal to the attributes of the gram-
matical symbol it represents. When a production is recognized, the attributes
of the action symbols and left-hand nonterminal are computed, and the outputs
are emitted. �

However, S-attributed translation grammars cannot specify all translations
that deterministic attributed pushdown machines can perform using an end-
marker.

THEOREM 7. There exists a translation specified by an L-attributed transla-
tion grammar with an LL(1) input grammar that cannot be specified by any
S-attributed translation grammar.

Proof. Consider the following translation grammar with input set {a, b, c}, ac-
tion set {1, 2, 3}, and starting nonterminal S. Nonterminal A and action sym-
bol 2 each have one inherited attribute; and input a has one attribute. No other
symbols have attributes.

S → axAy

y ← x

Ax → b1Ayc3
y ← x

Ax → d2y

y ← x

Observe that the grammar is L-attributed and has an LL(1) input grammar.
The activity sequences generated by this grammar have input part axbndcn and
action part 1n2x3n where n ≥ 0 and the attribute of 2 equals the attribute of a.

Suppose this translation can be specified by an S-attributed translation
grammar. Then it can be shown (see for instance the proof of the “uvwxy”
theorem in [5]) that associated with the grammar there is an integer p such
that all activity sequences of length greater than p can be written in the form
uvwxy where v and x are not both ε, and there is a nonterminal A such that
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the starting symbol of the grammar generates uAy and A
∗⇒ vAx

∗⇒ vwx. An
implication of this is that all sequences of the form uvmwxmy are generated
by the grammar. Since an activity sequence containing n + 2 input symbols
must contain exactly n + 1 action symbols, vx must contain an equal number
of input symbols and action symbols.

Now consider an activity sequence generated from the hypothetical
S-attributed grammar and having length greater than p. We wish to show that
the single occurrence of a from the input part must be part of u and the single
occurrence of 2 from the action part must be part of w.

The one occurrence of a cannot be in v or x because these sequences are
repeated. The a could not occur in y because then y would contain all the input
symbols and vx would contain only action symbols. Finally, the a cannot occur
in w, because then all the input symbols in vx would be in x, and uvvwxxy
would have an input part that is not of the form axbndcn. We conclude that a
is in u.

The one occurrence of 2 cannot be in v or x because these sequences are
repeated. The 2 cannot occur in u, because then vx would contain action
symbol 3, but not action symbol 2. Similarly, 2 in y would imply that vx
contains action symbol 1, but not action symbol 3. We conclude that 2 is in w.

From the “uvwxy” theorem, we now conclude that there is a derivation of
an activity sequence where A

∗⇒ w and w contains 2, but not a. Since the
grammar is assumed to be S-attributed, the nonterminals have only synthe-
sized attributes. Therefore the attributes of any action symbols generated from
a nonterminal can only be computed in terms of the attributes of the input sym-
bols actually generated from that nonterminal. Since a is not generated from
nonterminal A, there is no way of specifying that the attribute of 2 equals the
attribute of a.

We now give a characterization of the translations that can be performed by
deterministic attributed pushdown machines, i.e., we define a class of attributed
translation grammars which specify exactly the set of attributed translations
that can be performed by deterministic attributed pushdown machines. The
characterization is in terms of an extension of strict deterministic grammars [5]
in which we take the attributes and action symbols into account.

An attributed translation grammar (with terminals and nonterminals V ) is
called SD-attributed if and only if it is L-attributed and there exists a partition
π on V such that

1. All input symbols are in the same block of π.

2. For each action symbol y, {y} is a block of π.

3. All the nonterminals in the same block of π have the same number of
inherited attributes.
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4. The inherited attributes of each nonterminal can be ordered so that for
any nonterminals A and A′ in the same block of π, if A → αβ and
A′ → αβ′ are productions (α, β, β′, in V ∗) then either

(a) both β and β′ �= ε, in which case the first symbol of β and β′ are
in the same block of π, and the rules for computing corresponding
inherited attributes of these symbols (in terms of the attributes of α
and corresponding inherited attributes of A and A′) are the same,
or

(b) β = β′ = ε and A = A′. �

THEOREM 8. Any translation performed by a deterministic attributed push-
down machine can be specified by an SD-attributed translation grammar.

Proof. The grammar obtained from the machine by the construction used in
the proof of Theorem 2 is SD-attributed. To construct the partition whose
existence is required by the definition, place nonterminals of the form (r, A, p)
in the same block if and only if they have the same first two components. Then
place nonterminal S in a one element block, place the input symbols together
as a block, and put each action symbol in a separate one element block. The
attribute ordering required by condition 4 is then easily supplied. �

THEOREM 9. Any translation specified by an SD-attributed translation gram-
mar can be performed by a deterministic attributed pushdown machine.

Proof. We extend the construction in [5]. Let the grammar have partition π and
vocabulary V consisting of input set I , action set Y , and nonterminal set N .

The machine is

(Q, I, Y, Γ, δ, Z, A, C, u, v)

where Q = {qj | 0 ≤ j < maximum number of symbols in a block of π}.
Γ = {(Vi, α) |A → αβ for some A in block Vi and α, β in V ∗}∪{(Vi, α, Vj) |
A→αBβ for some A in block Vi, nonterminal B in block Vj and α, β in V ∗}.
Z = (V0, ε) where V0 is the block containing the starting nonterminal.

A is the set of values that the attributes of the grammar can take on.
C(a) for a in I ∪ Y equals the number of attributes a has in the grammar.

C((Vi, α)) equals the sum of the number of attributes of α in the grammar
and the number of inherited attributes of a symbol in Vi. C((Vi, α, Vj)) equals
the sum of the number of attributes of α, the number of inherited attributes
of a symbol in Vi, and the number of inherited attributes of a symbol in Vj .
C(q) for q in Q equals the maximum number of synthesized attributes of any
nonterminal.
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u is arbitrary.

v equals the inherited attributes of the starting nonterminal.

δ consists of the following five types of moves.

For any Vi, Vk blocks of nonterminals, α in V ∗, a in I , y in Y , and q in Q.

(i) δ(q0, a, (Vi, α)) = {(q0, (Vi, αa), ε, f)} if A → αaβ for some A in Vi

and β in V ∗.

(ii) δ(q0, ε, (Vi, α)) = {(q0, (Vi, αy), y, f)} if A → αyβ for some A in Vi

and β in V ∗.

(iii) δ(q0, ε, (Vi, α)) = {(q0, (Vk, ε)(Vi, α, Vk), ε, f)} if A → αBβ for some
A in Vi, nonterminal B in Vk and β in V ∗.

(iv) δ(q0, ε, (Vi, α)) = {(qj , ε, ε, f)} if A → α is a production and A is the
jth nonterminal in its block.

(v) δ(qj , a, (Vi, α, Vk)) = {(q0, (Vi, αB), ε, f)} if B is the jth nonterminal
in block Vk.

In case (iv), function f computes the synthesized attributes of A (from the
attributes of (Vi, α)) and assigns them to qj . In all other cases, f assigns arbi-
trary values to the attributes of the new state.

In case (i), f assigns to (Vi, αa) the attributes of (Vi, α) plus the attributes
of a. In case (ii), f computes the attributes of y. It assigns these attributes
to the output and (together with the attributes of (Vi, α)) to (Vi, αy). In case
(iii), f computes the inherited attributes of B. Because the grammar is SD-
attributed, all such B have the same rule for computing their attributes. Func-
tion f assigns these attributes to (Vk, ε) and (together with the attributes of
(Vi, α)) to (Vi, α, Vk). In case (v), f assigns the attributes of qj and (Vi, α, Vk)
to (Vi, αB). �

9. Performing Arbitrary Translations

In this section we show that if the attribute rules specify all the attribute
values in a derivation tree, the attributes can be computed on a random access
device in an amount of time proportional to the number of edges in the deriva-
tion tree. When the grammar is well defined, the attribute rules specify all the
attribute values in all derivation trees.

THEOREM 10. Given a derivation tree for which the attribute rules specify
all the attribute values, and assuming that one unit of time is charged for the
evaluation of an attribute rule, then the attributes can be computed in time
linear with the number of edges in the derivation tree.



Attributed Translations 41

Proof. Construct a directed graph containing a node for each attribute of each
node of the derivation tree. The graph contains an edge from node a to node
b if the rule for computing attribute b uses the value of attribute a. Since the
rules for computing attributes can only depend on other attributes in the same
production, the number of edges and nodes in the graph is bounded by some
constant (based on the attributed grammar) times the number of edges in the
derivation tree.

Since the attributed grammar specifies all the attributes of the tree (given the
values of the input symbol attributes and starting symbol inherited attributes)
the constructed graph has no cycles. Therefore a topological sort can be per-
formed on the graph, using an algorithm whose time is linear with the size of
the graph [9]. The attributes associated with the nodes of the graph can then
be evaluated in the order produced by the topological sort. Each attribute will
be evaluated after the attributes on which the rule for computing it depends. �

10. Summary

A grammatical method of specifying attributed translations has been pre-
sented. The traditional top down and bottom up pushdown translators have
been generalized to perform these translations. As with unattributed push-
down machines, the generalizations also operate in linear time (excluding the
time required to evaluate the attribute evaluation functions).

Generalizations of LL(k) and LR(k) grammars are L-attributed LL(k) and
S-attributed LR(k) grammars respectively. Neither of these grammars is suffi-
cient to characterize deterministic attributed pushdown translations since
LL(k) grammars do not have sufficient syntactic power and S-attributed gram-
mars do not have sufficient semantic power (Theorem 7). However, a charac-
terization of deterministic attributed pushdown translations can be obtained by
merging a top down attribute concept (L-attributed grammars) with a bottom
up grammatical concept (SD grammars of [5]).

Taken together, the results show that grammatical specification and transla-
tion techniques can be generalized in a natural way to handle attributed trans-
lations without significant increases in processing cost. Thus attributed trans-
lation grammars can be a suitable basis for a theory of formal semantics of
translation.
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1. Introduction

The traveling salesman problem has long been of great interest. The prob-
lem has been formulated in several different ways. We use the following for-
mulation:

A traveling salesman graph G is a complete weighted undirected graph spec-
ified by a pair (N, d) where N is a set of nodes, d is a distance function map-
ping pairs of nodes (or edges) into real numbers, and d satisfies

(a) d(i, j) = d(j, i) for all i and j in N ,

(b) d(i, j) ≥ 0 for all i and j in N ,

(c) d(i, j) + d(j, k) ≥ d(i, k) for all i, j, k in N .

Condition (c) is referred to as the triangle inequality. The number d(i, j) is
called the length or weight of (i, j).

A tour for a traveling salesman graph G is a circuit on the graph containing
each node exactly once (i.e. a Hamiltonian circuit). The length of a tour is
the sum of the lengths of the edges composing the circuit. An optimal tour or
solution for G is a tour of minimal length. The traveling salesman problem is
to take a traveling salesman graph and find an optimal tour.

The traveling salesman problem is sometimes formulated (Bellmore and
Nemhauser [1]) as the problem of finding a minimal length circuit contain-
ing each node at least once for an undirected graph in which the distances are
not constrained by the triangle inequality. However, a problem stated in this
manner can always be reduced (Hardgrave and Nemhauser [6]) to the problem
considered here by the technique of changing each d(i, j) to the length of the
shortest path between i and j. This conversion can be done in time proportional
to the cube of the number of nodes (Floyd [4]). Each tour in the new problem
corresponds to a circuit of the same length in the original problem, and the two
problems have solutions of the same length. Therefore, our results, which are
stated in terms of the new problem, also apply to the original problem.

Another formulation requires that a shortest tour be found for distances not
constrained by the triangle inequality. A problem stated this way can always
be reduced to the type of problem considered here by adding a suitably large
constant k to each distance. The altered problem has the same optimal tour as
the original, but the lengths of the optimal tours will differ by the amount n · k
where n is the number of nodes. Our results do not apply to this formulation,
since our results pertain to the tour lengths.

The best known methods of solving the traveling salesman problem take an
amount of time exponential in the number of nodes. Furthermore, the problem
is easily seen to be NP-hard. Karp [8] shows that determining whether an
undirected graph has a Hamiltonian circuit is NP-complete. This problem can
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be reduced to a traveling salesman problem by forming the complete weighted
graph whose edges are of length one if there is a corresponding edge in the
original graph, and of length two otherwise. For an n node graph, the minimal
tour of the new graph has length n if and only if the original graph has a
Hamiltonian circuit.

In view of the computational difficulties in obtaining optimal tours, a num-
ber of algorithms have been published which run faster but do not necessarily
produce an optimal tour. A number of these approximation algorithms have
been experimentally observed to perform well, but there has not been a theo-
retical characterization of how the obtained tours compare with the optimal.

In this paper, we analyze some of these methods to bound the ratio of the
obtained tour length to the optimal tour length. In some cases, these bounds
grow as a function of the number of nodes and in other cases a constant bound
is found for all traveling salesman problems. In contrast, if the distance func-
tion is unconstrained by the triangle inequality then for any constant k ≥ 1,
the problem of finding a tour with a ratio bounded by k is NP-complete (Sahni
and Gonzalez [16]).

Another approximation method was recently announced and analyzed in
Christofides [2]. This method produces a better worst case approximation than
the methods analyzed here, but requires more running time.

In the material which follows, we exclude the trivial case where the dis-
tance function is identically zero. This assumption together with the triangle
inequality implies that every tour has a length greater than zero. We also adopt
the convention that OPTIMAL represents the length of the optimal tour. Under
the assumption of nontriviality,

OPTIMAL > 0. (1.1)

2. Nearest Neighbor Algorithm

The first approximation algorithm we study is the nearest neighbor method
(Bellmore and Nemhauser [1]), also called the next best method in Gavett [5].
In this algorithm, a path is constructed as follows:

1. Start with an arbitrary node.

2. Find the node not yet on the path which is closest to the node last added
and add to the path the edge connecting these two nodes.

3. When all nodes have been added to the path, add an edge connecting the
starting node and the last node added.

We assume that when there are ties in step 2, they can be broken arbitrarily.
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We note that the nearest neighbor algorithm can be programmed to operate
in time proportional to n2 where n is the number of nodes. This time is linear
in the input length if the input is a list of all distances.

Let NEARNEIBER be the length of the tour obtained by the nearest neigh-
bor algorithm. Let lg denote the logarithm to the base 2, and �x� denote the
smallest integer greater than or equal to x.

THEOREM 1. For a traveling salesman graph with n nodes

NEARNEIBER
OPTIMAL

≤ 1
2
�lg(n)�+

1
2
.

The proof of Theorem 1 is given after the proof of the following lemma.

LEMMA 1. Suppose that for a n node graph (N, d) there is a mapping assign-
ing each node p a number lp such that the following two conditions hold:

(a) d(p, q) ≥ min(lp, lq) for all nodes p and q.

(b) lp ≤ 1
2 OPTIMAL for all nodes p.

Then
∑

lp ≤ 1
2(�lg(n)�+ 1) OPTIMAL.

Proof. We can assume without loss of generality that node set N is {i | 1 ≤
i ≤ n} and that li ≥ lj whenever i ≤ j. The key to the proof is the following
inequality:

OPTIMAL ≥ 2
min(2k,n)∑

i=k+1

li (2.1)

for all k satisfying 1 ≤ k ≤ n.
To prove (2.1), we let H be the complete subgraph defined on the set of

nodes
{i | 1 ≤ i ≤ min(2k, n)}.

We let T be the tour in H which visits the nodes of H in the same order as
these nodes are visited in an optimal tour of the original graph. Let LENGTH
be the length of T . By the triangle inequality, each edge (b, c) of T must have
a length which is less than or equal to the length of the path from b to c used in
the optimal tour. Since the edges of T sum to LENGTH and the corresponding
paths in the original graph sum to OPTIMAL we conclude that

OPTIMAL ≥ LENGTH. (2.2)
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By condition (a) of the Lemma, for each (i, j) in T , d(i, j) ≥ min(li, lj).
Therefore,

LENGTH ≥
∑

(i,j)∈T

min(li, lj) =
∑
i∈H

αili (2.3)

where αi is the number of edges (i, j) in T for which i > j (and hence li =
min(li, lj)).

We want to obtain a lower bound on the right hand side of (2.3). Observe
that each αi is at most 2 (because i is the endpoint of only two edges in tour T )
and that the αi sum to the number of edges in T . Because k is at least half of
the number of edges in T , we certainly get a lower bound on the right hand
side of (2.3) if we assume that the k largest li have α1 = 0 and the remaining
min(2k, n)− k of the li have αi = 2. By assumption, the k largest are {li|1 ≤
i ≤ k} so the estimated lower bound is

∑
i∈H

αili ≥ 2
min(2k,n)∑

i=k+1

li (2.4)

and (2.2), (2.3), and (2.4) together establish (2.1).
We now sum inequalities (2.1) for all values of k equal to a power of two

less than s, namely:

�lg(n)	−1∑
j=0

OPTIMAL ≥
�lg(n)	−1∑

j=0

2 ·
min(2j+1,n)∑

i=2j+1

li,

which reduces to

�lg(n)� · OPTIMAL ≥ 2 ·
n∑

i=2

li. (2.5)

Now condition (b) of the lemma implies

OPTIMAL ≥ 2 · l1 (2.6)

and (2.5) and (2.6) combine to give the conclusion of the lemma. �

Proof of Theorem 1. For each node p, let lp be the length of the edge leaving
node p and going to the node selected as the nearest neighbor to p. We want to
show that the lp satisfy the conditions of Lemma 1.

If node p was selected by the algorithm before node q, then q was a candidate
for the closest unselected node to node p. This means that edge (p, q) is no
shorter than the edge selected and hence

d(p, q) ≥ lp. (2.7)
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Conversely, if q was selected before p, then

d(p, q) ≥ lq. (2.8)

Since one of the nodes was selected before the other, either (2.7) or (2.8)
must hold and condition (a) of Lemma 1 must be satisfied.

To prove condition (b) it suffices to prove that for any edge (p, q)

d(p, q) ≤ 1
2
· OPTIMAL. (2.9)

The optimal tour can be considered to consist of two disjoint parts, each of
which is a path between nodes p and q. From the triangle inequality, the length
of any path between p and q cannot be less than d(p, q), establishing (2.9).

Because the lp are the lengths of the pairs comprising tour T ,

∑
lp = NEARNEIBER. (2.10)

The conclusion of Lemma 1 together with (2.10) and (1.1) imply the in-
equality of Theorem 1. �

THEOREM 2. For each m > 3, there exists a traveling salesman graph with
n = 2m − 1 nodes such that

NEARNEIBER
OPTIMAL

>
1
3

lg(n + 1) +
4
9
.

Proof. For all i ≥ 1, we define an incomplete weighted graph Fi with three
distinguished nodes. The distinguished nodes are called the start node, the
middle node, and the right node. These graphs are defined recursively using
Fig. 3.1 where the start node appears to the left, the middle node in the middle,
and the right node on the right. Each Fi has a path Pi which goes from the start
node to the middle node visiting each node of Fi on the way. The Pi are also
defined recursively in Fig. 3.1.

Graph F1 consists of precisely three nodes with each pair of nodes having
an edge of weight 1. Path P1 consists of two edges, the edge from the start
node to the right node and the edge from the right node to the middle node.

To construct graph Fi+1, one takes two copies of Fi (which we call the left
copy and right copy) and one additional node (which becomes the middle node
of Fi+1). This additional node is called D in Fig. 3.1. The additional node
D is connected to the right node of the left copy (node C) and the start node
of the right copy (node E) by edges of length 1. The additional node D is
also connected to the middle node of the right copy (node F ) by an edge of
length li (defined below). Finally, the middle node of the left copy (node B) is
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Figure 3.1.

connected to the start node of the right copy (node E) by an edge of length li.
The start node of Fi+1 is the start node of the left copy (node A) and the right
node is the right node of the right copy (node G). The path Pi+1 consists of
the two copies of path Pi plus the two edges (B, E) and (F, D) of length li.
The length li is given by the formula

li =
1
6
(4 · 2i − (−1)i + 3). (2.11)

Let Li be the length of path Pi. Length Li is described by the difference
equation

Li+1 = 2 · Li + 2 · li
since Pi+1 consists of two copies of Pi and two edges of length li. Given that
L1 = 2, the solution of this difference equation is

Li =
1
9
(6 · i · 2i + 8 · 2i + (−1)i − 9). (2.12)

For each Fi, we define a graph Gi obtained by connecting the start and right
nodes of Fi by an edge of length 1, and connecting the middle node to the
start node with an edge of length li − 1. The start node of Fi is then also
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Figure 3.2.

referred to as the start node of Gi. Figure 3.2 is a picture of G4. We define
Ḡi to be the complete graph on the nodes of Gi where d(a, b) is the length of
the minimal path from a to b in Gi. Therefore, the distances in Ḡi satisfy the
triangle inequality.

Graph Ḡi has two important properties:

(a) the edges of Gi have the same lengths in Ḡi as they have in Gi;

(b) if the nearest neighbor method is started with the start node of Gi, the
method can (with suitable resolution of ties) produce path Pi followed
by the edge of length li−1 returning from the middle node (which is the
last node of path Pi) to the start node.

We return to prove properties (a) and (b) after completing the main thread
of the proof.

Each Ḡi has an optimal tour whose length is equal to the number of nodes
n in Ḡi (namely 2i+1 − 1). This tour is found, starting with the start node, by
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visiting the nodes in left to right order and then returning from the right node
back to the start node. Each of the edges in this tour has weight one.

The example satisfying the theorem is Ḡm−1. Its ratio is exactly

NEARNEIBER
OPTIMAL

= (Li + li − 1)/n where i = lg(n + 1)− 1.

This ratio is greater than the ratio indicated in the theorem.
All that remains is to prove properties (a) and (b). Referring back to Fig. 3.1,

we first show that for each Fi+1

AB = BC = EF = FG = li − 1, (2.13)

AC = EG = li+1 − 2, (2.14)

BE = DF = li, (2.15)

AD = DG = li+1 − 1, (2.16)

AG = li+2 − 2. (2.17)

The notation XY indicates the length of the shortest path between X and Y
in Fi+1. The equations are routinely verified for i = 1. We continue by
induction. Assume that (2.12)–(2.16) are true for i ≤ I − 1 (i.e. for FI ).
Figure 3.3 shows the relevant nodes in FI+1 before the two copies of FI are
connected. Associated with each pair of nodes from the same copy of FI , an
edge is shown whose weight is the length of the shortest path in FI connecting
these nodes. These shortest path lengths in FI are specified by the induction
hypothesis. For instance, edge (A, B) in Fig. 3.3 connects the start and middle
nodes of FI and from (2.15), the shortest path length in FI connecting these
nodes is lI − 1. Figure 3.4 shows Fig. 3.3 with the addition of the four edges
created in the construction of FI+1 from the two copies of FI . Because each
of the edge weights in Fig. 3.3 represents a shortest path in FI , by applying
formula (2.11) for lI to all possible paths in FI+1, we can conclude that each of
the edge weights in Fig. 3.4 is the length of the shortest path in FI+1 connecting
the end nodes of the edges. This establishes equations (2.12)–(2.14) for FI+1.

Figure 3.3.
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Figure 3.4.

Equations (2.15) and (2.16) are established by a similar consideration of all
paths in Fig. 3.4. The path of length lI+2 − 2 from A to G is ABEG.

We note also that (2.12)–(2.15) also hold when FI+1 is converted to GI+1.
This is proven by connecting A and G in Fig. 3.4 by an edge of weight one
and A and D by an edge of length lI+1−1 and again checking the paths. Note
also that the shortest path from A to D is the edge (A, D).

Now we return to property (a). Equation (2.14) shows that, as each Fi+1 is
constructed, the newly added edges constitute the shortest paths between their
endpoints. All distances among points in an Fi are maintained when that Fi is
embedded in Fi+1, because the distances among the three exit points at Fi are
maintained. (Compare (2.12) with (2.15) and (2.13) with (2.16).)

We have already noted that the final edge added in constructing a Gi is also
a shortest path and the fact that the length one edges are also shortest paths
requires no argument. Thus property (a) is established.

Property (b) is established by observing that the middle node of an Fi is
reached only after all of the nodes of Fi have been visited, and the node at the
end of the edge of length li is at least as close as any node reached by a path
through the start or right nodes. These nodes are already distance li−1 away
from the middle node and are at least distance 1 from a node not yet selected. �

One way to improve a nearest neighbor result is to repeat the method for
each possible starting node and then take the minimum solution among these.
This idea is described in Gavett [5]. However, for the examples used to prove
Theorem 2, the result of this method (with suitable resolution of ties) is also
proportional to lg(n).

3. Insertion Methods

We now consider a class of methods we call insertion methods. The basic
idea of these methods is to construct the approximation tour by a sequence
of steps in which tours are constructed for progressively larger subsets of the
nodes.
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DEFINITION. Given a traveling salesman graph (N, d), a tour T on a subset S
of N will be called a subtour of (N, d). We write a ∈ T to mean a ∈ S. We
treat a one node subset as a tour without edges.

DEFINITION. Given a traveling salesman graph (N, d), a subtour T , and a
node k in N which is not in T , we define TOUR(T, k) to be a subtour obtained
as follows:

if T passes through more than one point, then

(a) find an edge (x, y) in T which minimizes

d(x, k) + d(k, y)− d(x, y), (3.1)

(b) delete edge (x, y) and add edges (x, k) and (k, y) to obtain TOUR(T, k);

if T passes through a single node i, then make TOUR(T, k) the two node tour
consisting of edges (i, k) and (k, i).

In either case, we say that TOUR(T, k) is obtained by inserting k into T .
Formula (3.1) represents the difference in length between tour T and the

tour obtained by replacing (x, y) by (x, k) and (k, y). Thus, when T has two
or more nodes, TOUR(T, k) is the shortest tour that can be obtained from
T and k by the alteration described in step (b). When T has only one node,
TOUR(T, k) is the only tour that can be made from k and the point in T .

DEFINITION. An approximation method is called an insertion method if it
takes a traveling salesman graph (N, d) with n nodes and constructs a sequence
of subtours T1, . . . , Tn so that

1. T1 consists of a single node a0,

2. for each i < n, there is a node ai not in Ti such that

Ti+1 = TOUR(Ti, ai), (3.2)

3. Tn is the approximation.

In later sections, we consider specific selection criteria for choosing the
nodes ai. Here we are concerned with results which hold regardless of the
selection method.

DEFINITION. Given a subtour T and a node k not in T , we define COST(T, k)
to be the length of TOUR(T, k) minus the length of T .

An important consequence of the triangle inequality is the following:
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LEMMA 2. If (N, d) is a traveling salesman graph, T is a subtour, k a node
not in T , and j a node in T , then

COST(T, k) ≤ 2 · d(k, j). (3.3)

Proof. In the case that T has only one node, the result is obvious. When T
consists of more than one node, j is an endpoint of some edge (i, j) in T .
Because k is inserted to minimize (3.1),

COST(T, k) ≤ d(i, k) + d(k, j)− d(i, j) (3.4)

where the right-hand side is (3.1) with (i, j) substituted for (x, y). The triangle
inequality says

d(i, k)− d(i, j) ≤ d(j, k). (3.5)

Inequalities (3.4) and (3.5) together with d(j, k) = d(k, j) give (3.3). �

We let INSERT represent the length of a path constructed by an insertion
algorithm.

THEOREM 3. For a traveling salesman graph with n nodes,

INSERT
OPTIMAL

≤ �lg(n)�+ 1. (3.6)

Proof. Let (N, d) be the graph and let Ti for 1 ≤ i ≤ n and ai for 0 ≤ i < n
be the subtours and nodes referred to in the definition of an insertion method.
An obvious consequence of the definition of cost is

INSERT =
n−1∑
i=1

COST(Ti, ai) (3.7)

For each node ai in N − {a0}, define

lai =
1
2
· COST(Ti, ai) (3.8)

and define
la0 = 0. (3.9)

We want to show that the lp for p in N satisfy the hypothesis of Lemma 1.
To verify condition (a), consider two nodes ai and aj with i > j. By our
naming conventions, i > j means that aj belongs to Ti and ai was inserted in
Ti. By Lemma 2,

COST(Ti, ai) ≤ 2 · d(ai, aj). (3.10)
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With (3.8) this implies
lai ≤ d(ai, aj), (3.11)

which implies condition (a).
Condition (b) is trivial for la0 . For other lai , (3.8) requires us to prove

COST(Ti, ai) ≤ OPTIMAL. (3.12)

In the case of a1, this cost is just 2d(a0, a1) and by the triangle inequality,
OPTIMAL is at least as large as the distance between two points and back. For
i > 1, ai is inserted between two distinct points x and y with cost

d(x, ai) + d(ai, y)− d(x, y), (3.13)

which is the length of the added edges minus the length of the deleted edge.
There is a subpath of the optimal tour between x and ai which does not contain
y and a disjoint subpath between ai and y not containing x. By the triangle in-
equality, these subpaths are no shorter than d(x, ai) and d(ai, y) respectively
and hence (3.13) must be no greater than OPTIMAL and condition (b) is es-
tablished.

Lemma 1 together with (3.8), (3.9), (3.7), and (1.1) imply the theorem. �

We do not know if the logarithmic growth permitted by Theorem 3 can
actually be achieved. In fact, we know of no examples such that INSERT/
OPTIMAL > 4 so there could even be a constant upper bound. In the next
section we present some insertion methods for which we can establish a con-
stant upper bound.

4. Nearest Insertion and Cheapest Insertion

We now consider two insertion methods which produce a tour no longer
than twice the optimal regardless of the number of nodes in the problem. We
call these two methods the nearest insertion method and the cheapest insertion
method.

Given a subtour T and a node p, we define the distance d(T, p) between T
and p as

min{d(x, p) for x in T}. (4.1)

We say that a tour is constructed by nearest insertion if each ai,1 ≤ i < n,
in the definition of an insertion method satisfies

d(Ti, ai) = min{d(Ti, x) for x in N − Ti}. (4.2)

We say a tour is constructed by cheapest insertion if the ai satisfy

COST(Ti, ai) = min{COST(Ti, x) for x in N − Ti}. (4.3)



58

The nearest insertion method is easily programmed to run in a time propor-
tional to n2. The only programming trick is to compute the value of d(Ti+1, x)
as the minimum of the two numbers d(Ti, x) and d(ai, x). Thus the nearest
insertion method runs in time proportional to the nearest neighbor method.

The cheapest insertion method is described in Nicholson [12]. The fastest
algorithm we have devised for the cheapest insertion method runs proportional
to n2 · log(n). Each time a node ai is inserted in Ti, the new subtour Ti+1

contains two new edges not in Ti. For each new edge (x, ai) in Ti+1, the
algorithm involves performing a sort of the n− (i + 1) values of

d(x, k) + d(k, ai)− d(x, ai)

obtained for all k in N − Ti+1.

THEOREM 4. If a tour of length INSERT is obtained by nearest insertion or
cheapest insertion, then

INSERT
OPTIMAL

< 2. (4.4)

We prove this theorem after proving the following lemma:

LEMMA 3. Suppose that, for a traveling salesman graph (N, d) with n nodes,
a tour of length INSERT is constructed by the insertion method of Sect. 3.
Suppose further that for i satisfying 1 ≤ i < n, the tour Ti and node ai

selected by the insertion method satisfy

COST(Ti, ai) ≤ 2 · d(p, q) (4.5)

for all nodes p and q such that p is in Ti and q is not in Ti. Then

INSERT ≤ 2 · TREE, (4.6)

where TREE is the length of a minimal spanning tree for (N, d).

Proof. Let M be a minimal spanning tree. The idea of the proof is to establish
a correspondence between steps in the insertion procedure and edges of M .
For the step of inserting node ai into Ti, the corresponding edge of M will
have one endpoint in Ti and the other endpoint in N − Ti. Thus (4.5) can be
used to show that the cost of each step is no more than twice the corresponding
edge.

First, since M is a tree, there is a unique path in M connecting each pair
of nodes. For each node ai with i > 0, we say that node aj is compatible
with node ai if j < i and all the intermediate nodes in the unique path in M
connecting ai and aj have indices greater than i. Thus aj compatible with ai
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implies that aj is the first node in Ti encountered in the path from ai to aj . For
each ai with i > 0, the critical node is the node with the largest index that is
compatible with ai. The critical path for ai is the unique path in M between
ai and its critical node. The critical edge for ai is the edge in the critical path,
one of whose endpoints is the critical node. Observe that the critical edge for
ai has one endpoint (the critical node) in Ti, and the other endpoint in N − Ti.

We now show that no two nodes can have the same critical edge. Assume
to the contrary that ai and aj (with j > i) have the same critical edge. Let the
endpoints of this critical edge be ak and al with l > k. For any critical edge,
the node with the lower index is the critical node and the node with the higher
index is on the critical path, so node ak is the critical node for both ai and aj .
Thus, the critical paths for ai and aj both pass through al before reaching ak.
Therefore, there is a path P in M connecting aj and ai, such that every edge in
P belongs to either the critical path for aj or the critical path for ai (or both).
Therefore every intermediate node on P has an index greater than i. Since the
path P from aj reaches a node of lower index (ai), some node am along path P
is compatible with aj . Now m ≥ i because am is on path P and i > k because
ak is a compatible node for ai. This implies m > k and so am is a compatible
node for aj with a higher index than ak. This contradicts the assumption that
ak is critical for aj . Therefore no two nodes can have the same critical edge.
Thus given a minimal spanning tree we can associate a unique edge in that tree
with each node inserted by the insertion method.

Let ei be the critical edge for node ai. Since one endpoint of ei is in Ti and
the other endpoint is not, by (4.5).

COST(Ti, ai) ≤ 2 · d(ei). (4.7)

Summing (4.7) gives

n−1∑
i=1

COST(Ti, ai) ≤ 2 ·
n−1∑
i=1

d(ei). (4.8)

The left-hand side of (4.8) is INSERT by (3.8). Since M consists of n − 1
edges, and each ei is distinct, the right-hand side of (4.8) is 2 · TREE. Thus
(4.8) implies (4.6). �

Proof of Theorem 4. We first show that, for both insertion methods, (4.5) holds.
For the nearest insertion, there is for each i by (4.2) a node yi in Ti such that

d(yi, ai) ≤ d(p, q) (4.9)

for all p in Ti and q in N − Ti. Lemma 2 says that

COST(Ti, ai) ≤ 2 · d(yi, ai) (4.10)
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and (4.9) and (4.10) imply (4.5). For the cheapest insertion, the cost of insert-
ing ai is by (4.3) even less than the cost of inserting an ai chosen to satisfy
(4.2). Therefore (4.5) must also hold in this case and Lemma 3 applies to both
cases.

The optimal tour can be made into a tree by deleting its longest edge and
this longest edge has a length at least OPTIMAL/n where n is the number of
nodes in the problem. Since the minimal spanning tree is no longer than this
tree,

TREE ≤
(

1− 1
n

)
· OPTIMAL. (4.11)

Equations (4.11), (4.6), and (1.1) imply (4.4). �

COROLLARY. For a traveling salesman graph on n nodes, (4.4) in Theorem 4
may be replaced by

INSERT
OPTIMAL

≤ 2 ·
(

1− 1
n

)
. (4.12)

For the nearest insertion method, a simpler correspondence than that in the
proof of Lemma 3 can be established between the cost of the insertion steps and
the edges of a minimal spanning tree. Since each ai is selected in accordance
with (4.2), there is an edge (x, ai) such that x is in Ti and

d(x, ai) = min{d(p, q) for p in Ti and q in N − Ti}. (4.13)

Let ei be this edge (x, ai) and observe from Lemma 2 that

COST(Ti, ai) ≤ 2 · ei.

Moreover, the set of edges {ei | 1 ≤ i < n} constitute a minimal spanning tree
since the method of selecting edges satisfying (4.13) is a method of construct-
ing a minimal spanning tree (Kruskal [9], Prim [13]).

We now show that there exist traveling salesman graphs for which the bound
(4.12) is actually achieved. The examples can be interpreted as cities placed
uniformly on a circular road. The case for 8 nodes is shown in Fig. 3.5. The
optimal path is simply to go around the circle. The insertion methods may
construct a path such as that in the figure, a path which goes almost all the way
around and then doubles back on itself. Thus, each edge of the circle (except
one) is traveled twice instead of the one time actually required, and the ratio of
the path obtained to OPTIMAL is roughly two.

THEOREM 5. For n ≥ 6, there exists a traveling salesman graph on n nodes
such that

INSERT
OPTIMAL

= 2 ·
(

1− 1
n

)
(4.14)

for either the nearest insertion or cheapest insertion methods.
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Figure 3.5.

Proof. We define graph (Nn, dn) as follows:

Nn = {i | 1 ≤ i ≤ n},
dn(i, j) = smallest nonnegative integer m

such that i− j ≡ m (mod n) or j − i ≡ m (mod n).

We define T1 to be the tour on set {1}, we define

T2 = {(1, 2), (2, 1)}

and for 3 ≤ i ≤ n we define

Ti = {(1, 2), (i− 1, i)} ∪ {(j, j + 2)|1 ≤ j ≤ i− 2}.

Figure 3.5 shows T8 for the case n = 8.
We define

ai = i + 1 for 0 ≤ i < n.

Obviously the Ti defined above are tours. We will show that the Ti together
with the ai satisfy (3.2), (4.2), and (4.3).

Ti+1 is obtained from Ti by deleting edge (i−1, i) and adding edges (i−1,
i + 1) and (i, i + 1).

We compute that
COST(Ti, ai) = 2



62

and that (i − 1, i) is the edge in Ti which minimizes (3.1); this proves (3.2).
We also compute that

d(Ti, ai) = 1

because d(ai−1, ai) = (i + 1) − i = 1 and (4.2) is satisfied because 1 is
the shortest distance between distinct nodes. It can also be calculated that no
insertion can cost less than 2 and so (4.2) holds. We omit these calculations
but note that they require the assumption n ≥ 6.

We note finally that the approximation Tn has two edges of length one and
n − 2 edges of length two for a total length of 2 · (n − 1). The optimal tour
is obviously the tour of length n that starts with node 1 and visits the nodes in
numerical order. Equation (4.14) is obtained by dividing these two lengths. �

For i > 3 in the above proof, the insertion of ai into Ti to obtain Ti+1 in-
volves a tie between edges (i − 1, i) and (i − 2, i), both of which minimize
(3.1). An example with no ties in (3.1) is obtained from the example by de-
creasing the length of all edges greater than 1 by a small number ε. The choice
(i−1, i) of the proof becomes the unique choice and the construction proceeds
as in the proof. The resulting ratio is very close (depending on ε) to (4.14).

Theorem 5 shows that, in the worst case, nearest insertion can create paths
which double back on themselves and are roughly twice as long as necessary.
We examined a number of problems with nodes placed randomly on a plane,
and observed that the nearest insertion method often produced paths in which
portions doubled back on themselves.

5. Farthest Insert

There is another insertion method which has some intuitive and empirical
appeal, a method we call farthest insertion.

We say that a tour is constructed by farthest insertion if each ai, 1 ≤ i < n,
in the definition of an insertion method satisfies

d(Ti, ai) = max{d(Ti, x) for x in N − Ti}. (5.1)

Contrasting (5.1) with (4.2), we observe that farthest insertion has a max
where nearest insertion has a min. The intuitive appeal is that the method
establishes the general outline of the approximate tour at the outset and then
fills in the details. The early establishment of a general outline is appealing
because we expect better performance when the number of nodes is small.
Inserting nearby points late in the approximation is appealing because the short
edges used late in the procedure are less likely to be accidentally deleted by
some still later insertion.

The empirical appeal is that, in a series of experiments, we found that far-
thest insertion usually produced a better tour than nearest insertion, cheapest
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insertion, and the nearest neighbor. For example, when tried on problems ob-
tained by placing 50 nodes randomly on a unit square, nearest insertion was
from 7 to 22% worse than farthest insertion, nearest neighbor was from 0 to
38% worse, and cheapest insertion ranged from 7% better to 12% worse. The
usual ranking was thus farthest insertion first, cheapest insertion second, near-
est insertion third, and nearest neighbor last.

The largest example we tried was 2000 points placed uniformly at random
in the unit square. The score was farthest insertion 36.8, nearest insertion 41.4,
and nearest neighbor 39.9. A path of length 37.2 was obtained by randomly se-
lecting the order in which points were chosen for insertion. The farthest inser-
tion path was no more than 1.25 times the optimal since the minimal spanning
tree had length 29.5.

The advantage of picking random or arbitrary points for insertion is that
virtually no computation time is needed to select an arbitrary point. On the
2000 city problem, the nearest neighbor tour was constructed in 751 seconds,
the arbitrary insertion in 820 seconds, and the nearest and farthest insertions in
1628 seconds each.

Theorems 2 and 4 tell us that, in the worst case, the nearest neighbor paths
become progressively worse than the nearest insertion paths as the number of
nodes increase. We found no evidence of such a trend in our experiments. For
example, in the 2000 node example described above, nearest neighbor actually
did better than nearest insertion.

Altogether, our experiments suggest that the performance of the methods is
not strongly tied to their worst case behavior.

6. Some Other Approximation Methods

There are a variety of other approximation methods for which the cost of
each step in the construction of the tour corresponds to a unique edge in a
minimal spanning tree and for which the reasoning of Lemma 3 and Theorem 4
can be used to demonstrate a worst case ratio bound of 2. In this section, we
discuss two such methods.

The first method, which we call nearest addition, is similar to nearest in-
sertion. The nearest addition method takes a traveling salesman graph (N, d)
with n nodes and constructs a sequence of subtours T1, T2, . . . , Tn so that

1. T1 consists of a single node a0;

2. for each i < n there are nodes ai in N − Ti and bi in Ti such that

d(bi, ai) = min{d(y, x) for y in Ti and x in N − Ti}. (6.1)

and Ti+1 is constructed from Ti by deleting some edge (c, bi) from Ti

and adding the two edges (c, ai) and (bi, ai);

3. Tn is the approximation.
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At each step of the procedure, the closest node is selected and added to the
subtour next to the node to which it is the closest.

The increase in length between Ti and Ti+1 is

d(c, ai) + d(bi, ai)− d(c, bi). (6.2)

From the triangle inequality

d(c, ai) ≤ d(c, bi)− d(bi, ai) (6.3)

so that (6.2) is bounded by 2 · d(bi, ai). The set of edges (bi, ai) selected in
accordance with (6.1) is identical to the set of edges that would be selected
for the nearest insertion method in accordance with (4.2), and constitutes a
minimal spanning tree. Therefore results similar to Lemma 3 and Theorem 4
apply, and the ratio of the obtained tour length to the optimal tour length is
bounded by 2.

Another approximation method is one we call nearest merger. First, given
two disjoint subtours (i.e., subtours having no nodes in common) T1 and T2,
their merger MERGE(T1, T2) is defined as follows:

(a) If T1 consists of a single node k, then

MERGE(T1, T2) = TOUR(T2, k)

else if T2 consists of a single node k1, then

MERGE(T1, T2) = TOUR(T1, k).

(b) If T1 and T2 each contain at least two nodes, let a, b, c, d be nodes such
that (a, b) is an edge in T1, (c, d) is an edge in T2 and

d(a, c) + d(b, d)− d(a, b)− d(c, d) (6.4)

is minimized. Then MERGE(T1, T2) is the tour obtained from T1 and
T2 by deleting (a, b) and (c, d) and adding (a, c) and (b, d).

The nearest merger method takes a problem (N, d) with n nodes and con-
structs a sequence S1, . . . , Sn such that each Si is a set of n − i + 1 disjoint
subtours covering all the nodes in N . The sequence is constructed as follows:

1. S1 consists of n subtours, each containing a single node.

2. For each i < n, find an edge (ai, ci) such that

d(ai, ci) = min{d(x, y) for x and y in different subtours in Si}. (6.5)

Then Si+1 is obtained from Si by merging the subtours containing ai

and ci.

At each step in the procedure, the two closest subtours are merged.



Traveling Salesman Problem 65

Observe that in a merger corresponding to (6.4), from the triangle inequality

d(b, d) ≤ d(b, a) + d(a, c) + d(c, d)

so that (6.4) is bounded by 2 ·d(a, c). Also observe that the set of edges (ai, ci)
chosen in accordance with (6.5) form a minimal spanning tree (Kruskal [9]).
From these facts, results similar to Lemma 3 and Theorem 4 can be proved for
nearest merger, and so the ratio of the obtained tour length to the optimal tour
length is bounded by 2.

We also observe that Theorem 5 is also true for both nearest addition and
nearest merger. For the examples in the proof of Theorem 5 both of these
methods produce the same approximate tour as nearest insertion and cheapest
insertion.

One possible way to improve nearest insertion, cheapest insertion, and near-
est addition is to repeat each of these methods for each possible starting node
and then take the minimum solution among these. However, for the examples
in the proof of Theorem 5, these methods produce tours of the same length for
all starting nodes. Therefore the approach of trying all starting nodes does not
improve the worst case ratio.

The methods of this section and Sect. 4 are all proven to have constant
bounds because of comparisons with the minimal spanning tree. There are also
known bounded methods which actually construct a tour by first constructing
the minimal spanning tree. One widely known but unpublished method is to
construct the minimal spanning tree, double its edges to obtain an Eulerian cir-
cuit containing each point at least once, and then make the circuit into a tour
by removing extra occurrences of each node. This method also has an upper
bound of 2.

The method of Christofides [2] also starts with the minimal spanning tree,
but this is converted into an Eulerian circuit by solving the matching problem
among the nodes of odd order. This method has an upper bound of 3

2 , an im-
provement on the bounds for the methods studied here. However, the running
time of this method is n3, which is slower than the n2 methods studied here.

7. k-Optimality

One approach to obtaining approximate solutions is to first find some tour
and then perturb it somewhat to see if a better tour results. If a better tour
does result, the original tour is discarded and perturbations on the new tour
are tried. Methods of this kind are described in Croes [3], Lin [10], Reiter
and Sherman [14], Roberts and Flores [15] and Nicholson [12]. The local
optimum obtained by these perturbation methods can be further adjusted to
obtain a global optimum (Croes [3]). Lin and Kernighan [11] generalize these
techniques in a powerful way.
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Define a k-change of a tour as the deletion of k edges and their replacement
by k other edges so that another tour is obtained.

Define a tour as k-optimal (Lin [10]) if no k-change produces a better tour.
Lin [10] describes a method whereby several random initial tours are ob-

tained, each is improved until a 3-optimal tour is obtained and the best of these
3-optimal tours is used.

In this section, we investigate how far a k-optimal tour can be from the
optimal tour.

THEOREM 6. For each n ≥ 8 there exists a traveling salesman graph having
a tour which is k-optimal for all k ≤ n/4, and for which the length of that
tour, LOCALOPT, satisfies

LOCALOPT
OPTIMAL

= 2 ·
(

1− 1
n

)
. (7.1)

Proof. The example is the graph (Nn, dn) and tour Tn constructed in the proof
of Theorem 5. In particular, the tour shown in Fig. 3.5 will be shown to be
2-optimal.

For each n, define the set of edges

En = {(1, n)} ∪ {(i, i + 1) for 1 ≤ i < n}

En is the set of edges which have length one. Because of the way function dn

is defined, each pair of points (a, b) from Nn is connected by some path in En

of length equal to dn(a, b). For each tour T , there is a circuit α(T ) obtained by
replacing each edge of T by a path of equal length from En. Circuit α(T ) has
the same length as T and visits each node at least once. Circuit α(Tn) visits
node 1 and n once and every other node twice.

For each edge e in En and each tour T , we let COUNT(e, T ) be the number
of times edge e occurs in circuit α(T ). For tour Tn we have

COUNT((i, i + 1), Tn) = 2 for 1 ≤ i < n, (7.2)

COUNT((1, n), Tn) = 0. (7.3)

Because the edges of En are of unit length, the length L(T ) of tour T is given
by

L(T ) =
∑

e in En

COUNT(e, T ). (7.4)

We say that a tour T is even if COUNT(e, T ) is even for all e in En. We say
that a tour T is odd if COUNT(e, T ) is odd for all e in En. We next show that
any tour must be either odd or even.
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By construction, each node a is the endpoint of exactly two edges of En,
namely (a, a + 1) and (a, a− 1) (mod n). Since each occurrence of a in α(T )
is associated with two edges of α(T )

COUNT((a, a + 1), T ) + COUNT((a, a− 1), T ) = 2 · ja (7.5)

where ja is the number of times node a occurs in circuit α(T ). Therefore,
COUNT((a, a + 1), T ) and COUNT((a, a − 1), T ) sum to an even number
and are either both even or both odd. Since the edges in En form a connected
graph, if T were neither odd nor even, some node would have one incident
edge with an odd count and its other incident edge with an even count. This
contradicts (7.5), so T is either odd or even.

For any tour T , there can be only one edge e in En such that COUNT(e, T )
= 0 since otherwise the tour could not be connected. Therefore, Tn with its one
edge of count 0 and other edges of count 2 (see (7.1) and (7.2) is the shortest
even tour. Consequently, any tour improving on Tn must be odd.

Now suppose that tour Tn is changed by a k-change to an odd tour. Since
the largest edges of Tn, are of length 2, the decrease resulting from deleting k
edges is at most 2k. Since at most 2k of the counts in α(T ) are reduced, and
since En has n edges, n − 2k edges of En do not get their counts decreased.
When edges are added to complete the k-change, the counts for the edges not
decreased must in fact be increased in order to change from an even number to
an odd number. Therefore, the increases are at least n− 2k. If the k-change is
to improve the tour length, the decreases must be greater than the increases or

2k > n− 2k.

This inequality is only true when k > n/4 so T is indeed k-optimal for k ≤
n/4.

We already know from the proof of Theorem 5 that Tn and the optimal tour
have ratio 2 · (1− 1/n) so the theorem is proved. �

COROLLARY. For any k and n such that 4 · k ≤ n, the nearest insertion and
cheapest insertion methods can result in a k-optimal tour such that

INSERT
OPTIMAL

= 2 ·
(

1− 1
n

)
.

Proof. We have just shown that the example used to establish Theorem 5 is
also k-optimal if 4 · k ≤ n. �
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1. Introduction

It is frequently desirable to structure a database system so that different parts
of the database are stored at different sites, perhaps widely separated geograph-
ically, interconnected into a network. Individual application programs, which
we call processes, may need to access and update data at different sites. We
envision a process as starting at one site and moving from site to site as neces-
sary to do its job. (In practice moving from one site to another is likely to be
implemented by calling a routine at the second site.) Systems of this type are
called distributed database systems in contrast to centralized systems in which
the whole database is stored on one computer.

An important consideration in the design of distributed systems is the con-
currency control. The concurrency control is that portion of the system that is
concerned with deciding what actions should be taken in response to requests
by the individual processes to read and write into the database. We are inter-
ested in those database systems in which concurrency control is performed at
the system level and is invisible to individual users. Individual processes do
not contain statements to lock and unlock database entities they access and in
fact each process is written as if it were the only process running on the system.

The concurrency control is concerned with avoidingdeadlocks or similar oc-
currences and with maintaining the consistency of the database. Assuming that
each process when run by itself will eventually terminate without destroying
the consistency of the database, the job of the concurrency control is to ensure
that during the concurrent operation of any set of processes:

1. Each process sees a consistent picture of the database.

2. Each process eventually terminates.

3. The final database after all the processes terminate is consistent.

The second condition refers to the elimination of deadlocks and other occur-
rences which may prevent process termination. (We assume the existence of
some type of system scheduler which operates in such a manner that each
process allowed to run by the concurrency control will eventually be given
enough of the system resources so that it could terminate in the absence of
deadlocks or similar occurrences caused by the concurrency control.)

The concurrency control has the same task whether the database is central-
ized or distributed. One design to be considered for a distributed system is to
have all conflicting read or write requests referred back to some master site for
resolution. If communication costs are low, this design choice may be attrac-
tive. However, such a design is merely a centralized control whose database



System Level Concurrency Control 73

happens to be distributed. Our interest is in concurrency control designs in
which both the database and its control are distributed. Each site has its own
local concurrency control which must make decisions about database conflicts
that occur at that site. For a distributed control of this type, the local control at
a given site may not have all the information that a centralized control would
have. Therefore, a local control may need to take a more severe action (such
as aborting a process) than a centralized control might take. Thus, in design-
ing a particular system, our decentralized designs must be evaluated against
centralized designs taking into account the trade-off between communication
costs and conflict resolution abilities.

In our designs, we use three types of communication among local concur-
rency controls at different sites:

1. When a process moves from site to site, it is accompanied by a small
amount of information to be used by concurrency controls at each site it
visits.

2. When a process terminates or aborts at some site, the concurrency con-
trol at that site sends a message to all the sites that process has visited.

3. When a database conflict occurs at some site, the concurrency control
at that site sometimes sends a message to all sites visited by one of the
processes involved in that conflict.

We make no assumptions about the time required for a message to reach a site
or the order in which messages reach various sites.

Despite these communication constraints the concurrency control must
maintain the global consistency of the entire distributed database and must
ensure that each process terminates. In particular, any read/write conflicts that
occur between two processes at one site must be resolved by the local concur-
rency control at that site without communicating with any other sites to deter-
mine the outcomes of any previous conflicts that may have occurred between
those processes.

In this paper we present the design of several distributed concurrency con-
trols and demonstrate that they work correctly. We discuss some of the impli-
cations of maintaining global database consistency in distributed systems and
investigate phenomena that can prevent process termination. We define and
study the properties of a class of concurrency controls we call superstrict. This
class includes the specific controls that we consider.

In [26] we present a mathematical approach to concurrency control in both
the centralized and distributed case, including some results used in this paper.

Some of the issues involved in database concurrency control are discussed
in [12, 13]. Issues involved in distributed database systems are discussed in [1,
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6, 10, 15, 27]. Our model of database consistency, described in Sect. 2, is iden-
tical to that in [11], in which database consistency and its implication for the
locking sequence of concurrent processes is discussed. Consistency and appro-
priate data manipulation language primitives to facilitate concurrency control
are discussed in [18].

The problems involved in scheduling readers and writers of a single entity
are discussed in [8, 17, 19]. In [5] a centralized concurrency control based on
processes locking groups of entities before writing is discussed, and a system
of this type, is mentioned in which a fixed order among processes is used.
Various means of giving preference to the eldest process in a system of this
type are considered in [3].

A centralized concurrency control based on preassigned linear ordering of
the resources appears in [25]. Distributed systems using a preassigned linear
ordering of the sites are described in [6], and a general discussion of distributed
systems using orderings of the resources appears in [15]. In [6, 27], distributed
systems are mentioned that are based on a centralized design, with one site
acting as a central control that responds to all requests. The use of timestamps
in the synchronization of distributed systems is discussed in [22], and the use
of timestamps for synchronization and consistency of duplicate databases is
discussed in [20].

The centralized dynamic WAIT system of Sect. 14 is similar to many sys-
tems that have been implemented, including IMS, System R [2], and MAD-
MAN [14]. Various issues in deadlock detection are discussed in [7]. Deadlock
detection by database concurrency controls is discussed in [3, 16, 21, 23, 24].

Issues concerning when the changes made by a process can be made perma-
nent are discussed in [4, 9].

2. Consistency

We use the word entity to describe the smallest unit of the database acces-
sible to the concurrency control. In a particular database system the entities
might be files, pages, records, items, etc. Each entity can be assigned a value.
Examples of values are character strings, integers, vectors of integers, etc. We
assume that a database consists of a finite set of entities, each assigned a value.
A particular assignment of values may be considered to be either consistent or
inconsistent.

In practice, assignments are considered consistent if they satisfy certain con-
sistency requirements. Examples of possible consistency requirements are:

1. In a banking system—the sum of the values assigned to the loans for a
particular account must be less than the line of credit of that account.

2. In an airline reservation system—the number of assigned seats must not
be greater than the capacity of the aircraft.
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3. In a distributed system for a group of warehouses, consisting of a head-
quarters site containing summary information and a number of local
sites, each containing information about a local warehouse—the value
of the entity in the headquarters site giving the total number of widgets
must be the sum of the values of the entities in the local sites giving the
number of widgets in the local warehouse.

4. In some distributed systems—the value of an entity at one site must be
equal to the value of another entity at a different site.

Note that the consistency requirements can be defined globally over the en-
tire distributed database.

We assume that each process has been designed in such a manner that if
run by itself and given an input database which is consistent, it will eventually
terminate and produce a consistent database as output. We assume the concur-
rency control does not know what the consistency requirements are, but nev-
ertheless must operate in such a manner that during the concurrent operation
of the processes, each process sees a consistent input database, and eventually
terminates producing a consistent output database.

In our model the processes change the values of entities but do not change
the number of entities; e.g. they do not store or delete entities. This model
is equivalent to a model where processes allocate and deallocate entities, but
where the total number of entities is constrained to be less than some fixed
bound.

3. Process Termination and Abortion

In our model a process is initiated at one site and then moves from site to site
(perhaps returning to sites previously visited). The decision to move from site
to site is controlled by the process itself. At any instant, the process is active at
one site and inactive at all other sites it has visited. The process receives inputs
from the database by reading entities and produces output by writing entities.
The read and write activity is described in more detail in Sect. 5. The activity
of a process can be stopped in two ways, either by termination or abortion.

Aborting a process consists of first stopping the running of the process at its
active site, and then undoing all changes to the database made by the process.
We use the term rollback to refer to the undoing of all the changes made by a
process at a given site, i.e. rollback is the restoration of each entity (changed
by the process) at the given site to the value it had before the process changed
it. An aborted process must be rolled back at all sites it has visited. We assume
that this rollback is caused by a “rollback” message sent from the active site to
all visited sites.

Terminating a process consists of first stopping the running of the process
at its active site and then making its changes to the database available to sub-
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sequent processes. Each site the process has visited must be informed that the
values written by the process are now “official” and are to be “made perma-
nent” and supplied to other processes. We assume that this notification is made
by a “terminate” message sent from the active site to all sites visited.

Once a site has received a terminate or rollback message, made the required
database operations, and continued the appropriate propagation of the mes-
sage, the site can destroy all bookkeeping information it was saving about the
process.

To understand the intuition behind our model of a process, consider a system
in which programs are executed at single sites but can call other programs as
subroutines at other sites. To fit our model, the execution of a program together
with the execution of all associated subroutine calls are treated as the execution
of a single process. At any time during this execution, the active site is the site
of the subroutine being executed and the inactive sites are those where pro-
grams are waiting for subroutines to return or where subroutines have finished
their execution. When a program at one site calls a program at another site,
both programs together are responsible for maintaining global consistency. Ei-
ther program, if run by itself, might violate a consistency requirement, since
that program is only part of the overall process. Similarly, if either the program
or any of its subroutines requests abortion, the entire program, including all of
its subroutines, must be rolled back in order to guarantee global consistency.
Also, none of the results of the program or subroutines can be made permanent
until the program terminates, since at any time before termination the process
may be aborted and hence rolled back at each site.

Systems in which rollback messages can be sent without first stopping a
process are considered in [26]. For such systems, there is a potential danger
that a process will be rolled back at one site and “made permanent” at an-
other site, thereby violating global consistency requirements. In some of these
systems the termination of a process is considered a “termination request,” to
which the concurrency control can respond in several ways besides compli-
ance.

4. Linearizing Concurrency Controls

We say that a concurrency control is linearizing if the effect of running a
set of concurrent processes to termination is the same as if the processes had
been run sequentially in some order. In other words it must be possible to
order the processes P1, P2, . . . , Pn, such that P1 “sees” the initial database, P2

“sees” the database that would have been produced if P1 had run to completion,
etc. This sequential running of the processes is called a linearization of the
processes.
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Since we are assuming that each process transforms a consistent input data-
base into a consistent output database, each process in a linearization “sees” a
consistent database, and the final database resulting from a linearization of the
processes is consistent. Thus a linearizing concurrency control preserves the
consistency of a database in the sense of conditions 1 and 3 of Sect. 1.

This observation appears in [11] and demonstrates that linearization is a
sufficient condition for a concurrency control to preserve consistency. In [26] it
is shown that if each process is constrained to read an entity before it writes that
entity, then to preserve consistency, it is necessary that there be a linearization
of all processes that write at least once.

5. Conflicts

The concurrency control must select a response to the individual read and
write requests of the processes. More precisely, we assume that the first re-
quest (whether a read or write request) on an entity and the first write request
(if the previous requests were read requests) on the entity by any given process
invoke the concurrency control, which must select a response. We assume that
any subsequent read request on the same entity by the process is automatically
granted and results in the process seeing the same version of the entity as the
last request. Any subsequent write request by the process on the entity is au-
tomatically granted and overwrites the version of the entity produced by the
preceding write request.

We now show by an example that if the concurrency control is too promis-
cuous in granting requests, an inconsistent database may be produced.

Suppose that there are two processes, S and T, and two entities, A and B.
Assume that there is a single consistency requirement, namely that A = 0 or
B = 0. Suppose that the two processes are:

S: if A = 0 then B = B + 1,

T: if B = 0 then A = A + 1.

Observe that each of these processes, when presented with a consistent data-
base, terminates and produces a consistent database. Suppose that in the initial
database, A and B are both 0. Running S to completion followed by running
T to completion will produce a database with A = 0 and B = 1. Running T to
completion, and then S, produces a database with A = 1 and B = 0. However,
if S and T are run in an interleaved fashion, and all requests are granted, the
following scenario of granted requests may occur:

S reads A = 0;

T reads B = 0;

S reads B = 0;
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S writes B = 1;

T reads A = 0;

T writes A = 1.

The final database produced has A = 1 and B = 1, and is therefore inconsis-
tent.

Observe that the above scenario is not linearizable. The write by S of entity
B changed the version of that entity previously seen by T. Therefore any se-
quential running of the processes that is to produce the same effect as the above
scenario must have T before S. However, the write by T on entity A changed
the value seen by S and therefore requires that in the sequential running, S
must come before T. Since S and T cannot be run before each other, there is no
equivalent linearization.

We say that two requests by different processes on a given entity are in
conflict if one of the requests is a write request and the site containing the
entity has not received a termination message or rollback message for either
process. A process which makes a request in conflict with a previously made
request is said to cause the conflict. Note that the conflict occurs whether or
not the previously made request has been granted. Also note that a conflict no
longer exists when a termination or rollback message for one of the processes
involved is received.

A conflict is caused either by a read request of an entity for which there is
a previous write request or by a write request of an entity for which there is
a previous read or write request. However, a conflict is not caused by a read
request of an entity for which there are previous read requests.

6. Strict Concurrency Controls

We say that a concurrency control is strict if it is designed so that a request
is never granted at a time when the request is in conflict with a granted request
of another process. One obvious property of strict concurrency controls is that
if several processes manage to write a given entity, each process has its write
request granted after all the processes that have already written that entity have
terminated. When a read request on the entity is granted, there is no ambiguity
as to which version of the entity to use in granting the request; the version
supplied is the one produced by the most recently terminated writer.

We define the current database at any instant of time as the database that
would result if all unterminated processes were to be aborted. For a strict
concurrency control, the version of an entity in the current database is that
produced by the most recently terminated process that wrote on the entity.

We assume it is meaningful to talk of the order in which processes terminate
(i.e. initiate termination). In the event of several processes terminating simul-
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taneously at different sites, any resolution of the ties can be considered to be
the termination order. (Note that we are talking about the existence of a con-
ceptual order of termination. There is no requirement that a control actually
compute this order.)

We now show that the effect of running a set of processes to completion
under a strict concurrency control is the same as the linearization based on
ordering the processes by their time of termination. We begin with a lemma.

LEMMA 1. For a strict concurrency control, if a given process has a read
request on an entity granted, then the entity value supplied to the process is
in the current database from the time the request is granted until the process
terminates or aborts.

Proof. Because the concurrency control is strict, at the time the read request
was granted, no unterminated process had a granted write request on the entity.
Once the read request was granted, any request by another process to write
the entity would cause a conflict, and so would not be granted while the given
process is unterminated or unaborted. Therefore, until the given process termi-
nates or aborts, no other process can write the entity version read by the given
process. �

THEOREM 1. For a strict concurrency control, the current database is obtain-
able by a linearization of the terminated processes, ordered by their time of
termination.

Proof. The proof is by induction on the number of processes that have termi-
nated. The statement of the theorem is true if zero processes have terminated,
since in that case the current database is the initial database.

Now assume that the theorem is true if n processes have terminated, and
suppose the (n+1)-st process, which we call P , terminates. At the instant just
before P terminates, the current database is (from the induction hypothesis)
obtainable by a linearization of the then terminated processes in their termi-
nation order. From Lemma 1, each entity version supplied to a granted read
request of P is in the current database just before P terminates. The current
database just after P terminates is therefore obtainable by running P alone
with the previous current database as input. �

Theorem 1 is closely related to a result in [11] that “legal” transaction sched-
ules maintain consistency.

Consider a scenario of processes initiating and running under the operation
of a concurrency control. We say that a process runs forever in a scenario if
each request issued by the process is granted (perhaps after waiting some finite
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amount of time), but the process neither terminates nor aborts. We now show
that for a strict concurrency control, no process runs forever.

THEOREM 2. For a strict concurrency control, no process can run forever.

Proof. Suppose there is a scenario in which a process runs forever. Since the
set of entities composing the database is finite, the subset of these entities ac-
cessed by the process during the scenario must also be finite. Thus there must
be a time, say T , at which each entity in the set accessed by the process has
had the initial request by the process on the entity granted. From Lemma 1,
the process sees the current database at time T . From Theorem 1, this current
database is obtainable by a linearization of terminated processes and is con-
sistent by the results cited in Sect. 4. Since we are assuming that a process
will terminate if run by itself and given a consistent input database, the process
must eventually terminate. �

The assumption in our model that there are only a finite number of entities
is essential to the proof of Theorem 2. If the number of entities were infinite, a
process might run forever (even if there is only one site). For example, suppose
there is an infinite set of entities, each numbered by a positive integer and each
having a value of zero or one. Suppose that the consistency requirement is
that only a finite number of entities have a nonzero value. Consider a process,
say P , that reads the entities in numerical order until encountering an entity
whose value is zero, changes the value of this entity to one, and terminates.
If P is run alone and given a consistent input database, it will terminate and
produce a consistent output database. However, suppose P is run under a
concurrency control, and before P issues a read request on any given entity,
some new process initiates, writes a one on that entity, and terminates. In this
scenario there are no conflicts at all, each request is granted, and the current
database is always consistent. However, since P never encounters an entity
value of zero, it runs forever.

We note that there exist concurrency controls that are not strict and that
are linearizable, but for which the termination order is not equivalent to the
linearization. (See [26].)

Finally, we give a sufficient condition, to be used later, for a concurrency
control to be strict.

THEOREM 3. Suppose a concurrency control has the property that a request
is not granted unless a termination message or rollback message has been re-
ceived for each of the processes it caused a conflict with. Then the concurrency
control is strict.



System Level Concurrency Control 81

Proof. Suppose a given request is issued at time T1, and granted at time T2.
Then by time T2, a termination or rollback message has been received for each
process the given request caused a conflict with. If between T1 and T2 any
other process issues a request causing a conflict with the given request, that
request will not be granted during this time interval. Therefore at time T2,
when the given request is granted, it is not in conflict with any granted request.
Hence the concurrency control is strict. �

Note that the definition of strict requires that a request not be granted when
it is in conflict with a granted request, whereas the condition of the theorem
requires that the request not be granted when it is in conflict with any request
it caused a conflict with, whether or not the request has been granted.

7. Responses to Conflicts

When a request is made in conflict with another request, the concurrency
controls considered in this paper take one of the following two actions.

1. WAIT. The requesting process is made to wait until the process (or
processes) with which it is in conflict terminates or is aborted (and the
requests are therefore no longer in conflict).

2. RESTART. Either the requesting process or some of the processes it is in
conflict with can be restarted. Restarting a process means first aborting
it and then beginning the process again at its original initial site.

There is a potential timing problem which we assume is accounted for in the
implementation of restart. The problem is that, when the restarted process
reaches a site visited during the aborted run, the arrival of the restarted process
could precede the “rollback” message from the earlier run. If this can occur,
it is important that the site not mistake the new version as a return of the old
version. It is also important that the site rollback the old version and not the
new one.

In the systems considered in this paper, restarting is invoked by the concur-
rency control using one of the following primitives:

DIE. The process making the request is restarted. Since that process is active
at the site at which it made the request, abortion can be immediately
initiated.

WOUND. When the concurrency control at some site selects wound, the
process the requestor is in conflict with is said to be wounded. A mes-
sage is sent to all the sites the wounded process has visited saying that it
is wounded. If that message gets to the site at which the process is active
(or if the process returns to a site that has received the message) and the
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process has not yet initiated termination, the concurrency control at that
site initiates an abort of that process. If the process has already initiated
termination, the wound message is ignored. In this case, as discussed
in Sect. 3, the process will eventually be terminated at all sites. Mean-
while at the site of the original conflict, the process in conflict with the
wounded process waits for the wounded process. The wounded process
will eventually either be restarted or terminated, at which time (in either
event) the conflicting process can proceed.

A concurrency design using WOUND must take into account that a “wound”
message, a “rollback” message, and the arrival of a restarted version could oc-
cur in any order at a particular site. In particular the new version must not be
rolled back because of a wound message intended for the old version.

Also note that if a “terminate” or “rollback” message for a particular process
has begun to propagate to sites a process has visited, it is no longer necessary to
notify any sites that the process has been wounded. Therefore a site can destroy
its bookkeeping information about a process after receiving a “terminate” or
“rollback” message for the process.

Finally we note that the possibility of several wound messages for the same
process does not cause a problem.

The above primitives result in a strict concurrency control if used in the
following way: Whenever a process causes a conflict, the process either dies
or is made to wound or wait for each of the processes it caused a conflict with.

8. Waiting Forever

The response of the concurrency control to conflicts must be designed to
ensure that every process terminates. Consequently, the use of WAIT as a
possible response must be restricted. For example, consider again processes S
and T from Sect. 5. Suppose the concurrency control always resolves conflicts
by selecting WAIT. Then the following scenario might occur.

S reads A = 0;

T reads B = 0;

S reads B = 0;

S attempts to write B and is made to wait for T;

T reads A;

T attempts to write A and is made to wait for S.

This is an example of a deadlock, where S and T are waiting for each other,
and so will never terminate. Although this deadlock is easy to detect on a
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Figure 4.1. Conflicts at different sites

centralized system, it may be more difficult to detect on a distributed system
because when a conflict occurs at one site the concurrency control at that site
cannot communicate with the concurrency controls at other sites. Figure 4.1
shows an example of what may happen. Entities A and B are assumed to be at
different sites. Process S starts at the site with A, has a request for A granted,
and then moves to the site with B. Meanwhile, process T starts at the site
with B, has a request for B granted, and then moves to the site with A, where
it issues a request on A that causes a conflict. Simultaneously, process T issues
a request on B that causes a conflict. The concurrency control at each site
must respond to the conflict at its site without communicating with the other
site. Therefore, the concurrency controls must be designed so that they do not
both select wait.

Deadlock is only one possible reason why a process might wait forever.
More generally, suppose a concurrency control permits a scenario where a
process issues a request and is made to wait forever without having its request
granted. (Note that WAIT and WOUND both cause a process to wait.) Then
the scenario must contain one of the four following cases:

1. Deadlock. A deadlock occurs when there is a finite set of processes
waiting for each other.

2. Infinite Chain of Distinct Waiting Processes. An infinite chain of waits
occurs if there is a scenario where one process waits forever for a second
process, which waits forever for a third, etc., and all these processes are
distinct. (At any instant of time, only a finite number of processes in
the chain have actually started, but the number increases without limit as
new processes enter the system and cause older processes to wait.)

3. Waiting for a Process That Runs Forever.

4. Waiting for an Infinite Number of New Processes Each of Which Ter-
minates or Aborts. For example, suppose process S wishes to access a
particular entity and is made to wait for process T. Later process U enters
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the system and requests access to the same entity, and S is made to wait
for U also. T eventually terminates but S is still waiting for U. Before
U terminates V enters the system and S is made to wait for it also, etc.
Thus even though each process S is waiting for terminates, S itself never
terminates.

To see that a scenario with a process that waits forever must contain one of
these cases, observe that if a process waits forever then either some process
that it is made to wait for never terminates or aborts, or else case 4 occurs.
If case 4 does not occur then the process being waited for either runs forever
(case 3) or waits forever. If no process in the scenario runs forever then case 1
or case 2 occurs.

We now present conditions on a concurrency control that preclude cases 2,
3, and 4.

We say that a concurrency control is superstrict if

(1) a request is not granted unless a termination message or rollback mes-
sage has been received for each of the processes it caused a conflict with,
and

(2) a process is only made to wait for processes that it causes a conflict with.

From Theorem 3, every superstrict concurrency control is also strict.

LEMMA 2. A scenario produced by a superstrict concurrency control cannot
contain a process waiting for an infinite number of new processes (case 4) and
cannot contain an infinite chain of distinct waiting processes (case 2).

Proof. A process cannot wait for an infinite number of new processes because
for a superstrict concurrency control, a process can only be made to wait for
processes that have previously issued requests.

Now suppose there is an infinite chain of distinct processes, in which each
process in the chain waits for the next. Let Pi be the ith process in the chain,
so that Pi waits for Pi+1 for 1 ≤ i.

We say that Pi involves a given entity if Pi waits for Pi+1, because of a
request on that entity. Because there is a conflict, either Pi or Pi+1 has issued
a write request on the given entity. We call the request by Pi that caused it to
wait forever its critical request.

Let C be the set of entities involved in the chain. Since the total number
of entities is finite, C is also finite. Therefore, there is some time, T , when
for each entity in C, a process on the chain has been made to wait because of
a critical request involving that entity. Any request issued after time T on an
entity in C will not be granted since the request will cause a conflict with a
previously issued write request by a process that waits forever.
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Since only a finite number of processes can be initiated during a finite time
interval, there is an integer J such that for every Pk with k > J , Pk is a process
that is initiated after time T . Since at any given time only a finite number of
requests can have been issued, there must be a time when for some i > J , the
critical request of Pi has been issued, but the critical request by Pi+1 has not
yet been issued. Let e be the entity (in C) involved in the critical request by Pi.
Since the concurrency control is superstrict, in order for Pi to wait for Pi+1,
process Pi+1 must issue a request on e prior to the request by Pi. However,
since process Pi+1 is initiated after time T , a request by Pi+1 on e results in
Pi+1 waiting forever. Therefore the request by Pi+1 on e is the critical request
of Pi+1, contradicting the assumption that Pi issues its critical request before
Pi+1. �

THEOREM 4. If a superstrict concurrency control is not subject to deadlock,
then no scenario can contain a process that waits forever.

Proof. From Theorem 3, Theorem 2, and Lemma 2. �

The implication of this theorem for distributed systems is that if the concur-
rency control at each site of a distributed system is designed to be superstrict,
the only phenomenon that can cause processes to wait forever is deadlock.

9. Fixed Order Concurrency Controls

The concurrency control designs given in this paper make use of a fixed
ordering of the processes. When each process is first initiated, it is given a
unique number (which may be a function of the time of day the process initially
started, the number of its initial site, and its priority). This number is carried
with the process when it moves from site to site and is retained if the process is
restarted. The numbers associated with the processes specify a particular total
order of the processes.

If a process should have a conflict with some other process, the concurrency
control selects its response based on a comparison of the numbers of the two
processes (e.g. if the number of the process causing the conflict is larger than
that of the other process, one particular response is selected; if it is smaller,
another response is selected).

This method of selecting responses guarantees that if two processes have
conflicts at different sites (for example the situation shown in Figure 4.1), the
conflict will be resolved at both sites on the basis of the same pair of numbers
associated with the processes.

We say that a method of assigning numbers to processes is a valid number-
ing method if each process is assigned a unique positive integer. A property
of valid numbering methods is that once a process has been assigned a num-
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ber, only a finite set of other processes can be assigned a lower number. In
the concurrency control designs we present, a low number is a desirable asset
for a process. When comparing the numbers of two processes that have been
assigned numbers by a valid numbering method, we say that the process with
the lower number is older and the process with the higher number is younger.

As a specific example of a valid numbering method, assume first that each
site has a unique site number, with all site numbers containing the same number
of bits. Also assume that each site has a clock, although the clocks at different
sites need not be synchronized, or even run at the same rate. Then the number
of a process is the initiation time (as determined at its initial site) concatenated
with the site number of the initial site.

One variation in the above method is to let high priority processes “lie”
about their age by subtracting a constant from their actual initiation time. An-
other variation, for systems without clocks, is that the jth process that initiates
at the site with site number i is assigned as its number the result of concatenat-
ing j and i.

The fixed order produced by a valid numbering method may differ from the
order of process termination and may not correspond to a valid linearization.
For example, consider the following scenario involving processes S and T.
Note that the scenario takes place at only one site, and does not involve any
conflict.

S initiates;

T initiates;

T reads entity A;

T writes entity A;

T terminates;

S reads entity A;

S terminates.

The termination order has T before S. Since S read A after T had written it and
terminated, S must be after T in any linearization that is equivalent to the above
scenario. However, note that S started before T and may very well be before
T in the ordering implied by the numbers associated with the processes and
used by the concurrency control to resolve conflicts. Thus the linearization im-
plied by the associated numbers may be different from any of the linearizations
equivalent to the concurrent running of the processes.
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10. Restarting Forever

Just as an injudicious selection of WAIT by a concurrency control can result
in processes waiting forever and hence never terminating, an injudicious se-
lection of restart can result in processes being repeatedly restarted forever and
hence never terminating. For instance, suppose that in the situation described
in Fig. 4.1 the concurrency control at each site decides to restart the process is-
suing the request that causes the conflict. Then S and T will both be restarted.
After S and T are rolled back and reinitiated, the same situation may repeat
itself. Therefore S and T may perpetually cause each other to be restarted and
so never terminate.

As another example, suppose processes U and V have a conflict and U is
restarted. The new incarnation of U has a conflict with V and this time V is
restarted. The new incarnation of V conflicts with U and U is restarted. This
cycle of restarts may repeat indefinitely with the result that the processes never
terminate. Specific examples of concurrency control designs subject to this
type of cyclic restart are given in [26].

In this paper we consider concurrency controls that use a valid numbering
method to prevent a process from being repeatedly restarted forever. We say
that for a given concurrency control, restart is based on a valid numbering
method if whenever a process is wounded or dies, it is in conflict with a lower
numbered process.

THEOREM 5. If a superstrict concurrency control is not subject to deadlock
and has restart based on a valid numbering method then every process termi-
nates.

Proof. Suppose there is a scenario in which one of the processes never termi-
nates. There are three possible reasons for a process not to terminate:

1. The process has each of its requests granted, but runs forever.

2. The process waits forever.

3. The process is repeatedly restarted forever.

From Theorem 2, no process can fail to terminate because of reason 1. From
Theorem 4, no process can fail to terminate because of reason 2.

Now consider reason 3. Assume there is a set of processes that are repeat-
edly restarted forever, and let P be the member of this set with the lowest
number. Because no process can be unterminated for reason 1 or reason 2,
there is some time when all processes having a lower number than P have ter-
minated. Process P cannot be restarted after this time, since P can only be
restarted because of a conflict with a lower numbered process and there are
no lower numbered processes for P to conflict with. Therefore P cannot be
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Assume process Q issues a request causing a conflict with a request previously
made by another process P . Let NQ and NP be the unique numbers assigned
to Q and P respectively by a valid numbering method. The conflict is resolved
using the following rule:

If requester is older then requester waits, else requester dies, i.e.

if NQ < NP then WAIT else DIE

Notes:

1. WAIT means Q waits for P to terminate or abort. DIE is described in
the text (Sect. 7).

2. If this request puts Q in conflict with more than one process, apply the
above rule to each process Q is in conflict with. If any application indi-
cates DIE, then Q is restarted; otherwise Q waits for all the processes.

Figure 4.2. WAIT-DIE system

repeatedly restarted forever, contradicting the assumption that there is a set of
processes that are restarted forever. �

11. The WAIT-DIE System

Figure 4.2 gives the specifications of a distributed concurrency control that
we call the WAIT-DIE system because the requesting process either waits or
dies.

THEOREM 6. The WAIT-DIE system is a strict concurrency control for which
every process terminates.

Proof. The WAIT-DIE system is designed to be superstrict, and have restart
based on a valid numbering method. There cannot be a deadlock because for
any finite set of processes, the youngest one cannot be made to wait for any of
the others. Therefore, from Theorem 5, all processes terminate. �

12. The Wound-Wait System

Figure 4.3 gives the design of a distributed concurrency control that we call
the WOUND-WAIT system because the requesting process in any conflict ei-
ther waits or wounds the other process (or processes).
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Assume process Q issues a request causing a conflict with a request previously
made by another process P . Let NQ and NP be the unique numbers assigned
to Q and P respectively by a valid numbering method. The conflict is resolved
using the following rule:

If requester is older then requester wounds, else requester waits, i.e.

if NQ < NP then WOUND else WAIT

Notes:

1. WAIT means Q waits for P to terminate or abort. WOUND is described
in the text (Sect. 7).

2. If this request puts Q in conflict with more than one process, apply the
above rule to each process Q is in conflict with.

Figure 4.3. WOUND-WAIT system

THEOREM 7. The WOUND-WAIT system is a strict concurrency control for
which every process terminates.

Proof. The WOUND-WAIT system is designed to be superstrict and have
restart based on a valid numbering method. There cannot be a deadlock be-
cause for any finite set of processes, the oldest cannot wait for any other process
unless it has first sent out a wound message for that process. The wounded
process cannot be part of a deadlock because the wound message must even-
tually reach any site where that process is waiting and cause it to be aborted.
Therefore, from Theorem 5, every process terminates. �

Alternate Definition of Wound. The WOUND-WAIT system of Fig. 4.3 will
still operate correctly using a somewhat different interpretation of WOUND: If
a wound message reaches the site at which the process is active and the process
has not initiated termination then that process is restarted only if it is waiting.
Otherwise it is allowed to proceed (even to other sites) until it either initiates
termination or becomes involved in a conflict that would normally cause it to
wait (in which case it is restarted).

The same argument used to demonstrate the correct operation of the original
WOUND-WAIT system can be used for the new one. The advantage of the new
one is that fewer restarts occur.
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13. Comparison of WAIT-DIE and WOUND-WAIT
Systems

Both the WAIT-DIE and the WOUND-WAIT systems work correctly in the
sense that they maintain the global consistency of the database and guarantee
that all processes terminate. Nevertheless, there are significant differences in
how they operate in certain situations.

Waiting Processes. In the WAIT-DIE system an older process is made to
wait for younger ones and as it gets still older it tends to wait for more and
more younger processes. Although the older process will eventually terminate,
it tends to slow down as it gets older.

By contrast, in the WOUND-WAIT system, an older process never waits
for a younger one except when the older process has wounded the younger
and is waiting for the wound to take its effect. The oldest process therefore
runs roughshod through the system wounding any younger process in its path.
Thus, the older process get increased priority.

Restarted Processes. Suppose that processes A and B have a conflict and A
is restarted. The new incarnation of A may issue the same sequence of requests
as before and thus reach the site of the previous conflict. At this site, a new
conflict will result if B is still unterminated.

In the WAIT-DIE system A was the requestor that caused the original con-
flict (recall that only the requestor can die). In the new conflict A is still the
requestor and dies again. Thus there can be a long sequence of DIEs and while
both B and A will eventually terminate, the repeated attempts to run A will
consume system resources.

By contrast, in the WOUND-WAIT system A was not the requestor in the
original conflict and A was younger than B. In the new conflict A is still
younger than B, but this time A is the requestor and hence waits. Process
A presumably consumes far less system resources if it is waiting than if it is
continually being restarted.

Interfacing with External Devices. In many applications, processes first ac-
cess a database and then interact with some external device such as a printer,
a drill press, or a nuclear reactor. It might be very awkward if the concur-
rency control caused such a process to restart after its external interactions had
started. (How do you deal with the initial output of the printer which is now to
be disregarded or how do you undrill a hole?)

The WAIT-DIE system has the property that a process can only be restarted
when it makes a request to read or write a database entity for the first time.
Thus, if the process is designed so that it completes all of these requests before
initiating any interactions with external devices, then it is guaranteed not to be
restarted by the concurrency control during or after these interactions.
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Assume process Q issues a request causing a conflict with a request previously
made by another process P . Let NQ and NP be the unique numbers assigned
to Q and P respectively by a valid numbering method. The conflict is resolved
using the following rule:

If requester can wait, then requester waits, else younger restarts, i.e.

if Q CAN-WAIT-FOR P then WAIT

else if NQ < NP then WOUND else DIE

Notes:

1. WAIT means Q waits for P to terminate or abort. DIE and WOUND are
described in the text (Sect. 7).

2. Process Q CAN-WAIT-FOR P if there is no chain of processes from P
to Q, in which each process is waiting for the next.

3. If a request puts Q in conflict with more than one process, apply the
above rule to each process Q is in conflict with. However, if any appli-
cation indicates DIE then Q is restarted, but no other process is wounded.

Figure 4.4. Centralized dynamic WAIT system

By contrast, in the WOUND-WAIT system a process can be restarted at
any time after it has had a request on a particular entity granted, when another
process requests access to that same entity. Thus there is no guarantee that a
process that has accessed an entity in the database will not be restarted after it
initiates an interaction with an external device. However, if the alternate defin-
ition of WOUND is used, once a process completes all its database requests, it
is guaranteed not to be restarted by the concurrency control.

14. Centralized Concurrency Control

The WAIT-DIE and WOUND-WAIT systems may select “unnecessary”
process restarts because the concurrency control at a given site does not know
what is happening at other sites and so selects a primitive causing restart when-
ever selecting WAIT could potentially cause a deadlock.

In contrast if there is only one site or a centralized concurrency control that
selects the response for all sites, the concurrency control knows exactly which
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processes are waiting for which and so need only restart a process when select-
ing WAIT would actually create a deadlock. The design of a centralized sys-
tem, which we call the centralized dynamic WAIT system, is shown in Fig. 4.4.
This concurrency control uses a valid numbering method to determine which
of two processes to restart, but makes the decision between WAIT and restart
on the basis of the current situation of waiting processes. Thus process S IS-
WAITING-FOR process T if the concurrency control selected WAIT when S
previously caused a conflict with T. The concurrency control uses the relation
CAN-WAIT-FOR, which is the complement of the transitive closure of the IS-
WAITING-FOR relation.

THEOREM 8. The centralized dynamic WAIT system is a strict concurrency
control for which every process terminates.

Proof. The concurrency control is designed to be superstrict and have restart
based on a valid numbering method. There cannot be a deadlock, because
WAIT is only selected when the CAN-WAIT-FOR relation permits. Therefore
Theorem 5 applies and every process terminates. �

15. Hybrid Concurrency Controls

To reduce the number of process restarts caused by conflicts, the distributed
systems described earlier can be modified to include certain features of the cen-
tralized dynamic WAIT system. Figures 4.5 and 4.6 describe two such hybrid
systems, which we call the hybrid WAIT-DIE system and the hybrid WOUND-
WAIT system. Both of these systems distinguish between local processes that
have not left their initial site and global processes that have. If all processes
were local, these systems would reduce to the centralized dynamic WAIT sys-
tem. If all processes were treated as global, they would reduce to the WAIT-
DIE or WOUND-WAIT system. However, they have the advantage over the
WAIT-DIE and WOUND-WAIT systems that if there are many local processes,
fewer restarts are to be expected.

The systems of Figs. 4.5 and 4.6 differ in whether for two global processes,
the older is allowed to wait for the younger or the younger is allowed to wait for
the older. This difference is reflected in the definition of the CAN-WAIT-FOR
relation (Note 2) and the action taken when a local process becomes global
(Rule B).

THEOREM 9. The hybrid WAIT-DIE system is a strict concurrency control for
which every process terminates.

Proof. The concurrency control is designed to be superstrict and have restart
based on a valid numbering method.
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A. Assume process Q issues a request causing a conflict with a request pre-
viously made by another process P . Let NQ and NP be the unique numbers
assigned to Q and P respectively by a valid numbering method. The conflict
is resolved using the following rule:

If requester can wait then requester waits, else younger restarts, i.e.

if Q CAN-WAIT-FOR P then WAIT

else if NQ < NP then WOUND else DIE

B. Suppose a local process Q wishes to become global, i.e. leave its initial site
for the first time. Then WOUND each global process P that is younger than Q
and for which there is a chain of processes from P to Q, in which each process
is waiting (at that site) for the next.

Notes:

1. WAIT means Q waits for P to terminate or abort. DIE and WOUND are
described in the text (Sect. 7).

2. Process Q CAN-WAIT-FOR P at a given site if there is no chain of
processes from P to Q in which each process AWAITS the next at the
given site. Process S AWAITS process T at the site if either S is waiting
for T at the site, or S and T are both global processes that have visited
the site and S is older than T .

3. If a request puts Q in conflict with more than one process, apply rule
A to each process Q is in conflict with. However, if any application
indicates DIE then Q is restarted, but no other process is wounded.

4. A process is local if it has not yet left its initial site and global if it has.

Figure 4.5. Hybrid WAIT-DIE system

Assume the system is subject to deadlock, so that there is a finite cycle of
processes waiting for each other. Since WAIT is only selected when the CAN-
WAIT-FOR relation permits, the cycle cannot consist of processes waiting for
each other at a single site. Therefore the cycle must involve more than one site
and at least two global processes. Consider the youngest global process, say P,
involved in the deadlock. P must have been global prior to the request that
made it wait forever, since it does not have an opportunity to become global
once it is made to wait forever.



94

A. Assume process Q issues a request causing a conflict with a request pre-
viously made by another process P . Let NQ and NP be the unique numbers
assigned to Q and P respectively by a valid numbering method. The conflict
is resolved using the following rule:

If requester can wait then requester waits, else younger restarts, i.e.

if Q CAN-WAIT-FOR P then WAIT

else if NQ < NP then WOUND else DIE

B. Suppose a local process Q wishes to become global, i.e. leave its initial site
for the first time. Then select DIE if there is a global process P that is older
than Q and for which there is a chain of processes from P to Q, in which each
process is waiting (at that site) for the next.

Notes:

1. WAIT means Q waits for P to terminate or abort. DIE and WOUND are
described in the text (Sect. 7).

2. Process Q CAN-WAIT-FOR P at a given site if there is no chain of
processes from P to Q in which each process AWAITS the next at the
given site. Process S AWAITS process T at the site if either S is waiting
for T at the site or S and T are both global processes that have visited
the site and S is younger than T .

3. If a request puts Q in conflict with more than one process, apply rule
A to each process Q is in conflict with. However, if any application
indicates DIE then Q is restarted, but no other process is wounded.

4. A process is local if it has not yet left its initial site and global if it has.

Figure 4.6. Hybrid WOUND-WAIT system

The deadlock must include a chain of processes from P to some other global
process Q, with each process waiting for the next at the same site. Let this
chain be R0, R1, . . . , Rn where n ≥ 1, R0 = P , and Rn = Q. For each
i < n, process Ri is waiting for Ri+1 because of some request issued by Ri at
the site. Let Rj be the process in the chain that issued the last such request.

Let T be the time of the request by Rj . At time T , the other requests in the
chain have already been issued and resulted in the selection of WAIT. There-
fore at time T from Note 2 in Fig. 4.5, Ri AWAITS Ri+1 for all i �= j. Now
suppose that process Q was already a global process at time T . Then since Q
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is older than P , from Note 2 in Fig. 4.5, at T it is the case that Q AWAITS P .
Therefore at time T there is a chain from Rj+1 to Rj such that each process in
the chain AWAITS the next at the same site. Therefore at time T, it is false that
Rj CAN-WAIT-FOR Rj+1, and the concurrency control would respond to the
request by Rj with either WOUND or DIE, but not with WAIT.

This contradicts the assumption that Q was already a global process at
time T . The fact that the request by Rj resulted in the selection of WAIT there-
fore implies that Q did not become global until after the chain from P to Q
was already established. But since P is younger than Q, Rule B of the hybrid
WAIT-DIE system would result in process P being restarted when Q wishes
to become global. This contradicts the assumption that there is a deadlock.

Therefore, from Theorem 5, every process terminates. �

THEOREM 10. The hybrid WOUND-WAIT system is a strict concurrency con-
trol for which every process terminates.

Proof. Similar to the proof of Theorem 9, except that under the assumption of
a deadlock, consider the oldest global process involved. �

Consider again the three points of comparison between systems discussed
in Sect. 13.

Waiting Processes. The hybrid WOUND-WAIT system differs from the
WOUND-WAIT system in that the oldest process may be made to wait. How-
ever, when it was young, it was less likely to have been restarted.

Restarted Processes. The hybrid WOUND-WAIT system differs from the
WOUND-WAIT system in that if a process is restarted and the new incarnation
of the process issues the same sequence of requests as before, the original
conflict that caused it to be restarted can cause it to be restarted again. For
instance, suppose there are three processes, {A, B, C}, with NB < NA < NC .
Suppose that A and C are global, and B is local. Suppose further that a request
by B caused it to wait for C. Now if A issues a request causing a conflict
with B, WAIT cannot be selected (since B AWAITS C, and C AWAITS A).
Since A is younger than B, A is restarted. If the new incarnation of A returns
and the situation remains unchanged, A will be restarted again.

Interfacing with External Devices. If the alternate definition of WOUND is
used, then a process that completes its database requests and begins interacting
with external devices is guaranteed not to be restarted by either the hybrid
WAIT-DIE system or the hybrid WOUND-WAIT system.

In summary, the hybrid systems have the advantage of treating local process-
es like a centralized control, while working correctly for global processes.
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1. Introduction

There has been a lot of activity in the area of database concurrency controls.
The goal of concurrency control is to allow transactions accessing a common
database to run as concurrently as possible without destroying database con-
sistency or preventing a transaction from eventually running to completion. It
has generally been appreciated that consistency can be insured by designing
a serializable control, where serializability means that the effect of running
transactions concurrently is the same as if the transactions have been run in
some serial order. Many practitioners have in fact made serializability a design
requirement.

This paper investigates the relationship between serializability and consis-
tency. We first develop a general concurrency control model based on infor-
mation flow between transactions. We then show that serializability is both
necessary and sufficient for consistency. (There is a small loophole for read-
only transactions.) We consider both the consistency of the final database pro-
duced by the transactions and the consistency of the view seen by each trans-
action.

Our concurrency model is developed to reflect assumptions we believe ap-
propriate for concurrency controls in mainstream commercial database sys-
tems. These assumptions and our reason for making them are as follows:

ASSUMPTION A1. The control can distinguish between a read access and a
write access. Reason. Data manipulation languages have this feature.

ASSUMPTION A2. The control does not know the consistency criterion. Rea-
son. In practice, consistency conditions are too complex to expect a user to
write them down (or even fully comprehend them).

ASSUMPTION A3. The control does not make inferences from the particular
values read or written. Reason. Because of Assumption A2, this information
is, for practical purposes, useless. (In theory, inferences could be made from
testing values for equality.)

ASSUMPTION A4. The control may respond to a read request with a value
other than the last value written. Reason. Concurrency control designs have
been proposed which have this feature [1, 2, 13–15].

ASSUMPTION A5. A value written in the database during the run of the trans-
action must be considered functionally dependent on all values read, rather
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than functionally dependent only on those read by the transaction before writ-
ing the value. Reason. Data manipulation languages usually permit branching
and rewriting values. The control must assume a value written might have been
rewritten if values read subsequently had been different.

ASSUMPTION A6. Before a transaction can write an entity, it must read the
entity. Reason. The “necessity” results are false without this assumption. (See
Sect. 11.)

ASSUMPTION A7. There are no “lost updates.” More precisely, the history of
changes to a given entity is a sequence of changes, each change overwriting
the change made by the preceding transaction in the sequence. Reason. Lost
updates are usually considered undesirable. Also, the “necessity” results are
false without this assumption. For instance, consider a concurrency control
that presents each transaction with the original contents of the database, and,
when a transaction terminates, throws out the values it wrote. This concurrency
control preserves consistency (since the final database is identical to the initial
database), but is not serializable.

We believe Assumptions A1 to A5 to be both reasonable and desirable. As-
sumption A6 is also reasonable in that most state-of-the-art database systems
interface with the operating system and concurrency control by first reading a
page from the disk and then perhaps writing the page. Once Assumption A6 is
made, we believe Assumption A7 to be both reasonable and desirable. It im-
plies that all but one version of each entity is overwritten. The single version
that is not overwritten can be thought of as being retained in a final database
produced by the transactions. Therefore every version of the entity is actually
“used” in the sense that it is either overwritten or else is the unique “surviving”
version of the entity.

When we say that serialization is necessary, we mean that in all nonserializ-
able situations, there could be (from the viewpoint of the concurrency control)
an inconsistency. Our results do not exclude the possibility that for specific
consistency criteria or for specific transactions, consistency may be preserved
in nonserializable situations, and indeed such cases have been considered in
the literature [6–9, 11].

This paper addresses two consistency questions:

(1) Under what conditions is the final database consistent?

(2) Under what conditions does an individual transaction see a consistent
view of the database?
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The second question is very important for several reasons:

(a) The view of the individual user is the view seen by transactions. A re-
port produced by a transaction which sees an inconsistent view might be
regarded by a user as evidence that the database is being mismanaged.

(b) A transaction may not be properly designed to accommodate “impos-
sible” data, and may behave unpredictably when given an inconsistent
view.

(c) In a system which is always running transactions, there may never be a
well-defined “final database,” and consistency for individual transactions
may be the only meaningful concept.

Previous papers on serialization have concentrated on question 1. Ques-
tion 2 requires more complex proof techniques because inconsistency must be
demonstrated using only that portion of the database that a transaction sees.

Most papers on serializability use the concept of a “schedule of accesses” (or
history or log). This concept is not adequate here because of Assumption A4.
Instead we use the concept of a “version graph” showing information flow.
The version graph might appear inadequate because it does not show the order
in which an individual transaction makes its requests. However, the order of
requests is irrelevant because of Assumption A5. We examine this issue more
closely in Sect. 12.

The early work of [5] is based on “schedules.” A schedule is defined to be
consistent if it is serializable, and a database state is defined to be consistent if
it satisfies a set of consistency constraints. The authors note that if the initial
database state is consistent and if each transaction transforms a consistent state
into a consistent state, then serializable schedules maintain consistency. From
a schedule, they construct a “dependency” relation that is similar to the “aug-
mented version graph” of this paper, and show that the schedule is serializable
if and only if the dependency relation is acyclic.

Kung and Papadimitriou [10] show that for systems with only one type of
access, which is a combined read-write access, a “schedule” maintains full
database consistency if and only if it is serializable. They do not address the
consistency of the view seen by individual transactions. The model in [10]
differs from ours in Assumptions A1 and A5. In each case, we are making the
more general assumption.

Casanova [3] and Casanova and Bernstein [4] study consistency in a model
where all reads occur in a single combined access and then all writes occur in
a single access. This does not permit all the possibilities of information flow
permissible under our model. However, unlike our model, theirs allows the
write to include entities which were not read.

The results in this paper improve an earlier version announced in
[15, Thm. 1] without proof.
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2. Concurrency Control

In this section, we describe in nonmathematical terms our concept of a con-
currency control. In later sections, we formalize those aspects of the control
that pertain to consistency.

We think of a transaction as a computer program that reads information
from and writes information into a database. The interface to the database is
through system procedures READ and WRITE. A call on READ is referred to
as a “read request” and a call on WRITE is referred to as a “write request.”

If transactions were run on a system one at a time, read requests could be
responded to by reading the value from the database, and write requests by re-
placing the old database value with the new. The problem comes with systems
which attempt to run a number of transactions concurrently. The part of the
system which determines the response to the read and write requests is called
a concurrency control.

The concurrency control can grant read requests by supplying an input, and
can grant write requests by saving the output somewhere. These values are
not necessarily read or written directly into the database, as the control may
sometimes have a temporary need to remember several different values for a
single entity.

If a read request by a given transaction on a given entity is not the first re-
quest by that transaction on that entity, and if the concurrency control grants
the read request, then the value supplied to the transaction is assumed to be the
value associated with the preceding request on the entity by the transaction.
If the preceding request was a write request, the value written is supplied to
the new read request. If the preceding request was a read request, the value
supplied to that request is assumed to be also supplied to the new read request.
Thus the only time a concurrency control must make a choice as to what value
of an entity to supply when granting a read request is when the read request
is the first request of the transaction on the entity. The value that the concur-
rency control is allowed to supply is either the value of the entity in an initial
database, or the final value written by some other transaction that wrote the
entity.

