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Abstract This paper concerns the application of a new algorithm of
probabilistic limit and shakedown analysis for shell structures, in which the
loading and strength of the material as well as the thickness of the shell
are to be considered as random variables. The procedure involves a deter-
ministic limit and shakedown analysis for each probabilistic iteration, which
is based on the kinematical approach and the use of the re-parameterized
exact Ilyushin yield surface proposed by Burgoyne and Brennan. The limit
state function separating the safe and failure regions is defined directly as
the difference between the obtained limit load factor and the current load
factor. Different kinds of distribution of basic variables are taken into con-
sideration and performed with First- and Second-Order Reliability Methods
(form/sorm) for calculation of the failure probability of the structure. A
non-linear optimization was implemented, which is based on the Sequential
Quadratic Programming for finding the design point. Non-linear sensitivity
analyses are also performed for computing the Jacobian and the Hessian of
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the limit state function. This direct approach reduces considerably the nec-
essary knowledge of uncertain technological input data, computing costs and
the numerical error. Numerical examples are presented to show the validity
and effectiveness of the present method.

1 Introduction

The integrity assessment of pressure vessels and piping by means of direct
plasticity methods has been a problem of great interest to many designers,
especially in the design of industrial and nuclear power plants. The new
European pressure vessel standard EN 13445-3 is based on perfectly plastic
limit and shakedown analysis (LISA) [8] thus indicating the industrial need
for LISA software for safe and reliable design of such structures. Additionally,
practical design codes often prescribe what kind of values to choose for safety
factor of the resistance and of the loads for a given problem since all resistance
and loading variables are generally random. To this case, structural reliability-
based LISA can be performed to establish a rational basis for the choice of
safety factors. Probabilistic limit analysis has been proposed earlier for frames
using linear programming [2, 15].

The present paper concerns the application of a new upper bound al-
gorithm of probabilistic limit and shakedown analysis for shell structures
with the help of the finite element method. Both deterministic and prob-
abilistic limit and shakedown analyses are presented. For the deterministic
problem, three failure modes of structure such as plastic collapse, alternat-
ing plasticity (low cycle fatigue, LCF) and ratchetting are analyzed based
on the upper bound approach. This direct method leads to convex minimum
problems which results in a failure mechanism with a unique limit load or
shakedown load.

Probabilistic limit and shakedown analysis deals with uncertainties origi-
nating from the loads, material strength and thickness of the shell. Based on
a direct definition of the limit state function, the calculation of the failure
probability may be efficiently solved by using the First- and Second-Order
Reliability Methods (form/sorm) which are based on the computation of
the most probable failure point, the so-called design point. Since the deter-
ministic analysis is a sub-routine of the probabilistic one, even a small error
in the deterministic model can lead to a big error in the reliability analysis
because of the sensitivity of the failure probability. Due to this reason, a yield
criterion which is exact for rigid-perfectly plastic material behaviour and is
expressed in terms of stress resultants, namely the exact Ilyushin yield sur-
face, will be applied instead of the simplified Ilyushin yield surface (linear or
quadratic approximations). Along similar lines the lower bound probabilistic
LISA has been developed for volume elements in a series of papers by Heitzer
and Staat [11,12,18].
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Although the deterministic LISA subproblem has a unique solution it is
well known that all possible failure mechanisms contribute to the failure
probability [2, 16]. The kinematic or upper bound method may give the ex-
act failure probability only if all mechanisms are considered. In practice of-
ten few dominant mechanisms can give reasonable results. In [21] a bulge
method proposed in [14] has been applied to the reliability problems of shells
which constructs “barriers” around previously found (form/sorm) solutions,
thus forcing the algorithm to seek a new solution. In this way the complete
reliability problem may be solved. For the linear optimization formulation
of the static or lower bound approach a different method has been sug-
gested in [4] and extended in [1] for plane frame structures. Here we re-
strict the presentation to the calculation of the mechanism with the highest
probability only.

