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Preface

To predict loading limits for structures and structural elements is one of
the oldest and most important tasks of engineers. Among the theoretical and
numerical methods available for this purpose, so-called “Direct Methods”, em-
bracing Limit- and Shakedown Analysis, play an eminent role due to the fact
that they allow rapid access to the requested information in mathematically
constructive manners.

The collection of papers in this book is the outcome of a workshop held
at Aachen University of Technology in November 2007. The individual con-
tributions stem in particular from the areas of new numerical developments
rendering the methods more attractive for industrial design, extensions of the
general methodology to new horizons of application, probabilistic approaches
and concrete technological applications.

The papers are arranged according to the order of the presentations in the
workshop and give an excellent insight into state-of-the-art developments in
this broad and growing field of research.

The editors warmly thank all the scientists, who have contributed by their
outstanding papers to the quality of this edition. Special thanks go to Jaan
Simon for his great help in putting together the manuscript to its final shape.
We hope you may enjoy reading it!

Aachen and Leicester, Dieter Weichert
September 2008 Alan Ponter
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The Linear Matching Method
for Limit Loads, Shakedown
Limits and Ratchet Limits

A.R.S. Ponter

Abstract The paper describes the application of the Linear Matching
Method to the direct evaluation of limits associated with an elastic-perfectly
plastic body subjected to cyclic loading. Methods for limit load and shake-
down limit are followed by ratchet limits. The method is distinguished from
other programming methods by ensuring that equilibrium and compatibility
are satisfied at each stage. The method has been extended beyond the range of
most other direct methods by including ratchet limits and high temperature
material behaviour. Implementation is possible within the user routines of
commercial finite element codes. The paper emphasise the theoretical char-
acteristics of the method and discusses significant aspects of convergence,
both theoretical and numerical. The application of the method to industrial
Life Assessment problems and to geotechnical problems is summarized.

1 Introduction

Classically, numerical methods for Direct Method have relied upon the appli-
cation of mathematical programming methods to limit load and shakedown
limit theorems of plasticity and this is strongly reflected in other papers in
this volume. Either upper or lower bound methods are possible depending
on whether the approximating continuum descriptions correspond to equilib-
rium stress fields or compatible strain fields. The objective function, a load
parameter, is then either maximized or minimized according the upper and
lower bounds of classical plasticity.

This approach has both advantages and disadvantages. Mathematical pro-
gramming procedures have progressed significantly in recent years and highly

Alan R.S. Ponter
Department of Engineering, University of Leicester, Leicester, UK
e-mail: asp@le.ac.uk

D. Weichert, A. Ponter (eds.), Limit States of Materials and Structures, 1
DOI 10.1007/978-1-4020-9634-1_1, c© Springer Science+Business Media B.V. 2009



2 A.R.S. Ponter

efficient solution methods are widely available producing fast and reliable
solution methods. However, the general methodology relies upon the classi-
cal theorems of plasticity and extensions do not exist to behaviour outside
shakedown or to other material behaviour, time dependent creep behaviour
in particular. For this reason, alternative approaches have been considered
that provide a more flexible approach to the formulation of direct meth-
ods. A number of methods discussed within the design community [6, 13,21]
have proved to have a common theme, the representation of stress and strain
fields through linear problems with spatially varying moduli. This first oc-
curred through Marriot’s [21] observation that very good lower bound limit
loads could be found by systematically decreasing the Young’s modulus in
regions of high stress in a standard linear elastic solution. This has the effect
of reducing the maximum stress and hence increasing the load at which all
stresses lie within yield. This simple procedure can be very successful in com-
puting safe lower bounds but, to the present time, has not been developed
into a method for evaluation the maximum lower bound, i.e. the limit load.

The Linear Matching Method [8, 23, 25, 26, 28] adopts the basic assump-
tion that limit state solutions may be developed from linear solutions with
spatially varying moduli and builds it into a programming method. In this
paper, the method is described for an elastic-perfectly plastic body for the
evaluation of all the possible limits; limit load, shakedown limit and ratchet
limit. It is shown for shakedown that the method becomes a convergent up-
per bound method. Each iteration provides both a kinematically admissible
strain rate history and an equilibrium distribution of residual stress (in the
Galerkin sense), both upper and lower bounds are generated that become
equal to the minimum upper bound at convergence. This lower bound gener-
ally does not monotonically increase. A dual method, based upon equilibrium
stresses and the lower bound theorem also exists but appears not to converge
for perfect plasticity [23].

The extension of the method to the ratchet limit is then discussed, based
upon a general minimum theorem for perfect plasticity [14, 25]. This is fol-
lowed by a summary of various applications to industrial problems.

2 Definition of the Problem

2.1 External Loads

We consider the problem of a body with volume V subjected to a cyclic
history of load λPi(xi, t) over part, namely ST , of the surface S, and a cyclic
history of temperature λθ(xi, t) within V. On the remainder of S, namely
SU , the displacement rate u̇i = 0. Both load and temperature history have
the same cycle time Δt and, in the following, we are concerned with the
behaviour of the body in a typical cycle 0 ≤ t ≤ Δt in a cyclic state. The
(positive) load parameter λ allows us to consider a class of loading histories.
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2.2 Material Behaviour

Consider such a body composed of a solid under conditions of small strains
where the total strain is the sum of a linearly elastic and perfectly plastic
component,

ε̇ij = ε̇e
ij + ε̇p

ij , (1)

where the plastic strains are associated with a strictly convex yield condition
f(σij) = 0

ε̇p
ij = 0, f < 0,

ε̇p
ij = α̇

∂f

∂σij
, f = 0. (2)

The elastic moduli are assumed to be independent of temperature.

2.3 Structure of the Asymptotic Cyclic Solution

For the problem defined above the stresses and strain rates will asymptote
to a cyclic state, where

σij(t) = σij(t+ Δt), ε̇ij(t) = ε̇ij(t+ Δt). (3)

In the following we are concerned with the properties of this asymptotic
solution.

Consider a typical cycle, 0 ≤ t ≤ Δt. The cyclic solution may be expressed
in terms of three components, the elastic solution, a transient solution accu-
mulated up to the beginning of the cycle and a residual solution that repre-
sents the remaining changes within the cycle. The linear elastic solution (i.e.
ε̇p

ij = 0) is denoted by λσ̂ij and λε̂ij . The general form of the stress solution
is given by

σij(xi, t) = λσ̂ij(xi, t) + ρ̄ij(xi) + ρr
ij(xi, t), (4)

where ρ̄ij denotes a constant residual stress field in equilibrium with zero
surface traction on ST and corresponds to the residual state of stress at the
beginning and end of the cycle. The history ρr

ij is the change in the residual
stress during the cycle and satisfies

ρr
ij(xi, 0) = ρr

ij(xi,Δt) = 0. (5)

The total plastic strain is similarly subdivided into two parts

εp
ij = εpT

ij (xi) + εpr
ij (xi, t), (6)



4 A.R.S. Ponter

where εpT
ij denotes the accumulation of plastic strain at the beginning of the

cycle and εpr
ij denotes the additional plastic strain during the cycle.

The relationship between the transient and residual quantities is given by

εT
ij = Cijklρ̄ij + εpT

ij , (7)

εr
ij = Cijklρ

r
ij + εpr

ij , (8)

where both εT
ij and εr

ij are compatible strain fields. Cijkl denotes the linear
elastic compliance tensor. The cyclic solution is always non-unique to the ex-
tent that the transient plastic strain εpT

ij may contain an arbitrary additional
compatible component. Note that

εpr
ij (xi,Δt) − εpr

ij (xi, 0) = Δεpr
ij =

Δt∫

0

εpr
ij dt (9)

the accumulated plastic strain during a cycle which, for consistency may be
added to εT

ij . Hence as both εT
ij and εT

ij+Δεpr
ij are compatible then Δεpr

ij is also
compatible with a displacement field Δui, the accumulation of displacement
per cycle.

This argument emphasises the crucial role of the residual plastic strain
rate history ε̇pr

ij in defining the cyclic state. If ε̇pr
ij were known for 0 ≤ t ≤ Δt

then ρr
ij(xi, t) is uniquely defined by the solution of the initial strain rate

problem defined by the time derivative of (8),

ε̇r
ij = Cijklρ̇

r
ij + ε̇pr

ij (10)

and the initial condition (5). The cyclic stress history (4) is then known
except for ρ̄ij . However the additional requirement of the compatibility of
Δεpr

ij is sufficient to define ρ̄ij and hence the entire history of stress in the
cycle is known and the final condition of (5) is always satisfied. It is natural,
therefore, to concentrate on a class of inelastic strain rate histories that have
the same properties as the solution ε̇pr

ij . We will refer to all strain rate histories
as ε̇c

ij that accumulate over a cycle to a compatible strain increment Δεc
ij as

kinematically admissible (ka).

3 Shakedown Theorems

In this section we consider the case of shakedown. The shakedown limit can be
seen to be that range of load multiplier λ ≤ λs for which the changing residual
stress ρr

ij is zero, where λs is the shakedown limit. In the following we state
the shakedown theorems and then convert the upper bound theorem into a
form naturally aligned to the subsequent discussion of the Linear Matching
Method.
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3.1 Lower Bound Theorem (Melan’s Theorem) [10]

If a time constant residual stress field ρ̄ exists such that superposition with
induced elastic stresses λLBσ̂ij(x, t) forms a safe state of stress everywhere
in the structure, i.e.

f (λLBσ̂ij + ρ̄ij) ≤ 0, then λLB ≤ λs. (11)

3.2 Upper Bound Theorem (Koiter’s Theorem) [10]

For all kinematically admissible (ka) strain rate histories ε̇c
ij ,

Δt∫
0

ε̇c
ijd = Δεc

ij ,

consider the load parameter λUB > 1 from the work balance,

λUB

T∫

0

∫

V

σ̂ij(x, t) ε̇c
ij(x, t)dV dt =

T∫

0

∫

V

D(ε̇c
ij)dV dt =

T∫

0

∫

V

σc
ij ε̇

c
ijdV dt, (12)

where σc
ij denotes a state of associated with ε̇c

ij at yield. Then λUB ≥ λs.

3.3 An Alternative Form of the Upper Bound Theorem

The following form of the upper bound theorem allows the Linear Matching
Method to be displayed as a programming method and paves the way for ex-
tensions to other material models and loads in excess of shakedown. Consider
the functional

I(ε̇c
ij , λ) =

∫

V

Δt∫

0

(σc
ij ε̇

c
ij − λσ̂ij ε̇

c
ij)dtdV . (13)

Then the upper bound theorem (12) may be expressed in the form;

I(ε̇c
ij , λ

c
UB) = 0 and I(ε̇c

ij , λs) ≥ 0. (14)

More significantly, for two kinematically admissible strain rate histories, ε̇i
ij

and ε̇f
ij such that

I(ε̇f
ij , λ

i
UB) ≤ I(ε̇i

ij , λ
i
UB) then λf

UB ≤ λi
UB . (15)
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Hence a process that reduces the value of I(ε̇c
ij , λ

c
UB) for constant λ, also

reduces λUB and forms the basis for methods of obtaining the minimum λUB

within a class of kinematically admissible strain rate histories.

4 The Linear Matching Method

The method for shakedown may be expressed in general terms, independent
of the (convex) yield condition. Consider a class of linear viscous materials

σL
ij = ∂U(ε̇i

ij)

∂ε̇i
ij

= Lijklε̇kl expressed in terms of the compliance tensor Lijkl(xi),
which may vary spatially over the volume of the body, and associated flow
potential U(ε̇ij). Consider now an initial ka ε̇i

ij with associated stress at yield
σpi

ij . The linear material is now matched to these yield values so that

Matching condition: σLi
ij =

∂U(ε̇i
ij)

∂ε̇i
ij

= σpi
ij . (16)

Hence the yield condition and the linear material provide the same stress for
this strain rate history. Equation (16) places restrictions on the compliance
tensor Lijkl(xi) but, generally, will not uniquely define it. The objective is
now to define a linear problem with a solution that defines a new ka strain
rate history ε̇f

ij that reduces I(ε̇i
ij , λ

i
UB) and hence, from (15), reduces λUB .

Before such a process can be constructed it is necessary to place restrictions
on Lijkl(xi) in the form of a sufficient condition for convergence.

4.1 Sufficient Condition for Convergence

Consider the following path integral in strain rate space. For arbitrary strain
rate ε̇f

ij the following inequality is required

εf
ij∫

ε̇i
ij

(σL
ij − σp

ij)dε̇ij ≥ 0. (17)

Or, equivalently

U(ε̇f
ij) − U(ε̇i

ij) −
∂U

∂ε̇i
ij

(ε̇f
ij − ε̇i

ij) ≥ (σpf
ij − σpi

ij )ε̇f
ij ≥ 0. (18)

In simple terms we require that the linear material is ‘more convex’
than the yield condition. A simple geometric interpretation of this condition
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Fig. 1 The sufficient condition for convergence (18) requires that the surface of constant
U which is tangent to the yield surface at the matching point, otherwise lies outside the
yield surface [28]

exists in stress space [26], as shown in Fig. 1. The surface of constant U , the
complementary energy function of the linear material, that passes through
the matching point, otherwise surrounds or coincides with the yield surface,
as shown. For the von Mises yield condition contours of constant U coin-
cide with the yield surface for an incompressible linear material defined by
a spatially varying shear modulus μ, U(¯̇ε) = 3μ

4
¯̇ε2, where ¯̇ε denotes the von

Mises effective strain rate. Returning to the general argument, considering
the following quadratic version of I

K(ε̇c
ij , λ) =

∫
V

Δt∫

0

(U(ε̇c
ij) − λσ̂ij ε̇

c
ij)dtdV . (19)

If we minimize K(ε̇c
ij , λ

i
UB) for all KA strain rate histories so that

K(ε̇f
ij , λ

i
UB) ≤ K(ε̇i

ij , λ
i
UB). (20)

Then, from (18), it is easily shown that I(ε̇f
ij , λ

i
UB) ≤ I(ε̇i

ij , λ
i
UB) and hence

λf
UB ≤ λi

UB and the solution of the associated linear problem yields a reduced
value of λ.
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4.2 The Minimising Linear Problem

As K is quadratic and U convex, Eq. (18), it is a simple matter to define
the strain rate history that defines the minimum of K. This is given by the
constitutive equation

∂U

∂ε̇f
ij

= λσ̂ij + ρ̄f
ij or equivalently ε̇f

ij = L̄ijkl(λi
UBσ̂kl + ρ̄f

ij), (21)

where ρ̄f
ij defines, as before, a time constant residual stress field and L̄ijkl(xi)

is the dual tensor corresponding to Lijkl(xi). The solution of this problem
follows when the condition is imposed that ε̇f

ij is ka, i.e.

Δεf
ij =

Δt∫

0

ε̇f
ijdt = λi

UB

⎡
⎣

Δt∫

0

L̄ijklσ̂kldt

⎤
⎦ +

⎡
⎣

Δt∫

0

L̄ijkldt

⎤
⎦ ρ̄f

ij . (22)

This defines a linear initial stress problem for equilibrium residual stress ρ̄f
ij

and compatible strain increment Δεf
ij . The strain rate history is then given

by Eq. (21).
For the von Mises yield condition, U(¯̇ε) = 3μ

4
¯̇ε2, and the matching condi-

tion (16) becomes

μ =
2σy

3¯̇εi
. (23)

The linear problem (21) becomes

ε̇f
ij =

3
2μ

(λi
UBσ̂

′
ij + ρ̄′fij ), ε̇

f
kk = 0, (24)

i.e.

Δεf
ij =

Δt∫

0

ε̇f
ijdt =

3
2μ̄

(σinit
ij + ρ̄′fij ),Δεf

kk = 0 (25)

where

1
μ̄

=

Δt∫

0

1
μ

dt and σinit
ij = μ̄

Δt∫

0

1
μ
λσ̂′

ijdt. (26)

an upper “dash” refers to the deviatoric components.
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4.3 Further Convergence Considerations

The process is begun by assuming an arbitrary distribution of linear moduli,
usually constant, and repeating the process to convergence. In summary, for
a particular body geometry, history of loading and associated linear elastic
solution history σ̂ij , the process of computing an acceptable minimum upper
bound load parameter λmin

UB requires the following conditions to be satisfied

(1) For the chosen yield condition, the convexity inequality (18) is always
satisfied.

(2) The class of strain rates and associated strain increments are such that
the minimum upper bound is contained within this class. For example, if
the class of linear material chosen assumes incompressibility whereas the
associated flow rule allows the possibility of compressibility, the process
may not identify the minimum upper bound.

(3) The class of compatible strain distributions chosen for the solution of
the linear problem is sufficiently wide to include the strain distribution
corresponding to an acceptable minimum upper bound.

Conditions (1) and (2) are satisfied by an appropriate choice of a class of
linear materials. Condition (3) is central to the implementation of the method
within a finite element scheme. Equilibrium of the residual stress field ρ̄ij

relies upon the class of displacement field Δui from which Δεij is derived.
ρ̄ij is in equilibrium if and only if

∫

V

ρ̄ijΔεijdV = 0 (27)

for all members of the class of Δui under consideration. Hence the process will
converge to the least upper bound associated within this class of displacement
fields. Hence, for a given finite element mesh the process will converge to
the least upper bound associated with the mesh geometry. However, in the
implementation in a commercial code, such as abaqus used for the solutions
here, the volume integration is not exact but usually relies upon Gaussian
integration that would give an exact integral if the linear material constants
were constant throughout an element. Hence the equilibrium condition (26)
is replaced by the finite condition;

∑
el

∑
k

wkρ̄
k
ijΔεk

ij = 0, (28)

where wk are the Gaussian weighting factors at the Gauss integration point.
In this case the process converges to the least upper bound associated with
(28) as the equilibrium condition.
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4.4 An Associated Lower Bound

Each iterative solution generates an equilibrium residual stress field ρ̄ij and
hence, for some range of values of λ = λLB , f(λLBσ̂ij + ρ̄ij) ≤ 0 for
0 ≤ t ≤ Δt. The maximum lower bound λmax

LB will be less than the least
upper bound but it is not possible, at the present time, to make any certain
statement about the variation of λmax

LB with iterations. Upon convergence
when consecutive solutions are identical for a von Mises yield condition, from
the matching condition σ̄f = σy within the plastic mechanism region and
σ̄f ≤ σy in the rigid region. Hence

λmax
LB = λMin

UB (29)

for equilibrium defined by either (27), where the matching condition is ap-
plied everywhere, or by (28) where the matching condition is applied at Gauss
points. However, this is a point-wise condition, whereas the upper bound is
a volume integral where deviation from convergence at a few Gauss points
has little effect on the upper bound. Hence convergence of the upper bound
in terms of a particular number of significant figures may allow some devi-
ation from convergence locally. Hence generally the upper bound converges
(monotonically) more quickly than the lower bound and their relative rate of
convergence becomes greater with increasing degrees of freedom. This phe-
nomenon is demonstrated in the following example. When the method is
applied to large scale industrial problem where the number of degrees of free-
dom becomes very high, convergence is usually judged entirely in terms of the
upper bound. There is clearly an opportunity for error analysis in defining
this process and this awaits future developments. Entirely empirical exper-
iments on the example problem discussed below indicates that the relative
error in the upper bound for six nodded triangular nodes is proportional to
approximately h/a where h is a characteristic element size and a is a charac-
teristic body dimension [19].

4.5 An Example [11]

Consider the limit load problem shown in Fig. 2 where a tube with a part
through thickness crack is subjected to an axial uniform distributed load P.
In Fig. 3 the variation of both the upper and lower bound with iteration num-
ber is shown for a uniform finite element mesh of six nodded axisymmetric
finite elements. It can be seen that both the upper and lower bound converge
to a common value that is greater than the known analytic solution. The con-
vergence of the upper bound is monotonic whereas the lower bound does not
change monotonically and shows sequences of both increase and reduction.
This type of behaviour is commonly observed, particularly for triangular fi-
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Fig. 2 Axially loaded cylinder subjected to axial load and a part through- thickness
circumferential crack

Fig. 3 Convergence of limit load of crack problem of Fig. 2, a uniform mesh

nite elements. In Fig. 4 the solution is shown for a finite element mesh that
has been refined in the vicinity of the crack tip and the region of the volume
where the strains are concentrated in the converged solution. In this case the
upper bound converges to a solution within 0.4% of the analytic solution.

The lower bound has not completely converged within 30 iterations. This
behaviour is typical of both limit load and shakedown solutions. When used
for the solution of practical problems, convergence is generally assumed to
have taken place when the upper bound ceases to change by a small quantity,
usually less than one in the sixth significant figure. With such a convergence
criterion convergence usually occurs within, at most, sixty iterations and
usually a significantly smaller number.

The rate of converge depends upon the nature of the problem and is less
dependent on the number of degrees of freedom. In the example above the
upper bound for the more refined mesh, Fig. 4 converges more rapidly than for
the courser mesh, Fig. 3. A more significant factor is the extent of the volume
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Fig. 4 Solution of the problem of Fig. 2 for a finite element refined at the crack tip and
in regions of plastic flow

occupied by material where the plastic strains are near zero in the converged
solution, rigid regions. As can be seen from the matching condition for the
von Mises yield condition, Eq. (23) in regions where the stress and strain
rate are low, the shear modulus μ becomes large. As the iterations progress,
μ converges to constant values within the plastic mechanism, but continues
to increase, iteration by iteration, in the rigid regions. If allowed to continue,
this can sometime cause numerical instabilities. It is normal practice to allow
μ to increase to such a value that the contribution of the strain rates to the
upper bound are negligible in terms of the convergence criterion and then to
keep it at that value for subsequent iterations.

There are many published limit load and shakedown solutions in the lit-
erature [9–12,26–28].

5 The Ratchet Limit

In the following we discuss the evaluation of the ratchet limit, the value of λ
where the cyclic solution changes from one where local plastic strains occur
that do not increase cyclically, to a cyclic state when there is an increase
of displacement per cycle. To achieve this, the minimum theorem, (14) for
shakedown is extended to an arbitrary cyclic state.
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5.1 A General Minimum Theorem

The methods discussed below are based on a general minimum theorem for
cyclic loading [14,25]. For a typical cycle 0 ≤ t ≤ Δt consider the functional,

I(ε̇c
ij , λ) =

Δt∫

0

∫

V

(σc
ij − (λσ̂ij + ρc

ij))ε̇
c
ijdtdV, (30)

where ε̇c
ij is kinematically admissible and the stress state σc

ij is associated
with ε̇c

ij at yield. We now apply two additional conditions which place a
restriction on the magnitude of ε̇c

ij .

(1) Corresponding to ε̇c
ij we define a cyclic history of residual stress ρc

ij(xi, t)
which satisfies the relationship

ε̇cc
ij = Cijklρ̇

c
ij + ε̇c

ij , (31)

where ε̇cc
ij is a compatible strain rate. Note that ρc

ij(0) = ρc
ij(Δt) = 0.

(2) Corresponding to ρc
ij(xi, t) we place a restriction on the absolute magni-

tude of ε̇c
ij by requiring that there exists a constant residual stress field

ρ̄ij so that the composite stress history

σ∗
ij = λσ̂ij + ρ̄ij + ρc

ij (32)

satisfies the yield condition f(σ∗
ij) ≤ 0 for 0 ≤ t ≤ Δt.

For any kinematically admissible ε̇c
ij and prescribed λ

I(ε̇c
ij , λ) ≥ 0 (33)

and I(ε̇c
ij , λ) = 0 when ε̇c

ij = ε̇pr
ij the exact cyclic solution.

The upper bound shakedown theorem is recovered when ε̇c
ij is so small

that ρc
ij is negligible compared with λσ̂ij . The largest value of λ for which

this condition is satisfied is the shakedown limit λs and hence, we recover the
result (13) and (14). In the following arguments will be confined to the von
Mises yield condition, although they may be generalized to a general yield
condition.

5.2 Evaluation of the Ratchet Limit

This limit corresponds to the load where the exact solution, in the steady
states, changes from one where no accumulated strain occurs over a cycle to
one where the accumulation corresponds to a displacement on which the loads
do work. The direct evaluation of the ratchet limit falls outside the range of
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methods that rely upon the application of mathematical programming meth-
ods as no bounding theorems exist. However, it is possible to, numerically,
evaluate the limit in some cases. These methods rely upon the evaluation of
the changing residual stress ρc

ij(xi, t) by the minimization of increments of
the functional I, Eq. (30), for an increment of strain dεc

ij occurring during
the time interval (t, t+ dt), assuming ρc

ij(xi, t) is known

dI(dεc
ij , λ) =

∫

V

(σc
ij − (λσ̂ij + ρc

ij(t) + dρc
ij))dε

c
ijdV. (34)

In this case we define a linear relationship between dεc
ij and a correspond-

ing increment of stress dρc
ij . Matching this linear material with shear modulus

μ̄ to the yield condition yield;

μ̄ = σy/ε̄(dεi
ij), (35)

where, as before, dεi
ij is a previously evaluated estimate. Taking into account

that the increment of total strain is made up of both an elastic and plastic
component, we arrive at the following equation for an improved estimate
of dεc

ij ,

dεfT
ij =

3
2μe

dρf ′

ij +
3
2μ̄

(λσ̂ij + ρc
ij + dρf

ij)
′ and dεf

kk = 0, (36)

where μe denotes the shear modulus for the elastic strain increment and
dεTf

ij denotes the compatible total strain increment. An upper ‘dash’ refers
to deviatoric components.

The approach here exactly matches that of the shakedown method and is
a simple matter to demonstrate that

dI(dεf
ij) ≤ d(dεi

ij). (37)

However the application of this algorithm through the entire cycle requires
prior knowledge of the initial residual stress ρ̄ij . There exist, therefore, two
interconnecting numerical strategies;

(a) If we possess an estimate of ρc
ij throughout the cycle from estimates of

dρc
ij , it is possible to evaluate estimates of ρ̄ij by applying the shakedown

algorithm, described in Sect. 4, where the elastic solution is augmented
by ρc

ij .
(b) If we possess an estimate of ρ̄ij , then we are able to generate estimates

of dρc
ij by the method described above.

Process (a) reduces I assuming ρc
ij is known whereas process (b) reduces

increments d assuming ρ̄ij is known. In the particular case discussed in the
next section, these two processes can be decoupled.
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5.3 A Simplified Method

In one particular case, a strictly convergent method may be derived from these
results. The method was derived for problems where the variable loading is
dominated by a change of temperature between two extremes [8]. In this case
it is permissible to make two assumptions; the plastic strains are produced
at only two instants, t = t1 and t = t2 in the cycle and; for values of λ
near to but greater than the shakedown limit, the load state will be in the
reverse plasticity regime within the ratchet limit. In this case corresponding
increments of residual stress, dρ1

ij and dρ2
ij , and plastic strain, dε1ij and dε2ij

are related by

dε1ij + dε2ij = 0 and dρ1
ij + dρ2

ij = 0. (38)

This results in the following two equations from (36);

dε1Tf
ij =

3
2μe

dρ1f ′

ij +
3
2μ̄

(λσ̂ij(t1) + ρ̄+ dρ1f
ij )′, (39a)

−dε1fT
ij = − 3

2μe
dρ1f ′

ij +
3
2μ̄

(λσ̂ij(t2) + (ρ̄ij + dρ1f
ij ) − dρ1f

ij )′. (39b)

Hence it is possible to eliminate ρ̄ij , the residual stress at the beginning of
the cycle between Eqs. (39a) and (39b),

dε1Tf
ij =

3
2μe

dρ1f ′

ij +
3
4μ̄

(λ(σ̂ij(t1) − σ̂ij(t2)) + dρ1f
ij )′. (40)

For fixed λ it can be shown that this is a strictly convergent process [8].
The proximity of the load point to the ratchet limit may then be evaluated
by applying an additional constant load with its own load parameter. This
involves the application of the shakedown method where the elastic solution is
augmented by the evaluated values of dρc

ij . This yields the ratchet boundary
[8]. This limited application corresponds to the method normally applied in
the Life Assessment method R5 [15]. Based on this simple assumption, a set
of methods have been devised for the R5 methods [11,12] where examples of
both shakedown and ratchet solutions are given as well as extensions to time
dependent behaviour.

5.4 A Direct Method

The following describes a first attempt to provide a direct evaluation of
the ratchet limit, making use of the algorithms described above in Sect. 5.2.
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The additional ingredient that makes this possible is a reinterpretation of the
general minimum theorem (30) to (33).

We look for a value of λ where the exact solution satisfies a certain finite
strain constraint. For example, we may require that the accumulated effective
plastic strain at a particular point in a structure has a specific small positive
value. In this case we seek a value of λ that exceeds the ratchet limit λR by a
small amount. There exists a subclass of kinematically admissible strain rate
histories that satisfy this constraint which we denote by ε̇cc

ij (or increments
dεcc

ij for numerical solutions). The minimum theorem may be applied to this
subclass of histories where λ = λcc now only applies to those values where
the exact solution satisfies this condition. Hence the following upper bound
may be derived from (30) to (33)

λcc ≤

Δt∫

0

∫

V

(σc
ij − ρcc

ij )ε̇cc
ij dV dt

Δt∫

0

∫

V

σ̂ij ε̇
cc
ij dV dt

= λcc
UB (41)

with a corresponding form in the incremental case. The member of the class
ε̇cc

ij that minimizes the upper bound λcc
UB provides the exact solution λcc.

The application of this theorem within a numerical scheme poses the par-
ticular problem of finding a procedure, of the type discussed above, were
we remain within this predefined class ε̇cc

ij . By linear scaling, any kinemat-
ically admissible strain rate history may be changed to one that satisfies
the required condition. However, the resulting solution that generates from
such a strain rate history by the application of a matching procedure gen-
erally falls outside the class. The following suggested procedure attempts
to make the best use of known methods but lacks a strict convergence
proof.

The numerical procedure consisting of four stages is proposed based on
the procedures (a) and (b) discussed in Sect. 3.1.

(1) A value of ρ̄ij is obtained by applying procedure (a).
(2) Procedure (b) is then applied to produce a sequence of dεc

ij throughout
the cycle.

(3) The accumulated strain over the cycle is evaluated and a linear scaling
factor is found that returns the strain increment history to the defined
class, with a simultaneous scaling of dρc

ij .
(4) The upper bound (41) provides a new estimate of λcc

UB .

The process then reverts to stage 1. The process is begun with an arbitrary
constant choice of the shear moduli and assuming the dρc

ij are zero for the
first application of stage 1.
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Fig. 5 Bree problem

Although each stage corresponds to a numerical process that improves
the solution, in the sense of reducing either I or d, no strict convergence
proof seems possible at the present time. The primary barrier to a conver-
gence proof is the fact that the sequences of plastic strain increments dεc

ij so
generated are not necessarily kinematically admissible. However, the method
has been applied to simple problems and consistently converges although not
necessarily monotonically as the following example demonstrates.

Consider the plane stress problem shown in Fig. 5, the simplest form of
the Bree problem [7]. A plate is subjected to an axial stress σp and a varying
linear through thickness temperature gradient, characterized by a maximum
thermo elastic stress σt, the variation being between this value and zero
temperature gradient. The plate is restrained against in-plane bending. Hence
compatibility implies constant axial strain and equilibrium that axial stress
integrates to the total applied stress. Figure 7 shows contours in the Bree

Fig. 6 Variation of λcc
UB with number of iterations for Δε̄p = σy/E and σp/σt = 4
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Fig. 7 A sequence of converged solutions for EΔε̄p/σy = 0.001 and 1

diagram of a set of converged solutions for various ratios of σp/σt and for
Δε̄p = 0.001σy/E a very small ratchet rate and Δε̄p = σy/E. Convergence
occurred for all solutions. A convergence sequence is shown in Fig. 6 for
the more severe case where Δε̄p = σy/E. Convergence is smooth but does
not monotonically reduce. All solutions converged to the analytic solution of
Bree [7], taking into account integration errors.

6 Further Applications

The shakedown method and the simplified ratchet boundary method have
been extensively adapted for the material range involved in the High Temper-
ature Life Assessment Method R5 [11,12]. Formal extension of the shakedown
procedure to Norton creep has been given [22] as well as the extension of the
ratchet boundary method to include creep relaxation during high tempera-
ture dwell times [12]. A method for bodies entirely within the creep range
have been discussed [1,16]. These methods have been applied to a number of
industrial problems, including the characterisation of the behaviour of welds
subjected to creep/fatigue conditions [10]. The characterisation of crack tip
fields and residual strength of cracked structures subjected to cyclic thermal
load has been discussed by [16–18]. The evaluation of the shakedown limit
of a half space subjected to repeated rolling Hertzian contact forces over an
elliptic contact region has been discussed by Ponter et al. [27].
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The convergence condition of Sect. 4 is generally not satisfied by yield
conditions that characterise the behaviour of soils and granular materials.
Further, the flow rule at the limit state is non-associated if the yield condition
is taken as the failure envelope. For the Drucker-Prager yield condition the
method thus has been adapted by using both the hydrostatic pressure and
the effective strain as the matching quantities [2–5]. In this way methods
may be devised for both an associated and a non-associated flow rule. For
this adapted method, a strict convergence proof is not available, but the
conditions for the limit or shakedown state are satisfied if the process does
converge. Converged solutions have been discussed for a number of problems,
including rolling contact problems [2, 5].

7 Conclusions

The Linear Matching Method is an effective and convenient method for the
evaluation of limit and shakedown limits in perfect plasticity. Extensions to
problems have been achieved that lie outside the range of methods that rely
upon the application of mathematical programming methods to the theo-
rems of plasticity. For this reason the method has been developed into a set
of direct methods for high temperature life assessment issues and applied to
geotechnical problems. Implementation within the user routines of commer-
cial finite element codes allows the method to be introduced into industrial
practice.
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Large Problems in Numerical Limit
Analysis: A Decomposition Approach

F. Pastor, Z. Kammoun, E. Loute, J. Pastor, and H. Smaoui

Abstract A decomposition approach of the kinematical method of limit
analysis is first presented. It is based on a mixed variational approach and on
a convex interior point solver, using linear or quadratic discontinuous velocity
fields. Exposed in plane strain, this method appears rapidly convergent, as
verified in the Tresca compressed bar problem. Then the method is applied
to the classical problem of the stability factor of a Tresca vertical slope: the
upper bound is lowered from 3.882 to 3.7778. This value is to be compared
to the lower bound just increased from 3.772 to 3.7752 by using the same
solver in the extension of the method to the statical decomposition problem
with infinite elements.
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1 Introduction

The paper of Lysmer [12] is the first which numerically deals with the static
method of limit analysis (LA) in geotechnics using a finite element method
(fem). Based on this work, an improved static approach, also restricted to a
bounded mechanical system, was proposed in [25]; this drawback was elimi-
nated in [22] with the definition of infinite extension zones allowing the stress
fields to remain admissible everywhere beyond the finite element mesh. All
these works used a linearized approximation of the plasticity criterion.

Built upon the work in paper [5], powerful non-linear algorithms have re-
cently been proposed, as in [10,11] for Tresca and Coulomb materials in the
2D and 3D cases, using also the previous extension elements in the static
case. Another non-linear interior point formulation was proposed in [8], es-
sentially valid for von Mises statical plane problems. On the other hand, an
interior point optimization solver, which was presented in [14] was improved
in [16, 17] for solving the static problems for Gurson materials—where conic
programming does not apply—and von Mises materials as a special case.
Henceforth, this optimization solver will be called ip-opt.

To our knowledge, the first mixed approaches were proposed in [1] and
[2] for continuous velocity fields and piecewise linear criteria, and for the
general case in [3] and in [26]. In [4] the mixed approach was extended to
discontinuous linear velocities in plane strain. In [9], for 2D and 3D cases,
thin finite elements were used to simulate the discontinuity segment, also for
linear velocity fields, in a rather complicated way. In any case, these mixed
formulations cannot be extended, as they are, to the quadratic velocity case
without loosing the kinematical character.

Another mixed formulation, based on various convexity properties, was
proposed in [20], and extended to the discontinuous quadratic velocity case
in [21], providing rigorous kinematical solutions. Based on the previously
mentioned ip-opt code, these formulations appear to be very efficient and
robust on a variety of mechanical problems [15,18,19].

In the following, after a short summary of the optimization solver, we
briefly recall the mixed method used as a rigorous kinematical approach.
Then we present the proposed decomposition approach in plane strain, and
its detailed application to the problem of the compressed bar between rough
dies and to the classical—still not exactly solved—problem of the stability of
a vertical slope in a Tresca (or von Mises) material.

As regards the vertical slope problem, we give the very recent results of the
decomposition method extended to the statical case in [7], using discontinuous
linear stress triangles with extension elements, and ip-opt. Both statical and
kinematical decomposition approaches result in the best bracketing of the
stability factor for this celebrated problem in geotechnics.
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2 Interior Point Method and Convex Optimization

In [16], a general interior point algorithm for solving the statical problem
of LA, hereafter named ip-opt, is detailed. This paper focused on solving
the plane strain LA problems for both von Mises and Gurson materials.
The resulting optimization problems present a linear objective function and
a mix of linear and non-linear convex constraints. For problems where the
plasticity criterion is the von Mises or Drucker-Prager criterion, the non-linear
constraints are convex quadratic inequalities, generating socp problems for
which efficient algorithms and codes exist. Unfortunately these codes give not
enough accuracy when post-analyzing the solutions, in the kinematical as well
as in the statical present problems, resulting in non-admissible solutions for
large scale problems. The ip-opt code has allowed to overcome this drawback,
being limited only by the RAM amount of the Mac Book Pro 3 GHz used
for the calculations.

The general form of the optimization problems to be solved here is as
follows:

max cT x
s. t. Ax = b ,

g(x) + s = 0 , s � 0 ,
(1)

where c,x ∈ R
n, b ∈ R

m, A ∈ R
m×n is the matrix of the linear constraints,

g = (g1, . . . , gp) is a vector-valued function of p convex numerical functions gi,
and s ∈ R

p
+ is the vector of slack variables associated with these convex

constraints.
The “primal-dual interior point method” consists in solving, instead of the

previous problem, the following one, parametrized by μ > 0, the “barrier
parameter”:

min
(
−cT x − μ

p∑
i=1

ln(si)
)

s. t. Ax = b ,
g(x) + s = 0 , s > 0 .

(2)

Using the “primal-dual interior point method”, the problem (1) has a so-
lution if and only if the following conditions are satisfied:

−c + AT w +
(
∂g
∂x

)T

y = 0 ,

Ax − b = 0 ,

g(x) + s = 0 ,

Y Se = μe ,

(3)

where w ∈ R
m, y ∈ R

p, e = [1 . . . 1]T ∈ R
p and Y , S are the diagonal

matrices associated with y and s, respectively; μ > 0 and s > 0 imply
y > 0.
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For each given μ the non-linear system (3) is approximately solved by one
iteration of the Newton method, thereby providing an approximate solution
of the parametrized problem (2). Using a sequence of values for μ decreasing
to zero, we make the latter converge to the solution of (1). Indeed, as μ
approaches 0, Eqs. (3) come close to the KKT conditions for the original
problem. The code and its matlab implementation are fully detailed in [15].

3 Succinct Presentation of Limit Analysis

According to Salençon [29], a stress tensor field σ is said to be admissible
if it is both statically admissible (sa, i.e., equilibrium equations, stress vec-
tor continuity, and stress boundary conditions are verified) and plastically
admissible (pa, i.e., f (σ) � 0, where f (σ) is the (convex) plasticity crite-
rion of the material). Similarly, a strain rate tensor field v is admissible if
it is kinematically admissible (ka, i.e., derived from a piecewise continuous
velocity vector field u, with bounded discontinuities [u], such that the veloc-
ity boundary conditions are verified) and plastically admissible (pa, i.e., the
associated flow rules (5a), (5b) are verified).

Let us assume, as in [29], that the virtual power rate Pext of the external
loads can be written as the scalar product of a loading vector Q, whose
components are called here loading parameters; and a generalized velocity
vector q = q(u), the components of which are called kinematical parameters.
Following [1], let us consider a ka virtual velocity field u; the virtual power
principle (VPP) states that the stress tensor fields σ, the stress vector field T
(on the velocity discontinuity surfaces), and the vector Q are in equilibrium,
if for any ka u, the following variational equation is verified:

Pext = Q · q(u) =
∫

V

σ : v dV +
∫

Sd

T · [u] dS . (4)

In (4), V is the volume of the mechanical system, and Sd is the union of the
velocity discontinuity surfaces. The results in terms of Q will be interpreted
as a kinematic bound if, at the appropriate points of V , the variables verify
the following conditions, where u is ka and qd is a fixed value of q(u):

v = λ
∂f

∂σ
, λf(σ) = 0 , λ � 0 , f (σ) � 0 , (5a)

[u] = ξ
∂fnt

∂T
, ξfnt(T ) = 0 , ξ � 0 , fnt(T ) � 0 , (5b)

q(u) = qd . (5c)

The criterion fnt(T ) results from the projection of the plasticity criterion
f(σ) on the Mohr plane, where n is the normal to the element of the velocity
discontinuity surface and T = (σnn, σnt) is the stress vector on this element.
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More precisely, fnt(T ) is the solution of the following system:

f(σnn, σtt, σnt) = 0 ,
∂f

∂σtt
= 0 . (6)

It is worth noting that, if (5a) and (5b) are verified, the quantities σ : v and
T · [u] become, respectively, the convex unit dissipated powers πV (v) and
πd([u]) of LA, i.e.:

πV (v) = σ : v , πd([u]) = T · [u] . (7)

4 Kinematic Method of LA: A Mixed Finite Element
Formulation

The equivalence between the classical kinematical method and the present
mixed approach is detailed in [15] and [18]. For the sake of conciseness, we
only recall here the main features of this mixed method in the quadratic case,
referring the reader to the previously mentioned references for details.

4.1 Case of Continuous Velocity Fields

Starting from [20], the algorithm is presented in the quadratic velocity case,
using numerical notations in the resulting final expressions; the mechanical
plane strain system is discretized in triangular finite elements, with displace-
ment velocities as virtual variables, and three specific apex stress tensors as
real variables. First we examine the continuous velocity case as regards the
VPP (4), and the role of the inter-element discontinuity segments in the next
subsection.

Located at the three apexes and the three middles of the sides of the
triangle, the six-component nodal vectors {ux} and {uy} can be written using
interpolation matrices calculated for each element. Thus, from its definition,
the external power can be written as:

Pext = q(u) · Q = {q(u)}T {Q} = {u}T [β]{Q} , (8)

where [β]T is the matrix resulting from the calculation of the generalized
velocity q(u).

Inside the triangular element k, the strain rate tensor {v} is defined by
the classical equation:

{v} = [B]k {uk} , (9)
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where the vector {uk} collects the twelve degrees of freedom of the element
k, and [B]k is computed relatively to its twelve nodal displacements.

As detailed in [19], inside the triangle (of area Sk), the strain rate tensor
{v} is pa and associated to the stress tensor at the apexes of the triangle;
therefore the product σ : v equals π(v) at these apexes. As v is linearly
varying, from the convexity of the set of the pa strain rates it is pa everywhere
in the triangle (see [13] and [29]). The dissipated power, i.e. the integral of
π(v), can then be upper bounded by replacing the integral of σ : v by its linear
interpolation over the triangle. Hence the VPP (4) numerically becomes:

{q(u)}T {Q} =
∑

k

Sk

[
{vi}T {σi} + {vj}T {σj} + {vm}T {σm}

]
/3 ∀ ka {u},

(10)
where k is the index of the triangle and (i, j,m) refer to the three apexes of
the element. Using (9) at the apexes, and after the assembly of the elements,
the relationship (10) gives rise to the final numerical system:

{u}T [ −[α]{σ} + [β]{Q} ] = 0 ∀ ka {u} , (11)

where the matrix [α] results from the assembly of the submatrices
[α]k = Sk[B]Tk /3 calculated at the apexes of each triangle k in the numerical
VPP (10). Finally the mixed problem to be solved is the following:

max {qd}T {Q} (12a)
s. t. − [α]{σ} + [β]{Q} = 0 , (12b)

f(σ) � 0 at all apexes . (12c)

This is the optimization problem (1), with A = [−[α], [β}], b = 0,
xT = {{σ}T , {Q}T }.

Then, the optimal primal-dual solution ({w}, {y}, {σ}, {Q}) of this prob-
lem verifies (3) with μiei = 0, i.e., yi � 0 if f(σi) = 0, and yi = 0 otherwise,
at each apex i of the triangles. After transposition, the first equation in (3)
becomes:

−{c}T + {w}T [− [α] , [β] ] + {y}T

{
∂f

∂σ

}
= 0 . (13)

Identifying {w}T as {u}T , we shortly recall various items that will be useful
to formulate the decomposition approach in the next section, referring to [19]
for details:

• The vector {c} equals qd; then Eq. (13) becomes {u}T [β] = q(u)T = qdT ,
as the components of {Q} do not have to verify any criterion condition:
the kinematic loading condition q(u) = qd is verified.

• The ka conditions (null velocity components) will be taken into account by
removing the corresponding rows of the final constraint matrix. Nonzero
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imposed values define generalized velocities which are imposed as compo-
nents of the vector qd hereafter. This point gives the way to impose the
velocity values at the interfaces further.

• The {c} functional coefficients are null, except for the components of {Q}.
From the structure of [α] and (13), the normality law (5a) is verified at
the apexes with multipliers λi proportional to the yi. Consequently the
tensors σ and v are pa and associated at each apex, where the product
σ : v equals π(v), and the value of (10) is confirmed as an upper bound to
the dissipated power all over the triangular element.

4.2 Implementing Velocity Discontinuities

According to [23] and [30], a discontinuity surface element (of normal n)
can be assimilated to a thin zone whose thickness vanishes such that the
appropriate static and kinematic variables are respectively the stress vector
T = (Tn , Tt) = (σnn , σnt) and the velocity jump vector [u] = ([un] , [ut])
associated by the normality law relative to the fnt(T ) = 0 criterion.

The velocity jump [u] is defined as the difference between the velocities of
two contiguous points along a discontinuity segment named 1–2 in the follow-
ing. The dissipated power along the segment is written, in plane strain, as:

Pdiss ([u]) =
∫

1−2

πd([u]) dl =
∫

1−2

T · [u] dl , (14)

where T and u are associated through (5b). Relation (14) then requires [u]
to be pa anywhere along the segment 1–2. In order to do this we force the
velocity jump to vary linearly along the segment as in [19], by imposing that
the jump at the middle is half the sum of the end jumps through appropriate
row condensations. Now, as in the volume case, let us add a numerical stress
vector T at each end of the discontinuity segments. From the convexity of
the function π([u]), we here also upper bound the dissipated power along any
segment 1–2 by writing, in numerical notations:

Pdiss ([u]) = L1−2

(
{[u]}T

1 {T}1 + {[u]}T
2 {T}2

)/
2 , (15)

where L1−2 is the length of the segment 1–2.
In fact, as in [20], we add a stress tensor—expressed in the (n, t) axes as

σnn = Tn, σtt, σnt = Tt—at each end of the discontinuity segment. The σtt

component does not appear in the definition (15); the corresponding column
of the matrix A remains zero. From (13), at each end of the segment we
obtain 0 = y ∂f

∂σtt
, i.e., the projection condition (6) defining the fnt criterion,

whose expression is then not necessary.
When problem (12) is completed and solved, [u] is pa and associated to σ

at both ends of segment 1–2, through the same reasoning as for the triangles.
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Then, owing to its linear variation along 1–2, [u] is pa anywhere because of
the convex character of the pa [u] set, and (15) is verified as an upper bound.

5 The Proposed Decomposition Method

The present decomposition is based on a partition of the fem mesh, how-
ever without connection with the so-called domain decomposition methods,
fully and readably presented in the reference [27]. Moreover, these methods
seem not to be applied to the optimization problems, as it can be seen in
the very complete reference [31] about the state of the art on the domain
decomposition approach.

As regards the limit analysis problem, up to our knowledge, the domain
decomposition approach was only used in [6] for a classical kinematical ap-
proach, with non-overlapping sub-domains. However, no detail is given about
how the variable values are updated at the interfaces from one iteration to
another. A contrario, the present method proceeds iteratively with, at each
decomposition level, an auxiliary problem for each interface in order to up-
grade their interface variables; moreover, a few iterations are necessary in
fact. Hereunder we present the method and, afterwards, its application to
two standard mechanical problems.

The method was first developed in the continuous velocity case; it is pre-
sented on the problem of a bar compressed under rough rigid plates of ratio
width versus height equaling 2 (Fig. 1). Due to the symmetries of the prob-
lem, only the upper left quarter of the bar is meshed in 4 × 2 squares or
rectangles diagonally subdivided in four triangles. The velocities vary lin-
early and continuously along each interface. The (half) rigid plate (of width
b) goes down with a uniform, vertical velocity U0 which is created through
the action of a central vertical force F to be determined. The isotropic, ho-
mogeneous material obeys the von Mises (or Tresca) criterion with cohesion
c. The velocities of the bar and the plate at the interface are the same, i.e.
no sliding is allowed so that the dissipated power is only volumetric. There
is here only one loading parameter Q = F and the generalized associated
velocity is qd = U0; both will be the same for all subproblems because of a

Fig. 1 The compressed
bar, b = 2h, mesh 2N ×N ,
here N = 2
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vertical partition of the mesh; this is a fair feature, as it will be seen in the
second problem where the loading exterior factor is the volumetric weight.

A simple four-block mechanism for the whole problem gives F/(bc) = 2.5.
The exact solution is due to J. Salençon [28], namely 2.42768 in the present
case.

5.1 The Starting Problem

Solving this first reduced problem allows to obtain a good initialization for
the velocities at the separating interfaces of the target problem (Fig. 2) by
an appropriate interpolation. Another solution should consist in extracting

Fig. 2 The target problem

the interface values from an analytical kinematical solution; however this
technique, generally less efficient in terms of convergence rate, needs also a
preliminary treatment specific to the considered mechanical problem. Hence
we begin with solving the 2 × 1 problem of the same bar problem, Fig. 3.

Fig. 3 The starting
problem

The solution of this starting problem gives the initial nodal values at the
points A, B, C, i.e. uA, uB and uC which will be taken as boundary con-
ditions, in fact as new kinematical parameters qi for the left (IIl) and the
right (IIr) subsequent problems II. The velocity in C is calculated by linear
interpolation, owing to the assumed linear variation of the velocity inside



32 F. Pastor et al.

the triangles. Note finally that a complete starting solution could also be ex-
trapolated for the two following subproblems, but it is well known that this
possibility is much less efficient in the present interior point method than in
the linear programming case, hence it has not been tested here.

5.2 The Left Problem

Fig. 4 The left problem
IIg

Figure 4 shows how the “left” problem is meshed. We denote respectively
the lengths of the sides AC and BC by lAC and lBC , the values of σxx and
σxy on the side AC by pAC and tAC , and pBC and tBC their values on the
side BC. These stress components are taken as constant on their sides be-
cause constant stress tensors in the triangles are needed here to keep the
kinematical character.

Let us now express the power of the external forces Pext explicitly:

Pext = FU0 +
∫

AC

pux dy +
∫

CB

pux dy +
∫

AC

tuy dy +
∫

CB

tuy dy

= FU0 + pAC lAC
uA

x + uC
x

2
+ pCBlCB

uC
x + uB

x

2

+ tAC lAC

uA
y + uC

y

2
+ tCBlCB

uC
y + uB

y

2
.

(16)

By reordering (16) we obtain seven generalized velocities qd
i which are the

six components of the velocities at the points A, B, C, and U0 as expected.
Finding the loading parameters Qi will consist in defining a kinematical

parameter equal to the displacement velocity component at each nodal point
of the interface, and the associated loading parameters through the expression
of the external power. Then we define the functional of the left problem
(Fig. 4) as:
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Pext = FU0 +Q1u
A
x +Q2u

A
y +Q3u

C
x +Q4u

C
y +Q5u

B
x +Q6u

B
y . (17)

As detailed in the second item of Sect. 4.1, the equality between q(u) and
qd in the optimal solution will lead to the expected verification of the new
boundary conditions. It is worth noting that the previous parameters come
in fact from the usual fem definition of the nodal forces via the equivalence,
along an interface element, between the virtual powers of the nodal forces
and the stress distribution assumed to vary as the strain rate tensor in the
adjacent element, resulting here in a constant one.

In the case of linearized velocity jumps of the second example (discon-
tinuous quadratic velocities), the present mesh would have six nodes on the
interface, giving rise to thirteen final loading parameters by assuming an
affine distribution of the stress vector. The corresponding value of the dis-
sipated power will be exactly calculated by a Simpson integration using the
nodes at the ends and the middle of the interface segment, as the integrand
variation will be cubic along the segment.

Relation (17) gives the functional to be maximized for the problem IIl: it
will be noted FU0+Qiqi using the usual Einstein convention with i = 1, . . . , 6.
At the optimum, the functional will be equal to the dissipated power in the
mesh of this problem, or to its upper bound in the second example as defined
in the Sect. 4.

5.3 The Right Problem

This time the velocities uA, uB , uC are imposed at the left side of the
mesh of Fig. 5. This problem is analogous to the preceding one, except the
appearance of the symmetry at the right side. As previously we have:

Pext = QU0 + p′AC lAC
uA

x + uC
x

2
+ p′CBlCB

uC
x + uB

x

2

+ t′AC lAC

uA
y + uC

y

2
+ t′CBlCB

uC
y + uB

y

2
, (18)

and, after reordering:

Pext = FU0 +Q′
1u

A
x +Q′

2u
A
y +Q′

3u
C
x +Q′

4u
C
y +Q′

5u
B
x +Q′

6u
B
y = FU0 +Q′

iqi .
(19)

Here also, the optimal Pext is equal to the dissipated power over the mesh, or
to its upper bound in the quadratic case. Joining all interface nodal points
of the IIl and IIr optimal solutions gives an admissible solution for the whole
problem, i.e. the target problem. The target dissipated power is the sum of
the subproblem’s ones, giving a target functional value lower (or at least
equal) than that of the starting problem.
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Fig. 5 The right problem
IIr

In order to progress by iterating the process, updating the velocities at the
interface is obviously needed; hence the idea of the following specific phase
III to improve these interface values.

5.4 Phase III

Fig. 6 The central
problem

Prior to this phase the optimal values along the GH segment obtained
in the IIl problem and the values along IJ in IIr are saved in an external
file. The solution of this problem III (Fig. 6) is obtained as in the previous
problem, except that the loading parameters are now defined from the lateral
sides HG and IJ (here thirteen parameters in total); the updated values at
the central interface AB correspond to a lower dissipated power in the GHJI
mesh. Note that, at this stage, combining (by post-analysis) the field of the
left part of IIl and the field of the right part of IIr with the field of the present
phase gives an admissible field for the target problem, with a dissipated power
lower than the previous one.

Finally, by going back to phase II with the new values on ACB, the process
can be resumed. Each following iteration, namely a global one, consists in
solving the problems III, IIl and IIr.
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6 Kinematical Tests

The proposed decomposition approach was first investigated in the case of the
compressed bar for continuous velocities, and afterwards has been extended to
the classical problem of the vertical slope in the discontinuous quadratic case.
The latter problem is a difficult one, as it leads to very large optimization
problems, and also because it needs a high accuracy level—and a meticulous
post-analysis of the solution fields—in order to guarantee the numerical final
value of the optimal loading parameter.

6.1 The Compressed Bar Problem

6.1.1 First Level Decomposition

The mechanical problem is defined in Fig. 2 with 4× 2 squares of 4 triangles
each, named a 4× 2 problem for the sake of simplicity. Let us consider now a
64 × 32 target problem, and a 32 × 16 starting problem. These meshes were
selected as a good compromise between efficiency and CPU time in accor-
dance with the number of calculations to be conducted for these validation
tests. Moreover, it is worth recalling the absence of locking problems in this
mixed approach, unlike the classical approach. For simplicity the cohesion c
was initialized to unity in these numerical problems.