Database consistency deals with data values, and is independent of other
aspects of the concurrency control. Thus we base our mathematical treatment
of consistency on a model of data flow, rather than a model of concurrency
control. As with any mathematical model, the appropriateness for the intended
application is an issue to be addressed. Towards this end, we will relate our
formal definitions to the above notion of a concurrency control and to As-
sumptions A1 to A6 of the introduction.
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3. Databases

We now present our formal concepts of databases and database consistency.

DEFINITION 3.1. A database is specified by a pair (E, V ) where E is a set of
entities and V is a set of values. A mapping from E into V is called a database
state.

In practice, a database entity could be an item, record, page, or file, depend-
ing on at what level a given system applies a concurrency control discipline.
If s is a database state and e is an entity, then s(e) is interpreted as the value
stored in entity e.

DEFINITION 3.2. A consistency criterion for a database (E, V ) is a set C of
database states. A database state s in C is said to be consistent.

This definition of consistency allows for an arbitrary classification of data-
base states being “consistent” or “inconsistent.” There is no need to com-
pute C, and in fact our interest is in controls which work for arbitrary criteria
(Assumption A2).

It is our opinion that this definition is too weak to capture all aspects of
preserving consistency. However, it serves the purposes of this paper very well,
since this weak definition already gives the strongest possible result, namely
that serialization is necessary.

4. Transactions

A given run of a transaction reads certain entity values and writes certain
entity values. To study consistency, the run can be represented mathematically
by the entities and entity values read and written. We call this mathematical
object a “transaction effect.” Unlike most other authors, we do not put the
order of reads and writes into our model. The reason is Assumption A5, which
implies the order is not relevant.

DEFINITION 4.1. Given a database (E, V ), a transaction effect is specified by
a four-tuple (READSET, WRITESET, r, w) where

(a) READSET is a nonempty subset of E,

(b) WRITESET is a subset of READSET,

(c) r is a function r: READSET → V called the input function, and

(d) w is a function w: WRITESET → V called the output function.
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READSET represents the set of entities read by the run of the transaction
and function r gives the values read. We rule out the trivial case where no
entities are read, since we are only concerned with transactions that interact
with the database. WRITESET represents the set of entities written by the run
of the transaction and function w gives the values written. We require that
WRITESET be a subset of READSET to conform to Assumption A6.

A given transaction can produce a variety of effects, depending on the values
supplied in response to its read requests. Even the READSETs and
WRITESETs can vary because the transaction can branch on values read.

DEFINITION 4.2. Given a database state s and a transaction effect σ =
(READSET, WRITESET, r, w) for database (E, V ), we say that σ is matched
to s if and only if r(e) = s(e) for all e in READSET. We say that transac-
tion effect σ transforms database state s to database state t if and only if σ is
matched to s and

(a) t(e) = w(e) for e in WRITESET,

(b) t(e) = s(e) otherwise.

The idea behind this definition is that when a transaction that can produce
effect σ is run with a database state s matched to σ, the transaction changes
the values in database state s to obtain database state t. If this same transaction
were run with a database state u not matched to σ, then a different unspecified
transaction effect would occur, one matched to u.

DEFINITION 4.3. Given a database (E, V ) and a consistency criterion C, a
transaction effect σ is said to be valid if and only if, for all database states s
such that s is C and σ is matched to s, transaction effect σ transforms s to a
database state in C.

Intuitively, a debugged transaction can only produce valid transaction ef-
fects. If a debugged transaction terminates when run by itself with a consistent
initial database state, the final database state when it terminates is also con-
sistent. No matter what the consistent initial database state matched to the
transaction effect is, the transaction effect transforms this consistent state into
another consistent database state.

Note that a given transaction effect may not be matched to any consistent
database state. From Definition 4.3, such a transaction effect is valid. It could
be the effect of debugged program presented with an inconsistent database (i.e.
garbage in, garbage out).

The running of a sequence of transactions produces a sequence of transac-
tion effects in the obvious way:



106

DEFINITION 4.4. Let σ1, σ2, . . . , σn be a sequence of transaction effects and
let s0 be a database state. The sequence is called a serial run on s0 if and
only if there exist database states s1, s2, . . . , sn such that for 1 ≤ i ≤ n, σi

is matched to si−1 and transforms si−1 to si. Database state sn is called the
result of the serial run.

Note that if the si exist, they are unique. Thus, if the result exists, it is
unique. The well known fact that serial runs preserve consistency is expressed
in our notation follows.

THEOREM 4.5. If σ1, . . . , σn is a serial run of valid transaction effects on
consistent state s0 and s1, . . . , sn are database states as given in Definition 4.4,
then all the si are consistent.

Proof. By induction on i using Definition 4.4. �

5. Version Graphs

The outcome of concurrency decisions is a flow of information among trans-
actions. We model this flow on two levels. One level is the “version graph”
to be defined in this section. The other (more detailed) level is the “datatrace”
defined in Sect. 7.

The version graph represents those facts about concurrency decisions avail-
able to the concurrency control. These are the facts the concurrency control
can use to assure that consistency is maintained or that a given transaction
sees a consistent view of the database. In particular, these facts do not include
knowledge of specific entity values (Assumption A3) or what the consistency
criterion is (Assumption A2).

The “version graph” is a mathematical concept that models how versions
of entities flow between transactions. The version graph has a node for each
transaction, plus an extra node for the initial database state. The edges reflect
the source of entity values read or overwritten by the transactions.

DEFINITION 5.1. Given a set of entities E, a version graph G for E is a
directed graph with a finite number of nodes such that:

(a) there is exactly one node I having no entering edges;

(b) each edge is labelled Re or We where e is in E;

(c) for each node x and each e in E, node x has at most one entering edge
labelled Re and at most one entering edge labelled We;

(d) if there is an edge from node x to node y labelled We, then there is also
an edge from x to y labelled Re;
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(e) if there is an edge labelled Re or We leaving node x, then either x is the
node I or x has an entering edge labelled We;

(f) for each e in E, the edges labelled We form a chain (i.e. a cycle free
path, possibly of zero length) beginning at I .

The node I with no entering edges represents the initial database state. Any
other node represents a transaction, and will be called a transaction node.
A transaction node with an entering edge labelled We for some e is called
a writing transaction node, and is considered to have overwritten entity e.
A transaction node that is not a writer is called a read-only transaction node.
A node that is either I or a writing transaction node is said to be a producer
node, and is considered to produce the value of some entity. Producer node
I is considered to produce an initial value for each entity. A writing trans-
action node q with an entering edge labelled We is considered to produce a
value for entity e. The entity value produced by q is considered to overwrite
the value produced by the node exited by the edge (from Definition 5.1(e) this
node produces a value for entity e).

As an example, Fig. 5.1 shows a version graph with E = {α, β, γ}. For
convenience, the transaction nodes have been labelled with transaction names.
From the graph it is evident that transaction a reads and writes entity set {α},
transaction b reads {α, γ} and writes {γ}, and transaction c reads {α, γ} and
writes the null set. Entity β is not accessed. The edge labelled Rα from a to c
means that c reads the version of entity α that transaction a wrote.

The edges of a version graph can be considered to represent “information
flow relations.” For each e in E there is a relation Re such that xReq holds

Figure 5.1. Version graph
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if the version graph contains an edge labelled Re from node x to node q, and
signifies that the value of e produced by x was read by q. Relation xWeq holds
if the version graph contains an edge labelled We from node x to node q, and
signifies that the value of e created by x was changed by q.

Each condition of Definition 5.1 has an interpretation in terms of the appli-
cation we are modelling. Definition 5.1(a) reflects the inclusion of the initial
database state in the version graph, and the assumption that each transaction
actually accesses the database. Definition 5.1(b) merely says that an entity
is associated with each read or write. Definition 5.1(c) reflects the assumption
that the concurrency control need only supply an appropriate entity value when
a transaction makes its initial request, since it supplies each subsequent request
with the value from the preceding request. Definition 5.1(d) reflects Assump-
tion A6. Definition 5.1(e) merely says that the source of each entity value is
actually a producer of a value for that entity. Definition 5.1(f) reflects Assump-
tion A7. The single version of an entity at the end of a chain is the version that
is retained in a final database state produced by the transactions in the graph.

6. Version Graph Analysis

In the preceding section, version graphs were used to model the information
flow between transactions. We will subsequently characterize consistency in
terms of version graph analysis. The key concepts behind this analysis are
“individual version graphs,” “writers version graphs” and “augmented version
graphs.” These concepts, together with certain lemmas used in later sections,
are developed below.

DEFINITION 6.1. Given a directed graph G, node x is called an ancestor of
node y if and only if there is a directed path (perhaps of zero length) from x
to y. Given a subset S of nodes for G, the ancestor subgraph for S is the graph
with

(a) node set A consisting of ancestors of nodes from S, and

(b) edge set consisting of all edges from G connecting nodes in A.

An important fact about an ancestor subgraph of a version graph is that it is
a version graph:

LEMMA 6.2. If G is a version graph for entity set E, and H is a nonempty
ancestor subgraph of G, then H is a version graph for entity set E.

Proof. We check H for each condition of Definition 5.1. For Definition 5.1(a),
first note that since each node of H has the same number of entering edges as
the corresponding node of G, H has at most one node with no entering edges.
Next, note that from Definition 5.1(e) and (f), node I is an ancestor of every
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node of G. Since H is nonempty, node I is included in H , and so H satisfies
Definition 5.1(a).

Definition 5.1(b) and (c) are obvious because the edges in the ancestor sub-
graph H are a subset of the edges in version graph G.

Definition 5.1(d) and (e) hold because the required edges are inherited
from G.

For Definition 5.1(f), observe that the chain for e in H must have a node x
which is at maximal distance from I on the chain. Because H is an ancestor
subgraph, the nodes between x and I are also in H , so the We edges in H also
form a chain. �

A node of an ancestor subgraph participates in the same chains as in the
original graph:

LEMMA 6.3. Let x be a node common to version graphs G and A where A
is an ancestor subgraph of G. Then node x is the kth node on the chain for
entity e in version graph G if and only if x is the kth node on the chain for e in
version graph A.

Proof. The portion of the chain from I to x is the same in both graphs. �

Certain ancestor subgraphs, defined below, play a key role in database con-
sistency.

DEFINITION 6.4. Let G be a version graph. For each node x of G, the ancestor
subgraph of G for {x} is called the individual version graph (ivg) for x in G,
and is denoted as ivg(G, x).

Let WRITERS be the set of nodes of G having an entering edge labelled We

for some e. Define the writers version graph for G to be the ancestor subgraph
for WRITERS.

For version graph G and entity e, define chainend (G, e) as the last node
in G on the chain (see Definition 5.1(f)) for e. Define ivg(G, e) as ivg(G,
chainend (G, e)).

As an example, consider the version graph, G, of Fig. 5.1. The individual
version graph for transaction c, i.e. ivg(G, c), is shown in Fig. 5.2(a). The writ-
ers version graph is shown in Fig. 5.2(b). Also note that chainend (G, α) = a,
chainend (G, β) = I , and chainend (G, γ) = b.

LEMMA 6.5. For every version graph G and node x of G;

(a) Every node of ivg(G, x) except possibly x is a producer node;

(b) Every node of the writers version graph is a producer node.
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Figure 5.2.

Proof. Immediate from Definition 5.1(e). �

LEMMA 6.6. If H = ivg(G, y) and K = ivg(H, x), then K = ivg(G, x).

Proof. Node x has the same set of ancestors in G and H . �

We now consider extra edges that can be added to a version graph in order
to indicate when one transaction reads an entity version that was overwritten
by a second transaction.

DEFINITION 6.7. Given a version graph G and given a database entity e, de-
fine the relation Be among nodes of G by pBeq if and only if p �= q and for
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some node x in G, xRep and xWeq. Define the augmented graph for G, de-
noted as aug(G), to be G with directed labelled edges added for the relations
Be for all entities e.

The relationship pBeq can be interpreted to mean that transaction p read the
value of e that was changed by transaction q. More briefly, p read the value of
entity e that existed before q overwrote that value. Note that since node I has
no entering Re or We edges, node I has no entering or exiting Be edges.

Figures 5.2(c), 5.2(d) and 5.2(e) show the augmented graphs for Figs. 5.1,
5.2(a) and 5.2(b) respectively.

7. Datatraces

In studying consistency considerations, we are concerned not only with in-
formation flow, but also with the actual entity values that are read and writ-
ten. This is because it is the actual values that determine if the data seen or
the database state produced are actually consistent. In the following defini-
tion, we combine a version graph with the effects of its transactions to form
a “datatrace.” The datatrace represents both the flow and values of database
information involved in the running of a finite set of transactions.

DEFINITION 7.1. Given a database (E, V ), a datatrace is a triple (G, σ, s)
where:

(a) G is a version graph for E;

(b) σ is a function that maps each transaction node p of G into a transaction
effect (READSETp, WRITESETp, rp, wp);

(c) s is a database state (the initial state);

(d) for each transaction node p in G, READSETp equals the set of entities
e such that an edge labelled Re enters node p, and WRITESETp equals
the set of entities e such that an edge labelled We enters node p;

(e) if qRep in G then e is in WRITESETq and wq(e) = rp(e), where the
notation is extended by defining WRITESETI = E and wI(e) = s(e).

Datatraces lead naturally to a concept of a final database state.

DEFINITION 7.2. Given a database (E, V ) and a datatrace (G, σ, s), define
the final database state t for the trace to be the function such that t(e) is given
by the output function of chainend (G, e) (so that t(e) equals wchainend(G,e)(e)).



112

We now show that if a version graph is associated with a trace, then each
nonempty ancestor subgraph is the version graph of an appropriately defined
subtrace of the given trace.

LEMMA 7.3. If (E, V ) is a database, (G, σ, s) a datatrace and G′ a non-
empty ancestor subgraph of G, and if σ′ is σ restricted to the nodes of G′, then
(G′, σ′, s) is a datatrace.

Proof. From Lemma 6.2, G′ is a version graph, so condition (a) of Defini-
tion 7.1 is satisfied. The other conditions of Definition 7.1 carry over directly
from G, σ and s. �

Consider the flow of information when a set of transactions are run in order
p1, . . . , pn with each transaction terminating before the next one begins. De-
scribing this flow with a version graph, an edge pjRepi is included whenever
transaction pi reads the value written by pj . Because of the sequential order of
execution, pjRepi in the flow graph implies j < i and further implies that e
is not in WRITESET of any pk for j < k < i. It is this characteristic that we
build into the following definition:

DEFINITION 7.4. A serialization of datatrace (G, σ, s) is an ordering p0, . . . ,
pn of the nodes of G such that

(a) p0 = I and

(b) pjRepi implies

j = max{k | k < i and e is in WRITESETpk
}.

A datatrace is serializable if it has a serialization.
The “serialization” of a datatrace is thus an ordering which shows that the

trace could have resulted from a sequential running of the transactions. A “se-
rializable trace” is a datatrace which has such an explanation.

As defined, serializability is essentially a property of the version graph
rather than the whole datatrace. The next result addresses the entire datatrace
and relates serializations of datatraces with serial runs.

THEOREM 7.5. If p0, . . . , pn is a serialization of datatrace (G, σ, s) then

(a) σ(p1), . . . , σ(pn) is a serial run on s, and

(b) the result of the serial run is identical to the final state of the datatrace.

Proof. (a) The database states required by Definition 4.4 are defined as fol-
lows. For 1 ≤ i ≤ n, let si(e) = wpl

(e) where l = max{k | k ≤ i and e is in
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WRITESETpk
}, and let s0 = s. We will show that σpi is matched to si−1 and

transforms si−1 to si.
To prove that σpi is matched to si−1, we must show that rpi(e) = si−1(e)

for all e in READSETi. From Definition 7.1, rpi(e) = wpj (e) where pjRepi

in G. By Definition 7.4(b), j = max{k | k < i and e is in WRITESETpk
}.

Obviously j = max{k | k ≤ i−1 and e is in WRITESETpk
}, and so si−1(e) =

wpj (e) by construction of si−1.
To prove that σpi transforms si−1 into si, consider e in WRITESETpi . From

the construction of si, si(e) = wpi(e) because the maximum possible value of
k satisfying k ≤ i is k = i. For e not in WRITESETpi , {k | k ≤ i and e is
in WRITESETpk

} = {k | k ≤ i − 1 and e is in WRITESETpk
}, so si(e) and

si−j(e) both equal wpl
(e) for the same value of l.

(b) The result of the serial run is the constructed sn. Let t be the final state of
the datatrace. For the entity e, the ordering of nodes of the writers chain for e
conforms to the serialization order because of Definition 7.4(b). Let chainend
(G, e) = pj . Then j = max{k | k ≤ i and e is in WRITESETpk

} and
sn(e) = wpj (e) by construction of sn. Thus t(e) = sn(e). �

We now characterize the serializable traces. First, given an acyclic graph, a
topological sort of the graph is an ordering of the nodes p0, . . . , pn such that
(pi, pj) an edge implies i < j. Note that an acyclic graph may have more than
one topological sort. We now show that if the augmented version graph of a
trace is acyclic, then any topological sort of the augmented version graph is a
serialization of the trace.

LEMMA 7.6. Let (E, V ) be a database and let (G, σ, s) be a datatrace. Sup-
pose the nodes of aug(G) can be ordered p0, . . . , pn so that (pi, pj) an edge of
aug(G) implies i < j. Then this order is a serialization of the trace.

Proof. To see that p0 = I , observe that every transaction node of G has an
entering edge, and so cannot be the first node in the linear sequence. Thus,
Definition 7.4(a) is satisfied.

Now assume that piRepj but that the equation in Definition 7.4(b) fails be-
cause of a k such that i < k < j and e is in WRITESETpk

. Nodes pk and
pi are both on the chain for e (Definition 5.1(e)). Each step in the chain must
by hypothesis have a larger subscript so there must be a k′ such that piWepk′

and k′ ≤ k. (Node pk′ is the next node on the chain after pi and cannot come
after pk.) But piRepj and piWepk′ implies pjBepk′ contrary to k′ ≤ k < j
and the hypothesis. Thus k cannot exist and j must satisfy the condition of
Definition 7.4. Order p0, . . . , pn is therefore a serialization. �
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We next prove a converse to Lemma 7.6. It says that running transactions
serially imposes an order on the nodes of the augmented version graph, an
order which agrees with the direction of the edges of the graph.

LEMMA 7.7. Let (G, σ, s) be a datatrace serialized by ordering p0, . . . , pn of
the nodes of G. Then (pi, pj) an edge of aug(G) implies i < j.

Proof. If piRepj , the equation of Definition 7.4 requires i < j. If piWepj ,
then also piRepj (Definition 5.1(d)) and again i < j.

If piBepj , this means there is a pk such that pkWepj and pkRepi. We have
already shown this implies k < j and k < i. If j < i, then

k �= max{l | l < i and e is in WRITESETpl
}

because of the possibility l = j. This violates Definition 7.4(b) and j < i has
led to a contradiction. Therefore j > i and the lemma is proved. �

THEOREM 7.8. A datatrace (G, σ, s) is serializable if and only if aug(G) is
acyclic.

Proof. This follows from Lemmas 7.6 and 7.7. �

Theorem 7.8 is the expression in our model of the well-known result from [5]
that a schedule is serializable if and only if the constructed dependency relation
is acyclic.

8. Main Results

We now present two “if and only if” theorems to support our claims that
serializability is equivalent to preserving consistency. The first addresses the
issue of preserving consistency of the final database. By assumption, the con-
currency control knows G and does not know V , C, σ, or s. The theorem
says that consistency of the final database is guaranteed to be preserved if aug-
mented Gw is acyclic, and consistency can be violated if it is not.

THEOREM 8.1. For all entity sets E and all version graphs G on E, the aug-
mented writers version graph is acyclic if and only if, for all sets of values V ,
all consistency criteria C on (E, V ) and all datatraces (G, σ, s) such that s is
in C and each σ(p) is valid, the final database state is in C.

THEOREM 8.2. For all entity sets E and all version graphs G on E and all
transaction nodes i of G, the augmented ivg of i is acyclic if and only if, for
all sets of values V , all consistency criteria C on (E, V ), and all datatraces
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(G, σ, s) such that s is in C and each σ(p) is valid, σ(i) is matched to some
database state in C.

These theorems are consequences of Theorems 9.1 and 10.1, proven in the
next two sections.

Since serializability has been equated with acyclic version graphs by the
results of the preceding section, Theorems 8.1 and 8.2 say that serializability
is equivalent to preserving consistency.

9. Assuring Consistency

We are now prepared to give sufficient conditions for a concurrency con-
trol to maintain consistency. Specifically, we combine the “only if” parts of
Theorems 8.1 and 8.2 into a single theorem. For readability, the conjunction
of the two “only if” parts is expressed in a logically equivalent form with the
universal quantifiers moved to the front.

THEOREM 9.1. Let (E, V ) be a database, C a consistency criterion for the
database, and (G, σ, s) a datatrace such that s is in C and transaction effect
σ(p) is valid for each transaction node p of G. If the augmented ivg for a
given transaction node p is acyclic, then σ(p) is matched to some database
state in C. If the augmented writers version graph for G is acyclic, then the
final database state for the trace is in C.

Proof. Let G′ be ivg(G, p) for a given transaction node p, and let σ′ be the
restriction of σ to the nodes of G′. Then from Lemma 7.3, (G′, σ′, s) is a
datatrace. If aug(G′) is acyclic, (G′, σ′, s) is serializable by Theorem 7.8 and
σ(p) is matched to a database state in a serial run (Theorem 7.5(a)). Since
the transaction effects are valid, Theorem 4.5 says the state in the serial run is
consistent.

Now let G′ be the writers version graph and σ′ again be the restriction of σ.
Again (G′, σ′, s) is a trace and an acyclic aug(G′) implies that (G′, σ′, s) is
serializable. Since G′ contains all the writers from G, the final database state of
(G′, σ′, s) is identical to the final database state for (G, σ, s) (from Lemma 6.3
and Definition 7.2). Since (G′, σ′, s) is serializable, Theorem 7.5 says that the
final state of the datatrace is identical to the result of a serial run. Theorem 4.5
implies that the result of a serial run is consistent. �

COROLLARY 9.2. Given a database consistency criterion and datatrace as
in the statement of Theorem 9.1, the σ(p) are matched to consistent database
states and the final database state is consistent if the augmented graph for
version graph G is acyclic.
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Proof. The augmented individual version graphs and the augmented writers
version graph are all subgraphs of augmented G and inherit the acyclic prop-
erty from G. �

Thus serializability of a trace is sufficient to ensure that the final database
state is consistent and each transaction has seen a consistent database. The
implication for concurrency control is the following:

COROLLARY 9.3. A concurrency control starting with a consistent database
state and running valid transactions will maintain database consistency if the
overall effect of the granted requests is the same as if the transactions were run
serially.

Proof. Lemma 7.6 tells us that the serial run does produce an acyclic aug-
mented version graph and the theorem applies. �

We note that these results can be applied to concurrency control design with-
out any special knowledge about the consistency criterion. By keeping a record
of which transactions supply information read by other transactions and pre-
venting cycles in the augmented version graph, the concurrency control is as-
sured that, starting with a consistent database state, a set of valid transactions
will receive and produce a consistent database state.

As an example, consider Fig. 5.1. First we check if the transactions pro-
duce a consistent final database state. The augmented writers version graph is
shown in Fig. 5.2(e). The graph is acyclic and the one node order satisfying
Lemma 6.5 is I , b, a. Thus if the initial database state is consistent and transac-
tions a and b are valid, the final database state is the one obtainable by running
first transaction b to completion and then transaction a. This same order says
that transactions b and a are also matched to consistent databases. The general
principle is:

COROLLARY 9.4. Under the conditions of Theorem 9.1, if the augmented
writers version graph is acyclic, then each writing transaction is matched to a
consistent database state and the final database state is consistent.

Proof. The augmented individual version graph for each writing transaction is
a subgraph of the augmented writers version graph and must also be acyclic.
The conclusion is then immediate from the theorem. �

There remains transaction c which only read and did not write during its ex-
ecution. The augmented individual version graph for c is shown in Fig. 5.2(d)
and is acyclic. The one order satisfying Lemma 6.5 is I , a, c and transaction c
is matched to the result of applying transaction a to the initial database.
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Now look at the augmented version graph itself. It is shown in Fig. 5.2(c)
and does have a cycle, so the graph is not part of a serializable trace. The
conditions of Corollaries 9.2 and 9.3 are violated, yet each transaction was
given a consistent database state and the final database state was consistent.

The loophole is that read-only transactions need not be checked in determin-
ing the consistency of the final database state, and certain “relativity effects”
can occur. From the relative viewpoint of transaction c, the database appeared
to be the result of applying transaction a to the initial database state. From
the relative viewpoint of the final database state, transaction a was run after
transaction b.

10. The Converse Result

We are now prepared to address the “if” parts of Theorems 8.1 and 8.2. We
actually prove a stronger result. The theorems of Sect. 8 require that, given
entities and a cyclic augmented version graph G, there exist some value set,
consistency criterion, initial database state and datatrace for G whereby there
is an inconsistency. We show here that, in fact, the values, criterion and initial
database can be constructed before G is given. This implies that, even if the
consistency criterion is announced in advance and the designer is permitted
to tailor the control to the criterion, serializability is still necessary for certain
criteria.

We also strengthen the theorems by showing that one construction works for
both Theorems 8.1 and 8.2. We thus get the following strengthened converse
to Theorem 9.1:

THEOREM 10.1. Given a set of entities E, there exist

(a) a set of values V ,

(b) a consistency criterion C for database (E, V ) and

(c) an (initial) database state s in C such that for every version graph G,
there exists a function σ mapping the transaction nodes of G into valid
transaction effects such that (G, σ, s) is a datatrace for (E, V ) and

(d) if the augmented writers version graph for G is cyclic, then the final
database state for the datatrace is not in C, and

(e) if the augmented ivg for a given transaction node p of G is cyclic, then
transaction effect σ(p) is not matched to any element in C.

Proof. Assume a set of entities E is given. We will construct V , C and s.
Construction of values V . Let V be the set of pairs (G, n) where G is a

version graph, n is a node of G, and G = ivg(G, n).
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We now define a function TE that maps a value v from V into a transaction
effect.

Construction of TE. Let v = (G, n). Define

TE(v) = (READSET, WRITESET, r, w)

as follows:

READSET = {e in E | xRen for some node x in G},
WRITESET = {e in E | xWen for some node x in G},
r(e) = (ivg(G, x), x) where xRen,

w(e) = v.

For convenience, we write TE(G, n) as an abbreviation for TE((G, n)).
Construction of initial database state s0. Let s0 be the constant mapping

of E into the pair (G0, I) where G0 is the version graph consisting of a single
node I and no edges.

Construction of consistency criterion C. s is in C if and only if s = s0 or
there is a sequence of values

(G1, n1), . . . , (Gk, nk)

such that TE(G1, n1), . . . , TE(Gk, nk) is a serial run on s0 resulting in s.

LEMMA 10.2. For all v in V , transaction effect TE(v) is valid.

Proof. If TE(v) is matched to state s which is in C because of sequence of
values v1, . . . , vk, then the result of transforming s by TE(v) is in C because
this state is the result of serial run TE(v1), . . . , TE TE(vk), TE(v). �

Continuing the proof of Theorem 10.1, we now assume some version graph
G is given and construct σ.

Construction of datatrace from version graph G. The datatrace is (G, σ, s0)
where σ(p) for transaction node p is TE(ivg(G, p), p).

It is easily verified that the constructed (G, σ, s0) satisfies Definition 7.1,
the definition of a datatrace.

If the final database state or a state matched to an individual transaction
is consistent, then it must be producible as the result of a serial run. This
run conceivably could contain effects not part of (G, σ, s0) and conceivably
could contain part of this trace more than once or not at all. The object of
the subsequent lemmas is to show that, in all runs, the effects of producer
nodes from the constructed datatrace must appear exactly once. Furthermore,
their order in the run must agree with edges in the augmented version graph.
Therefore the existence of a run will imply no cycles in the graph.



Consistency and Serializability 119

The next lemma says that transaction effects preserve the ivg’s of nodes in
the values read. Thus the information read is not destroyed by a write opera-
tion, and in effect the transactions only append information to an entity.

LEMMA 10.3. Let database state sl be matched to transaction effect t =
TE(G, n) and let s2 be the result of transforming s1 by t. For some entity e, let
s1(e) = (G1, n1) and s2(e) = (G2, n2). Let p be any node of G. Then p is a
node of G2 and ivg(G1, p) = ivg(G2, p).

Proof. Case 1. e is not in WRITESET of t. By Definition 4.2 of “transforms,”
s2(e) = s1(e), and the result is immediate.

Case 2. e is in WRITESET of t. By Definition 4.2 of “transforms” and
construction of TE, s2(e) = (G, n), so G2 = G and n2 = n. From the
construction of function TE, the value of e read is (ivg(G, x), x) where xRen
in G. By Definition 4.2 of “matched to,” the value of e read equals s1(e).
Hence

s1(e) = (G1, n1) = (ivg(G, x), x).

Thus n1 = x and G1 = ivg(G, x). Since G = G2,

G1 = ivg(G2, n1).

Since G1 is a subgraph of G2, p is a node of G2 and it remains to be shown
that ivg(G1, p) = ivg(G2, p). Substituting for G1, this is equivalent to

ivg(ivg(G2, n1), p) = ivg(G2, p),

which says we must show that p has the same set of ancestors in both ivg(G2,
n1) and G2. Obviously ancestors of p in subgraph ivg(G2, n1) are in G2, so
we must show ancestors of p in G2 are in ivg(G2, n1).

By hypothesis, p is in G1 which is ivg(G2, n1), so p is an ancestor of n1 in
G2. This implies all ancestors of p in G2 are also ancestors of n1 and so belong
to ivg(G2, n1). �

The next lemma says that a noninitial value read during a serial run must
correspond to an earlier transaction in the run.

LEMMA 10.4. Suppose a consistent database state results from s0 by a serial
run of transaction effects

TE(G1, n1), . . . , TE(Gk, nk).

Suppose for some (Gj , nj) in the run, there is a transaction node x of Gj

and an entity e such that xRenj in Gj . Then there exists an i < j such that
(Gi, ni) = (ivg(Gj , x), x).
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Proof. Let s1, . . . , sk be the sequence of states specified in Definition 4.4.
Since sj−1 is matched to TE(Gj , nj), the definition of TE implies that
sj−1(e) = (ivg(Gj , x), x). Since sj−1(e) does not equal s0(e), one of the
transactions must have written sj1(e). The only transaction effect that writes
this value is TE(ivg(Gj , x), x). �

Next, the preceding lemma is generalized to show that every transaction
node in a graph written during a serial run must correspond to an earlier trans-
action in the serial run.

LEMMA 10.5. Suppose a consistent database state results from s0 by a serial
run of transaction effects

TE(G1, n1), . . . , TE(Gk, nk).

Suppose for some (Gj , nj) in the run, x is a transaction node of Gj . Then
there exists an i ≤ j such that (Gi, ni) = (ivg(Gj , x), x).

Proof. Because x is in ivg(Gj , nj), there is a path from x to nj in Gj . Let
the nodes on this path be x1 = x, . . . , xm = nj such that for all l satisfying
1 ≤ l < m there is an entity e such that xlRexl+1. The lemma is true if
x = nj . Assume the lemma is true for x related to nj by a path of length m or
less, and consider x related to nj by a path of length m + 1. Then there is a y
such that xRey in Gj and a path of length m from y to nj . From the induction
hypothesis, there exists q ≤ j such that (Gq, nq) = (ivg(Gj, y), y). Since
xRey in Gj , we also have xRey in Gq. Thus from Lemma 10.4 there exists
i < q such that (Gi, ni) = (ivg(Gq, x), x). From Lemma 6.6, ivg(Gq, x) =
ivg(Gj , x). Thus (Gi, ni) = (ivg(Gj , x), x). �

COROLLARY 10.6. If s is a consistent state, s(e) = (G, n) for some entity e,
and x is a transaction node of G, then every serial run of transaction effects
that results in s includes TE(ivg(G, x), x).

Proof. In a serial run that results in s, the last transaction effect whose
WRITESET contains e must be TE(G, n). Apply Lemma 10.5 with (Gj , nj) =
(G, n). �

Corollary 10.6 has established that for each node of the final value of en-
tity e, a transaction effect occurs in the serial run. Next we show that members
of the writers chain for an entity e actually occur in their chain order.

LEMMA 10.7. Let s be a consistent database state resulting from s0 by a
serial run of transaction effects, let e be an entity, and let TE(G1, n1), . . . ,
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TE(Gk, nk) be the subsequence of the transaction effects which have e in
WRITESET. Let s(e) = (G, n).

Then n1, . . . , nk is the sequence of transaction nodes on the writers chain
for e in G, and for 1 ≤ i ≤ k

Gi = ivg(G, ni).

Proof. For 1 ≤ j ≤ k, let Pj be the following predicate:

for 1 ≤ i ≤ j, ni is the ith transaction node on the chain for
e in Gj and Gi = ivg(Gj , ni).

We want to prove Pj by induction on j.
Consider j = 1. The only permitted value of i is i = 1. Because (G1, n1) is

in the constructed set of values V , n1 is in G1 and G1 = ivg(G1, n1). Thus to
prove P1, we need only show that n1 is the first transaction node on the writers
chain for e in G1. We know n1 is on the writers chain because e is in the
WRITESET for TE(G1, n1). Let x be the node such that xWen1 (and hence
also xRen1) in Gj . Since xRenj , the value of entity e read is (ivg(G1, x), x)
by construction of TE. This value equals the value of e in the database state
transformed by the transaction effect. Since the transaction effect is the first
to write entity e, the value read is the value from the initial database state s0,
namely (G0, I). Thus x = I and so n1 is the first transaction node on the chain
for e in G1.

Now assume that Pj is true for some j < k, and consider Pj+1.
Case 1. i < j + 1. Transaction effect TE(Gj+1, nj+1) reads the value

(Gj , nj) that was written by the preceding writer of entity e, and writes the
value (Gj+1, nj+1). Since Pj is assumed to be true, ni is the ith transaction
node on the chain for e in Gj and Gi = ivg(Gj , ni). From Lemma 10.3, ni is
a node of Gj+1 and ivg(Gj , ni) = ivg(Gj+1, ni).

From Lemma 6.3, the ith transaction node (namely ni) on the chain for e in
Gj is also the ith transaction node in ivg(Gj , ni). Thus ni is the ith transaction
node in the identical graph ivg(Gj+1, ni) and (from Lemma 6.3 again) is the
ith transaction node in Gj+1.

Case 2. i = j + 1. Because (Gj+1, nj+1) is in the constructed set of values
V , nj+1 is in Gj+1 and Gj+1 = ivg(Gj+1, nj+1). We now show that nj+1 is
the (j+1)st transaction node on the writers chain for e in Gj+1. We know nj+1

is on the writers chain because e is in the WRITESET for TE(Gj+1, nj+1). Let
x be the node such that xWenj+1 (and hence also xRenj+1) in Gj+1. Since
xRenj+1, the value of entity e read is (ivg(Gj+1, x), x) by construction of TE.
This value equals the value of e in the database state transformed by the trans-
action effect, namely the value (Gj , nj). Therefore x = nj and njWenj+1

(definition of x). From case 1, letting i = j, node nj is the jth transaction



122

node on the chain in Gj+1. Since njWenj+1 is in Gj+1, node nj+1 is the
(j + 1)st transaction node on the chain in Gj+1.

The proof of Pj is now completed. To prove the lemma, observe that since
the last value written on e is (Gk, nk), s(e) = (Gk, nk), and hence Gk = G
and nk = n. With these substitutions, Pk implies Gi = ivg(G, ni).

Finally, Corollary 10.6 implies that for every transaction node x on the writ-
ers chain for e in G, the serial run of transaction effects includes TE(ivg(G, x),
x). Since every such x has e in WRITESET, the transaction effect appears in
the subsequence, and x is one of the ni. Thus ni · · ·nk is the entire writers
chain. �

COROLLARY 10.8. Let σ = TE(G, n) be a transaction effect in a serial run
on s0. Then if WRITESET (σ) is nonnull, TE(G, n) occurs only once in the
serial run.

Proof. Let e be an entity in WRITESET of σ. Let s be the result of the run.
From Lemma 10.7, the subsequence of transaction effects from the serial run
which have e in WRITESET are distinguished by their position on the chain
for e in s(e). �

We now complete the proof of Theorem 10.1.

Proof of Theorem 10.1(d). Assume the final database s for the constructed
datatrace (G, σ, so) is consistent and results from the serial run TE(G1, n1),
. . . , TE(Gk, nk) applied to so. Let Gw be the writers version graph for G
and let x be any transaction node of Gw. Node x writes some entity e (Lem-
ma 6.5(b)) and is a member of the writers chain for e in Gw. Value s(e) is
the output of σ (chainend (G, e)) which is constructed to be (ivg(G, chainend
(G, e)), chainend (G, e)). Let H = ivg(G, chainend (G, e)). Thus s(e) =
(H , chainend (G, e)). Since x is on the chain for e in G, x is a transaction
node of H . From Corollary 10.6, the serial run of transaction effects includes
TE(ivg(H, x), x). From Lemma 6.6, ivg(H, x) = ivg(G, x). Thus the serial
run includes TE(ivg(G, x), x), which is the constructed σ(x). Since this trans-
action effect has a nonnull WRITESET, Corollary 10.8 applies and σ(x) only
occurs once in the serial run.

We now know that each transaction node x of Gw corresponds to a unique
transaction effect σ(x) in the serial run. Define the serial order of the transac-
tion nodes of Gw to be the order in which the corresponding transaction effects
occur in the serial run. The serial order extends to all nodes of Gw by putting
node I first. We want to show that the edges in aug(Gw) always go from an
earlier node in the serial order to a later node. This will imply that aug(Gw) is
acyclic.
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Suppose xRey in G. Node y must be a transaction node. Assume x is also
a transaction node. The corresponding transaction effects in the run are σ(x)
and σ(y). Event σ(y) by construction reads (ivg(ivg(G, y), x), x) from entity
e because xRey in ivg(G, y). By Lemma 6.6, this value read is (ivg(G, x), x).
This value can only have been written by σ(x), so the one occurrence of σ(x)
in the run must precede the occurrence of σ(y). In the case where x = I , node
x is defined to precede y in the serial order.

Suppose xWey. Then also xRey (Definition 5.1(d)), and again x precedes
y in the serial order.

Suppose xBey. Then there is a z such that zRex and zWey. The value of e
produced by z is the value read and overwritten by σ(y). This value cannot be
the value of entity e after σ(y) occurs in the serial run. Since this value is the
value read by σ(x), σ(x) must precede σ(y) in the serial run. �

Proof of Theorem 10.1(e). Assume that transaction effect σ(p) is matched to a
consistent database state, say s. Then s results from a serial run TE(G1, n1),
. . . , TE(Gk, nk) applied to so. Without loss of generality, it can be assumed
that each transaction effect in the serial run has a nonnull WRITESET, since
a transaction with a null WRITESET can be deleted, yielding a shorter serial
run that also results in state s.

Since s is matched to σ(p) we can append σ(p) to the above serial run, and
obtain a longer serial run,

TE(G1, n1), . . . , TE(Gk, nk), TE(ivg(G, p), p).

The remainder of the proof refers to this longer serial run.
From Lemma 10.5, since TE(ivg(G, p), p) is a member of the run, then for

all transaction nodes x in ivg(G, p), the serial run includes TE(ivg(ivg(G, p),
x), x). From Lemma 6.6 ivg(ivg(G, p), x) = ivg(G, x), so the serial run in-
cludes TE(ivg(G, x), x) which is the constructed σ(x).

From Lemma 6.5(a), every node in ivg(G, p), except possibly p, is a pro-
ducer node and, from Corollary 10.8, occurs only once in the serial run. If p is
not a producer node, then σ(p) has a null WRITESET, and so σ(p) occurs only
once in the serial run (since the original serial run resulting in s was assumed
to have no read-only transactions).

We now know that each transaction node x of ivg(G, p) corresponds to a
unique transaction effect σ(x) in the serial run. As in the proof of Theo-
rem 10.1(d), we can define the serial order of these nodes, and extend the order
to all nodes of ivg(G, p) by putting node I first. In a manner similar to that in
the proof of Theorem 10.1(d), it can be shown that the edges of aug(ivg(G, p))
always go from an earlier node in the serial order to a later node. This implies
that aug(ivg(G, p)) is acyclic. �
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Discussion of proof techniques. The version graphs in the proof can be
thought of as “generalized Herbrand values.” Each entity value incorporates
the total historic record of the flow of information used to create the value.
The usual Herbrand technique [12] involving strings as values does not work
here because the strings can only be defined if the values are developed in a
sequential manner (each string includes as substrings the relevant previously
computed values). However, our model does not have sequential evaluations
and, when a version graph (not augmented) is cyclic, there is no sequence of
operations which represents the flow.

Theorem 10.1 shows the necessity of serializability for both the consistency
of the final state (part (d)) and the consistency of the view seen by individual
transactions (part (e)). The complexity of the proof is due to part (e). If The-
orem 10.1 were stated without part (e), a much simpler proof would suffice.
Instead of writing version graphs, the transactions would need to write only
enough information so that the edges of the version graph could be deduced
from the final database state. The consistency criterion would be that the aug-
mented deduced graph be acyclic. For example, a transaction could append to
entities written a set of pairs each of which is the name of an entity read and
the name of the producer node that created the value read.

11. The Read-Before-Write Assumption

As discussed in Sect. 4, Definition 4.1(b) embodies Assumption A6 that
a transaction reads an entity before it writes. Here we want to consider the
possibility that a transaction could instruct the concurrency control to write an
entity without having read the entity. Will Theorem 10.1 generalize to such
situations? We show here by example that the answer is “no.”

Consider three transactions P , Q, and R which are run concurrently and
access the database with the following schedule of events:

P Writes α (and terminates)

Q Reads α

R Reads α

Q Writes β

Q Writes α (and terminates)

R Reads β

R Writes γ (and terminates).

The “generalized augmented version graph” showing the information flow is
shown in Fig. 5.3. It is no longer appropriate to show We edges because writes
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Figure 5.3.

may not replace a specified value. Instead the entities written are indicated
beside each transaction node. The augmented edge from R to Q was added
because the value of α read by R was read and then overwritten by Q.

As indicated by the cycle in the graph, the schedule of events is not serial-
izable. Entity β was written by Q and then read by R so Q must be scheduled
before R. On the other hand, the value of α written by P was read by R before
being overwritten by Q so R must be scheduled before Q.

If Theorem 10.1 were generalized, an interpretation would exist such that R
was not matched to any consistent database state and the final database state
was not consistent. However, this cannot be true since R sees the database
state obtained by running the sequence

P, Q, P

and the final database is that obtained by running the sequence

P, Q, P, R.

REMARK. In going from a schedule to a “generalized version graph,” informa-
tion about the final database state can be lost as the chainend concept depends
on the read-before-write assumption, and the information flow may not show
which value was written last. Thus the graph may be inadequate for further
study of the write-without-read case.

REMARK. It should be remembered that the counterexample is for the con-
sistency concept given in Definition 3.2. It is possible that some intuitive but
stronger criteria can be found which do imply serialization. Producing the ex-
ample result of P, Q, P, R is intuitively unsatisfactory when transaction P has
in fact been initiated only once by a system user.
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REMARK. Another example is provided by the following schedule, where all
reads of a transaction occur in a single combined access, and all writes of a
transaction occur in a single combined access:

S Writes α (and terminates)

R Reads α

P Writes α and β (and terminates)

Q Reads β and γ

Q Writes δ (and terminates)

R Writes γ (and terminates).

The final database state is consistent because it can be obtained by running the
sequence P , Q, S, R, P . Any serial schedule producing the final database state
must repeat a transaction.

12. Time Assumptions

By looking at datatraces in terms of information flow instead of schedules,
certain timing information is lost. For example, the version graph makes no
distinction between the following two schedules:

P READS α P READS α
P READS β P WRITES α
P WRITES α P READS β

The second schedule gives the illusion that the value written into entity α is
unrelated to the value read from β, since α was written before the value of
β was known. However, it must be remembered that the schedule is not a
program, and the transaction might have produced a different schedule had the
data read from the database been different.

To be more specific, suppose P read the value 1 from α, wrote the value
2 into α, then read the value 2 from β. Is it a coincidence that the transac-
tion leaves α and β with the same value? It would be if the program for the
transaction were the following:

I ← ENTITY (α)

ENTITY (α)← I + 1

J ← ENTITY (β).

If, however, the program were
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I ← ENTITY (α)

ENTITY (α)← I + 1

J ← ENTITY (β)

If J �= I + 1 THEN ENTITY (β)← I + 1,

then the transaction would always produce a database state with ENTITY
(α) = ENTITY(β). The two programs often produce different results, but
they have the same effect when presented with a database state with value 1
for α and 2 for β.

The point is that the values read and the values written could have any re-
lationship, regardless of the order in which the reads and writes are performed
in the particular running of the transaction. Thus it is reasonable to work with
a model (the datatrace in our case) where the ordering is not considered.

Some authors have worked with models in which transactions are taken to
be straight-line programs accessing a fixed sequence of entities. In this case,
the order of access operations influences consistency.

For example, consider the following sequences of actions by two consis-
tency preserving straight-line programs P and Q:

P reads α Q reads β
P writes α Q writes β
P reads β Q reads α

These programs can be run concurrently as follows so that the information
flow is that shown in Fig. 5.4(a):

P reads α
Q reads β
P writes α
Q writes β
P reads β
Q reads α

The version graph and its augmented graph are cyclic. The run is not serializ-
able: P must precede Q because P reads the value of α written by Q, and Q
must precede P because of β.

However, it programs P and Q are modified to end after the final write and to
omit subsequent reads, the programs produce the same effect on the database
as the original. The modified programs therefore also preserve consistency
when run alone. Concurrent running of the modified programs produces:

P reads α
Q reads β
P writes α
Q writes β
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Figure 5.4.

which gives the information flow shown in the version graph of Fig. 5.4(b)
(which is Fig. 5.4(a) with the two read operations deleted). Augmented 5.4(b)
is acyclic (hence serializable) and produces a consistent final database state.
But the two sequences of operations produce the same database state, and the
final database state is the same for both 5.4(a) and 5.4(b). The final database
state in 5.4(a) is consistent in spite of not being serializable. Thus the “if” part
of Theorem 8.1 fails for straight-line programs.

Understanding consistency for the straight-line case involves the concept of
a “trailing read.” We refer to READ operations after the last WRITE operation
performed by a process as trailing READs. These reads are the ones that do not
affect the values written and can be deleted from the straight-line transactions
without affecting their validity.

The following can be proven for the straight-line case:
Modify the version graph by deleting edges corresponding to trailing

READs. If the transactions are valid, if the original database is consistent,
and if the augmented version graph is acyclic, then the final database state
is consistent. If the augmented version graph is cyclic, there exist a consis-
tency criterion, a set of valid straight-line transactions, and an initial consistent
database state such that the given history transforms the initial state into an
inconsistent state.

Thus the straight-line case provides a loophole for trailing reads.
The problem of describing the consistency of data read is more complex.

Consider the following three straight-line programs P , Q, and R:

P reads α Q reads β R reads α
P reads γ Q writes β R reads β
P writes α Q reads γ
P reads β Q writes γ
P reads δ
P writes δ
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Figure 5.5. Figure 5.6.

These programs can be run concurrently as follows, so that the information
flow is that shown in the augmented version graph of Fig. 5.5:

P reads α
P reads γ
P wries α
Q reads β
Q writes β
P reads β
R reads α
R reads β
Q reads γ
Q writes γ
P reads δ
P writes δ

In spite of the cycle in the ivg of transaction R, R does see consistent data as
demonstrated by running the transactions in order P , Q, R. This serial sched-
ule produces a different version graph from Fig. 5.5, but R gets the same in-
formation in both cases. This example shows that the “if” part of Theorem 8.2
fails for straight-line programs.

The information from Fig. 5.5 relevant to the consistency of data read by
transaction R is shown in Fig. 5.6. A number of edges have been deleted
because they did not impact on the data seen by R. For example, the edge
from Q to P labelled Rβ was deleted because the value read does not affect
any entity value read by R. A new kind of edge labelled γ between P and Q
was added because transaction R read a value of α reflecting the fact that P



130

read the original version of γ. Since the straight-line program for Q requires
that Q write γ, from R’s viewpoint P must precede Q. The serialization P , Q,
R is a topological sort of Fig. 5.6.

13. Conclusion

We believe the model used above is the correct one for general purpose
concurrency controls. “General purpose” means the control must maintain
consistency no matter what the criterion happens to be and regardless of the
structure (straight-line or otherwise) used to program the transactions. The
only imposition on the user is that he or she start with consistent data and
only run transactions which preserve consistency if run alone. For consistency,
the concurrency control need remember no information other than the version
graph. The control must operate to keep the augmented version graph acyclic,
for any cyclic augmented (writers) version graph is associated with an instance
of inconsistency.

There is also danger in allowing a temporary cyclic flow of information,
even when the control plans to break the cycle later with a rollback. The danger
is that any cyclic augmented individual version graph is associated with an
inconsistency and the individual transaction may be processing garbage.

There is a loophole for read-only transactions, although it is probably not
worth exploiting in practice. Also, such exploitation may be considered unsat-
isfactory if one takes a stronger view of consistency than our admittedly weak
mathematical definition. The definition is good for inferring things that should
not be allowed (e.g. cyclic information flow), but additional criteria may be
appropriate in deciding what should be allowed.

The general conclusion is that general purpose concurrency controls should
be designed so that the augmented version graph is acyclic. Except for the
minor read-only loophole, this is the only way to maintain consistency.
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Abstract We describe a formalism for representing address sets, and for representing mes-
sage patterns for multiprocessor interconnection networks. In this formalism
a descriptor called a mask is used to represent a set of equal length bit vec-
tors. Such a set can be interpreted as a set of processor addresses, or as a set
of messages. We focus on the implications that this formalism has for routing
message patterns on bundled omega networks. Specifically, we show that when
a message pattern is represented in this formalism, a number of properties of
the message pattern can be determined in polynomial time. This includes such
things as determining whether the message pattern contains congestion. In ad-
dition, we show that the formalism defines a subclass of message patterns for
which the minimum round partitioning problem, which in general is NP-hard,
is solvable in linear time. We show this result to be true for both broadcast and

∗ An abbreviated version of this paper appears in Proc. of the 1988 Symposium on the Frontiers of Mas-
sively Parallel Computation, George Mason Univ., Fairfax, Virginia.
† Research supported in part by NSF Grant DCR 86-03184.
‡ Research supported in part by NSF Grants DCR 86-03184 and CCR88-03278.

S.S. Ravi, S.K. Shukla (eds.), Fundamental Problems in Computing,
c© Springer Science + Business Media B.V. 2009



134

non-broadcast bundled omega networks. This generalizes a known result for bit-
permute-complement permutations to a more general class of message patterns,
and to a larger class of networks.

Received July 28, 1989; revised February 8, 1990; accepted April 15, 1990.

1. Introduction

Consider an SIMD multiprocessor that consists of a large number N = 2m

of processing elements each having an m bit binary address, an interconnec-
tion network through which the processing elements communicate, and a host
computer that broadcasts instructions to the processing elements. In addition,
suppose that in such a multiprocessor some message is to be sent from one
processing element to another. In such a case the message can be represented
by an (s, d)-pair, where s is the binary address of the source processor and d
is the binary address of the destination processor. More generally, a message
pattern, which is a set of messages, can be represented by a set of (s, d)-pairs,
where each (s, d)-pair corresponds to one message. For example, in Fig. 6.1
we show a message pattern consisting of four (s, d)-pairs.

0000, 0101
0010, 0111
0101, 1100
0111, 1110

Figure 6.1. A message pattern consisting of four (s, d)-pairs

In this paper we discuss a formalism for representing and transmitting mes-
sage patterns in multiprocessors such as the one described above. In this
formalism a message pattern is represented by a descriptor called an (s, d)-
mask. For example, if x0 and x1 are Boolean variables, then the (s, d)-mask
(0x0x1x0, x01x1x0) can be used to represent the message pattern in Fig. 6.1.
Similarly, the message pattern in Fig. 6.2 can be represented by the (s, d)-mask
(0x011, 11x0x1). The basic idea is that each assignment to the variables in the
(s, d)-mask specifies one (s, d)-pair in the corresponding message pattern.

The (s, d)-mask formalism is a generalization of a method commonly used
to describe bit-permute-complement permutations [15]. The main difference,
is that the class of bit-permute-complement permutations is more restricted
than the class of message patterns defined by the (s, d)-mask formalism. More
specifically, bit-permute-complement permutations are restricted in that every
processor must send exactly one message and every processor must receive
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0011, 1100
0011, 1101
0111, 1110
0111, 1111

Figure 6.2. The message pattern corresponding to the (s, d)-mask (0x011, 11x0x1)

exactly one message. In contrast, the (s, d)-mask formalism, in addition to
bit-permute-complement permutations, defines a number of non-permutation
type message patterns. This includes message patterns that involve broad-
casts, multiple destination requests, and message patterns that involve proper
subsets of the processing elements. For example, consider the (s, d)-mask
(0x011, 11x0x1) and its corresponding message pattern shown in Fig. 6.2. In
this message pattern the processors with addresses 0011 and 0111 are each
broadcasting a message to two different processors. Similarly, the message
pattern corresponding to the (s, d)-mask (00x0x1, 11x10) contains multiple
messages with the same destination.

Using (s, d)-masks to describe message patterns has a number of advan-
tages. First, since a set of (s, d)-pairs can be exponentially large compared
with a corresponding (s, d)-mask, simply storing the message pattern as an
(s, d)-mask requires far less space than storing it as a list of (s, d)-pairs. Sec-
ond, the host computer can direct the processing elements to implement a va-
riety of communication patterns simply by broadcasting a single (s, d)-mask.
Third, if message patterns are represented by (s, d)-masks then, as we shall
show in Sect. 6, a variety of efficient preprocessing algorithms can be used
by the host computer or by a preprocessor when preparing message patterns
for routing. These algorithms determine such things as whether a given mes-
sage pattern, specified as an (s, d)-mask, contains communication conflicts.
Finally, one consequence of the conciseness of the formalism, is that it de-
fines a subclass of the class of all possible message patterns. More formally,
if F = {S | S is a message pattern that can be represented by a single (s, d)-
mask} and A = {S | S is a message pattern} then it follows that F ⊂ A. This
can be seen by noting that if an (s, d)-mask M contains r variables then the
corresponding message pattern contains 2r (s, d)-pairs. Hence, any message
pattern containing a number of (s, d)-pairs that is not a power of 2 cannot be
represented by a single (s, d)-mask. It can also be proven by a counting argu-
ment showing that the number of message patterns is larger than the number
of (s, d)-masks [3].

The reason this fact is useful is because problems that are intractable for
arbitrary message patterns can be considered on this restricted subclass. It
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is hoped that when restricted to this subclass, these problems will be effi-
ciently solvable. This approach appears promising in light of the fact that many
routing algorithms have already been developed for the class of bit-permute-
complement permutations. These algorithms make use of a number of different
routing strategies and apply to a number of different networks, including delta
networks [19, 22], meshes [15], cubes [17], Benes [14, 16], omega [11, 24],
and shuffle-exchange networks [10]. Conceivably, algorithms such as these,
and other results that apply to bit-permute-complement permutations, may be
generalizable to apply to all message patterns that can be represented by (s, d)-
masks.

In this paper we exploit the above ideas in developing an efficient message
routing algorithm. Specifically, we consider a message routing technique that
we call minimum round partitioning. In this strategy a set of conflicting mes-
sages is partitioned into a minimum number of conflict-free subsets. The set
of messages is then transmitted by successively transmitting the messages in
each subset. For arbitrary message patterns it is known that minimum round
partitioning is NP-hard [2]. In light of this fact it is highly unlikely that a poly-
nomial time algorithm for the problem exists (unless P = NP). Consequently,
two approaches to the problem are appropriate. The first is to develop polyno-
mial time heuristics that have near optimal performance. Research along these
lines has been reported in [5, 7, 23]. The second is to identify subclasses of
message patterns such that the problem becomes solvable in polynomial time
when restricted to those subclasses.

In this paper we take the second approach and show that the minimum round
partitioning problem is solvable in linear time when restricted to the subclass
of message patterns that are representable by a single (s, d)-mask. We show
that this result applies to the class of bundled omega networks (these networks
are sometimes referred to as dilated omega networks and have been studied
in [12, 21]). This generalizes a result in [19] that applies only to bit-permute-
complement permutations. Finally, we consider problems that deal with de-
termining if a message pattern contains communication conflicts when that
message pattern is represented by one or more (s, d)-masks.

The rest of this paper is organized as follows. In Sect. 2 we describe the
omega network, its generalized version the bundled omega network, and a
number of their properties. In Sect. 3 we define the (s, d)-mask formalism
in detail. In Sect. 4 we define a “normal form” for masks and (s, d)-masks.
In Sect. 5 we describe how the formalism generalizes the class of bit-permute
complement permutations. In Sect. 6 we consider a number of problems that
deal with determining if a given message pattern contains conflicts or conges-
tion when the message pattern is represented by a set of (s, d)-masks. Finally,
in Sect. 7 we consider the minimum round partitioning strategy. We show that
when restricted to the subclass of message patterns that can be represented by
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a single (s, d)-mask, the problem becomes solvable in linear time for the class
of bundled omega networks.

2. The Omega Network

Following Lawrie [13], an N -input, N -output omega network (also called
an N × N omega network), where N = 2m, consists of m identical stages.
Each stage consists of a perfect shuffle wire interconnection [20] followed by
N/2 switching elements. In Fig. 6.3(a) we show an 8× 8 omega network, and
in Figs. 6.3(b)–(g) we show the possible states for each of the switches. Fig-
ure 6.3(b) shows the “straight through” state where the input signals are sent
directly to the corresponding outputs, Fig. 6.3(c) shows the “interchange” state
where the input signals are first interchanged before being sent to the outputs,
and Figs. 6.3(d)–(g) show “incomplete” states. For example, in Fig. 6.3(d) a
signal is passed from the upper input to the upper output while nothing is on
the lower input or lower output. It should be noted that the network described
here differs from the one in [13] since switches are not allowed to “broadcast”
messages. However, in Sect. 7.2 we shall consider the network when broad-
casts are allowed. In Fig. 6.3(a) we have labeled the interconnection links for
each stage, from the top down, with a log2 N bit binary address. We have num-
bered each of the stages, and we have shown two paths through the network,
one from input 000 to output 011 and the other from input 100 to output 000.

A particular path through the network can be represented by a source-des-
tination pair, abbreviated as an (s, d)-pair, where the source s = s0s1 · · ·
sm−1 is the binary address of the input at the first stage, the destination d =
d0d1 · · · dm−1 is the binary address of the output at the last stage, and m =
log2 N . Careful examination of the network shows that the path code s0s1 · · ·
sm−1d0d1 · · · dm−1 completely specifies a unique path through the network.
Specifically, if we define an m bit window Wi as the bit pattern beginning at
bit position i of the path code, we see that at stage i in the network, where 0 ≤
i ≤ m, the path that goes from input s0s1 · · · sm−1 to output d0d1 · · · dm−1

makes use of the link with address Wi = sisi+1 · · · sm−1d0d1 · · · di−1. For
example, Fig. 6.3(a) shows a path from 000 to 011. For this path W2 = 001
and at stage 2 the path makes use of the link with address 001.

The fact that a path code specifies a unique path through the network enables
communication conflicts in the network to be detected easily. Two messages
that are being transmitted through the network at the same time will conflict if
and only if they require use of a common link in the network. Hence, in light
of the window property mentioned above, two (s, d)-pairs are said to conflict
if and only if there exists an i such that the two (s, d)-pairs have the same bit
pattern on window Wi. For example, Fig. 6.3(a) shows the paths (000, 011)
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Figure 6.3. An Omega Network and possible switch states

and (100, 000). Both (s, d)-pairs have W1 = 000, and at stage 1 both pass
through the link with address 000.

The definition of the omega network can be generalized by the addition of
another parameter b called the bundle size of the network. Specifically, we
define a (b)N × (b)N omega network, where N = 2m, to have bundle size
b if each switch in the network has two bundles of inputs and two bundles
of outputs, each of size b. For example, in Fig. 6.4 we show a (3)4 × (3)4
omega network. The advantage of such a network is that message patterns
containing conflicts on a standard omega network may be conflict-free on a
bundled omega network with b > 1. In such a network, each bundle can carry
b or fewer signals into a switch. Hence, a total of at most 2b signals can be
input to a switch at any given time. Similarly, each output bundle can carry b
or fewer signals out of a switch. For each input bundle, the incoming signals
can be sent to the upper or lower output bundle. However, all the signals on
a given input bundle don’t necessarily have to go to the same output bundle.
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Figure 6.4. A (3)4×(3)4 Omega Network

Some can go to the upper output bundle, while others can go to the lower.
Similarly, two signals on different input bundles can go to the same output
bundle. The only constraint is that at most b signals can use a particular output
bundle at any given time. If more than b require use of the same output bundle,
then we say that congestion occurs.

The definition of the standard omega network is a special case of the gener-
alized definition, where b = 1. Similarly “conflict” is a special case of “con-
gestion”. Recall that two (s, d)-pairs are said to conflict at stage i in the net-
work if and only if they have the same bit pattern on window Wi. However,
when b > 1 the fact that two (s, d)-pairs have the same bit pattern on window
Wi doesn’t necessarily imply that congestion occurs. In order for congestion
to occur at stage i, at least b + 1 (s, d)-pairs must have the same bit pattern on
window Wi. For example, consider the paths (0000, 1000) and (1100, 1001)
on a (2)16× (2)16 omega network. Both (s, d)-pairs have the same bit pattern
0010 on W2 and consequently the bundle at stage 2 with address 0010 would
be full if the two paths were in use at the same time. If we now consider the
path (0100, 1010) we see that at stage 2 this also requires use of bundle 0010.
Hence, if all three paths were required to be in use at the same time, congestion
would occur. An example of a bundled omega network with b = 16 is in the
proposed G.E. Cross Omega machine [9].

Finally, define a message pattern to be a set of (s, d)-pairs. Each (s, d)-pair
in the set represents the fact that a message is to be sent from input s to output
d of the network. Define a permutation to be a message pattern where each
input of the network is the source of exactly one message, and each output is
the destination of exactly one message. Define a partial permutation to be a
message pattern where each input of the network is the source of at most one
message, and each output is the destination of at most one message.

3. Definition of a Mask Formalism

Define a mask formalism as follows. Symbols include constants and liter-
als. Constants are 0 and 1, literals include variables “x0”, “x1”, “x2”, . . .
and their complements. A literal l is said to be derived from the variable xi if
l = xi or l = xi. A mask is any finite sequence of symbols such as x010x11
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or x0x1x2. The length of a mask M is the number of symbol occurrences in
the mask. Each mask has an implicit universal quantifier to its left for each
variable that it contains, where variables are quantified over the set {0, 1}.
A mask M containing literals that are derived from r variables, denoted by
V (M) = {x0, x1, . . . , xr−1}, is said to represent the set, denoted by S(M),
of 2r addresses, each specified by one of the 2r functions mapping each vari-
able to the set {0, 1}. Each address in the set S(M) is said to be covered by
the corresponding mask M. For example, the mask M = x01x10 represents
the set of addresses S(M) = {0100, 0110, 1100, 1110}. In the case where
a mask contains no variables, such as the mask 101, then the mask represents
the set that contains only itself {101}.

Let M be a mask and f a function from the set V (M) to the set {0, 1,
x0, x0, x1, x1, . . .}. Then define the natural extension of the function f to
masks, to be a function f̂ such that if c ∈ {0, 1} then f̂(c) = c, f̂(xi) =
f(xi), f̂(xi) = f̂(xi), and if M = a0a1 · · · am−1 then f̂(M) = f̂(a0)f̂(a1) · · ·
f̂(am−1). It follows that a particular address A is in the set S(M) if and
only if there exists a function f from the set V (M) to the set {0, 1} such
that f̂(M) = A. Finally, two masks M1 and M2 are said to be disjoint if
S(M1) ∩ S(M2) = ∅.

An (s,d)-mask consists of a left hand side (LHS) and a right hand side
(RHS), where each is a mask of the same length. Examples of (s, d)-masks are
(001, 010), (1x0, 01) and (x010x1x2, x110x2x0). As with a mask, an (s, d)-
mask has an implicit universal quantifier to its left for each variable that it
contains. Hence, an (s, d)-mask is said to represent the corresponding set of
(s, d)-pairs. For example, the (s, d)-mask M = (x010, x01x1) represents the
set S(M) = {(010, 110), (010, 111), (110, 010), (110, 011)}.

In addition, we shall make use of the following notation. The cardinality
of a set S will be denoted by |S|. If S1 represents the set of all addresses
of length m, where m ≥ 1, and S2 ⊆ S1, then S2 is S1 − S2. Finally, if
I1 = {i0, i1, . . . , ik−1} is a subset of I = {0, 1, . . . , m − 1}, where i0 ≤
i1 ≤, . . . ,≤ ik−1 and M = a0a1 · · · am−1 is a mask, then the projection of
M onto I1, denoted by M(I1), is the mask ai0ai1 · · · aik−1

. For example, if
m = 7, I1 = {0, 3, 4, 6} and M = x0x0110x0x1 then M(I1) = x010x1. Note
that all of the notation for masks can be applied to (s, d)-masks in the obvious
way.

One observation is that any (s, d)-mask can, in many circumstances, be
treated just like a mask, simply by concatenating the left hand side to the right
hand side. For example, the (s, d)-mask (x01x1, x0x1x1) can be thought of as
the mask x01x1x0x1x1. The reason for doing this, is that many of the results
for masks can be extended directly to (s, d)-masks simply by taking this into
consideration.
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4. Mask Normal Form

The definition of the mask formalism has the flexibility that a number of dif-
ferent masks can represent the same set of addresses. For example, all three of
the masks x0x1x0, x0x1x0, and x1x0x1 represent the set {001, 011, 100, 110}.
Given this, define two masks to be equivalent if they represent the same set of
addresses. Similarly, we can define two (s, d)-masks to be equivalent if they
represent the same set of (s, d)-pairs.

In light of the fact that a number of different masks can represent the same
set of addresses, define a mask M = a0a1 · · · am−1 to be normalized if the
following properties hold for M.

1. If xi appears in M then for all 0 ≤ j < i, xj also appears in M.

2. If there exists a u and i such that au = xi then there exists a v, where
0 ≤ v < u, such that av = xi.

3. If i < j, r = min{u | au = xi} and s = min{v | av = xj} then r < s.

In other words, while performing a left to right scan of a mask no variables
are “skipped,” the first occurrence of xi appears before any occurrence of xi,
and if i < j then the first occurrence of xi appears before the first occurrence
of xj . A normalized mask will also be referred to as being in normal form.
For example, the mask x0x1x0x2x3 is in normal form but the equivalent mask
x2x0x2x5x3 is not. Similarly, the (s, d)-mask (0x01x1, 00x0x2) is in normal
form but the equivalent (s, d)-mask (0x11x0, 00x1x2) is not. It can easily
be shown that for every mask or (s, d)-mask, there exists a unique equivalent
normalized mask or (s, d)-mask, respectively. In addition, suppose M1 =
a0a1 · · · am−1 and M2 = b0b1 · · · bm−1 are two normalized masks and let p =
max{q | xq is a variable that occurs in M1}. Then a normalization of M2 with
respect to M1 is a replacement of each occurrence of the variable xi and its
complement xi in M2, by the literals xi+p+1 and xi+p+1, respectively.

LEMMA 1. Given normalized masks M1 and M2, M2 can be normalized with
respect to M1 in O(m) time.

Proof. Follows directly from the above discussion.1 �

The main purpose of renormalizing one mask with respect to another is to
ensure that they contain disjoint sets of variables. This fact shall be used by
algorithms that are presented in following sections. Finally, the concept of
equivalence can be extended to sets of masks and sets of (s, d)-masks. For

1 We assume in this paper that accessing a symbol, such as a constant or a literal, requires unit time.
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example, it can easily be verified that the message pattern represented by the
set S1 = {(0011, 110x0), (x0111, x0x0x0x0), (0111, 1110)} is equivalent to
the one represented by the set S2 = {(0x011, 11x0x1), (1111, 0000)}. Hence,
the sets S1 and S2 are equivalent.

5. Classes of Message Patterns Representable
by (s, d)-Masks

In this section we describe some of the different types of message patterns
that can be represented by a single (s, d)-mask. Among other things, this will
serve to emphasize how the (s, d)-mask formalism generalizes the class of bit-
permute-complement permutations. In the following, let M be a normalized
(s, d)-mask, and let V1 and V2 be the sets of variables that appear or whose
complements appear in the LHS and RHS, respectively, of M.

OBSERVATION. If V1 = V2 then the corresponding message pattern is a par-
tial permutation. Examples of such (s, d)-masks are (00x0x1, 01x1x0) and
(0x00x1, x01x0x1).

OBSERVATION. If V2 ⊂ V1 then multiple (s, d)-pairs have the same desti-
nation address in the corresponding message pattern. Furthermore, if k =
|V1|−|V2| then 2k (s, d)-pairs share each of the 2|V2| destination addresses. Ex-
amples of such (s, d)-masks are (1x0x1x2, x1x000) and (x00x1x2, x011x1).

OBSERVATION. If V1 ⊂ V2 then multiple (s, d)-pairs have the same source
address in the corresponding message pattern. Furthermore, if k = |V2| − |V1|
then 2k (s, d)-pairs share each of the 2|V1| source addresses. Examples of such
(s, d)-masks are (0x0x1x2, x1x0x2x3) and (x00x1x2, x0x1x2x3).

OBSERVATION. If V1 �⊂ V2, V2 �⊂ V1 and k = |V1 ∩ V2| then each of the
2|V1| sources broadcasts to 2|V2| −k destinations, and each of the 2|V2| des-
tinations is shared by 2|V1| −k sources. Examples of such (s, d)-masks are
(x0x1x2, x1x0x3) and (x00x1x2, x0x1x1x3).

DEFINITION. Let π be a permutation and suppose that for all k, where 0 ≤
k ≤ m − 1, yk = xk or yk = xk. Then a bit-permute-complement per-
mutation, abbreviated BPC, is a message pattern that can be described by an
(s, d)-mask of the following form

(x0x1 · · ·xm−1, yπ(0)yπ(1) · · · yπ(m−1)). (5.1)

Simply stated, the left hand side has a distinct uncomplemented variable in
each bit position and the right hand side consists of a permutation of those
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variables with the possibility that some of them are complemented. Exam-
ples of such message patterns include the identity permutation (x0x1 · · ·xm−1,
x0x1 · · ·xm−1), the bit reversal permutation (x0x1 · · ·xm−1, xm−1 · · ·x1x0),
the perfect shuffle permutation (x0x1 · · ·xm−1, x1 · · ·xm−1x0) and the ex-
change permutation (x0x1 · · ·xm−1, x0x1 · · ·xm−1).

OBSERVATION. If V1 = V2 and the LHS contains no constants or repeated in-
stances of variables, and if the same is true of the RHS, then the corresponding
message pattern is a bit-permute-complement (BPC) permutation.

If the LHS contains no constants then each position must contain a lit-
eral derived from some variable. Furthermore, if the LHS contains no re-
peated instances of variables then each position must contain a variable unique
within the LHS. Since M is normalized, it follows that the LHS is of the form
x0x1 · · ·xm−1. Similarly, since the same restrictions apply to the RHS and
since V1 = V2, it follows that each position in the RHS must contain a literal
derived from a variable that occurs exactly once in the RHS and exactly once
in the LHS. Hence, the message pattern is a bit-permute-complement permu-
tation.

THEOREM 2. A permutation is representable by a single (s, d)-mask if and
only if it is a bit-permute-complement permutation.

Proof. (if) If a message pattern is a bit-permute-complement permutation, then
by definition it can be represented by a single (s, d)-mask as in (5.1).

(only if) Suppose that a given permutation can be represented by the (s, d)-
mask M. Assume without loss of generality that M is normalized, and con-
sider the LHS of the (s, d)-mask. Since the message pattern represented by
M forms a permutation, it follows that the that the LHS cannot contain any
constants. For example, if the LHS of the (s, d)-mask had a 1 on position 5,
then no processor whose address had a 0 on position 5 would send a message.
Similarly, no two literals in the LHS can be derived from the same variable.
Since the (s, d)-mask is normalized, it follows that the LHS is of the form
x0x1, . . . , xm−1. Now consider the RHS of the (s, d)-mask. As with the LHS,
no position in the RHS can contain a constant. Furthermore, each variable
occurring in the RHS must occur in the LHS, otherwise the message pattern
would contain broadcasts. Similarly, each variable in the LHS must appear
in the RHS. It follows that each variable from the LHS occurs exactly once in
some literal in the RHS, in complemented or uncomplemented form. It follows
that the (s, d)-mask has form given by (1) where π is a permutation, and for all
k, where 0 ≤ k ≤ m − 1, yk = xk or yk = xk. Hence, the message pattern
forms a bit-permute-complement permutation. �
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COROLLARY 3. Not all permutations can be represented by a single (s, d)-
mask.

Proof. From Theorem 2 it follows that if a given permutation can be repre-
sented by a single (s, d)-mask, then that permutation must be a bit-permute-
complement permutation. In addition, since the RHS of any BPC permutation
consists of a permutation of m variables, with the possibility that some of these
variables are complemented, it follows that the total number of BPC permuta-
tions is m!2m. In contrast, the total number of permutations on an N = 2m

input omega network is (2m)!. It can easily be verified that m!2m < (2m)!, for
all m ≥ 2. Hence, the theorem follows. �

THEOREM 4. Given a normalized (s, d)-mask, determining if the correspond-
ing message pattern is a partial permutation, bit-permute-complement permu-
tation, contains multiple messages with the same destination, or broadcasts,
can be done in O(m) time.

Proof. Using two bit vectors, construct the sets of variables in the LHS and
the RHS of the (s, d)-mask. Next, compare the bit vectors to determine which
of the properties from the above observations is true. Since the (s, d)-mask
is normalized, it follows that at most 2m variables appear in the (s, d)-mask.
Hence, the bit vectors need only be of length 2m. It follows that both of the
above steps can be performed in O(m) time, and hence the lemma follows. �

6. (s, d)-Masks and Detecting Congestion

Suppose that a message pattern is to be routed on a bundled omega network
such as the one described in Sect. 2. Since congestion is not permitted on such
a network, the following two-step message routing procedure could be used.
In the first step, the message pattern to be routed is tested for congestion. If
the message pattern is found to be congestion-free then in the second step the
messages are transmitted directly through the network. On the other hand, if
the message pattern is not congestion-free then in the second step some routing
strategy is used that transmits the messages to their destinations in a conges-
tion-free manner.

The second step in this process, the problem of routing message patterns that
contain conflicts or congestion, will be considered in Sect. 7. In this section,
we focus on the first step in this process. Specifically, we consider algorithms
for determining if a message pattern contains conflicts or congestion when
that message pattern is represented by a set of one or more (s, d)-masks. We
begin by describing a structure called a conflict-cube [19] that can be used to
determine a number of properties of a message pattern. We then show how
conflict-cubes can be used in a number of algorithms for detecting conflicts
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(0000,1000) (0001,1000)
(0000,1001) (0001,1001)
(0000,1010) (0001,1010)
(0000,1011) (0001,1011)

(0010,1000) (0011,1000)
(0010,1001) (0011,1001)
(0010,1010) (0011,1010)
(0010,1011) (0011,1011)

Figure 6.5. Partition induced by SM,1 on the message pattern corresponding to
(00x0x1, 10x2x3)

and/or congestion. Such algorithms could be used in a host computer that is
preparing message patterns for routing. Note that, in the following, we will
sometimes informally speak of “conflicts in an (s, d)-mask” when in fact what
we are referring to are conflicts in the corresponding message pattern.

DEFINITION. Let M be an (s, d)-mask and Vj the set of variables that occur
or whose complements occur in window Wj , where 0 ≤ j ≤ m. The conflict-
cube SM,j of M corresponding to window Wj is the set SM,j = V (M)− Vj .
For example, if M = (x011x1, x2x1x3x0) then the conflict-cubes are SM,0 =
{x2, x3}, SM,1 = {x0, x3}, SM,2 = {x0, x3}, SM,3 = {x0} and SM,4 = ∅.

The above definition is a generalization of one given in [19]. The main
difference is that the above definition applies to any (s, d)-mask, and not just
those corresponding to bit-permute-complement permutations. In addition, the
above specifies conflict-cubes for W0 and Wm. The reason conflict-cubes are
important is because they can be used to determine a number of properties
of the message pattern corresponding to an (s, d)-mask. Specifically, if k =
|SM,j |, for some j, then the (s, d)-pairs can be grouped into 2|V (M)| −k sets,
each containing 2k (s, d)-pairs, where the (s, d)-pairs in each set use the same
link in the network at stage j. The link used at stage j by the (s, d)-pairs in
each of these sets is specified by an assignment to the variables in Vj .

For example, consider the (s, d)-mask (00x0x1, 10x2x3). Note that if j = 1,
then it follows that k = |SM,j | = 2, and since |V (M)| = 4 it follows that the
set of (s, d)-pairs can be grouped into 4 sets each containing 4 (s, d)-pairs, as
shown in Fig. 6.5. Note that within each of these sets the (s, d)-pairs conflict
(have the same bit pattern) on W1, where the link through which the messages
pass at stage 1 is specified by an assignment to the variables in V1 = {x0, x1}.
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In Sects. 6.1 and 6.2 we show how conflict-cubes can be used to determine
a number of properties of (s, d)-masks and their corresponding message pat-
terns. In addition, in Sect. 7 we show how conflict-cubes can be exploited
in the solution to the minimum round partitioning problem, for any message
pattern that can be represented by a single (s, d)-mask.

6.1 Detecting Conflicts in an (s, d)-Mask

In this section we are concerned with determining if a message pattern, rep-
resented by a given set of one or more (s, d)-masks, contains conflicts. Note
that in this section we are concerned only with standard omega networks with
bundle size b = 1. In Sect. 6.2 we will consider similar problems where b ≥ 1.
We begin by considering message patterns that are represented by a single
(s, d)-mask. As stated above, detecting if a single (s, d)-mask contains con-
flicts is the same as detecting if it has a nonempty conflict-cube. Hence, we
have the following.

THEOREM 5. Given a normalized (s, d)-mask M of length 2m, determining
if the message pattern S(M) is conflict-free can be done in O(m) time.

Proof. An algorithm that tests for conflicts need only construct and then exam-
ine each of the conflict-cubes for the (s, d)-mask. If a nonempty conflict-cube
is detected then conflicts exist. Let r = max{i | xi is a variable that occurs in
the (s, d)-mask M}. Then each conflict-cube SM,i can be represented by an r
bit vector. By making one “scan” of the (s, d)-mask we can determine the size
of each of the conflict-cubes. If during this process a nonempty conflict-cube
is detected then it must be the case that conflicts exist.

An algorithm that performs such a scan is shown in Fig. 6.6. Since the
omega network described in Sect. 2 does not allow broadcasts it follows that
an (s, d)-mask containing broadcasts will be interpreted by the algorithm to
contain conflicts. The algorithm operates by scanning the windows beginning
with W0 and ending with Wm. For each window, the algorithm will determine
if the corresponding conflict-cube is nonempty. If a nonempty conflict-cube
is detected then the loop beginning on line 24 terminates and the algorithm
returns on line 41. The algorithm keeps track of conflict-cubes by maintain-
ing a count of the number of times that a variable or its complement occurs
in the window currently under examination. For each variable xi, vcount[i]
contains this value. If at any time it is determined that some variable xj occurs
in the (s, d)-mask but does not appear in the current window, in which case
vcount[j] = 0, then a nonempty conflict-cube is detected. Since the algorithm
begins with window W0, lines 16–21 scan the right half of the (s, d)-mask to
determine if W0 has a corresponding non-empty conflict-cube.
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(0) procedure detect;
(1) input: M [0, 2m − 1]-array of 2m symbols representing
(2) a normalized (s, d)-mask
(3) begin
(4) cube-size := 0;
(5) (*initialize the count array *)
(6) for i := 0 to 2m − 1 do
(7) begin
(8) vcount[i] := 0;
(9) end;
(10) for i := 0 to m − 1 do
(11) begin
(12) if (M [i] is a literal derived from xj , for some j) then
(13) vcount[j] := vcount[j] + 1;
(14) end;
(15) (* check if W0 has a non-empty conflict-cube *)
(16) for i := m to 2m − 1 do
(17) begin
(18) if (M [i] is a literal derived from xj , for some j,) and
(19) (vcount[j] = 0) then
(20) cube-size := cube-size + 1;
(21) end;
(22) (* check each of the m windows for conflicts *)
(23) i := 0;
(24) while (i ≤ m − 1) and (cube-size = 0) do
(25) begin
(26) if (M [i] is derived from xj , for some j) then
(27) begin
(28) vcount[j] := vcount[j] − 1;
(29) if (vcount[j] = 0) then
(30) cube-size := cube-size + 1;
(31) end;
(32) if (M [i + m] is derived from xj , for some j) then
(33) begin
(34) vcount[j] := vcount[j] + 1;
(35) if (vcount[j] = 1) then
(36) cube-size := cube-size − 1;
(37) end;
(38) i := i + 1;
(39) end;
(40) if (cube-size > 0) then
(41) return (“conflict on window ”, i);
(42) end;

Figure 6.6. Algorithm for detecting conflicts in an (s, d)-mask

The ith iteration of the main loop on lines 24–39 corresponds to the exami-
nation of Wi, where 0 ≤ i ≤ m. First, line 24 terminates the loop if Wi has a
corresponding non-empty conflict-cube. If not, then the algorithm “slides” the
window to Wi+1. As the window slides to Wi+1 line 26 determines if the sym-
bol falling off the left side of the window is a literal. If so, then the variable xj

from which the literal is derived appears one fewer time in Wi+1 than in Wi.
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Hence, vcount[j] is decremented on line 28. On the other hand, if the symbol
entering the window on the right side is a literal derived from some variable xj

then that variable appears one more time in Wi+1 than in Wi. This is detected
on line 32. Hence, vcount[j] is incremented on line 34. Of course, if the sym-
bol leaving the window and the symbol entering the window are derived from
the same variable xj then that variable occurs an equal number of times in Wi

and Wi+1. Hence, vcount[j] is decremented on line 28 and then incremented
on line 34, in which case vcount[j] stays the same. The variable cube-size con-
tains an integer representing a count of the number of variables that are missing
from the window currently being examined. After examining the entire current
window, if the variable cube-size contains an integer that is greater than 0, then
the conflict-cube corresponding to that window is nonempty. Hence, a conflict
exists. The algorithm then terminates the loop on line 24 and returns on line
41. It can be verified that the algorithm in Fig. 6.6 operates in O(m) time,
where 2m is the length of the (s, d)-mask. �

Recall from Sect. 1 that there exist message patterns that cannot be repre-
sented by a single (s, d)-mask. In light of this fact, one dimension along which
the above problem can be generalized is in n, the number of (s, d)-masks.
Hence, we consider the problem of determining if a set of (s, d)-pairs, repre-
sented by a set S of n ≥ 1 disjoint (s, d)-masks, is conflict-free. First, we
describe a polynomial time algorithm that will solve the problem when n = 2.
We then generalize it to show that the problem can be solved in polynomial
time for any n ≥ 1. In doing so we make use of the following lemma.

LEMMA 6. Given normalized masks M1 and M2, determining if S(M1) and
S(M2) have nonempty intersection can be done in O(m) time.

Proof. We reduce the problem to the 2-satisfiability problem [8] in linear time.
Since the 2-satisfiability problem is solvable in linear time [6] it follows that
detecting if two masks have nonempty intersection can also be solved in linear
time.

Let M1 = a0a1 · · · am−1 and M2 = b0b1 · · · bm−1. First normalize M2 with
respect to M1. By Lemma 1, this step can be performed in O(m) time. Second,
a set C of clauses is constructed as follows. Consider each bit position i, where
0 ≤ i ≤ m− 1.

Case 1: ai = c1 and bi = c2, where c1, c2 ∈ {0, 1}. Clearly, for S(M1) and
S(M2) to have nonempty intersection it must be the case that c1 = c2.
Hence, we need only verify that this is true.

Case 2: ai = l and bi = c, where l is a literal and c ∈ {0, 1}. Since bi = c,
every address covered by M2 will have a c on bit position i. If c = 1 then
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a clause consisting of the literal l is added to C and otherwise a clause
consisting of the literal l is added to C. Similarly if ai = c and bi = l.

Case 3: ai = l1 and bi = l2, where l1 and l2 are both literals. If there exists
an address e = e0e1 · · · em−1, where e ∈ S(M1) ∩ S(M2), then by
definition there exist functions f1 and f2 such that f̂1(M1) = f̂2(M2) =
e, in which case f̂1(ai) = f̂2(bi) = ei. In other words, f̂(l1) = f̂(l2).
This implies that (l1 ∧ l2)

∨
(l1 ∧ l2) is satisfiable, which is equivalent

to (l1
∨

l2) ∧ (l1
∨

l2). Hence, clauses (l1
∨

l2) and (l1
∨

l2) are added
to C.

Clearly, this reduction can be performed in O(m) time. Furthermore, it can
be verified that the resulting set C of clauses is satisfiable if and only if S(M1)
and S(M2) have nonempty intersection. Since the 2-satisfiability problem can
be solved in linear time [6], it follows that determining if S(M1) and S(M2)
have nonempty intersection can also be solved in linear time. �

LEMMA 7. Given a set S of two disjoint normalized (s, d)-masks, where each
(s, d)-mask is of length 2m, determining if the message pattern represented by
S is conflict-free can be done in O(m2) time.

Proof. Let S consist of two disjoint normalized (s, d)-masks M1 = a0a1 · · ·
a2m−1 and M2 = b0b1 · · · b2m−1. Clearly, if S(M1) ∪ S(M2) is conflict-free
then both M1 and M2 must individually be conflict-free. From Theorem 5 we
know M1 and M2 can each individually be checked for conflicts in O(m) time.
In addition, in order for the union of the two (s, d)-masks to be conflict-free,
no (s, d)-pair covered by M1 can conflict with any other (s, d)-pair covered
by M2. This can be determined as follows.

First, M2 is normalized with respect to M1. By Lemma 1, this step can
be performed in O(m) time. Next, if some (s, d)-pair covered by M1 does
conflict with some (s, d)-pair covered by M2 then there exists an i, where
0 ≤ i ≤ m, such that the two (s, d)-pairs have the same bit pattern on Wi.
This determination can be made by constructing the sub-masks of M1 and
M2 on Wi and then testing the two sub-masks to see if they have nonempty
intersection. To construct the sub-masks, both M1 and M2 are projected onto
I = {i, i+1, . . . , i+m−1} giving the masks M1(I) and M2(I). This step can
be performed in O(m) time. These sub-masks will have nonempty intersection
if and only if M1 and M2 contain (s, d)-pairs that have the same bit pattern on
Wi. By Lemma 6 determining if M1(I) and M2(I) have nonempty intersection
can be done in O(m) time. Hence, determining if two (s, d)-masks contain
(s, d)-pairs conflicting on Wi can be done in O(m) time. Since there are a
total of m + 1 windows, it follows that checking all of the windows can be
done in O(m2) time. �
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We now further generalize the above problem to show the following.

THEOREM 8. Given a set S of disjoint normalized (s, d)-masks, where |S| =
n and each (s, d)-mask is of length 2m, determining if S is conflict-free can be
done in O(m2n2) time.

Proof. Clearly, each (s, d)-mask must individually be conflict-free. As stated
in Theorem 5, this can be determined in O(m) time for each (s, d)-mask. Since
there are n (s, d)-masks, a total time of O(mn) is required for this initial test.
Next, we must determine if (s, d)-pairs covered by different (s, d)-masks con-
flict. As in the case where n = 2, this can be done by examining each of the
m + 1 windows. The main difference is that each pair of (s, d)-masks must be
examined to see if they conflict on some window. By Lemma 7 this can be de-
termined for each pair of (s, d)-masks in O(m2) time. Since there are (n(n−1)

2 )
pairs of (s, d)-masks it follows that the total time used is O(m2n2). �

6.2 Detecting Congestion in an (s, d)-Mask

In Sect. 6.1 we focused on problems concerned with determining if a set of
one or more (s, d)-masks contained conflicts. However, these problems were
considered only for standard omega networks, where the bundle size of the
network is b = 1. In this section we consider many of these same problems for
bundled omega networks where b ≥ 1. For example, consider the problem of
determining if the message pattern corresponding to a given (s, d)-mask M is
congestion-free for an omega network with bundle size b ≥ 1. Using a proof
similar to that for Theorem 5 we can show the following.

THEOREM 9. Given a normalized (s, d)-mask M of length 2m and an in-
teger b, determining if S(M) is congestion-free for an omega network with
bundle size b can be done in O(m) time.2

Proof. From Theorem 5 it follows that if b = 1 then the problem can be solved
in O(m) time. More generally, if b ≥ 1 then the problem can be solved
in O(m) time, since determining if an (s, d)-mask is congestion-free for an
omega network with bundle size b is the same as determining if the (s, d)-
mask has a conflict-cube of size k, where 2k > b. In light of this, letting
c = cube-size, the algorithm in Fig. 6.6 would only have to be modified by
changing line 40 to “if (2c > b) then” and line 24 to “while (i ≤ m − 1) and
(2c ≤ b) do.” �

2 In this paper we assume that performing a comparison to an integer such as b can be done in unit time.
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We now consider an additional generalization of the conflict detection prob-
lem. Specifically, we consider the problem of determining if a set of n normal-
ized (s, d)-masks is congestion-free for an omega network with bundle size
b ≥ 1. We show that the problem can be solved in polynomial time if n is
fixed. In doing so, we shall make use of the following fact from [3].

FACT 1. Given two normalized masks M1 and M2, each of length m, de-
termining if S(M1) ∩ S(M2) = ∅ can be done in O(m) time. In addition,
if S(M1) ∩ S(M2) �= ∅, then a normalized mask M3 such that S(M3) =
S(M1) ∩ S(M2) can be constructed in O(m) time.

Note that given a set of n normalized (s, d)-masks, a normalized (s, d)-
mask representing the intersection of all of the (s, d)-masks can be computed
in O(mn) time, simply by repeatedly applying Fact 1. Using this, we can
prove the following.

THEOREM 10. Given a set of n disjoint normalized (s, d)-masks, where n is
fixed and each (s, d)-mask is of length 2m, determining if the set is congestion-
free for an omega network with bundle size b ≥ 1 can be done in O(m2) time.

Proof. As in Theorem 9, each of the m+1 windows must be examined for the
(s, d)-masks. The main difference is that we must now perform two steps for
each window Wj :

1. First we must determine if some subset of the n (s, d)-masks cover a
set of (s, d)-pairs that have the same bit pattern on Wj . As in Lemma 7
we must check each window to determine if a set of (s, d)-pairs cov-
ered by the (s, d)-masks conflict on that window. This will be done by
computing a number of sub-mask intersections using Fact 1.

2. Second, if such a set of (s, d)-pairs exist then we must determine if they
create congestion. In other words, if there are more than b (s, d)-pairs
having the same bit pattern on Wi. As in Theorem 9 this can be deduced
from the size of the appropriate conflict-cubes. We now describe the two
steps in further detail.

First, “relabel” the variables in the (s, d)-masks so that each contains a dis-
tinct set of variables. If the (s, d)-masks are M0, M1, M2, . . . then this can
be accomplished by renormalizing M1 with respect to M0, M2 with respect
to M1, etc. Since the (s, d)-masks are normalized, it follows from Lemma 1
that this can be performed in O(mn) time. Now consider a subset containing
i of the (s, d)-masks, and for each j, where 0 ≤ j ≤ m, do the following.
First, project the i (s, d)-masks onto window Wj . This step can be performed
in O(mi) time. Next, construct a mask representing the intersection of these
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sub-masks. This can be done by performing i − 1 intersections. The result-
ing sub-mask will be nonempty if and only if there exists a set of (s, d)-pairs
covered by the i (s, d)-masks, at least one per (s, d)-mask, having the same bit
pattern on Wj . By Fact 1, this step can be performed in O(mi) time. If the
resulting mask is empty then we just proceed on to the next window. On the
other hand, if the mask is nonempty, then we have detected a set of i (s, d)-
masks, Mr0 , Mr1 , . . . , Mri−1 that covers a set of (s, d)-pairs conflicting on Wj .
In such a case, we must count the number of (s, d)-pairs in the set to determine
if congestion occurs. Letting c = |SM,j |, where M is an (s, d)-mask, it fol-
lows that the number of (s, d)-pairs having the same bit pattern on Wj for an
(s, d)-mask M is equal to 2c. It follows that the total number of (s, d)-pairs
having the same bit pattern on window Wj is given by

p = 2c0 + 2c1 + · · ·+ 2ci−1 (6.1)

where ck = |SMrk
,j |, and 0 ≤ k ≤ i − 1. If p > b then since p (s, d)-pairs

make use of the same bundle at stage j it follows that congestion occurs. On
the other hand, if p ≤ b then we just continue on to the next window. Since
the conflict-cubes can be computed from the i masks in O(mi) time, it follows
that this step can be performed in O(mi) time. Since there are a total of m+ 1
windows, it follows that we can determine if a subset of i of the (s, d)-masks
contains congestion in O(m2i) time. In addition, since the total number n of
(s, d)-masks is fixed, it follows that there is a constant number of such subsets
(2n), which can each be enumerated in O(m) time. It follows that the total
time used is O(m2). �

7. Minimum Round Partitioning for (s, d)-Masks

Once it has been determined that a message pattern creates conflicts or
congestion, some routing strategy must be used that transmits the messages
through the network in a congestion-free manner. For this purpose, we con-
sider a message routing technique that we call minimum round partitioning.
In this strategy a set of messages containing congestion is partitioned into a
minimum number of congestion-free subsets, which we call rounds. The set
of messages is then transmitted by successively transmitting the messages in
each subset.

Minimum round partitioning has been studied by a number of researchers.
For example, it is shown in [1] that any message pattern forming a permuta-
tion will require at most O(

√
N) rounds. The authors also present a method

for calculating a lower bound on the number of rounds required by any given
message pattern. In [2] it was shown that the problem is NP-hard for the class
of bundled omega networks. Heuristics for the problem are presented in [5, 7,
23]. In [19] and [22] an algorithm is developed for constructing a “partition-
ing function” for any message pattern that forms a bit-permute-complement
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permutation. Finally, the relation between the problem and “bottlenecks” in
butterfly networks is discussed in [18].

In this section we consider the computational complexity of the minimum
round partitioning problem when restricted to the subclass of message patterns
that are representable by a single (s, d)-mask. As we shall show, the prob-
lem becomes solvable in linear time when restricted to this subclass. This
generalizes and extends a result in [19], originally established for bit-permute-
complement permutations. We begin by considering the problem for bundled
omega networks as described in Sect. 2. The omega network described there
had the property that messages could not be “broadcast” to multiple destina-
tions at the same time, or rather, within the same round. This was reflected
by the switch states in Figs. 6.3(b)–(g). Hence, two (s, d)-pairs with the same
source address were considered to be in conflict. With regards to bundled
omega networks where b ≥ 1, this means that two (s, d)-pairs with the same
source address are treated as two different messages. Consequently, the two
messages require two different wires when they are transmitted over the same
bundle. In Sect. 7.2 we shall reconsider minimum round partitioning for a
modified version of the network where broadcasts are allowed to occur.

7.1 Minimum Round Partitioning for Non-Broadcast
Omega Networks

In this section we consider the minimum round partitioning problem for
those message patterns that can be represented by a single (s, d)-mask. We
consider the problem for the omega network as described in Sect. 2. We begin
by mentioning a result from [19].

FACT 2. Given an (s, d)-mask M representing a bit-permute-complement per-
mutation, as in (1), a function f : S(M) → {0, 1, . . . , k − 1} can be con-
structed that defines a partitioning of the message pattern S(M) into a mini-
mum number of rounds.

It should be noted that the function constructed by the algorithm from [19]
is in the form of a polynomial, whose variables are the same as those in the
(s, d)-mask M. For example, for the (s, d)-mask (x0x1x2x3x4, x4x3x2x1x0)
the function constructed by the algorithm would be f(x0, x1, x2, x3, x4) =
x0 + 2x1. We shall provide other examples below, but first we will generalize
this result to apply to any (s, d)-mask, bit-permute-complement or otherwise.

LEMMA 11. Given a normalized (s, d)-mask M, which is of length 2m, a
function f : S(M) → {0, 1, . . . , k − 1} that defines a partitioning of the
message pattern S(M) into a minimum number of rounds can be computed in
O(m) time.
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(0) procedure partition;
(1) input: M-array of 2m elements representing a normalized (s, d)-mask
(2) let s = max{i | a literal derived from xi is in the LHS of M}
(3) t = max{i | a literal derived from xi is in the RHS of M}
(4) begin
(5) for i := 0 to 2m − 1 do
(6) begin
(7) SOURCE[i] := 0; WT[i] := 0; CUBE[i] := 0; DEST[i] := 0;
(8) end;
(9) for i := 0 to m − 1 do
(10) begin
(11) if (M [i] is a literal derived from xj , for some j) then
(12) SOURCE[j] := SOURCE[j] + 1;
(13) end;
(14) if (t ≤ s) then
(15) big := −1
(16) else begin
(17) b := s + 1;
(18) big := t − s − 1;
(19) for i := 0 to big do
(20) CUBE[b] := 1; WT[b] := i; b := b + 1;
(21) end;
(22) for i := 0 to m − 1 do
(23) begin
(24) if (M [i + m] is a literal derived from xp) then
(25) begin
(26) if (SOURCE[p] = 0 and DEST[p] = 0) then
(27) push(WT[p], Q);
(28) DEST[p] := 1;
(29) end;
(30) if (M [i] is a literal derived from xq) then
(31) begin
(32) SOURCE[q] := SOURCE[q] − 1;
(33) if (SOURCE[q] = 0 and DEST[q]=0) then
(34) begin
(35) CUBE[q] := 1;
(36) if (not empty(Q)) then
(37) WT[q] := pop(Q)
(38) else begin
(39) big := big + 1; WT[q] := big;
(40) end;
(41) end;
(42) end;
(43) end;
(44) end;
(45) Define: fM (x0, x1, . . . , x2m−1) =

∑2m−1

i:=0
CUBE[i]xi2

WT[i] mod 2big+1

Figure 6.7. Algorithm for computing a partitioning function for a message pattern that is rep-
resented by a single (s, d)-mask

Proof. In Fig. 6.7 is an algorithm that will construct such a function. As men-
tioned above, given the omega network as defined in Sect. 2, a message pattern
containing broadcasts will be interpreted to contain conflicts. Hence, the result-
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ing function will define a partition of the message pattern where each broad-
cast is partitioned into multiple non-broadcast (s, d)-pairs. The algorithm in
Fig. 6.7 operates as follows.

Since each (s, d)-pair in the message pattern is specified by an assignment
of 0’s and 1’s to the variables in V (M) it follows that if k = |SM,i| then 2k

(s, d)-pairs have the same bit pattern on window Wi. The algorithm in Fig. 6.7
operates by scanning the (s, d)-mask from left to right. As it scans, it examines
each window Wi to determine which variables are, and are not in SM,i. This is
kept track of by the 2m bit arrays SOURCE and DEST.

A particular window Wi currently under examination consists of two parts.
One part is that portion of Wi that overlaps with the LHS of the (s, d)-mask,
and the other is that portion that overlaps with the RHS. The SOURCE and
DEST arrays represent the sets of variables contained in these two portions of
Wi, respectively. Hence, lines 9–13 initialize SOURCE[i] := c, if c literals
appear in W0 that are derived from xi. In addition, since window W0 does
not overlap with the right hand side, it follows that for all 0 ≤ j ≤ 2m − 1,
DEST[j] is initialized to 0. This takes place on line 7.