2 Plastic Dissipation Function in Terms
of Strain Resultants

For our purpose of dealing with the reliability problem, the loads, the yield
limit σy and the thickness h of the shell are considered as random variables.
The yield limit can be modeled as stochastic field and discretized through a
vector Y = [Y1, Y2, . . . , Ym]T of random variables Yi at the ith Gaussian point
so that �̃y = Yσy. Assuming the yield stress as a random field could render
the whole procedure very burdensome. The yield stress can be modeled as
a stochastic variable σy = Y σ0 if the Yi are fully correlated. For simplicity
we restrict ourselves to this case with homogeneous material, and shells of
constant thickness h. So we can always write

σy = Y σ0, h = Zh0, (1)

where σ0, h0 are constant reference values and Y,Z are random variables.
Only for the simplicity of the presentation it is assumed that all parts of the
shell structure are made from the same material. The software implementa-
tion has been made without this restriction.

It is convenient to define the non-dimensional “engineering” stress and
strain resultant vectors as follows

�̃ = [n m]T , �̃ = [ē k]T , (2)

where

n =
1
N0

[N11 N22 N12]
T
, m =

1
M0

[M11 M22 M12]
T
,

ē =
1
ε0

[ε̄11 ε̄22 2ε̄12]
T
, k =

1
κ0

[κ11 κ22 2κ12]
T
,

(3)
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and N0 = σ0h0, M0 = σ0h
2
0/4, ε0 = σ0(1 − ν2)/E and κ0 = 4ε0/h0 are

the normalized quantities. In that way the quadratic strain intensities can be
defined by

Pε =
3
4

(dε̃p)T P1dε̃p (≥ 0),

Pεκ = 3 (dε̃p)T P2dε̃p,

Pκ = 12 (dε̃p)T P3dε̃p (≥ 0).

(4)

where dε̃p denotes the plastic strain increment resultant vector, P and its
inverse P−1, Pi(i = 1, 2, 3) are

P =

⎛
⎝ 1 −1/2 0

−1/2 1 0
0 0 3

⎞
⎠ , P−1 =

⎛
⎝4/3 2/3 0

2/3 4/3 0
0 0 1/3

⎞
⎠ ,

P1 =
(

P−1 0
0 0

)
, P2 =

(
0 P−1/2

P−1/2 0

)
, P3 =

(
0 0
0 P−1

)
.

(5)

Ilyushin [13] derived an exact form of the yield surface in terms of the
stress resultant for a linear elastic-perfectly plastic isotropic material which
obeys the von Mises criterion. A simpler form of this yield surface (though
still exact) was proposed by Burgoyne and Brennan [3] by introducing the
parameters

υ =
Pε

Pκ
, β = −Pεκ

Pκ
and γ = υ − β2, (6)

where β and γ are proposed as two independent parameters for the description
of the yield surface. With these parameters, the plastic dissipation function
for a shell structure may be written in the form [20,21]

Dp( ˙̃ε) = Y N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)
, (7)

where β1, β2 and K0 are

β1 =
Z

2
− β, β2 =

Z

2
+ β, K0 = ln

(√
β2

1 + γ + β1√
β2

2 + γ − β2

)
. (8)

It should be noted here, that the value of K0 will become indefinite if
both conditions |β| ≤ 0.5Z and γ = 0 are fulfilled. However, as long as γ
is not exactly equal to zero, but assumes to some small positive number, a
“regularized” evaluation of K0 may be obtained [17]. Otherwise, in general,
Dp is convex [5] but not everywhere differentiable as shown for continuum
problems. It is only differentiable in the plastified region of the structure,
i.e. Pκ > 0. In order to allow a direct non-linear, non-smooth, constrained
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optimization problem, a “smooth regularization method” should be used to
overcome the non-differentiability of the objective function as will be dis-
cussed in the following section.

3 Deterministic Limit and Shakedown Algorithm

Consider a convex polyhedral load domain L and a special loading path con-
sisting of all load vertices P̂k (k = 1, . . . ,m) of L. Let the fictitious elas-
tic generalized stress vector be denoted by �. By discretizing the whole
structure with the help of finite elements and the application of Koiter’s
theorem, the shakedown limit αlim, which is the smaller one of the low cy-
cle fatigue limit and the ratchetting limit, may be found by the following
minimization

αlim = min
NG∑
i=1

m∑
k=1

wiY N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)
,

s.t. :

