
Chapter 16
Power Laws in Urban Supply Networks, Social
Systems, and Dense Pedestrian Crowds

Dirk Helbing, Christian Kühnert, Stefan Lämmer, Anders Johansson,
Björn Gehlsen, Hendrik Ammoser and Geoffrey B. West

16.1 Scaling Laws in Urban Supply Networks

The classical view of the spatio-temporal evolution of cities in developed countries
is that urban spaces are the result of (centralized) urban planning. After the advent
of complex systems’ theory, however, people have started to interpret city structures
as a result of self-organization processes. In fact, although the dynamics of urban
agglomerations is a consequence of many human decisions, these are often guided
by optimization goals, requirements, constraints, or boundary conditions (such as
topographic ones). Therefore, it appears promising to view urban planning decisions
as results of the existing structures and upcoming ones (e.g. when a new freeway will
lead close by in the near future). Within such an approach, it would not be surpris-
ing anymore if urban evolution could be understood as a result of self-organization
(Batty & Longley, 1994; Frankhauser, 1994; Schweitzer, 1997).

Comparison with biological systems promises further insight. Quantities like
metabolic rates, population growth, life-span, etc. have been discovered to scale
with the average body mass of biological species over about 20 orders of magnitude
(West, Brown, & Enquist, 1997; Enquist, Brown, & West, 1998). The corresponding
power laws reflect the underlying function, structure, and organization of biological
species and even extend to the realm of ecological systems such as natural forests
with different sized trees. For example, it turns out that all trees of one size class
consume the same amount of solar energy as trees of a different size class (Enquist
et al., 1998).

It would be interesting to find out, whether a system of cities could be viewed
as an ecological system with similar relationships. In this connection, it is useful to
remember Zipf’s (1949) law, according to which the population sizes of cities are
inversely proportional to their rank. This implies the relationship nk ∝ 1/Nk for the
number nk of cities of size class k (e.g. with more than 5×10k but less than 5×10k+1

inhabitants). Therefore, as the energy usage Ei by the population of a city i (when
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Table 16.1 Scaling exponents and their 95% confidence intervals for different variables of electric
energy supply in Germany as function of population size. For details, (see Kühnert et al., 2006)

Variable Exponent 95% Confidence interval

Usable electric energy 1.1 [1.04, 1.13]
Electric energy delivery to households 1.0 [0.96, 1.06]
Length of low-voltage cables 0.9 [0.82, 0.92]

neglecting the energy consumption by industrial production) grows linearly with
the population Ni (see the entry “electric delivery to households” in Table 16.1),
the number of cities of size k times their energy usage is constant. In other words,
the inhabitants of all cities of one size class k consume the same energy as the
inhabitants of all cities of any other size class, similar to the ecological example of
trees in a forest.

Among the many different approaches trying to explain Zipf’s law (e.g., Simon,
1955; Steindl, 1965; Schweitzer, 2003), the one by Gabaix (1999) is surprising be-
cause of its simplicity. According to Gabaix, the simplest stochastic model with
multiplicative noise �i(t), namely

d Ni

dt
= [A + ξi (t)] Ni (t), (16.1)

is able to generate Zipf’s distribution. In agreement with “Gibrat’s law” (Gibrat,
1931; Sutton, 1997), it assumes that the growth rates Ai (t) = A + �i (t) are stochas-
tically distributed and varying around a characteristic value A independent of the
(population) size Ni (t) of a city i . Note, however, that the exponent of Zipf’s law
seems to be different from 1 in some countries (Pumain, Paulus, Vacchiani, & Lobo,
2006).

Therefore, let us discuss the consequences if the deterministic part of the growth
law would be slightly different from Equation (16.1), namely of the form

d Ni
/
dt︸ ︷︷ ︸

Growth

= B Ni (t)
β︸ ︷︷ ︸

Re source
Generation

− C Ni (t)
γ︸ ︷︷ ︸

Ma int enance

(16.2)

This equation reflects that the difference between the generation of resources
Ni of system i and its maintenance determines its growth dNi/dt in time. B and
C are treated as constants. The powers � and � allow one to take into account
scaling exponents different from 1. While the case � = � = 1 corresponds to
Equation (16.1), any difference of one of the exponents � or � from 1 would have
dramatic consequences.

