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Preface

During the last decades, the growth of micro-electronics has reduced the cost of
computing power to a level acceptable to industry and has made possible sophis-
ticated control strategies suitable for many applications. These developments owe
most to breakthroughs in the field of mechatronics. Mechatronics combines vari-
ous topics from the fields of engineering and mechanics, mathematics and computer
science into an integrated approach. This interdisciplinary view on technical issues
enables the improved design of sophisticated systems necessary to meet the increas-
ing demands in technical applications. All topics related to such applications are
addressed by the prestigious international MOVIC conferences.

The International Conference on Motion and Vibration Control (MOVIC) is held
every two years. The goal is to stimulate interaction between researchers active in
the area of motion and vibration control and all other fields related to mechatronics.

Since the MOVIC conference was launched in Japan in 1992, conferences were
held in Japan in 1994 and 1996, Switzerland in 1998, Australia in 2000, Japan in
2002, the USA in 2004 and Korea in 2006. The conference has developed into a very
productive international event for the advancement of motion and vibration control
technology.

The ninth conference, MOVIC 2008, took place at the Technische Universität
München, Germany, from September 15–18, 2008, chaired by Professor Heinz
Ulbrich. The primary purposes of MOVIC 2008 are to promote scientific and tech-
nological exchange between researchers from around the world and to enhance the
understanding and the dissemination of all different aspects in this challenging and
fast growing field of research.

Motion and vibration control is a fundamental technology for the development of
advanced “intelligent” mechanical and structural systems related to many applica-
tions in industry such as vehicle systems, robots, spacecraft, and rotating machinery,
only to name a few. Often the implementation of high performance, low power con-
sumption design is only possible with the use of this technology. It is also vital to
the mitigation of natural hazards for large structures such as high-rise buildings and

ix
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tall bridges, and to the application of flexible structures such as space stations and
satellites.

Recent innovations in relevant hardware, sensors, actuators, and software have
facilitated new research in this area.

The main topics of the Symposium were:

• Mechatronics
• Application of Control Theory and Techniques
• Control Devices, Sensors and Actuators
• Rotor Dynamics and Control
• Smart Sensors and Sensor Network
• Smart Structures Space Structures and Control
• Vehicle Dynamics and Control
• Application of Neural Networks, Fuzzy Logic and Genetic Algorithms
• Biologically Inspired Mechanisms
• Control of Civil Infrastructures
• Control of Fluid/Structure Interaction
• Control of Micro and Nano Structures
• Control Technology for Tele-Operation Systems
• Damage Detection and Structural Health Monitoring
• Dynamics and Control of Multibody Systems
• Humanoid Robot Dynamics and Control
• ITS and Intelligent Control System
• Noise Control and 3D Sound Rendering
• Nonlinear Dynamical Systems
• Shock Protective Systems
• Structural Acoustics
• Structural Control against Wind and Earthquake Loading
• System Identification and Modeling
• Virtual Reality and Simulation

About 300 papers were submitted to this conference. All of these papers had to

process 170 papers were selected for oral presentation, and an additional 20 papers
were presented as posters. The 37 contributions published in the present publication
were rated as the best in the reviewing process.

Since many of the contributions are related to more than one of the topics stated
above, the papers in this book are arranged in alphabetical order of the family name
of the first author. The papers cover a wide range of the fascinating field of mecha-
tronics, and address both theoretical work and applications.

The editors wish to thank all the participants (about 300, from 30 different coun-
tries) especially for their valuable contributions to the fast growing field of mecha-
tronics. Special thanks are given to the reviewers, the invited lecturers and the ses-
sion chairmen for making the conference the great success it was.

x

pass a review process. For each of the papers three reviews were required. After this
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A special vote of thanks goes to the staff of the Institute of Applied Mechanics
of the TUM for their great help and excellent work to make the conference run
smoothly. Last but not least I especially thank my Co-Chairman of MOVIC 2008,
Dipl.-Ing. Lucas Ginzinger, for the excellent job he did in organizing MOVIC 2008.

Heinz Ulbrich
(Chairman MOVIC 2008)
Garching, September 2008
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Active and Passive Switching Vibration Control
with Lyapunov Function

Naoto Abe and Masayoshi Fujita

Abstract This paper presents experimental results for the switching vibration con-
trol method based on Lyapunov function of vibration system; switching between
tuned mass damper and active mass damper without any thresholds. The vibration
control device is a pendulum type mass damper which works as tuned and active
mass damper. Experimental results show that the proposed switching vibration con-
trol has better performance than full time tuned and active mass damper.

1 Introduction

Active mass damper shows a good performance in the vibration control to winds
and small earthquakes. However, it needs high power and an enough mobile range
of the additive mass. Therefore, it cannot be useful against big earthquakes. On
the contrary, tuned mass damper or dynamic vibration absorber, which is passive
vibration control method, is effective against a specific frequency vibration by big
earthquakes without any power. However precise parameters are required.

Active-Passive Composite Tuned Mass Damper (APTMD) has been proposed
based on the above-mentioned two methods of the vibration control [2, 3] and has
been implemented [1]. We proposed an effective switching methodology between
the passive and active mass damper on the same structure of APTMD [4, 5].
APTMD has two additive cascaded masses; one is a passive mass damper and the
other is an active mass damper attached on the passive mass damper. The vibration
control structure has the following problems; the mass ratio of the passive to active

Naoto Abe
Meiji University, Higashimita, Tama-ku Kawasaki, 214-8571, Japan;
E-mail: abe@messe.meiji.ac.jp

Masayoshi Fujita
Meiji University, Higashimita, Tama-ku Kawasaki, 214-8571, Japan

H. Ulbrich and L. Ginzinger (eds.), Motion and Vibration Control, 1–10.
© Springer Science+Business Media B.V. 2009
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Fig. 1 Construction of the vibration system.

could not be solved, and the dynamic vibration absorber did not work as the optimal
one since parameters were not equal to the design stage.

In this paper, a pendulum type mass damper is used, which is designed as the
tuned mass damper, i.e. dynamic vibration absorber. And the pendulum has actu-
ator, sensor and controller. Therefore the pendulum works as the dynamic vibration
absorber without control input or as the active mass damper with actuator power
by the proposed switching methodology. One mass is used by this structure as the
tuned mass damper and the active mass damper.

In Section 2, we show our experimental model. Two switching control methodo-
logies are introduced in Section 3. One is based of the energy of the vibration struc-
ture [4, 5], which had good property at the APTMD structure. The second one is
using Lyapunov function, in other words, using derivative of a quadratic form along
the dynamics. In Section 4, experimental results against two types of earthquakes
are shown.

2 Structure of Experiment

The experimental structure is shown in Figure 1. The pendulum type dynamic vi-
bration absorber is set under the simple vibration structure and the pendulum is
controlled by an actuator. The structure has two-degree-of-freedom. At this struc-
ture, the dynamic vibration absorber is equal to the active mass damper and it is easy
to set the stiffness coefficient by the pendulum length. The solution of the mass ratio
of passive and active mass damper problem, which occurred in APTMD structure,
is not necessary. The equations of the motion are derived by the structure model in
Figure 1:

{
m1(ẍ1 + z̈) + k1x1 + c1ẋ1 + k2(x1 − x2) + c2(ẋ1 − ẋ2) = −u

m2(ẍ2 + z̈) + k2(x2 − x1) + c2(ẋ2 − ẋ1) = u
(1)

2



Active and Passive Switching Vibration Control with Lyapunov Function

where displacement x2 is approximated by x2 = lθ and the stiffness k2 is derived
by the pendulum length l, the mass m2 and gravity acceleration g as k2 = m2g/l. u

is an input torque into the actuator and z̈ is earthquake acceleration.
The values of parameters are shown in Table 1. The mass ratio of the structure

and additional mass is about 4.9%. The stiffness and damping coefficients have been
identified by the sweep excitation and decay rate of the initial response, respectively.
The design of the dynamic vibration absorber has tuned the length of the arm with
obtained c2 to match the height of two resonance points of the gain diagram.

The gain diagram of the identified parameters is shown in Figure 2 without limit-
ation of the power and actuator’s stroke range. In the active control case, the optimal
regulator with state weighting matrix Q = diag[250 100 500 5] and input weight-
ing R = 1 is used as the control law. It is known that H∞ control has been effective
in the active control case, however, our purpose is switching control between passive
and active control. Therefore, the simple state feedback control is useful in a point
of view of the initial condition problem of the compensator.

If there is no limitation of the actuator, the active control will have the best per-
formance, however, against the big earthquake the actuator cannot work the same as
the gain diagram in Figure 2.

Table 1 Parameter setting.

Name Value

Mass [kg]
m1 = 5.1
m2 = 0.25

Stiffness [N/m]
k1 = 130.023
k2 = 5.4561

Damping coefficient [N·s/m]
c1 = 0.831
c2 = 0.0924

Height[mm] 832.5
Length of the pendulum [mm] l = 449.5
Stroke area of x2 [mm] ±23
Limit of input [V] ±0.4
Energy threshold δk and δm [J] 0.018
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Fig. 2 Gain diagram of No control,
TMD and AMD.

3 Switching Control

The dynamic vibration absorber and active control have respectively features. By
using switching control between dynamic vibration absorber and active control, it
is expected that it has good performance with each advantage of the tuned mass
damper (TMD) and the active mass damper (AMD). When the vibration of the struc-
ture is small, AMD is effective and it has good performance. On the contrary, when
the control input approaches to the limitation, or the device approaches to the stroke
limitation by the big vibration, TMD without control input is effective.
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In our experimental device, the pendulum type device moves as dynamic vibra-
tion absorber without control input. On the other side, the device moves as AMD by
control input. The device can be easily changed between passive and active control
by the existence of the control input.

We introduce two types of switching methodology; one is on the basis of the
kinetic and mechanical energy of the structure as the same as APTMD [4, 5] and
the other one is Lyapunov function method.

Switching control is not only methodology for the actuator restriction. When the
feedback gain is chosen smaller one, the full time active control is available against
the big earthquake, however, the performance against the small vibration decreases.
The gain scheduled control, which is effective for the limitation of the stroke range
of the moving mass, is also possible. In that case, it is hard to choose the scheduling
parameter to switch between TMD and AMD.

3.1 Switching by Energy [4, 5]

The switching on the basis of the kinetic energy of the vibration structure had good
performance in the APTMD case [4, 5]. When the kinetic or mechanical energy is
smaller than some threshold then AMD works and when the energy is greater than
the value then TMD works, because AMD gives up by the stroke restriction. This
switching methodology is considered about the dynamics of the vibration structure.

K.E.
1

2
xT

(
0 0
0 M

)
x > δk ⇒ TMD

≤ δk ⇒ AMD

M.E.
1

2
xT

(
K 0
0 M

)
x > δm ⇒ TMD

≤ δm ⇒ AMD

(2)

where δk and δm denote threshold of the kinetic energy and mechanical energy,
respectively, that are decided by simulation. x ∈ R4, M ∈ R2×2 and K ∈ R2×2

are defined as x := [x1 x2 ẋ1 ẋ2]T , M := diag[m1 m2] and K := diag[k1 k2],
respectively.

3.2 Switching by Lyapunov function

We choose the quadratic form of the positive definite solution of the Riccati equa-
tion, which is used as the active control law. The derivative of the Lyapunov function
V̇ is an index for the switching. In both cases the systems are stable and the deriv-
atives are calculated with state vector x and disturbance z̈. Comparing both values,
the small one is selected as the control. In this case there is no threshold derived by
trial and error like as δk in (2).

4



Active and Passive Switching Vibration Control with Lyapunov Function

The Lyapunov function of AMD is defined as VAMD = xT Px, where P > 0 is
the positive definite solution of the Riccati equation (AT P +PA−PBR−1BT P +
Q = 0), which is used in the state feedback control. PL > 0 is defined as the
solution of Lyapunov equation with system matrix of TMD and weighting matrix Q,
which is used to derive the state feedback control. Then the derivative of Lyapunov
function of TMD and AMD are described as follows:

V̇TMD = −xT Qx + z̈T WT PLx + xT PLWz̈ (3)

V̇AMD = −xT (Q + PBR−1BT PL + PLBR−1BT P)x + z̈T WT PLx + xT PLWz̈(4)

V̇AMD − V̇TMD = −xT (PBR−1BT PL + PLBR−1BT P)x (5)

where W denotes the matrix about disturbance in the state space description. Com-
paring with V̇TMD and V̇AMD, the smaller one is considered as faster convergence.