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=1

˙̃εik = Biu̇ ∀i = 1, . . . , NG,

NG∑
i=1

m∑
k=1

wiN0�0
˙̃�T
ik�̃E

ik = 1,

(9)

in which u̇ denotes the velocity fields, Bi denotes the deformation matrix,
and wi is the weighting factor of the ith Gauss point (i = 1, . . . , NG). For
the sake of simplicity some new notations are introduced

ėik = wi
˙̃�ik, tik = N0ε0�̃E

ik, B̂i = wiBi, (10)

where ėik, tik, B̂i are the new strain rate vector, the new fictitious elastic
stress vector and the new deformation matrix, respectively. By substituting
(10) into (9) we obtain a simplified version for the upper bound shakedown
analysis

αlim = min
NG∑
i=1

m∑
k=1

Y N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)
,

s.t. :

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=1

ėik = B̂iu̇ ∀i = 1, . . . , NG,

NG∑
i=1

m∑
k=1

ėT
iktik = 1.

(11)

To eliminate the first optimization constraint a penalty method is used. To
this purpose, let us write the penalty function as
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FP =
NG∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=1

(
Y N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

))

+
c

2

(
m∑

k=1

ėik − B̂iu̇

)T (
m∑

k=1

ėik − B̂iu̇

)
⎫⎪⎪⎬
⎪⎪⎭

=
NG∑
i=1

⎧⎨
⎩

m∑
k=1

(Y ηik) +
c

2

(
m∑

k=1

ėik − B̂iu̇

)T (
m∑

k=1

ėik − B̂iu̇

)⎫⎬
⎭,

(12)

where c is a penalty parameter such that c � 1. For the sake of simplicity,
the same value of c is assumed at every Gauss point of the structure. The
second constraint can be eliminated by using the dual Lagrange function

FPL = FP − λ

(
NG∑
i=1

m∑
k=1

ėT
iktik − 1

)
, (13)

where λ is the Lagrange multiplier. The major numerical obstacle appears
here due to the non-differentiability of the objective function FPL and the
singularity of K0 as discussed in Sect. 2. A regularization method can be
used here by replacing the original plastic dissipation function Dp( ˙̃�

p
) by its

disturbed one Dp( ˙̃�
p
, η2

0). In the new plastic dissipation function Dp( ˙̃�
p
, η2

0),
η2
0 is a small positive number which is added to γ and Pκ, i.e. γ → γ+η2

0 and
Pκ → Pκ + η2

0 . In this way, all elements in the structure are seen as plastified
or on the plastified verge.

By applying Newton’s method to solve the KKT conditions of Eq. (13)
we obtain the Newton directions du̇ and d ˙̃�ik, which assure that a suitable
step along them will lead to a decrease of the objective function αlim. If the
relative improvement between two steps is smaller than a given constant,
the algorithm stops and leads to the shakedown limit factor. Details of the
iterative algorithm can be found in [20,21].

4 Probabilistic Limit and Shakedown Algorithm

Denote by X = (X1,X1, . . . , Xn) an n-dimensional random vector charac-
terizing uncertainties in the structure and load parameters. The limit state
function g(x) = 0, which is based on the comparison of a structural resistance
(threshold) and loading, defines the limit state hyper-surface ∂F which sep-
arates the failure region F = {x| g(x) < 0} from the safe region. The failure
probability Pf is the probability that g(X) is non-positive, i.e.

Pf = P (g(X) ≤ 0) =
∫

F

fX(x)dx, (14)
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where fX(x) is the n-dimensional joint probability density function. Usually,
it is not possible to calculate Pf analytically since the form of the limit state
surface is very complex. For the general cases, there are several approximate
methods to compute the failure probability Pf . Direct Monte Carlo Simula-
tion (mcs) becomes increasingly expensive with the increase of the structural
reliability. Acceptable failure probabilities might be in the range of 10−4 to
10−6. They are even much lower in nuclear reactor technology. For a vali-
dation that the failure probability Pf is less than an accepted limit Pc, the
sample size required for direct (mcs) must be at least 100/Pc leading to a
minimum sample size in the range of 106 to 108. Such a large number exceeds
particularly for complex fe-models available resources by far. The numeri-
cal effort can be reduced considerably by variance reduction methods like
Importance Sampling and by Response Surface Methods (rsm). However,
the most effective analysis is based on First- and Second-Order Reliability
Methods (from/sorm) if gradient information is available [9].

