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Abstract In the design of automobile suspension systems, the classical conflict
between minimizing vertical chassis acceleration to increase passenger comfort and
keeping the dynamic wheel load small in order to ensure safe driveability must be
further eased due to increasing customer demands. In order to moderate the conflict-
ing suspension objectives, a switching controller structure for an active suspension
system is developed which schedules linear optimal regulators depending on the
present dynamic wheel load and suspension deflection. The goal is to maximize
ride comfort while the wheel load is below certain safety critical bounds and the
suspension deflection remains within given construction-conditioned limits. Stabil-
ity of the switching control system is analyzed using a multiple Lyapunov function
approach. The performance of the road adaptive suspension control system is com-
pared with a linear controller and the passive suspension system in simulations to
point out the benefits of the developed control concept.

1 Introduction

An automotive suspension system is expected to provide an optimum of ride comfort
for the passengers as well as safe driveability of the car, i.e. guaranteed tire-road con-
tact. While the comfort aspect can be characterized by minimum vertical chassis ac-
celeration, the safety aspect requires a stiff, well damped coupling between vehicle
and road in order to keep dynamic wheel load deviations small. Another objective
is that the suspension deflection should always remain below the constructionally
given limits in order to prevent impulse-like accelerations of the suspended mass
as well as excessive wear of the components. These three requirements are con-
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flicting, [2]. However, this conflict can be eased by controlled actuators in active
suspension systems.

Some works on suspension controller design present the idea of adapting the
control objectives and thus the controller dynamics to the current road excitation. In
[1, 4, 5] switching controllers are presented that minimize either the vertical chassis
acceleration or the suspension deflection. In [9], a control structure with adaptive
properties has been presented using a wheel load adaptive skyhook-control concept
for a semi-active suspension system.

The new approach in this paper is the design of a nonlinear controller structure
that adapts to the current road disturbance in order to optimize the suspension re-
garding the three conflicting objectives comfort, safe driveability and suspension
deflection limits. The main idea is that maximum comfort should be achieved while
safety for every road excitation is preserved by keeping the dynamic wheel load and
the suspension deflection below specified critical bounds. This is accomplished by a
switching controller structure based on six linear quadratic optimal controllers and
a switching logic. The required actuator force for control should be feasible.

The remainder of this paper is organized as follows: First, models for an act-
ive and passive vehicle suspension are presented in Section 2 and performance re-
quirements are specified. In Section 3, the controller structure and the calculation
of the scheduling variables initializing the switching are presented. Stability of the
switched control system for the active suspension is analyzed in Section 4 using a
multiple Lyapunov function approach. Finally, simulation results and a performance
comparison are presented.

2 Modelling and System Requirements

The lift movement of the suspension system can be modelled using the well-known
quarter car models illustrated in Figure 1 [7, 11]. In the high bandwidth active sus-
pension considered here an ideal actuator is integrated.

The model of the passive suspension results from the active suspension model
if F(t) = 0. The state-vector x and the output vector y are introduced as x =
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Fig. 1 Quarter car models of the passive (left) and active suspension (right).

190



Multi-Objective Road Adaptive Control of an Active Suspension System

Table 1 Notation and parameter values [7].

Model parameter Symbol Value Unit

Quarter car chassis mass (sprung mass) mc 256 [kg]
Wheel assembly mass (unsprung mass) mw 31 [kg]
Suspension spring stiffness cc 20200 [N/m]
Tire stiffness cw 128000 [N/m]
Sprung mass damping coefficient dc 1140 [Ns/m]
Undamped uncoupled natural
frequency of the sprung mass ωc =

√
cc

mc
8.88 [rad/s]

Uncoupled natural frequency
of the unsprung mass ωw =

√
cw
mw

64.26 [rad/s]

[ zc − zw, żc, zw − zg, żw ]T and y = [ z̈c, Fdyn, zc − zw ]T where Fdyn de-
notes the dynamic wheel load force. With the control input u(t) = F(t) and dis-
turbance input ud(t) = żg(t) the quarter-car model can be expressed as a state
space model in the form

ẋ = Ax + bu + eud , y = Cx + du , (1)

