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Abstract This paper presents a passivity-based control scheme for the two main
axes of a 5 t-overhead crane, which guarantees both tracking of desired trajectories
for the crane load and an active damping of crane load oscillations. The passivity-
based control is performed by interconnection and damping assignment according
to the IDA-PBC approach for underactuated systems. The tracking capabilities con-
cerning desired trajectories for the crane load can be significantly improved by in-
troducing feedforward control based on an inverse system model. Furthermore, a
reduced-order disturbance observer is utilised for the compensation of nonlinear
friction forces. In this paper, feedforward and feedback control as well as observer
based disturbance compensation are adapted to the varying system parameters rope
length as well as load mass by gain-scheduling techniques. Thereby, desired tra-
jectories for the crane load position in the 3-dimensional workspace can be tracked
independently with high accuracy. Experimental results of an implementation on a
5 t-crane show both excellent tracking performance with maximum tracking errors
of 2 cm and a high steady-state accuracy.

1 Introduction

In the last decade, numerous model-based trajectory control schemes for overhead
travelling cranes have been proposed by different authors. Besides non-linear con-
trol approaches exploiting differential flatness [2], gain-scheduling techniques have
proved efficient [1, 5]. Aiming at an increased handling frequency and a fully auto-
mated crane operation, the focus has to be on the motion of the crane load. Feed-
back control provides for tracking of desired trajectories for the crane in the 3-
dimensional workspace with small tracking errors. In practical implementations,
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Fig. 1 Structure of the overhead travelling crane (left), Mechanical model of the y-axis (right).

however, tracking accuracy as well as steady-state accuracy strongly depend on the
inclusion of appropriate control action to counteract disturbances, especially nonlin-
ear friction acting on the drives as the dominant disturbance. Furthermore, a robust
or adaptive control approach is necessary as regards varying system parameters like
rope length or load mass during crane operation [5]. By this, the capabilities of an
automated overhead crane can be extended in order to use it as a robot manipulator
for the handling of heavy loads in a large cartesian workspace.

In this paper, the first principle modelling of the two main translational crane
axes is addressed first. Aiming at a decentralised control structure, for each axis a
separate design model is derived in symbolic form. Then, a state space model is
established for the envisaged passivity-based control following the IDA-PBC ap-
proach for underactuated systems [3, 4, 6, 7]. The control design for the y-axis in-
volves the control of the corresponding crane load position in y-direction, whereas
the multi-variable control of the x-axis deals with both the crane load position in
x-direction and the position difference of the two bridge drives, corresponding to a
skew of the crane bridge. Feedforward control based on an inverse system model and
friction compensation using disturbance observer have proved efficient to further re-
duce tracking errors. Thereby, desired trajectories for the crane load position in the
xz-plane can be tracked independently with high accuracy. Experimental results of
the closed-loop system show both excellent tracking performance and steady-state
accuracy.

2 Modelling of the Crane y-Axis

As a decentralised control structure is envisaged, a separate design model of is used
for each crane axis. Here, the modelling shall be presented only for the y-axis.
The origin of the y-axis, yk = 0, is located in the middle of the bridge. With a
bridge length lbr = 8.7 m the available workspace in y-direction is characterised by
yk ∈ [−4.35 m , 4.35 m]. The crane axis is modelled as a multibody system with two
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rigid bodies as shown in Figure 1. The trolley is modelled by a mass mk , whereas the
crane load is represented by a lumped mass ml . The trolley is electrically driven by
a motor force Fk . As the main disturbance nonlinear friction and damping are taken
into account by the disturbance force Fr . This disturbance force is neglected at feed-
back control design but counteracted by both feedforward and observer-based dis-
turbance compensation. The rope suspension is considered as massless connection,
where rope deflections and small external damping are neglected. The two degrees
of freedom for the mechanical model of the y-axis are chosen as the trolley position
q1 = yk and as the rope angle q2 = ϕy . Then, the vector of generalized coordinates
becomes q = [q1, q2]T . The rope length ls is considered as a slowly varying system
parameter and taken into account at control design by gain-scheduling techniques.
By exploiting Langrange’s equations, the equations of motion of the crane axis can
be calculated and stated in the following matrix notation:

[
ml + mk ml ls cos (q2)

ml ls cos (q2) ml ls
2

]

︸ ︷︷ ︸
M

q̈ +
[−ml ls q̇2

2 sin (q2)

ml g ls sin (q2)

]
=

[
1

0

]
Fk

︸ ︷︷ ︸
Gu

(1)

3 Passivity-Based Control of Underactuated Systems

The open-loop underactuated system is governed by the Hamiltonian as the sum of
kinetic and potential energy:

H(q,p) = 1

2
pT M−1(q) p + V (q) (2)