4.1 First- and Second-Order Reliability Methods

(from/sorm) (alternatively referred as the most likely failure point method)
is used here to perform uncertainty analysis. Practical experience with
(from/sorm)algorithms indicates that their estimates usually provide sat-
isfactory reliability measures. Especially in the case of small failure probabil-
ity (large reliability), (from/sorm) are extremely efficient compared with
the (mcs) method regarding the requirement of computer time, such as the
Central Processing Unit (CPU). In (from/sorm) the probability of failure
is computed in three steps. Firstly the physical space x of uncertain pa-
rameters, X, is transformed into a new n-dimensional space, u, consisting
of independent standard Gaussian variables U. By this transformation, the
original limit state g(x) = 0 is mapped into the new limit state g(u) = 0
in the u space. Secondly the design point or βHL-point is determined by an
appropriate non-linear optimization algorithm. This is the point on the limit
state surface having the shortest distance to the origin in the u space. Due
to the rotational symmetry and exponential decay of the probability density,
the design point has the highest probability among all points in the failure
domain. It follows that the neighbourhood of this point makes the dominant
contribution to the failure probability. Details of the non-linear optimiza-
tion algorithm for finding the design point which is based on the sequential
quadratic programming (sqp) can be found in [20,21]. Thirdly the limit state
surface g(u) = 0 is approximated by a tangential hypersurface at the design
point. This corresponds to an approximating hyperplane gL(u) = 0 (linear
or first-order) and hyperparaboloid gQ(u) = 0 (quadratic or second-order),
respectively (see Fig. 1). The failure probability Pf is thus approximated by
Pf,L = P (gL (u) < 0) in form
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u space

failure region
g(u) < 0

safe region
g(u) > 0

βHL

g (u) = 0
L

Q
g (u) = 0

constant probability

g(u) = 0

origin

Fig. 1 Safe and failure regions based on linear and quadratic approximations in u space

Pf,L = Φ(−βHL) =
1√
2π

−βHL∫

−∞

e−0.5z2
dz, (15)

and by Pf,Q = P (gQ (u) < 0) in sorm [10, 22]

Pf,Q = S1 + S2 + S3, (16)

with

S1 = Φ(−βHL)
n−1∏
j=1

(1 − βHLκj)
−1/2

,

S2 = [βHLΦ(−βHL) − φ (βHL)]
⎧⎨
⎩

n−1∏
j=1

(1 − βHLκj)
−1/2 −

n−1∏
j=1

(1 − (βHL + 1)κj)
−1/2

⎫⎬
⎭ ,

S3 = (βHL + 1) [βHLΦ(−βHL) − φ (βHL)]×
⎧⎨
⎩

n−1∏
j=1

(1 − βHLκj)
−1/2 − Re

⎡
⎣n−1∏

j=1

(1 − (βHL + i)κj)
−1/2

⎤
⎦
⎫⎬
⎭ ,

with κj are n− 1 principle curvatures at the design point. The calculation of
κj normally needs the second derivatives of the limit state function.
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4.2 Definition of the Limit State Function

The shakedown load factor αlim which is calculated by the constraint min-
imum problem (11) defines the ratio between the shakedown load Plim and
actual load P of the structure, i.e.

αlim =
Plim

P
. (17)

As mentioned above, the limit state function contains the parameters of
structural resistance and loading. Thus it can be defined as
g = Plim − P = P (αlim − 1). For the sake of simplicity, the limit state
function g can be normalized with the actual load P and then becomes

g = αlim − 1. (18)

It can be seen that the limit state function is a function of the load, the
random variables yield stress and thickness. The actual load P is defined
in n components by using the concept of a constant reference load P 0 as
follows

P 0 = P 0
1 + P 0

2 + . . .+ P 0
n ,

P = x1P
0
1 + x2P

0
2 + . . .+ xnP

0
n ,

(19)

where xj is the realization of the jth basic load variable Xj (j = 1, n). The
corresponding actual fictitious elastic stress fields σ̃E can also be described
in the same way

σ̃E = x1σ̃
0
1 + x2σ̃

0
2 + . . .+ xnσ̃0

n. (20)

From (19) and (20), the corresponding normalized fictitious elastic stress
fields t are obtained

t = N0ε0σ̃ = N0ε0
[
x1σ̃

0
1 + x2σ̃

0
2 + . . .+ xnσ̃0

n

]
= x1t1 + x2t2 + . . .+ xntn.

