
Chapter 7
The Self Similarity of Human Social
Organization and Dynamics in Cities

Luı́s M.A. Bettencourt, José Lobo and Geoffrey B. West

7.1 Introduction

The issue of whether quantitative and predictive theories, so successful in the natural
sciences, can be constructed to describe human social organization has been a theme
of inquiry throughout the entire history of science. Aristotle was perhaps the first to
write on the subject in ways that present clear scientific challenges that are still with
us today. In Politics (Book I), he wrote

[. . .] it is evident that the state [polis] is a creation of nature, and that man is by nature a
political animal. The proof that the state is a creation of nature and prior to the individual
is that the individual, when isolated, is not self-sufficing; and therefore he is like a part in
relation to the whole.

The idea that cities (the “State” for Aristotle) are natural inevitable structures on
which humans coalesce and thrive has suggested many metaphors for cities as natu-
ral organisms (Miller, 1978; Girardet, 1992; Graedel & Allenby, 1995; Botkin &
Beveridge, 1997; Decker Elliott, Smith, Blake, & Rowland, 2000), or ecologies
(Macionis & Parrillo, 1998). Modern sociological thought about the nature of ur-
ban life (Durkheim, 1964; Simmel, 1964; Macionis & Parrillo, 1998), especially
in the United States (Wirth, 1938), was born largely out these analogies. Cities as
consumers of resources and energy, and producers of organizational structures and
waste have a clear counterpart in biological organisms. Therefore, it is interesting
to ask to what extent these analogies are more than anecdotal. For instance, are
analogies of cities as organisms, with specific metabolism, useful to establish quan-
titative expectations for their resource demands, environmental impacts and growth
trajectories?

The idea that cities are emerging natural structures, that in some sense (to be
demonstrated below) are independent of culture, geography or time, also suggests
that there should be universal features common to all urban agglomerations (Wirth,
1938), which, in turn, may define an average idealized city. Such a city would be
characterized in terms of quantitative indicators and would constitute the benchmark
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against which real cities should be measured, both in their successes and in their
shortcomings. This concept of a quantifiable average city may be natural, even in-
tuitive, to anyone who seeks synthesis among the huge diversity of urban social
life and is implicit in many policy considerations (Wirth, 1938; Macionis & Par-
rillo, 1998). But its pursuit is often at odds with traditions in the social sciences
that emphasize instead the richness and differentiation (Macionis & Parrillo, 1998;
Durkheim, 1964; Simmel, 1964) of human social expression. The tension between
these two approaches can only be diffused, in our opinion, by empirical investiga-
tions determining if average idealized characterizations of urban organization are
supported by data, and can be synthesized as predictive theories of certain key fea-
tures of human dynamics and organization.

Below, we will pursue and partially accomplish some of these goals. We will
show that, when observed from the point of view of their rates of change, cities
are approximately self-similar entities across entire urban systems (usually taken
to be nations), and that these properties scale with population size in a manner
that is independent of any particular reference scale. In this sense, knowledge of
urban indicators for a city of a given size implies predictions for those of another,
given only their population ratio. Because quantitatively similar scaling laws are a
property of biological organisms (West, Brown, & Enquist, 1997; West, Brown, &
Enquist, 1999; West, Brown, & Enquist, 2001; Enquist, Brown, & West, 1998),
we will also be able to establish to what extent cities can indeed be understood in
terms of biological organization, and specifically how human societies differ and
transcend these structures.

The remaining of this chapter is organized as follows. We start with basic
expectations for the behavior of cities, resulting from analogies to biological scal-
ing. We then give a brief account of the initial quantitative studies that suggested
that the framework in urban organization would be more complex. Following on
these hints we give an overview of other urban indicators and how they scale with
population. We then discuss the implications for growth from urban scaling relations
and conclude with some speculations and directions for future work.

7.2 General Expectations from Biological Scaling

Before we started our empirical investigation on urban scaling we attempted to
translate the metaphor for cities as biological organisms, in terms of quantitative
relations for human organizations.