Figure 7 gives the evolution of the loading parameter F/c from the starting
value 159.01, (i.e. F/(bc) = 2.4845, with b = 64 and c = 1) versus the iteration
number to the best value which is 157.339. The three subproblems (II and III)
here are 32×32 ones. Solving directly the target problem gives the asymptotic
value 157.33, the exact solution giving 155.37.

Fig. 7 Variation of F/c related to the iterations number n
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6.1.2 Second Level Decomposition

The target problem is again the 64 × 32 which gives the optimal value
F/c = 157.33 in 1030 seconds of CPU time. The problems II are themselves
subdivided into subproblems.

The problem IIl gives birth to the subproblem IIll and IIlr and the problem
IIr to the subproblems IIrl and IIrr. Consequently three problems III are
defined: IIIl for the problems IIll and IIlr, IIIr for the problems IIrl and IIrr,
and finally a central IIIc to update the central interface. The whole process
is illustrated in Fig. 8.

Fig. 8 Second-level decomposition of the 64 × 32 plate

The final result (157.463) of Table 1 must be compared to the one obtained
after the first iteration of the first level decomposition, i.e. 157.469 in 533 s,
the target problem giving 157.33 in 1033 s.
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Table 1 Compressed bar 64 × 32: results of the second-level decomposition

Iteration 1 Iteration 2 3 4

Starting 159.0051
IIIl 41.7815 41.7128 41.6814
IIIr 36.6723 36.6817 36.6915
IIIc 41.5183 41.5467 41.5486

Time 66 s Time 343 s 387 s 70 s (start. point)
IIll 33.4242 IIll 42.3162 42.2861 42.2724
IIlr 40.1507 IIlr 41.6370 41.6215 41.6215
IIrl 41.5851 IIrl 40.1323 40.1462 40.1462
IIrr 42.4637 IIrr 33.4320 33.4309 33.4309
Ftot 157.6238 Ftot 157.5176 157.4847 157.4627
Time 350 s Time 430 s 357 s 243 s (start. point)

It can be seen that four level-2 iterations are necessary to improve the
value obtained at the first level-1 iteration, using the same starting problem
in both cases. Also, at the iteration 4 we have used the complete solution of
iteration 3—i.e. all the x, s, w, y solutions of (3)—as a starting point for the
optimization algorithm, resulting in less CPU time: we can see that this pos-
sibility should actually be used right from the first iteration. This efficiency
comes from the fact that only the functional changes from one iteration to
another in this approach.

6.2 The Vertical Slope Problem

6.2.1 Position of the Problem

This time the decomposition method is applied using the finest model, i.e.
the discontinuous quadratic one, to the vertical slope problem in a Tresca
material, the height of which being denoted H, the weight γ and cohesion c.
The best known upper bound for Qγ (=γH/c) was given as 3.782 in [24], the
best lower bound as 3.772 in [10]. The mesh is square with N ×N rectangles
of four triangles each.

In a first time, a global, coarser mesh is optimized by a power law acting
on the coordinates in order to concentrate the mesh at the bottom of the
slope. Then the optimized mesh is divided into horizontal slices of the same
number of elements. Indeed a first cut in vertical slices has pointed out that
the last right slice had no sufficient possibilities of free plastic flow, inducing
a number of convergence problems.

In the present case, the generalized velocity qγ (here taken as
∫

(cuy/H) dS
where the axis y is vertical) is not the same for all subproblems, contrary
to the previous compressed bar where the plate acted on all subproblems
with the same velocity. Via the (systematic) post-analysis, at each step are
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imposed to the subproblem i its quota of qγ—i.e. qd
γi—obtained from the

solution fields of the previous step as the interface velocities; indeed the sum
of the qd

γi remains equal to the initial qd
γ . The global mesh is an N×N square

for all tests.

Fig. 9 The vertical slope
with a N = 4 mesh

6.2.2 Details of the Tests

From N = 16 to 96, the problem is solved directly. Beyond this size, the
Cholesky subroutine used by ip-opt needs more RAM memory than the 4
GB available on our Mac Pro Apple 3 GHz. It is worth noting also that only
the ip-opt runs beyond the N = 70 case, contrary to commercial codes.
Then, from N = 100 to N = 120 the problem was split into two subproblems
in a level-1 decomposition.

For N = 120, two iterations were performed (starting-IItop-IIbottom, then
III-IItop-IIbottom), and the results were the following:

• starting problem (N ×N = 60 × 60) : γH/c = 3.7813 ;
• iteration 1 : γH/c = 3.7789 ;
• iteration 2 : γH/c = 3.7788 .

Clearly, at least for this problem where the decomposition approach was
intensively tested, the first iteration is sufficient if the subproblem meshes
are well refined. This should be attributed to the discontinuous character
combined to the quadratic variation of the velocities, solved without any
problem using the ip-opt code in all cases.

For N = 144, 160, 176 and 200, both subproblems were themselves de-
composed in a level-2 decomposition. The final optimal 200 × 200 value was
γH/c = 3.7778. In fact, in the post analysis, the dissipated power also was
re-calculated using the analytical π functions, lowering the ip-opt value from
3.77793 to 3.77779, with all verifications better than 10−6 in all subproblems:
this confirms the previously mentioned efficiency of the method in spite of
optimizing an upper bound to the real dissipated power.

Figure 10 shows the variation of the stability factor versus the number
of rectangles of the previous mesh: it seems that the result could be still
slightly improved by using a higher level of decomposition on a more powerful
machine.

Finally, Fig. 11 shows the deformed meshes of the four 200 × 50 subprob-
lems. This figure can be highly zoomed if viewed on a computer screen as it
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Fig. 10 The vertical slope: γH/c versus the size of the mesh

Fig. 11 The Tresca vertical slope, N = 200 : deformed meshes of the four 200 × 50
subproblems. Dissipated powers, with as input data c = 1 and H = 200: 4.56 – 4.95 –
4.66 – 4.72
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is plotted using the Asymptote vectorial drawing tool under LATEX. In this
case, the CPU times vary from one to six hours for the subproblems. To be
complete, let us note that the target problem 200 × 200 (160, 000 quadratic
discontinuous triangles) should give a problem with 2, 230, 000 variables and
1, 490, 000 linear constraints plus 743, 000 non-linear ones!

7 Extension to the Statical Approach: First Results

The decomposition method presented in the previous section has just been
extended to the classical lower bound approach of LA in [7] where a detailed
presentation is given. As suggested in Fremond and Salençon (1973) the prob-
lem is replaced by an equivalent one, such that the soil is weightless and the
boundary conditions are defined by σn = γh, τnt = 0 on the surface of the
soil, h denoting the depth measured from the upper surface.

In the following, first results for the vertical slope problem described in
Sect. 6.2 are reported, presenting improved lower bounds, again made possible
by using the code ip-opt. The domain occupied by the soil is modelled by
discontinuous linear stress triangles and infinite extension zones as in [22];
in Fig. 12 an example mesh is depicted showing the subdomain partitions
typically used in the decomposition procedure.

V1

V2

V3

V4

Fig. 12 Vertical slope: a typical 4-block partition (M × N = 24 × 16)

The lower bound is determined for various mesh sizes as shown in Table 2.
The best lower bound is γH/c = 3.7752, obtained with 351,824 elements,
which is an improved value with respect to the best known value 3.772 in [10].
It is worth noting that a meticulous analysis of the redundancies induced by
the extension conditions was necessary to make the final optimization prob-
lem full row rank, as required by ip-opt.This code was again the only one
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Table 2 Vertical slope and decomposition level 2: lower bound results after 9 iterations

M × N Number of FE Result

260 × 184 179408 3.77452
270 × 200 200336 3.77466
300 × 224 249600 3.77482
316 × 240 281104 3.77500
344 × 280 351824 3.77522

able to run these large non-linear problems, with admissibility conditions a
posteriori verified better than 10−8 in all the tests. Contrary to the kinemati-
cal case, up to ten iterations of the decomposition process were needed in this
statical approach to get convergence to the final value, as shown in Fig. 13.
Finally, with the upper bound reported Sect. 6.2, we obtain for this problem:

3.7752 ≤ γH/c ≤ 3.7778 .

Fig. 13 The vertical slope: γH/c versus the iteration number n, 344 × 280 mesh

8 Conclusion

The proposed decomposition method fully uses the specific features of the
mixed but fully kinematical approach. Its remarkable efficiency lies in fact in
the constant robustness and the rapidity of the ip-opt solver under matlab.

In the kinematical case, from the first iteration a good accuracy of the final
optimum is obtained, with a regular improvement during the following ones.
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Hence, using a refined starting problem, we can iterate the decomposition
process, here to the level two, and obtain very good and accurate solutions
for meshes out of reach directly, especially for open problems where a fine
bracketing of the solution yet exists. For example, in the case of the vertical
slope problem, we were able to lower the upper bound from 3.782 to 3.7778, by
decomposing an optimization problem which up to now has been intractable
directly, at least to our knowledge.

The decomposition method has just been extended to the statical case,
using discontinuous linear stress triangles and infinite extension elements.
Here also the code ip-opt was the only one able to solve the very large final
non-linear optimization problems. Hence the previous lower bound (3.772,
[10]) has been increased to 3.7752 by using also a level-2 decomposition,
resulting in the best bracketing to date: 3.7752 ≤ γH/c ≤ 3.7778.
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Gurson Model for Porous Pressure
Sensitive Materials

J. Pastor and Ph. Thoré

Abstract The macroscopic criterion of a porous material is investigated us-
ing the Gurson spherical model, but with a pressure-dependent matrix. Ow-
ing to the isotropy of the resultant macroscopic material, the problem is
analyzed under axisymmetry assumption. In both statical and kinematical
approaches, specific quadratic formulations were used for the stress and dis-
placement velocity fields in the triangular finite elements. To improve the
efficiency, analytical continuous fields, derived from the solution to the prob-
lem of a cavity under internal pressure, were superimposed on the fem fields.
The final problems result in conic optimization, or linear programming after
linearizing the criterion, so as to determine the “porous Coulomb” criterion.
A fine iterative post-analysis strictly restores the admissibility of the statical
and kinematical solutions. The comparison with a “translated modified Cam-
clay” criterion shows that this criterion might be considered as a satisfactory
approximation for some values of internal friction angle and porosity. Finally,
a detailed comparison with the “porous Drucker-Prager” case is presented.

Nomenclature

• c Cohesion (Coulomb material).
• φ Internal friction angle (Coulomb material).
• f Porosity rate.
• f(σ) Yield criterion.
• k Pure shear limit of a von Mises or Drucker-Prager material.
• λ Plastic multiplier.
• ξ Plastic multiplier (discontinuity surface).
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• πv(v) Volumic dissipated power rate.
• πd([u]) Unit dissipated power rate on a discontinuity surface.
• Q Loading parameter vector.
• q Generalized velocity vector.
• Σij Macroscopic (average) stress tensor.
• Eij Macroscopic (average) strain tensor.
• u Displacement velocity vector.
• v Strain rate tensor.

Acronyms
• pwl Piecewise Linearization.
• lp-ip Linear Programming—Interior Point.
• ka, sa, pa Kinematically, Statically or Plastically Admissible.
• socp Second Order Conic Programming.

1 Introduction

As regards the limit state assessment of isotropic porous materials, the
Gurson’s model still remains the basis of numerous works in its way of model-
ing the porous material, or as a key reference for comparisons of experimental,
analytical or numerical results.

Originally [4, 5], this analytical model concerns porous materials whose
matrix obeys the von Mises criterion. The porous material is modeled by
a hollow sphere, considered as an “Elementary Volume” (ev), submitted to
average strain rates at the boundary. Due to the isotropic character of the
resultant material, the loading can be axisymmetrical, without loss of gener-
ality.

Hereunder, based on Gurson’s spherical model and on Limit Analysis (la),
both statical and kinematical specific approaches have been carried out. They
are first applied to Coulomb porous materials; the results are also compared
with ad hoc modified Cam-clay criteria, and with previous results for porous
Drucker-Prager materials in order to point out the differences between the
resulting macroscopic criteria.

2 Succinct Presentation of Limit Analysis

According to Salençon [9], a stress tensor field σ is said to be admissible if
it is both statically admissible (sa, i.e., equilibrium equations, stress vector
continuity and stress boundary conditions are verified) and plastically admis-
sible (pa, i.e., f(σ) � 0, where f(σ) is the (convex) plasticity criterion of
the material).
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Similarly, a strain rate tensor field v is admissible if it is kinematically ad-
missible (ka, i.e., derived from a piecewise continuous velocity vector field u,
with bounded discontinuities [u], such that the velocity boundary conditions
are verified) and plastically admissible (pa, i.e., the associated flow rules (2a),
(2b) are verified).

Let us assume, as in [9], that the virtual power Pext of the external loads
can be written as the scalar product of a loading vector Q, whose com-
ponents are called here loading parameters, and a generalized velocity vec-
tor q = q(u), the components of which are called kinematical parameters.
Following [1], let us consider a ka virtual velocity field u; the virtual power
principle (vpp) states that the stress tensor field σ, the stress vector field T
(on the velocity discontinuity surfaces), and the vector Q are in equilibrium,
if for any ka u, the following variational equation is verified:

Pext = Q · q(u) =
∫

V

σ : v dV +
∫

Sd

T · [u] dS. (1)

where V is the volume of the mechanical system and Sd the union of the
velocity discontinuity surfaces.

The results in terms of Q will be interpreted as a kinematic bound if,
at the appropriate points of V , the variables verify the following conditions,
where u is KA and qd is a fixed value of q(u):

v = λ
∂f

∂σ
, λf(σ) = 0, λ � 0, f (σ) � 0, (2a)

[u] = ξ
∂fnt

∂T
, ξfnt(T ) = 0, ξ � 0, fnt(T ) � 0, (2b)

q(u) = qd. (2c)

The criterion fnt(T ) results from the projection of the plasticity criterion
f(σ) on the Mohr plane, where n is the normal to the element of the velocity
discontinuity surface and T = (σnn, σnt) is the stress vector on this element.
More precisely, fnt(T ) is the solution of the following system:

f(σnn, σtt, σnt) = 0,
∂f

∂σtt
= 0. (3)

It is worth noting that, if (2a) and (2b) are verified, the quantities σ : v and
T · [u] become, respectively, the convex unit dissipated powers πV (v) and
πd([u]) of LA, i.e.:

πV (v) = σ : v, πd([u]) = T · [u]. (4)
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3 Homogenization Technique—The Gurson’s Model

3.1 The Mechanical Model

As said above, the porous material is replaced by an isotropic homogeneous
material represented by an “Elementary Volume”; in the present case, this
elementary volume is a hollow sphere with a central cavity (see Fig. 1). At
the boundary of the sphere are imposed the velocities defined as ui = Eijxj ,
where Eij are the fixed components of the axisymmetric average strain rate,
in the global principal cartesian (x1, x2, x3) frame (Exx = Eyy, Ezz). As
usual, the material is assumed zero-weight.

Fig. 1 The “Elementary
volume” of the Gurson’s
spherical model

3.2 The Loading Parameters

The macroscopic stresses Σij being related to the microscopic stresses σij by
the averaging relations:

Σij =
1
V

∫
V

σij dV, (5)

the la loading parameters are defined as follows, in the present axisymmet-
rical case (Σxx = Σyy):

Σm = (Σxx +Σyy +Σzz)/3 = (2Σxx +Σzz)/3,
Σgps = (Σxx +Σyy)/2 −Σzz = Σxx −Σzz, (6)

Σps =
√

3(Σxx −Σyy)/2 = 0,

and the macroscopic equivalent stress expresses as:

Σ2
eqv = Σ2

ps +Σ2
gps = Σ2

gps ⇒ Σeqv = Σxx −Σzz. (7)

Hence, owing to the axisymmetrical assumption and the isotropy of the
resulting material, the present problem has only two loading parameters (Σm

and Σeqv = Σgps).
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3.3 The Generalized Velocities

The macroscopic strain rates Eij are defined from the chosen boundary con-
ditions. Here, the la generalized velocities are defined as (with Exx = Eyy):

Em = Exx + Eyy + Ezz = 2Exx + Ezz,

Egps = 2 [(Exx + Eyy)/2 − Ezz] /3 = 2(Exx − Ezz)/3, (8)

Eps = (Exx − Eyy)/
√

3 = 0.

3.4 Reminder: The “Porous von Mises” or Gurson
Material

The analytical Gurson’s criterion reads:

Σ2
eqv

3k2 + 2f cosh

[√
3Σm

2k

]
= 1 + f2, (9)

where f is the porosity of the material and k the cohesion (or limit shear
stress) of the matrix. This analytical Gurson’s formulation gives, as outlined
by J.-B. Leblond [6], a rigorous upper bound of the criterion solution from
this model, in terms of limit analysis.

4 Finite Element and Optimization Implementation

Due to the axisymmetrical conditions, the simulation domain is a one-quarter
of a meridian plane, treated in cylindrical coordinates. This domain is meshed
into discontinuous triangular elements. Since linear fields have been proved
insufficient, both stress and displacement velocity fields are represented by
quadratic functions of the coordinates.

The first runs were performed with the socp mosek code, but many dif-
ficulties arose, in both approaches, regarding the convergence. Hence, after
linearization, the optimization was carried out with the “Interior Point Lin-
ear Programming” (lp-ip) xa code, in both approaches, as it was the only
commercial code robust enough to solve the final, rather badly conditioned
problems generated in the present axisymmetrical cases.
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5 The Statical Approach for a Porous Coulomb Material

The statical or lower-bound approach, consists in optimizing a functional,
e.g., Σgps, under various imposed values Σ0

m of Σm, provided that the set of
following constraints (equalities and inequalities) is satisfied.

After the optimization, a post-analysis, which is necessary because of the
highly non-linear character of the stress field, verifies the admissibility of the
solution and, as long as the solution is not strictly admissible all over the
domain, restarts the optimization after some adequate readjustments, as will
be seen below.

5.1 The Coulomb Criterion (Recall)

The criterion expresses as:

f(σ) = |σi − σj | − 2 c cosφ+ (σi + σj) sinφ ≤ 0, (10)

where c is the cohesion of the material and φ its internal friction angle; σi

and σj are the principal stresses (i, j = 1, 2, 3, with i �= j).
“Unwieldy” in 3D cases, this criterion gives rise to a system of 3 pairs of

inequations such as:
{
σi − σj − 2 c cosφ+ (σi + σj) sinφ ≤ 0,
σj − σi − 2 c cosφ+ (σi + σj) sinφ ≤ 0.

(11)

Actually, this system reduces to 3 conic inequations, the other inequations
being redundant. But another difficulty stands: the principal stresses and
directions are unknown when one expresses the present constraints, which
makes it necessary to translate these inequations into a known reference set;
using the σR, σθ, σZ , τRZ stress components in cylindrical coordinates, these
inequations become, after some transformations (cf. [8]):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ ≤ − α sinφ+ 2c cosφ,

Δ ≤
[
α− 2σθ

1+sin φ
1−sin φ

]
+ 4c cos φ

1−sin φ ,

Δ ≤ −
[
α− 2σθ

1−sin φ
1+sin φ

]
+ 4c cos φ

1+sin φ ,

(12)

with α = σR + σZ and Δ =
√

(σR − σZ)2 + 4τ2
RZ .
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5.2 The Stress Field

The affine formulation being too “poor” to give satisfactory results, the fem

discontinuous stress field expresses with quadratic functions, as follows:
⎧⎪⎪⎨
⎪⎪⎩

σR = A + B R + C Z + H RZ + I R2 + J Z2,

σθ = A + BθR + C Z + HθRZ + IθR2 + J Z2,

σZ = AZ + BZR + CZZ + HZRZ + IZR2 + JZZ2,

τRZ = Bτ R + Hτ RZ + Iτ R2.

(13)

It is worth noting that the formulation has been adjusted so as to eliminate
R from the fraction denominators containing R, in the equilibrium equations
(15) below.

Despite this improvement, the results were not satisfactory enough, essen-
tially in compression, owing to the average strain rate boundary conditions;
hence an analytical continuous field was superposed on the fem field; this
analytical field is an extension of the solution to the problem of a cavity ex-
panded or compressed under internal pressure proposed in [3]; its expression
is rather simple in an (r, θ, ϕ) set of spherical coordinates; the internal radius
of the cavity being denoted by a and ε being a coefficient whose value is +1
in the traction case and −1 in the compression case, its components are:

⎧⎪⎪⎨
⎪⎪⎩
σr = c cotφ

[
1 −

(
a
r

) 4 ε sin φ
1+ε sin φ

]
,

σθ = σϕ = c cotφ
[
1 − 1−ε sin φ

1+ε sin φ

(
a
r

) 4 ε sin φ
1+ε sin φ

]
.

(14)

These expressions are translated afterwards into cylindrical coordinates.

5.3 The Equalities

Equalities are imposed in order to:

• define the macroscopic stresses (4 equations),
• express the equilibrium equations (3×2 equations per triangular element):

{
∂σR

∂R + ∂τRZ

∂Z + σR−σθ

R = 0,
∂τRZ

∂R + ∂σZ

∂Z + τRZ

R = 0,
(15)

as mentioned in Sect. 5.2, these equations have induced the specific choice
of the stress field inside the elements;

• ensure the continuity of the stress vector across the segments separating
adjacent elements: at both ends and in the middle of each discontinuity
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segment, because of the quadratic character of the fem field (3 × 2 equa-
tions per discontinuity segment);

• express the boundary conditions: the stress vector is null along the sides
bordering the cavity (3 × 2 equations per boundary segment);

• satisfy the symmetry conditions, since the simulation domain is a one-
quarter of a meridian plane: the microscopic tangential stress is null on
the horizontal plane (3 equations per segment).

5.4 The pa Condition Inequalities

The 3 inequations (12) of the Coulomb criterion are conic, but they are
written in such a way that they have the same left hand member (Δ), which
is the sole non-linear term of these inequations.

Hence, by inserting a new unknown Y between the two members, one
obtains a new conic inequation:

Δ ≤ Y, (16)

which adds to the 3 inequations of the original system, but where Y replaces
Δ, making them linear, which is much more convenient.

The conic inequation (16) is linearized, by the so-called “pwl” method,
generating a system of mps linear inequations; the higher this value mps is
given, the better is the approximation, depending upon the programmer’s
decision.

Finally, one has a set of (3 + mps) inequations per point; because of the
non-linearity of the global stress field, these conditions are imposed at 7 points
per element (each apex, the middle of each side and the center of gravity),
which makes an amount of 7 × (3 +mps) inequations per element.

5.5 The Post-analysis Process

After the optimization, a rigorous post-analysis is carried out:

• verification of the stress vector continuity across every boundary between
adjacent elements; in fact, the stress vector jump is always smaller than
10−5;

• subdivision of each element into a great number of “subtriangles” (more
than 200 subtriangles), in order to compensate for the non-linearity of the
stress field and improve the accuracy of the next two steps;

• computation of accurate Σm and Σgps values, by integral calculation on
each subtriangle, followed by a summation on the whole domain;
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• verification of the Coulomb criterion inside each subtriangle of each el-
ement; this verification is performed with the three original inequations
(10), instead of their modified expression (12), since the principal stresses
are computable at this stage (the stress field is known).
To set an example, in order to verify the following inequation in a subtri-
angle:

|σ1 − σ2| + (σ1 + σ2) sinφ
2 c cosφ

≤ 1, (17)

the successive steps are:

– calculation of the k ratio: k = |σ1−σ2|+(σ1+σ2) sin φ
2 c cos φ

;

– if k ≤ 1: no specific action, since the inequation is satisfied in the
current subtriangle; hence, jump to the next inequation or
next apex. . .

– if k > 1: storage of the current “faulty” element’s number, and of k
if it is larger than the value previously stored during the
current post-analysis step;

• if at least one element is “faulty”, reiteration of the optimization, after
modification of the pa conditions in every “faulty” element: the original
cohesion c, or its previously modified value cc, is replaced by a new smaller
fictitious value cc: cc = cc/k, in order to make more severe the pa con-
ditions in these elements during the next optimization step: thanks to
that numerical artifice, the original Coulomb criterion will be more easily
satisfied in the next post-analysis.

• because of some “diffusion effect”, the next post-analysis often detects new
faulty elements, making it necessary to reiterate again the optimization:
as long as the solution is not found admissible all over the domain, the
optimization is reiterated, as many times as necessary.

6 The Kinematical Approach for a Porous
Coulomb Material

The kinematical approach, or upper-bound approach, consists in optimizing a
functional, related to the dissipated power, for instance under various imposed
values Σ0

m of Σm, provided that the set of following constraints is satisfied.
Once again, the optimization itself is carried out with the lp-ip xa code,
after linearization.

After the optimization, a post-analysis, which is necessary because of the
non-linear character of the superimposed displacement velocity field, verifies
the admissibility of the solution and, as long as the solution is not quite ad-
missible all over the domain, reiterates the optimization after some adequate
readjustments, as will be seen below.
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6.1 The Displacement Velocity Field

The fem discontinuous displacement velocity field expresses as follows:
⎧⎨
⎩
uR = R (A+B R+C Z),

uθ = 0,

uZ = D+E R+F Z+H RZ+I R2+J Z2.

(18)

Similarly to what was done in the statical approach, and for the same
reason, an analytical continuous field was superposed on the fem field, de-
duced from the solution to the problem of a cavity expanded or compressed
under internal pressure (cf. [3]). In an (r, θ, ϕ) set of spherical coordinates,
this radial field expresses as:

ur = ε
G

r2α
, with α =

1 − ε sinφ
1 + ε sinφ

, (19)

where ε is a coefficient whose value is +1 in the traction case and −1 in the
compression case. Indeed, the expression of ur is translated into cylindrical
coordinates.

6.2 The Equalities

In the kinematical approach, one has to satisfy the set of following equations:

• the outer boundary conditions: ui = Eijxj , where the Eij are fixed, (8
equations per boundary segment);

• the definition of the generalized velocities Em and Egps (2 equations);
• the symmetry conditions, since the simulation domain is a one-quarter of

a meridian plane: the vertical uZ component is null on the horizontal plane
(3 equations per segment).

6.3 The pa Condition Inequalities

In order to have an exact evaluation of the internal dissipated power, the
displacement velocity field u and the strain rate field v must satisfy, prior to
the application of the Virtual Power Principle, both of these pa conditions:

• The volumetric pa condition (i.e., concerning the power dissipated in
the volume):

(|v1| + |v2| + |v3|) sinφ ≤ tr(v), (20)

where v1, v2 and v3 are the principal strain rates.
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Since the principal strain rates and directions are not known, one has
to translate the original inequation (20) into the cylindrical coordinate
set (R, θ, Z).
Inserting a new unknown Y , in a way similar to what was done in the
statical approach, one obtains the following system, after some transfor-
mations:

⎧⎪⎪⎨
⎪⎪⎩

√
(vR − vZ)2 + 4v2

RZ ≤ Y,

|vR + vZ| ≤ Y,

Y ≤ vR+vθ+vZ

sin φ − |vθ|.
(21)

The first inequation of the system is conic; it is linearized, by the “pwl”
method, generating a system of mps linear inequations; the two last in-
equations give rise to 2 inequalities (3×(4+mps) inequations per element).

• The discontinuity pa condition (i.e., concerning the discontinuity
lines):

[u] = ξi
∂fi(T )
∂T

, ξi ≥ 0. (22)

These discontinuity conditions express that the velocity jump [u] is a linear
combination of the directions orthogonal to the fi boundary sides of the
cone representing the Coulomb’s criterion (see Fig. 2); as a consequence,
[u]’s direction is inside the cone built on these directions.
As [u] is a quadratic function of the coordinates, the discontinuity pa

condition is “linearized”, i.e., the velocity jump at the middle of the segment
is imposed as half the sum of the apex jumps: by imposing (22) at the ends
of the segment, [u] is pa everywhere on the segment (3×2 linear equations
per discontinuity segment).

Fig. 2 pa condition on
a discontinuity line: the
direction of the [u] vector
is inside the cone defined
by the directions orthogo-
nal to the boundary sides
of the cone representing
Coulomb’s criterion in the
Mohr diagram

6.4 The Optimization

• The functional : from the Virtual Power Principle, expressed in function
of the loading parameters:

Ptot

Vtot
= EmΣm + EgpsΣgps, (23)
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the functional becomes, for instance:

Σgps =
[
Ptot/Vtot − E0

mΣ
0
m

]
/E0

gps, (24)

under various fixed values Σ0
m, with E0

gps = 1.

• Optimization : as said above, the optimization is carried out with the
lp-ip xa code, and followed by a post-analysis described more precisely
in the next section.

• Penalty : the post-analysis shows that, for some elements, although sat-
isfied at the apices, the original inequation (20) is not satisfied inside the
element, because of the non-linearity of the superimposed continuous field.
To remedy this situation, the third inequation of the modified system (21)
has been added a small term—let it be named p, for “penalty”—which
makes the inequation more severe:

Y ≤ vR + vθ + vZ

sinφ
− |vθ| − p. (25)

Thanks to that penalty, the two members of the inequation (20) are “dis-
tanced” from each other by the penalty p, making it easier to satisfy the
original inequation inside the element.

6.5 The Post-analysis Process

As announced above, the optimization is followed by a rigorous post-analysis:

• Verification of the discontinuity pa condition across every boundary be-
tween adjacent elements; one can observe that:

– the error is always smaller than 10−5;
– the power dissipated along discontinuities is negligible.

• subdivision of each element into a great number of “subtriangles” (more
than 200 subtriangles), in order to compensate for the non-linearity of the
superposed continuous displacement field and improve the accuracy of the
next two steps;

• computation of accurate values of the power dissipated on the discontinuity
lines and inside the elements, by integral calculation on each discretized
discontinuity line and inside the subtriangles, followed by a summation on
the whole domain;

• verification of the pa condition inside each subtriangle of each element;
this verification is performed with the original inequation (20):

(|v1| + |v2| + |v3|) sinφ ≤ tr(v).
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In order to verify this inequation in a subtriangle, the successive steps are:

– calculation of the difference δ: δ = (|v1| + |v2| + |v3|) sinφ− tr(v);

– if δ ≤ 0: no specific action, since the inequation is satisfied in the
current subtriangle; hence, jump to the next inequation or
subtriangle . . .

– if δ > 0: storage of the current “faulty” element’s number, and of δ
if it is larger than the value previously stored during the
current post-analysis step;

• if at least one element is “faulty”, the optimization is reiterated, after mod-
ification of the penalty in every “faulty” element: the new penalty is added
to its original value (zero), or to its previously modified value, so as to
make more severe the pa condition in these elements during the next opti-
mization step; this numerical artifice will make it more easy to satisfy the
original pa condition in the next post-analysis.

• similarly to the statical approach, because of some “diffusion effect”, the
next post-analysis often finds other faulty elements, making it necessary
to restart again the optimization: the optimization is reiterated, as many
times as necessary, as long as the solution is not admissible everywhere in
the domain.

7 Applications

As regards the “quality” of the results, one would observe the following facts:

• on the one hand, the optimization must be reprocessed many times, espe-
cially in the kinematical approach, because of the “diffusion effect”, men-
tioned above;

• on the other hand, the rigorously admissible solutions finally obtained are
very close to the “raw” solutions given by the first optimization, thanks
to the efficiency of the numerical artifices used in both approaches; this
compensates for the just above mentioned drawback;

• as a consequence, the statical and kinematical admissible solutions are
very close to each other, which gives the results a high reliability.

Hereunder, we firstly present the behaviour of the “Porous Coulomb” ma-
terial for various values of the porosity and of the internal friction angle.
As the comparison with the Cam-clay criterion appeared to be interesting
in the first runs, we carried on the comparison for several more runs. Then,
we present a comparison with a “Porous Drucker-Prager” material and recall
some previous results obtained with this material.
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7.1 Influence of the Internal Friction Angle and of the
Porosity for a “Porous Coulomb” Material

The graphs confirm (see Fig. 3) the existence of corners on the mean stress
axis; as pointed by Rudnicki and Rice, such corners might be related to a
possible initiation of strain localization.

––––––––––––

––––––––––

Fig. 3 Porous Coulomb material:
- top: influence of the internal friction angle φ for a fixed value of the porosity

(f = 25%);
- bottom: influence of the porosity for a fixed value of the internal friction angle

(φ = 20◦);
- number of elements: 3120 in the kinematical approach, 640 in the statical approach
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Moreover, it is worth noting that, when the internal friction angle varies,
without change of the porosity, the graphs confirm the existence of a fixed
point for a null value of the mean stress.

7.2 Comparison with an Ad Hoc Modified
Cam-Clay Criterion

Some results obtained with the porous Coulomb material, very close to those
obtained with the translated modified Cam-clay criterion, suggested to carry
on the comparison.

7.2.1 The Cam-Clay Criterion (Recall)

The Cam-clay criterion has undergone several evolutions:

• original Cam-clay: Σeqv = M Σm

[
ln Σm

pc
− 1

]
, (26)

• modified Cam-clay: Σeqv = M
√
Σm [ 2pc −Σm], (27)

where pc is the abscissa of the maximum of Σeqv and M a parameter:

M =
6 sinφ

3 − sinφ
. (28)

As the Cam-clay criterion accounts for pulverulent materials, we have de-
fined here the following “translated” formulations, to compare with our re-
sults:

• original translated: Σeqv = M (Σm − p0)
[
ln Σm−p0

pc−p0
− 1

]
, (29)

• modified translated: Σeqv = M
√

(p0 −Σm) (Σm − p1), (30)

with: p0 = c cotφ
[
1 − f

4
3

sin φ
1+sin φ

]
, p1 = c cotφ

[
1 − f− 4

3
sin φ

1−sin φ

]
. (31)

The parameters p0 and p1 are the two exact analytical solutions, for a
porous Coulomb material, in the cases of isotropical traction and compression,
respectively.

It is worth noting that the “modified translated” criterion is obtained by a
micro–macro analysis, without any other hypothesis. Moreover, let us notice
that both graphs of “original” formulations are strongly dissymmetrical and
present a corner on the mean stress axis, on the compression side, whereas
both graphs of “modified” formulations do not present any corner and are
symmetrical (see Fig. 4).
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Fig. 4 Cam-clay criteria: both “non-translated” formulations are adapted to pulverulent
materials, whereas the “translated” formulations are adapted to non-pulverulent materials

7.2.2 Comparison Between the “Modified Translated” Cam-Clay
and “Porous Coulomb” Criteria for Fixed Values
of the Porosity or Internal Friction Angle

The comparison between the “modified translated” Cam-clay and “Porous
Coulomb” criteria, presented in Fig. 5, shows that the Cam-clay criterion can
be a satisfactory approximation to the Porous Coulomb, around f = 25%
and φ = 20◦ only, though it does not take into account the corners on the
mean stress axis.

7.3 Comparison with the Porous Drucker-Prager
Criterion

In addition, we have compared the results obtained with the porous Coulomb
criterion with those obtained with the porous Drucker-Prager criterion; for
the latter, we have successfully used the socp mosek code, which made it
unnecessary to linearize the pa condition, in the statical approach as well as
in the kinematical approach.

7.3.1 The Drucker-Prager Criterion (Recall)

The Drucker-Prager criterion expresses as:

f(σ) =
√
J2 + α tr(σ) − k ≤ 0, (32)

where s is the deviatoric stress tensor and J2 the second invariant of s:
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–

– – – – – – – – – – – –

– – – –

Fig. 5 Comparison between the “modified translated” Cam-clay and “Porous Coulomb”
criteria

J2 =
1
2

tr(s2), with s = σ − 1
3

tr(σ)1, (33)

α is a coefficient depending on the internal friction angle φ, k is the pure
shear limit:
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α =
sinφ√

3 (3 + sin2 φ)
, k = 3αH = 3α

c

tanφ
, (34)

φ ∈
[
0;
π

2

]
⇒ α ∈

[
0;

√
3

6

]
.

In an (x, y, z) reference frame, the 3D criterion becomes:

√[
2√
3

(
σx + σy

2
− σz

)]2

+ (σx − σy)2 + (2τxy)2 + (2τxz)2 + (2τyz)2 ≤

2k − 2α(σx + σy + σz). (35)

After an obvious change of variables, (35) can be rewritten as a conic con-
straint: √√√√ n∑

j=1

x2
j ≤ xn+1, (36)

and used directly by the socp mosek code, i.e., without linearization.

7.3.2 Comparison Between the Porous Drucker-Prager
and Coulomb Criteria

Figure 6 shows a comparison between the two criteria for a fixed value of the
porosity: f = 10%, and two values of the internal friction angle: φ = 10◦ and
φ = 20◦.

One can see that, despite the similarity of the two criteria, the Drucker-
Prager’s graph does not present any obvious corner on the mean stress axis,
contrary to the Coulomb’s graph; moreover, the Drucker-Prager’s convex do-
main is noticeably smaller than Coulomb’s one. We finally note that using
Drucker-Prager instead of Coulomb, after a plane strain identification, may
give significantly different results.

7.3.3 Previous Results Obtained with the “Porous
Drucker-Prager” Criterion

For the sake of completeness, we briefly recall the results first given in [7]
and [10], where our numerical results were compared to those of [2] in the
pure three-dimensional case.

In [2], the authors suggested a non-linear homogenization technique to
determine the stress states on the boundary of the macroscopic admissible
stress field, for a “Porous Drucker-Prager” criterion. Their yield criterion was
written as:
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Fig. 6 Comparison between the “Porous Drucker-Prager” and “Porous Coulomb” criteria;
- top: porosity f = 10%, internal friction angle φ = 20◦;
- bottom: porosity f = 10%, internal friction angle φ = 10◦

2 + 4f/3
3T 2

Σ2
eqv +

(
3f
2T 2

− 1
)
Σ2

m + 2(1 − f)HΣm − (1 − f)2H2 = 0, (37)

where T = 3
√

2α. Considering Eq. (37) where Σeqv = 0 and Σm is the un-
known, it can be noted that if f > 2T 2/3, i.e., when φ is smaller than a critical
value, the two Σm solution values have opposite signs. As a consequence, fail-
ure is possible in compression as well as in traction (Fig. 7, bottom). For φ
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values above this critical value, both Σm solution values are positive, which
means that failure is impossible in compression.

Figure 7 shows that the criterion given by Eq. (37) is very close to our
results on the right side of the curve, i.e., in the expansion case. Nevertheless,
our results show that failure is possible in compression as well as in traction,
which is not predicted by (37) above the critical friction angle φ (Fig. 7, top).

Fig. 7 Comparison between the “Porous Drucker-Prager” criterion and the criterion of [2];
- critical internal friction angle for f = 10%: φ � 16◦;
- top: porosity f = 10%, internal friction angle φ = 20◦;
- bottom: porosity f = 10%, internal friction angle φ = 10◦

8 Conclusion

Using the lp-ip xa code to analyze the yield criterion of a “Porous Coulomb”
material, on the basis of the Gurson model, and using up to quadratic discon-
tinuous fem fields in both approaches, the results of this micro-macro study
show the efficiency and the reliability of the presented methods, since the
upper and lower bounds found were very close to each other; they confirm,
on the mean pressure axis, the existence of corners, which might be related
to a possible initiation of strain localization.
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The “modified translated” Cam-clay criterion should be worthwhile, since
this criterion is obtained by a micro–macro analytical and numerical analysis,
without any other hypothesis; however it does not take into account the
corner on the mean pressure axis, and the similarity is limited to a restricted
range of porosity and internal friction angle.

Using the socp mosek code to analyze the yield criterion of a “Porous
Drucker-Prager” material on the basis of the Gurson model, our results con-
firm the fact that failure is possible in compression as well as in traction.
Moreover, the results of this micro-macro study show significant differences
between the porous Drucker-Prager and Coulomb criteria: the Drucker-
Prager’s convex domain is noticeably smaller than Coulomb’s one and the
corresponding criterion does not present corners on the mean pressure axis.
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A Direct Method for the Determination
of Effective Strength Domains
for Periodic Elastic-Plastic Media
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Abstract This work is devoted to the analysis of the mechanical strength
of heterogeneous periodic media submitted to variable loads. The shakedown
static approach is coupled with the homogenisation theory to obtain the
strength domains: the effective ultimate yield surfaces and shakedown do-
mains. This direct method leads to constrained optimization problems on a
three-dimensional unit cell. In order to treat general microstructures, the fem

is used and a specific formulation is introduced to rigorously take into account
the specificities of the localisation problems. It eventually leads to discretized
constrained optimization problems. Using this method, this work is focused
on the case of heterogeneous plates, which exhibit periodic microstructures
only in the two in-plane directions. The effective model (Love-Kirchhoff) is
obtained by solving problems on a 3D unit cell. Membrane-bending couplings
and three dimensional effects are naturally taken into account. The effective
strength domains are obtained in terms of in-plane stresses and bending mo-
ments. The method is first validated for a homogeneous plate. Two other
examples are also proposed : a sandwich plate and a periodically perforated
plate.
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1 Introduction

Limit analysis and shakedown theories are used to study the reliability of
structures with respect to failure by unlimited plastic dissipation. Shake-
down analysis is devoted to the case of variable loads while the limit analysis
theory is relevant to monotonic loading [12]. Limit analysis can be considered
as a particular case of shakedown. The shakedown theory provides the safe
loading domains, which can be bounded using the static approach proposed
by Melan [24] and the kinematic approach due to Koiter [15]. It should be no-
ticed that the static and kinematic theorems have been initially established
for elastic perfectly plastic materials and then extended to more sophisti-
cated materials, as mentioned in [9]. Shakedown of structures can be studied
through two different methods: incremental analysis following particular load-
ing pathes and direct method requiring the envelope of the considered loading
pathes. The direct method leads to a constrained optimization problem which
provides the admissible domain for the loading process in a straight forward
manner.

A lot of structures exhibit heterogeneities which affect the effective be-
haviour. Taking into account these heterogeneities may lead to heavy com-
putations. When the size of the heterogeneities is much smaller than the size
of the structure, homogenisation theory can be used to substitute the initial
heterogeneous problem by an equivalent homogeneous one. In the framework
of three-dimensional periodic media, the foundation of the theory for the
coupling between homogenisation and limit analysis was laid by Suquet [27],
who proposed a definition for the effective ultimate yield surface. The unit
cell is then considered as a microstructure submitted to effective stresses. The
method was applied among others to perforated sheets [23], fibre-reinforced
composites [8,11] and stability of soils [29]. More recently, using the works of
Caillerie [3] and Suquet [27], some authors investigated the case of periodic
plates (see [2,26]). Starting from a thin three-dimensional structure, periodic
in two directions, an effective homogeneous Love-Kirchhoff plate model has
been obtained. The definition of the effective ultimate yield surface proposed
in [27] has been extended, providing the plastically admissible domain for
the generalized effective stresses (in-plane stresses and bending moments). A
recent application to layered composite plates can be found in [7].

In the framework of shakedown, the determination of safe loading domains
of unidirectional composites under axisymmetric loading by Tarn et al. [28]
constituted the pioneer work. The other studies about the coupling of ho-
mogenisation and shakedown are more recent. The kinematic approach of
Koiter was applied in [25] to study the load-carrying capacity of metal ma-
trix composites submitted to cyclic thermal loading. Additional applications
to fibre-reinforced composites and perforated sheets can be found in [4,5,21]
and [22]. Shakedown of metal matrix composites has been studied in [30]
and [10].
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Magoariec et al. [20] have proposed a direct numerical approach to de-
termine the effective strength domains for 3D-periodic heterogeneous media,
using the static approach of Melan [24]. The present contribution is an exten-
sion of the approach to the case of periodic plates. This is a generalization of
the work of Bourgeois et al. [2], dealing with the effective ultimate yield sur-
face for heterogeneous periodic plates. The effective model is a Love-Kirchhoff
model, which takes into account the 3D-effects at the scale of the unit cell,
treated as a three-dimensional microstructure. All the couplings (membrane-
bending) are naturally taken into account within this approach. The effective
strength domains are obtained in terms of macroscopic generalized stresses:
in-plane stresses and bending moments.

In Sect. 2, the static approach of Melan and the resulting optimization
problem are recalled. Some numerical aspects on the use of the finite element
method are given. Section 3 is devoted to the extension of the theory to the
determination of the effective strength domains of 3D-periodic heterogeneous
media. The shakedown theory is coupled with the periodic homogenisation
theory. It leads to solve optimization problems on a unit cell. In order to use
the finite element method, a specific variational formulation is introduced
to rigorously take into account the periodic conditions for the microscopic
strains and stresses and the average relation between the microscopic and
macroscopic quantities. Section 4 shows the extension to periodic plates. The
method is validated for a homogeneous plate by a comparison with results
available in literature. Two additional examples are presented: a sandwich
plate and a periodically perforated plate.

2 The Static Approach of Shakedown

In this section, the condition for shakedown of an elastic perfectly plastic
structure is recalled. The direct approach of shakedown and the associated
constrained optimization problem are then presented. Finally, we focus on
some technical aspects of the numerical implementation.

2.1 The Classical Static Shakedown Theorem

We consider an elastic perfectly plastic structure V , submitted to body forces
fv(x, t) where x is a point in V and the time t ∈ [0,+∞[ plays the role of
a loading parameter. The boundary ∂V is divided into two parts: surface
tractions fs(x, t) are prescribed on ∂Vf and displacements are fixed on ∂Vu.
For the sake of simplicity, the material is considered isotropic. The plasticity
domain at each point x is denoted G(x), associated to the yield surface defined
by the von Mises criterion:
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G(x) =
{

σ(x)
∣∣∣F (σ(x), σ0(x)) =

3
2σ0(x)2

σd(x) : σd(x) − 1 ≤ 0
}
, (1)

where σ0(x) and σd(x) are respectively the yield stress and the deviatoric
part of σ at a given point of coordinates x. The loading state at time t is
denoted P(t):

P(t) = {fv(x, t),x ∈ V } ∪ {fs(x, t),x ∈ ∂Vf}, (2)

and it is assumed that the loading path is a linear combination of n indepen-
dent loading processes Pi:

P(t) =
n∑

i=1

μi(t)Pi. (3)

Furthermore, the loading is supposed to be bounded and confined in a time-
independent loading domain D: conditions are imposed to μi(t) and the do-
main D is then a convex polyhedron which can be defined as follows:

D =

{
P(t)

∣∣∣P(t) =
n∑

i=1

μi(t)Pi, μi(t) ∈
[
μi

−, μi
+
]}

. (4)

The static theorem of Melan states that: if there exists a safety coefficient
β > 1 and a time-independent self-equilibrated residual stress field ρ(x), such
that:

σ(x, t) = β(σe(x, P ) + ρ(x)) ∈ G(x) ∀x ∈ V, ∀P ∈ D, (5)

then the structure shakes down for any loading path P(t) such that
∀t ∈ [0,+∞[, P(t) ∈ D. In Eq. (5), σe(x, P ) is the fictitious elastic stress
response of the structure submitted to the loading state P and satisfies the
following problem: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

div σe + fv = 0 in V,

σe = D : εe in V,

εe = gradsu in V,

σe · n = fs on ∂Vf ,

u = 0 on ∂Vu,

(6)

where D is the Hooke tensor and n the outwarding normal on the boundary
∂Vf . The residual stress field ρ satisfies:

{
div ρ = 0 in V,

ρ · n = 0 on ∂Vf .
(7)

The direct approach consists in determining the shakedown safety factor αsd

such that:
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αsd = max
ρ∈S0

{
α
∣∣∣ασe(x, P ) + ρ(x) ∈ G(x),∀x ∈ V,∀P ∈ D

}
, (8)

where S0 is the set of admissible residual stress fields verifying (7). If
αsd > 1, the structure will shakedown, while it will not if αsd < 1. In
practice, the coefficient αsd represents the reduction or amplification fac-
tor that can be applied to the loading domain D such that the shake-
down occurs in the structure. We recall now that the loading domain is
supposed to be a convex polyhedron. Considering the property of convex-
ity of the elastic domain G(x), only the 2n vertices P k =

∑n
i=1 μiPi,

μi ∈ {μi
−, μi

+} of D can be considered in the optimization problem (8):

αsd = max
ρ∈S0

{
α
∣∣∣ασe(x, P k) + ρ(x) ∈ G(x),∀x ∈ V,∀P k, k = 1, 2n

}
. (9)

It should be noticed that a limit analysis problem leads to the optimization
problem (9) with only one loading point P . In addition, if the residual stress
is set to zero, the later problem gives the elastic safety factor. In conclusion,
the non-linear constrained optimization problem (9) is able to provide three
kinds of strength domains: elasticity, limit analysis and shakedown.

2.2 Numerical Aspects

The optimization problem (9) requires numerical methods at two steps: the
space dicretization of the stress fields σe(x, P ) and ρ(x) and then the reso-
lution of the obtained discretized optimization problem. In the following, the
finite element method is used for the first step. In the optimization problem,
the stress at each point x of the structure is then replaced by the stress at each
integration point of the finite element model. The discretized optimization
problem can be written

αsd = max
{ρ}

{
α

∣∣∣∣F (ασe
ip(P

k) + ρip) ≤ 0,∀ ip,∀P k, k = 1, 2n

[C] {ρ} = {0}

}
, (10)

where the index ip is referring to integration points and the vector {ρ} is com-
posed of the residual stresses at all integration points. As the problem (7) is
linear, the condition ρ ∈ S0 becomes the equality constraints [C] {ρ} = {0}
after discretization where [C] is called the equilibrium matrix. The assembly
of this matrix has been implemented in the finite element software sic [1]
which computes also the stresses at each integration point for each load-
ing point. This fem code generates the data file for the optimization soft-
ware lancelot [6] based on Large and Nonlinear Constraints Extended La-
grangian Optimisation Techniques. This latter freeware is suitable for quite
large problems (few thousands of optimization variables and of inequality and
equality constraints) and handles quadratic inequality constraints. Typically,
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CPU times for shakedown problems presented in Sect. 4.3 vary between few
hundreds and few thousands seconds on a Personal Computer.

3 Periodic Heterogeneous Media

We consider heterogeneous media exhibiting a periodic microstructure in
three independent directions. The determination of the effective strength do-
mains is based on shakedown analyses on a representative volume element,
the unit cell, which generates the whole medium by periodic translations. In
the following, the principle exposed in [20] is recalled.

3.1 Cell Problems

The unit cell is considered as a microstructure V submitted to an effective
stress Σ such that:

Σ =< σ >V , (11)

where < • >V is the average operator over the unit cell:

< • >V =
1

Vol(V )

∫
V

•dV. (12)

The effective stress Σ is supposed to be confined in a loading domain D
such that shakedown theory, as presented in Sect. 2, applies. In the optimiza-
tion problem, the fictitious elastic stress field corresponds to the response of
the unit cell satisfying the classical localisation problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

div σe = 0 in V,

σe = D : εe in V,

εe = E + gradsu
# in V,

σe · n anti-periodic on ∂V,

u# periodic on ∂V,

< σe >V = Σ,

(13)

where the effective strain E =< εe >V is unknown. The strain field εe is
splitted into two parts: the average strain E and a corrective strain derived
from the periodic displacement field u#. The condition u# periodic on ∂V
means that the displacement u# is the same at two opposite points of the
boundary. On the contrary, the condition σe · n anti-periodic on ∂V means
that the traction forces are opposite at two opposite points of the boundary.
These conditions come from the periodicity of the stress and strain fields.
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Associated to the elastic problem (13), the self-equilibrated residual stress
field satisfies:

⎧⎪⎨
⎪⎩

div ρ = 0 in V,

ρ · n anti-periodic on ∂V,

< ρ >V = 0.

(14)

In the following, a variational formulation is introduced, taking into account
the specificities of the problems (13) and (14):

• periodic and anti-periodic conditions,
• loading in average,
• splitting of the strain field.

3.2 Variational Formulation and Implementation

Let us consider a stress field σ satisfying the problems (13) and (14):
⎧⎪⎨
⎪⎩

div σ = 0 in V,

σ · n anti-periodic on ∂V,

< σ >V = Σ.

(15)

The variational formulation proposed here is based on a specific test field,
consistent with the real kinematics in (13): u∗ = E∗ · x + u#∗

with u#∗

periodic on ∂V and E∗ uniform in V :
∣∣∣∣∣∣∣∣

∀E∗ symmetric and uniform in V,

∀u#∗
periodic on ∂V,∫

V

σ :
(
E∗ + gradsu

#∗
)

dV = Vol(V )Σ : E∗.
(16)

The problem (13) is equivalent to the formulation (16) with
σ = D :

(
E + gradsu

#
)
. For the problem (14), σ = ρ and the effective

stress Σ is set to zero. This formulation has been implemented in the finite
element software sic [1]. The kinematics at the level of each finite element
is redefined: the classical degrees of freedom are relative to the periodic dis-
placement u# and six degrees of freedom (dofs) are added at the level of
each element to support the components of the effective strain E. The gra-
dient matrix is modified to take into account these additional dofs. From
the variational form (16), we can deduce that the nodal forces associated to
the additional dofs are the effective stresses multiplied by the volume of the
unit cell. The fem software eventually provides the inputs of the discretized
optimization problem (10): the equilibrium matrix [C] and the elastic stress
at each integration point for each loading point P k = Σk, the vertices of
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the loading domain. If only one loading point P = Σ is considered, the opti-
mization provides the solution of a limit analysis problem and the effective
stress αsdΣ is on the ultimate effective yield surface on the boundary of the
plastically admissible effective domain Ghom defined in [27] such that:

Ghom =

⎧⎨
⎩Σ

∣∣∣∣∣∣
div σ = 0 inV, σ · n anti-periodic on ∂V
< σ >V = Σ
σ ∈ G(x), ∀x ∈ V

⎫⎬
⎭ . (17)

4 Periodic Heterogeneous Plates

The heterogeneous medium – see Fig. 1 – is assumed to be periodic in only
two directions and thin in the third one. When the thickness is much smaller
than the in-plane size of the structure, the use of a plate model is relevant. In
the framework of linear elasticity, the effective stiffnesses of such a structure
have been studied by many authors [3,16–18]. Caillerie [3] has shown that the
homogenisation process requires taking into account two small parameters:
the ratios η = t

L and ξ = d
L where t is the thickness, d the typical size of

the period and L the in-plane typical size of the structure (see Fig. 1). Kohn
et al. [16] have used two similar parameters for periodic plates with rapidly
varying thickness. In the homogenisation process, these small parameters are
introduced in the three-dimensional elastic heterogeneous problem and are
assumed to tend to zero.

x1

x2

x3

Unit Cell

Heterogeneous Medium

middle surface

t

d

L

Fig. 1 Homogenisation of periodic plates: heterogeneous medium and unit cell
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The effective model is found to be a Love-Kirchhoff plate but the stiffnesses
depend on the way the limits are performed: η then ξ tending to zero, ξ then
η tending to zero or ξ and η tending to zero together. In the first case,
the thickness must be much smaller than the period size. The second one
corresponds to the opposite case. The last method is theoretically relevant
when the thickness and the period size are of the same order. Nevertheless,
the effective model obtained such a way can be used outside its application
framework [18]. Contrary to the others, this case leads to consider a three-
dimensional unit cell in order to determine the effective stiffnesses: the 3D-
effects are naturally taken into account. In the following, the determination
of the effective strength domains is based on this model.