(21)

4.3 Sensitivity Analyses

The sensitivity analyses provide the Jacobian and the Hessian of the limit
state function, ∂g/∂x and ∂2g/∂x2, which are needed for the SQP, FORM
and SORM algorithms. They also provide a quantitative measure of the first-
and second-order change in the optimal value function or show how the so-
lution is affected by changes in the problem data. The necessary data for the
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calculation of the Jacobian and the Hessian are available after the execution
of the deterministic shakedown analysis since they are based on the limit load
factor αlim.

In order to get the sensitivity of the limit state function g in the physical
space x, one requirement from Eq. (18) is that the derivatives of the limit
load factor αlim must be available. Let (ė∗ik,u

∗, λ∗) be the solutions of the
optimization problem (11). At the optimal point, the first derivative of the
limit load factor αlim versus the jth load variable Xj and the yield stress
variable Y can be calculated as follows [20,21]

∂αlim

∂Xj
=

∂FPL

∂Xj

∣∣∣∣
(ė∗

ik,u∗,λ∗)
= −λ

NG∑
i=1

m∑
k=1

ėT
ik

∂tik

∂Xj

∣∣∣∣
(ė∗

ik,λ∗)

= − λ

NG∑
i=1

m∑
k=1

ėT
iktik,j

∣∣∣∣∣
(ė∗

ik,λ∗)
, (22)

∂αlim

∂Y
=

∂FPL

∂Y

∣∣∣∣
(ė∗

ik,u∗,λ∗)
=

∂

∂Y

(
NG∑
i=1

m∑
k=1

Y ηik

)∣∣∣∣∣
(ė∗

ik)

=
NG∑
i=1

m∑
k=1

η∗ik =
αlim

Y
. (23)

The derivatives of the limit load factor αlim versus the random thickness
variable Z can be determined in the same way assuming the form

∂αlim

∂Z
=

∂FPL

∂Z

∣∣∣∣
(ė∗

ik,u∗,λ∗)

=
∂

∂Z

(
NG∑
i=1

m∑
k=1

(
Y N0ε0

√
Pk

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)))∣∣∣∣∣
ė∗

ik

=
NG∑
i=1

m∑
k=1

(
Y N0ε0

√
Pk

3

(√
β2

1 + γ +
√
β2

2 + γ

))∣∣∣∣∣
ė∗

ik

. (24)

The second partial derivatives of the limit state function versus the jth load
variable Xj and the yield stress variable Y can be obtained directly from an
analytical derivation of the first derivatives [20,21]
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∂2αlim

∂XlXj
=

∂

∂Xl

(
−λ

NG∑
i=1

m∑
k=1

ėT
iktik,j

)∣∣∣∣∣
(ė∗ik

,λ∗)

= − ∂λ

∂Xl

NG∑
i=1

m∑
k=1

ėT
iktik,j

∣∣∣∣∣
(ė∗ik

,λ∗)

− λ
NG∑
i=1

m∑
k=1

tT
ik,j

∂ėik

∂Xl

∣∣∣∣∣
(ė∗ik

,λ∗)

, (25)

∂2αlim

∂Y 2
=

∂

∂Y

(αlim

Y

)∣∣∣∣
ė∗

ik

=

(
1

Y

∂αlim

∂Y
− αlim

Y 2

)∣∣∣∣
ė∗

ik

=

(
1

Y

αlim

Y
− αlim

Y 2

)∣∣∣∣
ė∗

ik

= 0,

(26)

where

∂ėik

∂Xl
= G−1

ik tik
∂λ

∂Xl
+ λG−1

ik tik,l,
∂λ

∂Xl
=

1
λ

∂αlim

∂Xl
− λ

NG∑
i=1

m∑
k=1

tT
ikG−1

ik tik,l

NG∑
i=1

m∑
k=1

tT
ikG−1

ik tik

,

(27)

with Gik = ∂2FPL/∂ė2
ik. It can be seen from (26) that the limit state function

is a linear function of the yield stress variable Y . In the case of a heterogeneous
material, we will obtain at different Gaussian points i eventually different
yield stress variables Yi. Then the limit state function is no more a linear
function of these variables.
The second derivatives of αlim versus the thickness variable Z are obtained
by taking the derivatives of Eqs. (22), (23) and (24), versus Z, which gives