A=

⎡
⎢⎢⎣

0 1 0 −1
− cc

mc
− dc

mc
0 dc

mc

0 0 0 1
cc

mw

dc

mw
− cw

mw
− dc

mw

⎤
⎥⎥⎦ , b=

⎡
⎢⎢⎣

0
1

mc

0
− 1

mw

⎤
⎥⎥⎦ , e=

⎡
⎢⎢⎣

0
0

−1
0

⎤
⎥⎥⎦ , (2)

C=
⎡
⎣− cc

mc
− dc

mc
0 dc

mc

0 0 cw 0
1 0 0 0

⎤
⎦ , d=

⎡
⎣

1
mc

0
0

⎤
⎦ . (3)

The model parameters are given in Table 1.

2.1 Performance Requirements

In order to ensure maximum ride comfort, the rms-value of the vertical chassis ac-
celeration ‖z̈c‖rms is to be minimized. The human sensitivity for vibration is fre-
quency dependent and the most sensitive frequency range for mechanical excitation
is 4–8 Hz [3]. Therefore, a fifth order shaping filter Gc(jω) with an amplitude char-
acteristic as depicted in Figure 2 and a state space representation

ẋf = Af xf + bf z̈c , z̈c,f = cT
f xf (4)

is introduced, [3]. Its impulse response is gc(t) such that z̈c,f = gc(t) ∗ z̈c.
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Fig. 2 Amplitude characteristic of the shaping filter Gc(jω) [3].

An augmented plant model with state vector xreg = [ xT , xT
f ]T is used to incor-

porate the shaping filter in the controller design (Section 3) such that the controlled
variables are yreg = [ z̈c,f , z̈c, Fdyn, zc − zw ]T . With h = [ 0 1 0 0 ] the aug-
mented plant model is

Pxreg =
[

A 0
bf hA Af

]
︸ ︷︷ ︸

Areg

xreg +
[

b
bf hb

]
︸ ︷︷ ︸

breg

u +
[

e
0

]
︸︷︷︸
ereg

ud , (5)

yreg =
[

0 cT
f

C 0

]
︸ ︷︷ ︸

Creg

xreg +
[

0
d

]
︸︷︷︸
dreg

u . (6)

Safety requirements

For stochastic road excitation the dynamic wheel load’s rms-value should be
bounded as follows1

max
(‖Fdyn‖rms

) ≤ �var = Fstat

3
, (7)

where Fstat = g (mc + mw) denotes the static wheel load. To ensure safety for
singular excitation events like potholes, the primary control objective changes from
comfort to safety, i.e. dynamic wheel load limitation, if

|Fdyn|
Fstat

≥ �sing = 0.75 . (8)

1 This is derived from the 3σ -rule and assures, assuming a normally distributed stochastic disturb-
ance signal, that Fdyn remains within ±Fstat for 99.7% of the time [10].
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Requirements on suspension deflection

A total of |�ẑ| = 0.1 m maximum suspension deflection is used as a limit in the
simulations of this study. Hitting the limit is modelled by an increase in cc as follows

c̃c =
{

cc for −0.1 ≤ zc − zw ≤ 0.1
15 · cc for |zc − zw| > 0.1 ∧ żc − żw > 0 .

(9)

3 Controller Design

For the road adaptive suspension control n = 6 linear quadratic optimal (LQR) con-
trollers with different weighting matrices Qy for separate primary control objectives
are designed in order to analyze the potential of the concept. For the application of
the classical LQR design formalism with output weighting in the cost functional

JLQR =
∫ ∞

0

(
yT
regQyyreg + uRu

)
dt (10)

with Qy = QT
y ≥ 0 and R > 0 chosen according to Table 2, the cost functional

needs to be slightly modified due to the direct feedthrough term dreg present in the
augmented suspension model. The resulting cost functional resulting from Eq. (10)
is

JLQR =
∫ ∞

0

(
xT
regQxreg + 2xT

regsu + uR̃u
)
dt (11)

with Q = CT
regQyCreg, s = CT

regQydreg and R̃ = dT
regQydreg + R. We substitute

the control input ũ = u + R̃−1sT x in Eq. (11) in order to remove the mixed term
2xT

regsu such that the conventional LQR design formalism can be applied [6]. The
optimal solution for each designed LQR-controller with weighting matrix Qy,i is
state feedback ui = −kT

i xreg with kT
i = R̃−1(bT

regPr,i + sT
i ) and Pr,i being the

symmetric, positive definite solution of the algebraic Riccati-equation

AT Pr,i + Pr,iA − (
Pr,ibreg + si

)
R̃−1(bT

regPr,i + sT
i

) + Qi = 0 ,

Pr,i = PT
r,i > 0 .