The most fundamental quantity characterizing any physical system is its energy,
which in turn sets dynamical time scales. For many complex systems, particularly
those in biology and society, energy consumption is the key to identify leading
rhythms of internal organization, growth and information creation. For a biological
organism energy consumption per unit time is a measure of its metabolism. Re-
markably metabolic rates Y , scale with body size M (mass) according to a simple
power relation:

Y = Y0 M�, � = 3/4, (7.1)
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which holds across 21 orders of magnitude in body mass, and all different species
(West et al., 1997, 1999). The exponent � = 3/4 can be understood in terms of
the networks of resource distribution inside organisms (e.g., the vascular system of
animals and plants). These networks are hierarchical; distributing resources from
central points (e.g., heart) to every component of the system (e.g., cells). In this
way, they carry a conserved fluid to every part of a volume of tissue that constitutes
the organism. These networks have been optimized by natural selection to be effi-
cient, in the sense of dissipating the least amount of energy possible. Under these
conditions, the networks can be abstracted as hierarchical branching processes with
a non-trivial fractal dimension. In d dimensions, it can be shown that the exponent
� = d/(d + 1), which becomes 3/4 for d = 3. Because the scaling law (7.1) has
the dimension of a rate, it also predicts how characteristic times, characterizing the
organism’s behavior, scale with size. Specifically, characteristic times (e.g., lifespan)
per unit mass scale as M1/(d+1), while rates (such as heart or respiratory rhythms)
scale inversely to times, as M−1/(d+1) (West et al., 1997, 1999).

At least at the superficial qualitative level, cities can, likewise, be thought of
in terms of idealized networks of distribution that supply people, households and
institutions with water, power, etc., and remove unwanted byproducts. It is less clear,
however, what quantity may play the role of scale. The most natural is population,
but other units, such as households or firms, are conceivable. Below, we show that
adopting population as a measure of size of a city does indeed produce clear scaling
relations for many urban quantities.

Another issue that arises when translating expectations from biological scaling,
is the dimensionality of the system. While the natural dimension of a city may be
d = 2, dense cities can also show growth in height producing structures that may
have 2 < d < 3. One last point concerns the definition of city itself (see Chapter 6).
Many studies in urban geography have struggled with creating good definitions of
the spatial limits of a city. This is difficult to do in terms of population density
or built up area, since these quantities vary continuously from the city core to the
periphery (increasingly in the US, city cores show decreases in population density,
which has been moving to lower suburban locations). Because we are primarily
interested here in human social activity, we adopted a definition of city that, as much
as possible, reflects its economic character as an integrated labor market, comprised
of a city core and all surrounding areas where substantial fractions of the population
work within the city limits. These are Metropolitan Statistical Areas (MSA) in the
USA, Larger Urban Zones (LUZ) in the European Union and Urban Administrative
Units (UAU) in China.

7.2.1 A Timeline of Urban Scaling Results in ISCOM

As we briefly discussed above, our initial investigation and pursuit of data was
guided by the presentation by one of us (West) at the ISCOM meeting in Paris 2003,
drawing the analogy between biological organisms and human social organizations
as a working hypothesis towards building a scaling theory of cities.
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Fig. 7.1 Time line of our
investigation in urban scaling.
The initial motivation from
Biology grew into a more
complex and detailed picture
as data came in. In retrospect,
it is easy to recognize
consecutive ISCOM meetings
as major milestones in our
progress

In the period between the ISCOM Paris meeting in December 2003 and the sub-
sequent working group meeting in London in September 2004, our efforts concen-
trated on finding datasets to empirically test the expectations from Biological scaling
for cities. A time line of our investigation in urban scaling is shown in Fig. 7.1.
Energy consumption at the metropolitan level turned out to be difficult to measure
in the USA, because most data are proprietary and fragmented. Information about
points of production and about the networks of distribution is available but requires
a large amount of reconstruction (and extrapolation) work to be mapped into city
consumption patterns. We had more success with Germany (through our collabo-
rators Dirk Helbing and Christian Kuehnert), where electrical production is tied in
with individual cities for historical reasons. We also explored definitions of city, as it
was unclear how best to aggregate socioeconomic data. We investigated scaling for
counties, cities, and metropolitan areas. We found that, although indications of scal-
ing existed at different aggregation levels, MSAs provided the most persuasive and
consistent statistical signatures, and we adopted these units for subsequent studies
in the USA and abroad. The rationale of the definition of MSAs, as the set defini-
tion of city that is as much as possible devoid of arbitrary administrative units and
is instead an integrated economic and social unit, makes the most sense with our
findings shown below. This does not preclude, of course, that even better definitions
of city limits, an important problem in urban geography, can be defined. It is, in
fact, plausible that greater understanding of urban functionalities, captured in a set
of scaling relations to be discussed here, will aid guide such constructions.