Equation (16.2) has a surprisingly rich variety of solutions (see Fig. 16.1). If
B Ni (0)� −C Ni (0)� < 0, we have either a decay to a finite value, a decay to zero, or
an unexpected, delayed decay to zero, depending on whether � is smaller than, equal
to, or greater than �. In the case B Ni (0)� − C Ni (0)� > 0, we find a limited growth
for � < �, and an exponential growth for � = �, as for the deterministic version
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Fig. 16.1 Schematic illustration of the different possible solutions of the growth Equation (16.2).
The course of the growth behavior depends on the relations between the parameters �, �, and on
the initial value Ni (0). The top row is for B Ni (0)� > C Ni (0)�, while we have B Ni (0)� < C Ni (0)�

in the bottom row

of Equation 16.1. However, if � were greater than �, the growth curve would have
a singularity, i.e. it would increase without limits within finite time. This possibility
would have dramatic implications for urban systems, as the system would sooner
or later go out of control. It would also be a distinguishing feature from biological
systems, as these are usually characterized by scaling exponents � smaller than 1
and � = 1. Moreover, growth processes of biological species sooner or later saturate
similar to the curve displayed in Fig. 16.1a.

To determine the nature of urban growth processes, we have analyzed data of
European cities to reveal some of the fundamental forces at play in the formation and
development of urban organization. Our empirical results show that, in spite of the
enormous variation of particular features (climate, economic specialization, age),
cities are unified by mechanisms that are on average simple scaling functions of their
population size. Our data sets of urban supply systems for European cities i larger
than 50,000 inhabitants contained information about the local energy consumption
in German cities and Western European points of interest collected by TeleAtlas c©

for route guidance and geo-information systems. We have evaluated variables Xi

and countries for which the data sets were either close to complete or a good sta-
tistical representation. The underlying rationale for our empirical investigation was
to collect measures of resource production and consumption as a function of urban
size, measured in terms of population Ni .
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Fig. 16.2 Examples of supply systems with (a) sublinear, (b) linear, and (c) superlinear scaling.
The figures show the number of supply stations as a function of the respective population sizes of
cities in double-logarithmic representation, using the logarithmic binning method. For details, see
Kühnert et al. (2006)

The first empirical fact to emphasize is that scaling is a wide-spread property of
urban organization. For most countries, we found power-law scaling relations over
two orders of magnitude in population size N i (see, for example, Fig. 16.2). The
scaling relations have the simple form

Xi = X0 Nβ

i (16.3)

where Ni is the population size, X0 a normalization constant independent of Ni , and
� the scaling exponent. Our results are summarized in Table 16.1 and Fig. 16.3. For
details, see Kühnert, Helbing, D., and West (2006).

Despite the width of the confidence intervals, one can draw several interesting
conclusions:

1. The scaling exponents of different countries are consistent, i.e. of the same order.
In fact, the 95% confidence intervals tend to have a common subset, which may
be used for a more precise determination of the respective scaling exponent, if
universality (i.e. country-independence) is assumed. Statistical analysis of vari-
ance tests support this picture.

2. A proportionality of the number of “supply stations” to the population size cor-
responding to a scaling exponent of 1 is only found for some supply systems.
This includes hospitals and hospital beds, post offices, and pharmacies.

3. There are also cases of sub-or superlinear relationships. For example, the scal-
ing exponents for the number of car dealers and petrol stations are smaller than
1 (sublinear case), while the scaling exponent for restaurants is larger than 1
(superlinear case).

What are the reasons for observed differences in the scaling exponents? The
proportionality of post offices, pharmacies, and doctors to the population size is
probably dictated by comparable individual demands, combined with the require-
ment of a certain level of reachability (by foot). Moreover, it is often regulated by
government. As a consequence, each size class of cities offers approximately the
same number of these “supply stations.”
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Fig. 16.3 Scaling exponents and confidence intervals for different supply systems and countries:
France (F), Germany (D), Great Britain (GB), Italy (I), The Netherlands (NL), and Spain (E) (after
Kühnert et al. 2006)

Sublinearly scaling quantities, such as the number of petrol stations or car deal-
ers, indicate an “economy of scales,” i.e. efficiency gains by serving larger agglom-
erations. In other words, one such “supply station” serves more people in a larger
town and distributes larger quantities (e.g., sells more fuel per month). This is cer-
tainly reasonable and typical for material supply systems, which are more profitable
for larger population sizes or governed by a free market. Therefore, sublinear scaling
supply systems profit from higher population densities and a more efficient usage
of capacities in larger service units (e.g., by better utilization or reduction of the
relative statistical variation etc.). Sublinear scaling is also expected for the number
of shopping centers or for polyclinics.