At this, the generalised coordinates q ∈ R
n and the generalised momentum p ∈ R

n

are used. With the symmetric, positive definite mass matrix M(q) = MT (q) > 0
and the potential energy V (q), the total energy of the underactuated system can be
stated. As the friction as well as the damping forces are counteracted by an observer-
based disturbance compensation, the passivity-based control design is based on the
following state equations:

[
q̇

ṗ

]
=

[
0 I

−I 0

][ ∇qH

∇pH

]
+

[
0

G(q)

]
u (3)

The matrix G ∈ R
n×m determines how the control input u ∈ R

m acts on the system.
For a fully actuated system m = n holds, whereas for the crane as underactuated
system rank (G) = m < n is given. The passivity-based control involves the design
of a desired closed-loop Hamiltonian Hd

Hd(q,p) = 1

2
pT M−1

d (q)p + Vd(q) (4)
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The matrix Md = MT
d > 0 denotes the mass matrix according to the desired kinetic

energy and Vd the desired closed-loop potential energy. This energy function Vd

to be determined must have a global minimum in the desired equilibrium q∗. This
leads to min Vd(q) = Vd(q∗). The control design (IDA – PC) can be divided into
the following two steps:

1. Energy shifting by the control action uev(q , p)

2. Damping injection by the control action udi(q , p)

The resulting control law is given by the sum of both control parts, i.e. u = uev+udi .
For the calculation of the feedback control law, the following condition must hold
for the closed-loop:

[
q̇

ṗ

]
= (

Jd(q,p) − Rd(q,p)
) [ ∇qHd

∇pHd

]

with the terms

Jd = −JT
d =

[
0 M−1 Md

−Md M−1 Jz (q,p)

]
, Rd = RT

d =
[

0 0

0 GKd GT

]
> 0

(5)

The matrix J d describes the desired interconnection and Rd the damping matrix.
The interconnection matrix J d is extended by an additional interconnection part J z.
The damping matrix Rd is introduced to provide sufficient damping in the closed-
loop system. This is achieved be a negative feedback of the corresponding passive
output, in the given case GT ∇pHd . As a result, the damping control action can be
stated as

udi = −Kd GT ∇pHd, (6)

with the constant gain matrix Kd = KT
d . The energy shifting control part uev is

determined from
[

0 I

−I 0

][ ∇qH

∇pH

]
+

[
0

G

]
uev =

[
0 M−1Md

−Md M−1 J z(q,p)

][ ∇qHd

∇pHd

]
(7)

The first row is always true, whereas the second row leads to

Guev = ∇qH − Md M−1∇qHd + J z M−1
d p (8)

considering ∇pHd = M−1
d p. The energy shifting control uev in case of an under-

actuated system can be stated using the left pseudo-inverse G+ = (GT G)−1GT ,
which leads to

uev = (GT G)−1GT︸ ︷︷ ︸
=G+

(∇qH − Md M−1∇qHd + J z M−1
d p

)
(9)
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Introducing the orthogonal vektor G⊥ according to G⊥G = 0, the control law uev

must be subject to:

G⊥[∇qH − Md M−1∇qHd + J z M−1
d p

] != 0 (10)

This problem can be devided in two parts. A first equation that is independent on
the momentum vector p, and a second equation that depends on this momentum
vector p. This results in two partial differential equations that allow for calculating
the closed-loop mass matrix Md and the additional interconnection matrix J z.

G⊥[∇qV − Md M−1∇qVd

] = 0 (11)

G⊥[∇q(pT M−1p) − Md M−1∇q(pT M−1
d p) + 2 J z M−1

d p
] = 0 (12)

The control design is straight-forward when the mass matrix M is constant and
inpendent of q ist. In this case the closed-loop a constant mass matrix Md is used
and the additional interconnection matrix J z = 0 can be chosen as zero matrix.
Then the control law is obtained by evaluating (11) directly.

4 Passivity-Based Control Design for the y-Axis

For the passivity-based control design for the y-axis, the equations of motion are
employed with the vector of generalized coordinates q = [yk, ϕy]T . For the input

vector G, an orthogonal vector G⊥ has to be determined such that G⊥G = 0 holds.
In the given case the required vector is G⊥ = [0, 1]. At the control design, the
desired energy function in terms of the sum of kinetic and potential energy has to
be specified such that a global minimum is obtained in the desired equilibrium point
q∗ = [yk,d, 0]T . In order to simplify the controller design, the mass matrix M is
linearized for small rope angles q2: cos(q2) ≈ 1. The resulting mass matrix becomes

Mlin =
[

ml + mk ml ls

ml ls ml l
2
s

]
, (13)

which is independent of the generalized coordinates q1 and q2. Therefore, the sym-
metric mass matrix of the closed-loop Md can be chosen as

Md =
[

a1 a2

a2 a3

]
(14)

The elements a1,a2 und a3 of the mass matrix Md are, according to the linearized
mass matrix Mlin, independent of the vector of generalised coordinates q . To ob-
tain an asymptotically stable closed-loop system, the new mass matrix Md must be
chosen positive definite. As a result, the following conditions for the elements of Md
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can be stated: a1 > 0 and a1 a3 > a2
2. Now, the potential energy of the closed-loop

system Vd can be specified using (11) with M = Mlin.