7.2.2 Energy Consumption and Invention Rates vs. Urban
Population Size

Our first results involved data on general socioeconomic activity, such as wages
(Fig. 7.2), as well as on electrical energy consumption in German cities, see
Table 7.1. Both data sets pointed immediately to fundamental differences in Bi-
ology, in that patterns of energy consumption and wealth generation did not show
economies of scale (� < 1). In fact, if anything, these results indicated that scaling
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Fig. 7.2 Superlinear
(� = 1.12) scaling of wages
with metropolitan population
for the USA in 2000
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Table 7.1 Scaling exponents for electrical energy quantities for German cities in 2002

Variable exponent ± standard deviation

Usable energy 1.09 ± 0.03
Household supply 1.00 ± 0.03
Length of cables 0.88 ± 0.03
Resistive losses 1.10 ± 0.03

is superlinear (� > 1), but that the effects were small, with � ∼ 1.1–1.2, but statisti-
cally significant. We also found at this point – from Helbing et al. (Chapter 16 of this
volume) – that certain amenities, such as numbers of restaurants, scaled with clear
superlinear exponents, whereas others such as hospital beds, were approximately
linear.

Although showing a mixed picture, these results pointed to several features that
were confirmed by subsequent data. First, urban indicators, from infrastructure to
socioeconomic characteristics, show clear and manifest scaling with city popula-
tion size, characterized by exponents that deviate from unity by relatively small but
statistically significant margins. Secondly, exponents for socio-economic quantities
scale with � > 1, individual needs with � ∼ 1, and material infrastructure (such as
the length of electrical cables) scale with � < 1, see (Bettencourt, Lobo, Herbing,
Kuehnert, & West, 2007).

7.2.3 Patenting Rates and Creative Employment

The next set of data we analyzed dealt with measures of innovation, as measured
via patenting rates (Bettencourt et al., 2007). When organized in terms of inventor’s
residential address, new patents filed in the US can be tallied up by metropolitan
statistical area. It has been recognized for quite some time that cities are the primary
seats of innovation. Patenting, as an admittedly limited proxy to general innovative
processes, has been studied in terms of its geographic preferential location for quite
some time. As a result, patenting has been identified in the US and in other countries
as a primary metropolitan phenomenon. Despite this rich evidence, the systematic
study of the rate of patenting with metropolitan population had not been undertaken
(Bettencourt et al., 2007).
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The results of plotting new patents per MSA vs. MSA population size are shown
in Fig. 7.3 for 1980 and 2000. Although there is some scatter in the data (which
are shown without any averaging), a clear scaling trend is present in both years,
with an exponent that is statistically consistent across two decades. This statistical
invariance of the scaling exponent is particularly impressive when we note that, in
those two decades, patenting subjects shifted dramatically away from traditional
industries to new activities in electronics, software and biotechnology.

Patenting data also offered the possibility of testing several scenarios to explain
the observed superlinear scaling of innovation rates with population. Two alternative
scenarios are natural and testable given available data: observed increasing returns
to scale (superlinear scaling) could (1) be the result of increased individual pro-
ductivity, following from greater interactions with a larger number of inventors,
proportional to city size; or, alternatively, follow from (2) individual productivity
that is independent of city size, but is compensated by a greater number of inventors
that are disproportionally represented the larger the city.

