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Abstract A path tracking control method for a kinematically redundant manipulator
on a flexible base is proposed. The method is based on dynamic redundancy resolu-
tion through a vibration suppression constraint. It is shown that the end-effector path
can pass via an algorithmic singularity without destabilizing the system. Simulation
data from a planar system is presented, confirming that stable path tracking can be
achieved within large portions of the manipulator workspace.

1 Introduction

Manipulators mounted on a flexible base have been studied widely in the past in
view of two fields of applications mainly: nuclear waste cleanup [1,2] and space ro-
botics [3, 4]. In the former application, a manipulator is mounted on a long beam to
ensure access to a remote site. In the latter application, the manipulator is mounted
at the end of a large arm that allows for relocation of the manipulator base. Such
systems are known as “macro-micro” manipulators. Examples include the Cana-
dian SSRMS/Dextre and the Japanese JEMRMS/SFA manipulator systems on the
International Space Station.

Flexible base mounted manipulators induce base vibrations via the reaction force.
A few control methods have been proposed in the past that can ensure base vibration
suppression control [5–8], design of control inputs that induce minimum vibrations
[9], and end-point control in the presence of vibrations [10, 11].

Appropriate control methods depend very much on the structure of the manip-
ulator, e.g. dual-arm or single-arm and the presence of kinematic and/or dynamic
redundancy. In this work, we focus on a kinematically redundant flexible base ma-
nipulator. End-effector control in the presence of base vibrations becomes possible
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with such a manipulator. In addition, there is also a possibility for vibration suppres-
sion control via manipulator self-motion.

We should note, however, that redundancy resolution techniques usually suffer
from the presence of algorithmic singularities [12]. In the case of a flexible base
manipulator, algorithmic singularities are due to the imposed vibration suppression
constraint, and are located inside the workspace. As noted in [13], it is physically
impossible to realize vibration suppression at such manipulator configurations. The
work of Hanson and Tolson demonstrates this fact [14]. Unfortunately, the import-
ance of this problem has been usually underestimated in literature, even in recent
studies [15].

We have addressed the problem of flexible base manipulator teleoperation con-
trol in the presence of both algorithmic and kinematic singularities in a recent
work [16]. A velocity control framework has been designed, based on the Reaction
Null-Space [17] and the Singularity-Consistent [18] methods, named Singularity-
Consistent Vibration Suppression (SCVS) control. The aim was to achieve stable
teleoperation control throughout the entire workspace.

The aim of the present work is twofold. First, we highlight a problem with the
SCVS velocity controller related to the presence of algorithmic singularities due to
the Reaction Null-Space constraint. Second, we develop a dynamic torque control
framework and show how the algorithmic singularity problem can be tackled within
such framework.

2 Background and Notation

The equation of motion of a manipulator mounted on a flexible base can be written
in the following form [17]:

[
H b H bm

H T
bm Hm

] [
ν̇b

q̈

]
+

[
cb

cm

]
+

[
Dbνb

Dmq̇

]
+

[
Kb�ξ

0

]
=

[
0
τ

]
(1)

where �ξ ∈ �k denotes the positional and orientational deflection of the base from
its equilibrium, νb is the twist (velocity/angular velocity) of the base, q ∈ �n stands
for the generalized coordinates of the arm, H b(q,�ξ ), Db, and Kb ∈ �k×k de-
note base inertia, damping and stiffness, respectively. Hm(q) ∈ �n×n is the iner-
tia matrix of the arm, Dm stands for joint damping and H bm(q,�ξ ) ∈ �k×n de-
notes the so-called inertia coupling matrix. cb(q, q̇,�ξ , νb) and cm(q, q̇,�ξ , νb)

are velocity-dependent nonlinear terms, and τ ∈ �n is the joint torque. No external
forces are acting neither on the base nor on the manipulator.

Under the simplifying assumptions, described in [17], the equation of motion can
be linearized around the equilibrium of the base, as follows:

H bν̇b + Dbνb + Kb�ξ = −H bmq̈. (2)

Then, choose the control acceleration as
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q̈c = H+
bmGbνb + (U − H+

bmH bm)ζ , (3)

where Gb is a positive definite matrix, and H+
bm ∈ �n×k denotes the Moore-Penrose

generalized inverse of the inertia coupling matrix, U denotes the unit matrix of
proper dimension, and ζ is an arbitrary vector. Since H bmH+

bm = U and H bm(U −
H+

bmH bm) = 0, it becomes apparent that controlled damping can be achieved by a
proper choice of matrix Gb.

Note that the second term on the RHS of the above equation stands for the Reac-
tion Null-Space. In [17], the term was used to ensure the desired end-effector motion
constraint. In [16] it was shown that the desired end-effector motion can be realized
without the Reaction Null-Space term.