But why do some supply systems scale superlinearly? This question concerns,
for example, the number of restaurants, but a similar relations seem to hold for



438 D. Helbing et al.

museums, theaters, colleges, etc. We recognize that these supply systems satisfy
social and communicative needs. That is, information exchange seems to increase
overproportional with the number of inhabitants in a town. The number of patents,
as a function of the population size (Strumsky, Lobo, & Fleming, 2005), and other
variables (Pumain et al., 2006) confirm this conclusion. The same applies to other
non-conserved variables such as money or wealth (Bettencourt, Lobo, Helbing,
Kühnert, & West, 2007). If these variable would determine city growth, a finite
time singularity would be expected (which would have to be avoided by increasing
innovation or friction).

16.2 Scaling Laws in Urban Road Networks

Let us now turn to the questions of how the scaling laws we identified relate to
spatial structures of urban organization and to fractal features of supply and trans-
portation systems. In biological systems, the power laws mentioned in Section 16.1
can be explained by a minimization of energy losses in the respective biological sup-
ply system with the constraint that the supply system is space-filling, as all elements
(e.g., all cells in the body) must be reached (West et al., 1997). This organization
principle implies hierarchical and self-similar structures such as the system of blood
vessels.

Therefore, are urban transportation networks also organized in a hierarchical,
self-similar way? Self-similar, fractal features have, in fact, been found in the
organization of cities, according to Christaller’s (1980) theory of central places,
and in the structure of public transportation systems (Frankhauser, 1994; Hołyst,
Sienkiewicz, Fronczak, & Suchecki, 2005). The same applies to urban boundaries
and urban sprawl (Batty & Longley, 1994; Frankhauser, 1994; Makse, Havlin, &
Stanley, 1995; Schweitzer, 1997, 2003). But what about urban road networks?

Despite distances being very crucial for logistic, geographical, and transportation
networks, surprisingly little attention has been paid to the spatial structure of urban
networks in the past. Urban road networks with links and nodes representing road
segments and junctions, respectively, exhibit unique features different from other
classes of networks (Newman, 2002; Jiang & Claramunt, 2004; Buhl et al., 2006;
Crucitti, Latora, & Porta, 2006; Gastner & Newman, 2006; Porta et al., 2006). As
they are almost planar, they show a very limited range of node degrees. Thus, they
can never be scale-free like airline networks or the internet (Gastner & Newman,
2006) Nevertheless, road and airline networks can both be viewed as solutions of
an optimization process minimizing average travel costs, if the travel costs for one
airline connection are approximately equal, but the travel costs of road traffic are
proportional to the length of links. Hence, a small-world network with a hub-and-
spoke structure results for air traffic, while a Poisson node distribution is typical for
road networks (Gastner & Newman, 2006).

For an empirical analysis, we have extracted road network data of the administra-
tive areas of the 20 largest German cities from the geographical database Tele Atlas
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MultiNet
TM

, which is typically used for real-time navigation systems or urban plan-
ning and management. The data provide a geo-coded polygon for each road segment
as well as a series of properties, e.g., the length, average expected travel-time, speed
limit, driving direction, etc. Since the road network of Hanover, which ranked 11th,
could not be extracted unambiguously, it was excluded from our analysis.

Note that, according to human perception, the effort of traveling is not measured
in distances, but in terms of the energy consumption by the body required to perform
the travel activity (Kölbl & Helbing, 2003). This means that travel times are the rel-
evant quantities for the destination and route choice of car drivers. This implies that
routes along faster roads appear “shorter” than along slower ones. A distant, but well
accessible, destination is virtually closer than a near one with a longer access time.
The heterogeneity of road speeds also has an impact on the distribution of vehicular
traffic over the road network. Faster roads are more attractive for human drivers,
resulting in a concentration of traffic along these “arterial” roads, see Fig. 16.4a.