∂2αlim

∂Xj∂Z
= − ∂λ

∂Z

NG∑
i=1

m∑
k=1

ėT
iktik,j

∣∣∣∣∣
(ė∗ik

,λ∗)

− λ
NG∑
i=1

m∑
k=1

tT
ik,j

∂ėik

∂Z

∣∣∣∣∣
(ė∗ik

,λ∗)

, (28)

∂2αlim

∂Y ∂Z
=

NG∑
i=1

m∑
k=1

(
N0ε0

√
Pk

3

(√
β2
1 + γ +

√
β2
2 + γ

))∣∣∣∣∣
ė∗

ik

, (29)

∂2αlim

∂Z2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NG∑
i=1

m∑
k=1

√
3

4
√

Pk
Y N0ε0

(
∂ėik

∂Z

)T

×
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

16

(√
β2
1 + γ +

√
β2
2 + γ

)
P3 + 8

⎛
⎜⎝ β1√

β2
1 + γ

− β2√
β2
2 + γ
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ė∗

ik

(30)

+

NG∑
i=1

m∑
k=1

⎛
⎜⎝Y N0ε0

√
Pk

3

⎛
⎜⎝ β1

2
√

β2
1 + γ

+
β2

2
√

β2
2 + γ

⎞
⎟⎠
⎞
⎟⎠
∣∣∣∣∣∣∣
ė∗
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where

A = P2 + 4βP3,

B = P1 + 8βP2 − 16
(
γ − β2

)
P3.

(31)

The derivatives of λ and ėik versus Z are obtained in the following way.
Firstly differentiate the Lagrange function FPL in Eq. (13) versus ėik, then
taking derivatives of the obtained result ∂2FPL/∂ėik versus Z and using the
chain rule for two variables ėik, λ. After some manipulations one has

∂ėik

∂Z
= G−1

ik tik
∂λ

∂Z
− 1√

P̂κ

G−1
ik

∂Hik

∂Z
ėik, (32)

∂λ

∂Z
=

NG∑
i=1

m∑
k=1

1√
P̂κ

tT
ikG−1

ik

∂Hik

∂Z
ėik

NG∑
i=1

m∑
k=1

tT
ikG−1

ik tik

, (33)

Deterministic
 model and data

Random variables x
and its starting value x

FEM-based deterministic LISA

Limit state function
g(x) = α    –1lim

Sensitivity analysis
∂g/∂x, ∂  g/∂x2 2

∂x/∂u, ∂  x/∂u2 2

SQP algorithm
to find the design point

0

Failure probabilities
(FORM/SORM approximations)

Fig. 2 Flowchart of the probabilistic limit and shakedown analysis
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with

∂Hik

∂Z
= Y Ñ0ε̃0

⎛
⎜⎜⎜⎜⎜⎝

4
√

3
(√

β2
1 + γ +

√
β2

2 + γ
)
P3

+2
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3
(

β1√
β2
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β2
2+γ

)
A

+
√

3
4

(
1√

β2
1+γ

+ 1√
β2
2+γ

)
B

⎞
⎟⎟⎟⎟⎟⎠
. (34)

The flowchart in Fig. 2 contains the logical connections of the main analysis
steps as they have been implemented. In each probabilistic iteration, i.e. the
iteration for finding the design point, two deterministic loops are required,
the first one provides information for sensitivity analysis and the second one
for the simple line search algorithm.

5 Numerical Examples

The probabilistic limit and shakedown algorithm described above is pro-
grammed and implemented in the finite element package Code_Aster 7.3 [6].
The 4-noded quadrangular isoparametric flat shell element, the DKT ele-
ment, which is based on Kirchhoff’s hypothesis, was applied. Higher order
shell elements are not available in Code_Aster. In all numerical examples,
the structures are made of elastic-perfectly plastic material. For each test
case, some existing analytical and numerical solutions found in literature
are briefly represented and compared. The finite element discretizations were
realized by the personal pre- and post-processor GiD 7.2 [8].