Lyapunov I
V̇AMD − V̇TMD > 0 ⇒ TMD
V̇AMD − V̇TMD ≤ 0 ⇒ AMD

(6)

It is known that energy is a candidate of Lyapunov function in mechanical sys-
tems, therefore, another switching methods are derived by choosing kinetic energy
PL(K.E.) and the mechanical energy PL(M.E.).

Lyapunov II PL(K.E.) := 1

2
xT

(
0 0
0 M

)
x (7)

Lyapunov III PL(M.E.) := 1

2
xT

(
K 0
0 M

)
x (8)

Note that the kinetic energy PL(K.E.) and mechanical energy PL(M.E.) are not
common Lyapunov function of TMD (open-loop system) and AMD (closed-loop
system). It is considered that more dissipated control method is chosen by compar-
ing the derivative of energy.

In the switching control, it is necessary to consider stability. If the common Lya-
punov function can be derived to TMD and AMD, stability of switching control can
be proven. It is possible to derive the common Lyapunov function xT Pcommonx > 0
numerically by using linear matrix inequality (LMI).

⎧⎨
⎩

AT Pcommon + PcommonA > 0
(A − BR−1BT P)T Pcommon + Pcommon(A − BR−1BT P) > 0

Pcommon > 0

where, A and (A−BR−1BT P) are system matrices in the state space description of
TMD (open-loop) and AMD (closed-loop), respectively. The existence of a common
Lyapunov function Pcommon has been confirmed by using LMI though details are
omitted.
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Fig. 3 (a) Earthquake (El Centro NS 15%) and displacements of (b) no control x1, (c) TMD x1
and x2, (d) AMD x1 and x2 in El Centro.

4 Experiments

4.1 Experiment of El Centro Earthquake

We used acceleration of seismic wave (El Centro earthquake NS 15%) shown in
Figure 3(a). As the features of this earthquake wave, it is extremely irregular and
changes remarkably in a short time with the wide distribution of frequency elements.
Time response of (b) displacement x1 in no control case, (c) displacement x1 and x2
in full time TMD case and (d) displacement x1 and x2 in full time AMD case are
shown in Figure 3, respectively.

When the response of (c) and (d) is compared, AMD does not function for 6–
32 sec for the stroke limitation of the pendulum and TMD is more effective than
AMD when the the maximum displacement is compared. The effect of AMD is
higher than TMD after 32 sec. To make the best use of the advantage of both meth-
ods, that TMD is effective in a big vibration, and AMD is effective in a small vibra-
tion. This shows the meaning that introduces switching control.

Figure 4 shows the time responses of the switching vibration control by (a) the
kinetic energy and (b) the mechanical energy with each status of the switching. The
threshold of the switching by energy is the same in both cases, δk = δm = 0.018 J.

It is shown that the effect of the switching vibration control by energy is higher
than that of the control with TMD (c) or AMD (d) in Figure 3. Comparing two wave-
forms with TMD and AMD, it is clear that each advantage is extracted. According

6
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Fig. 4 Displacement x1 and switching status of (a) switching by kinetic energy and (b) switching
by mechanical energy in El Centro.
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Fig. 5 Displacement x1 and switching status of switching by (a) Lyapunov I, (b) Lyapunov II
(PL(K.E.)) and (c) Lyapunov III (PL(M.E.)) in El Centro.

to the decrease rate of the the maximum displacement, the switching control by
mechanical energy is effective and the switching status is also gradual (see Table 2).

Figure 5 shows displacement x1 and status of switching by (a) Lyapunov I in
Eq. (6), (b) kinetic energy PL(K.E.) in Eq. (7) and (c) mechanical energy PL(M.E.) in
Eq. (8), respectively. When the switching methods of three kinds of by the Lyapunov
function are compared, the suppression effect in the case by mechanical energy as a
Lyapunov function is the highest from the decrease rate and the maximum accelera-
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Fig. 6 (a) Earthquake (Miyagi 15%) and displacements of (b) no control x1, (c) TMD x1 and x2,
(d) AMD x1 and x2 in Miyagi.

tion (see Table 2). The switching control by the Lyapunov function suppresses even
the acceleration than the switching control by energy though the switching is rapid.

4.2 Experiment of Miyagi Earthquake

The Miyagi Earthquake wave (15%) was used as the second earthquake shown in
(a) of Figure 6. The condition is the same as the case of the El Centro seismic wave
in Section 4.1.

AMD does not function for 14–27 sec and TMD is more effective than AMD in
the maximum displacement point of view. This is because of the frequency element
of the seismic wave. However, TMD is not good at the vibration suppression of a
small vibration after 30 sec and the vibration continues. The effect of the vibration
suppression of AMD is high in this time zone.

Figure 7 shows the time responses of the switching vibration control by (a) the
kinetic energy and (b) the mechanical energy with the status of the switching. The
threshold is the same in the case of El Centro earthquake. Because there is no time
that the energy generated in vibration system to exceed the threshold, the switching
is not done as for both kinetic energies and mechanical energy. The result is the
same as AMD.
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Fig. 7 Displacement x1 and switching status of (a) switching by kinetic energy and (b) switching
by mechanical energy in Miyagi.
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Fig. 8 Displacements x1 and switching status of switching by (a) Lyapunov I, (b) Lyapunov II
(PL(K.E.)) and (c) Lyapunov III (PL(M.E.)) in Miyagi.

Figure 8 shows time responses of displacement x1 switched by Lyapunov func-
tion. The results have been the same as the El Centro earthquake, switching control
by the mechanical energy as Lyapunov function is the best performance.

Table 2 is the numerical data of the experiment that uses the El Centro seismic
wave and Miyagi seismic wave as acceleration disturbance. The decrease rate is a
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Table 2 Experimental data of El Centro NS 15% and Miyagi 15%.

El Centro NS 15% Miyagi 15%

Control law x1 max ẍ1 max decrease x1 max ẍ1 max decrease
[mm] [m/s2] ratio[%] [mm] [m/s2] ratio[%]

No Control 38.4 0.0268 19.2 0.0070
TMD 30.4 0.0240 20.72 15.0 0.0075 21.78
AMD 32.4 0.0244 15.58 15.1 0.0073 21.12
K.E. 24.9 0.0194 35.13 15.1 0.0071 21.24
M.E. 22.2 0.0191 42.43 15.1 0.0070 21.26
Lyapunov I 21.3 0.0166 44.48 13.6 0.0065 29.32
Lyap II PL(K.E.) 20.7 0.0165 46.16 12.9 0.0064 32.62
Lyap III PL(M.E.) 19.9 0.0158 48.27 12.6 0.0063 34.14

ratio of the the maximum displacement and the the uncontrolled maximum displace-
ment.

5 Conclusion

Switching control methods between the dynamic vibration absorber (TMD) and the
active mass damper (AMD) have been considered. As the experimental results, the
suppression by switching control has been more effective than TMD and AMD. The
switching method by energy is intuitive and the status of switching was also gradual.
The threshold for the switching was chosen by the trial and error of simulations.
The dissipativeness of the switching method by Lyapunov function corresponding
to the system dynamics was effective though the switching was rapid. When the
mechanical energy is chosen to be a Lyapunov function, it is not necessary to look
for the threshold by trial and error.
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Performance Assessment of a Multi-Frequency
Controller Applied to a Flexible Rotor Magnetic
Bearing System – Contact Dynamics

Abdul-Hadi G. Abulrub, M. Necip Sahinkaya, Clifford R. Burrows and
Patrick S. Keogh

Abstract Vibrations associated with external disturbances and rotor faults, such as
cracks, usually exhibit themselves as harmonic components of the synchronous fre-
quency. The essence of the multi-frequency form of the synchronous recursive open
loop adaptive controller (ROLAC) is that it can minimise a number of vibration
components simultaneously, for example, synchronous rotor vibration at frequency
�, its harmonics and sub-harmonics within any defined range. This requires on-line
identification of the speed dependent partial receptance matrix by using a multi-
frequency test signal incorporating all of the pertinent harmonic components. The
question arises: What is the degradation in performance if the rotor comes into con-
tact with its retainer bearing? This may arise when a magnetically levitated rotor
is installed on a movable base frame, for example on board a ship or an aircraft.
A simulation study is described to examine this question. It comprises a flexible
rotor supported by two active magnetic bearings. Eight displacement transducers
are positioned along the rotor. A local PID controller is provided for each axis of
the magnetic bearings to ensure stability and alignment of the rotor at a central
position. An outer ROLAC loop is incorporated at each bearing to control the vibra-
tions at discrete frequencies of 0.5�, �, 2� and 3�. In addition, a multi-frequency
disturbance was applied to the rotor causing contact with its retainer bearing. The
performance of the multi-frequency ROLAC is assessed in preventing contact, or
recovering the rotor position if contact occurs.

1 Introduction

Magnetic bearings have many advantages as they provide contactless support, high
speed operation, and the capability to operate in hostile environments such as very
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high/low temperatures [1]. However, magnetic bearing systems have to incorporate
retainer or back-up bearings due to their limited force capacity. These bearings are
used to protect the rotor and stator lamination and to avoid damage to pole faces if
contact occurs. It is usual practice to run down a rotor if contact occurs, but in some
applications shut down is not an option [2].

There have been many studies in the literature on the interaction of a rotor with
a stator component. Johnson [3] studied synchronous rub dynamic behaviour. Sub-
synchronous response was examined by Childs [4], Muszynska [5] and Ehrich [6].
A detailed study was undertaken by Wu and Flowers [7] to illustrate different con-
tact modes i.e. rub and bouncing. Various methods for vibration and contact force
analysis are presented in the literature [8–11].

The conventional modelling of contact forces is to express them as a function of
the rotor penetration depth into the bearing inner surface at the contact point [12].
The contact stiffness coefficient may also be related to the rotor penetration depth
[13]. This approach suffers from the drawback of generating physically meaningless
negative contact forces [14], which are not differentiable at zero penetration. The in-
troduction of various nonlinearities into the contact force formulation is needed to
overcome these deficiencies [8]. High contact stiffness characteristics impose nu-
merical problems when integrating the equations of motion. An alternative tech-
nique based on a constrained Lagrangian formulation of the equation of motion
overcomes these disadvantages [10, 15, 16]. Contacts are considered as constraints
on the generalised coordinates, and are handled through Lagrange multipliers. This
efficient modelling technique is used to design an effective controller.

The classical PID controller for active magnetic bearings (AMBs) has been re-
ported in the literature [1]. Many industrial AMB systems operate with PID con-
trollers, but modern controller designs must be introduced where system failure
is not acceptable. There have been numerous control methods proposed for har-
monic disturbance compensation and vibration attenuation such as H∞ and H2
control [17, 18], fuzzy logic control [19] and open loop adaptive control [20, 21].
ROLAC [22] is utilised in this study.

2 System Description and Modelling

The flexible rotor/magnetic bearing rig consists of steel rotor of total mass 100 kg,
length 2 m and radius 0.025 m with four attached disks. Each disk is 10 kg and with
0.125 m radius. The rotor is levitated by two active magnetic bearings that provide
a radial dynamic force of 1.75 kN. Eight eddy current displacement sensors are in-
stalled at four nodal planes at ±45◦ to the vertical to provide on-line measurements
of the rotor vibration. A schematic view of the rotor/bearing system is shown in
Figure 1.

A finite element model of the rotor was used with 13 mass nodes. Each node
(mass station) has four degrees of freedoms. The rotor dynamic behaviour satisfies
the following equation of motion:
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Fig. 1 A view of the experimental rotor/bearing system used in the simulations (S1,2 .. S7,8 shows
the 8 sensor positions).

Mq̈ + (C + �G)q̇ + Kq = f + Bu (1)

where

q = [x, y, θ,φ]T (2)

M, K and C describe the flexible rotor mass, stiffness and damping characterist-
ics and include local proportional and derivative PD controller parameters at the
magnetic bearings locations. G is the gyroscopic matrix. f and u contain external
disturbance forces (including the forces due to unbalance distribution) and the con-
trol forces, respectively. B is the distribution matrix for the control forces. The x
and y vectors represent the two orthogonal linear displacements along X-Y axes for
all nodal planes, and the angular deflection vectors θ and φ denote rotations around
these axes.