(12)

Wheel load adaptation

Figure 3 shows the control structure in which the LQR-controllers are implemen-
ted. In the following the part of the switching logic is presented that schedules the
controllers by the scheduling variable qadp(t) with 0 ≤ qadp(t) ≤ 1 depending on
the dynamic wheel load. The basic concept is described in [9] but is modified here
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Table 2 Controller weights Qy,i , R = 1 for all controllers.

Qy,i Value Controller Type

Qy,1 diag
(
3.5 · 105, 0, 0.1, 0

)
Most comfort oriented controller

Qy,2 diag
(
8 · 104, 0, 0.4, 0

)
Comfort oriented controller

Qy,3 diag
(
4 · 104, 0, 0.7, 0

)
Intermediate controller

Qy,4 diag
(
104, 0, 0.9, 0

)
Safety oriented controller

Qy,5 diag(10, 0, 1, 0) Most safety oriented controller
Qy,6 diag

(
0, 5.2 · 107, 10−3, 3 · 1012

)
Suspension deflection controller

-

kT
1

kT
2

kT
n

y

xu

ud

σ (qadp, qsusp)

switching logic

Fig. 3 Switching state feedback controller structure.

in details. In case of “hard” switching between the five comfort/safety oriented con-
trollers kT

i , i ∈ {1, . . . , 5} (see Table 2) the piecewise continuous switching function
is

σ
(
qadp (t)

) =
{ �qadp(t) · 5	 if 0 < qadp ≤ 1

1 if qadp = 0
(13)

where �·	 denote Gaussian brackets also known as the ceiling function. The sixth
controller is activated separately as described at the end of this section. The schedul-
ing variable qadp(t) increases with increasing wheel load and correspondingly as
qadp(t) ≈ 1, the most safety oriented controller kT

5 is chosen by the switching lo-
gic.

The current value of the scheduling variable is determined by two adaptation-
rates as qadp(t) = min(1, qs(t) + qf (t)). The slow adaptation rate qs(t) (illustrated
in the lower branch of block diagram in Figure 4) is used to adapt the suspension
controller to different variances of the road excitation signal. The variance of the
dynamic wheel load is

σ 2
Fdyn

= lim
T →∞

1

T

∫ T

0
F 2

dyndt.

After Laplace transformation we replace the integral term 1
s

by a first order low pass
filter thus approximating the dynamic wheel load’s variance by

σ 2
Fdyn

(s) ≈ 1

τss + 1
F 2

dyn(s).
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For τs the chassis mass eigenmodes’ time constant is chosen resulting in τs =
2π

√
mc/cc ≈ 0.71 sec.

The dynamic wheel load filtered in this manner is compared to the upper bound
�var given by Eq. (7). The deviation

es(t) =
σ 2

Fdyn(t)

F 2
stat

− �2
var

F 2
stat

is scaled by a constant gs = 1.5 and is integrated by an output-limited integrator
with an output signal range of [0, 1] resulting in qs .

If the vehicle hits an occasional pothole on an otherwise smooth road, it is im-
portant that an instant switching to a safety oriented controller occurs. Therefore,
it is necessary to introduce a fast adapting term qf (t) in the calculation of qadp(t)

which is shown in the upper branch of the block diagram (Figure 4).
To ensure that this fast adaptation part remains inactive as long as the relative

dynamic wheel load has not reached �sing = 0.75 defined in Eq. (8), the wheel load
is scaled by a nonlinear funtion h (based on a fourth order polynomial) shown in
Figure 5 which output value ef is only nonzero if |Fdyn|/Fstat > 0.75. Again a low
pass filter for ef with a time constant

τf = 5

9
· 2π

√
mw

cc + cw

≈ 0.05 sec

is used. The output qf is limited to a range of qf ∈ [0, 1] as well.