(
a2

mk

− a3

ls mk

)
∂ Vd

∂q1
+

(
a3 (ml + mk)

ls
2 ml mk

− a2

ls mk

)
∂ Vd

∂q2
= ml g ls sin (q2) (15)

This partial differential equation for Vd(q1, q2) equation can be solved using com-
puter algebra packages like Maple. The following solution is obtained:

Vd = ml
2 g ls

3 mk cos (q2)

a2 ml ls − a3 (ml + mk)
+ �

with � = f (q2 + q1 γ ) and γ = a3 (mk + ml) − a2 ml ls

ls ml (a3 − a2 ls )

(16)

Here, � represents a freely selectable energy function. This energy function � must
chosen properly such that Vd has a global minimum in the desired equilibrium point
q∗. Therefore, the gradient vector as well as the Hessian of the potential energy
function Vd are considered. The gradient becomes

∇q Vd

∣∣∣
q=q∗ =

⎡
⎢⎢⎢⎣

∂�

∂q1

− m2
l g l3

s mk sin (q2)

a2 ml ls − a3 (ml + mk)
+ ∂�

∂q2

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
q=q∗

=

⎡
⎢⎢⎢⎢⎣

∂�

∂q1

∣∣∣∣
q=q∗

∂�

∂q2

∣∣∣∣
q=q∗

⎤
⎥⎥⎥⎥⎦

!= 0

(17)
For the desired equilibrium point q∗ the gradient of the freely selectable function
∇q� at q∗ must vanish. In addition, the Hessian is considered as sufficient condition
for a minimum

∇2
q Vd

∣∣∣
q=q∗ =

⎡
⎢⎢⎢⎢⎣

∂2 �

∂q2
1

∂2 �

∂q1 ∂q2

∂2 �

∂q1 ∂q2
− ml

2 g ls
3mk cos (q2)

a2 ml ls − a3 (ml + mk)
+ ∂2 �

∂q2
2

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
q=q∗

!
> 0

(18)
For simplicity a quadratic function � of the form

� = K

2
(q̃2 + q̃1 γ )2 (19)

has been chosen, where K denotes a proportional gain. The variable q̃1 = yk − yk,d

stands for the tracking error in terms of the difference between the trolley position yk

and the desired trolley position yk,d . Accordingly, the tracking error q̃2 = ϕy −ϕy,d

represents the deviation of the measured rope angle ϕy and the desired rope angle
ϕy,d . By evaluating the gradient vector, the following conditions are obtained:
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∇x Vd =
⎡
⎣ K (q̃2 + q̃1 γ )|q=q∗

K (q̃2 + q̃1)|q=q∗

⎤
⎦ =

[
0

0

]
(20)

Next, the Hessian is investigated. This leads to

∇2
xVd =

⎡
⎢⎣

K γ 2 K γ

K γ K − m2
l mk g l3

s cos (q2)

a2 ml ls − a3 (ml + mk)

⎤
⎥⎦

∣∣∣∣∣∣∣
x∗

(21)

The first north-western subdeterminant is positiv for K > 0 and γ > 0. Considering
|q2| < pi/2, the determinant of the Hessian is positive definite only for:

− Kγ 2ml
2 g ls

3mk

a2 ml ls − a3 (ml + mk)
> 0

The nominator is always positive; hence, the denominator must be negative in order
to meet the necessary condition. This leads to an additional condition for the choice
of the free design parameters a2 and a3: a3 (ml + mk) > a2 ml ls . The following
choice has been made: a3 = c lmax, a1 = c/lmax and a2 = m, with the two constants
c and m. These constants are selected such that c > m > 0 holds. The maximum
rope length is given by the value lmax. Hence, all the conditions above are fulfilled.
With the energy function Vd determined, the control law can be calculated. The
nonlinear control action uPBC = uev +udi consists of the sum of the energy shifting
term uev and the damping injection term udi . The energy shifting is achieved by the
control part uev according to

uev = (G T G)−1 G T
(∇q V − Md M−1

lin ∇q Vd

) = Kγ (q̃2 + γ q̃1)

(
a2

ls mk

− a1

mk

)

+
(

a1

ls mk

− a2 (ml + mk)

ml ls
2mk

) (
K (q̃2 + γ q̃1) − ml

2gls
3mk sin (q2)

a2 ml ls − a3 (ml + mk)

)

(22)

With the constant damping gain Kd > 0, the damping injection control can be
calculated from (6)

udi = −Kd

(
((ml + mk) q̇1 + ml ls q̇2) a3

a1 a3 − a2
2 −

(
ml ls q̇1 + ml ls

2q̇2
)
a2

a1 a3 − a2
2

)
(23)

5 Implementation of the Crane Control

In addition to the passivity-based control uPBC , some structural extension have
turned out to be useful at implementation to improve trajectory tracking (Figure 2).
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Fig. 2 Control implementation.