For each window Wi and variable xp ∈ SM,i, an associated “weight” WT[p]
is assigned, such that no two variables in SM,i are assigned the same weight.
This property guarantees that each of the (s, d)-pairs having the same bit pat-
tern on window Wi are assigned a different value, or round, by the function f .
Which weights have, and have not been assigned is kept track of by the vari-
able “big” and the stack “Q.” If a variable xq is in SM,i, for any i, where
0 ≤ i ≤ m−1, then CUBE[q] is assigned a 1. Since CUBE[q] is non-zero, this
fact will allow WT[q] to be included in the partitioning function (see line 45).
If V (W0) ⊂ V (M), in which case t > s, then those variables in V (M) − V0

must initially be assigned weights. This is done on lines 14–21.
Let k = max{|SM,i| such that 0 ≤ i ≤ m − 1}. Then since there exists a

set of 2k messages having the same bit pattern on some window, it follows that
any function that defines a partitioning of the BPC permutation into 2k rounds
is optimum. It can be verified that the function f constructed by the algorithm
in Fig. 6.7 is such a function. The proof of correctness for the algorithm is
similar to the one given in [19]. Hence, we refer the interested reader there.
In addition, it can be verified that the algorithm in Fig. 6.7 operates in O(m)
time. �

It should be noted that given an arbitrary normalized (s, d)-mask, literals
derived from any of the variables x0, x1, . . . , x2m−1 may appear in the (s, d)-
mask. Hence, the arrays DEST, WT and CUBE must be of length 2m. In addi-
tion, the array SOURCE is also of length 2m. However, since the (s, d)-mask
is normalized, the LHS will contain literals derived only from the variables
x0, x1, . . . , xm−1. Hence, SOURCE actually need only be of length m.
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One implication of the above result is that if M is an (s, d)-mask and k =
max{|SM,i| such that 0 ≤ i ≤ m} then 2k rounds are both necessary and
sufficient for the message pattern. The fact that it is necessary follows since 2k

messages conflict on some window, and hence, require use of the same link in
the network. The fact that it is sufficient follows from the proof of correctness
for the algorithm in Fig. 6.7 and the fact that the resulting function defines
a partitioning of the message pattern into 2k rounds. As an example, one can
verify that for the (s, d)-mask (1x00x0x1x200, x3x4000x0x1x2) the algorithm
in Fig. 6.7 will construct the function f = 2x0 + x1 + 2x2 + x3 + 2x4.

We now generalize the above result so that it applies to bundled omega net-
works where b ≥ 1. Before stating and proving the result, we first note that
a round for an omega network with bundle size b ≥ 1 is a message pattern S
such that for all j, where 0 ≤ j ≤ m, at most b (s, d)-pairs in S have the same
bit pattern on Wj . One consequence of this fact is that a round for a bundled
omega network with b ≥ 1 is not necessarily a partial permutation.

LEMMA 12. Given an (s, d)-mask M of length 2m and a bundle size b ≥ 1,
a function f : S(M) → {0, 1, . . . , k − 1} that defines a partitioning of the
message pattern S(M) into a minimum number of congestion-free rounds for
an omega network with bundle size b can be computed in O(m) time.

Proof. Suppose the function f ′ defines a partition of the message pattern S
into a minimum number of rounds r0, r1, . . . , rq−1 as described in Lemma 11.
Construct rounds r′

0, r
′
1, . . . , r

′
n−1, where n = �q/b� by placing all messages

from ri into r′
j , where j = i mod n. Note that the resulting message sets r′

i,
where 0 ≤ i ≤ n−1, are all congestion-free for an omega network with bundle
size b. In proof, consider the messages in the set r′

i = ri∪ri+n∪ri+2n∪· · · as
they are routed on an omega network with bundle size b. Specifically, consider
the number of messages that make use of any particular bundle. Since each
message set rj is a conflict-free round, it follows that each message set rj

that was placed into r′
i contains at most one message that makes use of any

particular bundle. Since n = �q/b� it follows that at most b rounds are placed
into r′

i, and hence, that at most b messages make use of any particular bundle.
Hence, r′

i is congestion-free for an omega network with bundle size b.
It also follows that n = �q/b� is the minimum number of congestion-free

rounds into which the message pattern can be partitioned, for the following
reasons. As discussed above following Lemma 11, if k = max{|SM,i| such
that 0 ≤ i ≤ m} and q = 2k, then the message pattern contains q messages
having the same bit pattern on some window. Consequently, these q messages
require use of the same bundle in the network. Hence, �q/b� is a lower bound
on the number of congestion-free rounds into which S can be partitioned, for
an omega network with bundle size b ≥ 1. It follows that if n = �q/b�, then
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defining f = f ′ mod n, gives a function f that minimizes the total number of
rounds on the bundled network. Since f ′ can be constructed from the (s, d)-
mask in O(m) time, it follows that f can also be constructed from the (s, d)-
mask in O(m) time. �

Note that the algorithm suggested by Lemmas 11 and 12 constructs the func-
tion f from an (s, d)-mask rather than the corresponding set of (s, d)-pairs.
This fact suggests the following related problem. Suppose a set of (s, d)-pairs
is given, instead of an (s, d)-mask. In the following, we show that Lemma 12
can be used to partition the set into a minimum number of congestion-free
rounds in polynomial time when the set can be represented by a single (s, d)-
mask. As we shall show, the key to the algorithm lies in the following.

FACT 3. Let S be a set of (s, d)-pairs that can be represented by a single
(s, d)-mask, where |S| = n and each (s, d)-pair is of length 2m. Then the
normalized (s, d)-mask M such that S = S(M) can be computed in O(mn)
time [4].

Using Fact 3 we can now prove the main result of this section.

THEOREM 13. Let S be a set of (s, d)-pairs that can be represented by a single
(s, d)-mask of length 2m. In addition, let b be an integer b ≥ 1. Then S can
be partitioned into a minimum number of congestion-free rounds for an omega
network with bundle size b in O(mn) time.

Proof. By Fact 3, the set S can be converted into an (s, d)-mask in O(mn)
time. Using the algorithm in Fig. 6.7, a function f that defines a partition of
the set S into a minimum number of rounds can be constructed from the (s, d)-
mask in O(m) time. This function can then be used to partition the set S in
O(mn) time. It follows that the total time used is O(mn). �

7.2 Minimum Round Partitioning for Broadcast Omega
Networks

As it was used in Sect. 7.1 and described in Sect. 2, the bundled omega
network did not allow broadcasts to occur within the same round. For a stan-
dard omega network, where b = 1, this meant that if a message were to be
broadcast to multiple destinations then that message would have to be parti-
tioned into multiple (s, d)-pairs. For a bundled omega network where b ≥ 1,
this meant that two (s, d)-pairs with the same source required the use of 2 dif-
ferent wires when the corresponding messages made use of the same bundle.
However, if the switches in the network were modified to allow broadcasts,
as shown in Fig. 6.8, then the algorithm in Fig. 6.7 could be modified so that
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Figure 6.8. Broadcast switch states

broadcasts would not be interpreted as conflicts or congestion. For a standard
omega network, where b = 1, the function f would then be defined so that
it did not “split up” broadcasts. For a bundled omega network where b ≥ 1,
messages with the same source address would use the same wire when the
corresponding messages make use of the same bundle. In other words, two
messages with the same source address are treated as a single message with 2
destinations. The message is “duplicated” into multiple messages at the switch
where the broadcast takes place, as shown in Fig. 6.8. In order to do this, the
algorithm in Fig. 6.7 would have to modified as follows.

Let M be an (s, d)-mask and V the set of all variables such that for each
xi ∈ V there exists a literal in the LHS of M that is derived from xi. In
addition, let Vj be the set of variables that occur or whose complements occur
in window Wj , where 0 ≤ j ≤ m. Then the conflict-cube SM,j of the (s, d)-
mask M corresponding to window Wj would then be redefined to be the set
V −Vj . Note how this differs from the definition given in Sect. 6, since the set
V contains a variable only if that variable occurs at least once in the LHS of the
(s, d)-mask. This takes account of the fact that those variables occurring only
in the RHS are responsible for the broadcasts. Given this, it can be verified that
the algorithm in Fig. 6.7 can be modified so that it will construct a function that
defines a partitioning of the message pattern corresponding to the (s, d)-mask
M, into a minimum number of rounds where broadcasts are tolerated.

In the same way that broadcasts were not allowed in the omega network as
defined in Sect. 2, multiple messages to the same destination were also not al-
lowed. However, such message patterns might have a legitimate interpretation.
For example, if a number of messages are sent to a particular processor and if
each message consists of an operand, then the job of the destination processor
might be to perform some operation on all of the operands. In such a case, if
a switch were given the ability to perform the operation, and if two messages
input to a switch were destined for the same processor, then that switch could
perform the operation itself. The result of the operation could then be trans-
mitted on the appropriate output (this would of course depend on the algebraic
properties of the operation itself, i.e. associativity, etc.). Hence, in the same
way that the algorithm in Fig. 6.7 could be modified to tolerate broadcasts,
it could instead be modified to tolerate message patterns containing multiple
messages with the same destination. To do this, let V be the set of all variables
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such that if xi ∈ V then there exists a literal in the RHS of M that is derived
from xi. The conflict-cube SM,j would then be defined as above.

8. Conclusion

The results in this paper show that the (s, d)-mask formalism is a useful
method for describing message patterns. We have shown that the formal-
ism defines a practical, non-trivial generalization of the class of bit-permute-
complement permutations. In addition, we have shown that the minimum
round partitioning problem, which in general is NP-hard, can be solved in
linear time when restricted to those message patterns that can be represented
by a single (s, d)-mask. This extends and generalizes a known result in [19].
Finally, we have shown that when message patterns are represented by (s, d)-
masks, conflicts and congestion, under many circumstances, can be detected
in polynomial time. Such algorithms operate directly upon (s, d)-masks rather
than the much larger corresponding message patterns. If message patterns or
sets of processor addresses were specified by masks in a multiprocessor, then
algorithms that perform computations on masks and/or (s, d)-masks could be
helpful or even required.
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Abstract A simple model, called a VDAG, is proposed for succinctly representing hier-
archically specified design data in CAD database systems where there are to be
alternate expansions of hierarchical modules. The model uses an ancestor-based
expansion scheme to control which instances of submodules are to be placed
within each instance of a given module. The approach is aimed at reducing stor-
age space in engineering design database systems and providing a means for
designers to specify alternate expansions of a module.

The expressive power of the VDAG model is investigated, and the set of de-
sign forests that are VDAG-generable is characterized. It is shown that there are
designs whose representation via VDAGs is exponentially more succinct than is
possible when expansion is uncontrolled. The problem of determining whether
a given design forest is VDAG-generable is shown to be NP-complete, even
when the height of the forest is bounded. However, it is shown that determining
whether a given forest is VDAG-generable and producing such a VDAG if it
exists, can be partitioned into a number of simpler subproblems, each of which
may not be too computationally difficult in practice. Furthermore, for forests in
a special natural class that has broad applicability, a polynomial time algorithm
is provided that determines whether a given forest is VDAG-generable, and pro-
duces such a VDAG if it exists. However, the paper shows that it is NP-hard
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to produce a minimum-sized such VDAG for forests in this special class, even
when the height of the forest is bounded.

Keywords: hierarchical modules, databases, design objects, versions, module alternatives,
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1. Introduction

We investigate a model of hierarchically represented design objects, which
accommodates design versions and alternatives by permitting the inclusion of
a submodule within a larger module to be conditional on the identity of the
ancestors of the larger module. This concept of ancestor-controlled expansion
of hierarchical modules is formalized by a simple model called a VDAG. The
expressibility of the VDAG model is explored, and the design objects that are
directly representable via the VDAG model are characterized. Several com-
putational problems dealing with the representability of objects via this model
are considered. The computational complexity of these problems is studied,
and several appropriate algorithms are developed.

In many design applications, designs are both specified and represented hi-
erarchically, where each design object can contain instances of lower level
objects within it. This use of hierarchy expedites the design process, and per-
mits very large design objects to be represented relatively succinctly. The issue
of storing designs is complicated by the need for version control [2, 3, 8, 10,
13, 15, 19] and design alternatives [1, 11, 17]. Version control has to deal
with multiple versions of a given design object, with the possibility that these
versions differ only slightly. Design alternatives involve multiple designs, with
the possibility that a given higher level object contains somewhere within it
more than one alternative design for instances of a given lower level object.
For a recent survey of version control issues, see [9].

In existing version control systems for software engineering and document
generation systems, the differences between two versions are usually described
on a line basis [13, 15]. The differences between two given files can be com-
puted by algorithms such as those in [6, 7] and the utility program diff in Unix
system [16]. With this approach, version differences that are kept track of are
line differences. Sometimes, the differences being kept track of are database
units, such as record differences [14]. In [3], a technique is proposed for stor-
ing different versions of a text file, based on a model in which each version can
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be envisioned as an AVL tree, each of whose vertices represents a line of text.
The set of trees may share common subtrees, and a data structure is proposed
that keeps only one copy of certain common subtrees. From an abstract per-
spective, the method used in [3] is a particular technique for storing a forest of
trees compactly, by storing only one copy of common subtrees. This raises the
general issue of how to produce a compact representation of a given forest. For
this problem, the kind of ancestor-based control of tree expansion considered
here can lead to more compact representations.

In this paper, we consider hierarchically specified design objects, and fo-
cus on module differences in that the basic granularity of differences that are
kept track of are instances of submodules within a higher level module. Us-
ing module differences to support design alternatives has emerged as an issue
in CAD systems. Several schemes have been incorporated in [17]. For in-
stance, one scheme allows a module to have alternate bodies that share a com-
mon interface, and a configuration of a module can be created by specifying
which alternative body to use for submodules within that module. A config-
uration can have a different expansion specification for each instance of the
same module type within it. Another mechanism provided in [17] is condi-
tional expansions, which can be based on the values of generic parameters.
Conditional expansion involves a test to determine whether given submodule
instances should be placed within a given module body. The generic para-
meters, which are typically involved in such tests, are passed in a top-down
manner to a given module, and so represent control passed to the module from
its ancestors in the hierarchy. A model is proposed in [1] whereby a mod-
ule can have alternate implementations (corresponding to bodies in VHDL),
which share a common interface. A body can have instantiations of submod-
ules, and can be parameterized by a specification of which body to use for
specified occurrences of submodules. However, the model in [1] does not pro-
vide any explicit mechanism to control expansion. Furthermore, in the model
of [1] certain kinds of alternatives are not supported conveniently, in the sense
that they require the creation of separate implementations, even though they
may differ only slightly. For example, suppose we want module A to con-
tain certain submodules when it is used as a submodule of B and to con-
tain some other submodules when it is used as a submodule of C. In this
case, the model in [1] would require two distinct implementations for mod-
ule A.

In this paper, a hierarchically specified set of modules is a collection of
modules, each of which can have a body. A module body contains instances
of lower level modules, where some of these instances might only be condi-
tionally included in the body. A given hierarchically specified design module
can be envisioned as a design tree. For example, suppose that within the body
of design module Z there are three submodules, where two are instances of
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X and the other is an instance of Y ; within the body of each module X there
are submodules U and V ; within the body of each module Y there are two
submodules that are instances of W ; and the body of each W contains two
submodules that are instances of T . Figure 7.1 shows module Z at differ-
ent levels of abstraction, and the tree representation of module Z is shown in
Fig. 7.2. Note that module Z includes the vertex Z and all of its descendants
in the tree. In the tree, for each arc a = (u, v), there is a function st(a) (where
“st” standards for stamp) that provides information about the occurrence of v
as a submodule within u.

In the tree of Fig. 7.2, there are two copies of X , U , V , and W , respec-
tively, and four copies of T . If the tree were to be stored directly, there would
be a copy of the design data for each instance of a module within Z; e.g.,
there would be four copies of T . However, in CAD systems, a more succinct
representation is usually used for hierarchically specified designs; namely, a
directed acyclic multigraph (dag). The dag representation for module Z is
shown in Fig. 7.3. Thus, a hierarchically specified set of modules can be rep-
resented as a multigraph, where each vertex represents a module. If the body
of module Z contains an instance of module X , we say “X is a direct sub-
module of Z.” Corresponding to this instance of X within the body of Z, the
dag contains an arc from the vertex representing Z to the vertex represent-
ing X . If there is a directed path from Z to X , we say “X is a submodule
of Z.”

In this dag representation, only one copy of the design data for each module
is kept, regardless of the number of the instances of the module involved in
the design. The dag representation uses an appropriate stamp to keep track of
information about instances of submodules within other modules, such as the
two instances of T within W . Since the dag representation reduces duplication
of design module descriptions, it is more space efficient to store hierarchically
specified design data this way. Also, designers typically use a hierarchical
approach to design their modules, so the dag would typically capture the design
in the form specified by the designer.

An issue in the formulation of the dag model is that sometimes designers
want to have alternative designs for a given module, and sometimes want to use
different designs for different instances of a given submodule within a higher
level module. We consider the following problem: how to succinctly represent
hierarchically specified design module data that supports design alternatives
and version control. To illustrate this problem, consider the example shown
in Fig. 7.4, where the three multigraphs represent three different versions of a
design module H .

The conventional dag representation, as depicted in Fig. 7.3, involves no
control over expansion. In the forest represented by such a dag, all the subtrees
corresponding to a given vertex of the dag are identical; therefore, expansion
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Figure 7.1.

Figure 7.2.

control is needed to represent versions and alternatives. The emphasis of this
work is on the foundation of mechanisms for controlling expansions. We focus
on using the identity of ancestors to control expansion.
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Figure 7.3.

Figure 7.4.

Since we do not want to keep multiple copies of the same module for differ-
ent versions, we can use the following scheme, as illustrated in Fig. 7.5, to store
versioned hierarchically specified design module data. Under this scheme, we
create one source vertex for each design version of module H (note that these
newly added source vertices are “dummies” that do not contain actual design
data), and we place labels on each arc to indicate to which version or versions
the arc belongs. Since the amount of storage for the labels would generally be
relatively small compared with the amount of storage saved from eliminating
duplicated copies of submodules, this representation is more succinct than a
method that keeps all of the design data for each version in separate files. If
the number of versions is large and the differences between versions are rela-
tively small, the storage savings can be quite significant.
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Figure 7.5.

Figure 7.6.

Of course, since we are concerned with succinctness of the design repre-
sentation, we would like to represent the labels succinctly. For example, in
Fig. 7.5, we might use {M} as the label for the arc from M to O, instead of
{V 1, V 2}, since every instance of M in the forest of Fig. 7.4 contains an in-
stance of O. Thus it is appealing to consider a more general scheme in which
the elements of a label for an arc from u to v are either u or some ancestors of
u in the dag. The example in Fig. 7.6 illustrates how the generalized scheme
can be used to represent the three designs of Fig. 7.4.
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The VDAG model is a formalization of the technique used in Figs. 7.5 and
7.6, which blends in concerns over version control, design alternatives, and
hierarchy by representing hierarchical specifications through alternate expan-
sions of hierarchical modules (“VDAG” stands for versioned dag). The VDAG
model features an ancestor-based expansion scheme to control which instances
of submodules are to be placed within each instance of a given module. The
approach is aimed at reducing storage space in engineering design database
systems and providing a capability for designers to specify alternate expan-
sions of a module. The VDAG model is not restricted to any specific design
applications, such as VLSI design or civil engineering design.

In this formalization, each module is represented by a VDAG vertex having
a unique tag. Each possible use of one module as a direct instance within a
larger module is represented as a VDAG arc. The arc is labeled with a specifi-
cation as to when the potential instance should indeed be a real instance within
the larger module. This specification is ancestor-based. It can say that the in-
stance should always be included within the larger module, or it can say that
the instance should be included only if some member of a given list of modules
is an ancestor of the larger module.

Not every design forest can be generated by a VDAG. The issue of which
design forests can be represented by VDAGs is explored here. A forest that
cannot be generated by a VDAG would have to be modified in order to be
VDAG-generable. Such a modification would take the form of changing the
identity of some of the vertices in the forest so that they can be represented by
distinct vertices in the VDAG. However, a conventional model of hierarchical
designs, where all expansions are unconditional, would require more duplica-
tion than the VDAG model requires. Atypical conventional CAD system might
have a file for each module, perhaps with the file name the same as the module
name. If a variant of a given module is needed, the file is copied, modified ap-
propriately, and the variant module is renamed. Instances of the given module
(within larger modules) that are to use the new variant are modified to use the
new module name.

In [18] we introduced the VDAG model, provided some algorithms to
process VDAGs, and investigated some combinatorial problems involved in
processing a given VDAG.

The remaining sections are organized as follows. In Sect. 2, we present
some basic definitions and concepts. In Sect. 3, we investigate the expressive
power of the VDAG model. The complexity of determining whether a design
forest can be generated by a VDAG is examined in Sect. 4. An important
natural class of design forests is identified in Sect. 5, and a polynomial time
algorithm is provided to build a VDAG, when one exists, for a given design
forest in that class. In Sect. 6, we address the search space issue in construction
of arc labels. In Sect. 7, non-VDAG-generable forests are dealt with. The
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relative conciseness of the VDAG model in comparison with the conventional
dag model is examined in Sect. 8. Simplification problems are considered in
Sect. 9.

2. Basic Definitions and Concepts

DEFINITION. In a dag G(V, A), where V is a set of vertices and A a set of
arcs, a vertex u is an ancestor of a vertex v if u is v or there is a directed path
from u to v in G.

DEFINITION. A design tree is a triple (T, t, st) where T is a tree, t is a function
that assigns each vertex v of T a value t(v) called the tag of v, and st is a
function that assigns each arc a of T a value st(a) called the stamp of a.

In a design tree, each vertex v represents a module. The tag t(v) on a ver-
tex v contains the design data for the module represented by that vertex. We
assume that a portion of a tag serves as a module identifier. The information
in the tag may also include an interface description describing how the module
is connectable when used as a direct submodule within a larger module. For
example, the tag might contain a formal parameter list, comparable to a list of
input and output ports of a VLSI module.

An arc a from vertex u to vertex v represents an instance of module v as
a submodule occurring within module u. For arc a, the stamp st(a) is the
information specifying how the instance of v occurs inside u. For example,
the stamp may specify the location and/or orientation of the instance within u.
The stamp might also contain an actual parameter list; for instance, in the VLSI
application st(a) might specify which signal of u is connected to each port of
the instance.

Note that a design tree is an unordered tree. If it is desired that the ordering
of children of a vertex should have some significance, this ordering information
can be incorporated in the stamps on the arcs going to the children. In that case,
the arcs existing from the same vertex will have distinct stamps.

DEFINITION. A design forest is a set of design trees such that each tag of a
root vertex contains an identifier occurring nowhere else in the forest.

The tag on the root of each tree serves to uniquely identify the tree as a
design module, or perhaps as a particular version or alternative of a design
module.

In the future we often use “tree” and “forest” to mean design tree and design
forest, respectively.

DEFINITION. A VDAG is a four tuple (G, t, st , l), where G is a directed,
acyclic multigraph with vertex set V and arc set A; t is a function mapping
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each vertex v to a unique value denoted by t(v), (t for tag); st is a function
mapping each arc a to a value denoted by st(a), (st for stamp); and l is a
function mapping each arc a to a nonempty subset of ancestors of the vertex
exited by a, and is denoted by l(a) (l for label ).

Since each VDAG vertex has a tag containing a unique identifier, we assume
that a label l(a) for an arc a is represented as a list of tag identifiers. (For
convenience in presenting results and examples, we will often equate a tag with
its tag identifier, but in practice we anticipate that a vertex would contain an
entire tag, and a label would contain just tag identifiers.) The interpretation of
element w in l(a), where arc a goes from u to v, is that whenever an instance of
module w has an instance of u as a submodule, or a submodule of a submodule,
etc., then each instance of u within the instance of w should contain an instance
of v within the instance of u. This concept is formalized below in the definition
of a “generating path.”

Each vertex of the VDAG might have the format shown in Fig. 7.7, where
vertex v has k exiting arcs pointing to (not necessarily distinct) submodules
v1, . . . , vk. The connection data contains stamps, labels, and pointers to sub-
modules. The design data contains the tag of v. Fig. 7.7 is only intended to be
suggestive of how the design information might be stored, and many variations
are possible. For instance, there might be a separate file for each VDAG vertex.

EXAMPLE. Given a forest of two trees representing two versions of a design as
shown in Fig. 7.8(a), a possible VDAG representation is shown in Fig. 7.8(b).
(In this example, the arcs all have stamp δ.)

From the examples given above, we observe that if there is a path in the
forest that starts at a root vertex with tag A and ends at a vertex with tag B,
then module A contains an instance of B as a submodule. Each such path in
the forest corresponds to a VDAG path that starts at the vertex with tag A and
ends at the vertex with tag B, and has appropriate labels and stamps on its arcs.
Similarly, for each properly labeled path in the VDAG, there should be a cor-
responding path in the design forest. However, care is needed in formalizing

Design data for vertex v
tag(v)

Connection data Connection data Connection data
for arc a1: for arc a2: for arc ak:
stamp(a1), stamp(a2), . . . stamp(ak),
label(a1), label(a2), label(ak),
pointer to(v1) pointer to(v2) pointer to(vk)

Figure 7.7.
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Figure 7.8.

the concept of properly labeled paths. For instance, in Fig. 7.8(a), A contains
D but B does not, even though there may seem to be a path from B to D in
Fig. 7.8(b). To capture the concept of a properly labeled VDAG path, which
corresponds to the containment relationship, we formulate the following def-
inition. The idea behind this definition is that a given path can be extended
by a given arc exiting the path’s endpoint only if the path contains at least one
vertex that is an element of the given arc’s label.

DEFINITION. In a given VDAG (G, t, st , l), a valid path is either a single ver-
tex v0, or is a sequence of arcs a1, a2, . . . , ak in A, k ≥ 1, such that there exist
vertices v0, v1, . . . , vk for which for all i, 1 ≤ i ≤ k, arc ai connects vi−1 to vi,
and the intersection of l(ai) and {v0, v1, . . . , vi−1} is nonempty. A generating
path is a valid path whose initial vertex is a source of G.

Note that, by the definition of a generating path, for each source vertex
v in V , there is a generating path from v to v, and if a sequence of arcs
a1, a2, . . . , ak is a generating path, then so are each of its prefixes of the form
a1, a2, . . . , aj , where 1 ≤ j < k. The significance of a generating path from v0

to vk is that an instance of module v0 contains an instance of vk as a submod-
ule because of that generating path. In particular, v0 contains an instance of v1,
which in turn contains an instance of v2, etc. The generating path corresponds
to this sequence of nested module instances.

DEFINITION. Given a VDAG β, the exploded forest generated by β is a forest
F with a distinct vertex for each distinct generating path in β. The tag on the
vertex corresponding to such a path is the same as the tag of the last vertex
in the path. For each source vertex v0 in β, forest F contains a root vertex
corresponding to the generating path consisting of the single vertex v0. For
each generating path consisting of a single arc a from a source vertex v0 to a
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vertex v1, the tree vertex corresponding to the generating path v0 is the parent
of the tree vertex corresponding to the generating path a. For each generating
path a1, . . . , ak, having at least two arcs, the tree vertex corresponding to the
generating path a1, . . . , ak−1 is the parent of the tree vertex corresponding to
a1, . . . , ak. There are no other vertices and arcs in F . The stamp on the tree
arc between a parent and a child is the same as the stamp of the last arc in the
generating path for the child. Given a VDAG β, we will denote the exploded
forest generated by β as Fβ . We say that a design forest F is VDAG-generable
if there exists a VDA β such that F = Fβ .

Given a VDAG β, the exploded forest generated from the VDAG is a set
of design trees, with a tree root for each source vertex in β. The relationship
between a given VDAG and this set of design trees constitutes the meaning of
the VDAG; the purpose of the VDAG is to represent the set of design trees that
it generates.

Recalling Fig. 7.8, the exploded forest generated by the VDAG in Fig. 7.8(b)
is the forest shown in Fig. 7.8(a). Figure 7.9 is the exploded forest generated
by the VDAG in Fig. 7.6.

Figure 7.9.

We now show that the problem of finding a VDAG that generates a given
forest is no harder than the problem of finding a VDAG that generates a given
tree. Consider an algorithm SUPERTREE, which given a forest F containing
k trees with source tags s1, s2, . . . , sk, as shown in Fig. 7.10(a), returns a forest
consisting of a single tree, as follows. (1) Add a “super source” with a tag S
not in F ; (2) make s1, s2, . . . , sk each a child of S where the stamps on the
arcs from S to its children are assigned arbitrary unique values δ1, δ2, . . . , δk,
as shown in Fig. 7.10(b).
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Figure 7.10.

PROPOSITION 2.1. A forest F is VDAG-generable if and only if SUPER-
TREE(F ) is VDAG-generable.

Proof. (if) Suppose that a VDAG α, as shown in Fig. 7.10(c), generates
SUPERTREE(F ). A VDAG β generating F can be constructed from α as
follows. First vertex S and its exiting arcs are deleted. Then each occurrence
of S as a label element in a remaining arc, say from vertex u to vertex v, is
replaced by those members of the set {s1, s2, . . . , sk} that are ancestors of u.
(VDAG α and β are illustrated in Figs. 7.10(c) and (d), respectively.) It is easy
to see that β generates F .

(only if) Suppose a VDAG β, as shown in Fig. 7.10(d), generates F . Then
SUPERTREE(F ) is generated by the VDAG a shown in Fig. 7.10(c), which is
obtained from β by adding a new vertex of tag S and for each i, 1 ≤ i ≤ k,
one arc from S to si with stamp δi and label {S}. �

From the proof of Proposition 2.1, we observe that the problem of finding
a VDAG that generates a given forest is not significantly harder for forests
containing multiple trees than for forests containing a single tree.

A VDAG arc, vertex, or label element that is uninvolved in any generating
path is useless in producing the exploded forest represented by the VDAG. The
set of VDAGs without such useless components can be formalized as follows.
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DEFINITION. A VDAG is valid if each arc occurs on some generating path,
and if each element of each arc label occurs on some generating path that leads
to the vertex exited by the arc.

LEMMA 2.2. Given an invalid VDAG α, here exists a valid VDAG that gen-
erates the same forest as α does.

Proof. Let β be the VDAG obtained from α by deleting vertices and arcs that
do not occur on any generating paths, and deleting arc label elements that do
not occur on any generating path leading to the vertex exited by the arc. Then
β is a valid VDAG that generates the same forest as α. �

3. Expressive Power of the VDAG Model

In Sect. 1, we pointed out that there are certain forests that are not VDAG-
generable. This is a consequence of the requirement that each VDAG vertex
has a unique tag, and that in generating the exploded forest represented by a
given VDAG, the expansion of a given vertex in the forest can depend only on
the ancestors of that vertex.

For example, there are no VDAGs that generate the design forests in
Fig. 7.11(a) and Fig. 7.11(b), since each tree contains two instances of B that
are indistinguishable by the tags of their ancestors, but which are expanded
differently. It is also the case that the VDAG model cannot be used for forests
that represent recursively defined design modules. An example of such a forest
is shown in Fig. 7.11(c).

Figure 7.11.

If a given design forest cannot be generated by a VDAG, the forest can be
modified by using new tag values for certain vertices. For instance, in each
of the examples of Fig. 7.11, one of the B vertices could have its tag changed
to B′, and the modified design forest would be VDAG-generable. The VDAG
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would have separate vertices with tags B and B′, with replication of data in
the tag.

We now investigate the conditions under which a design forest F can be
generated by a VDAG.

DEFINITION. Given a vertex u in a forest F , pathtag(u) is the set of all tags
of vertices on the path from a forest root to u (including the tag of u itself). For
each tag in F , anctag(t) is the union of pathtag(u) over all vertices having
tag t.

Consider a forest F and a given tag t. Consider the set of paths starting at
a root and ending at a vertex with tag t. As shown in Fig. 7.12, let these paths
be p1, p2, . . . , and pk, having endpoints u1, u2, . . . , uk, respectively. Suppose
there is a ui, 1 ≤ i ≤ k, having m exiting arcs with stamp δ that enter vertices
with tag t′, m ≥ 0, and there is a uj , i ≤ j ≤ k, j �= i, having n exiting arcs
with stamp δ that enter vertices with tag t′, where n > m. Then in each VDAG
that generates F , if any, there must be at least n arcs with stamp δ going from
t to t′. Furthermore, of this set of arcs, there must be n−m arcs having labels
that are each disjoint from pathtag(ui) but not disjoint from pathtag(uj). In
other words, there must be n − m arcs whose label l satisfies the conditions
that l ∩ pathtag(ui) �= ∅ and l ∩ pathtag(uj) �= ∅. An obvious necessary
condition for this is that pathtag(uj)− pathtag(ui) is nonnull. However, the
requirements on the VDAG are more subtle.

Figure 7.12.

DEFINITION. For a given forest F , tag t, tag t′, and stamp δ, if F contains at
least one arc with stamp δ going from a vertex with tag to a vertex with tag
t′, we say that (t, t′, δ) is a relevant triple for F . We call a forest or VDAG
arc that exits a vertex with tag t, enters a vertex with tag t′, and has stamp δ, a
(t, t′, δ)-arc.
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It will turn out that whether or not a given forest is VDAG-generable in-
volves a certain combinatorial property for each relevant triple. First consider
the following definitions pertaining to relevant triples.

DEFINITION. Given a vertex u with tag t, a tag t′, and a stamp δ in a forest
F , let num(u, t′, δ) be the number of (t, t′, δ)-arcs exiting from u. Given a
relevant triple (t, t′, δ) for F , let maxnum(t, t′, δ) be the maximum number of
(t, t′, δ)-arcs exiting from a vertex with tag t, i.e.,

maxnum(t, t′, δ) = max{num(u, t′, δ) | u has tag t},

and let totnum(t, t′, δ) be the total number of (t, t′, δ)-arcs, i.e.,

totnum(t, t′, δ) =
∑

vertices u with tag t

num(u, t′, δ).

To capture the labeling requirements imposed by F , we define the concept
of a “number function” for a relevant triple, as follows.

DEFINITION. Given a design forest F and a relevant triple (t, t′, δ), a number
function Nt,t′,δ for F and (t, t′, δ) is a mapping from the nonempty subsets of
anctag(t) to the nonnegative integers, i.e.,

Nt,t′,δ : (2anctag(t) − ∅) → N,

such that for all vertex u in F with tag t,

num(u, t′, δ) =
∑

γ such that γ ∩ pathtag(u)�=∅
Nt,t′,δ(γ).

The intuition behind a number function is that it specifies the number of arcs
having each label in a particular VDAG for F ; i.e., Nt,t′,δ(γ) is the number of
(t, t′, δ)-arcs labeled with γ. One observation on Nt,t′,δ is that it need not be
unique.

We now define some properties that will characterize the VDAG-generable
forests.

DEFINITION. A design forest F is tag-acyclic if merging vertices of F with
the same tag does not create cycles.

DEFINITION. A relevant triple for a design forest is labelable if a number
function exists for it. A design forest is labelable if all of its relevant triples
are labelable.

DEFINITION. A design forest is well structured if it is tag-acyclic and la-
belable.
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It will be shown that a given forest is VDAG-generable if and only if it is
well structured.

LEMMA 3.1. Every well-structured design forest is VDAG-generable.

Proof. Consider a well-structured design forest F . Consider any directed
multigraph with a vertex for each tag occurring in F , and a set of arcs satisfy-
ing the constraint that there is an arc from the vertex with tag t to the vertex
with tag t′ only if F contains an arc from a vertex with tag t to a vertex with
tag t′. Since F is tag-acyclic, any such multigraph is acyclic.

Now consider the following directed acyclic multigraph a of the above form.
Multigraph α has a vertex for each tag occurring in F . For each relevant triple
(t, t′, δ), let Nt,t′,δ be a number function; since F is labelable, such a number
function exists. Based on this number function, multigraph α is given a set
of labeled (t, t′, δ)-arcs. For each set γ such that Nt,t′,δ(γ) is nonzero, the
number of (t, t′, δ)-arcs with label γ in a is Nt,t′,δ(γ). Note that the elements
of each such label γ are ancestors of the vertex for t in α; therefore, the labeled
directed acyclic multigraph α is a VDAG. The constraints on Nt,t′,δ guarantee
that the exploded forest generated by α is the original design forest. �

LEMMA 3.2. If a design forest is VDAG-generable, it is well structured.

Proof. Consider a design forest F . Suppose F is generated by VDAG α. By
Lemma 2.2, we may assume that α is valid.

Since α does not contain cycles and each arc of F corresponds to an arc of
whose endpoints have the same tags as the arc in F , F must be tag-acyclic.

The remaining task is to show that F is labelable. We claim that for each
relevant triple (t, t′, δ) for F , a number function Nt,t′,δ exists. For a given tag t,
let vt be the vertex of α whose tag is t. Because α is valid, every label element
x occurring in the label of an arc exiting the VDAG vertex vt has the property
that α has a generating path p going from a source vertex to vertex vt, such
that x occurs on p. Since forest F is the exploded forest generated from α, F
contains a vertex u corresponding to path p. This vertex u has tag t, and has x
as a member of pathtag(u). Consequently, x is a member of anctag(t). Since
this is true for each label element of each arc exiting vt, the label of each arc
exiting vt is a nonempty subset of anctag(t). Now, on the basis of α, define
a function Nt,t′,δ from (2anctag(t) − ∅) to N as follows. For each nonempty
subset γ of anctag(t), define Nt,t′,δ(γ) to be the number of (t, t′, δ)-arcs in α
with label γ.

We now show that the specified function Nt,t′,δ is indeed a number function
for F . Consider a vertex u of F having tag t. Since F is the exploded forest
generated from α, VDAG α has a generating path p corresponding to u, such
that this generating path ends at the vertex vt, whose tag is t. Furthermore,
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each (t, t′, δ)-arc exiting vertex u in F corresponds to an extension of path
p to a longer generating path by the use of a VDAG arc having stamp δ that
exits vt and enters the vertex vt′ , having tag t′, such that the arc’s label γ
has a nonnull intersection with the vertices in path p. Since γ is a subset of
anctag(t), this arc contributes to the value of Nt,t′,δ(γ). Thus num(u, t′, δ)
equals the number of (t, t′, δ)-arcs in α having a label whose intersection with
the vertices on path p is nonempty. Furthermore, each such arc has a label that
is a subset of anctag(t). Consequently,∑

γ such that
γ∩pathtag(u)�=∅

Nt,t′,δ(γ) = num(u, t′, δ).

Therefore, for each relevant triple (t, t′, δ), the specified function Nt,t′,δ is in-
deed a number function for F . Hence F is labelable. �

A consequence of Lemmas 3.1 and 3.2 is the following.

THEOREM 3.3. A design forest is VDAG-generable if and only if it is well
structured.

4. VDAG Construction

We now consider the problem of determining if a given design forest F is
well structured. First consider tag-acyclicity. To test tag-acyclicity, a given
forest can be collapsed into a graph having single vertex for each tag in the
forest (thereby merging all forest vertices having the same tag), and having
a single arc for all the forest arcs whose endpoints have the same tag. This
conversion is described in algorithm COLLAPSE, shown in Fig. 7.13.

ALGORITHM COLLAPSE

Input: forest F = (T, t, st)
Output: a graph

1 for each distinct tag t in F , create a vertex with tag t and call the vertex t;

2 for each pair of tags (t, t′) such that in F , a vertex with tag t is a parent of a vertex with
tag t′, create an edge from t to t′ in the graph.

Figure 7.13.

PROPOSITION 4.1. A forest F is tag-acyclic if and only if COLLAPSE(F ) is
acyclic.

Proof. The proof is obvious. �
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An observation on the tag-acyclicity of a forest F is that it can be tested
in linear time. The graph COLLAPSE(F ) can be constructed in linear time,
and a topological sorting on COLLAPSE(F ) can be done in time linear in its
size [12].

If a given forest F is tag-acyclic, we can perform a labelable test on F to
determine whether it is well structured. Detecting the labelable condition, how-
ever, can be a difficult computational task, as indicated by the following result.
The problem of determining if a forest is VDAG-generable is NP-complete;
furthermore, the problem is NP-complete even for forests of bounded height.

DEFINITION. The height of a forest F is the number of arcs on a longest path
from a source vertex to a leaf vertex. The depth of a vertex u in a forest is the
number of arcs on the path from a source vertex to u.

We observe that Proposition 2.1 implies that (1) if the VDAG-generability
problem for forests of height h is NP-hard, the VDAG-generability problem
for trees of height h + 1 is also NP-hard; and (2) if the VDAG-generability
problem for trees of height h is computationally easy, the VDAG-generability
problem for forests of height h− 1 is also easy.

The following result concerns the size of a VDAG with respect to the size
of a forest it represents.

THEOREM 4.2. For a VDAG-generable forest F and a number function
Nt,t′,δ for F , it is the case that

∑
γ∈(2anctag(t)− ∅)

Nt,t′,δ(γ) ≤ totnum(t, t′, δ).

Proof. Consider a number function Nt,t′,δ for relevant triple (t, t′, δ). For each
vertex u with tag t and at least one exiting (t, t′, δ)-arc, it is the case that

num(u, t′, δ) =
∑

γ such that γ∩pathtag(u)�=∅
Nt,t′,δ(γ).

Because of the above equality, it is possible to associate each of the forest arcs
that contribute to num(u, t′, δ) with a set γ having a nonnull intersection with
pathtag(u), such that exactly Nt,t′,δ(γ) of these arcs are associated with each
set γ. Since the association can be done for each vertex u having tag t, each
arc that contributes to totnum(t, t′, δ) is associated with exactly one set γ.

Now consider a set γ such that Nt,t′,δ(γ) has a nonzero value, say k. Be-
cause γ is a nonnull subset of anctag(t), F contains a vertex u with tag t such
that γ ∩ pathtag(u) is nonnull. Consequently, there are k arcs exiting u that
have been associated with γ. Since this is true for each γ, and the total number
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of arcs available for association is only totnum(t, t′, δ), it is the case that

∑
γ∈(2anctag(t)− ∅)

Nt,t′,δ(γ) ≤ totnum(t, t′, δ).
�

THEOREM 4.3. For each h ≥ 4, given a design tree F of height h that is tag-
acyclic, the problem of determining if F is VDAG-generable is NP-complete.

Proof. Theorem 3.3 implies that F has a VDAG representation if and only if
a labeling can be found. By Theorem 4.2, for each relevant triple (t, t′, δ), the
number of sets γ such that Nt,t′,δ(γ) is nonzero cannot exceed the number of
vertices in F . Thus a nondeterministic Turing machine can guess a labeling
and verify in time polynomial in the size of F that the labeling satisfies the
constraints of the labelable condition. Consequently, the set of well-structured
forests is in NP.

The NP-hardness is by a reduction from the Graph 3-Coloring Problem (for
undirected graphs) [4].

Figure 7.14. Figure 7.15.

Consider graph G(V, E), where V = {v1, v2, . . . , vn}, which is to be 3-
colored. We construct a design tree F as follows. The root of F , denoted root,
has tag r. For each vi in V , F contains four distinct tags, v1

i , v
2
i , a

1
i , and a2

i .
Also, for each vi in V , root has two subtrees, headed by v1

i and a1
i respectively,

as shown in Fig. 7.14. For each edge (vi, vj) in V , i < j, the vertex with tag
v1
i previously placed in F has a subtree, headed by v2

j , as shown in Fig. 7.15.
F also contains three distinct tags b1, b2, and Q, where root has two subtrees,
headed by Q and b1, respectively, as shown in Fig. 7.16. All arcs in F have
stamp δ.
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Figure 7.16.

Figure 7.17.

For instance, given the Graph 3-Coloring instance shown in Fig. 7.17, the
constructed forest F is shown in Fig. 7.18. A VDAG generating F is shown in
Fig. 7.19.

Note that the size of F is linear in the size of the given graph, that F has
height 4, and that F is tag-acyclic. Also, as illustrated in Fig. 7.19, we observe
that all arcs, except for (t, t′, δ)-arcs, can be labeled by {r}; so there is clearly
a number function for each relevant triple, with the possible exception of the
triple (t, t′, δ).

Suppose F can be generated by a VDAG. Consider VDAG arcs from t to
t′. Since the forest paths r, b1, b2, t and r, a1

i , a
2
i , t, for 1 ≤ i ≤ n, end in

vertices with no children, the VDAG cannot contain any (t, t′, δ)-arc whose
label contains r, t, b1, b2, a1

i , or a2
i .

For each i, 1 ≤ i ≤ n, the paths r, a1
i , v

2
i , t and r, v1

i , a
2
i , t require that v1

i

and v2
i each must appear in exactly one (t, t′, δ)-arc label, since each of the

occurrences of t on the two paths has only one child whose tag is t′. Because
the occurrence of t in path r, v1

i , v
2
i , t has exactly one child of tag t′, tags v1

i

and v2
i must appear in the same (t, t′, δ)-arc label.
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Figure 7.19. All arcs whose label is not shown have label {r}. All arcs have stamp δ

Consider the path r, Q, b2, t. Since this t has 3 children whose tag is t′, the
VDAG must contain exactly three (t, t′, δ)-arcs whose labels contain Q. For
each i, 1 ≤ i ≤ n, because of the path r, Q, v2

i , t, where this occurrence of t
has 3 children whose tag is t′, the (t, t′, δ)-arc in whose label v1

i and v2
i occur

must be one of the three (t, t′, δ)-arcs whose label contains Q. All possible la-
bel elements have now been accounted for. The VDAG must have exactly three
(t, t′, δ)-arcs. The label of each of these three arcs must contain Q, plus some
subset of tags corresponding to the members of V , with each v1

i , v2
i pair occur-

ring on exactly one of these three arcs. The occurrence of tags corresponding
to each member of V in the label of exactly one of these three VDAG arcs
represents an assignment of one of three colors to each member of V .

Now consider each edge e in E. Suppose e = (vi, vj), where i < j. F
contains a path r, v1

i , v
2
j , t, where this occurrence of t has two children whose

tags are t′. This requires that {v1
i , v

2
i } and {v1

j , v
2
j } occur in the labels of two

distinct (t, t′, δ)-arcs of the VDAG, i.e., vi and vj must be assigned different
colors in G. Thus if F is VDAG-generable, then graph G is 3-colorable.

If G is 3-colorable, we can construct a labeling for (t, t′, δ) as follows. For
each set of vertices vc1 , . . . , vck

of G which have the same color, let there be
a VDAG arc with label {Q, v1

c1 , v
2
c1 , . . . , v

1
ck

, v2
ck
}. By the previous discussion,

this is indeed a labeling for (t, t′, δ). Hence F is VDAG-generable.
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The above reduction can be easily extended to construct an F having any
height h ≥ 4. �

In contrast to Theorem 4.3, the VDAG-generability of height 3 design trees
can be determined in polynomial time, as shown in the following results.

DEFINITION. Given a design forest F , a relevant triple (t, t′, δ) of F is
number-compatible if for all vertices u and v of tag t, pathtag(u) ⊆ pathtag(v)
implies num(u, t′, δ) ≤ num(v, t′, δ). F is number-compatible if every rele-
vant triple of F is number-compatible.

It is easy to see that given a forest F , in polynomial time we can determine
whether F is number-compatible. The following result shows that number-
compatibility is a necessary condition for labelability.

LEMMA 4.4. If a design forest is labelable, then it is number-compatible.

Proof. Let (t, t′, δ) be a relevant triple of a labelable design forest F . Since F
is labelable, a number function Nt,t′,δ exists, where for all vertices w of tag t
in F , ∑

γ: γ∩pathtag(w)�=∅
Nt,t′,δ(γ) = num(w, t′, δ).

Now consider two vertices of tag t in F , say u and v, such that pathtag(u) ⊆
pathtag(v). Then for all γ ∈ (2anctag(t) − ∅), if γ ∩ pathtag(u) �= ∅ then
γ ∩ pathtag(v) �= ∅. But this in turn implies that

∑
γ:γ∩pathtag(u)�=∅

Nt,t′,δ(γ) ≤
∑

γ:γ∩pathtag(v)�=∅
Nt,t′,δ(γ).

Hence num(u, t′, δ) ≤ num(v, t′, δ), so (t, t′, δ) is number-compatible. Since
this is true for all relevant triples, F is number-compatible. �

Our next results show that a design tree of height at most 3 is VDAG-
generable if and only if it is tag-acyclic and number-compatible.

LEMMA 4.5. Let F be a tag-acyclic design tree of height at most 3. If F is
number-compatible, then F is labelable.

Proof. Let (t, t′, δ) be a relevant triple of F , and let

minnum(t, t′, δ) = min{num(u, t′, δ) | u has tag t}.

If maxnum(t, t′, δ) = minnum(t, t′, δ), then for all vertices u and v with tag t,
num(u, t′, δ) = num(v, t′, δ), and (t, t′, δ) is labelable since we can specify a
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number function Nt,t′,δ by assigning Nt,t′,δ({t}) = minnum(t, t′, δ), and for
all nonempty γ ⊆ anctag(t) where γ �= {t}, Nt,t′,δ(γ) = 0.

So now suppose that minnum(t, t′, δ) < maxnum(t, t′, δ), and we need to
find a number function for (t, t′, δ). Note that for any vertex u, with tag t,
occurring at depth 0 or 1 in F , num(u, t′, δ) = minnum(t, t′, δ). Also, since
the height of F is at most 3, if there is a vertex u of depth 3 with tag t, this
u has no children; so, in this case, num(u, t′, δ) = 0 = minnum(t, t′, δ).
Thus, every vertex u for which num(u, t′, δ) > minnum(t, t′, δ) is of depth 2.
Suppose q is the tag of a depth 1 vertex, having a (depth 2) child whose tag
is t. Since F is number-compatible, all depth 2 vertices u having tag t and a
parent whose tag is q have the same value for num(u, t′, δ). Let this value be
designated as enum(q, t, t′, δ). For a tag q′ that is not the tag of any depth 1
vertex having a child whose tag is t, let enum(q′, t, t′, δ) be undefined.

We now construct Nt,t′,δ as follows. We assign Nt,t′,δ({t}) =
minnum(t, t′, δ). For each q for which enum(q, t, t′, δ) is defined, we assign
Nt,t′,δ({q}) = enum(q, t, t′, δ) − minnum(t, t′, δ). For all other nonempty
subsets γ of anctag(t), we assign Nt,t′,δ({γ}) = 0. By number-compatibility
of F and our previous discussion, it is easily verified that Nt,t′,δ is indeed a
number function for (t, t′, δ).

Since the above construction of a number function can be applied to all of
the relevant triples of F , F must be labelable. �

THEOREM 4.6. A design tree F of height at most 3 is VDAG-generable if and
only if it is tag-acyclic and number-compatible.

Proof. The proof is a direct result from Theorem 3.3 and Lemmas 4.4 and 4.5. �

THEOREM 4.7. The VDAG-generability problem for trees of height at most 3
can be solved in polynomial time.

Proof. Tag-acyclicity and number-compatibleness of design trees can each be
tested in polynomial time. By Theorem 4.6, these tests are sufficient to deter-
mine whether a design tree of height 3 is VDAG-generable. �

5. Stamp Uniqueness Property and the Effect of Bounded
Stamp Multiplicity

It is likely that in many design applications, for instance, applications in civil
engineering design, mechanical design, or VLSI layout, the stamps on the arcs
exiting from any given design tree vertex and entering vertices with the same
tag would have to be distinct (e.g., it is not meaningful or useful in the design
application for two instances of the same type of submodule to be placed in
exactly the same position within a larger module). The class of design objects
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having this property is important, and covers the forests that would arise in
many design systems. In this section we formalize this class of design forests,
characterize the VDAGs that generate members of this class, and show that it
is computationally easy to determine if a given forest in this class is VDAG-
generable. This contrasts with the computational difficulty of determining if
an arbitrary forest is VDAG-generable.

DEFINITION. Given a design forest F , let

stpmult(F ) = max
u,t′,δ

{num(u, t′, δ)}

Given a VDAG α, let

stpmult(α) = max{m | α contains vertices u and v such that there are m
arcs from u to v having the same stamp.}

Stpmult stands for stamp multiplicity.

We now show that determining whether a given forest is VDAG-generable
is NP-complete, even for forests whose stamp multiplicity is 2.

THEOREM 5.1. It is NP-complete to determine whether a given forest F ,
where stpmult(F ) = 2, is VDAG-generable.

Proof. The argument for membership in NP is the same as in the proof of
Theorem 4.3. The NP-hardness proof is by a reduction from Not-All-Equal
3SAT, which is known to be NP-complete [4]. A Not-All-Equal 3SAT instance
consists of a set of variables X and a set of clauses C, each of which contains
three literals. The computational problem is whether there is a truth assignment
to the variables such that each clause has at least one literal true and at least
one literal false.

Consider a given Not-All-Equal 3SAT instance with X = {x1, x2, . . . , xn}
and C = {c1, c2, . . . , cm}, where for each j, 1 ≤ j ≤ m, cj contains literals
l1j , l2j , and l3j , and the index of the variable corresponding to l1j is less than
the index of the variable corresponding to l2j , which in turn is less than the
index of the variable corresponding to l3j . Construct the forest F consisting
of the single tree whose form is shown in Fig. 7.20. For example, given the
Not-All-Equal 3SAT instance shown in Fig. 7.21, the constructed forest F is
shown in Fig. 7.22, and a VDAG generating F is shown in Fig. 7.23. Note that
stpmult(F ) = 2, F is tag-acyclic, and the size of F is linear in m and n. Also
note that there is a number function for each relevant triple, with the possible
exception of (A, B, δ).

Suppose the forest is VDAG-generable, and consider relevant triple
(A, B, δ). Consider the occurrences of A in paths S, W , A; S, Y , A; S,
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Figure 7.20.

X = {x1, x2, x3}
C = {(x1, x̄2, x3), (x1, x2, x̄3)}

Figure 7.21.

Figure 7.22.

Z, A and for each j, 1 ≤ j ≤ m, S, cj , A. Since each such A has no child
with tag B, it follows that S, W , Y , Z, cj , and A cannot appear in the label of
any VDAG arcs from A to B. Consider paths S, W , T , A; S, W , F , A and
for each i, 1 ≤ i ≤ n, S, W , xi, A and S, W , x̄i, A. Since each occurrence
of A in each of these paths has exactly one child with tag B, it follows that
T , F , xi, x̄i each appears in the label of exactly one VDAG arc from A to B.
Consider paths S, Y , T , F , A and S, Y , xi, x̄i , A, where each occurrence
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Figure 7.23.

of A has two children with tag B. It follows that T and F have to be in two
different labels; and similarly, xi and x̄i have to be in two different labels. Be-
cause each occurrence of A on paths S, Z, T , F , xi, A and S, Z, T , F , x̄i,
A has two children with tag B, xi and x̄i must be in the labels containing T
or F . It follows that there must be exactly two VDAG arcs with stamp δ from
A to B. Now consider, for each j, 1 ≤ j ≤ m, the occurrence of A in the
path S, cj , l1j , l2j , l3j , A. This A has two children with tag B, hence at least
one of the three literals must appear in the label containing T and at least one
of the three literals must appear in the label containing F . We may interpret
the literals in the label containing T as being assigned true and the literals in
the label containing F as being assigned false in the truth assignment for the
Not-All-Equal 3SAT instance. Thus the appearance of literals in the two arcs
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from A to B in a VDAG generating F represent a not-all-equal satisfying truth
assignment.

By the above discussion, the given Not-All-Equal 3SAT has a satisfying
truth assignment if and only if there is a labeling on VDAG arcs from A to B,
that is, if and only if F is VDAG-generable. �

DEFINITION. Let UnqStamp be the set of design forests such that no two arcs
exiting from the same vertex and entering vertices with the same tag have the
same stamp, i.e., forests whose stamp multiplicity is 1. Let VDUnqStamp be
the set of VDAGs such that no two arcs with the same endpoints have the same
stamp, i.e., VDAGs whose stamp multiplicity is 1.

Later we will show that there is a close correspondence between UnqStamp
and VDUnqStamp.

We now consider VDAG-generability problem for forests in UnqStamp.
First, note that from Theorem 3.3, a given member of UnqStamp is VDAG-
generable if and only if it is well structured. To be well structured, the design
forest must be both tag-acyclic and labelable. Since even for arbitrary forests,
tag-acyclicity is testable in linear time, the main computational issue is labela-
bility. The forests in Figs. 7.11(a) and (b) are examples of forests in UnqStamp
that are tag-acyclic, but not labelable, and therefore not VDAG-generable.
In both these examples, a number function for relevant triple (B, C, δ) does
not exist because the forest contains vertices u and v with tag B such that
num(u, C, δ) = 1, num(v, C, δ) = 0, and pathtag(u) is contained in
pathtag(v). This phenomenon can serve as the basis for a polynomial time
test for labelability, as follows.

LEMMA 5.2. The problem of determining whether a member of UnqStamp is
VDAG-generable can be solved in polynomial time.

Proof. Consider a given forest F in UnqStamp. Using the algorithm COL-
LAPSE from Proposition 4.1, F can be tested for tag-acyclicity in linear time.
If F is not tag-acyclic, then it is not VDAG-generable. Thus, assume F is
tag-acyclic, and consider its labelability.

Note that since F is in UnqStamp, for any vertex u, tag t′, and stamp δ,
num(u, t′, δ) is at most 1. Given a relevant triple (t, t′, δ), let the set of all paths
from a root to a vertex u with tag t, where num(u, t′, δ) = 0 be P0(t, t′, δ), and
the set of all paths from a root to a vertex u with tag t, where num(u, t′, δ) = 1
be P1(t, t′, δ). Let Γ0(t, t′, δ) be the set of all tags occurring in the paths in
P0(t, t′, δ). Similarly, let Γ1(t, t′, δ) be the set of all tags occurring in the paths
in P1(t, t′, δ). For each p in P1(t, t′, δ), we check if the set of tags of vertices
on path p is contained in Γ0(t, t′, δ). If one such p exists, Nt,t′,δ cannot exist,
and F is not labelable. Otherwise, let Nt,t′,δ(Γ1(t, t′, δ) − Γ0(t, t′, δ)) = 1,
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and for all γ �= Γ1(t, t′, δ)−Γ0(t, t′, δ), let Nt,t′,δ(γ) = 0. It is easy to see that
Nt,t′,δ satisfies the requirements for a number function. If for each relevant
triple (t, t′, δ), Nt,t′,δ is found, F is labelable. Otherwise, F is not labelable.
Note that the above test can be done in polynomial time. �

If a forest F in UnqStamp is well structured, then Algorithm VDAGCONS,
shown in Fig. 7.24, constructs a VDAG that generates F .

ALGORITHM VDAGCONS
Input: a forest F in UnqStamp
Output: a VADG α generating F , if F is well structured

1. if F is not ta-acyclic, exit;

2. apply algorithm used in the proof of Lemma 5.2 to F ;

if F is not well structured, exit;

3. let α have a vertex for each tag occurring in F ;

for relevant triple (t, t′, δ) do
let α have an arc a with stamp δ going from the vertex with tag t to the vertex with tag t′,

and label arc a with (Γ1(t, t
′, δ) − Γ0(t, t

′, δ)) as described in the proof of Lemma 5.2.

Figure 7.24.

THEOREM 5.3. Given a member of UnqStamp, say F , we can in polynomial
time, (1) determine whether F is VDAG-generable; and (2) if F is indeed
VDAG-generable, construct a VDAG that generates F .

Proof. Algorithm VDAGCONS terminates in polynomial time. If it termi-
nates by exit, the given forest is not VDAG-generable, as implied by the proof
of Lemma 5.2; otherwise, it is VDAG-generable. If Algorithm VDAGCONS
constructs a VDAG, then from the proof of Lemma 5.2, this VDAG gener-
ates F . �

We next note that the algorithm in the proof of Lemma 5.2 is applicable not
only to forests in UnqStamp, but to any relevant triples for which the value of
maxnum is 1, even if other relevant triples have a larger value of maxnum.

DEFINITION. A relevant triple (t, t′, δ) for a design forest F has the unique
stamp property if maxnum(t, t′, δ) = 1.

THEOREM 5.4. If a relevant triple (t, t′, δ) for a forest F has the unique stamp
property, then we can in polynomial time (1) determine if (t, t′, δ) is labelable;
and (2) if it is, construct a number function for (t, t′, δ).
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Proof. Apply the algorithm from the proof of Lemma 5.2. �

We now show that the set of forests generated by members of VDUnqStamp

is identical to the set of VDAG-generable members of UnqStamp.

THEOREM 5.5. The set of forests generated by members of VDUnqStamp is
precisely the set of forests in UnqStamp which are VDAG-generable.

Proof. Consider a forest F which is a well-structured member of UnqStamp.
Then, α = VDAGCONS(F ) is a VDAG generating F . Since for each relevant
triple (t, t′, δ), the constructed VDAG α has exactly one (t, t′, δ)-arc, α is a
member of VDUnqStamp.

Now consider a member α of VDUnqStamp. No two arcs of α with the same
endpoints have the same stamp; therefore, if a vertex of forest Fα has more
than one child with the same tag, the stamps on the arcs from the vertex to these
children must have distinct stamps. Hence Fα is a member of UnqStamp. �

6. Construction of Number Functions

Theorems 4.3 and 5.1 imply that finding a labeling for a forest is NP -hard.
If P �= NP , this task cannot be done in polynomial time. However, finding
a labeling can be divided into a set of independent subtasks, namely finding a
number function for each relevant triple (t, t′, δ). In searching for a number
function for a given relevant triple, an obvious approach is to enumerate po-
tential number functions in a canonical order, and check whether the labelable
condition is satisfied. The search space can be reduced because if a given for-
est is labelable, its number functions are “sparse,” in a sense formalized by the
following result. The next result shows that if there is a number function, then
there is one in which Nt,t′,δ(γ) is nonzero for only a small number of sets γ.

THEOREM 6.1. If a relevant triple (t, t′, δ) for a forest F is labelable, then it
has a number function Nt,t′,δ for which

∑
γ∈(2anctag(t)− ∅)

(|γ| ·Nt,t′,δ(γ)) ≤ totnum(t, t′, δ).

Proof. Let α be a valid VDAG generating F . For each relevant triple (t, t′, δ),
consider the (t, t′, δ)-arcs in α. From the proof of Theorem 4.2, each (t, t′, δ)-
arc in F can be associated with one of these arcs in α; and each of these arcs
in α is associated with at least one of these arcs in F . This association can be
strengthened by associating each F arc with a single element of the label of its
associated α arc. In particular, since an F arc exiting a vertex u is associated
with an α arc having label γ such that γ ∩ pathtag(u) is nonnull, let the F
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arc be associated with some arbitrary member of γ ∩ pathtag(u). Note that
because α is valid, each arc label in α will have at least one F arc associated
with at least one of the elements of the label.

Now, modify the arc labels in α by deleting every label element that has
no F arc associated with it. Let β be the resulting VDAG. Then β is a valid
VDAG that generates F . Let Nt,t′,δ be the number function for (t, t′, δ) that is
embodied in β. Each arc of F that contributes to totnum(t, t′, δ) is associated
with some label element in β, and each label element is associated with at least
one such arc. A label γ in β is, therefore, associated with at least |γ| arcs of F .
Since there are only totnum(t, t′, δ) arcs available for this association, it is the
case that ∑

γ∈(2anctag(t)− ∅)

(|γ| ·Nt,t′,δ(γ)) ≤ totnum(t, t′, δ).
�

COROLLARY 6.2. If a given design forest F is VDAG-generable, then there
exists a VDAG α generating F whose size is linearly bounded by the size of F .

Proof. First, note that the number of vertices in a valid VDAG generating F
cannot exceed the number of distinct tags on vertices in F . Theorem 6.1 im-
plies that the total number of occurrences of label elements in α need not ex-
ceed the number of vertices in F . Since arc labels are nonempty, the total
number of arcs cannot exceed the total number of label elements, and thus
cannot exceed the total number of vertices in F . �

Another observation that can sometimes reduce the search space for a num-
ber function is that the members of anctag(t) for tag t can be partitioned on
the basis of occurrences in paths, and only one representative from each block
of the partition need be considered. This concept can be formalized as follows.

DEFINITION. Given a forest F and a tag t, two tags p, q in anctag(t) are
equivalent with respect to t if for every vertex u such that t(u) = t, either p
and q are both in pathtag(u) or neither is. Let neqtag(t) be a set that contains
exactly one member from each tag equivalence class with respect to t.

For each relevant triple (t, t′, δ), the search space for a number function
Nt,t′,δ can be reduced to nonnull subsets of neqtag(t), instead of anctag(t),
as shown by the following result.

DEFINITION. For each γ that is a subset of anctag(t), let neq(γ) be the subset
of neqtag(t) defined as follows: a member w of neqtag(t) is in neq(γ) if and
only if γ contains at least one member of the equivalence class represented
by w.
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LEMMA 6.3. If a relevant triple (t, t′, δ) for a forest F is labelable, then it
has a number function for which each argument having a nonzero value is a
nonnull subset of neqtag(t).

Proof. Suppose that there is a number function Nt,t′,δ for (t, t′, δ). On the
basis of this number function, define a function Mt,t′,δ from (2anctag(t)−∅) to
N as follows. For each nonnull subset ξ of neqtag(t), let

Mt,t′,δ(ξ) =
∑

γ:neq(γ)=ξ

Nt,t′,δ(γ).

For each set ξ that contains a member of (anctag(t) − neqtag(t)), let
Mt,t′,δ(ξ) = 0.

Note that from the definition of the equivalence relation used to construct
neqtag(t), for each vertex u with tag t in F , and each subset γ of anctag(t),
γ∩pathtag(u) is nonnull if and only if neq(γ)∩pathtag(u) is nonnull; there-
fore, since Nt,t′,δ is a number function for (t, t′, δ), so is Mt,t′,δ. Furthermore,
Mt,t′,δ only has a nonzero value for subsets of neqtag(t). �

The search space for a number function can be reduced even further, as
follows.

DEFINITION. Given a forest F and a relevant triple (t, t′, δ), let Γ0(t, t′, δ)
be the set of tags that occur in pathtag(u) for some vertex u of the forest
having tag t and for which num(u, t′, δ) equals zero. Let candtag(t, t′, δ) be
(neqtag(t)− Γ0(t, t′, δ)).

Note that a member of Γ0(t, t′, δ) cannot be a member of any set γ for which
a number function for (t, t′, δ) has a nonzero value. Thus we can confine the
search for a number function for (t, t′, δ) to nonnull subsets of candtag(t, t′, δ).
This can be formalized as follows.

THEOREM 6.4. If a relevant triple (t, t′, δ) for a forest F is labelable, then
it has a number function for which each argument having nonzero value is a
nonnull subset of candtag(t, t′, δ).

The search space can be reduced still further by observing that two ver-
tices in a forest having the same tag t and whose ancestors include the same
subset of candtag(t, t′, δ) are equivalent with respect to finding a labeling.
If forest F contains two vertices u and v with tag t such that pathtag(u) ∩
candtag(t, t′, δ) = pathtag(v) ∩ candtag(t, t′, δ), then for (t, t′, δ) to be la-
belable it must be the case that num(u, t′, δ) = num(v, t′, δ). Suppose that this
condition is not violated for relevant triple (t, t′, δ). Let ψ(t, t′, δ) be the col-
lection of subsets of candtag(t, t′, δ) such that γ is in ψ(t, t′, δ) if and only if
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F contains a vertex u with tag t such that γ = pathtag(u) ∩ candtag(t, t′, δ).
Also, let numc(γ, t, t′, δ) be the value of num(u, t′, δ) for some vertex u with
tag t for which γ = pathtag(u) ∩ candtag(t, t′, δ). Let

totnum(t, t′, δ) =
∑

γ∈ψt,t′ ,δ

numc(γ, t, t′, δ).

Then, from the reasoning used in the proof of Theorem 6.1, we have the fol-
lowing result.

THEOREM 6.5. If a relevant triple (t, t′, δ) for a forest F is labelable, then
it has a number function Nt,t′,δ that only has nonzero values for subsets of
candtag(t, t′, δ), and for which∑

γ∈(2candtag(t,t′ ,δ)− ∅)

(|γ| ·Nt,t′,δ(γ)) ≤ totnumc(t, t′, δ).

7. Handling Non-VDAG-Generable Forests

We pointed out earlier that a given forest that is not well structured can be
made well structured by modifying the tags of its vertices. This concept can be
formalized as follows.

DEFINITION. A homomorphism h from design forest F onto design forest G
is a mapping from the tags occurring in F onto the tags occurring in G, such
that applying mapping h to F produces G. A VDAG α embodies design forest
G if there exists a homomorphism from Fα onto G.

Note that a homomorphism can map several tags of F onto the same tag
of G. From a different perspective, G is the same as F , except that each tag
of G has been split into one or more tags in F and for each vertex of G the
corresponding vertex in F has as its tag some member of the split tag set.

An observation is that if a given forest F is modified to have a distinct tag
on each of its vertices, then there is a homomorphism from the modified forest
F ∗ to F . Furthermore, F ∗ is well structured, and each valid VDAG generating
F ∗ is simply F ∗ with appropriate labels on its arcs. One such labeling scheme
is for each arc exiting a vertex with tag t to be assigned label {t}. We thus see
that every forest is embodied by some VDAG. Furthermore, it is embodied by
a VDAG whose expansion is unconditional, where VDAGs with unconditional
expansion, corresponding to the conventional dag representation of hierarchi-
cally specified design objects, can be formalized as follows.

DEFINITION. An UncVDAG is a VDAG where the label of each arc contains
only the tag of the vertex exited by the arc.
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“UncVDAG” stands for Uncontrolled-expansion VDAG. The UncVDAGs
are a subclass of VDAGs, corresponding to conventional dags with uncon-
trolled expansion. The only difference between a UncVDAG and a conven-
tional dag is that an UncVDAG has the extra overhead of storing a one-element
label for each arc.

From the preceding discussion, we have the following observation.

PROPOSITION 7.1. Every design forest is embodied by some UncVDAG.

A natural computational problem is minimizing the amount of splitting
needed to obtain a VDAG embodying a given forest. This problem can be
posed as a decision problem, as follows.

MINIMUM TAG SPLIT (MTS).
Instance: A design forest F with m distinct tags t1, t2, . . . , tm, positive

integers spi, 1 ≤ i ≤ m.
Question: Is there a VDAG generating design forest F ∗, where F ∗ is ob-

tained from F via replacing tag ti by at most spi modified versions of ti,
1 ≤ i ≤ m?

The following result shows that this problem is NP-complete.

THEOREM 7.2. MTS is NP-complete.

Proof. The membership of MTS in NP is obvious. The NP-hardness proof is
by a simple reduction from the problem: “Given a forest F , determine whether
there is a VDAG generating F ,” which has been shown to be NP-complete by
Theorem 4.3. For a given forest F with m distinct tags, we construct an MTS
instance by assigning spi = 1 for all i, 1 ≤ i ≤ m. It is straightforward to
verify that there is a positive answer for the constructed MTS instance if and
only if there exists a VDAG generating F . �

8. Relative Conciseness of VDAG Model

As mentioned in Sect. 1, one of the purposes of the VDAG model is to
succinctly represent design versions and alternatives. It is well known that
conventional dags can be exponentially more succinct than trees. For instance,
consider a UncVDAG βn with n vertices, numbered v1, v2, . . . , vn such that
vi has two arcs going to vi+1, for 1 ≤ i < n. Then Fβn is a tree with 2n − 1
vertices; so Fβn is exponentially larger than βn.

We now show that VDAGs, utilizing controlled expansion, can be exponen-
tially more succinct than UncVDAGs, where expansion is uncontrolled.

Given a positive integer n, let VDAG αn be that shown in Fig. 7.25. All
stamps in αn are δ. The label on the arc from Bn to Ci is {Ai}, 1 ≤ i ≤ n,
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Figure 7.25. All arcs have stamp δ

and all the remaining arcs are labeled by {R}. It is easily verified that there
are 3n + 1 vertices, 4n arcs and 4n label elements in αn.

Now consider Fαn . It is easily seen that there are 2n generating paths in
αn from R to Bn, where for each i, 1 ≤ i ≤ n, each such path either goes
through or bypasses Ai. In particular, each of these 2n generating paths to Bn

goes through a distinct subset of the Ai vertices. The instance of Bn in Fαn

corresponding to a generating path in αn, say path p, has an instance of Ci as a
child if and only if p goes through Ai. Hence Fαn contains 2n distinct subtrees
rooted by instances of Bn. The leaves of each of these subtrees correspond
to a distinct member of the power set of {C1, C2, . . . , Cn}. More generally,
for each i, 1 ≤ i ≤ n, there are 2i distinct subtrees rooted by instances of Bi
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Figure 7.26.

and 2i−1 distinct subtrees rooted by instances of Ai. For example, Fig. 7.26
shows Fα2 .

Let D be a UncVDAG embodying Fαn . Since for each i, 1 ≤ i ≤ n, each
of the 2i vertices with tag Bi in Fαn is the root of a distinct subtree, D must
split tag Bi into 2i tags, i.e., D must have a separate vertex for each of these 2i

vertices of Fαn . Similarly, D must have a separate vertex for each of the 2i−1

vertices with tag Ai in Fαn . Thus D must have at least

n−1∑
i=0

2i +
n∑

i=1

2i + n + 1 = 3 · 2n + n− 2

vertices. Since there must be

n−1∑
i=0

i ·
(

n

i

)
= n · 2n−1

arcs exiting from instances of Bn and entering instances of C, and each in-
stance of A and each instance of B must have exactly 1 entering arc, D must
have

n∑
i=0

i ·
(

n

i

)
+

n−1∑
i=0

2i +
n∑

i=1

2i = (n + 6) · 2n−1 − 3

arcs.
We have just shown the following result.

THEOREM 8.1. For each positive integer n, there exists a VDAG αn with
3n + 1 vertices, 4n arcs, and 4n label elements, such that every UncVDAG
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embodying Fαn has at least (n + 6) · 2n−1− 3 arcs and at least 3 · 2n + n− 2
vertices.

Therefore, there exist design objects whose VDAG representation is expo-
nentially more succinct than their representation using a conventional dag with
uncontrolled expansion. On the other hand, if design versions and alternatives
are not involved, so that controlled expansion is not needed, the only extra
overhead of VDAG with respect to conventional dags is a one-element label
per arc. Since the size of a tag identifier is usually smaller than the size of a
stamp, this overhead will usually be small. This overhead could be reduced
even further by adopting a default convention that an arc is to be included un-
conditionally, unless the label says otherwise.

9. Automatic Simplification

In this section we consider the problem of, given a well-structured forest F ,
finding a VDAG that generates F and has as small a size as possible.

DEFINITION. Two VDAGs are equivalent if the forests they produce are iden-
tical. VDAG α is smaller than VDAG β if α has fewer arcs than β, or if α and
β have the same number of arcs and α has a smaller total label size than β.
A VDAG α is minimum-sized if there is no equivalent VDAG β such that is
smaller than α.

Since the size of a VDAG is finite, for each VDAG there exists some equiv-
alent minimum-sized VDAG.

THEOREM 9.1. For each h ≥ 5, given a well-structured design tree F in
UnqStamp with height h, it is NP-hard to find a minimum-sized VDAG gener-
ating F .

Proof. We show NP-hardness by a reduction from the Vertex Cover Prob-
lem [4]. The Vertex Cover decision problem consists of determining for a given
undirected graph G and integer k, whether there is a set of at most k vertices
such that each edge is incident on at least one vertex in the set. Given a Vertex
Cover instance involving graph G with the set of vertices V = {v1, v2, . . . , vn}
and the set of edges E = {e1, e2, . . . , em}, we construct a forest F as follows.
F consists of one tree where the root has tag S. For each i, 1 ≤ i ≤ m, root S
has a child with tag ei. Suppose the two endpoints of ei are vi1 and vi2 , where
i1 < i2. Then ei has two children: one with tag A and the other with tag vi1 .
This vertex with tag vi1 has a child with tag vi2 , which in turn has a child with
tag A, which has a child with tag B. Stamp δ is assigned to all arcs in F . F is
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Figure 7.27.

in UnqStamp since no two children of a vertex have the same tag. Note that
the height of F is 5.

For example, given the Vertex Cover instance shown in Fig. 7.17, the con-
structed forest is shown in Fig. 7.27, and a VDAG generating that forest is
shown in Fig. 7.28.

To see that the constructed F is well structured in general, first note that
F is tag-acyclic. Next, consider labelability. For relevant triples of the form
(S, ei, δ), the label can be {S}. For relevant triples whose first component is
ei, the label can be {ei}. For relevant triples of the form (vi, vj , δ), i < j,
the label can be {ek}, where ek is the edge of G which is incident on both vi

and vj . For relevant triples of the form (vj , A, δ), the label can be the set of e’s
that have vi and vj as endpoints for some i < j. For relevant triple (A, B, δ),
the label can be V . Thus F is well structured, and hence VDAG-generable.

Theorem 5.5 asserts that there is a VDAG in VDUnqStamp that generates F .
Hence in each minimum-sized VDAG generating F , only one (A, B, δ)-arc is
needed. Let α be a minimum-sized VDAG in VDUnqStamp and let the label on
the (A, B, δ)-arc in α be l. For each i, 1 ≤ i ≤ m, because of the path S, ei,
A in F , where this occurrence of A has no children, S, A, and ei do not occur
in l. Hence only vi’s can appear in l, 1 ≤ i ≤ n. Note that a minimum-sized
VDAG generating the forest in Fig. 7.27 may have l = {v1, v3}, and {v1, v3}
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Figure 7.28.

is a minimum cover for the given vertex cover instance in Fig. 7.17. In general,
for each ei, the generating path in α from S to ei to vi1 to vi2 to A must involve
at least one member of l. Therefore, l contains at least one of {v1, vi2}.

Hence, set l covers all elements of E and is indeed a vertex cover; therefore,
there exists a k-element label for arc (A, B) if and only if graph G has a vertex
cover of size k.

The above reduction can be easily extended to construct an F having any
height h ≥ 5. �

From Theorem 9.1, we obtain the following results.

COROLLARY 9.2. For each h ≥ 4, given a well-structured design forest in
UnqStamp of height h, it is NP-hard to find a minimum-sized VDAG generat-
ing that forest.
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Proof. The proof is similar to that in Theorem 9.1, with the root and its asso-
ciated arcs removed from the constructed tree. �

In contrast to Theorem 9.1, minimum-sized VDAGs can be efficiently found
for VDAG-generable trees of height 4 or less.

THEOREM 9.3. For each VDAG-generable tree F in UnqStamp of height 4 or
less, a minimum-sized VDAG generating F can be found in polynomial time.

Proof. Let (t, t′, δ) be a relevant triple. Then by Theorem 5.5, a minimum-
sized VDAG generating F has exactly one (t, t′, δ)-arc. A minimum size label
for this arc must be found.

If Γ0(t, t′, δ) is null, then {t} can serve as a minimum size label for this arc.
Thus assume that Γ0(t, t′, δ) is nonnull. Then both t and the tag of the root
vertex are in Γ0(t, t′, δ), and so neither can be elements of the label.

Let relvert be the set of vertices u of F such that the tag of u is t and
num(u, t′, δ) = 1. Note that each member of relvert has depth 2 or 3 in F .

For vertex u of relvert, let

ptag(u) = pathtag(u)− Γ0(t, t′, δ).

Note that |ptag(u)| must be either 1 or 2. Let onecand be the set of members
u of relvert such that |ptag(u)| = 1. Let

mustintag =
⋃

u in onecand

ptag(u).

Note each member w of mustintag is a tag that is the only ancestor of some
member u of relvert, such that {w} = pathtag(u)− Γ0(t, t′, δ), so w must be
an element of the label being constructed. For a vertex u of relvert, let

ctag(u) = ptag(u)−mustintag.

Note that if |ctag(u)| = 1, then one of the ancestors of u is a member of
mustintag, and the presence of this tag in the label will account for vertex u. If
|ctag(u)| = 0, then u is a member of onetag, so an ancestor of u is a member
of mustintag.

Let twocand be the set of members u of relvert such that |ctag(u)| = 2. The
members of twocand present a design choice in constructing the label. Each
member u of twocand must be accounted for by having at least one member
of ctag(u) included in the label, but it is not necessary for both members of
ctag(u) to be included. This gives rise to a Vertex Cover Problem as follows.

We construct a Vertex Cover instance G(V, E) as follows. Let

V =
⋃

u in twocand

ctag(u).
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For each u in twocand, E contains an undirected edge between the two mem-
bers of ctag(u). A minimum size label consists of the union of mustintag and
a minimum size vertex cover of graph G.

Now, we show that graph G is bipartite. First note that for each u in
twocand, the two vertices of F that contribute to ctag(u) occur at depth 1
or 2, respectively. Let A be a member of V . Suppose that there is a vertex at
depth 1 with tag A that is an ancestor of a member of twocand. Then, there are
tags S and B such that S, A, B, t, t′ are the tags along a path in F . Suppose
that there is also a vertex at depth 2 with tag A that is an ancestor of a member
of twocand. Then there is a tag C such that S, C, A, t, t′ are the tags along
a path in F . Let α be a VDAG generating F ; since F is VDAG-generable,
such a VDAG exists. Because of the two forest paths described above, VDAG
α must have an arc from S to C labeled {S}, an arc from C to A whose label
contains S or C, an arc from A to B whose label contains S or A, an arc from
B to t whose label contains S, A or B, and an arc from t to t′ whose label
contains A or B. But then α contains a generating path with tags S, C, A, B,
t, t′. This generating path would correspond to a depth 5 vertex in F , contra-
dicting the assumption that F has height 4. Thus either all the vertices with
tag A that are ancestors of members of twocand have depth 1, or they all have
depth 2. Consequently, the constructed graph G is bipartite, with each edge of
G connecting a depth 1 tag and a depth 2 tag.

Given a bipartite graph, a minimum size vertex cover can be found in poly-
nomial time [4, 5]. Therefore, a minimum size label for (t, t′, δ) can be found
in polynomial time. �

An immediate consequence is the following.

COROLLARY 9.4. For VDAG-generable design forests in UnqStamp of height
at most 3, a minimum-sized VDAG generating a given forest can be found in
polynomial time.

We now consider the issue of whether the value of maxnum(t, t′, δ) for a
relevant triple in a forest can be used to limit the number of VDAG (t, t′, δ)-
arcs. The next result shows that the number of such arcs in the VDAG may
have to be arbitrarily larger than maxnum(t, t′, δ), that is, in general, the stamp
multiplicity of a VDAG cannot be bounded by the stamp multiplicity of the
forest it generates.

THEOREM 9.5. For each integer k ≥ 2, there exists a VDAG-generable
forest F , such that stpmult(F ) = 2 and for each VDAG α generating F ,
stpmult(α) = k.
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Proof. For a given k, consider the complete undirected graph of k vertices,
and consider the forest Fk produced from this graph by the construction used
in the proof of Theorem 4.3, except with the subtree rooted by Q removed. It
is easily seen that stpmult(Fk) = 2 and that Fk is VDAG-generable. Suppose
that VDAG α generates Fk. By an argument similar to that used in the proof
of Theorem 4.3, it can be seen that the number of (t, t′, δ)-arcs in α must be k.
Thus stpmult(α) = k. �

10. Conclusion

The VDAG model proposed in this work can be used to concisely represent
hierarchically specified design data in a flexible way that supports design al-
ternatives in engineering design database systems. In fact, there are designs
whose representation via VDAGs is exponentially more succinct than is pos-
sible with the conventional model of uncontrolled expansion. However, only
those design forests which are well structured can be generated via the VDAG
paradigm of ancestor based expansion. Problems such as determining whether
a forest can be generated by a VDAG are NP-complete, even for forests whose
heights are bounded. However, for an important class of design forests that
include objects from many design applications, namely UnqStamp, the prob-
lem of determining whether a given forest is generable from a VDAG can be
solved in polynomial time. If the answer is “yes,” an appropriate VDAG can be
generated in polynomial time, although finding a minimum-sized VDAG for a
forest in UnqStamp is NP-hard, even if the height of that forest is bounded.
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Abstract Hierarchical object descriptions consisting of a set of module descriptions are
considered, where each module is either a primitive module or has a body that is
an interconnection of submodules. The description represents a flattened object,
whose size can be exponential in the size of the description. The complexity of
processing and/or analyzing such hierarchically specified objects is considered.
The simulation of hierarchically specified circuits is emphasized, but the results
are applicable to other kinds of hierarchically specified objects.

It is shown that hierarchically specified acyclic circuits can be simulated
deterministically in space linear in the size of the description, even when the
description is not explicitly acyclic. Θ(n2)-size-bounded reductions are given
from the languages in DSPACE(n) to the problem of simulating hierarchically
specified acyclic monotone circuits. This implies that this simulation problem is
PSPACE-complete and that any algorithm for it that operates faster than 2O(

√
n)

deterministic time could be used to recognize all DSPACE(n) languages in less
than 2O(n) deterministic time. It is then shown that the simulation problem for
hierarchically specified acyclic circuits (not necessarily monotone) can indeed
be solved in 2O(

√
n) deterministic time. Moreover, every hierarchically spec-

ified acyclic circuit is shown to have an equivalent flat circuit of size 2O(
√

n).
For binary circuits the size of the equivalent flat circuit is O(n3/221.53

√
n). It
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is also shown that the problem of simulating hierarchically specified circuits is
EXPSPACE-complete for cyclic circuits.
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cyclic circuits, sequential circuits, simulation, computational complexity
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1. Introduction

Hierarchical object design permits the overall design of an object to be par-
titioned into the design of a collection of modules, each of whose design is a
more manageable task than producing a complete design in one step. It also fa-
cilitates the development of computer-aided design (CAD) systems since low-
level objects can be incorporated into libraries and thus can be made available
as submodules to designers of larger-scale objects. In particular, hardware de-
scription languages usually permit circuits to be hierarchically specified (see,
e.g., [5, 15, 18, 19]). Hierarchical description languages are also useful for
describing the configuration of distributed software systems [17].

An important feature of hierarchical specifications is that they permit more
concise descriptions of circuits than do flat nonhierarchical descriptions.
A consequence of this is that the complexity of analyzing or otherwise process-
ing a given hierarchically presented object can be different from that when
the object is presented as a flat combination of primitives. For example, in
VLSI mask specifications, analyzing a flat list of rectangles for overlap can be
done in polynomial time, whereas this problem is NP-complete for hierarchi-
cally specified sets of rectangles [3]. On the other hand, when restrictions are
imposed on the hierarchical mask specifications, they can be processed more
efficiently [3, 20, 21, 23]. Certain graph-analysis problems for hierarchically
specified undirected graphs can be solved efficiently in polynomial time [10,
11, 13]. The effect of hierarchical specifications on VLSI design problems is
investigated in [9], and their effect on more general combinatorial problems is
investigated in [12]. In [9] and [12] it is shown that the problem of simulating
a hierarchically specified Boolean circuit, where the specification is explic-
itly acyclic at every level of the hierarchy, is a PSPACE-complete problem,
where [9] covers the upper bound and [12] covers the lower bound. In [9] it is
also shown that an explicitly acyclic Boolean circuit can be simulated within
space that is linear in the size of the hierarchical description and a nonexplic-
itly acyclic circuit in quadratic space. The question of whether a nonexplicitly
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acyclic circuit can be simulated in linear space is left open, and it is conjectured
that such an efficient deterministic space simulation is unlikely.

Here we study the complexity of processing and/or analyzing hierarchically
specified objects, emphasizing the simulation of hierarchically specified cir-
cuits. A hierarchically specified object is presented as a set of modules, each
of which is classified as either a primitive module or a composite module. Each
composite module has a body, whose description consists of an interconnec-
tion of instances of lower-level modules. Each module has a corresponding
flattened body, which is an interconnection of primitive modules that can be
obtained by repeatedly replacing each instance of a composite module with its
body. We are concerned with analyzing a hierarchically specified object for
some given property, where the property is a property of the flattened object.
An issue is, for which properties can the analysis be performed in a more ef-
ficient way than constructing the flattened object and then analyzing it? We
focus on the problem of circuit simulation, which reflects the semantics of
what circuits actually do.

In Sect. 2 we present definitions and terminology for hierarchically specified
objects.

In Sect. 3 we show that hierarchically specified acyclic circuits can be sim-
ulated in deterministic space linear in the size of the description, even when
the description is not explicitly acyclic at every level. This answers the open
problem from [9] that was mentioned above.

In Sect. 4 we generalize and strengthen the PSPACE-hard lower bound
in [12] for explicitly acyclic logic-circuit simulation to explicitly acyclic mono-
tone logic-circuit simulation. We accomplish this in a very general algebraic
setting by means of Θ(n2)-size bounded reductions from the languages in
DSPACE(n). As a consequence, if there are languages in DSPACE(n) whose
recognitions requires 2Ω(n) deterministic time, then this simulation problem re-
quires 2Ω(

√
n) deterministic time. In contrast, the reduction in [12] is a Θ(n4)-

size bounded reduction from the languages in DSPACE(n); so even if there
is such a language requiring 2Ω(n) time, the reduction only implies that the
acyclic circuit simulation problem requires 2Ω(n1/4) deterministic time.

In Sect. 5 we show that hierarchically specified acyclic circuits can indeed
by simulated in deterministic 2O(

√
n) time. This contrasts with the traditional

approach of first flattening the hierarchically specified circuit and then simu-
lating this flattened circuit [14, 2]. In the worst case the size of the flattened
circuit is 2Ω(n) and thus the overall time required is 2Ω(n). However, we show
that every hierarchically specified acyclic circuit has an equivalent fiat circuit
of size 2O(

√
n). Furthermore, this equivalent circuit can be constructed and

thus simulated in time 2O(
√

n). Results on the size of acyclic circuit descrip-
tions also appear in [8], where the focus is on the effect of requiring that a
description be explicitly acyclic at every level of the hierarchy. In [8] it is
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shown that there are acyclic circuits that have a hierarchical description of size
n such that any description that is explicitly acyclic at every level of the hierar-
chy must be of size 2Ω(n), and it is also shown that for every acyclic circuit that
has a hierarchical description of size n there is an equivalent circuit that has a
O(n3)-size hierarchical description that is explicitly acyclic at every level of
the hierarchy.

Sections 4 and 5 present lower and upper complexity bounds that match,
given the current state of knowledge about computational complexity.
A Θ(np)-size-bounded reduction from the languages in DSPACE(n) to the
simulation problem for acyclic circuits and an 2O(nq) algorithm for this simula-
tion problem can be combined, implying that all languages in DSPACE(n) are
recognizable in time 2O(npq). Thus an improvement either to the size bound of
O(n2) in the reduction from Sect. 4 or to the time bound of 2O(

√
n) for the sim-

ulation algorithm from Sect. 5 would imply that all languages in DSPACE(n)
are recognizable in less than 2Θ(n) deterministic time. This would be a surpris-
ing breakthrough in complexity theory.

In Sect. 6 we consider cyclic hierarchically specified logic circuits. Un-
der fairly loose assumptions, the simulation problem for such logic circuits is
shown to be EXPSPACE-complete by means of Θ(n)-size-bounded reductions
from the languages accepted by 2n-space-bounded Turing machines. This sug-
gests that to solve this type of problem, one might as well construct and then
simulate the flattened circuit.

We assume that the reader is familiar with complexity classes and reduc-
tions; otherwise, see, e.g., [1, 6].

2. Definitions and Terminology of Hierarchical
Specifications

We define the class of hierarchically specified objects as follows. An ob-
ject is described as a set of modules, where each module is either a primitive
module or a composite module. Each module (whether primitive or composite)
has an interface, and each composite module has a body. A module interface
specifies the module name and a set of module ports. Each module port has
a port name and is specified to be either an input port or an output port. For
a given module, the module port names are unique. A module body consists
of an interconnection of module instances. A given module instance can be an
instance of either a primitive module or a composite module. A given module
body may contain more than one instance of the same module.

As an example, Fig. 8.1(a) shows an interface for a module named P with
input ports {U, V, W} and output ports {X, Y }. In the graphical representation
used in our diagrams, input ports are denoted by incoming arrows and output
ports are denoted by exiting arrows. Figure 8.1(b) shows a body for module P .
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Figure 8.1. (a) Interface for module P ; (b) body for module P

The module body contains two instances of module B, an instance of module
A, and an instance of module C. Each module instance in a body has an
instance name. In Fig. 8.1(b) the instance names are B1, B2, A, and CZAP.
For a given module body the instance names are unique.

A module body contains two kinds of ports: instance ports and body ports.
An instance port is a port of an instance within the body. Examples of instance
ports in Fig. 8.1(b) are port J of instance CZAP and port Z of instance B2.
A body port is a port of the module whose composition is described by the
body. In Fig. 8.1(b), P has five body ports: U, V, W, X, and Y .

The interconnections within a module body are specified by signals. Each
signal is given a signal name and is connected to a set of ports within the body.
For example, in Fig. 8.1(b) signal B2Z is connected to instance ports Z of
B2, F of B1, and K of CZAP. Signal U is connected to body port U of P and
instance ports I of A and D of B1. Note that Fig. 8.1(b) uses the convention
of giving a signal connected to exactly one body port the same name as that
body port. For a given module body the signal names are unique.

We assume that a set of modules satisfies certain restrictions. First, de-
fine the DIRECTLY-WITHIN relation on modules as follows: module α is
DIRECTLY-WITHIN module β if the body of β contains an instance of α.
We assume that the set of modules satisfies the nesting restriction that the
DIRECTLY-WITHIN relation is acyclic. The nesting restriction ensures that
the description of a set of modules is a meaningful hierarchical description of
a finite object.
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Figure 8.2. (a) Body with violations of wiring restriction; (b) body with extra instances to
satisfy wiring restriction

In a module body define a driver port to be either a body input port or an
instance output port. Define a drivable port to be either a body output port or
an instance input port. We assume that each module body satisfies the wiring
restriction that no signal in the body is connected to two driver ports.

The wiring restriction prevents direct connections between drivers. How-
ever, real circuit technologies often permit drivers to be connected together,
with a technology-dependent rule resolving the situation when connected
drivers supply conflicting values. To model a circuit design that uses this
capability, we would require the placement of a module instance having in-
puts connected to these drivers and having a single output. The semantics of
this additional module would represent the conflict resolution function. For
example, Fig. 8.2(a) shows a module body containing two violations of the
wiring restriction. Figure 8.2(b) shows a corresponding body that satisfies
the wiring restriction, with instances of module RES inserted to resolve con-
flicts.

For a given module in a hierarchically specified object, the flattened body for
that module is the interconnection of instances of primitive modules, obtained
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by repeatedly replacing instances of composite modules in the body by their
bodies.

A module description consists of a module interface, together with either an
indication that the module is primitive or a body for the module. A hierarchi-
cal object description consists of a set of module descriptions, one of which
is designated as the root module, such that the set includes every module that
occurs as a module instance within any of the module bodies. The root module
is said to be hierarchically specified. The hierarchically specified object cor-
responding to a hierarchical object description is the flattened body of the root
module. A flat object description is a hierarchical object description involving
a single composite module. Thus the body of this module is an interconnection
of instances of primitive modules.

The size of a module interface is 1 plus the number of module ports. The
size of a module body is the sum of the size of the interface of the module, the
number of signals in the body, and the sizes of the interface for each module
instance within the body. Note that this is the same as the sum of 1, the number
of signals within the body, the number of module instances within the body,
and the number of ports (both instance ports and body ports) within the body.
The size of a module description is the sum of the sizes of its interface and
body. The size of a hierarchical object description is the sum of the sizes of the
module descriptions occurring in the overall object description. This definition
of size measures the number of symbols occurring in a typical representation
of the object description. The number of bits in the representation would be
larger since each symbol might be represented by a number of bits equal to the
logarithm of the number of distinct symbols. We regard the number of symbol
occurrences in the description to be the more practical measure of its size.

We now consider acyclic hierarchically described objects. An instance data-
flow graph for a given composite module is a directed graph describing the
dataflow within the body of the module. The graph has a vertex for each mod-
ule instance within the body and a vertex for each body port. There are edges
corresponding to connections from driver ports to drivable ports within the
body. Specifically, there is a directed edge for each of the following four cases:

(a) Edge from instance A to instance B if an output port of A is connected
to an input port of B.

(b) Edge from body input port X to instance B if X to connected an input
port of B.

(c) Edge from instance A to body output port Y if an output port of A is
connected to Y .

(d) Edge from body input port X to body output port Y if X is connected
to Y .
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Figure 8.3. Instance dataflow graph

As an example, Fig. 8.3 shows the instance dataflow graph for module P
described in Fig. 8.1.

A composite module is said to be locally acyclic if its instance dataflow
graph is acyclic. A composite module is said to be weakly acyclic if the in-
stance dataflow graph for its flattened body is locally acyclic. A composite
module M is said to be strongly acyclic if module M is locally acyclic and
every composite module Q such that Q DIRECTLY-WITHIN M is strongly
acyclic [9].

Strong acyclicity is a special case of weak acyclicity. Let the relation SOME-
WHERE-WITHIN be the transitive closure of DIRECTLY-WITHIN. Then an
equivalent definition of M being strongly acyclic is that M is locally acyclic
and every composite module Q such that Q SOMEWHERE-WITHIN M is lo-
cally acyclic. Strong acyclicity requires not only that the flattened circuit be
acyclic but also that at every level of the hierarchy each module body be de-
scribed as an acyclic combination of the instances occurring directly within it.
Given a hierarchical description, it is clear that strong acyclicity can be deter-
mined in polynomial time. In addition, weak acyclicity can be determined in
polynomial time, using a bottom-up dataflow analysis [13].

3. Linear Space Simulation of Weakly Acyclic Circuits

In this section we show that weakly acyclic hierarchically specified logic
circuits can be simulated deterministically using only linear space. First, we
define the simulation problem as follows: the simulation problem for a weakly
acyclic module consists of computing the values of the output ports of the
module, given a value for each input port of the module and a hierarchical
circuit description for which it is the root module.
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We make several assumptions to ensure that the simulation problem and
the complexity analysis of simulation algorithms are well defined. First, we
assume that the domain of signal values is finite. (Equivalently, the amount of
space required to represent a signal value is fixed.) Second, we assume that
each primitive module is a memoryless combinatorial element whose input
values determine its output values. Third, we assume that the input-output
behavior of each primitive module is polynomial-time computable, i.e., given
input values, the output values can be computed in polynomial time. Finally,
we assume that if the flattened body of the module being simulated contains a
primitive module instance port that is unconnected to a driver, there is a rule
for what value to use for that input port.

Reference [9] contains a sketch of how a strongly acyclic hierarchically
specified circuit whose primitive modules are logic gates can be simulated
deterministically in space that is linear in the size of the hierarchical circuit
description. It is also pointed out that a weakly acyclic circuit can be simulated
nondeterministically in linear space and deterministically in quadratic space.
The problem of finding a deterministic linear space algorithm for this case is
left as an open question, and Lengauer says that it is questionable whether such
a method exists. The next result shows that weakly acyclic circuits can indeed
be simulated deterministically in linear space.

THEOREM 3.1. A weakly acyclic hierarchically specified object can be simu-
lated in space linear in the size of the hierarchical circuit description.

Proof. First, consider the case when the hierarchically specified object is
strongly acyclic, as described in [9]. In this case, since each module is lo-
cally acyclic, its instance dataflow graph is acyclic. Each instance dataflow
graph can be topologically sorted, and the instances within it can be simulated
in this order. Consider a given module to be simulated, with given values for
its input ports. If the given module is primitive, its simulation consists of com-
puting the values of the output ports using the values of the input ports. If the
given module is composite, then each of the instances in the body is simulated,
in topological sort order. In any stage of simulating a given module body, the
algorithm maintains a record of the input-port values of the body and of the
output-port values of instances simulated thus far. Consequently, when a given
instance in the body is to be simulated, all drivers of the input-ports of the given
instance have known values. When the last instance in the body of the given
composite module has been simulated, the value of the drivers of the output
ports of the given module are known and the simulation of the given module is
complete.