We further hypothesized that the first scenario, increased productivity due to
greater interactions, should display a signature in patent co-authorship, since con-
tact between a number of inventors naturally scale superlinearly (with an exponent
� = 2, if all authors connect to each other). Thus, scenario (1) would predict a num-

Fig. 7.3 Number of new
patents per year in 1980 (A)
and 2000 (B) vs. metropolitan
population size. The solid
line shows the result of a
power law fit to the data with
exponent β, shown as inset.
Remarkably, despite
enormous changes in
technology, scaling laws stay
statistically equivalent across
the two decades, see
(Bettencourt et al., 2007)
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ber of inventors proportional to metropolitan population, but a superlinear scaling of
inventor connectivity, which would yield the overall observed gains in productivity.

Conversely, scenario (2) predicted simply that productivity per inventor (average
number of patents per author) would stay constant across city size, but that inventors
would disproportionately be located in larger cities, thus accounting for greater rates
of patenting. Table 7.2 and Fig. 7.4 show how empirical evidence settles the case in
favor of scenario (2).

Table 7.2 Scaling of inventor connectivity, measured via patent co-authorship, and of number
of inventors with metropolitan population size in the USA. These results, taken together with
the evidence of Fig. 7.4, indicate that superlinear scaling in invention is primarily the result of
the presence of a disproportionate number of inventors in larger cities and not due to superlinear
increases in individual inventor productivity

Variable vs. # of Scaling exponent

Connectivity � = 0.823 ± 0.001
Inventors � = 0.981 ± 0.002

Fig. 7.4 Scaling of number
of inventors with
metropolitan population (A)
and of patents with number of
inventors (B). Taken together
with the results of Table 7.2,
these data indicate that
inventors are
disproportionately
represented in the larger
cities, but that individuals do
not become more productive
in larger populations
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Fig. 7.5 Scaling of
supercreative professionals
with metropolitan city size
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Finally, we asked whether the phenomenon observed here for inventors was in
fact much more general, indicating a disproportionate number of inventive and cre-
ative activities the larger the city. Indeed, this expectation was confirmed by ana-
lyzing numbers of professionals in specific activities vs. city size, both in France
and in the US (Chapter 8, this volume). As a summary, we show the scaling of
numbers of “super-creative” professionals (Florida, 2004) with metropolitan popu-
lation size (Bettencourt et al., 2007) in Fig. 7.5, indicating that scientific, technical,
artistic, media and management activities scale superlinearly with city size, with
an exponent � = 1.15. These results indicate that larger cities are not functionally
scaled-up versions of smaller towns but, rather, are different in their relative ac-
tivity breakdown, with more people disproportionately occupied in innovation and
invention.

7.3 Urban Scaling and the Interplay Between Social Processes
and Infrastructure

The set of results discussed above set the stage for a taxonomy of quantities that
characterize cities as self-similar structures. Cities, in fact, realize both certain
economies of scale in resource networks, typical of biology, and enable superlinear
processes that are unique to human social organization.

7.4 Economies of Scale and Material Infrastructure

As we have already seen for electricity, certain aspects of infrastructure benefit from
higher population density to realize economies of scale (see Table 7.3). Note that
most of these quantities (length of cables, road surface) refer to material infrastruc-
ture networks, but not to resource consumption rates, which may scale superlinearly.
Note also that the expectation for 1/3 power laws for infrastructure networks in a
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Table 7.3 Scaling of infrastructural quantities with city size realizes economies of scale, analogous
to those in Biology. These economies of scale appear as sublinear scaling (b < 1) laws

Y � 95% CI adj.- R2 Observations Country/year

Gasoline Stations 0.77 [0.74,0.81] 0.93 318 USA/2001
Gasoline Sales 0.79 [0.73,0.80] 0.94 318 USA/2002
Length of electrical cables 0.88 [0.82,0.94] 0.82 387 Germany/2001
Road surface 0.83 [0.74,0.92] 0.87 29 Germany/2001

2-dimensional city is not borne out by data. This may be a consequence of several
factors, including gradients in population density, the not purely two dimensional
character of cities, and the fact that resource delivery requirements may drive these
networks to inefficiency.