3 Constrained Lagrangian Multiple Contact Model

The constrained Lagrangian modelling technique can be applied to any number of
possible contacts depending on the system configuration. The experimental system
shown in Figure 1 has two active magnetic bearings, each protected by a retainer
bearings with a radial clearance of cr = 0.75 mm. Four possible contact scenarios
are possible for this system; no contact, contact at the first retainer bearing (at node
k1) only, contact at the second retainer bearing (at node k2) only, and contact at both
retainer bearings (at nodes k1 and k2) [10]. A single model to cover all of these
cases can be established by assuming contacts at all possible nodes. Two holonomic
constraint equations, h1 and h2, which constrain the radial displacement of the rotor
at each bearing to the physical clearance cr can be written as follows:

h1 = c2
r − (x2

k1 + y2
k1) = 0; h2 = c2

r − (x2
k2 + y2

k2) = 0 (3)

The holonomic constraint equations can be incorporated into the rotor bearing
equations (1) through Lagrange multipliers λ1 and λ2 as follows:
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[
M JT

J 0

]
×

[
q̈
λ

]
=

[
f − (C + �G)q̇ − Kq

D(q, q̇)

]
(4)

where J is the Jacobian matrix of the constraint equations, i.e. it contains the partial
derivatives of both constraint equations with respect to generalised coordinates q,
and λ is the Lagrange multiplier vector containing λ1 and λ2. This increases the
number of unknowns, therefore two additional equations are introduced by double
differentiating Eq. (3). The last 2 lines on the left hand side of Eq. (4) become:

[
0 · · · −2xk1 · · · 0 · · · −2yk1 · · · 0 · · · 0 0
0 · · · 0 · · · −2xk2 · · · 0 · · · −2yk2 · · · 0 0

]
(5)

and the right hand side:

D =
[

2 ẋ2
k1 + 2 ẏ2

k1
2 ẋ2

k2 + 2 ẏ2
k2

]
(6)

In the case of noncontact at any of the retainer bearings, the corresponding value
in the λ vector should be set to zero. This can be done by replacing the corresponding
element in D to zero, and setting the corresponding row on the left hand side to unity
(i.e. 1 at the diagonal element, 0 elsewhere). For example, in the case of contact at
the first retainer bearing at node k1 only, then the last two lines should be set to:

[
0 · · · −2xk1 · · · 0 · · · −2yk1 · · · 0 · · · 0 0
0 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0 1

]
(7)

and

D =
[

2 ẋ2
k1 + 2 ẏ2

k1
0

]
(8)

The contact forces, Fc1 and Fc2 can be calculated by using the Lagrangian mul-
tipliers as follows:

Fc1 = 2crλ1 and Fc2 = 2crλ2 (9)

A change in the operational modes can be detected by using zero crossing of
the constraint equations h1 and h2 in Eq. (3) during noncontact operation, and the
Lagrangian multipliers during contact. When moving from noncontact to contact,
the initial conditions of the velocities at the point of contact must be adjusted to
satisfy the velocity constraints as discussed in [10]. To prevent potential drift of the
constraints associated with the numerical integration process, virtual stiffness and
damping coefficients are introduced in the D matrix in Eq. (6).

4 Multi-Frequency ROLAC

The open loop adaptive control (OLAC) strategy developed in [20] gives the op-
timum change of the control force in the frequency domain as follows:
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�U(jω) = −(RT R)−1RT Qm(jω) = H(jω) Qm(jω) (10)

where U(jω) and Qm(jω) are the frequency response of the control force vector
and rotor displacement measurements, respectively. R(jω) is the partial receptance
matrix. The notation ()T denotes the complex conjugate transpose. The recursive
version is based on the following integral action (with integral gain α) on the re-
cursive Fourier transform of the measurements [22]:

u(jω, t) = −α

∫
H(jω) · Qm(jω, t) · dt (11)

The recursive Fourier transform is calculated as follows:

Qm(jω, t) = I(jω, t) − I(jω, t − 2π/ω0) (12)

where ω0 is the fundamental frequency, and ω is any harmonic, i.e. ω = kω0. The
Fourier integral I(jω, t) is defined as:

I(jω, t) = ω0

π

∫ t

0
qm(τ )e−jωτ dτ (13)

In the case of a multi-frequency vibration controller, the control force is con-
structed by the summation of forces at the frequencies of interest. For example, to
include frequencies 0.5�, �, 2� and 3�, the fundamental frequency has to be set as
ω0 = 0.5�, and optimum force calculations should be carried out for ω = kω0 for
k = 1, 2, 4, 6 as given in Eq. (11), and then summed up to give the multi-frequency
control force:

u(t) = Re

{∑
k

U(j kω0, t)e
j kω0 t

}
, for k = 1, 2, 4, 6 (14)

The partial receptance matrix R can either be determined from the finite element
model of the system, or can be identified in situ as described in [21].

5 Results and Discussion

The system described in Section 2 may be simulated using the constrained Lag-
rangian technique. The initial steady state orbits are obtained by introducing a small
unbalance of 10 gm at the non-driven end disk. All simulations were run at a rota-
tional speed of � = 10 Hz. Local PID controllers are incorporated at both magnetic
bearings with a proportional gain to produce an effective bearing stiffness of 106

N/m. The derivative gain is set to provide an equivalent damping of 5000 Ns/m. The
retainer bearings are rolling element type and the coefficient of friction is taken as
µ = 0.15 between the rotor and inner surface of the retainer bearing.
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Fig. 2 A typical SPHS signal,
s∗, with ω0 = 5 Hz, N =
6, and Ai = 100 for i =
1, 2, 4, 6 (zero otherwise).

After a predefined period of 10 synchronous cycles, a sudden external disturb-
ance is introduced to initiate contact at the inner disk near MB1 along the X-
direction. The external force is a Schroeder Phased Harmonic Signal (SPHS) defined
as follows:

s(t) =
N∑

i=1

Ai cos (i ω0 t + ϕi) (15)

where Ai and ϕi are the amplitude and phase, respectively, at the ith harmonic. The
phase values are adjusted according to the following formulation in order to achieve
a low peak factor signal for the given frequency amplitudes [23]:

ϕi = ϕi−1 − 2π

i−1∑
m=1

pm for i − 1 · · ·N (16)

pm is the ratio of the power at frequency mω0 to the total power, i.e.
∑N

m=1 pm = 1.
A specific base SPHS signal, s∗(t), was used in this study as shown in Figure 2 with
ω0 = 0.5� = 5 Hz, N = 6, and Ai = 100 for i = 1, 2, 4, 6, and zero for other
values of i. This gives an amplitude of 300 in the time domain.

The first simulation was carried out to demonstrate the effectiveness of the syn-
chronous ROLAC (S-ROLAC) and multi-frequency ROLAC (MF-ROLAC) under
noncontact conditions. The integral constant for both S-ROLAC and MF-ROLAC
was set to α = 7. Both controllers retain the PID controller. The excitation force
was a SPHS multi-frequency signal, 2 s∗(t). Figure 3 shows the performance of the
three controllers in terms of vibration suppression. The following normalised vibra-
tion cost function is used for each frequency component:

CF (jω) =
√

Qm
T (jω) Qm(jω)

8c2
r

(17)

As expected, the introduction of S-ROLAC reduces the cost function from 0.27
to 0.05 at the synchronous frequency, but does not influence the non-synchronous
vibration components. When the MF-ROLAC is introduced, the cost function is
reduced significantly at all excitation frequencies.
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Fig. 3 Frequency compon-
ents of rotor vibrations when
subjected to a multi-frequency
excitation under three differ-
ent controllers.
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Fig. 4 Orbits at MB1 location as a result of a sudden multi-frequency excitation of 3.5 s∗.

A second set of simulations was carried out to demonstrate the ability of both RO-
LAC controllers to prevent contact. A sudden external multi-frequency disturbance,
3.5 s∗(t), was introduced. Figure 4 shows the orbits at MB1 under three different
controllers. Since the sudden excitation is along the x-direction only, the y-axis of
the orbits are magnified to show a more detailed view. Displacements are normal-
ised by the radial clearance of the retainer bearing cr , i.e. unity indicates contact.
Figure 4(a) shows that contact occurs at MB1 with the PID controller. The max-
imum contact force is predicted to be approximately 24 kN as shown in Figure 5.
It is a bouncing motion and the rotor is trapped in this contact mode. However, S-
ROLAC and MF-ROLAC react quickly and prevent contact with the retainer bearing
as shown in Figures 4(b) and 4(c), respectively. The normalised vibration amplitudes
settle to 0.8 and 0.37 for S-ROLAC and MF-ROLAC, respectively. Therefore, re-
covery was possible with both ROLAC controllers, but the vibration attenuation in
of MF-ROLAC was superior.

In the third set of simulations, the amplitude of the external excitation was in-
creased to 4.5 s∗. At this level of excitation, all three controllers were unable to
prevent contact at the MB1 location as shown in Figure 6. The steady state contact
force levels predicted by the constrained Lagrangian formulation were 31 kN with
the PID controller as shown in Figure 6(a), and 12 kN with S-ROLAC as shown in
Figure 6(b). However, with the MF-ROLAC controller, rotor position is recovered
after a single contact with a significantly lower contact force of 1.8 kN as seen in
Figure 6(c). It is clear from the corresponding time response in Figure 7 that the MF-
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Fig. 5 Contact force at MB1 under PID controller as a result of a sudden multi-frequency excitation
of 3.5 s∗ .

Fig. 6 Contact force at MB1 under three different controllers as a result of a sudden multi-
frequency excitation of 4.5 s∗ .

ROLAC not only recovered the rotor position, but also returned it to a low vibration
level.
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Fig. 7 x-displacements at MB1 location under MF-ROLAC as a result of a sudden multi-frequency
excitation of 4.5 s∗ .

6 Conclusions

This paper demonstrates the use of a constrained Lagrangian approach to simu-
late contact dynamics of a flexible rotor magnetic bearing system in order to as-
sess the performance of a multi-frequency controller MF-ROLAC. A sudden multi-
frequency external disturbance is introduced to initiate contact. Under a PID control-
ler, the rotor is trapped in a bouncing contact mode, whereas under a MF-ROLAC,
rotor contact with the auxiliary bearing is prevented. At higher external force levels,
even if contact occurs, the MF-ROLAC reduces the contact force significantly and
recovers the rotor position. Even the synchronous version of ROLAC exhibits per-
formance benefits in terms of lowering contact forces significantly compared with a
PID controller.
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Passivity-Based Trajectory Control of an
Overhead Crane by Interconnection and
Damping Assignment

Harald Aschemann

Abstract This paper presents a passivity-based control scheme for the two main
axes of a 5 t-overhead crane, which guarantees both tracking of desired trajectories
for the crane load and an active damping of crane load oscillations. The passivity-
based control is performed by interconnection and damping assignment according
to the IDA-PBC approach for underactuated systems. The tracking capabilities con-
cerning desired trajectories for the crane load can be significantly improved by in-
troducing feedforward control based on an inverse system model. Furthermore, a
reduced-order disturbance observer is utilised for the compensation of nonlinear
friction forces. In this paper, feedforward and feedback control as well as observer
based disturbance compensation are adapted to the varying system parameters rope
length as well as load mass by gain-scheduling techniques. Thereby, desired tra-
jectories for the crane load position in the 3-dimensional workspace can be tracked
independently with high accuracy. Experimental results of an implementation on a
5 t-crane show both excellent tracking performance with maximum tracking errors
of 2 cm and a high steady-state accuracy.

1 Introduction

In the last decade, numerous model-based trajectory control schemes for overhead
travelling cranes have been proposed by different authors. Besides non-linear con-
trol approaches exploiting differential flatness [2], gain-scheduling techniques have
proved efficient [1, 5]. Aiming at an increased handling frequency and a fully auto-
mated crane operation, the focus has to be on the motion of the crane load. Feed-
back control provides for tracking of desired trajectories for the crane in the 3-
dimensional workspace with small tracking errors. In practical implementations,
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Fig. 1 Structure of the overhead travelling crane (left), Mechanical model of the y-axis (right).

however, tracking accuracy as well as steady-state accuracy strongly depend on the
inclusion of appropriate control action to counteract disturbances, especially nonlin-
ear friction acting on the drives as the dominant disturbance. Furthermore, a robust
or adaptive control approach is necessary as regards varying system parameters like
rope length or load mass during crane operation [5]. By this, the capabilities of an
automated overhead crane can be extended in order to use it as a robot manipulator
for the handling of heavy loads in a large cartesian workspace.

In this paper, the first principle modelling of the two main translational crane
axes is addressed first. Aiming at a decentralised control structure, for each axis a
separate design model is derived in symbolic form. Then, a state space model is
established for the envisaged passivity-based control following the IDA-PBC ap-
proach for underactuated systems [3, 4, 6, 7]. The control design for the y-axis in-
volves the control of the corresponding crane load position in y-direction, whereas
the multi-variable control of the x-axis deals with both the crane load position in
x-direction and the position difference of the two bridge drives, corresponding to a
skew of the crane bridge. Feedforward control based on an inverse system model and
friction compensation using disturbance observer have proved efficient to further re-
duce tracking errors. Thereby, desired trajectories for the crane load position in the
xz-plane can be tracked independently with high accuracy. Experimental results of
the closed-loop system show both excellent tracking performance and steady-state
accuracy.