Figure 8.4 shows an example in which A, B, and C are composite modules;
left-to-right order in the figure corresponds to a topological sort of the instances
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Figure 8.4. Snapshot of simulation of a strongly acyclic circuit

within each body. Figure 8.4 shows a snapshot of the simulation of module A,
where recorded values are indicated by darkening the appropriate driving ports.
In the snapshot the simulation of instances B1 and D1 within A have been
completed and the simulation of instance B2 within A is in progress. In this
subsimulation, the simulation of D1 within module B has been completed
and the simulation of C1 within B is in progress. In this subsimulation, the
simulations of D1 and E1 have been completed and the simulation of E2 is
about to begin.

Now consider a weakly acyclic hierarchically specified circuit. Consider the
subsimulation problem of simulating a given composite module in the hierar-
chy, where a subset (not necessarily proper) of the input ports of the module
have specified values. The subsimulation computes the values of all those out-
put ports whose values are determined by the specified input-port values. More
precisely, a given output-port value is computed if a value has been specified
for every input port for which the instance dataflow graph for the flattened body
of the module has a path to the given output port.

In the subsimulation of a given body we use two lists of module instances
occurring in the body. We call these two lists FULL and PARTIAL. List FULL
contains module instances for which all the instance input-port values are
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known and the module instance can be simulated to obtain all its instance
output-port values. List PARTIAL contains module instances for which some
(possibly none), but not all, of the instance input-port values are known and for
which the module can be simulated to obtain those instance output-port values
that do not depend on unknown input-port values.

Initially in the subsimulation some of the body input-port values are known.
Each of these known driver values specifies the values of all drivable ports to
which it is connected. Also, each unconnected instance input port is assigned a
special driver value, say, UNCONNECTED, during the simulation. List FULL
is initialized with those module instances for which all instance input-port val-
ues are known, based on the above information. List PARTIAL is initialized
with all remaining module instances.

The subsimulation proceeds until lists FULL and PARTIAL are both empty.
If both lists are nonempty, a module instance is deleted from FULL and is
simulated. If FULL is empty and PARTIAL is nonempty, a module instance
is deleted from PARTIAL and is simulated. When both lists are empty, the
subsimulation returns all the output-port values for which the driving values
have been computed during the subsimulation. As the subsimulation proceeds
a record of known driver values is maintained, i.e., a record of the given body
input-port values and the instance output-port values that have been obtained
thus far.

Now consider what happens in a simulation upon completion of the sub-
simulation of a given module instance within the body being simulated. For
each instance output-port value computed by the subsimulation such that this
output-port value was not known prior to the subsimulation, this value is
recorded. Furthermore, each module instance having an input port driven by
this driver is checked. If the module instance does not yet have all its output
values computed, then it is a candidate for subsimulation. If all its input-port
values are now known, it is placed on list FULL (and removed from list PAR-
TIAL if it is currently on that list); otherwise, it is placed on list PARTIAL if it
is not already on that list.

An example is shown in Fig. 8.5, in which A, B, and C are composite
modules. In this example, for both B and C the lower output port is determined
solely by the lower input port and the upper output port is determined by both
input ports. Figure 8.5 shows a snapshot of the simulation in which recorded
values are indicated by darkening the appropriate driving ports. Within module
A instance B1 was simulated with only its lower input port known, producing
the value of its lower output port. The instance B2 was simulated with its
lower input port known, producing the value of its lower output port. Then
instance C1 was simulated with its lower input port known, producing the
value of its lower output port. Then instance B1 was simulated again, this
time with both input ports known, and the value of its upper output port was
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Figure 8.5. Snapshot of simulation of a weakly acyclic circuit

obtained. Then instance D was simulated. The simulation of instance B2 with
both input ports known is in progress. In this subsimulation of B, C1 has
already been simulated with its lower input port known, producing the value of
its lower output port. The simulation of C2 with its lower input port known is
in progress. In this subsimulation of C the simulation of instance E1 has been
completed and the simulation of E2 is about to begin.

The data recorded at any point in the overall algorithm is a set of val-
ues for drivers within the bodies of modules occurring in a directed path of
the DIRECTLY-WITHIN relation. Since the DIRECTLY-WITHIN relation is
acyclic, each module occurs at most once in such a directed path. Thus the
number of values to be remembered at any time does not exceed the size of the
hierarchical description. �

Although the algorithm of Theorem 3.1 requires only linear space, it may
entail fruitless subsimulations. The subsimulation of a module instance from
list PARTIAL is fruitful only if it produces an instance output-port value that
was not previously known. Fruitless subsimulations can be avoided by using
auxiliary information. For each module an interface dataflow graph can be
computed in a bottom-up manner [13], where this graph indicates which input
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ports determine which output ports. Then a module is placed on list PARTIAL
only if its known input-port values determine a not yet known output port.
Since the size of an interface dataflow graph can be the product of the number
of input ports and number of output ports, the use of this technique may require
quadratic space.

4. Acyclic Circuits: Lower Bounds

In this section we investigate the inherent computational complexity of sev-
eral analysis problems for hierarchically described acyclic circuits and focus
on the simulation problem.

Reference [12] presents a sketch of a proof that the simulation problem is
PSPACE-hard for strongly acyclic hierarchically specified logic circuits. The
reduction used is from the quantified Boolean formula logical validity prob-
lem [22] and is itself Θ(n2)-size-bounded. The reduction in [22] used to prove
that the quantified Boolean formula logical validity problem is PSPACE-hard
is a Θ(n2)-size-bounded reduction from the membership problem for linear-
bounded automata. Thus the reduction in [12] provides a Θ(n4)-size-bounded
reduction from the membership problem for linear-bounded automata. If it is
assumed that there are languages in DSPACE(n) whose recognition requires
2Ω(n) time, the reduction in [12] only provides evidence that the simulation
problem for strongly acyclic hierarchically specified logic circuits requires
time 2Ω(n1/4). Also, it can readily be seen that the logical validity problem
for quantified monotone Boolean formulas is decidable deterministically in
polynomial time and thus cannot be used to prove the PSPACE-hardness of the
simulation problem for hierarchically specified monotone logic circuits. (This
contradicts an apparent claim in [12].)

Here we present a polynomial-time Θ(n2)-size-bounded reduction from the
membership problem for deterministic linear-bounded automata to the simula-
tion problem for explicitly acyclic hierarchically specified monotone circuits.
If it is assumed that there are languages in DSPACE(n) whose recognition
requires 2Ω(n) time, our reduction provides evidence that the simulation prob-
lem for strongly acyclic hierarchically specified logic circuits requires 2Ω(

√
n)

time. In Sect. 5 below we present a matching upper bound. Our reduction
and lower bound apply not only to the simulation of monotone circuits but
also to the simulation or evaluation of all classes of strongly acyclic hierar-
chically specified functions, for which the allowed primitive function modules
can emulate monotone Boolean logic. Thus our reduction and lower bound
apply to strongly acyclic hierarchically specified functions on many different
algebraic structures with a 0 and 1. These include all of the following algebraic
structures (provided that they have at least two elements): lattices, rings with
a multiplicative identity, idempotent semirings with a multiplicative identity,
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finite semirings with a multiplicative identity that are not rings, etc. For ex-
amples of these structures see [4, 7, 16], and [24]. In particular, our reduction
and lower bound apply to the various lattice-theoretical structures used to sim-
ulate faults, errors, transients, unknown states, variable strength signals, etc.,
in digital logic both at the gate and transistor levels [7].

Before presenting our reduction, we need the following definition.

DEFINITION 4.1. We say that a set of primitive modules has monotone logic
expressibility if there exist two values φ and τ , in the domain of values operated
on by the primitive modules, and two modules OR and AND, either available as
primitive modules or constructible as composite modules by an interconnection
of primitive modules, with the following properties. Modules OR and AND
each have two inputs and one output. If both outputs of OR equal φ, the output
value is φ; if one input value is φ and the other is τ , the output is τ ; and if both
inputs are τ , the output is τ . If both inputs of AND are φ, the output is φ; if
one input is φ and the other is τ , the output is φ; and if both inputs are τ , the
output is τ .

THEOREM 4.2. Let Π be a set of primitive modules with monotone logic
expressibility. Then each language in DSPACE (n) is polynomial time and
Θ(n2)-size-bounded reducible to the following problem Γ: Given a strongly
acyclic hierarchical object description whose primitive modules are in the set
of primitive modules Π, an assignment of values to the input ports of the root
module, and a specified value for one of the output ports of the root module, de-
termine whether the specified object, given the specified input values, produces
the specified output value.

Proof. Consider a deterministic linear-bounded automaton M . The descrip-
tion of M can be modified, if necessary, so that once it accepts an input string,
it cycles in an accepting state. Also, M can be modified, if necessary, so that
its head never moves off the end of its tape. There is a constant c > 0 such that
for any input sequence x to M , where x includes endmarkers and n = |x|, if
M accepts x, it does so within 2cn moves. Thus M accepts x if and only if
after 2cn moves M is in an accepting state.

As shown below, M and x can be encoded into a strongly acyclic hierar-
chical monotone object description and an input value assignment such that
the hierarchically specified object produces output τ for the given input as-
signment if and only if M accepts x. With M fixed, this encoding represents
a polynomial-time algorithm whose input is x and whose output, consisting
of a hierarchical object description together with an input value assignment,
is of size Θ(|x|2). Thus the algorithm is the required reduction from L(M)
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Figure 8.6. Ports of module Em

to the simulation problem for strongly acyclic hierarchical monotone object
descriptions.

For each m, where 0 ≤ m ≤ cn, there is a composite module Em. The
ports of these modules are summarized in Fig. 8.6. For each tape cell i of M ,
where 1 ≤ i ≤ n, and each tape symbol a of M , each module Em has an input
port ti,a and an output port ui,a. In addition, for each tape cell i, 1 ≤ i ≤ n,
each module Em has an input port ri and an output port vi. Finally, for each
state g of M each module Em has an input port sg and an output port wg. The
purpose of the input ports is to encode a configuration of M . The value of
input port ti,a indicates whether, in the configuration, cell i has tape symbol a
written on it. A value of τ indicates that this is so, and a value of φ indicates
that it is not so. Input port ri indicates whether the tape head is scanning cell i.
Input port sg indicates whether the state is state g. The output ports encode a
configuration in a similar manner. Note that since M is fixed, the number of
ports is proportional to n, the length of x.

For each m, where 0 ≤ m ≤ cn, module Em will be designed so that if
the inputs encodes a length n configuration of M , then the outputs of Em will
encode the configuration that results after 2m moves by M .

Consider E0, whose purpose is to simulate one move of automaton M . The
body of E0 is constructed by using instances of modules OR and AND. For
simplicity, we describe E0 as though OR and AND can have multiple inputs,
with the understanding that the circuit is actually constructed by using two-
input module instances.

Suppose that automaton M has transition function δ, where δ(g, a) =
(h, b, p) means that when M is in state g and scanning tape symbol a, it makes
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a transition to state h, writes symbol b on the scanned tape cell, and moves its
tape head p cells to the right, where the value of p is constrained to be −1, 0,
or +1.

For each tape cell i the body of module E0 contains a signal qi, which is the
OR of all body input ports rj , where j �= i. Thus qi encodes whether the tape
head of M is not on cell i. In addition, for each cell i, tape symbol a, and state
g, the body of module E0 contains a signal yi,a,g, which is the AND of ti,a, ri

and sg.
For each state h, the output port wh is the result of the OR of each yi,a,g such

that δ(g, a) = (h, b, p) for some tape symbol b and some p.
For each tape cell i and each tape symbol b, output port ui,b is the result of

the OR of

(i) AND of qi and ti,b, and

(ii) yi,a,g for each tape symbol a and state g such that δ(g, a) = (h, b, p) for
some state h and some p.

For each tape cell i, output port vi is the result of the OR of

(i) yi,a,g for each tape symbol a and state g such that δ(g, a) = (h, b, 0) for
some state h and tape symbol b,

(ii) yi−1,a,g for each tape symbol a and state g such that δ(g, a) = (h, b, +1)
for some state h and tape symbol b, provided cell i is not the leftmost
tape cell, and

(iii) yi+1,a,g for each tape symbol a and state g such that δ(g, a) = (h, b,−1)
for some state h and tape symbol b, provided cell i is not the rightmost
tape cell.

E0 has been designed so that if its inputs encode a configuration of M , then
its outputs encode the configuration that results from one move of M . Note
that the size of E0, measured in terms of the number of instances of two input
AND and OR modules, is quadratic in n.1

Next, consider the body of each Em, where 1 ≤ m ≤ cn. The body of each
such Em is constructed by using two instances of module Em−1, connected
as shown in Fig. 8.7. The body input ports of Em drive the input ports of the
first instances of Em−1, whose output ports drive the input ports of the second
instance of Em−1, whose output ports drive the body output ports of Em. Since
the outputs of each instance of Em−1 encode the configuration of M produced
after 2m−1 moves from the configuration encoded by its inputs, the outputs of

1 Although it is possible to design E0 so that its size is linear in n, this entails providing extra ports to hold
complementary values and would not strengthen the result.
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Figure 8.7. Body of Em for m > 0

Figure 8.8. Body of root module E

Em encode the configuration produced after 2m moves from the configuration
encoded by the inputs of Em.

Note that the size of the description of the body of each such Em is linear
in n and that the number of such descriptions is cn.

Let FIN be a module with one output port and a number of input ports equal
to the number of output ports of E0. The body of FIN consists of instances of
OR modules that compute the result of the OR of those input-port variables that
represent an accepting state of M . Thus when the input ports of FIN encode a
configuration of M , the output of FIN encodes whether the configuration is an
accepting configuration.

Let E be a module with one output port and a number of input ports equal
to the number of input ports of E0. The body of E is shown in Fig. 8.8. The
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body input ports of E drive an instance of Ecn, whose output ports drive an
instance of FIN.

Consider the assignment of values to the input ports of E such that this
assignment encodes the initial configuration of M given x. (Each value in this
assignment is either τ or φ.)

When module E is supplied with this input assignment, the value of the
output port of E equals τ if and only if automaton M accepts x.

The module E is strongly acyclic, and the total size of the constructed mod-
ules is Θ(n2). Thus the construction represents a polynomial-time Θ(n2)-size-
bounded reduction from L(M) to the simulation problem for E. �

An immediate consequence of Theorem 4.2 is that problem Γ is PSPACE-
hard. Moreover, if some language in DSPACE(n) requires time 2Ω(n), then
problem Γ requires time 2Ω(

√
n).

5. 2O(
√

n) time Simulation of Acyclic Circuits

In this section we show that weakly acyclic hierarchically specified logic
circuits can be simulated deterministically using only 2O(

√
n) time. The lin-

ear space simulation of Sect. 3 suggests that perhaps simulation of an acyclic
hierarchical circuit of size n might require time 2Θ(n). Also, the size of the
flattened circuit for a size n acyclic hierarchical circuit is 2Θ(n), so that the
traditional approach of first flattening the hierarchically described circuit and
then simulating it would take 2O(n) time. However, in Theorem 5.11 below we
show that it is possible to do the simulation much faster when the domain of
values involved in the simulation is finite, namely, in time 2O(

√
n). Moreover,

we carefully analyze the constant in the exponent and show that it is of reason-
able size. To do this we need the following notation and technical lemmas.

DEFINITION 5.1. The submodule size of a module M equals 1 if M is prim-
itive and equals the number of occurrences of submodules appearing directly
in the body of M otherwise. The submodule size of a hierarchical description
D is the sum of the submodule sizes of the modules appearing in D.

DEFINITION 5.2. The module expansion tree M-Tree(D) of a hierarchically
specified module D is defined as follows: M-Tree(D) is a labeled unordered
tree such that

(i) each node of M-Tree(D) is labeled by the name of a module Z such that
Z SOMEWHERE-WITHIN D,

(ii) the root of M-Tree(D) is labeled by the name of the root module D,

(iii) each node of M-Tree(D) labeled by the name of a primitive module has
no children,
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Figure 8.9. Module expansion tree M-Tree(A)

(iv) each node of M-Tree(D) labeled by the name of a composite module,
say, module Z, has a child for each module instance in the body of Z.
Each child is labeled with the module name of the instance.

As an example, Fig. 8.9 shows M-Tree(A) for the module A that appears in
Fig. 8.5. (Note that module D is primitive.)

LEMMA 5.3. Let n ≥ 1 be an integer. The maximum number of leaves in
the expansion tree of a hierarchically specified module whose hierarchical de-
scription is constrained to have submodule size at most n occurs when only
one kind of submodule occurs at each level in the expansion tree of the hierar-
chically specified module.

Proof. The following algorithm, given a hierarchically specified module M ,
produces a hierarchically specified module N whose hierarchical description
has submodule size no greater than that of M , such that

(i) the number of leaves in M-Tree(M) is less than or equal to the number of
leaves in M-Tree(N), and

(ii) only one kind of submodule occurs at each level in the expansion tree of
hierarchically specified module N .
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The algorithm processes the body of the composite modules that occur as
labels in M-Tree(M) as follows. For each body let Q be a module such that
there is an instance of Q within the body and M-Tree(Q) has a maximal number
of leaves among the kinds of modules having instances in the body. The body is
modified by replacing each instance of a module other than Q with an instance
of Q.

After all the bodies have been modified, modules that no longer label nodes
in M-Tree(M) are deleted.

The correctness of the lemma follows since the submodule size of each mod-
ule is unchanged and the number of leaves in the expansion tree of each module
is either unchanged or increased. �

LEMMA 5.4. Let m, k, i1, . . . , and ik be integers≥ 1 such that
∑k

j=1 ij = m.

Then the product
∏k

j=1 ij is less than or equal to 3r if m = 3 · r, 3r−1 · 22 if
m = 3 · r +1, and 3r · 2 if m = 3 · r +2. Moreover, the indicated upper bound
is obtainable.

Proof. It is easily seen that the indicated upper bound is obtainable. To ver-
ify that the claimed upper bound is an upper bound, we need only verify the
following: Let m, k, i1, . . . , and ik be integers ≥ 1. Let m be fixed.

(1) The product i1 · · · ik, subject to the constraint i1 + · · · + ik = m, is
maximized when i1, . . . , ik ∈ {2, 3}.

(2) Given that i1, . . . , ik ∈ {2, 3}, the product i1 · · · ik, subject to the con-
straint i1 + · · ·+ ik = m, is maximized when at most two of the integers
i1, . . . , ik equal 2.

To see the correctness of (1), we observe the following:

(1a) Suppose some il ≥ 5. Then the product i1 · · · ik < (
∏k

j=1,j �=l ij) · 2 ·
(il − 2) (since il < 2 · (il − 2)) and

∑k
j=1,j �=l ij + 2 + (il − 2) = m.

(1b) Suppose some il = 4. This occurrence of 4 can be replaced by two
occurrences of 2; the sum and product of the integers will be unchanged.

To see the correctness of (2), we observe that 6 = 2 + 2 + 2 = 3 + 3 but
23 < 32. �

DEFINITION 5.5. A set of primitive modules Π is complete over a domain D
of values if D is the domain over which the primitives operate and if every
function of the form Dk → D for finite k can be computed by a finite inter-
connection of modules in Π.
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LEMMA 5.6. For any set Π of primitive modules that is complete over a finite
domain with d values, there is a constant c such that any acyclic circuit with z
ports has an equivalent circuit of size at most czdz .

Proof. Of the z ports, let x be the number of input ports and let y be the number
of output ports. The circuit computes a function from dx to dy. Let each of the
dx input value assignments be called a minterm.

Since Π is complete, a circuit of a fixed size can perform each of the binary
operations in Zd. Thus for each minterm a circuit that computes a signal whose
value is 1 if the input assignment corresponds to that minterm, and whose value
is 0 otherwise, can be constructed. The size of the circuit for each minterm is
at most c1x, where constant c1 depends on Π. Each of the y outputs can be
computed by a circuit that combines the values of the dx minterms, and the
size of this circuit is at most c2d

x, where constant c2 depends on Π. If c is
max(c1, c2), the size of the overall circuit is at most czdz . �

DEFINITION 5.7. Consider a hierarchical circuit description D of size n. Let
M be a hierarchically described module occurring in D such that the number
of ports of M is at least

√
n. The module semiexpansion tree of M , denoted

by S-Tree(M), is a labeled unordered tree such that

(i) each node of S-Tree(M) is labeled by the name of a module that occurs
in the description D and that has at least

√
n ports,

(ii) the root of S-Tree(M) is labeled by the name of module M ,

(iii) each node of S-Tree(M) labeled by the name of a primitive module has
no children,

(iv) each node of S-Tree(M) labeled by the name of a composite module,
say, module Z, has a child for each instance in the body of Z of a module
with at least

√
n ports. Each child is labeled with the module name of

the instance.

Note that S-Tree(M) corresponds to the expansion tree of M that would be
produced if D were modified by deletion of all occurrences of modules and
module instances having less than

√
n ports.

LEMMA 5.8. Consider a hierarchical description D of size n, and a module
M occurring in D such that M has at least

√
n ports. Then

(1) S-Tree(M) has depth at most
√

n, and

(2) S-Tree(M) contains at most 3�
√

n/3	 leaves.
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Proof. (1) Since each node along a path from the root to a leaf of S-Tree(M)
corresponds to a distinct module whose description is of size at least

√
n, the

number of such modules cannot exceed
√

n.
(2) Note that the proof of Lemma 5.3 applies to S-Trees. Thus for a given

value of n the number of leaves is maximized when each module body con-
tains instances of only one module type. Thus assume that at each level of
S-Tree(M) all the nodes at that level are labeled by the same module. Let
M0, M1, . . . , Mk be the module labeling the root, children of the root, etc. For
1 ≤ i ≤ k let ij be the number of instances of module Mj within the body
of module Mj−1. Since the total size of the description is n and each module
instance has size at least

√
n, there can be at most

√
n module instances con-

tributing to S-Tree(M). Thus it must be the case that
∑k

j=1 ij ≤
√

n. There-

fore, from Lemma 5.4,
∏k

j=1 ij does not exceed 3�
√

n/3	. But this product is
the number of leaves of S-Tree(M). �

THEOREM 5.9. For any set Π of primitive modules that is complete over a
finite domain with d values there is a constant c such that any acyclic circuit
specified by a hierarchical description of a size n has an equivalent circuit
whose flat description is of size at most cn3/22((1/3) log2 3+log2 d)

√
n.

Proof. Suppose a module M has at most
√

n ports. Then from Lemma 5.6 it
has an equivalent circuit of size at most c1

√
nd

√
n, where c1 depends on Π.

Suppose M has more than ports. From Lemma 5.8, S-Tree(M) contains
at most 3�

√
n/3	 leaves. Each of these leaves has a module body containing

at most n module instances, and each of these module instances has at most√
n ports. Therefore, if M were expanded by continually replacing module

instances with more than
√

n ports by their bodies and not expanding any mod-
ule instance with at most

√
n ports, the resulting circuit would contain at most

n3�
√

n/3	 instances of modules, each with at most
√

n ports. From Lemma 5.6
each of these module instances can be replaced by a flat circuit containing at
most c1

√
nd

√
n instances of primitive modules. If we let c = 3c1 , the over-

all circuit contains at most cn3/22((1/3) log2 3+log2 d)
√

n instances of primitive
modules. �

Note that since log2 3 is less than 1.59, the bound from the preceding theo-
rem is cn3/22(0.53+log2 d)

√
n. When the domain of the circuit is binary, so that

d = 2, the bound is cn3/221.53
√

n.

THEOREM 5.10. For any set Π of primitive modules that is complete over a fi-
nite domain with d values, there is a constant c such that for any acyclic circuit
specified by a hierarchical description of size n an equivalent flat description
can be constructed in time cn5/22((1/3) log2 3+log2 d)

√
n.
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Proof. Let c1 be the constant in the statement of Theorem 5.9. Let M be the
module whose description is to be constructed. Then working from the bottom
up in accordance with the DIRECTLY-WITHIN relation, an “official” flat cir-
cuit is constructed for each of the modules that are involved in the hierarchical
description of M and have fewer than

√
n ports. Finally, the flat circuit for

M is constructed. For each module N considered with fewer than
√

n ports,
the official flat circuit is constructed as described in Lemma 5.6. To use this
construction we need a table that gives the output values for each assignment
of input values. This table is constructed by first producing a “working body”
for N and then simulating the working body for each input assignment. The
working body is constructed as described by Theorem 5.9, continually sub-
stituting the body for each instance of a module, but when an instance of a
module with less than

√
n ports is encountered, its already constructed official

body is directly substituted for the instance. The result is that the working body
for N is of size at most c1n

3/22((1/3) log2 3+log2 d)
√

n. The table for N requires
d

√
n rows, and each row can be filled in by simulating the working body for

N , given the input assignment corresponding to that row. Thus the time to fill
in the table is proportional to n3/22((1/3) log2 3+log2 d)

√
n.

After at most n official bodies are constructed, the fiat circuit for M can be
constructed as described in Theorem 5.9. �

THEOREM 5.11. For any set Π of primitive modules that is complete over a
finite domain with d values, there is a constant c such that any acyclic circuit
specified by a hierarchical description of size n can be simulated in time at
most cn5/2c((1/3) log2 3+log2 d)

√
n.

Proof. A flat circuit equivalent to the module to be simulated can be con-
structed as described in Theorem 5.10 and then can be directly simulated. �

In performing a simulation it is not really necessary to construct the circuits
for modules with fewer than

√
n ports. Rather, each such module can be rep-

resented by a table that provides the output values for each input assignment.
Each such table can be initially empty. Each time the module is simulated with
an input assignment that has not been submitted thus far, the output values in
the appropriate row can be filled in. When the module is to be simulated with
an input assignment that has already been simulated, the output values in the
appropriate row can be used (without having to repeat this simulation). Thus a
given overall simulation might take less time than the construction that is the
basis of Theorem 5.11 would take.

Note that given a hierarchically described circuit, the size of the flattened
circuit can be computed in linear time by using a bottom-up method. A choice
can than be made between using the algorithm of Theorem 5.11 and simulating
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the flattened circuit, depending on a comparison of the size of the flattened
circuit and the bound of Theorem 5.11. This hybrid algorithm never uses more
time or more space than the traditional method of constructing the flattened
circuit and then simulating it. Since the flattened circuit can be of size 2Ω(n),
the hybrid algorithm often uses less time and much less space. If space is of
the utmost importance, the algorithm of Theorem 3.1 can be used.

6. Analysis Problems for Circuits with Cycles

In this section we consider hierarchical module descriptions in which data-
flow cycles are permitted. Simulation for circuits with dataflow cycles involves
computing the values of the output ports of a module, given its hierarchical
description, a specification of the sequence of values for each input port, a
specification of the initial state of the module, and a specification of which
values should be reported.

As for acyclic modules, we assume that the domain of signal values is finite.
We also assume that for each input port of a primitive module there is a rule
for what value to use should the port be unconnected to a driver.

Because of the presence of cycles, timing issues arise. We assume that for
any given set of primitive modules, all delays are multiples of some basic unit
of time. We also assume that each primitive module can have a state (where
combinational modules are a special case that have only a single state). For
each primitive module we assume that there is a rule computable in polynomial
time and linear space that when given a state and input-port values, determines
a next state and output-port values, perhaps with a specified delay.

Consider a set of primitive modules that satisfy the conditions described
above. The input information for a simulation problem consists of a hierarchi-
cal module description, the specification of a sequence of values for each input
port of the root module, the specification of initial values for states of some of
the primitive modules and some signals in the flattened body of the module,
the specification of a condition of when to stop the simulation, and the specifi-
cation of conditions for when the output values should be reported. We make
the following assumptions about the language in which these specifications are
expressed. We assume that time can be written in binary. We assume that the
language for expressing the sequence of values for an input port can enumerate
values at given times or during given time intervals, can specify repetition of
a sequence of values, and can specify default values for times not explicitly
described. We assume that the language for expressing initial values for states
or signals in the flattened body can specify a value for certain explicitly listed
signals and primitive module instances in the flattened body and can specify
default values for those not explicitly listed. We assume that for explicitly list-
ing a signal or module its hierarchical name is given, where the hierarchical
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name begins with the name of the root module and consists of an identifying
sequence of names separated by periods. The size of a hierarchical name is the
number of names in the sequence. For instance, hierarchical name A.B.C.D.
refers to D within instance C within instance B of module A. The size of
this hierarchical name is 4. We assume that the stop condition can be either a
specified time or a specified value for one of the output ports. We assume that
the report condition can be a list of times or time intervals or can be a Boolean
combination of output-port values.

The output information for a simulation problem is the values of the output
ports of the root module at those times satisfying the specified report condi-
tions, up to the time the stop condition is satisfied.

PROPOSITION 6.1. For a given set of primitive modules, the simulation prob-
lem for flat circuit descriptions can be solved in linear space.

Proof. The simulation can keep track of the value of each signal in the flat
body plus, if appropriate, states of the primitive modules. �

THEOREM 6.2. A hierarchically specified circuit can be simulated in expo-
nential space.

Proof. The size of the flattened body of the module is at most exponential in
the size of the hierarchical description. Thus the flattened body can be con-
structed in exponential space and then simulated. �

We now show that the simulation problem requires exponential space.
We say that a set of primitive modules has flip-flop expressibility if there

exist two values φ and τ in the domain of values operated on by the primitive
modules and if there exist four modules {AND, OR, NOT, FLIP-FLOP} either
available as primitive modules or constructible as composite modules by an
interconnection of primitive modules such that these modules behave like the
standard logic modules with these names. The FLIP-FLOP module can behave
like any of the standard flip-flop types. (The FLIP-FLOP module can be a
composite module constructed out of the gate-type modules.)

For a set of primitive modules with flip-flop expressibility, a linear-bounded
automaton with a given input string can be described as a flat module whose
size is proportional to the length of the input string. Consequently, the simu-
lation problem for fiat modules constructed from primitive modules that have
flip-flop expressibility is PSPACE-hard. Because of Proposition 6.1, the prob-
lem is PSPACE-complete. Hierarchical descriptions permit an exponential in-
crease in conciseness but involve a corresponding exponential increase in the
space required for the simulation problem, as described in the following result.
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THEOREM 6.3. For a set Π of primitive modules with flip-flop expressibility,
there exists a constant d > 0 such that the simulation problem for hierarchical
module descriptions requires space at least 2dn on any Turing machine.

Proof. Let M be an arbitrary 2cn-space-bounded Turing machine for some
constant c > 0. Assume that M serves as a language recognizer. Also assume
that M has an explicit accept state and an explicit reject state. Without loss of
generality it can be assumed that for every input string, M eventually enters
either its explicit accept or explicit reject state without having touched more
than its 2cn leftmost tape cells, and it then moves to the right indefinitely in its
accept or reject state.

Consider an input string x of length n, where x is assumed to include end
markers. In processing x machine M uses at most 2cn tape cells and then keeps
moving to the right in either the accept or reject state.

The overall circuit to be specified hierarchically will contain an implemen-
tation of Turing machine M and enough tape cells to determine whether M
accepts x. In this implementation each tape cell will be implemented explic-
itly by an instance of a submodule, called module D0, that can both record the
contents of a tape cell and simulate the operation of M ’s finite state control
when the tape head of M is on that cell. A transition of M will be imple-
mented by changes of signal values involved in instances of D0 corresponding
to the tape cells affected by the transition, with other instances of D0 remaining
unchanged.

Given x, a hierarchical circuit description can be constructed as follows.
The circuit description depends only on n, the length of x. For each m, where
0 ≤ m ≤ cn, there is a composite module Dm. In the overall circuit that
is specified hierarchically, each instance of Dm represents a segment of 2m

contiguous cells of M ’s tape. The flip-flops in this instance of Dm record
the contents of the tape cells in this segment, whether or not the tape head is
residing on this segment and, if so, the state of M and on which cell in the
segment the head is residing. The ports of Dm are summarized in Fig. 8.10.
For each state g of M input port xlg encodes whether the tape head, in state g,
is moving onto the represented tape segment from the left. Similarly, input port
xrg encodes whether the tape head, in state g, is moving onto the tape segment
from the right. Output port ylg encodes whether the tape head, in state g, is
moving off the tape segment to the left. Similarly, output port yrg encodes
whether the tape head, in state g is moving off the tape segment to the right.

Consider D0, whose purpose is to simulate one cell of M . The body of D0

can be constructed by using instances of modules FLIP-FLOP, OR, AND, and
NOT. The flip-flops are used to remember the contents of the tape cell, whether
or not the tape head is on the cell, and, if so, the state. A straightforward
implementation can have a flip-flop for each tape symbol and a flip-flop for
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Figure 8.10. Ports of module Dm

each state. At each step of the computation by M , the head of M resides at
some given tape cell, say, cell α. On the basis of the contents of cell α and
the current state, M makes a transition that involves a next state, new contents
of cell α, and the determination of whether the head of M remains stationary,
moves one cell to the left, or moves one cell to the right. Corresponding to this
step of M , the instance of D0 representing cell α uses its recorded value of the
state and cell contents to simulate the transition. The new contents of cell α are
recorded in this instance of D0. If the transition involves no head movement,
then the next state and the fact that the head is residing on this cell is recorded in
this instance of D0. If the transition involves movement of the tape head, then
the appropriate output port of this instance of D0 is given a value indicating the
movement of the tape head onto an adjacent cell and the new state of M . This
value on the output port causes the instance of D0 representing the adjacent
tape cell to record the fact that the tape head is now residing on it. (Note that
for all instances of D0 other than the one that represents cell α, the values on
the output ports remain unchanged.) The details of the construction of the body
of D0 are routine and are left to the reader.

Now consider the body of each Dm where 1 ≤ m ≤ cn. The body of each
Dm is constructed by using two instances of module Dm−1 interconnected as
shown in Fig. 8.11.

Note that the size of the description of each Dm is independent of n and that
the number of such descriptions is cn.

Let INIT be a module whose body consists of a sequence of n instances of
D0 connected together. The purpose of INIT is to represent the first n tape
cells of M , which are initially to contain string x. (All other cells of M are
initially to contain the blank tape symbol.) Module INIT has the same set of
ports as described in Fig. 8.10. Note that the size of the description of INIT is
proportional to n.
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Figure 8.11. Body of Dm for m > 0

Figure 8.12. Body of root module D

Let FIN be a module with two output ports {A, R} and a number of input
ports equal to the number of right output ports of Dcn. The body of FIN com-
putes whether its input ports indicate that the tape head is moving to the right
in the explicit accept or reject state. Output port A is given a special value
when FIN detects the tape head moving to the right in the accept state, and
output port R is given a special value when FIN detects the tape head moving
to the right in the reject state.

Let D be a module with two output ports and no input ports. The body
of D is shown in Fig. 8.12. In Fig. 8.12 the left input ports of INIT and the
right input ports of Dcn, are shown as unconnected. This assumes that the
unconnected input ports of D0 are interpreted as representing the absence of
tape head movement. If this is not the case for the primitive modules used in
the body of D0, the body of D could be given additional module instances to
generate the appropriate input-port values.
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Consider the following instance of the simulation problem. The hierarchical
module description consists of the description of D, INIT, FIN, D0, . . . , Dcn,
with D designated as the root module. The specification of the initial values of
flip-flops in the flattened circuit is that the n instances of D0 within INIT are
initialized with the n symbols of x and that all the instances of D0 within Dcn

are initialized with the blank symbol. Also, the leftmost instance of D0 within
INIT is specified to be initialized with the tape head present and the starting
state of M . All other occurrences of D0 are initialized with the tape head
absent. The condition for both reporting the output and stopping the simulation
is that either output of D has the special value that indicates acceptance or
rejection by M .

For this simulation problem the simulation always halts, only one set of
output-port values is reported, and the reported values indicate whether M
accepts or rejects x.

Note that the size of the hierarchical object description is proportional to n.
The size of the initialization specification is proportional to n since the size
of the hierarchical name of each instance of D0 within INIT is constant. (If
the language for specifying initialization conditions were more restricted, the
construction could be modified so that all flip-flops would be specified to be
in the same neutral state and D would be given an input that could be used to
load specified values into the first n cells and then initiate the operation of M .)
Thus the construction represents a linear size (and polynomial time) reduction
from the acceptance problem for M to the simulation problem for D. Since
the size of the input information for the simulation problem is proportional to
n, there is a constant d > 0 such that the simulation problem requires space at
least 2dn. �

Combining Theorems 6.2 and 6.3 gives the following result.

COROLLARY 6.4. The simulation problem is EXPSPACE-complete for hier-
archically specified objects when the set of primitive modules has flip-flop ex-
pressibility.
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Abstract We study network-design problems with two different design objectives: the
total cost of the edges and nodes in the network and the maximum degree of any
node in the network. A prototypical example is the degree-constrained node-
weighted Steiner tree problem: We are given an undirected graph G(V, E), with
a non-negative integral function d that specifies an upper bound d(v) on the
degree of each vertex v ∈ V in the Steiner tree to be constructed, nonnegative
costs on the nodes, and a subset of k nodes called terminals. The goal is to
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construct a Steiner tree T containing all the terminals such that the degree of any
node v in T is at most the specified upper bound d(v) and the total cost of the
nodes in T is minimum. Our main result is a bicriteria approximation algorithm
whose output is approximate in terms of both the degree and cost criteria—
the degree of any node v ∈ V in the output Steiner tree is O(d(v) log k) and
the cost of the tree is O(log k) times that of a minimum-cost Steiner tree that
obeys the degree bound d(v) for each node v. Our result extends to the more
general problem of constructing one-connected networks such as generalized
Steiner forests. We also consider the special case in which the edge costs obey
the triangle inequality and present simple approximation algorithms with better
performance guarantees.

Keywords: approximation algorithms, network design, bicriteria problems
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son. Online publication May 22, 2001.

1. Introduction and Motivation

Several problems in the design of communication networks can be modeled
as finding a network obeying certain connectivity specifications. For instance,
the network may be required to connect all the nodes in the graph (a span-
ning tree problem), a specified subset of the nodes in the graph (a Steiner tree
problem) or to only interconnect a set of pairs of nodes (a generalized Steiner
forest problem). The goal in such network-design problems can usually be
expressed as minimizing some measure of cost associated with the network.
Several examples of such cost measures have been considered in the literature.
For example, if we associate costs with edges and nodes that can be used to
build the network, then we may seek a network such that the cost of construc-
tion is minimized. This is the minimum-cost network design problem and has
been well studied. A notion of cost that reflects the vulnerability of the net-
work to single point failures and the amount of load at a given point in the
network is the maximum degree of any node in the network. Minimizing this
cost gives rise to the minimum-degree network design problem, which has also
been well studied. Another common cost measure is the maximum cost of any
edge in the network. This goal falls under the category of bottleneck problems
that have also received considerable attention.

Finding a network of sufficient generality and of minimum cost with re-
spect to any one of these measures is often NP-hard [14]. Hence much of the
work mentioned above focuses on approximation algorithms for these prob-
lems. However, in applications that arise in real-world situations, it is often the
case that the network design problem involves the minimization of more than
one of these cost measures simultaneously [9, 16].



Approximation Algorithms for Network Design 243

In this paper, we concentrate on two objectives: (i) the degree of the network
and (ii) the total cost of the network. Typically, our goal will be to find net-
works of minimum cost subject to degree constraints. For example, consider
the following problem: Given an undirected graph G = (V, E) with nonneg-
ative costs on its edges and an integer b ≥ 2, find a spanning tree in which
the maximum degree of any node is at most b and the total cost is a minimum.
Such degree-constrained minimum-cost network problems arise in diverse ar-
eas such as VLSI design, vehicle routing and communication networks. For
example, Deo and Hakimi [8] considered this problem in the context of back-
plane wiring among pins, where no more than a fixed number of wires can be
wrapped around any pin on the wiring panel. In communication literature, this
problem is commonly known as the teleprocessing design problem or as the
multidrop terminal layout problem [2]. Here, we investigate the complexity
and approximability of a number of such degree-constrained minimum-cost
network-design problems. The main focus of our work is to develop a general
technique for constructing near-optimal solutions to such problems.

The remainder of the paper is organized as follows. Section 2 contains ba-
sic definitions and formal statements of the problems considered in this paper.
It also discusses a framework for evaluating approximation algorithms. Sec-
tion 3 summarizes the results in the paper. Section 4 discusses related work. In
Sect. 5 we present our algorithm for degree-bounded node-weighted networks.
In that section we also discuss an extension of the algorithm to networks rep-
resented using proper functions. In Sect. 6, we outline the algorithms with
improved performance and running times for constructing networks when re-
stricted to input graphs obeying the triangle inequality. Section 7 contains
negative results on the approximabilities of some problems. Finally, Sect. 8
discusses some implications and directions for future research.

2. Basic Definitions and Problem Formulations

Following the framework developed in [21], a generic bicriteria network de-
sign problem, denoted by (A,B,S), is defined by identifying two minimiza-
tion objectives, denoted by A and B, from a set of possible objectives, and
specifying a membership requirement in a class of subgraphs, denoted by S.
The problem specifies a budget value on the first objective (A) under one cost
function, and the goal is to find a network having minimum possible value for
the second objective (B) under another cost function, such that this network is
within the budget on the first objective. The solution network must belong to
the subgraph-class S.

The two objectives we consider in this paper are: (i) degree of the net-
work and (ii) the cost of the network. We consider two extensions of these
objectives. The first extension deals with the budgeted objective, namely de-
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gree, and the second deals with the minimization objective, namely the total
cost. The two versions of degree constraints that we consider are: (i) non-
uniform degree (denoted by N-DEGREE) and (ii) uniform degree (denoted by
U-DEGREE). In the non-uniform degree version, a possibly different degree
bound d(v)(≥ 2) is specified for each vertex v. The uniform degree version
is a special case where ∀v ∈ V, d(v) = b for some integer b; i.e., all the ver-
tices have the same degree constraint. Thus, for the problems considered in
this paper A ∈ {U-DEGREE, N-DEGREE}. For the minimization objective,
we focus on the total cost of the network. We assume we are given nonnega-
tive costs on the edges and/or nodes of the input undirected graph. The total
cost is given by the sum of the costs of all the edges (denoted by E-TOTAL-
COST) or all the nodes (denoted by N-TOTAL-COST) in the network. Thus,
B ∈ {N-TOTAL-COST, E-TOTAL-COST}. Finally, the class of subgraphs S
studied here includes SPANNING TREES, STEINER TREES, GENERALIZED

STEINER TREES and networks specified using proper 0–1 functions introduced
in [15].

Using the above notation, the problem of finding a minimum-cost spanning
tree in which each node has degree at most b is denoted by (U-DEGREE, E-
TOTAL COST, SPANNING TREE). Similarly, given a node weighted graph
G(V, E), an integer function d specifying the upper bound on the degree of
each node and a set of terminals T , the (N-DEGREE, N-TOTAL-COST, STEI-
NER TREE) problem is to find a minimum-cost tree T spanning the nodes in
T such that the nodes in T obey the degree constraints. Problems in which the
desired network is a generalized Steiner forest or a graph specified by a proper
0–1 function can be formulated along similar lines.

Some of the problems considered in this paper also involve the maximum
cost of any edge in the network, i.e., the bottleneck cost, as a minimization
objective. We use E-BOTTLENECK-COST to denote this objective. For the
rest of the paper, we use the term “d(v)-bounded network” to mean a network
in which the degree of node v is at most d(v) for all v.

Most of the degree-constrained network-design problems considered in this
paper are NP-hard. In fact, for several problems (e.g. (U-DEGREE, E-TOTAL

COST, SPANNING TREE)) we show (Theorem 7.1) that it is NP-hard to find a
solution that is within any factor of the optimal objective value, if the solution
is required to satisfy the budget constraint; alternatively, if the solution must
achieve exactly the minimum value of the total cost objective, then it is NP-
hard to find one which satisfies the budget within any given factor. Motivated
by these hardness results for unicriterion approximations, we focus on finding
bicriteria approximations, that is, efficient algorithms that guarantee a solution
which is approximate in terms of both the budget and the objective function.

An (α, β) approximation algorithm for a generic bicriteria problem
(A,B,S) is a polynomial-time algorithm that produces a solution in which
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the objective value for A is at most α times the budget and the cost of the
solution with respect to B is at most β times the value of an optimal solution
with respect to B that respects the budget constraint with respect to A. Our
algorithms provide bicriteria approximations in the sense described above for
a wide variety of one-connected network-design problems.

3. Summary of Results

3.1 Hardness Results

Our lower bound results on finding near-optimal solutions include the fol-
lowing. Additional hardness results are discussed in Sect. 7.

1. For general graphs, unless P = NP, for any ρ > 1, there is no polyno-
mial time (1, ρ) approximation algorithm for the (U-DEGREE,
E-TOTAL COST, SPANNING TREE) problem.

2. For general graphs, unless P = NP, for any ρ > 1, there is no polyno-
mial time (ρ, 1) approximation algorithm for the problem (U-DEGREE,
E-TOTAL-COST, STEINER TREE).

3. For general graphs, unless P = NP, for any ε > 0 and ρ > 1, there is no
polynomial time (2− ε, ρ)-approximation algorithm for the
(N-DEGREE, E-TOTAL-COST, STEINER TREE) problem.

4. For general graphs, unless P = NP, for any ε > 0 and ρ > 1, there is no
polynomial time (ρ, τ − ε)-approximation algorithm for the
(N-DEGREE, E-TOTAL-COST, STEINERTREE) problem. Here τ is the
lower bound on the performance guarantee of any algorithm for find-
ing minimum Steiner trees (see Chapter 10 of [10] for the best bounds).
This result is an immediate corollary of hardness results for the mini-
mum Steiner tree problem.

These hardness results motivate the need for bicriteria rather than unicrite-
rion approximation algorithms for these problems.

3.2 Approximation Algorithms

A problem with costs on nodes as well as edges can be transformed (for the
purposes of designing approximation algorithms) into one with only node costs
as follows: subdivide each edge by introducing a new node with cost equal to
the cost of the edge.1 Therefore, in stating our approximation results, we focus
on the node-weighted case. To keep the description of our main result simple,
we present below the result for the case of degree-constrained node-weighted

1 This transformation is not applicable to minimum cost spanning trees, for which the node weighted case
is trivial.
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Steiner trees. The extension of this theorem to more general classes of one-
connected networks representable as cut-covers of proper functions is deferred
to Sect. 5.7.

THEOREM 3.1. There is a polynomial-time algorithm that, given an undi-
rected graph G on n nodes with nonnegative costs on its nodes, a subset of
k nodes called terminals, and a degree bound d(v) ≥ 2 for every node v, con-
structs a Steiner tree spanning all the terminals, with degree O(d(v) log k) at
a node v and of cost O(log k) times that of the minimum-cost Steiner tree of G
that spans all the terminals and obeys all the degree bounds.

A proof of this theorem is provided in Sect. 5. The positive result pre-
sented in this theorem should be contrasted with the hardness results men-
tioned earlier stating that there is no (2− ε, ρ) or (ρ, τ − ε) (for any ρ > 1 and
some ε > 0) approximation algorithm for the (N-DEGREE, E-TOTAL-COST,
STEINERTREE) problem unless P = NP. Combining the above observations
we get that finding an approximation algorithm with performance guarantee
(2 − ε, τ − ε) is NP-hard. Note that the performance guarantee on the node-
cost in the above theorem cannot be asymptotically improved (even if the other
performance ratio is arbitrarily weakened) since one of the problems included
in the framework of Theorem 3.1 is the node-weighted Steiner tree problem
considered by Klein and Ravi in [18]. By a reduction from the set cover prob-
lem and the known non-approximability results for the latter problem, they
note that the best possible performance ratio achievable for this problem (even
without the degree restrictions imposed in Theorem 3.1) is logarithmic unless
P = NP [20, 3, 27]. As an immediate corollary of Theorem 3.1, we obtain an
(O(log n), O(log n)) approximation algorithm for the (U-DEGREE, E-TOTAL

COST, SPANNING TREE) problem introduced earlier.
In Sect. 6, we address the special case in which the edge costs obey trian-

gle inequality and present simple approximation algorithms with better per-
formance guarantees. Further, for the problem of constructing spanning net-
works in this special case, we show that our algorithms also simultaneously
approximate yet another objective, namely the maximum cost of any edge in
the network.

4. Related Work

Much work has been done on approximating each of the two cost measures
that we simultaneously minimize (see [4, 5] and the references therein). We
also refer the reader to the comprehensive book edited by Hochbaum [10] for
recent results and techniques for solving these problems.

There has also been extensive work on bicriteria network design problems.
The (U-DEGREE, E-TOTAL COST, SPANNING TREE) problem, originally
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posed and studied in [8], has been recently considered in Boldon, Deo and
Kumar [4]. They present heuristics and their parallel implementations but do
not provide worst case performance guarantees. Papadimitriou and Vazirani
[23] studied the Euclidean version of this problem for the case when d = 3, 4.
Monma and Suri [22] showed that for any set of points in the plane, a minimum
spanning tree with d = 5 can be constructed efficiently. Khuller, Raghavachari
and Young [17] gave approximation algorithms with performance guarantees
of 3/2 and 5/4 for d = 3 and d = 4 respectively for points in the plane. They
also presented an approximation algorithm with a performance guarantee of
5/3 for point sets in higher dimensions when d = 3. Iwainsky et al. [16]
formulated a version of the minimum-cost Steiner problem with an additional
cost based on node-degrees. Duin and Volgenant [9] formulated the degree-
bounded Steiner tree problem motivated by practical considerations. In other
related work, Fischer [12] considered the problem of finding a MST of min-
imum possible maximum degree in a weighted undirected graph. He showed
that the techniques of Fürer and Raghavachari [13] can be applied to find a
MST of approximately minimum degree.

In [26], we presented early versions of the results in this paper giving spe-
cific algorithms for the edge-cost versions, and using a simpler version of the
techniques in this paper to give results for the uniform degree node-weighted
versions. Building on our work there, in [21], we studied other bicriteria net-
work design problems. There we also presented a polynomial-time algorithm
for the (U-DEGREE, E-TOTAL COST, SPANNING TREE) problem when inputs
are restricted to treewidth-bounded graphs. In [24], Ravi has applied some of
the ideas here to solve a bicriteria problem that forms the basis for finding an
approximately minimum broadcast-time scheme in an arbitrary graph.

5. Degree-Constrained Node-Weighted Steiner Trees

In this section, we present our algorithm in detail for the degree-constrained
node-weighted Steiner tree problem. In Sect. 5.7, we briefly indicate how the
algorithm can be extended to accommodate more general connectivity specifi-
cations.

Recall that, as input to the problem, we are given an undirected graph
G(V, E), with nonnegative costs on the nodes and a set of terminals to be
connected together into a Steiner tree. In addition, for each vertex v, a budget
d(v) on its degree in the Steiner tree is specified. The goal is to find a Steiner
tree of minimum node cost that obeys the degree constraint at every node.
There are no edge costs in this version since the problem with node and edge
costs can be transformed into one involving just node costs (see Sect. 3.2). We
shall assume for the sake of simplicity that such a Steiner tree always exists on
the input graph and address the problem of computing one that approximately
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obeys the degree budgets as well as minimizes the total node cost. In the de-
scription of the algorithm and its analysis, we use cG(v) to denote the cost of
a node v ∈ V . We omit the subscript G when there is no ambiguity.

5.1 High Level Description

The algorithm maintains a set S of nodes and a set F of edges. Initially S
contains all the terminals and F is empty. During the course of the algorithm,
the connected components of the graph (S, F ) are node-disjoint trees whose
union contains all the terminals. Define a connected component of (S, F ) to
be active if it contains at least one terminal but not all of the terminals. The
algorithm works in O(log k) iterations. In each iteration, we run a greedy
algorithm to choose a subgraph (a collection of many smaller subgraphs called
spiders) of small degree and small node-cost such that the addition of this
subgraph to the current solution reduces the number of connected components
of (S, F ) by a constant factor.

We first define a few additional terms used in describing our algorithm. We
use OPT to denote the minimum cost of any Steiner tree that obeys the degree
restrictions in the input.

DEFINITION 5.1 [18]. A spider is a tree with at most one node of degree
greater than two. A center of a spider is a node from which there are node-
disjoint paths (called legs) to the leaves of the spider. Note that if a spider has
at least three leaves, its center is unique. The leaves of the spider are also called
the feet of the spider. A nontrivial spider is one with at least two feet.

5.2 The Algorithm and Its Performance Guarantee

The rest of Sect. 5 is devoted to describing the algorithm and its perfor-
mance for approximately solving the (N-DEGREE, E-TOTAL-COST, STEINER

TREE). ALGORITHM-DEGREE-STEINER gives the details of the entire algo-
rithm.

5.3 A Procedure to Find Minimum Ratio Spiders

The heart of ALGORITHM-DEGREE-STEINER is Step 8—a procedure that
chooses a nontrivial spider of minimum “ratio-cost”. We describe this proce-
dure informally. Consider a generic step of ALGORITHM-DEGREE-STEINER

(Step 4). Observe that we maintain a current graph G′ and the current par-
tial solution (S, F ). Let the connected components of (S, F ) be denoted by
{C1, . . . , Cq}. The spider we use to merge these components must have a real
node of G′ as the center and some of these components as its feet. During the
course of an iteration, we may delete a node v from G′ if the degree of v due
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ALGORITHM-DEGREE-STEINER:

Input: An undirected graph G(V, E) with nonnegative costs on its nodes, a set T ⊆ V of
terminals (where |T | = k), and a function d assigning nonnegative values (each value is at
least two) to the nodes of G. Let b = minv {d(v)}.
Output: A Steiner tree T spanning the terminals T such that the degree of any node v in T is
at most is O(d(v) log k) and the cost of T is at most O(log k) times that of a minimum-cost
degree-constrained Steiner tree spanning the terminals T .

1 Initialization: S = T and F = φ.

2 Repeat while there are active components in (S, F )

3 Let C be the set of active components of (S, F ). Let C = {C1, . . . , Cq } where
q = |C |. Set G′(V ′, E′) := G(V, E).

4 While |C | ≥ 11q/12 and q > 6 do

5 Construct an auxiliary graph H as follows: Starting with G(V, E) delete the
nodes in V − V ′ to get a graph G′ on V ′. For every component surviving
(as active) in C, contract all nodes within this component occurring in G′ to a
single supernode.

6 For every node v ∈ V ′, consider v as the center of a spider.
7 If v is in a supernode of H , then uncontract v from this supernode and

attach a zero-cost edge between them; if no nodes from V ′ remain in the
supernode after uncontracting v, then add a new dummy supernode to H
representing the active component containing v and a zero-cost edge to it
from v.

8 For j = 2 to d(v) + 1 do Find a minimum-cost spider centered at v in H
with j supernodes as its feet using PROCEDURE-FIND-SPIDER.

9 Among all the spiders produced in Step 6, choose one of minimum ratio-cost,
defined as the ratio of the cost of all the real nodes in the spider to the number
of feet in it.

10 Let v be the center node and C1, . . . , Cr be the components in C chosen as the
feet of the spider in Step 9. Let P1, . . . , Pr be the legs of the spider connecting
v to C1, . . . , Cr respectively. Add

⋃r

a=1
Pa to the current solution (S, F ) so

as to merge C1, C2, . . . , Cr into one active component. Update C.
11 For every node v ∈ V ′, if the degree of this node using edges added so far

in this iteration (Steps 5 through 11) is between 2d(v) and 3d(v), then update
V ′ = V ′ − {v}.

12 If q ≤ 6 then

13 Repeat while there are active components
14 Run Steps 5 to 10.
15 Set V ′ = φ.

16 else Goto Step 2. (|C | is now less than 11q
12

.)

17 Output (S, F ) as the solution.

to the addition of edges in the generic step is between 2d(v) and 3d(v); i.e., a
constant factor of the degree bound for v. We must then choose in the current
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graph G′ a spider of minimum ratio-cost, namely the ratio of the cost of all the
nodes of G′ − S in the spider and the number of feet of the spider.

Although the concept of a spider is similar to the one used in [18], the degree
constraint makes the problem of finding a “good spider” harder. As a result, the
procedure in [18] for finding spiders cannot be used in place of PROCEDURE-
FIND-SPIDER described below.

We find a spider of minimum ratio-cost by using several calls to a minimum-
cost flow algorithm on the auxiliary graph H . We describe how to find a min-
imum ratio spider centered at a specific node v ∈ G′, the current graph. By
trying all nodes, we can choose the overall minimum ratio spider. To find a
minimum ratio spider centered at v, it suffices to find a spider centered at v
containing exactly j feet such that it has minimum total node cost. By trying
all values of j in the set {2, 3, . . . , d(v) + 1}, we can find the value of j mini-
mizing the ratio cost of the resulting spider for v. PROCEDURE-FIND-SPIDER

given below describes a method to find a minimum node-cost spider centered
at v with exactly j feet.

PROCEDURE-FIND-SPIDER:

Input: An undirected graph H containing real nodes and supernodes, a real node v as the center
and a number j specifying the number of feet in the spider to be constructed.
Output: A minimum-cost spider centered at v with j feet that are supernodes.

1 Bi-direct all the undirected edges in H giving each resulting arc the cost of the node at
its tail. (Supernodes have zero cost.)

2 Reassign the cost of all the arcs leaving the center node v to be c(v)
j

.

3 Attach a new sink node tv with new arcs of zero-cost coming to it from all the supern-
odes.

4 In this digraph, impose a capacity bound of one unit on all nodes except v and tv and
find a minimum-cost flow of value j from v to tv .

REMARKS.

1. The solution to the above flow problem (when feasible) can be found in
polynomial time and is integral (see [2] or Chap. 4 of [6]).

2. Such a flow gives a minimum-cost set of node-disjoint paths originating
at v and ending at a set of j supernodes.

3. The cost of real nodes in H other than v that occur in flow paths are
accounted for in the cost of the arcs leaving them. Node v has exactly j
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arcs leaving it in the flow solution, each of cost c(v)
j for a total of c(v).

Thus, the total cost of the flow solution is equal to the cost of all the real
nodes in the spider that are not in any component of (S, F ).

4. The set of edges in the solution to the flow problem contains no cycles.
Consequently, the set of undirected edges from the original graph that
correspond to these flow paths (i.e., ignoring the arcs into tv) contain no
cycles.

We now prove the claimed performance guarantee of the algorithm. For
ease of exposition the proof is broken down into a sequence of lemmas and
theorems.

PROPOSITION 5.2. The number of iterations of Step 2 in the algorithm is
O(log k) where k is the number of terminals.

The above proposition follows by observing that in each iteration of Step 4,
we reduce the number of active components by a constant factor. We start with
k components and the last iteration runs to completion when this number drops
to 6 or below.

PROPOSITION 5.3. For each node v, the increase in the degree of v in (S, F )
due to edges added in one iteration of Step 2 is at most 3d(v).

Proof. Consider a node v and fix an iteration i (Step 4). If degree of v exceeds
2d(v) using edges in this iteration, then it is deleted from further consideration
in Step 11 and no more edges are added in this iteration that are adjacent to
it. Furthermore, in Step 8 the increase in degree of v is either (i) at most
d(v) + 1 if it is the center of the chosen spider or (ii) at most 2 which is in
turn at most d(v) if it is a non-center node of the chosen spider (since for all v,
d(v) ≥ 2). Thus, if the degree of v is no less than 2d(v) to begin with, it never
exceeds 3d(v) after executing Step 8. In the last iteration, we merge at most 6
components using an acyclic set of edges. Thus, the degree of v increases by
at most 6 ≤ 3d(v), since for all v, d(v) ≥ 2. �

Combining Propositions 5.2 and 5.3 immediately leads to the performance
guarantee on the degree of a node in the final solution. We now bound the total
cost of the subgraph added in one iteration. Lemma 5.4 along with Proposi-
tion 5.2 yield the required performance guarantee on the total cost of the final
solution, completing the entire proof.

LEMMA 5.4. The cost of the set of nodes added to the solution in each itera-
tion of Step 2 is at most O(OPT).
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First we complete the proof with regard to the cost added in the last iter-
ation. Recall that at the beginning of the last iteration, the number of active
components is at most 6. For this iteration, our algorithm reduces to that of
Klein and Ravi [18] for node-weighted Steiner trees. Hence using their result
with the number of “terminals” to be connected being at most 6, the cost of the
nodes added is at most O(OPT log 6) = O(OPT).

The proof of the lemma for the remaining iterations is more involved and is
described in Sects. 5.4 through 5.6. The proof proceeds by deriving a decom-
position of an optimal solution and using it as a witness to the performance
of the algorithm in each iteration. In particular, we use the decomposition to
prove an averaging lemma and use this in conjunction with a potential func-
tion argument due to Leighton and Rao [19] to prove Lemma 5.4. We begin by
proving a bound on the total degree of all the nodes that are deleted from G′ in
any iteration.

5.4 Bounding the Total Degree of Deleted Nodes

Fix an iteration i. Let the active components in the beginning of this iteration
i be C1, C2, . . . , Cq. At the beginning of this iteration, we initialize the graph
G′ := G. During the course of this iteration, we may delete nodes from G′ in
Step 11.

LEMMA 5.5. In each iteration of Step 2 of the algorithm, the sum of the de-
grees of all the nodes deleted from G′ due to edges added in this iteration is at
most q.

The proof relies on the following observations.

1. The subgraph added in a given iteration is acyclic.

2. The iteration terminates when at most q
12 of the active components are

merged using edges added in a given iteration.

Using these observations we can show that a large fraction of the degree of the
deleted nodes contributes to merging the q active components. This implies an
upper bound on the sum of the degrees.

Proof. Let m be the number of components that were merged in this iteration.
Note that m ≤ q

12 . We can assume without loss of generality that the m
components are merged into a single component. (It is easy to see that in other
cases we obtain better bounds.)

Let R denote the acyclic subgraph added to merge the m components. By
the working of the algorithm, the leaves of R are precisely the m components
that were merged. By our assumption, d(v) ≥ 2 for all v. Thus, all vertices
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of degree 2 in R do not contribute to the degree sum of deleted nodes. Hence
we modify R to obtain R′ as follows: We contract all simple paths in which
each internal node has degree 2 into a single edge. Now each internal node in
R′ has a degree of at least 3. Let N = {w1, w2, . . . , wP } denote the internal
nodes of R′. Note that some of these nodes might not have been deleted. Let
D(wi), 1 ≤ i ≤ P denote the degree of wi in R′. We now prove a stronger
statement and show that

D =
P∑

i=1

D(wi) ≤ q. (5.1)

Note that 1 ≤ i ≤ P , D(wi) ≥ 3. Thus D ≥ 3P . But since R′ is a tree
we know that the number of edges |E(R′)| is given by |E(R′)| = P + m− 1.
Thus

2|E(R′)| = 2(P + m− 1) = D + m ≥ 3P + m (5.2)

implying that P ≤ m − 2. This gives an upper bound on the total number of
internal nodes inR′.

D + m = 2|E(R′)| = 2(P + m− 1) ≤ 2(m− 2 + m− 1) ≤ 3m− 5. (5.3)

Combining this with the upper bound on m we get

D ≤ 2m− 5 ≤ 2
q

12
− 5 ≤ q

6
proving (5.1). �

5.5 Spider Decompositions and an Averaging Lemma

We employ the notion of spider decompositions introduced by Klein and
Ravi [18] in showing that the each node chosen in Step 9 has small ratio-cost
with respect to the optimal solution.

Let G be a graph, and let M be a subset of its nodes. A spider decomposition
of M in G is a set of node-disjoint nontrivial spiders in G such that the union
of the feet and the centers of the spiders in the decomposition contains M .

THEOREM 5.6 [18]. Let G be a connected graph, and let M be a subset of its
nodes such that |M | ≥ 2. Then G contains a spider decomposition of M .

Let v be a node chosen in Step 9 of the algorithm. Let C denote the cost of
the subgraph added subsequently in Step 10. Let this subgraph merge r trees.
We prove the following claim.

CLAIM 5.7.

r ≥ 5
12

Cq

OPT
. (5.4)
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Proof. Let T ∗ be a minimum-cost degree-bounded Steiner tree of cost OPT.
Let C1, . . . , Cp be the active components when a spider centered at node v was
chosen by the algorithm. Let T ∗(v) be the graph obtained from T ∗ by con-
tracting each Cj to a supernode of zero cost. T ∗(v) is connected and contains
all supernodes. We then remove edges from T ∗(v) so as to make it acyclic;
thus T ∗(v) is a tree.

Delete all edges incident on nodes in V − V ′ (the deleted nodes) in T ∗(v).
Consider a node u. By construction of T ∗(v), u’s degree in T ∗(v) (denoted
by dT (u)) is at most d(u). Furthermore, u is deleted in our algorithm only if
its degree, denoted by di(u), exceeds 2d(u) due to the edges added in a given
iteration of Step 2. Thus we have

∀u ∈ V − V ′, di(u) ≥ 2d(u) and dT (u) ≤ d(u).

Combining these observations with Lemma 5.5, we get

∑
u∈V −V ′

dT (u) ≤ 1
2

∑
u∈V −V ′

di(u) ≤ q/2.

Thus, the total number of edges deleted from T ∗(v) is also at most q
2 . Since

there were p active components (and hence supernodes) when v was chosen,
the tree T ∗(v) has p supernodes in it. Since we deleted at most q

2 edges from
this tree, at least p − q

2 of the supernodes are in subtrees with at least two or
more supernodes. Since p ≥ 11q

12 , at least 5q
12 supernodes are in such trees. We

summarize this in the following proposition.

PROPOSITION 5.8. Let M denote the subset of supernodes that are in subtrees
with two or more supernodes. Then |M | ≥ 5q

12 .

We apply Theorem 5.6 to each subtree of T ∗(v) with at least two supernodes
to obtain a spider decomposition of M . We now compare the ratio cost of
spider chosen by the algorithm with that of each spider in the decomposition.
To do this however, we must ensure that the following two conditions hold.

(i) the center of each spider in the decomposition must be a real node (not
a supernode) and

(ii) the number of legs of each spider must be at most d(v) + 1.

We achieve this as follows. We further partition a spider centered at a su-
pernode into many nontrivial spiders each centered at a real node v contained in
this supernode such that the union of their feet contains the feet of the original
spiders and the number of legs of the spider centered at v is at most d(v) + 1.
To do this, first consider all the real nodes in the central supernode with at least
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one leg of the spider incident on them. Each such real node can be made the
center of a nontrivial spider (satisfying (i)) with all the legs incident on it as the
legs of the spider, along with a zero cost leg to the supernode that it belongs to.
Since the degree of any real node in T ∗ is at most d(v), the number of legs of
any such spider is at most d(v) + 1 satisfying (ii).

Let the centers of the resulting spider decomposition satisfying (i) and (ii)
be the set of real nodes v1, . . . , vt. Let �1, . . . , �t denote the number of nodes
of M (feet) in each of these spiders respectively. Since every spider in the
decomposition is nontrivial and is derived as above, each �j is at least two
and at most d(v) + 1. Moreover, a spider with center vj induces a subset of
the current active components, namely the �j components whose supernodes
belong to this spider. Let the cost of the spider centered at vj (i.e., cost of vj

plus the sum of the node-costs of the paths from vj to the �j components—if
vj is already in a supernode, we may assume its cost to be zero since it has
already been paid for in the formation of the supernode) be Costj . Then the
ratio cost of the spider centered at vj in the auxiliary graph H constructed in

this loop is at most Costj


j
.

Since the algorithm chooses a spider of minimum ratio-cost in H , for each
spider in the decomposition we have Costj


j
≥ C

r . Summing over all the spiders
in the decomposition yields

t∑
j=1

Costj ≥
C

r

t∑
j=1

�j . (5.5)

Combining Proposition 5.8 with the observation that the union of the feet of
the spiders contains M , we get

t∑
j=1

�j ≥ |M | ≥ 5q

12
. (5.6)

Also note that
t∑

j=1

Costj ≤ COST(T ∗(v)) ≤ OPT (5.7)

since (i) the cost of the nodes in the tree T ∗(v) is at most OPT and (ii) each
real node in T ∗(v) appears in at most one spider. Combining (5.5), (5.6) and
(5.7) yields Claim 5.7. �

5.6 A Potential Function Argument

Now we are ready to complete the proof of Lemma 5.4. Fix an iteration i
and let the set of nodes chosen in Step 9 of the algorithm in this iteration be
v1, . . . , vf in the order in which they were chosen.
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Let φj denote the number of active components in the solution after choos-
ing vertex vj in this iteration. Thus, for instance, φ0 = q, the number of
active components at the beginning of this iteration in (S, F ), φf −1 > 11q

12 and
φf ≤ 11q

12 . Let the number of trees merged using vertex vj be rj . Then we have

φj = φj−1 − (rj − 1). (5.8)

Let Cj denote the cost of the subgraph added by the algorithm in the step when
vertex vj was chosen. Then by Claim 5.7, we have

rj ≥
5
12

Cjq

OPT
≥ 5

12
Cjφj−1

OPT
. (5.9)

We now use an analysis technique due to Leighton and Rao [19] to complete
the proof as in [18]. Substituting (5.9) into (5.8) and simplifying using rj ≥ 2
gives

φj ≤ φj−1

(
1− 5

24
Cj

OPT

)
. (5.10)

Simplifying (5.10), we obtain

φf −1 ≤ φ0

f −1∏
j=1

(
1− 5

24
Cr

OPT

)
.

Taking natural logarithms on both sides and simplifying using the approxima-
tion ln(1 + x) ≤ x, we obtain

24
5

OPT ln
(

φ0

φf −1

)
≥

f −1∑
j=1

Cj .

Note that φ0 = q and φf −1 > 11q
12 and so we have

f −1∑
j=1

Cj < 5 OPT ln
12
11

= O(OPT). (5.11)

Note that the cost of the nodes added in this iteration is exactly the sum∑f
j=1 Cj .
To complete the proof, we bound the cost of the subgraph associated with vf ,

the last node chosen in this iteration. Using Claim 5.7 and noting that rf ≤ q
we have

Cf ≤
12
5

OPT.
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Using the above equation and (5.11), we have that the cost of the set of nodes
added in this iteration is

f∑
j=1

Cj = O(OPT).

This completes the proof of Lemma 5.4.
The performance of our approximation algorithm was summarized in The-

orem 3.1.

5.7 Extension to Proper Function Cut Covers

The extension of Theorem 3.1 to construct cut-covers defined by proper
0–1 functions is fairly straightforward, and the algorithm for this case follows
the same outline as the one above. The reader is referred to [15, 10] for the
definition of proper 0–1 functions. The algorithm begins with the set S being
the set of terminals defined by the proper function. The definition of active
components in the algorithm is now based on the f -values given to cuts by the
input proper function. In other words, a component is deemed active if the cut
around it is. Note that when all components are inactive, the set of edges added
by the algorithm until then constitutes a feasible cut-cover.

The only additional issue is that in the proof of the upper bound on the
cost of the subgraph added in each iteration, the optimal solution is a forest
instead of a single tree. However, as in [18], we can use the fact that each
tree in the forest must contain at least two active components to infer that this
forest contains at least as many edges as half the number of active components.
This observation is sufficient to prove a modified version of Claim 5.7 with
slightly worse constants. The details are straightforward and omitted to avoid
repetition. Thus we have the following theorem.

THEOREM 5.9. There is a polynomial-time algorithm that, given an undi-
rected graph G with nonnegative costs on its nodes, a proper function f de-
fined on the node subsets of G, and a function d assigning a nonnegative value
d(v) ≥ 2 to each node v of G, constructs a cut-cover for the family of cuts de-
fined by f in which the maximum degree of any node v is at most O(d(v) log k)
and the cost of the cover is at most O(log k) times that of the “minimum-cost
degree-constrained cut cover” for f . Here k represents the number of termi-
nals defined by f . A degree-constrained cut cover is a subgraph which covers
(i.e., contains at least one edge in) all the cuts defined by f and has degree at
most d(v) at node v, for all v.

6. Algorithms Under Triangle Inequality

One way to circumvent the difficulty of approximating the problems studied
is to consider more structured cost functions on the edges. In this direction, we
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turn to the case where the underlying graph is assumed to be complete with
costs only on the edges and these costs obey the triangle inequality. Define the
bottleneck cost of a network to be the maximum cost of any edge in it. In this
case, we present approximation algorithms that strictly conform to the degree
restriction in the input problem and approximate the bottleneck cost of the
output network as well. Most of the results in this section are straightforward
and we discuss it here for the sake of completeness.

6.1 Results for Spanning Trees

PROPOSITION 6.1.

1. There is a polynomial time approximation algorithm for (N-DEGREE,
E-TOTAL COST, SPANNING TREE) problem restricted to edge-
weighted graphs that satisfy triangle inequality. Its performance guar-
antee is (1, (2 − (dmin(v)−2)

(n−1) )). Moreover, the bottleneck cost of the tree
produced by ALGORITHM-TI-SPANNING-TREE is at most twice that of
the minimum-bottleneck spanning tree. Here dmin(v) denotes the small-
est degree constraint.

2. There is a polynomial-time algorithm that, given a undirected graph with
edge costs satisfying the triangle inequality, outputs a TSP tour of total
cost at most two times the cost of a MST and of bottleneck cost at most
three times that of a minimum bottleneck-cost spanning tree.

Proof. First we sketch the proof of Part 1. The algorithm starts by constructing
an MST. It then partitions the edges of the MST into claws and sorts the edges
in every claw in the order of non-decreasing cost. Each claw is short-cut locally
by replacing edges from the internal node to its children (except the very first
child) with edges between consecutive children. Let T denote the resulting
tree.

To prove the first part of the proposition, for any set E′ of edges, let c(E′)
denote the sum of the costs of all the edges in E′. We have the following
relations.

c(MST) =
∑

v : v is not a leaf of the MST

c(claw(v)).

For an internal node v, let t(v) denote the number of children of v in the rooted
MST. For the solution T , we have

c(T ) =
∑

v : v is not a leaf of the MST

[
c(claw(v))−

t(v)−d(v)+2∑
i=2

c(v, vi)

+
t(v)−d(v)+2∑

i=2

c(vi−1, vi)

]
.
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By triangle inequality on the costs c, we have

c(vi−1, vi) ≤ c(vi−1, v) + c(v, vi) ≤ 2c(v, vi)

The last inequality follows from the way we ordered the edges in each claw in
non-decreasing order of costs. Putting the above three equations together, we
get the following bound on the cost of the output tree T .

c(T )
c(MST)

≤
(

2− (dmin(v)− 2)
(n− 1)

)
.

Since the cost of any d(v)-bounded spanning tree is at least as much as that of
the MST, this gives the bound on the cost of the tree output by the algorithm.

We now complete proof by proving the bound of two on the bottleneck cost.
It is well known that an MST is also an optimum bottleneck spanning tree.
Since each short-cut used in forming the output tree T is made up of at most
two edges, the bottleneck cost of T is at most twice that of the MST. Since
the bottleneck cost of any b-bounded spanning tree is at least as much as that
of the bottleneck spanning tree, the resulting tree has bottleneck cost at most
twice the optimum.

Part 2 of the proposition follows from standard constructions based on a
recursive short-cutting procedure using edges from the cube of the Minimum
Spanning Tree. This is also hinted at in [7] (see problem 37.2-3 on p. 975). �

6.2 Extension to Higher Connectivities

Now we are ready to prove our result for networks with higher connectiv-
ities. The result is proved by using short-cuts that induce higher-connected
graphs.

THEOREM 6.2. There is a polynomial-time algorithm that, given an undi-
rected graph with edge costs satisfying the triangle inequality, and an integer
k ≥ 2 (the vertex-connectivity requirement), outputs a k-connected spanning
subgraph of G in which the degree of every node is exactly k, the total cost of
all the edges in the subgraph is at most k+4

2 times that of a minimum-cost k-
connected subgraph, and the bottleneck cost of the subgraph is at most 3 · �k

2�
times that of a minimum bottleneck-cost spanning tree.

Proof. Let c∗ and β∗ denote the cost of an MST and the optimum bottleneck
cost of a spanning tree of the input graph. By Proposition 6.1, we can obtain
a TSP tour T of cost c(T ) and bottleneck cost β(T ) such that c(T ) ≤ 2c∗ and
β(T ) ≤ 3β∗. Let the vertices in this tour be numbered v1, v2, . . . , vn. Now, we
add extra edges to this cycle as follows: For every node, add edges joining it to
vertices to its left in the cycle that are within �k

2� edges from it and all vertices
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to its right in the cycle that are within �k
2� edges from it. It is not hard to see that

this graph is k-vertex-connected (by showing �k
2� disjoint paths between any

pair of nodes going clockwise in the cycle and another �k
2� disjoint paths going

counter-clockwise). The degree of every node in this graph is exactly k. Since
each shortcut employed replaces a path of at most �k

2� edges, the bottleneck
cost goes up by this factor. This proves that the bottleneck cost of this subgraph
is within 3 · �k

2� of optimal.
The total cost of the graph obtained this way can be computed by bounding

how many newly added edges contain a given edge in the TSP tour within
their span of k

2 or less. We can compute this for an edge uv by counting all the
added edges that originate at u or to the left of it and end at v or to its right. The
number of such edges originating at u is �k

2�, and the number originating at the
node before u crossing over uv is �k

2� − 1 and so on, giving a total of at most
k(k+2)

8 + 1. Thus the total cost of this graph is at most k(k+2)
8 + 1 times that

of the TSP tour T that we started with. This in turn is at most (k(k+2)
4 + 1)c∗.

However, we can apply an approximate min-max relation between a MST and
a packing of cuts in the graph that is derived in [1, 15] in proving a better
performance guarantee of k+2

2 + 1 for the total cost.
In particular, if OPTk denotes the cost of a minimum k-connected sub-

graph, we show that OPTk ≥ kc∗

2 . This would prove that the cost of the
k-connected subgraph output by our algorithm is at most (k+2

2 + 1)OPTk as
claimed in Theorem 6.2.

It remains to prove that OPTk ≥ kc∗

2 . We do this in the remainder of this
section. Before that we need some definitions. Given a graph G, recall that an
edge cut in the graph can be written as Γ(W ), where W is a node subset of
the graph, and Γ(W ) denotes the set of edges with exactly one endpoint in W .
A fractional packing of cuts is a family of cuts Γ(W1), Γ(W2), . . . , Γ(Wk),
together with a rational weight for each cut. A (fractional) w-packing of cuts
is a weighted collection of cuts that have the following property: for each edge
(u, v) of cost w(u, v), the sum of the weights of all the cuts in this collection
containing the edge is at most w(u, v). The value of the packing is the sum
of the weights of all the cuts in the packing. A maximum packing is one of
maximum value. The following theorem is a consequence of the results in [1,
15]. �

THEOREM 6.3. Given an undirected graph with edge-weights, a minimum-
weight spanning tree has weight at most twice the value of a maximum packing
of cuts.

The algorithms in [1, 15] find a greedy packing of cuts and simultaneously
build a minimum spanning tree of weight at most twice the value of this pack-
ing.
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Note that any k-connected spanning subgraph must have at least k edges
crossing any cut since this subgraph has k disjoint connections between every
pair of vertices. Thus we have the following lemma.

LEMMA 6.4. The weight of any k-connected subgraph is at least k times as
much as the value of a maximum packing of cuts.

Applying the above lemma to the optimum k-connected subgraph of cost
OPTk and combining with Theorem 6.3 above we conclude that OPTk ≥ kc∗

2 .

7. Hardness Results

In this section, we prove hardness results that motivate the need for bicrite-
ria approximations rather than approximating only one objective while strictly
obeying the budget on the other. We first prove the results for spanning trees
and then strengthen the results for Steiner trees.

7.1 Hardness Results for Spanning Tree Problems

THEOREM 7.1.

1. Unless P = NP, for any ρ > 1, there is no polynomial time (1, ρ)
approximation algorithm for the problem (U-DEGREE, E-TOTAL COST,
SPANNING TREE).

2. Unless P = NP, for any ρ > 1, there is no polynomial time (1, ρ) ap-
proximation algorithm for the problem (U-DEGREE, E-BOTTLENECK-
COST, SPANNING TREE).

3. Unless P = NP, for any 1 ≤ ρ < 2, there is no polynomial time (1, ρ)
approximation algorithm for the problem (U-DEGREE, E-BOTTLENECK-
COST, SPANNING TREE), even when edge weights satisfy triangle in-
equality.

Proof. The NP-hardness of (U-DEGREE, E-TOTAL COST, SPANNING

TREE) and (U-DEGREE, E-BOTTLENECK-COST, SPANNING TREE), follows
via a straightforward reduction from the HAMILTONIAN PATH problem in
which we add a the right number of distinct leaves to each node of the original
graph.

To prove the third part, we use the cost assignment as in the first part of the
proof that obeys the triangle inequality. Under this assignment, the maximum
cost of any edge in any b-bounded spanning tree of the resulting graph is at
most one if the original graph is Hamiltonian and is at least two otherwise.
Hence an approximation algorithm with performance ratio less than two in



262

this case would be able to recognize Hamiltonian graphs. This completes the
proof of Theorem 7.1. �

7.2 Hardness Results for Steiner Tree Problems

Since a spanning tree is a special case of a Steiner tree, it follows from Part 1
of Theorem 7.1 that unless P = NP, there is no polynomial time (1, ρ) or (ρ, 1)
approximation algorithm for the (U-DEGREE, E-TOTAL-COST, STEINER TREE)
problem for any ρ > 1. Furthermore, since the problem of computing a Steiner
tree of minimum total edge weight (even without any degree constraints on
nodes) is NP-hard, it follows that unless P = NP, there is no polynomial
time (ρ, 1) approximation algorithm for the (U-DEGREE, E-TOTAL-COST,
STEINER TREE) problem for any ρ > 1.

These hardness results require either the budget to be satisfied exactly or the
cost of the network to be optimal. We now present a result which points out
the difficulty of solving the Steiner version of the non-uniform degree bounded
problem within constant factors. This result is obtained by a reduction from
the SET COVER problem. Recently, Arora and Sudan [3], and independently
Raz and Safra [27] have shown the following non-approximability result for
MIN SET COVER.

THEOREM 7.2. Unless P = NP, the MIN SET COVER problem, with a uni-
verse of size k, cannot be approximated to better than a ln k factor.

THEOREM 7.3. Unless P = NP, for any ε > 0, there is no polynomial time
(2− ε)-approximation algorithm for the non-uniform degree-bounded Steiner
tree problem.

Proof. Suppose there is a polynomial time (2 − ε)-approximation algorithm
A for the problem. We will show that A can be used to obtain a polynomial
time 2-approximation for the MIN SET COVER. In view of Theorem 7.2, the
required result would follow.

Given an instance of MIN SET COVER, we construct the natural bipartite
graph with one partition for set nodes (denoted by Q1, Q2, . . . , Qm) and the
other for element nodes (denoted by q1, q2, . . . , qn), and edges representing
element inclusion in the sets. To this bipartite graph, we add an “enforcer”
node (denoted by x) which is adjacent to each of the set nodes. Let G denote
the resulting bipartite graph. The set R of terminals for the Steiner tree instance
is given by R = {x, q1, q2, . . . , qn}.

In this way, we create a sequence of m instances of the problem (N-DEGREE,
E-TOTAL-COST, STEINER TREE). In all these instances, the degree bound for
each element node is chosen as 1 and the degree bound for each set node is
chosen as n + 1. For the jth instance of the (N-DEGREE, E-TOTAL-COST,
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STEINER TREE) problem, the degree bound on the enforcer node is chosen as
j (1 ≤ j ≤ m).

Suppose there is an optimal solution Q′ = {Qi1 , Qi2 , . . . , Qik} consisting
of k sets to the MIN SET COVER instance. Then the Steiner tree T in G
consisting of x, the edges (x, Qij ), 1 ≤ j ≤ k, and one edge from each
element node to some set node in Q′ satisfies all the degree constraints. The
cost of T is equal to k.

Suppose we run the approximation algorithm A successively on instances
1, 2, . . . , m of the (N-DEGREE, E-TOTAL-COST, STEINER TREE) problem.
Note that A may fail to produce a Steiner tree on some of these instances since
there may be no Steiner tree satisfying the degree constraints, even after allow-
ing for degree violations by a factor of 2− ε. We stop as soon as A produces a
solution. We now argue that from this solution, we can obtain a 2-approximate
solution to the MIN SET COVER instance. To see this, note that when we run A
on instance k, A must produce a Steiner tree T ′, since as argued above, there is
a feasible solution to instance k. Since the degree requirement for each element
node is 1 and the violation factor is less than 2, the degree of each element node
in T ′ is 1. Similarly, the degree of the enforcer node x in T ′ is less than 2k.
The set nodes adjacent to x must cover all the element nodes since the degree
of each element node is 1. We thus have a solution of size at most 2k for MIN

SET COVER and this completes the proof. �

COROLLARY 7.4. Unless P = NP, for any ε > 0 and ρ > 1 , there is no
polynomial time (2 − ε, ρ)-approximation algorithm for the (N-DEGREE, E-
TOTAL-COST, STEINER TREE) problem.

8. Concluding Remarks

We have introduced bicriteria approximation algorithms for degree-
constrained minimum-cost one-connected network problems, that allow gen-
eral degree specifications and node costs. Our results for bicriteria problems
can be used to improve previous results on approximating certain minimum
degree network problems. In particular, Theorem 5.9 implies a polynomial-
time approximation algorithm for a class of minimum-degree forest problems
considered by Ravi, Raghavachari and Klein [25]. They address the problem
of finding one-connected networks that are cut-covers of proper functions such
that the maximum degree of any node in the network is minimum. This is a
single criterion problem without the node weight objective. They provide a
quasi-polynomial (nO(log1+ε n)-time) approximation algorithm for these prob-
lems on an n-node graph that provides a solution of degree at most (1+ε) times
the minimum with an additive error of O(log1+ε n), for any ε > 0. A proto-
typical example of the one-connected network problem considered in [25] is
the minimum-degree generalized Steiner forest problem: given an undirected
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graph with site-pairs of nodes, find a generalized Steiner forest for the site-
pairs in which the maximum degree is minimum. The techniques in [25] can
be adapted to provide polynomial-time approximation algorithms with perfor-
mance ratio Ω(nδ) for any constant δ > 0 (by setting ε = n

1
δ ). By a direct

application of Theorem 5.9, an improved (logarithmic) approximation ratio can
be achieved in polynomial time for this problem.

Subsequent Work

In subsequent work, we have used a similar framework to devise approx-
imation algorithms for other bicriteria problems (see [21, 24]). An obvious
open problem resulting from this work is to improve the performance ratios
in all our results; although different techniques than those given seem to be
required. In this context, it would be interesting to investigate whether the
primal-dual method [1, 15] can be applied to provide such better guarantees
and also provide a general framework for bicriteria network-design problems.
Another interesting question is to investigate the extension of our work to
higher-connected degree-constrained networks without the triangle inequality.

In other follow-up to our work, the special case of the (U-DEGREE, E-
TOTAL COST, SPANNING TREE) problem in the Euclidean plane was ad-
dressed in [17], and improvements to the short-cutting scheme of Proposi-
tion 6.1 using network flow techniques are presented in [11].
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Abstract We propose a special type of time series, which we call an item-set time series,
to facilitate the temporal analysis of software version histories, email logs, stock
market data, etc. In an item-set time series, each observed data value is a set of
discrete items. We formalize the concept of an item-set time series and present
efficient algorithms for segmenting a given item-set time series. Segmentation
of a time series partitions the time series into a sequence of segments where each
segment is constructed by combining consecutive time points of the time series.
Each segment is associated with an item set that is computed from the item sets
of the time points in that segment, using a function which we call a measure
function. We then define a concept called the segment difference, which mea-
sures the difference between the item set of a segment and the item sets of the
time points in that segment. The segment difference values are required to con-
struct an optimal segmentation of the time series. We describe novel and efficient
algorithms to compute segment difference values for each of the measure func-
tions described in the paper. We outline a dynamic programming based scheme
to construct an optimal segmentation of the given item-set time series. We use
the item-set time series segmentation techniques to analyze the temporal con-
tent of three different data sets—Enron email, stock market data, and a synthetic
data set. The experimental results show that an optimal segmentation of item-set
time series data captures much more temporal content than a segmentation con-
structed based on the number of time points in each segment, without examining
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the item set data at the time points, and can be used to analyze different types of
temporal data.

Keywords: item-set time series, measure function, segment difference, segmentation algo-
rithms, optimal segmentation
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1. Introduction

Time series data is generated by many measurement and monitoring ap-
plications [5, 16, 18, 27], and accounts for a large fraction of the data avail-
able for analysis purposes. Time series data is collected and analyzed for an
enhanced understanding of the phenomenon being observed. Numerous data
mining methods have been applied to the time series data including segmenta-
tion, forecasting, periodicity detection, and rule discovery [9, 18, 20, 22, 27].

A time series is a sequence of observations of some phenomenon, where
the observations are ordered in time. Usually, each observation (also known
as a data point) is a numeric value or a vector of numeric values for a set of
variables [16, 22]. In this paper, we discuss a new type of time series, which we
call an item-set time series, where each data point is a set of discrete items. The
notion of an item-set time series is motivated by applications where the values
observed at each time point are sets of items. As an example, consider software
repositories such as Mozilla and Apache. These repositories store many kinds
of information collected during the evolution of a software project, such as the
developers working on the project, the modules and files of the project, version
histories as recorded by version management programs, and bug reports. Thus,
a temporal representation of the activity recorded in a software repository may
contain the ids of developers involved in the project at any point of time during
the life cycle of the project, the ids of files that were being changed, or the most
frequently reported bug topics. The temporal activity may be represented as a
set of developer ids, file ids, etc. [29].

Another application that can be modeled using an item-set time series is the
analysis of email data. The email data of an organization includes the email ids
of senders and receivers (in the To, CC and BCC fields), the subject and body
of the messages, and the time each message was sent. Analyzing email data
has been shown to be extremely valuable for uncovering organizational struc-
ture in terms of hidden social networks and discussion threads [10, 26, 28].
An email data set may be represented as a set of email ids that sent/received
large amounts of emails at any given time. These email ids may correspond to
individuals who are central to some important activity at the time the emails
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were sent. By modeling email data as an item-set time series, one may be
able to identify employees of organizational importance at each point in time,
other employees these important individuals are in touch with, and the topics
of emails sent/received among these employee groups.

The item-set time series notion also enables us to analyze stock market data
from a novel perspective. Instead of analyzing the highs and lows of a stock
price or traded volumes, one can use the notion of an item-set time series and
its segmentation to study the set of stocks that were traded in high volumes or
contributed to large gains during a time period.

Traditionally, time series data may contains hundreds or thousands of ob-
servations. One may wish to extract time segments where the observations are
somewhat similar to each other or distinct from the rest of the time period.
Time series segmentation algorithms are typically employed to compactly rep-
resent a time series in a way so that segments with similar observations are
highlighted [1, 5, 18–22]. Given a time series T containing n observations
(or time points), a p-segmentation (where typically p � n) of T consists of
partitioning the time range of T into p segments. The data associated with
each segment is constructed by merging the consecutive observations (or time
points) in the segment into a single observation.

There are many ways to construct a segmentation of a time series. One can
simply combine all observations appearing in the same day/week/month/year
etc. into a single segment. Another way is to combine an equal number of
consecutive observations to form each segment.1 We refer to these segmenta-
tions as oblivious segmentations since they are constructed without examining
the data at the time points. Although these methods are efficient and easy to
implement, they may not result in a good segmentation for data mining and
analysis purposes.

In this paper, we focus on the problem of constructing an optimal segmen-
tation of a given item-set time series. We define the notion of an optimal
segmentation of an item-set time series and describe methods to construct it.
Intuitively, an optimal segmentation of a time series is one where the observa-
tion associated with each segment represents the time series in a best possible
manner. A set of items, which we call the segment item set, is associated with
each segment. The segment item set of a given segment is computed from the
individual item sets in that segment using a function, which we call a measure
function.2 We describe two different measure functions, the count measure
and the density measure. The difference between the item set of a given seg-

1 In cases where n is not a multiple of p, one of the segments in such a segmentation may have fewer
observations than the other segments.
2 The term measure function first appeared in [2], but had a different meaning than here, returning a value
for a given keyword in a given set of documents.
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ment and the individual item sets in that segment is formalized via the concept
of a segment difference value. We will also define the notion of the non-
homogeneity of a segmentation as a function of the segment difference values
of the segments in the segmentation. We define an optimal segmentation as a
segmentation with minimal non-homogeneity, subject to specified constraints
on the segmentation.

The optimal segmentation problem takes as input a time series T and an
upper bound p on the desired number of segments. The output is a segmen-
tation of T with at most p segments, having the minimum amount of non-
homogeneity among such segmentations. An alternative formulation of the
problem is to provide as input an upper bound on the non-homogeneity value.
The output is a segmentation of T with a minimum number of segments that
satisfies the given upper bound on non-homogeneity.

The construction of an optimal segmentation uses the segment differences of
each of the O(n2) segments of the input time series T (where n is the number
of time points in T ). The computation of segment differences has received little
attention in the literature. This issue is especially important for an item-set time
series, where computing segment differences involves set operations over the
item sets of time points and segments, which can be very time-consuming. In
this paper, we describe efficient procedures, which we refer to as SD-Count-
Eff and SD-Density-Eff, to compute segment item sets and segment differ-
ences for the measure functions discussed in the paper. The proposed pro-
cedures consider segments of increasing sizes starting at a given time point i
(1 ≤ i ≤ n) and use the measure function definition to determine which new
items should be added to the current segment item set and which items, if any,
should be dropped from the current segment item set. This information is used
to update intermediate count values used in the computation. Our experiments
show that computations SD-Count-Eff and SD-Density-Eff result in significant
time savings, compared to more straightforward algorithms.

This paper makes three main contributions. First, it formulates the notion of
an item-set time series. The items in an item set are assumed to be atomic, with
no (useful) internal structure. Hence, the concept of an item-set time series is
very general, and likely to have wide applicability. Second, it presents novel
and efficient methods to compute the segment difference values required to
construct optimal segmentations of an item-set time series. Third, the paper
presents the results of several experiments on different kinds of data sets. The
experimental results highlight the general nature of the item-set time series
notion and the variety of useful information captured by the segmentation of
item-set time series data.

We applied the item-set time series segmentation techniques of this paper to
three different data sets—Enron email data [11], S&P 500 stock market data,
and a synthetic data set. The Enron email data has been analyzed in many
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contexts [10, 23, 26, 28]. We represent the Enron data as an item-set time se-
ries of users with a special property. In this paper, we identified all users who
sent an unusually high amount of email at a particular time. Frequent senders
may be people of importance or may belong to a sub-entity of an organization
with an unusually high amount of email activity. Constructing an optimal p-
segmentation of such an item-set time series identifies p segments and a set of
users for each segment that sent email frequently during that segment. This
information can then be used to analyze the spots of high activity in an or-
ganization and how these spots change over time. We considered all emails
exchanged in 2000 and 2001 and constructed an item-set time series from the
data, with a time point for each of the 105 weeks during 2000–2001.

The S&P 500 stock market data was downloaded from http://kumo.swcp.
com. The data contained, for each of the S&P 500 stocks and each trading
day between Feb 21, 2007 and Feb 20, 2008, the ticker symbol, the opening
price, the highest traded price, the lowest traded price, the closing price, and
the volume traded for that day. Using this data, we calculated the top 5 stocks
in terms of the volume traded on each day in the data set. This resulted in an
item-set time series containing 252 time points.

We constructed several segmentations for the item-set time series construct-
ed from the Enron corpus and the stock market data. Optimal and oblivious
segmentations were compared using the non-homogeneity of a segmentation
as a metric. As expected, the non-homogeneity of optimal segmentations was
smaller compared to oblivious segmentations of the same size in all cases.

The experiments illustrated the interplay between the user defined threshold
value used in deciding which items belong in the item set of a segment, and
the constraint on the number of segments of a segmentation. For example,
when the upper bound on the number of segments in a segmentation is set to a
small value and the threshold is set to a higher value, the non-homogeneity of
the optimal segmentations constructed was high. For most segmentation sizes,
threshold values of around 0.5 for the density measure yielded segmentations
with the lowest values of non-homogeneity.

A simple random data generator was used to generate item-set time series
containing different numbers of time points and items. The randomly gener-
ated item-set time series were used to conduct scalability experiments. We
generated item-set time series with 50, 100, 200, 400, 800, and 1600 time
points. For each item-set time series and each measure function defined in the
paper, we measured the time taken to compute the segment differences using
the efficient method as well as a straightforward computation. The time taken
by the efficient methods was much smaller than that taken by the straightfor-
ward computations. As the number of time points of an item-series time series
increased, the difference between times taken by the straightforward computa-
tions and the efficient methods increased dramatically.

http://kumo.swcp.com
http://kumo.swcp.com
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We also measured the time taken for the construction of an optimal segmen-
tation of each of the above item-set time series by the dynamic programming
scheme described in the paper. For an item-set time series containing 1,600
time points, the construction of an optimal segmentation took about 580 sec-
onds. The computation of segment difference values for the same data set
using the SD-Count-Eff procedure took about 490 seconds. Therefore, the to-
tal time to construct an optimal segmentation of the given item-set time series
was approximately 1,070 seconds.

The rest of the paper is organized as follows. In Sect. 2, we describe the
terminology and definitions. In Sect. 3, we describe novel algorithms for
computing the segment differences for the two measure functions discussed
in Sect. 2. In Sect. 4, we discuss optimal segmentations and dynamic program-
ming schemes for constructing them. In Sect. 5, we describe the experiments.
Section 6 describes related work, and Sect. 7 concludes the paper.

2. Terminology and Definitions

Let I be a finite set of discrete items d1, d2, . . . , dm. An item set is a subset
of I. The fractional difference between two item sets x and y is (|x − y| +
|y − x|) / (|x ∪ y|) if x ∪ y is nonempty, and is 0 otherwise.

An item-set time series T consists of a finite sequence of n samples
x1, . . . , xn where each xk is an item set, recorded at successive time points
t1, . . . , tn.

A segment s(a, b) (1 ≤ a ≤ b ≤ n) of a time series T consists of the
consecutive time points ta, . . . , tb. Suppose that a given segment s1 ends im-
mediately before another given segment s2 begins, so that s1 = s(a, b) and
s2 = s(b + 1, c), for some a, b, and c. In this case, the concatenation of s1

and s2, denoted as s1s2, is defined, and is the segment s(a, c).
A measure function (denoted by f ) is used to assign a numeric value to

each pair consisting of an item and a segment.
There are many possible types of measure functions that can be formulated.

In this paper, we define two measure functions, both based on the occurrence
frequency of an item in a segment.

The count measure (fc) takes an item dq and a segment s(a, b) as input,
and returns the number of item sets in s(a, b) that contain dq.

The density measure (fd) takes an item dq and a segment s(a, b) as input,
and returns the fraction of the item sets in s(a, b) that contain dq.

The numeric values assigned to items by a measure function f in a given seg-
ment s(a, b) are used to identify items that are deemed to be significant for
that segment, as follows. Let α be a user specified threshold. An item dq is
called significant in segment s(a, b) if f(dq, s(a, b)) ≥ α. The segment item
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set of segment s(a, b), denoted by Iα(s(a, b), f), is the set of significant items
in s(a, b).

Let s(a, b) be a segment and th be a time point such that a ≤ h ≤ b. Let δh

denote the fractional difference between Iα(s(a, b), f) and xh. The segment
difference of segment s(a, b), denoted by δ(s(a, b)), is

∑
a≤h≤bδh.

A segmentation Π of a time series T is a sequence s(b0, b1), s(b1 + 1, b2),
. . . , s(bl−1 + 1, bl) of segments such that the concatenation s(b0, b1)
s(b1 + 1, b2) · · · s(bl−1 + 1, bl) = s(1, n). The size of Π, denoted by |Π|,
is l, the number of segments in Π.

3. Computation of Segment Differences

Optimal segmentation construction algorithms require access to the segment
difference values of all of the O(n2) segments of the input time series T , where
n is the number of item sets in T . Efficient algorithms for computing segment
differences have received little attention in the time series segmentation litera-
ture. This computation is especially important for item-set time series segmen-
tation, since the computation requires set operations over I, which is possibly
a very large set.

For both the count and density measure functions, in a straightforward com-
putation, the item set Iα(s(a, b), f) of a given segment s(a, b) can be computed
by processing all of the item sets in s(a, b) and applying measure function f
on each of the items. Let m = |I|. This computation takes time O(nm) per
segment, and the item sets of all segments can be computed in O(n3m) time.
(A more efficient computation can compute all the item sets in time O(n2m).)