4.1 Cell Problems

The boundary ∂V of the unit cell V is composed of the upper surface ∂Vup,
the lower surface ∂Vlow and the lateral faces ∂Vlat. The axes (O, x1, x2, x3) are
chosen such that the middle surface is included in the plane defined by x3 = 0.
The in-plane components are denoted by Greek indices which take the values
in the set {1, 2}. The Latin indices run over 1, 2 and 3. Following the idea
exposed in the above section, the unit cell is considered as a microstructure
submitted to the effective generalized stresses, the in-plane forces Nαβ and
the bending moments Mαβ , such that

Nαβ =< σαβ >S , Mαβ =< x3 σαβ >S , (18)

where < • >S is a new average operator:

< • >S=
1

Surf(S)

∫
V

•dV, (19)

where Surf(S) is the area of the middle surface of the unit cell (see Fig. 1). In
the following, the relations (18) are rewritten in the concise form N =< σ >S

and M =< x3 σ >S . The shakedown theory requires the computation of the
fictitious elastic stress field, corresponding to a purely elastic unit cell. This
stress field satisfies the localisation problem given in [3]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div σe = 0 inV,
σe = D : εe inV,
εe = E + x3 K + gradsu

# inV,
σe · n anti-periodic on ∂Vlat,

σe · n = 0 on ∂Vlow and ∂Vup,

u# periodic on ∂Vlat,

< σe >S= N,

< x3 σ >S= M,

(20)
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where E and K are the effective generalized strains: the membrane strains
Eαβ and the bending curvatures Kαβ , (Ei3 = E3i = Ki3 = K3i = 0). The
strain field εe is composed of a Love-Kirchhoff kinematics E + x3 K and a
corrective strain derived from the periodic displacement field u#. Associ-
ated to the elastic problem (20), the self-equilibrated residual stress field
satisfies:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

div ρ = 0 inV,
ρ · n anti-periodic on ∂Vlat,

ρ · n = 0 on ∂Vlow and ∂Vup,

< ρ >S= 0,

< x3 ρ >S= 0.

(21)

4.2 Numerical Implementation

A stress field σ is statically admissible for the problems (20) and (21) if:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

div σ = 0 in V,

σ · n anti-periodic on ∂Vlat,

σ · n = 0 on ∂Vlow and ∂Vup,

< σ >S= N,

< x3 σ >S= M.

(22)

The variational formulation is obtained with the specific test field

u∗ = uLK(E∗,K∗) + u#∗
, (23)

such that
{

uLK
α (E∗,K∗) = E∗

αβ xβ + x3 K∗
αβ xβ ,

uLK
3 (E∗,K∗) = − 1

2 K∗
11 (x1)

2 − 1
2 K∗

22 (x2)
2 − K∗

12 x1 x2,
(24)

with u#∗
periodic on ∂Vlat, E∗ and K∗ uniform in V satisfying:

E∗
i3 = E∗

3i = K∗
i3 = K∗

3i = 0. (25)

The test field is consistent with the Love-Kirchhoff kinematics in (20), i.e.:

gradsu
LK = E∗ + x3K

∗. (26)
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The Eqs. (22) are then equivalent to the variational formulation
∣∣∣∣∣∣∣∣

∀E∗ and ∀K∗ symmetric, uniform in V with E∗
i3 = E∗

3i = K∗
i3 = K∗

3i = 0,
∀u#∗

periodic on ∂Vlat,∫
V

σ :
(
E∗ + x3 K∗ + gradsu

#∗
)

dV = Surf(S) (N : E∗ + M : K∗) .

(27)
The variational form of the problem (20) is found if we set

σ = D :
(
E + x3 K + gradsu

#
)
. (28)

For the problem (21), σ = ρ and the effective generalized stresses N and M
are set to zero.

This formulation has been implemented in the finite element software
sic [1]. The kinematics at the level of each finite element is redefined: the
components Eαβ and Kαβ of the effective generalized strains are taken into
account by introducing six additional degrees of freedom to all elements. The
classical dofs are associated to the periodic displacement u#. The gradient
matrix is modified to take into account the specific kinematics. The fem code
generates the inputs of the discretized optimization problem (10) to determine
the effective strength domains of the effective Love-Kirchhoff model. If we
consider only one loading point P = {N,M}, the effective generalized stresses
αN and αM belong to the ultimate effective yield surface, which is the bound-
ary of the plastically admissible effective domain Ghom

LK defined in [2] and [26]:

Ghom
LK =

⎧⎪⎪⎨
⎪⎪⎩
{N,M}

∣∣∣∣∣∣∣∣

div σ = 0 in V,σ · n anti-periodic on ∂V,
σ · n = 0 on ∂Vlow and ∂Vup,
< σ >S= N, < x3 σ >S= M,
σ ∈ G(x), ∀x ∈ V

⎫⎪⎪⎬
⎪⎪⎭
. (29)

4.3 Applications

This section illustrates the determination of the effective strength domains for
some periodic plates according to shakedown, limit analysis and elasticity. In
the first example, we consider a homogeneous plate to validate the approach.
The results are compared to those available in literature. The second example
is a so-called sandwich plate, periodic in one in-plane direction and invariant
in the second one. In a last example, we compute the safety domains of a
plate periodically perforated in the two in-plane directions.

4.3.1 Loading Domains

In the following, the unit cells are submitted to a prescribed couple of effective
generalized stresses. For the sake of simplicity, we only consider 2D domains
but the method is general and can be applied up to 6 non-zero generalized
stresses.



78 S. Bourgeois et al.

optimisation

P1P1 P2

P3

P4

S1S1

S2S2

α P2

α P3
α P4

P(t)

envelope

Fig. 2 Principle for obtaining the effective strength domains

The loading domains are rectangular polyhedrons defined by the four ver-
tices (see Fig. 2) P1 = (0, 0), P2 = (S1, 0), P3 = (S1, S2) and P4 = (0, S2),
where S1 and S2 are respectively the first and the second non-zero general-
ized stresses. The point P3 of each polyhedron is representative of a point
on the initial loading domain. Once the reduction or amplification factor α
is computed, we find the homothetic point to P3 located on the boundary of
the strength domain. The elasticity and shakedown curves presented in the
graphs are the envelopes of the strength domains and have to be understood
as follows:

• elasticity: any loading path confined in a rectangular polyhedron with P3

on the elasticity envelope and P1 at the origin is included in the effective
initial elastic domain,

• shakedown: any loading path confined in a rectangular polyhedron with
P3 on the shakedown envelope and P1 at the origin leads to shakedown of
the unit cell.

The limit analysis curves presented in the graphs correspond to the intersec-
tion of the effective ultimate yield surface with the plane defined by the only
two non-zero effective stresses S1 and S2.

4.3.2 Validation for a Homogeneous Plate

The effective ultimate yield surface for a homogeneous plate of constant thick-
ness has been widely studied in literature [13,14]. Furthermore, the theoretical
elasticity domain can be easily derived. The invariance properties of the plate
in the in-plane directions allow us to consider a parallelepipedic unit cell as
shown in Fig. 3. The mesh has only one element in the in-plane directions
and six in the thickness direction. The mechanical and geometric properties
of the considered plate are reported in Table 1.

The unit cell is submitted to combined membrane stress S1 = N11 and
bending moment S2 = M11. The mesh is finer towards the free surfaces of the
plate in order to well capture the elastic limit when bending operates. Each
optimization problem is composed of 973 optimization variables, 87 equality
constraints and 648 (resp. 162) inequality constraints for shakedown (resp.
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Fig. 3 Mesh of the unit
cell for the homogeneous
plate

x1x2

x3

t

d d

Table 1 Properties of the homogeneous plate

Young’s Modulus Poisson’s ratio Yield Stress Thickness

E = 100 GPa ν = 0.3 σ0 = 240 MPa t = 2 mm

limit analysis). The results are presented in Fig. 4, and are expressed in terms
of dimensionless stresses:

n11 =
N11

t σ0
, m11 =

M11

( t
2 )2 σ0

. (30)

As the von Mises criterion is symmetric with respect to the origin and as
the unit cell is symmetric with respect to the middle surface, the strength
domains are symmetric with respect to the axes n11 = 0 and m11 = 0.

0
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 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

m
11

n11

Elasticity
Shakedown

Limit Analysis
Elasticity (theoretical)

Limit Analysis (theoretical)

Fig. 4 Results for the homogeneous plate
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The results plotted only in the fourth plan (n11 > 0,m11 > 0) are in good
agreement with the available theoretical ones:

• the effective elasticity domain fits well with the theoretical criterion:

n11 +
3
2
m11 − 1 ≤ 0, (31)

• the limit analysis curve fits well with the criterion obtained by Ilyushin [14]
and Hodge [13] for the effective ultimate yield surface:

m11 + (n11)2 − 1 = 0. (32)

This validates the proposed approach.

4.3.3 Application to a 1D-Periodic Plate

The second example is a metallic sandwich plate consisting of two parallel
skins with an unidirectional reinforcement, perpendicular to these skins and
periodically arranged in the x2-direction (see Fig. 5).

Fig. 5 Sandwich plate and
mesh of the unit cell

x1x2

x3

tc

ts

ts
tr

d

The geometric properties are reported in Table 2. The mechanical prop-
erties are the ones given in Table 1 for the previous example. The unit cell
is submitted to combined traction and bending (S1 = N11, S2 = M11). The
mesh shown in Fig. 5 is finer in the vicinity of the middle surface in or-
der to capture the yielding across the section. Each optimization problem is
composed of 3,565 optimization variables, 453 equality constraints and 2,376
(resp. 594) inequality constraints for shakedown (resp. limit analysis).
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Table 2 Geometric properties of the sandwich plate

Skins thickness Core thickness Reinforcements
thickness

Period size Total thickness

ts = 1 mm tc = 18 mm tr = 1 mm d = 15 mm t = 20 mm

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

m
11

n11

Elasticity
Shakedown

Limit Analysis
Elasticity (theoretical)

Fig. 6 Results for the sandwich plate

The results presented in Fig. 6 are expressed in terms of dimensionless
stresses:

n11 =
N11

N0
, m11 =

M11

M0
. (33)

N0 and M0 are respectively the ultimate yield membrane stress and the
ultimate yield bending moment:

N0 =
SI

d
σ0, M0 =

Il

d
σ0, (34)

where SI is the surface area of the cross section of the unit cell in the plane
(O, x2, x3) and Il is the linear moment of this cross section with respect to
the x2-axis:

SI = tr tc + 2 d ts, Il =
1
4
(
tr t

2
c + 2 d ts (tc + ts)

)
. (35)

Only the fourth plan (n11 > 0,m11 > 0) is considered: the same reasons as
in the previous section can be invoked. For this loading process, the criterion
for the effective initial elasticity domain can be easily derived:
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n11 +
t

2
Il

Iq
m11 − 1 ≤ 0, (36)

where Iq is the quadratic moment of the cross section with respect to the
x2-axis:

Iq =
1
12

(
tr t

3
c + 2 d ts

(
3 t2c + 6 tc + 4 t2s

))
. (37)

The numerical results given in Fig. 6 are in good agreement with this
theoretical criterion. The small difference is due to the location of the critical
integration points when bending operates: they are not exactly located on
the upper and lower surfaces of the unit cell. Furthermore, we observe that
the theoretical values of the ultimate yield membrane stress N0 and bending
moment M0 are consistent with the numerical results. It should be noted that
the shakedown envelope and the effective ultimate yield surface are very close
one to another and the safety margin between shakedown and instantaneous
collapse is very low.

4.3.4 Application to a 2D-Periodic Plate

The last example illustrates the ability of the developments to treat general
2D-periodic plates. The considered structure is a periodically perforated plate
as shown in Fig. 7.

x1 x1

x2

x2

x3

t

d d

r

Fig. 7 Perforated plate, unit cell and mesh of the fourth cell

The material and geometric properties are reported in Table 3. Two types
of loadings are studied: a bi-axial traction with two non-zero generalized
stresses N11 and N22, and a combined traction and bending (N11, M11). Tak-
ing into account the symmetries of both the unit cell and the loadings, only
one fourth of the unit cell is considered. The mesh shown in Fig. 7 is finer
in the vicinity of the free surfaces and the hole. Each optimization problem

Table 3 Properties of the perforated plate

Young’s
modulus

Poisson’s
ratio

Yield stress Thickness Hole radius Period size

E = 69550 MPa ν = 0.337 mm σ0 = 159 MPa t = 2 mm r = 1.15 mm d = 7.69 mm
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Fig. 8 Results for the perforated plate (bi-axial traction)

is composed of 10,369 optimization variables, 3,267 equality constraints and
6,912 (resp. 1,728) inequality constraints for shakedown (resp. limit analysis).

The results shown in Figs. 8 and 9 are expressed in terms of dimensionless
stresses:

n11 =
N11

N0
, n22 =

N22

N0
, m11 =

M11

M0
, (38)

where N0 = t σ0 and M0 = (t/2)2 σ0 are the ultimate yield generalized
stresses obtained for a homogeneous plate. The comparisons with the safety
domains obtained for the no-perforated homogeneous plate studied in
Sect. 4.3.2 are made easier.
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Fig. 9 Results for the perforated plate (bending–traction)
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When the plate is submitted to bi-axial traction (see Fig. 8), the results
are compared with the ultimate yield surface for a homogeneous plate which
coincides in this case with the boundary of the initial elastic domain. The
results show the loss of strength due to the presence of the holes. The initial
elastic limit for the dimensionless generalized stress in pure traction is close
to the theoretical value 1

3 obtained for a hole in an infinite medium under
plane stress assumption. The shakedown envelope and the effective ultimate
yield surface have been validated by comparison with results obtained with
an incremental approach in [19].

When the plate is submitted to a combined traction and bending, the
comparison between the ultimate yield surface for a homogeneous plate and
the perforated one emphasises, as expected, a weaker strength (see Fig. 9):
the gap is around 15%. The shakedown envelope is quite far from the ultimate
yield surface for the perforated plate, while the difference was not so obvious
for the homogeneous plate. Finally, it should be noted that the shakedown
envelope is twice as large as the initial elasticity domain, which suggests that
the shakedown domain and the alternating plasticity domain are identical.

5 Conclusion

In this paper, the direct static approach for shakedown has been coupled with
the homogenisation theory to determine the effective strength domains of
heterogeneous elastic-plastic media when the microstructure is periodic. The
method has been extended to periodic plates and leads to an effective homoge-
neous Love-Kirchhoff plate. The unit cell is considered as a three-dimensional
microstructure submitted to effective generalized stresses including tractions,
in-plane shear, bendings and torsion. The numerical tool proposed here allows
us to consider general microstructures and any combination of the general-
ized stresses: all the couplings are naturally taken into account. Three kinds
of effective strength domains can be computed: the initial elasticity domain,
the shakedown domain and the ultimate yield surface. From the engineer-
ing point of view, these domains are useful to establish strength criteria at
the macroscopic level, according to elasticity and instantaneous collapse. The
shakedown domains may provide some informations about low-cycle fatigue
but further theoretical investigations are required.
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Stochastic Limit Load Analysis
of Elasto-Plastic Plane Frames

K. Marti

Abstract Problems from plastic analysis and optimal plastic design are based
on the convex, linear or linearized yield/strength condition and the linear
equilibrium equation for the stress (state) vector. In practice, one has to take
into account stochastic variations of several model parameters, such as mate-
rial strength parameters, external load factors, cost coefficients, etc.. Hence,
in order to get robust maximum load factors, i.e., load factors being insensi-
tive with respect to stochastic parameter variations, the structural analysis
problem under stochastic uncertainty must be replaced by an appropriate
deterministic substitute problem. Here, a direct approach is proposed based
on the primary costs for missing carrying capacity and the recourse costs
(e.g. costs for repair, compensation for weakness within the structure, dam-
age, failure, etc.). Based on the mechanical survival conditions of plasticity
theory, a quadratic error/loss criterion is developed. The minimum recourse
costs can be determined then by solving an optimization problem having a
quadratic objective function and linear constraints. For each configuration of
the structure, i.e., each vector of model parameters and each design vector,
one has then an explicit representation of the “best” internal load distribu-
tion. Moreover, also the expected recourse costs can be determined explicitly.
Consequently, an explicit stochastic non-linear program results for finding a
robust maximum limit load/shakedown factor. The deterministic substitute
problems are based on (i) minimizing the expected total costs and (ii) mini-
mizing (e.g.) the weight of the structure subject to an expected recourse cost
constraint. Some numerical examples are given.

Kurt Marti
Federal Armed Forces University Munich, Aero-Space Engineering and Technology, 85577
Neubiberg/Munich, Germany, e-mail: kurt.marti@unibw-muenchen.de

D. Weichert, A. Ponter (eds.), Limit States of Materials and Structures, 87
DOI 10.1007/978-1-4020-9634-1_5, c© Springer Science+Business Media B.V. 2009



88 K. Marti

1 Introduction

In limit load analysis [2, 3, 10] of plastic mechanical structures the problem
is to maximize the load factor μ subject to the survival or safety conditions,
consisting of the equilibrium equation and the so-called yield (feasibility)
condition of the structure.

Thus, the objective function G0 to be minimized is defined e.g. by

G0 = G0(μ) := −μ , μ ≥ 0 . (1)

In the following, x0 = (x10, x20, . . . , xr0)T denotes a fixed design vector,
hence, an r-vector x0 of design variables x10, . . . , xr0, such as sizing variables
of the elements of the structure. Moreover, a = a(ω) is the ν-vector of all ran-
dom model parameters arising in the underlying mechanical model, such as
weight or cost factors γi0 = γi0(ω), yield stresses in compression and tension
σL

yi = σL
yi(ω), σU

yi = σU
yi(ω), i = 1, . . . , B, load factors contained in the external

loading P = P (a(ω), μ), etc. Furthermore, Ai = Ai(x0), i = 1, . . . , B, denote
the cross-sectional areas of the elements, bars having length Li, i = 1, . . . , B.
In case of limit load analysis [11] the external load is given by

P
(
a(ω), μ

)
:= P0

(
a(ω)

)
+ μP1

(
a(ω)

)
, (2a)

with certain random vectors P0 = P0

(
a(ω)

)
, P1 = P1

(
a(ω)

)
.

As already mentioned above, the optimization of the functionG0 = G0(a, μ)
is done under the safety or survival conditions of plasticity theory which can
be described [13] for plane frames as follows:

(I) Equilibrium condition
After taking into account the boundary conditions, the equilibrium be-
tween the m-vector of external loads P = P

(
a(ω), μ

)
and the 3B-vector

of internal loads F = (FT
1 , F

T
2 , . . . , F

T
B )T can be described by

CF = P
(
a(ω), μ

)
, (2b)

where C is the m× 3B equilibrium matrix having rank C = m.

(II) Yield condition (feasibility condition)
If no interactions between normal (axial) forces ti and bending moments
m−

i ,m
+
i at the negative, positive end of the i-th bar of the structures

are taken into account, then the feasibility condition for the bar loadings

Fi =

⎛
⎝ ti
m−

i

m+
i

⎞
⎠ , i = 1, . . . , B , (3)
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reads

FL
i

(
a(ω), x0

)
≤ Fi ≤ FU

i

(
a(ω, x0

)
, i = 1, . . . , B , (4a)

where the bounds FL
i , F

U
i containing the plastic capacities with respect

to axial forces and moments are given by

FL
i

(
a(ω), x0

)
:=

⎛
⎜⎜⎜⎜⎝

−NL
ipl

(
a(ω), x0

)

−Mipl

(
a(ω), x0

)

−Mipl

(
a(ω), x0

)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

σL
yi

(
a(ω)

)
Ai(x0)

−σU
yi

(
a(ω)

)
Wipl(x0)

−σU
yi

(
a(ω)

)
Wipl(x0)

⎞
⎟⎟⎟⎟⎠ ,(4b)

FU
i

(
a(ω), x0

)
:=

⎛
⎜⎜⎜⎜⎝

NU
ipl

(
a(ω), x0

)

Mipl

(
a(ω), x0

)

Mipl

(
a(ω), x0

)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

σU
yi

(
a(ω)

)
Ai(x0)

σU
yi

(
a(ω)

)
Wipl(x0)

σU
yi

(
a(ω)

)
Wipl(x0)

⎞
⎟⎟⎟⎟⎠ . (4c)

Here,
Wipl = Wipl(x0) : = Aiȳic (4d)

denotes the plastic section modulus with the arithmetic mean

yic =
1
2
(yi1 + yi2) (4e)

of the centroids yi1, yi2 of the two half areas of the cross-sectional areas
Ai of the bars i = 1, . . . , B.

Taking into account also interactions between normal forces ti and
moments m−

i ,m
+
i , besides (4a) we have additional feasibility conditions

of the type

−hlη
L
i

(
a(ω), x0

)
≤ HlFi ≤ hlη

U
i

(
a(ω), x0

)
, (4f)

where
(
Hl(Ni0,Mi0), hl

)
l = 1, . . . , l0, are given row vectors obtained

from piecewise linearization of the yield domains of the bars, and ηL
i , η

U
i

are defined by

ηL
i

(
a(ω), x0

)
= min

⎧⎨
⎩
NL

ipl

(
a(ω), x0

)

Ni0
,
Mipl

(
a(ω), x0

)

Mi0

⎫⎬
⎭ , (4g)

ηU
i

(
a(ω), x0

)
= min

⎧⎨
⎩
NU

ipl

(
a(ω), x0

)
Nio

,
Mipl

(
a(ω), x0

)

Mi0

⎫⎬
⎭ , (4h)
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with certain chosen reference values Ni0,Mi0, i = 1, . . . , B, for the plastic
capacities.

According to (4a,f), the feasibility condition for the vector F of interior
loads (member forces and moments) can be represented uniformly by the
conditions

F̃L
il

(
a(ω), x0

)
≤ H̃lFi ≤ F̃U

il

(
a(ω), x0

)
, i = 1, . . . , B, l = 1, 2, . . . , l0 + 3 ,

(5a)
where the row 3-vectors H̃l and the bounds F̃L

il , F̃
U
il , i = 1, . . . , B,

l = 1, . . . , l0 + 3, are defined by (4a–c) and (4f–h). Let e1,e2,e3 denote
the unit vectors of R3.

Defining the (l0 + 3) × 3 matrix H̃(i) by

H̃(i) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eT
1

eT
2

eT
3

H4(Ni0,Mi0)
...

Hl0+3(Ni0,Mi0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5b)

and the (l0 + 3)-vectors F̃L
i = F̃L

i

(
a(ω), x0

)
, F̃U

i = F̃U
i

(
a(ω), x0

)
by

F̃L
i :=

⎛
⎜⎜⎜⎜⎝

FL
i

−h1η
L
i

...
−hl0η

L
i

⎞
⎟⎟⎟⎟⎠ , F̃U

i :=

⎛
⎜⎜⎜⎜⎝

FU
i

h1η
U
i

...
hl0η

U
i

⎞
⎟⎟⎟⎟⎠ ,

the feasibility condition can also be represented by

F̃L
i

(
a(ω), x0

)
≤ H̃(i)Fi ≤ F̃U

i

(
a(ω), x0

)
, i = 1, . . . , B . (6)

2 State and Cost Functions

Defining the quantities

F̃ c
il = F̃ c

il

(
a(ω), x0

)
:=

F̃L
il + F̃U

il

2
, (7a)

�̃il = �̃il

(
a(ω), x0

)
:=

F̃U
il − F̃L

il

2
, (7b)
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with i = 1, . . . , B and l = 1, . . . , l0 + 3, the feasibility condition (5a) or (6)
can be described by

|zil| ≤ 1, i = 1, . . . , B, l = 1, . . . , l0 + 3 , (8a)

with the quotients

zil = zil

(
Fi; a, x0

)
=
H̃lFi − F̃ c

il

�̃il
, i = 1, . . . , B, l = 1, . . . , l0 + 3 . (8b)

The quotient zil, i = 1, . . . , B, l = 1, . . . , l0 + 3, denotes the relative devi-
ation of the load component H̃(i)

l Fi from its “ideal” value F̃ c
il with respect

to the radius �̃il of the feasible interval [F̃L
il , F̃

U
il ]. According to (8a,b), the

absolute values |zil| of the quotients zil should not exceed the value 1. The
absolute value |zil| of the quotient zil denotes the percentage of use of the
available plastic capacity by the corresponding load component. Obviously,
|zil| = 1, |zil| > 1, resp., means maximal use, overcharge of the available
resources.

Consider now the (l0 + 3)-vectors

zi := (zi1, zi2, . . . , zil0+3)T =

(
H̃1Fi − F̃ c

i1

�̃i1
,
H̃2Fi − F̃ c

i2

�̃i2
, · · · ,

H̃l0+3Fi − F̃ c
il0+3

�̃il0+3

)T

. (8c)

With

�̃i :=

⎛
⎜⎜⎜⎝

�̃i1

�̃i2

...
�̃il0+3

⎞
⎟⎟⎟⎠ , �̃id :=

⎛
⎜⎜⎜⎝

�̃i1 0 . . . 0
0 �̃i2 . . . 0
...

. . .
...

0 0 . . . �̃il0+3

⎞
⎟⎟⎟⎠ , F̃ c

i :=

⎛
⎜⎜⎜⎝

F̃ c
i1

F̃ c
i2

...
F̃ c

il0+3

⎞
⎟⎟⎟⎠ , (8d)

we get
zi = �̃−1

id (H̃(i)Fi − F̃ c
i ) . (8e)

Using (8b–d), we find

F̃ c
i =

(
Ai

σL
yi + σU

yi

2
, 0, 0, h1

ηU
i − ηL

i

2
, . . . , hl0

ηU
i − ηL

i

2

)T

, (8f)

�̃i =

(
Ai

σU
yi − σL

yi

2
, Aiσ

U
yiȳic, Aiσ

U
yiȳic, h1

ηU
i + ηL

i

2
, . . . , hl0

ηU
i + ηL

i

2

)T

. (8g)

The vector zi can be represented then, cf. (3), by
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zi =

⎛
⎜⎜⎝
ti −Ai

σL
yi + σU

yi

2

Ai

σU
yi − σL

yi

2

,
m−

i

AiσU
yiȳic

,
m+

i

AiσU
yiȳic

,
H1Fi − h1

ηU
i −ηL

i

2

h1
ηU

i +ηL
i

2

, . . . ,

Hl0Fi − hl0
ηU

i −ηL
i

2

hl0
ηU

i +ηL
i

2

)T

. (9a)

In case of symmetry σL
yi = −σU

yi we get

zi =
(

ti
AiσU

yi

,
m−

i

AiσU
yi
ȳic

,
m+

i

AiσU
yi
ȳic

,
H1Fi,

h1ηU
i

, . . . ,
Hl0Fi

hl0η
U
i

)T

. (9b)

According to the methods introduced in [13–15], the fulfillment of the
survival condition for elasto-plastic frame structures, hence, the equilibrium
condition (2a,b) and the feasibility condition (6) or (8a,b), can be described
by means of the state function s∗ = s∗

(
a(ω), μ

)
defined, in the present case, by

s∗ = s∗
(
a(ω), μ

)
:= min

{
s :

∣∣∣zil

(
Fi; a(ω), x0

)∣∣∣− 1 ≤ s, i = 1, . . . , B,

l = 1, . . . , l0 + 3, CF = P
(
a(ω), μ

)}
. (10)

Hence, the state function s∗ is the minimum value function of the linear
program (LP)

min s (11a)

s.t. ∣∣∣∣∣zil

(
Fi; a(ω), x0

)∣∣∣∣∣− 1 ≤ s, i = 1, . . . , B, l = 1, . . . , l0 + 3 , (11b)

CF = P
(
a(ω), μ

)
. (11c)

Since the objective function s is bounded from below and a feasible solution
(s, F ) always exists, LP (11a–c) has an optimal solution

(s∗, F ∗) =

(
s∗
(
a(ω), μ

)
, F ∗

(
a(ω), μ

))
for each configuration

(
a(ω), x

)
of

the structure.
Consequently, for the survival of the structure we have the following cri-

terion, cf. [15]:

Theorem 1. The elasto-plastic frame structure having configuration (a, x0)
carries the exterior load P = P (a, μ) safely if and only if

s∗(a, μ) ≤ 0 . (12)
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Obviously, the constraint (11b) in the LP (11a–c) can also be represented by
∥∥∥∥∥z

(
F ; a(ω), x0

)∥∥∥∥∥
∞

− 1 ≤ s , (13a)

where z = z
(
F ; a(ω), x0

)
denotes the B(l0 + 3)-vector

z
(
F ; a(ω), x0

)
:=

(
z1

(
F ; a(ω), x0

)T

, . . . , zB

(
F ; a(ω), x0

)T
)T

, (13b)

and ‖z‖∞ is the maximum norm

‖z‖∞ := max
1≤i≤B

1≤l≤l0+3

|zil| . (13c)

If we put
ŝ = 1 + s or s = ŝ− 1 , (14)

from (10) we obtain
s∗(a, μ) = ŝ∗(a, μ) − 1 , (15a)

where the transformed state function ŝ∗ = ŝ∗(a, x) reads

ŝ∗(a, μ) := min
{∥∥∥z(F ; a, x0)

∥∥∥
∞

: CF = P (a, μ)
}
. (15b)

Hence, ŝ∗ = ŝ∗(a, μ) is the minimum value function of the LP

min
CF=P (a,μ)

∥∥∥z(F ; a, x0)
∥∥∥
∞
. (16)

The following inequalities for norms or power/Hölder means ‖z‖ in RB(l0+3)

are well known [1,8]:

1
B(l0 + 3)

‖z‖∞ ≤ 1
B(l0 + 3)

‖z‖1

≤ 1√
B(l0 + 3)

‖z‖2 ≤ ‖z‖∞ ≤ ‖z‖2 , (17a)

where

‖z‖1 :=
B∑

i=1

l0+3∑
l=1

|zil|, ‖z‖2 :=

√√√√ B∑
i=1

l0+3∑
l=1

z2
il . (17b)

Replacing in (15b) the norm ‖ · ‖∞ by ‖ · ‖2, from (17a) we get
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1
B(l0 + 3)

ŝ∗(a, μ) ≤ 1√
B(l0 + 3)

ŝ∗2(a, μ) ≤ ŝ∗(a, μ) ≤ ŝ∗2(a, μ) , (18a)

where ŝ∗2 = ŝ∗2(a, μ) is the modified state function function defined by

ŝ∗2(a, μ) := min
{∥∥z(F ; a, x0)

∥∥
2

: CF = P (a, μ)
}
. (18b)

Obviously, we have
ŝ∗2(a, μ) =

√
G∗

1(a, μ) , (18c)

where G∗
1(a, μ) is the minimum value function of the quadratic program

min
CF=P

(
a(ω),μ

)
B∑

i=1

l0+3∑
l=1

zil(Fi; a, x0)2 . (19)

2.1 Cost Functions

The inequalities in (18a) show that for structural analysis and optimal design
purposes we may work also with the state function ŝ∗2 = ŝ∗2(a, μ) which can
be defined easily by means of the quadratic program (19).

According to the definition (8b) and the corresponding technical inter-
pretation of the quotients zil, the transformed state function ŝ∗ = ŝ∗(a, μ)
represents the maximum degree of use of the plastic capacities relative to the
available plastic capacities in the members (bars) of the plane frame with
configuration (a, x). While the definition (15b) of ŝ∗ is based on the absolute
value function

c1(zil) = |zil| , (20a)

in the definition (18b) of ŝ∗2 occur quadratic functions

c2(zil) = z2
il , i = 1, . . . , B , l = 1, . . . , l0 + 3 . (20b)

If different weights are used in the objective function (19), then for the
bars we obtain, cf. (8c), the cost functions

qi(zi) = ‖Wi0zi‖2 , i = 1, . . . , B , (20c)

with an (l0 + 3) × (l0 + 3) matrix of weights Wi0.
The total weighted quadratic costs resulting from a load distribution F

acting on the plastic plane frame having configuration (a, x) are given, cf.
(18c), (19), (20c), by
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G1 :=
B∑

i=1

‖Wi0zi‖2 =
B∑

i=1

zT
i W

T
i0Wi0zi . (21a)

Defining

W0 :=

⎛
⎜⎜⎜⎝

W10 0 . . . 0
0 W20 . . . 0
...

...
. . .

...
0 0 . . . WB0

⎞
⎟⎟⎟⎠ , z :=

⎛
⎜⎜⎜⎝

z1
z2
...
zB

⎞
⎟⎟⎟⎠ , (21b)

we also have

G1 = G1(a, x0;F ) = zTWT
0 W0z

= ‖W0z‖2
2 = ‖z‖2

2,W0
, (21c)

where ‖ · ‖2,W0 denotes the weighted Euclidean norm

‖z‖2,W0 := ‖W0z‖2 . (21d)

Using the weighted quadratic cost function (20c), the state function
ŝ∗2 =ŝ∗2(a, μ) is replaced by

ŝ∗2,W0
(a, μ) := min

{∥∥z(F ; a, x0)
∥∥

2,W0
: CF = P (a, μ)

}
. (21e)

Since
‖z‖2,W0 = ‖W0z‖2 ≤ ‖W0‖ ‖z‖

with the norm ‖W0‖ of the matrix W0, we find

ŝ∗2,W0
(a, μ) ≤ ‖W0‖ŝ∗2(a, μ) . (21f)

On the other hand, in case

‖W0z‖2 ≥ W 0‖z‖2

with a positive constant W 0 > 0, we have

ŝ∗2,W0
(a, μ) ≥ W 0ŝ

∗
2(a, μ) or ŝ∗2(a, μ) ≤ 1

W 0

ŝ∗2,W0
(a, μ) . (21g)

Putting

H̃ :=

⎛
⎜⎜⎜⎝

H̃(1)

H̃(2)

. . .
H̃(B)

⎞
⎟⎟⎟⎠ , F̃ c :=

⎛
⎜⎜⎜⎝

F̃ c
1

F̃ c
2

...
F̃ c

B

⎞
⎟⎟⎟⎠ , �̃ :=

⎛
⎜⎜⎜⎝

�̃1

�̃2

...
�̃B

⎞
⎟⎟⎟⎠ , (21h)
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with (8e) we find

G1 = G1(a(ω), x0;F ) = (F − F̃ c)T H̃T �̃−1
d WT

0 W0�̃
−1
d H̃(F − F̃ c) , (22a)

assuming that
F̃ c = H̃F̃ c . (22b)

The symmetric case σL
yi = −σU

yi, i = 1, . . . , B, yields F̃ c = 0 and therefore

G1 = G1(a(ω), x0;F ) = FT H̃T �̃−1
d WT

0 W0�̃
−1
d H̃F . (22c)

3 Minimum Expected Quadratic Costs

According to the equilibrium conditions (2a,b), the total vector F of member
loads fulfills

CF = P (a(ω), μ) .

Let μ ≥ 0 denote a load factor, and let be a = a(ω) a realization of vector
a(·) of model parameters. Based on (22a) and (22c), a cost minimum internal
load distribution

F ∗ = F ∗(a(ω), μ)

of the structure can be obtained by solving the following optimization prob-
lem with quadratic objective function and linear constraints

min
CF=P (a(ω),μ)

G1(a(ω), x0;F ) . (23)

Solving the related stochastic optimization problem [14]

min
CF=P (a(ω),μ) a.s.

EG1(a(ω), x0;F ) , (24)

we get the minimum expected (total) quadratic costs

G
∗
1 = G

∗
1(μ) , (25a)

where G
∗
1(μ) may be obtained by interchanging expectation and minimization

G
∗
1(μ) = Emin{G1(a(ω), x0;F ) : CF = P (a(ω), μ)} . (25b)

The internal minimization problem (23)

min G1(a(ω), x0;F )s.t. CF = P (a(ω), μ) ,

hence,
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min
CF=P (a(ω),μ)

(F − F̃ c)T H̃T �̃−1
d WT

0 W0�̃
−1
d H̃(F − F̃ c) , (26)

with quadratic objective function and linear constraints with respect to F
can be solved by means of Lagrange techniques.

We put

W = W (a, x0) := H̃T ρ̃−1
d WT

0 W0ρ̃
−1
d H̃ (27)

and define the Lagrangian of (26):

L = L(F, λ) := (F − F̃ c)TW (F − F̃ c) + λT (CF − P (a(ω), μ)) . (28a)

The necessary and sufficient optimality conditions for a minimum point
(F ∗, λ∗) read:

0 = ∇FL = 2W (F − F̃ c) + CTλ (28b)
0 = ∇λL = CF − P. (28c)

Supposing that W is regular, we get

F = F̃ c − 1
2
W−1CTλ (28d)

and
P = CF = CF̃ c − 1

2
CW−1CTλ , (28e)

hence,

F ∗ = F̃ c − 1
2
W−1CTλ∗ = F̃ c −W−1CT (CW−1CT )−1(CF̃ c − P ). (28f)

Inserting (28f) into the objective function G1(a(ω), x0;F ), according to
(22a) and (27) we find

G∗
1 = G∗

1(a(ω), μ)

= (F ∗ − F̃ c)TW (F ∗ − F̃ c)

=
(
(CF̃ c − P )T (CW−1CT )−1CW−1

)
W(

W−1CT (CW−1CT )−1(CF̃ c − P )
)

= (CF̃ c − P )T (CW−1CT )−1(CF̃ c − P )

= tr(CW−1CT )−1(CF̃ c − P )(CF̃ c − P )T , (28g)

The minimal expected value G∗
1 is then given by



98 K. Marti

G∗
1 = EG∗

1

(
a(ω), μ

)

= E
(
CF̃ c(a(ω), x0

)
− P

(
a(ω), μ)

)T
(
CW

(
a(ω), x0

)−1
CT

)−1

(
CF̃ c

(
a(ω), x0

)
− P

(
a(ω), μ

))

= E tr
(
CW

(
a(ω), x0

)−1
CT

)−1(
CF̃ c

(
a(ω), x0

)
− P

(
a(ω), μ

))

×
(
CF̃ c

(
a(ω), x0

)
− P

(
a(ω), μ

))T

. (29a)

If σL
yi = −σU

yi, i = 1, . . . , B, then F̃ c = 0 and

G∗
1(μ) = EP (a(ω), μ))T (CW (a(ω), x0)−1CT )−1P (a(ω), μ)

= trE
(
CW

(
a(ω), x0

)−1
CT

)−1

P
(
a(ω), μ

)
P
(
a(ω), μ

)T
. (29b)

Since the vector P = P (a(ω), μ) of external loads and the vector of
yield stresses σU = σU (a(ω), x) are stochastically independent, then in case
σL

yi = −σU
yi, i = 1, . . . , B, we have

G∗
1(μ) = EP (a(ω), μ))TU(x0)P (a(ω), μ)

= trU(x0)EP (a(ω), μ)P (a(ω), μ)T , (29c)

where
U(x0) := EK(a, x0)−1 , (29d)

with
K(a, x0) := CK0(a, x0)CT (30a)

and
K0(a, x0) := W (a, x0)−1 = (H̃T �̃−1

d WT
0 W0�̃

−1
d H̃)−1. (30b)

We compare now, especially in case F̃ c = 0, formula (28g) for the costs
G∗

1 = G∗
1(a, μ) with the formula

Γ := uTP

for the “compliance” of an elastic structure [10], where

u := K−1
el P

is the vector of displacements, and Kel denotes the stiffness matrix in case of
an elastic structure. Obviously, the cost function G∗

1 = G∗
1(a, μ) may be

interpreted as a generalized compliance function, and the m × m matrix
K = K(a, x0) can be interpreted as the “generalized stiffness matrix” of
the underlying plastic mechanical structure. If we suppose that
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Wi0 :=

⎛
⎝w0

i1 0
w0

i2

0 w0
i3

⎞
⎠ , i = 1, . . . , B (30c)

are diagonal weight matrices, then, cf. (8g),

�̃−1
d WT

0 W0�̃
−1
d = diag

((
w0

il

�̃il

)2
)
. (30d)

4 Deterministic Substitute Problems

4.1 Maximization of the Load Factor Subject
to Reliability Constraints

With the expected primary cost function

G0(μ) = ϕ(μ)

e.g. ϕ0(μ) := −μ, see (1), and the expected cost function G∗
1 = G∗

1(μ) rep-
resenting the expected total quadratic costs resulting from a violation of the
feasibility condition (4a,f), we get [5–7] the optimization problem

min G0(μ) (31a)
s.t. G∗

1(μ) ≤ Gmax
1 , (31b)

μ ≥ 0 . (31c)

As shown in the following, for W0 = I (identity matrix) the expected cost
constraint (31b) can also be interpreted as a reliability constraint.

According to Theorem 1, (12) and (15a,b), for the probability of survival
ps = ps(μ) of the elasto-plastic structure having load factor μ, we have

ps(μ) := P
(
s∗
(
a(ω), μ

)
≤ 0

)

= P
(
ŝ∗
(
a(ω), μ

)
− 1 ≤ 0

)
= P

(
ŝ∗
(
a(ω), μ

)
≤ 1

)
. (32)

Knowing from (18a,b) that, in case W0 = I,

1√
B(l0 + 3)

ŝ∗2(a, μ) ≤ ŝ∗(a, μ) ≤ ŝ∗2(a, μ) ,

we obtain the probability inequalities

P
(
ŝ∗2
(
a(ω), μ

)
≤ 1

)
≤ ps(μ) ≤ P

(
ŝ∗2(a, μ) ≤

√
B(l0 + 3)

)
. (33a)
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Due to the first definition of G∗
1 = G∗

1(a, μ) by (18c) and (19), related to the
case W0 = I, we also have

P
(
G∗

1

(
a(ω), μ

)
≤ 1

)
≤ ps(μ) ≤ P

(
G∗

1

(
a(ω), μ

)
≤ B(l0 + 3)

)
. (33b)

Using now a non-negative, non-decreasing, measurable function h on R+, for
any g1 > 0 we find [12,14]

P
(
G∗

1

(
a(ω), μ

)
≤ g1

)
≥ 1 −

Eh
(
G∗

1

(
a(ω), μ

))

h(g1)
. (34a)

In the case h(t) = t we get the inequality

P
(
G∗

1

(
a(ω), μ

)
≤ g1

)
≥ 1 − G∗

1(μ)
g1

, (34b)

where the expectation G∗
1(μ) = EG∗

1

(
a(ω), μ

)
is given by (29a) or (29b). The

probabilistic constraint

P
(
G∗

1

(
a(ω), μ

)
≤ g1

)
≥ αmin , (35a)

cf. (33b), can be guaranteed then by the condition

G∗
1(μ) ≤ g1(1 − α) , (35b)

see (31b).

4.2 Minimum Expected Total Costs

For a load factor μ ≥ 0 and a vector F of internal loads fulfilling the equi-
librium conditions (2a,b), according to (1) and (22a,b) we have the total
costs

G(a(ω), μ;F ) := G0(a(ω), μ) +G1(a(ω), x0;F ) . (36a)

Here, the weight or scale matrices Wi0 and the weight cost factors γi0, i =
1, . . . , B, must be selected such that the dimensions of G0 and G1 coincide.

Minimizing now the expected total costs

G = G(μ) = EG(a(ω), μ;F (ω)) (36b)
= E(G0(a(ω), μ) +G1(a(ω), x0;F (ω)))
= EG0(a(ω), μ) + EG1(a(ω), x0;F (ω))
= G0(μ) + EG1(a(ω), x0;F (ω))
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subject to the equilibrium conditions (2a,b) and the remaining condition

μ ≥ 0 , (36c)

we obtain the stochastic optimization problem

min E(G0(a(ω), μ) +G1(a(ω), x0;F (ω)) (37a)
s.t. CF (ω) = P

(
a(ω), μ

)
a.s. (37b)

μ ≥ 0 . (37c)

Obviously, (37a–c) has the following two-stage structure:

Step 1: Select μ ≥ 0 without knowledge of the actual realization a = a(ω)
of the model parameters, but knowing the probability distribution
or certain moments of a(·);

Step 2: Determine F = F ∗(ω) after realization of a = a(ω).

Therefore, problem (37a–c) is equivalent to

min
μ≥0

E

(
G0(μ) + min

CF=P (a(ω),μ)
G1(a(ω), x0;F )

)
. (38)

According to definition (25b) of G∗
1(μ), problem (38) can be represented

also by
min
μ≥0

(
G0(μ) +G∗

1(μ)
)
. (39)

5 Limit Load Analysis

In limit load analysis [4, 9], the external load P = P
(
a(ω), μ

)
is given by

P
(
a(ω), μ

)
:= P0

(
a(ω)

)
+ μP1

(
a(ω)

)
, (40)

with certain random m-vectors P0 = P0

(
a(ω)

)
, P1 = P1

(
a(ω)

)
. According

to (29a), for the minimum expected cost function G∗
1 = G∗

1(μ) we have

G∗
1(μ) = E trK

(
a(ω), x0

)−1 (
CF̃ c

(
a(ω), x0

)
− P

(
a(ω), μ

))

×
(
CF̃ c

(
a(ω), x0

)
− P

(
a(ω), μ

))T

with

K
(
a(ω), x0

)
= CK0

(
a(ω), x0

)
CT = CW

(
a(ω), x0

)−1

CT .
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Because of (40), for G∗
1 = G∗

1(μ) we find the quadratic function

G∗
1(μ) = g∗0 − μg∗1 + μ2g∗2 , μ ≥ 0 , (41a)

where

g∗0 = G∗
1(0) = E trK

(
a(ω), x0

)−1 (
CF̃ c

(
a(ω), x0

)
− P0

(
a(ω)

))

×
(
CF̃ c

(
a(ω), x0

)
− P0

(
a(ω)

))T

, (41b)

g∗1 = E trK
(
a(ω), x0

)−1 (
CF̃ c

(
a(ω), x0

))
− P0

(
a(ω)

)
P1

(
a(ω)

)T

+P1

(
a(ω)

)(
CF̃ c

(
a(ω), x0

)
− P0

(
a(ω)

)T
)
, (41c)

g∗2 = E trK
(
a(ω), x0

)−1

P1

(
a(ω)

)
P1

(
a(ω)

)T

. (41d)

In the case σL
yi = −σU

yi, i = 1, . . . , B, and therefore F̃ c = 0, we have

g∗0 = trEK
(
a(ω, x0

)−1

EP0

(
a(ω)

)
P0

(
a(ω)

)T

, (41b’)

g∗1 = − trEK
(
a(ω), x0

)−1

E

(
P0

(
a(ω)

)
P1

(
a(ω)

)T

+P1

(
a(ω)

)
P0

(
a(ω)

)T
)
, (41c’)

g∗2 = trEK
(
a(ω), x0

)−1

EP1

(
a(ω)

)
P1

(
a(ω)

)T

, (41d’)

since the random material and load parameters are stochastically indepen-
dent. Note that

g∗0 ≥ 0, g∗2 > 0 . (42)

The substitute problem described in Sects. 4.1 and 4.2 have then the following
explicit form:

(A) Expected cost (reliability) constraints

min G0(μ) (43a)
s.t. g∗0 − μg∗1 + μ2g∗2 ≤ Gmax

1 , (43b)
μ ≥ 0 . (43c)

(B) Expected total cost minimization

min
μ≥0

G0(μ) + g∗0 − μg∗1 + μ2g∗2 . (44)
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6 Complete Limit Load Analysis

Up to now the computation of the maximum load factor μ∗ = μ∗(x0) has
been considered, see Sect. 5, for an elasto-plastic mechanical structure having
a given, fixed design x0 ∈ D. In the following we are looking for a load factor

μ∗ = μ∗(D)

being globally maximum with respect to arbitrary designs x varying in a
given, fixed admissible domain D ⊂ Rr.

Hence, for a design vector x = (x1, . . . , xr)T ∈ D and a load factor μ ≥ 0,
we define

x̂ :=
(
x

μ

)
= (x1, x2, . . . , xr, μ)T .

Furthermore, we first suppose that the structure consists of uniform material
with a symmetric random yield stress in compression and tension. Hence, we
assume next to

σU
yi = −σL

yi = σU
y = σU

y (ω), i = 1, . . . , B , (45)

with a random yield stress σU
y (ω). Due to (8e) we have

�̃i

(
a(ω), x

)
= Ai(σU

yi, σ
U
yiyic, σ

U
yiyic, σ

U
yih1ηi, . . . , σ

U
yihl0ηi)T

= σU
y Ai(1, yic, yic, h1ηi, . . . , hl0ηi)T := σU

y �̃i(x) (46a)

and therefore, see (8d),

�̃
(
a(ω), x

)
= σU

y (ω)�̃(x) (46b)

with �̃i(x) := Ai(1, yic, yic, h1ηi, . . . , hl0ηi)T , ηi := min
{

1
Ni0

,
yic

Mi0

}
and

�̃(x) =

⎛
⎜⎝
�̃1(x)

...
�̃B(x)

⎞
⎟⎠ . (46c)

According to (30a,b), for fixed weight matrices Wi0, i = 1, . . . , B, we obtain

K
(
a(ω), x

)
= CK0

(
a(ω), x

)
CT (47a)

with

K0

(
a(ω), x

)
= (H̃T �̃−1

d WT
0 W0�̃

−1
d H̃)−1

= σU
y (ω)2K̃0(x) , (47b)
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where
K̃0(x) :=

(
H̃T �̃(x)−1

d WT
0 W0�̃(x)−1

d H̃
)−1

. (47c)

Now, (29d,e), (30a,b) and (47a–c) yield

K
(
a(ω), x

)
= σU

y (ω)2CK̃0(x)CT = σU
y (ω)2K̃(x) (48a)

with the deterministic matrix

K̃(x) := CK̃0(x)CT . (48b)

Moreover, we get

U
(
a(ω), x

)
:= K

(
a(ω), x

)−1 =
(
σU

y (ω)2K̃(x)
)−1

=
1

σU
y (ω)2

K̃(x)−1 . (48c)

Hence, see (29d),

U(x) = EU
(
a(ω), x

)
=

(
E

1
σU

y (ω)2

)
K̃(x)−1 . (48d)

In case of a random weight matrix W0 = W0

(
a(ω)

)
, for U(x) we also

obtain a representation of the type (48d), provided that (i) the random vari-
ables W0

(
a(ω)

)
and σU

y (ω) are stochastically independent and (ii) K̃(x) is
defined by

K̃(x) :=

⎛
⎝E

(
CK̃0

(
W

(
a(ω)

)
, x
)
CT

)−1
⎞
⎠

−1

. (48e)

Corresponding to (29c), with x̂ =
(

x
μ

)
we get

G∗
1(x̂) = EG∗

1

(
a(ω), x̂

)
= trU(x)EP

(
a(ω), μ

)
P
(
a(ω), μ

)T

=
(
E

1
σU

y (ω)2

)
tr K̃(x)−1EP

(
a(ω), μ

)
P
(
a(ω), μ

)T
. (49)

Representing the m×m matrix

B(μ) := EP
(
a(ω), μ

)
P
(
a(ω), μ

)T

= P (μ)P (μ)T + cov
(
P
(
a(·), μ

))

=
(
b1(μ), b2(μ), . . . , bm(μ)

)
(50a)
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by its columns bj(μ), j = 1, . . . ,m, where we still set

P (μ) := EP
(
a(ω), μ

)
, (50b)

cov
(
P
(
a(·), μ

))
:= E

(
P
(
a(ω), μ

)
− P (μ)

)(
P
(
a(ω), μ

)
− P (μ)

)T

,(50c)

we find

Z(x̂) = (z1, z2, . . . , zm) := E

(
1

σU
y (ω)2

)
K̃(x)−1B(μ)

= E

(
1

σU
y (ω)2

)(
K̃(x)−1b1(x), K̃(x)−1b2(μ), . . . , K̃(x)−1bm(μ)

)
(50d)

However, (50d) is equivalent to the following equations for the columns zj ,
j = 1, . . . , B,

K̃(x)zj = E

(
1

σU
y (ω)2

)
bj(μ), j = 1, . . . ,m . (51)

With Eq. (51) for zj , j = 1, . . . ,m, the expected cost function G∗
1(x̂) can be

represented now by
G∗

1(x̂) = tr(z1, z2, . . . , zm). (52)

Having (51) and (52), the deterministic substitute problems (31a–c) and
(39) can be represented as follows:

Theorem 2. Expected cost based optimization (ECBO). Suppose that
Wi0, i = 1, . . . , B, are given fixed weight matrices. Then the expected costbased
optimization problem (31a–c) can be represented by

min G0(μ) (53a)
s.t. tr(z1, z2, . . . , zm) ≤ Gmax

1 , (53b)

K̃(x)zj = E

(
1

σU
y (ω)2

)
bj(μ), j = 1, . . . ,m , (53c)

x ∈ D, μ ≥ 0 , (53d)

where the vectors bj = bj(μ), j = 1, . . . ,m, are given by (50a).

Obviously, (53a–d) is an ordinary deterministic parameter optimization
problem having the additional auxiliary variables zj ∈ Rm, j = 1, . . . ,m.

For the second substitute problem we get this result:

Theorem 3. Minimum expected costs. Suppose that W0i, i = 1, . . . , B,
are given fixed weight matrices. Then the minimum expected cost problem
(39) can be represented by
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min G0(μ) + tr(z1, z2, . . . , zm) (54a)

s.t. K̃(x)zj = E

(
1

σU
y (ω)2

)
bj(μ), j = 1, . . . ,m , (54b)

x ∈ D, μ ≥ 0 . (54c)

Remark 1. According to (48b) and (47c), the matrix K̃ = K̃(x) is a simple
function of the design vector x.

6.1 The Case of Non-uniform Material

If a representation of

U(x) = EU
(
a(ω), x

)
= EK

(
a(ω), x

)−1 = β(ω)K̃(x)−1 ,

see (29d), (30a,b), of the type (48d) does not hold, then we may apply the
approximative procedure described in the following.

First, the probability distribution Pa(·) of the random vector a = a(ω) of
model parameters is approximated, as far it concerns the subvector aI = aI(ω)
of a = a(ω) of model parameters arising in the matrix

K = K
(
a(ω), x

)
= K

(
aI(ω), x

)
,

by a discrete distribution

P̂aI(·) :=
N∑

s=1

αsεa
(s)
I

(55)

having realizations a(s)
I taken with probabilities αs, s = 1, . . . , N .

Then, the matrix function U = U(x) can be approximated by

Û(x) :=
N∑

s=1

αsK
(s)(x)−1 , (56a)

where
K(s)(x) := K(a(s)

I , x) = CK0(a
(s)
I , x)CT , (56b)

see (30b). Consequently, the expected cost function G∗
1 = G∗

1(x̂) is approxi-
mated by

Ĝ∗
1(x̂) := tr Û(x)EP

(
a(ω), μ

)
P
(
a(ω), μ

)T

=
N∑

s=1

αs trK(s)(x)−1EP
(
a(ω), μ

)
P
(
a(ω), μ

)T
. (57)



Stochastic Limit Load Analysis of Elasto-Plastic Plane Frames 107

Corresponding to (50d), we define now the auxiliary matrix variables

z(s) = (z(s)
1 , z

(s)
2 , . . . , z(s)

m ) := K(s)(x)−1B(μ)

=
(
K(s)(x)−1b1(μ),K(s)(x)−1b2(μ) . . . ,K(s)(x)−1bm(μ)

)
, (58)

where B = B(μ) is defined again by (50a). Thus, for the columns z
(s)
j ,

j = 1, . . . ,m, we obtain the conditions

K(s)(x)z(s)
j = bj(μ), j = 1, . . . ,m , (59)

for each s = 1, . . . , N . According to (57) and (58), the approximate expected
cost function Ĝ∗

1 = Ĝ∗
1 reads

Ĝ∗
1(x̂) =

N∑
s=1

αs tr
(
z
(s)
1 , z

(s)
2 , . . . , z(s)

m

)
, (60)

where z(s)
j , j = 1, . . . ,m, s = 1, . . . , N , are given by (59).

Because of the close relationship between the representations (60) and (52)
for Ĝ∗

1, G
∗
1, approximate mathematical optimization problems result from (60)

which are similar to (53a–d), (54a–c), respectively.