The importance of a road or a junction can be characterized by the number of cars
passing through it within some time interval. This can roughly be approximated with
the measure of link betweenness centrality, be, and node betweenness centrality, bv .
It is given by the number of shortest paths, with respect to travel-time, between all
pairs of nodes in the corresponding graph, of which, the particular link e or node v is
a part (Albert & Barabási, 2002; Newman, 2002; Brandes & Erlebach, 2005; Costa
& da Rocha, 2006; Porta et al., 2006). The road networks of Germany’s largest cities
show an extremely high node betweenness centrality bv at only a small number of
nodes, while its values are very low at the majority of nodes. As a consequence, the
distribution of its frequency density distribution p(bv) follows a power law p(bv) ∼
bv

−� with exponent � ≈ 1.4 (see Fig. 16.4b and Table 16.2). Note that values of
� > 1 indicate a high concentration of traffic over a few important intersections.
In Dresden, for example, 50% of all road meters carry as little as 0.2% of the total
traffic volume only, while almost 80% of the total traffic volume are concentrated
on no more than 10% of the roads. Most interestingly, half of the total traffic volume
is handled by only 3.2% of the roads in the network.

The bundling of traffic streams on a few arterial roads (see Fig. 16.4a) reflects
the clear hierarchical structure of the roads (Levinson & Yerra, 2006). However, the
usage pattern does not display the regularity of hierarchical networks such as Cayley
trees, in contrast to many supply networks in biology, such as vascular systems
(Brown & West, 2000).

Is this result just an effect of the respective urban topography? Or is it a result
of the fact that the time span of urban evolution is short compared to biological
evolution, so that deviations from optimal (resource-efficient) structures occur? Or
do the boundary conditions of urban growth change so fast that urban systems are
always in a transient state?

The apparent universality of the scaling exponent, � ≈ 1.4, suggests that there
must be other reasons for the irregular and not strictly hierarchical structure of ur-
ban road networks. Universal scaling laws are, in fact, a very surprising feature of
urban road networks in view of all the particularities of cities regarding their history,
climate, economic specialization, etc. At least in Germany, universal power laws are
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Fig. 16.4 (a) Street network of Dresden, Germany. The width of the links represents the respec-
tive betweenness centrality be, which is a simple measure of the estimated amount of traffic on
the roads. (b) The corresponding distribution of the node betweenness centrality bv obeys the
power-law p(bv) ∼ bv

−� with exponent � = 1.36 (dotted line). (c) The distribution of surface
areas enclosed by roads is also power-law distributed with an exponent of 1.89. (After Lämmer
et al., 2006)

also found for the size distribution of the areas enclosed by roads (see Fig. 16.4c and
the cell size exponent in Table 16.2) and other quantities like the effective dimension
or the Gini index (see Lämmer, Gehlsen, & Helbing, 2006 for details).

16.3 Deficiencies of Strictly Hierarchical Organizations

Nodes (intersections) and links (roads) of urban networks are often blocked by
building sites, accidents, or congestion. This restricts the reliability of nodes and
links considerably. We believe that this is a strong reason for network structures
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Fig. 16.5 Illustration of a
strictly hierarchical “arterial”
road network capable of
connecting all cities,
assuming a spatial
organization according to
Christaller’s theory of central
places. Note that not all links
are shown here in order to
avoid an overloaded picture

that are not organized in a strictly hierarchical manner (in contrast to Fig. 16.5).
As will be illustrated for the example of information flows in organizations, strict
hierarchies are only optimal under certain conditions, particularly a high reliability
of nodes and links.