Suspension deflection adaptation

A second scheduling variable qsusp(t) is calculated which determines when the
sixth controller that suppresses excessive suspension deflection is activated by
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Fig. 5 Nonlinear scaling function h(Fdyn/Fstat ) for fast wheel load adaptation (left) and
f (zc − zw/|�ẑ|) for suspension deflection adaptation (right).

σ(qadp, qsusp). This is described in detail in Section 4 because its switching be-
haviour determines the stability of the system. The scheduling variable qsusp(t) is
calculated similarly to qf (t) with zc − zw/|�ẑ| as input. Again a nonlinear function
f (zc − zw/|�ẑ|) shown in Figure 5 is used being nonzero if |zc − zw|/|�ẑ| > 0.66.
The filter’s time constant is τsusp = 1/25 τf to ensure quick activation of the sus-
pension deflection controller.

4 Stability Analysis

Stability analysis of switched systems is a very important issue because it is not
guaranteed that switching between asymptotically stable subsystems (here: result-
ing from different controllers) results in an asymptotically stable switched system.
A well known stability analysis approach uses quadratic Lyapunov functions of the
form V (x) = xT Px, V (0) = 0, V (x) > 0, V̇ (x) < 0, P = PT > 0. If a mat-
rix P can be found such that these equations are fullfilled, the equilibrium x = 0
of the switched system is uniformly asymptotically stable, [8]. For numerical sta-
bility analysis, the Lyapunov function and the condition for P has been formulated
as a pair of linear matrix inequalities (LMI) for every closed loop system matrix
Acl,reg,i = Areg − bregkT

i of the switched active suspension system

(
AT

cl,reg,iP + PAcl,reg,i

)
< 0 for i ∈ {1, . . . , n} (14)

P = PT > 0 . (15)

These equations are solved numerically. Although no feasible solution for all six
controllers exists, two feasible solutions P1 and P2 have been obtained for two sub-
sets of LQR-controllers kT

i with i ∈ {1, . . . , 5} and kT
j with j ∈ {3, . . . , 6}. Switch-

ing between controllers within each subset thus results in an asymptotically stable
system for arbitrary switching signals σ(·) because the Lyapunov function is a com-
mon quadratic Lyapunov function (CQLF) of all systems within the subset [12].
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Soft switching

Because the active suspension system is improper regarding the control input,
a discontinuous control force resulting from a noncontinuous switching function
σ(qadp(t), qsusp(t)) would result in discontinuities of z̈c and thus decreasing pas-
senger comfort. To avoid these discontinuities “soft” switching by interpolating
between the controllers via qadp(t) and qsusp(t) directly is preferable. Therefore,
stability for linear interpolation between the state feedback controllers is analyzed.

Theorem 1. If two closed loop system matrices A1 and A2 resulting from control
loops with different state feedback controllers K1 and K2 for the same open loop
system matrix Aol have a CQLF characterized by P : P = PT > 0, the system
matrix

Acl = µA1 + (1 − µ)A2 , 0 ≤ µ ≤ 1 (16)

being a linear interpolation of A1 and A2 has the same CQLF characterized by P.

Proof. A CQLF of the two closed loop systems is defined by

∃P : AT
i P + PAi < 0 , P = PT > 0 ∀i ∈ {1, 2} . (17)

If we add the scaled Lyapunov functions for the closed loop system matrices we get

µ (AT
1 P + PA1)︸ ︷︷ ︸

<0

+(1 − µ) (AT
2 P + PA2)︸ ︷︷ ︸

<0

< 0 . (18)

For state feedback u = −Kix, i ∈ {1, 2} the closed loop system matrices have
the form Ai = Aol − BKi . Considering this and the fact that linear interpolation
between the controllers Ki would result in the state feedback gain matrix K̃ =
µK1 + (1 − µ) K2, Eq. (18) can be transformed into

[Aol − BK̃]T P + P[Aol − BK̃] < 0 . (19)