Now consider computing the segment differences. The segment difference
of a segment s(i, j) is a summation of fractional differences between the item
sets xh of the time points th in the segment and the item set Iα(s(i, j), f). To
compute δ(s(a, b)), each fractional difference δh between an xh (a ≤ h ≤ b)
and Iα(s(a, b), f) can be computed in O(m) time, and these fractional dif-
ferences can be summed up. The segment difference of s(a, b) can thus be
computed in O(nm) time, and all of the O(n2) segment differences can be
computed in time O(n3m) time.

The segment difference computation algorithms described in this paper
combine the item set and difference computation of a segment into one step
to achieve time savings. We first describe an efficient algorithm for computing
the segment differences for the count measure.

3.1 Segment Difference Computation for the Count
Measure

We assume that the items in I are represented by consecutive integers,
which we refer to as item ids. We assume that each item set xh in the in-
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put time series is represented as a sorted list of the item ids of those items that
are in xh. Let K denote the total size of all these lists together. Note that K is
at most mn. In practice, item sets may be much smaller than I, so that it will
often be the case that K � mn.

Given the set of lists xh, we can in time O(K), transform this set of lists
into a data structure Item Occurrences, that has embedded within it both the
list xh for each of the n time points, and a list τq for each of the m items dq

in I. List τq is a list of those time points in which item dq appears, sorted in
ascending order. A given entry in Item Occurrences corresponds to a given
time point th and item dq. The entry contains four fields: the value of h, the
value of q, a pointer to next entry for th (i.e a pointer to the next member of
xh), and a pointer to next entry for dq (i.e a pointer to the next member of τq).

A segment difference δ(s(a, b)) is computed by adding up the fractional
difference of each of the time points th in the segment. The fractional differ-
ence δh is the size of the symmetric difference between xh and Iα(s(a, b), f)
normalized by the size of xh ∪ Iα(s(a, b), f).

Let P and Q be two sets of items. Then, the fractional difference between P

and Q is |P −Q|+|Q−P |
|P ∪Q| when |P ∪Q| > 0, and is 0 otherwise. Let ω(P, Q) =

P ∩ Q. Then the fractional difference can be calculated as |P |+|Q| −2|ω(P,Q)|
|P |+|Q| − |ω(P,Q)|

when |P |+ |Q| > 0.
To compute δh, we compute the sizes of Iα(s(a, b), f), and ω(xh,

Iα(s(a, b), f)).
An observation crucial to the algorithm is that, for the count measure func-

tion, if an item is in the item set of a segment s, then it is also in the item set of
all segments s′ that can be obtained by combining s with one or more adjacent
time points. In particular, we utilize this observation as follows. Suppose that
for a given item dq and time point ti, fc(s(i, n), dq) ≥ α. Let tj be the first
time point such that fc(s(i, j), dq) = α. Then for each g, where i ≤ g < j, dq

is not in Iα(s(i, g), f), and for each g, where j ≤ g ≤ n, dq is in Iα(s(i, g),
f). We call tj the critical point for dq and ti.

The algorithm, which we refer to as SD-Count-Eff, is outlined in Fig. 10.1.
To elucidate the algorithm, we define several abstract variables, as follows.

Definitions of Abstract Variables

counti,j,q is the number of xh, i ≤ h ≤ j, such that dq ∈ xh, i.e. the number
of occurrences of dq in s(i, j).

ωi,j,h = |xh ∩ Iα(s(i, j), f)| for i ≤ h ≤ j, and 0 otherwise.

new to omegai,j,h is the number of dq such that dq ∈ xi ∩ xh and
counti,j,q = α for i < h ≤ j, is the number of dq such that dq ∈ xi and
counti,j,q ≥ α for i = h ≤ j, and is 0 otherwise.
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Computation of Segment Difference Values for Count Measure

Input: Set of items xh for each time point th

Output: Segment difference value for each segment s(i, j),
1 ≤ i ≤ j ≤ n, stored in variable seg diff [i, j].

begin
From the set of lists xh, construct the data structure Item Occurrences;
for each item dq , count[q] = 0; /* Initialize vector count. */
for start = n down to 1

for future end = start to n
newly critical[future end] = NULL;
previously critical[future end] = NULL;

num items[start] = 0;
/* Initialize num significant. */
/* As end varies, num significant will store |Iα(s(start, end), f)|. */
num significant = 0;
/* num critical[start] will store num criticalstart,start. */
num critical[start] = 0;
for each dq in xstart

increment num items[start] by 1;
increment count[q] by 1;
if count[q] ≥ α then

first occurrence[q] = pointer to entry in Item Occurrences for tstart and dq ;
let new crit be the time point of the αth entry in τq , beginning with

first occurrence[q].
increment num critical[new crit] by 1;
insert q in newly critical[new crit];

if count[q] > α then
let old crit be the time point for α + 1th entry in τq , beginning with

first occurrence[q];
decrement num critical[old crit] by 1;
insert q in previously critical[old crit];

for end = start to n
num significant = num significant + num critical[end];
new to omega[end] = 0;
for each q in newly critical[end]

for each time point h of first α entries in τq , beginning with first occurrence[q]
increment new to omega[h] by 1;

for each q in previously critical[end]
for each time point h of the first α − 1 entries in τq ,

beginning after first occurrence[q]
decrement new to omega[h] by 1;

/* Initialize omega[start, end], which will store the value of ωstart,end,start. */
omega[start, end] = 0;
seg diff [start, end] = 0;
for h = start to end

omega[h, end] = omega[h, end] + new to omega[h];
if (num items[h] + num significant) > 0

then delta = (num items[h]+num significant−2∗omega[h,end])
num items[h]+num significant−omega[h,end] ;

else delta = 0;
seg diff [start, end] = seg diff [start, end] + delta;

end

Figure 10.1. SD-Count-Eff : Segment Difference Computation for the Count Measure

num criticali,j is the number of items dq for which tj is the critical point for
dq and xi.

newly criticali,j = {q | q ∈ xi ∩ xj and counti,j,q = α}.

previously criticali,j = {q | q ∈ xi ∩ xj and counti,j,q = α + 1}.
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The algorithm contains a triply nested loop: the outermost loop ranges over
a time-point valued variable start, the middle loop ranges over a time-point
valued variable end, and the innermost loop ranges over a time-point valued
variable h.

The values of program variables in the algorithm are related to the abstract
variables defined above as follows.

Consider a given iteration of loop variable start. The algorithm contains
two vectors, count and first occurrence, each with an element for each item
id. Vector element count[q] equals countstart,n,q. The given loop iteration
only accesses the elements of vector first occurrence corresponding to those
items dq such that dq is in xstart and countstart,n,q is at least α. For each
such item dq, vector element first occurrence[q] contains a pointer to the
entry in Item Occurrences for tstart and dq, i.e. a pointer to the entry cor-
responding to the occurrence of dq in xstart. The algorithm also contains the
three vectors num critical, newly critical, and previously critical. Each
of these three vectors has an entry for each time point from start to n. Con-
sider time point j, where start ≤ j ≤ n. Vector element num critical[j]
equals num criticalstart,j . Vector element newly critical[j] is a list of the
members of newly criticalstart,j . Vector element previously critical[j] is a
list of the members of previously criticalstart,j .

Consider a given iteration of loop variable end within a given iteration of
loop variable start. Program variable num significant equals |Iα(s(start,
end), f)|. The algorithm contains vector new to omega, with an entry for
each time point from start to end. Consider time point j, where start ≤ j ≤
end. Vector element new to omega[j] equals new to omegastart,end,j .

Consider a given iteration of loop variable h within a given iteration of
loop variable end, within a given iteration of loop variable start. The algo-
rithm contains a two-dimensional array, omega, where for start ≤ h ≤ end,
omega[h, end] equals ωstart,end,h.

Each iteration of the outermost loop (with loop variable start) computes the
segment differences of all segments starting at time point tstart, considering
these time points in reverse chronological order (i.e., start goes from n to 1).
Each time point in segment s(start, n) is considered as an end point tend. Each
iteration of the middle loop (with loop variable end) computes the segment
difference for segment s(start, end). During a given iteration of the start
loop, vector new to omega is computed, and used to update array omega,
which in turn is used to compute the segment differences for the segments
starting at tstart.

At the beginning of a given iteration of the start loop, the previous iteration
has left omega[h, end], for start < h ≤ end ≤ n, equal to ωstart+1,end,h.
Such a value omega[h, end] needs to be incremented for each item dq such that
dq ∈ xh, dq ∈ xstart, and countstart,end,q = α, i.e., for each item contributing
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to new to omegastart,end,h. Thus, for start < h ≤ end ≤ n,

ωstart,end,h = ωstart+1,end,h + new to omegastart,end,h.

Moreover, ωstart,end,start = new to omegastart,end,start.
A given item dq will only cause changes to array omega if dq ∈ xstart, and

countstart,n,q ≥ α. For such an item dq, let new crit be the index of the time
point tnew crit such that dq ∈ xnew crit, and countstart,new crit,q = α, i.e.
tnew crit is the critical point for dq and tstart. Suppose that countstart,n,q = α.
Then dq contributes to new to omegastart,end,h for all h and end, such that
dq ∈xh and start≤h≤new crit≤end. Suppose now that countstart,n,q>α.
Let old crit be the index of the time point told crit such that dq ∈ xold crit, and
countstart,old crit,q = α+1, i.e. told crit is the critical point for dq and tstart+1.
Then dq contributes to new to omegastart,end,h for all h and end, such that
dq ∈ xh and start < h ≤ new crit ≤ end < old crit, or start = h and
end ≥ new crit.

For a given value of start, before executing the end loop, the algorithm
scans the item set xstart to compute the number of items occurring in xstart,
update vector num critical, and compute the vectors newly critical and
previously critical. Suppose that for a given item dq in xstart, it is the
case that countstart,n,q ≥ α. Let new crit be the critical point for dq and
tstart. The algorithm records this fact by incrementing the vector element
num critical[new crit] by 1, and inserting q into the list-valued vector ele-
ment newly critical[new crit]. Consider the more special case where
countstart,end,q > α. In this special case, countstart+1,end,q ≥ α. Let old crit
be the critical point for dq and tstart+1. Then, a previous iteration of the
start loop would have considered dq to be a contributor to the vector ele-
ment num critical[old crit]. Because of the change in the critical point for
dq, the algorithm decrements the vector element num critical[old crit] by 1,
and inserts q into the list-valued vector element previously critical[old crit].

Thus, vector num critical is updated as follows. Consider a non-initial
iteration of the start loop. For the current value of loop variable start, the
previous iteration of the outer loop has left vector element num critical[j], for
start < j ≤ n, equal to num criticalstart+1,j . However, num critical[j]
must be updated to equal num criticalstart,j . This update is carried out by
incrementing num critical[j] by 1 for each item dq such that dq ∈ xstart,
dq ∈ xj , and countstart,j,q = α; and decrementing num critical[j] by 1 for
each item dq such that dq ∈ xstart, dq ∈ xj , and countstart,j,q = α + 1.
Moreover, each of the former items is inserted into newly critical[j], and
each of the latter items is inserted into previously critical[j].

Now consider a given iteration of the end loop, within a given iteration
of the start loop. From the preceding iteration of the end loop, each vec-
tor element new to omega[h], for start ≤ h < end, stores the value of
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new to omegastart,end−1,h, and should now be updated to store new to
omegastart,end,h. The update of vector new to omega is done as follows.
First consider each q in newly criticalstart,end. For each of the α values of
h between start and end, such that dq is in xh, item dq is a contributor to
new to omegastart,end,h, but not a contributor to new to omegastart,end−1,h.
Consequently, because of dq, each of these α elements of the vector new
to omega should be incremented by 1. Now consider each q in previously
criticalstart,end. For each of the α− 1 values of h such that start < h < end
and dq is in xh, item dq is a contributor to new to omegastart,end−1,h and is a
contributor to ωstart,end,h, but is not a contributor to new to omegastart,end,h.
Consequently, because of dq, each of these α − 1 elements of vector
new to omega should be decremented by 1. Overall, the updating of vector
new to omega is based on the following identity. For start ≤ h < end,

new to omegastart,end,h = new to omegastart,end−1,h

+ |xh ∩ newly criticalstart,end|
− (if h = start then 0

else |xh ∩ previously criticalstart,end|)

For start < h = end,

new to omegastart,end,h = |xh ∩ newly criticalstart,end|.

We now consider the complexity of the algorithm. There are O(n) iterations
of the start loop, each containing O(n) iterations of the end loop, each con-
taining O(n) iterations of the h loop, each of whose iterations takes O(1) time.
Thus, the total time taken by all the iterations of the h loop is O(n3). Each list
xstart is scanned once. The processing of each item dq in list xstart takes time
O(α), and may result in the insertion of q on a list in vector newly critical,
and on a list in vector previously critical. The subsequent processing of each
such occurrence of dq on these lists also takes time O(α). The total number of
entries on all the xstart lists is K, with a total processing time of O(αK). The
overall algorithm takes O(n3 + αK) time in total when all of the n starting
points are considered.

3.2 Segment Difference Computation for the Density
Measure

Given an item dq and a segment s(i, j), density measure fd returns the frac-
tion of item sets in s(i, j) that contain item dq. Item dq is included in the
segment item set if this fraction is at least α. As more time points are added to
a segment, dq may or may not be in the corresponding segment item sets. In-
deed, the value of fd for dq may alternate between below α and above α as the
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segment length increases. This behavior differs from that for the count mea-
sure, where once an item is in at least α time points in a segment, it will not fall
below α as a segment is lengthened. Because of this behavior, the algorithm
for the count measure cannot be used for the density measure.

We say that the status of a given item dq in s(i, j) is significant if and only
if dq is in Iα(s(i, j), f). For a given i and j, where i < j ≤ n, we say that
dq changes status at j if dq is significant in s(i, j − 1) and not significant in
s(i, j), or vice versa. We will show that for a given value of i, item dq can
change status at most �3αn� times as j varies between i + 1 and n. To see
this, let θ = �1/α�, and consider any sequence of θ consecutive time points
tj through tj+θ−1, starting after ti. Suppose that dq changes status at least
three times in this sequence of time points. Suppose that the first three of these
status changes occur at j′, j′ ′, and j′ ′ ′. Note that j ≤ j′ < j′ ′ < j′ ′ ′ < j + θ.
Suppose that dq is not significant in s(i, j − 1), changes status to significant at
j′, changes to not significant at j′ ′, and changes to significant at j′ ′ ′. Because
of the first status change, the number of occurrences of dq between i and j′ is
at least α(j′ − i + 1). Moreover, there is an occurrence of dq at j′ ′ ′, so the
density of occurrences of dq in the at most θ − 1 time points between j′ + 1
and j + θ − 1 is at least α. Consequently, the status of dq cannot change a
fourth time until after j +θ−1. Similar reasoning applies if dq is significant in
s(i, j − 1), changes status to not significant at j′, changes to significant at j′ ′,
and changes to not significant at j′ ′ ′. Then the density of dq in s(i, j − 1) is at
least α, and given the occurrence of dq at j′ ′, j′ ′ ′ must be j + θ − 1. So, there
cannot be a fourth status change until after j + θ − 1. Thus, there are at most
three status changes in tj through tj+θ−1. Note that n or fewer time points can
be partitioned into at most �αn� groups of consecutive time points, where the
length of each group is at most θ. Thus, for any given value of start, as end
ranges from start to n, the number of times item dq changes status is at most
�3αn�.

In Fig. 10.2, we outline an algorithm called SD-Density-Eff to compute the
segment difference values for the density measure. Each iteration of the start
loop computes the segment difference of all segments starting at time point
tstart. These segments are considered in increasing order of their end point.
To elucidate the algorithm, we define the following abstract variables.

addi,j is the set of items that are not significant for s(i, j − 1), but are signif-
icant for s(i, j), where 1 ≤ i < j ≤ n.

dropi,j is the set of items that are significant for s(i, j − 1), but are not sig-
nificant for s(i, j), where 1 ≤ i < j ≤ n.

The algorithm is based on the following identities.

Iα(s(i, j), f) = Iα(s(i, j − 1), f) ∪ addi,j − dropi,j , for 1 ≤ i < j ≤ n.
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Computation of Segment Difference Values for the Density Measure

Input: Set of items xh for each time point th

Output: Segment difference value for each segment s(i, j), 1 ≤ i ≤ j ≤ n,
stored in variable seg diff [i, j].

begin
From the set of lists xh, construct the data structure Item Occurrences;
for start = n down to 1

num items[start] = 0;
for each dq in xstart

increment num items[start] by 1;
for each item dq

count[q] = 0;
is significant[q] = false;

number significant = 0;
for future end = start to n

drop list[future end] = NULL;
for end = start to n

omega[end] = 0;
threshold = �α (end − start +1)�;
for each dq in xend

increment count[q] by 1;
if (count[q] ≥ threshold) then

increment omega[end] by 1;
drop point = � count[q]

α � + start;
if ( τq has a next occurrence after that in xend )
then next occurrence = time point index of this next occurrence;
else next occurrence = n + 1;
if ( drop point < next occurrence ) then

insert pointer to Item Occurrences entry for dq and tend into drop list[drop point];
if ( not is significant[q] ) then

is significant[q] = true;
increment number significant by 1;
for each time point th in an entry in τq such that start ≤ h < end

increment omega[h] by 1;
for each entry in drop list[end]

let q be the item id in that entry;
is significant[q] = false;
decrement number significant by 1;
for each time point th on list τq such that start ≤ h < end

decrement omega[h] by 1;
seg diff [start, end] = 0;
for h = start to end

if ( num items[h] + num significant > 0 )
then delta = (num items[h]+num significant−2∗omega[h])

num items[h]+num significant−omega[h] ;
else delta = 0;
seg diff [start, end] = seg diff [start, end] + delta;

end

Figure 10.2. SD-Density-Eff : Segment Difference Computation Algorithm for the Density
Measure

ωi,j,h = ωi,j−1,h + |xh ∩ addi,j |
− |xh ∩ dropi,j |, for 1 ≤ i ≤ h < j ≤ n.

ωi,j,j = |xj ∩ Iα(s(i, j), f)|, for 1 ≤ i ≤ j ≤ n.

The algorithm also uses the concept of a drop point, defined as follows.
Suppose that dq is in xj ∩ Iα(s(i, j), f). Then counti,j,q

j−i+1 ≥ α. Suppose that
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time point tj were to be followed by a sequence of time points that do not
contain dq. Item dq would remain significant until a time point tj′ was reached
such that counti,j,q

j′ −i+1 < α. At this time point tj′ , item dq would change status to

not significant. The value j′ is given by the formula � counti,j,q

α �+ i. We define
drop pointi,j,q as j′. If drop pointi,j,q ≤ n and there is no occurrence of dq

at time points tj+1 through tdrop pointi,j,q
, then dq will indeed change status to

not significant at drop pointi,j,q, and dq is in dropi,drop pointi,j,q
.

We now consider the complexity of the algorithm. There are n iterations of
the start loop, each containing O(n) iterations of the end loop, each contain-
ing O(n) iterations of the h loop, each of whose iterations takes O(1) time.
Thus, the total time taken by all the iterations of the h loop is O(n3). In addi-
tion, for a given iteration of the start loop, each list xend, for start ≤ end ≤
n, is scanned once, thereby scanning at most K item occurrences. For the given
value of start, as end ranges from start to n, each item dq changes status at
most �3αn� times. Let Kq be the total number of occurrences of item dq. Each
change of status of dq entails processing each occurrence of dq between start
and end, of which there are at most Kq such occurrences. For the given value
of start, the total time required for this processing of dq is O(αnKq). Since
K equals

∑m
q=1 Kq, the total time for the given value of start, over all dq, is

O(αnK). Summing over the n iterations of the start loop gives O(αn2K)
time. Thus, the total time for the algorithm is O(n3 + αn2K).

4. Optimal Segmentations

A desirable property of a time series segmentation is that the item set of each
of the segments closely reflects the item sets of the time points contained in that
segment. The segment difference of a given segment is a measure of how in-
ternally homogeneous that segment is. There are a variety of ways to measure
the non-homogeneity of a given segmentation of a time series, given the seg-
ment difference of each segment in the segmentation. We describe three such
measures here. The summation difference measure, denoted by Δsum, is the
sum of the segment differences of the segments in the segmentation. The av-
erage difference measure, denoted by Δavg, is the average segment difference
(ratio of the summation difference to the size of the segmentation). The max
difference measure, denoted by Δmax, is the maximum segment difference.
Segmentation of a time series reduces the number of samples to be examined,
while hopefully preserving much of the information of the original time series.
For a given measure function and difference measure, the optimal segmenta-
tion problem is to take as input an item-set time series, and an upper bound p
on the size of the desired segmentation of the input time series, and construct a
segmentation of at most p segments with minimum non-homogeneity. A dual
formulation of the optimal segmentation problem is to take as input an item-set
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time series and an upper bound on the amount of non-homogeneity, and con-
struct a minimum size segmentation whose non-homogeneity does not exceed
the given limit.

Increasing the size of a segmentation does not necessarily guarantee that the
amount of non-homogeneity will decrease. The following simple example il-
lustrates a scenario where a smaller size segmentation is better than any bigger
size alternative.

EXAMPLE 4.1. Let I = {a, b}. Time series T contains three time points.
The items sets in the time series are {a}, {b}, {a}. The measure function
is the density measure fd and α = 0.66. Let Δsum be the measure of non-
homogeneity of a segmentation.

We first consider the segmentation Π1 = s(1, 3) of T , of size one.
Iα(s(1, 3), fd) = {a}. The non-homogeneity of Π1 is δ(s(1, 3)), which equals∑

1≤j≤3 δj . δ1 = 0, δ2 = 1, and δ3 = 0. Therefore, Δsum(Π1) = 1.
Now consider a segmentation of size two. There are two possible size two

segmentations of T . Let Π2 = s(1, 1),s(2, 3). (The other segmentation of size
two is s(1, 2), s(3, 3), and is symmetric to Π2.)

Iα(s(1, 1), fd) = {a} and Iα(s(2, 3), fd) = {}.
δ(s(1, 1)) = 0, δ(s(2, 3)) =

∑
2≤j≤3

δj = 2.

Δsum(Π2) = 2.

Therefore, in this case the non-homogeneity of every size 2 segmentation is
greater than that of the size 1 segmentation.

The above observation is true even if we use Δmax as the measure of non-
homogeneity. However, if Δavg is used, then, for this example, both Π1 and
Π2 have the same non-homogeneity, namely 1.

To solve the optimal segmentation problem, given an item-set time series
of n item sets (or time points) and a size constraint p, an optimal segmenta-
tion, satisfying the given size constraint and with minimum non-homogeneity,
is typically constructed using dynamic programming [16, 18]. The dynamic
programming approach uses as input data the non-homogeneity measure for
each of the O(n2) segments of the input time series, i.e. the δ(s(i, j)) value
for each segment s(i, j) (1 ≤ i ≤ j ≤ n). Prior to carrying out the dynamic
programming algorithm, these non-homogeneity values for all segments are
computed, using the measure function specified by the user.

An upper bound p on the size of an optimal segmentation is input to the
dynamic programming algorithm, which operates as follows. We assume that
the item set time series to be segmented begins at index 1 and that p ≤ n.
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A two-dimensional table R is maintained by the dynamic programming al-
gorithm. Entry R[j, k] in the table records the minimum possible amount of
non-homogeneity that can be incurred in combining time points 1 through j
into k segments (j ≥ 1, k ≤ j, k ≤ p). If k is 1, the value of R[j, k]
is set to δ(s(1, j)). Otherwise, a recursive equation is used to compute the
value of R[j, k] from previously computed entries in the table. The specifics
of the recursive equation depends on which non-homogeneity measure is be-
ing used. Entry R[j, 1] (that is k = 1) is set to δ(s(1, j)) in all cases. For
the summation difference measure of non-homogeneity, each entry R[j, k],
when k > 1, is set to mink−1≤z<j (R[z, k − 1] + δ(s(z + 1, j))). For the
max difference measure of non-homogeneity, R[j, k], when k > 1, is set to
mink−1≤z<j max(R[z, k− 1], δ(s(z + 1, j))). Finally, for the average differ-
ence measure of non-homogeneity, R[j, k], when k > 1, is set to mink−1≤z<j

((k−1)∗R[z, k−1]+δ(s(z +1, j)))/k. It can be easily seen that the average
difference measure value of an entry R[j, k] is simply the summation differ-
ence measure of R[j, k] divided by k. Equivalently, the average difference
measure of an entry R[j, k] multiplied by k gives the summation difference
measure.

A dynamic programming algorithm based on the above recursive equations
can be used to construct table R in O(n2p) time. Since each computed value
R[n, k] in the last row of the R table is the minimum possible cost of segment-
ing the time series into k segments, and p is the given constraint on the number
of segments, the optimum segmentation non-homogeneity value is given by the
minimum value of R[n, k], 1 ≤ k ≤ p. The dynamic programming algorithm
typically uses an additional two-dimensional table T , where T [j, k] records
the value of z that minimizes the R[j, k] entry. Table T is used to construct an
optimal segmentation that achieves the minimal cost.

5. Experiments

This section describes the outcomes of applying the segmentation algo-
rithms to the Enron Corpus, S&P 500 stock market data, and synthetic data.

5.1 Comparison of Optimal and Oblivious Segmentations

The Enron Corpus was made public during the legal investigation of the
Enron Corporation. It contains about 200,000 email messages [11]. We con-
sidered the email messages exchanged in the years 2000 and 2001. The item-
set time series constructed from the data, denoted by TE , contained 105 time
points, one time point for each week during this time period. Each time point is
associated with an item set consisting of the email ids of frequent senders. We
computed the set of frequent senders as follows. For each email id, we counted
the number of emails sent using that email id in a given week. Let ai be the
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average value of these counts for week ti. An email id e is a frequent sender
during week ti if the number of emails sent by e during ti is greater than ai.
Frequent senders can be used to discover egocentric social networks, as these
employees may have organizational significance during the period of activity
[7]. There are about 2150 email ids who were frequent senders in at least one
of the 105 time points. About 66% of these users were frequent senders in at
most two time points.

The stock market data set contained, for each S&P stock, and each trading
day between Feb 21st, 2007 and Feb 20th, 2008, the date, the ticker symbol,
the opening price, the highest traded price, the lowest traded price, the closing
price, and the volume traded for that day. Using this data, we calculated the
top 5 stocks in terms of the volume traded for each day in the data set. This
resulted in an item-set time series, denoted by TS , containing 252 time points.
There are 72 unique ticker symbols that appear in at least one of the 252 time
points. Unlike TE , more than 50% of the stocks appeared in 3 or more item
sets.

We processed TE and TS as follows. For each segment, we used the density
measure to compute the segment item sets from the item sets of the time points
in that segment. We first fixed the value of α at 0.5 and constructed optimal
as well as oblivious segmentations of several different sizes. The optimal seg-
mentations of different sizes were constructed using the dynamic programming
scheme outlined in Sect. 4. The non-homogeneity of an optimal segmentation
was computed using the summation difference measure. We constructed the
oblivious segmentations as follows. Let n be the number of time points and
p be the desired segmentation size. If n is a multiple of p, then each segment
contains n/p time points. If n is not a multiple of p, then each of the first p− 1
segments contains�n/(p−1)� time points, and the pth segment contains n mod
(p− 1) time points.

Figure 10.3 displays the experimental results for TE . Figure 10.3(a) plots
the non-homogeneity of a segmentation as a function of the segment size. As
can be seen from the figure, the non-homogeneity of a segmentation drops as
its size increased. For this experiment, the non-homogeneity of an oblivious
segmentation was always higher than that of an optimal segmentation of the
same size. Of course, since oblivious segmentations are constructed with no
attention to their non-homogeneity, one would expect them to be suboptimal.

Figure 10.3(b) displays the number of frequent senders in a segmentation
as a function of segmentation size. For each segmentation constructed, we
counted the total number of distinct users that are frequent senders in at least
one of its segments. The total number of distinct frequent senders of a seg-
mentation is the cardinality of the union of all segment item sets in that seg-
mentation. For optimal segmentations, the number of distinct frequent senders
always increased with the size of a segmentation, but this was not the case for
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Figure 10.3. (a) Size Vs Non-homogeneity for Optimal and Oblivious Segmentations of TE .
(b) Size Vs the Total Number of Frequent Senders for Optimal and Oblivious Segmentations
of TE

Figure 10.4. (a) Size Vs Non-homogeneity for Optimal and Oblivious Segmentations of TS .
(b) Size Vs the Total Number of Frequent Senders for Optimal and Oblivious Segmentations
of TS

oblivious segmentations. Moreover, the number of frequent senders for each
size was much greater for the optimal segmentation when compared to the
oblivious segmentation of the same size. The only exception occurred for size
50. The number of frequent senders of the oblivious segmentation containing
50 segments was 1,875, which was close to the number of frequent senders in
the same size optimal segmentation, 1,871.

Figure 10.4 displays similar plots for TS . Figure 10.4(a) plots the non-
homogeneity as a function of segmentation size for both optimal and oblivious
segmentations. As can be seen from the figure, the non-homogeneity of an
optimal segmentation was always lower than that of the same size oblivious
segmentation. Figure 10.4(b) plots the segmentation size versus the number
of unique ticker symbols appearing in a segmentation. As the segmentation
size increases, the number of unique ticker symbols increases. The number
of unique ticker symbols of an optimal segmentation was higher than that of
a same size oblivious segmentation in most cases. However, for segmentation
sizes 100 and 120, the oblivious segmentations contained a greater number
of unique ticker symbols than the same size optimal segmentations. This is
because almost all of the 72 ticker symbols appeared in the segment item sets
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Figure 10.5. Effect of the α value on the Non-Homogeneity of Optimal Segmentations of TE

of oblivious segmentations of sizes 100 and 120. Based on this observation, we
conjecture that the correlation between the non-homogeneity and the number
of distinct items of an optimal segmentation may depend on how the items are
distributed over the time points of the input item-set time series. We plan to
study this further.

Next we analyzed the effect of the threshold α on the non-homogeneity
a segmentation. Consider the time series TE . If the specified value of α is
small, for a user to be deemed a frequent sender in a given segment of TE ,
the user needs to be a frequent sender in only a small fraction of time points
in the segment. This may lead to high values of segment differences and non-
homogeneity. We computed several segmentations of TE and TS for different
values of α. The result is plotted in Figs. 10.5 and 10.6 for TE . In both figures,
the x-axis plots the segmentation size and y-axis plots the non-homogeneity.
There is one curve for each value of α in the range 0.1 to 1, in steps of 0.1.
For all values of α, the non-homogeneity of an optimal segmentation dropped
consistently as segmentation size increased. For oblivious segmentations, the
relationship between segmentation size and non-homogeneity was not as con-
sistent. As can be seen from Fig. 10.6, for the oblivious segmentations, there
were many instances where non-homogeneity increased as segmentation size
increased, before eventually dropping as the segmentation size approaches n
(the number of time points in the input time series).

From Fig. 10.5 it can also be seen that for all segmentation sizes studied,
α values 0.4 and 0.5 produced the lowest values of non-homogeneity for the
data set TE (The difference between the plots for α equal to 0.4 and 0.5 is
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Figure 10.6. Effect of the α value on the Non-Homogeneity of Oblivious Segmentations of TE

Figure 10.7. Effect of the α value on the Non-Homogeneity of Optimal Segmentations of TS

minor.) For oblivious segmentations, the lowest non-homogeneity values were
achieved for α values 0.3, 0.4, and 0.5.

Figures 10.7 and 10.8 report the experimental results from the same study
on TS . Again, the non-homogeneity of a segmentation did not fall consistently
for oblivious segmentations of TS . For every size tried, the non-homogeneity
of optimal segmentations of TS was smallest when α was 0.4. For oblivious
segmentations of TS , the non-homogeneity of a segmentation was minimum
for α values of both 0.4 and 0.5.

Finally, we chose the size 25 optimal segmentation of TE to study how well
a segmentation captures the time varying information for each user. There
are approximately 975 users that are frequent senders in at least one of the
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Figure 10.8. Effect of the α value on the Non-Homogeneity of Oblivious Segmentations of
TS

Figure 10.9. Number of Frequent Senders in Each Segment of the Size 25 Segmentation

25 segments. Figure 10.9 shows the distribution of these users over the entire
segmentation. The figure shows a pie chart where the label of each pie slice
is the starting date of that segment and the size of each pie slice denotes the
percent of users in that segment. The length of most segments is approximately
4–6 weeks. Some segments are only one week long.
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Figure 10.10. Information Captured for the Frequent Sender Gerald Nemec

To illustrate the frequent sender information captured in the segmentation,
we focus on a particular user, called gerald.nemec@enron.com, who is one of
the two most frequent senders in 23 of the 25 segments.3 Figure 10.10 shows,
for a few segments, which users Gerald Nemec frequently sent emails to and
the top five most frequent keywords in the subjects of the emails sent during
this time.

It can be seen from Fig. 10.10 that user Gerald Nemec was in touch with
different people at different time intervals. The frequently occurring subject
keywords during these time intervals are also different, indicating a shift in
Gerald Nemec’s interests/responsibilities.

5.2 Study of the Performance of Proposed Methods

We used a Red Hat Linux machine with a dual core Intel Xeon 3.73 GHz
processor with a 3 GB of RAM to study the scalability of the algorithms de-
scribed in this paper. We implemented, in Perl, the SD-Count-Eff, SD-Density-
Eff procedures, and the straightforward computations described in Sect. 3 to
compute the segment differences. The straightforward computation considers
each segment s(i, j) (1 ≤ i ≤ j ≤ n) separately, computes the segment item
set for a given measure function and an α value for the segment, and then com-
putes the segment difference value. We refer to the straightforward computa-
tion of segment differences for the count (density) measure as SD-Count-SF
(SD-Density-SF). To study the time taken to construct an optimal segmenta-
tion, we implemented the dynamic programming scheme using the summation
difference measure. We used Perl’s time function to measure the time taken by
each of these computations in seconds.

We implemented a simple random data generator to generate many item-set
time series. The random data generator takes three inputs: m, the number of
distinct items in I; n, the number of time points; and b, an upper bound on the
cardinality of the item set at each time point. The random data generator out-
puts an item-set time series containing n item sets, where each item set contains

3 The other such user was elizabeth.sager@enron.com.
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Figure 10.11. (a) Time to Compute the Segment Differences for the Count Measure as n grows
(m = 100). (b) Time to Compute the Segment Differences for the Density Measure as n grows
(m = 100). (c) Time to Compute an Optimal Segmentation as n grows (m = 100 and p = n).
(d) Time to Compute the Segment Differences for the Count Measure as m grows (n = 200)

at most b items. The data generator does not ensure that every one of the m
items actually occurs in the generated time series. For each item-set time series
generated from the random data generator, segment differences were computed
using all four procedures: SD-Count-Eff, SD-Count-SF, SD-Density-Eff, and
SD-Density-SF. Figure 10.11(a) shows the computation times for SD-Count-
Eff and SD-Count-SF. The first column in the table in Fig. 10.11(a) shows the
number of time points n in the input time series, the second column gives the
time taken by SD-Count-Eff and the third column gives the time taken by SD-
Count-SF. The α value for n = 50 was set to 10. For all other runs, α was
set to 50. It can be observed from this figure that SD-Count-Eff takes much
less time to compute segment differences than does SD-Count-SF. It can also
be observed that the difference between the computation time of SD-Count-Eff
and SD-Count-SF increases substantially as n increases. From Fig. 10.11(b),
similar observations can be made for SD-Density-Eff and SD-Density-SF. The
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value of α was always set to 0.5 in the density function experiments. For
n = 3,200, procedures SD-Count-SF and SD-Density-SF did not terminate
after running for 5 days.

We measured the time taken to construct an optimal segmentation for dif-
ferent values of n. We set p, the constraint on the number of segments, to n
in our experiments. Figure 10.11(c) shows the time taken by the dynamic pro-
gramming algorithm to construct an optimal segmentation of size at most p, as
n grows. It can be seen from this table that the effort to construct an optimal
segmentation is somewhat evenly divided between the computation of segment
differences and the construction of an optimal segmentation. When n = 6,400,
the dynamic programming algorithm ran out of memory.

To study the effect of big item sets on the computation of segment differ-
ences, we conducted an experiment where the number of items in I were
increased while keeping n constant at 200. We compared the time taken
by SD-Count-Eff and SD-Count-SF in each case. The result is displayed in
Fig. 10.11(d). The first column in the table in Fig. 10.11(d) shows the m value,
the second column shows the time taken by SD-Count-Eff and the third col-
umn shows the time taken by SD-Count-SF. As can be observed from the table,
both computations cope well with increasing m, and SD-Count-Eff outper-
forms SD-Count-SF in every case.

6. Related Work

Segmentation algorithms for time series data is an active and a classic area
of research [1, 16, 18, 19, 21, 22]. Most of this work is focused on time series
where each observed value in a given time series is a numeric value or a set of
numeric values, whereas in this paper we assume that each observed value is a
set of discrete items. A time series as a sequence of symbols is explored in [24],
which proposes a symbolic representation of a time series for dimensionality
reduction. A piecewise aggregate approximation is first computed, based on
which the symbolic representation is generated.

Mining data streams is also an active research area (see [13] and the refer-
ences contained therein), where segmentation of streams is an important prob-
lem [24]. Our paper is focused on processing time series data in a batch mode.

Segmenting sequence data such as DNA sequences or any sequence of char-
acters has also received considerable attention [8, 12, 14, 15, 17, 25]. We can
model such sequence data as an item-set time series where each item set is
a singleton. We plan to study how this perspective compares with the prior
literature.

In our earlier work [2–4, 6], we studied time decompositions based on time
stamped documents, with a focus on keywords appearing in these documents.
This earlier work utilized a more complex model than item sets. Each time
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point had an associated set of documents, and each document had an associ-
ated set of keyword occurrences, with possibly multiple occurrences of a given
keyword in a given document. Each segment in a time decomposition was as-
sociated with a keyword set computed by applying one of three measure func-
tions (count, ratio, and rank) to the keywords appearing in the document set of
the interval. Segment difference (referred to as information loss) values were
defined as a function of set difference cardinalities. An efficient algorithm
to compute the information loss values for the count measure was described
in [6].

The segment difference computation for the count measure, SD-Count-Eff,
described here is different from our previous work in two significant ways.
First, it assumes that each item (or keyword) appears in each time point just
once, whereas our previous algorithm assumed that each keyword might ap-
pear multiple times in a time point. Second, and more important, the segment
difference definition used in this paper is different from our previous work.
The current definition normalizes the symmetric difference between a segment
item set and an item set in that segment by using fractional differences, whereas
our previous work did not use normalization. This normalization precludes the
techniques used in [6]. The density measure studied in this paper was not
meaningful for the model used in our earlier work on document-based time se-
ries, since the measure functions in this earlier work were applied to the set of
documents in a given segment, with no regard to which particular time points
in the segment contained a given document or keyword occurrence. Thus, the
segment difference definitions and the SD-Density-Eff algorithm described in
this paper have not appeared elsewhere.

Optimal segmentation problems are typically solved via dynamic program-
ming [16, 18]. The dynamic programming schemes outlined in this paper to
construct an optimal segmentation have appeared before [3, 16, 29].

Our earlier work in [29, 30] applied the concept of item-set time series
segmentation to analyze the version control repositories of several large open
source projects—Mozilla, Apache, and Eclipse.

7. Conclusions

In this paper, we propose a special type of time series, which we refer to
as an item-set time series. Each observation in an item-set time series is a
set of discrete items. We extend the segmentation framework to item-set time
series by defining the notion of a measure function to compute the segment
item sets from the item sets of the time points in the segment, and the notion
of segment difference to compute the non-homogeneity of segmentations. We
described three separate, yet related, dynamic programming schemes to com-
pute the optimal segmentation of an item-set time series. Segment difference
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values for each segment of a given item-set time series must be available to
the dynamic programming schemes to construct the optimal segmentations.
An efficient algorithm is presented to compute the segment difference values
for each of the two measure functions defined in the paper. We used item-set
time series segmentation methods to analyze Enron email data and stock mar-
ket data. Several optimal as well as oblivious segmentations of the time series
were constructed and studied. As expected, the experiments showed that the
non-homogeneity of optimal segmentations is less than that of oblivious seg-
mentations of the same size. The value of the user-specified threshold α also
affected the amount of non-homogeneity of a segmentation. We studied the
information captured in a segmentation by focusing on one user that appeared
in the optimal segmentation of size 25 of the time series constructed from the
Enron email data. We identified when and which employees the user was in
touch with, and the most frequently used email subject keywords during these
periods. We studied the scalability of the proposed techniques using synthetic
data. The efficient procedures SD-Count-Eff and SD-Density-Eff described in
the paper outperformed the straightforward segment difference computation in
all cases.
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Abstract Sums-of-products provide a basis for describing certain computational prob-
lems, particularly problems related to constraint satisfaction including SAT,
MAX SAT, and #SAT. They also can be used to describe many problems arising
from graph theory. By modeling a problem as a sum-of-products problem, the
concept of “subproblem independence” takes on a clear meaning. Subproblem
independence has immediate computational implications since it can be used
to create programs with reduced levels of nesting and programs which exploit
memoization. The concept of subproblem independence also extends to quanti-
fied sums.

Subproblem independence can be linked directly to structural concepts asso-
ciated with tree decompositions for graphs and the closely related structure trees
for algebraic problems. Thus methods of finding tree decompositions apply di-
rectly to finding independent subproblems.

Keywords: sums-of-products, quantifiers, generic algorithms, constraint satisfaction prob-
lems, computational complexity, tree decompositions, treewidth, structure trees,
quantified sums

1. Introduction

We are interested in the complexity of solving sum-of-products problems
where the sum is taken over all assignments to a set of finite domain variables
and the quantities summed are products of terms. As discussed later, many
problems of interest can be described by sums-of-products even though the
problems are not initially expressed that way. Symbolically, we want to find∑

α∈Γ(V )

∏
p∈P p[α] where

S.S. Ravi, S.K. Shukla (eds.), Fundamental Problems in Computing,
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1. V is a finite set of finite domain variables,

2. Γ(V ) is the set of assignments to variables in V ,

3. P is a set of terms of the form f(x1, . . . , xk) for some k where f is a
function symbol and x1, . . . , xk are variables in V ,

4. p[α] is the value of term p obtained by replacing the variables in p by the
values from assignment α.

The sum-of-products can thus be specified by a pair (V, P ) where V is a set of
finite domain variables and P is a set of terms involving variables from V .

Computational complexity is usually associated with a set of problem in-
stances expressed as strings. The theory addresses the question “what is the
worst case computation time (or space) as a function of instance size?”. Here,
we associate complexity with problem instances. We ask “what is the number
of plus and times operations needed to compute a specified sum-of-products?”
This question can be asked about any sum-of-products instance and the answer
is independent of any set of problem instances from which the sum-of-products
instance was taken. As discussed in Sect. 3, we assume that the sum and prod-
uct operators are taken from a commutative semi-ring. This insures that the
sum-of-products is well-defined and can be manipulated using standard alge-
braic techniques. We want to compute sum-of-product values “generically”
using operator sequences that produce the correct value regardless of the par-
ticular plus and times operations involved and of the actual value of the terms.
In other words, except for the semi-ring assumption, our solution methods are
independent of the interpretation of the operators and terms.

Computational complexity is usually associated with algorithms which take
problem instances as input and output the answer to some question about the
input instance. Here we are concerned about algorithms designed to compute
the sum-of-products value for a particular problem instance. Algorithms 1
and 2 are two examples of such algorithms. The algorithms are “generic” in
that they work for any interpretation of the operations and terms. Because of
their generic nature, the number of operations performed by the algorithms is a
function of domain sizes. This enables us to make complexity comparisons in
the usual way. For example, Algorithms 1 and 2 both compute the same sum-
of-products, but Algorithm 2 is preferred because the number of operations
performed grows only as the square of domain size whereas the number of
operations performed by Algorithm 1 grows as the cube of domain size.

We want to apply our understanding of “the complexity of instances” to
the following kind of computation problem: given a sum-of-products instance
from a set of sum-of-products instances, find the value of that sum-of-products.
Many problems of interest can be expressed naturally as sum-of-products prob-
lems including satisfiability, counting, and optimization problems. This is



Sums-of-Products and Subproblem Independence 303

elaborated upon in Sect. 3 where several semi-rings and their applications are
discussed.

Another feature of the sum-of-products problems and the generic algorithms
that solve them is that the concepts of “subproblem” and “subproblem inde-
pendence” have clear meanings. These concepts are understood on the basis
of sub-calculations which are also described as sums-of-products. Subproblem
independence can make particular instances of hard problems easier.

Many quantifiers are sum-like. For example, ∃xf(x) is the disjunction
(a sum using ∨) of the f(c) for c in the finite domain of x. The quantified
formulas MAXxf(x) is the maximum (a sum using the MAX operator) of all
f(c) for c in a non-empty finite domain. Because of this similarity, the sum-of-
products model can be extended to the problem of evaluating quantified sums.
First, several kinds of summation operators are allowed on the same set (MAX

and MIN on numbers for example). Then the original plus operations are turned
into quantifiers and the original times operator is then called plus. The concept
of subproblem independence and the methods of exploiting it carry over ex-
actly. The one extra consideration is that the order of quantifiers becomes
important when different kinds of quantifiers are used together and then condi-
tions restricting the interchange of quantifiers must be respected. Subproblem
independence plays an important role in determining when two quantifiers may
be interchanged. These matters are discussed in Sect. 4.

CNF Satisfiability (sometimes called SAT) plays a central role in the theory
of NP-completeness because the operation of a non-deterministic Turing ma-
chine operating in polynomial time can be described efficiently by a CNF for-
mula of polynomial size. Since every SAT instance can be viewed efficiently
and naturally as an instance of a sum-of-products problem (see Sect. 2), one
can say it is a sum-of-products problem that plays this central role. Again,
subproblem independence shows up in an interesting way. Now, subproblem
independence becomes associated with restricted nondeterministic space com-
putations. This matter is the subject of Sect. 5. This is evidence that subprob-
lem independence is more pervasive than one might first suppose.

2. Examples

In this section, we look at some sum-of-products examples and see how
to display and exploit “subproblem independence” with a “structure tree”.
Throughout this paper, we use the following conventions:

1. All variables have finite domains.

2. The domain of variable x is Dx.

3.
∑

x means sum over all values in domain Dx.
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Now consider the following problem:

Find
∑

x

∑
y

∑
z[p(x, z) · q(y, z)].

This problem is described in “(V, P ) notation” as “find the sum-of-products
with variable set V = {x, y, z} and with term set P = {p(x, z), q(y, z)}.”

The most straightforward way of computing the sum’s value is with Algo-
rithm 1. Although we haven’t given a meaning to the sum and product opera-
tions, we can describe the algorithm’s complexity by counting the number of
operations performed. The operations are performed at line 5 which is inside
the nested loops so the number of additions is clearly |Dx| · |Dy| · |Dz| and so
is the number of multiplications. Assuming all variables have the domain D,
we can say that the number of operations is Θ(|D|3).

Algorithm 1 Compute
∑

x

∑
y

∑
z[p(x, z) · q(y, z)]

1: sum ← 0
2: for all x in Dx do
3: for all y in Dy do
4: for all z in Dz do
5: sum ← sum + p(x, z) · q(y, z)
6: end for
7: end for
8: end for
9: output sum

Observe that
∑

x

∑
y

∑
z[p(x, z) · q(y, z)] equals

∑
z[[
∑

x p(x, z)] · [∑y q(y, z)]]

Using the right hand expression as a guide, we see that the sum-of-products
can be solved using Algorithm 2. In this program, the depth of nesting is just
two. The operations are performed at lines 5, 9, and 11 and the number of
additions is now |Dz| ·(|Dx|+ |Dy|+1) which is just Θ(|D|2) and the number
of multiplications is just |Dz|.

The improvement here in complexity can be attributed naturally to “sub-
problem independence”. Specifically, once a value has been assigned to z, the
problems

∑
x p(x, z) and

∑
y q(y, z) are “independent” in that they have no

unassigned variables in common. They are “subproblems” in that their an-
swers are computed as part of the overall computation.

The problem structure exploited by Algorithm 2 is shown by the “structure
tree” shown in Fig. 11.1.

DEFINITION 2.1. A structure tree for a sum-of-products problem (V, P ) is
given by a tree T and two functions α and β such that
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Algorithm 2 Compute
∑

z([
∑

x p(x, z)] · [∑y q(y, z)])
1: sum← 0
2: for all z in Dz do
3: sumx ← 0
4: for all x in Dx do
5: sumx ← sumx + p(x, z)
6: end for
7: sumy ← 0
8: for all y in Dy do
9: sumy ← sumy + q(y, z)

10: end for
11: sum ← sum + sumx · sumy

12: end for
13: output sum

Figure 11.1. Structure Tree for ({x, y, z}, {p(x, z), q(y, z)})

1. the tree T has a root,

2. each variable v in V has been assigned to a node α(v) of T ,

3. each term p in P has been assigned to a node β(p) of T ,

4. if variable v ∈ V appears in term p ∈ P , then the node α(x) is between
β(p) and the root.

Note that, unlike our simple examples, several variables or several terms
can be assigned to the same structure tree node. The relationship between
structure trees and corresponding programs is this: for any term, the variables
on the path from the term’s node to tree’s root correspond to the variables
in the loops enclosing that term. The maximum number of variables on a
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path from root to leaf is called the weighted depth of the tree. The number
of operations performed by the corresponding program is exponential (as a
function of domain size) only in the weighted depth.

A sum-of-products problem can have many structure trees and the mini-
mum weighted depth among the structure trees for the problem is called the
weighted depth of the problem. A structure tree may suggest nesting the vari-
ables in a different order than that suggested by the original sum-of-products
description. In the simple example just discussed, the program Algorithm 2
indicated by the structure tree of Fig. 11.2 has variable z in the outermost loop
whereas the original description has variable x first.

Now consider a problem a little more complicated:

Find
∑

v

∑
w

∑
x

∑
y

∑
z[p(x, w) · q(v, w) · r(x, y) · s(x, z)]

or in (V, P ) notation

Find ({v, w, x, y, z}, {p(x, w), q(v, w), r(x, y), s(x, z)}).

The obvious program has loops nested five deep so the number of operations
is the domain size to the fifth power. However the formula can be rewritten as

∑
w[
∑

x{p(x, w)[
∑

y r(x, y)][
∑

z s(x, z)]}{∑v q(v, w)}]

Figure 11.2. Structure Tree for ({v, w, x, y, z}, {p(x, w), q(v, w), r(x, y), s(x, z)})
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Algorithm 3 Compute
∑

w[
∑

x{p(x, w) · [
∑

y r(x, y)] · [
∑

z s(x, z)]} ·
{∑v q(v, w)}]

1: sum← 0
2: for all w in Dw do
3: sumx ← 0
4: for all x in Dx do
5: sumy ← 0
6: for all y in Dy do
7: sumy ← sumy + r(x, y)
8: end for
9: sumz ← 0

10: for all z in Dz do
11: sumz ← sumz + s(x, z)
12: end for
13: sumx ← sumx + p(x, w) · sumy · sumz

14: end for
15: sumv ← 0
16: for all v in Dv do
17: sumv ← sumv + q(v, w)
18: end for
19: sum ← sumx · sumv

20: end for
21: output sum

The corresponding program is Algorithm 3 and the corresponding structure
tree is shown in Fig. 11.2. Because the structure has weighted depth 3, the
program is only nested to depth 3. The number of operations is thus only
Θ(|D|3).

An alternative view is that a structure tree defines a function for each node.
In the case of Fig. 11.2, the five nodes 1 to 5 correspond to the following
functions F1 to F5:

1. F1 returns
∑

w[F2(w) · F3(w)].

2. F2(w) returns
∑

x[p(x, w) · F4(x) · F5(x)].

3. F3(w) returns
∑

v q(v, w).

4. F4(x) returns
∑

y r(x, y).

5. F5(x) returns
∑

z s(x, z).

If one calls the function corresponding to the root, namely F1, the value
returned is the value of the sum-of-products. The number of operations per-
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formed will be the same as in Algorithm 3 because the two methods execute
the same sequence of operations.

This functional description exposes a kind of inefficiency not yet discussed.
The function F4 is called |Dw| times for each x in Dx. Time can be saved
(at the cost of some space) if F4(x) is computed once for each x in Dx and
the result saved in some table where the value of F4(x) can subsequently be
looked up rather than be recomputed.

Now think of the Fi as tables rather than functions. By constructing the
tables in some bottom-up order such as F5, F4, F3, F2, F1, the appropriate
values from the lower tables will be available when needed to compute the
values for the higher tables. Table F2 has |Dw| entries, each entry is computed
using |Dx| additions, and thus Table F2 is computed with |Dw|·|Dx| additions,
Tables F3, F4, and F5 are also computed in “square time” and F1 is computed
in |Dw| time. Table F1 will have one entry and it will contain the answer to the
problem.

Can this square time method be inferred from the structure tree? The answer
is “yes” if we compute the set of “channel variables” for each node. Variable
x is called a channel variable at node n if and only if the node associated
with x is at or above n and some term containing x is at or below n. (By
“above”, we mean closer to the root.) The channel variable set at a node n is
the set of variables involved in computing the function or table for node n. For
the function, the channel variables v such that α(v) is above node n are the
parameters of the function. The channel variables v such that α(v) = n are
local variables used in the body of the function procedure to index loops. The
table for n has one entry for each assignment to the variables v such that α(v)
is above n.

For a given structure tree, the size of its largest channel variable set is called
the channelwidth of the tree. For a given problem, the minimum channelwidth
among all the trees for the problem is called the channelwidth of the problem.

In Fig. 11.3, the channel variable sets have been added to the structure tree
from Fig. 11.3. Because the largest channel variable set has size two, we know
that computing the sum-of-products using look-up tables takes only Θ(|D|2)
operations.

The cause of the improvement is evident at node 4. There are three branch
variables at node 4, namely w, x, and y, but only the two channel variables
x and y. This indicates that r(x, y) is calculated independently of w even
though it is inside the w loop. The term r(x, y) is computed |Dw| times for
each possible assignment to x and y and the sub-calculation uses |Dx| · |Dy|
operations. However with tables, that sub-calculation is only performed once
thereby saving a factor of |Dx|.

The bottom-up table method is often called “non-serial dynamic program-
ming” [3, 11]. The tables mapping channel variable assignments to semi-ring
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Figure 11.3. Structure Tree from Fig. 11.2 with Channel Variables

values will be called node tables. These tables can also be used to compute the
sum-of-products top-down if one computes and records each node table entry
at the time it is first needed. Then the method is called “memoization” [9].

To apply our methods to sets of sum-of-products instances, it becomes nec-
essary to deal with the following structure tree problem: given a sum-of-
products problem (V, P ) from a set of sum-of-product problems, find a best
structure tree for the problem. The complexity of this problem depends on the
particular set of problems from which problem instances are taken.

In (V, P ) notation, we can associate problem instance (V, P ) with a hyper-
graph (N, E) where N has one node for each variable in V and one hyper-edge
for each term in P . The hyper-edge for term p is the set of nodes corresponding
to the variables in p. Because the structure trees are defined without any con-
sideration to the meaning of the variables or terms, structure trees for a given
problem can be derived directly from its hyper-graph. This enables graph the-
ory tools to be used for structure tree construction. The concept of tree decom-
positions for graphs is particularly relevant.

Tree decompositions for graphs were defined in [1] and the extension to
hyper-graphs is straightforward. A tree decomposition for a graph is an un-
ordered tree where, for each tree node n, there is an associated set of graph
nodes X(n) where the X(n) must satisfy certain conditions. The size of
the largest X(n) minus one is called the treewidth of the decomposition.
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The smallest treewidth of all the graph’s tree decompositions is called the
treewidth of the graph. When applied to the hyper-graph for a sum-of-products
problem, any tree decomposition can be made into a structure tree by picking
any node to be the root and making the X(n) be channel variable sets. This
means that, for any variable v, α(v) is placed at the highest node n such that
v ∈ X(n) (the conditions on X imply such a node always exists) and β(p) for
term p is placed at the highest node below the α(v) for variables v of p (and
again such a node always exists). Although finding a best tree decomposition
in general is NP-hard by [2], it can be done in linear time by [4] if the prob-
lems in the problem set have bounded treewidth. If the hyper-graph is planar,
the methods of [7, 8] can be used to find a tree decomposition with treewidth
O(
√
|V |) in polynomial time. Further discussion on this topic can be found

in [13]. We don’t cover this topic any further here and, in effect, we assume a
structure is given together with the problem instances.

3. The Plus and Times Operators

Certain properties of plus and times were assumed in the previous section.
It was assumed that plus is associative and commutative for otherwise

∑
x

would not be well defined. It was also assumed that times is commutative
and associative so that we could pick the products apart to form independent
subproblems. We assumed that times distributes over plus so that the product
of two independent problems would be the solution to a larger problem.

We now add assumptions that there is a zero element 0 satisfying 0 + a =
a and a · 0 = 0 for all a and a unit element 1 satisfying 1 · a = a for
all a. The zero element represents the sum of an empty set of terms and
was used in our programs (e.g. lines 1, 3, and 7 in Algorithm 2) to initial-
ize variables. The unit element represents the product of an empty set of
terms and is needed to express subproblem independence in situations such
as
∑

x

∑
y p(y) = [

∑
x 1] · [∑y p(y)]. As described in the next section, con-

straints are modeled by zero/unit-valued terms
A set of elements and operators satisfying the above properties is called a

“commutative semi-ring”, “commutative” because times is commutative and
“semi” because there is no minus operator.

DEFINITION 3.1. R = (S, +.·, 0, 1) is called a commutative semi-ring if
and only if

1. S is a set of elements,

2. + (plus) is an associative and commutative binary operator on S,

3. · (times) is an associative and commutative binary operator on S such
that times distributes over plus (i.e. a · (b + c) = a · b + a · c),
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4. 0 ∈ S (the zero element) satisfies a + 0 = a and a · 0 = 0 for all a,

5. 1 ∈ S (the unit element) satisfies a · 1 = a for all a.

The problem we want to solve is the following: given a set of variables and
a set of semi-ring valued terms, find the sum over all variable assignments
of the products of the terms.

Note that the variable domains are distinct from the semi-ring elements and
the set of semi-ring elements can be infinite whereas variable domains are al-
ways finite. The complexity of performing the semi-ring operations is not an
issue here because we measure the complexity of our algorithms by counting
operations. Obviously, the cost of performing operations and evaluating terms
must be considered when describing time complexity.

We now define and discuss some useful semi-rings:
Semi-ring B∨ = ({TRUE, FALSE},∨,∧, FALSE, TRUE):

This semi-ring is used to model satisfiability problems. Replacing plus and
times by their B∨ interpretations gives expressions such as ∨x ∨y ∨z[p(x, z)∧
q(y, z)]. This sum-of-products is TRUE if and only if the terms are simultane-
ously satisfiable. Equivalently, one can replace ∨ by ∃ as in ∃x∃y∃z[p(x, z) ∧
q(y, z)].

Semi-ring B∧ = ({TRUE, FALSE},∧,∨, TRUE, FALSE):
This semi-ring is used to model tautology problems. Replacing plus and times
by theirB∧ interpretations gives expressions such as∧x∧y∧z[p(x, z)∨q(y, z)].
This sum-of-products is TRUE if and only if, for each assignment, some term is
satisfied. Equivalently, one can replace ∧ by ∀ as in ∀x∀y∀z[p(x, z)∨ q(y, z)].

Semi-ring I = (NUMBERS, +, ·, 0, 1) (ordinary arithmetic):
The set NUMBERS can be integers, rationals, non-negative integers, or (de-
pending on the application) any subset of numbers closed under plus and times
and containing zero. One application is for counting the number of satisfying
assignments to a set of Boolean valued terms. Here we can take NUMBERS

to be the set of non-negative integers. For this application, we consider TRUE

terms to have value one and FALSE terms to have value zero. Then the product
of these terms is one if all terms are satisfied and is zero otherwise. Thus the
sum-of-products counts the number of satisfying assignments.

Semi-ring IMAX = (NUMBERS ∪ {−∞}, MAX, +,−∞, 0):
Here + is ordinary addition and NUMBERS can be any set of numbers (such as
the integers) closed under addition and containing zero. Operations MAX and
plus satisfy the distributive law because a + MAX(b, c) = MAX(a + b, a + c).
Sums-of-products here have the form MAXxMAXyMAXz[p(x, z) + q(y, z)].
The sum-of-products is the maximum sum of terms. A special case of this
is MAXSAT which is solved using the non-negative integers as NUMBERS

by making the Boolean-valued terms integer-zero/integer-one-valued with one
representing TRUE and zero representing FALSE.
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Semi-ring IMIN = (NUMBERS ∪ {∞}, MIN, +,∞, 0):
Here NUMBERS is the same as in IMAX. The sum-of-products is the minimum
sum of terms.

Semi-ring ZOM = ({0, 1, 2},⊕,⊗, 0, 1) where a⊕ b = MIN(a + b, 2) and
a⊗ b = MIN(a · b, 2):
Elements 0, 1, and 2 are interpreted as “zero”, “one”, and “many”. The
distributive law holds because of the equation MIN(a · MIN(b + c, 2), 2) =
MIN(MIN(a · b, 2) + MIN(a · c, 2), 2). This semi-ring can be used to test for
unique satisfiability using terms which are 0/1-valued, 1 for TRUE and 0 for
FALSE. The terms are uniquely satisfiable if and only if the sum-of-products is
one. A sum of two means the terms have more than one solution and a sum of
zero means the terms have no solution.

Observe that, given a set of Boolean-valued terms, testing for satisfiability,
tautology, counting solutions, maximizing the number of satisfied terms, or
testing uniqueness all involve sums-of-products with the same variables and
the similar terms. The terms differ only in the interpretations of TRUE or
FALSE. Thus, for a given set of terms and variables, the corresponding sums-
of-products all have the same structure trees and our algorithms compute each
sum-of-products value with the same sequence of operations.

We are also interested in “constrained sums-of-products”:

DEFINITION 3.2. A constrained sum-of-products problem is a problem of
the following form: Given a commutative semi-ring, a set of variables, a set
of semi-ring valued terms, and a set of Boolean valued terms, find the sum-of-
products of the semi-ring valued terms for all assignments which satisfy all the
Boolean-valued terms.

A constrained problem can always be modeled as an unconstrained problem
by making the Boolean terms be zero/unit-valued terms (unit for TRUE and
zero for FALSE) and treating them like any other term. A product will have
its original value if all Boolean terms are one and value zero if any Boolean
term is zero. For example, to minimize the sum of terms subject to some
constraints, use semi-ring IMIN, change the constraints so that TRUE becomes
zero (the semi-ring unit) and FALSE becomes ∞ (the semi-ring zero), and put
the constraints and numeric terms together. The constraints are thus modeled
as terms with a large penalty (namely ∞) if they are unsatisfied and no effect
on the sum if satisfied. If the constraints cannot be satisfied, then the sum will
be∞, and otherwise the sum will be the minimum value.

For some semi-rings, any sum-of-products is equal to one of its products.
A variable assignment producing such a product can be thought of as “causing”
the sum-of-products value and one may want to output such an assignment
together with the sum-of-products value. Semi-ring B∨ is one such semi-ring.
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If the sum-of-products is TRUE, one of the products is TRUE and the assignment
which produced it is called a “satisfying assignment”. If the sum-of-products
is FALSE, all products are FALSE and all assignments produce a FALSE term.
In this case, the associated assignments are not of special interest.

Other examples are IMAX and IMIN. In these cases, assignments which pro-
duces a maximum or minimum product are known as “optimal assignments”.

In order for every sum to be equated with one of its terms, the semi-ring must
satisfy a + b = a or a + b = b for all semi-ring elements a and b. Defining
the relation ≤ by a ≤ b ⇐⇒ a + b = b, a total ordering is placed on the set
of semi-ring elements and a sum-of-products becomes the maximum product
under this ordering. An assignment producing this maximum is a maximizing
assignment. Alternatively, one can define relation≤ by a ≤ b ⇐⇒ a+b = a
and then the problem is viewed as a minimization problem.

In all cases, the algorithms can easily be modified to compute the corre-
sponding optimal assignment. Whenever two quantities are added, remember
the assignment whose quantity became the sum. Whenever two sums are mul-
tiplied, combine the two assignments associated with the sums (the two assign-
ments will be based on disjoint variable sets.) The impact of performing this
extra work is not significant.

4. Quantified Sums

Now we consider how the “subproblem independence” concept can be ap-
plied to problems involving quantified variables. As a starting point, observe
that semi-ring summation operators behave as a kind of quantifier and therefore
sum-of-product problems can be interpreted as a quantified-product problems.
For example, the sum ∨xf(x) in B∨ means exactly the same thing as ∃xf(x).
Under this equivalence, sum-of-products problem ∨x ∨y ∨z(f(x, z)∧ g(y, z))
means the same thing as ∃x∃y∃z(f(x, z) ∧ g(y, z)). Rather than talking about
“quantified product problems”, we prefer to call the connecting operator “plus”
instead of “times” and talk about “quantified sum problems”. We are thus using
+ as we did in semi-rings IMAX and IMIN.

We will to consider quantified sums involving more that one quantifier and
it is instructive to consider how MAX and MIN can be used together. They
clearly work together on non-empty sets of numbers, but there is a problem
with empty domains. The maximum of an empty set is −∞ in IMAX and the
minimum of an empty set is∞ in IMIN. We can’t put both−∞ and∞ into a set
of numbers because the sum −∞+∞ has no meaning. Therefor we consider
the MAX and MIN combination defined only for non-empty finite domains.
Consequently, unlike the sum operators MAX and MIN, quantifiers MAX and
MIN are not associated with identities.
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The sum operations associated with quantified sums will be modeled by plus
operators from commutative monoids:

DEFINITION 4.1. A commutative monoid is given byM = (S, +, 0) where

1. S is a set of elements,

2. + (plus) is an associate and commutative binary operator on S,

3. 0 ∈ S (the zero element) satisfies a + 0 = a for all a ∈ S.

Our notation for a quantified variable is qx where q is the name of a quanti-
fier and x is the name of a variable. The meaning of quantifier q for a monoid
M = (S, +, 0) is specified by a functional which takes functions of the form
f : Dx → S and produces a value qxf(x) in S. However, in order to obtain a
suitable notion of “subproblem independence”, we need to put restrictions on
the quantifiers considered:

DEFINITION 4.2. A quantifier q defined on domains in a set D is called a
quantifier for commutative monoidM = (S, +, 0) if and only if

1. for all f : Dx → S and c ∈ S, qx(f(x) + c) = (qxf(x)) + c,

2. for all g : Dx ×Dy → S: qxqyg(x, y) = qyqxg(x, y).

The first condition says that q obeys a kind of distributive law and the sec-
ond says q obeys a commutative law. There is no condition asserting that
different quantifiers can be interchanged. In general they can’t be because
MAXxMINyg(x, y) is not necessarily equal to MINyMAXxg(x, y). Thus we de-
fine a quantified sum problem (Q, P ) as given by a list (rather than a set) of
quantified variables Q and a set of terms P where each variable of each term
in P is quantified by Q. If quantifier qx comes before quantifier ry in Q, we
also say that variable x comes before variable y in Q.

The conditions of Definition 4.2 are satisfied by “sum-based quantifiers” σx

described by the following proposition:

PROPOSITION 4.3. Let R = (S, +, ·, 0, 1) be a commutative semi-ring. For
the monoidM = (S, ·, 1) and variable x with finite domain D, define σx by

σxf(x) =
∑
d∈D

f(d).

Then σ is a quantifier for finite domains on M. Quantifiers so defined are
called sum-based quantifiers.

Proof. Easily verified. �
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Given a quantified expression where all the quantifiers are sum-based, the
expression can be evaluated by the same methods as sum-of-product problems.
For a quantified variable qx applied to some subexpression f(x), the value
qxf(x) can be obtained by summing the various f(x) using the sum-based
operator used to define q. Even if a quantifier is not based on any method of
summing, the value can still be computed by a loop. The values associated with
each domain element can be stored as they are computed (rather than summed
as they are computed) and the result of the quantification computed from the
stored values after all the associated values have been computed.

Some quantifier examples:

DEFINITION 4.4. Quantifiers ∀, ∃, MAX, MIN, and " are defined as follows:

1. For the Boolean monoids B∧ = ({TRUE, FALSE},∧, TRUE) and B∨ =
({TRUE, FALSE},∨, FALSE) and for any variable x with finite domain
D, define ∃xf(x) =

∨
d∈D f(d) and ∀xf(x) =

∧
d∈D f(d).

2. For any ordered commutative monoid M = (S, +, 0,≤) and for any
variable x over a finite non-empty domain D, define MAXxf(x) =
MAX{f(d) | d ∈ D} and MINxf(x) = MIN{f(d) | d ∈ D}.

3. Let F = (S, +, ·, 0, 1) be a commutative field containing the integers.
For the monoid (S, +, 0) and any x having a finite non-empty domain
D, define the stochastic quantifier "xf(x) = (

∑
d∈D f(d)/|D|).

The quantifiers ∃, ∀, MAX, and MIN are all sum-based. The stochastic quanti-
fier, taken from [10], gives the average value for f(x) when the value of x is
selected uniformly at random. This is also defined as a summation but using a
more complicated sum then those described in Proposition 4.3.

For sums-of-products, a structure tree with good channelwidth suggested a
good order for performing the summation operations, namely sum over vari-
ables high in the tree (close to the root) before summing over variables further
down in the tree. In a similar way, we want a structure tree for a quantified sum
to be defined in such a way that it represents an equivalent quantified expres-
sion. However “equivalence” here must take into account equivalent orderings
of quantifiers.

To illustrate the point, the quantified expression qxqyf(x, y) is equivalent to
the expression qyqxf(x, y) by Property 2 of Definition 4.2. However
qxryf(x, y) may or may not have the same value as ryqxf(x, y) depending on
the interpretations of f , qx and ry. We want structure trees to represent equiv-
alent expressions for all interpretations and thus, for qxryf(x, y), we must
exclude structure trees which reorder qx and ry.
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Sometimes, we can infer that two quantifiers are interchangeable for all in-
terpretations. For example,

qxry(f(x) + g(y)) = qxf(x) + ryg(y) = ryqx(f(x) + g(y))

because of Property 1 of Definition 4.2. There is a way to tell if a structure tree
represents an equivalent quantified formula for all interpretations. It is based
on the concept of an “influence relation” defined as follows:

DEFINITION 4.5. Let f = (Q, P ) be a quantified formula and let qx and ry

be quantifiers in Q. We write x ≺ y or x influences y if and only if q �= r and
there exists a sequence of variables z1 . . . zk quantified with quantifiers in Q
such that

1. z1 = x and zk = y;

2. for each i, 1 ≤ i < k, there is a term ti in P such that both zi and zi+1

are variables of ti;

3. x occurs in Q before zi for 1 < i ≤ k;

4. there does not exist a j, 1 < j < k, such that the quantifier for zj is not
r and zj appears before zi in Q for all i, j < i ≤ k.

The sequence z1, . . . , zk is called an influence sequence from x to y.

Simply stated, the last condition says that no suffix of an influence sequence is
an influence sequence.

The influence relation has several important properties, proven in [14] and
not reproved here:

1. The influence relation is a partial ordering (a sub-ordering of Q).

2. The influence relation is easily computed (by a variation on transitive
closure).

3. If qx appears immediately before ry in Q and x �≺ y, interchanging
qx and ry gives a new quantifier list Q′ such that (Q, P ) and (Q′, P )
have the same value for all interpretations of the quantifiers and terms.
Furthermore, (Q, P ) and (Q′, P ) have the same influence relation.

4. If qx appears immediately before ry in Q and x ≺ y, interchanging qx

and ry gives a new quantifier list Q′ such that (Q, P ) and (Q′, P ) have
different values for some interpretation of the quantifiers and terms.

To illustrate the above, consider the following three quantified expressions,
each with the same sets of quantifiers and terms:
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1. μvνzμwνxμy(p(x, w) + q(v, w) + r(x, y) + s(x, z))

2. μvμwνzνxμy(p(x, w) + q(v, w) + r(x, y) + s(x, z))

3. μw[νx[p(x, w)[μyr(x, y)][νzs(x, z)]][μvq(v, w)]]

Expressions 1 and 2 are identical except that adjacent quantifiers νz and μw in
the quantifier lists have been interchanged.

Looking at expression 1, we see that z ≺ w because of influence sequence
z, x, w and therefore the quantifiers cannot be interchanged without changing
the value of the expression for some interpretation of the quantifiers and terms.
Looking at expression 2, we come to the same conclusion because now w ≺ z
by sequence w, x, z.

Expression 3 is suggested by the structure tree in Fig. 11.3, but obviously
expression 3 cannot be equivalent to both expression 1 and expression 2. The
structure tree is in conflict with expression 1 because the tree puts w above
z whereas the influence relation requires that νz proceed μw. Therefore the
expressions will have different values for some interpretation of the quanti-
fiers and terms. The structure tree is in agreement with expression 2 because
the partial ordering described by the tree is in agreement with the influence
relation. Expression 3 therefore has the same value as expression 2 for all
interpretations of the quantifiers and terms.

As suggested by the above discussion, structure trees for quantified expres-
sions are defined as follows:

DEFINITION 4.6. Let (Q, P ) be a quantified sum and let V be the set of vari-
ables quantified by Q. A structure tree for (Q, P ) is a structure tree (T, α, β)
for (V, P ) such that α(x) is at or above α(y) for all x and y such that x ≺ y.

Structure trees for quantified sums have weighted depths and channelwidths
in the same way as structure trees for sum-of-product problems and the small-
est weighted depths and channelwidths for a problem are considered the
weighted depth and channelwidth of the problem.

The structure tree in Fig. 11.3 is a structure tree for

(μvμwνzνxμy, {p(x, w), q(v, w), r(x, y), s(x, z)})

which is expression 2 in (Q, P ) notation and has weighted depth 3 and chan-
nelwidth 2. It implies equivalence of expressions 2 and 3. In expression 3,
the quantifiers are nested only three deep which enables faster evaluation than
brute-force depth five evaluation. As with sums of products, the structure tree
nodes can be viewed as defining functions or tables in which case F1 returns
qw[F2(w) + F3(w)] and so forth, the computation cost being reduced further
to Θ(|D|2).
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It can happen that, for certain quantifiers and monoids, the influence relation
is too strict and certain quantifiers can be interchanged in spite of the influence
relation. An example of this is a τ -quantifier defined as follows:

DEFINITION 4.7. For idempotent commutative monoid M = (S, +, 0) and
finite domain D, define

τxf(x) =
∑
d∈D

f(d).

Two examples come to mind. For M = ({TRUE, FALSE},∧, TRUE), ∀ is a
τ -quantifier. ForM = {TRUE, FALSE},∨, FALSE), ∃ is a τ -quantifier.

A τ -quantifier has the special property that τx(f(x) + g(x)) = τxf(x) +
τxg(x) so τxf(x) and τxg(x) behave as independent subproblems even though
they each have an instance of the same quantified variable. An influence rela-
tion that take into account the special properties of τ -quantifiers are developed
in [14] and are not discussed further here.

5. Connection to Memory-Bounded Nondeterminism

Now we discuss connections between subproblem independence and mem-
ory-bounded nondeterministic computation. When talking about memory
bounds (often called space bounds), it is customary to assume that a problem
is presented to a computing device on read-only memory and that only read-
write memory will be counted as memory used. The value of this assumption
is that it becomes meaningful to talk about solving problems using sub-linear
memory bounds. For example, for certain problems of size n, it can happen
that only

√
n read-write memory locations are needed.

Sub-linear nondeterministic memory can be the basis for deterministic com-
puting in less than 2n time. If an input of size n can be solved non-determin-
istically using only m binary memory locations, the problem can be solved
deterministically by considering all n2m configurations of the computing de-
vice (n possible locations on the input and 2m possible memory configurations)
and the graph connecting each configuration to each of its permissible succes-
sor configurations. Potentially, the analysis can be done in O(n2m) time if the
graph can be efficiently constructed and traversed.

Here now we have a new basis for speeding up computation, namely the
use of reduced memory. This basis seems to be more general than subprob-
lem independence. However, we now present circumstances in which reduced
memory and subproblem independence are interchangeable. The material in
this section summarizes some of our work reported in [15].

Because nondeterminism is usually defined only for YES/NO problems and
because nondeterministic acceptance is defined as at least one computation
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branch accepting, nondeterminism is best understood using the semi-ring B∨.
Accordingly, we will confine our discussion to this semi-ring.

As discussed in Sect. 3, we can use ∃ in place of sum operator ∨. Sup-
pose we want to evaluate ∃z([∃xp(x, z)] ∧ [∃yq(y, z)]). This can be done non-
deterministically with the following “guess and verify program”:

GUESS a value for z.

GUESS a value for x.

VERIFY p(x, z).

RELEASE x.

GUESS a value for y.

VERIFY q(y, z).

RELEASE y.

RELEASE z.

ACCEPT if all conditions were verified.

By “guess”, we mean select a memory location to store the associated variable
and non-deterministically assign a value to that variable. By “verify”, we mean
fail to accept if the associated condition is FALSE. By “release”, we mean make
the memory location of the released variable available for another variable.

Observe that the number of statements in the program is linear in the size
of the problem and (there being no loops) each statement is executed at most
once. Notice also that variables x and y can share space since x is released
before y is initialized. With space sharing, only two variables need be stored in
memory at any one time. The scopes of the variables are nested in the manner
suggested by the structure tree in Fig. 11.1 and consequently the number of
memory locations needed for variables is equal to the weighted depth of the
tree in Fig. 11.1.

Now suppose we are given a guess and verify program where the variable
scopes are not nested. For each VERIFY statement, some set of variables may
be classified as “visible”, namely those variables such that their GUESS state-
ments come before the VERIFY and their RELEASE statements come after the
VERIFY. The size of the largest set of visible variables is obviously equal to
the number of locations needed to store variables.

This time, the number of locations needed can be described as the channel-
width of a one-branch structure tree. The structure tree has one node for each
VERIFY and the term to be verified is placed at that node by β. The node cor-
responding to the last VERIFY is designated as the root and the node for each
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of the other VERIFY statements is made the child of the VERIFY which follows
it. Finally, for each variable x, α(x) is placed with the last VERIFY where x is
visible. Alternatively, one can similarly construct a corresponding one-branch
tree making the first VERIFY correspond to the root. In either case, the channel
variables at a node are just the visible variables at the corresponding VERIFY

statement so the size of the largest such set is the channelwidth of the tree
which we also call the line channelwidth of the one-branch tree. For a given
problem, the minimum channelwidth among the one-branch structure trees for
the problem is called the line channelwidth of the problem.

Given the one-branch tree, satisfiability can be tested by computing the node
table for the first VERIFY, then the second, and so forth. Recall from Sect. 2
that a node table assigns a semi-ring value (in this case TRUE or FALSE) for
each assignment to the channel variables (in this case the visible variables).
An entry is TRUE if the corresponding assignment is compatible with some as-
signment at the previous node and FALSE otherwise. Entries can be interpreted
as indicating if a certain configuration can be reached nondeterministically,
namely the configuration with the input at the current node and the variables
assigned as described by the name of the table entry.

Now assume the functions used to construct conditions are from a finite set
of Boolean-valued functions on Boolean-valued variables. Under this assump-
tion, and assuming other obvious conditions are met, sequences of GUESS,
VERIFY, and RELEASE statements become nondeterministic programs. By
“obvious conditions”, we mean things such as “variable values must be guessed
before they are used”.

A guess and verify program can be “compiled” in polynomial time into an
input sequence for a certain Turing machine T which then “executes” the pro-
gram. The key feature of compiled sequence is that the number of tape squares
needed to execute the sequence is O(m) where m is the maximal number of
variables visible at any point in the original program. Because a Turing ma-
chine cannot access its tape memory randomly, some extra moves must be
taken shifting the memory tapes in order to retrieve the desired sequence of
values. By clever programming (discussed in [15]) the input sequence can be
constructed so as to have length O(n log m) where n is the number of state-
ments in the original program.

The states of T are used as storage for k + 1 binary variables where k is
the maximum arity of the permitted binary-valued functions. The purpose of k
variables is to store the parameters of the function appearing in a corresponding
VERIFY statement. This enables the control of T to evaluate the function in one
step. The purpose of the other variable is to store a flag which is set to FALSE

if any verification fails. When all inputs are processed, T accepts if and only
if the flag is TRUE. Thus a failed verification causes the corresponding branch
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of the nondeterministic computation to fail after the complete input sequence
has been processed.

Machine T has two work tapes which can store one binary value on each
tape square. Each input symbol of T instructs T to perform some elementary
action. One such action is to take the value from one location and put it in
another (such as from a tape square to a state variable). Another is to verify
that the state values make a corresponding term TRUE (as discussed above).
A third is to nondeterministically assign a location a binary value (this is the
only nondeterministic action). A fourth is to shift a tape such as “move left on
tape 1”. The final input symbol tells T to stop and accept if the flag variable
is TRUE. Further details such as how to get the right information to the right
place may be found in [15] and are beyond the scope of this paper.

The time taken by the compiling process is of little consequence as long as it
is accomplished in polynomial time. This is because it is the nondeterministic
space which caused the corresponding deterministic machine to run in expo-
nential time. For example, if restricted to problems of

√
n line channelwidth,

the compiled program uses
√

n nondeterministic space. When made determin-
istic using node tables, the tables have

√
n entries and the time complexity is

2
√

n times the length of the input. This dominates any polynomial time used to
perform the compilation.

The constructed T is an example of a “choice oblivious” Turing machine
defined as follows:

DEFINITION 5.1. A nondeterministic Turing machine is called choice obliv-
ious if and only if, for any given input string, motions of the tape heads are
identical for all computation branches.

In particular, any deterministic Turing machine is choice oblivious, there being
only one computation branch per input.

To summarize, we have seen that, for B∨ sum-of-product problems, sub-
problem independence implies that a certain nondeterministic choice oblivious
Turing machine can compute the answer using only the amount of space im-
plied by the subproblem independence. The reverse is also true:

THEOREM 5.2. Let L be a decision problem, TL be a choice oblivious nonde-
terministic multi-tape Turing machine, and m a function of integers to integers.
Let R be a function mapping instances of L into input strings for TL such that
R(�) is processed using only m(|�|) tape squares and � ∈ L is TRUE if and
only if R(�) causes TL to accept. Then a sum-of-products instance for B∨ can
be constructed from R(�) such that the sum-of-products is TRUE if and only if
� is a TRUE instance of L.
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This theorem is implied by the results in [15] but a proof is beyond the scope
of this paper.

The construction of a sum-of-products instance for R(�) can be performed
in time t(n) for some t which is almost linear. (Specifically t(n) is O(n1+ε)
for all ε > 0.) This means the time needed to perform R dominates the time
needed to change R(�) into a sum-of-products problem and so, if R is per-
formed in polynomial time, the reduction of L to a sum-of-products problem
is polynomial.

In the absence of subproblem independence, a sum-of-products can be
solved in 2O(n) time if the operations are sufficiently easy to perform. There are
many NP-hard problems which can be solved in time 2O(na) for some a < 1.
Can the smaller time complexity of these problems be attributed to subproblem
independence even if there is no obvious sup-problem independence? Theo-
rem 5.2 says we can transform the problem into a sum-of-products problem
with subproblem independence if we can give a nondeterministic input obliv-
ious method of solving the problem in sub-linear space. We conclude with
two examples from [15] where the Theorem applies even though there is no
obvious subproblem independence.

In [5], Gary and Johnson give special attention to six NP-complete problems
from Karp’s original list [6]. They call these the “six basic NP-complete prob-
lems” because they have been found so useful as source problems for proving
NP-hardness. Four of these (3SAT, 3DM, VC, and HC) have the same time
complexity in the sense that they have the same “power index” as defined in
[12]. No solution methods have been found so far that solve these problems in
time 2na

for any a < 1. The other two basic problems, namely CLIQUE and
PARTITION, appear to be easier in that we know how to solve them in 2O(

√
n)

time. As discussed below, these two problems can be solved in
√

n nondeter-
ministic space by an input oblivious Turing machine. Details about how this
is done may be found in [15]. The implication is that the improvement in so-
lution times for these problems can be ascribed to subproblem independence
even though this interpretation is not immediately apparent.

The NP-complete problem known as CLIQUE, namely does graph G have
a clique of size k, can be solved in time 2O(

√
k) for the simple reason that a

graph with a clique of size k must have at least O(k2) nodes. This reason seems
unrelated to subproblem independence. Yet in [15], we show how this problem
can be solved nondeterministically and choice obliviously using O(

√
n) space.

This means the problem can be reduced to a set of sum-of-products problems
having line-channelwidth O(

√
n) and this sum-of-products problem can be

evaluated in 2O(
√

n) time because of subproblem independence.
Another such NP-complete problem is PARTITION, namely can a set of in-

tegers be divided into two sets which have the same sum. This problem can be
solved in time 2O(

√
k) because the hardest instances are composed of O(

√
n)
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numbers, each number having O(
√

n) bits. The solution method involves treat-
ing the short numbers differently from the long numbers, and will not be re-
peated here. Again this reason seems unrelated to subproblem independence.
Yet in [15], we show how this problem can be solved nondeterministically and
choice obliviously using O(

√
n) space. This means the problem can be re-

duced to a set of sum-of-products problems having line-channelwidth O(
√

n)
and this sum-of-products problem can be evaluated in 2O(

√
n) time because of

subproblem independence.

6. Measures of Independence

We have discussed three methods of measuring subproblem independence,
namely weighted depth, channelwidth, and line channelwidth. For a sum-
of-products problem, we use the notation WD , CW , and LCW to refer to
the minimum weighted depth, channelwidth, and line channelwidth for all the
problem’s structure trees. These quantities are closely related as follows:

PROPOSITION 6.1. For sum-of-product problems of size n,

CW · log n ≥WD ≥ LCW ≥ CW .

The reasons for these inequalities are fairly simple. Any line is a tree so
LCW ≥ CW . A structure tree of weighted depth WD can be made into a
line of nodes having line channelwidth LCW by ordering the tree nodes by
a depth first search. Thus WD ≥ LCW . A structure tree of weighted depth
CW · log n can be constructed from a structure tree of channelwidth CW by
rearranging the tree nodes (and changing α) to get a tree in which no branch is
longer than log n. After the transformation, the branch variables at each node
are subsets of the union of the channel variables sets the path nodes had in the
original tree. Details may be found in [13].

For quantified sums, the transformation from weighted depth to line chan-
nelwidth preserves the influence relation, but the method of rearranging nodes
to get good weighted depth from good channelwidth fails to preserve influence.
Thus we have

PROPOSITION 6.2. For quantified sum problems of size n,

WD ≥ LCW ≥ CW .

An example of a quantified sum with weighted depth n but channelwidth two
is given in [14].
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1. Introduction

The management of replicated data in a distributed database is an old and
well-studied problem. However, the classic solutions to the replicated data
problem are applicable mainly to distributed systems with a relatively low
transaction-processing rate. With distributed data warehouses and data marts
at the high end, and distributed data in often-disconnected mobile computers
at the low end [18], the problem of consistent access to replicated data with
reasonably high transaction throughput represents a difficult challenge [9, 14,
15, 26, 28]. It was shown [14] that many proposed solutions do not scale
up to meet the demands of systems that either require a high throughput rate,
or a high degree of replication, or both. Furthermore, it does not appear that
straightforward modifications of classic solutions will eliminate these deficien-
cies. Even 10 years after the publication of [14], the management of replicated
data remains a vexing problem. The fundamental problem, as identified by
[14], is that the standard transactional approach to the propagation of updates
to replicas is unstable—deadlocks increase as the cube of the number of net-
work sites and as the fourth power of transaction size. This is particularly
problematic with relatively long data-mining queries and with mobile transac-
tions. The former access many data items; while the latter effectively live for a
long period of time. Thus, deadlock is no longer a rare event with a negligible
effect on performance; instead, it is a barrier to the ability of systems to scale.

Several authors considered the problem of ensuring global serializability
and atomicity without the use of an atomic commit protocol. They assumed
that only transactions that execute at the primary site for a data item may ini-
tiate an update to that data item, and that propagation of updates to replicas
occurs only after the update transaction has committed at the primary site [9,
14, 28, 5]. Such an approach was termed lazy-master.

To guarantee global serializability, the lazy-master approach must be aug-
mented with one of the following:

Restrictions on placement of primary copies of data among different
sites [9].

Restrictions on the order of replica updates propagation after the primary
copy has been updated.

A global concurrency-control mechanism that minimizes coordination
among sites.

In this paper, we choose the lazy-master approach. We require that transac-
tion executions be serializable and atomic, and that the transactions read only
committed data. The atomicity protocol, however, should not cause block-
ing. We extend here the notion of lazy replica propagation and present an
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optimistic approach to transaction management for replicated databases. We
propose a new protocol that guarantees global serializability and freedom from
distributed deadlocks without relying on any properties of the DBMSs running
at the local sites. In comparison to prior protocols, the new protocol reduces
the communication required to coordinate transactions by a factor of r, where
r is the average number of operations per transaction.

Our approach is based on the concept of virtual sites introduced in [5, 3],
and expanded upon in [6]. The notion of a virtual site used in this paper is
identical to the one used in [6]. Finally, we consider implementation issues in
reducing message overhead and discuss failure recovery.

2. Related Work

Initial work on replicated databases has concentrated on the issues of how
to guarantee global serializability and atomicity in an environment where the
sites as well as communication between them are subject to failures [4]. Global
serializability can be achieved by using a distributed version of any protocol
that guarantees serializability, such as two-phase locking or timestamp proto-
cols [4], in combination with one of the replica update-propagation schemes
(read-one, write-all or read any, write all available, etc.). To ensure atomicity
despite failures, the two-phase commit protocol in combination with a replica-
coherency scheme is used. The various published protocols vary in their degree
of central control and the specific techniques used [10, 29, 12, 22]. These ap-
proaches guarantee the ACID (atomicity, consistency, isolation, and durability)
properties of transactions [13]. The problem, however, is that such approaches
are susceptible to deadlocks, transaction aborts, and site blocking. As the num-
ber of sites, data items, and the degree of replication grow, the frequency of
these undesirable effects rises dramatically. We shall not elaborate on these
approaches further and refer the reader to [15]. Rather, we wish to empha-
size that to generate a practical algorithm for updating replicated data, some
compromise is needed to achieve better performance. Either the notion of cor-
rectness must be relaxed or the set of allowed actions by transactions must be
restricted, or both. For example, [23, 24] proposes dropping updates during
periods of high load to increase performance while settling for approximate
correctness. [11] takes specific application features into account to achieve
better performance. [2] propose a notion of data “freshness” to increase per-
formance of transactions that do not require the latest data copy.

Gray et al. [14] proposed a taxonomy of replication management strategies
that is based on who may update what data and how updates are propagated to
other replicas. Their taxonomy is based on the concepts of regulation and it
propagation:
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Regulation: Group permission, in which any site holding a replica may
initiate an update, versus master permission, in which only the primary
site (that is, the site that contains a primary copy of the data item) for the
data item may initiate an update to that data item.

Propagation: Eager propagation by the update transaction itself, versus
lazy propagation by a separate asynchronous transaction.

Agrawal et al. [1] considered a lazy propagation of transactions that guaran-
tees both global serializability and transaction atomicity. They describe two
algorithms for update propagation: pessimistic and optimistic. The former
approach guarantees global serializability, provided that each local DBMS
employs the strict two-phase locking protocol [4]. Transaction atomicity is
achieved by using a standard version of the two-phase commit protocol. The
latter approach, on the other hand, may improve transaction throughput but
may sometimes generate non-serializable executions. The use of the two-phase
commit protocol exposes both approaches to blocking, the probability of which
grows with the number of sites.

Several papers have considered the issues of global serializability and atom-
icity without an atomic commit protocol. For example, [9, 28] propose an
approach that is based on either group or master permission and lazy replica
propagation. Global serializability is achieved by means of a distributed ver-
sion of one of the standard concurrency control protocols, but when a transac-
tion ends at some site, it commits locally and releases its locks without waiting
for commitment at other sites. There are potential data inconsistencies result-
ing from certain replicated data items holding obsolete data. Thus, there must
be a mechanism that ensures replica convergence [14].

In [9] database consistency is guaranteed by ensuring the acyclicity of a
directed graph (which they call the data placement graph). Two sites are con-
nected by an edge if one of the sites contains a primary copy of the data item
and the other site contains a secondary copy of the same data item. If the data
placement graph is acyclic, each local DBMS employs the rigorous two-phase
locking protocol, and propagation messages are sent and received in commit
order, then global serializability is guaranteed. However, the probability that
the data placement graph is acyclic in a realistic application is low, since each
site normally contains a large database and the number of sites is usually much
smaller than the number of data items. In [8] authors proposed two protocols
that impose an order on the replica propagation scheme. Both their protocols
guarantee global serializability.

In [28] another approach to data replication is described that is based on lazy
propagation and master permission. It appears that the system ensures eventual
replica convergence but does not guarantee global serializability.
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In [27], the authors propose a decentralized propagation algorithm that guar-
antees data convergence with a limited number of messages exchanged be-
tween sites. Their approach, however, does not guarantee global serializability.

3. System Model

Our system model is that of [5, 6]. The database consists of data distrib-
uted over k sites. Data may be replicated at any number of sites. For a given
data item a, there is a unique site p(a), called the primary site of a, which
is responsible for the updates of a. The copy of a located at p(a) is called
the primary copy. Every other copy of a is called a secondary copy. Each
local DBMS generates a local serializable schedule of transactions executing
at the local site, and is responsible for managing local deadlocks. The site at
which Ti is submitted is called the origination site of transaction Ti and is de-
noted by o(Ti). Each transaction Ti can read data only at its origination site
o(Ti). A transaction is called local if it runs only at the site where it is sub-
mitted. Otherwise, it is global. A global transaction is represented by several
local subtransactions—one for each site that holds replicas of one or more data
items updated by the transaction. For simplicity of notation, we denote a global
transaction and all its local subtransactions by the same name (e.g., Ti).

A local transaction, Ti, is a partial order, <i, on a set of read and write
operations (denoted by ri and wi, respectively) with either commiti (denoted
by ci) or aborti (denoted by ai) (but not both) as a single maximal element
of <i. A read-only transaction is one that contains no write operations. An
update transaction contains at least one write operation.

A local schedule S over a set of transactions T is a partial order <S of all
operations of all transactions in T such that for any transaction Ti in T , <i is
a subset of <S . If oi <S oj in S, then we say that operation oi is executed
before operation oj in S. Transaction Ti is committed (aborted) in schedule
S if S contains ci (ai) operation. Transaction Ti is active in S if it is neither
committed nor aborted in S. We say that schedule S is serial if for every
two transactions Ti and Tj in S either all operations of Ti appear before any
operation of Tj or vice versa.

A transaction Ti can update data item a only if o(Ti) = p(a). This signifi-
cantly restricts the set of data items that can be updated by a single transaction.
However, this restriction is less serious in practice than it may appear since
any application in which each data item has a specific “owner” adheres to this
restriction. When the primary copy of data item a is updated, the new value of
a must be propagated to all other replicas. This propagation can commence at
any time. However, the new value of a at a’s secondary site can be installed
only after the transaction updating the primary copy of a has committed at site
p(a).
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We note two consequences of our model.

If two transactions Ti and Tj have a write operation on the same data
item a, then o(Ti) = o(Tj). Indeed, if transactions Ti and Tj originate
at different sites sl and sk, then only one of these sites (say sl) is the
primary site for a. Thus, the transaction that originated at sk cannot
update a.

Each read-only transaction is local. An update transaction is local if it
does not update any replicated data item.

If two transactions perform write operations on the same replicated data item a,
then updates at secondary sites can be easily coordinated by using the Thomas
Write Rule [4]. This rule uses data and transaction timestamps to order events
and transaction local commits. Write operations with a timestamp older than
the timestamp of the data item can be ignored. Consequently, any replica-
tion coherency protocol need only consider coordination of read/write and
write/read conflicts. A read/write (write/read) conflict occurs if a transaction
reads (writes) a data item before another transaction writes (reads) it. We re-
fer to read/write and write/read conflicts collectively as r-conflicts. We define
r-conflict equivalent and r-conflict serializable schedules in a manner similar
to the standard definition of conflict equivalent and conflict serializable sched-
ules [4]. Two schedules are r-conflict equivalent if they are defined over the
same set of transactions and have the same set of r-conflicts. A schedule is
r-conflict serializable (or just r-serializable) if it is r-conflict equivalent to a
serial schedule.

Following [7], we say that local schedule S over the set of transactions T
is an sp-schedule if and only if there exists a mapping sp from T to the set of
operations of transactions in T such that both of the following hold:

If Ti is in T , then sp(Ti) is an operation of Ti.

If Ti and Tj is in T , and sp(Ti) occurs before sp(Tj) in S, then there
exists a serial schedule equivalent to S in which Ti precedes Tj .

As shown in [7], not every local schedule is an sp-schedule. If a schedule
is an sp-schedule, then sp(Ti) is called the serialization point operation (sp-
operation) of Ti.

A union of local schedules is called a global schedule. We say a global
schedule is globally serializable if and only if there is a total order of all trans-
actions such that if Ti precedes Tj in the total order, then Ti is serialized before
Tj at all local sites at which these two transactions are executed together.

Each transaction Ti can be in one of the following four global transaction
states at any point in time:

aborted, if Ti has aborted at its origination site o(Ti);
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Figure 12.1. State Transition Diagram

active, if Ti is active at its origination site o(Ti);

committed, if Ti has either committed or executed its sp-operation at its
origination site o(Ti), but is not yet in the completed state;

completed, if at every site at which Ti executes, it has executed its sp-
operation (if the local schedule is a sp-schedule) or has committed (if
the local schedule is not sp-schedule) and is preceded in that site’s local
serialization order only by completed transactions.

Figure 12.1 depicts a state transition diagram for global transaction states.
Local transactions’ states may differ from the global transaction state be-

cause of the delay between the time at which a global transaction state change
occurs and the time remote sites are informed of the transaction. We show here
that our protocol is robust in the face of arbitrary delays in the communication
of global state transitions, though performance may suffer. Henceforth, by
transaction state we mean a global transaction state unless we explicitly state
differently.

Each transaction eventually enters either the committed or aborted state. If
a transaction is in the active or aborted state, then the transaction did not exe-
cute any operations at sites other than its origination site. From the active state,
the transaction may transfer either into the aborted or committed state, or re-
main in the active state. It cannot transfer directly into the completed state.
When the transaction has entered into the aborted state, it remains there. If a
global transaction is in the committed state, then it may have started propaga-
tion of its updates to sites other than its origination site. From the committed
state, the transaction can be transferred only into the completed state.

We assume a local DBMS does not generate sp-schedule unless there is
information to the contrary. To decide whether the transaction has completed,
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we first check whether it has committed at each of its execution sites and then
we check whether at every local site at which the transaction was executing,
it is preceded only by other completed transactions. A transaction that has
committed at each of its sites is not necessarily completed since some of non-
completed transactions may precede the transaction at some of the local sites
at which it was executing. To illustrate, consider the following example.

EXAMPLE 1. Consider a database consisting of two sites s1 and s2. Site s1

contains primary copies of data items a, b, and c. Site s2 contains secondary
copies of b and c. Consider the following three transactions:

T1: r1(b); w1(b)
T2: r2(a), w2(c)
T3: r3(b); r3(c)

Transactions T1 and T2 originate at s1, while T3 originates at s2. Assume that
the global execution is as follows (an operation superscript indicates the site
at which the transaction operation is executed and a subscript indicates the
transaction to which the operation belongs):

r1
1(b), w1

1(a), w1
1(b), c1

1, r2
3(b), w2

1(b), c2
1, r1

2(a), w1
2(c), c1

2,
w2

2(c), c2
2, r2

3(c), c2
3

Then, the following local schedules are generated at each site:

S1: r1(b), w1(a), w1(b), c1, r2(a), w2(c), c2

S2: r3(b), w1(b), c1, w2(c), c2, r3(c), c3

It is simple to see that the above schedule is not globally serializable. T1

precedes T2 at s1, while at s2, T2 precedes T3 which precedes T1. At the
point where T1 has committed everywhere (just after c2

1 in the global execu-
tion order), T3 is still active. By our definition, T1 is not in the completed
state, although it has committed at each site. Furthermore, at the point where
T3 has committed, transaction T1 is still not in the completed state, since it
is preceded by T2 and T3 neither of which has completed. If a global con-
currency control protocol chose no longer to worry whether T1 has completed
after it has committed everywhere, it would not be possible to detect the non-
serializability of the execution. For this reason, our protocol keeps transactions
under consideration until they enter the completed state. We shall see that, un-
der our protocol, once a transaction reaches the completed state, it can no
longer cause non-serializability of the global schedule.