Experimental results on the problem solving performance of groups (Ulschak,
1981; Tubbs, 2003) show that small groups can find solutions to difficult prob-
lems faster than any of their constituting individuals, because groups profit from
complementary knowledge and ideas. Small groups also have a potential to assess
situations and future developments better than their single members (Chen, Fine, &
Huberman, 2003). The actual performance, however, sensitively depends on the or-
ganization of information flows, i.e., on who can communicate with whom. If com-
munication is unidirectional, for example, this can reduce performance. However, it
may also be inefficient if everybody can talk to everyone else. This is, because the
number of potential (bidirectional) communicative links grows like N (N − 1)/2,
where N denotes the number of group members. As a consequence, the number of
information flows explodes with the group size, which may easily overwhelm the
communication and information processing capacity of individuals. This explains
the slow speed of group decision making, i.e. the inefficiency of committees. It is
also responsible for the fact that, after some transient time, (communication) activ-
ities in large (discussion) groups often concentrate on a few members only, which
reminds of the bundling of traffic flows discussed in the last section. A similar effect
is observed in insect societies such as bee hives. When a critical colony size is ex-
ceeded, a few members develop hyperactivity, while most colony members become
lazy (Gautrais, Theraulaz, Deneubourg, & Anderson, 2002).
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These findings indicate that there may be an optimal size of companies and
organizations (Huberman & Loch, 1996). Considering the limited communication
and information processing capacities of individuals, the optimal number of group
members seems to be seven (or less) (Miller, 1956; Baddeley, 1994). This implies
the need for bundling and compressing information flows, which is, for example,
satisfied by hierarchical organizations. But are there better forms of organization
than strictly hierarchical ones? Some of the relevant questions are:

� How robust is the communication or organization network with respect to failure
of nodes (due to illness, holidays, quitting the job) or links (due to difficulty
personal relationships)?

� How suitable is the organization for crisis management?
� How well does an organization interconnect interrelated activities?
� What is the degree of information loss when communication within an organiza-

tion network is imperfect?

Similar to road networks and biological supply networks (such as the respiratory
system), organizations must be organized space-filling in their covered competence
field with staff members playing the role of terminal units. For matters of illustra-
tion, we will focus on regular, two-dimensional space-filling kinds of subdivision, as
they are particularly suited for a modular organization structure. They share some
properties with urban road networks, while the tree-like organization of arterial,
water or respiratory supply systems in biological species is three-dimensional (West
et al., 1997).

Regular area-filling kinds of subdivision can be triangular, quadratic, or hexago-
nal. These subdivisions are all compatible with a strictly hierarchical organization,
see Fig. 16.6. If the top level consists of one individual (the CoE) and each member
of a certain level, except for the lowest one, has ND subordinates, the number of
staff members in a system with L hierarchies is given by

N =
L∑

l=1

Nl−1
D = N L

D − 1

ND − 1
(16.4)

Fig. 16.6 Examples of strict hierarchies based on (a) a triangular, (b) a quadratic, or (c) a hexago-
nal area-covering organization. Dots represent staff members, while the links indicate the commu-
nication pathways (after Helbing, Johansson, et al., 2006)
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Table 16.3 Number of members in a hierarchical organization as a function of the hierarchy lev-
els, when everyone (apart from the lowest organizational level) has four or seven subordinates,
respectively (after Helbing, Johansson, et al., 2006)

Four subordinates Seven subordinates

Levels No. of members Cumulative no. No. of members Cumulative no.

1 1 1 1 1
2 4 5 7 8
3 16 21 9 57
4 64 85 343 400
5 256 341 2, 401 2, 801
6 1, 024 1, 365 16, 807 19, 608
7 4, 048 5, 413 117, 649 137, 257
8 16, 192 21, 605 823, 543 960, 800

(see Table 16.3). While triangular and quadratic structures correspond to ND = 4,
subordinates, hexagonal structures are compatible with ND = 4, 5, 6, or 7 (Helbing,
Johansson, Mathiesen, Jensen, & Hansen, 2006). As a consequence, for a given
number N of individuals, the number of hierarchical levels can be reduced by a
hexagonal kind of organization (see Table 16.3). Note, however, that a strictly hier-
archical organization of the road system for Christaller’s (1980) hexagonal system
of central places corresponds to ND = 4 (see Fig. 16.5); otherwise some cities
would have multiple access routes.