2 Modelling of the Crane y-Axis

As a decentralised control structure is envisaged, a separate design model of is used
for each crane axis. Here, the modelling shall be presented only for the y-axis.
The origin of the y-axis, yk = 0, is located in the middle of the bridge. With a
bridge length lbr = 8.7 m the available workspace in y-direction is characterised by
yk ∈ [−4.35 m , 4.35 m]. The crane axis is modelled as a multibody system with two
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rigid bodies as shown in Figure 1. The trolley is modelled by a mass mk , whereas the
crane load is represented by a lumped mass ml . The trolley is electrically driven by
a motor force Fk . As the main disturbance nonlinear friction and damping are taken
into account by the disturbance force Fr . This disturbance force is neglected at feed-
back control design but counteracted by both feedforward and observer-based dis-
turbance compensation. The rope suspension is considered as massless connection,
where rope deflections and small external damping are neglected. The two degrees
of freedom for the mechanical model of the y-axis are chosen as the trolley position
q1 = yk and as the rope angle q2 = ϕy . Then, the vector of generalized coordinates
becomes q = [q1, q2]T . The rope length ls is considered as a slowly varying system
parameter and taken into account at control design by gain-scheduling techniques.
By exploiting Langrange’s equations, the equations of motion of the crane axis can
be calculated and stated in the following matrix notation:

[
ml + mk ml ls cos (q2)

ml ls cos (q2) ml ls
2

]

︸ ︷︷ ︸
M

q̈ +
[−ml ls q̇2

2 sin (q2)

ml g ls sin (q2)

]
=

[
1

0

]
Fk

︸ ︷︷ ︸
Gu

(1)

3 Passivity-Based Control of Underactuated Systems

The open-loop underactuated system is governed by the Hamiltonian as the sum of
kinetic and potential energy:

H(q,p) = 1

2
pT M−1(q) p + V (q) (2)

At this, the generalised coordinates q ∈ R
n and the generalised momentum p ∈ R

n

are used. With the symmetric, positive definite mass matrix M(q) = MT (q) > 0
and the potential energy V (q), the total energy of the underactuated system can be
stated. As the friction as well as the damping forces are counteracted by an observer-
based disturbance compensation, the passivity-based control design is based on the
following state equations:

[
q̇

ṗ

]
=

[
0 I

−I 0

][ ∇qH

∇pH

]
+

[
0

G(q)

]
u (3)

The matrix G ∈ R
n×m determines how the control input u ∈ R

m acts on the system.
For a fully actuated system m = n holds, whereas for the crane as underactuated
system rank (G) = m < n is given. The passivity-based control involves the design
of a desired closed-loop Hamiltonian Hd

Hd(q,p) = 1

2
pT M−1

d (q)p + Vd(q) (4)
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The matrix Md = MT
d > 0 denotes the mass matrix according to the desired kinetic

energy and Vd the desired closed-loop potential energy. This energy function Vd

to be determined must have a global minimum in the desired equilibrium q∗. This
leads to min Vd(q) = Vd(q∗). The control design (IDA – PC) can be divided into
the following two steps:

1. Energy shifting by the control action uev(q , p)

2. Damping injection by the control action udi(q , p)

The resulting control law is given by the sum of both control parts, i.e. u = uev+udi .
For the calculation of the feedback control law, the following condition must hold
for the closed-loop:

[
q̇

ṗ

]
= (

Jd(q,p) − Rd(q,p)
) [ ∇qHd

∇pHd

]

with the terms

Jd = −JT
d =

[
0 M−1 Md

−Md M−1 Jz (q,p)

]
, Rd = RT

d =
[

0 0

0 GKd GT

]
> 0

(5)

The matrix J d describes the desired interconnection and Rd the damping matrix.
The interconnection matrix J d is extended by an additional interconnection part J z.
The damping matrix Rd is introduced to provide sufficient damping in the closed-
loop system. This is achieved be a negative feedback of the corresponding passive
output, in the given case GT ∇pHd . As a result, the damping control action can be
stated as

udi = −Kd GT ∇pHd, (6)

with the constant gain matrix Kd = KT
d . The energy shifting control part uev is

determined from
[

0 I

−I 0

][ ∇qH

∇pH

]
+

[
0

G

]
uev =

[
0 M−1Md

−Md M−1 J z(q,p)

][ ∇qHd

∇pHd

]
(7)

The first row is always true, whereas the second row leads to

Guev = ∇qH − Md M−1∇qHd + J z M−1
d p (8)

considering ∇pHd = M−1
d p. The energy shifting control uev in case of an under-

actuated system can be stated using the left pseudo-inverse G+ = (GT G)−1GT ,
which leads to

uev = (GT G)−1GT︸ ︷︷ ︸
=G+

(∇qH − Md M−1∇qHd + J z M−1
d p

)
(9)
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Introducing the orthogonal vektor G⊥ according to G⊥G = 0, the control law uev

must be subject to:

G⊥[∇qH − Md M−1∇qHd + J z M−1
d p

] != 0 (10)

This problem can be devided in two parts. A first equation that is independent on
the momentum vector p, and a second equation that depends on this momentum
vector p. This results in two partial differential equations that allow for calculating
the closed-loop mass matrix Md and the additional interconnection matrix J z.

G⊥[∇qV − Md M−1∇qVd

] = 0 (11)

G⊥[∇q(pT M−1p) − Md M−1∇q(pT M−1
d p) + 2 J z M−1

d p
] = 0 (12)

The control design is straight-forward when the mass matrix M is constant and
inpendent of q ist. In this case the closed-loop a constant mass matrix Md is used
and the additional interconnection matrix J z = 0 can be chosen as zero matrix.
Then the control law is obtained by evaluating (11) directly.

4 Passivity-Based Control Design for the y-Axis

For the passivity-based control design for the y-axis, the equations of motion are
employed with the vector of generalized coordinates q = [yk, ϕy]T . For the input

vector G, an orthogonal vector G⊥ has to be determined such that G⊥G = 0 holds.
In the given case the required vector is G⊥ = [0, 1]. At the control design, the
desired energy function in terms of the sum of kinetic and potential energy has to
be specified such that a global minimum is obtained in the desired equilibrium point
q∗ = [yk,d, 0]T . In order to simplify the controller design, the mass matrix M is
linearized for small rope angles q2: cos(q2) ≈ 1. The resulting mass matrix becomes

Mlin =
[

ml + mk ml ls

ml ls ml l
2
s

]
, (13)

which is independent of the generalized coordinates q1 and q2. Therefore, the sym-
metric mass matrix of the closed-loop Md can be chosen as

Md =
[

a1 a2

a2 a3

]
(14)

The elements a1,a2 und a3 of the mass matrix Md are, according to the linearized
mass matrix Mlin, independent of the vector of generalised coordinates q . To ob-
tain an asymptotically stable closed-loop system, the new mass matrix Md must be
chosen positive definite. As a result, the following conditions for the elements of Md
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can be stated: a1 > 0 and a1 a3 > a2
2. Now, the potential energy of the closed-loop

system Vd can be specified using (11) with M = Mlin.

(
a2

mk

− a3

ls mk

)
∂ Vd

∂q1
+

(
a3 (ml + mk)

ls
2 ml mk

− a2

ls mk

)
∂ Vd

∂q2
= ml g ls sin (q2) (15)

This partial differential equation for Vd(q1, q2) equation can be solved using com-
puter algebra packages like Maple. The following solution is obtained:

Vd = ml
2 g ls

3 mk cos (q2)

a2 ml ls − a3 (ml + mk)
+ �

with � = f (q2 + q1 γ ) and γ = a3 (mk + ml) − a2 ml ls

ls ml (a3 − a2 ls )

(16)

Here, � represents a freely selectable energy function. This energy function � must
chosen properly such that Vd has a global minimum in the desired equilibrium point
q∗. Therefore, the gradient vector as well as the Hessian of the potential energy
function Vd are considered. The gradient becomes

∇q Vd

∣∣∣
q=q∗ =

⎡
⎢⎢⎢⎣

∂�

∂q1

− m2
l g l3

s mk sin (q2)

a2 ml ls − a3 (ml + mk)
+ ∂�

∂q2

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
q=q∗

=

⎡
⎢⎢⎢⎢⎣

∂�

∂q1

∣∣∣∣
q=q∗

∂�

∂q2

∣∣∣∣
q=q∗

⎤
⎥⎥⎥⎥⎦

!= 0

(17)
For the desired equilibrium point q∗ the gradient of the freely selectable function
∇q� at q∗ must vanish. In addition, the Hessian is considered as sufficient condition
for a minimum

∇2
q Vd

∣∣∣
q=q∗ =

⎡
⎢⎢⎢⎢⎣

∂2 �

∂q2
1

∂2 �

∂q1 ∂q2

∂2 �

∂q1 ∂q2
− ml

2 g ls
3mk cos (q2)

a2 ml ls − a3 (ml + mk)
+ ∂2 �

∂q2
2

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
q=q∗

!
> 0

(18)
For simplicity a quadratic function � of the form

� = K

2
(q̃2 + q̃1 γ )2 (19)

has been chosen, where K denotes a proportional gain. The variable q̃1 = yk − yk,d

stands for the tracking error in terms of the difference between the trolley position yk

and the desired trolley position yk,d . Accordingly, the tracking error q̃2 = ϕy −ϕy,d

represents the deviation of the measured rope angle ϕy and the desired rope angle
ϕy,d . By evaluating the gradient vector, the following conditions are obtained:
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∇x Vd =
⎡
⎣ K (q̃2 + q̃1 γ )|q=q∗

K (q̃2 + q̃1)|q=q∗

⎤
⎦ =

[
0

0

]
(20)

Next, the Hessian is investigated. This leads to

∇2
xVd =

⎡
⎢⎣

K γ 2 K γ

K γ K − m2
l mk g l3

s cos (q2)

a2 ml ls − a3 (ml + mk)

⎤
⎥⎦

∣∣∣∣∣∣∣
x∗

(21)

The first north-western subdeterminant is positiv for K > 0 and γ > 0. Considering
|q2| < pi/2, the determinant of the Hessian is positive definite only for:

− Kγ 2ml
2 g ls

3mk

a2 ml ls − a3 (ml + mk)
> 0

The nominator is always positive; hence, the denominator must be negative in order
to meet the necessary condition. This leads to an additional condition for the choice
of the free design parameters a2 and a3: a3 (ml + mk) > a2 ml ls . The following
choice has been made: a3 = c lmax, a1 = c/lmax and a2 = m, with the two constants
c and m. These constants are selected such that c > m > 0 holds. The maximum
rope length is given by the value lmax. Hence, all the conditions above are fulfilled.
With the energy function Vd determined, the control law can be calculated. The
nonlinear control action uPBC = uev +udi consists of the sum of the energy shifting
term uev and the damping injection term udi . The energy shifting is achieved by the
control part uev according to

uev = (G T G)−1 G T
(∇q V − Md M−1

lin ∇q Vd

) = Kγ (q̃2 + γ q̃1)

(
a2

ls mk

− a1

mk

)

+
(

a1

ls mk

− a2 (ml + mk)

ml ls
2mk

) (
K (q̃2 + γ q̃1) − ml

2gls
3mk sin (q2)

a2 ml ls − a3 (ml + mk)

)

(22)

With the constant damping gain Kd > 0, the damping injection control can be
calculated from (6)

udi = −Kd

(
((ml + mk) q̇1 + ml ls q̇2) a3

a1 a3 − a2
2 −

(
ml ls q̇1 + ml ls

2q̇2
)
a2

a1 a3 − a2
2

)
(23)

5 Implementation of the Crane Control

In addition to the passivity-based control uPBC , some structural extension have
turned out to be useful at implementation to improve trajectory tracking (Figure 2).
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Fig. 2 Control implementation.