Here only the most probable failure mode is calculated with form/sorm

in all examples. Excluding failure modes one after the other by a barrier from
the further search in form/sorm it was possible to identify the contribution
of multiple failure modes of a plane frame and obtain better approximations
of the failure probability [21]. In this test case taken from [16] the yield
stress has only been assumed as mutually independent random variable with
different log-normal distributions for the different beams in the frame. Before
publication the proposed method may need further testing with more complex
examples.

5.1 Pipe Bend Under In-Plane Bending Moment

The pipe bends have been a problem of great interest to many designers. They
have a complex response to bending moments. When an external moment is
applied to one end of the pipe bend, the annular cross section tends to deform
significantly both in and out of its own plane, i.e. it is subjected to warping
and ovalization. Due to their curved geometry, the pipe bends are very flexible
and forced to accommodate large displacements resulting in larger stresses
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Fig. 3 Cylindrical pipe under in-plane moment loading

and strains than those present in a straight pipe of the same size and material,
under the same loading conditions. For this reason pipe bends are considered
as critical components of a piping system.

Consider a 90◦ elbow with mean radius r, bend radius of curvature R and
thickness h as shown in the Fig. 3. One of its ends is assumed clamped and
the other one is subjected to an in-plane closing moment MI . The following
geometrical parameters are adopted: R = 1800mm, r = 300mm, h = 15mm.
In this example, only the moment MI and the yield stress σy are considered
as random variables with mean values μs, μr and standard deviations σs, σr

respectively.

5.1.1 Limit Load Analysis

From the deterministic analysis, we got the limit moment as 0.4614×4hr2σy.
The limit state function is a linear function of basic variables X,Y and
defined by

g(X,Y ) = 0.4614 × 4hr2Y −X. (35)

Staat and Heitzer [18] introduced the analytical expressions of the relia-
bility indices for both cases of normally and log-normally distributed random
variables, respectively
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βHL =
0.4614 × 4hr2μr − μs√
(0.4614 × 4hr2)2 σ2

r + σ2
s

, (36)

βHL =
log

(
0.4614 × 4hr2mr

)
− log (ms)√

δ2r + δ2s
, (37)

where mr,ms and δr, δs are calculated as

mr,s = μr,se
−δ2

r,s/2 =
μr,s√√√√

(
σ2

r,s

μ2
r,s

+ 1

) , δr,s =

√
log

(
σ2

r,s

μ2
r,s

+ 1
)
. (38)

5.1.2 Shakedown Load Analysis

For this case the in-plane bending moment MI varies within the range
[−M0,M0] and only the amplitudes but not the uncertain complete load
history influence the solution. Consider the case where the value M0 is a ran-
dom variable. From the deterministic analysis, we got the shakedown limit as
0.2507×4hr2σy. The limit state function is a linear function of basic variables
X,Y and defined by

g(X,Y ) = 0.2507 × 4hr2Y −X, (39)

and the reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =
0.2507 × 4hr2μr − μs√
(0.2507 × 4hr2)2 σ2

r + σ2
s

, (40)

βHL =
log

(
0.2507 × 4hr2mr

)
− log (ms)√

δ2r + δ2s
. (41)

The failure probabilities Pf are presented in Figs. 4 and 5 versus μs/4hr2μr.
Numerical solutions of the limit and shakedown analyses are compared with
the analytical ones resulting from exact solutions. For each case, both random
variables are normally or log-normally distributed with standard deviations
σr,s = 0.1μr,s. It is shown that our results correspond well with the analytical
ones for all cases.
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Fig. 4 Comparison of the results for normally distributed variables

Fig. 5 Comparison of the results for log-normally distributed variables

5.2 Limit Analysis of Cylindrical Pipe Under
Complex Loading

Beside the loading and material strength, it is well known that the load
carrying capacity of shell structures is generally influenced by their initial
imperfections which occur during the manufacturing and construction stages
such as variability of thickness. In this example, the effect of thickness im-
perfection on the limit loads of a shell structure is examined. The cylindrical
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Fig. 6 Cylindrical pipe under complex loading

pipe subjected to complex loading is considered here, see Fig. 6. The fol-
lowing geometrical and physical parameters are adopted: L = 2700mm,
r = 300mm, σy = 120MPa. For this purpose, only the loading and the thick-
ness h of the pipe are modeled as random variables. Four loading cases are
examined.