This last point is important as it raises the question of cause and effect, namely
whether infrastructure is the driver of human social behavior or if the converse is
true. Although this question cannot be settled satisfactorily with the present evi-
dence, the case of electrical consumption in German cities may be paradigmatic.
Although economies of scale are certainly realized in cabling, total consumption
scales superlinearly. This can only be achieved at the cost of rising inefficiency,
which is manifested as a superlinear scaling in resistive losses (see Table 7.1). Thus,
at least in this case, it is suggestive that human social needs drive infrastructure,
rather than the other way around, as happens in biological organisms.

7.4.1 Individual Needs

Another interesting instance of urban scaling is that certain quantities are neither
directly related to social behavior or to material infrastructure, but simply reflect
individual needs that, once satisfied, cannot be easily expanded. For example, typ-
ically each person needs one job, one dwelling, and a typical amount of water
and electricity at home. These quantities scale linearly with city size as shown in
Table 7.4.

Note that although electrical consumption increased with city size, household
consumption increases only linearly. Thus, it is the energy used to enable social

Table 7.4 Individual needs, such as household utility consumption, numbers of jobs, and
dwellings, scale linearly with metropolitan population

Y � 95% CI adj. R2 observations Country/year

Total establishments 0.98 [0.95,1.02] 0.95 331 USA/2001
Total employment 1.01 [0.99,1.02] 0.98 331 USA/2001
Total household electrical
Consumption

1.00 [0.94,1.06] 0.70 387 Germany/2001

Total Household electrical
Consumption

1.05 [0.89,1.22] 0.91 295 China/2002

Total Household water
Consumption

1.01 [0.89,1.11] 0.96 295 China/2002
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productive activity – devoted to work rather than maintenance – ranging in scope
from industry, to culture and learning, and street lighting that accounts for the su-
perlinear character of the total consumption.

7.4.2 The Urban Economic Miracle

One of the most important characteristics of cities is that they are the primary centers
for wealth creation in every human society. Although urban economists have es-
tablished a positive relationship between urban size and productivity (Sveikauskas,
1975; Segal, 1976; Henderson, 2003) the identification of these statistical regulari-
ties in terms of scaling laws is new and extremely important for the understanding
of the self-similar social processes that enable prosperity and economic growth.
Measures of wealth creation or productivity follow exquisite superlinear scaling
relation, across time and for different nations, with adjusted R2 very close to unity,
see Table 7.5, indicating nearly perfect fits.

Table 7.5 Wealth creation and productivity follow exquisite scaling laws with metropolitan popu-
lation, with exponents b ∼ 1.10–1.15, and adjusted R2 close to unity. Data aggregated at the level
of the European Union encompasses several loosely connected urban systems and gives a poorer fit

Y � 95% CI adj.– R2 observations Country/year

Total Wages/yr 1.12 [1.09,1.13] 0.96 361 USA/2002
GDP/yr 1.15 [1.06,1.23] 0.96 295 China/2002
GDP/yr 1.13 [1.03,1.23] 0.94 37 Germany/2003
GDP/yr 1.26 [1.03,1.46] 0.64 196 EU/2003

Clearly, economic growth is strongly correlated to innovation and fast adaptation
to new opportunities (Romer, 1986, 1990; Lucas, 1988, Glaeser, Kolko, & Saiz,
2001). Table 7.6 shows a summary of measures of innovation and employment in
creative activities, which all show strong superlinear scaling.

Table 7.6 Superlinear scaling exponents for innovation and employment in innovative sectors

Y � 95% CI adj. R2 observations Country/year

New Patents/yr 1.27 [1.25,1.29] 0.72 331 USA/2001
Inventors/yr 1.25 [1.22,1.27] 0.76 331 USA/2001
Private R & D employment 1.34 [1.29,1.39] 0.92 266 USA/2002
“Supercreative” professionals 1.15 [1.11,1.18] 0.89 287 USA/2003
R & D employment 1.67 [1.54,1.80] 0.64 354 France/1999∗