Hence, the stabilizing PBC is extended with feedforward control action based on an
inverse system model. This feedforward control involves the following parts:

1. inverse dynamics control action uID based on the equation of motion without
disturbance forces

2. feedforward compensation uFFC of nonlinear friction and damping forces as
main disturbances

3. a feedforward control action uFF corresponding to the feedback control part
uPBC

The latter part uFF is necessary to compensate for the feedback control in the ideal
case if the design model matches the real system exactly. Then, the first two feedfor-
ward parts uFFC +uFF would lead to a perfect trajectory tracking. In the given case
of an imperfect system model with remaining uncertainties and disturbances, how-
ever, additional feedback control is mandatory. A trajectory planning module yields
the desired values w for the crane load position yl,d as well as the corresponding
first three time derivatives. For the feedforward control, however, the corresponding
desired values for the trolley positions yk,d as well as the rope angle ϕy,d and their
time derivatives are required. As the system under consideration is differentially flat
with the crane load position as flat control output, all the desired state variables and
the control input can be calculated. In the implementation, the following linearized
relationships have been used in the state transformation ST:

yk,d = yl,d + ls

g
ÿl,d , ẏk,d = ẏl,d + ls

g

...
y l,d , ϕy,d = − ẍl,d

g
, ϕ̇y,d = −

...
x l,d

g
.

(24)
With the control structure described above, sufficiently small control errors could be
achieved. Nevertheless, the implemented model-based friction compensation can be
significantly improved by an additional reduced order disturbance observer DO as
well as an disturbance compensation DC as described in [1]. The complete control
structure is adapted to the varying system parameters load mass ml and rope length
ls by gain-scheduling.
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6 Control of the x-Axis

The designed passivity-based control for the y-axis shall be used for the x-axis con-
trol as well. The crane bridge, however, is equipped with two electric drives, which
have to be properly actuated to achieve both the desired motion in x-direction but
also a vanishing position difference of both bridge sides. Due to an excentric trol-
ley position on the bridge and different friction forces acting on the corresponding
drives, an active synchronization of both bridge drives have to be provided instead of
a simple division of the according passivity-based control action uPBC in the form
ub,l = ub,r = 0.5 · uPBC . The active synchronization is achieved by an underlying
PD-control loop of high bandwidth, i.e. mϕ = −Kp,GLR ϕxb − Kd,GLR ϕ̇xb. The
required force distribution can be derived from the following system of equations:

[
uPBC

mϕ

]
=

⎡
⎣ 1 1

− lbr

2

lbr

2

⎤
⎦

[
ub,r

ub,l

]
⇔

[
ub,r

ub,l

]
=

⎡
⎢⎢⎣

1

2
− 1

lbr

1

2

1

lbr

⎤
⎥⎥⎦

[
uPBC

mϕ

]

(25)
Thereby, the control design for the y-axis can be used for the bridge position control
as well. The x-position of the trolley depends on the y-position on the bridge and
on the two position coordinates of the bridge, i.e. xb,r und xb,l . This position can be
calculated as follows:

xk = xb,r + (
xb,l − xb,r

) (
1

2
+ yk

lbr

)
(26)

Consequently, by replacing the trolley mass mk with the bridge mass mb in (22)
and (23), the resulting drive force uPBC = uev + udi of the outer control loop in
x-direction can be calculated.

7 Experimental Results

Tracking performance as well as steady-state accuracy w.r.t. the crane load position
have been investigated by experiments with a 5 t-overhead travelling crane. The
resulting tracking performance as regards desired trajectories in the xyz-workspace
involving variations in rope length is shown in Figure 3.

8 Conclusions

This paper presents a gain-scheduled passivity-based control design for the transla-
tional axes of a 5 t-overhead travelling crane. The feedback control is extended by
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Fig. 3 Synchronised movement in the xyz-workspace with varying rope length.

feedforward control exploiting the differential flatness of the system. Furthermore,
a reduced-order disturbance observer takes into account the remaining model uncer-
tainties due to nonlinear friction acting on the trolley. The efficiency of the proposed
control is shown by experimental results involving tracking of desired trajectories
within the 3-dimensional workspace. Maximum tracking errors are approx. 2 cm.
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Control of Vibration-Driven Systems Moving in
Resistive Media

Nikolai N. Bolotnik, Felix L. Chernousko and Tatiana Yu. Figurina

Abstract The motion of a body controlled by movable internal masses in a resistive
environment along a horizontal straight line is considered. Optimal periodic modes
of motion are constructed for the internal masses to maximize the average speed
of the velocity-periodic motion of the body. The maximum displacement allowed
for the internal masses inside the body, as well as the relative velocities or accel-
erations of these masses are subjected to constraints. Three types of the resistance
laws – piece-wise linear friction, quadratic friction, and Coulomb’s dry friction –
are considered.

1 Introduction

A rigid body with internal masses that perform periodic motions can move progress-
ively in a resistive medium with nonzero average velocity. This phenomenon can be
used as a basis for the design of mobile systems able to move without special pro-
pelling devices (wheels, legs, caterpillars or screws) due to direct interaction of the
body with the environment. Such systems have a number of advantages over sys-
tems based on the conventional principles of motion. They are simple in design, do
not require gear trains to transmit motion from the motor to the propellers, and their
body can be made hermetic and smooth, without any protruding components. The
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said features make this principle of motion suitable for capsule-type microrobots
[10] designed for motion in a strongly restricted space (e.g., inside narrow tubes)
and in vulnerable media, for example, inside a human body for delivering a drug or
a diagnostic sensor to an affected organ. Such systems can be driven to a prescribed
position with high degree of accuracy, which enables them to be utilized in high-
precision positioning systems in scanning electron and tunnel microscopes, as well
as in micro- and nano-technological equipment [2, 12, 13].

Automatic transport systems moving due to periodic motion of internal masses
are sometimes referred to as vibration-driven systems or vibration-driven robots.
Some issues of the dynamics and parametric optimization of vibration-driven sys-
tems have been studied, e.g., in [1, 7, 11].

At the Institute for Problems in Mechanics of the Russian Academy of Sciences,
vibration-driven minirobots for motion inside small-diameter tubes were designed
[8].

Chernousko has initiated a systematic study in control and optimization of mo-
tion of systems with internal movable masses [3–5]. He solved a number of paramet-
ric optimization problems for two-body systems moving along a dry rough surface
or in a viscous medium. Both velocity-controlled and acceleration-controlled mo-
tions of the internal mass were considered, the structure of the control law being
prescribed. An optimal control problem for a two-mass system moving along a dry
rough plane, with the structure of the control law unknown in advance, was solved
in [6].

The present paper continues the studies in the optimization. Some simplifying re-
strictions that were imposed previously on the motion to be optimized are removed.
In addition, an optimal control problem is solved for the motion of a rigid body with
two internal masses along a dry rough plane. One of the masses moves horizontally
along a straight line parallel to the line of motion of the body, while the other mass
moves vertically. The vertically moving mass provides an additional possibility for
the control of friction between the body and the supporting plane due to the change
in the normal pressure force.

2 Two-Body System

In this section, we consider a two-body system consisting of the main body and
the internal body that can move relative to the main body along a straight line. The
motion of the system along a horizontal straight line in resistive media is studied for
various laws of friction.
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Fig. 1 Two-mass system in a resistive medium.

2.1 Statement of the Problem

Consider a system of two interacting rigid bodies, the main body of mass M and the
movable internal body of mass m (Figure 1). In what follows, we will refer to the
main body and the internal body as body M and mass m. Body M interacts with a
resistive environment. We will study periodic motions of mass m relative to body
M under which the entire system moves progressively in the environment.

Let x denote the coordinate measuring the displacement of body M relative to
the environment; ξ the coordinate measuring the displacement of mass m relative to
body M; v = ẋ the absolute velocity of body M; u = ξ̇ the relative velocity of mass
m; and w = u̇ the relative acceleration of mass m.

We will confine ourselves to simple periodic motions of mass m such that during
each period T , this mass first moves with a velocity u1 from the left-hand extreme
position ξ = 0 to the right-hand extreme position ξ = L and then returns to the ini-
tial position with a velocity u2. Positive parameter L characterizes the limits within
which mass m is allowed to move relative to body M . This law of motion can be
written as

u(t) =
{

u1, 0 ≤ t < τ,

−u2, τ ≤ t ≤ T ,
(1)

w(t) = u1δ(t) − (u1 + u2)δ(t − τ ) + u2δ(t − T ), (2)

where
τ = L/u1, T = L(u−1

1 + u−1
2 ), (3)

and δ(·) is Dirac’s delta function.
The motion of body M is governed by the equations

ẋ = v, v̇ = −µw − r(v),

µ = m/(M + m), r(v) = −R(v)/(M + m), vr(v) ≥ 0,
(4)

where R(v) represents the resistance force applied to body M by the environment.
We will seek for the optimal parameters u1 and u2 such that the corresponding

velocity-periodic motion of body M occurs with maximum average velocity. Thus
we arrive at the optimization problem.

Problem 1. For the system of Eqs. (1)–(4), subject to the boundary conditions

x(0) = 0, ẋ(0) = ẋ(T ), (5)

find the parameters u1 and u2 that satisfy the constraints
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0 ≤ ui ≤ U, i = 1, 2 (6)

and maximize the average velocity of mass M

V = x(T )/T . (7)

To solve this problem use the following algorithm:

1. Substitute w(t) of Eq. (2) into Eq. (4).
2. Solve the resulting equation subject to the initial conditions x(0) = 0, ẋ(0) = v0

to obtain x = x(t; u1, u2, v0, L) .
3. Find the initial velocity v0 = v∗

0 using the periodicity condition

ẋ(0; u1, u2, v0, L) = ẋ(T ; u1, u2, v0, L) (8)

and the definition of Eq. (3) for T .
4. Substitute x(T ; u1, u2, v

∗
0 , L) into Eq. (7) to obtain

V = V (u1, u2, L). (9)

5. Maximize the function V = V (u1, u2, L) with respect to u1 and u2, subject to
the constraints of Eq. (6).

In the subsequent subsections we will solve Problem 1 for three types of the res-
istance law r(v). Piece-wise linear resistance, quadratic resistance, and Coulomb’s
friction will be considered.

2.2 Piece-Wise Linear Resistance

The piecewise-linear resistance (anisotropic linear friction) is characterized by the
law

r(v) =
{

k+v, v ≥ 0,

k−v, v < 0,
(10)

where k− and k+ are positive coefficients. The particular case k+ = k− corresponds
to linear viscous friction.

For k+ = k− = k, velocity-periodic motion of body M with nonzero average
velocity is impossible for any periodic motion of mass m. To prove this, integrate
Eq. (4) for v with respect to t from 0 to T to obtain

v(T ) − v(0) = −µ[u(T ) − u(0)] − k[x(T ) − x(0)]. (11)

This relation implies that x(0) = x(T ) if the functions v(t) and u(t) are T -periodic;
hence, V = 0.

For arbitrary k− and k+, the function V of Eq. (9) is given by
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V = µ(1 − e1)(1 − e2)(k− − k+)u1u2

(1 − e1e2)Lk−k+
,

e1 = exp(−k−Lu−1
1 ), e2 = exp(−k+Lu−1

2 ).

(12)

From this expression it follows that V > 0 (V < 0) for k− > k+ (k− < k+). This
means that body M moves on the average in the direction of the lower resistance.

The maximum magnitude of the function V of Eq. (12) occurs for u1 = u2 = U .
In this case, τ = L/U = T/2, in accordance with Eq. (3). Therefore, in the optimal
mode, the internal mass moves in both directions with the maximal speed U , each
stroke taking a half-period.

2.3 Quadratic Resistance

The quadratic resistance is characterized by

r(v) = κ |v|v, (13)

where κ is a positive coefficient.
For this case, Eq. (8) can be reduced to the quadratic equation

(u2 − u1 + κLY)Z2 + (κLY 2 − 2u1Y )Z − u1Y
2 = 0;

Z = v0 − µu1, Y = µ(u1 + u2).
(14)

The initial velocity v∗
0 is expressed by v∗

0 = Z∗ + µu1, where Z∗ is the solution
of the quadratic equation. To simplify the calculations, we assume v∗

0 = 0. For this
assumption, the parameters u1 and u2 become related by

u2 = (1 − µκL)(1 + µκL)−1u1. (15)

We assume that µκL < 1. If this condition is violated, the mode of motion with
v∗

0 = 0 does not occur.
The calculation of the average velocity of body M in accordance with Eq. (9)

and maximization of this velocity lead to the expressions

u1 = U, u2 = (1 − µκL)(1 + µκL)−1U,

Vmax = −U(1 − µκL)

2κL
ln

(
1 − µ2κ2L2

)
.

(16)

The quantity Vmax is positive and, hence, for the quadratic resistance law, the
progressive velocity-periodic motion of the system is possible even in the isotropic
case, in contrast to the linear resistance.
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2.4 Coulomb’s Friction

For Coulomb’s dry friction, the function r(v) of Eq. (4) is specified by

r(v) =
⎧⎨
⎩

f+g, if v > 0 or v = 0, µw < −f+g,

−f−g, if v < 0 or v = 0, µw > f−g,

−µw, if v = 0, −f+g ≤ µw ≤ f−g,

(17)

where f+ and f− are the coefficients of friction that resists forward and backward
motion of mass M , respectively; g is the acceleration due to gravity.