If a transaction has committed at all sites, but has not yet completed it may
eventually complete. For example, suppose that site s1 contains primary copies
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of a and b, while site s2 contains their secondary copies. We assume that
the DBMS at s2 does not guarantee the generation of sp-schedules. Further
suppose that at sites s1 and s2 the following local schedules:

S1: w1(a), c1, r2(a), w2(b), c2

S2: r3(b), w2(b), c2, w1(a), c1, r3(a), c3

When T2 commits at both sites, it is not yet completed, since it is preceded by
an uncompleted transaction T3 at site s2. However, when T3 commits at s2, it
becomes completed and, consequently, T2 becomes completed also. Observe
that T1 is completed as soon as it has committed at s2, since it is not preceded
at either site by any non-completed transaction.

4. Virtual Sites and Replication Graph

In this section, we present the concept of a replication graph from [5], which
we use to coordinate transaction execution. We begin by defining a notion of
a virtual site. Following that, we define a replication graph whose nodes are
virtual sites.

In our discussion, we use the term access of a data item a at site s by trans-
action Ti to mean that Ti has executed a read of a at s or has executed a write
of any replica of a regardless of site.

4.1 Virtual Sites

To guarantee global serializability, global transactions must compete for lo-
cal sites as a resource [9]. Since the number of global transactions is usually
much higher than the number of local sites, contention is high, resulting in a
high probability of waits and deadlocks. For this reason, we divide each physi-
cal site into a set of virtual sites. A set of virtual sites and transactions running
on them must satisfy data model restrictions stated above. To achieve that, we
construct virtual sites dynamically based on the following rules.

Locality rule. All data items site that a transaction Ti has accessed
so far at a given physical site sj belong to the virtual site of Ti at sj .
Transaction Ti executes at exactly one virtual site at each physical site at
which it executes.

Union rule. If two transactions Ti and Tj conflict (directly or indirectly)
on a primary data item or r-conflict (directly or indirectly) on a sec-
ondary data item at physical site sk, then their virtual sites at sk are the
same and include all data accessed up to that point by either Ti or Tj

at sk.
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Split rule. If transaction Ti is in the completed or aborted state, then all
data items accessed only by Ti are removed from the virtual sites where
Ti was active. In addition, if transactions Tm and Tn have a conflicting
operation with Ti at site sl = o(Ti) or a r-conflicting operation with
Ti at site sl �= o(Ti), then the virtual sites of Tn and Tm at site sl are
separated into two sites by having each of these sites contain data items
of Tn and Tm, respectively, subject to the union rule.

If two transactions execute write operations on the same data item at the
same physical site, then their ww conflict can be handled by the Thomas Write
Rule [4] at any site that contains a primary or secondary copy of the data item
(as we shall see in the protocol definitions). If a ww conflict is on the primary
data item, however, it needs to be recorded in the virtual site of the transac-
tion-origination site to guarantee global serializability in the presence of local
transactions that conduct write operation on non-replicated data items. There
is, however, no need to merge virtual sites due to a ww conflict on a secondary
data item, since transactions that have such a conflict have originated at the
same site and the DBMS at that site has already recorded this conflict. This
makes it possible to keep virtual sites smaller and to reduce the amount of
contention during replica propagation.

The locality and union rules are requirements for correctness. The split
rule is aimed at necessary performance improvements that make the protocol
practical. The power of the protocol arises from keeping virtual sites as small
as possible. Thus, when transaction Ti enters the aborted or completed state,
it is desirable to use this information to split, shrink, or eliminate virtual sites.

We always can select a set of virtual sites for a set of given transactions. If
the selected set of virtual sites satisfies the locality, union, and split rules, we
call such a set an acceptable set of virtual sites for a given set of transactions.
For a given set of transactions there is at least one set of acceptable virtual sites.
Specifically, the set of physical sites at which the transactions are executing is
an acceptable set of virtual sites.

4.2 Replication Graph

Let T be a set of transactions, S be a schedule over the set T , and VS be
a set of acceptable virtual sites for T . We define a replication graph RG =
〈V, E〉 as follows [5]. RG is a nondirected bipartite graph whose set of nodes
are virtual sites from VS and transactions from T . Edge 〈vsi, Tj〉 belongs
to E if and only if S contains an operation wj(x) where x is in vsi and x
is a replicated data item. From the replication graph definition it follows that
only global update transactions can be present among transactions nodes of the
graph. A replication graph for a global schedule is not necessarily unique since
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Figure 12.2. Replication Graph for Example 1

for a given set of transactions there may be many acceptable sets of virtual
sites.

A replication graph for the global schedule given in Example 1 is shown
in Fig. 12.2. Each of the virtual sites in the graph shown in Fig. 12.2 is at a
distinct physical site.

In what follows, we characterize the set of replication graphs for globally
serializable schedules. To do so we first define a reduction process for a repli-
cation graph. We then prove that the reduction process applied to a replication
graph results in an empty graph if and only if the global schedule is serializ-
able.

Let S be a global schedule and let RG be a replication graph for S. We
define our reduction procedure for RG as follows. We remove from the graph
all completed transactions along with all edges incident on it and apply the
split rule. If a virtual site node does not have any edges incident on it, we
remove that node as well. The graph G′ obtained from RG using this reduction
procedure, is called the reduced graph of schedule S.

For the rest of this section, we consider replication graphs for global sched-
ules in which all transaction are either committed or aborted at all sites. We call
such schedules complete. Given a schedule S, we construct a reduced replica-
tion graph for S by starting with the first operation of S and for each operation
we apply the locality, union, and split rules whenever they are applicable. The
replication graph RG resulting from this procedure is a reduced one. This fol-
lows from the fact that the set of completed transactions is determined uniquely
by a given schedule. As a result of the procedure defined above, we remove
from the graph all completed transactions. Thus, in the remaining graph no
transaction can be removed and the graph is reduced. We denote the reduced
graph obtained for S using the above procedure as G(S). The importance of
the reduced replication graph stems from the following theorem which was
first proven in [6]:
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THEOREM 4.1. Let S be a complete global schedule over the set of transac-
tions T . S is globally serializable if and only if its reduced replication graph
is empty.

The if part of the proof of the theorem is based on two lemmas. The first
lemma establishes that if two global schedules S and S′ are conflict equivalent
then their reduced replication graphs G(S) and G(S′) are identical. The sec-
ond lemma states that the reduced replication graph of any serial schedule is
empty.

LEMMA 4.2. Let S and S′ be two conflict equivalent global schedules over
the set of transactions T . Then their reduced replication graphs G(S) and
G(S′) are identical.

The proof of this lemma [6] creates a parallel between the proof that S and
S′ are conflict equivalent and a proof that G(S) and G(S′) are identical. The
standard approach to proving conflict equivalence [25] exchanges the order of
consecutive steps provided they belong to distinct transactions and do not con-
flict. For each such exchange, [6] shows that the reduced replication graph
is unchanged. First consider a pair of read steps. Then the operations either
change an existing virtual site or lead to a virtual site merge regardless of the
order of operations. Thus, in either case the same replication graph results.
Next consider the case where one of the operations is a write. Then the two
steps must reference different data items or there would be a conflict prohibit-
ing the exchange. Therefore, once again, the order of these operations does not
affect the replication graph obtained after applying both of these operations.

LEMMA 4.3. The reduced replication graph for a complete, global serial
schedule is empty.

The proof of this lemma [6] is straightforward. Because the schedule is ser-
ial, only one transaction is active at any time. When that one active transaction
commits or executes its sp-operation everywhere, it is in the completed state
and can be removed from the graph.

Next we consider the only if part of the theorem and its proof [6]. If the
global serialization graph has a cycle, then none of the global transactions in
that cycle could have completed. To see this, note that if, without loss of
generality, we consider only those global transactions in the cycle that executed
on at least two sites. Each such transaction Ti must write a replicated data item
causing it to create a node Ti and edges 〈vsi

i, Ti〉 and 〈vsi+1
i , Ti〉 (if it does not

already exist) in the replication graph. No such Ti can complete. To see this,
let Ti be the first global transaction in the cycle to attempt to complete. Then at
some local site, it would still be preceded by an uncompleted transaction from
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the serialization cycle. Therefore Ti could commit but could not complete
and its edges cannot be removed. As a result, the replication graph must be
nonempty.

5. Commit-Oriented Protocol (COP)

In this section, we discuss an optimistic, deadlock-free protocol that requires
only two messages per transaction and guarantees global serializability. This
is an improvement by a factor of r over the communication overhead required
by the protocol in [14]. This protocol, the commit-ordered protocol, COP dif-
fers from the protocol in [5, 6] in when the replication graph gets updated.
Under COP, the replication graph is updated at a committed state. We begin
by defining a test, CRGTest, that is applied by COP when a transaction sub-
mits a commit operation at its origination site. The test consists of tentatively
applying the locality and union rules to virtual sites in the replication graph
and tentatively adding any edges that would be mandated by the definition of
the replication graph. If no cycle results, then the test succeeds and tentative
changes to the graph are applied. The protocol rules are as follows.

Protocol COP

1. If Ti submits a read or write operation at its origination site o(Ti), the
operation is sent for execution. If the executed operation was wi(a),
where a is a replicated data item, assign a timestamp to Ti, if it was not
yet assigned. In processing operations, maintain access data set for Ti at
each site.

2. If Ti submits a write operation at site sr �= o(Ti), check the transaction
timestamp. If it is less than the timestamp of the last write operation on
the data item, do not perform the write, else send the operation to the
local DBMS for execution.

3. If Ti is in the active state and submits a commit operation, perform
CRGTest. If the test succeeds, perform commit. Otherwise, abort Ti.

4. If Ti is in the committed state and submits a commit operation, proceed
with the execution. If this results in Ti entering the completed state,
remove it from the replication graph and apply the split rule.

5. If Ti submits the abort operation at its origination site, proceed with the
execution. Apply split rule.

COP allows each transaction to proceed at its origination site independently
of other transactions that are executing at other sites. The only coordination
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required is when the transaction submits the commit operation at its origination
site. The correctness of protocol COP follows from the following theorem:

THEOREM 5.1. Protocol COP guarantees global serializability.

Proof. We prove first that if there is a loop in the global serialization graph
of global schedule S, then any replication graph of schedule S also contains a
loop. Following that, we observe that protocol COP does not allow loops in the
replication graph. Consequently, the assumption that the protocol generates a
globally nonserializable schedule would lead to a contradiction. First we prove
three lemmas.

LEMMA 5.2. Let P = T1, T2, . . . , Tk be a path in the global serialization
graph for global schedule S contributed by the local schedule at physical site
s1, where T1 and Tk are global transactions and T2, . . . , Tk−1 are local trans-
actions and k > 2 (that is, Tk is the first global transaction after T1 in P ).
Then there is a path from T1 to Tk in any replication graph for S that includes
at least virtual site vs1

1, provided that the split rule was not applied.

Proof. Let P = T1, T2, . . . , Tk be a path in the global serialization graph for
global schedule S contributed by the local schedule at physical site s1. Every
two adjacent transactions in P have a pair of conflicting operations. Suppose
that all conflicting pairs are of the ww type. In such a case, T2 has a write/write
conflict with T1 which is global. Consequently, T2 must be also global since
it writes to a global data item. That is, k ≤ 2 which contradicts the lemma
assumption.

Consequently, suppose that T1 and T2 are in a r-conflict. By the union and
locality rule, vs1

1 = vs1
2. Since all T3, . . . , Tk−1 are local, they originate at

s1. The conflict between Tk−1 and Tk cannot be of the ww type (otherwise
Tk−1 would have to be global too). Consequently, by the union and locality
rules, we obtain that vs1

k−1 = vs1
k. Thus, vs1

1 = vs1
2 = · · · = vs1

k−1 = vs1
k.

Consequently, the following path satisfies the lemma assertion: T1, vs1
1, Tk. �

LEMMA 5.3. Let P = T1, T2, . . . , Tk be a path in the global serialization
graph for global schedule S contributed by the local schedule at physical site
s1, where T1, T2, . . . , Tk are global transactions and each pair of adjacent
transactions has a ww conflict on non primary data item. Then, there is a path
between vs1

1 and vs1
k that includes transactions T1 and Tk, provided that the

split rule was not applied.

Proof. Since T1, T2, . . . , Tk are global transactions with every two adjacent
transactions in a ww conflict on a secondary data item, by These transactions
must therefore have originated at a single physical site st and share there the
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same virtual site vst
1. Thus the following path satisfies the lemma assertion:

vs1
1, T1, vs1, Tk, vs1

k. �

LEMMA 5.4. Let P = T1, T2, . . . , Tk be a path in the global serialization
graph of global schedule S contributed by the local schedule at physical site
s1, where T1 and Tk are global transactions. Furthermore, let there be at least
one pair of adjacent transactions in P that conflict on a primary data item.
Then, any replication graph for S contains a path between T1 and Tk that
includes virtual site vs1

1, provided that the split rule was not applied.

Proof. Consider path P . Without loss of generality, we assume that P is built
from triples TR = (P1P2P3) of segments: segment P1 of global transactions
followed by segment P2 of local transactions, which, in turn, is followed by
segment P3 of global transactions. The segment of local transactions in the
triple may be empty. Two adjacent triples TR1 = (P1P2P3) followed by
TR2 = (Q1Q2Q3) satisfy the following condition: P3 = Q1.

Consider the case that P contains a single triple. If the segment of local
transactions in the triple is empty, P consists of only global transactions, and
there is at least one conflict on a primary data item. T1, T2, . . . , Tk have origi-
nated at the same site s1 and share the same virtual site there. Thus, the lemma
assertion holds.

Suppose now that the segment of local transactions in the triple is not empty.
Then, the assertion follows from Lemma 5.3 as follows.

Let P = T1, T2, . . . , Ti, Ti+1, . . . , Tj , Tj+1, . . . , Tk, where T1, T2, . . . , Ti

is a segment of global transactions, Ti+1, . . . , Tj is a segment of local trans-
actions and Tj+1, . . . , Tk is a segment of global transactions. By Lemma 5.3,
transactions T1, T2, . . . , Ti have originated at the same virtual site vs1 at their
common origination site. By Lemma 5.2, there is a path in the replication
graph from Ti to Tj+1 and by Lemma 5.3, there is a path from Tj+1 to Tk.

Using induction on the number of triples (and consequently, the number
of segments of local transactions in P ) we obtain the lemma assertion. The
Lemma is proven. �

We proceed now with the proof of theorem. Assume to the contrary that the
global schedule generated by protocol COP is not globally serializable. Then
there is no total order on a set of transactions in the global schedule and the
union of local serialization graphs contains a loop shown below.

T1, Ti1, . . . , Tiq, T2

T2, Tj1, . . . , Tjp, T3
...
Tk, Tr1, . . . , Trl, T1
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By Lemma 5.4, either there is a loop in the replication graph, or all global
transactions have originated at the same virtual site. In the latter case, the
loop shown above could not have occurred since we use the Thomas Write
Rule to coordinate execution of ww conflicts. Consider now the former case,
where there is a loop in the replication graph. Observe that no transaction
from T1, . . . , Tk has completed. Thus, none of these transactions could have
been removed from the graph as a result of the split rule. Consequently, there
is at least one of the transactions whose commit operation creates a loop in
the replication graph. It contradicts to the protocol rule that does not allow
to proceed commit if a loop occurs in the replication graph. The theorem is
proven. �

In protocol COP, none of the transactions is allowed to wait. Consequently,
no distributed deadlocks can occur during the transaction processing. Trans-
actions aborts, on the other hand, could occur. The frequency of transaction
aborts is determined by the probability of a transaction generating a cycle in
the replication graph.

Let T1, . . . , Tt be transactions executed so far by protocol COP such that
any adjacent pair of transactions is conflicting. Suppose that an attempt to
commit additional transaction Tt+1 at its origination site creates a loop in the
replication graph. This means that the following two conditions hold:

Tt+1 has at least two virtual sites in common with transactions
T1, . . . , Tt.

T1, . . . , Tt is a path in the replication graph

To obtain an upper bound on probability of a transaction to be aborted, we
assume that if a transaction has at least one data item in common with another
transaction, then one of the transactions should be aborted.

Let m be a number of distinct data items at each local site. Without loss of
generality we assume that each data item is replicated. Let n be a number of
global transactions and let r be a number of different operations in each global
transaction. Let T1, T2, . . . , Tt be an arbitrary set of t global transactions do
not have any data items in common. There are

t−1∏
i=0

(
m− ir

r

)

ways to select t transactions that do not have any data items in common. Let
Tt+1 be a transaction that has at least one data item in common with at least
one of the transactions from T1, . . . , Tt. There are ( (t−1)r

1
) ( m−tr

r−1 ) ways to
select a transaction Tt+1. Thus, the probability that among t + 1 transactions
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there is at least one transaction that has at least one data item in common with
at least one different transaction is:

( n
t )(

(t−1)r
1

)
∏t−1

i=0(
m−ir

r
)( m−tr

r−1 )

( m
r )t+1

Thus, the probability that in a set of two or more transactions at least one is
aborted by protocol COP is:

n∑
t=2

(
n
t

)
(t− 1)r2((m− r)!)t+1

(m− (t + 1)r + 1)!(m!)t

We assume that nr � m. Under this assumption, it is easy to see that
the first element of the sum is the largest. Thus, the expression above can be
approximated as (cn2r2)/m, which is an upper bound on a probability of a
transaction among given set of n transaction to be aborted by protocol COP.

6. Implementation Issues

In this section, we discuss how our protocol may be implemented so as to
minimize communication overhead and tolerate failures.

6.1 Message Overhead

The physical propagation of update values to secondary sites can begin as
soon as the write operation has been executed at the primary site. Our protocol
restricts only the time at which the updates may be applied to secondary copies.
This allows increased parallelism in update propagation at the cost of some
useless work if a global transaction aborts. In such cases, the messages per-
taining to the aborted transaction are purged from the secondary sites’ queues.
No updates can have been actually applied at these sites as the transaction had
not committed at its origination site.

Aside from update propagation, the maintenance of the replication graph
represents the main source of message overhead. To compute the message
costs of our protocol, we distinguish between long messages that contain graph
data and short messages that contain only an acknowledgment, notification of
commit or abort, and the like. We ignore transfer of the data itself (update
propagation) since that cost applies equally to all protocols.

Our protocol requires graph maintenance only twice per transaction: (1) at
the time a transaction attempts to commit at its origination site, and (2) after
it completes or aborts. Commits by a transaction at a secondary site must
be communicated (once no active transaction precedes it) so that it can be
determined when a transaction enters the committed state.

To provide an approximate cost estimate for our protocol we make some
simplifying uniformity assumptions. Let the system contain n sites, each of
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which processes t global transactions per second. Assume each transaction
updates replicated data at m of the n sites. Let the length (in bytes) of long and
short messages be L and l, respectively.

We consider first a central-scheduler scheme, followed by a distributed
scheme.

Our protocol requires 1 long message per transaction from its origination
site to the scheduler. The scheduler responds with a short message containing
permission to proceed or denial thereof. Whenever a transaction commits at a
secondary site, that site must inform the scheduler via a short message. Since a
transaction cannot commit at a secondary site before it commits at the origina-
tion site, we need not include a short message from the origination site to the
scheduler. Thus, there are m− 1 commit messages. Therefore, we have a total
of 1 long and m short messages per transaction, and nt transactions submitted
every second somewhere in the system. The communication overhead of our
protocol is therefore nt · (L + ml) = ntL + mntl bytes per second.

If we assume L = 5 KB and l = 1 KB (a packet), and assume 10 sites
running 100 transactions per second, each of which updates data on 5 sites, the
overhead is 10 MB/sec. Such techniques as grouping several short messages
into one can alleviate the overhead by a significant constant factor.

Comparing our protocol to that of [14], which relies on global locking,
we find a significant reduction in message overhead. That protocol requires
mnrT l bytes per second, where r is the number of data items accessed per
transaction, and T is the total number of transactions, including local transac-
tions (thus T > t, and most likely by a substantial amount). Thus, we achieve
lower overhead by more than a factor of r.

Although this level of overhead may be acceptable, as the desired through-
put rate and database size grow, the overhead becomes quite significant. In
particular, if the degree to which data is replicated grows linearly in the num-
ber of sites then our overhead grows quadratically—a situation that is not ac-
ceptable! This blowup in communication cost is inherent in replication [14].
Consider the communication overhead of propagating the updates themselves.
If u denotes the number of bytes updates by a transaction, then the update
propagation overhead is mntu, which grows at the same alarming rate as our
communication overhead.

We now consider a scheme for distributed replication graph maintenance.
In order to synchronize graph updates, each transaction that is ready to commit
is assigned a global timestamp, which is broadcast to all sites. This timestamp
specifies the order in which transactions enter the committed state and allows
all sites to agree as to the next transaction to attempt to commit. When a
transaction attempts to commit, it tests locally for a cycle in the replication
graph and then broadcasts its timestamp along with the decision (commit or
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abort). If the decision is to commit, the changes to the replication graph are
included in the decision message.

This scheme depends critically on the availability of a cheap broadcast
mechanism as in a local-area network. Under that assumption, there are two
broadcasts per transaction, each of which is a long message. The communi-
cation overhead for this is 2ntl. Without broadcast, updates are passed from
site to site, with each site incorporating its own changes into the message. In
either case, we incur the overhead of sending short messages regarding the
completion of transactions at secondary sites.

6.2 Failures and Recovery

In this section, we consider several possible failure modes: data item failure,
site failure, and disconnection of a mobile host. Network partitions (other
than mobile host disconnection) are not covered as such failures are difficult to
handle under our protocol. We also exclude malicious failures in which sites
provide incorrect information.

6.2.1 Data Item Failure. A data-item failure means that a data item
is not available for access. If it is the primary copy of the data item that is
not available, then any global transactions that have read but not updated the
data item before it failed are either aborted or made to wait until the data item
becomes operational. Observe that either of these approaches will work, since
the other copies of the data item can only be read, and the local DBMS may
thus choose either course of action. If the update has already occurred, there
is no impediment to the global transaction eventually completing. In any case,
recovery from failed data items does not require any additional recovery pro-
cedures at the global level.

An alternative approach to primary data item failure is to select a new pri-
mary data item among available secondary copies. This is usually done via
delegation. That is, each local site has a ordered list of primary copies sites for
each data item. These lists are static and thus easily applied at each site when
a failure is detected. When the original primary copy is recovered, a message
is broadcast to each site and only after each site responds to the message, the
original primary copy regains its status by revoking primary copy authority
from the backup primary copy. Such an approach guarantees robustness of our
protocol in the face of primary copy data item failures.

If a secondary data item copy has failed, then any transactions that origi-
nated at the site where the failure occurred and need to access the data item are
aborted. Observe that such an abort could not cause a violation of global serial-
izability. If a transaction that is trying to access a failed data item is global, then
it did not distribute its updates yet and consequently, its abort cannot cause any
aborts elsewhere in the system. If a transaction that is trying to access a failed
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data item is local, then its abort also cannot cause global serializability viola-
tions. Consider now the case when a transaction that needs to access a failed
secondary copy did not originate at the site of failure. In such a case, an abort
of the replica-propagation subtransaction would not create nonserializability,
since the transaction would still be present in the replication graph. After the
failed data item becomes available, the aborted subtransaction is restarted.

6.2.2 Site Failure. If the central-scheduler approach is chosen, the
scheduler must be mirrored at another site to ensure fault tolerance. To avoid
doubling the communication overhead, the scheduler and its backup should be
tightly coupled.

Our protocol is immune to site failures other than failure of the central
scheduler. Indeed, if a site fails, then all active transactions at the site failed
as well, and thus, these transactions are removed from the replication graph.
The only transactions at the failed site that remain in the replication graph
are those that have committed but cannot yet be removed from the replica-
tion graph. None of these transaction can cause any changes in the replication
graph, since any operations that they submit cannot lead to additional edges
in the replication graph. Site failure may result in some transactions that have
completed their operations at their origination site remaining in the replication
graph, pending update of secondary copies at the failed site. The latter may
lead to a replication graph that contains transactions waiting for a failed site to
be restored; and consequently, it may cause blocking.

We propose a simple solution to resolve these delays. If a transaction has
committed at all but a failed site and if it can be removed from the replication
graph disregarding the failed site, then we remove the transaction from the
replication graph. After the failed site recovers, the replicas are updated in
the same serialization order as they would have been if the site had not failed.
This is done before the site is re-opened for operations as a part of the recovery
procedure.

6.2.3 Disconnection of a Mobile Host. Disconnection of a single site,
as in the case of a mobile computer disconnecting from the network, is the
only kind of network partition that our protocol can tolerate easily. If a discon-
nected site does not contain a primary copy for any data item, then only read
transactions can originate at the disconnected site. Since the site is discon-
nected, none of its data item can be updated. Thus, each read transaction will
read a consistent-though-possibly-not-recent copy of the secondary copy. To
ensure data availability, the latest committed version of the secondary copies
of the data should be copied from the primary sites prior to disconnection.
A timestamping scheme can avoid unnecessary copying of data.
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Suppose now that the disconnected site does contain some primary copies
of data items. Such a case could be treated by transactions originating at other
sites similarly to primary data item failure. At the disconnected site, we al-
low transactions to proceed based on the latest copy of the replication graph
available to the site. However, none of the transactions originating at the dis-
connected site is allowed to commit until the mobile host reconnects. After the
connection is restored, the replication graph of the disconnected site is merged
with the current replication graph. If no cycles arise, each of the transactions
from the disconnected site is committed. Otherwise, transactions that intro-
duce a cycle in the replication graph are aborted and the formerly disconnected
site is notified.

7. Conclusions

We have provided an exact characterization of global serializability in the
presence of replicated data, using our definitions of virtual site and replication
graph. We use this as the basis for our protocol for ensuring global serializ-
ability. Our protocol is an optimistic in that it defers testing of the replication
graph until a transaction is ready to commit. This achieves a reduction in com-
munication overhead by a factor of r as compared with earlier protocols that
guarantee global serializability.

In addition to addressing issues of correctness, we considered message over-
head and fault tolerance. Replication presents serious performance challenges
if the degree of replication grows as the number of sites grows. The lower
overhead and higher concurrency of our protocols as compared with prior work
allows broader application of replication. However, achieving full scalability
of replication as the degree of replication grows, while guaranteeing global
serializability remains an open problem.
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SNAPSHOT ISOLATION: WHY DO SOME
PEOPLE CALL IT SERIALIZABLE?
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Abstract SNAPSHOT isolation provides a protocol for dealing with concurrent transac-
tions in transaction processing applications. Because applications using SNAP-
SHOT isolation can have very high throughput, many applications are designed
using this protocol.

However, SNAPSHOT isolation can produce non-serializable and incorrect
schedules. One interesting question is: why are there not more complaints from
users that they are getting incorrect results when they use SNAPSHOT isolation?

The most likely answer to that question is that application designers use some
design pattern that produces correct schedules at SNAPSHOT isolation. The
designers are not necessarily selecting a design pattern because it will guarantee
correctness at SNAPSHOT isolation. They are just using design patterns that
seem natural to them, and those patterns happen to produce correct executions
at SNAPSHOT isolation.

This paper reviews some previous work on sufficient conditions for correct-
ness at SNAPSHOT isolation and then presents an example of a design pattern
that is guaranteed to produce correct schedules at SNAPSHOT isolation.

Keywords: database, transaction, SNAPSHOT isolation, infrastructure/state design pattern

1. Introduction

SNAPSHOT isolation provides a protocol for dealing with the concurrent
execution of transactions in transaction processing applications. Because ap-
plications using SNAPSHOT isolation can have very high throughput, many
applications are designed using this protocol. In fact, many of the transac-
S.S. Ravi, S.K. Shukla (eds.), Fundamental Problems in Computing,
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tion processing systems we use every day and on which our lives and fortunes
depend use SNAPSHOT isolation.

And yet SNAPSHOT isolation does not always produce correct schedules.
Many examples can be given of transactions executing at SNAPSHOT isola-
tion that provide incorrect schedules, which result in databases that contain
incorrect information.

One intriguing example is provided by Oracle, the largest database com-
pany in the world. When an application designer includes a statement in his
Oracle SQL program specifying that the application is to be executed at the
SERIALIZABLE isolation level, which would guarantee correctness, the Ora-
cle database system does not in fact execute at the SERIALIZABLE isolation
level, but instead executes at the SNAPSHOT isolation level, which does not
guarantee correctness.

So why are there not a large number of users of such systems (for example
Oracle customers) complaining that their applications are not executing cor-
rectly, causing their databases to contain incorrect information?

That is the question we address in this chapter. First we review the defini-
tions of correctness and define SNAPSHOT isolation.

2. Correctness of Transaction Processing Systems

In the applications we are considering, a database is a collection of data
that models some aspects of the state of an enterprise. For example, a bank
might maintain a database to model the state of the accounts of its customers.
The bank’s database is correct if it correctly models the state of its customer’s
accounts.

One aspect of correctness is that the database must satisfy certain integrity
constraints. In the bank example, the database might contain a record for each
customer containing the balance of that customer’s account, and in addition it
might contain a record containing the total balance of the accounts of all of
its customers. One integrity constraint might be that the total balance must be
the sum of the individual balances. If a database satisfies all of its integrity
constraints, we say that it is consistent.

When an event occurs in the real world that changes the state of the enter-
prise, a program called a transaction is run to update the database to reflect the
change in the state. For example, when a customer of the bank makes a de-
posit to his account, a transaction is run to update the balance of that customers
account and the total balance in the bank.

We say that an update transaction is correct if, when it is run all by itself
starting with a database that is consistent and that correctly models the current
state of the enterprise, when the transaction completes, the database is consis-
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tent and the database has been updated to correctly reflect the new state of the
enterprise.

If a sequence of correct transactions is run serially (each one starting after
the previous one has completed), the final database is correct (and consistent).
We say that the transactions are isolated.

However, serial execution is too slow and does not provide sufficient
throughput. Many modern transaction processing systems must execute thou-
sands of transactions per second. To provide this level of throughput, transac-
tion processing systems execute transactions concurrently. Many transactions
are executing at the same time, and their database access and update operations
are interleaved. A particular concern is how to maintain correctness for such
concurrent executions.

One sufficient condition for correctness is that the execution be serializable.
The concurrent execution of a set of transactions is said to be serializable if it
has the same effect as if the transactions had executed serially in some order.
Each transaction sees the same snapshot of the database it would have seen in
the serial order, and the final database is the same as it would have been in the
serial order.

Please note that we have defined “serializable” with all lower case letters.
Later we will define “SERIALIZABLE” with all upper case letters, which has a
related but different definition. Note also that serializable is a sufficient but not
necessary condition for correctness. Later we show a non-serializable schedule
that is correct.

3. Concurrency Controls, Two-Phase Locking, and
Isolation Levels

Most database and transaction processing systems contain concurrency
controls that can produce concurrent schedules that are serializable. Most
such controls are based on locking. Before a transaction can access a database
item, it must request an appropriate lock from the concurrency control.

A locking protocol is said to be two-phase if each transaction obtains all the
locks it will ever request before giving up any of its locks (it goes through a
locking phase and an unlocking phase). Many systems require that the locking
protocol be strict two-phase, where all locks are held until the transaction
completes.

When a transaction successfully completes, we say that it commits. When
a transaction does not successfully complete, we say that it aborts and any
changes it has made to the database are rolled back (undone).

Two-phase locking protocols produce schedules that are serializable. In
other words, two-phase locking is a sufficient condition to produce serializ-
able and hence correct schedules.
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3.1 Isolation Levels

For many applications, two-phase locking does not provide sufficient
throughput. So designers frequently specify that transactions be executed at
lower isolation levels that do not guarantee serializability and do not guaran-
tee correctness.

The SQL standard defines four isolation levels: SERIALIZABLE,
REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.
All of these isolation levels, except SERIALIZABLE, allow non-serializable
and incorrect schedules.

Most database systems allow the programmer to specify the isolation level
at which the transactions will execute. Thus a programmer might include in
the transaction program the statement

SET TRANSACTION LEVEL SERIALIZABLE

if he wants the transaction to execute at the SERIALIZABLE isolation level.
We do not go into detail as to the definitions of these isolation levels. The

definitions given in the SQL standard specify each level by the types of con-
current behavior it allows and does not allow. However, when these isolation
levels are implemented within a concurrency control, each isolation level usu-
ally implies a different locking protocol. More specifically the implementa-
tion of each isolation level specifies the conditions under which certain locks
need not be obtained or can be released earlier than would be allowed by two-
phase locking. Fewer locks and early release of locks allows more transaction
throughput, but can lead to non-serializable and incorrect schedules.

Thus, the difference between the definitions of “SERIALIZABLE” and “se-
rializable” is that SERIALIZABLE is a locking (or other) protocol that always
leads to schedules that are serializable and hence correct. However, some ap-
plications executing at isolation levels lower than SERIALIZABLE can also
lead to schedules that are serializable and hence correct. (In addition as we
have said, some applications that have non-serializable schedules can be cor-
rect.)

4. SNAPSHOT Isolation

SNAPSHOT isolation is an isolation level that was introduced in Beren-
son, et al. [1] and has been implemented in the Oracle database management
system.1 In fact, Oracle’s implementation of “SET TRANSACTION LEVEL
SERIALIZABLE” is SNAPSHOT isolation [5]. Thus when the transaction de-
signer specifies that he wants the transaction to execute at the SERIALIZABLE

1 SNAPSHOT isolation has also been implemented in other systems, for example Microsoft’s SQL Server
2005.
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isolation level, the execution does not in fact execute at the SERIALIZABLE
isolation level, but executes at the SNAPSHOT isolation level instead.

SNAPSHOT isolation is attractive because it allows increased concurrency
and hence increased throughput. However, as has been pointed out by many
authors, starting with Berenson, et al. [1], and as we show below, SNAPSHOT
isolation can allow non-serializable and incorrect schedules.

The question then arises: since many programmers of Oracle systems in-
clude in their programs the statement “SET TRANSACTION LEVEL SERI-
ALIZABLE” and then expect their transactions to execute serializably, why
are there not a large number of dissatisfied Oracle users complaining that their
applications are not executing correctly? It seems logical to conclude that a
great many real-life transaction applications execute correctly at SNAPSHOT
isolation. We return to this discussion later after we define SNAPSHOT isola-
tion.2

DEFINITION 4.1. SNAPSHOT Isolation
A schedule produced under SNAPSHOT isolation has the following properties:

All read operations of each transaction are satisfied using the (commit-
ted) snapshot of the database that was current when the transaction made
its first read request.

If two transactions that commit are concurrent (their executions overlap
in time), then the set of data items written by one transaction is disjoint
from the set of data items written by the other transaction. This is called
the disjoint-write property. If two concurrent transactions attempt to
write the same data item, one of them must be aborted.

Different implementations of SNAPSHOT isolation implement these proper-
ties in different ways. We do not discuss these implementations, but we note
that in all of these implementations

Read operations in one transaction do not wait for write operations in
another transaction and

Write operations in one transaction do not wait for read operations in
another transaction,

as would occur in a two-phase locking protocol. Thus transaction processing
systems that execute at SNAPSHOT isolation can have a higher throughput and
execute many more transactions per second than if they had used two-phase
locking.

2 This definition is slightly different from, but equivalent to, the one in [1].
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Ta : r(x) r(y) w(x) c
Tb : r(x) r(y) w(y) c

(a)

T1 : r(x) w(x) c
T2 : r(x) r(y) w(y) c
T3 : r(x) r(y) w(z) c

(b)

Figure 13.1. Two schedules that are non-serializable and can be produced at SNAPSHOT
isolation

4.1 Non-Serializable Execution at SNAPSHOT Isolation

Figure 13.1 shows two examples of non-serializable schedules that can be
produced at SNAPSHOT isolation. The schedule in Fig. 13.1(a) exhibits the
write skew anomaly [1], in which two concurrent transactions read the same set
of data items from the same snapshot of the database and each updates some
disjoint subset of those items. The schedule in Fig. 13.1(b) does not exhibit any
named anomaly. We discuss these schedules again in Sect. 5, where we show
that they satisfy a particular property that leads to non-serializable schedules
at SNAPSHOT isolation.

Consider the following banking application that might lead to the schedule
shown in Fig. 13.1(a). The bank has the requirement that, when a customer has
two accounts, the balance in either account can be negative, but the sum of the
balances in the two accounts must be positive. Suppose a customer has $100
each in accounts x and y. Ta then reads the balance in each of the accounts,
checks that withdrawing $150 from account x would not violate the bank’s
rule (integrity constraint), and then withdraws $150 from account x, writing
−$50 in x. Tb reads the same snapshot of the database, uses exactly the same
reasoning, and withdraws $150 from account b, writing −$50 in y.

Each transaction, if run serially (or serializably), would have maintained
the integrity constraint, but the concurrent execution of the two transactions
causes the integrity constraint to be violated and thus is incorrect. Hence for
this application, SNAPSHOT isolation can lead to incorrect execution.

4.2 Non-Serializable but Correct Execution

Sometimes non-serializable schedules can be correct. Consider a different
application that might also lead to the schedule shown in Fig. 13.1(a): a system
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that reserves seats for a concert. Assume that the integrity constraint is that the
same seat cannot be reserved by more than one person. Suppose there are
only two available (not yet reserved) seats, whose availability is stored in the
database items x and y. Suppose transaction Ta reads the values of x and y,
finds them both available, and reserves x. Concurrently another transaction, Tb,
reads the same values of x and y, also finds them both available, and reserves y.

That is a perfectly correct execution. The schedule of those two transactions
is identical to the schedule in Fig. 13.1(a) that can be produced at SNAPSHOT
isolation. That schedule leads to a correct execution in the seat-reservation
application, but led to an incorrect execution in the banking application.

Note that if both reservation transactions had attempted to reserve the same
seat, one of them would have been aborted because of the disjoint-write prop-
erty. A more general formulation of this seat reservation application with more
available seats for the concert would also execute correctly at SNAPSHOT iso-
lation.

The reason this particular application works correctly even though its sched-
ules might not be serializable has to do with the semantics of the application.
A sufficient condition for the semantic correctness of transactions executing
under SNAPSHOT isolation is discussed in Bernstein, et al. [2], and we do not
discuss it further here.

4.3 Phantoms at SNAPSHOT Isolation

When a transaction, T1, performs a predicate read,3 and a concurrent trans-
action, T2, inserts a new tuple (row in a database table) that satisfies the pred-
icate (or changes the value of an existing tuple not initially in the predicate so
that it satisfies the predicate), the new tuple is called a phantom. At all of the
SQL isolation levels, except for SERIALIZABLE, if T2 commits while T1 is
still executing and T1 were to repeat the same read operation, it would see the
new tuple, which can lead to non-serializable and incorrect schedules.

At SNAPSHOT isolation, if T1 were to repeat the same read operation, it
would not see the new tuple, because all reads are satisfied with the snapshot
of the database that existed when T1 made its first read. Because T1’s second
read does not see the new tuple, some people would say that the new tuple is
not a phantom and that there are no phantoms possible at SNAPSHOT isola-
tion. But as can be seen in the example in the next paragraph, such an inserted
tuple can lead to non-serializable and incorrect schedules at SNAPSHOT iso-
lation. And, in fact, if the schedule discussed in the example, had occurred at
any of the SQL isolation levels (except SERIALIZABLE), for example, RE-

3 An example of a predicate read that might appear in a banking transaction is “all accounts for which the
balance is less then 1000.”
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PEATABLE READ, everyone would agree that the schedule was an example
of a phantom. In the reminder of this paper, we will consider such schedules
to contain phantoms.

Consider a task assignment application that assigns tasks to the workers in
some enterprise. Suppose the tasks that are assigned to particular workers are
stored in a database table with each task stored as a separate tuple. Suppose
there is an integrity constraint that a worker can be assigned no more than 10
tasks. Suppose a task assignment transaction reads the predicate corresponding
to a particular worker’s assignments, counts the number of tuples and finds
that he has been assigned 9 tasks, assigns that worker a new task, inserts a
new tuple into the table corresponding to that new task, and then commits.
A concurrent task assignment transaction assigning tasks to the same worker
reads the original value of the predicate, also finds that the worker has been
assigned 9 tasks, assigns him a new task, and inserts a new tuple into the table
corresponding to that task. The worker has now been assigned 11 tasks, thus
violating the integrity constraint.4 We return to this example in Sect. 7.

4.4 The Read-Only Anomaly

Fekete, et al. [3] points out that even when the transactions that update
the database execute serializably at SNAPSHOT isolation, a read-only trans-
action might see a (consistent) database state that corresponds to a serial order
different than the order in which the updating transactions were serialized. Fig-
ure 13.2 is an example. T3 sees the database as if the equivalent serial order
were T1 T3 T2, whereas the real equivalent serial order between T1 and T2 is
T2 T1.

We view this anomaly as not too serious because the final database is con-
sistent and correct and the read only transaction sees a consistent view of the
database (although perhaps one that never appeared in the serialization of the
updating transactions).

5. A Sufficient Condition for Serializable Execution at
SNAPSHOT Isolation

Fekete, et al. [4] addresses a problem similar to that discussed in this pa-
per. They prove a theorem that gives a sufficient condition on the schedules of
an application that guarantees that all executions of that application at SNAP-
SHOT isolation will be serializable.

4 Note that the same phantom situation would result if there were initially a tuple for all possible tasks,
with a field for the Id of the worker assigned to that task. Initially that field is blank so the tuple would not
be returned in the read predicate corresponding to any worker’s assignment. If a worker is assigned a task,
his Id would be put in the appropriate field, and thereafter that tuple would be returned in the read predicate
corresponding to that worker’s assignment. The exact same phantom situation could then result.
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T1 : r(y) w(y) c
T2 : r(x) r(y) w(x) c
T3 : r(x) r(y) c

Figure 13.2. A schedule exhibiting the read-only anomaly

We use their theorem in this paper, but our goal is to provide a more in-
tuitive (but less general) condition for correctness and then argue that many
applications satisfy that condition.

In their paper, Fekete, et al. [4] use a model of database read and write oper-
ations in which, when a transaction performs a write operation based on some
predicate, that write operation is replaced by a read operation on the predicate
to determine the items to be written, followed by a sequence of individual write
operations on each of the items returned by the read. Thus, in this model, there
are no predicate writes. We also use this model.

Their paper is based on the idea of conflicts between read and write opera-
tions

DEFINITION 5.1. Conflicts
There are three types of conflicts that can occur between two concurrent

transactions, Ta and Tb, both of which commit. (Two transactions are con-
current if one transaction starts before the other transaction commits.) The
definitions deal with predicate reads, but recall that there no predicate writes.

1. A read-write conflict occurs when

Ta makes an item or predicate read and Tb later makes an item
write of one of the items that was returned by the read, or

Ta makes a predicate read and Tb later inserts a new tuple that
satisfies that predicate (or changes the value of an existing tuple
not initially in the predicate so that it satisfies the predicate).

The situations described in the second bullet correspond to phantoms.

2. A write-read conflict occurs when Ta writes an item and Tb later reads
that same item (perhaps as part of a predicate read).

3. A write-write conflict occurs when Ta writes an item and Tb later writes
that same item.

If any of these conflicts occur, then Tb must be after Ta in any serial (or serial-
izable) ordering of the transactions.
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From this definition, it follows that:

LEMMA 5.2 [4]. When transactions execute at SNAPSHOT isolation, the only
possible conflicts between two concurrent transactions that commit are read-
write conflicts.

Proof. Because of the disjoint-write property, there can be no conflicts be-
tween two item writes. Recall that there are no predicate writes. Thus there
are no write-write conflicts.

Because of the fact that in SNAPSHOT isolation all reads are satisfied with
the value of the item (or predicate) in the snapshot of the database that existed
when the transaction made its first read, a read cannot read any value written
by a concurrent transaction. Thus there can be no write-read conflicts. �

Now we can state the theorem. A formal proof is given in [4].

THEOREM 5.3. A Sufficient Condition for Serializable Execution at SNAP-
SHOT Isolation [4]

All schedules produced by an application executing at SNAPSHOT isola-
tion are serializable if the following situation cannot occur. There are three
transactions T1, T2, and T3, such that

T1 executes concurrently with T2 and T1 writes or inserts an item that
conflicts with a read predicate that T2 read (in other words the two trans-
actions have a read-write conflict), and

T2 executes concurrently with T3 and T2 writes or inserts an item that
conflicts with a read predicate that T3 read (again the two transactions
have a read-write conflict).

T1 and T3 do not have to be concurrent. T1 and T3 are allowed to be the same
transaction.

Note that this situation occurs in both of the schedules in Fig. 13.1, and
hence, by the theorem, both schedules are not serializable. In Fig. 13.1(b), T1

and T2 are concurrent with each other and T2 and T3 are concurrent with each
other, but T1 and T3 do not execute concurrently. In Fig. 13.1(a), Ta plays the
roles of both T1 and T3.

6. The Infrastructure/State Design Pattern

We now return to the question we raised at the beginning of the paper: Why
are there not a large number of users of applications executing at SNAPSHOT
isolation (or Oracle users who specified the SERIALIZABLE isolation level)
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complaining that their applications are not executing correctly? We believe
that the reason is that almost all applications are designed using some design
pattern that guarantees serializability at SNAPSHOT isolation. The designers
are not necessarily selecting a design pattern because it will guarantee serializ-
ability at SNAPSHOT isolation. They are just using design patterns that seem
natural to them, and those patterns happen to produce serializable executions
at SNAPSHOT isolation.

We present one such design pattern, the Infrastructure/State (I/S) design
pattern. But before we do that, we discuss automatic constraint checking.

6.1 Automatic Constraint Checking

In addition to using some design pattern such as the I/S pattern, we assume
that transaction designers use automatic constraint checking. SQL allows de-
signers to specify in their SQL programs that the database system check cer-
tain constraints on the database (integrity constraints). Whenever a transaction
requests to commit, the database system checks whether allowing that transac-
tion to commit would make one of the specified constraints false, and if so, it
does not allow the transaction to commit, but aborts it.

Note that all the examples we have given of incorrect executions at SNAP-
SHOT isolation involved some integrity constraint becoming false. So if the
transaction designer had specified that the database automatically check those
constraints, none of those incorrect executions would have taken place. At least
one of the transactions in each of these schedules would have been aborted by
the system.

However performing automatic constraint checking does not guarantee cor-
rect executions. A particular schedule might produce a database that satisfies
all the integrity constraints, but is nevertheless incorrect, that is, it does not
reflect the desired effects of all the transactions.

As an example, consider again the schedule given in Fig. 13.1(a). Con-
sider the banking application where the only integrity constraint is that when
a customer has two accounts the sum of the balances in both accounts must be
positive. This time assume that

Ta is supposed to read the balances in both accounts and deposit an
amount in account x such that the total amount in both accounts is twice
what it was when Ta started.

Tb is supposed to read the balances in both accounts and deposit an
amount in account y such that the total amount in both accounts is twice
what it was when Tb started.

If the transactions had run serially (or serializably), with Ta executing before
Tb, the final amount in the first account would be 2x + y and the final amount



364

in the second account would be 2x + 3y. Hence the sum of the amounts in
both accounts would be 4x + 4y, which is four times the sum of the amounts
at the beginning of the schedule. This is correct as specified by the intended
specifications of the transactions, assuming the transactions had run serially or
serializably.

In the SNAPSHOT isolation schedule shown in Fig. 13.1(a), Ta would write
2x+y into the first account, and Tb would write x+2y into the second account.
Hence the sum of the amounts in both accounts would be 3x + 3y, which is
three times the sum of the amounts at the beginning of the schedule. This is
incorrect (even though the integrity constraint is satisfied).

6.2 The Disjoint-Predicate-Write Property

We define a particular property that is part of the I/S Design Pattern.

DEFINITION 6.1 (The Disjoint-Predicate-Write Property). A schedule satis-
fies the disjoint-predicate-write property if, whenever a transaction that com-
mits makes a write based on some predicate, no other concurrent transaction
that commits inserts a new tuple that satisfies that predicate (or changes the
value of an existing tuple not initially in the predicate so that it satisfies the
predicate).5

Informally, we can say that the disjoint-predicate-write property is an exten-
sion of the disjoint-write property to writes based on predicates. Again, infor-
mally we can say that schedules that satisfy the disjoint-predicate-write prop-
erty contain no phantoms that conflict with a write predicate (more precisely
no phantoms that conflict with the read predicate that was used as part of the
implementation of a write based on a write predicate).

We give some justification as to why we think many applications have this
property in Sect. 7.

6.3 Read-Only, Update-Only, and Read-Update
Transactions

In discussing the Infrastructure/State design pattern, we consider three dis-
joint types of transactions:

Read-Only Transactions, which read items, but perform no writes (or
inserts or deletes).

Update-Only Transactions, which update all items that they read.

5 Recall that, according to our model, when a transaction makes a write based on some predicate, the write
operation is replaced by a read operation on the predicate to determine the items to be written, followed by
a sequence of individual write operations on each of the items returned by the read.
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Read-Update Transactions, which do not update all the items that they
read (there is at least one item that each such transaction reads but does
not update).

For the remainder of the paper, we ignore read-only transactions. As we
showed in the example of the Read-Only Anomaly, the existence of read-only
transactions in SNAPSHOT isolation schedules does not affect the serializabil-
ity of the transactions that update the database and hence does not affect the
correctness of the database. (The database seen by the read-only transaction is
the result of some serial order, but not necessarily the order produced by the
transactions that update the database, but we do not view that as particularly
serious.)

6.4 State and Infrastructure Items and Transactions

In applications that satisfy the I/S design pattern, the database items are
either state items or infrastructure items.

DEFINITION 6.2. State and Infrastructure Items

State Items. A state item is an item that contains information about
the current state of the business and is updated frequently whenever that
state changes.

Infrastructure Items. An infrastructure item is an item that contains
relatively long-term information about the infrastructure of a business
and is updated infrequently only when the long-term information chang-
es.

For example, in a banking application:

The infrastructure items might include the depositors’ names, addresses,
social security numbers, and account numbers, all of which are updated
very infrequently.

The state items might include the account balances, which are updated
whenever a depositor deposits or withdraws money from one of his ac-
counts or whenever interest is credited to the accounts.

Similarly, in applications that satisfy the I/S design pattern, the transactions are
either state transactions or infrastructure transactions.

DEFINITION 6.3. State and Infrastructure Transactions

State Transactions: A state transaction is an update-only or read-update
transaction that can read state and infrastructure items, but must update
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all the state items it reads and cannot update any infrastructure items. It
can do one or more of the following:

– Read one or more infrastructure items

– Write one or more state items

– Read and then update one or more state items

– Insert or delete one or more tuples containing state items.

A key part of the definition is that the only items that a state transaction
can read and then not update are infrastructure items and the only items
it can read and then update are state items.

Informally, whenever an event occurs in the real world that changes the
state of the enterprise, a state transaction is executed, which reads some
infrastructure items to determine information that it needs and then up-
dates some state items to reflect the change of state implied by the event.

Infrastructure Transactions: An infrastructure transaction is an
update-only transaction that can read and update only infrastructure items.
It can do one or more of the following:

– Read and then update one or more infrastructure items.

– Insert or delete one or more tuples containing infrastructure items.

A key part of the definition is that an infrastructure transaction can read
and update only infrastructure item and must update all items that it
reads, that is, it is an update-only transaction.

Informally, infrastructure transactions are run very infrequently when-
ever infrastructure items need to be updated.

6.5 The Infrastructure/State Design Pattern

Now we can define the I/S design pattern:

DEFINITION 6.4. The Infrastructure/State Design Pattern
An application satisfies the Infrastructure/State design pattern if

All of its schedules satisfy the disjoint-predicate-write property.

All the database items are either state items or infrastructure items.

All the transactions are either state transactions or infrastructure trans-
actions.

Since we want to use Theorem 5.3 to prove when schedules of applications
designed using the I/S design pattern and executed at SNAPSHOT isolation
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are serializable and since a key part of that theorem is read-write conflicts
between transactions, we are particularly interested in which transactions can
have a read-write conflict.

LEMMA 6.5. If an application satisfies the I/S design pattern and executes
at SNAPSHOT isolation, the only possible read-write conflicts between two
concurrent transactions that commit occur when

A state transaction reads some infrastructure item and a concurrent in-
frastructure transaction writes that item, or

A state transaction reads some predicate consisting of infrastructure
items and a concurrent infrastructure transaction inserts a new tuple
that satisfies that predicate (or changes the value of an existing tuple not
initially in the predicate so that it satisfies the predicate).

Thus in all read-write conflicts a state transaction does the read and an in-
frastructure transaction does the write.

Proof. Two infrastructure transactions cannot have a read-write conflict be-
cause an infrastructure transaction must write everything it reads, and hence by
the disjoint-predicate-write and disjoint-write properties no other infrastructure
transaction can do a write that conflicts with that read.

Two state transactions cannot have a read-write conflict due to a read of in-
frastructure items because another state transaction cannot write an infrastruc-
ture item. Two state transactions cannot have a read-write conflict due to a read
and then write of state items by one of those state transactions, again because
of the disjoint-predicate-write and disjoint-write properties.

A state transaction cannot have a read-write conflict with an infrastructure
transaction based on that state transaction’s read of state items, because an
infrastructure transaction cannot write state items. �

Using this lemma we can prove

THEOREM 6.6. A Sufficient Condition for Serializable Execution at SNAP-
SHOT Isolation Based on the I/S Design Pattern

If an application satisfies the I/S design pattern and executes at SNAPSHOT
isolation, all of its schedules are serializable.

Proof. In the statement of Theorem 5.3, in order for a schedule produced at
SNAPSHOT isolation to be non-serializable, there must be two transactions,
T1 and T2, such that T1 executes concurrently with T2, and T1 writes or inserts
an item that conflicts with a read predicate that T2 read. In other words the
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two transactions have a read-write conflict. Thus, by Lemma 6.5, T2 must be a
state transaction because it does the read.

Also in the statement of Theorem 5.3, T2 must write or insert an item that
conflicts with a read predicate that another transaction, T3, read. Thus, by
Lemma 6.5, T2 must be an infrastructure transaction because it does the write.

Since T2 cannot be both a state transaction and an infrastructure transaction,
this schedule cannot exist. Since no schedule with the properties specified in
Theorem 5.3 can exist, all schedules of applications that satisfy the I/S design
pattern and execute at SNAPSHOT isolation are serializable. �

It is interesting to note that if an application satisfies the I/S design pattern
and executes at SNAPSHOT isolation, the only type of conflict that can oc-
cur between two concurrent transactions that commit is a read-write conflict
between a state transaction and an infrastructure transaction. Since infrastruc-
ture transactions execute rather infrequently, the number of such conflicts is
probably small. (Of course, write-write conflicts can occur between two in-
frastructure or two state transactions, but in that case one of the transactions
will be aborted because of the disjoint-write property.)

7. Justification for the I/S Design Pattern

We briefly give some justification as to why we think the I/S design pattern
is natural and hence is used in many applications.

7.1 State and Infrastructure Items and Transactions

The intuition behind the state and infrastructure items and transactions
should be clear from their names. As we said, whenever an event occurs in
the real world that changes the state of the enterprise, a state transaction is ex-
ecuted, which reads some infrastructure items to determine information that it
needs and then updates some state items to reflect the change of state implied
by the event. Infrastructure transactions are run very infrequently whenever
infrastructure items need to be updated.

The only issue might be: will state transactions read some state items that
they do not write? For example, in the ticket reservation application that led to
the schedule of Fig. 13.1(a), the reservation transaction reads the items for all
the seats (state items) and then writes reservation information into one of those
items. Thus that transaction does not write all the state items that it reads and
hence does not satisfy the definition of a state transaction. As we have said,
that schedule is not serializable, although it is correct.

The question is: would a designer have designed this application in that
manner? Probably not. A more natural design would be to have two trans-
actions. The first is a read-only transaction that reads and displays all the
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available seats for customers to read at their leisure. When a customer wants
to reserve a particular seat, another (state) transaction is run to read and then
write the item for that seat. Of course, by then someone else might have re-
served that seat, in which case the transaction would report that fact. However,
that situation might also have happened in the original design, in which case
the reservation transaction would be aborted.

If the original design of an application has the property that some “state”
transaction reads but does not write some state item (or some “infrastructure”
transaction reads but does not write some infrastructure item), the design of
that transaction can be tweaked so that it writes back the value it read (or in
Oracle the read can be done using SELECT FOR UPDATE) [4].

7.2 The Disjoint-Predicate-Write Property

Before we discuss our justification for the disjoint-predicate-write property,
which recall is related to phantoms, we mention that the schedule we gave in
an earlier example that led to a phantom cannot occur in the I/S design pattern.
In that example, a task assignment transaction read the predicate containing the
tuples for all tasks assigned to a particular worker and, based on the number of
such tuples, decided whether or not to add a new tuple for another assigned task
for that worker. The task assignment transaction should be a state transaction,
but a state transaction is not allowed to read any state items that it does not
update, and the task assignment transaction reads all the task tuples but does
not update them.

A better, more natural design, and one that satisfies the I/S pattern, is to have
a separate database item for each worker that contains the number of tasks as-
signed to that worker. Each task assignment transaction would have to read
and update that item. Thus the disjoint-write property, enforced by SNAP-
SHOT isolation, would not allow two concurrent task assignment transactions
for the same worker to both commit. Fekete, et al. [4, 3] call the use of such an
item “materializing the conflict” and advocate using such an item to ensure se-
rializability. In this example, we believe that the use of such an item is natural
and a better design.

We justify the disjoint-predicate-write property using a number of examples.

A transaction in a business process updates a set of items based on a
predicate at a time when the process is in some stage in which no other
item satisfying that predicate can possibly be added.

For example, a state transaction in an order-processing business process
might update all the order-items corresponding to a particular order-id
(for example, to denote that they have been shipped), at a stage in the
process when the entire order has been entered by previous state trans-
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actions, and no other order-item with that order-id can be inserted by any
concurrent state transaction.

Many business processes go through a stage in which a number of new
tuples containing state items appropriate for that process are inserted by
one or more transactions, followed by later stages in which those items
are read and updated by other transactions in that process.

A transaction in a business process updates a set of items based on a
predicate at a time when it is very unlikely that another item satisfying
that predicate will be added by any other transaction.

For example, a state transaction in a bank to credit all accounts with their
quarterly interest might be executed at a time when it is very unlikely
that a concurrent transaction might be executed to add a tuple for a new
account.

Note that the first transaction is executed at a time selected by the busi-
ness enterprise, not as a result of some action by a customer. Thus the
enterprise can elect to execute the transaction at a time when conflicts
are unlikely.

A transaction in a business process updates a set of items based on a
predicate that specifies only a fixed number of items, and the transaction
updates all of those items. Thus there is no possible additional tuple
which satisfies that predicate that can be introduced by any concurrent
transaction in that or any other business process.

For example, in a banking system, an infrastructure transaction might
update the available-credit items in the tuples for the accounts with
account-numbers 123, 789, and 347.

8. Conclusion

We have defined the I/S design pattern and proved that applications designed
using that pattern will execute serializably at SNAPSHOT isolation. The pat-
tern is intuitive so that it is easy to verify whether or not a given application
satisfies the pattern and, if not, to alter the design slightly so that it does.

We suspect that many existing applications satisfy this or a similar design
pattern. The best evidence for the existence of such design patterns is the
virtual non-existence of Oracle customers who are complaining that their “SE-
RIALIZABLE” applications do not execute correctly. In all probability, those
applications satisfy the I/S design pattern (or perhaps the more general condi-
tion in [4]).
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9. Dedication

I would like to dedicate this paper to Dan Rosenkrantz. I first met Dan
about 40 years ago when we both worked at the General Electric Research
Laboratory. Those were the magic years for Computer Science at G.E., and
Dan made important contributions to that magic.

It is particularly appropriate for this dedication to mention that Dan and I
worked together on a number of papers related to databases and transaction
processing—the subject of the present paper. Two of our joint papers on this
topic are reprinted in this volume.

Dan and I are both professional colleagues and personal friends. We have
kept up that friendship over the years even after we both left G.E.

Dan has had an exciting and productive career, both at G.E. and at SUNY
Albany. He has made important contributions to Computer Science. I wish
him a long and happy retirement.
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1. Introduction

Whether it is “more taste” versus “less filling,” “peanut butter” versus
“chocolate,” or “Bush” versus “Kerry” versus “Nader,” people have varying
preferences. So it is natural that in life preference aggregation, typically via
some voting/election scheme, is a central activity. Within the past few months,
the authors of this chapter have seen a department’s choice for faculty hiring
selected by approval voting and a school’s faculty senate election held un-
der single transferable vote, and of course countless actions have been taken
under plurality rule and under majority rule. Further, in this modern world
of processes and agents, it isn’t just people whose preferences must be ag-
gregated. The preferences of computational agents must also be aggregated.
Indeed, in both the artificial intelligence and the systems communities a sur-
prisingly broad array of issues have been proposed as appropriate to approach
via voting systems. These issues range from spam detection to web search en-
gines to planning in multi-agent systems and much more (see, e.g., [14, 15, 32,
12, 16]).

Thus it is clear that elections are important in both the human and the com-
puter worlds. But why should one study the complexity of elections? Although
the history of looking at the effect of computational power on decision-making
goes quite far back [38], the true genesis of the study of the complexity of
elections was a spectacular series of papers by Bartholdi, Orlin, Tovey, and
Trick that appeared around 1990 [3, 2, 1, 4]. One of the insights that naturally
drove Bartholdi, Tovey, and Trick [3] to study complexity issues is that even
if an election system has wonderful mathematical properties, if determining
who won under the election system is computationally intractable then that
system isn’t going to be practically useful. Another motivation for studying
complexity issues comes from a result known then (the Gibbard–Satterthwaite
Theorem), and additional results that have been established since (most no-
tably the Duggan–Schwartz Theorem), showing that every reasonable election
system can be manipulated (see [20, 37, 11, 39]). So better design of election
systems cannot prevent manipulation. Bartholdi, Tovey, and Trick [2] bril-
liantly, thrillingly proposed getting around this obstacle by seeking to make
manipulation exorbitantly expensive, computationally.

The focus areas of those seminal papers from around 1990 were the com-
plexity of the winner problem, the manipulation problem (which regards af-
fecting an election’s outcome by changing the votes of voters), and the con-
trol problem (which regards affecting an election’s outcome by changing the
structure of the election—e.g., by adding, deleting, or partitioning voters or
candidates). In this chapter, we provide a brief overview of some of the work
done on an ongoing project on election complexity that has been pursued over
the past decade jointly by the theory groups in Düsseldorf and Rochester. This
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project has focused on improving the field’s understanding of the complexity
of winner, manipulation, and control problems, and has also added new direc-
tions of inquiry, including the definition and study of election bribery prob-
lems. The ultimate goal of the project—which has already been in reasonable
part achieved in its manipulation and bribery streams—is to move from simply
analyzing individual election systems to finding the source of the complexity
of elections. That is, our ultimate goal is to find a simple rule that tells which
election systems (perhaps with our focus limited to some broad, important sub-
class of systems) are computationally simple and which are computationally
hard with respect to whichever one of the core questions—winner, manipula-
tion, bribery, or control—is at issue.

By focusing on our own results and interests—though naturally many papers
by others are mentioned in the process—we in no way wish to detract from the
rest of the enormous body of research being done on related and unrelated top-
ics within the complexity of elections. Indeed, interest in computational social
choice theory is at a high level and is still growing, spans fields and countries,
and as this is being written the inaugural meeting of a devoted workshop—
the (First) International Workshop on Computational Social Choice—is just
months away. It is a true, humbling joy to the authors to be part of such a
vibrant community with this shared research passion.

Section 2 briefly describes some major election systems. Section 3 stud-
ies work showing that the winner problems for Dodgson, Kemeny, and Young
elections are complete for parallel access to NP. Section 4 studies work on
manipulation and bribery. This work achieves the “simple classification rule”
goal mentioned above, and does so on the most important class of election
systems—scoring protocols. Section 5 is about electoral control, and studies
both the original approach to control and work that extended the control para-
digm to the “destructive” case—asking not whether one can make a preferred
candidate win, but rather asking whether one can block a despised candidate
from winning.

2. Elections and Election Systems: Preliminaries

Throughout this chapter, an election, (C, V ), will consist of a finite, though
arbitrary in size, candidate set C and a finite, though arbitrary in size, voter
set V . It is legal, though a bit bizarre, for an election to have no candidates or
no voters.

Our voters will, unless otherwise specified, be input as a list. Each voter
will not be associated with a name, but rather will be input simply via his
or her preferences over the candidates. The nature of those preferences de-
pends on the election system. For almost all the election systems discussed in
this chapter, each voter is specified as a tie-free linear ordering of the candi-
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dates, e.g., Bush > Kerry > Nader. We will typically refer to that as the
voter’s preference list. For some systems discussed in this chapter—approval
voting and k-approval voting—voters are instead specified by approval vec-
tors, namely, a vector that for each candidate specifies 1 for approval or 0 for
disapproval.

As just mentioned, we generally assume that voters are input as a list. So V
might typically be entered as (a natural coding of), for example, the list

(Bush > Kerry > Nader, Nader > Kerry > Bush,

Bush > Kerry > Nader).

Note in particular that we do not (except when speaking of succinct versions of
problems—versions where one can list a preference’s multiplicity as a binary
number) allow one to specify multiplicities of a given preference other than
by listing the same preference multiple times. This nonsuccinct approach to
input has been the most common one ever since the seminal work of Bartholdi,
Orlin, Tovey, and Trick, and reflects nicely the fact that in real life ballots are
cast one per person.

In some problems we do allow voters to be weighted, but that is quite differ-
ent than the succinctness issue. For example, a weight-3 voter is an indivisible
object that is quite different from three weight-1 voters (since the latter can po-
tentially be bribed/not-bribed/deleted/etc. separately from and differently than
each other).

An election system (or election rule) is a mapping that takes as input an
election (C, V ) and outputs a winner set W satisfying ∅ ⊆ W ⊆ C. So, in
contrast with a social choice function, which typically maps from elections
to preference-lists-altered-to-allow-ties, election systems focus completely on
separating the candidates into winners and nonwinners.

Nonetheless, the literature on the complexity of election systems is a bit
schizophrenic. Some areas of this literature—such as most of the work on
the complexity of winner problems—focus on the issue of whether a particular
candidate is (or can be made to be) a winner. Other areas of the literature on the
complexity of election systems—such as most of the work on the complexity
of control problems—focus on the issue of whether a particular candidate is
(or can be made to be) a unique winner, i.e., to be a winner and to be the only
winner. In the literature on manipulation one finds multiple examples of focus
on winners and of focus on unique winners, but since the seminal manipulation
complexity paper [2] focused on winners, we will view that as the “traditional”
choice for manipulation.

The abovementioned traditional associations between areas and which of
“winner” or “unique winner” to study are largely a matter of taste and often
date back to choices made in the seminal papers of Bartholdi, Orlin, Tovey,
and Trick. One certainly could choose to diverge from them, and researchers
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sometimes do. For example, the appendix of [26] reanalyzes the complexity of
the winnership problems of Dodgson, Kemeny, and Young elections—whose
complexity was previously known for the case of “winner”—for the case of
“unique winner,” and though it takes some work, shows that in each case the
complexity of the unique winner problem is the same as the complexity of the
winner problem.

Nonetheless, the traditional choices regarding “winner” versus “unique win-
ner” help unify the literature so that papers within a given research stream—
say, the study of electoral control—share the same focus and so can be better
compared and contrasted. In this chapter, we respect and follow the traditional
choices.

Finally, let us briefly define some of the most important election systems.
In approval voting, each voter is represented by a 0–1 approval vector. To
determine the winner, one component-wise adds the vector from each voter,
and all candidates who achieve the largest component-wise sum that appears
are winners. For each k ≥ 1, k-approval voting is the same as approval voting,
except each voter must have exactly k approvals in his or her vote (and thus we
must have ‖C‖ ≥ k).

The most important class of election systems is the class of scoring systems
(or scoring rules or scoring protocols). A scoring system (for m-candidate
elections) is defined by a scoring vector α = (α1, α2, . . . , αm) satisfying α1 ≥
α2 ≥ · · · ≥ αm. Each voter is represented by a preference list, and the ith most
preferred candidate on a given voter’s preference list gains αi points due to that
voter. Each candidate’s point total is the sum of all the points he or she gets.
Whoever gets the highest sum is a winner.

Plurality-rule elections are based on the family of scoring systems defined
by the scoring vectors (), (1), (1, 0), (1, 0, 0), . . . , with the vector appropriate
to the number of candidates being the one that is used. Majority-rule elec-
tions technically are not scoring protocols, but rather are the system using the
same scoring vector collection as plurality-rule elections but in which a can-
didate wins exactly if he or she gets strictly more than ‖V ‖/2 points. Note
that approval voting technically isn’t a scoring protocol or even a one-scoring-
vector-per-election-size family of scoring protocols. However, for each m ≥
k, m-candidate k-approval voting is a scoring protocol, based on the vector

(
k︷ ︸︸ ︷

1, . . . , 1,

m−k︷ ︸︸ ︷
0, . . . , 0). Veto elections are based on the family of scoring systems

defined by the scoring vectors (), (0), (1, 0), (1, 1, 0), . . . .
Condorcet elections are the system in which to be a winner one must have

the property that for each candidate d other than oneself it must hold that one
is preferred to d by strictly more than half the voters (i.e., one wins all head-
on-head majority-rule beauty contests). Such a candidate is called a Condorcet
winner.
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3. Complexity of Winning: Dodgson’s 1876 Election
System

“I suspect that one of the March Hare, the Hatter, and the Dormouse is guilty,”
said the Queen, “though I don’t know which one is. Thus we—the Duchess,
you (Alice), and I—will vote on this matter. Off with the head of any one of the
March Hare, the Hatter, and the Dormouse who is preferred to each of the others
in pairwise majority-rule contests on whom to execute!”

“You cannot do that,” Alice screamed, totally horrified. The Queen replied an-
grily, “Yes, I can do that. This is a rational society where people vote rationally
on issues. . . such as which of those three to behead.” And she pointed again
to the Hatter, the March Hare, and the Dormouse (who had fallen asleep). “My
preference list as to whom to behead is Hatter (I hate him) > March Hare >
Dormouse (he is so cute). So shall it be off with the Hatter’s head?”

“Not so fast,” said the Duchess. “My preference list for whom to behead is
March Hare (oh, to rid this world of those creepy long ears!) > Dormouse >
Hatter.” Suddenly turning to Alice, she asked, “What’s your vote?” Alice timidly
replied, “If I absolutely must give a list, then my preference list as to whom to
behead is Dormouse > Hatter > March Hare.”

“Ha!” exclaimed the Queen. “The Hatter is preferred to the March Hare for
execution by two to one. Off with the Hatter’s head!” “No,” replied the Duchess,
“the Dormouse is preferred to the Hatter for execution by two to one.” “Then
off with the Dormouse’s head!” cried the Queen. “No,” said the Duchess, “the
March Hare is preferred to the Dormouse for execution by two to one.” “Then kill
the March Hare!” screamed the Queen, now really quite upset. “Need I remind
you,” said Alice, “that the Hatter is preferred to the March Hare for execution by
two to one? So no one shall be beheaded.”

The Queen summarized, “This makes me dizzy. In our rational society, each
of the three of us had noncyclic (rational) preferences over these three candi-
dates. And yet when we aggregated our preferences under pairwise majority-rule
contests, our societal preference was strictly cyclic: March Hare > Dormouse,
Dormouse > Hatter, Hatter > March Hare. Our rational individual preferences
aggregated to an irrational societal preference. Since as the Queen I represent
the society, perhaps the only fitting penalty is ‘Off with my head!’ ”

Lewis Carroll—whose real name was Charles L. Dodgson and who not only
was the author of wonderful children’s books but also was a mathematician—
noticed the same issue the Queen just reached: Rational individual preferences
(even with ties not allowed) can aggregate, under pairwise majority-rule con-
tests, to an irrational societal preference. That is, Dodgson rediscovered what
is known today as the Condorcet paradox, though he most likely was unaware
(see [5, pp. 193–194]) of Condorcet’s much earlier work [9]. Note that every
election instance having this type of strict cycle over all the candidates in the
aggregate behavior is a case where there is no Condorcet winner (though not
every election instance having no Condorcet winner is a case of this type of
strictly cyclic aggregate behavior). In his 1876 essay “A Method of Taking
Votes on More than Two Issues,” Dodgson [10] proposed an election system
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that respects Condorcet winners when they exist, and when they don’t exist
reflects the philosophy that whoever is “closest” to being a Condorcet winner
should be declared a winner. In Dodgson’s system, given an election (C, V ),
each candidate c ∈ C is assigned a score (denoted by dscore(C,V )(c), and we
will write just dscore (c) when the election is clear from context): dscore (c)
equals the smallest number of sequential exchanges (called “switches” hence-
forward) of adjacent candidates in the voters’ preference lists that suffices to
make c a Condorcet winner. Whoever has the lowest Dodgson score wins in
Dodgson’s system. When a Condorcet winner exists, he or she is clearly the
unique candidate with Dodgson score zero and thus is a (indeed, the) Dodgson
winner as well.

In the above example, there is no Condorcet winner but switching the Hat-
ter and the Dormouse in Alice’s preference list yields Hatter > Dormouse >
March Hare. So the Hatter now defeats both the March Hare and the Dormouse
by two to one in pairwise majority-rule contests and thus is now a Condorcet
winner (in the election for the questionable privilege of being beheaded). So
in the above example dscore (Hatter) = 1. Similarly, dscore (March Hare) =
dscore (Dormouse) = 1. If there is no Condorcet winner, Dodgson winners
are not necessarily unique, though at least one Dodgson winner always exists
in Dodgson elections (except when ‖C‖ = 0 ∨ (‖V ‖ = 0 ∧ ‖C‖ �= 1) holds).

How hard is it to determine whether a distinguished candidate is a Dodg-
son winner of a given election? Bartholdi, Tovey, and Trick [3] crisply, natu-
rally formalized this problem as follows and also defined two related problems,
the scoring and ranking problems for Dodgson elections. A Dodgson triple
(C, c, V ) consists of an election (C, V ) and a distinguished candidate c ∈ C.

Name: Dodgson-winner.

Given: A Dodgson triple (C, c, V ).

Question: Is c a Dodgson winner in (C, V ), i.e., does dscore (c) ≤ dscore (d)
hold for each d ∈ C?

Name: Dodgson-score.

Given: A Dodgson triple (C, c, V ) and a nonnegative1 integer k.

Question: Is it the case that dscore (c) ≤ k?

1 Both [3] and [23] have “positive” here rather than “nonnegative,” but it is easy to see that the NP-
completeness of this problem is unaffected by that word change (basically because the k = 0 case can
be tested for in polynomial time).
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Name: Dodgson-ranking.

Given: An election (C, V ) and two distinguished candidates from C, c and d.

Question: Is it the case that dscore (c) ≤ dscore (d)?

Bartholdi, Tovey, and Trick [3] proved that Dodgson-score is NP-complete
and that Dodgson-ranking and Dodgson-winner are NP-hard. For the latter
two problems Bartholdi, Tovey, and Trick left open whether their lower bounds
were optimal, i.e., whether their Dodgson-ranking and Dodgson-winner NP-
hardness results could be strengthened to NP-completeness or, alternatively,
whether their NP-hardness lower bounds could be raised, ideally to some
matching upper bound. These open questions were resolved by the following
result of Hemaspaandra, Hemaspaandra, and Rothe [23].

THEOREM 3.1 [23]. Dodgson-ranking and Dodgson-winner are Θp
2-com-

plete.

Θp
2 here represents, as is standard, a particular level of the polynomial hi-

erarchy. PNP
‖ is the level of the polynomial hierarchy formed by the class

of problems solvable by parallel (i.e., truth-table) access to NP. Quite early,
Papadimitriou and Zachos [31] studied PNP[log], the class of problems solvable
byO(log n) sequential (i.e., Turing) queries to NP. However, it is now known
that PNP[log] and PNP

‖ are equal [21], and the class they each define is often

referred to as the Θp
2 level of the polynomial hierarchy. There are surprisingly

many characterizations of Θp
2 (see [41])—a tribute to its robustness under de-

finitional variation. From the definitions, Θp
2 is easily seen to be related to

other polynomial hierarchy levels as follows: NP ∪ coNP ⊆ Θp
2 ⊆ PNP ⊆

NPNP ∩ coNPNP.
The remainder of this section is mainly devoted to sketching the proof of

Theorem 3.1. Our proof sketch proceeds via a series of lemmas. The general
proof structure is shown in Fig. 14.1.

The Θp
2 upper bounds for Dodgson-ranking and Dodgson-winner are easy

to see. Dodgson-ranking, for example, is in Θp
2 via the simple algorithm

that, given an instance ((C, V ), c, d), uses the NP oracle Dodgson-score to

Figure 14.1. Proof structure for Theorem 3.1
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compute dscore (c) and dscore (d) by asking in parallel all plausible values of
those scores, and by doing so will discover whether dscore (c) ≤ dscore (d).

Regarding the lower bounds, we show Dodgson-ranking and Dodgson-
winner Θp

2-hard by proving many crucial properties of/operations on Dodgson
elections to be easy, i.e., we provide polynomial-time algorithms for them.
Although this may at first seem counterintuitive, it in fact is natural: Showing
that a problem A is ≤p

m-hard for a class reflects not just that A has the power
to solve all the sets from the class, but also that A is so nicely and simply
structured that a polynomial-time many-one reduction from each set in the
class can tap into that power. So≤p

m-hardness is itself about simplicity and the
power of polynomial-time transformations.

In our setting, some of the easiness results we obtain will be used hand-in-
hand with a Θp

2-hardness tool of Wagner ([40], see also the surveys [24, 35]),
stated as Lemma 3.2 below. Along the lines of the previous paragraph, to link
our problems to this tool we must explore the properties of Dodgson elections
and in particular how to resculpt them via efficient algorithms.

LEMMA 3.2 [40]. Let A be an NP-complete set, and let B be any set. Then
B is Θp

2-hard if there is a polynomial-time function f such that, for all k ≥ 1
and all x1, . . . , x2k ∈ Σ∗ satisfying χA(x1) ≥ χA(x2) ≥ · · · ≥ χA(x2k), it
holds that ‖{i | xi ∈ A}‖ ≡ 1 (mod 2) ⇐⇒ f(x1, . . . , x2k) ∈ B.

To exploit Lemma 3.2, we have to do much groundwork. Bartholdi, Tovey,
and Trick [3] proved Dodgson-score NP-hard via a reduction from
exact-cover-by-three-sets. However, their reduction does not have the prop-
erties needed to exploit Lemma 3.2. In contrast, one can achieve these prop-
erties by constructing a reduction to Dodgson-score that starts from the well-
known NP-complete problem three-dimensional-matching (see Garey and
Johnson [19] for specifics on three-dimensional-matching), which we will
for brevity henceforward refer to as 3DM. This reduction has the property—
which is vastly more restrictive than what is needed merely to achieve a vanilla
many-one reduction in this case—that when it reduces to a question about
whether a certain candidate has score at most k in a given election, it will
always be the case that candidate’s true score in that election is either k or
k + 1.

LEMMA 3.3 [23]. There is a polynomial-time function f that reduces 3DM to
Dodgson-score in such a way that, for each x ∈ Σ∗, f(x) = ((C, c, V ), k) is
an instance of Dodgson-score with an odd number of voters and this instance
has the property that: (a) if x ∈ 3DM then dscore (c) = k and (b) if x �∈ 3DM
then dscore (c) = k + 1.
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Next, Lemma 3.4 shows how to “sum” Dodgson triples in such a way that
the Dodgson score of the “sum” equals the sum of the Dodgson scores of the
given Dodgson triples.

LEMMA 3.4 [23]. There is a polynomial-time function dodgsonsum such that,
for all � and for all Dodgson triples (C1, c1, V1), (C2, c2, V2), . . . , (C
, c
, V
)
each having an odd number of voters, dodgsonsum((C1, c1, V1),
(C2, c2, V2), . . . , (C
, c
, V
)) = (C, c, V ) is a Dodgson triple with an odd num-
ber of voters and satisfies dscore(C,V )(c) =

∑
1≤j≤
 dscore(Cj ,Vj)(cj).

We now define an ancillary problem that is closely related to Dodgson-
ranking and Dodgson-winner.

Name: two-election-ranking (2ER, for short).

Given: Two Dodgson triples, (C, c, V ) and (D, d, W), with c �= d and ‖V ‖
odd and ‖W‖ odd.

Question: Is it the case that dscore(C,V )(c) ≤ dscore(D,W )(d)?

Lemmas 3.2, 3.3, and 3.4 can be used (together with about two pages of
additional argumentation) to obtain Lemma 3.5. Note that 2ER plays the role
of the set B in Lemma 3.2, and 3DM plays the role of that lemma’s NP-
complete set A. Note also that 2ER is in Θp

2, so Lemma 3.5 implies that 2ER
is Θp

2-complete.

LEMMA 3.5 [23]. 2ER is Θp
2-hard.

Finally, Lemma 3.6 shows how to merge two Dodgson elections into a single
Dodgson election in a very careful way such that a number of useful properties
are achieved. Using this lemma we can transfer 2ER’s Θp

2-hardness to both
Dodgson-ranking and Dodgson-winner. One can think of Lemma 3.6, infor-
mally, as akin to a “double-exposure” photograph: Our merged election retains
and reflects important information about both its underlying elections.

LEMMA 3.6 [23]. There are polynomial-time functions merge and merge ′

such that, for all Dodgson triples (C, c, V ) and (D, d, W) for which c �= d

and both ‖V ‖ and ‖W‖ are odd, there exist Ĉ and V̂ such that

1. merge((C, c, V ), (D, d, W)) = ((Ĉ, V̂ ), c, d) is an instance of
Dodgson-ranking,

2. merge ′((C, c, V ), (D, d, W)) = (Ĉ, c, V̂ ) is an instance of
Dodgson-winner,
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3. dscore
(Ĉ,V̂ )

(c) = dscore(C,V )(c) + 1,

4. dscore
(Ĉ,V̂ )

(d) = dscore(D,W )(d) + 1, and

5. for each e ∈ Ĉ − {c, d}, dscore
(Ĉ,V̂ )

(c) < dscore
(Ĉ,V̂ )

(e).

Space is too tight to cover in detail here the nine pages of proofs for Lem-
mas 3.3 through 3.6 and Theorem 3.1. But to give the reader at least some
flavor of how the proofs work, we illustrate by an example the construction
used for proving Lemma 3.6. Let the Dodgson triples (C, c, V ) and (D, d, W)
be given, where C = {a, b, c} and D = {d, e, f}, V contains three preference
lists, c > b > a, a > c > b, and b > a > c, and W contains one prefer-
ence list, f > e > d. Clearly, dscore(C,V )(c) = 1 and dscore(D,W )(d) = 2.

Now construct the election (Ĉ, V̂ ), which is part of the output of the functions
merge and merge ′, as follows. The candidate set is Ĉ = C∪D∪S∪T , where
S and T are sets of so-called separating candidates.2 Voter set V̂ consists of
the following preference lists:

1. c > b > a >
−→
S > e > f >

−→
T > d,

2. a > c > b >
−→
S > e > f >

−→
T > d,

3. b > a > c >
−→
S > e > f >

−→
T > d,

4. f > e > d > a > b >
−→
T > c >

−→
S ,

5. d > e > f > a > b >
−→
T > c >

−→
S ,

6. d > c >
←−
T > e > f > a > b >

−→
S ,

7. d > c >
←−
T > e > f > a > b >

−→
S , and

8. c > d >
−→
T > e > f > a > b >

−→
S ,

where
−→
S (respectively,

−→
T ) represents the candidates of S (respectively, T )

in some fixed order, and (to avoid interference regarding property 5 of the
lemma)

←−
T represents the candidates of T in the order that reverses their order

in
−→
T . The first three voters in V̂ simulate V , the fourth voter simulates W ,

and the remaining voters are so-called normalizing voters. Properties 1 and 2
of Lemma 3.6 are immediate.

For properties 3 and 4 of Lemma 3.6, let us determine the Dodgson scores
of candidates c and d in (Ĉ, V̂ ). Note that one switch in, say, the second voter

2 To make the proof of Lemma 3.6 work in general, S and T have to be chosen sufficiently large. In this
toy example, however, all properties hold even if ‖S‖ = ‖T ‖ = 0, so all separating candidates could be
dropped here.
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of V̂ (which is one of the voters simulating V ) gives the new preference list
c > a > b >

−→
S > e > f >

−→
T > d, and one switch in, say, the sixth voter of

V̂ (a normalizing voter) gives c > d >
←−
T > e > f > a > b >

−→
S . By these

two switches, c has become a Condorcet winner, so dscore
(Ĉ,V̂ )

(c) ≤ 2. But

since c needs to gain one vote in (Ĉ, V̂ ) against each of a and d to defeat all
candidates by a strict majority, no single switch in the preference lists of V̂ can
make c a Condorcet winner, so dscore

(Ĉ,V̂ )
(c) ≥ 2. Thus dscore

(Ĉ,V̂ )
(c) =

2 = dscore(C,V )(c) + 1. Similarly, two switches in the fourth voter of V̂
(which simulates W ) gives the new preference list d > f > e > a > b >−→
T > c >

−→
S , and one switch in the eighth voter of V̂ (a normalizing voter)

yields d > c >
−→
T > e > f > a > b >

−→
S . By these three switches, d

has become a Condorcet winner, so dscore
(Ĉ,V̂ )

(d) ≤ 3. Again, since d needs

to gain one vote in (Ĉ, V̂ ) against each of c, e, and f to defeat all candidates
by a strict majority, no two switches in the preference lists of V̂ can make d
a Condorcet winner, so dscore

(Ĉ,V̂ )
(d) ≥ 3. Thus dscore

(Ĉ,V̂ )
(d) = 3 =

dscore(D,W )(d) + 1. Property 5 uses similar arguments.
As mentioned earlier, Dodgson’s system respects the Condorcet winner

when a Condorcet winner exists. Since the notion of Condorcet winner is
widely considered central and important, election systems with this property
have been intensely studied (see Fishburn [18]). Some other examples of elec-
tion systems respecting the notion of Condorcet winner are those of Young [42]
and Kemeny [29, 30]. In Young’s system, whoever can be made a Condorcet
winner by removing the smallest number of voters wins. Rothe, Spakowski,
and Vogel [36] proved that the winner problem for Young elections is Θp

2-
complete, via a reduction from the problem maximum-set-packing-compare.
Kemeny’s winners are defined via the notion of a “Kemeny consensus.” Each
ranking of the candidates (with ties allowed) that is “closest” to the given pref-
erence lists of the voters with respect to a certain distance function is a Ke-
meny consensus. A candidate is a winner in a Kemeny election if there exists
some Kemeny consensus in which that candidate is a winner (a highest-ranked
candidate, though possibly tied for that position). Hemaspaandra, Spakowski,
and Vogel [27] proved that the winner problem for Kemeny elections is Θp

2-
complete, via a reduction from the problem feedback-arc-set-member.

The three Θp
2-completeness results discussed above pinpoint the complexity

of the winner problems for Dodgson, Young, and Kemeny elections. Win-
ners in these three systems are not necessarily unique and these three winner
problems ask whether a given candidate is a winner. However, as mentioned
earlier, Hemaspaandra, Hemaspaandra, and Rothe [26] have shown that the
unique winner problems for Dodgson, Young, and Kemeny elections are Θp

2-
complete as well.
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Θp
2-completeness suggests that the relevant problem is far from being ef-

ficiently solvable, and there are many ways in which completeness for this
higher level of the polynomial hierarchy speaks more powerfully than would
completeness for its kid brother, NP [24]. Since checking whether a given
candidate has won should be in polynomial time in any system to be put into
actual use, these results show that Dodgson, Young, and Kemeny elections are
unlikely to be useful in practice. However, we note that winnership in “homo-
geneous” Young elections can indeed be tested in polynomial time via integer
linear programming [42], that Dwork et al. [12] have proposed an efficient
heuristic (called “local Kemenization”) regarding the Kemeny winner prob-
lem, and that Dodgson winners can be determined efficiently (a) for elections
with a bounded number of candidates or voters [3], (b) in Fishburn’s [18] ho-
mogeneous variant of Dodgson elections [36], and (c) with a guaranteed high
frequency of success under a simple greedy heuristic [28].

4. Complexity of Manipulation and Bribery: Scoring
Systems and Dichotomy Theorems

The previous section studied the complexity of winner problems for certain
election systems. We in this section turn to electoral problems that formalize
attempts to influence an election’s outcome for the case of a group of manip-
ulative voters (who strategically change their preference lists) and for the case
of having someone trying to bribe voters to change their preference lists. The
next section studies attempts to influence elections via altering their structure.
For a given election system, one would naturally most hope to find that it has
an easy winner problem but that it resists electoral manipulation, bribery, and
control.

Unfortunately, voters may often be tempted to cast their votes not according
to their true preferences but rather insincerely, based on strategic considera-
tions. Consider the following example. Our voting system is the Borda count,
a family of scoring protocols that for m candidates uses the scoring vector
α = (m− 1, m− 2, . . . , 0). We have three candidates, a, b, and c, and eleven
voters, where five voters have preference list a > b > c, five voters have pref-
erence list b > a > c, and one voter has preference list c > a > b. Under
the Borda count scoring procedure, candidate a receives 16 points, candidate
b receives 15 points, and candidate c receives 2 points. So a is the unique
winner. However, from the point of view of voters with (true) preference list
b > a > c, it might be tempting to report b > c > a instead. This way they
might actually make b win. Namely, if all voters whose sincere preference list
is b > a > c were to instead cast b > c > a as their votes (and all other votes
were to remain unchanged), then b would become the unique winner.
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Of course, we would like to have election systems that cannot be manipu-
lated. Unfortunately, a powerful line of work shows that all practically useful
systems operating on three or more candidates are open to manipulation. In
particular, the Gibbard–Satterthwaite Theorem [20, 37] shows that for each
nondictatorial election system that always selects exactly one winner and in
which the candidate set is of size at least three and in which for each candi-
date there is some set of votes that make that candidate a winner, there exists
some situation in which a single strategic voter has an incentive to vote insin-
cerely. The Duggan–Schwartz Theorem ([11], see also [39]) obtains an analog
of this for the model in which—as in this paper—the winner set is some subset
(possibly empty, possibly nonstrict) of the candidate set.

Although manipulation cannot be absolutely precluded in any reasonable
election system on three or more candidates, Bartholdi, Orlin, Tovey, and
Trick [2, 1] ingeniously proposed to at least make it computationally prohibi-
tive—e.g., NP-hard—for a manipulator (or in later work by others, a coalition
of manipulators) to figure out whether (and how) his/her/their vote(s) can be
modified so as to make a given candidate win. They found systems vulnerable
to manipulation (i.e., one can tell in polynomial time whether and how a given
candidate can be turned into a winner) and they found systems resistant to
manipulation (i.e., systems for which the manipulation problem is NP-hard).
This line of research has been very actively pursued ever since (see, as just
a few of the many examples on or related to this, [6, 7, 13, 22, 17, 34, 33]).
As mentioned in the introduction, complexity issues for electoral problems (in
particular, manipulation problems) are particularly important in these modern
times when preference aggregation is used in multi-agent systems, distributed
computing, and Internet applications.

A problem closely related to manipulation is bribery. In (constructive) ma-
nipulation, a group of manipulators wants to, by setting their own preference
lists, have a given candidate end up a winner. (Destructive manipulation, which
analogously seeks to have a given candidate end up a nonwinner, has also been
studied [6, 7]. This section deals with the constructive case only.) Bribery is
related to manipulation, except that now we look at elections from the point
of view of an outside agent who wants to make some candidate win and who
has some budget to bribe voters to change their votes. We now formally define
these problems for a given election system E .

Name: E-manipulation.

Given: A set C of candidates, a set V of nonmanipulative voters, a set S
of manipulative voters with V ∩ S = ∅, and a distinguished candidate
c ∈ C.

Question: Is there a way to set the preference lists of the voters in S such that,
under election system E , c is a winner of election (C, V ∪ S)?
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Instead of the plain E-manipulation problem presented above, we often are
interested in the E-weighted-manipulation problem in which voters, both in
V and S, have weights. (In this version of the problem, the set S is usually
represented simply as a list of weights of the manipulators.)

The bribery problem for election system E is defined similarly, except that
in bribery the set of voters who can change their preference lists is not part of
the input. Intuition might say that bribery thus is more difficult than manipu-
lation, but in fact that is not necessarily the case. We will see (and [17] has a
full treatment) that some bribery problems are NP-complete yet their manipu-
lation analogs are in P, some bribery problems are in P yet their manipulation
analogs are NP-complete, and sometimes both problems are equally complex.

Name: E-bribery.

Given: A set C of candidates, a set V of voters, a distinguished candidate
c ∈ C, and a nonnegative integer k.

Question: Is it possible to change the preference lists of at most k voters such
that, under election system E , c is a winner of election (C, V )?

Bribery also has its weighted version, E-weighted-bribery. In addition,
bribery can come in a few other natural flavors. In particular, in E-$bribery we
associate each voter with a price tag and interpret the integer k as a budget, and
we ask whether it is possible to make c a winner by changing the preference
lists of voters whose total price does not exceed k. If the voters have both price
tags and weights then we call the problem E-weighted-$bribery. Sometimes
we also put special restrictions on how to represent weights or prices, and will
indicate such restrictions by subscripts.

Throughout this section we will be interested only in manipulation and
bribery problems that ask about making the distinguished candidate a win-
ner (as opposed to a unique winner—though we mention in passing that, very
often, analogous results hold for both cases, see [17]).

In the remainder of this section we present the flavor of some recently ob-
tained results on manipulation and bribery. We point out that in this section
we discuss manipulation and bribery together as if they had been developed at
the same time, but this is not really the case. The complexity of manipulation
has long been studied, but the study of the complexity of bribery in elections
started very recently. Nonetheless, the relationships between these two fam-
ilies of problems are very interesting and natural, and we feel that it is more
instructive to present these results together.

One approach to the study of manipulation and bribery would be to study
these questions one election system at a time. Let us for a moment do that—by
focusing on one of the best-known and most popular election systems, plu-
rality-rule elections—though we will soon seek to wrap many of these results



390

about plurality-rule elections into a broader framework that allows insights into
hardness to span many systems. Recall from Sect. 2 that a plurality-rule elec-

tion with m candidates is described by the scoring vector (1,

m−1︷ ︸︸ ︷
0, . . . , 0), so only

the top candidate in each preference list matters.3 First note that, not surpris-
ingly, plurality-rule elections are easy to manipulate.

THEOREM 4.1 [2]. Plurality-manipulation and plurality-weighted-manipu-
lation are in P.

To prove this theorem, it is enough to observe that if the manipulators want
c to become a winner then they should vote for c. ([2] discusses only the
unweighted manipulation problem, but clearly weights do not change anything
here.)

Now that we know the complexity of manipulating plurality-rule elections,
it is natural to ask about the complexity of bribery within such elections. Does
the fact that in bribery one has to find some group of voters whose votes are to
be changed make the problem more difficult? The answer is no.

THEOREM 4.2 [17]. Plurality-bribery is in P.

A greedy algorithm works for plurality-bribery. If we want to make c a
winner by bribing at most k voters, we first test whether c is a winner already.
If so, we are done. Otherwise, if k > 0 then we pick one of the current winners,
bribe one of his or her voters to vote for c, decrease k by one (if k becomes
negative, this means that we used too many bribes and so c cannot be made a
winner), and loop back to testing whether c is a winner already.

This algorithm is very simple and natural. Unfortunately, it does not work
for the weighted case or for the case of priced voters. In the weighted case it is
not always clear whether one should first bribe the heaviest voter of some cur-
rent winner or just the globally heaviest voter who does not yet vote for c. In
the latter case we get the greatest additional vote weight for c, but in the former

3 There is one issue that one should be aware of when discussing families of scoring protocols such as
plurality, veto, or Borda count. Formally, each scoring protocol regards only a fixed, constant number of
candidates. When we refer to names such as plurality, veto, and Borda count we typically have in mind the
whole family of protocols that involves one incarnation of a particular scoring protocol for each candidate
set multiplicity. Thus when we discuss the complexity of plurality-rule elections here, we actually give
polynomial-time algorithms that are polynomial both in the number of voters and candidates.

In contrast, when we are discussing scoring protocols in general, we as is standard consider a partic-
ular scoring vector and thus a fixed number of candidates. This makes NP-completeness results stronger
and polynomial-time membership results weaker. However, we note in passing that Hemaspaandra and
Hemaspaandra [22, Sect. 3] provide a formalism and a dichotomy (i.e., complete classification) result for
manipulation under uniform families of scoring protocols.
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Figure 14.2. Plurality-rule elections where bribing the heaviest voters does not lead to optimal
bribery

case we gain some vote weight for c while simultaneously potentially decreas-
ing the total vote weight that c needs to become a winner. (We say “potentially
decrease” since if there are multiple winners then the total vote weight c needs
to win won’t change. But if we keep on bribing the voters of current winners,
this decrease will occur eventually.) Let us consider the following example (see
Fig. 14.2). We have candidates a, b, and c and six voters with weights 1, 2, 2,
2, 3, and 3. Both voters with weight 3 have a as their top candidate, and all the
others have b as their top candidate. Thus a receives a total vote weight of 6, b
receives a total vote weight of 7, and c receives no votes. If we bribe the two
heaviest voters—the two weight-3 voters preferring a—then c still loses to b.
However, if we bribe one weight-3 voter preferring a and one weight-2 voter
preferring b then c wins. Examples where bribing the heaviest voters leads
to an optimal bribery also exist. This hints that plurality-weighted-bribery
may require more than a simple greedy algorithm. Nonetheless, Faliszewski,
Hemaspaandra, and Hemaspaandra [17] obtained polynomial-time algorithms
for plurality-weighted-bribery and plurality-$bribery.

THEOREM 4.3 [17]. Plurality-weighted-bribery and plurality-$bribery are
in P.

Does this mean that bribery for plurality-rule elections is always in P?
Again the answer is no. If voters are weighted and have price tags then the
problem is NP-complete.

THEOREM 4.4 [17]. Plurality-weighted-$bribery is NP-complete.

This theorem follows by a fairly simple reduction from the partition prob-
lem, which is the problem that asks, given a multiset of k nonnegative integers,
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whether the multiset can be partitioned into two multisets that each sum to the
same value.

Theorems 4.1, 4.2, 4.3, and 4.4 capture the complexity of manipulation and
bribery for plurality-rule elections, showing in particular how the complex-
ity of bribery problems eventually jumps to NP-completeness as we make the
setting more and more challenging. However, one can pinpoint the jump’s
location even more precisely. We have been assuming as our default that
all the numbers within our problems (i.e., the weights and the prices) are
represented in binary. What if we represent these numbers in unary? Let
plurality-weightedunary-$bribery be the plurality-weighted-$bribery problem
with weights represented in unary and let plurality-weighted-$briberyunary be
the plurality-weighted-$bribery problem with prices encoded in unary. Using
a dynamic-programming approach, [17] showed that these problems are in P.
What this shows is that the plurality-weighted-$bribery’s NP-completeness
hangs by the slenderest of threads: Informally put, if either the weights or
prices are represented by fairly small numbers, the problem slips into P.

THEOREM 4.5 [17]. Plurality-weighted-$briberyunary and plurality-weight-
edunary-$bribery are in P.