Hence, the stabilizing PBC is extended with feedforward control action based on an
inverse system model. This feedforward control involves the following parts:

1. inverse dynamics control action uID based on the equation of motion without
disturbance forces

2. feedforward compensation uFFC of nonlinear friction and damping forces as
main disturbances

3. a feedforward control action uFF corresponding to the feedback control part
uPBC

The latter part uFF is necessary to compensate for the feedback control in the ideal
case if the design model matches the real system exactly. Then, the first two feedfor-
ward parts uFFC +uFF would lead to a perfect trajectory tracking. In the given case
of an imperfect system model with remaining uncertainties and disturbances, how-
ever, additional feedback control is mandatory. A trajectory planning module yields
the desired values w for the crane load position yl,d as well as the corresponding
first three time derivatives. For the feedforward control, however, the corresponding
desired values for the trolley positions yk,d as well as the rope angle ϕy,d and their
time derivatives are required. As the system under consideration is differentially flat
with the crane load position as flat control output, all the desired state variables and
the control input can be calculated. In the implementation, the following linearized
relationships have been used in the state transformation ST:

yk,d = yl,d + ls

g
ÿl,d , ẏk,d = ẏl,d + ls

g

...
y l,d , ϕy,d = − ẍl,d

g
, ϕ̇y,d = −

...
x l,d

g
.

(24)
With the control structure described above, sufficiently small control errors could be
achieved. Nevertheless, the implemented model-based friction compensation can be
significantly improved by an additional reduced order disturbance observer DO as
well as an disturbance compensation DC as described in [1]. The complete control
structure is adapted to the varying system parameters load mass ml and rope length
ls by gain-scheduling.
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6 Control of the x-Axis

The designed passivity-based control for the y-axis shall be used for the x-axis con-
trol as well. The crane bridge, however, is equipped with two electric drives, which
have to be properly actuated to achieve both the desired motion in x-direction but
also a vanishing position difference of both bridge sides. Due to an excentric trol-
ley position on the bridge and different friction forces acting on the corresponding
drives, an active synchronization of both bridge drives have to be provided instead of
a simple division of the according passivity-based control action uPBC in the form
ub,l = ub,r = 0.5 · uPBC . The active synchronization is achieved by an underlying
PD-control loop of high bandwidth, i.e. mϕ = −Kp,GLR ϕxb − Kd,GLR ϕ̇xb. The
required force distribution can be derived from the following system of equations:

[
uPBC

mϕ

]
=

⎡
⎣ 1 1

− lbr

2

lbr

2

⎤
⎦

[
ub,r

ub,l

]
⇔

[
ub,r

ub,l

]
=

⎡
⎢⎢⎣

1

2
− 1

lbr

1

2

1

lbr

⎤
⎥⎥⎦

[
uPBC

mϕ

]

(25)
Thereby, the control design for the y-axis can be used for the bridge position control
as well. The x-position of the trolley depends on the y-position on the bridge and
on the two position coordinates of the bridge, i.e. xb,r und xb,l . This position can be
calculated as follows:

xk = xb,r + (
xb,l − xb,r

) (
1

2
+ yk

lbr

)
(26)

Consequently, by replacing the trolley mass mk with the bridge mass mb in (22)
and (23), the resulting drive force uPBC = uev + udi of the outer control loop in
x-direction can be calculated.

7 Experimental Results

Tracking performance as well as steady-state accuracy w.r.t. the crane load position
have been investigated by experiments with a 5 t-overhead travelling crane. The
resulting tracking performance as regards desired trajectories in the xyz-workspace
involving variations in rope length is shown in Figure 3.

8 Conclusions

This paper presents a gain-scheduled passivity-based control design for the transla-
tional axes of a 5 t-overhead travelling crane. The feedback control is extended by
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Fig. 3 Synchronised movement in the xyz-workspace with varying rope length.

feedforward control exploiting the differential flatness of the system. Furthermore,
a reduced-order disturbance observer takes into account the remaining model uncer-
tainties due to nonlinear friction acting on the trolley. The efficiency of the proposed
control is shown by experimental results involving tracking of desired trajectories
within the 3-dimensional workspace. Maximum tracking errors are approx. 2 cm.
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