7 Numerical Example

In order to consider the properties of the presented methods, the two-storey
frame in Fig. 1 with rectangular cross-sectional area A = b h, with height
h and width b is studied. The numerical results presented in this section
for substitute Problem 4.1, i.e. the maximization of the load factor subject
to the expected cost (reliability) constraint, were obtained by Simone Zier,
Institute for Mathematics and Computer Applications, Federal Armed Forces
University Munich.

In the following we study the influence of the normal distributed force com-
ponent P2x(ω) on the limit load analysis. In order to determine the probability
of failure, we use a discrete approximation of the normal distribution accord-
ing to Fig. 2. The primary cost function is defined, cf. (1), by G0(μ) = −γμ
with a weight factor γ > 0.

We take γ = 10, and for the elements w0
ik of the 3 × 3 diagonal weight

matrices Wi0 we choose w0
ik = w = 100, w0

ik = w = 200, resp., i = 1, . . . , 6,

k = 1, 2, 3. Furthermore, the external load vector P
(
a(ω), μ

)
, cf. (2a), is

given by P0

(
a(ω)

)
:= 0 and

P1

(
a(ω)

)
:=

(
PT

11, P
T
12, 0

T , 0T
)T

.
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Finally, we set Gmax
1 := 50000, and we take the cross-sectional area

600mm2, 10mm2, resp., for the bars 1–3, 4–6, see [16].
As can be seen by Figs. 3 and 5 for w = 100, 200, resp., the maximum

load factor μ∗ is decreasing, the expected costs are increasing with increasing
expected load component P 2x. Moreover, with increasing P 2x, the probability
of failure pf may increase too, see Fig. 4(a). However, in case of a sufficiently
high cost factor w, pf remains at a very low level see Fig. 4(b).

Comparing Figs. 3 and 5, we observe the same behaviour of the maximum
load factor and the expected costs for w = 100, w = 200, resp.; however, the
values of the maximum load factor μ∗ are smaller in case of the large cost
factor w = 200.
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Limit Load Analysis of Plane Frames
Under Stochastic Uncertainty

S. Zier and K. Marti

Abstract Using the first collapse theorem the necessary and sufficient con-
straints of a structure consist of the yield condition and the equilibrium con-
dition. In the recent field of research stochastic uncertainties have been taken
into account. This leads to a stochastic optimization problem which cannot
be solved using the traditional methods. Instead of that appropriate (de-
terministic) substitute problems must be formulated. In the following, the
limit load analysis of plane frames is treated where the load is supposed to
be stochastic. Here, both forces and moments have to be taken into con-
sideration. The recourse problem will be formulated in general and in the
standard form of stochastic linear programming (SLP). After the formula-
tion of the stochastic optimization problem, the expected value problem and
the recourse problem with discretisation are introduced as representatives of
substitute problems. Subsequently, some numerical results of the application
of the presented methods to a two-storey frame are shown.

1 Formulation of the Problem

At the beginning general aspects of plastic analysis are mentioned includ-
ing the static and the kinematic theorem. Afterwards foundations of plastic
theory are given.
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1.1 Plastic Analysis of Structures

Many materials, e.g. most of metals, have distinct, plastic properties, i.e.,
they are ductile, see e.g. [4, 13]. Even after the stress intensity attains the
yield point stress, such materials can deform considerably without breaking.
This implies that if the stress intensity at a certain point of a hyperstatic
structure reaches the critical (yield) value, the structure does not necessarily
fail or deform excessively. Instead, a certain amount of stress redistribution
takes place and some further load increments can be supported. Structural
failure does not occur before a kinematic mechanism of unconstrained plastic
flow develops. Thus, the actual load-carrying capacity of a structure is higher
(in some cases quite considerably) than that derived from classical elastic
analysis.

A crucial question for the engineer designing structures like buildings,
bridges, etc., or structural components is to which extent a plastic deformation
is permissible without leading to a failure of the structure, the component,
resp., with respect to the expected load and material strength conditions.
Applying standard methods, the load carrying capacity is determined using a
certain code with general rules for safety evaluations. The use of such general
rules may be very expensive in the safety evaluation and design of a struc-
ture. On the other hand, safety assessment and design based on stochastic
optimization techniques taking into account the available knowledge about
random parameter variations reduce the expected total project costs (pri-
mary costs, e.g. costs of construction, plus recourse costs, e.g. strengthening
costs) considerably. In addition to that, by using analytical methods, it is
possible to relate the optimal solution of a stochastic linear problem with
certain cost coefficients and the optimal solution of a chance constrained or
reliability-based program with a certain bound for the probability of fail-
ure [10]. Consequently, this way one obtains more robust (safe) informa-
tion about the maximum load factors, hence, the carrying capacity. A fur-
ther big advantage of stochastic optimization methods is the possibility of
updates of the maximum load factors based on inspection, sampling and
other posterior information about the probability distribution of the random
parameters.

For elastic-perfectly plastic materials, the ultimate load condition corre-
sponding to complete collapse of the structure can be obtained through ap-
plication of a pair of dual theorems [7, 9, 13]:

(ST) Static Theorem (lower bound or safe theorem)
If any stress distribution throughout the structure can be found which
is everywhere in equilibrium internally and balances the external
loads, and at the same time does not violate the yield condition,
those external loads will be carried safely by the structure.

(KT) Kinematic Theorem (upper bound or unsafe theorem)
Collapse occurs if a collapse mechanism, fulfilling the compatibility
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condition, exists such that the work done by the external loads is
larger than the corresponding internal plastic work.

Limit analysis is concerned [2–12, 14–20, 23, 24] with establishing the
strength of a structure, i.e., its capacity for the supporting of loads. Hence,
using the plastic ductility of structural materials in improving the design
of structures, limit analysis is not concerned with deformation: it can not
therefore provide the load carrying capacity for a structure with elements
that have a limited ductility or deformability, nor for a structure which be-
comes unstable because of the displacements induced by plastic deformation,
see [7, 9, 14,16].

1.2 Foundations from Plasticity Theory

A frame is a structure consisting of a certain number B of beams or bars
which are rigid-jointed among each other and the foundation at a certain
number J of nodes [21].

In limit load analysis the aim is to maximize the load factor μ while several
constraints have to be fulfilled. For the equilibrium condition the equation

CF = μP0 (1a)

has to hold, where C represents the equilibrium matrix, F is the vector of
the interior forces and moments, and P0 denotes an external reference load
vector.

We suppose that the frame is built of elasto-plastic material. That means
that the behaviour under load is at first elastic and can be described linearly
by Hooke’s Law and then after exceeding a limit – called yield stress – the
material starts yielding. This behaviour is described by the yield condition

F ∈ K (1b)

with the feasible domain K.
In addition we have the non-negativity condition

μ ≥ 0 (1c)

for the load factor μ to be maximized.
We suppose that the external reference load is not deterministic, but de-

pends on certain stochastic parameters, describing random external load vari-
ations due to e.g. wave, wind, snow loads, etc.

If we denote the stochastic elements as ω we get the external loads P0(ω)
as functions of ω. Problem (1a–c) can be fomulated therefore as
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maxμ (2a)
s.t. CF = μP0(ω) almost surely (a.s.) (2b)

F ∈ K a.s. (2c)
μ ≥ 0 . (2d)

While the actual realisation of the random element ω is not known, we
suppose that its distribution is known.

A basic principle to cope with uncertainty is based on compensation, cor-
rections, hence, recourse. Recourse is the ability to take corrective actions -
such as repair, strenghtening, etc. – after a random event has taken place.

We add so called recourse costs Q(y) in the case that the yield condition
is violated. Here, y are auxiliary variables introduced to describe whether or
not the yield condition is violated.

Before we formulate the recourse problem in a mathematical way, we need
to introduce some more notations.

For each beam i the element-load vector

Fi = (fi,m
+
i ,m

−
i )T ,

built of the normal force fi, the moment m+
i at the positive (right) end of

the beam and the moment m−
i at the negative (left) end is considered. These

vectors are summarized in the total vector of the internal loads

F = (FT
1 , . . . , F

T
B )T .

Besides that we need also plastic capacities. The tension capacity NU
ipl can

be calculated by
NU

ipl = σU
yi Ai, (3a)

where σU
yi is the yield stress in tension. The compression capacity NL

ipl is
analogue

NL
ipl = |σL

yi|Ai = −σL
yi Ai, (3b)

where σL
yi is the yield stress in compression.

The moment capacity Mipl is given by

Mipl = σU
yi Wipl, (3c)

where Wipl is the plastic section modulus [9, 18].
The plastic capacity of an element concerning compression FL

i , concerning
tension FU

i , resp., can then be described by

FL
i = (−NL

ipl,−Mipl,−Mipl)T , (3d)

FU
i = (NU

ipl,Mipl,Mipl)T , (3e)

respectively.
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1.3 Linearization of the Yield Condition

The feasible domain is given by

K =
{

(N,M)T ∈ R2 :
∣∣∣∣ NNpl

∣∣∣∣
α

+
∣∣∣∣ MMpl

∣∣∣∣ ≤ 1
}
. (4)

Here, α is a geometric parameter which depends on the cross-sectional area
of the beams. In [9] several values for α for special cross-sectional areas are
given. The feasible domain for certain cross-sectional areas can be seen in
Fig. 1.

However, this is no linear condition. In order to apply linear optimiza-
tion methods, being faster and numerically easier to handle, piecewise linear
approximations are needed.

The most simple approximation is by a square from outside the admissible
domain as seen in Fig. 2(a).

In doing so, the yield condition can simply be written as

FL ≤ F ≤ FU . (5)

N/Npl

M/Mpl

1

1

α = 1.68 (annulus)
α = 2 (rectangle)
α = 3.12 (cross)

Fig. 1 Feasible domain K =

{
(N, M)T ∈ R2 :

∣∣∣∣∣
N

Npl

∣∣∣∣∣
α

+

∣∣∣∣∣
M

Mpl

∣∣∣∣∣ ≤ 1

}
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N/Npl

(a) Zero order

M/Mpl

1

1

(b) First order

M/Mpl

N/Npl
1

1

Fig. 2 Piecewise linear approximation of the feasible domain K from outside

Since there is no relationship between the plastic capacities, this approxima-
tion is called approximation without M-N-interaction.

A better approximation from outside is achieved by considering certain
tangents to the feasible domain.

In Fig. 2(b) an approximation of first order using four additional tangents
can be seen.

In the following, the approximation of zero order from outside is consid-
ered, that means without M-N-interaction where the yield condition can be
written as (5). That means, with (3a–e), for each element-load vector Fi the
inequalities

σL
yi Ai ≤ fi ≤ σU

yi Ai, (6a)

−σU
yi Wipl ≤ m+

i ≤ σU
yi Wipl, (6b)

−σU
yi Wipl ≤ m−

i ≤ σU
yi Wipl (6c)

have to hold. If we introduce

ȳic :=
Wipl

Ai
(7)

and the auxiliary variables zL
i , z

U
i , z

+L
i , z+U

i , z−L
i and z−U

i , we get for (6a–c)
the equalities
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σL
yi Ai + zL

i = fi, (8a)

fi + zU
i = σU

yi Ai, (8b)

−σU
yi Ai ȳic + z+L

i = m+
i , (8c)

m+
i + z+U

i = σU
yi Ai ȳic, (8d)

−σU
yi Ai ȳic + z−L

i = m−
i , (8e)

m−
i + z−U

i = σU
yi Ai ȳic. (8f)

If an auxiliary variable is non-negative, the associated inequality is satisfied.
Otherwise it is violated. In order to get a formulation with only non-negative
variables, we split the auxiliary variables into their positive and negative part
and get the constraints

σL
yi Ai + yL+

i − yL−
i = fi, (9a)

fi + yU+
i − yU−

i = σU
yi Ai, (9b)

−σU
yi Ai ȳic + y+L+

i − y+L−
i = m+

i , (9c)

m+
i + y+U+

i − y+U−
i = σU

yi Ai ȳic, (9d)

−σU
yi Ai ȳic + y−L+

i − y−L−
i = m−

i , (9e)

m−
i + y−U+

i − y−U−
i = σU

yi Ai ȳic, (9f)

yL+
i , yL−

i , yU+
i , yU−

i , y+L+
i , y+L−

i , y+U+
i , y+U−

i ,y−L+
i , y−L−

i , y−U+
i , y−U−

i ≥ 0.
(9g)

If we eliminate fi, m+
i and m−

i , by inserting (9a), (9c), (9e), resp., into (9b),
(9d), (9f), resp., we can reduce the system of equations for a single beam i to

yL+
i − yL−

i + yU+
i − yU−

i = −(σL
yi − σU

yi)Ai, (10a)

y+L+
i − y+L−

i + y+U+
i − y+U−

i = 2σU
yi Ai ȳic, (10b)

y−L+
i − y−L−

i + y−U+
i − y−U−

i = 2σU
yi Ai ȳic, (10c)

yL+
i , yL−

i , yU+
i , yU−

i , y+L+
i , y+L−

i , y+U+
i , y+U−

i ,y−L+
i , y−L−

i , y−U+
i , y−U−

i ≥ 0,
(10d)



120 S. Zier and K. Marti

which can be formulated for the whole structure by

⎛
⎝IB − IB IB − IB

IB − IB IB − IB

IB − IB IB − IB

⎞
⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yL+

yL−

yU+

yU−

y+L+

y+L−

y+U+

y+U−

y−L+

y−L−

y−U+

y−U−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σL
y1 − σU

y1

. . .
σL

yB − σU
yB

−2σU
y1 · ȳ1c

. . .
−2σU

yB · ȳBc

−2σU
y1 · ȳ1c

. . .
−2σU

yB · ȳBc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎝
A1

...
AB

⎞
⎟⎠ , (11)

with the B × B identity matrix IB and the vectors yΓ = (yΓ
1 , . . . , y

Γ
B) with

Γ ∈ {L+, L−, U+, U−,+L+,+L−,+U+,+U−,−L+,−L−,−U+,−U−}.

1.4 Cost Function

Instead of maximizing the load factor μ, we often minimize a kind of cost
function with can be built easily by the negative load factor which is eventu-
ally weighted by a factor γ. These are then called costs of first stage or initial
costs.

Such an approach, considering the appearing costs, is a standard one in
the reliability-based structural optimization. More precisely, the objective
function represents the life cycle costs and has to consider, besides the already
mentioned initial construction costs, the expected cost consequences related
to partial or total system failure [5,6]. Furthermore, the probabilities of failure
can always be interpreted by expected costs. Indeed, the corresponding cost
function is just the characteristic function of the domain of failure.
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The costs which result from violation of the yield condition – also called
costs of second stage or penalty or recourse costs – are in many cases described
by additive terms. One possible way to build a total costfunction is

G0(μ) = − γμ+
B∑

i=1

1
LiAi

(
qL
i y

L−
i + qU

i y
U−
i + q+L

i y+L−
i

+ q+U
i y+U−

i + q−L
i y−L−

i + q−U
i y−U−

i

)
(12)

with qL
i = γL

i

Li

Ei
, qU

i = γU
i

Li

Ei
,

q+L
i = γ+L

i

Li

Ei

1
ȳic

, q+U
i = γ+U

i

Li

Ei

1
ȳic

,

q−L
i = γ−L

i

Li

Ei

1
ȳic

, q−U
i = γ−U

i

Li

Ei

1
ȳic

.

Here, qi are costfactors which consist of a weighting factor γi which controls
how heavy each violation is punished and quotients Li

Ei
, Li

Ei

1
ȳic

, resp., which
results in the same dimension for all terms, namely volums [15,22].

These quotients are used since a change in the volume ΔV can be ex-
pressed by

ΔV = AΔL (13a)

which, after including the relationships

ΔL =
L

E
Δσ (13b)

for the change in length under elastic consideration and

Δσ =
ΔF

A
± ΔM

W
(13c)

in the case where the cross-sectional area is symmetric to the neutral fibre
can be written as

ΔV = AΔL = A
L

E
Δσ,

= A
L

E

(
ΔF

A
± ΔM

W

)
,

=
L

E
ΔF ± L

E

A

W
ΔM,

=
L

E
ΔF ± L

E

1
ȳc
ΔM, (14)

where “+” is used for the upper fibre and “−” for the lower one.
In order to add these costs to the dimensionless load factor μ we scale

them with a reference volume, namely the volume of each beam LiAi.
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1.5 Reformulation of the Equilibrium Condition

In order to have a uniform formulation of all constraints, we also eliminate
the variables fi,m

+
i and m−

i from the equilibrium condition (2b)

CF = C ·

⎛
⎜⎝
F1

...
FB

⎞
⎟⎠ = C ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

m+
1

m−
1
...
fB

m+
B

m−
B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μP0(ω) (15)

by inserting (9a), (9c) and (9e) which leads to

C ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σL
y1 A1 + yL+

1 − yL−
1

−σU
y1 A1 ȳ1c + y+L+

1 − y+L−
1

−σU
y1 A1 ȳ1c + y−L+

1 − y−L−
1

...

σL
yB AB + yL+

B − yL−
B

−σU
yB AB ȳBc + y−L+

B − y−L−
B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σL
y1 A1

−σU
y1 A1 ȳ1c

−σU
y1 A1 ȳ1c

...

σL
yB AB

−σU
yB AB ȳBc

−σU
yB AB ȳBc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ C ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yL+
1 − yL−

1

y+L+
1 − y+L−

1

y−L+
1 − y−L−

1

...

yL+
B − yL−

B

y+L+
B − y+L−

B

y−L+
B − y−L−

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μP0(ω). (16)

Therefore, the equilibrium condition (2b) can be represented in matrix form

C̃ ·

⎛
⎝IB −IB

IB −IB

IB −IB

⎞
⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

yL+

yL−

y+L+

y+L−

y−L+

y−L−

⎞
⎟⎟⎟⎟⎟⎟⎠

− μP0(ω) =

− C̃ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σL
y1

. . .
σL

yB

−σU
y1ȳ1c

. . .
−σU

yB ȳBc

−σU
y1ȳ1c

. . .
−σU

yB ȳBc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎝
A1

...
AB

⎞
⎟⎠ ; (17)
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where the matrix C̃ results from the equilibrium matrix C by a certain per-
mutation of columns.

1.6 Standard Form of a Stochastic Linear Programming
with Recourse

By introducing the recourse matrix

W :=

⎛
⎜⎜⎜⎜⎜⎜⎝

IB − IB IB − IB

IB − IB IB − IB

IB − IB IB − IB

C̃ ·

⎛
⎝IB − IB 0 0

IB − IB 0 0
IB − IB 0 0

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)

and the matrix
H :=

(
H1

H2

)
(19)

with

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σL
y1 − σU

y1

. . .
σL

yB − σU
yB

−2σU
y1 · ȳ1c

. . .
−2σU

yB · ȳBc

−2σU
y1 · ȳ1c

. . .
−2σU

yB · ȳBc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and H2 = C̃ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σL
y1

. . .
σL

yB

−σU
y1ȳ1c

. . .
−σU

yB ȳBc

−σU
y1ȳ1c

. . .
−σU

yB ȳBc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

problem (2a–d) with the modified objective function (12) and the reformu-
lated constraints (11) and (17) can be formulated in the standard form of a
stochastic linear programming with recourse [11]

min cTx+ qT y (21a)
T (ω)x+Wy = h a.s. (21b)

x, y ≥ 0. (21c)

Here, the following notations are used, whereas the superscript “(·)T ” indi-
cates a transposition:
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c := −γ , (22a)
x := μ , (22b)

A :=
(
A1, . . . , AB

)T

, (22c)

h := −HA , (22d)

y :=
(
yL+ T , yL−T , yU+ T , yU−T , y+L+ T , y+L−T , y+U+ T , y+U−T ,

y−L+ T , y−L−T , y−U+ T , y−U−T
)T

, (22e)

T (ω) :=
(
0T , 0T , 0T ,−PT

0 (ω)
)T

, (22f)

q :=
(
0T , q̃L T , 0, q̃U T , 0T , q̃+L T , 0T , q̃+U T ,

0T , q̃−L T , 0T , q̃−U T
)T

, (22g)

If a more accurate linear approximation of the yield domain is used, the
same representation with slightly modified technology and recourse matrices
can be achieved.

2 Substitute Problems

The problem in programme (21a–c) is that the vector T (ω) is random be-
cause it includes the stochastic external reference load vector P0(ω). Thus,
appropriate substitute problems must be formulated.

2.1 Expected Value Problem

A first possibility is to consider the expected value problem (EVP). It is
characterized by replacing all stochastic variables just by their expectations.
Here, the random vector T (ω) is replaced by its expectation T . The rest re-
mains unchanged. Problem (21a–c) turns then to

min cTx+ qT y (23a)
Tx+Wy = h (23b)

x, y ≥ 0 (23c)

with
T =

(
0T , 0T , 0T , E

(
−P0(ω)T

) )T

. (23d)
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This is a simple linear program with the same size as the original one
which can be solved by an ordinary LP-solver.

The disadvantage is that with the resulting optimal load factor the survival
condition in only fulfilled on average. Therefore, the design is in general not
very robust, because a marginal change of the load may lead to a failure of
the structure.

2.2 Recourse Problem with Discretisation

Alternatively it is possible to build the recourse problem (RP) with discreti-
sation of the external reference load distribution P0(ω).

Each realisation P0r of P0 = P0(ω) is assumed to be taken with probability
pr, r = 1, . . . R, where R is the number of realisations.

The mathematical formulation of the recourse problem reads then

minE(cTx+ qT y) = cTx+
R∑

r=1

prq
T yr (24a)

s.t.

T 1x + Wy1 = h
...

. . .
...

TRx + WyR = h

(24b)

x, yr ≥ 0, r = 1, . . . , R (24c)

with
T r =

(
0T , 0T , 0T , PT

0r

)T

, r = 1, . . . , R. (24d)

To have r constraints of the form Tx + Wy = h, one for each realisation, is
a certain disadvantage of this method since the problem size increases with
the number of realisations.

3 Numerical Results

In order to consider the properties of the presented method, the two-storey
frame in Fig. 3 with rectangular cross-sectional area A = b h, with height h
and width b is studied.

At first we will study the influence of the height on the limit load analysis.
We choose the recourse problem, the first order approximation of the feasible
domain, an approximation of the normal distribution with 9 realisations as



126 S. Zier and K. Marti

L

L
2

L
2

P1

P2

1

4

2

5

3

6

Fig. 3 Two-storey frame

L = 1.000 mm, E = 72.000
N

mm2

σU = −σL = 216
N

mm2

P0 =

(
P1
P2

)

with

P1 =

⎛
⎝ 10.000N

0N
0 N mm

⎞
⎠ , P2 =

⎛
⎝ P2x(ω)

−1.000N
0 N mm

⎞
⎠

withP2x ∼ N(μ, 100)

shown in Fig. 4, a standard deviation of 100, cost factors of −10, 10,000,
resp., and cross-sectional areas of 600mm2 for beams 1–3 and 10mm2 for
beams 4–6 [25].

With increasing height the load factor increases, too, as can be seen in
Fig. 5(a).

The reason for this is that with rising height the plastic section modulus
increases and therefore the frame can carry bigger forces and moments which
leads to a higher load factor. This behaviour is also confirmed regarding to
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Fig. 4 Discretisation of the normal distribution N ∼ (E(P ), 1002) with 9 realisations
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Fig. 5 Influence of the height of the cross-sectional area on the load factor and the expected
total costs

the expected total costs. They fall in Fig. 5(b) since they depend linearly
with negative gradient on the increasing load factor.

With increasing height the cost factors for punishing a failure decrease and
therefore a failure is varying very much which can be seen in Fig. 6(a) by
regarding the increase of the probability of failure. With it also the penalty
costs raise as shown in Fig. 6(b).
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(b) Expected penalty costs dependent on the height

Fig. 6 Influence of the height of the cross-sectional area on the probability of failure and
the expected penalty costs
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Fig. 7 Influence of the cost factor of first stage on the load factor and the expected total
costs

In the following we will study the influence of the cost factors on the limit
load analysis. At the beginning, we vary the cost factor of first stage whereas
the other quantities are unchanged.

With its increase Figs. 7 and 8 show that nothing happens at the beginning
regarding to the load factor, the probability of failure or the expected penalty
costs. Only the total costs rise since there is a linear dependence. After the
cost factor exceeds a certain limit, the load factor as well as the probability
of failure and the expected penalty costs begin falling. That results from the
fact that when the cost factor converges to zero, there is hardly any effect
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Fig. 8 Influence of the cost factor of first stage on the probability of failure and the
exptected penalty costs
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of the load factor to the total costs and therefore it is not very important to
hold it on a high level. With falling influence of the costs of first stage, the
penalty costs get more important and because of that it is tried to reduce
them as can be seen in Fig. 8(b). This behaviour is confirmed regarding to
the probability of failure and expected penalty costs.

Figure 9(a) shows that with an increase of the penalty cost factor on the
other hand the load factor decreases immediately till it reaches a certain limit
and with it raise the expected total costs as can be seen in Fig. 9(b).

With an increase of the cost factor of second stage a failure is punished
harder. Because of that it is tried to avoid failure which leads to a lower load
factor. That is also reflected by considering the probability of failure which,
in Fig. 10(a) falls with an increasing penalty cost factor to zero. With it, also
the expected penalty costs decrease (see Fig. 10(b)).

In Fig. 11(a) the effects of a modification of the standard deviation on the
optimal load factor are presented. It can be seen that it falls with increasing
standard deviation. That is not surprising since with rising standard deviation
more extreme forces act which lead to a lower load factor. Associated with
the decreasing load factor, we notice in Fig. 11(b) that the expected total
costs increase since the load factor affects them directly in a negative way.

The probability of failure and therefore also the penalty costs are zero
constantly. That shows that increasing uncertainty of the load is compensated
completely by a lower load factor so that it has no effect on the failure of the
frame.

Now we will study the influence of the cross-sectional areas on the limit
load analysis. For that they are scaled equally. For example, the cross-
sectional area of the first beam is used for demonstration in Figs. 12 and 13.
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Fig. 9 Influence of the penalty cost factor on the load factor and the exptected total costs
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Fig. 10 Influence of the penalty cost factor on the probability of failure and the expected
penalty costs

With its increase the load factor raises in Fig. 12(a), too. That is evident
since bigger beams can carry higher forces and moments and therefore the
frame can resist higher loads. According to that, the expected total costs
decrease in Fig. 12(b) because of the negative influence of the load factor.

The probability of failure and expected penalty costs raise with increasing
cross-sectional area till they reach a certain level which is shown in Fig. 13.
With increasing cross-sectional area the load factor rises so enormously and
that affects the expected total costs so heavily that a failure is accepted.
The absolute value of the gradient of the falling costs of first stage has to be
therefore greater than the gradient of the increasing penalty costs.
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Fig. 11 Influence of the standard deviation on the load factor and the expected total costs
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Fig. 12 Influence of the cross-sectional areas on the load factor and the expected total
costs with a cost factor ratio 1:1000

If we increase the proportion of the cost factors of second and first stage
by changing the cost factor of first stage from −10 to −1 and the one of
second stage from 10,000 to 100,000 and carry out the same tests, rising cross-
sectional areas lead again to an increase of the load factor and a reduction of
the total costs as just described and which is visualised in Fig. 14.

However, the failure is punished so hard that the yield condition is fulfilled
in any case and therefore the probability of failure and the penalty costs stay
at zero.
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Fig. 13 Influence of the cross-sectional areas on the probability of failure and the expected
penalty costs with a cost factor ratio 1:1000
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Fig. 14 Influence of the cross-sectional areas on the load factor and the expected total
costs with a cost factor ratio 1:100,000

Last but not least we will compare the zero and the first order approxima-
tion of the feasible domain. Since the feasible domain corresponding to the
first order approximation is a subset of the one of the zero order approxima-
tion (see Fig. 2(b)), the conditions are stricter. Therefore the load factor is
smaller (see Fig. 15(a)) and the expected total costs are higher which can be
confirmed by regarding Fig. 15(b).
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Fig. 16 Influence of the number of realisations on the load factor and the probability of
failure – comparison of the results achieved by applying Monte Carlo Method (o) and by
approximating the normal distribution (x)

Up to now, the probability of failure has been calculated for the determined
nine realisations which have been used to discretise the normal distribution.
If one is interested in statements closer to reality, it is a good idea to use
the Monte Carlo Method and to increase the number of realisations and
not to chose them as a good approximation of the distribution function any
longer but to generate them randomly. Here, ranlib (Library of Fortran
Routines for Random Number Generation)1 has been used to generate normal
distributed random variables based on the Forsythe’s method [1]. Taking a
look at Fig. 16(a), 16(b), resp., we recognize that both the load factor and the
probability of failure resulting from Monte Carlo Method (o) hold about the
same level as in the case the normal distribution has been approximated (x).

4 Conclusion

Two substitute problems for limit load analysis of plane frames under stochas-
tic uncertainty have been presented, and numerical results of the application
of the presented methods to a two-storey frame have been shown. The load
factor is positive dependent on the height of the beams, the cost factor of first
stage and the cross-sectional areas and negative dependent on the penalty
cost factor and the standard deviation. The Monte Carlo Simulation Method
has been used as an independent alternative to confirm the results.

1 http://lib.stat.cmu.edu/general/Utexas/ranlib.readme
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Reliability Analysis of Inelastic Shell
Structures Under Variable Loads

T.N. Trần, P.T. Pha.m, Ð.K. Vũ, and M. Staat

Abstract This paper concerns the application of a new algorithm of
probabilistic limit and shakedown analysis for shell structures, in which the
loading and strength of the material as well as the thickness of the shell
are to be considered as random variables. The procedure involves a deter-
ministic limit and shakedown analysis for each probabilistic iteration, which
is based on the kinematical approach and the use of the re-parameterized
exact Ilyushin yield surface proposed by Burgoyne and Brennan. The limit
state function separating the safe and failure regions is defined directly as
the difference between the obtained limit load factor and the current load
factor. Different kinds of distribution of basic variables are taken into con-
sideration and performed with First- and Second-Order Reliability Methods
(form/sorm) for calculation of the failure probability of the structure. A
non-linear optimization was implemented, which is based on the Sequential
Quadratic Programming for finding the design point. Non-linear sensitivity
analyses are also performed for computing the Jacobian and the Hessian of
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the limit state function. This direct approach reduces considerably the nec-
essary knowledge of uncertain technological input data, computing costs and
the numerical error. Numerical examples are presented to show the validity
and effectiveness of the present method.

1 Introduction

The integrity assessment of pressure vessels and piping by means of direct
plasticity methods has been a problem of great interest to many designers,
especially in the design of industrial and nuclear power plants. The new
European pressure vessel standard EN 13445-3 is based on perfectly plastic
limit and shakedown analysis (LISA) [8] thus indicating the industrial need
for LISA software for safe and reliable design of such structures. Additionally,
practical design codes often prescribe what kind of values to choose for safety
factor of the resistance and of the loads for a given problem since all resistance
and loading variables are generally random. To this case, structural reliability-
based LISA can be performed to establish a rational basis for the choice of
safety factors. Probabilistic limit analysis has been proposed earlier for frames
using linear programming [2, 15].

The present paper concerns the application of a new upper bound al-
gorithm of probabilistic limit and shakedown analysis for shell structures
with the help of the finite element method. Both deterministic and prob-
abilistic limit and shakedown analyses are presented. For the deterministic
problem, three failure modes of structure such as plastic collapse, alternat-
ing plasticity (low cycle fatigue, LCF) and ratchetting are analyzed based
on the upper bound approach. This direct method leads to convex minimum
problems which results in a failure mechanism with a unique limit load or
shakedown load.

Probabilistic limit and shakedown analysis deals with uncertainties origi-
nating from the loads, material strength and thickness of the shell. Based on
a direct definition of the limit state function, the calculation of the failure
probability may be efficiently solved by using the First- and Second-Order
Reliability Methods (form/sorm) which are based on the computation of
the most probable failure point, the so-called design point. Since the deter-
ministic analysis is a sub-routine of the probabilistic one, even a small error
in the deterministic model can lead to a big error in the reliability analysis
because of the sensitivity of the failure probability. Due to this reason, a yield
criterion which is exact for rigid-perfectly plastic material behaviour and is
expressed in terms of stress resultants, namely the exact Ilyushin yield sur-
face, will be applied instead of the simplified Ilyushin yield surface (linear or
quadratic approximations). Along similar lines the lower bound probabilistic
LISA has been developed for volume elements in a series of papers by Heitzer
and Staat [11,12,18].
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Although the deterministic LISA subproblem has a unique solution it is
well known that all possible failure mechanisms contribute to the failure
probability [2, 16]. The kinematic or upper bound method may give the ex-
act failure probability only if all mechanisms are considered. In practice of-
ten few dominant mechanisms can give reasonable results. In [21] a bulge
method proposed in [14] has been applied to the reliability problems of shells
which constructs “barriers” around previously found (form/sorm) solutions,
thus forcing the algorithm to seek a new solution. In this way the complete
reliability problem may be solved. For the linear optimization formulation
of the static or lower bound approach a different method has been sug-
gested in [4] and extended in [1] for plane frame structures. Here we re-
strict the presentation to the calculation of the mechanism with the highest
probability only.

2 Plastic Dissipation Function in Terms
of Strain Resultants

For our purpose of dealing with the reliability problem, the loads, the yield
limit σy and the thickness h of the shell are considered as random variables.
The yield limit can be modeled as stochastic field and discretized through a
vector Y = [Y1, Y2, . . . , Ym]T of random variables Yi at the ith Gaussian point
so that �̃y = Yσy. Assuming the yield stress as a random field could render
the whole procedure very burdensome. The yield stress can be modeled as
a stochastic variable σy = Y σ0 if the Yi are fully correlated. For simplicity
we restrict ourselves to this case with homogeneous material, and shells of
constant thickness h. So we can always write

σy = Y σ0, h = Zh0, (1)

where σ0, h0 are constant reference values and Y,Z are random variables.
Only for the simplicity of the presentation it is assumed that all parts of the
shell structure are made from the same material. The software implementa-
tion has been made without this restriction.

It is convenient to define the non-dimensional “engineering” stress and
strain resultant vectors as follows

�̃ = [n m]T , �̃ = [ē k]T , (2)

where

n =
1
N0

[N11 N22 N12]
T
, m =

1
M0

[M11 M22 M12]
T
,

ē =
1
ε0

[ε̄11 ε̄22 2ε̄12]
T
, k =

1
κ0

[κ11 κ22 2κ12]
T
,

(3)
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and N0 = σ0h0, M0 = σ0h
2
0/4, ε0 = σ0(1 − ν2)/E and κ0 = 4ε0/h0 are

the normalized quantities. In that way the quadratic strain intensities can be
defined by

Pε =
3
4

(dε̃p)T P1dε̃p (≥ 0),

Pεκ = 3 (dε̃p)T P2dε̃p,

Pκ = 12 (dε̃p)T P3dε̃p (≥ 0).

(4)

where dε̃p denotes the plastic strain increment resultant vector, P and its
inverse P−1, Pi(i = 1, 2, 3) are

P =

⎛
⎝ 1 −1/2 0

−1/2 1 0
0 0 3

⎞
⎠ , P−1 =

⎛
⎝4/3 2/3 0

2/3 4/3 0
0 0 1/3

⎞
⎠ ,

P1 =
(

P−1 0
0 0

)
, P2 =

(
0 P−1/2

P−1/2 0

)
, P3 =

(
0 0
0 P−1

)
.

(5)

Ilyushin [13] derived an exact form of the yield surface in terms of the
stress resultant for a linear elastic-perfectly plastic isotropic material which
obeys the von Mises criterion. A simpler form of this yield surface (though
still exact) was proposed by Burgoyne and Brennan [3] by introducing the
parameters

υ =
Pε

Pκ
, β = −Pεκ

Pκ
and γ = υ − β2, (6)

where β and γ are proposed as two independent parameters for the description
of the yield surface. With these parameters, the plastic dissipation function
for a shell structure may be written in the form [20,21]

Dp( ˙̃ε) = Y N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)
, (7)

where β1, β2 and K0 are

β1 =
Z

2
− β, β2 =

Z

2
+ β, K0 = ln

(√
β2

1 + γ + β1√
β2

2 + γ − β2

)
. (8)

It should be noted here, that the value of K0 will become indefinite if
both conditions |β| ≤ 0.5Z and γ = 0 are fulfilled. However, as long as γ
is not exactly equal to zero, but assumes to some small positive number, a
“regularized” evaluation of K0 may be obtained [17]. Otherwise, in general,
Dp is convex [5] but not everywhere differentiable as shown for continuum
problems. It is only differentiable in the plastified region of the structure,
i.e. Pκ > 0. In order to allow a direct non-linear, non-smooth, constrained
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optimization problem, a “smooth regularization method” should be used to
overcome the non-differentiability of the objective function as will be dis-
cussed in the following section.

3 Deterministic Limit and Shakedown Algorithm

Consider a convex polyhedral load domain L and a special loading path con-
sisting of all load vertices P̂k (k = 1, . . . ,m) of L. Let the fictitious elas-
tic generalized stress vector be denoted by �. By discretizing the whole
structure with the help of finite elements and the application of Koiter’s
theorem, the shakedown limit αlim, which is the smaller one of the low cy-
cle fatigue limit and the ratchetting limit, may be found by the following
minimization

αlim = min
NG∑
i=1

m∑
k=1

wiY N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)
,

s.t. :

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=1

˙̃εik = Biu̇ ∀i = 1, . . . , NG,

NG∑
i=1

m∑
k=1

wiN0�0
˙̃�T
ik�̃E

ik = 1,

(9)

in which u̇ denotes the velocity fields, Bi denotes the deformation matrix,
and wi is the weighting factor of the ith Gauss point (i = 1, . . . , NG). For
the sake of simplicity some new notations are introduced

ėik = wi
˙̃�ik, tik = N0ε0�̃E

ik, B̂i = wiBi, (10)

where ėik, tik, B̂i are the new strain rate vector, the new fictitious elastic
stress vector and the new deformation matrix, respectively. By substituting
(10) into (9) we obtain a simplified version for the upper bound shakedown
analysis

αlim = min
NG∑
i=1

m∑
k=1

Y N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)
,

s.t. :

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=1

ėik = B̂iu̇ ∀i = 1, . . . , NG,

NG∑
i=1

m∑
k=1

ėT
iktik = 1.

(11)

To eliminate the first optimization constraint a penalty method is used. To
this purpose, let us write the penalty function as
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FP =
NG∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=1

(
Y N0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

))

+
c

2

(
m∑

k=1

ėik − B̂iu̇

)T (
m∑

k=1

ėik − B̂iu̇

)
⎫⎪⎪⎬
⎪⎪⎭

=
NG∑
i=1

⎧⎨
⎩

m∑
k=1

(Y ηik) +
c

2

(
m∑

k=1

ėik − B̂iu̇

)T (
m∑

k=1

ėik − B̂iu̇

)⎫⎬
⎭,

(12)

where c is a penalty parameter such that c � 1. For the sake of simplicity,
the same value of c is assumed at every Gauss point of the structure. The
second constraint can be eliminated by using the dual Lagrange function

FPL = FP − λ

(
NG∑
i=1

m∑
k=1

ėT
iktik − 1

)
, (13)

where λ is the Lagrange multiplier. The major numerical obstacle appears
here due to the non-differentiability of the objective function FPL and the
singularity of K0 as discussed in Sect. 2. A regularization method can be
used here by replacing the original plastic dissipation function Dp( ˙̃�

p
) by its

disturbed one Dp( ˙̃�
p
, η2

0). In the new plastic dissipation function Dp( ˙̃�
p
, η2

0),
η2
0 is a small positive number which is added to γ and Pκ, i.e. γ → γ+η2

0 and
Pκ → Pκ + η2

0 . In this way, all elements in the structure are seen as plastified
or on the plastified verge.

By applying Newton’s method to solve the KKT conditions of Eq. (13)
we obtain the Newton directions du̇ and d ˙̃�ik, which assure that a suitable
step along them will lead to a decrease of the objective function αlim. If the
relative improvement between two steps is smaller than a given constant,
the algorithm stops and leads to the shakedown limit factor. Details of the
iterative algorithm can be found in [20,21].

4 Probabilistic Limit and Shakedown Algorithm

Denote by X = (X1,X1, . . . , Xn) an n-dimensional random vector charac-
terizing uncertainties in the structure and load parameters. The limit state
function g(x) = 0, which is based on the comparison of a structural resistance
(threshold) and loading, defines the limit state hyper-surface ∂F which sep-
arates the failure region F = {x| g(x) < 0} from the safe region. The failure
probability Pf is the probability that g(X) is non-positive, i.e.

Pf = P (g(X) ≤ 0) =
∫

F

fX(x)dx, (14)
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where fX(x) is the n-dimensional joint probability density function. Usually,
it is not possible to calculate Pf analytically since the form of the limit state
surface is very complex. For the general cases, there are several approximate
methods to compute the failure probability Pf . Direct Monte Carlo Simula-
tion (mcs) becomes increasingly expensive with the increase of the structural
reliability. Acceptable failure probabilities might be in the range of 10−4 to
10−6. They are even much lower in nuclear reactor technology. For a vali-
dation that the failure probability Pf is less than an accepted limit Pc, the
sample size required for direct (mcs) must be at least 100/Pc leading to a
minimum sample size in the range of 106 to 108. Such a large number exceeds
particularly for complex fe-models available resources by far. The numeri-
cal effort can be reduced considerably by variance reduction methods like
Importance Sampling and by Response Surface Methods (rsm). However,
the most effective analysis is based on First- and Second-Order Reliability
Methods (from/sorm) if gradient information is available [9].

4.1 First- and Second-Order Reliability Methods

(from/sorm) (alternatively referred as the most likely failure point method)
is used here to perform uncertainty analysis. Practical experience with
(from/sorm)algorithms indicates that their estimates usually provide sat-
isfactory reliability measures. Especially in the case of small failure probabil-
ity (large reliability), (from/sorm) are extremely efficient compared with
the (mcs) method regarding the requirement of computer time, such as the
Central Processing Unit (CPU). In (from/sorm) the probability of failure
is computed in three steps. Firstly the physical space x of uncertain pa-
rameters, X, is transformed into a new n-dimensional space, u, consisting
of independent standard Gaussian variables U. By this transformation, the
original limit state g(x) = 0 is mapped into the new limit state g(u) = 0
in the u space. Secondly the design point or βHL-point is determined by an
appropriate non-linear optimization algorithm. This is the point on the limit
state surface having the shortest distance to the origin in the u space. Due
to the rotational symmetry and exponential decay of the probability density,
the design point has the highest probability among all points in the failure
domain. It follows that the neighbourhood of this point makes the dominant
contribution to the failure probability. Details of the non-linear optimiza-
tion algorithm for finding the design point which is based on the sequential
quadratic programming (sqp) can be found in [20,21]. Thirdly the limit state
surface g(u) = 0 is approximated by a tangential hypersurface at the design
point. This corresponds to an approximating hyperplane gL(u) = 0 (linear
or first-order) and hyperparaboloid gQ(u) = 0 (quadratic or second-order),
respectively (see Fig. 1). The failure probability Pf is thus approximated by
Pf,L = P (gL (u) < 0) in form
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u space

failure region
g(u) < 0

safe region
g(u) > 0

βHL

g (u) = 0
L

Q
g (u) = 0

constant probability

g(u) = 0

origin

Fig. 1 Safe and failure regions based on linear and quadratic approximations in u space

Pf,L = Φ(−βHL) =
1√
2π

−βHL∫

−∞

e−0.5z2
dz, (15)

and by Pf,Q = P (gQ (u) < 0) in sorm [10, 22]

Pf,Q = S1 + S2 + S3, (16)

with

S1 = Φ(−βHL)
n−1∏
j=1

(1 − βHLκj)
−1/2

,

S2 = [βHLΦ(−βHL) − φ (βHL)]
⎧⎨
⎩

n−1∏
j=1

(1 − βHLκj)
−1/2 −

n−1∏
j=1

(1 − (βHL + 1)κj)
−1/2

⎫⎬
⎭ ,

S3 = (βHL + 1) [βHLΦ(−βHL) − φ (βHL)]×
⎧⎨
⎩

n−1∏
j=1

(1 − βHLκj)
−1/2 − Re

⎡
⎣n−1∏

j=1

(1 − (βHL + i)κj)
−1/2

⎤
⎦
⎫⎬
⎭ ,

with κj are n− 1 principle curvatures at the design point. The calculation of
κj normally needs the second derivatives of the limit state function.
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4.2 Definition of the Limit State Function

The shakedown load factor αlim which is calculated by the constraint min-
imum problem (11) defines the ratio between the shakedown load Plim and
actual load P of the structure, i.e.

αlim =
Plim

P
. (17)

As mentioned above, the limit state function contains the parameters of
structural resistance and loading. Thus it can be defined as
g = Plim − P = P (αlim − 1). For the sake of simplicity, the limit state
function g can be normalized with the actual load P and then becomes

g = αlim − 1. (18)

It can be seen that the limit state function is a function of the load, the
random variables yield stress and thickness. The actual load P is defined
in n components by using the concept of a constant reference load P 0 as
follows

P 0 = P 0
1 + P 0

2 + . . .+ P 0
n ,

P = x1P
0
1 + x2P

0
2 + . . .+ xnP

0
n ,

(19)

where xj is the realization of the jth basic load variable Xj (j = 1, n). The
corresponding actual fictitious elastic stress fields σ̃E can also be described
in the same way

σ̃E = x1σ̃
0
1 + x2σ̃

0
2 + . . .+ xnσ̃0

n. (20)

From (19) and (20), the corresponding normalized fictitious elastic stress
fields t are obtained

t = N0ε0σ̃ = N0ε0
[
x1σ̃

0
1 + x2σ̃

0
2 + . . .+ xnσ̃0

n

]
= x1t1 + x2t2 + . . .+ xntn.

(21)

4.3 Sensitivity Analyses

The sensitivity analyses provide the Jacobian and the Hessian of the limit
state function, ∂g/∂x and ∂2g/∂x2, which are needed for the SQP, FORM
and SORM algorithms. They also provide a quantitative measure of the first-
and second-order change in the optimal value function or show how the so-
lution is affected by changes in the problem data. The necessary data for the
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calculation of the Jacobian and the Hessian are available after the execution
of the deterministic shakedown analysis since they are based on the limit load
factor αlim.

In order to get the sensitivity of the limit state function g in the physical
space x, one requirement from Eq. (18) is that the derivatives of the limit
load factor αlim must be available. Let (ė∗ik,u

∗, λ∗) be the solutions of the
optimization problem (11). At the optimal point, the first derivative of the
limit load factor αlim versus the jth load variable Xj and the yield stress
variable Y can be calculated as follows [20,21]

∂αlim

∂Xj
=

∂FPL

∂Xj

∣∣∣∣
(ė∗

ik,u∗,λ∗)
= −λ

NG∑
i=1

m∑
k=1

ėT
ik

∂tik

∂Xj

∣∣∣∣
(ė∗

ik,λ∗)

= − λ

NG∑
i=1

m∑
k=1

ėT
iktik,j

∣∣∣∣∣
(ė∗

ik,λ∗)
, (22)

∂αlim

∂Y
=

∂FPL

∂Y

∣∣∣∣
(ė∗

ik,u∗,λ∗)
=

∂

∂Y

(
NG∑
i=1

m∑
k=1

Y ηik

)∣∣∣∣∣
(ė∗

ik)

=
NG∑
i=1

m∑
k=1

η∗ik =
αlim

Y
. (23)

The derivatives of the limit load factor αlim versus the random thickness
variable Z can be determined in the same way assuming the form

∂αlim

∂Z
=

∂FPL

∂Z

∣∣∣∣
(ė∗

ik,u∗,λ∗)

=
∂

∂Z

(
NG∑
i=1

m∑
k=1

(
Y N0ε0

√
Pk

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γK0

)))∣∣∣∣∣
ė∗

ik

=
NG∑
i=1

m∑
k=1

(
Y N0ε0

√
Pk

3

(√
β2

1 + γ +
√
β2

2 + γ

))∣∣∣∣∣
ė∗

ik

. (24)

The second partial derivatives of the limit state function versus the jth load
variable Xj and the yield stress variable Y can be obtained directly from an
analytical derivation of the first derivatives [20,21]
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∂2αlim

∂XlXj
=

∂

∂Xl

(
−λ

NG∑
i=1

m∑
k=1

ėT
iktik,j

)∣∣∣∣∣
(ė∗ik

,λ∗)

= − ∂λ

∂Xl

NG∑
i=1

m∑
k=1

ėT
iktik,j

∣∣∣∣∣
(ė∗ik

,λ∗)

− λ
NG∑
i=1

m∑
k=1

tT
ik,j

∂ėik

∂Xl

∣∣∣∣∣
(ė∗ik

,λ∗)

, (25)

∂2αlim

∂Y 2
=

∂

∂Y

(αlim

Y

)∣∣∣∣
ė∗

ik

=

(
1

Y

∂αlim

∂Y
− αlim

Y 2

)∣∣∣∣
ė∗

ik

=

(
1

Y

αlim

Y
− αlim

Y 2

)∣∣∣∣
ė∗

ik

= 0,

(26)
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with Gik = ∂2FPL/∂ė2
ik. It can be seen from (26) that the limit state function

is a linear function of the yield stress variable Y . In the case of a heterogeneous
material, we will obtain at different Gaussian points i eventually different
yield stress variables Yi. Then the limit state function is no more a linear
function of these variables.
The second derivatives of αlim versus the thickness variable Z are obtained
by taking the derivatives of Eqs. (22), (23) and (24), versus Z, which gives
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∂2αlim

∂Z2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NG∑
i=1

m∑
k=1

√
3

4
√

Pk
Y N0ε0

(
∂ėik
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ėik

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ė∗
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where

A = P2 + 4βP3,

B = P1 + 8βP2 − 16
(
γ − β2

)
P3.

(31)

The derivatives of λ and ėik versus Z are obtained in the following way.
Firstly differentiate the Lagrange function FPL in Eq. (13) versus ėik, then
taking derivatives of the obtained result ∂2FPL/∂ėik versus Z and using the
chain rule for two variables ėik, λ. After some manipulations one has

∂ėik

∂Z
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ik tik
∂λ
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− 1√

P̂κ

G−1
ik
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ėik, (32)
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ik tik

, (33)

Deterministic
 model and data

Random variables x
and its starting value x

FEM-based deterministic LISA

Limit state function
g(x) = α    –1lim

Sensitivity analysis
∂g/∂x, ∂  g/∂x2 2

∂x/∂u, ∂  x/∂u2 2

SQP algorithm
to find the design point

0

Failure probabilities
(FORM/SORM approximations)

Fig. 2 Flowchart of the probabilistic limit and shakedown analysis
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with
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The flowchart in Fig. 2 contains the logical connections of the main analysis
steps as they have been implemented. In each probabilistic iteration, i.e. the
iteration for finding the design point, two deterministic loops are required,
the first one provides information for sensitivity analysis and the second one
for the simple line search algorithm.

5 Numerical Examples

The probabilistic limit and shakedown algorithm described above is pro-
grammed and implemented in the finite element package Code_Aster 7.3 [6].
The 4-noded quadrangular isoparametric flat shell element, the DKT ele-
ment, which is based on Kirchhoff’s hypothesis, was applied. Higher order
shell elements are not available in Code_Aster. In all numerical examples,
the structures are made of elastic-perfectly plastic material. For each test
case, some existing analytical and numerical solutions found in literature
are briefly represented and compared. The finite element discretizations were
realized by the personal pre- and post-processor GiD 7.2 [8].

Here only the most probable failure mode is calculated with form/sorm

in all examples. Excluding failure modes one after the other by a barrier from
the further search in form/sorm it was possible to identify the contribution
of multiple failure modes of a plane frame and obtain better approximations
of the failure probability [21]. In this test case taken from [16] the yield
stress has only been assumed as mutually independent random variable with
different log-normal distributions for the different beams in the frame. Before
publication the proposed method may need further testing with more complex
examples.

5.1 Pipe Bend Under In-Plane Bending Moment

The pipe bends have been a problem of great interest to many designers. They
have a complex response to bending moments. When an external moment is
applied to one end of the pipe bend, the annular cross section tends to deform
significantly both in and out of its own plane, i.e. it is subjected to warping
and ovalization. Due to their curved geometry, the pipe bends are very flexible
and forced to accommodate large displacements resulting in larger stresses
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2r

R

h
IM

Fig. 3 Cylindrical pipe under in-plane moment loading

and strains than those present in a straight pipe of the same size and material,
under the same loading conditions. For this reason pipe bends are considered
as critical components of a piping system.

Consider a 90◦ elbow with mean radius r, bend radius of curvature R and
thickness h as shown in the Fig. 3. One of its ends is assumed clamped and
the other one is subjected to an in-plane closing moment MI . The following
geometrical parameters are adopted: R = 1800mm, r = 300mm, h = 15mm.
In this example, only the moment MI and the yield stress σy are considered
as random variables with mean values μs, μr and standard deviations σs, σr

respectively.

5.1.1 Limit Load Analysis

From the deterministic analysis, we got the limit moment as 0.4614×4hr2σy.
The limit state function is a linear function of basic variables X,Y and
defined by

g(X,Y ) = 0.4614 × 4hr2Y −X. (35)

Staat and Heitzer [18] introduced the analytical expressions of the relia-
bility indices for both cases of normally and log-normally distributed random
variables, respectively
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βHL =
0.4614 × 4hr2μr − μs√
(0.4614 × 4hr2)2 σ2

r + σ2
s

, (36)

βHL =
log

(
0.4614 × 4hr2mr

)
− log (ms)√

δ2r + δ2s
, (37)

where mr,ms and δr, δs are calculated as

mr,s = μr,se
−δ2

r,s/2 =
μr,s√√√√

(
σ2

r,s

μ2
r,s

+ 1

) , δr,s =

√
log

(
σ2

r,s

μ2
r,s

+ 1
)
. (38)

5.1.2 Shakedown Load Analysis

For this case the in-plane bending moment MI varies within the range
[−M0,M0] and only the amplitudes but not the uncertain complete load
history influence the solution. Consider the case where the value M0 is a ran-
dom variable. From the deterministic analysis, we got the shakedown limit as
0.2507×4hr2σy. The limit state function is a linear function of basic variables
X,Y and defined by

g(X,Y ) = 0.2507 × 4hr2Y −X, (39)

and the reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =
0.2507 × 4hr2μr − μs√
(0.2507 × 4hr2)2 σ2

r + σ2
s

, (40)

βHL =
log

(
0.2507 × 4hr2mr

)
− log (ms)√

δ2r + δ2s
. (41)

The failure probabilities Pf are presented in Figs. 4 and 5 versus μs/4hr2μr.
Numerical solutions of the limit and shakedown analyses are compared with
the analytical ones resulting from exact solutions. For each case, both random
variables are normally or log-normally distributed with standard deviations
σr,s = 0.1μr,s. It is shown that our results correspond well with the analytical
ones for all cases.
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Fig. 4 Comparison of the results for normally distributed variables

Fig. 5 Comparison of the results for log-normally distributed variables

5.2 Limit Analysis of Cylindrical Pipe Under
Complex Loading

Beside the loading and material strength, it is well known that the load
carrying capacity of shell structures is generally influenced by their initial
imperfections which occur during the manufacturing and construction stages
such as variability of thickness. In this example, the effect of thickness im-
perfection on the limit loads of a shell structure is examined. The cylindrical
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Fig. 6 Cylindrical pipe under complex loading

pipe subjected to complex loading is considered here, see Fig. 6. The fol-
lowing geometrical and physical parameters are adopted: L = 2700mm,
r = 300mm, σy = 120MPa. For this purpose, only the loading and the thick-
ness h of the pipe are modeled as random variables. Four loading cases are
examined.