The above results on manipulation and bribery for plurality-rule elections
capture the complexity of these problems in many important settings. How-
ever, as mentioned in the introduction, a far more satisfying goal is to find some
simple rule that determines for which election systems bribery and manipula-
tion problems are easy and for which election systems they are hard. Such
general results, which we are going to present now as Theorems 4.7 and 4.10
and Corollary 4.9, are known as dichotomy results.

Conitzer and Sandholm [6] observed that, for an election system E for which
the winner problem is in P, if the voters are unweighted and there are a fixed
number of candidates then E-manipulation is in P. This result holds because
a manipulator can easily evaluate all possible manipulations. The result yields
the following corollary (which, though not explicitly stated in [6], should nat-
urally be attributed to that paper). For a scoring vector α, let α-manipulation
(respectively, α-weighted-manipulation) denote the (weighted) manipulation
problem and let α-bribery (respectively, α-weighted-bribery and α-weighted-
$bribery) denote the (weighted and weighted-plus-priced) bribery problem
with respect to the scoring protocol that uses α.

COROLLARY 4.6 [6]. For each scoring vector α, α-manipulation is in P.

Can we obtain a sharp, easy-to-use classification result with respect to ma-
nipulation for scoring protocols with weighted voters? Conitzer, Lang, and
Sandholm [6, 7] took some first steps in this direction. In particular, they



A Richer Understanding of the Complexity of Election Systems 393

observed that for each m ≥ 3, (
m−1︷ ︸︸ ︷

1, . . . , 1, 0)-weighted-manipulation (this is
m-candidate veto) and (m − 1, m − 2, . . . , 1, 0)-weighted-manipulation (this
is m-candidate Borda count) are NP-complete. (Note that for two candi-
dates both the Borda count and veto are equivalent to plurality-rule elections,
since they all have the same scoring vector, (1, 0).) Although certainly in-
teresting, these results don’t reach the goal of classifying the complexity of
weighted manipulation for all scoring protocols. The problem of full classi-
fication was recently solved by Hemaspaandra and Hemaspaandra [22], who
obtained the following dichotomy theorem for scoring protocols with respect
to α-weighted-manipulation. (The 3-candidate case—and some other cases—
of the Hemaspaandra–Hemaspaandra manipulation dichotomy work has been
independently obtained by Procaccia and Rosenschein [33]. The 3-candidate
special case has also been independently obtained in an unpublished manu-
script of Conitzer, Sandholm, and Lang [8].)

THEOREM 4.7 [22]. Let α = (α1, . . . , αm) be a scoring vector. If α2 = · · · =
αm then α-weighted-manipulation is in P. In all other cases, this problem is
NP-complete.

This result clarifies a few things. In particular, it shows that plurality-rule
elections are in fact quite special among scoring protocols, and it shows why
scoring protocols tend to jump to NP-completeness at 3 candidates (in partic-
ular, the results on veto and Borda count mentioned in the previous paragraph
are special cases of Theorem 4.7). Due to space limitations, we omit the proof
of Theorem 4.7, which proceeds by a reduction from the partition problem.

Theorem 4.7 is a crisp, natural example of how one can obtain complete
characterization results (admittedly, with respect to scoring protocols) regard-
ing the computational complexity of manipulation. It would be great to be able
to translate this result from the context of manipulation to that of bribery, in
the hope of getting a complete characterization result for bribery. A natural
first step would be an attempt to prove, for example, that all bribery problems
for each given election system are at least as hard as the respective manip-
ulation problems. Unfortunately, if we want to capture all possible election
systems then such a result is impossible. For example, for approval voting the
manipulation problem is in P (all manipulators simply approve of just the can-
didate they are seeking to make win, and no one else), but bribery for approval
voting is NP-complete [17]. On the other hand, [17] also constructs an (arti-
ficial) election system in which the opposite happens: The bribery problem is
in P and the manipulation problem is NP-complete. However, if we stay in
the realm of scoring protocols then some extremely useful translations from
manipulation to bribery are possible.
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First, one can observe that if voters have price tags then bribery is just a
generalized manipulation. (As an easy exercise, the reader is encouraged to
show that this holds.) The following theorem is a slightly weakened version of
a result from [17].

THEOREM 4.8 [17]. For each scoring vector α, α-weighted-manipulation is
≤p

m-reducible to α-weighted-$bribery.

Taking Theorems 4.7 and 4.8 together and by inspecting the reduction that
underlies the proof of Theorem 4.4, we can obtain the following corollary.

COROLLARY 4.9 [17]. Let α = (α1, . . . , αm) be a scoring vector. If α1 =
· · · = αm then α-weighted-$bribery is in P. In all other cases, this problem
is NP-complete.

Theorem 4.8 is not entirely satisfactory. Although it translates results on
manipulation problems to results on bribery problems, this translation comes at
the cost of introducing price tags for voters. In fact, a much stronger translation
can be obtained. In particular, using the proof of Theorem 4.7, with much work
and problem-reduction trickery, the following dichotomy theorem for weighted
bribery with respect to scoring protocols can be shown.

THEOREM 4.10 [17]. Let α = (α1, . . . , αm) be a scoring vector. If α2 =
· · · = αm then α-weighted-bribery is in P. In all other cases, this problem is
NP-complete.

Note that this theorem essentially replaces the word “manipulation” in The-
orem 4.7 with the word “bribery.” However, achieving this replacement is
far from trivial. The proof follows by first observing that the reduction used
in [22] can be tweaked to, instead of mapping from the partition problem,
map from a restricted version of the partition problem that in effect causes
the reduction to produce instances of manipulation problems with certain very
special properties. These properties ensure that instances of these manipulation
problems can, almost verbatim, be interpreted as instances of the analogous
bribery problems.

The above discussion presents results that interrelate bribery and manipu-
lation, and we have seen that doing so helps us obtain broad dichotomy re-
sults for bribery. We conclude by mentioning some open problems regarding
bribery and manipulation.

One open direction is to seek dichotomy results whose range of applicabil-
ity is broader than the class of scoring protocols. As mentioned earlier, [22,
Sect. 3] already handles uniform families of scoring protocols. However, one
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may hope for even more broadly applicable results. A second open direc-
tion is to consider approximation algorithms. This makes sense, for example
in the case of bribing priced voters. We would certainly like to know what
the cheapest way is of making our preferred candidate a winner by bribery,
but we would also be quite satisfied with a cost that—though not the best—is
close to optimal. Are there approximation algorithms for plurality-weighted-
$bribery or α-weighted-$bribery, where α is some scoring vector? If there are
such approximation algorithms for these problems then perhaps there even are
polynomial-time approximation schemes. Ideally, we would like to obtain a
dichotomy result that crisply classifies each scoring protocol as having or not
having a polynomial-time approximation scheme. We hope this section will
serve as an invitation to the reader to tackle these open problems.

5. Complexity of Control: Making Someone Win or
Keeping Someone From Winning

The previous section covered manipulation and bribery. Although manipu-
lation and bribery are somewhat different issues, they both have the property
that only the voted preferences are changed. The structural properties of the
election are not changed.

In real life, however, many attempts to influence elections work by seek-
ing to change the structural properties of elections. By structural changes, we
refer to such actions as adding candidates, deleting candidates, adding voters,
deleting voters, partitioning candidates, and partitioning voters. The term con-
trol is used to describe issues related to influencing an election’s outcome by
changing its structure.

We mention in passing that many real-world attempts to influence elections
are attempts to simultaneously influence the structure of an election and influ-
ence the way voters vote. For example, when an advertisement for candidate c
appears on television, it may be simultaneously trying to get voters who most
favor d to switch to c, and to get people who already most prefer c but weren’t
planning on voting to make the effort to go and vote. However, research papers
on complexity typically study manipulation and control issues separately. The
study of bribery is somewhat of an exception, as bribery, though akin to manip-
ulation, is an atypically flexible form of manipulation, due to the manipulated
voters not being fixed as part of the problem input. For this reason, to many
people (including the authors) bribery feels somewhat control-like in addition
to being very manipulation-like.

For reasons of space, this section will cover control, but with very little
stress on formality or even on stating results individually, and instead will sim-
ply present an informal discussion about control. We will particularly try to
point out what the real-life inspirations are for each type of control. We should
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warn the reader that in doing so we are taking liberties. For example, we
will use as examples some recent American presidential elections. However,
in reality, American presidential elections operate under a subtle and obscure
system (deeply related, in fact, to partitioning of voters) known as the Electoral
College, rather than by direct election by plurality rule. In our informal exam-
ples, we will often willfully ignore this and speak as if a presidential election
were simply a big plurality-rule election.

We will often discuss both the constructive case—seeking to make a pre-
ferred candidate (uniquely) win—and the destructive case—keeping a despised
candidate from being a (unique) winner. The complexity of constructive con-
trol was first studied in a seminal paper of Bartholdi, Tovey, and Trick [4].
The study of destructive control was initiated much more recently, namely,
in work of Hemaspaandra, Hemaspaandra, and Rothe [25]. We mentioned in
the introduction that in some subareas of electoral research the focus is on
winning and in some the focus is on being the unique winner. For the study
of control—in both the constructive and destructive cases—the focus has al-
ways been on the case of making a candidate be, or not be, a unique win-
ner. Thus, throughout this section, when speaking of our problems or referring
to results, when we say (and for brevity and grace we will always just say)
winner/wins/winning/etc., we always implicitly mean unique winner/uniquely
wins/uniquely winning/etc. (the only exception regards the paragraph below on
tie-handling rules for subelections, since that directly addresses what happens
in subelections when there are tied winners). It is very important to keep this
shorthand in mind, since in this section when we say things such as “you can
tell whether a despised candidate can be precluded from winning,” we always
mean “you can tell whether a despised candidate can be precluded from being
the unique winner (namely, by either not being a winner at all or by being part
of a group of two or more winners).”

Let us start with the issue of control by adding candidates. Formally viewed
as a set (as all these problems are when seeking rigorous results), this becomes,
with respect to some election system E , the sets E-constructive-control-by-
adding-candidates and E-destructive-control-by-adding-candidates. The for-
mer is defined as follows.

Name: E-constructive-control-by-adding-candidates.

Given: A set C of original candidates, a pool D of potential additional can-
didates, a distinguished candidate c ∈ C, and a set V of voters with
preferences over C ∪D.

Question: Is there a set D′ ⊆ D such that, under election system E , c ∈ C is
a winner of the election having candidates C ∪D′ with the voters being
V with the preferences of V restricted to C ∪D′?
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That is, can we add some of the additional candidates and by doing so make
c a winner? As a real-life motivating example, regarding the 2000 American
presidential election, if one wanted George W. Bush to win (and Ralph Nader
was not at that time running) one might have chosen to add the candidate Ralph
Nader if one believed that would split voters away from Al Gore and achieve
one’s desired outcome. E-destructive-control-by-adding-candidates is defined
with the identical “Given” field, but its question regards, naturally, not trying
to make a preferred candidate win but rather making a despised candidate not
win:

Name: E-destructive-control-by-adding-candidates.

Given: A set C of original candidates, a pool D of potential additional can-
didates, a distinguished candidate c ∈ C, and a set V of voters with
preferences over C ∪D.

Question: Is there a set D′ ⊆ D such that, under election system E , c ∈ C
is not a winner of the election having candidates C ∪D′ with the voters
being V with the preferences of V restricted to C ∪D′?

The same real-life motivating example works here, except shifted to the case
of focusing on an organization who despised Gore and wanted simply to see
him not win.

From here on, we often won’t formally describe the problems as sets, but
will leave the descriptions very informal (even though in our results table we
will refer to the formal sets). Interested readers can find the detailed, formal
descriptions in [4, 25]. We will also, until the results table, stop mentioning E
explicitly.

Just as one can study control by adding candidates, one can similarly study
control by deleting candidates. The input is C, V , c ∈ C, and a natural number
k, and in the constructive case one wants to know whether by deleting at most
k candidates one can make c a winner, and in the destructive case one wants
to know whether by deleting at most k candidates (with the deletion of c for-
bidden) one can ensure that c is not a winner. The same motivating example as
above works here. For example, for the constructive case, in both the 2000 and
2004 American presidential elections, some people who wanted Al Gore or
John Kerry to win sought to convince/urge/pressure Ralph Nader to withdraw
from the race. (Regarding the destructive case, many people whose view was
“Anyone but Bush” also naturally wanted Ralph Nader to withdraw.)

Turning to the problems of control by adding voters and control by delet-
ing voters (typically treated as separate, though in the real world these issues
interact), in control by adding voters (respectively, control by deleting voters),
one asks whether by adding at most k from a pool of additional voters (respec-
tively, by removing at most k of the initial voters) a given election will make
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c a winner (constructive case) or not a winner (destructive case). A real-world
motivation here for considering the case of adding voters is so-called get-out-
the-vote efforts. A political party, on the day of an election, might send vans
to bring to the polls voters who the party believes favor its candidate but who
might without the vans not make the effort to show up and vote. Or a political
party might air ads designed to energize some part of its base and get them
to decide to show up and vote (e.g., by putting an ad in CACM saying “That
other party’s candidate, Marty Meanie, if elected will put a tax on every line
of code, with a surtax on comment lines. Only by voting can you help prevent
that terrible future!”). One real-world motivation for having the case of delet-
ing voters is less openly admitted by parties and groups today, but is widely
viewed as occurring: vote suppression efforts. A party might run ads designed
to sap the will to get-out-to-vote of the base of its key opponent. Or if one were
a media outlet favoring Gore in 2000 and one went on the air and called Florida
for Gore while voting was still going on in the more conservative Panhandle
part of Florida, that might lead voters in that part of the state not to show up
and cast their (more conservative) votes, since they would believe that the state
was already a lost cause (here, we are taking into account the Electoral College
structure of that election).

Control by voter addition/deletion is also, in a wider view of affairs, re-
lated to disenfranchisement—that is, it is related to the issue of which broad
groups are, under law, allowed/not-allowed to vote and what hurdles (some-
times via requirements and sometimes via intimidation) are used to in effect
prevent broad groups from voting. Using American history for examples, some
cases—ranging in modern-day acceptance from the overwhelmingly accepted
to the overwhelmingly deplored—of direct exclusions under law include the
facts that (today and in the past) children are not allowed to vote, that (to-
day and in the past) resident aliens are not allowed to vote in most elections,
that (today and in the past) felons lose their federal vote for life, that (un-
til 1961) citizens living in the US seat of government weren’t represented
in the Electoral College (and so didn’t influence presidential elections), and
that (in the past) women and slaves—and in many Southern states all African-
Americans—were not allowed to vote. Some American historical cases of
exclusion-in-effect via requirements include poll taxes and literacy tests.

For reasons of space, we won’t go into detail in defining the various parti-
tion schemes, but we mention that partition attempts regarding both voters and
candidates occur often in real life. In these schemes, we have more than one
voting round, having to do with partitions of the candidates or the voters. We
give only examples of the latter, as those are particularly natural. As a first
such example, every time an American state legislature does a Congressional
redistricting, it may be a type of prepackaged attempt to partition by voters: In
a typical redistricting, the dominant party tries to make sure that in as many
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districts as possible it has enough supporters to hold the seat but not so many
supporters as to waste their votes by winning that seat with too much support.
(The side that doesn’t control the legislature usually refers to such redistricting
via the pejorative term “gerrymandering.”) As another example of partition by
voters, in some American states in elections for various state-wide officials—
say, for their US senator—candidates are chosen by separate party primaries in
which only members of each given party vote. Then only the winners of those
primaries participate in the final election, in which all the registered voters can
vote (to make this example work, let us assume that in this state there are no
independent voters).

When dealing with partition schemes, one must have some rule as to what
happens when there is a tie in a subelection. In the results table later, fol-
lowing [25] which first studied these tie-handling models in this context, we
use TP (“ties promote”) to indicate the rule that all people who tie as winners
move forward from subelections, and we use TE (“ties eliminate”) to indicate
the rule that only unique winners of subelections move forward. Note that
the tie-handling rules affect just the subelections, not the final election round
of a given partition system (which as is conventional in the study of electoral
control always focuses on unique winnership).

This concludes our presentation of the standard types of electoral control.
With each existing for both the constructive case and the destructive case, the
standard types of control are adding candidates, deleting candidates, adding
voters, deleting voters, and, though we did not discuss them in any detail here,
three types of partition schemes with each of those three occurring in both the
TP and the TE models. So, in brief, there are ten standard types of constructive
control, and each of those ten also has a destructive control analog. Each of
these twenty control problems is (for each fixed election rule) simply a set. And
that set is either computationally easy (meaning it is easy given an instance to
decide whether the desired outcome can be achieved using that type of control)
or that set is computationally hard (meaning it is hard—say, NP-hard—given
an instance to decide whether the desired outcome can be achieved using that
type of control).

Indeed, the study of the complexity of electoral control looks at these issues
in almost exactly those terms, but with one twist. That twist regards the easy
problems. In particular, there are two very different ways a problem might be
easy. Consider an election system and a particular type of control for which
the type of control at issue can never change someone from not being a winner
to being a winner within that election system. In that case, the formal control
problem (assuming the winner problem—recall that by that we in this section
implicitly mean the unique winner problem—for that election system is in P)
of course is in P, but for a very uninteresting reason. In that case, we say the
problem is immune to constructive control: The given type of control can never
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Plurality Condorcet Approval
Control by Construct. Destruct. Construct. Destruct. Construct. Destruct.
Adding-candidates R R I V I V
Deleting-candidates R R V I V I
Partition- TE: R TE: R V I TE: V TE: I
of-candidates TP: R TP: R TP: I TP: I
Run-off-partition- TE: R TE: R V I TE: V TE: I
of-candidates TP: R TP: R TP: I TP: I
Adding-voters V V R V R V
Deleting-voters V V R V R V
Partition- TE: V TE: V R V TE: R TE: V
of-voters TP: R TP: R TP: R TP: V

Table 14.1. Results on constructive and destructive control. The problem’s name is implicitly
described by the table, e.g., the top right “V” refers to the case approval-destructive-control-
by-adding-candidates. Results due to Bartholdi, Tovey, and Trick [4] are italicized. Results
due to Hemaspaandra, Hemaspaandra, and Rothe [25] are in boldface. Key: I = immune, R =
resistant, V = vulnerable, TE = ties-eliminate, TP = ties-promote

shift one’s preferred candidate from not winning to winning. Immunity to de-
structive control is defined analogously: The given type of control can never
shift one’s despised candidate from winning to not winning. If a problem is
not immune and is in P, then we say it is vulnerable. So when vulnerabil-
ity holds for a type of control, then that type of control (since immunity does
not hold) sometimes actually makes a profound difference, and in polynomial
time we can tell whether a given instance is one where the desired construc-
tive or destructive electoral outcome can be achieved. Although knowing that
there exists some way to achieve the desired outcome is different from know-
ing some such way, it turns out that for every vulnerability result stated in our
results table, Table 14.1, there is an algorithm that not just determines when
control can be exerted, but that also gives the exact control actions to take in
order to exert the desired control. Finally, if a control problem is not immune
and is NP-hard, then we say it is resistant to control. Although immunity is
the most desirable case (at least if one is not seeking to exert control, but rather
is an election-system designer seeking to frustrate those wishing to influence
outcomes via control), resistance is also a very desirable case—it means that
the general problem of determining whether a given election instance can be
controlled is computationally intractable (NP-hard). Although not all NP-hard
problems are NP-complete, for every resistance result in our results table an
NP upper bound is obvious, so each resistance result of the table in fact repre-
sents an NP-completeness claim. (We mention in passing that in the literature
election systems that are not immune to a given type of control—that are either
vulnerable or resistant to it—are said to be susceptible to that type of control.)
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We said earlier that we would not stress results, but it certainly makes sense
to see what is known. Table 14.1, which is taken from [25], summarizes re-
sults on constructive and destructive control. These results are due to Bartholdi,
Tovey, and Trick [4] and Hemaspaandra, Hemaspaandra, and Rothe [25], and
are about just the collection of election systems that those papers studied. Re-
garding open directions, we urge the reader to study the control problems of
other election systems and to seek to find in a broader way what it is that makes
some control problems computationally easy and some computationally hard.

From Table 14.1, some interesting observations are clear. There are set-
tings immune to constructive control that are vulnerable to destructive control.
Condorcet elections with respect to control by adding candidates is one such
example. Perhaps somewhat more surprisingly, there also are settings immune
to destructive control that are vulnerable to constructive control. Approval
elections with respect to control by deleting candidates are one such example.
Quite interestingly, there are settings vulnerable to destructive control yet re-
sistant to constructive control. In these, you may not be able to efficiently tell
whether your favorite candidate can be made to win, but you can efficiently
tell whether a despised candidate can be precluded from winning. Condorcet
elections with respect to control by adding voters is one such example. Also
very interesting is that tie-handling rules can make a tremendous difference.
For example, for plurality-rule elections with respect to control by partition of
voters, vulnerability holds in the “ties eliminate” model but resistance holds in
the “ties promote” model.

Finally, the most glaring observation is that for not one of the systems is
it the case that resistance-or-immunity to control holds under all the twenty
studied control attacks (ten constructive and ten destructive). Each system
studied has good properties (immunity or resistance) under some attacks, but
has bad properties (is vulnerable) under other attacks. In fact, at the time the
table’s work on control was completed (early 2005), no system was proven
to be immune-or-resistant to all twenty types of control (or even to the ten
constructive types, or to the ten destructive types). However, recently, work of
Hemaspaandra, Hemaspaandra, and Rothe [26] has shown how to “hybridize”
collections of elections in a way such that the hybrid election has a polynomial-
time winner problem if all its constituent systems have polynomial-time winner
problems, yet the hybrid system is resistant to every one of the twenty types of
control to which one or more of its constituent systems is resistant. Simply
put, the hybridization scheme combines strengths without adding weaknesses.
From that work it now is known that there is an election system (admittedly, an
artificial one, since it is built by hybridizing enough systems—some of which
had to be constructed just for that purpose—to have, between them, all the right
underlying resistances) that is resistant to all twenty standard types of electoral
control yet has a polynomial-time winner problem.
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6. Conclusions

This chapter has surveyed some recent progress in the complexity of elec-
tions, focusing primarily on providing an overview of some of the results ob-
tained to date in an ongoing collaborative research project between Düsseldorf
and Rochester. The authors firmly believe that the study of elections is a show-
case area where interests come together spanning such CS specialties as theory,
systems, and AI and such other fields as economics, business, operations re-
search, and political science. And within the study of elections, the central
importance of complexity/algorithmic issues has emerged more clearly with
each passing year. Complexity offers a nonclassical yet powerful tool to frus-
trate those who seek to manipulate or control electoral outcomes. Nonetheless,
much remains to be learned. In this chapter’s sections, we have tried to point
out in passing some of the questions that seem to us the most interesting and
urgent. We commend these questions, and this entire area of study, to all read-
ers and most especially to those younger readers seeking a research area that is
fresh, promising, enjoyable, theoretically well-grounded, and well-connected
to societal applications.
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Note Added in Proof

The final, accepted version of this chapter was sent in in the summer of
2006. Since then the intense research activity on the complexity of elections—
activity that is in part described in this chapter—has continued, and the com-
putational social choice community has if anything become even more vibrant
and active. The 2006 COMSOC workshop mentioned in the future tense in this
article has by now occurred, as has the 2008 COMSOC workshop, and both
were great successes. This present, brief note (added while proofreading the
page proofs) is not the right place to attempt to add new references or cover the
most recent activity, but we do take this opportunity to mention briefly those
cases we know of in which more recent, combined, or successor versions fol-
lowed papers in the current references. In particular: from [6–8], a paper in
Journal of the ACM, V. 54, 2007; from [22], a paper in Journal of Computer
and System Sciences, V. 73, 2007; from [25], a paper in Artificial Intelligence,
V. 171, 2007; from [28], a paper in Journal of Heuristics (to appear); from
[33], a paper in Journal of Artificial Intelligence Research, V. 28, 2007; and
from [34], a paper in Journal of Artificial Intelligence Research, V. 33, 2008.
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Abstract Classic bin packing seeks to pack a given set of items of possibly varying sizes
into a minimum number of identical sized bins. A number of approximation
algorithms have been proposed for this NP-hard problem for both the on-line
and off-line cases. In this chapter we discuss fully dynamic bin packing, where
items may arrive (Insert) and depart (Delete) dynamically. In accordance with
standard practice for fully dynamic algorithms, it is assumed that the packing
may be arbitrarily rearranged to accommodate arriving and departing items. The
goal is to maintain an approximately optimal solution of provably high qual-
ity in a total amount of time comparable to that used by an off-line algorithm
delivering a solution of the same quality.

This chapter focuses on three results relative to fully dynamic bin packing.
The first shows that imposing a fixed constant upper bound on the number of
items that can be moved between bins per Insert/Delete operation forces the
competitive ratio to be at least 4/3, regardless of the running time allowed per
Insert/Delete. The second is a fully dynamic approximation algorithm for bin
packing that is 5

4
-competitive and that requires Θ(log n) time per Insert/Delete

of an item. This competitive ratio of 5
4

is nearly as good as that of the best
practical off-line algorithms. A critical component of this algorithm is that very
small items will be bundled together and moved as a single unit. Finally, we
show for partially dynamic bin packing (Inserts only) and any ε > 0, there is an
algorithm with competitive ratio 1+ ε that runs amortized polylogarithmic time.
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1. Introduction

In (off-line) bin packing, a list L = (a1, a2, . . . , an) of items of size size(ai)
in the interval (0, 1] is given. The goal is to find the minimum k such that all
of the items ai can be packed into k unit-size bins.

Bin packing was shown to be NP-complete in [20]. Since that time, bin
packing has been a very active area of research in the algorithms and operations
research communities (see [4]). Despite its advanced age, bin packing has
retained its appeal (more than two decades ago, bin packing was labeled “The
Problem That Wouldn’t Go Away” [4]) by being a fertile ground for the study
of approximation algorithms. In the context of bin packing, such algorithms
aim to produce a packing that is provably close to the optimal in terms of the
number of bins that are utilized.

In this chapter, we study a variation of bin packing known as fully dynamic
bin packing where:

items may arrive to, and depart from, the packing dynamically. These
are specified using the operations Insert and Delete.

items may be moved from bin to bin as the packing is adjusted to ac-
commodate arriving and departing items.

In general, fully dynamic algorithms are aimed at situations in which the
problem instance is changing over time, and incorporate these incremental
changes without any knowledge of the existence and nature of future changes.
Related works on on-line and dynamic bin packing differ from fully dynamic
bin packing in that either they do not allow an item to be moved from a bin (of
course, this has a predictably bad effect on the achievable quality of the pack-
ing), or they restrict themselves to dynamic arrivals (i.e., Inserts) of items—
there are no departures (i.e., Deletes).

This chapter is devoted to fully dynamic approximation algorithms for bin
packing with the goal of being “competitive” with existing off-line algorithms.
That is, the quality of the approximation produced by the fully dynamic ap-
proximation algorithm should be as good as that produced by the off-line al-
gorithms. Further, the running time of the fully dynamic algorithm per In-
sert/Delete operation should be small.

1.1 Background—Off-Line and On-Line Bin Packing

In this section we provide a brief overview of relevant results for approxi-
mation algorithms for off-line and on-line bin packing. As noted earlier, the
goal of an approximation algorithm is to produce a solution that is “close” to
an optimal solution. Approximation algorithms are compared using bounds on
the quality of a solution produced by the algorithm. Specifically, the quality
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of a solution produced by a bin packing algorithm A is its competitive ratio
R(A) defined as:

R(A) = lim
n→∞

sup
OPT (L)=n

A(L)
OPT (L)

,

where A(L) and OPT (L) denote, respectively, the number of bins used by A
to pack list L, and some optimal packing of L. Here, we say that A is R(A)-
competitive.

In the domain of off-line algorithms, the value of R has been successively
improved [4, 25, 8, 17]. Indeed, it has been shown that there is a polynomial
time approximation scheme (PTAS [10]). Specifically, for any value of R > 1,
there is an O(n log n) time algorithm with a competitive ratio of R [19]. Un-
fortunately, the running times for these algorithms involve exceedingly large
constants (actually, these “constants” depend on how close R is to 1). Among
algorithms of practical importance, the best result is an O(n log n) algorithm
for which R is 71

60 [17].
With respect to on-line bin packing, the problem has been defined strictly

in terms of arrivals (Inserts)—items never depart from the packing (i.e., there
are no Deletes). Further, most on-line algorithms have operated under the re-
striction that each item must be packed into some bin, and it should remain in
that bin permanently. In this context, it is known that for every on-line linear
time algorithm A, R(A) ≥ 1.536 . . . [4]. Further, the upper bound has been
improved over the years to roughly 1.6 [15, 16, 18, 21, 23].

The work in [9] focused on a variant of on-line bin packing, again supporting
Inserts only, in which each item may be moved only a constant number of times
from one bin to another. Two algorithms were provided: One with a linear
running time (linear in n, the number of Inserts, which is also the number of
items) and a competitive ratio of 1.5, and one with anO(n log n) running time
and a competitive ratio of 4

3 .
A related version of on-line bin packing is found in [6] where items may

be moved to accommodate an arriving item, but with the limitation that the
total size of the items that are moved in response to this arrival cannot exceed
a specified constant (the migration factor) times the size of the arriving item.
A robust APTAS (asymptotic polynomial time approximation scheme [7, 19])
for this problem is given in [6]. The use of a bounded migration factor was
introduced by [24] in the context of machine scheduling.

Another notion that is related to, but distinct from, fully dynamic bin pack-
ing is dynamic bin packing of [3], where each item is associated not only with
its size, but also with an arrival time and a departure time (interpreted in the
natural way). Here items cannot be moved once they are assigned to some bin
other than their permanent removal at their departure time. It was shown in
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[3] that for any such algorithm A, R(A) ≥ 2.5, and that for their Dynamic FF
(First Fit), 2.770 ≤ R(FF ) ≤ 2.898.

1.2 The Performance of Fully Dynamic Approximation
Algorithms

In this section we discuss the notions of competitiveness and running time
in the context of developing fully dynamic approximation algorithms.

We begin by noting that with respect to the definition of competitive ratio,
there is no need to make a distinction between fully dynamic and off-line algo-
rithms. In each case, these measures reflect the size of the packings produced
by the algorithm relative to the size of optimal packings.

With respect to running times, we say that a fully dynamic approximation
algorithm B for bin packing has running time O(f(n)) if the time taken by B
to process an Insert/Delete to an instance of n items is O(f(n)). If O(f(n))
is a worst case bound on the running time required by B to process an In-
sert/Delete, then B is f(n)-uniform. If O(f(n)) is an amortized bound on
the running time required by B to process each Insert/Delete, while the worst
case bound required by B is ω(f(n)),1 then B is f(n)-amortized. Through-
out this chapter, we will abbreviate the above and instead refer to uniform and
amortized algorithms, respectively.

The general goal in developing fully dynamic approximation algorithms for
bin packing is to design algorithms with competitive ratios close to those of
the best off-line algorithms such that the Insert/Delete operations are processed
quickly. Of particular interest are algorithms that are, in a sense, the best pos-
sible relative to the existing off-line methods. For bin packing the best known
off-line algorithms require time Θ(n log n). Thus, a fully dynamic algorithm
that runs in time Θ(log n) per Insert/Delete is, in that sense, the best possible.
Indeed, the fully dynamic algorithm MMP that we describe in section 3 runs
in precisely this time per Insert/Delete.

In the process of handling a sequence of Insert/Delete operations, fully
dynamic bin packing algorithms are not allowed to “postpone” handling the
changes in the packing affected by those operations. Rather, those changes
must be made immediately. Thus, fully dynamic bin packing algorithms are
required to handle “lookup” queries in addition to the Insert/Delete operations.
These lookup queries may be arbitrarily interspersed in the Insert/Delete se-
quence and may be either of the following:

size—returns in O(1) time the number of bins in the current packing;

1 ω-notation is defined as follows: f(n) ∈ ω(g(n)) if and only if g(n) ∈ o(f(n)) [5].
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packing—returns a description of the packing in the form of a list of
pairs (x, Bin(x)), where Bin(x) denotes the bin into which an item x is
packed. The running time is required to be linear in the number of items
in the current instance.

1.3 The Main Results

In this chapter we describe the three most significant results on fully dy-
namic bin packing:

A proof showing that if A is a fully dynamic algorithm for bin packing
that moves no more than a fixed constant number of items (worst-case
or amortized) per Insert/Delete operation, then the competitive ratio of
A is at least 4/3.

A fully dynamic algorithm MMP that is 5
4 -competitive and requires

Θ(log n) time per Insert/Delete operation. This algorithm uses a no-
tion of “bundling” in which a set of very small items can be moved in
a single operation so as to avoid the lower bound of 4/3 from the first
result. Relative to the best off-line algorithms, MMP has a running time
that is the best possible, and has a competitive ratio that is nearly the
equal of the best practical off-line algorithms. This is a surprising result
even in terms of off-line bin packing, because it is the first practical bin
packing algorithm having a competitive ratio of less than 4

3 that does not
rely on packing the items in sorted order. That the algorithm is fully
dynamic is all the more remarkable.

A polynomial time approximation scheme (PTAS) for partially dynamic
bin packing where each Insert is processed in amortized polylogarithmic
time. Partially dynamic bin packing is identical to fully dynamic bin
packing except that there are no Deletes.

The remainder of the chapter is organized as follows. In Sect. 2 we prove
the results relating to moving no more than a constant number of items and
the 4/3 lower bound on the competitive ratio. In Sect. 3 we outline the main
ideas behind the MMP algorithm. In Sect. 4 we describe the PTAS for partially
dynamic bin packing. Finally, in Sect. 5 there are some concluding remarks.

2. Moving a Constant Number of Items Per Operation

A natural approach to developing a fully dynamic bin packing algorithm that
runs in a small amount of time per Insert/Delete operation is to limit the num-
ber of items that are moved from one bin to another in the processing of a single
such operation. Particularly appealing is to move at most a constant number of
items per Insert/Delete. However, in this section we show that imposing such a
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strong restriction limits the achievable competitive ratio. Specifically we prove
the following from [12]:

THEOREM 2.1. For any positive integer c, if A is a fully dynamic algorithm
for bin packing that moves no more than c items (worst-case or amortized) per
Insert/Delete operation, then the competitive ratio of A is at least 4/3.

Proof. Consider a constant c and an algorithm A meeting the conditions of the
theorem. We establish that there are arbitrarily large lists L, and suitably cho-
sen sequences of Inserts and Deletes of elements of L, for which A produces
packings that utilize at least 4/3 of the optimal number of bins.

We begin by defining B-items as items with size greater than 1/2 and B-bins
as bins containing a B-item.

Informally, a list that “defeats” A (that is, a list on which A will produce a
packing of at least 4/3 the optimal number of bins) is constructed as follows:

1. Pick an arbitrary (large) integer M ,

2. Take M B-items of size 1/2 + ε and construct M collections of addi-
tional items, where each collection contains a huge number (this number
is a function of M , ε, and, of course, c) of exceedingly small items of
size a, whose cumulative size is precisely 1/2− ε,

3. Let L be a list containing all of the items mentioned in step (2) and
assume that A packs L,

4. Observe the packing produced by A and suppose that A uses fewer than
4/3 of the optimal number. Then, we delete all of the B-items from
L and, consequently, from the packing. However, because prior to these
deletions the B-bins contain a huge number of the items of size a and be-
cause A only moves at most a constant number of bins per Insert/Delete,
it will be impossible for A to consolidate these items in fewer than 4/3
the optimal number of bins for the resulting set of items.

A formal specification of the construction is given below. Note that the
construction of L is aimed at defeating any algorithm A on the basis of A’s
inability to move more than c items across bins. Intuitively, A will fail not
because it is too slow but because it is restricted in its movements, e.g., there is
a fixed constant bound on the number of items that can be moved across bins
within each Insert/Delete operation.

In the remainder of this section we provide a formal proof of the theorem.
We begin by selecting an arbitrarily large positive integer M divisible by 6, and
then select an arbitrarily small positive number ε such that ε < 1/M . Finally,
we let a be a (small) positive number subject to the following three restrictions:
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Figure 15.1. Two varieties of B-bins in the packing of L produced by A

1. 1/2−ε
a is an integer

2. a <
3

2M
−ε

cM

3. a < ε
cM

Now consider the list

L = ( 1/2 + ε, . . . , 1/2 + ε︸ ︷︷ ︸
M

, a, . . . , a︸ ︷︷ ︸
M

1/2−ε
a

).

Clearly, because 1/2−ε
a is an integer, an optimal packing of L requires pre-

cisely M bins, where each bin contains a B-item of size 1/2 + ε and 1/2−ε
a

items of size a. Note that all of the M bins in an optimal packing contain items
totaling precisely 1.

Now consider the packing produced by A applied to a sequence of Insert
operations—one for each item in L. In that packing we distinguish between
two varieties of B-bins: (1) bins that, in addition to a B-item, contain at most
cM items of size a; and (2) bins that, in addition to a B-item, contain more
than cM items of size a. We refer to these as variety 1 B-bins and variety 2
B-bins, respectively (Fig. 15.1).

Note that the value of M was chosen so that any sequence of M changes to
the packing via Inserts/Deletes of items will not result in the removal of all of
the items of size a from any of the bins of variety 2, both in the case that the
accounting of the number of items that A moves per operation is uniform and
in the amortized case.
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Now consider any variety 1 B-bin and note that the minimum gap size g
(i.e., the unused portion of the bin) of such a bin is:

g = 1− (1/2 + ε + cMa) > 1/2− ε− cM
3

2M − ε

cM
=

1− 3/M

2
.

Let the number of variety 1 B-bins in the packing produced by A be denoted
by α, the number of variety 2 B-bins be denoted by β (note that α + β = M ),
and the number of non-B-bins be denoted by γ. We consider two cases.

Case 1: α ≥ 2
3M . Due to the choice of the value of a (a <

3
2M

−ε

cM ), the
cumulative size of all the gaps in all the variety 1 B-bins is at least:

αg >
2
3
M

1− 3/M

2
= M/3− 1.

Thus, even under the assumption that all of the variety 2 B-bins in the
packing are full, there are still at least M/3 non-B-bins in the packing,
i.e., γ ≥ M/3.

Case 2: α < 2
3M . We know that β > M/3. Note that the cumulative size of

all the non-B-items packed into a bin of variety 2 is at most 1/2− ε.

Beginning with the packing produced by A when applied to the sequence
of Insert operations corresponding to the items in L, the algorithm A now
processes a sequence of M Delete operations that delete all of the B-items
from the packing.

In considering the packing that results from this sequence of M Delete op-
erations, recall that none of the bins that were variety 2 B-bins before the dele-
tions can be deleted from the packing because each such bin contained more
than cM items of size a. In addition, by our choice of a (a < ε

cM ), all of these
bins must have a level strictly less than 1/2 at the conclusion of the deletion of
all of the B-items.

Note also that after the M Delete operations, the cumulative size of all of
the remaining items is now M/2 − Mε and the size of the optimal packing
is now precisely M/2 (the latter is guaranteed by the fact that ε < 1/M , i.e.,
εM < 1). Furthermore, the cumulative size of all the items in the β bins that
were variety 2 B-bins (before the deletions) does not exceed β/2. Thus, A
requires a certain number δ of additional bins to pack the entire set of items
that remain after the deletions:

δ ≥ M/2−Mε− β/2 > M/2− 1/2 ·M/3−Mε > M/3− 1.

Thus, A requires at least 2
3M bins to pack the set of items that remain after

the deletions, since β + δ > 2
3M −1. Because an optimal packing of the items
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that remain after the deletions requires precisely M/2 bins, A must utilize at
least 4/3 of the number of bins utilized by an optimal packing. �

In light of Theorem 2.1, we address the need to move items between bins
in response to Inserts and Deletes. The difficulties related to this issue are
twofold. First, such moves need to be carried out in a manner that guarantees
small competitive ratios. Second, all of these moves have to be carried out
within low running times (i.e., o(n) per Insert or Delete, because off-line algo-
rithms that achieve any competitive ratio greater than 1 in O(n) running time
are known [7]).

Intuitively, difficulties may arise while handling very small items: the at-
tempt to move a large number of very small items from a bin, item by item,
could result in a prohibitively large running time.

An important question is whether there are fully dynamic algorithms for
bin packing that are allowed to move ω(1) items per Insert/Delete operation
with a competitive ratio of less than 4/3. That is, would removing the re-
striction on the number of items that may be moved per operation help? The
algorithm MMP described in the next several sections answers this question
in the affirmative. In MMP, the efficient manipulation of very small items
is accomplished via bundling. The purpose of bundles is to allow the effi-
cient movement of large numbers of very small items at one time: rather than
moving these very small items from one bin to another individually, the algo-
rithm moves an entire bundle of very small items.2 Moving an entire bundle
can be accomplished within the same running time as moving a single larger
item. Thus, allowing/disallowing the moving of ω(1) items between bins per
Insert/Delete operation has a crucial impact on the competitive ratio of fully
dynamic approximation algorithms for bin packing.

3. A 5/4-Competitive Algorithm for Fully Dynamic Bin
Packing

A natural approach to the development of fully dynamic bin packing al-
gorithms is to adapt existing bin packing algorithms to work in the fully dy-
namic situation. Unfortunately, this is easier said than done. The difficulty is
that most of the off-line algorithms perform bin packing in two distinct stages.
First, there is a preprocessing stage in which the items are organized in some
fashion (this reorganization should have a positive effect on the resulting pack-
ing). This is followed by a packing stage where the actual packing is ac-
complished. In the off-line situation this two stage approach is quite natural
since the entire list of items is available at the outset. However, in a dynamic

2 Note that this idea was used, albeit in different contexts, in [1] and [9].
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environment a two stage process becomes awkward. Consider, for example,
the algorithm First Fit Decreasing (FFD), which is 11

9 -competitive. This al-
gorithm first sorts the items and then packs them in order of decreasing size,
using the First Fit packing rule.3 What about a fully dynamic version of FFD?
Of course, there is no difficulty in maintaining a sorted list of the elements.
But, there is a great difficulty in maintaining the packing based on that sorted
list, because the insertion or deletion of a single item can result in a large num-
ber of changes to that packing. It would seem that the packing induced by
the sorted list of items is “too specific” to be maintained dynamically, and that
perhaps a less specific rule might be of use. Indeed, in this section we utilize
the weaker notion of grouping [15, 16] as a building block for a fully dynamic
bin packing algorithm called Mostly Myopic Packing (MMP). This algorithm
will be 5

4 -competitive and will run in uniform time O(log n) per Insert/Delete.
The remainder of this section is organized as follows. The next subsection

provides some basic definitions. Section 3.2 discusses the notions of LLS-
maximality and M-thoroughness that play a critical role in MMP. In Sect. 3.3
we give a sketch of MMP including how the Insert and Delete operations are
handled, along with some critical implementation details. The full description
of MMP can be found in [14]. Short discussions regarding the competitive ratio
and the running time of MMP are given in Sects. 3.4 and 3.5, respectively.

3.1 Some Definitions

In this subsection we provide a number of definitions related to items, bins
and the contents of bins, that we will use in describing MMP. In that context,
at any given point in the running of MMP we let L be the list of items currently
in the packing, with the items ordered in the list from left to right in the order
in which they were inserted.

We begin with some simple definitions related to a bin. In particular, for a
bin B: level(B) is the sum of the sizes of the items packed in B, gap(B) is
1 − level(B) (i.e., the amount of empty space in B), and content(B) is the
set of items packed in B. We can assume that the bins are numbered in such
a way that every bin has a unique number with the property that, for any two
bins, the bin with the lower number is placed “to the left” of the bin with the
higher number. In other words, the bins are numbered in increasing order from
left to right.

Following Johnson’s grouping [15, 16], we classify items according to their
respective sizes. In particular, an item a is: a B-item (big) if size(a) ∈ (1

2 , 1],
a L-item (large) if size(a) ∈ (1

3 , 1
2 ], a S-item (small) if size(a) ∈ (1

4 , 1
3 ], a

3 Informally, bins are ordered from left to right and an item is packed into the leftmost bin into which it
will fit.
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T-item (tiny) if size(a) ∈ (1
5 , 1

4 ], or a M-item (miniscule) if size(a) ∈ (0, 1
5 ].

Let B, L, S, T , and M denote the number of B-items, L-items, S-items, T-
items, and M-items in L respectively. When the meaning is otherwise clear,
the fact that a is a B-item (L-item, S-item, T-item, M-item) will be abbreviated
as a ∈ B (L, S, T, M).

A bin is a B-bin (L-bin, S-bin, T-bin, M-bin) if its largest item is a B-item
(L-item, S-item, T-item, M-item). There are several types of B-bins: bins
containing one B-item and one L-item, and no other B-items, L-items, S-items,
or T-items will be called bins of type BL; bins of type BST, BS, BTT, BT and
B are defined analogously. Likewise, there are several types of L-bins, several
types of S-bins, and several types of T-bins. The possible types of B-bins,
L-bins, S-bins, and T-bins are illustrated in Fig. 15.2. Note that we did not
take into consideration the M-items: while it is certainly the case that bins may
contain M-items, accounting for them will have no substantive effect on the
competitive ratio of MMP.

We next introduce a binary relation of superiority over types of bins. First,
all of the types of B-bins, L-bins, S-bins, and T-bins are superior to M-bins.
Second, we consider non-M-bins. Here the following ordering of relevant
types of items is assumed: B ≺ L ≺ S ≺ T ≺ Z, where Z denotes a ficti-
tious item of size 0. We imagine that each bin contains, on top of its B-items,
L-items, S-items, and T-items (M-items may be present, but are being ignored),
a fictitious item of type Z (zero), of size 0. Zero items are introduced solely for
technical convenience, as their presence will enable us to impose the desired
ordering on the types of bins. Thus, in view of the introduction of Z-items,
the types of bins are BLZ, BSTZ, BSZ, . . . , TTZ, and TZ. For these types of
bins, the relation of superiority is defined as the lexicographical ordering over
the types of bins. For example, a bin of type BLZ is superior to a bin of type
BSTZ. In the remainder of this paper, we omit Z from the notation describing
the types of bins.4 Finally, we will sometimes find it convenient to refer to
these types of bins according to their canonical index in this lexicographical
ordering, as depicted in Fig. 15.2: a bin of type 1 is a bin of type BL, a bin of
type 2 is a bin of type BST, . . . , a bin of type 30 is a bin of type T. We assert
naturally that if Bj is superior to Bi, then Bi is inferior to Bj .

The allowed types of bins in the packings produced by MMP are BL, BST,
BS, BTT, BT, B, LLS, LLT, LL, SSST, SSS, and TTTT, and, of course, M-bins.
This restriction may result in at most six unpacked items: one L-item, two S-
items, and three T-items. Clearly, these items could be packed into at most two
additional bins (a bin of type LTT, and a bin of type SST). MMP will utilize the
regular packing, consisting at all times only of bins of the allowed types, and

4 Although Z is omitted, it is needed to ensure that, e.g., BLZ is superior to BZ.



418

Figure 15.2. Possible types of bins in MMP

the auxiliary storage, containing the items that are not currently packed into a
bin from the regular packing.

3.2 LLS-Maximality and M-Thoroughness

We next define three properties of packings that play a key role for the com-
petitive ratio of MMP. We first define the thoroughness property. Then we
define the LLS-maximality property, a property that is similar to, and (much)
stronger than, the thoroughness property. Finally, we define the M-thorough-
ness property, aimed at the M-items and their role in the packing. Intuitively,
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maintaining the LLS-maximality property leads to the competitive ratio of 5
4

for packings of lists of non-M-items; maintaining LLS-maximality and the
M-thoroughness property leads to the competitive ratio of 5

4 for packings of
arbitrary lists.

3.2.1 Thoroughness. We begin with two definitions:

DEFINITION 3.1. Let PB,L,S,T be a set of packings of B-items, L-items, S-
items and T-items such that each packing P ∈ PB,L,S,T consists only of the
allowed types of bins (BL, BST, BS, BTT, BT, B, LLS, LLT, LL, SSST, SSS,
and TTTT), where all of the bins of type BL are to the left of all the non-
BL-bins, all of the bins of type BST are to the left of all the non-BL-bins and
non-BST-bins, etc.

DEFINITION 3.2. Let a packing P ∈ PB,L,S,T. Then:

1. Bins of type BL are thorough in P iff there does not exist a B-item b and
an L-item l such that size(b) + size(l) ≤ 1, and the items b and l are
either in bins of type inferior to BL in the packing P or in the auxiliary
storage.

The thoroughness of bins of types BS and BT are defined analogously.

2. Bins of type BST are thorough in P iff there does not exist a bin B of
type BS in P , where b and s are the B-item and the S-item packed into
B, and a T-item t such that size(b)+ size(s)+ size(t) ≤ 1, and the item
t is in a bin of type inferior to BST in the packing P or the auxiliary
storage,

The thoroughness of bins of types BTT, LLT and SSST are defined anal-
ogously.

3. Bins of type LLS are thorough in P iff there does not exist a bin B of
type LLT or LL in P , where l1 and l2 are the L-items packed into B, and
an S-item s such that size(l1)+ size(l2)+ size(s) ≤ 1, and the item s is
either in a bin of type inferior to LLS in the packing P or in the auxiliary
storage,

Finally, a packing P ∈ PB,L,S,T is thorough iff all of the above types of bins
are thorough in P .

3.2.2 LLS-Maximality. MMP will take some pains to be guaranteed
of packing a certain portion of certain L-items and S-items into bins of type
LLS (we will call this endeavor “seeking LLS-coalitions”). Leading toward
this guarantee, we define LLS-maximality. LLS-maximality strengthens thor-
oughness: maintenance of thoroughness does not require LLS-coalitions, and
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the absence of coalitions leads to a competitive ratio of at least 4
3 (see the lower

bound example for FFG in [15]).

DEFINITION 3.3. Let a packing P ∈ PB,L,S,T. Then P is LLS-maximal iff P
is thorough, and bins of type LLS are LLS-maximal in P . That is, there does
not exist an L-item l1, another L-item l2, and an S-item s such that size(l1) +
size(l2)+ size(s) ≤ 1, and the item l1 is either in a bin of type inferior to LLS
in the packing P or in the auxiliary storage, and the item l2 is in a bin of type
inferior to LLS in the packing P or in the auxiliary storage, and s is in a bin of
type inferior to LLS in the packing P or in the auxiliary storage.

The key factor that distinguishes between thoroughness and LLS-maximal-
ity is that, unlike thoroughness, when considering whether or not it is possible
to pack two L-items and an S-item from bins of type inferior to LLS or the aux-
iliary storage into a bin, LLS-maximality does not insist that the two L-items
must come from the same bin. We note that it can be shown that the mainte-
nance of thoroughness, but not LLS-maximality, leads to a simpler algorithm
that also runs in uniform logarithmic time per Insert/Delete operation, and is
4
3 -competitive (see [11]). An example of a packing that is thorough, but does
not have the LLS-maximality property is given in [14].

3.2.3 M-Thoroughness. M-thoroughness is the other key property
required for MMP. It pertains to the role of M-items in the MMP packings.
Ideally, we would like to be able to develop a method that would enable MMP
to pack as many M-items into non-M-bins as possible. However, this is not
necessary, as it turns out that maintaining M-thoroughness (a much weaker
goal), coupled with LLS-maximality, is quite sufficient to guarantee a compet-
itive ratio of 5

4 .

DEFINITION 3.4. A packing P is M-thorough iff precisely one of the follow-
ing two conditions is satisfied:

1. There are no M-bins in P , or

2. There is at least one M-bin in P , and all of the non-M-bins have a level
exceeding 4

5 (i.e., a gap less than 1
5 ), and all of the M-bins, except for

possibly the rightmost bin in the packing, also have a level exceeding 4
5 .

3.3 MMP Insert and Delete operations—The Key Concepts

In this section we provide a sketch of MMP by outlining the Insert and
Delete operations. We do not provide all of the details here and instead refer
the reader to [14] for a full description of the algorithm.
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In the following two subsections we consider how MMP will Insert/Delete
an item. This is done using three major ideas: myopic packing, bundles, and
LLS-coalitions. The latter two of these concepts have already been introduced,
whereas the first will be explained in the paragraphs that follow. We begin by
discussing how MMP packs non-M-items, and then follow with a description
of how to pack M-items.

3.3.1 Insert and Delete of Non-M-Items. We first consider how MMP
Inserts an item a ∈ B ∪ L ∪ S ∪ T. The key idea is the use of myopic packing
to maintain thoroughness. This idea, based on Johnson’s grouping [15, 16],
is that when an item a is being packed, a should be insensitive to previously
packed items of “smaller” types than the type of a. Informally, if we think of
item a as packing itself into the existing packing, what would a “see” in the
bins? Only the items of its own type or of “larger” type. In this sense, a K-item
(K is B, L, S, or T) is myopic in that it can “see” relatively large items (K-items
or larger), and cannot “see” relatively small ones (smaller than K-items).

Based on that view of the packing, a is packed in a First Fit fashion (in
a’s “K or larger” world). Suppose that B is the bin into which a is packed.
Because the item a was packed into B without regard for how full B might
already have been due to items of smaller type than a, it may be that B now
contains items totaling more than 1. To avoid this situation, MMP does this
following: When item a is packed into B, there is a forceful eviction from
B of all items of smaller type than a. The evicted items will be temporarily
“set aside” in the auxiliary storage, and will eventually be reinserted. Before
that however, an attempt is made to restore the thoroughness of the packing
by trying to pack additional items into B, starting from the available items of
the largest type that is smaller than K. That is, the items of the largest type
that is smaller than K from the auxiliary storage and from the bins that are
inferior to the type of bin the algorithm is trying to reconstruct for B. This
effort continues until there are no more available items of that type that can fit
with the current bin content. Next, MMP continues with the available items
(auxiliary storage or inferior bins) of the next largest type until there are no
more available items of that type that would fit into the bin, and so on. Here,
if an item is taken from some bin, that bin is deleted from the packing, and its
contents, except for the item that was taken, are temporarily moved into the
auxiliary storage. Upon completion of the filling of B, and the appropriate
placement of B into the packing, MMP reinserts the items from the auxiliary
storage into the packing. Their reinsertion, of course, may disturb some other
bins, and move their contents to the auxiliary storage, for later reinsertion.
Eventually, all of the items from the auxiliary storage (except perhaps at most
one L-item, two S-items, and/or three T-items) are reinserted into the packing,
and that packing is thorough.
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In addition to thoroughness, MMP maintains LLS-maximality. This is done
by using LLS-coalitions. To avoid the situation of a list that is thorough, but
far from LLS-maximal, an amendment is made to the myopic discipline out-
lined above. Namely, the insertion of an L-item a is carried out as follows:
first, packing a into a B-bin is attempted in a standard myopic fashion. If this
attempt fails, then an attempt is made to form an LLS-coalition consisting of a,
another L-item and an S-item. The latter two can each be sought in any, and not
necessarily the same, bin the type of which is inferior to LLS or in the auxiliary
storage. If such a coalition is found, then a and the two items are packed into a
bin of type LLS, and that bin is inserted into the regular packing. The bins that
yielded some or all of these two items need to be deleted, and their remain-
ing content will eventually be reinserted. If the coalition is not possible, the
packing of a is completed by resuming the standard myopic steps. Similarly,
insertion of an S-item a would involve first packing a into a B-bin in a standard
myopic fashion. If this fails, a will seek two L-items coming from any, and not
necessarily the same, bins whose type is inferior to LLS or from the auxiliary
storage. If two such items are found, an LLS-coalition is formed, and the bin
of type LLS is inserted into the regular packing. If not, the packing of a is
completed by resuming the standard myopic steps. A careful implementation
can guarantee that the added complexity of this mostly myopic discipline does
not asymptotically add to the running time.

Deletes are implemented as follows: the bin in which a (the item that needs
to be deleted) resides is emptied, and deleted. Upon discarding a, the remain-
ing contents of the deleted bin are temporarily moved to the auxiliary storage,
from which they are reinserted into the packing as a part of this Delete opera-
tion.

It turns out that Inserts and Deletes can be carried out in Θ(log n) uni-
form running time because the number of bins inserted and deleted by an In-
sert/Delete operation is bounded by a fixed constant. Intuitively, the discipline
of “touching” only the inferior types of bins provides for the desired running
time.

3.3.2 Handling M-Items. We now consider how MMP packs the lists
that contain M-items. The goal is to utilize bundles to manipulate many M-
items at once, within logarithmic uniform running time. At the same time,
a proper manipulation of M-items will be important for the M-thoroughness
property.

In general, the simplest approach would be to pack the M-items indepen-
dently of the B-items, L-items, S-items, and T-items by packing them into
totally separate bins. This would, however, lead to a competitive ratio greater
than 5

4 . Rather, the M-items need to be packed, whenever possible, into non-
M-bins. Thus, MMP inserts an M-item just like any other item, according to
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its myopic view of the packing (of course, in this case they actually “see” the
entire packing). However, the presence of M-items in the packing gives rise to
several important considerations:

First, upon insertion of an M-item a into a bin no items will be evicted—
M-items are the smallest items! This makes the insertion of an M-item very
efficient.

Second, the insertion of B-items, L-items, S-items, and T-items in situations
in which the input lists contain M-items needs to be examined very carefully.
In particular, if the algorithm were to follow only the standard approach of my-
opic packing, its striving to maintain a thorough packing might require reloca-
tion of as many asO(n) M-items, leading toO(n log n) time per Insert/Delete
operation. This would happen both during insertions and during deletions that
require relocation of items from the bins of type inferior to that of the bin that
is currently being filled. Furthermore, the number of bins that could be inserted
and deleted per operation might be huge: it would be possible, for example,
to delete as many as O(n) bins of type BST for the sake of taking a few M-
items from each of them and packing those M-items into a single bin of type
BL. The disaster does not stop here: each of the items from those many bins
of type BST needs to be reinserted, and each reinsertion may again cause an
avalanche of deleted bins.

Third, the deletion of an M-item would cause, in case the simple myopic
discipline is followed, the temporary relocation of B-items, L-items, S-items,
T-items, and potentially many M-items into the auxiliary storage. Packing all
of these items back into the bins might be very costly: following the same
argument as above,O(n log n) time might be required to reinsert a single non-
M-item, with many inserted and deleted bins.

Thus, handling M-items in the same manner as the other items will not do.
This apparent difficulty is solved by introducing the technique of bundling.
The idea is that the M-items in each bin (as well as in the auxiliary storage) are
collected into bundles gi. All of the bundles in a bin (as well as in the auxiliary
storage) have the cumulative size of 1

10 < size(gi) ≤ 1
5 , except for at most one

bundle with cumulative size ≤ 1
10 . The former kind of bundle is closed, while

the latter kind is open.
The purpose of bundles is to allow efficient manipulation of large numbers

of M-items at one time: in response to the need to move M-items from a bin to
the auxiliary storage, or from the auxiliary storage to a bin, the algorithm will
only move entire bundles. During this process, when a bundle is inserted into
a bin (or temporarily stored into auxiliary storage), the algorithm first checks
whether it could be merged with the open bundle, if any, from that bin (or from
the auxiliary storage), and, if so, the merging is carried out. This step does not
asymptotically increase the running time required for the insertion of an M-
item, but it drastically decreases the running time of other operations involving
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M-bundles and makes MMP fast (Θ(log n) running time per Insert/Delete op-
eration).

The MMP algorithm will treat bundles of M-items like any other item (ex-
cept for the occasional merging of bundles to maintain the property that each
bin (as well as auxiliary storage) has at most one open bundle). Note that a
bin can contain at most 10 bundles, hence, loosely speaking, no bin can con-
tain more than 10 items. Bundling is one of the tools used to accomplish M-
thoroughness. It is natural to ask whether or not the technique of bundling is
essential for MMP; the answer is in the affirmative, based on the result shown
in section 3 establishing that moving only a constant number of items per In-
sert/Delete operation disallows competitive ratios below 4

3 regardless of the
running time.

3.4 Showing that MMP Is 5
4
-Competitive

It is shown in [14] that MMP’s competitive ratio is 5
4 . That proof is lengthy

and complex and is beyond the scope of this chapter. We note only that the
proof that 5

4 is an upper bound on the competitive ratio of MMP consists of
several major parts. First, it is shown that MMP maintains regular packings that
are LLS-maximal. Second, it is proven that MMP maintains M-thoroughness.
Once these two important facts about MMP are established, it is shown that, if
no M-items are inserted, the competitive ratio of MMP is 5

4 . This is the most
difficult part of the entire proof. Having proven that fact, an easy application
of M-thoroughness shows that MMP is 5

4 -competitive for arbitrary lists.

3.5 The Running Time of MMP Is Θ(log n)

As noted in the prior section, MMP stores items in two structures: most of
the items are maintained in bins in the regular packing, while a few (unpacked)
items are in the auxiliary storage. That auxiliary storage is maintained as five
min-heaps, one for each type of item. The regular packing will be implemented
by storing each bin of that packing at a leaf of a 2–3 tree of the bins, with the
bins of type BL placed in the leftmost leaves of the 2–3 tree of bins, the bins
of type BST placed in the leftmost remaining leaves (those not holding bins of
type BL) of the 2–3 tree of bins, and so on for all of the other allowed types of
bins, and, finally, with the M-bins placed in the rightmost leaves of the 2-3 tree
of bins. Using these data structures the following theorem is stated and proven
in [14].

THEOREM 3.5. MMP can be implemented to run in Θ(log n) uniform running
time per Insert/Delete operation.
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Concluding our discussion of the algorithm MMP, we note that, compared to
the best practical off-line algorithms, MMP is the best possible with respect to
its running time and is nearly approximation-competitive with those algorithms
(losing but a factor of 1

15 to the best of those [17]).

4. Partially dynamic bin packing

In this section we study partially dynamic bin packing where:

items may arrive to the packing dynamically (Insert), and

items may be moved from bin to bin as the packing is adjusted to ac-
commodate arriving items.

We consider algorithms for both the uniform and the amortized running time
cases. Of particular interest is the amortized case, where we show the existence
of a polynomial time approximation scheme (PTAS [10]) for partially dynamic
bin packing. All of the algorithms that we describe handle (or can easily be
modified to handle) the two “lookup” queries size and packing in addition to
the Insert operation.

4.1 Uniform Algorithms for Partially Dynamic Bin
Packing

We begin by considering uniform algorithms for partially dynamic bin pack-
ing. That is, algorithms that handle sequences consisting only of Insert opera-
tions. Note that all on-line algorithms, the algorithms reported in [9, 14], and
all algorithms for fully dynamic bin packing can be directly applied in this sit-
uation, even if not designed specifically for such sequences. However, recall
that on-line algorithms do not move items from bin to bin as new items arrive,
and that fully dynamic algorithms must be designed to accommodate Delete
operations, as well as the Insert operations that occur here.

Nonetheless, since these algorithms are applicable, it is worth noting that
all of the results on on-line bin packing reviewed in Section 2 carry over di-
rectly. Further, with the exception of one algorithm presented in [9], all of
those algorithms are uniform. The best of those algorithms for this context is
the algorithm A2 from [9], which runs in time Θ(log n) per operation, and is
4
3 -competitive. The other algorithm presented in [9], algorithm A1, runs in lin-
ear time. That is, amortized constant time per operation, and is 3

2 -competitive.
Note that A1 can easily be made uniform by using some of the techniques
developed for A2 in the same paper and modifying the algorithm slightly. In
regard to competitive ratio, the best uniform algorithm for Inserts is the algo-
rithm MMP from the prior section. Recall that it has a uniform running time
of Θ(log n) per Insert (as well as Delete) operation and is 5

4 -competitive.
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4.2 Amortized Algorithms for Partially Dynamic Bin
Packing

In this section we consider amortized algorithms for partially dynamic bin
packing. The main result, more encompassing than the algorithm itself, estab-
lishes the existence of a polynomial time approximation scheme (PTAS) for
partially dynamic bin packing in which each Insert is processed in amortized
polylogarithmic time. In particular, we show the following from [13]:

THEOREM 4.1. Let A be any (off-line) RA-competitive (RA < 2) algorithm
for bin packing. Let TA(n) be the running time of A, and let ε > 0. Then there
exists an algorithm Aε for partially dynamic bin packing that is (RA + ε)-
competitive, and requires O(TA(n)

n log n) amortized time per Insert operation.

Proof. The algorithm Aε will utilize both the algorithm A and the well-known
algorithm for standard bin packing, Next Fit (NF).

The algorithm NF operates as follows. At the outset, the packing consists
of 0 bins. When NF receives the first item a1, it opens a bin B1, and packs a1

into B1. NF then packs items a2, a3, . . . into B1 for as long as each item will
fit into B1. As soon as the first item ai that does not fit into B1 appears, B1 is
“closed down” (i.e., no items will be inserted into B1 in the future, regardless
of whether or not they could fit), a new bin B2 is opened, and ai is packed into
B2. The subsequent items ai+1, ai+2, . . . will be packed into B2 for as long
as each item will fit, after which B2 will be “closed down,” a new bin B3 will
be opened, and so on. The performance of NF is bounded for every list L as
follows: NF (L) ≤ 2OPT (L), and R(NF ) = 2 [4, 16, 18]. Note that the
running time of NF is linear.

The idea behind the algorithm Aε is as follows: NF is used for almost every
Insert operation, and a certain level of supervision is utilized so that when
the desired competitive ratio R(Aε) = R(A) + ε is about to be exceeded, A
is used to repack the entire instance inserted so far. Intuitively, this should
(temporarily) improve the packing because R(A) < 2 = R(NF ). After that
repacking, NF is utilized until another repacking is required, and so on.

More formally, we begin by considering a sequence of n Inserts. Note that,
as the Inserts take place, the size of an optimal packing grows monotonically
from 1 to OPT (L), where L = (a1, a2, . . . , an) denotes the list of inserted
items. Let ai1 , ai2 , . . . , aik denote the distinguished items from L with the
following property:

ai1 = a1; ∀j, 2 ≤ j ≤ k, ij = minl : [2OPT (a1, a2, . . . , aij−1)
= OPT (a1, a2, . . . , al)].
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Simply put, the aij ’s are the sequence of least indices such that OPT (a1, a2,
. . . , aij ) is twice as large as OPT (a1, a2, . . . , aij−1), 2 ≤ j ≤ k.

Based on these distinguished items, we define the concept of a stage: The
first stage consists only of the insertion of the first item ai1 = a1. Stage j,
1 < j ≤ k, consists of the sequence of Inserts between aij−1 and aij , also
including aij itself. Stage k + 1 consists of the sequence of Inserts between
aik , the last distinguished item, and an, the last item inserted so far. Because
the size of an optimal packing cannot double more than �log OPT (L)� times,
which is O(log OPT (L)) = O(log n), the number of stages is bounded by
k + 1 = O(log n).

Now, suppose that A is an algorithm with the performance (∀L)[A(L) ≤
R(A)OPT (L) + KA(L)] (where KA(L) = o(OPT (L))), To complete the
proof it suffices to produce an algorithm Aε from A such that the following
three conditions are met:

1. R(Aε) = R(A) + ε

2. For every L, Aε(L) ≤ R(Aε)OPT (L) + KAε(L), KAε(L) =
o(OPT (L))

3. Aε requires only a constant number, say C, of repackings via A in each
stage.

Note that the third condition insures that the overall running time of Aε

on a list of n items is TAε(n) = TA(n) log n. This is because each item is
packed only once via NF (when the item is being inserted) and is repacked up to
C(k+1) = O(log n) times via A. Because the running time required to pack
each item via NF is O(1), the total running time spent on packing via NF is
Θ(n). Furthermore, because each repacking requires O(TA(n)) running time
and there is a logarithmic number of repackings, all of the repackings require
a total of O(TA(n) log n) running time. Finally, because TA(n) = Ω(n),
the overall time required to pack n items via Aε is O(TA(n) log n). Note that
it also follows that O(TA(n)

n log n) is the amortized running time per Insert
operation.

We next establish a sufficient condition to guarantee that Aε requires only a
constant number of repackings via A in each stage.

LEMMA 4.2. Let OPT i be the size of the optimal packing immediately after
the i-th repacking (i ≥ 0) via A. If there exists a constant β > 0 such that
OPT i+1 ≥ OPT i + �βOPT i�, then the number of repackings via A in every
stage is bounded by a constant.

Proof. The number of repackings in the first stage is 1, thus trivially bounded
by a constant.
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Aε(x):
L′ = append(L, x);
pack x using NF;
if Aε(L

′) > bound then
repack L using A;

α =
⌊

A(L)−KA(L)
R(A)

⌋
;

bound = �(R(A) + ε)α� + KAε(L);
pack x using NF;a

endif;
L = L′;

a Here only the A(L)-th bin of the packing most recently produced by A on L is considered to be open,
while the other bins are closed for insertions via NF.

Figure 15.3. Algorithm Aε

It follows from the hypotheses of the lemma that, for every i ≥ 0,
OPT i+1 ≥ OPT i(1 + β). Now suppose that for some i0-th repacking a
stage other than the first stage has just begun. How many repackings will there
be by the end of that stage? Let C denote the number of repackings in that
stage. By the definition of stages and the hypotheses of the lemma,

2OPT i0 ≥ OPT i0+C ≥ OPT i0(1+β)C ⇒ C ≤ 1
log(1 + β)

= O(1).

�

Algorithm Aε is given in Fig. 15.3. The variables L (the list of items) and
bound should be initialized prior to the first execution of Aε: L = (), and
bound = 2γ (the value of γ will be specified later). The description of the
algorithm outlines only the essential features. Details regarding the mainte-
nance of information necessary for answering the queries are omitted as their
implementation can be easily done within the allowed time bounds.

Note that in Aε the variable α offers, after each repacking via A, a lower
bound on OPT (L). It is used to provide a conservative estimate of
R(Aε)OPT (L) + KAε(L), the value that should not be exceeded in order
to comply with the competitive ratio of R(Aε).

The algorithm is not yet completely specified because the values of γ and
KAε(L) are not yet determined. Recall that the goal in the design of Aε is not
only to achieve the desired competitive ratio, but also to insure that there are
but a constant number of repackings via A at each stage. It is precisely this
requirement that requires a careful selection of γ and KAε(L).
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To insure the growth of the optimal packing between the i-th and i + 1-st
repacking by at least �βOPT i� (see Lemma 4.2) it is sufficient to require NF
to pack at least twice as many bins. That is, ≥ 2 �βOPT i� bins between the
two repackings. Because the competitive ratio of NF is 2, this will add at
least the required number of bins (i.e., �βOPT i� bins) to the optimal packing.
Unfortunately, we are not able to implement this directly in Aε because we do
not know the value of OPT i. Rather, this is accomplished by the use of γ and
KAε(L) in the following way.

Let the required number of bins packed by NF between two repackings be
denoted as Δi. We desire that:

Δi ≥ 2 �βOPT i� .

We will now refine this condition and demand a stronger inequality. The
value of Δi will be underestimated by �R(Aε)α + KAε(L)� − �R(A)α +
KA(L)�while the value of OPT i will be overestimated by �R(A)α + KA(L)�,
where α denotes the variable from the description of Aε. It is then desired that
the following must hold:

�R(Aε)α + KAε(L)� − �R(A)α + KA(L)� ≥ 2 �β �R(A)α + KA(L)�� .

Clearly, then Δi ≥ 2 �βOPT i� will follow. The above inequality can be
satisfied if we insist that:

(R(A) + ε)α + KAε(L)− 1− (R(A)α + KA(L) + 1)
≥ 2(β(R(A)α + KA(L) + 1)) + 2,

which, after some elementary steps, yields:

(ε− 2βR(A))α + (KAε(L)−KA(L))− 2 ≥ 2βKA(L) + 2β + 2.

If the condition KAε(L) > KA(L) is met, then a yet more refined inequality
holds:

(ε− 2βR(A))α ≥ 2(β(KA(L) + 1) + 2).

The above inequality suggests that there is considerable flexibility with re-
spect to the choice of β. In particular, the value of β can be fixed to any value
conforming to the inequality ε > 2βR(A). That is

β <
ε

2R(A)
.

Further, the above inequality also suggests that the required growth of the
value of the optimal packing between any two repackings can be achieved if:

α ≥
⌈
2(β(KA(L) + 1) + 2)

ε− 2βR(A)

⌉
.
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This requirement will be met if the initial packing via NF requires at least
2γ bins, where γ can be found as follows:⌊

γ −KA(L)
R(A)

⌋
≥
⌈
2(β(KA(L) + 1) + 2)

ε− 2βR(A)

⌉
.

This condition reflects the scenario in which NF would achieve its worst
possible packing on the initial items, whereas A would produce an optimal
packing. Some elementary steps yield the following bound on the value of
integer γ:

γ −KA(L)
R(A)

− 1 ≥ 2
β(KA(L) + 1) + 2)

ε− 2βR(A)
+ 1.

Further simplification yields:

γ ≥ 2R(A)
(

β(KA(L) + 1) + 2
ε− 2βR(A)

+ 1
)

+ KA(L).

By the discussion about the worst possible scenario above, it will suffice to
set γ and KAε(L) to:

γ = KAε(L) ≥
⌈
2R(A)

(
β(KA(L) + 1) + 2

ε− 2βR(A)
+ 1
)

+ KA(L)
⌉

.

Note that this condition guarantees KAε(L) > KA(L), as well as all of the
other requirements. �

COROLLARY 4.3.

1. For every ε > 0 there is a (1 + ε)-competitive approximation scheme Aε

for partially dynamic bin packing that requires O(log n) amortized time
per Insert operation.

2. For every ε > 0 there is a (1 + ε)-competitive fully polylogarithmic ap-
proximation scheme Aε for partially dynamic bin packing that requires
O(log2 n) amortized time per Insert operation.

Proof.

1. Immediate from Theorem 4.1 and the results from [7].

2. Immediate from Theorem 4.1 and the results from [19]. �

5. Conclusion

There are a number of open questions associated with the fully and partially
dynamic bin packing discussed in this chapter. In this section we outline a few
of these questions as they correspond to the three main results that we have
described.
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5.1 Moving a Constant Number of Items Per Operation
There are two major open questions relating to the theorem that restricting

the number of items moved per operation to be a constant results in a competi-
tive ratio of at least 4/3. First, is there any algorithm for this restricted version
of fully dynamic bin packing (where the number of items that can be moved
between bins per Insert/Delete operation is bounded by a constant) with a con-
stant competitive ratio? If there is such an algorithm, is its competitive ratio
close to 4/3? Second, is there a better lower bound than 4/3? In the case of on-
line bin packing, dealing only with Inserts, somewhat stronger lower bounds
are known: Yao proved a 3/2 bound [25], and Brown [2] and Liang [22] im-
proved that to 1.536 . . . . Similar results may be possible for the fully dynamic
case.

5.2 Fully Dynamic Bin Packing and MMP
The major unresolved issue here is whether there exist fully dynamic bin

packing algorithms (accommodating both Inserts and Deletes) that attain better
competitive ratios. That is, are there algorithms that are α-competitive for
some α < 5

4 , and require o(n) time per operation. Here, both uniform and
amortized algorithms are of interest.

Other unresolved issues are: (1) what is the nature of the trade-off between
running times and competitive ratios of fully dynamic bin packing algorithms
for bin packing (both uniform and amortized), and (2) is there a competitive
ratio for which there are no fully dynamic approximation algorithms for bin
packing featuring sublinear running times (uniform or amortized)?

5.3 Partially Dynamic Bin Packing

The open questions related to partially dynamic bin packing concern the
competitive ratio achievable with uniform running time, and the practicality of
the algorithms Aε in the case of amortized running time.

Recall that in the uniform case the best known competitive ratio for partially
dynamic bin packing is 5

4 [14]. However, that algorithm was not designed
specifically for partially dynamic packing. It is possible that the development
of partially dynamic algorithms for bin packing could benefit from the fact that
Deletes would not be required.

In the case of the amortized running time, we note that the efficiency of
the algorithms Aε is primarily determined by the efficiency of their respective
“building blocks” A. In particular, if the design goal is to develop a partially
dynamic bin packing algorithm (with a good amortized running time) with a
small competitive ratio, developing an entirely new algorithm which would
not rely on very good but very slow building blocks (e.g., [7, 19]) might be a
preferable approach.
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1. Introduction

A situation which many of us know: You try to book a cottage in your
favorite holiday location for the weekend but the overly friendly person on the
phone tells you that they simply can not satisfy your request. If you had called
just five minutes earlier, everything would have been fine, but now there is
allegedly nothing available. You doubt that this is true. Are they just rejecting
your booking request because you just wanted to stay three days and not four?
How do they work at all? Better: How should they organize their bookings?
This must be some easy piece of mathematics!

You sit down and put yourself in the position of the owner of two identical
cottages. The holiday season (which we assume without loss of generality to
be the time interval [0, T ] where T % 1) is still in the future and you are
awaiting for people to make reservations (Fig. 16.1). Naturally, we can assume
that the profit you make for a request of length l is l units of money.

A few moments later, the first customer r1 calls and requests a cottage for
the time interval [0, 1]. Clearly, we can promise her cottage 1 which gives us a
profit of 1−0 = 1. The next customer r2 requests a cottage in the interval [1, 2].
Both cottages are available then, so we accept the booking request and schedule
cottage 2 for her (Fig. 16.2). This increases our profit again by one unit. Then,
the next customer calls and wishes to get a cottage from 0 to 2. Yikes, we do
not have a cottage available during that whole period!

But, let us think one moment. Both cottages are essentially identical and we
have not promised r2 a specific cottage, but only a cottage. So, we can simply
move his booking from cottage 2 to cottage 1 and we can accommodate the

Figure 16.1. Empty booking table for the cottage-rental problem with two (identical) cottages

Figure 16.2. The first two customers have been booked into the plan



Online Job Admission 437

Figure 16.3. By moving customer r2 from cottage 2 to cottage 1 the new customer r3 can still
be scheduled

request from r3 (Fig. 16.3). That was not too difficult, after all, was it? And
our total profit has risen to 1 + 1 + 2 = 4.

While we sit back relaxed and content, two more customers call each of
which wants to book a cottage for the whole holiday season [0, T ]. These
could be called “ideal customers” in the sense that each of them allows us to
fully rent out a cottage at maximum profit. But what is this? No matter how
we reorganize our schedule, we can not accept any of them. If we only had
known earlier that they would call, we could have rejected the requests of r1,
r2 and r3 and made a profit of 2T by accepting the “ideal customers” which
book the whole season instead of a lousy 4 units. On the other hand, if we
reject r1, r2 and r3 and the two “ideal customers” do not call then we have an
empty schedule and no profit which is worse than the profit of 4 that we wince
at right now. Maybe the cottage rental problem is not so easy?

We have just discovered the online aspect of the cottage rental problem. We
are facing incomplete information, and even if every time a new request be-
comes known we compute a new “optimal” schedule this does not necessarily
lead to an overall optimal solution.

In general, traditional optimization techniques assume complete knowledge
of all data of a problem instance. However, in reality it is unlikely that all
information necessary to define a problem instance is available beforehand.
Decisions may have to be made before complete information is available. This
observation has motivated the research on online optimization. An algorithm
is called online if it makes a decision (computes a partial solution) whenever a
new piece of data requests an action.
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The remainder of this paper is intended to schedule some light onto the
online cottage rental and related problems.

2. Problem Definition and Preliminaries

The cottage rental problem is a special case of the job admission problem,
denoted by OJA, studied in this chapter. We are given m machines, a time
horizon of T time units, and a sequence of jobs σ = r1, . . . , rn, which are
released one by one. Each of these jobs rj has a fixed start time aj and end
time bj > aj , and each job needs to be accepted or rejected before we move
to the next one. We assume that time has been scaled in such a way that
minj(bj − aj) = 1. This assumption is justified for instance in the cottage
rental application where the minimum rental period is a single day (our algo-
rithms still work if minj(bj − aj) or a positive lower bound for this quantity
is known in advance). The goal is to select jobs to be processed such that the
sum of the lengths of the accepted jobs is maximized and there exists a feasible
non-preemptive assignment of jobs to machines, i.e., such that at any moment
in time each machine processes at most one job.

An online algorithm for OJA must base its decision for request rj without
knowledge of requests ri with i > j. A standard tool to measure the quality of
an online algorithm ALG is competitive analysis [22, 6], where one compares
for each input sequence σ the profit ALG(σ) obtained by ALG to the optimal
profit achievable on that sequence, denoted by OPT(σ).

A deterministic online algorithm ALG for OJA is c-competitive, if for any
request sequence σ the inequality ALG(σ) ≥ 1

c ·OPT(σ) holds. For randomized
algorithms against an oblivious adversary (see [6] for details), one uses the
expected benefit E [ALG(σ)] instead. The competitive ratio of an algorithm is
defined to be the infimum over all c such that the algorithm is c-competitive.

2.1 Our Results

In Sect. 4 we develop a general lower bound for the competitive ratio of
randomized algorithms for the job admission problem (OJA). Specifically, we
give a lower bound of 1

2(log T +2) on the competitive ratio of any randomized
algorithm against an oblivious adversary, where T is the time horizon.

In Sect. 5.1 we present a first simple greedy-type deterministic 2Δσ + 1-
competitive algorithm GREEDY, where Δσ = maxri,rj ∈σ

bi−ai
bj −aj

=
maxri ∈σ(bi − ai) is the maximum ratio of the profit of two jobs.1 This sim-
ple algorithm forms the basis of the improved algorithm C-GREEDY which we
present in the following Sect. 5.3. The main competitiveness result is given

1 Recall that time has been scaled in such a way that minj(bj − aj) = 1.
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in Sect. 5.3, where we give a deterministic algorithm C-GREEDY that matches
our lower bound from Sect. 4 up to constant factors for the case m ≥ �log T �.
Moreover, we show that for m ≤ �log T � our algorithm C-GREEDY provides a
competitive ratio of 2m(m

√
T + 1) ≤ 2 log T (m

√
T + 1), which is also optimal

up to a constant factor.

2.2 Previous Work

Several variations on the online job admission problem studied in this pa-
per have been considered in the literature. OJA is related to the problem of
scheduling equal-length jobs on parallel machines, where the jobs have release
times and deadlines and the goal is to maximize the number of jobs completed.
Baruah et al. [5] showed that a greedy-type algorithm is 2-competitive for this
problem (where jobs arrive over time), a lower bound of 4/3 for the competi-
tive ratio of randomized algorithms was given by Goldman et al. [15]. Chrobak
et al. [11] provided a barely random algorithm with competitive ratio 5/3. The
corresponding offline problem can be solved in polynomial time [4] (see also
notes in [11]).

Van Stee and La Poutré [23] considered the problem of partial servicing of
online jobs. Here, jobs arrive over time to be rejected or accepted, after which
they must start immediately. The algorithm can choose to serve some jobs
only partially, and the goal is as here to maximize the profit. The problem is
different from ours in its notion of time (new requests cannot appear in the
past) and because of the option of serving jobs partially. However, it turns out
that several ideas from [23] can be used also to give good algorithms for the
current problem.

The problem OJA in this paper can also be seen as a generalized version of
online interval scheduling [19], where only one machine is available. How-
ever, in the paper [19], jobs arrive over time instead of one by one. Also, there
is no pre-specified time horizon. As mentioned at the beginning, another sim-
ilar problem which has been studied is seat reservations on trains [8, 9]. Here
passengers arrive online, specifying their desired connection, and need to be
assigned a seat immediately. Differences to that paper are that in making seat
reservations, it is assumed that an algorithm is not allowed to reject any pas-
senger for whom there is still room in the train, and they furthermore assume
that the seat (in our case: machine) has to be assigned immediately upon re-
quest. (The paper [9] considers a slightly relaxed case where each passenger
may change seats a fixed number of times during the trip.)

Finally, OJA can also be seen as a call admission problem in an optical net-
work [3, 14, 18]. In our case the network is simply a line. The main difference
to optical call-admission on the line is the profit model. For call-admission one
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Figure 16.4. A graph G corresponding to a set of jobs J = {r1, . . . , r4} with a1 < a2 <
b2 < a3 < b1 < a4 < b3 < b4

assumes that each job has a uniform value,2 independent of its length. It seems
that this changes the flavor of the problem substantially, since rejecting a large
job does not lose you more than rejecting a short job, and generally short jobs
are easier to schedule.

3. The Offline Problem

In this section we show briefly how the offline problem corresponding to
OJA can be solved efficiently. Given a set of jobs J consider a directed graph
G = (V, A) with the following nodes: a source s, a sink t and for every job
rj = [aj , bj ] ∈ J two nodes uj , vj . Thus, V :=

⋃
rj ∈J{uj , vj} ∪ {s, t}.

For all rj ∈ J we have an arc (uj , vj) with cost −pj , and the arcs (s, uj)
and (vj , t) with cost 0. The arc (uj , vj) corresponds to the situation where
job rj is accepted. For all ri, rj ∈ J with bi ≤ aj we introduce an additional
arc (vi, uj) with cost 0 representing the possibility that rj can be scheduled
directly after ri on the same machine. All arcs have unit capacity. An example
for such a network is shown in Fig. 16.4.

Let f be an integral minimum cost flow of value m in G from s to t. Such a
flow can be computed efficiently by standard techniques, see e.g. [1]. We claim
that an optimal solution of the job admission problem is given by accepting
job rj if and only if the flow value f(uj , vj) on arc (uj , vj) is nonzero (that is,
it is one by our choice of the capacities).

In fact, every feasible schedule of jobs on m machines gives rise to m edge-
disjoint paths in G from s to t, one for each machine (cf. Fig. 16.5). The profit
obtained on the machine equals the negative of the cost of the corresponding
path.

Conversely, by flow decomposition [1] we can decompose every s-t-flow of
value m in G into m disjoint s-t-paths (since the graph G is acyclic, there can

2 The value may depend on the bandwidth of the call but not on its length, which is the path used to route
the call.
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Figure 16.5. Each set of jobs assigned to a single machine in a feasible solution corresponds
to an s-t-path in the network G

not be cycles in the flow decomposition). Since every s-t-path corresponds to
a set of jobs which can be scheduled on a single machine, these paths specify
an assignment of the jobs to the specific machines.

4. Lower Bounds

Let us first consider the question how well a deterministic algorithm can per-
form in terms of competitiveness. We first start with deterministic algorithms.
To this end, let us consider the situation we had in the introduction once more:
we scheduled three small jobs but then could not accommodate the two long
jobs (which span the whole interval [0, T ]) any more.

We are given m machines and the time interval [0, T ] for scheduling jobs.
The basic idea of our lower bound construction is the following. Let ALG be
some arbitrary deterministic online algorithm. We first present m small jobs
of length 1 each for the interval [0, 1]. If the online algorithm accepts all of
the jobs, it gets a profit of m · 1 = m and we will then present m large jobs
of length T each for the interval [0, T ]. Thus, the optimal profit is mT and we
can force a ratio of T between the optimal and the online profit. What makes
the argument slightly more complicated is the fact that ALG need not accept all
of the jobs of length 1, so it might have some empty space on the machines
which can be used to accommodate the long jobs.

THEOREM 4.1. No deterministic algorithm can achieve a competitive ratio
smaller than 1

2(log T + 2) for the OJA.

Proof. Assume that ALG is a c-competitive algorithm for the OJA. The first
part σ0 of the adversarial sequence consists of m jobs of unit size starting at
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Figure 16.6. Once a job is accepted, it blocks a machine for all future requests

time 0 and ending at time 1. Let q(0) be the number of requests from σ0

accepted by ALG. Since OPT(σ0) = m and ALG is c-competitive, we must have
that q(0) ≥ m/c.

We will now continue to present blocks of m requests each of length 2i

for i = 1, . . . , 2log T . Each request starts at time 0. Let σi denote the subse-
quence formed by the requests of length 2i. Our total input sequence σ is thus
σ = σ0σ1 · · ·σ2log T . Observe that each accepted request blocks a machine for
future requests (cf. Fig. 16.6).

As we have seen before after σ0 the online algorithm must have accepted
q(0) ≥ m/c jobs and thus blocked q(0) machines for future requests. Once the
requests in σ1 have been presented, the optimal solution is to reject all request
in σ0 and accept all the jobs from σ1 of size 2. Thus, we have OPT(σ0σ1) =
2m. In order to achieve a competitive ratio of c the profit obtained by ALG must
satisfy:

q(0) · 1 + q(1) · 2 ≥ OPT(σ0σ1)
c

=
2m

c
, (4.1)

where q(1) denotes the number of requests accepted by ALG from the subse-
quence σ1. We have seen above that q(0) ≥ m/c. Since all requests from σi

for i ≥ 1 give more profit than the unit size jobs from σ0 we can assume that
ALG accepts exactly m/c jobs from σ0. Using q(0) = m/c in (4.1) results in

q(1) ≥ 1
2

(
2m

c
− m

c

)
=

m

2c
.

By the same argument as above we can assume that q(1) = m
2c , since this

leaves ALG with more space for future jobs which are more profitable than the
small ones already seen. We will now show by induction on i that in fact the
number q(i) of jobs accepted by ALG from σi satisfies q(i) = m

2c for i ≥ 1.
The claim has already been established for i = 1. Let us assume that we
know that q(0) = m/c and q(1) = · · · = q(i − 1) = m/2c. We have
OPT(σ0 · · ·σi) = m2i. By the fact that ALG is assumed to be c-competitive
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we have:

OPT(σ0 · · ·σi)
c

=
2im

c
≤
( i−1∑

j=0

2j · q(j)
)

+ 2i · q(i)

=
m

c
+
( i−1∑

j=1

2j · m

2c

)
+ 2i · q(i)

=
m

c
(1 + 2i−1 − 1) + 2i · q(i) =

2i−1m

c
+ 2i · q(i).

Solving for q(i) yields q(i) ≥ m
2c and by the now familiar argument from above

we get that q(i) = m
2c . This completes the inductive step.

We are now in the position to establish the lower bound on the competitive-
ness c of ALG. Observe that the total number of machines blocked by ALG after
phase i is

∑i
j=0 p(i). Since the total number of machines is m we get

m ≥
log T∑
j=0

p(j) = p(0) +
log T∑
j=1

p(j) =
m

c
+

m

2c
log T =

1
c
m

(
1 +

1
2

log T

)
.

This gives us c ≥ 1 + 1
2 log T = 1

2(log T + 2) as claimed. �

We now extend our lower bound result to randomized algorithms against an
oblivious adversary. The difficulty lies in the fact that it is not clear how a
generic randomized algorithm RALG looks like. Using the same line of argu-
ments as in Theorem 4.1 we see that RALG only needs to accept m/c unit size
jobs on expectation and not with probability one. Thus, in order to establish
our bound, we make use of Yao’s principle [6, 24].

DEFINITION 4.2. A request-answer game (R,A, C) consists of a request set R,
a sequence of finite nonempty answer sets A = A1, A2, . . . and a sequence of
cost functions C = profit1, profit2, . . . where profitj : R

j × A1 × · · · × Aj →
R+ ∪ {+∞}. A deterministic online algorithm ALG for the request-answer
game (R,A, C) is a sequence of functions fj : Rj → Aj , j ∈ N. The output of
ALG on the input request sequence σ is

ALG[σ] := (a1, . . . , am) ∈ A1 × · · · ×Am, where aj := fj(r1, . . . , rj).

The profit obtained by ALG on σ, denoted by ALG(σ) is defined as

ALG(σ) := profitm(σ, ALG[σ].)

A randomized online algorithm RALG is a probability distribution over deter-
ministic online algorithms ALGx (x may be thought of as the coin tosses of the
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algorithm RALG). The answer sequence RALG[σ] and the cost RALG(σ) on a
given input σ are random variables.

THEOREM 4.3 (Yao’s Principle). Let G be any finite request-answer game.
Let ALG be any online randomized algorithm for G and let R̄OBL(ALG) be
the competitive ratio of ALG against an oblivious adversary. Let p(i) be any
probability distribution over request sequences. Then

R̄OBL(ALG) ≥ max

⎧⎨
⎩min

j

Ep(i) [OPT(σi)]
Ep(i) [ALGj(σi)]

, min
j

1

Ep(i)[
ALGj(σi)
OPT(σi)

]

⎫⎬
⎭ . (4.2)

Proof. See [6, 7]. �

THEOREM 4.4. Any randomized algorithm for OJA has a competitive ratio no
smaller than 1

2(log T + 2) against an oblivious adversary.

Proof. For i = 0, . . . , log T , consider the sequence σi which for each 0 ≤ j ≤
i contains m jobs of length 2j (thus, σi specifies a total of (i + 1)m jobs). The
jobs in σi will be given in increasing order of length, and all requests have a
start time of 0. Clearly, for each machine at most one of these jobs can be
contained in any schedule and we have OPT(σi) = m2i.

We make use of the second bound in (4.2) to derive the lower bound on
the competitive ratio of randomized algorithms against an oblivious adversary.
Specifically, we give a distribution p(i) over the request sequences σi such that
for any deterministic algorithm ALG we have

Ep(i)

[
ALG(σi)
OPT(σi)

]
≤ 2

log T + 2
.

Using Yao’s principle from Theorem 4.3 above then yields the desired lower
bound of 1/( 2

log T+2) = 1
2(log T + 2).

Let q(j) be the number of jobs of length 2j accepted by a given deterministic
algorithm ALG, when given any sequence σi where i ≥ j. Since until the point
in time when the requests of length 2j are given these σi are identical, ALG has
to make the same decision, how many of these jobs to accept and therefore
q(j) has to be identical for all those σi.

Thus, when processing σi the ratio of the profits by ALG and OPT is

ALG(σi)
OPT(σi)

=

∑i
j=0 q(j) · 2j

m · 2i
. (4.3)
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We now derive a probability distribution p over the sequences σi such that for
each deterministic algorithm ALG we have

Ep(j)

[∑i
j=0 q(j) · 2j

m · 2i

]
≤ 2

log T + 2
.

As afore mentioned by using Yao’s principle the bound then follows.
Let p(i) to be the probability that σi occurs. Then, the expected value of the

profit ratio can be computed by:

Ep(i)

[
ALG(σi)
OPT(σi)

]
=

log(T )∑
i=0

p(i) · ALG(σi)
OPT(σi)

=
log T∑
i=0

p(i) ·
∑i

j=0 q(j) · 2j

m · 2i

=
log T∑
i=0

p(i)
i∑

j=0

2j−i

m
· q(j) =

log T∑
j=0

log T∑
i=j

2j−ip(i)
m

· q(j)

Observe that, given a distribution p(i) on the instances σi, all deterministic
algorithms only differ in the number of jobs they accept of each of the given
length classes of jobs. Thus, we can find the deterministic algorithm with the
largest expected profit ratio by solving the following integer linear program:

(IP1) max
log T∑
j=0

log T∑
i=j

2j−ip(i)
m

q(j)

s.t.
log T∑
j=0

q(j) ≤ m

q(j) ≥ 0, q(j) ∈ Z for all j = 0, . . . , log T

To obtain an upper bound for the optimal solution of this problem it suffices
to find a feasible solution of the dual of its linear relaxation, which is given by:

(LP1) min m · y

s.t. y ≥
log T∑
i=j

2j−ip(i)
m

for all j = 0, . . . , log T

y ≥ 0

Observe that the dual (LP1) has only a single variable. Thus, we can easily
compute its optimal solution:

min

{
my : y ≥

log T∑
i=j

2j−ip(i)
m

, j = 0, . . . , log T

}
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= max
j=0,...,log T

{
m ·

log T∑
i=j

2j−ip(i)
m

}
= max

j=0,...,log T

{
log T∑
i=j

2j−ip(i)

}
.

The quality of the bound obtained this way depends on the applied distrib-
ution p. The distribution which yields the best bound can be found by solving
another linear program:

(LP2) min y

s.t.
log T∑
i=j

2j−ip(i) ≤ y for all j = 0, . . . , log T

log T∑
i=0

p(i) = 1

p(i) ≥ 0 for all i = 0, . . . , log T

y ≥ 0

The optimum is attained for p(i) := 1
log T+2 for i = 0, . . . , log T − 1 and

p(log T ) = 2
log T+2 , which can be easily seen by using the Fundamental The-

orem of Linear Programming (see e.g. [12]) and the fact that p as given above
is a basic solution. Thus, we have

max
j=0,...,log T

{
log T∑
i=j

2j−ip(i)

}

= max
j=0,...,log T

{( log T∑
i=j

2j−i

log T + 2

)
+

2j−log T

log T + 2

}

= max
j=0,...,log T

{
1

log T + 2

(
2j

T
+

log T∑
i=j

2j−i

)}

= max
j=0,...,log T

{
1

log T + 2

(
2j

T
+ 2j

log T∑
i=j

1
2i

)}

= max
j=0,...,log T

{
1

log T + 2

(
2j

T
+ 2j · 2 ·

(
1
2j
− 1

2log T+1

))}

= max
j=0,...,log T

{
1

log T + 2

(
2j

T
+ 2− 2j

T

)}
=

2
log T + 2

.

This completes the proof. �
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5. Competitive Algorithms

In this section we present competitive algorithms for the OJA. The basis of
our algorithms is provided by a simple greedy-type algorithm GREEDY which
we analyze in Sect. 5.1. This algorithm works acceptably well if all jobs have
approximately the same length. In Sect. 5.2 we show how to use randomiza-
tion in order to turn GREEDY into a competitive algorithm CRS-GREEDY for
jobs of substantially different sizes. In Sect. 5.3 we essentially derandomize
CRS-GREEDY and obtain the same competitiveness bounds by means of deter-
ministic algorithms.

5.1 A Greedy-Type Deterministic Algorithm

Let GREEDY be the algorithm, which accepts a new job rj as long as there
exists a schedule which contains all previously accepted jobs and rj . For a
given input sequence σ, define its length ratio as Δσ := maxri,rj ∈σ

bi −ai
bj −aj

=
maxri ∈σ(bi − ai), i.e., the maximum ratio of two job durations in σ. The
algorithm GREEDY does not require that minj(bj −aj) = 1. Our first goal is to
establish that GREEDY is 2Δσ +1-competitive. In the remainder of this section,
we will consider a fixed input sequence σ and simply write Δ for Δσ.

Let σG be the set of jobs, which are accepted by GREEDY and σOPT be the
set of jobs, which are accepted by an optimal offline algorithm. We denote
by X := σG ∩ σOPT be the set of jobs which are accepted by both of these
algorithms, Y := σG\σOPT be the set of all the jobs accepted only by GREEDY

and Z := σOPT \ σG the set of jobs only accepted by the optimal offline-
algorithm.

Consider the schedule that GREEDY outputs. Consider the machines one by
one, and on each machine, consider the jobs on it from left to right. Denote
the jobs on machine j by 1, . . . , ij , their start times by ai and finish times
by bi (i = 1, . . . , ij). Whenever ai+1 − bi > 2Δ, we say that the interval
[bi + Δ, ai+1 −Δ] is a gap. If this happens on machine j, we say that the gap
is of type j.

LEMMA 5.1. Every job in Z has an empty intersection with every gap.

Proof. Suppose there is a job in Z that has nonzero intersection with some gap
of type j. This job could be placed entirely on the machine j, without over-
lapping the existing jobs on that machine, by the definition of a gap (since its
length is at most Δ). So GREEDY would have accepted this job, a contradic-
tion. �

THEOREM 5.2. For an input sequence σ with length ratio Δ, GREEDY

achieves a competitive ratio of 2Δ + 1.
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Proof. Take a machine j. Consider an interval between two gaps of type j
(or an interval until the first gap/after the last gap/the entire interval [0, T ], if
there are no gaps on machine j). Call such an interval a non-gap-interval. On
machine j, there can be at most Δ idle time at the start and at the end of a non-
gap-interval. If this is not true, the gap would have been defined differently.
Thus on machine j, some job starts within time Δ of any gap, and after that job
finishes, each time within time 2Δ a new job starts, until the next gap appears
(at most Δ after the last job completes) or the end of the schedule is reached.
Since each job has length at least 1, this means that on machine j, within each
non-gap-interval, at least 1/(1 + 2Δ) of the time some job is running in the
schedule of GREEDY. This reasoning holds for any machine j = 1, . . . , m. For
future calculations, we now say simply that GREEDY is running a job of density
(“height”) 1/(1+2Δ) at all times within each non-gap-interval. This does not
increase the overall profit of GREEDY and simplifies the comparison to OPT.