Introduce the dimensionless variables

xi = ui/u0, i = 1, 2; u0 = √
Lf−g/µ,

x0 = v0/(µu0), F = V/(µu0), c = f+/f−, X = U/u0.
(18)

In terms of these variables, the solution of Problem 1 is reduced to the determin-
ation of the optimal values of x0, x1, x2, and F for given X and c. The final result is
given by the following expressions:

If c < 1 and X < (c/2)1/2, then x1 = x2 = X, x0 = −X, F = (1 − c)X3/c.

If c < 1 and X ≥ (c/2)1/2, then x1 = x2 = X, x0 = −X, F = X − c(1 + c)(4X)−1.

If c = 1 and X ≤ (2)−1/2, then |x1| ≤ X, |x2| ≤ X, x0 = −x2, F = 0.

If c > 1 and X ≤ (2)−1/2c, then x1 = 0, x2 = 0, x0 = 0, F = 0.

If c ≥ 1 and X > (2)−1/2c, then x1 = X/c, x2 = X, x0 = (X2 − c2)(cX)−1,

F = (2X2 − c2)(2cX)−1.

From these expressions it follows that positive average velocity V > 0 of the two-
body system can be achieved for any X if c < 1, i.e., if the coefficient of friction
resisting the forward motion (in the positive direction of the x-axis) is less than the
coefficient of friction resisting the backward motion. For c ≥ 1, positive average
velocity may occur only if X > c/

√
2, i.e., the maximum velocity allowed for the

relative motion of mass m should be sufficiently large.

3 Three-Body System

In this section, an optimal control problem is solved for a three-body system con-
sisting of the main body and two internal masses, one of which moves horizontally
along the line parallel to the line of motion of the main body, while the other mass
moves vertically. The main body moves along a dry rough plane. The motion of the
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internal mass along the vertical is used to control the force of friction between the
main body and the supporting plane due to the change in the normal pressure force.

3.1 Coulomb’s Friction

Consider a mechanical system distinguished from the system studied in Section 2 by
an additional internal mass m2 that can move vertically. Let ξ1 denote the displace-
ment of mass m1 along the horizontal and ξ2 the displacement of mass m2 along
the vertical. Let body M move along a rough horizontal plane. Coulomb’s friction
is assumed to act between the body and the plane, the coefficient of friction being
independent of the direction of the motion.

Proceed to the dimensionless variables, using M + m1 + m2, l, and
√

l/g as
the units of mass, length, and time, respectively. The unit of length l can be chosen
arbitrarily, since the model of the system does not involve a characteristic length. In
the normalized variables, the motion of body M is governed by the equation

ẋ = v, v̇ = −µ1w1 − r(v),

r(v) =
⎧⎨
⎩

fNsgn(v), if v �= 0,

−µ1w1, if v = 0, |µ1w1| ≤ f N,

−fNsgn(w1), if v = 0, |µ1w1| > f N,

N = 1 + µ2w2,
(19)

where
µi = mi/(M + m1 + m2), ξ̈i = wi, i = 1, 2. (20)

The quantity N in Eq. (19) represents the normal pressure force exerted on body M

by the supporting plane.
We will construct T -periodic motions of masses m1 and m2 that satisfy the con-

straints
|w1| ≤ W1, −W−

2 ≤ w2 ≤ W2;
W−

2 = min (1/µ2, W2) , µ1W1 > f (1 − µ2W
−
2 )

(21)

and maximize the average speed of the corresponding velocity-periodic motion of
body M . The period T is fixed.

In Eq. (21), positive quantities W1 and W2 constrain the magnitudes of the relat-
ive accelerations of the internal masses due to limited power of the actuators. The
lower bound W−

2 for the relative acceleration of mass m2 is due to the requirement
that body M have permanent contact with the supporting plane. For µ2w2 < −1,
the normal pressure force N would have been negative, which is impossible for the
unilateral contact. The condition µ1W1 > f (1 − µ2W

−
2 ) is necessary for body M

to be able to be moved from a state of rest.
Thus we arrive at the optimal control problem:

Problem 2. For the system of Eqs. (19) and (20) considered in the time inter-
val [0, T ], find the control functions w1(t) and w2(t) that satisfy the constraints
of Eq. (21), generate the motion subject to the boundary conditions
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x(0) = 0, v(0) = 0, v(T ) = 0, ξi (0) = ξi(T ) = 0, ξ̇i (0) = ξ̇i (T ) (22)

and maximize the average velocity V = x(T )/T of body M .

3.2 Solution of the Problem

tions

w1(t) =
⎧⎨
⎩

−W1, t ∈ [0, τ1),

W1, t ∈ [τ1, δ∗),
w̄1, t ∈ [δ∗, T ],

w2(t) =
⎧⎨
⎩

−W−
2 , t ∈ [0, τ2),

W2, t ∈ [τ2, δ∗),
w̄2, t ∈ [δ∗, T ],

(23)

and that body M moves forward (v > 0) for t ∈ (0, δ∗) and remains in a state of
rest for t ∈ [δ∗, T ]. In the optimal mode, body M never moves backward.

Using these observations, Eq. (19), and the boundary conditions v(0) = v(δ∗) =
0, we express the parameter τ1 in terms of τ2 and δ∗:

τ1 = δ∗[U1 + f (1 + U2)] − 2f Ũ2τ2

2U1
;

Ui = µ1Wi, U−
2 = µ2W

−
2 , Ũ2 = (U−

2 + U2)/2.

(24)

Using the definitions ξ̈i = wi of Eq. (20), the conditions ξ̇i (0) = ξ̇i (T ) of
Eq. (22), expressions (23) for the control functions, and relations (24), we calcu-
late the constant quantities w̄1 and w̄2:

w̄1 = f [δ∗(1 + U2) − 2Ũ2τ2]
µ1(T − δ∗)

, w̄2 = 2Ũ2τ2 − U2δ∗
µ2(T − δ∗)

. (25)

The average velocity of body M is expressed by

V (T ) = U2
1 − k2(1 + U2)

2

4U1T
δ∗2 + f Ũ2

U1 + f (1 + U2)

U1T
τ2δ∗ − f Ũ2

U1 + f Ũ2

U1T
τ 2

2 .

(26)
The optimal values of τ2 and δ∗ are determined by the maximization of the func-

tion V with respect to these parameters under the constraints

δ∗[U1 + f (1 + U2)] ≤ U1T + 2f Ũ2τ2, 2Ũ2δ∗ − U−
2 T ≤ 2Ũ2τ2 ≤ U2T ,

(1 + U2)δ∗ ≤ T

2
+ 2Ũ2τ2, max

{
0,

δ∗[f (1 + U2) − U1]
2f Ũ2

}
≤ τ2 ≤ δ∗ ≤ T . (27)

These inequalities are derived from the conditions 0 ≤ τi ≤ δ ≤ T , expressions
(24) and (25) , and the constraints
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|µ1w̄1| ≤ U1, U−
2 ≤ µ2w̄2 ≤ U2, (28)

|µ1w̄1| ≤ f (1 + µ2w̄2), (29)

The constraints of Eq. (28) express those of Eq. (21) for the controls of Eq. (23)
in the time interval [δ∗, T ]. Inequality (29) follows from the condition that body M

remains in a state of rest for t ∈ [δ∗, T ] and Coulomb’s friction law r(v) of Eq. (19).
For the optimal controls wi(t) constructed in accordance with the algorithm

described, the functions ξi(t), characterizing the optimal motions of the internal
masses, are defined by

ξi(t) = t

T

T∫
0

ηwi(η)dη +
t∫

0

(t − η)wi(η)dη. (30)

3.3 Limiting Cases

To assess the effect of introducing the internal mass moving vertically on the max-
imum average speed of the system, solve Problem 2 for two limiting cases, W2 = ∞
and W2 = 0. In the former case, the function w2(t), which controls mass m2, is un-
bounded from above, while in the latter case, w2(t) ≡ 0 and, hence, the motion of
the internal mass along the vertical does not occur.

For W2 = ∞, the optimal controls for t ∈ [0, T ] are given by

w1(t) = W1sgn(t − T/2), w2(t) = µ−1
2 [T δ(t − T ) − 1], (31)

where δ(·) is Dirac’s delta function. For this control, body M speeds up from v = 0
to v = µ1W1T/2 with acceleration µ1W1 in the time interval [0, T /2) and slows
down to v = 0 with acceleration −µ1W1 in the interval (T /2, T ]. The average
velocity over the period T is V = µ1W1T/4. Mass m2 moves upward for t ∈
(0, T /2) and downward for t ∈ (T /2, T ), with the velocity ξ̇2 uniformly decreasing
at a rate of µ−1

2 from µ−1
2 T/2 to −µ−1

2 T/2 in the interval (0, T ). At the instant T ,
mass m2 undergoes an elastic impact to restore the initial velocity. It is important
that the motion of mass m2 with acceleration −µ−1

2 provides zero normal pressure
force and, hence, zero friction force between body M and the plane.

For W2 = 0, the average velocity is determined by [6]

V = µ1W1T

16

(
1 − f 2

µ2
1W

2
1

)
(32)

A comparison with the case W2 = ∞ indicates that the activation of mass m2
enables at least 4-fold increase in the maximum average velocity of body M .
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4 Conclusion

Optimal velocity-periodic motions of mobile systems driven by periodic motions
of the internal masses were calculated for various laws of resistance of the envir-
onment. It was shown that for any constraints on the displacements of the internal
masses inside the main body, the maximum average speed of the body can be made
arbitrarily high, provided that the velocities or accelerations allowed for the internal
masses are large enough. For systems moving along a horizontal dry rough plane,
the introduction of an internal mass moving vertically can lead to a significant in-
crease in the average velocity due to the control of the normal pressure force.

Acknowledgements This research was partly financed by the Russian Foundation for Basic Re-
search (07-01-12015 and 08-08-00438).
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Applying Iterative Learning Control for
Accuracy Improvement of an
Electromagnetically Actuated Punch

M. Dagen, H. Abdellatif and B. Heimann

Abstract This paper presents an application of Iterative Learning Control (ILC)
for optimizing the cutting process of an electromagnetically actuated punch (EAP).
In contrast to mechanical presses, with the EAP it is possible to change the ram’s
kinematics freely and to optimize it online. During the contact of the ram with the
work piece, high transient forces are excited and deteriorate the positioning accur-
acy of the ram. By using a Sliding-Mode-Control it is not possible to compensate
this. Thanks to the cyclic nature of the cutting process, we apply ILC in order to
increase the accuracy of the ram. In this work we present a comparison study of two
linear approaches. The first one consists in a filtered and phase lead compensated
integral learning. In contrast, the second approach exploits explicit knowledge of
the system’s experimentally identified transfer function and performs a contraction
mapping during the learning process. The experimental results show that both al-
gorithms are capable to reduce the positioning error and to increase the accuracy of
the system, even at high dynamics.

1 Introduction

Many industrial processes are characterized by a cyclic mode of operation. Thus,
based on an identical initial condition the process performs the same task in a finite
time span over lots of repetitions. The challenge is to follow a desired trajectory
as good as possible. Conventional non-learning controls use the error in the time
domain only and therefore cannot compensate tracking errors excited by determin-
istic disturbances or unconsidered dynamics of the system. Hence, a non-learning
controller yields the same tracking error at each iteration.
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© Springer Science+Business Media B.V. 2009
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In contrast, Iterative Learning Control (ILC) uses information, i.e. the tracking
error, of the previous pass. Hence, ILC is a powerful engineering method to im-
prove the tracking error performance of iterative processes, e.g. batch processes,
robot movements or cutting processes. A good overview concerning ILC can be
found in [2, 3, 6]. An attractive aspect of the ILC is its simple implementation and
practicability even for non-linear systems. In this paper we applied two linear ILC
algorithms to an electromagnetically actuated punch (EAP).

The electromagnetically actuated punch presented in [4] uses a new drive-
concept for cutting purposes. The reluctance forces of two electromagnets actuate
an armature connected with the cutting tool’s ram. In comparison to conventional
presses, the advantage of the approach is the lack of any gearboxes in combination
with marginal friction. Additionally, due to the direct drive-concept and small iner-
tia, this concept leads to great dynamics behavior and a very compact architecture.
Furthermore this approach provides the independency of the ram’s velocity and its
actual position. This allows the implementation of trajectories optimized for the ac-
tual cutting process. The EAP provides cutting forces up to 10 kN and strokes up to
4 mm. Hence, the EAP is qualified in the field of cutting micro-components, where
high precision and high output levels are required.