5.2.1 Internal Pressure

For this case, the exact plastic collapse limit pressure is given by plim = σyh/r.
Thus, the resistance R depends linearly on the realization h of the thickness
basic variable Z. The magnitude of the internal pressure is the second basic
variable X. The limit state function is defined by

g(X,Z) =
σy

r
Z −X. (42)

If both thickness and load random variables are supposed to be normally
distributed with mean values μt, μs and standard deviations σt, σs respec-
tively, then the limit state function g(U) in the standard Gaussian space is a
linear function. Note that σy is the yield stress and not a standard deviation
here. The mean and standard deviation of the limit state function can be
calculated as follows

μg =
σy

r
μt − μs, σg =

√(σy

r

)2

σ2
t + σ2

s , (43)

from which, the reliability index becomes

βHL =
μg

σg
=

(σy

r

)
μt − μs√(σy

r

)2
σ2

t + σ2
s

. (44)

The limit state function becomes nonlinear if both basic variables are log-
normally distributed. Analogously to (44), we obtain the exact reliability
index for form
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βHL =
log

((σy

r

)
mt

)
− log (ms)√

δ2t + δ2s
, (45)

where mt,ms and δt, δs are calculated as

mt,s = μt,se
−δ2

t,s/2 =
μt,s√√√√

(
σ2

t,s

μ2
t,s

+ 1

) , δt,s =

√√√√log

(
σ2

t,s

μ2
t,s

+ 1

)
. (46)

5.2.2 Bending Moment

The exact plastic collapse limit moment is linearized by M lim
b = 4r2σyh. The

limit state function is a linear function of basic variables X,Z and defined by

g(X,Z) = 4r2σyZ −X. (47)

The reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =
4r2σyμt − μs√
(4r2σy)2 σ2

t + σ2
s

, (48)

βHL =
log

(
4r2σymt

)
− log (ms)√

δ2t + δ2s
. (49)

5.2.3 Torsion Moment

In this case the exact plastic collapse limit moment is given by M lim
t =

2πr2σyh/
√

3. The limit state function is a linear function of basic variables
X,Z and defined by

g(X,Z) =
2√
3
πr2σyZ −X. (50)

The reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =

2√
3
πr2σyμt − μs

√(
2√
3
πr2σy

)2

σ2
t + σ2

s

, (51)
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βHL =
log

(
2√
3
πr2σymt

)
− log (ml)

√
δ2t + δ2l

. (52)

5.2.4 Axial Load

The exact plastic collapse limit load is given by Flim = 2πrσyh. The limit
state function is a linear function of the basic variables X,Z and defined by

g(X,Z) = 2πrσyZ −X. (53)

The reliability indices for both cases of normally and log-normally dis-
tributed random variables are obtained, respectively

βHL =
2πrσyμt − μs√
(2πrσy)2 σ2

t + σ2
s

, (54)

βHL =
log (2πrσymt) − log (ms)√

δ2t + δ2s
. (55)

The failure probabilities Pf are presented in Figs. 7, 8, 9 and 10 with the
units kN and m of force and length, respectively. The numerical solutions of
the limit analyses are compared with the analytical ones resulting from exact
solutions. For each loading case, both random variables are normally or log-
normally distributed with standard deviations σt,s = 0.1μt,s. It is shown that
our results compare well with the analytical ones for all cases.

Fig. 7 Comparison of the results for normally distributed variables (kN, m)
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Fig. 8 Comparison of
the results for normally
distributed variables
(kN, m)

Fig. 9 Comparison of the
results for log-normally
distributed variables
(kN, m)

Fig. 10 Comparison of the
results for log-normally
distributed variables
(kN, m)
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6 Conclusions

A procedure for reliability analysis of inelastic shell structures under vari-
able loads which is based on a direct plasticity method has been presented.
The procedure involves a deterministic limit and shakedown analysis for each
probabilistic iteration. The loading and strength of the material as well as
the thickness of the shell are considered as random variables. The proposed
method appears to be capable of identifying good estimates of the failure
probability for the most probable failure mode, even in the case of very small
probabilities. The possible extension to multiple failure modes is indicated.
The proposed method makes the analysis problem of any load history time-
invariant and it is applicable with incomplete data. Sensitivity analyses are
obtained directly from a mathematical optimization with no extra computa-
tional cost.
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Static Shakedown Theorem for Solids
with Temperature-Dependent Elastic
Modulus

A. Oueslati and G. de Saxcé

Abstract In this paper, an extension of the static shakedown theorem
(Melan’s theorem) for elastic-plastic materials with temperature-dependent
elastic modulus is presented. Cases of the decrease of yield function and the
variation of coefficient of thermal expansion with temperature are included.
The proposed extension leads to the introduction of a shakedown safety coeffi-
cient. To illustrate the statements of our theorem, step-by-step finite element
procedure is applied to study a three-bar problem and a plate with the central
hole subjected to thermo-mechanical cyclic loadings.

1 Introduction

Since the pioneering works of Bleich [3], Melan [18] and Koiter [15] on
shakedown theory, several attempts have been derived to extend shake-
down theorems to complicated material behaviours, and robust algorithms
have been proposed to estimate bounds of safety factors [24]. For instance,
static and kinematic shakedown theorems are extended to hardening plas-
ticity [19, 23], simultaneous actions of mechanical agencies and temperature
variations [17,21], dynamic plasticity [8], damaged and cracked bodies [2,13],
non-associated plasticity [4, 10], poroplasticity [6], gradient plasticity [20],
contact with friction [1], shape memory alloy structures [12], etc.

Nevertheless, in a recent paper, Pham [19] showed that actually shakedown
theorems, in Melan-Koiter path-independent spirit, have been extended suc-
cessfully only for certain cases. An interesting discussion and a critical survey
are presented in the same article.
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Classical shakedown theorems and their extensions to various material
models rest on the assumption that elastic moduli are independent of the
temperature. This is reasonable for thermal loading of low amplitude. How-
ever, in many industrial domains, for instance in boilers of nuclear power
plants or in airplane and automotive motors, the structural elements are
subjected to thermal cycles of large amplitude in such way that the depen-
dence of the elastic coefficients with respect to the temperature cannot be
neglected. To our best knowledge, only one static shakedown theorem in this
field was formulated by J.A. König in 1969 [16]. However one can show that
König’s theorem is not quite complete and and its proof is valid only for
increasing thermal loading. It is worth noting, that some authors [5] used
König theorem to provide numerical shakedown bounds.

In this paper, we propose a new consistent static shakedown theorem for
elastic-plastic solids with temperature-dependent elastic modulus. The case
of decrease of the yield strength with the temperature is included in the
stated theorem. Illustrative examples, performed by incremental finite ele-
ments simulations, are presented.

2 Basic Relations

Consider an elastic-plastic material occupying a bounded region Ω of the
space with a smooth boundary ∂Ω. The elastic coefficients (Young’s mod-
ulus, Poisson’s ratio, coefficient of thermal expansion) and yield stress are
temperature-dependent. This solid Ω is loaded by given body forces F v(x, t)
in Ω, a prescribed displacement ud(x, t) on Γu, surface tractions T d(x, t) on
ΓT

(
Γu ∪ ΓT = ∂Ω, Γu ∩ ΓT = ∅

)
and a temperature variation θ(x, t).

The data set
(
F v(x, t),T d(x, t),ud(x, t), θ(x, t)

)
characterizes the history

of the thermo-mechanical loading at every point x and at each time t ∈ [0,∞[.
Let

(
σ(x, t), ε(x, t),u(x, t)

)
denote the quasi-static elastic-plastic response

to the loading path.
Within the framework of the infinitesimal transformation, the strain field

is additively split into its elastic, thermal and plastic parts

ε(x, t) = εe(x, t) + εθ(x, t) + εp(x, t) . (1)

The elastic strains are related to the stresses through Hooke’s law

εe(x, t) = S
(
x, θ(x, t)

)
: σ(x, t) , (2)

where S
(
x, θ(x, t)

)
is the fourth order elastic compliance tensor. Its compo-

nents vary with the temperature.
For isotropic materials, thermal strain is given by the following relation
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εθ(x, t) = α θ(x, t) I , (3)

where α is the coefficient of thermal expansion and I denotes the identity
tensor.

The associated flow rule [10,22] ensures that the plastic strain rate obeys
to the normality law

ε̇p = λ̇
∂f

(
σ, θ(x, t)

)
∂σ

, λ̇ ≥ 0, λ̇f = 0 , (4)

where f(σ, θ) stands for the plasticity yield function and λ̇ denotes the plastic
multiplier.

A stress tensor σ is said plastically admissible if it belongs to the closed
convex set

K(θ) = {σ | f(σ, θ) ≤ 0} , (5)

called the elastic domain. Moreover, it is assumed further that

f(0, θ) < 0 (6)

for any value of θ, that in practice is not very restrictive. Then the origin of
the stress space is inside K(θ). More precisely, there exists a positive number
r and a ball of radius r and centered at the origin contained in K(θ).

Let now (σE(x, t), εE(x, t),uE(x, t)) be the fictitious purely thermo-
elastic response of the solid Ω under the same loads and temperature varia-
tions

εE(x, t) = S
(
x, θ(x, t)

)
: σE(x, t) + α θ(x, t) I . (7)

By definition, the residual stress tensor at the time t is given by

ρ(x, t) = σ(x, t) − σE(x, t) . (8)

ρ(x, t) is the stress field subsisting in the structure after complete elastic
unloading of Ω at the instant t. ρ belongs to the following set

L = {ρ(x, t) |divρ(x, t) = 0 in Ω and ρ(x, t) · n = 0 on ΓT } , (9)

where n is the unit outer normal vector at any point of ΓT .
It is clearly seen that ρ(x, t) is statically admissible with zero body forces in
Ω and vanishing surface traction on ΓT . For this reason ρ(x, t) is often called
a self-stress field.

In the same manner, one can introduce the residual strain field as follows

η(x, t) = ε(x, t) − εE(x, t) , (10)

which belongs to the set of residual strain (or self-strain) set
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L∗ = {η | ∃v(x, t) such that η(x, t) = gradsv(x, t) in Ω and v(x, t)
= 0 on Γu} . (11)

It is useful to notice that the following relation holds true as a consequence
of Green’s formula

∀ρ(x, t) ∈ L, ∀η(x, t) ∈ L∗,

∫
Ω

ρ(x, t) : η(x, t) dΩ = 0 . (12)

Besides, it can be remarked that

η(x, t) = S
(
x, θ(x, t)

)
:
(
σ(x, t) − σE(x, t)

)
+ εp(x, t)

= S
(
x, θ(x, t)

)
: ρ(x, t) + εp(x, t)

= ηe(x, t) + εp(x, t) , (13)

where ηe(x, t) is called the elastic residual strain field.
In [14], it is shown that, when the elastic coefficients vary with tempera-

ture, the evolution of the residual stress field as function of time is governed
by the following multivalued differential equation

− d
dt

(
S
(
x, θ(x, t)

)
: ρ(x, t)

)
∈ ∂ψK(t)

(
ρ(x, t)

)
, (14)

where ∂ψK(t) is the subgradient at the point σ of the indicator function ψK(t)

of the convex set K(t) of statically and plastically admissible fields at time t,
with respect of the following scalar product of two second order tensor fields

〈A : B〉 =
∫

Ω

A : BdΩ.

3 New Static Shakedown Theorem

Theorem 1. If there exists a residual stress field ρ(x, t) and a scalar m > 1
such that

• ηe(x) = S(x, θ(x, t)) : ρ(x, t) is time independent and
• f(mσ(x, t)) = f(m(σE(x, t) + ρ(x, t))) ≤ 0

anywhere and at any time t > 0, then shakedown occurs.

Proof. Following [23], the proof is achieved in two steps. First, we show that
the enunciated theorem implies the boundedness of the dissipated plastic en-
ergy. The second step consists in showing that limt→∞εP exists.
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First Step

Suppose that all conditions of the theorem are satisfied. The actual instanta-
neous stress field is σ(x, t) and let us consider the stress field
σ(x, t) = m

(
σE(x, t) + ρ(x, t)

)
. Note that σ is plastically admissible by

the statement of the theorem. Moreover, these two tensors are statically ad-
missible with the same prescribed loads and thus

σ(x, t) − 1
m

σ(x, t) = ρ(x, t) − ρ(x, t) (15)

is a self-stress field.
On the other hand, application of Hill-Mandel maximum power principle

leads to

1
m

(σ − σ) : ε̇p =
(

1 − 1
m

)
σ : ε̇p +

(
1
m

σ − σ

)
: ε̇p ≤ 0 , (16)

and consequently, one has
∫ t

0

∫
Ω

σ : ε̇p dΩ dt ≤ m

m− 1

∫ t

0

∫
Ω

(
σ − 1

m
σ

)
: ε̇p dΩ dt . (17)

Let us now introduce the fictitious elastic energy of the stress difference

R =
1
2

∫
Ω

(ρ − ρ) : S : (ρ − ρ) dΩ ≥ 0 . (18)

The stress difference (ρ − ρ) is associated to the strain difference (ηe − ηe)
by Hooke’s law

S : (ρ − ρ) = ηe − ηe , (19)

and because ηe is time-independent, the differentiation with respect to time
of the energy R reads

Ṙ =
∫

Ω

(ρ − ρ) : (η̇e − η̇
e
) dΩ =

∫
Ω

(ρ − ρ) : η̇e dΩ . (20)

Substitution of 13 leads to

Ṙ =
∫

Ω

(ρ − ρ) : (η̇ − ε̇p)dΩ . (21)

As (ρ − ρ) ∈ L and η̇ ∈ L∗, because of virtual power principle and using
(15), one may write

Ṙ = −
∫

Ω

(
σ − 1

m
σ

)
: ε̇p dΩ , (22)
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and therefore
Ṙ = −

∫
Ω

(
D(ε̇p) − 1

m
σ : ε̇p

)
dΩ , (23)

where D(ε̇p) = σ : ε̇p. Since
1
m

σ is plastically admissible, maximum dissi-
pation leads to

Ṙ ≤ 0 . (24)

Hence
∫ t

0

∫
Ω

σ : ε̇p dΩ dt ≤ m

m− 1

∫ t

0

∫
Ω

(σ − 1
m

σ) : ε̇p dΩ dt = − m

m− 1

∫ t

0

Ṙ dt

=
m

m− 1

(
R(0) −R(t)

)
.

(25)

Because of its definition, R(t) is positive and from Eq. (24) we get

R(0) −R(t) ≤ R(0) , (26)

which conducts to

∀t > 0,
∫ t

0

∫
Ω

σ : ε̇p dΩ dt ≤ m

m− 1
R(0) . (27)

Thus the total plastic dissipation is bounded for any initial condition.

Second Step

Following [9], one notices that there exists a ball of radius r and centered

at the origin σ = 0 contained in it. For ε̇p �= 0, the stress σ∗ = r
ε̇p

‖ε̇p‖ is

plastically admissible. The principle of maximum plastic work gives

r ‖ε̇p(x, t)‖ ≤ σ(x, t) : ε̇p(x, t) , (28)

where ‖A‖ is the norm of the second order tensor A defined by ‖A‖ =
√

A : A.
If ε̇p = 0, (28) is trivially fulfilled; then (28) is satisfied for any ε̇p. Because
of the triangular inequality one has

‖εp(x, t)‖ ≤ ‖εp(x, 0)‖+‖εp(x, t)−εp(x, 0)‖ ≤ ‖εp(x, 0)‖+‖
∫ t

0

ε̇p(x, τ) dτ‖ ,
(29)

and using (28)

‖εp(x, t)‖ ≤ ‖εp(x, 0)‖ +
1
r

∫ t

0

σ(x, τ) : ε̇p(x, τ) dτ (30)
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is bounded for any t ≥ 0 and almost everywhere when shakedown occurs
because of the boundedness property (27) of the total plastic dissipation.
Then the plastic strain field has a limit εp

∞ in ∈ L1(Ω).
Note that this convergence, ensures immediately the existence of

lim
t→∞

(ε − εE):

η(x, t) = ε(x, t) − εE(x, t) = S
(
x, θ(x, t)

)
: ρ(x, t) + εp(x, t) . (31)

In fact, εp(x, t) converges to a finite limit and the shakedown theorem ensures
the existence of a self-stress field ρ(x, t) such that S

(
x, θ(x, t)

)
: ρ(x, t) is

time-independent, then limt→∞η exists and is bounded. ��

4 Static Shakedown Factor

Based upon the shakedown theorem one defines the static safety factor as the
maximum value of the coefficient m satisfying the static shakedown theorem:

ms = max m

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f
(
mσ(x, t)

)
=f

(
m
(
σE(x, t) + τ∗(x, t)

))
≤ 0 ∀(x, t) ∈ Ω × [0,+∞[ ,

ηe(x, t) = S
(
x, θ(x, t)

)
: τ∗(x, t) is time-independent ∀ x ∈ Ω ,

divτ∗(x, t) = 0 ∀(x, t) ∈ Ω × [0,+∞[ ,
τ∗(x, t) · n = 0 ∀(x, t) ∈ ΓT × [0,+∞[ .

It is clear that the condition ms > 1 implies the occurence of shakedown.
This definition leads to a standard optimization problem and numerical al-
gorithms in view of estimation of the lower bound of safety coefficient with
respect to shakedown.

5 Numerical Examples

In this section, two illustrative examples performed by step-by-step finite
element procedure are presented. For each example, two numerical simula-
tions are carried out by the software Cast3M [7] and stored separately:(i)
elastic-plastic analysis under the thermo-mechanical loading path and (ii)
purely elastic analysis under the same loads. The status of the response
(shakedown or ratchetting or alternating plasticity) is numerically checked
by following the evolution of the equivalent plastic deformation and through
the evolution of the components of the plastic strain tensor εp(x, t) in all
the structure. Besides, the residual stress field ρ(x, t) is simply computed
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at Gauss points by the relation ρ(x, t) = σ(x, t) − σE(x, t) and the evo-
lution of ηe(x, t) = S(x, θ) : ρ(x, t) is obtained through
ηe(x, t) = ε(x, t) − εE(x, t) − εp(x, t).

5.1 Three-Bar Problem

Consider a simple mechanical system composed of three bars of equal cross-
section area, fixed to a rigid substrate at their ends A, B and C, and sym-
metrically connected together at D, cf. Fig. 1.

The bars are made of an elastic-plastic material for which Young’s modulus
E and the yield stress σy are temperature-dependent. Their variations with
respect to the temperature are the same as in [5] and are given by the fol-
lowing expressions:

E(θ) = 196271 − 55.2765 θ − 0.0353701 θ2 MPa , (32)

σy(θ) =

⎧⎨
⎩

258.453 MPa if θ < 35◦C
286.312 − 0.8539 θ +0.0018717 θ2 − 1.55146 × 10−6 θ3 MPa

if θ ≥ 35◦C .

According to [5], these expressions are analytical fittings of the ASME III
(1979) values for a 316 austenitic steel. The curves E(θ) and σy(θ) are plotted
in Figs. 2 and 3 respectively.

The geometric and mechanical characteristics of the assembly are given in
Table 1.

This assembly undergoes a constant force F applied at the end D and the
central bar BD is subjected to a cyclic temperature variation [θ0, θ0 + θmax]

D

A C

F

B 

Fig. 1 The three-bar problem
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Fig. 2 Young’s modulus E versus temperature

Fig. 3 Variation of the yield stress σy with respect to the temperature
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Table 1 Caracteristics of the bars

Cross-section area (m2) 1 × 10−3

Length of the bar BD (m) 1

Length of the bars AD and CD (m)
√

2
ν 0.3
α(◦C−1) 1.1 × 10−5

as shown in Fig. 4. The temperature of the two remaining bars is maintained
constant equal to zero.

Numerical simulations show that, for example, for (θmax = 100◦C,
θ0 = 200◦C and F = 3000 Pa ) the quasi-static response of the structure
is shakedown. In this case, the incremental plastic strain becomes constant
after some cycles as shown in Fig. 5 where the evolution εp of the node D is
plotted.

In Fig. 6 we represent the variation of ηe(x, t) = S(x, θ(x, t)) : ρ(x, t)
for the node D. As enounced in the theorem, this quantity tends to time-
independent constant in the case of shakedown.

Now we present some results concerning ratchetting. This type of re-
sponse is obtained for example when the input data set is (θmax = 200◦C,
θ0 = 200◦C and F = 3000 Pa). A typical ratchetting curve of the incremental
evolution of the plastic strain εp for the node D is displayed in Fig. 7. This

Fig. 4 Cyclic temperature variation
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Fig. 5 Stabilization of the plastic strain εp when shakedown occurs

Fig. 6 Evolution of ηe in the case of shakedown
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Fig. 7 Incremental increase of the plastic strain εp when ratchetting occurs

Fig. 8 Evolution of ηe in the case of ratchetting
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figure shows that εp increases at each increment of time and consequently
the assembly will collapse by plastic strain accumulation.

Figure 8 illustrates that ηe(x, t) = S(x, θ) : ρ(x, t) tends towards a peri-
odic solution of the same period as the thermal load.

These numerical results for shakedown and ratchetting responses confirm
the propositions stated in the extended static shakedown theorem. To show
that this is not related to the finite dimensional character of the three-bar
problem, we shall study a continuous solid in the next section.

5.2 Square Plate with a Centered Hole

The second example concerns the common benchmark test in numerical
shakedown analysis [11, 24] namely the square plate with a central circular
hole. The study is carried out in the framework of plane stress hypothesis.

Let the plate be made of an elastic perfectly plastic material and let us
suppose that the Young’s modulus E and the coefficient of thermal expansion
α are temperature-dependent as shown in Figs. 9 and 10 respectively.

The characteristics of the square plate are given in Table 2.

Fig. 9 Young’s modulus E versus temperature
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Fig. 10 Evolution of the coefficient of thermal expansion α with the temperature

Table 2 Characteristics of the square plate

L (mm) 100
Radius of the hole (mm) 10
ν 0.3
σy (MPa) 500

The thermo-mechanical loadings and boundary conditions are as follows.
The plate is embedded on its external contour and a cyclic temperature
variation θ in the range within [θ0, θ0 + Δθ] is uniformly distributed on the
structure, cf. Fig. 11.

Due to the symmetry of the problem, numerical investigations are carried
out on quarter of the plate.

The same analysis as done before for the three-bar problem is derived
here again. For example, if one takes (θ0 = 150◦C, Δθ = 150◦C) one obtains
a shakedown regime. Figure 12 displays the iso-value map of the stabilized
equivalent plastic strain field in the plate.

Now if we draw the evolution of the plastic strain extrapolated at the node
A2 we can see that as suspected the components of this field become time-
independent after some cycles. For example, Fig. 13 shows the variation of
εp

xx at A2.
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Fig. 11 Cyclic temperature variation

To check all the conditions announced in our theorem we draw the evo-
lution of ηe(x, t) = S(x, θ) : ρ(x, t) according to time for A2 and we obtain
Fig. 14 for the component ηe

xx. It is clear that, in the case of shakedown, this
quantity tends toward a time-independent limit.

Moreover, numerical simulations show that it is possible to obtain an alter-
nating plasticity as quasi-static response of the plate. This can be achieved
for example for (θ0 = 200◦C, Δθ = 200◦C). For this data input, Fig. 15
shows the evolution of εp

yy of the node A2. This type of curves is typical for
alternating plasticity.

As done before, one can plot the variation of ηe(x, t) = S(x, θ) : ρ(x, t).
Figure 16 shows that ηe

yy tends toward a periodic limit with same period as
the thermal loadings.

The third and last possible regime namely the ratchetting is obtained for
example when the thermal loading is (θ0 = 200◦C, Δθ = 1000◦C). For the
node A2, the increase of the incremental plastic strain is displayed in Fig. 17.

In this case, one can observe that ηe(x, t) = S(x, θ) : ρ(x, t) becomes
cyclic with the same period of the loading as displayed in Fig. 18.

5.2.1 Remark

Numerical simulations were carried out to study the influence of the ini-
tial state of the structure on the nature of the thermo-mechanical response
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EPSE
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Fig. 12 Iso-value map of the stabilized equivalent plastic strain field in the case of adap-
tation

but are not shown here to shorten the article. It was found that the initial
stress/strain state does not change the status of the limit response. It influ-
ences only the values of the numerical values of different mechanical fields.

6 Conclusion

A novel static shakedown theorem for elastic-plastic materials with tempera-
ture-dependent coefficients has been presented in this article. It concerns
not only the variation of the elasticity tensor components with the temper-
ature but also the cases of decrease of the yield stress and the variation of
coefficient of thermal expansion. Compared to shakedown of materials with
constant elastic modulus, it is not the residual stress tensor which is time-
independent but it is the elastic residual strain field ηe.
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Fig. 13 Evolution of εp
xx in case of shakedown

Fig. 14 Evolution of ηe
xx in case of shakedown
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Fig. 15 Evolution εp
yy in the case of alternating plasticity
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Fig. 16 Evolution ηe
yy in the case of alternating plasticity
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Fig. 17 Evolution of εp
xx in the case of ratchetting
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Fig. 18 Evolution of ηe
xx in the case of ratchetting
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As in the classical problems of shakedown, a definition of the static shake-
down safety factor is given and this can lead to algorithms for approximating
of the shakedown upper bounds. This task will be addressed in a future work.
Numerical simulations performed by step-by-step finite elements calculus
have been addressed to verify the theorem conditions. It is found that in
cases of the ratchetting and alternating plasticity, the elastic residual strain
field ηe tends toward a cyclic time-evolution with the same period of thermal
loading. It seems that this response is related to the solution of the multival-
ued Eq. (14) established in [14]. A mathematical analysis of the Eq. (14) will
be published by the authors in a future paper.
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On Shakedown of Structures Under
Variable Loads with a Kinematic
Non-linear and Non-associated
Hardening Rule

C. Bouby, G. de Saxcé, and J.-B. Tritsch

Abstract The introduction of hardening into the study of elastoplastic
shakedown analysis is considered in this paper, in particular in the case
of non-associated plasticity. Due to the fact that the framework of Gener-
alized Standard Materials (GSM) is not well adapted in this last case, an
alternative approach, provided by the concept of Implicit Standard Materi-
als (ISM), is then used. In particular, we study the typical example of an
homogeneous constant traction and alternating torsion state; it is analyzed
by using the step-by-step computations and then within the ISM framework.
The obtained results for the shakedown factor as well as the back-stresses
are examined. The comparison of the incremental method predictions to the
analytical solution and the mathematical programming ones, built by means
of the bipotential approach, shows a very good agreement.

1 Introduction

Many engineering structures or structural elements are submitted to cyclic
mechanical loads and/or temperature fields, acting simultaneously. For this
kind of loading, the limit load, based on proportional loads, do not ensure
the structural safety. The experimental tests show that beyond the limit
load, structures subjected to cyclic loading may fail after a finite number
of cycles by accumulation of plastic strains, called ratchet or incremental
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collapse, or by periodic elastoplastic strain response, called plastic shakedown
or accommodation. Nevertheless, the structure can also endure a very large
number of cycles (high-cycle fatigue). In this case, called elastic shakedown,
the behaviour corresponds to a stabilization of the plastic strains and the
response of the structure becomes purely elastic.

In the pioneering works on shakedown theory by [9] and [15] the plastic
effects covered by the theoretical development were restricted to linear elastic
perfectly plastic materials, with no thermal influence and in quasi-static pro-
cesses. From the engineering point of view, these assumptions were not always
realistic. Consequently, extensions of the classical shakedown theorems have
attracted much interest in the last years, specifically to take into account the
hardening effects in the framework of generalized standard materials (see,
e.g. the review in [12,16]).

As the class of generalized standard materials is not relevant to model
the non-associative constitutive laws (this is the case when the non-linear
kinematic hardening rule is considered), we use the bipotential approach.
Using this framework, it has been shown (see e.g. de Saxcé in [13]) that many
non-standard dissipative materials are in fact governed by a normality rule,
but in an implicit sense. Therefore, the main objective of the present chapter
is to study non-linear kinematic hardening models in the scope of implicit
standard materials. To this end, after recalling some theoretical basis of the
bipotential approach and its application to shakedown analysis, we consider
the example of an homogeneous constant traction and alternating torsion
state and analyze it by using the step-by-step computations and then within
the Implicit Standard Materials framework. The results obtained with the
incremental method predictions are then compared to the analytical solution
and to the mathematical programming ones, built by means of the bipotential
approach.

2 Implicit Standard Materials and Shakedown

2.1 Concept of Implicit Standard Materials

Let the generalized velocities be κ̇ = (ε̇p, κ̇′) ∈ V , the velocity space, in-
cluding the velocities κ̇′ of additional internal variables (hardening, . . . ), and
the corresponding associated variables π = (σ,π′) ∈ F , the stress space.
A bipotential is a function b from V × F into ] −∞,∞], separately convex,
satisfying the fundamental inequality generalizing Legendre-Fenchel one [7]:

∀(κ̇∗,π∗) ∈ V × F, b(κ̇∗,π∗) ≥ κ̇∗ · π∗ . (1)
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The couples (κ̇,π), for which the variables are related by the dissipative
law, are qualified as extremal in the sense that the equality is reached in the
previous relation:

b(κ̇,π) = κ̇ · π . (2)

Then, the extremal couples are characterized by the differential inclusions
κ̇ ∈ ∂πb(κ̇,π), π ∈ ∂κ̇b(κ̇,π) where ∂π (∂κ̇ respectively) denotes the sub-
differential when partial derivating with respect to π (respectively κ̇). For
elastic-plastic behaviours, the set of extremal couples is equivalent to that of
the material states satisfying the plastic flow rule. Physically, the bipotential
stands for the plastic dissipation power, and thus, is supposed to be posi-
tive. Materials admitting a bipotential are further called implicit standard
materials by analogy to the generalized standard ones.

2.2 Bipotential Approach for Shakedown Analysis

Let Ω be a solid body with an elastic-plastic material admitting a bipotential:

∀(ε̇p, κ̇′) ∈ V, ∀(σ,π′) ∈ F, b[(ε̇p, κ̇′), (σ,π′)] ≥ σ : ε̇p + π′ · κ̇′ , (3)

where “:” denotes the standard double contracted tensorial product. It is
subjected to variable periodic external actions varying between given limits
controlled by a load factor λ. As in [3], we define admissible stress fields
(ρ,π′) in the sense that:

(i) ρ is a residual stress field;
(ii) ρ and π′ are time-independent and plastically admissible when adding

to ρ the stress response σe = λσe0 in the corresponding fictitious elastic
body:

∀x ∈ Ω, ∀t, (σe(x, t) + ρ(x),π′(x)) ∈ K with the elastic domain K.

Following [17], we define admissible generalized velocity fields (ε̇p, κ̇′) in the
sense that:

(iii) the increment of the plastic strain rate on the load cycle Δεp =
∮

ε̇pdt is
kinematically admissible with zero values of the corresponding displace-
ment increments on the supports,

(iv) ε̇p is plastically admissible in the following sense:
∫

Ω

∮
σe : ε̇p dtdΩ > 0 ,

(v) the increment of kinematic internal variables on the load cycle vanishes:



182 C. Bouby et al.

Δκ′ =
∮

κ′(x, t) dt = 0 .

The reasons to introduce admissible fields (ρ,π′) characterized by (i)–(ii),
and (ε̇p, κ̇′) characterized by (iii)–(v) is that we are only interested in the
asymptotic fields reached after a transient phase, which can be infinite (for
further details, see [3,4]). In particular, if shakedown occurs, the plastic strain
εp and the other internal variables κ′ stabilize and the total dissipation is
bounded. In the framework of implicit standard materials, the existence of
time-independent residual fields is assumed but, up to now, has not been
proved (as in Melan’s famous theorem). This assumption must be considered
as a reasonable generalization of the Melan’s theory. Then, the admissible
fields can be incorporated in a variational formulation of shakedown problems
built by introducing the so-called bifunctional:

βS(ε̇p, κ̇′,ρ,π′, λ) =
∫

Ω

∮ {
b[(ε̇p, κ̇′), (ρ + λσe0,π′)] − λσe0 : ε̇p

}
dtdΩ .

(4)

By virtue of the principle of virtual work, a straightforward consequence
of (3) is that for any admissible field the bifunctional (4) is greater or equal
to zero. As λ tends to λa by upper values, the limit velocity field (ε̇p, κ̇′) and
the stress field (λaσe0 + ρ,π′) satisfy the constitutive law. According to (2),
one has:

βS(ε̇p, κ̇′,ρ,π′, λa) = 0 . (5)

The kinematical and statical fields have to be determined together, which
provides a weak form of the classical dual theorems, adapted to the class
of implicit standard materials. Clearly enough, the kinematical and statical
shakedown problems cannot be solved independently but are strongly “cou-
pled”. Nevertheless, one can get, as shown in [2], a formulation of kinematic
bound problem:

inf
κ̇k

∫
Ω

∮ {
b[(ρ + λaσe0,π′), (ε̇pk, κ̇′k)]

}
dtdΩ

s. t.

⎧⎨
⎩

κ̇k admissible ,∫
Ω

∮
σe0 : ε̇pk dtdΩ = 1 .

(6)

Following [6], the static bound problem takes then the form:

sup
πs,λs

{
λs −

∫
Ω

∮ {
b[(ρs + λsσe0,π′s), (ε̇p, κ̇′)]

}
dtdΩ

}
s. t. πs admissible .

(7)

Numerical simulations show that the initial state of the back-stresses affects
the delay of apparition of incipient plastic flow but does not modify the
shakedown load [3].
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2.3 Generalized Standard Materials by the Bipotential
Approach

If the constitutive law is associated, it can be represented by a separated bipo-
tential b(κ̇,π) = ϕ(κ̇) + ΨK(π), where ΨK is the indicator function of K, i.e.
ΨK(π) = 0 if π ∈ K and ΨK(π) = +∞ otherwise, while ϕ is the support
function of K, that is the well-known dissipation function. Then the bifunc-
tional is also separated. The bound problems (6) and (7) are then “decoupled”.
This gives for the kinematic bound problem:

inf
κ̇k

∫
Ω

∮ {
ϕ(ε̇pk, κ̇′k)

}
dtdΩ s. t.

⎧⎨
⎩

κ̇k admissible∫
Ω

∮
σe0 : ε̇pk dtdΩ = 1 ,

(8)

and for the static bound problem:

sup
πs,λs

{
λs −

∫
Ω

∮ {
ΨK(ρs + λsσe0,π′s)

}
dtdΩ

}
s. t. πs admissible . (9)

A straightforward consequence of the bipotential-based method is the simul-
taneous construction of both kinematic and static bound problems.

3 Computation of Shakedown Load for a Homogeneous
Constant Tension and Alternating Torsion State

In this section, we study the typical example of a homogeneous constant
traction and alternating torsion state with the non-linear kinematic hardening
rule. Assuming that the plastic threshold is constant and equal to σY , the
generalized velocity fields κ̇ are reduced to (ε̇p,−α̇) and the generalized stress
fields π to (σ,X). The elastic domain K is then defined by:

K = {(σ,X) such that σeq(σ − X) − σY ≤ 0} .

As σY > 0, the isotropic hardening rule requires that εeq(ε̇p) = ṗ. The
non-associated kinematic hardening rule introduced by Armstrong and Fred-
erick [1] and more extensively developed by Lemaitre and Chaboche [11] and
Marquis [14], can be written as:

α̇ = ε̇p − 3
2

X

X∞
εeq(ε̇p) . (10)

Furthermore, the back-stresses are linearly dependent on the kinematic vari-
ables through X = 2

3Cα where C is a constant kinematic hardening modulus.
Consider now a homogeneous constant tension and alternating torsion state
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in plane strain state. For this application, stress tensor and back-stress one,
reduced to its deviatoric part, read:

σ =

⎡
⎣σ11 σ12 0
σ12 0 0
0 0 σ33

⎤
⎦ , X =

⎡
⎣X11 X12 0
X12 −(X11 +X33) 0
0 0 X33

⎤
⎦ .

Accounting for von Mises criterion, σeq is given by:

σeq(σ−X) = (σ−X)2 +(νσ−Z)2 +(τ−Y )2 +2(X+Z)2−(σ+Z)(νσ+X) ,
(11)

where use has been made of the following transformed variables:

σ11 = σ, X11 = X, σ12 =
τ√
3
, X12 =

Y√
3
, σ33 = νσ, X33 = Z . (12)

Assuming the plastic incompressibility, the plastic strains rates and kinematic
internal variables rates tensors can be written as:

ε̇p =

⎡
⎢⎣
ε̇p
11 ε̇p

12 0
ε̇p
12 −(ε̇p

11 + ε̇p
33) 0

0 0 ε̇p
33

⎤
⎥⎦ , α̇ =

⎡
⎣α̇11 α̇12 0
α̇12 −(α̇11 + α̇33) 0
0 0 α̇33

⎤
⎦ .

In the same spirit as previously for the stresses, let us introduce the fol-
lowing notations:

ε̇p
11 = ε̇, α̇11 = α̇, ε̇p

12 =
√

3
2
γ̇, α̇12 =

√
3

2
β̇, ε̇p

33 = η̇, α̇33 = ξ̇ . (13)

3.1 Step-by-Step Analysis

In this section, the purpose is to establish an incremental strain/stress rela-
tionship.

3.1.1 Stress-Strain Curve

The total strain increment dε is assumed to be the sum of the elastic strain
increment dεe and the plastic one dεp:

dε = dεe + dεp .

The elastic part satisfies Hooke’s law:

dε =
1 + ν

E
dσ − ν

E
tr(dσ)I .
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The plastic component is given by Prager’s formulation of plastic yielding
rule:

• if f(σ − X) < 0 then dεp = 0

• else if f(σ−X) = 0 and df(σ−X) = 0 then ∃dζ ≥ 0 such that dεp = dζ ∂f
∂σ .

The consistency condition df = 0 provides an expression to compute the
plastic multiplier:

dζ =
∂f
∂σ : dσ

2
3C

∂f
∂σ : ∂f

∂σ − C
X∞

∂f
∂σ : X

√
2
3

∂f
∂σ : ∂f

∂σ

, (14)

where C and X∞ are materials constants. Back-stresses and plastic strains
are then computed by numerical integration of the nonlinear kinematic hard-
ening rule:

dX =
2
3
Cdζ

∂f

∂σ
− C

X∞
Xdζ

√
2
3
∂f

∂σ
:
∂f

∂σ
, (15)

and the normality law:

dεp = dζ
∂f

∂σ
,

during the two loading phases: first a tension up to σmax (path OA on Fig. 1)
and next, a repeated alternating torsion between τmax and −τmax (path
ABACA on Fig. 1). Stress increments are fixed to 1 MPa for the tension

0

B

C

A

τ

−τmax

σmax
σ

τmax

Fig. 1 Loading description
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loading and to ± 1MPa for the alternating torsion one. Back-stresses X are
initialized to 0MPa.

The material selected for numerical implementation is 316L steel.
First results obtained are then the strain-stress curves. For example, for

a fixed tension stress σmax = 225MPa and two different values of maximum
shear stress τmax, the shear strain is plotted with respect to the shear stress
on Figs. 2 and 3. We observe for τmax = 190MPa that after a transient
elastoplastic regime, the strain–stress curve tends to a stabilized response
that shows the elastic shakedown occurs (Fig. 2), whereas for τmax = 200MPa
the strain–stress curve tends to a stabilized response that shows the plastic
shakedown (or accommodation) occurs (Fig. 3).
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Fig. 2 Plastic shear strain in terms of shear stress for σ = 225MPa and τmax = 190MPa

3.1.2 Numerical Detection of Shakedown Load

In order to detect the numerical value of the shakedown load, we fix a maxi-
mum shear stress τmax and we perform numerous cycles for this value. When
the structure shakes down, the width of the cycle for the shear strain tends
to zero, theoretically after an infinite number of cycles. In practice, the com-
putations are stopped when the cycle width reaches a given tolerance or
when the cycles number becomes greater than a given maximum. Then, the
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Fig. 3 Plastic shear strain in terms of shear stress for σ = 225MPa and τmax = 200MPa

corresponding maximum shear strain εf
max is considered. This procedure is

performed for various values of the maximum shear stress τmax.
By plotting the strain values γf

max in terms of maximal shear stress τmax

for a tension intensity σmax of 25MPa, we obtain the curve of Fig. 4. It
seems that the sudden sloop modification observed on this curve detects the
shakedown load. To confirm this idea, we have computed and plotted the
curvature of this curve, by means of the second derivative, in terms of the
shear stress (see Fig. 5). Effectively, we observe a significant peak of the
curvature.

To confirm this result, we perform a simulation with a maximum shear
stress less than 228MPa, for example 226MPa. We can see that the cycle
width becomes less than the tolerance since the behaviour is purely elas-
tic (see Fig. 6). When the maximum shear stress is greater than 228MPa,
for example 230MPa, the computation stops when 1000 cycles are done.
Then the cycle width never becomes less than the tolerance (see Fig. 7)
and the structure does not shake down. Then the step-by-step procedure
introduced here, seems to be able to detect the shakedown load. The nu-
merical shakedown loads obtained will be compared to the ones obtained
in the scope of Implicit Standard Materials in the end of the section (see
Fig. 10).
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3.1.3 On the Evolution of Back-Stresses

As back-stresses play an important role in shakedown analysis, it is interesting
to study their evolution in terms of time and shakedown or non-shakedown
of the structure. For example, for a traction stress of σmax = 225MPa,
the numerical shakedown load computed is 195MPa. To compare the dif-
ferent cases, we plot on Fig. 8 the back-stress evolution for a maximum shear
stress less than the numerical shakedown load (e.g. τmax = 190MPa), for
the numerical shakedown load (in the present case τmax = 195MPa), and
for a maximum shear stress greater than the numerical shakedown load (e.g.
τmax = 200MPa). When the shear stress is less than the numerical shake-
down load, the back-stress Y vanishes after a few cycles. In the cases of the
maximum shear stress is equal or greater to the numerical shakedown load,
the back-stress Y fluctuates around zero. It shows that the numerical shake-
down load is probably over-estimated as the evolution of Y in this case is the
same as the one when there is non-shakedown. In fact, for the exact shake-
down load, the back-stress Y , as well the other components X and Z which
tend to asymptotic values whenever shakedown or non-shakedwon occurs [4],
should stabilize after few cycles.

Furthermore, numerical simulations show that the initial state of the back-
stresses affects the delay of apparition of incipient plastic flow but does not
modify the shakedown load (for further details see [3]).
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3.2 Implicit Standard Materials Analysis

3.2.1 Static Bound Problem

For the typical example studied in this section, the plastic yielding rule takes
the form: {

ε̇p ∈ ∂ΨK(σ − X) ,
α̇ = ε̇p − 3

2
X

X∞
εeq(ε̇p) .

(16)

A bipotential associated to this plastic yielding rule (16) is then given by
(see [4]):

b(κ̇,π) = ΨK(σ − X) + Ψ{0}

(
α̇ − ε̇p +

3
2

X

X∞
εeq(ε̇p)

)

+
(
σY +

3
2

X : X

X∞

)
εeq(ε̇p) . (17)

Let us introduce

β((π, λ), κ̇) =
∫

Ω

∮ {(
σY +

3
2

X : X

X∞

)
εeq(ε̇p) − σc : ε̇p

}
dtdΩ − λ , (18)

where σc stands for the constant part of the stress tensor. Then, following
the formulation (7), the static bound problem takes the form:

sup
π,λ

−β((π, λ), κ̇) s. t.

{
π admissible ,
α̇ = ε̇p + 3

2
X

X∞
εeq(ε̇p) .

(19)

It can be noticed that this problem is strongly coupled. Hence the static and
kinematic fields must be determined simultaneously and the problem we have
to solve reads:

sup
π,λ,κ̇

−β((π, λ), κ̇) s. t.

⎧⎪⎨
⎪⎩

π admissible ,
κ̇ admissible ,
α̇ = ε̇p + 3

2
X

X∞
εeq(ε̇p) .

(20)

By using convex optimization methods, in fact it is necessary to build an
iterative process allowing the resolution of both static and kinematic bound
problems.

As we consider a uniform distribution of stress and strain fields, the resid-
ual stress ρ must not be considered. In fact, the back-stresses X play the
role of the residual stresses but at a micro-scale smaller than the one of
the reference elementary volume. Further, they will be considered as time-
independent. For sake of simplicity, a unit volume Ω is now considered, in
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order to avoid the volume integrals. Therefore, considering cyclic loading,
the state will alternate between two shear stress extrema such that, for the
maximum of the cycle τ1 = λ and for the minimum of the cycle τ2 = −λ. It
is then sufficient to find the maximum torsion range to obtain the shakedown
load. Concerning the non-linear kinematic hardening, the static problem that
we have to solve becomes

sup
X,λ

{
λ−

2∑
k=1

[(
σY +

3
2

X : X

X∞

)
εeq(ε̇

p
k) − σc : ε̇p

k

]}

s. t.

⎧⎨
⎩
[
σeq(λσe0

k + σc − X)
]2 − σ2

Y ≤ 0, ∀k = 1, 2 ,

α̇k − ε̇p
k + 3

2
X

X∞
εeq(ε̇

p
k) = 0, ∀k = 1, 2 .

(21)

As the static bound problem has been built, the kinematic one is discretized:

sup
ε̇p

k

{
λ−

2∑
k=1

[(
σY +

3
2

X : X

X∞

)
εeq(ε̇

p
k) − σc : ε̇p

k

]}

s. t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ̇1 − γ̇2 = 1 ,

ε̇1 + ε̇2 − 3
2

X
X∞

(εeq(ε̇
p
1) + εeq(ε̇

p
2)) = 0 ,

γ̇1 + γ̇2 − Y
X∞

(εeq(ε̇
p
1) + εeq(ε̇

p
2)) = 0 ,

η̇1 + η̇2 − 3
2

Z
X∞

(εeq(ε̇
p
1) + εeq(ε̇

p
2)) = 0 ,

(22)

where the internal variables rates have been eliminated, using the non-linear
kinematic hardening rule, to reduce the number of optimization variables.
Let us remark that the presence of the term εeq(ε̇

p
k) implies a regularization

based on the introduction of a small parameter as in [8].

3.3 Implementation of the Bound Problems

3.3.1 First Algorithm

A first algorithm used to solve this kind of problems including coupled terms
between dual variables stems from a method of successive approximation
(see [5] for example). This method is based on an alternating optimization
of static bound problem (21) and kinematic one (22) and leads to the con-
struction of a bounded minimizing sequence, so that convergent. Here, due
to the fact that the non-linear kinematic hardening rule is involved as a lin-
ear constraint in both kinematic and static bound problems, this method
leads to a stationnarity of the sequence since the second iteration without
convergence.
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3.3.2 Second Algorithm

We suggest then an alternative to implement the problem (21). As the main
obstacle encountered is due to the involving of the non-linear kinematic hard-
ening rule in both static and kinematic bound problems and particularly in
static problem,1 we choose to introduce a relaxed static bound problem. For
this aim, considering Karush-Kuhn-Tucker conditions of the problem (21),
we notice that the non-linear kinematic hardening rule appears not only ex-
plicitely in the problem constraints, but also among the optimality conditions.
This observation suggests then to introduce the following relaxed static bound
problem:

sup
X,λ

{
λ−

2∑
k=1

[(
σY +

3
4

X : X

X∞

)
εeq(ε̇

p
k) − σc : ε̇p

k

]}

s. t.
[
σeq(λσe0

k + σc − X)
]2 − σ2

Y ≤ 0, ∀k = 1, 2 ,

where the objective function is modified to retrieve the non-linear kinematic
hardening rule through the optimality conditions. Obviously, substituting the
relaxed static bound problem to the non-relaxed one does not guarantee the
convergence of the sequence obtained by incremental optimization, but this
one will be verified using the vanishing of the function β, defined by (18)
and characterizing the exact solution, at the end of the iterative process (for
further details on this subject, see [4]).

Finally, following [10], the convergence criterion used is based on a pos-
teriori constitutive law error. Accounting for the couples (κ̇,π), related by
the constitutive law verifying (2), with the help of (18), a global convergence
criterion Eg can be defined by:

Eg =
⏐⏐⏐⏐β(κ̇,π)

λ

⏐⏐⏐⏐ .

3.3.3 On the Convergence of the Second Algorithm

As explained in the previous section, when the non-relaxed static bound
problem is replaced by the relaxed one, there is no guarantee for the con-
vergence of the sequence obtained by incremental optimization. It is then
necessary to consider the convergence of the proposed algorithm. To this
end, we fix a maximum tension value, for example2 σmax = 375MPa, next
we plot the evolution of the function −β (18) after each kinematic bound
problemoptimization, label −βc, and after each relaxed static bound problem

1 The back-stresses are only determined for non-vanishing generalized rates.
2 This value is chosen for the significant number of iteration.
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Fig. 9 Evolution of βc and βs in terms of iteration number

optimization, label −βs, in terms of number of iterations. The obtained re-
sults are summarized on Fig. 9. We can then notice that both functions −βc

and −βs tend to zero at the end of the iterative process that characterize the
exact solution (for further details on this subject, see [4]).

3.4 Interaction Curve: Shakedown Loads Comparison

Applying the numerical method of computing the shakedown load as ex-
plained in the previous sections for various values of the fixed tension, one
can compare the results obtained for the three kinds of hardening consid-
ered here (see Fig. 10). As previously forecast, the unlimited linear kinematic
hardening allows only to predict alternating plasticity collapse. The limited
linear hardening one [18] predicts an alternating plasticity collapse when
the traction σ is less than 175MPa and an incremental collapse beyond.
Above all, the non-linear kinematic hardening model is the only one that
predicts an incremental collapse for all traction values, close to the asymp-
totic limit of the incremental solution. The non-linear kinematic hardening
shows a maximum error with the linear limited one up to 20% which is
significant.
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Fig. 10 Comparison between unlimited, limited linear and non-linear kinematic hardening
shakedown load

Finally, despite of the use of a relaxed static problem in the case of non-
linear kinematic hardening rule, a good agreement can be observed between
the numerical values and analytical ones (see [4]) given by:

λ = σY

√
1 − σ2

(σY +X∞)2
(1 − ν + ν2) . (23)
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Limit Analysis of Orthotropic Laminates
by Linear Matching Method

P. Fuschi, A. A. Pisano, and O. Barrera

Abstract A numerical procedure for limit analysis of orthotropic composite
laminates, in plane stress conditions, is presented. The procedure can be
viewed as an extension, in the context of orthotropic materials, of a method
known in the relevant literature as Linear Matching Method. The structural
elements here examined are composite laminates obeying, by hypothesis, to
a Tsai-Wu type yield criterion. Following the kinematic approach of limit
analysis theory, an upper bound to the collapse load multiplier is detected in
a finite element context and in an iterative fashion. A few numerical examples
are carried out to verify the effectiveness of the proposed approach and to
inquire into its capability to predict experimental test results for pinned-joint
composite plates.

1 Introduction

Limit analysis is an effective tool for the direct evaluation of the load bearing
capacity of a structure. Such a direct method is based on two fundamental
theorems due to Drucker et al. (see e.g. [15,36]). The proof of such theorems
grounds on the principle of maximum plastic dissipation and, consequently,
they are strictly valid only for standard materials. The two theorems, as
known, lead to two classical approaches of limit analysis, namely: the kine-
matic and the static one and, if the limit loads produced by the application
of the two theorems are equal to each other, then they equal the collapse
load. Nevertheless, the will of applying limit analysis to engineering prob-
lems even outside the realm of perfect plasticity is proved by several studies.
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The pioneeristic works [14,18,24,39], or, later on, [3,22,30,37], till the more
recent contributions [7, 41, 46, 48], although the list is far to be exhaustive,
witness for this will.

Moreover, the rapid development in the last few decades of finite element
based analyses whereas on the one hand was a further essential contribution
to the success of direct methods (see e.g. [4,12,19,38]) on the other hand di-
rected the researchers’ interest towards the elastic-plastic evolutive analyses
against the direct methods. Indeed, the evolutive analyses, able to follow the
structural response in the post-elastic regime up to collapse, are often com-
putationally more competitive than limit analysis, but this competitiveness,
as well as the efficacy and trustworthiness of the obtained response, is strictly
influenced by the modelling of the constitutive material behaviour.

When dealing with materials whose available constitutive laws are unable
to catch the complexity of the phenomena characterizing the actual post-
elastic behaviour, limit analysis comes back to being a valid and effective tool
for design purposes. Stringent examples of such convincement can be found
in the case of structures made of composite materials. For such materials,
existing and subtle constitutive models, that take into account phenomena
like interlaminar behaviour, delamination, damage evolution, etc., turn out to
be effective only for solving specific case-studies. Such constitutive models are
often based on material constants that are unlikely detected via laboratory
tests thus resulting useless for practical engineering applications.

The interest in limit analysis approaches in the field of composite material
structures is indeed testified by several contributions, see e.g. [9,13,16,25,27,
29, 31, 40] among others. The present work belongs to this research line and
its main goal is to systematize and improve a procedure, recently proposed by
the senior authors in [31], aimed at the evaluation of an upper bound to the
collapse load multiplier for orthotropic composite laminates in plane stress
conditions. The procedure can be viewed as an extension, to the orthotropic
materials case, of the Linear Matching Method (LMM) due to Ponter and
Co-workers, see e.g. [6, 7, 10, 11, 32–35]. The LMM can be interpreted as a
programming technique involving an iterative fe-based procedure that allows
one to define an upper bound to the collapse load multiplier. In practice, a
sequence of linear analyses is performed on the structure assumed, by hy-
pothesis, as made of a fictitious linear viscous material with spatially varying
moduli. With this conjecture, at each iteration, the computed fictitious solu-
tion can be used to define a collapse mechanism for the real structure. To this
aim, by rescaling the fictitious moduli and, if necessary, by adjusting other
fictitious material parameters, the computed fictitious stresses are brought
on the yield surface of the real material at a fixed strain rate distribution.
The latter, together with the related compatible displacement rates, gives a
collapse mechanism. At the end of each iteration then, the fictitious analysis
produces all the quantities, namely: stress at yield, related strain and dis-
placement rates, entering an upper bound collapse load multiplier evaluation.
As noted in [32], once the convergence is assured, the computed upper bound
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is the one pertaining to the class of displacement fields given by the adopted
FE mesh, i.e. it depends on the richness of the kinematical model. This obvi-
ous drawback is easily overcome by using fine enough meshes in the analyses.

The present extended version of the LMM grounds on two key ideas:
(i) The LMM is applied to a second order tensor polynomial form of the Tsai-
Wu failure criterion [42,43], which is assumed as a Tsai-Wu type yield surface
for the considered material. The above quadratic form is simple, it allows one
to apply the standard rules of transformation, invariance and symmetry, it
also considers interactions among the stress or strain components. The lack
of associativity may be overcome following the non standard limit analysis
approach of Radenkovic [26,37]. (ii) The fictitious material is defined in such
a way that the number of fictitious parameters to be updated is strongly
reduced. To this aim, as suggested in [31], the fictitious material is assumed
linear, viscous, orthotropic and suffering a distribution of assigned initial
stresses, while the whole procedure is recast in a dimensionless stress space,
precisely the one adopted for the Tsai-Wu criterion formulation, see e.g. [21].

The proposed procedure is expounded in three main sections which follow
this introductory one. Section 2 is devoted to the basic assumptions, the con-
stitutive criterion and the problem position. Section 3 gives the details of the
LMM, in the form here presented to deal with orthotropic materials, pointing
out its peculiarities. To this aim a few geometrical sketches and a flow-chart
of the main steps of the iterative scheme are also given with a twofold reason:
to show the simplicity of a geometrical interpretation, at least for the studied
problems; to show the simplicity of the numerical implementation. Section 4
is dedicated to the method validation. The presented numerical examples
concern mechanically fastened joints in composite plates. A comparison be-
tween the predicted results and the available experimental ones is carried out
to verify the effectiveness of the method. Section 5 is the closing one and
is oriented to some concluding remarks, some critical comments, necessary
and/or possible improvements.