5.2.1 Internal Pressure

For this case, the exact plastic collapse limit pressure is given by plim = σyh/r.
Thus, the resistance R depends linearly on the realization h of the thickness
basic variable Z. The magnitude of the internal pressure is the second basic
variable X. The limit state function is defined by

g(X,Z) =
σy

r
Z −X. (42)

If both thickness and load random variables are supposed to be normally
distributed with mean values μt, μs and standard deviations σt, σs respec-
tively, then the limit state function g(U) in the standard Gaussian space is a
linear function. Note that σy is the yield stress and not a standard deviation
here. The mean and standard deviation of the limit state function can be
calculated as follows

μg =
σy

r
μt − μs, σg =

√(σy

r

)2

σ2
t + σ2

s , (43)

from which, the reliability index becomes

βHL =
μg

σg
=

(σy

r

)
μt − μs√(σy

r

)2
σ2

t + σ2
s

. (44)

The limit state function becomes nonlinear if both basic variables are log-
normally distributed. Analogously to (44), we obtain the exact reliability
index for form
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βHL =
log

((σy

r

)
mt

)
− log (ms)√

δ2t + δ2s
, (45)

where mt,ms and δt, δs are calculated as

mt,s = μt,se
−δ2

t,s/2 =
μt,s√√√√

(
σ2

t,s

μ2
t,s

+ 1

) , δt,s =

√√√√log

(
σ2

t,s

μ2
t,s

+ 1

)
. (46)

5.2.2 Bending Moment

The exact plastic collapse limit moment is linearized by M lim
b = 4r2σyh. The

limit state function is a linear function of basic variables X,Z and defined by

g(X,Z) = 4r2σyZ −X. (47)

The reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =
4r2σyμt − μs√
(4r2σy)2 σ2

t + σ2
s

, (48)

βHL =
log

(
4r2σymt

)
− log (ms)√

δ2t + δ2s
. (49)

5.2.3 Torsion Moment

In this case the exact plastic collapse limit moment is given by M lim
t =

2πr2σyh/
√

3. The limit state function is a linear function of basic variables
X,Z and defined by

g(X,Z) =
2√
3
πr2σyZ −X. (50)

The reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =

2√
3
πr2σyμt − μs

√(
2√
3
πr2σy

)2

σ2
t + σ2

s

, (51)
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βHL =
log

(
2√
3
πr2σymt

)
− log (ml)

√
δ2t + δ2l

. (52)

5.2.4 Axial Load

The exact plastic collapse limit load is given by Flim = 2πrσyh. The limit
state function is a linear function of the basic variables X,Z and defined by

g(X,Z) = 2πrσyZ −X. (53)

The reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =
2πrσyμt − μs√
(2πrσy)2 σ2

t + σ2
s

, (54)

βHL =
log (2πrσymt) − log (ms)√

δ2t + δ2s
. (55)

The failure probabilities Pf are presented in Figs. 7, 8, 9 and 10 with the
units kN and m of force and length, respectively. The numerical solutions of
the limit analyses are compared with the analytical ones resulting from exact
solutions. For each loading case, both random variables are normally or log-
normally distributed with standard deviations σt,s = 0.1μt,s. It is shown that
our results compare well with the analytical ones for all cases.

Fig. 7 Comparison of the results for normally distributed variables (kN, m)
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Fig. 8 Comparison of
the results for normally
distributed variables
(kN, m)

Fig. 9 Comparison of the
results for log-normally
distributed variables
(kN, m)

Fig. 10 Comparison of the
results for log-normally
distributed variables
(kN, m)
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6 Conclusions

A procedure for reliability analysis of inelastic shell structures under vari-
able loads which is based on a direct plasticity method has been presented.
The procedure involves a deterministic limit and shakedown analysis for each
probabilistic iteration. The loading and strength of the material as well as
the thickness of the shell are considered as random variables. The proposed
method appears to be capable of identifying good estimates of the failure
probability for the most probable failure mode, even in the case of very small
probabilities. The possible extension to multiple failure modes is indicated.
The proposed method makes the analysis problem of any load history time-
invariant and it is applicable with incomplete data. Sensitivity analyses are
obtained directly from a mathematical optimization with no extra computa-
tional cost.
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