R & D employment 1.26 [1.18,1.43] 0.93 295 China/2002

7.4.3 The Darker Side of Cities: Costs, Crime and Disease

If the possibility of a larger and richer set of human contacts, made possible in a
larger city, enables the creation of ideas and wealth, then they may also encourage
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Table 7.7 Costs, the incidence of certain transmissible diseases, crime and other patterns of human
behavior, such as walking speed (Bornstein & Bornstein, 1976), are also superlinear scaling laws
with city size

Y � 95% CI Adj. R2 Observations Country/year

Cost of housing (per capita) 0.09 [0.07,1.27] 0.21 240 USA/2003
New AIDS cases 1.23 [1.18,1.29] 0.76 93 USA/2002
Violent crime 1.16 [1.11,1.18] 0.89 287 USA/2003
Walking Speed (per capita) 0.09 [0.07,0.11] 0.79 21 Several/1979

other types of less benign social activities (Milgram, 1970) such as those involved in
crime (Glaeser & Sacerdote, 1999) and disease transmission. Thus, we may expect,
at least in the absence of strong intervention, that crime and disease incidence (both
temporal rates, analogous to idea or wealth creation) also scale superlinearly with
city size. These expectations are well borne out by data as shown in Table 7.7, and
Fig. 7.6.

These results highlight an important feature of scaling laws for quantities that
are time dependent. Rates of per capita behavior scale with N �−1, thus, under
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Fig. 7.6 Car thefts (per year) in Italian (A) and British (B) cities show superlinear scaling with
metropolitan size. Cities above the scaling law are more theft prone than expected for their size
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superlinear scaling, contrary to biology, the pace of social life (measured in disease
incidence crime or indeed walking speed (Bornstein & Bornstein, 1976) increases
with city size. Life is indeed faster in the big city.

7.5 Implications of Urban Scaling for Growth and Development

Growth is constrained by the availability of resources and their rates of consump-
tion. Resources, Y , are utilized for both maintenance and growth. If, on average, it
requires a quantity R per unit time to maintain an individual, and a quantity E to
add a new one to the population, then this is expressed as

Y = R N + E (d N/dt), (7.2)

where dN/dt is the population growth rate. This leads to the general growth equation:

d N (t)

dt
= Y0

E
N (t)β − R

E
N (t). (7.3)

Its generic structure captures the essential features contributing to growth. Al-
though additional contributions can be made explicit, they can typically be incor-
porated by a suitable interpretation of the parameters Y0 , R and E , leaving the
general form of the equation unchanged. For simplicity, we assume that R and E
are approximate constants, independent of N . The solution of (7.3) is given by

N (t) =
[

Y0

R
+

(
N 1−β(0) − Y0

R

)
exp[− R

E
(1 − β)t]

] 1
1−β

(7.4)

This equation exhibits strikingly different behaviors depending on whether � <

1,> 1 or = 1. When � = 1, the solution reduces to classic exponential growth:

N (t) = N (0)e(Y0−R)t/E , (7.5)

as shown in Fig. 7.7B, while for � < 1 it leads to a sigmoidal growth curve in which
growth ceases at large times (d N/dt = 0), where the population approaches a finite
carrying capacity given by

N (∞) = (Y0/R)1/(1−β), (7.6)

as shown in Fig. 7.7A. This is characteristic of biological systems where the predic-
tions of (7.3) are in excellent agreement with data. Thus, cities driven by economies
of scale are destined to eventually stop growing.

The character of the solution changes dramatically when � > 1. If N (0 ) <

(R/Y0 )1/(b−1 ), then (7.3) leads to unbounded growth for N(t) (Fig. 7.7C). Growth
becomes faster than exponential eventually leading to an infinite population in a
finite amount of time given by
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Fig. 7.7 Regimes of urban
growth. Plots of size, N , vs.
time t : (A) Growth driven by
sublinear scaling eventually
converges to the carrying
capacity N∞. (B) Growth
driven by linear scaling is
exponential. (C) Growth
driven by superlinear scaling
diverges within a finite time
tc (dashed vertical line) (D)
Collapse characterizes
superlinear dynamics when
resources are scarce

tc = − E

(β − 1)R
ln

[
1 − R

Y0
N 1−β (0)