We aim to control both end-tip motion and flexible base vibrations. Denote by
νe ∈ �m the manipulator end-effector twist. Then we have:

ν̇e = J q̈ + J̇ q̇ + ν̇b, (4)

where J (q) ∈ �m×n is the manipulator Jacobian.

3 Singularity-Consistent Redundancy Resolution with Vibration
Suppression Capability

3.1 Redundancy Resolution via Additional Constraint

A well known method for resolving kinematic redundancy is to impose an additional
constraint [12]. We derive such an additional constraint in terms of joint acceleration
from the vibration suppression control acceleration (3):

H bmq̈ = Gbνb. (5)

Note that the Reaction Null-Space term has been thereby ignored.
Let us assume now that the dimension k of base deflection space equals the de-

gree of redundancy of the manipulator, that is k = n − m. Combining the imposed
end-effector acceleration constraint from (4) with the above additional constraint,
we obtain: [

ν̇ ′
e

Gbνb

]
= J vs q̈, (6)

where ν̇′
e = ν̇e − J̇ q̇ − ν̇b, J vs = [

J T H T
bm

]T ∈ �n×n. The joint acceleration can
then be written as:

q̈ = J−1
vs

[
ν̇ ′

e

Gbνb

]
. (7)
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Though the above solution was obtained in a straightforward manner, we must
note that performance will inevitably degrade when matrix J vs becomes singular.
The condition det J vs = 0 means that the linear system (6) becomes singular. When
displayed in workspace, the singularities are mapped to both isolated points and
continua. A well-known subclass of singularities are the kinematic singularities,
defined by the condition det JJ T = 0. For articulated manipulators, these appear
mainly at the workspace boundaries. The rest of the singularities, referred to as
“algorithmic singularities,” are located within the workspace, though. Since the ad-
ditional constraint used here is the vibration suppression constraint, we can expect
that the capability to suppress vibrations will deteriorate around these algorithmic
singularities [13]. In addition, the system may destabilize. This hinders the task
planning problem significantly.

3.2 Singularity-Consistent Solution for the Acceleration

To cope with the singularity problem, we will rewrite the above joint acceleration (7)
according to the Singularity-Consistent method [18]. First, we compose the column-
augmented Jacobian and the respective homogeneous equation:

J̄ vs
¨̄q = 0, (8)

where

J̄ vs =
[

J −ν̇ ′
e 0

H bm 0 −Gbνb

]
∈ �n×(n+2) (9)

and
¨̄q = [

q̈T 1 1
]T

. (10)

Next, we write the set of solutions to the above homogeneous equation as fol-
lows:

¨̄q = N̄vsbvs, (11)

where N̄vs = [
n̄m n̄b

] ∈ �(n+2)×2. The two column vectors of N̄vs are: n̄m =[
nT

m det J vs 0
]T

and n̄b = [
nT

b 0 det J vs

]T
, and bvs = [

bm bb

]T
is a vector with

arbitrary components. The last equation can be expanded as:

q̈ = bmnm(q, ν̇ ′
e) + bbnb(q, νb) (12)

−1 = bm det J vs (13)

1 = bb det J vs. (14)

nm(q, ν̇ ′
e) denotes a vector field component that ensures reactionless motion along

the desired end-effector trajectory. The nb(q, νb) vector field component, on the
other hand, ensures vibration suppression.
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It is easy to show that if the two arbitrary scalars bm and bb are determined
from the last two equations, respectively, and substituted into (12), then the joint
acceleration obtained will be the same as that in (7), and hence, the system may
destabilize around singularities.

One possible way to deal with such problem is by proper choice of bm and bb.
This is the essence of the Singularity-Consistent method. We sacrifice thereby per-
formance in terms of end-effector acceleration along the desired path and in terms
of vibration suppression capability, but gain overall stability.

We should note also an important property of the above solution: the bmnm com-
ponent restricts the manipulator motion in a conservative way due to the Reaction
Null-Space constraint H bmq̈ = 0.1 The algorithmic singularities appear as a con-
sequence of this constraint. The CoM should not be restricted to move in such con-
servative way, because inevitably an algorithmic singularity will be reached [16].

4 Pseudoinverse-Based Solution

To relax the constraint on the CoM motion, we will employ a Moore–Penrose gen-
eralized inverse (pseudoinverse)-based acceleration component for the end-effector
motion. Recall that the general solution for the joint acceleration can be written
as [12]:

q̈ = J+ (
ν̇ − J̇ q̇

) + (U − J+J )ζ a, (15)

where ζ a is an arbitrary n−vector. We can then replace bmnm in (12), to obtain:

q̈ = J+ (
ν̇ − J̇ q̇ − ν̇b

) + bbnb(q, νb). (16)

When analyzing the above equation, recall that the set of joint accelerations q̈n =
bbnb satisfies the two constraints: J q̈n = 0 and H bmq̈n = Gbνb. The former con-
straint means that vector nb belongs to the null space of the Jacobian: nb ∈ N (J vs).
Hence, from a well known property of the pseudoinverse-based inverse kinematics
solution for kinematically redundant manipulators, it can be concluded that the two
components of the above joint acceleration are orthogonal [12]. Thus, their mutual
interference will be minimized, and we can expect that the vibration suppression
constraint will be enforced constantly during end-effector motion, without disturb-
ing it.