As the number of hierarchical levels reflects the number of intermediate steps
from the bottom level to the top (and vice versa), on the one hand, it is desirable
to have a small number of hierarchical levels (“flat hierarchies”) to minimize in-
formation delays. On the other hand, assuming that the information compression is
roughly proportional to the inverse 1/ND of the number ND of subordinates, flat
hierarchies have a higher degree of information loss from one hierarchical level to
the next higher one. (This assumes that a fixed amount of communication and infor-
mation processing capacity is basically divided among the number of subordinate.
Given a fixed number N of members of an organization, let us calculate the prob-
ability P that certain information from the basis (i.e., the lowest hierarchical level)
reaches the top level (or vice versa). Considering that information is compressed by
a factor of 1/ND from one level to the other and lost with some probability p > 0,
we get

P = (1 − p)L−1

(
1

ND

)L−1

= (1 − p)L−1

(
1

N L−1
D

)
≈ (1 − p)L−1 1

N
(16.5)

because of N ≈ ND
L−1. That is, the larger the number of hierarchy levels, the

greater the chance that some potentially relevant information from the bottom level
will never reach the top level.

Let us now discuss how the value of P can be improved by redundant information
flows. In disaster response management, strictly hierarchical organizations tend to
show certain weaknesses with potentially serious consequences:



16 Power Laws in Urban Supply Networks 445

� Important information is lost due to information compression.
� Information takes too much time to get from the sender to the intended receiver

because of too many hierarchical levels to be crossed.
� Information never reaches its destination, because some information node or link

does not function.

These weaknesses can be mitigated by additional side links (information flows
within the same hierarchy level) and shortcuts between different hierarchy levels
(see Fig. 16.7). Since the information flow, over an existing communication link, is
basically proportional to (1 − p), redundant links will always reduce the probability
that information is lost, as additional information channels are available. However,
establishing and maintaining additional information channels is costly, at least it

Fig. 16.7 Top: Illustration of the hierarchical information flows in the disaster response manage-
ment during the floodings in Saxony, Germany, in August 2002 (after Helbing, Johansson, et al.,
2006). Bottom: Improved information flows can be reached by additional side links and shortcuts
(dashed thick lines)
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requires time. Therefore, their optimum number depends on the reliability of nodes
and links. Generally speaking, it increases with the failure rate.

One interesting question is how to establish the most urgently needed links. If
some information link breaks down or does not function properly, an alternative
information link should be used or established. The same applies, if the capacity of
some information channel is not high enough (e.g., due to a lack of communication
time or communication ability). That is, information channels should be adaptively
strengthened, when needed. This can either be done by extending or redistributing
communication times or by establishing additional links.

Regarding the identification of missing links, it is interesting to see how Amazon
(www.amazon.com) recommends books to customers, based on their previous pur-
chase decisions and those of other customers. This method is based on an evaluation
of correlations among different purchasing activities. A similar method has been
recently suggested by Adamic and Adar (2003), who have identified missing links
by analysis of e-mail communication. In some sense, it is recommended to establish
a new link (a “shortcut”), if it would reduce information flows via many nodes, i.e. if
it would reduce detours.

16.4 Spontaneous Self-Organization of Hierarchies

Note that it can be difficult to establish a hierarchical organization. Social systems
are complex systems in which the non-linear interactions between its individuals can
dominate efforts to control their behavior. However, a hierarchical organization can
often emerge by self-organization of its elements. One example is the phenomenon
of “crowd turbulence.” Fruin, 1993) reports:

At occupancies of about seven persons per square meter the crowd becomes almost a fluid
mass. Shock waves can be propagated through the mass, sufficient to . . . propel them dis-
tances of three meters or more. . . . People may be literally lifted out of their shoes, and
have clothing torn off. Intense crowd pressures, exacerbated by anxiety, make it difficult to
breathe, which may finally cause compressive asphyxia. The heat and the thermal insulation
of surrounding bodies cause some to be weakened and faint. Access to those who fall is
impossible. Removal of those in distress can only be accomplished by lifting them up and
passing them overhead to the exterior of the crowd.

This drastic picture visualizes the conditions in extremely dense crowds quite
well, but it does not provide a scientific analysis and interpretation.