2 Motivation and System Description

The challenge of our research is to develop and qualify a new drive-concept for
presses to cut micro-components with high precision and high stroke rates. There-
fore, a prototype was designed to experimentally verify control strategies during the
cutting process. Figure 1 illustrates the prototype of the EAP and its 2D-scheme.
The EAP consists of two high power electromagnets arranged in opposite direction.
The armature is mounted with four linear bearings. The springs are used to linearize
the characteristic force diagram of the electromagnets. To transmit the movement of
the armature, the cutting tool positioned at the top of the EAP is connected by rods

Fig. 1 Left: Prototype of the EAP, right: 2D-scheme.
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with the armature. Currently, the EAP is controlled by a sliding-mode controller.
The control input is the error of the armature’s position between the desired and the
actual position measured by a commercial eddy current sensor, the control output
is the desired force of the electromagnets. At the absence of high disturbances, the
controller is robust and provides good dynamics behavior. But at the presence of
high disturbances caused by the cutting process, the controller is not able to follow
the desired trajectory. Figure 2 illustrates this effect. In the first phase of the cutting
process the die hit the sheet causing a decrease of the ram’s velocity. The cutting
force increases steadily and leads to an increasing tracking error. Then, after the
die’s break-trough, the cutting force drops abruptly. At this time, the control strategy
is not able to subduct the system’s energy fast enough. This results in an overshoot
after the cutting process. Additionally, the abrupt relaxation of the system excites
oscillations at the end. The deeper penetration of the die into the material leads to
a shorter tool life. The high tracking error in the cutting phase and subsequent os-
cillations decrease the maximum stroke rate substantially. At present, increasing the
dynamics of the controller and therefore reducing the described effects is not pos-
sible due to high measurement noise caused by the electromagnetic fields. Hence,
we propose ILC to decrease the mentioned effects and therefore, to increase the
quality of the produced elements and the tool life.

3 Principles of Iterative Learning Control

As mentioned in the Introduction, two ILC-Methods are compared experiment-
ally. Approach 1 is based on a filtered and phase-lead compensated integral learn-
ing [1, 5, 9]. This algorithm can be called heuristic, since it is not based on an ex-
plicit plant model [8]. Its implementation is practical and its design is intuitive and
exploits experimentally collected information. In contrast, approach 2 is designed
based on explicit knowledge on the system and its transfer dynamics [2]. Hereby the
contraction mapping is chosen. It is interesting to compare both algorithms, in order
to find out, if an explicit model of the plant has benefits as suggested in [8]. Both
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Fig. 2 Left: measured position of the ram at a desired cutting speed of 100 mm/s, right: disturbance
force excited by the cutting process.
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algorithms will be compared for learning trajectories with the presence of high dis-
turbances due to the cutting process in terms of tracking performance, convergence,
stability and also in terms of practicability issues.

A. Formulation of the Linear ILC Problem

A system that is supposed to achieve the same repetitive task over and over is con-
sidered. A general SISO or MIMO linear discrete-time system can be described by
the state-space equations:

x(k + 1) = A(k)x(k) + B(k)u(k) + w1(k),

y(k) = C(k)x(k) + w2(k),
(1)

with u being the input and y being the output. It is assumed that w1 represents some
deterministic disturbance that appears every repetition and that w2 is the measure-
ment disturbance. The system is supposed to be under feedback control, such that
1 describes the closed-loop dynamics. The aim of ILC is to change the command
input every trial j using the learning control law:

uj+1(k) = f L(uj (k), yj (k), yd (k)) (2)

such that the desired trajectory yd is tracked:

lim
j �→∞ ‖ yj (k) − yd(k) ‖= 0. (3)

Iterativ Learning Control is called linear, when the learning law f L makes an it-
erative change in the input that is a linear combination of the error ej = yj − yd

measured in the previous repetition and the last input sequence uj :

uj+1 = T uj + Lej . (4)

To achieve a zero-error-convergence, T has to be the identity matrix [7], such that
the learning law becomes:

uj+1 = uj + Lej . (5)

The matrix of learning gains L has to be designed in a further step to achieve desired
convergence properties or stability. It is simple to derive the iterative error dynamics
as

ej+1 = (I − PL)ej , (6)

where I is the identity matrix and

44



Applying Iterative Learning Control for Accuracy Improvement

P =

⎛
⎜⎜⎜⎝

CB 0 · · · 0
CAB CB · · · 0

...
...

. . .

CAN−1B CAN−2B CB

,

⎞
⎟⎟⎟⎠ (7)

with N being the length of the desired trajectory or input.

B. Brief Review on Stability and Convergence Issues

Most important design criteria of ILC are stability conditions and convergence be-
havior of the controller, presented by the entries of the matrix L. Given the error dy-
namics in the iteration domain (6), it is obvious that asymptotic stability is achieved,
when all magnitudes of the eigenvalues λi of I − PL are less than 1. This can be
expressed by means of the spectral radius as:

ρ(I − PL) = max
i

‖ λi ‖< 1. (8)

More relevant from the point of view of application and practice is the monotonic
decay of error ej over the trials. Longman proposed a popular and practical cri-
teria for monotonic convergence of tracking errors [5, 6]. It is based on a frequency
domain analysis. By assuming that the matrix L is lower triangular, so that it is
generated by a causal difference equation, (6) can be transformed to

Ej+1(z) = [I − zφ(z)G(z)]Ej (z), (9)

where G(z) = C(zI − A)−1B and φ(z) being the transfer function corresponding
to L [6]. The substitution of z = eiωT yields the frequency transfer function. The
condition

‖1 − e
jωT
j �(e

jωT
j )G(e

jωT
j )‖ < 1 ∀ ω = 0 . . . ωNyquist (10)

assures monotonous decay of the amplitude of all frequencies up to the Nyquist
frequency [1, 5, 6, 9].

4 Design of the Implemented ILC-Algorithms

In the following, according to the EAP a SISO-System is assumed. The simplest
design of ILC for SISO-Systems is achieved by selecting the learning matrix to a
constant scalar: L = �1. It is well known and proven, that such approach is charac-
terized by bad learning transients at high frequencies [2,5,6,8]. Even if mathematical
convergence is guaranteed, the control error increases remarkably before decreasing
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to zero [5]. To cope with this problem, a set of two approaches is presented for ILC
in the following. The corresponding design and adjustment for the EAP is shown.

A. Approach 1: Zero-Phase Filtered ILC with Phase-Lead Compensation

The use of a low-pass zero-phase non-causal filter f to cutoff the high frequen-
cies improves the performance of the ILC. An additional phase-lead compensation
increases the learning bandwidth of the algorithm. The learning control law (5) be-
comes

uj+1(k) = uj (k) + �1f (ej (k + 1 + l)), (11)

where l characterizes the linear phase-lead compensation. Obviously, zero-error
convergence is not possible any more, even in the noise-free case due to the in-
formation filtering. This approach needs the adjustment of three parameters: the
learning gain �1, the cutoff frequency of the low-pass filter ωc and the phase-lead l.
This adjustment can be achieved experimentally [1, 5, 6] by the investigation of the
closed-loop system dynamics in the frequency domain. It is necessary to mention,
that this approach does not need any explicit knowledge or parametric modeling of
the system’s dynamics. Often, it is referred to as heuristic ILC [8]. In our case a 10th
order butterworth filter is used. We adjust the learning gain, the learning bandwidth
and the phaselead according to the experimentally investigated frequency response
of the closed-loop feedback control system. In analogy to Section 3, the error evol-
ution according to the control law (11) in the frequency domain can be derived:

Ej+1(z) = [1 − z1+l�1F(z)G(z)]Ej(z), (12)

which modifies the condition of monotonic error decay (10) to

‖1 − �1e
j (1+l)ωT F (ejωT )G(ejωT )‖ < 1, (13)

where F is the filter-transfer function. For the optimization of the required paramet-
ers, we use the measured frequency response Ĝ(ejωT ) being an estimate or meas-
urement of the real frequency response G. The tuning of ωc and �1 is achieved by
examining Nyquist-Plots of G� = �1e

j (1+l)ωT Ĝ with arbitrarily chosen amplific-
ation �1 and Ĝ . By assuming at first that Ĝ ≈ G, it is obvious that the monotonic
error decay condition (13) is valid for all frequencies for which the plot remains
within the unit-circle (centered at +1). The maximal cutoff frequency ωmax can
be chosen, such that (13) is fulfilled for all ω < ωmax. In other words, the max-
imal possible cutoff frequency corresponds to the one, when the Nyquist plot leaves
the first time the unit circle. The described approach based on conditions (10) and
(13) is limited however by some restrictions and approximations of the closed-loop
dynamics. Especially saturation effects of the power electronics and the electromag-
nets and other non-linearities could not be regarded in a linear system description.
To account for the approximation the cutoff frequency is chosen smaller than the

46



Applying Iterative Learning Control for Accuracy Improvement

-0.5 0 0.5 1 1.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Re

Im

Unit Circle

=268 Hz

=226 Hz

=23 Hzf

f

f

Fig. 3 Nyquist-plots of G� with the learning gain � = 1.2 and the linear phase-lead l =0 (dashed-
dotted), l = 17 (solid) and l = 20 (dashed). The phase-lead of l = 17 increases the learning
bandwidth to fc = 268 Hz.

maximum one. In our case the cutoff frequency is determined to ωc = 879 rad/s
(140 Hz) instead of the maximum frequency ωmax = 1696 rad/s (268 Hz). The lin-
ear phase lead helps to increase the learning bandwidth. As it is simple to deduce
from (13), for the same gain �1 and in the case of l > 0 the Nyquist plot leaves
the unit circle at a higher frequency. One makes Nyquist plots of G� for a range
of integer phase leads and picks the value that keeps the plot less than 1 up to the
highest frequency [6]. Figure 3 shows to Nyquist-plots with different phase-leads.
A phase-lead of l = 17 increases the maximum bandwidth significantly. Using a
phase-lead of l = 0 would simply allow a maximum frequency of 23 Hz for mono-
tonic convergence. It is obvious, that for our range of application this bandwidth
would be too small to get acceptable results.

B. Approach 2: Model-Based Contraction Mapping

The here chosen contraction mapping ILC defines the learning matrix L = �1P̂
T

,
where P̂ is an estimate of the Toeplitz matrix defined by (7). An estimate is neces-
sary, because the exact model is always unknown. In case of a linear time invariant
system (LTI), P̂ contains the values of the impulse response g(k):

P̂ =

⎛
⎜⎜⎜⎝

g(1)

g(2) g(1)
...

...
. . .

g(N) g(N − 1) · · · g(1)

⎞
⎟⎟⎟⎠ . (14)
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Experimental studies determined a linear transfer function 5th order using an
ARX-structure. The model coefficients can be identified using standard procedures.
Hence, the impulse response can be computed and inserted in (14). A filtering is not
necessary for the contraction mapping ILC. Therefore, a zero-error convergence can
be achieved theoretically. A further difference to approach 1 is that the condition on
monotonic error decay can be derived in the iteration domain by claiming an exact
Euclidean norm decay condition:

‖ ej+1 ‖2<‖ ej ‖2 . (15)

It yields by regarding (5)

‖ (I − P̂L)ej ‖2<‖ ej ‖2, (16)

or

‖ (I − P̂L) ‖2< 1. (17)

Since L = �1P̂
T

and the spectral norm of the symmetric matrix P̂ P̂
T

is equal to
its maximal eigenvalue σmax, one obtains

‖ (I − P̂L) ‖2= max
i

|1 − �1σi(P̂ P̂
T
)| < 1 (18)

⇒ −1 < 1 − �1σmax(P̂ P̂
T
) < 1, (19)

and therefore a rule for the learning gain �1 that allows monotonic error decay

0 < �1 <
2

‖ P̂ ‖2
2

. (20)

In analogy to the first approach, we have to consider, that the chosen model is only
an assumption. To account for the remaining model uncertainties, in this study the
learning gain �1 is defined significant smaller than the allowed upper bound given
by (20).