]
≈

[
E

(β − 1)R

]
1

Nβ−1(0)
. (7.7)

For a city of about a million, tc is in the order of a few decades. These results
highlight an important characteristic of our social mechanisms to generate innova-
tion and wealth. Even as we strive to accelerate prosperity and creativity, we sow the
seeds for a crisis, manifested by a finite time singularity, where adaptation processes
in society will break down. These crises can be avoided if major adaptations reset
the dynamics to generate successive cycles of superlinearly driven growth as shown
in Fig. 7.8. These expectations are borne out by data on the population growth of
New York City or for the entire world population (Kremer, 1993; Cohen, 1995;
Kurzweil, 2005).

Fig. 7.8 Successive cycles of
superlinear innovation reset
the singularity and postpone
instability and subsequent
collapse. The vertical dash
lines indicate the location of
the sequence of potential
singularities. Equation (7.7),
with populations of the order
of a million, predicts tc in
decades
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7.6 Summary and Discussion

We have shown that power law scaling is a pervasive property of human social
organization and dynamics in cities and holds across time and for different nations
with very different levels of development, economic sector distribution, and with
different cultural norms and geographic location. The existence of scaling laws sig-
nifies that cities within the same urban system (usually a nation) are self-similar.
This is an extraordinary assertion indicating that, on average, different cities are
scaled up versions of each other, particularly in terms of rhythms of social activity –
such the creation of wealth and ideas, infectious contacts and crime, and patterns
of human behavior – even if individual cities vary enormously in terms of their
population constitution (e.g., age, race, ethnicity), geographic characteristics and
countless other factors.

Urban scaling reveals a tension between quantities that constitute material in-
frastructure (length of cabling, road surface, etc.) and those that are eminently so-
cial (wealth, idea creation, etc.). Larger population densities allow for economies
of scale in terms of infrastructure, but these may be driven to less than optimal
operation by the requirements of social activity. A theory that encapsulates these
compromises and is predictive of scaling exponents is a central objective for future
research.

Particularly important are the consequences for growth of urban resource avail-
ability driven by innovation (� > 1) or economies of scale (� < 1), see summary
in Table 7.8. The latter implies growth that eventually slows down, and an ultimate
limit to the size of a city, in analogy to growth in biological organisms. The former
is radically different, and probably unique to human social organization. It implies
accelerating growth, towards a finite time singularity, thus linking inextricably the
desired properties of fast economic and technological development to crises of adap-
tation. Growth in the superlinear regime never converges to a static equilibrium,
defying common theoretical assumptions in economics. Instead, it requires constant
adaptation to complex new situations created by faster and more efficient human
social contact, both desirable and pathological. In particular, major adaptations must
occur to reset growth under superlinear scaling to manageable levels, possibly ex-
plaining the cyclic nature of most instances of population and economic growth, as
well as of technological development.

In closing, we would like to stress in this volume, in the spirit of the contri-
bution by Sander van der Leeuw and collaborators, that cities can be seen as very

Table 7.8 Classification of scaling exponents for urban properties and implications for growth

Scaling
Exponent Driving Force Organization Growth

� < 1 Optimization, Efficiency Biological Sigmoidal, Long term stagnation

� > 1
Creation of Information,

Wealth and Resources Sociological Boom/Collapse, Finite time singularity,
Increasing acceleration/discontinuities

� = 1 Individual Maintenance Individual Exponential
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large-scale social information engines, producing open ended innovation and wealth
(as well as waste and pollution) out of incoming population, energy, and other re-
sources. As cities grow, disproportionately large numbers of their parts – in terms
of population and institutions – are dedicated to innovation, forcing their population
either into cycling out of the city or towards adaptation to new roles and behaviors.
It is perhaps this necessity for the city as the engine of human social development
that makes man a political animal by nature. It may well be that the self-similarity
revealed by urban scaling laws is the clearest quantitative expression of our unique
human social nature, and its understanding the key to a future where sustainability
and creativity can coexist.
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