Notation: Bold face symbols denote vectors or tensors. Cartesian orthog-
onal co-ordinates are used and subscripts denote Cartesian components. Re-
peated index implies summation rule. The symbol := means equality by def-
inition. Other symbols will be defined in the text where they appear for the
first time.

2 Limit Analysis for Nonstandard Orthotropic Materials

The basic assumptions to deal with a limit analysis approach for nonstan-
dard materials are briefly summarized. The adopted constitutive criterion,
obtained by a second order tensor polynomial form of the Tsai-Wu failure
criterion, is then presented. The section closes with the formulae needed for
evaluating an upper bound to the collapse load multiplier.
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2.1 Basic Assumptions and Constitutive Criterion

A theory of limit analysis in the context of nonstandard materials was pro-
posed in the early sixties by Radenkovic [37]. The two limit analysis funda-
mental theorems where actually rephrased in the shape of “upper” and “lower
bound theorems” (see e.g. [26]). In particular, the upper bound theorem, here-
after invocated, states: “the limit loading for a body made of a nonstandard
material is bounded from above by the limit loading for a standard material
obeying the same yield criterion”.

Adopting for the material in use a yield surface expressed by a second
order tensor polynomial form of the Tsai-Wu criterion [9, 42, 43], the lack
of associativity, if this latter essential requisite it is not postulated, may be
overcome by the Radenkovic’s approach, i.e. searching for an upper bound
on the collapse load multiplier referred to an associative material obeying to
the adopted Tsai-Wu type yield criterion, see e.g. [26] for a deeper discussion
to this concern.

By denoting with 1 and 2 the principal directions of orthotropy in plane
stress case as well as indicating σ6 ≡ τ12, as usual for composite laminates,
the adopted Tsai-Wu type criterion is expressed by:

F11 σ
2
1 + F22 σ

2
2 + F66 σ

2
6 + 2F12 σ1σ2 + F1 σ1 + F2 σ2 = 1 , (1)

where:

F1 :=
1
Xt

+
1
Xc

, F2 :=
1
Yt

+
1
Yc

, F11 := − 1
Xt Xc

,

F22 := − 1
Yt Yc

, F66 :=
1
S2

, F12 := −1
2

√
F11 F22 ,

(2)

with: Xt, Xc the longitudinal tensile and compressive strengths respectively;
Yt, Yc the transverse tensile and compressive strengths respectively and S the
longitudinal shear strength. By inspection of (2) it is worth noting that five
of the six coefficients required for the definition of the criterion are given by
performing simple uniaxial or shear tests. The sixth, namely F12, devoted to
take into account the interaction between the two normal stress components
σ1 and σ2 requires a biaxial test. This experimental task is not easy to perform
and simplified assumptions, as the one here adopted for F12, are usually made
[5, 17]. Moreover, considering that a failure process in a laminate involves a
combination of failure mechanisms due to matrix crushing, fibre breaks, fibre
buckling, delamination, modified versions of the Tsai-Wu criterion have been
presented to remove some of its internal incoherencies [17,23].

Despite the above remarks the Tsai-Wu type criterion, in the quadratic
form adopted, is simple; it allows to apply the standard rules of transfor-
mation, invariance and symmetry; it also contemplates interactions among
the stress or strain components analogously to the von Mises criterion for
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isotropic materials. The above Tsai-Wu type criterion is used for defining an
admissible stress states domain: points within the domain locate stress states
pertaining to an anisotropic linear elastic behaviour of the material; points
lying on the domain boundary locate stress states at which the material has
exhausted its strength capabilities. After all, the Tsai-Wu type surface, in the
shape of (1) locating in the stress space an ellipsoid, is here assumed as yield
surface for the orthotropic material considered.

2.2 Evaluation of an Upper Bound to the Collapse
Load Multiplier

Let us consider a body occupying the volume V , ∂V denoting its external sur-
face while a Cartesian coordinate system is assumed, namely xi, i = 1, 2, 3.
For simplicity, only surface forces are considered, precisely P p̄(x) acting
on x̄ ∈ ∂Vt; where P is a scalar load multiplier and p̄(x) is the reference
load vector collecting all the surface force components, say p̄i, acting on
points of a portion ∂Vt of the body surface. The remaining part of ∂V , i.e.
∂Vu = ∂V − ∂Vt, is assumed to suffer displacements u = 0. Moreover, plane
stress conditions are assumed and the constituent material is, by hypothe-
sis, orthotropic, homogeneous and with a constitutive behaviour obeying the
Tsai-Wu type criterion in the form given by (1).

Following a standard formalism of the kinematic approach of limit analysis
theory, in the assumed hypothesis of associated flow rule and rewriting (1)
in the abridged form f(σj) = 0 (j = 1, 2, 6), the following can be stated. For
a given distribution of compatible strain rates ε̇j , say ε̇c

j , i.e. such that the
related displacement rates u̇c

i meet the condition u̇c
i = 0 on ∂Vu, an upper

bound to the collapse limit load multiplier is given by:

P
UB

∫
∂Vt

p̄i u̇
c
i d(∂V ) =

∫
V

σy
j ε̇

c
j dV , (3)

where: ε̇j = λ̇ ∂f/∂σj are the components of the outward normal to the yield
surface f(σj) = 0 (with λ̇ > 0 scalar multiplier); P

UB
denotes the upper

bound load multiplier; σy
j are the stresses at yield associated to the given ε̇c

j ;
u̇c

i being the related displacement rates. The set (ε̇c
j , u̇

c
i ) defines a collapse

mechanism.

3 Linear Matching for Orthotropic Materials

The Linear Matching Method, extended to the orthotropic materials case, is
presented and discussed going into details with the aid of a few geometrical



202 P. Fuschi et al.

sketches aimed to a better comprehension of the procedure whose geometrical
interpretation is very simple and effective. The advantages of a formulation in
a dimensionless stress space as well as of an appropriate choice of the initial
fictitious material parameters used throughout the procedure are exploited.
The section closes with an operative computational scheme expounded, in
the last paragraph, in a flow-chart style.

3.1 Fundamentals

As outlined in Sect. 1, the LMM has been widely employed to perform
limit analysis on structures made of von Mises materials or materials with
a pressure-dependent yield condition or, also, in the context of geotechni-
cal problems (see e.g. [6, 7, 10, 11, 32–35]). The LMM involves a sequence of
FE-based analyses carried on the structure under study but assuming it as
made of a material with spatially varying moduli, i.e. a fictitious material.
At each step, the fictitious solution is used to define, at each Gauss point of
the adopted FE mesh, a collapse mechanism for the real structure in terms of
stress at yield, σy

j , plus related strain and displacement rates, namely (ε̇c
j , u̇

c
i ).

Looking at (3), this information allows one to evaluate an upper bound to
the collapse load multiplier. The iterations stop when the difference between
two subsequent upper bound values becomes less than a fixed tolerance.

The present LMM utilizes a fictitious linear viscous material which is or-
thotropic and subjected to a distribution of imposed initial stresses. The pro-
posed generalization is given with reference to an orthotropic laminate, under
plane stress conditions, whose material parameters, Young moduli and Pois-
son’s ratio, have been fixed, say to values: E(0)

1 , E(0)
2 , E(0)

6 , ν(0)
12 , respectively.

The structure is also subjected to a given distribution of initial stresses: σ̄(0)
1 ,

σ̄
(0)
2 , σ̄(0)

6 . The notation (·)(0) refers to an initial arbitrary choice of the quan-
tity (·). For this fictitious material the complementary dissipation rate can be
written as:

W
(
σj , E

(0)
j , ν

(0)
12 , σ̄

(0)
j

)
=

1

2

[
σ2

1

E
(0)
1

+
σ2

2

E
(0)
2

+
σ2

6

E
(0)
6

− 2 ν
(0)
12

σ1 σ2

E
(0)
2

− 2

(
σ̄

(0)
1

E
(0)
1

− ν
(0)
12

σ̄
(0)
2

E
(0)
2

)
σ1 − 2

(
σ̄

(0)
2

E
(0)
2

− ν
(0)
12

σ̄1
(0)

E
(0)
2

)
σ2

− 2
σ̄

(0)
6

E
(0)
6

σ6 +
σ̄

(0)2

1

E
(0)
1

+
σ̄

(0)2

2

E
(0)
2

+
σ̄

(0)2

6

E
(0)
6

− 2 ν
(0)
12

σ̄
(0)
1 σ̄

(0)
2

E
(0)
2

]
,

(4)

where, by hypothesis, the moduli E(0)
j (j = 1, 2, 6) are allowed to assume

different values at different points in the structure, i.e. they are spatially
varying, (the initial choice can assume the same values at all points). For
this fictitious material and at a fixed value of the load multiplier, say P (0)

UB
, a
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linear FE-analysis is performed on the whole structure to compute: the strain
rates ε̇e

j = ∂W (σe
j )/∂σ

e
j ; the related stresses σe

j ; the compatible displacement
rates, u̇e

i , of the points at which surface loads act. The fictitious kinematic
solution (ε̇e

j , u̇
e
i ) so computed (operatively at each Gauss point of the adopted

fe mesh), is then forced to represent a collapse mechanism, namely it is forced
to identify with (ε̇c

j , u̇
c
i ) of (3).

To this aim, referring to the sketch of Fig. 1 where, as assumed, the fixed
fictitious initial values of the elastic parameters and stresses are denoted
by (·)(0), on keeping ε̇e

j fixed, it is sufficient to compute the stress at yield,
say σy

j , associated to ε̇e
j – so assumed as a given ε̇c

j – and to vary the fictitious
moduli and initial stresses (values (·)(∗) in Fig. 1) so that σe

j coincides with
σy

j ; the fictitous u̇e
i so representing the compatible displacements u̇c

i associ-
ated to ε̇c

j . Executing such operation at all Gauss points of the discretized
structure, Eq. (3) can be used to compute a P (∗)

UB
. The above rationale, from

a geometrical point of view (see again Fig. 1), merely states that the com-
plementary dissipation rate equipotential surface of the fictitious material,
W (σj , E

(∗)
j , ν

(∗)
12 , σ̄

(∗)
j ) = const., matches the Tsai-Wu type surface at the

stress point σy
j .

A crucial remark has to be done at this point: the stresses at yield com-
puted at matching, obviously do not satisfy the equilibrium conditions with
the loads P (0)

UB
p̄ and a new fictitious analysis has to be performed on the whole

structure with the updated E
(∗)
j values and loads P (∗)

UB
p̄. Indeed, the whole

procedure has to be carried out iteratively, the iterations stopping when two
subsequent computed P

UB
values become close to each other.

An essential requisite of an iterative procedure is the certainty of its conver-
gence; to this concern, it is worth mentioning that the expounded procedure

σ2

σ1

σ σ y
σσ e

e

ec εε ≡

Tsai-Wu type surface

constEW jj =],,[ )*()*(
12

)*( σν

constEW jj =],,[ )0()0(
12

)0( σν

0

ε

Fig. 1 Geometrical sketch of the matching procedure at the generic Gauss point in the
σ6 = 0 plane: (·)(0) = initial arbitrary values; (·)(∗) = values at which the matching is
achieved



204 P. Fuschi et al.

fulfils the sufficient condition for convergence given in [34] and the final P
UB

value is normally attained in few iterations.
It is also worth noting that the formal analogy existing between the linear

viscous problem and the linear elastic problem allows one to compute, at each
iteration, a fictitious elastic solution, looking at W [σj , E

(0)
j , ν

(0)
12 , σ̄

(0)
j ] of (4)

as at the complementary energy potential of a fictitious elastic material. The
fictitious elastic analyses can then be carried out by any commercial FE-code
with obvious advantages.

3.2 Dimensionless Formulation

The matching procedure can be implemented in a much simpler way if both
surfaces, the Tsai-Wu type one, given by (1), and the complementary dissipa-
tion equipontential surface, expressed by (4), are rephrased in a dimensionless
stress space, namely the one usually adopted for the Tsai-Wu criterion (see
e.g. [21]).

To this aim, the following dimensionless parameters are set up:

X :=
√
F11 σ1 , Y :=

√
F22 σ2 , Z :=

√
F66 σ6 , (5)

f12 :=
F12√
F11F22

, f1 :=
F1√
F11

, f2 :=
F2√
F22

. (6)

With the above positions Eq. (1) gives:

X2 + Y 2 + Z2 + 2 f12 XY + f1 X + f2 Y = 1 , (7)

which, in the dimensionless space (X, Y , Z), individuates an ellipsoid whose
major axis lies on the Z = 0 plane and it is rotated by a counterclockwise an-
gle of 45 degrees with respect to the X axis. Moreover, assuming that (·)

T W

stands for a quantity (·) pertaining to the Tsai-Wu type criterion and/or
surface; denoting with α

T W
, β

T W
and γ

T W
the X, Y , Z coordinates of the

ellipsoid centre respectively, and with a
T W

, b
T W

and c
T W

the semi-axes ellip-
soid dimensions (a

T W
referring to the major axis, c

T W
to the axis parallel to

Z) it is easy to verify the following expressions hold true:

α
T W

= − f1 − f2 f12

2 (1 − f2
12)

, β
T W

= − f2 − f1 f12

2 (1 − f2
12)

, γ
T W

= 0 , (8)
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a
T W

=
[
(1 + f12) /

(
1 + α2

T W
+ β2

T W
+ 2 f12 αT W

β
T W

)]−1/2
,

b
T W

=
[
(1 − f12) /

(
1 + α2

T W
+ β2

T W
+ 2 f12 αT W

β
T W

)]−1/2
, (9)

c
T W

=
[
1 + α2

T W
+ β2

T W
+ 2 f12 αT W

β
T W

]1/2
.

On the other hand, rewriting (4) in the dimensionless space (X, Y , Z),
i.e. using again (5), yields:

W [X,Y, Z, E
(0)
j , ν

(0)
12 , X̄(0), Ȳ (0), Z̄(0)

]
=

=
1

2

[
X2

E
(0)
1 F11

+
Y 2

E
(0)
2 F22

+
Z2

E
(0)
6 F66

− 2 ν
(0)
12

E
(0)
2

√
F11

√
F22

X Y

− 2√
F11

(
X̄(0)

E
(0)
1

√
F11

− ν
(0)
12 Ȳ (0)

E
(0)
2

√
F22

)
X − 2√

F22

(
Ȳ (0)

E
(0)
2

√
F22

− ν
(0)
12 X̄(0)

E
(0)
2

√
F11

)
Y

− 2 Z̄(0)

E
(0)
6 F66

Z+
X̄(0)2

E
(0)
1 F11

+
Ȳ (0)2

E
(0)
2 F22

+
Z̄(0)2

E
(0)
6 F66

− 2 ν
(0)
12

E
(0)
2

√
F11

√
F22

X̄(0) Ȳ (0)

]
.

(10)

For a given initial value of the load multiplier, say P (0)
UB

, and for any fixed set
of elastic parameters and initial stresses, namely (E(0)

1 , E(0)
2 , E(0)

6 , ν (0)
12 , X̄(0),

Ȳ (0), Z̄(0)), the above expression individuates in the (X,Y,Z) space an ellip-
soid of the form W

[
χj , E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0) ≡ const. The latter abridged

form points out the dependence of the ellipsoid location and amplitude on
the elastic parameters and initial stress values, W̄ (0) being the pertinent com-
plementary energy equipotential value corresponding to the given loads. For
brevity, χj for j = 1, 2, 6 identifies with X,Y,Z respectively.

The announced simplification of the matching is easily obtainable by tak-
ing advantage of the ellipsoidal shapes of the Tsai-Wu type surface and of
the equipotential surface W

[
χj , E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= const. As in facts, if the

fictitious material is, from the beginning of the analysis, defined in such a
way that its complementary energy equipotential surface is homothetic to the
Tsai-Wu type surface, the two ellipsoids can be made coincident at match-
ing. As a consequence, only one scalar parameter has to be iteratively up-
dated, namely the homothety ratio between the two ellipsoids. The latter will
control the axes’ amplitudes of W

[
χj , E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0) which are

directly related to the fictitious elastic moduli values E(0)
j . To impose that

W
[
χj , E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0) (as given by (10)) is homothetic to the Tsai-

Wu type surface (given by (7)) implies that: the semi-axes ratios are equal
(3 conditions); the two ellipsoids have the same centre (3 conditions) and the
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main axis is rotated by a counterclokwise angle of 45 degrees with respect to
the X axis (1 condition). It easy to verify that the above requirements can
be satisfied with the following positions:

E
(0)
1 =

1
2F11

, E
(0)
2 =

1
2F22

, E
(0)
6 =

1
2F66

, ν
(0)

12 = −f12

√
F11√
F22

, (11)

X̄(0) = α
T W

, Ȳ (0) = β
T W

, Z̄(0) = 0 . (12)

By substituting Eqs.(11) and (12), Eq. (10) reduces to:

X2 + Y 2 + Z2 + 2 f12 X Y − 2 (α
T W

+ f12 βT W
)X − 2 (β

T W
+ f12 αT W

)Y

= W̄ (0) − α2
T W

− β2
T W

− 2 f12 αT W
β

T W
, (13)

which is the searched (fictitious) complementary energy equipotential surface
homothetic to the Tsai-Wu type surface.

Looking at the sketch of Fig. 2, dimensionless counterpart of Fig. 1, the
LMM can be rephrased in the (X, Y , Z) space as follows: an elastic analysis
on the structure loaded by P (0)

UB
p̄i and made of a fictitious material whose

complementary energy is given by (13) produces, at each GP of the fe model,
an elastic solution of the form (χe (0)

j , ε̇
e (0)
j ), (point A in Fig. 2), lying on

the surface W
[
χj , E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0). Assuming ε̇

e (0)
j as ε̇c

j , the (non-

dimensional) stress at yield, χy (∗)
j , associated to the (normal) ε̇c

j is computed
(point B in Fig. 2). The fictitious elastic solution, χe (0)

j , is then forced to
identify with the one at yield, namely χ

e (∗)
j ≡ χ

y (∗)
j , by rescaling the ficti-

Y

X

)0(eε

)0()0()0(
12

)*( ],,[ WEW jj =χνo’

o

)0()0()0(
12

)0( ],,[ WEW jj =χν

αTW

βTW

Bye ≡≡ (*)(*) χχχχχχχ

Tsai-Wu
type surface

ce εε ≡(0)
)0(eχχχχ≡A

Fig. 2 Matching procedure at the generic Gauss point for W
[
E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0)

homothetic to the Tsai-Wu type surface: geometrical sketch in the Z = 0 plane
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tious elastic moduli while keeping fixed the loads, namely P (0)
UB

, the initial
stresses χ̄(0)

j , the Poisson coefficient ν (0)
12 and W̄ (0).

The rescaling of the fictitious elastic moduli can be carried out computing
first the homothety ratio between the two ellipsoids.

This is given by:

Γ (0) :=
a

T W

a
(0)
W

=
b

T W

b
(0)
W

=
c

T W

c
(0)
W

, (14)

where: a
T W

, b
T W

, c
T W

are the lengths of the Tsai-Wu type ellipsoid semi-
axes given by (9) and a(0)

W
, b(0)

W
and c(0)

W
are the analogous quantities for the

ellipsoid W
[
χj , E

(0)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0). It easy to verify that Γ (0) can be

given the equivalent expression:

Γ (0) =

√
Ω

W̄ (0)
, (15)

where: Ω := 1 + α2
T W

+ 2 f12 αT W
β

T W
+ β2

T W
> 0 is the known term of

the Tsai-Wu type ellipsoid equation rewritten in a cartesian reference system
with the origin at the ellipsoid centre and equipollent to the (X,Y,Z) system.
Once Γ (0) is known, a rescaling of the fictitious elastic moduli can be carried
out on setting:

E
(∗)
j = E

(0)
j

[
Γ (0)

]2

, j = 1, 2, 6 , (16)

indeed, by substituting the latter expression in (10) the Tsai-Wu type ellip-
soid, in the shape of (7), is obtained.

On the other hand, the stresses at yield, χy (∗)
j , can be computed (again

referring to Fig. 2) with the following equations:

Xy (∗) =
[
1 − Γ (0)

]
α

T W
+ Γ (0) Xe (0) ,

Y y (∗) =
[
1 − Γ (0)

]
β

T W
+ Γ (0) Y e (0) ,

Zy (∗) = Γ (0) Ze (0) ,

(17)

where, for clarity, all the stress components, χy (∗)
j for j = 1, 2, 6, have been

explicitly reported; α
T W

and β
T W

being given by (8).
As noted in Sect. 3.1, the stresses at yield σ

y (∗)
j , given by (17) by applica-

tion of (5), will not satisfy the equilibrium conditions pertaining to the loads
P (0)

UB
p̄ but, remembering (3), they will satisfy the equilibrium requirements

for loads p̄i amplified by

P (∗)
UB

=

∫
V
σ

y (∗)
j ε̇c

j dV∫
∂Vt

p̄i u̇c
i d(∂V )

, (18)
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that is the load multiplier value pertinent to the E
(∗)
j distribution accom-

plishing the matching at each GP. A new elastic analysis, performed with
loads P (∗)

UB
p̄ and E

(∗)
j distribution of (16), will give at each GP a fictitious

elastic solution lying on a surface W
[
χj , E

(∗)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (∗), the latter

obviously will not coincide with W
[
χj , E

(∗)
j , ν

(0)
12 , χ̄

(0)
j

]
= W̄ (0). The ratio-

nale can then be repeated in an iterative fashion, the starred quantities, i.e.
the ones accomplishing the matching, being the values attained at conver-
gence. The apposite recursive formulae are given in the next section where
the main steps of the proposed procedure are summarized.

3.3 Iterative Scheme and Recursive Formulae

A flow-chart version of the whole procedure is hereafter depicted for clarity;
the recursive formulae can be derived looking at Eqs. (16), (17), and (18).

• Initialization

Knowing the strength values of the orthotropic material (Xc;Xt; Yc; Yt; S);
assign to all fes in the mesh the initial set of fictitious elastic parameters
and initial stresses such that the complementary energy equipotential sur-
face is homothetic to the Tsai-Wu type surface, i.e.:

E
(0)
1 = 1/(2F11) , E

(0)
2 = 1/(2F22) , E

(0)
6 = 1/(2F66) ,

σ̄
(0)
1 = α

T W
/
√
F11 , σ̄

(0)
2 = β

T W
/
√
F22 , σ̄

(0)
6 = 0 ,

ν
(0)
12 = −f12

√
F11/

√
F22 ,

α
T W

and β
T W

being the X, Y coordinates of the Tsai-Wu type ellipsoid
centre. Set also k = 1, P (k−1)

UB
= P (0)

UB
= 1 (for k = 1, P (0)

UB
can be any

arbitrary value) and compute Ω = 1 + α2
T W

+ 2 f12 αT W
β

T W
+ β2

T W
for

later use.

• Iteration loop

step # 1: perform a fictitious elastic analysis with elastic parameters
E

(k−1)
j , ν12 = ν

(0)
12 , initial stresses σ̄j = σ̄

(0)
j and with loads

P (k−1)
UB

p̄i, computing a fictitious elastic solution at Gauss
point level, namely: ε̇e (k−1)

j , u̇(k−1)
i , σe (k−1)

j .

step # 2: compute the constant value of the complementary potential
energy:

W̄ (k−1) =
1
2
σ

e (k−1)
j ε

e (k−1)
j
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step # 3: compute the homothety ratio, namely

Γ (k−1) =

⎧⎨
⎩

√
Ω/W̄ (0) for k = 1

√
W̄ (k−2)/W̄ (k−1) for k > 1

step # 4: evaluate stresses at yield:

σ
y (k−1)
1 =

[
1 − Γ (k−1)

] α
T W√
F11

+ Γ (k−1) σ
e (k−1)
1

σ
y (k−1)
2 =

[
1 − Γ (k−1)

] β
T W√
F22

+ Γ (k−1) σ
e (k−1)
2

σ
y (k−1)
6 = Γ (k−1) σ

e (k−1)
6

step # 5: set ε̇c (k−1)
j = ε̇

e (k−1)
j , u̇c (k−1)

i = u̇
e (k−1)
i and evaluate the

upper bound multiplier

P (k)
UB

=

∫
V
σ

y (k−1)
j ε̇

c (k−1)
j dV∫

∂Vt
p̄i u̇

c (k−1)
i d(∂V )

step # 6: check for convergence

|P (k)
UB

− P (k−1)
UB

| ≤ TOL

⎧⎨
⎩

YES ⇒ EXIT

NOT ⇒ CONTINUE

step # 7: compute the E(k)
j distribution accomplishing the matching at

each GP to be utilized at next iteration, namely:

E
(k)
j = E

(k−1)
j

[
Γ (k−1)

]2

j = 1, 2, 6

set k = k − 1 and GOTO step #1.

By inspection of the above flow-chart, the LMM, also in this extended version
for orthotropic materials, is easy to implement and can be carried out by
any commercial FE code suitably fed, at each iteration, with the fictitious
parameters accomplishing the matching at each GP.

Two remarks concern steps #4 and #7. At step #4, the given recursive
formulae to compute the stresses at yield have been obtained by using (5)
and (17), the latter have to be rewritten at the current iteration, i.e. the
terms (·)(∗) or (·)(0) are all in the form (·)(k−1), following the notation above
used. No use of dimensionless quantities is then necessary at operative level.
At step #7, the E(k)

j (j = 1, 2, 6) values, to be utilized at next iteration, are
actually evaluated at each GP of each element in the mesh. However, to avoid
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accuracy problems, a unique set of E(k)
j is assigned within a single element,

the latter being a set of averaged E
(k)
j values within the element itself.

Finally, it is worth to note that writing (10) at the k−th iteration, by
substituting the E(k)

j updated as at step #7 but rephrased, for convenience,
in the equivalent form:

E
(k)
j =

ΩE
(0)
j

W (k−1)
, (19)

making also use of Eqs. (11) and (12), the following expression is obtained
(at the generic GP and at k−th iteration):

X2 + Y 2 + Z2 + 2 f12 XY + f1 X + f2 Y = 1 +Ω

[
W̄ (k)

W̄ (k−1)
− 1

]
. (20)

The latter identifies with the Tsai-Wu type (7) when, at a certain k (namely at
convergence), W̄ (k) identifies with W̄ (k−1) and the matching is accomplished.
At this k it is also Γ (k) = 1 and σ

y (k)
j = σ

e (k)
j (j = 1, 2, 6) as it has to be.

4 Validation: Numerical and Experimental Results

The proposed procedure is applied to a typical problem of composite struc-
tural elements, nowadays widely employed in many advanced engineering
fields, precisely the evaluation of the strength as well as the prediction of the
failure mechanism of the joints between composite plates or components.

In the present context such problem is treated in a simplified manner,
i.e. in terms of evaluation of an upper bound to the collapse (failure) load
multiplier, renouncing, of necessity, to a description of the intricate stress
state arising within the joint. Nevertheless, the proposed analysis also allows
a prediction of the failure mode. Both results are collated with experimental
laboratory tests traceable in the relevant literature and this with the aim of
inquiring into the effectiveness and the trustworthiness of the method.

4.1 Mechanically Fastened Joints
in Composite Laminates

Joints between composite laminates are commonly made by using mechanical
fasteners (like bolts, rivets, pin-connectors) and this mainly because they
are easy to assemble or disassemble. On the other hand, such connections
are characterized by an high stress concentration near the hole area which
becomes a source of weakness; the structural joint failure usually begins at
the fasteners sites. A great deal of research has therefore concentrated on this
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problem with different approaches, see e.g. [2,8,20,44,47] just to quote some
of the more recent contributions.

The idea of applying limit analysis on such a problem, far off the will
of furnishing an exhaustive solution of the problem, has been spurred by a
twofold reason. The former related to the possibility of analyzing a plane
stress problem, to which the present procedure is confined, characterized by
an high stress concentration. Such a circumstance, to the authors’ opinion,
is a good bench mark for the whole procedure. The latter is related to the
chance of testing the procedure by comparison of the obtained numerical
results with experimental (laboratory) ones.

The chosen mechanical problem is the one analyzed in [45], where several
data and experimental results are reported for a pin-loaded plate, in plane
stress conditions, as the one sketched in Fig. 3, where the geometry as well
as the boundary and loading conditions are given. In particular: l indicates
the distance between the hole center and the fixed plate end; e is the distance
between the hole center and the free plate end; w is the plate width; t is the
thickness.

The action of the pin inside the hole, of diameter d, has been assumed,
following the relevant literature, as a cosine load normal distribution Ti given
by:

Ti = −4
Q

π d
ni cos θ , (21)

where: Q is the total applied load, ni the unit vector of the outward nor-
mal to the inner hole surface and θ a clockwise angle varying in the range
[−π/2, π/2]. The plate is made of glass-fiber/vinyl-ester composite material,
fabricated by vacuum-assisted resin-transfer molding, whose mechanical char-
acteristics, in terms of strength values and elastic moduli, are reported in
Table 1.

y

l e

wd

z

Ti
θ

Fig. 3 Pin-loaded plate: geometry, boundary and loading conditions

Table 1 Mechanical parameters of the utilized composite material

Elastic Moduli (GPa) and Poisson ratio E1 E2 G12 ν12
49.8 6.9 31.9 0.3

Strengths (MPa) Yt = Xt Yc = Xc S
664.3 385.1 64.6



212 P. Fuschi et al.

All the elastic analyses have been carried out using the fe code adina [1],
while a Fortran main program has been developed to control the iterative
procedure and the matching at each Gauss point as described in Sect. 3.3.
Due to the symmetry of the problem with respect to the longitudinal y axis,
only one half of the plate has been analyzed using the fe model shown in
Fig. 4 and involving isoparametric shell elements with 16 nodes and 16 GPs
per element. The utilized element allows to specify an orthogonal material
axes system, the principal directions of orthotropy being 1 ≡ y and 2 ≡ z.
The applied reference load Q has been assumed equal to 1kN.

Many of the experimental test reported in [45] have been numerically re-
produced and the obtained results are reported in Table 2 for sake of compar-
ison. The latter is made in terms of ultimate bearing strength, namely σ

BRU
,

defined as the “maximum stress reached before a reduction in stress occurs
for the first time”. This bearing strength is given by the ratio between the
load at failure, say Qf , and the product of the hole diameter times the plate
thickness: σ

BRU
:= Qf/dt. Table 2 reports, for 16 specimens: the geometry;

the experimental values of σ
BRU

together with the experimentally observed
failure mechanisms; the predicted σ

BRU
values given by [45]; the ones given

by the present analysis. The error in percentage is also listed for each speci-
men for the predicted numerical results. In particular, the σ

BRU
values given

by [45] are obtained by Chang’s model, the ones given by the present LMM
have been computed at last iteration as σ

BRU
= P

UB
Q/d t.

By examining the results of Table 2, it can be noted that the error in
percentage of σ

BRU
is, in several cases, very high for both predictions. To this

concern, sharing the convincement of the above quoted paper, these discrep-
ancies could be caused by a three dimensional effect which is not considered
with a 2D fe formulation. Indeed, the same values of σ

BRU
obtained for

prototypes having the same w/d and e/d ratios but with different thickness
are consistent with the 2D fe analysis but contradict the experimental ev-
idences. To this concern it is to observe that a different thickness implies a
different stacking sequence of the laminate layers that can strongly affect the
mechanical characteristics of the laminate. Other results, about half of the
run examples, are very good with a low error in percentage, but the above

Fig. 4 Pin-loaded plate: half plate FE mesh adopted
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Fig. 5 Values of the upper bound to the collapse load multiplier, P
UB

, versus iteration
number; numerical results (solid lines) against collapse experimental threshold (dashed
lines) for: (a) specimen #9; (b) specimen #11; (c) specimen #12

drawbacks need further investigations. To the authors’ opinion, the noted
drawbacks could be overcome by applying the LMM layer-by-layer, i.e. by
using multilayer fes so carrying out the matching taking into account the
stacking sequence of the specimen. Another essential need is to test, for each
prototype, a statistically more significant number of specimens. These are
actually the objects of an ongoing research.

In all cases, the procedure has shown a very rapid convergence. For sake
of brevity the upper bounds sequences obtained for specimens #9, #11
and #12, namely the ones for which good upper bound predictions have
been obtained, are given in terms of upper bound values versus number of
iterations in Figs. 5(a–c), respectively.

4.2 Prediction of the Collapse Mechanism

The failure of a mechanically fastened joint, as known, depends on its geom-
etry, fiber orientation, position of the hole, thickness of the laminate, among
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other factors like for example environmental conditions affecting the mechan-
ical properties of the matrix. There are, typically, three fundamental modes
of failure detected, other modes being a combination of them, precisely: net-
tension (T); shear-out (S); bearing (B); see e.g. [28]. The first mode is due
to high tensile stress values on the net area through the fastener hole; the
second is related to the shear areas emanating from the hole edge parallel to
the load and determined by the free edge distance. These two modes are usu-
ally catastrophic. The third one, is characterized by high compressive stress
values within the zone surrounding the loaded inner hole surface and it is a
progressive failure mode.

The prediction of the collapse mechanism for the studied problem is then a
crucial goal. To this concern it is worth to note that the collapse mechanisms
predicted, for all the run specimens, by the present LMM are in very good
agreement with the ones observed experimentally and listed in Table 2. Once
again, for specimens #9, #11 and #12, at which different failure modes
have been experimentally detected, the collapse mechanisms are plotted in
Figs. 6, 7 and 8, respectively. The collapse mechanisms are here individuated
by the band plots, at last iteration, of the node displacement components.
In particular: Fig. 6 shows a net tension failure mode, Fig. 7 a combined
bearing/shear-out failure mode and Fig. 8 a bearing failure mode. The same
failure modes have been observed experimentally for the three considered
specimens, look again at Table 2. The results are obviously very encouraging,
either for the very good agreement with the experimental findings or for the
precise definition of the collapse zone.

5 Concluding Remarks and Future Developments

An extension of the Linear Matching Method for limit analysis of structures
made of orthotropic materials has been presented. The extension pertains to
materials obeying, by hypothesis, to a Tsai-Wu type yield condition, defined
as a second order tensor polynomial form of the Tsai-Wu failure criterion for
composite laminates. The proposed approach, from a wider point of view,
concerns limit analysis of a class of anisotropic structures made of a material
whose constitutive behaviour can be governed by a yield criterion expressed
by a quadratic (strictly convex) stress function, the expounded procedure
being, with no doubts, of general applicability.

The Linear Matching Method basically solves a sequence of linear anal-
yses on the structure assumed, by hypothesis, as made of a fictitious linear
viscous material with spatially varying moduli. With this conjecture, at each
iteration, the computed fictitious solution can be used to define a collapse
mechanism for the real structure and eventually an upper bound to the col-
lapse load multiplier. The “matching” refers to the geometrical circumstance
that, by varying (rescaling) the fictitious material parameters at each sam-
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z

a)

b)

Fig. 6 Pin-loaded plate of Fig. 3, collapse mechanism of net-tension type for specimen
#9: (a) y-displacements; (b) z-displacements

y

z

a)

b)

Fig. 7 Pin-loaded plate of Fig. 3, collapse mechanism of bearing/shear-out type for spec-
imen #11: (a) y-displacements; (b) z-displacements
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a)

b)

Fig. 8 Pin-loaded plate of Fig. 3, collapse mechanism of bearing type for specimen #12:
(a) y-displacements; (b) z-displacements

pling point of the structure – namely at each Gauss point of the adopted
FE mesh – the complementary dissipation rate equipotential surface of the
fictitious material matches the yield function at a stress point (at yield) lo-
cated by a given strain rate. The present approach proposes the use of a
fictitious material which is assumed linear, viscous, orthotropic and suffering
a distribution of given initial stresses. The whole method has been rephrased
in a dimensionless stress space turning to an iterative procedure easy to han-
dle, the number of fictitious material parameters to be adjusted reducing
drastically to a scalar one.

The method has been tested by analyzing a typical problem of compos-
ite laminate structural elements, namely a mechanically fastened composite
joint. A pin-loaded plate, under plane stress conditions, has been studied
and the obtained results compared with the available experimental ones. The
choice of this bench mark, whose peculiarity is the presence of an high stress
concentration around the fastener area, allowed to improve and systematize
the iterative scheme already employed by the senior authors for solving much
simpler problems. Some numerical findings, in terms of upper bound values,
show the need of further investigations to take into account three dimen-
sional effects revealed by the experimental evidences and here disregarded
by a 2D FE formulation. Other upper bound values are quite promising also
showing the potentialities of the procedure. The latter exhibits, in all the run
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examples, a very good convergence in agreement with a sufficient condition
for convergence satisfied by this formulation. The results, obtained in terms
of collapse mode prediction of the analyzed prototypes, are indeed very en-
couraging either for the very good agreement with the experimental findings
or for the ability of the proposed procedure to locate accurately the collapse
zone and the related collapse mode.

Further studies are certainly needed. To this concern a possible future
step forward could be a better modeling of the composite laminate whose
mechanical characteristics are strongly affected by the stacking sequence of
the fiber layers. The idea is to apply the LMM layer-by-layer, i.e. by using
multilayer 2D elements so performing the matching at the layer prototype
level. A second crucial task is the definition of a lower bound to the collapse
load multiplier. The lack of associativity, here overcome by a nonstandard
limit analysis approach, will generate an unavoidable gap between the two
bounds but their knowledge is essential for design purposes. A third goal is
related to the definition of apposite experimental tests on prototypes suffering
the same loading conditions, but having different geometry and/or fabricated
with a different manufacturing technology. To the authors’ opinion, the full
reliability on a procedure as the one here proposed can be achieved only by
comparison with a statistically meaningful number of experimental results.
These are, at present, the main targets of an ongoing research work.

Acknowledgements The financial support of the Italian Ministero dell’Istruzione dell’
Università e della Ricerca (MIUR) is gratefully acknowledged.

References

1. ADINA R & D, Inc.: Theory and Modeling Guide. Adina R & D, Watertown, MA,
USA (2002)

2. Aktas, A.: Bearing strength of carbon epoxy laminates under static and dynamic
loading. Composite Structures 67, 485–489 (2005)

3. Atkinson, J.H., Potts, D.M.: Stability of a shallow circular tunnel in cohesionless soil.
Géotechnique 27, 203–215 (1977)

4. Belytschko, T., Hodge, P.G.: Plane stress limit analysis by finite elements. Journal of
Engineering Mechanics Division 96, 931–943 (1970)

5. Bolzon, G., Ghilotti, D., Maier, G.: Strength of periodic elastic-brittle composites
evaluated through homogenization and parameter identification. European Journal of
Mechanics A/Solids 21, 355–378 (2002)

6. Boulbibane, M., Ponter, A.R.S.: Limit loads for multilayered half-space using the
linear matching method. Computer and Geotechnics 32, 535–544 (2005)

7. Boulbibane, M., Ponter, A.R.S.: Extension of the linear matching method to geotech-
nical problems. Computer Methods in Applied Mechanics and Engineering 194, 4633–
4650 (2005)

8. Camanho, P.P., Lambert, M.: A design methodology for mechanically fastened joints
in laminated composite materials. Composites Science and Technology 66, 3004–3020
(2006)



Limit Analysis of Orthotropic Laminates by Linear Matching Method 219

9. Capsoni, A., Corradi, L., Vena, P.: Limit analysis of anisotropic structures based on
the kinematic theorem. International Journal of Plasticity 17, 1531–1549 (2001)

10. Chen, H.F., Ponter, A.R.S.: Shakedown and limit analyses for 3-D structures using
the linear matching method. International Journal of Pressure Vessels and Piping 78,
443–451 (2001)

11. Chen, H.F., Ponter, A.R.S., Ainsworth, R.A.: The linear matching method applied to
the high temperature life integrity of structures. Part 1. Assessment involving constant
residual stress fields. International Journal of Pressure Vessels and Piping 83, 123–135
(2006)

12. Chen, H.F., Shu, D.W.: A numerical method for lower bound limit analysis of 3-D
structures with multi-loading systems. International Journal of Pressure Vessels and
Piping 76, 105–112 (1999)

13. Corradi, L., Vena, P.: Limit analysis of orthotropic plates. International Journal of
Plasticity 19, 1543–1566 (2003)

14. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Quar-
terly Applied Mathematics 10, 157–165 (1952)

15. Drucker, D.C., Prager, W., Greenberg, H.J.: Extended limit design theorems for con-
tinuos media. Quarterly Applied Mathematics 9, 381–389 (1952)

16. Francescato, P., Pastor, J.: Lower and upper numerical bounds to the off-axis strength
of unidirectional fiber-reinforced composite by limit analysis method. European Jour-
nal of Mechanics A/Solids 16, 213–234 (1997)

17. Hashin, Z.: Failure criteria for unidirectional fiber composites. Journal of Applied
Mechanics 47, 329–334 (1980)

18. Heyman, J.: The stone skeleton. International Journal of Solids and Structures 2,
249–279 (1966)

19. Hodge, P.G., Belytschko, T.: Numerical methods for the limit analysis of plates. Trans.
ASME, Journal of Applied Mechanics 35, 796–802 (1968)

20. Içten, B.M., Karakuzu, R., Toygar, M.E.: Failure analysis of woven kevlar fiber rein-
forced epoxy composites pinned joints. Composite Structures 73, 443–450 (2006)

21. Jones, R.M.: Mechanics of Composite Materials. 2nd edn., Taylor & Francis Inc.,
Philadelphia, PA, USA (1999)

22. Josselin de Jong, G.: Lower bound collapse theorem and lack of normality of strain
rate to yield surface of soils. In: Rheology and Soil Mechanics: IUTAM Symposium,
Grenoble 1964. Springer-Verlag, Berlin, Germany (1966)

23. Kolakowski, Z.: On some aspects of the modified Tsai-Wu criterion in thin-walled
composite structures. Thin-Walled Structures 41, 357–374 (2003)

24. Kooharian, A.: Limit analysis of voussoir and concrete arches. Journal of American
Concrete Institute 24, 317–328 (1952)

25. Li, H.X., Yu, H.-S.: Limit analysis of composite materials based on an ellipsoid yield
criterion. International Journal of Plasticity 22, 1962–1987 (2006)

26. Lubliner, J.: Plasticity theory. Macmillan Pub. Co., New York (1990)
27. Ma, G., Gama, B.A., Gillespie Jr., J.W.: Plastic limit analysis of cylindrically or-

thotropic circular plates. Composite Structures 55, 455–466 (2002)
28. Matthews, F.L., Rawlings, R.D.: Composite Materials: Engineering and Science.

Woodhead Pub. Ltd and CRC Press LLC, Cambridge, England (1999)
29. McLaughlin Jr., P.V., Batterman, S.C.: Limit behaviour of fibrous materials. Inter-

national Journal of Solids and Structures 6, 1357–1376 (1970)
30. Palmer, A.C.: A limit theorem for materials with non-associated flow laws. Journal

de Mécanique 5, 217–222 (1966)
31. Pisano, A.A., Fuschi, P.: A numerical approach for limit analysis of orthotropic com-

posite laminates. International Journal for Numerical Methods in Engineering 70,
71–93 (2007)

32. Ponter, A.R.S., Carter, K.F.: Limit state solutions, based upon linear elastic solutions
with spatially varying elastic modulus. Computer Methods in Applied Mechanics and
Engineering 140, 237–258 (1997)



220 P. Fuschi et al.

33. Ponter, A.R.S., Chen, H., Boulbibane, M., Habibullah, M.: The linear matching
method for the evaluation of limit loads, shakedown limits and related problems.
In: Mang, H.A., Rammerstorfer, F.G., Eberhardsteiner, J. (eds.) Proc. Fifth World
Congress on Computational Mechanics. University of Technology, Wien, Austria
(2002)

34. Ponter, A.R.S., Fuschi, P., Engelhardt, M.: Limit analysis for a general class of yield
conditions. European Journal of Mechanics A/Solids 19, 401–421 (2000)

35. Ponter, A.R.S., Fuschi, P., Engelhardt, M.: Limit analysis for pressure-dependent yield
conditions. In: Owen, D.R.J., Oñate, E., Hinton, E. (eds.) Proc. European Congress
on Computational Methods in Applied Sciences and Engineering. CIMNE, Barcelona,
Spain (2000)

36. Prager, W.: An Introduction to Plasticity. Addison-Wesley, Reading, MA (1959)
37. Radenkovic, D.: Théorèmes limites pour un materiau de Coulomb à dilatation non

standardisée. Comptes Rendus de l’Académie des Sciences Paris 252, 4103–4104
(1961)

38. Save, M.: Atlas of Limit Loads of Metal Plates, Shells and Disks. Elsevier, Amsterdam
(1995)

39. Shield, R.T.: On Coulomb’s law of failure in soils. Journal of the Mechanics and
Physics of Solids 4, 10–16 (1955)

40. Shu, L.S., Rosen, B.W.: Strength of fiber-reinforced composites by limit analysis meth-
ods. Journal of Composite Materials 1, 366–381 (1967)

41. Sloan, S.W., Kleeman, P.W.: Upper bound limit analysis using discontinuous velocity
fields. Computer Methods in Applied Mechanics and Engineering 127, 293–314 (1995)

42. Tsai, S.W., Hann, H.T.: Introduction to composite materials. Technomic Pub. Co.,
Westport, CT, USA (1980)

43. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. Journal
of Composite Materials 5, 58–80 (1971)

44. Whitworth, H.A., Aluko, O., Tomlinson, N.A.: Application of the point stress criterion
to the failure of composite pinned joints. Engineering Fracture Mechanics 75, 1829–
1839 (2008)

45. Wu, T.J., Hahn, H.T.: The bearing strength of e-glass/vinyl-ester composites fabri-
cated by VARTM. Composites Science and Technology 58, 1519–1529 (1998)

46. Yu, H.S., Sloan, S.W.: Finite element limit analysis of reinforced soils. Computers &
Structures 63, 567–577 (1997)

47. Yýlmaz, T., Sýnmazçelik, T.: Investigation of load bearing performances of pin con-
nected carbon/polyphenylene sulphide composites under static loading conditions.
Materials & Design 28, 520–527 (2007)

48. Zheng, X., Booker, J.R., Carter, J.P.: Limit analysis of the bearing capacity of fissured
materials. International Journal of Solids and Structures 37, 1211–1243 (2000)



Mechanical Surface Treatments
and Life Improvement

G. Inglebert, I. Caron, T. Da Silva Botelho, and M. Quillien

Abstract Mechanical surface treatments such as shot-peening, hammering,
cold rolling are used in order to introduce compressive residual stresses in
surface layers. These stresses usually induce significant life improvement. Op-
timization of these treatments might be more efficient if an analytical model
is used to predict the induced residual stresses and their evolution under
cycling loading. Such models have been settled by L. Castex, G. Inglebert
and their students between 1984 and 1992. They used the MASSI method
(Simplified Analysis of Inelastic Structures Method – J. Zarka, G. Inglebert),
the analytic knowledge of Hertzian contact stresses in the elastic case, and
a specific behaviour law, MI2. The paper will sum up the predictive method
and how it could be used for life improvement estimation using multiaxial
life criteria. Accuracy of the results is strongly linked to the quality of the
behaviour law; recent work of G. Inglebert, N. Point and D. Vial settled an
optimization process to obtain the four material parameters for the MI2 law
from a tensile test.

1 Introduction

Mechanical surface treatments such as shot-peening, hammering, cold rolling
are used in order to introduce compressive residual stresses in surface layers.

These stresses usually induce significant life improvement. Optimisation
of these treatments might be more efficient if an analytical model is used
to predict the induced residual stresses and their evolution under cycling
loading.
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Such models have been settled by L. Castex, G. Inglebert and their stu-
dents between 1984 and 1992. MASSI method (Simplified Analysis of Inelastic
Structures Method developed by J. Zarka, G. Inglebert and colleagues), work-
ing on Standard Generalized Materials was used together with the analytic
knowledge of Hertzian contact stresses in the elastic case (all these mechanical
surface treatments imply contacts), and a specific behaviour law, MI2.

The final state of strains and stresses after treatment is supposed to be
only a function of depth from the surface.

This work sums up the predictive method and how it could be used for
life improvement estimation using multiaxial life criteria.

Accuracy of the results is strongly linked to the quality of the behaviour
law; recent work of G. Inglebert, N. Point and D. Vial settled an optimisation
process to obtain the four material parameters for the MI2 law from a tensile
test.

2 MASSI Method

MASSI stands in French for “Méthode d’Analyse Simplifiée des Structures
Inélastiques” or “Simplified Analysis for Inelastic Structures”.

Using MASSI implies using specific behaviour laws from the Standard
Generalized Materials class (rheological models). These classes of materials
are well suited to describe kinematic hardening of the material.

Main uses of MASSI are shakedown analysis including estimation of resid-
ual stresses and plastic strains and limit analysis.

2.1 Basis

Microphysical analysis shows that the inelastic behaviour of metals is strongly
linked to internal defects such as dislocations, vacancies, . . . The model of
Standard Generalized Materials considers the elementary volume element as
an assembly of n perfectly plastic mechanisms embedded in a linear elastic
matrix.

Local stresses σ(m) on the mechanisms are linear functions of macroscopic
stresses Σ and internal deformations α(m) of all the perfectly plastic mech-
anisms. Plastic yield conditions have to be written for each mechanism and
introduce yield values S(m):

[
σ(m)

]
= AΣ −

[
y(m)

] ∥∥∥σ(m)
∥∥∥ ≤ S(m),[

y(m)
]

= B
[
α(q)

]
and εp = AT

[
α(m)

]
. (1)
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A is the localisation tensor on the mechanisms proportional to the deviator
tensor to account for plastic incompressibility. Matrix B is a square constant
matrix defining global hardening properties of the volume element. y(m) are
stress like internal variables accounting for all inelastic effects at the level of
the elementary mechanism (m).

Looking at this elementary volume element as part of a structure, dedi-
cated internal variables Y(m) are defined: They will account for all inelastic
phenomena due to global equilibrium of the structure, at the level of inelastic
mechanism number (m).

[
σ(m)

]
= AΣel −

[
Y(m)

] ∥∥∥σ(m)
∥∥∥ ≤ S(m),[

Y(m)
]

= B
[
α(q)

]
− Aρ and εp = AT

[
α(m)

]
. (2)

Σel is the purely elastic stress (obtained assuming only an elastic be-
haviour) on the volume element which includes mechanism (m). ρ is the
residual or internal stress tensor on the volume element, difference between
actual stress Σ and Σel.

The yield condition in equation (2) can be interpreted in the Y(m) space
in terms of “Y(m) has to be inside the hypersphere of radius S(m) centred
on AΣel”.

2.2 Shakedown Analysis

2.2.1 Shakedown Status

Shakedown analysis first aims at estimating the stabilized state of a structure
under cyclic loading: will elastic or plastic shakedown be achieved? This can
be done from the purely elastic analysis Σel of the structure on one loading
cycle.

An original algorithm SHS has been derived to answer this question: on
each mechanism, the Smallest HyperSphere (SHS), surrounding the local
loading path, is searched for; if, at the level of each elementary mechanism
in the structure, the radius of the SHS is smaller than the local yield con-
stant S(m), elastic shakedown will occur (issued from Melan’s and Koiter’s
theorems). The successive steps are:

1. Perform one purely elastic cycle on the structure.
2. For each plastic mechanism, in each volume element extract the local load-

ing path AΣel (t)0≤t≤T , find SHS radius RSHS and compare it to S(m).
3. If all RSHS are smaller than the associated S(m), elastic shakedown will be

reached. A common part Ω to all local elastic domains, centred on AΣel,
can be defined everywhere. Else, plastic shakedown for regular B matrix
or ratcheting (only possible for singular B matrix) will take place.
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MASSI has been established mostly for the elastic shakedown case. Some
specific cases have been solved in the plastic shakedown range, among them
the prediction of residual stresses due to shot peening, cold rolling or ham-
mering.

2.2.2 Residual Stresses Estimation (Elastic Shakedown Case)

If elastic shakedown is predicted, the constant stabilised residual stresses
and plastic strains have to be estimated. They will solve the homogeneous
problem on the structure: the periodic loading is taken into account through
the cyclic Σel (t) = Σel (t+ T ).

The Y(m) internal variables are used to obtain the stabilised inelastic prob-
lem: Y(m) has to be inside the convex intersection Ω of all the hyperspheres
of radius S(m) centred on local AΣel.

If in some places in the structure and some mechanisms, this condition is
not fulfilled, a local orthogonal projection is performed on Ω and local plastic
evolution of the mechanism has occurred. An iterative process is then realised
according to the following steps:

1. Perform one or one half elastoplastic cycle on the structure.
2. From the final state

(
Σ, εp,α(q)

)
of step 1 and the previous elastic calcu-

lation, derive Y(m) on each mechanism in each volume element:
[
Y(m)

]
= B

[
α(q)

]
− A

(
Σ − Σel

)
= B

[
α(q)

]
− Aρ. (3)

3. For each mechanism in each volume element, test if Y(m) is inside Ω or
not. If not, project Y(m) on Ω and get a new plastically admissible Y(m Pr).

4. If no new Y(m Pr) have been found, the stabilised solution is obtained.
5. If not, solve the global equilibrium of the residual stresses in the structure,

taking into account Y(m Pr) when it has been defined or α(n) elsewhere:

ρij sa with 0 given body and surface forces
1+ν
E ρij − ν

E ρkkδij + εp
ij K.A. with 0 given displacements

}

with

{
εP = AT

[
α(m)

]
, Y (m) ⊂ Ω elastic part VE

εP = ATB−1Aρ+ATB−1
[
Y (m) Pr

]
plastic partVP

(4)

6. In VP, the elastic constants (E, ν) have to be replaced by (ET , νT ) issued
from (E, ν) and AT B−1A and AT B−1

[
Y(m) Pr

]
stands for an apparent plas-

tic strain.
7. Solution of (4) offers new values of residual stresses ρ which will generate

new values of Y(m) in VE and new values of α(q) and εP in VP through (3)
8. Go back to step 3 for testing Y(m) in VE.
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When no more projections are needed, the associated plastic strains of
the elementary mechanisms and plastic strains of the volume elements, and
residual stresses give a statically, kinematically and plastically admissible
constant solution.

Limit analysis solutions could also be achieved from a few elastic calcula-
tions assuming appropriate values of the structural Y(m) [15].

2.3 Elastic Shakedown and Polycyclic Life

Once the stabilised state of the structure has been obtained, life can be esti-
mated through multiaxial criteria such as Dang Van coupled with a Wöhler
curve. Most of these criteria imply hydrostatic pressure and some shear stress
range. The effect of residual stresses is a mere translation of the whole loading
path or critical point along the hydrostatic pressure axis; its intensity is the
value of the hydrostatic pressure associated to the constant residual stress
tensor.

Negative residual stress hydrostatic pressure will move in the security
direction. Positive ones will make things less safe.

3 Prediction of Shot Peening Stresses

3.1 Shot Peening Treatment

Shot peening is an impact surface treatment. Small balls impact the surface of
the part with sufficient energy to create plastic strains in the surface layers;
the typical impact speeds are between 20 and 120m/s. Peening media are
small enough (0.05 up to 2.5mm) compared to the treated part geometry
(thickness, curvatures, . . .).

Shot peening treatment induces isotropic roughness, strong hardening,
plastic strains and residual stresses in the surface layers and these strains
and stresses are homogeneous along the surface and could be taken as only
function of depth.

Peening intensity is defined and controlled using Almen strips: some flat
specimen of normalized dimensions, in E460 Steel. The Almen strip is fixed
on a thick normalized block and peened. The strip bending after treatment
gives the Almen intensity.