Our detailed analysis of video recordings of the pilgrimage in Mecca has now
revealed how extremely dense crowds, after a previous transition from laminar flows
to stop-and-go waves (Helbing, Ammoser, & Kühnert, 2006), develop a turbulent
dynamics characterized by random displacements of pedestrians into all possible
directions (see Fig. 16.8a). These displacements are measured as the distance moved
between two successive stops of a pedestrian and can reach magnitudes up to 12 m
or more (see Fig. 16.8b).

We suggest comparing extreme crowding with driven granular media of high
density. Under quasi-static conditions (Radjai & Roux, 2002), these are building up
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Fig. 16.8 Left: Typical time-dependence of both components of velocity in the course of time dur-
ing turbulent crowd motion. One can clearly see the motion into all possible directions, including
the change from forward to backward motion. Right: The double-logarithmic representation of the
frequency of differently sized displacements between stopping events reveals a power law. (After
Helbing, Johansson, & Al-Abideen, (2007)

force chains (Cates, Wittmer, Bouchaud, & Claudin, 1998), which are characterized
by strong fluctuations in the strengths and directions of the local forces. As in earth-
quakes (Bak, Christenson, Danon, & Scanlon, 2002; Johnson & Jiz, 2005), this can
lead to events of sudden, uncontrollable stress release with power-law distributed
displacements. Such a power-law has, in fact, been discovered by our video-based
crowd analysis (Fig. 16.8b). It indicates a self-similar behavior. However, instead of
the vortex cascades in turbulent fluids, one observes another kind of hierarchical or-
ganization: at extreme densities, individual motion is replaced by collective motion.
That is, there are groups of people moving at the same speed. These groups form
clusters moving at similar speeds, which again form larger clusters, etc.

Note that the spontaneous formation of hierarchies is quite typical in social sys-
tems: individuals form groups, which form companies, organizations, and parties,
which make up a society or nation. A similar situation can be found in biology,
where organelles form cells, cells form tissues, tissues form organs, and organs form
bodies. Another example is well-known from physics, where elementary particles
form nuclei, which combine to atoms with electrons. The atoms form chemical
molecules, which organize themselves as solids. These make up celestial bodies,
which form solar systems, which again establish galaxies.

Obviously, the non-linear interactions between the different elements of the sys-
tem give rise to a formation of different levels, which are hierarchically ordered one
below another. While changes on the lowest hierarchical level are fastest, changes
on the highest level are slow.

On the lowest level, we find the strongest interactions among elements. This is
obviously the reason for the fast changes on the lowest hierarchical level. If the
interactions are attractive, bonds will arise. These cause the elements to behave
no longer completely individually, but to form units representing the elements of
the next level. Since the attractive interactions are more or less “saturated” by the
bonds, the interactions within these units are stronger than the interactions between
them. The relatively weak residual interactions between the formed units induce
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their relatively slow dynamics. Consequently, a general interdependence between
the interaction strength, the changing rate, and the formation of hierarchical levels
can be found.

16.5 Summary and Conclusions

In this chapter, we have started with an empirical study of urban supply networks.
We have found various power laws: While a linear scaling with the population
size was found for the number of doctors or pharmacies in a city, quantities like
petrol stations, supermarkets or hospitals scale sublinearly, indicating an economy
of scales. Non-material quantities such as information, money, or social interac-
tions, however, scale superlinearly. If these factors determine the speed of urban
growth, this implies a finite-time singularity which can only be avoided by friction
or innovation (Bettencourt et al., 2007).

Furthermore, we have compared urban systems with biological and ecological
systems. Despite some interesting analogies, the differences are significant. For ex-
ample, there is no strict hierarchical organization of urban transport networks. Nev-
ertheless, we find power-laws for the distribution of traffic flows and the distribution
of areas enclosed between urban roads. The power-law exponents are universal, at
least for Germany’s 20 largest cities.

A deviation from a strictly hierarchical organization is reasonable when the func-
tioning of the nodes or links of a network is not reliable (e.g., due to failures).
In such cases, redundant links (side links and shortcuts) increase the robustness
of the system. However, the possibilities to design an urban or social system are
limited, as their organization and dynamics is, to a large extent, the result of self-
organization. Nevertheless, hierarchies result quite naturally based on non-linear
interactions among the system elements. As an example, we have discussed the
case of “turbulence” in extremely dense pedestrian crowds.
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