1 We should note that nm is derived as the null-space vector of a matrix obtained from J̄ vs by
removing its last column.
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Fig. 1 A planar 3R manipulator on a flexible base.

5 Implementation of the Method

We will demonstrate the method with the help of the planar 3R manipulator shown
in Figure 1. The base deflects along the x axis. Hence, the reaction moment and the
reaction force component along the y axis can be neglected as a disturbance. We
have: n = 3, k = 1. The parameters of the manipulator are shown in the figure.

End-tip path tracking control (meaning that m = 2) is envisioned according to
the following control law:

v̇ref = p̈d + Kv(ṗd − ṗ) + Kp(pd − p). (17)

p and v ≡ ṗ denote end-tip position and velocity, respectively. The subscript (◦)d
denotes a desired quantity, Kv and Kp are positive definite feedback gain matrices.

Using (16), the reference joint acceleration is written as

q̈ref = J+ (
v̇ref − J̇ q̇ − v̇b

) + bbñbgbvbx, (18)

where vb = [vbx, 0]T is the base velocity vector, gb is the vibration suppression
gain and nb = ñbgbvbx .

Further on, the joint torque vector can be written as

τ = Hm(q)q̈ + hT
bm(q)v̇bx + Dmq̇ + cm(q, q̇), (19)

according to the equation of motion. The joint damping term plays the important
role of damping out the momentum, conserved during vibration suppression [17].

Next, insert the reference joint acceleration (18) into the last equation, to obtain
the control torque as:
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τ c = HmJ+ (
v̇ref − J̇ q̇ − v̇b

) + Dmq̇

+cm + hT
bmv̇bx + bbHmñbgbvbx . (20)

6 Simulation Results

Starting from initial configuration q1 = 0.0, q2 = q3 = 0.5 rad (nonsingular), the
manipulator end-tip is required to track a straight-line path parallel to the x axis.
The desired current end-tip position, speed and acceleration along the straight-line
are calculated from a fifth-order spline function. During this motion, the CoM ac-
celerates/decelerates along the low-stiffness (x axis) direction. Hence, vibrations are
induced, that are then to be suppressed by the vibration suppression component (the
last term on the r.h.s. in (20)). We should also note that an algorithmic singularity
will be encountered along the path.

In the first simulation, the final time for the spline function is set to 9 s. The
vibration suppression gain is gb = 30 kgs−1, the feedback gain matrices are Kp =
diag [20000, 20000] s−2 and Kv = diag [200, 200] s−1. Joint damping is set
to Dm = diag [0.05, 0.05, 0.05] kgms−1. The vibration suppression scalar bb is
determined from bb = 1/detJ vs . In the neighborhood of the algorithmic singularity,
vibration suppression is turned off (by setting bb = 0) to avoid destabilization. The
neighborhood is determined by a threshold, selected as |bb| = 1.0 × 104 m−2s−2.

The results from the simulation are shown in Figure 2. It becomes apparent
that vibration is successfully suppressed during the motion. At around 5 s, the al-
gorithmic singularity is crossed. From Figure 2(c) it can be observed that CoM
acceleration increases around the singularity. Nevertheless, no significant base de-
flection is observed, and the end-tip error remains within acceptable limits.

In the next simulation, we shortened the execution time of the same path, from
9 s to 3 s, reading to higher overall velocities/accelerations (see Figure 3). The base
deflects significantly around the algorithmic singularity. In addition, large peak velo-
cities are observed and the system tends to destabilize. After passing the singularity,
vibration suppression is invoked again, further vibrations are suppressed and the
system stabilizes.

7 Conclusions

We have developed a path tracking control method for a kinematically redundant
flexible base manipulator, capable of simultaneous vibration suppression, based on
dynamic redundancy resolution. The effect achieved is similar to that of reaction-
less path motion control. In addition, we have shown that it is possible to cross
an algorithmic singularity without destabilizing the system, despite using high PD-
feedback gains.
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Fig. 2 Straight-line tracking and vibration suppression in case of a relatively slow movement.

Unfortunately, with faster movements, the base may deflect locally, around the
singularity, since vibration suppression is switched off for a short time to avoid
destabilization. We intend to tackle this problem in a future work by proper end-tip
speed/acceleration replanting.
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Fig. 3 Straight-line tracking and vibration suppression in case of a relatively fast movement.
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