The part to be treated replaces the Almen strip used to settle and control
the process. For proper introduction of compressive residual stresses, normal
impact has to be performed.
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3.2 Shot Peening Model

3.2.1 Principle

The first step of our model consists in defining for each depth some local
intensity of the impact stresses. The part is considered as submitted to a
cyclic loading path with two significant steps: maximum stresses along the
impact axis and zero stresses far from the impact.

Elastic calculation of stresses Σel along the impact axis is given from the
works of Davies [4] and Hertz [13] (Johnson [16]) using Hertz stresses in the
ball on plane contact along the contact axis. Plasticity is induced by the
deviatoric part of these contact stresses.

Treatment of a semi-infinite body is assumed in a first step, due to the
small size of the peening media. Observed symmetry of the stresses and equi-
librium equations on this semi-infinite body implies the global form of the
displacements and residual stress and strain tensors:

[ρij ] =

⎡
⎣ρ (z) 0 0

0 ρ (z) 0
0 0 0

⎤
⎦ , [ui]

⎡
⎣ 0

0
uz (z)

⎤
⎦ ⇒

[
εine

ij

]
=

⎡
⎣0 0 0

0 0 0
0 0 uz,z

⎤
⎦ . (5)

So, the model can be reduced to a one dimensional problem.
Following (3), specific Y variables are introduced most often with an initial

zero value. The centre of the local plastic domain in the Y space moves for
each depth between zero and the maximum Hertz value.

Three cases could occur (Fig. 1):

1. A common part Ω to both main plastic domains exists and initial Y lies
in Ω. A zero plastic evolution is assumed in these layers.

2. A common part Ω to both main plastic domains exists and initial Y is
outside Ω and is pulled to a new value Y Pr.

3. No common part Ω exists. Y is pulled to an upper value under impact and
pulled back to the side of the zero domain after impact.

When all Y values have been obtained, the residual strains and stresses are
calculated from (4) and (5). For complete prediction, the number of internal
mechanisms and the value of yield and hardening constants have to be defined
precisely.

3.2.2 Chosen Behaviour Laws

First studies on E460, ferritic alloys or titanium alloys, have been developed
with a linear kinematic hardening law (LKH). Only one internal mechanism
is used. The localisation tensor A is reduced to the deviator function, and the
hardening matrix B to a single constant equal to the volume linear hardening
modulus. Accurate enough results were obtained (Fig. 2).
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Fig. 1 Final Y definition

σ
(1)
ij = Σel

ij −
1
3
Σel

kkδij − Y
(1)
ij

∥∥∥σ(1)
ij

∥∥∥ ≤ Re,

Y
(1)
ij = C

[
α

(1)
ij

]
−
(
ρij −

ρkk

3
δij

)
and εP

ij = α
(1)
ij . (6)

The same model with the same linear kinematic hardening law gave very
poor results on an aluminium alloy: calculated stresses were twice the mea-
sured stresses and calculated affected depth was half the measured one. We
had to introduce a better suited model for plastic behaviour (Fig. 3).

A new model MI2 with two coupled internal mechanisms provided much
better results (Fig. 3). The first mechanism is the classical macroscopic plastic
strain; the second has been linked to restoration phenomena:
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Fig. 2 Modelled and measured results with LKH for steel and titanium alloys
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Fig. 3 Aluminium alloy modelled and measured results with LKH and MI2 laws
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The initial elastic yield stress and three hardening moduli are used to define
plastic behaviour; they are identified from a monotonic or cyclic tensile test
and used to predict shot peening stresses.

This MI2 law allowed us to describe numerous materials on a wide range
of plastic strains with only four constants for plastic behaviour.

Inclined impact or other surface treatments such as hammering or cold
rolling have been described in the same framework with the same behaviour
law. We only changed the Hertz stresses to take into account friction effects
or other contact geometries.

Stability of the predicted residual stresses and their influence on life of the
treated parts can be investigated with MASSI when the service loading is
postulated.

4 MI2 Identification Process

4.1 Tuning the Model for Tensile Test

Our main difficulty with the MI2 law was to find a reasonable identification
process. A parametric definition of the stress versus plastic strain tensile
curve has been obtained; allowing optimising of the material constants.

From a mathematical point of view, only four constants are needed. If
the initial value and slope of the tensile stress versus plastic strain curve
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Fig. 4 Tensile stress versus plastic strain curve – initial values and asymptote

and its asymptote are known, all constants might be rather simply defined
(Fig. 4).

Unfortunately, the beginning and the asymptote of this curve might be
rather difficult to define properly: for the beginning, one has to detect when
some non-linearity appears, and the asymptote should be searched for before
emergence of significant damage. The intermediate part of the curve is much
better known.

So we used the whole stress/plastic strain curve in the following non-linear
mean square optimization process, which concentrates the non-linear effects
on variable r. Then the physical parameters from the tensile test curve or at
the level of the elementary mechanisms might be calculated.

r = tgϕas =
−B12

B22
, b = B22 , p∞ =

B11B22 −B12
2

B22
,

⇒ [B] =
[
p∞ + r2b −rb

−rb b

]
, [B]−1 =

1
p∞

[
1 r
r r2 + p∞ / b

]
. (8)

With these new hardening parameters, the tensile stress versus plastic
strain curve can be written:

σ = p∞εp + Σ∞t, εp = εp
ini +

Σ∞

b (1 + r2)2
(h (t, r) − h (tini, r)) and

with h (t, r) =
1
2

log
1 + t

1 − t
− 2r

√
1 − t2 +

(
r2 − 1

)
t and

tini =
σini − p∞εp

ini

Σ∞
. (9)

The parameter t grows from tini to one during monotonic loading. The
constant r is linked to the asymptotic properties of the curve.
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Fig. 5 Stresses versus total
or plastic strain for MI2 and
LKH models

The comparison of MI2 and LKH models assuming the same initial ordi-
nate and slope and featuring some asymptote to the tensile curve is shown
on Fig. 5.

4.2 Identification Process

The identification process uses data from monotonic or cyclic tensile test [18],
provided that a sufficient number of data in the plastic range have been
obtained. Main steps are described in the following:

1. Check the experimental data to detect abnormal points linked to the be-
ginning of the test or damage; n points (total strain, stress) are left.

2. Search for the beginning of plastic part with D. Gorbanzadeh [7] test: the
k first points define a straight line in the mean square sense and the (n-k)
remaining points define a parabola; a minimal principle is used and final
result is an estimation of Young’s modulus and initial yield stress Re or So.

3. Extract the elastic part and keep only the plastic one.
4. Find a first estimate of the asymptote (Fig. 3): (p∞,Σ∞); a few candidates

might be found.
5. For each of these candidates (p∞,Σ∞) optimization of the curve is per-

formed.

– A first linear step gives initial values for r and b.
– Then a non-linear mean square method (Levenberg-Marquardt or other)

is used to find refined values of the four parameters.

6. The best result (showing minimum error) between all initial (p∞,Σ∞) is
selected.
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4.3 Results

Results on two materials are shown on Fig. 6: on the left, stresses versus total
strain, and on the right stresses versus plastic strain.
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σσ

Fig. 6 Measured and modeled results with MI2 hardening law

5 Conclusion

The analytical models for surface treatments, associated to MASSI and multi-
axial criteria to investigate their effects on life of the structure, gave a straight
forward and quick working tool for design in the early stages.
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Force Method – Based Procedures
in the Limit Equilibrium Analysis
of Framed Structures

K.V. Spiliopoulos

Abstract Within linear programming applications the force method of anal-
ysis provides the most well suited approach to handle limit equilibrium such
as limit or shakedown analysis of framed structures. Nevertheless the ap-
proach using the displacement method has been used more often as it is
easier to automate. The difficulty of the force method is to automatically
select the basic unknowns which are the hyperstatic forces. The graph repre-
sentation of a frame provides a means to solve this problem. In the present
work a numerical procedure based on this representation is presented which
has already been applied to the plastic design of plane frames under either
monotonic or alternate loading. This procedure is herein used to find the
limit and shakedown load of plane frames. It is also extended to cater for
the limit load analysis of space frames, thus providing a common basis for all
types of framed structures. Examples of application are included.

1 Introduction

Linear programming provides a widely used method of solution to establish
the ultimate strength of structures under monotonic or alternating loading.
As for any structure but especially for frames, the framework of formulation
may be either the force (mesh) or the displacement (nodal) method of analy-
sis. Depending on using either the lower bound or the upper bound theorems
of structural plasticity, one may construct four different linear programs. Al-
though recently, especially for large-scale problems, interior-point algorithms
have been used for the solution of linear programs [4], it has been shown [18]
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that the traditionally used simplex method is computationally superior at
least for medium type problems as the ones addressed here.

With the solution performed by the simplex method it is known [15] that
the force method based upper bound program (mesh unsafe) requires much
smaller computation than any of the other three. Nevertheless, it is mainly
the nodal unsafe program [12] that has been used more extensively since it
has a better potential for automation.

Looking more closely at the nature of the force method, the stress resultant
distribution in a frame due to a given loading may be split into two terms: the
first one is a complementary solution formed by a maximal set of independent
self-equilibrating stress system of hyperstatic forces known as a statical basis
and the second term is a particular solution which satisfies equilibrium with
the given loading.

The difficulty in the automation of the force method is mainly the pre-
selection of the hyperstatic forces. One approach to circumvent this problem
is to use an initial “hybrid” part based on algebraic procedures [8]. In this
first stage, the data is set up as in a displacement method-based analysis and
a Gauss type decomposition is then performed on the equilibrium matrix.
From this decomposition both the above terms of the force method may be
extracted. The accuracy of the approach depends largely on the degree of
pivoting [2] and it tends to produce relatively dense matrices [8].

A better way followed in the present work, is to construct the two terms
of the force method in a direct way. This may be accomplished using some
knowledge from graph theory, since a frame may be graphically represented
as a directed graph. One such important piece of knowledge is the procedure
to find the minimum path between two points of a graph [14]. This is the
main ingredient of an algorithm used to establish a cycle basis. If we satisfy
equilibrium along each cycle, a statical basis may then be easily constructed.
The shortest path technique is also used to establish equilibrium with the
applied loads. The whole procedure has been used to the plastic limit [16]
and the shakedown [17] design of plane frames.

Presently the above-mentioned approach is firstly applied to the plastic
limit analysis of plane frames. Subsequently it is applied to the shakedown
analysis of plane frames. The fact that few elements need to enter the various
matrices is discussed. It is also demonstrated that the resulting flexibility
matrix used to find the elastic solution has a high degree of sparseness and is
constructed in skyline form. The procedure is also, in this work, extended to
the limit analysis of space frames. Examples of application are also presented.

2 Construction of a Cycle Basis

A systematic way to find a self – equilibrating stress system of hyperstatic
forces, called a statical basis, is based on the topological representation of a
frame. According to this representation, the members (total number M) and
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the nodes (total number N) of the frame coincide with the members and the
nodes of a planar graph. Every planar graph has δ = M−N+1 exactly inde-
pendent cycles, which constitute a cycle basis. A basis that consists of cycles
of the least number of members is called minimal. The graph representation
of a typical frame together with a minimal cycle basis can be seen in Fig. 1,
where the ground is represented by an extra node and extra elements are
used to connect this node to each foundation node. Since for any plane frame
without releases each of these cycles is three times statically indeterminate,
once a cycle basis is found, a statical basis can be found straight away.

The difficult task is, therefore, to construct a cycle basis in an automatic
way. An algorithm has been produced in [16] which is relatively simple and
amenable to easy computer implementation. The algorithm uses a shortest
path technique to find the quickest way between the ends of members of the
graph [14]. The difficult task of selecting independent cycles is resolved not
by book-keeping methods (e.g. [9]), but merely by increasing the lengths (not
in the Euclidean sense) of the members of a cycle which has already entered
the cycle basis as an independent cycle.

Making a brief description of the algorithm, the algorithm starts by giving
to all the members of the graph a length equal to 1. The procedure then
begins from the node that has the maximum valency (number of members
incident to it), picks up one by one each of these members (called generator
member) and finds the minimum path between its two ends not by going
along, but around it. If the following admissibility rule is satisfied:

“The length of the found path is less than 2∗ (nodes along the path –1)”

Datum node

a

b

1
2

3

Px

Py

i

Fig. 1 Typical frame graph representation, cycle basis, shortest paths of load to the ground
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then the members of this path together with the generator member form
a cycle that enters the cycle basis and the lengths of all these members are
equal to 2.

The node with the next higher valency is considered next and so on.
The effectiveness of this procedure can be better explained in Fig. 2, where

one can see a sub-graph that has been extracted from a main graph. Initially
the members have a length equal to 1 (Fig. 2(a)). Starting from node k
and selecting km as generator member, the minimum path whose length is
equal to 2 satisfies the admissibility rule and the cycle klmk enters the basis.
Automatically the lengths of the members of the cycle become equal to 2
(Fig. 2(b)). This cycle can not be reselected because it will not pass the
admissibility rule. In the sequel, by picking up, for example, member kq, the
next obvious cycle enters the cycle basis (Fig. 2(c)).

A different cycle basis might form if some other member is picked up
first as a generator member (Fig. 2(d)) leading once again to a cycle basis
consisting of two cycles (Fig. 2(d)). The only difference is that this basis will
not be minimal.

A situation may arise (Fig. 3(a)), not likely to occur in common engi-
neering problems, where the cycles shown have been selected and there is no
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Fig. 2 (a)–(c) cycle basis formation, (d) different cycle basis
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Fig. 3 Extraction of a cycle embedded in others

way for the cycle lmkl to enter the cycle basis. This incomplete cycle basis
is easily detected since less than δ meshes will have been selected. The ex-
pansion process may then restart by excluding, for example node m and its
members. We then generate, in the normal way, a cycle basis for the rest of
the graph (Fig. 3(b)). Then the excluded node with its members is added
back (Fig. 3(c)) and the process continues, generating a complete cycle basis
(Fig. 3(d)). Full exposition and details of the algorithm may be found in the
original reference [16].

3 Limit Analysis of Plane Frames

The formulation of the plastic limit analysis as a linear programming problem
using the force method is briefly presented here. More details can be found
elsewhere, for example [15].

Assume that a frame is subjected to point loads, varying proportionally to
a load factor λ. Considering only bending deformations and denoting vectors
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and matrices by bold letters we may write:

m = Bp + B0λ (equilibrium condition), (1)

where m is the vector of bending moments at the critical sections, p is a set of
independent hyperstatic forces equal to the degree of the static indeterminacy
of the frame, called statical basis.

Assuming rigid plastic behaviour, the moment at every critical section i
should be within the plastic limits:

−m−
∗i ≤ mi ≤ m+

∗i (plastic admissibility condition), (2)

where m−
∗i and m+

∗i are the negative and positive plastic resisting moments
of the cross section i.

If the above condition is put in matrix form we may get the conditions of
plastic admissibility for all the critical sections of the frame:

[
B0 B
−B0 −B

]{
λ
p

}
≤

{
m+

∗
m−

∗

}
. (2a)

At the same time if we denote by Θ the vector of the rotations at the
critical sections we may write the form of mechanism compatibility as:

BT Θ = 0. (3)

Scaling of the rotations, so that they are non-zero and finite may be per-
formed through B0:

BT
0 Θ = 1. (4)

To use a standard linear programming algorithm with non-negative vari-
ables, the rotation θi may be written as θi = θ+

i − θ−i with θ+
i and θ−i being

non-negative component numbers.
Using this and grouping equations (3) and (4), the result is:

[
BT

0 −BT
0

BT −BT

]{
Θ+

Θ−

}
=

{
1
0

}
(5)

or
AΘ = b (kinematic admissibility). (5a)

Three different possibilities may exist for a critical cross section:

1. A positive plastic hinge forms:

θ+
i > 0, θi = θ+

i , mi = m+
∗i.

2. A negative plastic hinge forms:
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θ−i > 0, θi = θ−i , mi = m−
∗i.

3. The cross section remains elastic or does not participate in the mechanism

θ+
i = θ−i = 0, θi = 0, −m+

∗i ≤ mi ≤ m−
∗i.

All these conditions may be expressed through the complementarity condition

ΘT Ψ = 0 (complementarity), (6)

where ψ are the plastic potentials indicating the remaining amount of the
bending moment at the cross section from its full plastification in either sense
(Fig. 4).

Complementarity when combined with the equilibrium, plastic admissi-
bility and kinematic conditions lead to the following force-based program of
plastic limit analysis:

Minimize λ = cT Θ

subject to:
AΘ = b

Θ ≥ 0, (7)

where cT = {m+
∗ m−

∗ } are the vectors of the plastic capacities of the cross
section in tension or compression.

The minimum value of λ gives the collapse load factor λc.
This is the mesh unsafe linear program which is always in standard form for

its solution by the simplex method. The computational effort in this method
increases much more rapidly with the number of constraints than the number
of variables. In the mesh unsafe program the number of constraints (the
number of rows of the A matrix) is equal to the degree of indeterminacy of
the frame +1. This is the case of the fewer constraints one can have among all
four linear programs (based on either the force or the displacement methods)
that can be formulated for the plastic limit analysis of frames. Thus the mesh
unsafe program requires the least computation time and for this reason we

Fig. 4 Definition
of the plastic potential

i
+θ

im

im−
∗−

i
−θ

i
−ψ

i
+ψ

im+
∗



240 K.V. Spiliopoulos

choose this program to solve all the cases of limit analysis presented in the
present work.

The construction of a cycle basis can lead straight away to the construction
of a statical basis. Since each cycle is three times statically indeterminate
for any plane frame, a cut made at any point s of the cycle induces two
independent forces ps and fs along coordinate axes x and y respectively, as
well as a bending moment ms (Fig. 5(a)). The bending moment mi at any
cross section i along the cycle with coordinates xi and yi is given by the
relationship:

mi = (±)[(ys − yi) (xi − xs) − 1]

⎡
⎣ ps

fs

ms

⎤
⎦ , (8)

where xs and ys are the coordinates of s and the positive or negative sign in
the parenthesis depends on whether or not the orientation of the cycle coin-
cides with the orientation of the member. For the shown cycle and member
orientations, for example, a positive sign will hold. The convention of a pos-
itive bending moment along a member according to its orientation is shown
in Fig. 5(b).

Using the above equation and filling in the appropriate places, the matrix
B, which gives the relationship between the bending moments of the frame
and its statical basis, can be constructed.

The described algorithm of the cycle basis generation produces almost
minimal or nearly minimal cycle bases. This means that there will be always a
small amount of non-zero entries in the matrix B which, in this way, appears
to be quite sparse, something which is not true when using an algebraic
method [8].

As far as equilibrium with external point loading is concerned, this may
be established along cantilevers, as shown in Fig. 1. Each cantilever is found
as the shortest path between the point of application and the foundation

fs

ps

ms

i

(a) (b)

Fig. 5 (a) hyperstatic force system of a mesh, (b) positive bending moment convention
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nodes. The bending moment at any cross section i along any of these paths
is given by:

mi = (±)[(xa − xi) (ya − yi)]
{
Px

Py

}
, (9)

where xa and ya are the coordinates of the point a. The above equation repre-
sents entries for the matrix B0. The term in the square bracket is multiplied
by a positive or negative sign in the parenthesis according to whether the
orientation of the member, that the critical cross section i belongs to, and
the orientation of the cantilever coincide or not.

3.1 Example of Application

An example of application, discussed in [5] may be seen in Fig. 6(a).
The columns are of uniform cross section throughout the four storeys,

and have plastic moment capacities of 355 kNm. The two upper beams have
full plastic resisting moments of 531 kNm, whereas the two lower beams of
355 kNm.

In Fig. 6(b) one may see the graphical representation of the frame, as well
as the numbering of its critical cross sections. The algorithm picks up the
optimum cycle basis consisting of the minimum amount of members forming
each cycle.

The collapse load factor is found to be λc = 2.233. The collapse mechanism,
which coincides with the one found in [5], may be seen in Fig. 6(b).

(a) (b)

4m

5m 5m

150λ

150λ

150λ

150λ

4m

4m

4m

18λ

36λ

36λ

36λ

Fig. 6 (a) Frame geometry and loading, (b) Cycle basis and collapse mechanism
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4 Shakedown Analysis of Plane Frames

The problem of the shakedown analysis will be briefly presented here.
Among the main assumptions are that the cross sections considered are

those with a shape factor equal to unity, thus making the incremental collapse
the prevailing mode of failure.

The frame, as in the limit analysis case, is subjected to point loads which
are now alternating in nature. A loading mode consists of point loads that act
together and vary through common load intensity μj . The limits of variation
of the load intensities of each loading mode are known, i.e.:

μ−
j ≤ μj(t) ≤ μ+

j , j = 1, 2, . . . , k, (10)

where we have supposed that we have k loading modes.
A rectangular polytopic load factor domain may be constructed by the 2k

parameters μ−
j , μ

+
j . If a common parameter λ relates all these factors, this

domain is called a single-parameter load factor domain.
The problem of shakedown analysis is to find the maximum value of λ so

that, for any loading program, although some initial plastic straining may
occur, we have eventually only elastic strains.

Melan’s theorem states that the necessary and sufficient condition for a
structure to shakedown in a prescribed loading domain is the existence of
a time independent set of residual moments mr, such that when added to
the moments that can be calculated assuming completely elastic behaviour,
these total moments would be plastically admissible. As this condition must
be satisfied for any load combination, the whole elastic moment range should
be considered. Therefore the elastic moment envelope should be constructed.

The elastic moment envelope, which consists of the maximum and the
minimum values of the elastic moments at every critical cross section i, can
be found by the following equations [10]:

maxme
i =

k∑
j=1

α+
jim

ej
i ,

maxme
i =

k∑
j=1

α−
jim

ej
i ,

(11)

where:

α+
ji =

{
μ+

j if mej
i > 0

μ−
j if mej

i < 0

}
and α−

ji =

{
μ−

j if mej
i > 0

μ+
j if mej

i < 0

}
.

The condition of plastic admissibility requires that the bending moment
at every cross section, for the worst combination of the loading program, has
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to be within the lower and upper limits of its plastic moments. This condition
is represented by the following two matrix inequalities:

− m−
∗ ≤ Bpr + λ · min me,

Bpr + λ · max me ≤ m+
∗ ,

(12)

where the elements of minme and maxme are found from (11). The term Bpr

is the distribution of the residual bending moments mr, which was discussed
above and which can be expressed through some hyperstatic residual statical
basis pr.

This basis is in equilibrium with zero loads and its very existence safe-
guards against the possibility of an incremental collapse mechanism.

Looking at the similarities of (12) with Eq. (2a) one may write straight
away the plastic mesh unsafe program of the plastic shakedown analysis [10].

Minimize λ =
[
m+

∗ m−
∗
] [Δϑ+

Δϑ−

]

subject to:[
max mT

e −min mT
e

BT −BT

]{
Δϑ+

Δϑ−

}
=

{
1
0

}

Δϑ+,Δϑ− ≥ 0.

(13)

Comparing with limit analysis here we have the increments of the rotations
that could occur in an incremental collapse mechanism.

Once this program is solved the simplex multipliers of the optimal solution
provide a distribution of residual moments.

4.1 Elastic Solution

The elastic moments may be found using once again the force method, uti-
lizing the knowledge acquired from the previous sections.

A member may belong to one or more cycles. Using Eq. (1), we thus may
write for the elastic bending moments at the two ends of an element f that
belongs to tf meshes of the cycle basis and for the particular loading mode
j that consists of Qj concentrated loads Pq:

mej
f =

[
mej

1

mej
2

]
=

tf∑
d

Bd
fpd +

Qj∑
q=1

Bq
(o)fPq, (14)

where Bd
f is the 2×3 submatrix extracted from the B matrix for the cor-

responding member f and the mesh d that this element belongs to, with d
being an identification number and not a counter.
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On the other hand, the matrix of the corresponding elastic rotations of
the member’s chord will be given by:

Θej
f = Ffmej

f , (15)

where Ff =
�

6EI

[
2 1
1 2

]
is the standard flexibility matrix, with E, I, � the

Young’s modulus, moment of inertia and length of the member f .
The dual entities of the hyperstatic forces pc of the topological mesh c are

the discontinuities νc which have to be equal to zero so that continuity is
restored. Using the static-kinematic duality principle [11] and supposing that
the cycle consists of nc members we may write:

0 = νj
c =

nc∑
f=1

(Bc
f )T Θej

f . (16)

Making substitutions in (16), using Eqs. (14) and (15), we may arrive at:

⎧⎨
⎩

nc∑
f=1

(Bc
f )T FfBc

f

⎫⎬
⎭pc +

δ∑
d=1
d
=c

⎧⎨
⎩

nc,d∑
f=1

(Bc
f )T FfBd

f

⎫⎬
⎭pd

= −
Qj∑
q=1

⎧⎨
⎩

nc∑
f=1

(Bc
f )T FfB

q
(o)f

⎫⎬
⎭Pq, (17)

with nc,d being the number of common members to both the topological
meshes c and d, with δ being the total number of cycles in the cycle basis [17].

Looking at Eq. (17) one may realize that the left-hand side is merely the
flexibility matrix E for the selected cycle basis. It may be evaluated, mesh
by mesh, by implanting only 3×3 sub-matrices. The first term results to
entries along the main diagonal. The second term of the left-hand side will
exist if there are common members between the c and d meshes. Should
such coupling exist, it represents the off-diagonal terms of the structure’s
flexibility matrix which is formed when we make the expansion of the above
equation.

The flexibility matrix is stored as one-dimensional array in skyline form.
The value of the skyline for a mesh numbered as c that has common members
with other topological meshes numbered as d1, d2, . . ., dn, may be determined
as the maximum difference 3∗max

i=1,2,..n
|c − di|. If dm is the mesh that provides

this difference, the inter-coupling of the two cycles in the flexibility matrix
would look like:
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c,dc m

m

c,d dm m

m m m

nn
dc T c c T

f f f f f f
f 1 f 1

n n
d d dT c T
f f f f f f

f 1 f 1

... ... ...

... ( ) ... ( ) ...

... ... ... ... ...

... ( ) ... ( ) ...

... ... ... ... ...

= =

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

B F B B F B

E

B F B B F B

Skyline height

Since the flexibility is stored in a skyline form, just like the way that the
stiffness matrix is stored in a displacement method of analysis, the same
decomposition and back-substitution algorithms [1] may be used. Moreover
the cycle selection algorithm provides a near minimal cycle basis, and it is
most unlikely that for frames of common engineering interest, a renumbering
scheme would ever be needed.

4.2 Examples

Two examples of shakedown analysis will be presented, a continuous beam
and a frame.

4.2.1 Two-Span Beam

The beam of Fig. 7(a) that has been analyzed in [10] and [7] is studied first.
The beam is subjected to two point loads applied at the middles of each span.
The load on the left span varies between 0 and P, whereas the load of the
right span remains constant.

(a)

(b) (c)

[0, P ] P

/ 2 / 2 / 2 / 2

I, M p I, Mp

I 0≈I 0≈I 0≈

Fig. 7 (a) Geometry and loading of beam, (b) simulation of supports, (c) cycle basis
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The hinged and the roller supports are simulated by means of small can-
tilevers having almost zero bending stiffness and zero plastic capacity at their
ends in contact with the beam (Fig. 7(b)). The identified by the procedure
cycle basis may be seen in Fig. 7(c).

The shakedown load factor λ against incremental collapse turns out to be
λsh = 5.054, so that the shakedown load is Psh = 5.054Mp/� which compares
well with the value found analytically in [10] to be 5.0526Mp/�.

4.2.2 Frame Example

The frame of Fig. 8(a) is the second shakedown analysis example to be con-
sidered. This frame has been studied in [13]. Each load shown constitutes one
loading mode and varies as shown in the same figure.

121110
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(a)

(b) (c)

3 l 

[0, P] 

[0, 2P] 

2 l 

[0, 6P] 

[0, 3P] 

3 l 

Mp3 , I
3

Mp2 , I
2

Mp2 , I
2

Mp1 , I
1

Mp1 , I
1

Mp1 , I
1

Fig. 8 (a) geometry and loading, (b) cycle basis, member orientation, numbering of critical
sections, (c) incremental collapse mechanism
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The following geometric relationships were considered among the various
members: Mp1 = 2Mp, Mp2 = Mp3 = Mp, I1 = 2.5I, I2 = I3 = I.

In Fig. 8(b) one may see the minimal mesh basis that is identified by the
numerical procedure. In the same figure one may see the orientation of the
members as well as the numbering of the cross sections.

The shakedown factor turns out to be λsh = 0.508, so that the shake-
down load is Psh = 0.508Mp/l, a result that coincides with the one reported
in [13].

In Table 1 one may see the elastic moment envelope at the various critical
sections as well as a distribution of the residual moments generated.

Table 1 Moment distribution for the Example 4.2.2

Crit. sect. maxmel/P� minmel/P� mr/P�

1 0.881 −2.948 −50.114
2 2.032 −1.762 −7.540
3 1.102 −0.794 12.809
4 0.790 −1.170 4.519
5 2.422 −2.459 −20.350
6 3.661 −0.120 13.897
7 3.661 −0.120 13.897
8 0.000 −4.481 48.143
9 0.790 −1.170 4.519
10 1.927 −0.096 2.062
11 1.927 −0.096 2.062
12 0.000 −1.959 −0.396
13 0.160 −3.669 −13.464
14 3.474 −0.320 −56.038
15 0.084 −1.812 −7.895
16 1.959 0.000 0.396

5 Limit Analysis of Space Frames

In the case of space frames the equation of equilibrium may be written as:

QN = Gp + g0λ, (18)

where QN are the independent forces of the structure. For each element k
these forces are given by the vector QN

(k) = {F,Miz′ ,Miy′ ,MT ,Mjz′ ,Mjy′}(k)

and correspond, in the member’s local axes, with the axial force, the bending
moments at the two ends i, j of the member, as well as torsion. The inde-
pendent forces may then be used to group the three forces and the three
moments along the local system of axes at the two ends of each element for
the whole structure using the following transformation:
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Q = TT · QN . (19)

By combining Eqs. (18) and (19), the equation of equilibrium may be
expressed in the local axes at the critical sections located at the ends of the
members:

Q = TT · QN = TT · (Gp + g0λ) = Hp + h0λ. (20)

As in Eq. (1) the first term of (18) is due to the indeterminacy of the
frame, whereas the second term expresses equilibrium with applied loads
with λ being once again the proportional load factor.

The graph representation of the three-dimensional framed structure with
the ground node and the extra members (Fig. 9) is an admissible embedding
into a two–dimensional polyhedron [3] (Fig. 10).
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3

a
2

8

1

Datum node

5

4

y

z

x

Fig. 9 Typical space frame, graph representation in 3D, global coordinate system

34
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5

1 2

6

7

Fig. 10 Equivalent 2D representation, cycle basis
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Fig. 11 Hyperstatic system of forces of a 3D mesh

Thus the algorithm that was used to find the cycle basis for two-dimensional
frames may be also used for the three-dimensional case.

If we make a cut at any such cycle a pair of a force and a moment, of
arbitrary direction, that appear at the cut are now the hyperstatic forces
(Fig. 11).

These two vectors, if analyzed along the global axes are equivalent to
three forces and three moments so that six are the hyperstatic entities for
each mesh. These, following the perimeter of this cycle, create, at the ends
of each member of the cycle, forces and moments in the global axes. When
these, in turn, are analyzed in the local axes of each member, according to
Fig. 12, we can get the elements of G.

The analysis may be done with the aid of Euler’s angles ϑ1 and ϑ2 using
Eq. (21). These angles may be calculated from the difference of the coordi-
nates of the ends of the member ij which areΔx, Δy,Δz.

⎡
⎣Qx′

Qy′

Qz′

⎤
⎦ =

⎡
⎣ cos �2 cos �1 cos �2 sin �1 sin �2

− sin �1 cos �1 0
− sin �2 cos �1 − sin �2 sin �1 cos �2

⎤
⎦
⎡
⎣Qx

Qy

Qz

⎤
⎦ . (21)

For the equilibrium with the external load that provides us with the matrix
g0, the shortest path technique is used to find the quickest way of each load
to the ground, once again in the form of cantilevers, two of which may be
seen in Fig. 9 (dotted lines). Equilibrium is then satisfied along this path by
analyzing the resulting forces and moments at the ends of each member first
in the global axes and then transforming them to the local axes.

Fig. 12 Orientation of a
member’s local axes x 

z 
z′

y′

x′

y 

xΔ

Δy
x

Δz
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j

ϑ2

ϑ1
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Fig. 13 Yield surface,
yield planes, normal vector,
plastic capacity and
potential

kψ

nk

Q 

Rk

Plasticity, once again is considered concentrated at the member’s end
nodes. A “generalized plastic hinge” will occur whenever the combination
of the above described vector touches a plastic interaction surface, which is
generally non–linear. This surface may then be linearized, using planes to
approximate it, with the orthogonals to these planes denoting the direction
of the plastic strains (Fig. 13). The length of this vector on any such plane k
is denoted by qk.

The plastic admissibility condition requires that the combined stress is less
than the plastic capacity Rk. This may be expressed through the following
relation:

nT
k · Q + ψk = Rk, ψk ≥ 0, (22)

where once again ψk is the plastic potential at a cross section for a specific
plane k, which has to fulfill the complementarity condition with the corre-
sponding plastic strains. nk is the outward unit vector normal to plane k.

Once again employing (20), (22), the complementarity condition and the
kinematic admissibility condition that restores the continuity at the cuts of
the cycles in a completely analogous fashion as in the plane frames, that is
not repeated here for brevity, the mesh unsafe program of the plastic limit
analysis for space frames may be written in the following form:

Minimize λ = RT q

Subject to:[
hT

0 · N
HT · N

]
q =

[
1
0

]
.

(23)

P

5m
5m

Fig. 14 Real structure and its graph representation
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where the constraints of the above program are the kinematic admissibility
conditions together with the normalization of the strains, so that they are
finite. The matrix N groups the direction cosines of the unit normal to the
planes the yield surface has been divided into, for all the critical sections;
R and q are the vectors of the corresponding plastic resistances and plastic
strain lengths.

5.1 Grillage Example

This example (Fig. 14) which is a grillage type frame has been considered
in [6]. The two members have equal length � = 5m. The whole frame lies in
a horizontal plane and at its right-angle bent carries a vertical load P .

The loading will induce a bending moment M and a moment of twist MT

which both lie on the horizontal plane.
If the value of the full plastic bending moment in the absence of twisting

moment is Mp, and of the full plastic twisting moment in the absence of
bending is MTp

, for many practical reasons a common yield surface may be
the simple doubly symmetric one given by the following equation:

(M/Mp)2 +
(
MT/MTp

)2 = 1. (24)

This surface is approximated by eight planes preserving the double symmetry.
Assuming Mp = MTp

, the limit load factor turns out to be 0.5657Mp that
coincides with the one evaluated analytically in [6], as 2/�(

√
2)Mp.

A different situation arises when the load is placed in the middle of one of
the members (Fig. 15).

In this non-symmetric case the same over-complete mechanism of [6] is pre-
dicted, with the limit load factor found 0.9478Mp, which is near the analytic
solution of 1.012Mp (once again under the assumption that Mp = MTp

).
Other more complicated examples of space framed structures are currently

tested with various and different yield surfaces. At the time of writing the
present paper, these results are not available but will be reported in the near
future.

Fig. 15 (a) Non-symmetric case, (b) collapse mechanism
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6 Concluding Remarks

In this work, a robust procedure for the limit or shakedown analysis of framed
structures, using the force method, is presented. It is based on employing the
shortest path technique from graph theory to pre-select the hyperstatic forces
and to satisfy equilibrium with the external load. It is shown that although
originally applied to plane frames, it may also be applied with little mod-
ifications to space frames. The simplicity of the presented approach makes
it amenable to easy computer implementation. Due to the high degree of
sparseness of the matrices involved, the procedure is also computationally
efficient.

References

1. Bathe K-J (1996) Finite element procedures. Prentice-Hall, New Jersey
2. Damkilde L and Høyer O (1993) An efficient implementation of limit state calculations

based on lower-bound solutions. Comput Struct 49: 953–962
3. de Henderson JC, Bickley WG (1955) Statical indeterminacy of a structure. Aircr Eng

27: 400–402
4. Gilbert M and Tyas A (2003) Layout optimization of large-scale pin-jointed frames.

Eng Comput 20: 1044–1064
5. Heyman J (1971) Plastic design of frames – applications, II. Cambridge University

Press, Cambridge
6. Heyman J (1996) Elements of the theory of structures. Cambridge University Press,

Cambridge
7. Horne MR (1971) Plastic theory of structures. W. Clowes & Sons Ltd., London
8. Kaneko I, Lawo M and Thiearauf G (1982) On computational procedures for the force

method. Int J Numer Methods Eng 18:1469–1495
9. Kaveh A (1992) Structural Mechanics: graph and matrix methods. Wiley, New York

10. König JA (1987) Shakedown of elastic – plastic structures. Elsevier, New York
11. Munro J (1979) The stress analysis and topology of skeletal structures. Report CSTR

14, Imperial College, London
12. Nguyen DH (1984) CEPAO – An automatic program for rigid – plastic and elastic –

plastic analysis and optimization of frame structures. Eng Struct 6: 33–51
13. Nguyen DH and Morelle P (1990) Optimal plastic design and the development of prac-

tical software. In Smith DL (ed.) CISM Courses No.299 on Mathematic programming
methods in structural plasticity, Springer-Verlag, Wien-New York

14. Nicholson TAJ (1966) Finding the shortest route between two points in a network.
Comput J 26: 275–280

15. Smith DL (1990) Plastic limit analysis. In Smith DL (ed) CISM Courses No.299 on
Mathematic programming methods in structural plasticity, Springer-Verlag, Wien-New
York

16. Spiliopoulos KV (1997) On the automation of the force method in the optimal plastic
design of frames. Comput Methods Appl Mech Eng 141: 141–156

17. Spiliopoulos KV (1999) A fully automatic force method for the optimal shakedown
design of frames. Comput Mech 23: 299–307

18. Vanderbei RJ (1998) Linear Programming: foundations and extensions. Kluwer Aca-
demic Publishers, Boston



Shakedown Analysis of Composite
Materials Based on Non-linear
Mathematical Programming

H.X. Li and H.S. Yu

Abstract Using a Representative Volume Element (rve) to represent the
microstructure of periodic composite materials, a non-linear numerical tech-
nique is developed to calculate the macroscopic shakedown domains of com-
posites subjected to cyclic loads. With the aid of homogenization theory,
the classical kinematic shakedown theorem is generalized to incorporate the
microstructure of composites. Using an associated flow rule, the plastic dis-
sipation power for an ellipsoid yield criterion is expressed in terms of the
kinematically admissible velocity. By means of non-linear mathematical pro-
gramming techniques, a finite element formulation of kinematic shakedown
analysis is then developed leading to a non-linear mathematical programming
problem subject to only a small number of equality constraints. An effective,
direct iterative algorithm is proposed to solve the non-linear programming
problem. This can serve as a useful numerical tool for developing engineering
design methods involving composite materials.

1 Introduction

Shakedown analysis is a direct method of assessing the stability condition and
bearing capacity of an elastoplastic structure subjected to repeated or cyclic
loads. When the load is larger than the elastic limit but is less than a critical
limit, plastic deformation takes place in some part of the structure. However,
after a number of cycles, the plastic deformation will cease to develop further
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and the structure will respond purely elastically to the remaining load cycles.
If this happens, then the structure is said to have shakedown. The critical load
limit below which shakedown can occur is known as the ‘shakedown limit’.
Shakedown analysis is based on two fundamental shakedown theorems, the
static or lower bound theorem [21] and the kinematic or upper bound theorem
[15]. The early research works were mainly focused on the theoretical analysis
for simple structures. Over the last two decades, the numerical methods of
shakedown analysis have been developed rapidly [2,5,20,23,25,29,35,38,39].

In recent years, the study of composites became more important as the
modern industry such as aerospace and automobile is increasingly making
use of composite materials. By means of shakedown analysis, the strength
properties of composites can be studied. The previous research work on the
strength of composites was mainly on the macroscopic descriptions, which
required empirical data to capture the basic features of the fatigue failure.
Tarn [33] pioneered a theoretical investigation on two-dimensional shakedown
analysis of unidirectional metal matrix composites under cyclic loading. The
effect of working temperature on the shakedown loads of composites has at-
tracted many researchers [3, 4, 13, 14, 24, 26, 42]. Some valuable experimental
and theoretical results were presented. Tirosh [34] obtained lower and upper
approximate solutions to two-dimensional shakedown problems of unidirec-
tional fiber-reinforced composites. Based on the static theorem of shakedown
analysis, Weichert et al. [36, 37] developed a two-dimensional finite element
technique to calculate the shakedown limit of composites under cyclic loading
and a lower bound to the shakedown limit can be obtained.

By introducing micromechanics theories into classical continuous mechan-
ics theorems, the mechanical mechanism of composites and the effects of mi-
crostructures on the macroscopic properties can be understood more clearly.
Suquet [30] introduced homogenization theory of micromechanics into the
study of the effects of microstructures on macroscopic behaviors of com-
posites, which provided a powerful tool for both theoretical analysis and
engineering design of composites. In recent years, the homogenization tech-
nique has been successfully used in the study of composites [6, 22, 31, 32].
Based on the homogenization technique and the kinematic shakedown theo-
rem, Carvelli [1] presented a plane strain finite element model to calculate the
shakedown domain of unidirectional composites, where only von Mises’ crite-
rion was considered. Using homogenization theory and finite element method,
Li et al. [18] developed a non-linear mathematical programming method to
perform kinematic limit analysis of composites with von Mises’ constituents.
The calculation is based purely on kinematic velocity fields. The stress field
does not need to be calculated and the limit state of a composite can be
obtained.

The purpose of this work is to generalize the recently developed non-
linear technique for microscopic limit analysis of Li et al. [18] to microscopic
shakedown analysis. Furthermore, a more general yield criterion to model the
plastic behaviour of the constituents of composite materials is used. First, us-
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ing the homogenization theory, the classical shakedown theorems (which are
usually used to calculate the shakedown limit of a macrostructure under re-
peated or cyclic loading) is extended to explain the shakedown behaviour of a
microstructure. Using an associated flow rule, a more general, ellipsoid yield
criterion is directly introduced into the kinematic shakedown theorem and a
non-linear shakedown formulation is then obtained. The yield surface does not
need to be linearized, which significantly reduces the number of constraints
and the computational effort. König’s technique [16, 17] is used to overcome
the difficulty in solving the time integration along a deformation path. Fi-
nally, the finite element model of shakedown analysis for a microstructure is
formulated as a non-linear mathematical programming problem subject to a
small number of equality constraints. An effective, direct iteration algorithm
is then proposed to solve the resulting non-linear programming problem.

2 Kinematic Shakedown Analysis of a Macrostructure

In shakedown analysis, it is assumed that the deformation is small at in-
cipient collapse and the material can be modelled with sufficient accuracy
using the theory of elastic-perfectly plastic materials. In order to use the
finite element method, we adopt column vectors to represent strains and
stresses. For example, in a 3D model, ε = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε31]T and
σ = [σ11, σ22, σ33, σ12, σ23, σ31]T.

2.1 An Ellipsoid Yield Criterion

Many widely used yield criteria, especially for metal materials, can be ex-
pressed by an ellipsoid equation defined by:

φ(σ) = σTPσ − 1 = 0, (1)

where φ(σ) defines a yield function in terms of strength parameters and P is
a coefficient matrix which is related to the strength properties of materials.

Equation (1) is valid for most frequently used yield criteria. For ex-
ample, Hill’s yield criterion [8] is often used for anisotropic materials and
expressed as:

φ(σij) =F (σ22 − σ33)
2 +G (σ33 − σ11)

2 +H (σ11 − σ22)
2

+ 2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 = 1,

(2)

where F, G, H, L, M and N are material constants defined by
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⎧⎪⎪⎪⎪⎪⎪⎨
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2H =
1
X2

+
1
Y 2

− 1
Z2

, 2G =
1
Z2

+
1
X2

− 1
Y 2

,

2F =
1
Y 2

+
1
Z2

− 1
X2

,

2L =
1
S2

1

, 2M =
1
S2

2

, 2N =
1
S2

3

(3a,b,c,d,e,f)

where X, Y, Z, resp, denotes the uniaxial strength of the material in the prin-
cipal anisotropic directions, and S1, S2, S3, resp., denotes the corresponding
shear strength. With the following coefficient definition, the ellipsoid Eq. (1)
can become Hill’s criterion:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G+H −H −G 0 0 0

−H H + F −F 0 0 0

−G −F F +G 0 0 0

0 0 0 2N 0 0

0 0 0 0 2L 0

0 0 0 0 0 2M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

2.2 Kinematic Theorem of Shakedown Analysis

An upper bound to shakedown limit can be obtained by the kinematic shake-
down theorem [15]. The kinematic theorem states: ‘shakedown can not occur
for a structure under cyclic loads when the rate of plastic dissipation power is
less than the work rate done by the applied tractions and body forces for at
least one admissible cycle of plastic strain’. It can be formulated as follows:

λsd

∫ T

0

(∫
Γt

tiu̇
∗
i dΓ +

∫
V

fiu̇
∗
i dv

)
dt ≤

∫ T

0

∫
V

D
(
ε̇p∗

ij

)
dvdt, (5)

where λsd is the shakedown load multiplier, ti is the basic surface load, fi

is the basic body force, u̇i is the displacement velocity, ε̇p
ij is the plastic

strain rate, ‘D(ε̇p∗

ij )’ denotes a function for rate of plastic dissipation work,
the superscript ‘∗’ stands for a parameter corresponding to kinematically
admissible strain, Γt is the traction boundary, and V represents the space
domain of the structure. The basic loads ti and fi are cyclic over a time
interval [0, T], amplified by the load multiplier λsd to form a load domain Ω.

Based on the mathematical programming theory, if the body force is omit-
ted, the kinematic shakedown formulation (5) can be re-expressed as the
following non-linear programming problem:
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λsd = min
ε̇p∗

ij ,Δui

∫ T

0

∫
V

D
(
ε̇p∗

ij

)
dvdt

s.t.
∫ T

0

∫
V

σe
ij ε̇

p∗

ij dvdt = 1,

Δεp
ij =

∫ T

0

ε̇p∗

ij dt =
1
2
(Δui,j +Δuj,i) in V,

Δui =
∫ T

0

u̇idt in V,

Δui = 0 on Γu,

(6)

where σe
ij is the linear elastic stress response to the current external traction

ti, Δε
p
ij and Δui are the cumulative plastic strain and displacement fields at

the end of one loading cycle, and Γu denotes the displacement boundary.
More details about the application of the non-linear programming method

to limit/shakedown analysis can be found in the literature [18]. Finally the
kinematic shakedown analysis is formulated as the calculation of shakedown
multiplier λsd, with λsd ti being the shakedown limit of the structure.

2.3 Plastic Dissipation Power for an Ellipsoid
Yield Criterion

Since that the kinematic shakedown analysis is based on displacement modes,
the stress terms need to be expressed in terms of the strain terms, which can
be obtained by using the yield criterion of a material and a plastic flow
rule. In the theory of shakedown analysis, the plastic flow rule is assumed
to be associated as ε̇p

ij = μ̇ · ∂φ(σij)/∂σij , where μ̇ is a non-negative plastic
proportionality factor. Therefore, the plastic strain rate can be determined by

ε̇p = 2μ̇Pσ. (7)

By applying Eq. (7) to the yield condition (1), one can obtain

μ̇ =
1
2

√
(ε̇p)TP−1ε̇p . (8)

Equation (8) implies the matrix P is invertible. However, for some ma-
terial yield criteria, the matrix P is singular. For these materials, we can
use (P + γI)−1 as an approximation for P−1, where I is the identity ma-
trix of the same order with the matrix P and γ is a very small real number.
Then, the plastic dissipation power for the general yield criterion (1) can be
expressed as follows:
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D
(
ε̇p

ij

)
= σij ε̇

p
ij = σT ε̇p =

(
1
2μ̇

P−1ε̇p

)T

ε̇p

=
1
2μ̇

(ε̇p)T P−1ε̇p =
√

(ε̇p)T
P−1ε̇p

(9)

As a result, the kinematic shakedown analysis for a macrostructure mod-
elled by the ellipsoid yield criterion can be formulated as the following non-
linear mathematical programming problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λsd = min
ε̇p

ij ,Δui

∫ T

0

∫
V

√
(ε̇p)T P−1ε̇p dvdt

s.t.
∫ T

0

∫
V

σe
ij ε̇

p
ijdvdt = 1,

Δεp
ij =

∫ T

0

ε̇p
ijdt =

1
2
(Δui,j + Δuj,i) in V,

Δui =
∫ T

0

u̇idt in V,

Δui = 0 on Γu.

(10a,b,c,d,e)

By solving the above non-linear programming problem, the objective vari-
able ε̇p

ij can be found from the kinematically admissible plastic strain rate
ε̇p∗

ij and the shakedown limit of the structure can be determined.

2.4 Approximation of the Time Integration

In order to apply the mathematical programming formulation (10) to a struc-
ture, the time integration will be approximately estimated because it would
be difficult to calculate the integration along a deformation path. To overcome
this potential difficulty, König’s technique [16,17] is used.

Considering that the loading is repeated or cyclic, the load domain Ω can
be thought of as a load space which can be defined by a convex linear com-
bination of load vertices Pk(k = 1, 2, . . . , l). It is first under the vertex loads
that plastic deformation occurs in a structure. Therefore, it can be assumed
that if a structure reaches a state of shakedown under any sequence of vertex
loads within the set of vertices Pk, then it will shakedown under the whole
load domain Ω defined by those vertices. The cyclic loading remains constant

over a time interval τk(
l∑

k=1

τk = T ) on each vertex, and the admissible plastic

strain cycles on these vertices can generate a plastic strain increment:
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εp
k =

∫
τk

ε̇pdt (k = 1, 2, . . . , l). (11)

Then the cumulative plastic strain at the end of one loading cycle over the
time interval [0, T] can be obtained as follows

Δεp =
l∑

k=1

εp
k. (12)

Finally, the kinematic shakedown analysis for a macrostructure subjected
to repeated or cyclic loads can be expressed as the following non-linear math-
ematical programming problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λsd = min
εp

k,Δu

l∑
k=1

∫
V

√
(εp

k)T P−1εp
kdv

s.t.
l∑

k=1

∫
V

(σe
k)T εp

kdv = 1,

Δεp =
l∑

k=1

εp
k = �(Δu) m V,

Δu = 0 on Γu,

(13a,b,c,d)

where � is a linear compatibility differential operator which is defined by
Eq. (10c).

3 Kinematic Shakedown Analysis of a Microstructure

In order to apply the kinematic shakedown analysis (13) to a microstructure
from composites, the homogenization technique will be used.

3.1 Homogenization Theory

As an innovative micromechanics technique, homogenization theory [30] was
developed in the 1980’s and has been widely exploited in recent years. The
homogenization technique is mostly performed upon a periodic composite
material. First, a rve is chosen from a composite material with periodic mi-
crostructures, as shown in Fig. 1, to account for the effect of microstructures
on macroscopic behaviours. Then, the mechanical fields in a rve are described
by means of microscopic fluctuation variables as follows:
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Fig. 1 Periodic microstructures and a RVE of a composite

u = E · x + ũ, (14)

ε = E + ε̃, (15)

σ = Σ + σ̃, (16)

where x denotes the macroscopic position of the rve in the structure, u, ε
and σ denote the local displacement, strain and stress terms, E and Σ are
the average strain and stress terms over the rve, and ũ, ε̃ and σ̃ are their
fluctuation terms, respectively. We therefore have

E = 〈ε〉 , Σ = 〈σ〉 , (17a,b)

〈ε̃〉 = 0, 〈σ̃〉 = 0, (18a,b)

where the operator 〈·〉 stands for the volume average over the rve. The
fluctuation terms ũ and σ̃ · n are periodic and anti-periodic, resp., on the
boundary of the rve, whereas n is the outer normal to the boundary. Instead
of giving boundary values, the periodic feature of the fluctuation terms on
the boundary of the rve must be imposed. This is a big difference between
the homogenization technique and other micromechanics approaches [7, 9,
10]. More details above the homogenization technique can be found in the
literature [30].

3.2 Shakedown Analysis Based on Homogenization
Theory

Corresponding to a macroscopic cyclic load on a macrostructure, a micro-
scopic cyclic load on a rve can be described as Σ.

Σ = [μ1Σ11, μ2Σ22, μ3Σ33, μ4Σ12, μ5Σ23, μ6Σ31]T, (19a)

μ−
i ≤ μi ≤ μ+

i (i = 1, 2, . . . , 6), (19b)
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where μi(i = 1, 2, . . . , 6) is an amplifying multiplier and each varies indepen-
dently.

By using the homogenization technique, the objective function (13a) of
the non-linear programming problem can be re-written as

l∑
k=1

∫
V

√
(ε̃p

k)T P−1ε̃p
k dv =

l∑
k=1

∫
V

√
(ε̃p

k + Ep
k)T P−1 (ε̃p

k + Ep
k) dv

=
l∑

k=1

∫
V

√
(ε̃p

k)T P−1ε̃p
k + 2 (Ep

k)T P−1ε̃p
k + (Ep

k)T P−1Ep
k dv,

(20)

where Ep
k and ε̃p

k are the macroscopic average plastic strain over the rve and the
microscopic fluctuation plastic strain on loading vertex k(k = 1, 2, . . . l).

Meanwhile, the normalization condition (13b) can be re-expressed as

l∑
k=1

∫
V

(Σk)TEp
kdv = V0

l∑
k=1

(Σk)TEp
k = 1. (21)

It is worth noting that because the cyclic loading on a rve is a macroscopic
average stress field Σ, the linear elastic stress Σe response to the current
loading Σ is satisfied with the equation

Σe = Σ. (22)

Then, the kinematic shakedown analysis based on homogenization theory
for a microstructure rve can be obtained as follows:
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λsd = min
ε̃p

k,Ep
k ,Δũ

l∑
k=1

∫
V

√
(ε̃p

k)TP−1ε̃p
k + 2(Ep

k)TP−1ε̃p
k + (Ep

k)TP−1Ep
k dv

s.t. V0

l∑
k=1

(Σk)TEp
k = 1,

Δε̃p =
l∑

k=1

ε̃p
k = �(Δũ) in V,

Δũ periodic on Γ,

(23)

where Δũ is the cumulative microscopic fluctuation displacement over a load-
ing cycle and periodic on the boundary of the rve, and V0 is the volume of
the rve.

Thus, the kinematic shakedown analysis of a microstructure is formulated
as a non-linear programming problem subject to equality constraints. An
upper bound to the shakedown limit multiplier λsd can be calculated, with
λsdΣ denoting the shakedown limit of a composite under cyclic loading.



262 H.X. Li and H.S. Yu

3.3 Finite Element Modelling

According to the finite element technique, the body V of the rve is discretized

into finite elements, i.e. V =
N⋃

e=1
Ve. Then, the microscopic fluctuation fields

can be interpolated as

Δũe(x) = Ne(x)Δδ̃e (24)

Δε̃e(x) = Be(x)Δδ̃e (25)

where, with reference to the e-th finite element, Δδ̃e is the nodal cumulative
fluctuation displacement vector over a loading cycle, Ne(x) is the interpola-
tion function matrix and Be(x) is the strain matrix.