On the other hand, in an optimal solution, by Lemma 5.1 no jobs in Z can be
running at any time during gaps. Now consider the intervals between two gaps
of any type in order of increasing starting time. Call these intervals “allowed
intervals”. We find that all jobs in Z are run only during allowed intervals.
However, on each machine, an allowed interval I is a subinterval of a non-
gap-interval, so on each machine GREEDY earns (running this job of density
1/(1 + 2Δ)) at least 1/(1 + 2Δ) of the length of I . So in total, during I it
earns at least m/(1 + 2Δ) times the length of I , and of course OPT earns at
most m times the length of I during I .

Finally, consider a gap G. The only jobs that OPT has accepted and that
overlap (partially) with G are the jobs in X that GREEDY is also running, by
Lemma 5.1. However, we have modified the GREEDY-schedule by spreading
each job out over a non-gap-interval. Thus for a job that runs for t units of time
during a gap G, we have that GREEDY earns at least t/(1 + 2Δ) during G, and
OPT clearly earns at most t during G.

This concludes the proof. An illustration is given in Fig. 16.7. �

5.2 An Algorithm Based on Classify and Randomly Select

In this section we show that the GREEDY algorithm from above can be used to
obtain a randomized algorithm CRS-GREEDY with competitive ratio 5�log(T )�
by applying the classify and randomly select-paradigm [2].

Assume again that the minimum length of an interval is minrj ∈σ(bj−aj)=1.
We divide the possible input requests into N := �log T � disjoint classes
C1, . . . , CN , with j ∈ Ci if and only if 2i−1 ≤ bj − aj < 2i. The algorithm
CRS-GREEDY chooses class Ci with probability 1

N Then, when processing a
sequence σ the algorithm ignores all requests not in class Ci and uses GREEDY

to process the requests in class Ci.
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Figure 16.7. An example schedule of GREEDY for an input where Δ = 3. There are five
machines, time is on the horizontal axis. All the jobs served by OPT that GREEDY does not serve
must be within the shaded areas. Since there is a gap on machine 4, the jobs between the large
shaded areas are either both served by GREEDY and OPT, or only by GREEDY

For i = 1, . . . , N let σi := σ ∩ Ci and OPTi denote the total profit of jobs
from class Ci accepted by OPT. If GREEDY processes σi for some i, it achieves
a competitive ratio of 5, since Δσi ≤ 2i

2i−1 = 2. Since there is a probability
of 1

N that the algorithm picks the class which contributes the biggest part to
the optimal solution we can estimate the expected value of the machine time
obtained by CRS-GREEDY as follows:

E [CRS-GREEDY(σ)] =
N∑

i=1

1
N
· GREEDY(σi)

≥ 1
N

N∑
i=1

1
2Δσi + 1

OPT(σi)

≥ 1
5N

N∑
i=1

OPT(σi) ≥
1

5N

N∑
i=1

OPTi =
1

5N
OPT(σ).

Thus, CRS-GREEDY achieves a competitive ratio of 5N = 5�log T �.
We remark here that the above algorithm can be modified easily for the

case that minj(bj − aj) = ε �= 1 is known in advance and then provides a
competitive ratio of 5�log T/ε�.

5.3 An Improved Deterministic Algorithm

We will now use GREEDY and ideas from the classify-and-select paradigm to
obtain a deterministic algorithm which achieves an improved competitiveness.
As in the previous section we first assume that minj(bj − aj) = 1.

LEMMA 5.3. Suppose that we are given a sequence of jobs σ. For 1 ≤ k ≤ m
let OPT(k)(σ) denote the optimal offline profit achievable using k machines (so
that OPT(σ) = OPT(m)(σ)). Then,

k

m
· OPT(m)(σ) ≤ OPT(k)(σ) ≤ OPT(m)(σ).
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Proof. Given an optimal solution for m machines, a feasible solution can be
obtained by accepting the jobs scheduled on the k machines with the highest
profits. Thus, OPT(k)(σ) ≥ k

m OPT(m)(σ). The second inequality is trivial. �

Similar to the randomized algorithm CRS-GREEDY, the improved determin-
istic algorithm C-GREEDY divides the jobs into classes. How this is done, de-
pends on the specific relation between the number m of machines and the time
horizon T .

5.3.1 Instances with m ≥ �log T �. In order to simplify the pre-
sentation, we first assume that the time horizon T = 2k is a power of two.
In this case, C-GREEDY reserves exactly �m/ log T � machines for each of the
classes Ci. For each of the k = log T classes it uses an instantiation of GREEDY

to process the jobs.

LEMMA 5.4. If T = 2k and m = k · t for some k, t ∈ Z
+, then C-GREEDY is

5 log T competitive.

Proof. Similar as in Lemma 5.3 let OPT(t) and GREEDY(t) be the respective
algorithms which schedule jobs on t = m/ log T machines instead of on m
machines. Let OPTi be the profit of OPT obtained by jobs in class Ci. Then

OPT(σ) =
log T∑
i=1

OPTi ≤
log T∑
i=1

OPT(m)(σi)

Lemma 5.3
≤

log T∑
i=1

log T · OPT(t)(σi)

Theorem 5.2
≤ log T

log T∑
i=1

(2ΔJi + 1)GREEDY(t)(σi)

ΔCi
≤2

≤ 5 log T

log T∑
i=1

GREEDY(t)(σi) = 5 log T · C-GREEDY(σ).

(5.1)

�

LEMMA 5.5. If T = 2k and m ≥ log T for some k ∈ Z
+, then C-GREEDY is

10 log T competitive.

Proof. For m ≥ log T we have 2� m
log T � ≥

m
log T . Thus, we get

OPT(σi) ≤
m

� m
log T �

OPT(t)(σi) ≤ 2 log T · OPT(t)(σi). (5.2)
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Using the computation from Lemma 5.4, but applying (5.2) instead of
Lemma 5.3 in (5.0) gives the desired bound on the competitive ratio. �

We finally extend our result to the general case where T is not a power of
two and m is not an integer multiple of log T .

If T is not a power of two, then C-GREEDY simply rounds up T to the next
power 2k ≥ T of two, so that 2k−1 ≤ T < 2k. Since every instance with
given T can be seen as an instance with time horizon 2k we obtain the follow-
ing result by applying Lemma 5.5:

THEOREM 5.6. For m ≥ �log T �, the algorithm C-GREEDY is 10(�log T �)≤
10(log T + 1)-competitive.

5.3.2 Instances with m < �log T �. If m < �log T �, then C-GREEDY

uses a different partition of the machines by using a different classification of
the jobs. For j = 1, . . . , m machine j is only allowed to accept jobs with

length between T
j−1
m and T

j
m . This way we obtain m classes where for each

class i the ratio of the longest and the smallest possible jobs is Δi = m
√

T .

THEOREM 5.7. For m≤�log T �, C-GREEDY has a competitive ratio of
2m( m

√
T + 1).

Proof. Analogously to the two preceding proofs, we can upper bound the op-
timal offline profit as:

OPT(σ) ≤
m∑

i=1

OPT(m)(σi)

Lemma 5.3
≤ m

m∑
i=1

OPT(1)(σi)

Theorem 5.2
≤ m

m∑
i=1

2(Δi + 1)GREEDY(1)(σi)

Δi ≤ m√
T

≤ m · 2( m
√

T + 1)
m∑

i=1

GREEDY(1)(σi)

= m · 2( m
√

T + 1) · C-GREEDY(σ). �

The input sequence from Lemma 4 of [23] can be adapted for the current
problem by letting all jobs have the same starting time (since jobs no longer
arrive over time but in a list). This gives a lower bound of m( m

√
T − 1) for any

online algorithm. This means that the algorithm C-GREEDY is optimal up to a
factor of slightly more than 2.
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We note that the deterministic algorithm C-GREEDY can be modified to han-
dle that case that minrj ∈σ(bj − aj) �= 1 but this quantity (or a lower bound
ε > 0 for it) is known in advance. In this case in all competitiveness bounds T
is replaced by T/ε in the expressions.

6. Conclusions

Going back to our initial story, we have discovered organizing the bookings
for cottages is not a trivial task, at least not, if booking requests arrive online.
The competitive algorithms presented in this chapter all work by classifying
customers according to the length of the desired booking interval and then
treating each “customer class” separately. In fact, the lower bounds tell us that
such a classification makes sense.

So, if your holiday location works in a competitive way, the initial suspi-
cion that our request was rejected just because we asked for three days instead
of four may be justified. On the other hand the theoretical lower bounds are
somewhat discouraging. Even randomization does not help. On the other hand
this can also be viewed as good news, or would you prefer the owner of the
cottages to flip coins in order to decide about your bookings?
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A SURVEY OF GRAPH ALGORITHMS
UNDER EXTENDED STREAMING MODELS
OF COMPUTATION
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Abstract There has been a great deal of recent interest in the streaming model of com-
putation where algorithms are restricted to a single pass over the data and have
significantly less internal memory available than would be required to store the
entire stream of data. Because of the inherent difficulty of solving graph prob-
lems in the streaming model, a number of extensions to the streaming model
have been considered, namely the Semi-Streaming model, the W-Stream model,
and the Stream-Sort model. In this chapter, we survey the algorithms developed
for graph problems in each of these models. The survey is intended to be tutorial
in nature although familiarity with graph algorithms is assumed.
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1. Introduction

With our ever increasing ability to generate enormous amounts of informa-
tion, comes a need to process that information more efficiently. In particular,
we need to be able to process data that cannot fit into internal memory (i.e.
RAM) and to do so in such a way that our access to external storage is effi-
cient. Recently, there has been interest in a model of computation called the
streaming model which has its origins in [14] and also in [17]. In the stream-
ing model, the data is presented sequentially in a single pass while the internal
memory available is sufficient only to store a small portion of the data. The
motivation for the streaming model is that sequential access to disk can be
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implemented very efficiently yet making multiple passes over large data sets
may be prohibitively expensive or, in some cases, impossible because of the
transient nature of the data.

A number of papers consider computing various statistics in one pass over
a stream [2, 18]. However, determining the types of graph problems that can
be solved efficiently when the graph is presented as a stream of edges is also
an important research question. For many graph properties, it is impossible
to determine whether a given graph has the property in a single pass using
o(n) space where n is the number of vertices in the graph [11]. (One notable
exception is the problem of computing the number of triangles in a graph for
which a 1-pass streaming algorithm appears in [4].) Because of the inherent
difficulty in solving graph problems in the 1-pass streaming model, extensions
to the streaming model have been proposed. The most obvious extension is to
allow multiple passes over the stream with the hope that the number of passes
will be quite small in relation to the size of the stream. In [14], it is suggested
that studying the tradeoff between the number of passes and the amount of
space required by streaming algorithms is an important research topic.

Beyond allowing multiple passes there are three main extensions currently
discussed in the literature:

1. The Semi-Streaming model [12] in which the algorithm is given
Θ(n logk n) space where n is the number of vertices in the graph and
k is any constant. In this case, the algorithm has enough internal mem-
ory to store the vertices but not necessarily the edges in the graph.

2. The W-Stream model [20] in which the algorithm is allowed to write
an intermediate stream as it reads the input stream. This intermediate
stream, which can be at most a constant factor larger than the original
stream, is used as the input stream for the next pass.

3. The Stream-Sort model [20, 1] in which the algorithm is not only al-
lowed to create intermediate streams but also to sort these streams in a
single pass.

In this chapter, we survey the algorithms that have been developed for these
extended models. For a more general survey of streaming algorithms, see [18]
and [3].

While the emphasis of this chapter is on the actual algorithms developed,
we begin with a discussion of lower bounds on the space required to solve
graph problems in the streaming model to motivate the discussion of the other
models.
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2. Lower Bounds

When receiving an input graph G(V, E) as a stream, we assume, unless
otherwise stated, the graph is given as a stream of edges (u, v) ∈ E in no
particular order. If the graph is weighted, an additional weight component is
added to each edge, giving us data items of the form (u, v, w(u, v)). Some
lower bounds on the space required for streaming algorithms can be proven
using counting techniques. For example, in [6], lower bounds are provided
for deterministic and randomized algorithms for O(1)-pass streaming algo-
rithms for finding common neighborhoods of vertices. Another approach to
proving lower bounds is to use results from communication complexity [16].
We provide a brief description of the main ideas behind the communication
complexity approach below.

2.1 Communication Complexity

The two-party communication complexity model originally defined in
[24] consists of two players A and B. The players’ combined goal is to com-
pute a function f : X × Y → Z. When computing f(x, y), Player A is given
x but does not know y while player B is given y but does not know x. To
compute the result, the players must communicate their private information to
each other. The communication complexity of f is the number of bits of
information that must be exchanged for f to be computed. In other words, if
we define the cost of a communication protocol for the two players to be the
number of bits that must be exchanged to compute f(x, y) in the worst case,
the communication complexity of f is the cost of the communication protocol
with the least cost. The one-way communication complexity of a function f
is the communication complexity of f when Player A is allowed to transmit
information to Player B but Player B cannot transmit information to Player A.
For example, consider the following problem referred to as Bit Vector Probing
in [14]:

DEFINITION 2.1. In the Bit Vector Probing (BVP) problem, Player A is
given a bit string x of length n, while Player B is given an index i, 1 ≤ i ≤ n.
The objective of the two players is to output the i-th bit. In other words,
f(x, i) = xi.

The (two-way) communication complexity of this problem is log n since B can
simply send A the index i and A can output xi. The one-way communication
complexity where B is prohibited from sending any information to A is n.
(See [16] for details on this and other results in communication complexity.)

In [14], results from communication complexity are used to study several
graph problems related to database queries as well as other problems relating
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to databases. In each of the graph problems, a directed multigraph is given as
input. The vertices of the graph can be partitioned into k sets, V1, V2, . . . , Vk,
such that each edge is directed from a node in Vi to a node in Vi+1 for some
i, 1 ≤ i < k. Four different types of queries are considered:

Max: Let u1 be the node of largest degree in V1. Let ui ∈ Vi be a node
of largest degree among those incident to ui−1 for 2 ≤ i ≤ k. Find uk.

MaxNeighbor: Let u∗
1 be the node with the largest outdegree in V1. Let

u∗
i be the node of largest degree incident on u∗

i−1 for 2 ≤ i ≤ k. Find u∗
k.

MaxTotal: Find a node u1 ∈ V1 such that u1 is connected to the largest
number of nodes of Vk.

MaxPath: Find nodes u1 ∈ V1, uk ∈ Vk such that they are connected by
the largest possible number of paths.

In [14], Henzinger et al. prove that a 1-pass streaming algorithm requires
Ω(kn2) space to solve any one of these problems where n = max1≤i≤k |Vi|.
They also prove that a p-pass algorithm for MAX requires Ω(kn2/p) space
and provide a p-pass, O(kn2 log n/p)-space algorithm for MAX. For the re-
maining three problems, 1-pass, O(kn2 log n)-space algorithms are provided.

Rather than restate the proofs from [14], we provide a lower bound proof
for a more familiar graph problem, namely determining whether a graph is bi-
partite, to provide the flavor of the communication complexity arguments for
space lower bounds on streaming algorithms. We can reduce BVP to Bipar-
titeness as follows:

Given a bit string x of length n, Player A adds an edge (u, u′) to the stream,
and, for each j, 1 ≤ j ≤ n, such that xj = 1, Player A adds an edge (u, vj).
Player A then runs the hypothetical streaming algorithm for Bipartiteness on
the stream, pausing when all edges have been read. Player A then passes the
contents of the streaming algorithm’s memory to Player B. Player B then
takes the query i, initializes the streaming algorithm with the memory contents
provided by Player A, and runs the streaming algorithm on the stream con-
sisting of a single edge (vi, u

′) effectively restarting the streaming algorithm
from where Player A left off. Player B outputs 0 if the streaming algorithm
indicates that the graph is bipartite, and outputs 1 otherwise.

To see that Player B outputs the correct result notice the graph described
by the entire stream consists of vertices V = {u, u′, v1, v2, . . . , vn} and edges
E = {(u, u′), (u′, vi)} ∪ {(u, vj) : xj = 1, 1 ≤ j ≤ n}. (See Fig. 17.1.)
If xi = 1, then (u, u′), (u′, vi), and (u, vi) are all edges in the graph which
implies that the graph is not bipartite. If xi = 0, then none of the vj’s are adja-
cent to u′. In this case, the graph is bipartite with u on one side of the partition
and all the other vertices on the other side. Therefore, the graph constructed is
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Figure 17.1. The graph constructed by the reduction of BVP to Bipartiteness when x = 101
and i = 1. Note that the graph is not bipartite because of the triangle (u, u′), (u′, v1), (v1, u)

bipartite if and only if xi = 0. Since the one-way communication complexity
of BVP is n, Player A must have passed n bits of information to Player B in
the worst case. Therefore, any streaming algorithm for bipartiteness must use
n space in the worst case where n is the number of vertices in the graph.

Many natural graph problems share a characteristic with bipartiteness that
leads to similar reductions from BVP and consequently the same lower bound
[11].

DEFINITION 2.2 [11]. A graph property P is balanced if there exists a con-
stant c > 0 such that, for all sufficiently large n, there exists a graph G(V, E)
with |V | = n and a vertex u ∈ V such that:

min
{
|VP,u| ,

∣∣∣VP,u

∣∣∣} ≥ cn

where VP,u = {v ∈ V : G′(V, E ∪ {(u, v)}) has property P} and VP,u =
V − VP,u.

THEOREM 2.3 [11]. In the 1-pass streaming model, testing a graph for any
balanced graph property requires Ω(n) space where n is the number of vertices
in the graph.

In [11], Feigenbaum et al. point out that many graph properties such as in-
cluding a vertex of a given degree, bipartiteness, and including a path between
a given pair of vertices are balanced. They conclude that the 1-pass stream-
ing model with an o(n) space limitation does not provide enough power for
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graph problems. This motivates interest in the Semi-Streaming, W-Stream,
and Stream-Sort models. We consider each of these in turn.

3. Semi-Streaming Model

In the Semi-Streaming model [12], the algorithm is allowed to use
O(n logk n) space where n is the number of vertices and k ≥ 1 is a constant.
The following Semi-Streaming algorithms are presented in [12]:

a 1-pass, O(n log n) space algorithm for computing a bipartition for a
graph if one exists,

a 1-pass O(n log n) space algorithm for finding a maximal matching
and, therefore, a 1/2-approximation to a maximum matching,

for any ε, 0 < ε < 1/3, an O( log 1/ε
ε )-pass, O(n log n)-space, (2/3− ε)-

approximation algorithm for finding a maximum matching in a bipartite
graph,

a 1-pass, O(n log n)-space, (1/6)-approximation algorithm for finding
a weighted matching.

Additionally, it is mentioned that an algorithm from [22] can be adapted to give
an O(log1+ε/3 n)-pass, O(n log n)-space, 1/(2 + ε)-approximation algorithm
for weighted matching.

One of the key computational benefits of the Semi-Streaming model is that
there is enough space to store the connected components of a graph using a
disjoint-set data structure [7]. Furthermore, the connected components can be
computed in a single pass. In [12], the connected components of the graph
are used in a 1-pass algorithm to determine whether a graph is bipartite. The
disjoint set data structure is augmented to include a color for each vertex, either
Red or Blue. The algorithm proceeds as follows:

1. Initially, color each vertex Red.

2. For each edge (u, v) in the stream,

(a) if u and v are in the same connected component and u and v have
the same color, return failure. (The graph cannot be bipartite in
this case since the color of any vertex in a connected component
uniquely determines the color of every other vertex in that con-
nected component. In this particular case, if u and v have previ-
ously been assigned the same color, the graph is not 2-colorable,
i.e., bipartite.)

(b) if u and v are in different connected components then
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i if u and v have the same color, flip the color of all the vertices
in v’s component

ii merge the two connected components.

3. Return the coloring as the bipartition of the graph.

The algorithm runs in a single pass and uses α(m, n) time per edge where α is
the inverse Ackermann function (see [7]).

Maintaining the connected components can also be used in an algorithm for
computing the minimum spanning tree for a graph [12]. The algorithm is a
streaming version of an algorithm which appears as a remark in [21]. As we
read the edges from the stream, we keep track of the connected components
in memory. For each connected component, we also maintain a minimum
spanning tree (MST), which can be stored in O(n log n) space since the total
number of edges in all the spanning trees is O(n). The complete algorithm is
as follows:

1. For each edge (u, v) in the stream

(a) if u and v are in different components then union the two com-
ponents and create a minimum spanning tree for this new larger
component by merging the two components’ minimum spanning
trees and adding edge (u, v),

(b) else add (u, v) to the MST for the component (creating a cycle)
and remove the heaviest edge on the cycle created.

2. Assuming the graph is connected, only one component remains. Return
the corresponding spanning tree as the result.

3.1 Spanners

Just as the connected components are a useful representation of a graph that
maintain connectivity information, a spanner is a representation of a graph that
maintains approximate distance information. Formally, we have the following
definition:

DEFINITION 3.1. An (α, β)-spanner for a graph G(V, E) is a subgraph
H(V, E′) such that E′ ⊆ E and for any vertices x, y ∈ V , dG(x, y) ≤
dH(x, y) ≤ αdG(x, y) + β where dG(x, y) and dH(x, y) are the distances
from x to y in graphs G and H respectively. When the additive constant β is
0, we simply refer to the spanner as an α-spanner.

A Semi-Streaming algorithm to find a (log n)/(log log n)-spanner is mention-
ed in [12]. An algorithm for constructing a (1 + ε, β)-spanner of size O(n1+δ)
in a constant number of passes and using O(n1+δ log n) space appears in [9].
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A randomized Semi-Streaming algorithm that constructs a (2t+1)-spanner for
an unweighted graph in one pass appears in [11]. With probability 1− 1

nΩ(1) the

algorithm uses O(tn(1+1/t) log2 n) bits of space. The per edge processing time
is O(t2n(1/t) log n). Using this algorithm, the all-pairs distances in a graph can
be (2t+1)-approximated. An extension to the spanner algorithm that provides
a ((1 + ε)(2t + 1))-spanner for weighted undirected graphs is also presented
in [12]. The idea behind the algorithm is to make sure that for every edge
(u, v) ∈ E that is not included in the spanner, the distance between u and v
is at most 2t + 1. This ensures that the spanner is a (2t + 1)-spanner since,
every edge in a shortest path in the original graph can be replaced by a path of
length (2t + 1) in the spanner. The idea is to maintain trees of height ≤ �t/2�
that represent dense parts of the graph, connections between trees of height
= �t/2�, and miscellaneous edges to represent sparse parts of the graph. Since
the height of each tree is �t/2�, the distance between any two vertices within
the same tree is ≤ t. The key to the algorithm is to ensure that for any edge
(u, v) in the graph, u and v are either in the same tree, in two trees that are
connected by a single edge, or connected by a path including miscellaneous
edges that is not too long. The complete algorithm has a randomized labeling
procedure to achieve the desired results. The reader is referred to [11] for
details.

3.2 Sparsification

In [11], Feigenbaum et al. suggest a general approach for designing algo-
rithms for the Semi-Streaming model and improving the running time per edge
using the idea of sparsification from [10]. Sparsification is a technique for de-
signing dynamic algorithms to test graph properties. It relies on the property
having a strong certificate. A strong certificate for a property P and graph G
is a graph G′ on the same set of vertices such that for any graph H , G∪H has
property P if and only if G′ ∪ H has property P . A strong certificate G′ for
property P and graph G is said to be sparse if G′ has at most cn edges for some
constant c > 0 where n is the number of vertices. Since the Semi-Streaming
model provides enough space to store a sparse certificate and O(n) edges, we
can read O(n) edges at a time while maintaining a sparse certificate for the
property in question. This gives us the following theorem:

THEOREM 3.2 [11]. Let P be a property for which a sparse certificate can be
found in f(n, m) time where n is the number of vertices and m is the number of
edges in the graph. There is a 1-pass Semi-Streaming algorithm that maintains
a sparse certificate for P using f(n, O(n))/n time per edge.

This result and the work by Eppstein et al. [10] leads to Semi-Streaming
algorithms for bipartiteness, connected components, and minimum spanning



Graph Algorithms Under Extended Streaming Models 463

tree with better time per edge than previous algorithms. It also results in new
Semi-Streaming algorithms for 2, 3, and 4-vertex connectivity, 2, 3, and 4-edge
connectivity, and for constant edge connected components.

4. W-Stream

While the Semi-Streaming model extends the streaming model by allowing
more space, in the W-Stream model [20], algorithms are allowed to write as
well as read streams. In each pass, the last stream written (or, in the case of the
first pass, the input stream) is read and a new stream is written. This certainly
seems like a reasonable extension to the streaming model as long as we do not
allow the streams to grow too large. Therefore, the size of the streams written
will be restricted to be within a constant factor of the size of the original input
stream. While adding the ability to write intermediate streams would appear
to provide more power to the streaming model, a p-pass W-Stream algorithm
using s space can be simulated by a p-pass streaming algorithm using p×s bits
of space [20]. Thus, when the number of passes is relatively small, the ability
to write intermediate streams does not provide significantly more computa-
tional power. For example, a (log n)-pass, (log n)-space, W-Stream algorithm
can be simulated by a (log n)-pass, (log2 n)-space, streaming algorithm. In
[8], however, Demetrescu et al. prove that when the space is O(1), there are
problems that can be solved using intermediate streams that cannot be solved
without intermediate streams no matter how many passes are allowed. They
also suggest that the total number of items processed is a better measure of
the computational complexity of algorithms in the W-Stream model than the
number of passes. They prove that the following problem, called FORK, can
be solved with an O(log n)-space W-Stream algorithm while processing O(n)
items. An O(log n)-space streaming algorithm, on the other hand, would re-
quire Ω(log n) passes and, therefore, processes Ω(n log n) items [8].

DEFINITION 4.1 [8]. In the FORK problem, we are given two vectors x and
y of n numbers each such that x1 = y1 but xn �= yn. Our objective is to find
an index i, called a fork, such that xi = yi but xi+1 �= yi+1.

While reading and writing a single stream as in the W-Stream model cer-
tainly seems like a reasonable extension to the streaming model it also seems
to be a bit too restrictive. Why not allow multiple streams to be read and writ-
ten simultaneously? For example, the FORK problem which requires p× s =
Ω(log2 n) passes in W-Stream [8], can be solved in O(log n) space and two
passes if we are allowed to read and write two streams. In the first pass, simply
write A to one stream and B to another. In the second pass, move through A
and B in lock step looking for the first index i at which A[i] �= B[i]. In [20],
Ruhl points out that these types of algorithms have been studied previously as
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tape-based algorithms [15]. Ruhl proposes an alternative model called Stream-
ing Networks which is equivalent in power to the tape model and proves several
results relating the power of Streaming Networks to the models discussed in
this chapter. A complete discussion of the Streaming Network model is beyond
the scope of this chapter.

In addition to the separation results above, two algorithms are presented in
[8] along with a detailed analysis of the tradeoff between the number of passes
versus the amount of space required by the algorithms. The problems consid-
ered are finding the connected components of an undirected graph and directed
single-source shortest path. For both problems, any W-Stream algorithm using
s bits of memory requires Ω(n/s) passes [8]. (Throughout the remainder of
this section, we take n to be the number of vertices and m to be the number of
edges in the graph.)

4.1 Connected Components in W-Stream
A deterministic W-Stream algorithm for finding the connected components

of an undirected graph that uses s space and O((n log n)/s) passes is presented
in [8]. The idea behind the algorithm is to repeatedly find the connected com-
ponents of subgraphs of G where these subgraphs are small enough to fit into
memory. Once such a connected component is found, it can be compressed into
a single vertex for the next iteration. As groups of vertices get compressed, a
representation of the original vertices within each connected component must
be maintained. Therefore, there will be two parts to the intermediate streams.
Part A will hold the edges from the compressed graph. Part B will contain a
representation of the connected components found so far. This representation
will consist of an edge from each original vertex v to the representative vertex
for the component containing v.

The algorithm repeats the following until there are no more edges in the
graph:

1. Read edges from Part A of the stream, storing each new vertex encoun-
tered in memory. As edges are read, maintain the connected components
seen so far by maintaining a spanning forest. Continue reading edges un-
til the internal memory is exhausted or until all the edges from Part A
have been read. Let H be the subgraph induced by the edges that have
been read and stored in memory.

2. Read all remaining edges from Part A of the stream if any. As each
such edge (u, v) is read, determine whether u and v are part of the same
connected component in H . Let

c(x) = the vertex representing the component in H containing x

if x ∈ H

= x otherwise.
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If c(u) �= c(v), write (c(u), c(v)) as an edge in the new stream for the
compressed graph. In this step, all the connected components are com-
pressed down to their representatives. Any vertex in G that is adjacent
to a vertex in a connected component from H will now be adjacent to
the representative of the component.

3. At this point the connected components of H have been found and the
compressed graph has been written to the new stream. It is possible that
some vertices that were previously representatives of connected compo-
nents in G are no longer representatives since their components could
have been merged into a larger component. If this is the case, we need
to update Part B of the stream so that every vertex in such a connected
component points to the representative of the new larger component. To
do this, read the edges from Part B of the stream. As each edge (u, v) is
read, write (u, c(v)) to Part B of the new stream and, if u ∈ H , mark u
in memory as having been written to Part B of the new stream.

4. The entire stream has been read and most of the connected component
information has been written to the new stream. However, there may be
vertices in H whose connected component information have not been
written to the new stream—vertices in H that were not included in the
connected component information for G after the previous iteration. To
remedy this, find each vertex u ∈ H that was not marked as having been
written to Part B of the new stream in Step 3 and write (u, c(u)) to Part B
of the new stream.

Using the reduction of connected components to bipartiteness from [20],
this algorithm can be extended to provide an O((n log n)/s)-pass, s-space,
W-Stream algorithm for bipartiteness. It is an open question whether this W-
Stream algorithm for connected components can be extended to find a mini-
mum spanning tree as was done with the Semi-Streaming algorithm for con-
nected components.

4.2 Single-Source Shortest Paths

A randomized W-Stream algorithm for the directed single source short-
est path problem restricted to instances in which the edge weights are posi-
tive integers bounded by some number C appears in [8]. With s space, the
algorithm makes p = O(Cn log3/2 n/

√
s) passes. The distances returned

are correct with high probability and the size of each intermediate stream is
O(m + n

√
s/ log n). The idea behind the algorithm is that, given any con-

stant l, a shortest path between any two vertices can be viewed as a sequence
of shortest paths between intermediate pairs of vertices where each of the in-
termediate shortest paths has length≤ l. If we can find shortest paths of length
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up to l for all pairs of vertices, we can splice these shortest paths together
to get shortest paths of length > l. There is no known algorithm for finding
shortest paths between all pairs of vertices even for limited path lengths in the
W-Stream model, so instead a random subset of vertices is chosen to serve
as the intermediate sources. A streaming version of Dijkstra’s algorithm can
be run on each of these intermediate sources. We will explain this streaming
version of Dijkstra’s algorithm since the ideas used may be applicable to other
problems.

4.2.1 Finding Distances Up To l from a Single Source Using Dijkstra’s
Algorithm. Recall that in each iteration of the main loop in Dijkstra’s
algorithm, the vertex u with minimum estimated distance from the source is
extracted from the priority queue. Each edge (u, v) out of u is then “relaxed”,
i.e., the estimated distance to v is reduced to the distance of the shortest path
to v over the edge (u, v) if this distance is smaller than the previous estimated
distance from the source to v. (See [7] for a complete description of Dijkstra’s
algorithm). The difficulty in implementing Dijkstra’s algorithm when the space
is restricted to o(n) is that the priority queue cannot be stored in memory.
Instead the priority queue must be stored on the intermediate streams created
during each pass through the data. To simplify the exposition of the algorithm,
let’s first consider the case where we want to find all shortest paths of length
≤ l from a single source, a. If we have the priority queue stored in the stream,
extracting the vertex with minimum priority can be done in one pass. However,
relaxing all the edges coming out of that vertex would be problematic if the
priority queue were simply appended to the stream of edges. (Since relaxing a
single edge would require a pass through the entire stream, the entire algorithm
would require at least m passes through the stream in the worst case.) An
alternative idea, would be to store a copy of the priority queue after each edge
as a linear array containing the priority of each vertex. In addition, we would
have to store a boolean value with each priority to indicate whether or not the
vertex has previously been removed from the queue. In other words, the stream
would look like:

e1 [(p1, f1), . . . , (pn, fn)] e2 [(p1, f1), . . . , (pn, fn)]
· · · em [(p1, f1), . . . , (pn, fn)]

where ei is the i-th edge, pj is the priority of vj ∈ V , and fj indicates whether
vj has been removed from the queue.

If we relax edge e1 = (u, v), we can update the priority for v in the copy of
the priority queue that comes immediately after e1. Now suppose e4 = (u, w)
is the next edge in the stream coming out of u. This edge needs to be relaxed.
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As with edge e1, we can relax e4 by updating the priority of w in the copy of the
priority queue coming immediately after e4. Note that the various copies of the
priority queues are now out of sync. However, each priority queue maintains
the necessary invariant that the priority of any vertex is greater than the actual
length of the shortest path to that vertex. The extract-min operation can still
find the vertex with the minimum priority in one pass because the vertex on
the queue with the minimum priority can be found regardless of whether it
also appears with a larger priority elsewhere in the stream.

The algorithm as described would require intermediate streams of size mn.
Notice, however, that the only priority that can be updated in the copy of the
priority queue immediately following edge (u, v) is v. Therefore, we only need
to keep a single priority after each edge in the stream. This reduces the size of
the intermediate stream to O(m).

We can optimize the algorithm further in terms of the number of passes by
allowing the extract-min operation to find multiple vertices in the case there are
ties for the minimum priority. In other words, the extract-min operation will
create a pool of vertices in memory that consists of up to k vertices that have
minimum priority where k is such that the space constraint is obeyed. In this
way, the number of extract-min passes is bounded by n/k+l since there can be
at most n/k times in which the priority does not change from one pool to the
next, and at most l times when the priority does change from one pool to the
next (assuming the weights are positive integers). Since there is one relaxation
pass for each extract-min pass, the total number of passes is O(n/k + l).

4.2.2 Finding Distances Up To l from Multiple Sources Using Dijk-
stra’s Algorithm. To be useful in solving the single source shortest path
problem by spicing together paths of length ≤ l, the algorithm above must
be extended to handle a set of sources A. This can be accomplished easily
enough by maintaining |A| priority queues in the same manner as was done
with one source. In other words, in the intermediate stream, after each edge
we would write a priority for each source. If the number of vertices k allowed
in each pool for the extract-min operation is s/(|A| log n), the total number of
passes is O(n/k + l) = O(n|A| log n/s + l). The size of the intermediate
streams is O(m|A|). The size of the intermediate streams can be optimized to
O(m + n|A|) by preprocessing the stream to create many groups of contigu-
ous edges in the stream where the endpoints of the edges in each group are the
same. The priority queue information for a vertex is then maintained only after
each group rather than after each edge. For complete details, see [8].

4.2.3 The Complete Single Source Shortest Path Algorithm. Using
the algorithm above as a subroutine, the general single source problem can be
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solved when edge weights are positive integers ≤ C for some number C as
follows:

1. Randomly choose a set A of
√

s/ log n vertices including the true source
a0 to serve as the intermediate sources.

2. Use the algorithm above to compute distances up to l = (αCn log3/2 n)/√
s from each of the vertices in A to every other vertex in the graph

where α is any constant > 1. Let d(ai, v) be the distance from source
ai ∈ A to vertex v ∈ V . This distance information is stored in memory.

3. Build a new graph G∗ on the vertices in A such that there is an edge
between ai and aj if and only if Step 2 found d(ai, aj) ≤ l. Set the
weight of this edge to d(ai, aj). G∗ can be created in one pass and stored
in memory as an adjacency matrix using |A|2 log n = s space. This
graph gives us a concise representation of the shortest paths computed
in Step 2 between the sources in A. These are the paths that we will
splice together to create paths of length > l in the original graph.

4. Compute the shortest paths from source a0 in G∗ using any single source
shortest path algorithm. Let d∗(a0, ai) be the distance from a0 to ai in
G∗ for each i.

5. For any vertex v for which we did not compute a shortest path ≤ l in
step 2, we set its distance to mina∈A{d∗(a0, a) + d(a, v)}.

All distances≤ l are computed correctly in step 2 since a0 is one of the vertices
in A. Distances of length > l could be computed incorrectly. For example, if
a poor choice of random vertices for A resulted in a vertex v ∈ V being a
distance of more than l away from each a ∈ A, the distance computed for v
would be ∞. Demetrescu et al. prove, however, that with probability at least
1− 1/nα−1, each distance > l is computed correctly in Step 5. The number of
passes required is O(αCn log3/2 n/

√
s).

5. The Stream-Sort Model

It is argued in [20] and [1] that the crucial limitation of the streaming model
is not in its inability to write intermediate streams but in its inability to write
sorted intermediate streams. They prove that a p-pass, s-bit, W-Stream al-
gorithm can be simulated by a p-pass, (p × s)-bit, streaming algorithm and
that sorting a stream can be accomplished by a p-pass, s-space, W-Stream al-
gorithm only if p × s ≥ the size of the stream [20]. The latter result is a
consequence of a result from [5]. Since sorting large data sets can be done effi-
ciently with today’s hardware [23], adding a sorting primitive to the W-stream
model seems appropriate. This leads to the Stream-Sort model. In each pass
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through the data, we can either produce an intermediate stream as in the W-
Stream model or sort the stream according to some partial order on the items
in the stream. The partial order must be computable on a Turing machine M
with an s-bit memory, i.e., M is given two items and returns the order of the
items. M does not maintain an internal state between comparisons. On the
other hand, we explicitly allow the local memory to be maintained between
streaming passes.

In [20] and [1], it is suggested that an algorithm in the Stream-Sort model be
considered efficient if the number of streaming and sorting passes is O(logk n)
for some constant k. Efficient Stream-Sort graph algorithms for undirected s-t-
connectivity, directed s-t-connectivity, bipartiteness, minimum spanning tree,
maximal independent set, tree contraction, detecting cycles in an undirected
graph, and minimum cut appear in [20] and [1]. Each of the algorithms is
randomized. As with the models discussed in the previous sections, we present
a Stream-Sort algorithm for connected components, which is from [20] and [1].

5.1 Connected Components in Stream-Sort

Although the algorithm presented in [20] and [1] is for s-t-connectivity, we
amend it slightly to output the complete connected components of a graph.
The final stream created by this algorithm will have the connected components
listed as pairs of vertices and component labels similar to the format used in
[8] and discussed in Sect. 4.

The algorithm repeats the following until there are no more edges in the
graph.

1. Assign a random 3 log n bit integer to each vertex in the graph.

2. Label each vertex with the minimum number among those assigned to
itself and its neighbors.

3. Merge all vertices that receive the same label.

4. If a representative of a connected component is merged then update the
representative for all vertices in the corresponding component.

The idea is that by assigning random labels to each vertex and merging vertices
based on neighboring labels, the number of vertices in the graph decreases
by a constant factor in expectation during each iteration [1]. This implies the
expected number of iterations is O(log n). As we will see below, each iteration
requires a constant number of passes through the stream.

Assume the input stream is given as a list of vertices followed by a list of
edges and that each edge (u, v) appears as both (u, v) and (v, u) since the
edges are undirected. The edges are assumed to be in no particular order. The
computational benefit of sorting is that it gives us the ability to group together
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information that may be distributed in a variety of places in the stream. For
example, when looking for the minimum label among a vertex v’s neighbors,
we need to find all the edges incident on v and the labels of those vertices, yet
the edges incident on v do not necessarily appear near each other in the stream.

The implementation of this algorithm in the Stream-Sort model is described
below. For concreteness, we provide an example for the first iteration on a
graph consisting of a straight line through four vertices in Table 17.1.

Repeat the following until there are no more edges in the graph:

1. In one pass over the stream, replace each vertex vi by a vertex-label pair
(vi, li) where li is the random number assigned to vi. If this is the first
iteration, append the initial connected component information with each
vertex serving as its own representative.

2. For each vertex, we need to find the lowest label assigned to itself or its
neighbors. To do this efficiently, we would like to group the labels for all
of a vertex’s neighbors together in the stream. We proceed as follows:

(a) Sort the stream so that the list of edges emanating from vi ap-
pear right after the vertex label (vi, li) for each vertex vi. In ad-
dition, move the connected component information to the end of
the stream.

(b) In one pass over this new stream, add an “edge label” (li, u) follow-
ing each edge (vi, u). This edge label indicates that u is adjacent
to a vertex labeled li.

(c) Sort again to group these edge labels with the vertex label for the
endpoints of the original edges. In other words, vertex label (vj , lj)
will be followed by the list of edge labels (li, vj) for edges coming
into vj . Put the actual edges at the end of the stream to get them
out of the way.

(d) Now in one linear pass over the stream determine the smallest num-
ber assigned to vi or its neighbors for each i. This can be done in
one pass since each vertex label (vi, li) is followed by a list con-
sisting of an edge label (lj , vi) for each vertex vj adjacent to vi. In
other words, v’s label and the labels of all its neighbors are now
grouped together in the stream. This number becomes the new la-
bel for vi. Update each vertex-label pair in the stream to reflect the
new labeling.

3. Update the connected component information as follows:

(a) Sort the stream so that the list of component pairs (vi, vr) appears
immediately after the vertex label (vr, lr) for the representative
vertex vr.
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(b) Update the representative in each component pair to be the new
label for that representative. In other words, the component pair
(vi, vr) becomes (vi, lr). Note that the labels become the vertices
in the next iteration.

4. We need to update the edges so that edge (vi, vj) is replaced by edge
(li, lj) in the compressed graph. This can be done as follows:

(a) Sort the stream so that edges emanating from vi appear right af-
ter vertex label (vi, li) and the connected component information
appears at the end of the stream.

(b) In one pass over this stream, produce a new stream of edges where
each edge (vi, u) is replaced by (li, u). This updates the first com-
ponent of each edge in the compressed graph for the next iteration.

(c) Now sort this stream so that each vertex label (vj , lj) is followed
by the list of edges (li, vj) coming into vj .

(d) In one pass over this stream, produce a new stream of edges where
each edge (li, vj) is replaced by (li, lj). This updates the second
component of each edge in the compressed graph for the next iter-
ation. Also remove self-loops of the form (li, li) and replace each
vertex label by the label alone—the labels becoming the vertices
for the next iteration. In a second pass, remove duplicate vertices.

In the end, the remaining labels in the stream represent the connected com-
ponents and each pair (vi, li) in the connected components portion of the
stream indicates the connected component in which vi is a member. In the ex-
ample from Table 17.1, notice that after the first iteration, we have determined
that v1, v2, and v3 are in the same connected component which is represented
by the new vertex 10. In the next iteration, we will find that v4 is also in this
same connected component (although the representative could be 30 depend-
ing on how the random numbers are assigned).

Since the expected number of iterations is O(log n) and each iteration re-
quires a constant number of passes, the expected number of passes is O(log n).
Since the only information required to be stored in memory at any one time is
a small number of labels and vertices, the total amount of space used is also
O(log n). Recall that in W-Stream this problem requires Ω(n/s) passes us-
ing s space. Having the ability to sort, therefore, provides a significant com-
putational advantage for this problem. This algorithm is used in [20] and
[1] as a subroutine in Stream-Sort algorithms for bipartiteness, directed s-t-
connectivity, and minimum spanning tree.
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6. Summary and Conclusions

We have discussed a number of graph algorithms for the three main exten-
sions to the streaming model—Semi-Streaming, W-Stream, and Stream-Sort.
In each model there is a need to maintain some compressed representation of
the information contained in the graph. For example, maintaining connectivity
information has proven extremely useful in all three models. In [20], a number
of open problems for the Stream-Sort model are listed including developing
algorithms for breadth-first-search, depth first search, topological sort, and di-
rected connectivity. The W-Stream algorithm from [8] for single source short-
est path discussed above can be used for breadth-first search and can achieve a
sub-linear number of passes using sublinear space. (By taking s =

√
n log3 n

for example, the number of passes required would be n3/4.) It would be in-
teresting to see whether sorting can be used effectively to bring this down to
polylog passes and space.

Interest in the streaming model of computation is not likely to subside any-
time soon especially in the data mining community. The algorithm for finding
coherent threads in search results from [13] for example, is mentioned to be ef-
ficiently implementable in the Stream-Sort model. In addition, Ruhl points out
in [20], that the implementation of the PageRank algorithm discussed in [19]
can be done efficiently in the Stream-Sort model. As more people investigate
the streaming model, consideration of graph algorithms in streaming model
variants will become increasingly common.

7. Thank You Dan

Dan Rosenkrantz was Chair of the Computer Science department at the Uni-
versity at Albany—State University of New York, while I was a graduate stu-
dent. It is one of my great regrets that I never got to work with Dan on any
problems since his problem solving skills are legendary. I felt Dan’s presence
in the department in other ways however. Every presentation I made to the
department I made with Dan in mind since Dan would surely find the slight-
est hole in any argument. I remember at least one occasion where my wife
wondered aloud whether I really needed to go over my presentation yet again
and I responded, “I have to. Dan Rosenkrantz is going to be there.” I consider
it a great honor to contribute this chapter to a book celebrating Dan’s career
although I do so with a bit of trepidation. I hope he doesn’t find any holes.

Acknowledgment

I would like to thank Mike Eckmann for many helpful comments and sug-
gestions.



References

[1] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the streaming
model augmented with a sorting primitive. In Proc. 45th Annual IEEE
Symp. Foundations of Computer Science (FOCS’04), pages 540–549,
Rome, Italy, 2004.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of ap-
proximating the frequency moments. J. Computer and System Sciences,
58(1):137–147, 1999.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In Proc. 21st ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems, pages 1–16, Madison,
WI, 2002.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In Proc.
13th Annual ACM-SIAM Symp. Discrete Algorithms, pages 623–632, San
Francisco, CA, 2002.

[5] Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar. An informa-
tion statistics approach to data stream and communication complexity.
J. Computer and System Sciences, 68(4):702–732, 2004.

[6] A. L. Buchsbaum, R. Giancarlo, and J. R. Westbrook. On finding com-
mon neighborhoods in massive graphs. Theoretical Computer Science,
299(1-3):707–718, 2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. McGraw–Hill/MIT Press, Cambridge, 2001.

[8] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes
in graph streaming problems. In Proc. 17th Annual ACM-SIAM Symp.
Discrete Algorithms, pages 714–723, Miami, FL, 2006.

[9] M. Elkin and J. Zhang. Efficient algorithms for constructing (1 + ε, β)-
spanners in the distributed and streaming models. In Proc. 23rd Annual
ACM Symp. Principles of Distributed Computing, pages 160–168, St.
John’s, Canada, 2004.

[10] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification: a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–
696, 1997.

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph
distances in the streaming model: the value of space. In Proc. 16th An-
nual ACM-SIAM Symp. Discrete Algorithms, pages 745–754, Vancouver,
Canada, 2005.

[12] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On
graph problems in a semi-streaming model. Theoretical Computer Sci-
ence, 348(2-3):207–216, 2005.



476

[13] R. Guha, R. Kumar, D. Sivakumar, and R. Sundaram. Unweaving a web
of documents. In Proc. 11th ACM SIGKDD Intl. Conf. Knowledge Dis-
covery in Data Mining, pages 574–579, Chicago, IL, 2005.

[14] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data
streams. In External Memory Algorithms. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 50, pages 107–
118. American Mathematical Society, Providence, 2000.

[15] D. E. Knuth. Sorting and Searching. The Art of Computer Program-
ming, volume 3. Addison–Wesley–Longman, Redwood City, 2nd edition,
1998.

[16] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, New York, 1996.

[17] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage.
Theoretical Computer Science, 12(3):315–323, 1980.

[18] S. Muthukrishnan. Data streams: algorithms and applications. In Proc.
14th Annual ACM-SIAM Symp. Discrete Algorithms, page 413, Balti-
more, MD, 2003.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
Digital Libraries, Nov. 1999.

[20] M. Ruhl. Efficient algorithms for new computational models. PhD Thesis,
Department of Computer Science, MIT, Cambridge, MA, 2003.

[21] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadel-
phia, 1983.

[22] R. Uehara and Z. Chen. Parallel approximation algorithms for maximum
weighted matching in general graphs. Information Processing Letters,
76(1-2):13–17, 2000.

[23] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[24] A. C. Yao. Some complexity questions related to distributive computing
(preliminary report). In Proc. 11th Annual ACM Symp. Theory of Com-
puting, pages 209–213, Atlanta, GA, Apr.–May 1979.



Chapter 18

INTERACTIONS AMONG HUMAN BEHAVIOR,
SOCIAL NETWORKS, AND SOCIETAL
INFRASTRUCTURES: A CASE STUDY
IN COMPUTATIONAL EPIDEMIOLOGY

CHRISTOPHER L. BARRETT

Department of Computer Science and Network Dynamics and Simulation Science Laboratory,
Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, 1880 Pratt
Drive, Blacksburg, VA 24061, USA. Email: cbarrett@vbi.vt.edu

KEITH BISSET AND JIANGZHUO CHEN

Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Vir-
ginia Polytechnic Institute and State University, 1880 Pratt Drive, Blacksburg, VA 24061, USA.
Emails: kbisset@vbi.vt.edu, chenj@vbi.vt.edu

STEPHEN EUBANK

Department of Physics, Network Dynamics and Simulation Science Laboratory, Virginia Bioin-
formatics Institute, Virginia Polytechnic Institute and State University, 1880 Pratt Drive, Blacks-
burg, VA 24061, USA. Email: seubank@vbi.vt.edu

BRYAN LEWIS

Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Vir-
ginia Polytechnic Institute and State University, 1880 Pratt Drive, Blacksburg, VA 24061, USA.
Email: blewis@vbi.vt.edu

V. S. ANIL KUMAR AND MADHAV V. MARATHE

Department of Computer Science and Network Dynamics and Simulation Science Laboratory,
Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, 1880 Pratt
Drive, Blacksburg, VA 24061, USA. Emails: akumar@vbi.vt.edu,
mmarathe@vbi.vt.edu

S.S. Ravi, S.K. Shukla (eds.), Fundamental Problems in Computing,
c© Springer Science + Business Media B.V. 2009



478

HENNING S. MORTVEIT

Department of Mathematics and Network Dynamics and Simulation Science Laboratory, Vir-
ginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, 1880 Pratt
Drive, Blacksburg, VA 24061, USA. Email: hmortvei@vbi.vt.edu

Abstract Human behavior, social networks, and the civil infrastructures are closely inter-
twined. Understanding their co-evolution is critical for designing public poli-
cies and decision support for disaster planning. For example, human behaviors
and day to day activities of individuals create dense social interactions that are
characteristic of modern urban societies. These dense social networks provide
a perfect fabric for fast, uncontrolled disease propagation. Conversely, peo-
ple’s behavior in response to public policies and their perception of how the
crisis is unfolding as a result of disease outbreak can dramatically alter the nor-
mally stable social interactions. Effective planning and response strategies must
take these complicated interactions into account. In this chapter, we describe a
computer simulation based approach to study these issues using public health
and computational epidemiology as an illustrative example. We also formulate
game-theoretic and stochastic optimization problems that capture many of the
problems that we study empirically.

Keywords: interaction-based computing, theory of simulations, agent-based models, bio-
logical, socio-technical and information systems, urban infrastructures, discrete
dynamical systems, computational complexity, combinatorial algorithms

1. Introduction

Social networks represent relationships among individual agents. Social
networks are not generally static; they evolve over time. Certain aspects of
this change arise from structural adaptations such as reciprocity, transitivity,
etc. However, changes in social networks also occur as a result of the behavior
of individual agents comprising the network. Conversely, individual charac-
teristics and behaviors can depend on the social network to which the agent
belongs. For example, it is well known that in many social situations, the
behavior of individual agents mimics those of other agents with whom they
interact. In other words, individual behaviors and social networks co-evolve.
Examples include fashion trends in schools, market practices of firms based
on strategies used by successful firms, etc. Social scientists often refer to the
change in network structure as selection [22–24], and change in individual
characteristics as influence [17, 23, 24]. See [1, 7, 2, 9, 8, 10, 11, 33, 18] for
work done at the interface of game theory, network formation and individual
behavior. We also refer the reader to the work of [12, 29, 30] for theoretical
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as well as empirical research on the subject of treating selection and influence
processes in a network simultaneously.

In this chapter we further motivate and study the joint evolution of selec-
tion and influence in social networks in an important application context—
spread of infectious diseases. Furthermore, we also consider another com-
ponent that affects this dynamic—public policy. In classical models used in
computational epidemiology, individuals do not adapt their contact behavior
during epidemics. For example, they do not endogenously engage in social
distancing (protective sequestration) based on disease prevalence. Rather, they
simply continue mixing (often uniformly) as if no epidemic were under way.
Although potentially a reasonable assumption for non-lethal infections such as
the common cold, it is known to fail for lethal diseases such as AIDS. People
may be expected to adapt their contact patterns when they perceive a potential
threat due to the onset of avian influenza. This will likely result in substan-
tial changes in the social networks that in turn will alter epidemic dynamics.
In other words, individual behaviors and the social contact networks that they
generate interact and co-evolve. For brevity we will call the problem of co-
evolution of Public policy, Individual behavior and interaction Network as the
PIN problem for the rest of the chapter.

We begin by describing a computer simulation based approach to study such
questions. These simulations use a detailed representation of social contact
networks; such a representation is crucial for studying the questions related to
co-evolution. We then describe a set of experimental results using our simula-
tions that seeks to analyze these questions in the context of developing public
policies for pandemic influenza planning. In the last section of this chapter,
we formulate these questions as questions in stochastic optimization and game
theory. We hope that these mathematical formulations will serve as starting
points for researchers interested in algorithms, operations research and game
theory in making further progress in this new and exciting research area.

2. The PIN Problem in Computational Epidemiology

Urban infrastructures have been designed for efficient functioning during
normal operations. During crises, however, people’s behavior can change so
drastically as to render the infrastructure practically useless. Recent blackouts
in the Northeast US (2003) and hurricanes such as Rita and Katrnia (2005)
demonstrate this amply. In the event of an influenza pandemic, changes in the
structure of the social contact network due to behavioral changes are the most
important yet difficult to predict factors in determining the spread. The ques-
tion of how to respond to crises most effectively is very complicated, involving
public health systems, regional and urban population dynamics, economic ef-
fects, critical infrastructure availability and public policy.
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It is well understood that planners must take individual behavior into ac-
count when preparing for crises. However, it is not as well appreciated that
social responses to public policy can significantly impact the efficacy of pub-
lic policy and disaster response. Human response, public policies and specific
crisis situations are intricately intertwined with one another, making it impos-
sible to obtain a clean simple formal model and solution. Furthermore, policy
interventions can have unanticipated consequences due to complex feedback
between changing conditions, individual expectations, and social connectivity.

Policy planning has been a central focus of epidemiological research over
the years. In addition to empirical observations, practitioners have relied on
mathematical models for understanding and comparing different public health
policies and making recommendations. These models involve stochastic dis-
ease processes on social contact networks. Due to computational consider-
ations, most work in epidemiological modeling has focused on static social
networks. However, social networks change quite a bit during an epidemic.
For instance, policies put in place by public health authorities such as school
closures, quarantine, and face masks cause significant changes to the social
network. Equally important though is the role of individual behavior in trans-
forming the social network. The recent SARS epidemic (2003) served as an
excellent example of how both these factors changed the social network. Thus,
mathematical methods for analyzing epidemics based on models of static so-
cial contact networks are unlikely to give practical insights into the spread of
diseases. We illustrate the issues by two examples.

EXAMPLE 1. First, a simple yet important decision faced by millions of peo-
ple throughout the country every day during cold and flu season: should I go to
work today, even though I have symptoms of a cold or flu? The immediate eco-
nomic impact of absenteeism due to colds and influenza in the United States
in 1980 is estimated to have been $6.5 Billion [31]. While some fraction of
these infections arise from exposure outside the workplace, many and perhaps
the majority occur because a co-worker decided the consequences of possibly
transmitting the disease were less important than the certain consequences of
staying home. Indeed, the term presenteeism has been coined to describe the
problem.

Let us examine the factors involved in this decision more closely. Society
pressures us in many ways to go to work even when we may be sick: lack
of paid sick leave, need to complete tasks, fear of being seen as a malingerer,
desire to be perceived as critical to an organization’s success, etc. Personal
interactions with co-workers can influence the decision either way. The influ-
ence co-workers exert may be tied to whether they have themselves been sick.
Furthermore, when a person chooses to stay home, it affects the social network
at work in at least two different ways: one is simply the removal of the sick
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person as an active influence in decision-making (note that this biases the in-
fluence of the remaining people by removing precisely those who would argue
for staying home); the other, more subtle, effect is a change in the probability
that co-workers will be infected, and thus a possible change in their influence
on the decision.

EXAMPLE 2. A second example is the individual decision whether and when
to flee in the face of a crisis. As recent mass evacuations have clearly shown,
we do not know the best way to clear people out of a city. Much of the uncer-
tainty stems from poor understanding of the effects of individual decisions on
the process. How is a person’s decision to leave related to official evacuation
orders and to decisions made by social contacts? How does it relate to the per-
ceived congestion in the transportation system? How will a household prepare
to evacuate and how long will preparations take? What additional demands will
be placed on the transportation system as geographically dispersed households
gather? How can we take advantage of existing mass transportation resources?
How do all these choices depend on timing of an official announcement?

The factors affecting decision making discussed in the above examples,
namely, uncertain consequences and conflicting motivations between micro
and macro levels for individuals—are at the heart of issues such as non-
compliance with public policy and, more generally, breakdown of the rule
of law in society. The examples, though complex, are amenable to analysis.
By adding features such as public policy decisions and a co-evolving “epi-
demic” of panic, we can create even more realistic, though inherently more
complicated, representations of decision-making with immediate applicability
to crisis response and longer-term broader applicability to modeling civil order.

3. Network Based Computational Epidemiology

Computational Epidemiology is the development and use of computer mod-
els for the spatio-temporal diffusion of disease through populations. The basic
goal of epidemiological modeling is to understand the dynamics of disease
spread well enough to control it. Potential interventions for controlling in-
fectious diseases include pharmaceuticals for treatment or prophylaxis, social
interventions designed to change transmission rates between individuals, phys-
ical barriers to transmission, and eradication of vectors. Efficient use of these
interventions requires targeting sub-populations that are on the critical path of
disease spread. Computational models can be used to identify those critical
sub-populations and to assess the feasibility and effectiveness of proposed in-
terventions.

The spread of infectious diseases depends both on properties of the pathogen
and the host. An important factor that greatly influences an outbreak of an
infectious disease is the structure of the interaction network across which it
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spreads. Descriptive models are useful for estimating properties of the disease,
but the structure of the interaction network changes with time and is often
affected by the presence of disease and public health interventions. Thus gen-
erative models are most often used to study the effects of public health policies
on the spread and control of disease.

Aggregate or collective computational epidemiology models often assume
that a population is partitioned into a few sub-populations (e.g. by age) with a
regular interaction structure within and between sub-populations. The result-
ing model can typically be expressed as a set of coupled ordinary differential
equations. Such models focus on estimating the number of infected individuals
as a function of time, and have been useful in understanding population-wide
interventions. For example, they can be used to determine the level of immu-
nization required to create herd immunity.

In contrast, disaggregated or individual-based models represent each inter-
action between individuals, and can thus be used to study critical pathways.
Disaggregated models require neither partitions of the population nor assump-
tions about large scale regularity of interactions; instead, they require detailed
estimates of transmissibility between individuals. The resulting model is typ-
ically a stochastic finite discrete dynamical system. For more than a few indi-
viduals, the state space of possible configurations of the dynamical system is
so large that they are best studied using computer simulation.

See [1, 7, 9] for work on use of game theory to study problems in epidemi-
ology. See Kermer [21] for one of the early work on integrating behavioral and
epidemiological models; the work however used traditional differential equa-
tion based mean field modeling. Recent work by Epstein et al. [13] has used
individual based models to study this interaction. Excepting the work of [13],
we are not aware of any other work that uses individual agent based models to
study the PIN problem in epidemiology.

3.1 SimDemics

SimDemics is a tool for simulating the spread of disease on a social contact
network. A brief overview of SimDemics is provided here. Further details
can be found in [3, 14, 16, 5]. It details the demographic and geographic
distributions of disease and provides decision makers with information about
(1) the consequences of a biological attack or natural outbreak, (2) the resulting
demand for health services, and (3) the feasibility and effectiveness of response
options. See [3, 14, 15] for further details. The overall approach followed by
disaggregated models consists of the following four steps.

Step 1 creates a synthetic urban population by integrating a variety of data-
bases from commercial and public sources. It yields a set of synthetic individ-
uals and households located geographically, each associated with demographic
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variables. Synthetic populations preserve privacy and confidentiality of indi-
viduals and yet produces realistic attributes and demographics for the synthetic
individuals in the following sense: a census of our synthetic population yields
results that are statistically indistinguishable from the original census data, if
they are both aggregated to the block group level.

Step 2 creates a synthetic social contact network. This is done by first as-
signing synthetic individuals a set of activity templates based on several thou-
sand responses to an activity or time-use survey. These activity templates
include the sort of activities each household member performs and the time
of day they are performed. various machine learning and data mining tech-
niques are used for this task. By integrating, this data over all individuals,
we get a minute-by-minute schedule of each person’s activities and the loca-
tions where these activities take place. This information can now be used to
synthesize a time varying social contact network represented by a (vertex and
edge) labeled bipartite graph GPL, where P is the set of people and L is the
set of locations. If a person p ∈ P visits a location � ∈ L, there is an edge
(p, �, label) ∈ E(GPL) between them, where label is a record of the type of
activity of the visit and its start and end points. Synthetic generative methods
such as the ones used here are necessary to develop a realistic representation of
large urban scale social contact network; such a network cannot be constructed
by simply collecting field data.

Step 3 consists of detailed simulation of the epidemic process. The compu-
tational model used is called a graphical probabilistic timed transition system.
The within hosts disease evolution is represented as a probabilistic timed tran-
sition system (PTTS). There is one transition system per individual. The state
transition of a given PTTS corresponding to an individual depends on its own
state, the time, a set of random bits and the state of its neighbors in the dynamic
interaction network created in Step 2.

Step 4 consists of representing and analyzing various public policies and
interventions using a combination of partially observable Markov decision
process (POMDP) and n-way games; these formalisms allow us to capture
sequential decision making processes related to interventions and individual
behavioral changes in response to disease dynamics. The POMDP is specified
succinctly using a co-evolving dynamical system described in the next section.
It is thus exponentially larger than the problem specification and is intractable
to solve optimally in general. As a result, we use efficient simulations and
heuristics to solve the PIN problems. A key concept is that of implementable
policies—policies or interventions that are implementable in the real world.

SimDemics maintains a parameterized model for the state of health of each
person, and updates this continuously based on interaction with other people,
and transmission of a disease through these contacts. This enables us to es-
timate both the geographic and demographic distribution of the disease as a
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function of time. It also allows us to evaluate the impact of different interven-
tion policies, such as vaccination and quarantine.

This is an important feature of SimDemics. Indeed, the success of most
policies and plans depends on their ability to anticipate and adapt to all possible
outcomes. However, many of the tools used to describe the range of outcomes
and to quantify their relative magnitudes are based on static estimates, whereas
in a crisis situation, the responses authorities make depend greatly on real-
time situational awareness. SimDemics allows the synthetic people to change
their behaviors and interactions based on their individual situation as well as
characteristics of the entire population.

4. A Mathematical Model to Capture Co-Evolution

We will use a discrete dynamical system framework to capture our co-
evolution between disease dynamics and individual behavior. The basic frame-
work consists of the following components: (i) a collection of entities with
state values and local rules for state transitions, (ii) an interaction graph cap-
turing the local dependency of an entity on its neighboring entities and (iii) an
update sequence or schedule such that the causality in the system is represented
by the composition of local mappings.

We formalize this as follows. A Co-evolving Graphical Discrete Dynam-
ical System (CGDDS) S over a given domain D of state values is a triple
(G,F , W ), whose components are as follows:

1. Let V = {vi}n
i=1 be a set of vertices, and let (gi)i be a vertex indexed

family of graph modification functions gi: {0, 1}n −→ {0, 1}n. The
functions (gi)i, through their applications, defines an indexed sequence
of graphs G = (Gr = Gr(Vr = V, Er))r with labeled edges and ver-
tices. The graph Gr is the underlying contact graph of S after r appli-
cations of functions gi. It is assumed that the edge {vi, vi} ∈ Er for all
r and for all i. We set mr = |Er|.

2. For each vertex vi there is a set of local transition functions {fvi,d}d

where fvi,d: D
d −→ D. Let N(i, t) denote the set of vertices consisting

of vi and the neighbors of vi at time t, and let dt = |N(i, t)|. The
function used to map the state of vertex vi at time t to its state at time
t+1 is fvi,dt , and the input to this function is the state sub-configuration
induced by N(i, t).

3. The final component is a string W over the alphabet {v1(s), v2(s), . . . ,
vn(s), v1(g), . . . , vn(g)}. The string W is a schedule. It represents an
order in which the state of a vertex or the possible edges incident on the
vertex will be updated. Here vi(s) intuitively specifies that the state of
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the vertex vi is to be updated; vi(g) specifies that one or more incident
edges will be updated.

From a modeling perspective each vertex represents an agent. Here we will
assume that the states of the agent come from a finite domain D. The maps
fvi,j are generally stochastic.

Computationally, each step of a CGDDS (i.e., the transition from one con-
figuration to another), involves updating either a state associated with a vertex
or modifying the set of incident edges on it. The following pseudo-code shows
the computations involved in one transition.

Initialize t = 0
Repeat Until W is empty

(i) Let r be the first symbol in W .
(iii) If r = vi(s), update the state of the vertex vi as follows:

(a) Let degree of node vi in Gt be dt. Node vi evaluates fvi,dt . (This
computation uses the current values of the state of vi and those of the neighbors
of vi in Gt.) Let x denote the value computed.

(b) Node vi sets its state svi to x.
(iii) If r = vi(g), update the edges incident on vi as follows:

(a) Use current graph Gt to compute gvi .
(b) Let Gtemp denote the new graph.

(ii) Set t = t + 1, Gt+1 = Gtemp and delete r from string W .
End Repeat

Let FS denote the global transition function associated with S . This func-
tion can be viewed either as a function that maps D

n into D
n or as a func-

tion that maps D
V into D

V . FS represents the transitions between configura-
tions, and can therefore be considered as defining the dynamic behavior of an
CGDDS S .

We make several observations regarding the formal model described above.

1. We will assume that the local transition functions and local graph modi-
fication functions are both computable efficiently in polynomial time. In
agent based models used in social sciences these are usually very simple
functions. Furthermore, the functions gvi need to be specified using a
succinct representation, rather than a complete table which will be expo-
nentially larger.

2. The edge modification function as defined can modify in one step a sub-
set of edges simultaneously. An alternate model could have been where
a vertex is allowed to change exactly one edge at a time. We have chosen
the former due to the specific application in mind. In all our applications,
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when an agent decided to not go to a location (either due to location clo-
sure as demanded by public policy or due to the fear of contracting the
disease) its edges to all other individuals in that location are simultane-
ously removed while adding edges to all the individuals who might be at
home.

3. The model is Markovian in that the updates are based only on the current
state of the system; it is possible to extend the model wherein updates
are based on earlier state of the system.

4. We have assumed that there is exactly one function for each arity for
each node. This can be relaxed easily, similarly these functions will, in
general be stochastic.

4.1 Specifying PIN Problems in CE Using Co-Evolving
Discrete Dynamical Systems

We briefly outline how PIN problems in Computational Epidemiology can
be specified using CGDDS. In all the situations considered in this paper, we
can make certain simplifying assumptions due to the specific dynamics that
we consider. In SimDemics, we have a notion of a day. A day is typically 24
hours but can be smaller depending on the specific disease. We assume that
the social contact network does not change in the course of a day. This is a
realistic assumption due to the time scale of disease evolution (time it takes
for a person to be infectious or symptomatic after being infected). As a result,
the schedule can be specified as a sequence of days wherein we only consider
disease dynamics over the entire population followed by a step in which there
is a change in the social contact network.

We can make this a bit more precise as follows: We denote the functional
modules for mobility, disease propagation and activity generation by M , D
and A, respectively; these are described in Appendix. Each individual is as-
signed a set of initial activities based on their preferences, demographics, and
infrastructure constraints in the activity assignment module A. The module M
assigns locations to all entities based on the current set of activities which in
turn induces the current contact graph, or social network. Using the contact
graph, the module D computes the next stage which is disease dynamics. This
corresponds to updating the disease state of every individual in the network
over one day. The activity generator A uses the current disease state to up-
date the current activities. Models of individual behavior or policy that affects
individual behavior constitutes this module.

In general, the dynamics is time dependent and is generated by iteration of
the composed map F given by

F = D ◦M ◦A.
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This is illustrated on the right in Fig. 18.1. Notice that this is already a sub-
stantial simplification over all possible choices for the string W .

Interventions and behavioral changes can be broadly categorized based when
they occur:

1. Non-Adaptive: Non-adaptive interventions and behavioral changes oc-
cur before the start of the simulations. The non-adaptive interventions
unrealistically assume the population does not change during the course
of the epidemic and is limited to studying treatments that have a perma-
nent effect, like vaccination.

Letting the initial state of the system be x0, the final state of the system
can be written as x(t) = F t(x(0)) as (Dt ◦ (M ◦A))(x(0)), illustrated
on the left in Fig. 18.1.

2. Adaptive: The adaptive strategies on the other hand, incorporate changes
in the movement of the people, treatments that have only temporary ef-
fects (antiviral medications are only effective when being taken), and
wholesale changes to the interactions within the population (like school
closure). This is represented most generally as x(t) = F t(x(0)) as
(D ◦M ◦A)t(x(0)). We can now differentiate various strategies by how
frequently M and A are applied as compared to D. In other words, we
view the dynamics as the following composition: (Dt/r◦M ◦A)r(x(0)),
where the exponents reflect the different time scales. This can be viewed
as degree of adaptation. Policy based change in the social network is
usually caused by changing the behavior of a set of individuals in some
uniform way. Furthermore, it is natural to expect that these changes do
not occur often. Individual behavior based changes on the other hand
can occur every day—individuals can change their behavior and thus
their probability of contracting a disease on a daily basis. A simula-
tion is computationally most efficient when t is small, since it amounts
to fewer updates to the social network and individual behavior. On the
other hand, making t small makes the simulation less realistic since the

Figure 18.1. The left diagram shows the data flow for disease dynamics without feedback, that
is, where e.g. interventions do not alter activities. The diagram on the right shows data flow
with feedback from the disease dynamics to the activities
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interaction between individual behavior and disease dynamics is not well
represented.

5. Computational Experiments

This section illustrates how complicated PIN problems can be specified and
studied using computational models such as SimDemics. See [6] for additional
details. We will compare the effectiveness of both adaptive and non-adaptive
interventions on the same population with the same contact network, using dis-
ease models of the same disease (pandemic strain of influenza). Non-adaptive
interventions are done before the epidemic starts—in this setting, we (unre-
alistically) assume that the activities of all people are unchanged during the
experiment. Adaptive interventions, on the other hand, are done based on the
information available about the epidemic, and can change as the epidemic pro-
ceeds. The interventions we will consider include medical (such as administra-
tion of vaccines and anti-virals), governmental (such as school closures), and
societal (such as social distancing)—some of these interventions are external,
and some are endogenous, i.e., people themselves implement them.

These computational experiments show the following:

They illustrate the qualitative differences between adaptive and non-
adaptive strategies and highlight the need for more realistic dynamic
modeling.

They illustrate the power of SimDemics modeling system in terms of (i)
its ability to handle various kinds of adaptive and non-adaptive interven-
tions, (ii) handle large instances.

5.1 Basic Experimental Setup

The contact network we study models a population of about 8.86 million
people in Chicago. The network is constructed by synthesizing information
from a number of different sources [4]. We model pandemic influenza with
all the characteristics of normal influenza, with a much higher transmissibility.
Influenza has a short incubation period, can be infectious even in the absence
of symptoms, and is transmitted through the air or by certain kinds of contact.

The heterogeneous symptomatic and incubation periods are drawn from a
distribution, and are fixed for every person initially. The transmissibility, or
the probability of infection on a contact, per minute is chosen to be 0.000048
and 0.0003. The number of initial infections is 4. The disease model in Exper-
iment 2 differs from the one in Experiment 1 in by incorporation of additional
states needed to capture the effects of the antiviral treatment, but the gross
features are still the same.
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Parameter Values
Social network Chicago, 8.86M individuals
Transmissibility (τ ) 0.000048 and 0.0003
Age groups 0–5 (group 1), 6–15 (2), 16–20 (3), 21–60 (4), >60 (5)
Number of people intervened 50K, 100K, 150K, 200K, 250K, 300K, 400K, 500K
Number of initial infections 4
Number of iterations 50, 2 initial infection sets, 25 iterations per set
Policies random, high degree, high vulnerability, household

with specific activity types, specific age groups

Table 18.1. Summary of parameters used in experimental studies

We describe below the specific experiments we perform and the various
experimental parameters.

We choose two values for the transmissibility parameter τ , namely τ =
0.000048 and τ = 0.0003.

We choose 25 different sets of initial infections and run 2 random iter-
ations for each of them, for a total of 50 iterations. We then compute
an average run, where the number of new infections on each day is the
average of the new infection number on this day in the 50 iterations, and
report the measures based on the average runs.

For each vaccination policy, we consider the following sizes (where K
means thousand): 50K, 100K, 150K, 200K, 250K, 300K, 400K, 500K.

For random people, we choose a subset of given size from the population
uniformly at random. This trivial vaccination scheme can be viewed as
a benchmark for evaluating effectiveness of other vaccination schemes.

An individual is active if his/her activities belong to many types, or s/he
lives in the same household with an active individual. The list of active
people is determined from the given contact network and has about 500K
people.

We have five age groups: 0–5 years in age group 1; 6–15 years in age
group 2; 16–20 years in age group 3; 21–60 years in age group 4; older
than 60 years in age group 5. We are especially interested in age groups 2
and 5, i.e., school kids and seniors.

5.2 Experiment 1

Non-Adaptive Interventions: Study the effect of pre-vaccination of specific
sub-populations assuming no changes in behavior throughout the course of the
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epidemic. Here we will compare vaccination policies targeting the following
sub-populations:

randomly chosen people

people of high degree

people of high vulnerability

active people

people of a specific age groups

While many other policies and groups can be explored, even in this static case,
these groups are chosen to illustrate a sample of the types of policies that can
be represented in this modeling environment. We measure the effectiveness
of these policies in terms of the percentage decrease in the epidemic size as
compared to the unmitigated case as well as the unit efficiency. We will need
some notation in order to define these measures formally. For subset A ⊆ V
of people, we let IA(G) denote the set of infected people, when the people
in A are immunized, subject to some specific starting conditions, and disease
model in the contact network G(V, E). Mathematically, vaccinating a person is
equivalent to either removing a node from the network, or reducing its incident
infection probabilities. Note that A = ∅ means no vaccination, i.e., base case.
The two measures we use to compare different policies are:

the percentage decrease in epidemic size, defined as:

DES =
|I∅| − |IA|
|I∅|

the unit efficiency of vaccination, defined as:

UE =
|I∅| − |IA|

|A|

Results and Analysis: The most basic question is which policy is the most
effective for a given disease. We are also interested in finding a policy that is
easy to implement from a public health point of view. These policies would be
compared empirically in the sections that follow.

The two measures (DES and UE) are plotted against vaccination size in
Figs. 18.2 and 18.4 for the case τ = 0.000048 and in Figs. 18.3 and 18.5 for
the case τ = 0.0003.

The effectiveness of vaccination is highly dependent on who is selected for
vaccination and what the transmissibility of the disease is. When the disease
has high transmissibility (τ = 0.0003) vaccination policies have little effect
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Figure 18.2. Percentage of decrease in average epidemic size (τ = 0.000048)

Figure 18.3. Percentage of decrease in average epidemic size (τ = 0.0003)

(Fig. 18.3): even if half a million vaccinations are given (5.6% of the pop-
ulation) there is only a 7% decrease in epidemic size (6.3% of the popula-
tion). If these vaccines were not randomly assigned, but specifically given
to people older than 60 then they are even less effective, only decreasing the
epidemic size by 5.1% which is even lower than the vaccination percentage
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Figure 18.4. Average unit efficiency of vaccination (τ = 0.000048)

Figure 18.5. Average unit efficiency of vaccination (τ = 0.0003)

(5.6%). The effect is only slightly greater for less transmissible diseases: with
τ = 0.000048 the epidemic is decreased by 8%. The limited effect of vacci-
nating those over 60 is a result of the low connectivity of this population. They
are more susceptible to severe effects of the disease, however, so vaccination
ensures lower mortality, which was not considered in these simulations.
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To further illustrate the impact of who is vaccinated, note that schemes
where “high degree” individuals are vaccinated result in significant decrease
of epidemic size. For instance, in Fig. 18.2 (τ = 0.000048) when half a mil-
lion “high degree” individuals are vaccinated the epidemic size is decreased
by more than 45%. Furthermore, if the “high vulnerability” individuals are
vaccinated the epidemic decreases by almost 60%. Identifying these individ-
uals requires complete knowledge of the contact network and in the case of
vulnerability, requires previous simulations and analysis. It is more realistic to
identify people that are in high risk age groups or have behaviors that might
put them at higher risk. Figure 18.4, shows that vaccinating school children
aged 6–15 is much more efficient than simply vaccinating random individuals.
Additionally, active individuals, who engage in many types of activities (i.e.
school, work, and/or college) or live with an individual with these activities,
may be relatively easy to identify. Vaccinating these individuals is also shown
to be more efficient than random vaccination.

The effectiveness of vaccinating “high degree” and “high vulnerability”
people stands to reason given the significant reduction of overall degree that
their removal would produce. However, these strategies require perfect knowl-
edge of the contact network. Additionally, note that the effectiveness of the
strategies is based on the assumption that the social network does not change.
Individuals that are high degree before the arrival of an epidemic disease, may
not have high degree under epidemic conditions. The evolution of the contact
network under these conditions can also cause individuals that might not be
obviously high degree to become more highly connected (for instance health
care workers).

Nevertheless, even assuming a fixed contact graph, significant insights into
the effectiveness of various vaccination schemes can still be made. For in-
stance, the effectiveness of vaccinating high degree individuals suggests that it
might be useful to identify individuals in a specific age groups or individuals
carrying out specific trade (e.g. emergency care workers) as potential targets.

5.3 Experiment 2

Adaptive Interventions: Study the effects of dynamic changes to the so-
cial network, treatments with antivirals, and changes in individual behaviors
throughout the course of an influenza epidemic. An effective vaccine for pan-
demic influenza is not likely to be available until the pandemic is well estab-
lished. Currently available antiviral medicines used for treatment of influenza
have limited efficacy in preventing infection and are likely to be in short sup-
ply. Without these tools, control of an influenza pandemic must be attempted
through more general infection control measures. This experiment studies the
effectiveness of a collection of interventions both together and in isolation as
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well as the sensitivity of when they are implemented. The interventions are dy-
namically triggered at different points in the epidemic and the timing of these
triggers is also studied. The interventions are designed to reduce the opportu-
nities for infections by removing infectious people from circulation, reducing
their infectivity through treatment, and keeping potentially infectious people
from transmitting disease before they develop symptoms. These interventions
drastically alter the daily activities of many of the people in the simulation, and
these dynamic changes can effectively control the epidemic.
Experimental Setup: As mentioned earlier, the same population with the
same contact network are exposed to the same disease modeled on a highly
infectious influenza, as was done in Experiment 1. However, the interventions
modeled are very different. They are derived from interventions recommended
in federal pandemic planning documents1 and require that they be dynamically
applied under conditions specific to the individual. The modeling environment
is designed to accommodate these kinds of interventions, and thus allow the
simulation to closely represent what might actually occur in reality.

The specific interventions we will consider are:

1. Case isolation: once an individual experiences symptoms of the disease,
they remain home through the duration of their illness.

2. Case treatment and household quarantine: if a case is diagnosed, they
are administered anti-viral medications (reduces their infectivity and du-
ration of illness) and all household members are given prophylactic anti-
viral medications (reduces their chance of infection) and are quarantined
at home until no one in the household is sick.

3. School closure: all schools are closed, some children remain at home
while the remaining substitute other activities during normal school
hours. An adult in the household of a young child (less than 15) must
stay home to supervise them.

4. General social distancing: 50% of people eliminate all non-essential ac-
tivities (shopping, visiting, recreation).

5. Workplace social distancing: to reduce workplace exposure, workers in
large offices interact with 50% co-workers.

These interventions were studied across different levels of adherence to the
interventions (30%, 60%, and 90%) and were implemented at different points
in the progress of the epidemic (from 0.0001% of the population to 10% of the

1 See http://www.whitehouse.gov/homeland/pandemic-influenza.html.

http://www.whitehouse.gov/homeland/pandemic-influenza.html
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Prevalence trigger Cumulative proportion ill
Never 44.7%
10% 20.3%
1% 3.9%
0.10% 2.0%
0.01% 1.7%
0.001% 1.7%
0.0001% 1.7%

Table 18.2. Epidemic size decreases when the interventions are implemented at lower preva-
lence thresholds

Compliance Early threshold (0.01%) Later threshold (0.1%)
30% 1.7% 2.0%
60% 0.1% 1.3%
90% 0.1% 1.2%

Table 18.3. Epidemic size decreases when societal compliance with interventions increases

population infected, or 9 cases to 886,000 cases). All permutations were not
studied due to limits on computational resources.
Results and Analysis: The modeled disease epidemic can be completely con-
trolled by the adaptive interventions. The overall magnitude is significantly
curtailed when the interventions are triggered at a lower level of disease preva-
lence. Similarly, when societal compliance increases the size of the epidemic
decreases.

The size of the epidemic is very sensitive to when the interventions are in-
stituted (Table 18.2). An uncontrolled epidemic, i.e., when the interventions
are never implemented, leads to nearly half the population becoming ill. Even
if the interventions are not applied until after the epidemic has made 10% of
the population ill, the interventions are able to prevent half of these infections.
Interestingly, there is a limit to how effective the interventions can be, even if
implemented at levels of infection in the population that would be impossible
to detect (0.01% to 0.0001%) they cannot completely prevent the epidemic.
While the overall attack rate may be the same, note the difference in the tim-
ing and shape of the epidemic (see tables below). The epidemic that follows
the interventions triggered at 0.01% peaks nearly three weeks earlier but has
the same area under the curve, which could translate into other changes in the
population were there further adaptive measures in place.

The levels of compliance with the interventions also have an effect on the
size of the epidemic, though less so than the timing of the intervention (Ta-
ble 18.3, Fig. 18.6). Similarly, at the extremes of the control (both 60% and
90%) the overall attack rates are limited to the same level, but shape of the
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Figure 18.6. Epidemic curves by levels of compliance and time of intervention: Scenario 2—
30% compliance and trigger at 1% prevalence; Scenario 3—60% compliance and trigger at
0.1% prevalence; Scenario 4—60% compliance and trigger at 0.01% prevalence; Scenario 5—
90% compliance and trigger at 0.1% prevalence; Scenario 6—90% compliance and trigger at
0.01% prevalence

epidemic curves are different, which in turn could have an effect on additional
adaptive measures.

5.4 Comparing Adaptive and Non-Adaptive Strategies

The two case studies above tell different stories to Public Health policy mak-
ers, with varying levels of refinement. The non-adaptive strategies studied on
the static network can be useful for informing permanent modifications to the
potential disease transmission network, such as vaccination. These approaches
could determine which groups are best suited for vaccination when supply is
limited, or could be used for planning how many vaccines are needed to control
an epidemic. However, they can not answer questions about behavior modifi-
cations based on an individual’s state. The adaptive strategies studied using the
SimDemics modeling environment are designed to handle these exact types of
dynamic changes to the social network. This more flexible architecture allows
the exploration of a wider range of public health policy options, and can re-
produce behaviors in the system that may not be obvious. The transparency in
the representation of the framework also allows for a more direct interpreta-
tion of the results, which allows for greater understanding across a wider audi-
ence of policy makers. The framework still requires some coarse adjustments
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based more on time and average behavior of the model, and full situational
awareness. Further refinement of these adaptive strategies is needed so that the
implementation of all these strategies is more fluid and evolving.

6. A Mathematical Formulation

We have seen how one can use computer simulations to study the effects of
various adaptive and non-adaptive interventions to control the spread of avian
flu through a social network. In this section, we will try to formulate many
of these questions as combinatorial questions in stochastic optimization, game
theory, dynamical systems and algorithms. This serves to expose the reader
to various mathematical formalisms, each capturing a different facet of the
underlying problem. Nevertheless, our primary goal is algorithmic here—we
concentrate on the algorithmic issues arising in these formalisms. Often the
questions are based on a simplified mathematical abstraction of the realistic
situation; nevertheless, we believe that this allows us to formulate questions
that might be tractable in the sense of obtaining rigorous mathematical proofs.
Progress on these questions will help us understand and guide simulation based
experimental results.

6.1 Preliminaries: A Simplified Model

Let V denote a population. We refer to individuals in V as nodes. Let
G(V, E) denote a contact graph on this population—each edge e = (u, v) ∈ E
denotes that the individuals u and v come into contact and can infect each
other. The spread of infection is assumed to be a stochastic process. For each
edge e = (u, v) ∈ E let r(e) (also, sometimes denoted by r(u, v)) denote
the probability of the infection spreading from u to v per unit time—this is
sometimes referred to as the infection rate. Let τ(u) denote the time that node
u remains infected. Note that the infection rates need not be symmetric, i.e.,
r(u, v) and r(v, u) need not be the same. We will assume that r(u, v) does
not vary with time, though this happens in reality. Most disease models have
additional states. For instance, there is an incubation period, which is the
period right after the infection, in which the individual is infected, but not yet
contagious. Let I(u) denote the incubation period for node u. We let r̄, τ̄ and
Ī denote the vectors specifying the above quantities for all nodes and edges.
We will use x̄ to denote the initial conditions: x(v) denotes the probability that
v is infected initially.

We will be considering discrete time models for epidemics, where the prob-
ability that node v does not get infected by node u in t time steps after u got
infected is given by:

Pr[node v not infected] = (1− r(u, v))t (6.1)
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In an epidemic model such as SIR, each node u recovers and becomes im-
mune τ(u) time steps after becoming infected. In endemic models such as
SIS, node u returns to the susceptible state after this time. A crucial assump-
tion made in almost all epidemic models is that of independence: we assume
that the spread of infection from a node u to node v is completely independent
of the infection from a node u′ to node v. Similarly, an infected node u spreads
the infection to each neighbor v, independent of the other neighbors of u. This
is a central assumption in almost all the epidemic models and the analytical re-
sults based on percolation. However, there exist other epidemic models, such
as the Descending Cascade Model [20], in which this independence assump-
tion does not hold.

6.2 Policy Planning Problems

We begin by formulating one of the policy planning problems studied ear-
lier empirically—determining whom to vaccinate—as a stochastic optimiza-
tion problems. The optimization issue arises because of limited resources, e.g.,
of vaccines—this raises the question of whom to vaccinate so that the “pub-
lic good” is maximized. However, public good can be defined in a number
of ways, and therefore, there is no unique solution. In this section, we will
take an easy route by just attempting to determine a policy that minimizes the
epidemic size. This gives us the following problem, which we call the Vac-
cination Problem, following our earlier results in [16], which we denote by
VP(G, r̄, τ̄ , Ī , x̄, k):

Given: Contact graph G(V, E), which is directed, an SIR disease model,
as described in Sect. 6.1, which is specified by the vectors r̄, τ̄ , Ī , and
a parameter k, and a vector x̄ ∈ [0, 1]n, which describes the initial
conditions—x(v) denotes the probability that node v is infected initially.
The most common starting conditions are: (i) there is a single node v
such that x(v) = 1 and x(w) = 0 for all w �= v, or (ii) x(v) = 1/n for
each v.

Objective: Choose S ⊆ V, |S| ≤ k so that the number of nodes infected
when the disease is run on G[V \S] is minimized. In the initial conditions
where some specific nodes are infected, none of them should be in the
set S.

The SIR model leads to several simplifications in the formulation of the
above problem, and relates it to percolation. First, the incubation period I(u)
of node u plays no role in the expected epidemic size. Also, the above for-
mulation does not care for the temporal aspects, and so it suffices to simply
consider the effective infection probability on edge e = (u, v) as r′(e) =
1 − (1 − r(e))τ(u). Let G(r′) denote a random subgraph of G in which each
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edge e is retained with probability r′(e). Also, consider a simple initial con-
dition x̄ in which there is a single node s with x(s) = 1 and x(v) = 0 for all
v �= s. Thus, the VP(G, r̄, τ̄ , Ī , x̄, k) problem can be restated as:

Choose a subset S ⊆ V with |S| ≤ k such that:

The expected number of nodes reachable from s in the (random) sub-
graph G(r′) is minimized—the expectation here is over the random sub-
graphs G(r′). If the initial condition x̄ is different, the expectation above
would also be over different choices of initial sets, by sampling from x̄.

The above formulation is the simplest possible one, but is already non-
trivial. It remains non-trivial even if we consider the simplest possible dis-
ease model in which r(e) = 1 for each edge (modeling a “highly infectious
disease”), as the following result from [16] shows:

THEOREM 18.1 [16]. VP(G, r̄, τ̄ , Ī , x̄, k) is NP complete if r(e) = 1 for
each e, and there is a node s such that x(s) = 1 and x(v) = 0 for all v �= s.
For any ε > 0, there is a polynomial time bi-criteria approximation algorithm
that deletes a set S of O((1+ε)k) nodes, so that the number of nodes reachable
from s in G[V \ S] is O((1 + 1/ε)OPT ), where OPT denotes the optimum
solution to this problem.

The complexity of the VP(G, r̄, τ̄ , Ī , x̄, k) for more realistic disease models
(i.e., when r(e) < 1) is likely to be #P-hard, and determining this remains an
open problem.

Adaptive Policies: The VP problem described above corresponds to a non-
adaptive vaccination policy. Using the stochastic optimization framework de-
veloped by [28, 32, 19], we can formulate an adaptive version of this problem,
which we call Adaptive Vaccination Problem (AVP). In this formulation, the
nodes to be vaccinated, or deleted do not have to be chosen in one shot. In-
stead, a feasible solution corresponds to choosing set Si at the start of the ith
time step. As in [28], we assume that there is an inflation factor σi in step i,
so that the cost of choosing set Si in step i is Πj≤iσj |Si|; following [28], we
also assume that σi ≥ 1. The AVP(G, r̄, τ̄ , Ī , x̄, k, σ̄) problem is defined in the
following manner:

The quantities G, r̄, τ̄ , Ī and x̄ are defined as before. The parameter k
denotes the total cost that feasible solution must have, and σ̄ specifies
the inflation factor.

Feasible Solution: This is a sequence of disjoint sets S1, S2, . . . , S
.
The set Si denotes the set of nodes to be vaccinated on the ith timestep.
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The set Si can be chosen after observing the state of the epidemic in the
ith step.

Objective: Choose a feasible solution S1, . . . , S
 such that the inequal-
ity
∑

i(Πj≤iσj)|Si| ≤ k holds and the expected number of infected
nodes is minimized.

In reality, only partial information is known about the epidemic reliably at
each step, and the AVP problem above can be easily modified to incorporate
this aspect.

The 2-person Vaccination Policy Game: We now consider a variant of the
AVP problem as a 2-person game. One player is the policy maker who has
to choose the vaccination policy, and the second player is “nature”, which
decides on the spread of the epidemic, following the framework of Games
against Nature (GAN) [27].

We denote this game as VPG(G, r̄, τ̄ , Ī , x̄, k, �, M). Let P denote the single
player, and let N denote nature. The game runs in rounds with P and N
playing alternately. N plays first, and infects nodes according to the starting
condition x̄, i.e., each node v is infected with probability x(v), independently
of other nodes. Then, P plays, and it can decide to vaccinate (or delete) up to �
nodes. In the next round, N plays, and spreads the infection to the unvaccinated
neighbors of the infected nodes, according to the disease model specified by r̄,
τ̄ and Ī . Let Si denote the set of nodes chosen to be vaccinated by P ; we must
have

∑
i |Si| ≤ k. The goal is to decide whether there is a vaccination strategy

for P , specified by the sequence of sets S1, S2, . . . , such that
∑

i |Si| ≤ k
and the total number of infected nodes is at most M . Is this problem PSPACE
complete, as some of the other GAN problems are?

6.3 Individual Behavior Problems: A Game Theoretic/
Dynamical Systems Viewpoint

A common problem with implementation of policies is compliance. This is
especially true in the case of vaccinations, which may have side effects and in-
volve additional costs, and in the case of directives to “stay home”, might sim-
ply be infeasible. Incentives are needed to make people comply. An interesting
way to give an incentive could be to enter all the people who get vaccinated into
a lottery—such schemes have also been studied in other settings, such as vot-
ing. This scenario immediately leads to interesting game theoretic questions,
since each individual now has a set of conflicting costs and rewards, and has to
make a choice that would optimize his or her perceived utility. There are sev-
eral papers that study game theoretic questions [1, 7, 9] related to epidemics on
networks. However, these results either assume that the graph is very simple,
or that the disease model is very simple. The approaches in [7, 9] use differ-
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ential equations and mean field approximations to formulate realistic disease
models on complete mixing networks (cliques). The paper by Aspnes, Chang
and Yampolskiy [1] is much closer to our models, in the sense that the network
is general, but the disease model is simple and assumes a “highly contagious
disease”. Extensions of this game have been studied in [26, 25]. There are,
admittedly, several difficulties with these non-cooperative formulations, e.g., it
is hard for nodes to compute their utility functions, and there is no persuasive
reason for equilibria to exist. However, the structure of these games may give
useful insights into their dynamics. We also give equivalent dynamical system
formulations of these games.

The Vaccination Game (VG) This game is denoted by VG(G, r̄, τ̄ , Ī , x̄), and
is defined in the following manner. Each node corresponds to a player, and a
strategy for player v is denoted by a quantity av ∈ [0, 1], which is the prob-
ability that node v decides to get vaccinated; vaccinating a node is equivalent
to lowering the infection probabilities on all edges incident on v. The disease
model is specified by Ī , r̄ and τ̄ , and x̄ gives the initial conditions, as discussed
earlier. We formulate the utility function Uv for node v as

Uv = avC + Pr[v gets infected]L,

where C denotes the cost (or reward) of getting vaccinated, and L denotes the
cost of getting infected. The probability that node v gets infected is defined
over the initial condition x̄ and the strategy ā.

One of the main problems of interest is to study the structure of equilibria,
if they exist, and compare their cost to that of a social optimum. Aspnes et
al. [1] consider a simple disease model, in which a node gets infected if there
is a path to it from an infected node, and the disease can start initially at any
node, i.e., x(v) = 1/n for each v. For illustration, consider a pure strategy ā.
Suppose av = 0 for some node v. Then Pr[v gets infected] is proportional to
the size of the component containing v, after all the nodes w with aw = 1 are
deleted. This is illustrated in Fig. 18.7. For this model, Aspnes et al. [1] show
that pure Nash equilibria always exist, and can be completely characterized in
terms of the quantity t = Cn/L—a strategy profile �a is a Nash equilibrium
provided:

1. every component in G�a has size at most t, and

2. flipping the strategy of a node v from 1 to 0 gives a component of size
strictly greater than t.

They also show that computing Nash equilibria that have minimum total cost
is NP-complete, but a simple switching strategy always converges to an equi-
librium. Finally, the cost of the worst Nash equilibrium can be Θ(n) times
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Figure 18.7. (a) A sample contact graph. (b) The components resulting from the strategy ā
with a1 = a4 = 1 and the rest being 0. The probability that any of the nodes 2, 3, 5, 6 gets
infected is 1/2

the social optimum. Extending these results to more general disease models
remains open questions.

The Multi Stage Policy Game (MSPG): While the above questions are math-
ematically interesting, an inherent difficulty with the above model is that it is
hard for individuals to estimate their costs. In light of this, we will consider
the following multi-stage version of this problem. We call this the Multi Stage
Policy Game (MSPG), and it is denoted by MSPG(G, r̄, τ̄ , Ī , x̄). In this game,
the strategy av of player v is actually a vector, and av(i) denotes the proba-
bility that v stays home—people find it much easier to decide whether to stay
home or not, when an outbreak has started, than deciding the utility of get-
ting vaccinated. Node v can choose av(i) depending on how many nodes in
its neighborhood are infected. The main objective would be to study this as
a dynamical system and explore its limit distribution, and the parameters that
influence these distributions.

Preliminary empirical results related to this problem can be found in [13]. A
simpler variation of the above based on differential equations was formulated
and studied in [21]. The model proposed here is more general and network
based which makes the problem substantially harder. The MSPG and VPG
games are instances of anti-coordination games [8]—it is in the interest of a
player to get vaccinated or stay home if a lot of people around her are not
doing so. The realism in the contact network and disease model make this a
very rich problem area. In addition to the limiting distributions of these games,
the computational complexity of these problems is an interesting problem.
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6.4 Discussion of the Different Formulations

The different theoretical problems formulated above deal with specific as-
pects of epidemic processes and policy planning—the different variants high-
light the richness of this area, and the limitation of any single theoretical model
to capture all of its complexity. The computational complexity of these prob-
lems is in general an open question.

As an example, we consider the VP and AVP problems and their computa-
tional variants. The complexity of computing the expected number of infected
nodes, Ninf , for initial conditions x̄, when set Si of nodes is vaccinated at step
i, is not exactly known. As mentioned in [20], it is not known how to compute
this quantity, even when all the nodes to be vaccinated are chosen in step 1
itself, though it is a reasonable conjecture that this problem is #P-hard. An
(ε, δ) approximation to Ninf can be computed by a simple sampling scheme:

1. For i = 1 to t do

(a) Generate a random instance of the bond percolation process, by
retaining each edge with probability r′(e), as defined earlier in the
discussion of the AVP problem.

(b) Let Zi denote the number of nodes reachable from the initial in-
fected nodes, specified by x̄.

2. Output Z = Z1+· · ·+Zt
t

LEMMA 18.2. For t ≥ n2/ε2δ we get an (ε, δ) approximation to E[Ninf ], i.e.,

Pr[|Z − E[Ninf ]| > εE[Ninf ]] ≤ δ

Proof. Clearly, E[Z] = E[Zi] = E[Ninf ] for each i = 1, . . . , t. Therefore, by
Chebyshev’s inequality, we have

Pr[|Z − E[Z]| ≥ εE[Z]] ≤ var(Z)
ε2E[Z]2

≤ var(Z1)
tε2E[Z1]2

≤ E[Z2
1 ]

tε2E[Z1]2
≤ n2

tε2
≤ δ

for t ≥ n2/(ε2δ). �

The above sampling works only because Ninf takes integral values in the
range {1, . . . , n}. It would not immediately work for other problems, such as
determining the probability that a node v gets infected.
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An interesting question is whether the AVP and VPG problems are
PSPACE complete. In light of the above discussion of an (ε, δ) sampling for
Ninf , is it possible that reasonable polynomial time approximation algorithms
exist for these problems?

7. Concluding Remarks

We have described an agent based modeling approach to study the inter-
action between public policy, individual behavior and spread of infectious
disease in an urban region. Our experimental results demonstrated how re-
alistic modeling considerations can impact the disease dynamics; the model-
ing framework is general enough and yet efficient to undertake such studies.
Further development of the modeling framework is necessary for modelers to
study this interaction. We also described formal mathematical questions that
arise when studying these complicated interactions. Most of the computational
complexity as well as the algorithmic questions arising in this context are open
problems and represent interesting directions for future research.

8. Thank You Dan

The group members of Network Dynamics and Simulation Science Lab-
oratory want to wish Professor Daniel Rosenkrantz a happy retirement from
active academics. He has been a collaborator for over eight years now; the
computational theory of discrete dynamical systems to understand computer
simulations of socio-technical systems was developed jointly with him. Dan’s
contributions and insights to the development of this theory have been invalu-
able, and his continued collaboration with us is a source of new ideas and
inspiration. Madhav Marathe would like to express a special note of thanks
and gratitude to Dan for being his teacher, mentor, colleague and a friend over
the last 19 years.
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