�

Multiple Lyapunov function approach for stable suspension deflection control

Because no CQLF could be obtained for the whole set of closed loop suspension
system matrices Acl,reg,i , the stability for the switching control using all six con-
trollers can be ensured using a multiple Lyapunov function approach, [12]. Asymp-
totic stability in the sense of Lyapunov while switching smoothly between the two
numerically calculated Lyapunov functions V1(x) and V2(x) is ensured by two con-
ditions:

1. Switching between the two Lyapunov functions is only allowed if the LQR-
controller being activated by the switching is either kT

3 , kT
4 or kT

5 because both
Lyapunov functions are valid for these controllers.
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2. It is only allowed to switch back to the Lyapunov function Vl(x) with l ∈ {1, 2}
at time t2 if the associated Lyapunov function has decreased since leaving it at
time t1 (with t1 < t2), i.e. Vl(x(t2)) < Vl(x(t1)) [12].

Due to the same quadratic structure of V1(x) and V2(x) for our control problem, it
is sufficient if condition 2 is fulfilled for l = 1 to guarantee asymptotic stability.

Switching to V2(x) is only necessary if the suspension deflection controller kT
6

should be activated. Ensuring that condition 1 is satisfied, the wheel load adaptation
parameter qadp(t) is smoothly increased automatically between 0.66 ≤ qsusp(t) ≤
0.77 (see Figure 5) such that qadp(t) is at the lower limit (qadp(t) = 0.5) of the
activation of controller kT

3 at least before the suspension controller kT
6 is enabled to

be switched to. For 0.8 ≤ qsusp(t) ≤ 0.9 the suspension controller kT
6 is definitely

activated (with a similar function as f ( zc−zw

|�ẑ| ) in Figure 5). Switching back to V1(x)

is only possible if qsusp(t) < 0.77 and additionally condition 2 is fulfilled for l = 1.

5 Simulation Results

The performance of the designed controller is compared to that of a conventional,
comfort focussed LQR-controller with Qy,LQR = diag

(
2.5 · 104, 0, 0.4, 0

)
and

the passive suspension. As excitation signal zg(t) a superposition of two synthetic
signals (bumps) and two subsequent real measured road track signals is used (Fig-
ure 6). The road excitation is zero for all points in time not depicted. Figure 7 shows
that the power spectral density (PSD) of z̈c is significantly reduced in the range of
the chassis’ resonance frequency (approx. 1.41 Hz). In the frequency range from 4–
8 Hz the adaptive controller performs best concerning comfort (approx. 17% better
than the passive suspension and 8% better than the LQR-controller). The comfort
gain vs. the LQR-controller would be more significant if a fully active suspension
model without passive suspension would be considered. Only the adaptive controller
keeps the suspension deflection limit at the first bump.

The proposed road adaptive controller achieves a comfort gain in an rms-sense
of approx. 20% in comparison to the passive system and of 11% compared to the
LQR-controller for the simulated road profile (Table 3). All control forces are in an
acceptable range.

Table 3 Performance of the road adaptive controller.

Quantity Unit Passive LQR Road adaptive Comment

‖z̈c‖rms
m
s2 3.06 2.75 2.45

‖gc ∗ z̈c‖rms
m
s2 2.85 2.56 2.36

‖Fdyn‖rms N 960.29 855.26 871.36 Limit: �var = 938.49 N
‖F(t)‖rms N - 156.19 262.66
max(|F(t)|) N - 2781 1771
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Fig. 6 Road signal zg(t) (left) and adaptation parameters qadp(t) (middle), qsusp(t) (right).
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zc−zw at the first bump (middle left), power spectral density of the wheel load z̈c for two frequency
ranges (right); Adaptive controller (solid), LQR-controller (small dots), passive setting (large dots).

6 Conclusion

A road adaptive suspension controller has been designed that switches smoothly
between different LQR-controllers depending on the current dynamic wheel load
and suspension deflection. The primary control objective is to maximize passenger
comfort while given limits for the dynamic wheel load and suspension deflection are
not violated. Stability of the system is guaranteed by a multiple Lyapunov function
approach implemented in the scheduling algorithm. The result is a performance gain
of approx. 20% vs. the passive system and 11% vs. the LQR-controlled suspension.
Only the road adaptive controller does not exceed the suspension limit.
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