By means of the Gaussian integration technique, the objective function in
the kinematic shakedown analysis defined by Eq. (23) can be discretized as

l∑
k=1

∫
V

√
(ε̃p

k)TP−1ε̃p
k + 2(Ep

k)TP−1ε̃p
k + (Ep

k)TP−1Ep
k dv

=
l∑

k=1

N∑
e=1

∫
Ve

√
(ε̃p

ek)TP−1ε̃p
ek + 2(Ep

k)TP−1ε̃p
ek + (Ep

k)TP−1Ep
k dv

=
l∑

k=1

n∑
r=1

ρr|J |r
√

(ε̃p
kr)TP−1ε̃p

kr + 2(Ep
k)TP−1ε̃p

kr + (Ep
k)TP−1Ep

k ,

(26)

where ρr is the integral weight at the r-th Gaussian integral point, |J |r is the
determinant of the Jacobian matrix at the r-th Gaussian integral point, and
n is the number of Gaussian integral points of the whole rve.

The geometric compatibility of cumulative plastic strains in Eq. (23) can
be rewritten as

Δε̃p
r =

l∑
k=1

ε̃p
kr = BrΔδ̃ (r = 1, 2, · · · , n), (27)

where Δδ̃ is a global nodal cumulative fluctuation displacement vector of the
discretized rve over a loading cycle and Br is the strain matrix at the r–th
Gaussian integral point and has Br = Be ·Ce, and Ce is the transformation
matrix which assembles the element matrix into the global matrix.

Based on the above analyses, the finite element formulation of the shake-
down analysis based on homogenization theory can be expressed by
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λsd = min
ε̃p

kr,Ep,Δδ̃

l∑
k=1

n∑
r=1

ρr|J |r
√

(ε̃p
kr)TP−1ε̃p

kr + 2(Ep
k)TP−1ε̃p

kr + (Ep
k)TP−1Ep

k

s.t. V0

l∑
k=1

(Σk)TEp
k = 1,

Δε̃p
r =

l∑
k=1

ε̃p
kr = BrΔδ̃ (r = 1, 2, · · · , n).

(28a,b,c)

It is noted that the periodic feature of the nodal cumulative fluctuation
displacement Δδ̃ on the boundary of the rve must be enforced when the
finite element technique is performed. The shakedown limit multiplier λsd

can be obtained by solving the above minimum optimization problem.

4 Iterative Solution Algorithm

The kinematic shakedown analysis (28) is a programming problem subject to
equality constraints. For a continuous and differentiable quadratic program-
ming problem under the Kuhn-Tucker’s conditions, several effective meth-
ods [11] can be used to solve it. However, for the programming problem
(28), there is a calculation of square root which makes the objective function
unsmooth and non-differentiable. If the objective function is finite and con-
tinuous in a feasible set, it is not necessary to be differentiable everywhere
and an optimal solution can be obtained [27]. The non-linear objective func-
tion was shown to be non-differentiable for limit/shakedown analyses using
von Mises’ criterion [18, 19, 43]. The difficulty was overcome by an iterative
algorithm [43]. This technique is similar to the procedure used by Huh and
Yang [12] and is used in this study to solve the non-linear programming
problem (28).

4.1 Minimum Optimization Strategy

According to the mathematical programming theory, equality constraints (the
normalization condition (28b) and the geometric compatibility (28c)) can
be introduced into an optimization problem by means of the Lagrangean
method [11]. For the yield criterion such as von Mises’ or Hill’s criterion,
however, the plastic incompressibility as a constitutive feature should also be
satisfied:

DT
v (ε̃p

kr + Ep
k) = 0 (r = 1, 2, · · · , n; k = 1, 2, · · · , l), (29)
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where Dv = [1, 1, 1, 0, 0, 0]T. This condition can be regarded as an extra
constraint and introduced into the mathematical programming problem by
means of the penalization function method. As a result, an unconstrained
minimum optimization problem can be obtained as follows

L(ε̃p
kr,E

p
k ,Δδ̃, λ,Lr) =

l∑
k=1

n∑
r=1

ρr|J |r

√
(ε̃p

kr)TP−1ε̃p
kr + 2(Ep

k)TP−1ε̃p
kr + (Ep

k)TP−1Ep
k

+ λ

(
1 − V0

l∑
k=1

(Σk)TEp
k

)
+

n∑
r=1

LT
r

(
l∑

k=1

ε̃p
kr − BrΔδ̃

)
+

1
2
α

l∑
k=1

n∑
r=1

ρr|J |r((ε̃p
kr)

TDwε̃p
kr + 2(Ep

k)TDwε̃p
kr + (Ep

k)T DwEp
k)

(30)

where λ and Lr are the Lagrangean multipliers, and α is the penalization fac-
tor, Dw is a coefficient matrix and Dw = Dv ·DT

v . Based on the Kuhn-Tucker
stationarity conditions [11], the following formulation can be obtained:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hkrε̃
p
kr + HkrE

p
k + (ρr|J |r)−1

Lr = 0,
n∑

r=1
(ρr|J |rHkrε̃

p
kr)+

n∑
r=1

(ρr|J |rHkr)E
p
k − λV0(Σk)T = 0,

n∑
r=1

(BT
r Lr) = 0, V0

l∑
k=1

(Σk)TEp
k = 1,

l∑
k=1

ε̃p
kr − BrΔδ̃ = 0 (k = 1, 2, · · · , l; r = 1, 2, · · · , n),

(31a,b,c,d,e)

where Hkr is the coefficient matrix with Hkr = P−1(zkr)−1
ICP + αDw and

zkr =
√

(ε̃p
kr)TP−1ε̃p

kr + 2(Ep
k)TP−1ε̃p

kr + (Ep
k)TP−1Ep

k , where the sub-
script ‘ICP’ indicates that zkr is an Iteration Control Parameter. By solving
Eq. (31), ε̃p

kr, Δδ̃ and Ep
k are calculated and the shakedown multiplier can

be determined as

λsd =
l∑

k=1

n∑
r=1

ρr|J |r
√

(ε̃p
kr)TP−1ε̃p

kr + 2(Ep
k)TP−1ε̃p

kr + (Ep
k)TP−1Ep

k .

(32)
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4.2 Iterative Strategy

Although the unknown fields can be determined by solving the set of
Eqs. (31), it is quite difficult to directly solve it because the equations are
non-linear and not smooth. To overcome this difficulty, the non-plastic ar-
eas should be distinguished where the objective function is not differentiable.
The non-plastic areas are unknown at the beginning of the calculation and
they can be identified by a step-by-step iteration.

Step 0: initializing the non-linear objective function

As shown in Huh and Yang [12] and Liu et al. [19], the selection of the initial
nodal velocity field does not affect the convergence of iteration. For simplicity,
we follow their strategies and start iteration by defining an iteration seed

(zkr)0 = 1 (k = 1, 2, · · · , l; r = 1, 2, · · · , n), (33)

where the subscript ‘0’ denotes that the variable is determined at step 0.
Then, one can obtain

(Hkr)0 = P−1 + αDw. (34)

Accordingly, the set of Eqs. (31) becomes linear and the objective vari-
ables (ε̃p

kr)0,
(
Δδ̃

)
0

and (Ep
k)

0
can be calculated at this step. Then, the

initial shakedown load multiplier (λsd)0 can be determined by (32).

Step h + 1(h = 0, 1, 2, . . .): distinguishing the non-plastic areas to revise the
objective function

Based on the computational results at the iteration step h, the value of
zkr(zkr =

√
(ε̃p

kr)TP−1ε̃p
kr + 2(Ep

k)TP−1ε̃p
kr + (Ep

k)TP−1Ep
k ) needs to be

calculated at every Gaussian integral point to check whether it is in the
non-plastic or plastic area. Then the Gaussian integral point set I will be
subdivided into two subsets, a subset (IE)h+1 where the plastic dissipation
work is equal to zero and a subset (IP )h+1 where the plastic dissipation work
occurs.

I = (IE)h+1 ∪ (IP)h+1 (35a)

(IE)h+1 = {r ∈ I, (zkr)h = 0} (35b)

(IP)h+1 = {r ∈ I, (zkr)h �= 0} (35c)

However, considering that there is a limitation of storage for a com-
puter and that any attempt to evaluate the gradient of a square root near
a zero argument would cause computational overflow, a small real number
ζ(ζ → 0) is needed in a computer program to distinguish the non-plastic/plas-
tic regions. In other words, a region with zkr < ζ can be regarded as non-
plastic. From a theoretical point of view, the smaller ζ is, the more precise the
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numerical calculation would be. In practice, however, the value ζ adopted in a
computer program may vary from 10−8 to 10−12. The numerical calculations
suggest that when ζ is less than 10−8, it has very little effect on the results.
A similar smoothing parameter was also adopted by Huh and Yang [12] to
remove the same numerical difficulty in their limit analysis formulation.

Then the coefficient matrix Hkr at this iteration step will be determined
by

(Hkr)h+1 =

{
αDw + βP−1 r ∈ (IE)h+1,

αDw + P−1(zkr)−1
h r ∈ (IP )h+1,

(36)

where β is the penalization factor which is used to introduce the non-plastic
area as a constraint into the programming problem.

By solving the linearizied set of Eqs. (31), the objective variables (ε̃p
kr)h+1

,(
Δδ̃

)
h+1

and (Ep
k)

h+1
can be calculated. Then the shakedown load multiplier

(λsd)h+1 can be determined by Eq. (32).
The above iteration is repeated until the convergence criteria are satis-

fied as |(λsd)h+1 − (λsd)h| / |(λsd)h+1| ≤ η1,
∥∥∥Δδ̃h+1 − Δδ̃h

∥∥∥ /
∥∥∥Δδ̃h+1

∥∥∥ ≤ η2

and ‖(Ep
k)h+1 − (Ep

k)h‖ / ‖(Ep
k)h+1‖ ≤ η3, where η1, η2 and η3 are compu-

tational error tolerances. The iterative process leads to the shakedown load
multiplier λsd through a monotonically decreasing convergence sequence and
a minimum optimal upper bound to the shakedown multiplier can be ob-
tained.

5 Applications

The proposed numerical method is now applied to conduct shakedown anal-
ysis of composites under cyclic loads and both von Mises’ and Hill’s criteria
are used to model the plastic behaviour of constituents. Finite elements with
a reduced Gaussian integration strategy are used, which may be helpful to
overcome the ‘locking’ in the numerical analysis of incompressible materials,
as discussed in detail by Zienkiewicz et al. [44], Sloan and Randolph [28], Yu
et al. [40], Yu and Netherton [41] among others.

5.1 Fiber-Reinforced Composites – A Plane Strain Case

The first numerical example, for comparison with other works, is for shake-
down analysis of unidirectional fiber-reinforced composites in the plane strain
model and von Mises’ yield criterion is used. The fiber has a circular
cross section and its volume fraction is 0.5 and its mechanical features are:
E = 370GPa, ν = 0.3 and σs = 2000MPa. The mechanical features of the
matrix are: E = 70GPa, ν = 0.3 and σs = 80MPa. A unit hexagonal rve

is chosen to model the microstructure of composites. Biaxial cyclic loads
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Fig. 2 The macroscopic shakedown domain of the composite

are investigated which are defined by Σ = [μ1Σ11, μ2Σ22]T(0 ≤ μ1 ≤ 1;
0 ≤ μ2 ≤ 1). The numerical shakedown domain is calculated as shown in
Fig. 2, where σm

s denotes the yield stress of the matrix, and agrees well with
those obtained by Carvelli [1] using a different approach only valid for von
Mises’ constituents.

5.2 Hill’s Matrix Composites – A Plane Stress Case

In this section, the effect of anisotropic constituents on the macroscopic shake-
down domain of composites is studied by the proposed numerical method.
Unidirectional fiber-reinforced composites subjected to biaxial cyclic loads
acting transverse to the fibers and a plane stress model is adopted. The fiber
has a circular cross section and its volume fraction is 0.5. The mechanical
parameters of fiber are E = 350GPa, ν = 0.3 and σs = 1600MPa, and it is
modelled by von Mises’ criterion. The parameters of the anisotropic matrix
are E = 70GPa, ν = 0.3, X = 80MPa, Y = 20MPa, Z = 120MPa, and
it is modeled by Hill’s criterion. A unit hexagonal rve is chosen from the
composite and eight-node quadrilateral elements are used in the finite ele-
ment analysis. The shakedown limit (which corresponds to repeated/cyclic
loading and whose loading mode is 0 ≤ μ1 ≤ 1; 0 ≤ μ2 ≤ 1) and plastic
collapse limit (which corresponds to static loading and whose loading mode
is μ1 = μ2 = 1) are calculated respectively. The numerical shakedown and
collapse limit domains are shown in Fig. 3, where σm

s denotes the yield stress
of the matrix. From the numerical results, it can be concluded that under a
plane stress model, the shakedown limit and plastic limit of a composite are
mainly determined by its weak phase.
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Fig. 3 The macroscopic shakedown domain of the composite

6 Conclusions

A non-linear numerical technique has been developed to perform the shake-
down analysis on a microstructure by introducing the homogenization theory
into the kinematic theorem of shakedown analysis. By using the homogeniza-
tion technique, the classical shakedown theory for a macrostructure can be
extended to explain the plastic behavior of a microstructure and the effect
of the microstructure on the macroscopic properties of composites can be
studied in detail. An ellipsoid yield criterion is assumed for the constituents
of composites and a general method for deriving the dissipation power of the
microstructure is provided. The finite element model of kinematic shakedown
analysis for a microstructure is formulated as a non-linear programming prob-
lem subject to a small number of equality constraints. An upper bound to
the shakedown domain of a periodic composite can then be calculated. As
an extension of the classical shakedown analysis for a macrostructure to a
microstructure, the proposed method gives a mechanical interpretation and
quantitative prediction for the macroscopic strength of a periodic composite.
The proposed numerical approach can, therefore, provide a powerful tool for
designing the periodic composites against plastic failure under cyclic loads.
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A Non-linear Programming Approach
to Shakedown Analysis for a General
Yield Condition

H.S. Yu and H.X. Li

Abstract A non-linear programming approach combined with the finite ele-
ment method is developed to directly calculate the shakedown load of struc-
tures. The analysis is based on a general yield condition, which can be used
for both isotropic materials (e.g. von Mises’ and Mohr-Coulomb’s criteria)
and anisotropic materials (e.g. Hill’s criterion). By means of the associated
flow rule, a general, non-linear yield criterion can be directly introduced into
the kinematic shakedown theorem without linearization and a non-linear,
purely kinematic formulation is obtained. The corresponding finite element
formulation is developed as a non-linear mathematical programming problem
subject to only a small number of equality constraints. So, the computational
effort is very modest. A direct iterative algorithm is proposed to solve the
resulting non-linear programming problem, which is validated by numerical
simulations.

1 Introduction

Shakedown analysis is a direct method to calculate the bearing capacity
and the stability condition of an elastoplastic structure subjected to vari-
able loads. This can provide a powerful tool for the engineering design and
safety estimation of structures. When a variable load is applied to a struc-
ture, three conditions may occur: purely elastic (the applied load magnitude
is lower than the elastic limit); shakedown (the load is larger than the elastic
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limit but is less than a critical limit), and non-shakedown (the applied load
is higher than the shakedown limit, a non-restricted plastic flow will occur).
If the non-shakedown condition happens, the structure may undergo the fail-
ure mode of either incremental collapse (ratchetting) or alternating plasticity
(low cycle fatigue).

Shakedown analysis is based on two fundamental shakedown theorems, the
static or lower bound theorem [24] and the kinematic or upper bound the-
orem [15]. The early research works were mainly focused on the theoretical
analysis for simple structures. Due to the complexity of engineering prob-
lems, numerical techniques are required for shakedown analysis. Over the
last two decades, with the rapid development of computational techniques,
the numerical methods of shakedown analysis have been developed rapidly
(e.g. [3,4,7–9,14,22,23,25,26,32–38,42–44]). However, these works are mostly
for von Mises’ yield criterion.

For the stability problem of soil structure under repeated/cycle loads,
there are some works based on shakedown analysis, which applied the Mohr-
Coulomb or Drucker-Prager criteria in static or kinematic shakedown theo-
rems [2, 5, 6, 10,27–29,31,39,40].

Recently, Li and Yu [19] developed a novel non-linear numerical approach
to perform limit analysis for a general yield criterion by means of a non-
linear mathematical programming technique and the finite element method.
Kinematic limit analysis was finally constructed as a non-linear mathematical
programming problem and an upper bound to the limit load of a structure
subjected to static loads can be calculated. The proposed method is based
entirely on kinematically admissible velocities without calculation of stress
fields and only a single equality constraint is introduced into the non-linear
programming problem. Therefore, the computational effort is very modest.
Moreover, the proposed method is based on a general yield criterion, which
covers most of current yield criteria.

The purpose of this work is to extend the non-linear technique of Li and
Yu [19] for limit analysis to shakedown analysis. A general yield criterion
defined by a second-order polynomial is used, which makes the developed
method suitable for most of frequently-used yield criteria. Non-linear yield
surfaces are not linearized and are directly introduced into the kinematic
shakedown analysis. This can significantly reduce the number of constraints
and the computational error. The finite element model of shakedown anal-
ysis is formulated as a non-linear programming problem subject to a small
number of equality constraints, which can be solved by a direct iterative al-
gorithm. The objective function corresponding to plastic dissipation power is
to be minimized and then an upper bound to shakedown limit is calculated.
The purely kinematic formulation for shakedown analysis has the advan-
tage that the shakedown limit can be solved without calculation of stress
fields.
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2 Shakedown Analysis Based on a General Yield
Criterion

In shakedown analysis, the material is assumed to be elastic-perfectly plas-
tic. The problem consists of a body V with boundary Γ , which experiences
a cyclic load on Γt. On the remainder of Γ , namely Γu, the displacement
rate is fixed to zero. In order to use the finite element method, the re-
sponses of the body to the load, true stress σ and true strain ε, are rep-
resented as column vectors, e.g., in a 2D model, ε = [ε11, ε22, 2ε12]T, and
σ = [σ11, σ22, σ12]T, and in a 3D model, ε = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε31]T,
and σ = [σ11, σ22, σ33, σ12, σ23, σ31]T.

2.1 A General Yield Criterion

Many widely used yield criteria for materials can be expressed in a general
form as follows:

F (σ) = σTPσ + σTQ − 1 = 0 , (1)

where F (σ) defines a yield function in terms of strength parameters, and P
and Q are coefficient matrices and related to the strength properties of the
material.

The expression (1) can be regarded as a general yield criterion for frictional
materials. For example, the Mohr-Coulomb criterion in the plane strain model
can be expressed as

F (σij) = (σxx − σyy)2 + (2σxy)2

− (2c cosϕ− (σxx + σyy) sinϕ)2 = 0 ,
(2)

where c and ϕ are the cohesion and internal friction angle of the material
respectively.

If the following relations are adopted, the Mohr-Coulomb criterion (2) can
be expressed in the form of Eq. (1):

P =

⎡
⎢⎢⎢⎢⎢⎣

1
4c2

−1 − sin2 ϕ

4c2 cos2 ϕ
0

−1 − sin2 ϕ

4c2 cos2 ϕ
1

4c2
0

0 0
1

c2 cos2 ϕ

⎤
⎥⎥⎥⎥⎥⎦
, (3)

Q =
[

sin ϕ

c cos ϕ
sin ϕ

c cos ϕ
0
]T

. (4)
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2.2 Kinematic Theorem of Shakedown Analysis

An upper bound to the shakedown limit of a structure can be obtained using
the kinematic theorem of shakedown analysis [15]: “Shakedown can not occur
for a structure subject to repeated or cyclic loads when the rate of plastic
dissipation power is less than the work rate done by the applied tractions
and body forces for at least one admissible cycle of plastic strain”. In other
words, shakedown occurs if the rate of plastic dissipation power exceeds the
work rate due to external forces for any admissible cycle of plastic strain.

Since the kinematic shakedown theorem is based on kinematically admis-
sible plastic strain rates, it can be formulated as follows:

λsd

∫ T

0

(∫
Γt

tiu̇
∗
i dΓ +

∫
V

fiu̇
∗
i dv

)
dt ≤

∫ T

0

∫
V

D(ε̇p∗

ij )dv dt , (5)

where λsd is the shakedown load multiplier, ti is the basic load of surface
tractions, fi is the basic load of body force, ti and fi are cyclic over a time
interval [0, T ], u̇i is the displacement velocity, ε̇p

ij is the plastic strain rate,
“D(ε̇p∗

ij )” denotes a function for the rate of plastic dissipation power in terms
of the admissible strain rate ε̇p∗

ij , and the superscript “∗” stands for a param-
eter corresponding to the kinematically admissible strain field.

By applying the principle of virtual work to the first term of the left-hand
side of Eq. (5), one can obtain

∫ T

0

∫
Γt

tiu̇
∗
i dΓdt =

∫ T

0

∫
V

σe
ij(ε̇

p∗

ij + Cijklρ̇
s∗

kl )dv dt

=
∫ T

0

∫
V

σe
ij ε̇

p∗

ij dv dt ,

(6)

where σe
ij is the linear elastic stress response to the current external traction

ti, Cijkl is the elastic compliance tensor, and ρ̇s∗

kl is the self-equilibrated,
residual stress rate associated with ε̇p∗

ij .
Based on the mathematical programming theory and applying (6) to (5),

the kinematic shakedown theorem can be re-expressed as the following pro-
gramming problem, if the body force is omitted:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λsd = min
ε̇p∗

ij ,Δui

∫ T

0

∫
V

D(ε̇p∗

ij )dvdt

s.t.
∫ T

0

∫
V

σe
ij ε̇

p∗

ij dvdt = 1 ,

Δεp
ij =

∫ T

0

ε̇p∗

ij dt =
1
2
(Δui,j + Δuj,i) inV ,

Δui =
∫ T

0

u̇idt inV ,

Δui = 0 on Γu,

(7)
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where Δεp
ij and Δui are the cumulative plastic strain and displacement fields

at the end of one loading cycle over the time interval [0, T ] respectively.
Finally shakedown analysis is formulated as calculation of shakedown mul-

tiplier λsd, with λsdti being shakedown limit.

2.3 Plastic Dissipation Power for a General
Yield Criterion

Since the kinematic shakedown analysis is based on displacement modes, the
stress terms need to be expressed in terms of the strain terms (i.e. the plastic
dissipation power per unit volume in Eq. (7) should be expressed in terms of
strain fields, which can be obtained by using the yield criterion and a plastic
flow rule). The plastic flow rule determines the direction of the plastic strain
rate with the following normality relation:

ε̇p
ij = μ̇

∂ψ(σij)
∂σij

, (8)

where ψ(σij) denotes a plastic potential function that resembles the yield
function and μ̇ is a non-negative plastic proportionality factor. If the flow
rule is assumed to be associated, i.e. ψ(σij) = F (σij), the plastic strain rate
can be expressed as

ε̇p = 2μ̇Pσ + μ̇Q . (9)

By introducing Eq. (9) into the yield criterion (1), the plastic proportion-
ality factor μ̇ can be determined by:

μ̇ =

√
(ε̇p)TP−1ε̇p

4 + QTP−1Q
. (10)

Then, the plastic dissipation power for the general criterion (1) is expressed
as:

D(ε̇p
ij) = σij ε̇

p
ij = σTε̇p =

(
1
2μ̇

P−1ε̇p − 1
2
P−1Q

)T

ε̇p

=
1
2μ̇

(ε̇p)TP−1ε̇p − 1
2
(ε̇p)TP−1Q

=
1
2

√(
(ε̇p)TP−1ε̇p

)
· (4 + QTP−1Q) − 1

2
(ε̇p)TP−1Q. (11)
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As a result, the kinematic shakedown analysis can be formulated as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λsd = min
ε̇p

ij ,Δui

∫ T

0

∫
V

⎛
⎜⎜⎜⎜⎝

1
2

√(
(ε̇p)TP−1ε̇p

)
· (4 + QTP−1Q)−

1
2
(ε̇p)TP−1Q

⎞
⎟⎟⎟⎟⎠dvdt

s.t.
∫ T

0

∫
V

σe
ij ε̇

p
ijdvdt = 1,

Δεp
ij =

∫ T

0

ε̇p
ijdt =

1
2
(Δui,j + Δuj,i) in V,

Δui =
∫ T

0

u̇idt in V, Δui = 0 onΓu.

(12a,b,c,d)

2.4 Removal of the Time Integration

To apply the mathematical programming formulation (12) to a structure, the
time integration must be removed because it is difficult to calculate integra-
tion along a deformation path. The potential difficulty can be overcome by
König’s technique [16,17].

Due to cyclic loading, the load domain Ω can be thought of as a load space,
the shape of which is a hyper polyhedron defined by a convex linear combi-
nation of load vertices Pk(k = 1, 2, . . . , l). It is assumed that if a structure
reaches a state of shakedown under any load vertices, then it will shakedown
under the whole load domain Ω. The cyclic loading remains constant over a

time interval τk(
l∑

k=1

τk = T ) on each vertex, and the admissible plastic strain

cycles on these vertices can generate a plastic strain increment:

εp
k =

∫
τk

ε̇pdt (k = 1, 2, . . . , l). (13)

Then the cumulative plastic strain at the end of one loading cycle over the
time interval [0, T ] can be obtained as follows

Δεp =
l∑

k=1

εp
k. (14)

Finally, the kinematic shakedown analysis of a structure subject to re-
peated or cyclic loads can be expressed as the following non-linear mathe-
matical programming problem:



A Non-linear Programming Approach to Shakedown Analysis 277
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λsd = min
εp

k,Δu

l∑
k=1

∫
V

⎛
⎜⎝

1
2

√
((εp

k)TP−1εp
k) · (4 + QTP−1Q)

−1
2
(εp

k)TP−1Q

⎞
⎟⎠ dv

s.t.
l∑

k=1

∫
V

(σe
k)Tεp

kdv = 1,

Δεp =
l∑

k=1

εp
k = Ψ(Δu) in V,

Δu = 0 on Γu,

(15)
where Ψ is a linear compatibility differential operator which is defined by
Eq. (12c).

3 Finite Element Modelling

The traditional displacement-based finite element method is used in this pa-
per to perform the numerical calculation for the kinematic limit analysis (15).

The structure is discretized into finite elements Ve(V =
N

U
e=1

Ve). Then, the

displacement velocity and strain rate fields can be interpolated in terms of
an unknown nodal displacement velocity vector:

Δue(x) = Ne(x)Δδe (16)

Δεe(x) = Be(x)Δδe (17)

where, with reference to the e-th finite element, Δδe is the nodal cumulative
displacement column vector over a loading cycle, Ne is the interpolation
function, and Be is the strain function.

By applying the Gaussian integration technique to the objective function
and normalization condition in Eq. (15), finally, the finite element modelling
of kinematic shakedown analysis can be expressed as the following non-linear
programming problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λsd = min
εp

kr,Δδ

l∑
k=1

n∑
r=1

ρr|J |r·(
1
2

√
((εp

kr)TP−1εp
kr) · (4 + QTP−1Q) − 1

2
(εp

kr)
TP−1Q

)

s.t.
l∑

k=1

n∑
r=1

ρr|J |r(σe
kr)

T
εp

kr = 1,

Δεp
r =

l∑
k=1

εp
kr = BrΔδ (r = 1, 2, · · · , n),

(18a,b,c)



278 H.S. Yu and H.X. Li

where, with reference to the r-th Gaussian integral point, ρr is the integral
weight, |J |r is the determinant of the Jacobian matrix, n is the number of
Gaussian integral points of FE-discretized structure, Δδ is a global nodal cu-
mulative displacement vector over a loading cycle, Br is the strain matrix at
the r-th Gaussian integral point, Br = Be ·Ce, and Ce is the transformation
matrix which assembles element matrix into global matrix.

Then, a minimum optimized upper bound λsd to shakedown limit multi-
plier can be obtained by solving the above mathematical programming prob-
lem and the shakedown limit is given by λsdF .

4 Iterative Solution Algorithm

The kinematic shakedown analysis (18) is a mathematical programming prob-
lem subject to equality constraints. The objective function is non-linear,
continuous, but may be nondifferentiable, which results from the calcula-
tion of square root. A linear nondifferentiable programming problem, if the
objective function is finite and continuous in a feasible set, it is not nec-
essary to be differentiable everywhere and an optimal solution can be ob-
tained [30]. For a non-linear programming problem similar to Eq. (18), which
was constructed to perform limit and shakedown analyses for von Mises crite-
rion [18,20,41], was overcome by means of an iterative algorithm [41], where
a technique based on distinguishing rigid/plastic areas was developed. Li and
Yu [19] developed a general iterative algorithm to solve the non-linear prob-
lem for limit analysis. It can be extended to solve the non-linear programming
problem (18).

4.1 Minimum Optimization Strategy

According to the mathematical programming theory, an equality constraint is
often introduced into an optimization problem by means of the Lagrangean
method [1, 11, 12, 21], which is also used here to remove the equality con-
straints (the normalization condition (18b), and the geometric compatibility
(18c)). As a result, an unconstrained minimum optimization problem is ob-
tained as

L(εp
kr,Δδ, λ,Lr)

=
l∑

k=1

n∑
r=1

ρr|J |r
(

1
2

√
((εp

kr)TP−1εp
kr) · (4 + QTP−1Q) − 1

2
(εp

kr)
TP−1Q

)

+ λ

(
1 −

l∑
k=1

n∑
r=1

ρr|J |r(σe
kr)

T
εp

kr

)
+

n∑
r=1

LT
r

(
l∑

k=1

εp
kr − BrΔδ

)
(19)
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where λ and Lr are Lagrangean multipliers.
According to the Kuhn-Tucker stationary condition, the following formu-

lation can be obtained for solving the kinematic shakedown analysis problem

(18) by applying
∂L

∂εp
kr

= 0,
∂L

∂Δδ
= 0,

∂L

∂λ
= 0,

∂L

∂Lr
= 0 to Eq. (19):
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(20a,b,c,d)

It is quite difficult to directly solve the optimization problem (20) because
it is non-linear and nondifferentiable. So, a set of solving formulations based
on an iteration technique for the problem (20) can be obtained as:
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(21a,b,c,d)
where Hkr is the coefficient matrix, which is defined by

(Hkr)ICP =
1
2
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)
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ICP (22)

and the subscript “ICP” indicates that the variable is an Iteration Control
Parameter. The parameter zkr is defined by
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√(

(εp
kr)

T
P−1εp

kr

)
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By solving the set of linearized equations (21), the variable εp
kr can be calcu-

lated and then the shakedown load multiplier is determined as
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·
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2
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. (24)

4.2 Iterative Strategy

In order to overcome the numerical difficulty of non-linearity and unsmooth-
ness in Eq. (19), all of non-differentiable areas need to be identified where

zkr =
√(

(εp
kr)

T
P−1εp

kr

)
· (4 + QTP−1Q) = 0 by an iterative technique.

The iteration starts with the hypothesis that there is no non-differentiable
area in the whole structure but all non-differentiable areas will be found by
a step-by-step iterative technique.

Step 0: initializing the non-linear objective function

The iteration starts with the plastic strain rate being non-zero everywhere
in the structure, which can guarantee the iterative process will monotoni-
cally decrease towards the exact solution [13, 19]. The iteration seed can be
chosen as:

(zkr)0 = 1(k = 1, 2, · · · , l; r = 1, 2, · · · , n) (25)

Accordingly, the set of Eq. (21) becomes linear and the objective variable
(εp

kr)0 can be calculated at this iterative step. Then, the initial shakedown
load multiplier (λsd)0 can be determined by means of Eq. (24).

Step h+1(h = 0, 1, 2, . . .): distinguishing the non-differentiable areas to revise
the objective function

Based on the computational results at the iteration step h, the value of

zkr

(
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)
· (4 + QTP−1Q)

)
needs to be updated at

every Gaussian integral point to check whether it is in a non-differentiable
area. Then the Gaussian integral point set I will be subdivided into two
subsets: a subset (IE)h+1 where the objective function is not differentiable,
and a subset (IP )h+1 where the objective function is differentiable. Then, the
coefficient matrix Hkr will be updated as
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where β is the penalization factor, which is used to introduce the non-
differentiable area as a constraint into the programming problem. In practice,
the typical value of β is from 106 to 1012.

By solving the set of linearized equations (21), the objective variables
(εp

kr)h+1
can then be calculated and the shakedown load multiplier (λsd)h+1

can be determined by means of Eq. (24).
The above iteration is repeated until the following convergence criteria are

satisfied

{ |(λsd)h+1 − (λsd)h|
|(λsd)h+1|

≤ η1,
‖Δδh+1 − Δδh‖

‖Δδh+1‖
≤ η2, (27a,b)

where η1 and η2 are computational error tolerances. Through a monotoni-
cally decreasing convergence sequence the above iterative process leads to the
shakedown load multiplier λsd and a minimum optimal upper bound to the
shakedown multiplier can be obtained.

4.3 Solution of Linearized Equations

By means of the preceding iteration technique, the set of Eq. (21) is linearized
at each step of iteration and then solved. However, the linearized set of equa-
tions can not be directly solved to obtain the values of all variables because
it is involved in solving a set of implicit equations. Additional manipulations
are needed to eliminate the difficulty from the implicit feature. Based on the
linearization by means of the proposed iterative algorithm, the set of Eq. (21)
can be solved by the following strategy:

(a) Subtract the equation sets (21a) corresponding to a vertex, say m, from
all the other Eq. (21a) to obtain

εp
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ICP {λσe
kr − λσe

mr + (Hmr)ICP εp
mr} (28)

(b) Substitute (28) into (21d), then the latter becomes
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}
(29)

(c) Substitute (29) into (21a) first and subsequently, this into (21b) to obtain
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(d) Substitute (29) into (21c) which thus becomes
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Finally, by solving the linear equation set of Eqs. (30) and (31), the vari-
ables Δδ and λ can be calculated. Then, the remaining unknown variable
εp

kr in Eq. (29) can be calculated and the shakedown load multiplier can be
determined.

5 Applications

Pavements are civil engineering structures built for the purpose of allowing
wheeled vehicles to operate safely and economically. The vehicles include cars
and trucks on highway pavements, aircraft on airport runways and taxiways,
mobile cranes on port and container terminal pavements together with loco-
motives and rolling stock on railways. By means of shakedown analysis, the
effect of moving loads on the pavements can be revealed and the shakedown
condition can be effectively determined.

In this section, a plane strain model is assumed for a pavement under
moving loads, as shown in Fig. 1, where p(0 ≤ p ≤ pmax) is normal load
with trapezoidal load distribution applied to the pavement from a repeated
loading, p0(0 ≤ p ≤ pmax

0 ) is the peak value of p, and q is shear force due to
the friction between moving wheel and the pavement. Therefore, the relation
between p and q is defined as:

q = μ p, (32)

where μ is the friction coefficient.
The size of the simulated region is determined as: L = 10m, H = 4m,

B = 1.0m, and a = 0.5m, where L and H denote the length and height of
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zy
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Fig. 1 2D model for a pavement under moving loads

the simulated region respectively, and B and a are the size of trapezoidally
loading area. The selected body is discretized with 1750 eight-node quadrilat-
eral finite elements, and the convergence tolerances adopted in the numerical
simulation are η1 = η2 = 10−3. The Mohr-Coulomb yield criterion is as-
sumed to model the plastic behaviour of material with the Young’s modulus
E = 100MPa and the Poisson’s ratio ν = 0.3. In order to simulate the moving
of loads on a pavement, it is assumed that the failure mode varies only along
the depth.

First, in order to verify the validity of the proposed numerical method, a
pavement without surface friction is considered, i.e. the coefficient of surface
friction is equal to zero (μ = 0). Therefore, there is only the normal loading p
applied to the pavement and no shear force (q = 0). The numerical results of
the dimensionless shakedown limits λsd(λsd = pmax

0 /c) with the variation of
soil friction angle are presented in Fig. 2, where c and ϕ are the friction angle

Fig. 2 Effect of friction angle on shakedown limits
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Fig. 3 Shakedown limits with friction angles

and cohesion of material respectively. It can be concluded that the shakedown
limits obtained by the proposed method are closer to those upper bounds by
Collins and Cliffe [5], and a little larger than those lower bounds by Sharp
and Booker [29], and Yu [40].

The interactive effects of the internal friction angle and the friction coeffi-
cient of a pavement surface on the shakedown limits are shown in Figs. 3 and
4. It can be concluded that for a pavement under moving loads, both the fric-
tion angle of materials and the surface friction coefficient of a pavement have
a significant effect on its shakedown condition. For a pavement subjected to

Fig. 4 Shakedown limits with surface friction coefficient
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Fig. 5 The convergence sequence λsd with iterative steps

compressive forces, the shakedown limits increase significantly with the rising
of the friction angle of materials, while they decrease rapidly with the rising
of the surface friction coefficient.

The relation between the iterative convergence sequences λsd and the it-
erative step k is shown in Fig. 5 (for the cases μ = 0, ϕ = 30◦ and μ = 0.5,
ϕ = 30◦). The numerical results show that the efficiency and numerical sta-
bility of the proposed algorithm are fairly high and that the amount of com-
putational effort is very small.

6 Conclusions

A novel general numerical method has been developed to perform the kine-
matic shakedown analysis for a general yield condition by means of a non-
linear programming technique in conjunction with the displacement-based
finite element method. The proposed method is the extension of the non-
linear programming technique applied to the numerical limit analysis [19].
By using an associated flow rule, the dissipation work based on a general
yield criterion is explicitly expressed in terms of the kinematically admissible
velocity. The yield surface does not need to be linearized, which can reduce
the number of constraints and therefore computational costs. Based on the
mathematical programming theory, the finite element model of the kinematic
shakedown analysis is proposed as a non-linear programming problem subject
to a small number of equality constraints. The numerical examples show that
the proposed iterative algorithm has the advantages of high computational
accuracy and good numerical stability.
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Application of Shakedown Analysis
to Large-Scale Problems with Selective
Algorithm

A. Hachemi, S. Mouhtamid, A.D. Nguyen and D. Weichert

Abstract Recent results obtained by using the lower-bound theorem of
shakedown analysis are presented in this paper together with a new method
for solving large-scale problems by using a selective algorithm. Industrially
important examples from mechanical and pavement engineering are pre-
sented.

1 Introduction

Direct Methods, comprising Limit Analysis (LA) and Shakedown Analysis
(SDA) are powerful tools to predict whether or not structural failure may
occur under monotonous or variable thermo-mechanical loads. Characteristic
features are that this information is obtained directly, without solving an
evolution problem and that in case of SDA, the loading path is not to be
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known in detail, except for its bounding envelope. Readers interested in the
foundations of “Direct Methods” are referred to [11,12,14–16,23].

From practical point of view, lower-bound theorems are of special interest,
because they provide in principle conservative bounds to the loading space.
Nevertheless, their practical use has been for long time handicapped as they
involve genuinely optimization procedures, which are in general non-linear
and numerical solutions in case of large numbers of degrees of freedom suffered
from time consuming calculations.

Over the last years, considerable progress has been made in developing
problem-tailored numerical algorithms to overcome this problem. In particu-
lar the so called Interior Point Methods have proven highly efficient [13, 25].
In this paper focus is laid on the use of the IPDCA algorithm (Interior Point
Difference of Convex functions Algorithm) developed by the authors in coop-
eration with others [2] and a new selective algorithm, reducing the number
of optimization variables to the plastically active set located in the plastic
process zone.

2 Lower-Bound Shakedown Theorem

Focusing on the numerical aspects of the methodology, we confine the dis-
cussion to the classical, linear-elastic, perfectly plastic material behavior. Ex-
tensions of SDA to more advanced material models can be found in modern
literature (for references, see e.g. [14, 23]) and easily be implemented in the
presented numerical schemes.

Then, the starting point is the well known static shakedown-theorem [16]:
An elastic-perfectly plastic body B shakes down if there exist a real number
α > 1 and a time- independent field of self-equilibrated stresses � with

Div � = 0 in V (1)
n · � = 0 on Sp (2)

such that the superposition of the elastic stresses �E with � constitutes a
safe state of stresses

α�E + � ⊂ C. (3)

Here, �E is the solution of a reference problem, differing from the original
one only by the fact, that the material behaves purely elastically, C denotes
the elastic domain, usually defined by the yield criterion, n denotes the outer
normal vector on the surface of B, V and Sp stand, respectively, for the
volume of B and the part of the surface with prescribed tractions. The discrete
formulation of the lower bound shakedown theorem for the determination of
the shakedown loading factor is then given by

αSD = max
�

α (4)
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with the subsidiary conditions

[C]{�} = {0} (5)

F (α�E
i (Pj) + �i) ≤ 0 (6)

∀i ∈ [1, NG] and ∀j ∈ [1, NV ].

Here, [C] is a constant equilibrium matrix, uniquely defined by the cho-
sen discretisation and the boundary conditions and {�} is the global resid-
ual stress vector of the discretised reference body. The yield criterion F
has to be fulfilled at all Gaussian points i ∈ [1, NG] and each load vertex
j ∈ [1, NV ]. The number of unknowns of the optimization problem (4)–(6) is
N = 1+NG×NS corresponding to α and {�}. The number of constraints is
NV ×NG+NK, where NS is the dimension of the stress vector at each Gaus-
sian point and NK denotes the number of degrees of freedom of displacements
of the discretised body. This problem can not be solved efficiently by clas-
sical algorithms of optimization because in technical design applications the
number of unknowns is in general very high. Therefore, special software has
been developed for solving large-scale non-linear optimization problems. It
has turned out, that interior-point or barrier methods provide an attractive
possibility to handle such problems and constitute to the authors’ opinion
a major breakthrough for numerical shakedown analysis (for more details
see [2, 3, 17]).

3 Selective Algorithm

To further enhance the calculation, a new selective algorithm has been de-
veloped (Fig. 1), taking care that only the plastically active zones of the con-
sidered structure are involved in the optimization procedure. Among several
ad-hoc criteria for the selection of the active Gaussian points the following
has turned out to be the most efficient one: A Gaussian point is identified
as active, if in the considered iteration step of the optimization procedure
its equivalent eigenstress in the von Mises sense is superior to the maximum
value of equivalent eigenstress detected in the entire structure, divided by a
weighting factor β

F (�) ≥ (F (�))max/β (7)

Because the active zones change during the process, the selective algorithm
is disabled at several levels of calculation in order to guarantee that the
calculations do not collapse in a subspace.
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Calculation of purely elastic stresses { E}

Determination of the global equilibrium matrix {C}

Finite element model

F ( − ) ≥ (F ( − ))max/β

Construction of the field 
of residual stresses {−}

Selection of active Gaussian points

Selection of purely elastic stresses corresponding
to the active Gaussian points{ E

Activ}

Build new equilibrium matrix {CActiv}

Yes

Optimization 

no

Optimization

Loading factor α SD

Fig. 1 Flow-chart of the selective algorithm

4 Industrially Relevant Examples

To show the efficiency and robustness of the method, several numerical re-
sults are presented. The input data for the optimization procedure have been
obtained with the commercial code ANSYS [4], where the lower bound direct
method has been implemented as post-processor (see [3, 17]).

4.1 Pavement with Rolling and Sliding Line Contact

The shakedown load factor of a repeated rolling/sliding line contact as pre-
sented in Fig. 2 is determined and compared with the analytical solution by
Johnson [9, 10]. With Johnson’s assumption of plane deformation and equi-
librium with a traction free surface, the residual stress field has the following
form:
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Fig. 2 Repeated rolling/sliding contact of a cylinder with an elastic-plastic half-space [10]

{
ρx = f1(z), ρy = f2(z)
ρz = ρxy = ρyz = ρzx = 0

(8)

where f1(z) and f2(z) are certain arbitrary functions. Obviously the residual
stresses are independent of the coordinates x, y and the components ρyz and
ρxy vanish. The identities ρzx = 0 and ρy = 0 follow from the plane problem
equilibrium [8,10].

A two-dimensional model with 646 finite elements is used to model the
pavement over which a cylinder moves repeatedly (Fig. 3). A semi-cylindrical
pressure distribution for both vertical and horizontal loading over the surface
is assumed. The vertical contact pressure is represented by a Hertzian pres-
sure distribution:

p(x, y) = p0

√
1 − x2

a2
(9)

Fig. 3 Two-dimensional repeated rolling/sliding line contact
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When surface friction is considered, additional shear traction acts in the
x-direction on the same area:

q(x, y) = μf p0

√
1 − x2

a2
(10)

where μf is the coefficient of friction and p0 = 2P/a. Regarding the condition
(8) and using the Tresca criterion the shakedown problem can be formulated
as follows:

Find
αSD = max

�
α (11)

with the subsidiary conditions

[C]{�} = {0} (12)

�x coupled
1
4

(α σE
x + ρx − α σE

z )2 + (α σE
zx)

2 ≤ k2 (13)

The shakedown loading factor as function of the angle of friction is
given in Fig. 4. It is observed that the presented shakedown domain is
very close to Johnson’s solution [10]. The shakedown factor αSD determined

Fig. 4 Shakedown load factor versus angle of friction
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Fig. 5 Distribution of residual stress ρx with depth z/a

by the optimization process may be represented by a dimensionless shake-
down factor ||αSD || = αp0/k, where k = σy/2 [3, 19]. The distribution of
the residual stress ρx in the case of μf = 0 (p = 1 and q = 0), which
is extrapolated from values at Gaussian points to those at nodes, is given
in Fig. 5 with a zoom on the upper part in Fig. 5(b). It is observed that
the maximum residual stress ρx does not occur at the surface but it is
found, as expected, at a depth ratio of 0.2. The residual stress ρx changes
the sign at a depth ratio of 0.76 and decreases to zero value at a depth
ratio of 20.

4.2 Pavement with Locally Stationary Line Contact

The line contact problem with frictional material solved by Sharp and
Booker [20] is considered. As yield condition of pressure-sensitive material,
the rounded Mohr-Coulomb criterion proposed by Aboudi and Sloan [1] which
can be generalized to a family of Mohr-Coulomb yield criteria in order to
eliminate the singularity at the tip as well as at the edge intersections of the
yield surface is used (Fig. 6). The hyperbolic Mohr-Coulomb which is both
continuous and differentiable is summarised below.

Hyperbolic Mohr-Coulomb Yield Criterion:

Fhyp = σm sin ϕ+
√
σ2K2(θ) + a2 sin2 ϕ− c cos ϕ ≤ 0 (14)

Mohr-Coulomb Yield Criterion:

FMC = σm sin ϕ+ σK − c cos ϕ ≤ 0 (15)
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Fig. 6 Hyperbolic approximation to Mohr-Coulomb meridional section

To avoid calculating the principal stresses explicitly, the following stress
invariants, proposed by Nayak and Zienkiewicz [18], are used:

σm =
1
3

(σ11 + σ22 + σ33) (16)

σ =

√
1
2

(s211 + s222 + s233) + σ2
12 + σ2

23 + σ2
13 (17)

θ =
1
3

sin−1

(
−3

√
3

2
J3

σ̄3

)
(18)

where

s11 = σ11 − σm; s22 = σ22 − σm; s33 = σ33 − σm (19)

J3 = s11s22s33 + 2σ12σ23σ13 − s11σ
2
23 − s22σ

2
13 − s33σ

2
12 (20)

K(�) =

⎧⎪⎨
⎪⎩
A−B sin(3θ) if|θ| > θT(

cos θ − 1√
3

sin ϕ sin θ

)
if|θ| ≤ θT

(21)

with

A =
1
3

cos θT

[
3 + tan θT tan(3θT) +

1√
3

sign(θ)(tan(3θT) − 3 tan θT) sinϕ
]

(22)
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Fig. 7 Rounded Mohr-Coulomb surface in the �− plane

Table 1 Mechanical characteristics of pavement

Young’s modulus E (MPa) 468
Poisson’s ratio ν 0.4
Cohesion c (KPa) 17.4

B =
1

3 cos(3θT )

[
sign(θ) sin θT +

1√
3

sinϕ cos θT

]
(23)

sign(θ) =

{
+1 for θ ≥ 0;
−1 for θ < 0

(24)

d = c cotϕ (25)

To avoid the singularities at the vertices of Mohr-Coulomb surface, a differ-
ent type of yield surface is assumed whenever θ approaches ±30◦. In practice,
the rounded Mohr-Coulomb criterion is used for |θ| ≥ θT (cf. Fig. 7), where θT
is a specified transition angle. Here we choose a = 0.05c cot ϕ and θT = 25◦

so that the hyperbolic surface closely represents the Mohr-Coulomb surface.
Instead of a trapezoid distribution of contact pressure as in Sharp and

Booker [20], a semi-cylindrical pressure distribution for both vertical and hor-
izontal loading over the surface is assumed (Eq. (9) and (10)). The material
properties used in the presented analysis are given in Table 1. Figure 8 de-
picts the variation of the shakedown load factor versus angle of friction μf

in comparison with those of Sharp and Booker [20] for different values of
frictional angle ϕ = 15◦, 30◦ and 45◦ [19].

4.3 Pipe-Junction Under Internal Pressure

A pipe-junction under internal pressure is considered where the correspond-
ing geometrical and mechanical characteristics are given in Tables 2 and 3,
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Fig. 8 Shakedown load factor versus angle of friction

respectively [17]. The pipe is discretised by 8544 elements and 10874 nodes
where the FE-mesh and the essential dimensions are represented in Figs. 9
and 10.

Table 2 Geometrical characteristics of pipe-junction

Pipe Nozzle

Length (mm) 600 100
Internal radius (mm) 53.55 18.6
Thickness (mm) 3.6 2.6

Table 3 Mechanical characteristics of pipe-junction

Young’s modulus E (MPa) 2.1 × 10+5

Poisson’s ratio ν 0.3
Yield stress σY (MPa) 300

The result for the case of limit analysis, which can be considered as par-
ticular case of shakedown analysis, is compared with those obtained by the
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Fig. 9 Finite element mesh
of pipe-junction

Fig. 10 Dimensions of the
pipe-junction

German design rules AD-Merkblatt [22], Cloud and Rodabaugh [5] and the
incremental method [4] (Table 4). The expressions by [22] and [5] of the limit
pressure are given as follows:

Limit pressure by AD-Merkblatt [22]:

plim =
DνA

R+D
σY (26)

where

vA =
a0 + a1

d

D
+ d

a0 + d+ r +
r

R
(a1 +D)

(27)

with

a0 =
√

(2R +D)D and a1 = 1.25
√

(2r + d)d (28)
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Table 4 Limit pressure of pipe-junction

AD-Merkblatt Cloud-Rodabaugh Increment. Meth. Present

0.0427 σY 0.0511 σY 0.0456 σY 0.0450 σY

Limit pressure by Cloud and Rodabaugh [5]:

plim =

1.5
d2

r̄2
+
D2

2r̄2

(
1 +

2
f
√
g

)
+

38d
9gr̄

+
D

r̄

(
26
9fg

+
47

54f2
√
g3

)

38
9g

+
38

9f2g
+

76

27f3
√
g3

+
2

f
√
g

σY (29)

where

f =
r̄

R̄
and g =

2R̄
D

(30)

with
R̄ = R+

D

2
, r̄ = r +

d

2
and

r̄

R̄
(31)

4.4 Pipe-Junction Under Internal Pressure, Torsion
and Bending Moments

The pipe-junction considered in Sect. 4.3 is investigated under internal pres-
sure p, torsion My and bending moments Mx and Mz where the corresponding
geometrical and mechanical characteristics are given in Tables 5 and 6, re-
spectively. The pipe is discretised by 9264 elements and 11124 nodes where
the FE-mesh is represented in Fig. 11.

Table 5 Geometrical characteristics of pipe-junction

Pipe Nozzle

Length (mm) 620 300
Internal radius (mm) 160 41
Thickness (mm) 65 23

Table 6 Mechanical characteristics of pipe-junction

Young’s modulus E (MPa) 2.0 × 10+5

Poisson’s ratio ν 0.3
Yield stress σY (MPa) 205
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Fig. 11 Loading and finite
element mesh of pipe-
junction

My

Mx

Mz

p

The results for the case of limit analysis are compared with the results
obtained by incremental analyses by using Ansys and analytical expressions
(Table 7). The expression of the limit pressure, limit torsion and bending
moments p, My, Mx and Mz respectively are given as follows:

Limit pressure [24]:

plim =
2√
3
σY ln

(
R+D

R

)
(32)

Limit torsion moment [21]:

My(lim) =
2√
3
σY

(
πa2

4

)
d (33)

Limit bending moments [7]:

Mx(lim) = Mz(lim) =
4
3
σY (r3a − r3) (34)

with

Table 7 Limit loads of pipe-junction

p (MPa) Mx (KN · m) My(KN · m) Mz(KN · m)

Analytical approximation 80.95 52.812 47.143 52.812
Incremental results 61.354 52.749 47.309 52.736
Present results 62.363 52.343 48.060 52.343
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a = 2r + d (35)

ra = r + d (36)

where R and D are respectively, the internal radius and the thickness of the
pipe and r and d are the internal radius and the thickness of the nozzle.

4.5 Application of Selective Algorithm

The advantage of the previously mentioned selective algorithm is demon-
strated by the two following illustrative examples. First, a flanged-pipe under
internal pressure p and longitudinal force is considered. The pipe is discre-
tised by 265 elements and 678 nodes where the FE-mesh and the essential
dimensions are represented in Fig. 12. Length and internal diameter are re-
spectively L = 386.93mm and di = 120mm. The external diameters de of the
parts A, B and C and the mechanical characteristics are given in Tables 8
and 9, respectively.

Table 10 gives an indication for the shakedown factor αSD obtained by
this method for differing values of β and different numbers of iterations. By

Fig. 12 Flanged-pipe

p0

A

B

C
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Table 8 External diameters of flanged-pipe

A B C

External diameter (mm) 136.10 155.66 181

Table 9 Mechanical characteristics of flanged-pipe

Young’s modulus E (MPa) 2.0 × 10+5

Poisson’s ratio ν 0.3
Yield stress σY (MPa) 200.63

Table 10 Shakedown factor of flanged-pipe with selective algorithm

β Iterations Nb. of active
Gaussian points

αSD CPU(s)

100

20 1440 2.9005 1150
25 1470 2.9006 1140
35 1490 2.9010 1160
40 1520 2.9010 1200

80

20 1260 2.9006 880
25 1285 2.9010 1080
35 1310 2.9010 720
40 1330 2.9009 650

70

20 1150 2.9010 1100
25 1180 2.9010 900
35 1215 2.9008 810
40 1235 2.9010 700

disabling the selective algorithm, the loading factor αSD = 2.9005 had been
obtained for 2120 Gaussian points with the CPU-time of 100200 s by using
the code Lancelot [6]. This time is roughly divided by the factor 100 when
using the selective algorithm.

The pipe-junction considered in Sect. 4.4 is investigated under internal
pressure p. The pipe is discretised by 3684 elements and 4830 nodes. By
disabling the selective algorithm, the loading factor αSD = 6.1450 had been
obtained for 29 472 Gaussian points with the CPU-time of 18 000 s by using
IPDCA [2]. The obtained shakedown factor with the selective algorithm is
given in Table 11 for differing values of β and for different numbers of itera-
tions.
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Table 11 Shakedown factor of pipe-junction with selective algorithm

β Iterations Nb. of active
Gaussian points

αSD CPU(s)

150
20 12 720 5.915 5300
35 12 140 5.850 5190
45 11 600 5.856 4950

120
20 11 000 5.858 5100
35 10354 5.900 5050
45 10050 5.890 4850

100
20 9985 5.850 5300
35 9750 5.995 5030
45 9230 6.020 4200

5 Conclusions

Compared to high-standard general codes for non-linear optimization, a
combination of IPDCA [14, 25] and Selective Optimization allowed to re-
duce drastically the necessary CPU time for lower bound Shakedown- and
Limit Analysis. The presented solutions of complex problems from different
technical areas demonstrate the wide range of applicability of the method
and its high potential for industrial design purposes, in particular as a post-
processing method for conventional finite-element analyses.
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