5 Experimental Validation with Different Cutting Speeds

In the following, the proposed ILC algorithms are compared by experimental results.
To compare the performance of the algorithms, we cut a 0.35 mm copper sheet with
a trapezoid trajectory with three different maximum speeds: 10 mm/s, 100 mm/s and
200 mm/s. To compare the two proposed ILC-algorithms the Root-Mean-Square-
or RMS-Criteria is used. Figure 4 shows the RMS-Error over the trails of both al-
gorithms and the different cutting speeds. For the trajectories with a maximum speed
of 100 mm/s and 200 mm/s the algorithms are able to reduce the tracking error to a
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Fig. 4 RMS-error convergence for the EAP with a maximum cutting speed of 10 mm/s (top),
100 mm/s (middle) and 200 mm/s (bottom).

similar level and after nearly the same number of iterations. Figure 5 (top) appar-
ently shows the enormous reduction of the tracking error at the 20th iteration with a
cutting speed of 100 mm/s. An interesting point is, that the zero-phase filtered ILC
with phase-lead compensation gives slightly better results at high velocities. With a
look at the measured position at the 20th iteration illustrated in Figure 5 (middle) the
reason becomes clear. Both algorithms reduce the tracking error during the cutting
phase identically, but the ILC with phase-lead compensation is more efficient in re-
ducing the oscillations after the cut than the contraction mapping. At lower cutting
speeds, the contraction mapping gives slightly better results.

In contrast to the higher cutting speeds, the graph of the RMS-error with a cutting
speed of 10 mm/s shows a strange behavior. Again, a look at the time-plot of the
measured position clarifies the reason for this effect. Figure 5 (bottom) shows the
measured position at the 19th and 20th iteration. At the 19th iteration the a good
error tracking is achieved. But, at the following 20th iteration the tracking error
increases significantly. At this iteration the cutting process differs slightly from the
one before. The break-through of the material occurs a little later in comparison
to the iteration before. But the feedforward-control of the ILC-algorithms already
reduces the energy in the system to avoid the typical overshoot. Therefore, the ILC is
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Fig. 5 Top: tracking error at the 1st (left) and 20th (right) iteration with a cutting speed of 100 mm/s
and phase lead compensation, middle: measured position at the 20th iteration with a cutting speed
of 200 mm/s, phase-lead compensated (left), contraction mapping (right), bottom: measured posi-
tion at the 19th (left) and 20th (right) iteration with a cutting speed of 10 mm/s.

counterproductive for the cutting process, extends it and consequently the tracking
error arises. At higher cutting speeds the kinetic energy of the ram is such high, that
the die always cuts the sheet successfully. In this case the effect does not appear.

6 Conclusions and Outlook

In this study, two linear Iterative Learning Control algorithms were applied to an
electromagnetically actuated punch to increase its accuracy during a cutting pro-
cess. The presented experimental results are very promising. The tracking error is
decreased by more than 90% in less than 20 iterations. Beside the expectable im-
provement of the produced elements and an increasing tool life, the time of the
cutting process can be reduced by more than 60% allowing higher stroke rates. Fu-
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ture works will deal with the optimization of the observed behavior of the ILC at
slow cutting speeds.
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Mechatronic Systems with Varying Dynamics
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Abstract Some mechatronic systems have different spatial configurations or oper-
ation positions, and, as a consequence, their dynamic behavior, described by their
most significant eigenfrequencies and mode-shapes, may vary in the configuration
space. This inevitably affects the performance and the stability of the control sys-
tem. Regarding the design of mechatronic systems with variable configuration, two
main issues are treated in this paper: (i) the derivation of a parametric model able to
capture the varying dynamics and the control actions, (ii) the integrated design of the
structure and the controller. To cope with these issues, a parametric model is derived
using a flexible multibody system technique based on the finite element method. A
global modal parameterization is applied for model-order reduction, yielding a con-
cise description of the flexible multibody model. A linear parameter varying con-
troller is derived via interpolation of local controllers for the reduced models. This
methodology is applied to a pick-and-place assembly robot with a gripper carried
by a flexible beam. Eventually, design tradeoffs are evaluated considering the per-
formance of the active system for different structural configurations.
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1 Introduction

This paper concerns the computer-aided integrated design for machines with varying
dynamics. For instance, in machine tools, Cartesian mechanisms and pick-and-place
machines, the relative motion between flexible components leads to time-varying
boundary conditions, so that the eigenfrequencies and mode shapes are not con-
stant but dependent on the spatial configuration. This nonlinear phenomenon inev-
itably affects the performance and the stability of the control system [5, 8]. Gain-
scheduling control strategies, which take the variations of the dynamic properties
into account, can be implemented to improve the system performance [5, 6].

Since the structural and the control dynamics may interact in non-intuitive ways,
an optimal design of the mechatronic system can only be accomplished if the act-
ive system is evaluated in an early design phase [6–8]. The development of design
tools for industrial mechatronic systems requires advanced simulation and modeling
techniques able to predict the machine dynamics and the control actions.

The aim of this work is to propose a simulation platform and control design
guidelines for systematic design and evaluation of mechatronic systems with vary-
ing dynamics. The general methodology for modeling and control design of such
mechatronic systems is described in Section 2. This methodology is applied to an
industrial 3-axis pick-and-place assembly robot with a gripper carried by a flexible
beam (Figure 1a). Section 3 presents its mechanical model and its control design. In
Section 4, design tradeoffs are evaluated considering the performance of the active
system for different structural configurations. Finally, some conclusions are drawn
in Section 5.

Fig. 1 (a) Pick-and-place machine and (b) Scheme of the flexible multibody model of the X-
direction motion of pick-and-place machine.
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2 Modeling and Control of Mechatronic Systems with Varying
Dynamics

A mechatronic system is composed of rigid bodies, flexible bodies, joints, and con-
trol units. Thus, it can be modeled as a flexible multibody system coupled with a
control system (see Section 2.1). The flexible multibody models can contain a large
number of degrees of freedom (dofs) and, therefore, may be unsuitable for control-
ler design purposes [8], since the order of the controller is related to the size of
the model. In order to derive a concise description of the flexible multibody model,
a model-order reduction, based on global modal parameterization (GMP) [1], is
applied (see Section 2.2).

For time-variant systems, two kinds of control strategies can be employed:
(1) non-adaptive controllers, such as robust controllers, that can take into account
the variations as uncertainties or (2) adaptive controllers, such as gain-scheduling
controllers that can adapt according to the parameter variations [5]. In this paper,
a gain-scheduling controller, obtained from the interpolation of local H∞ control-
lers, is considered. The local H∞ controllers are derived via an extension of the
four-block H∞-control problem [9] (see Section 2.3).

An appropriate way of describing a gain-scheduling controller is by the following
state-space form:

ẋ = A(l)x + B(l)u
y = C(l)x + D(l)u

(1)

where x is the state of the controller, u and y are, respectively, the input (error signal)
and the output (actuation) and l is a vector of varying parameters. The interpolation
technique to derive the gain-scheduling controller is based on affine functions of the
poles and zeros of each local controller (see Section 2.4).

2.1 Flexible Multibody Model

Formalisms developed in the field of flexible multibody dynamics appear to be es-
pecially suitable for deriving models of mechatronic systems. In particular, the non-
linear finite element approach described in [4] is a general and systematic technique
for the simulation of articulated systems with rigid and flexible components. The
strongly coupled formulation, which is available in the Oofelie finite element soft-
ware [3], has been chosen for the present developments.

According to [4], a flexible multibody system can be described using absolute
nodal coordinates. Hence, each body is represented by a set of nodes and each node
has its own translation and rotation coordinates. The various bodies of the system
are interconnected by kinematical joints, which impose restrictions on their relat-
ive motion. If the nodal coordinates are gathered in a vector q, the joints are thus
represented by a set of m nonlinear kinematic constraints:
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�(q, t) = 0 (2)

According to the Lagrange multiplier technique, the formulation of the con-
strained equations of motion requires the introduction a m × 1 vector of Lagrange
multipliers λ. In a mechatronic system, the dynamics of the controller are represen-
ted by a nonlinear state-space model with state variables x and output variables y.
Hence, the strongly coupled equations of the mechatronic system have the general
structure [2]:

M(q)q̈ = g(q, q̇, t) − BT λ + Ly (3)

0 = �(q, t) (4)

ẋ = f(q, q̇, q̈, x, y, t) (5)

y = h(q, q̇, q̈, x, y, t) (6)

Eq. (3) represents the dynamic equilibrium of the mechanism, Eq. (4), the kinematic
constraints, Eq. (5), the state equation and Eq. (6), the output equation. M is the
mass matrix, which is not constant in general, g represents the internal, external and
complementary inertia forces, B = ∂�/∂q is the matrix of constraint gradients,
L is a Boolean localization matrix and Ly denotes the actuator forces. The control
system is influenced by input measurements from the mechanical system, which can
be positions q, velocities q̇, accelerations q̈ or internal forces λ. Equations (3–6) are
coupled equations of motion and can be solved numerically using an implicit time
integration scheme [2].

2.2 Model Reduction

In linear structural dynamics, component-mode synthesis (CMS) provides an ap-
propriate solution for the reduction of a finite element model. In CMS, the dynamic
behavior of each substructure is formulated as a superposition of modal contribu-
tions. A more drastic reduction, based on the GMP and including all bodies and
joints, has been proposed for flexible multibody systems [1].

The total motion, q, in a flexible multibody system can be decomposed into rigid
motion, qr , and elastic deformation, qf , in the following way:

q = qr + qf (7)

Considering the passive flexible multibody system (Eqs. 3–4) and the augmented
coordinates u = [q λ]T , the GMP is defined as the following mapping

(θ , δ) �−→
[

q
λ

]
=

[
ρ(θ)

0

]
+

[
�qδ(θ)

�λδ(θ)

]
δ (8)

where θ are the independent parameters related to the actuation, ρ is the mapping
between the rigid motion and the independent parameters, qr = ρ(θ), δ are the
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modal coordinates, and the �qδ and �λδ are the flexible mode shape matrices which
depend on the configuration.

The dofs can be rearranged in u = [θ qg ui]T , where θ are the independent
parameters (they should be kept since they represent the actuators), qg are the con-
straint dofs (they should be kept in case additional external loads are required) and ui

are the remaining internal dofs including the Lagrange multipliers (they can be con-
densed during the reduction procedure). Accordingly, rigid modes �uθ , constraint
modes �uγ and internal modes [�uι �uε], divided into lower and higher-order
modes, can be calculated (details in [1]). The model reduction relies on a truncation
of the higher-order internal modes.

Performing the modal transformation, q = �η, where η = [θ δ]T and � =
[�uθ �uγ �uι], the equations of motion (Eqs. 3–4) yield the reduced model

Mηη(θ)η̈ + Kηη(θ)η = gη (9)

where gη = Lη(θ)y. For a given configuration θ , this equation defines a low-order
linearized model which can be used for control design, as described in Section 2.3.

2.3 Control Design for Linear Time-Invariant Motion Systems

Weighting functions for high-dynamic mechatronic motion systems are explicitly
derived using the four-block H∞-control problem [9]. An extension of this tech-
nique has been proposed by [5] in order to specify explicitly the maximum of
the sensitivity, mS , the maximum of the process sensitivity, mSP , the maximum of
the complementary sensitivity, mT and the bandwidth frequency, fBW ,through the
weighting functions. The augmented closed-loop system M becomes:

M = −
⎡
⎣

W1S
mS

W1SP rSP|Gf BW |
W2SK

mT mSrSP

W2T|Gf BW |mT

⎤
⎦ (10)

where S is the sensitivity, SP the process sensitivity, SK the control sensitivity,
T the complementary sensitivity, |GfBW | is the gain of the system at the desired
bandwidth, rSP can be interpreted as a reduction of the maximum gain of SP ,
W1 is chosen in order to guarantee that the controller have integral action up to
fI = fBW /4 and W2 is chosen in order to guarantee that the controller presents
roll-off at the higher frequencies (fR = 4fBW ). The shaping filters typically have
the following expressions, with α = 10:

W1(s) = s + 2πfI

s
W2(s) = α2|GfBW | s2 + 2.8πfRs + (2πfR)2

s2 + 2.8παfRs + (2παfR)2 (11)

If γ = ‖M‖∞ ≤ 1, the performance specifications are certainly met.
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2.4 Gain-Scheduling Controller Derivation

From the procedure described in the previous section, a set of controllers can be
derived for local configurations and then used to build a gain-scheduling controller
represented in an LPV state-space form (Eq. 1). The technique used to create the
LPV system relies on a linear interpolation of discrete poles, zeros and gains [5].
Equation (12) shows the technique applied for the vector of poles:

⎡
⎢⎢⎢⎣

p1(l)
p2(l)

...

pn(l)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p0,1
p0,2

...

p0,n

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

p1,1
p1,2

...

p1,n

⎤
⎥⎥⎥⎦ f (l) (12)

where p1 till pn are the poles of the system, p0,1 till p0,n and p1,1 till p1,n are
constants and f (l) is an analytical function of the scheduling parameter l. Similar
affine functions have been made to describe the varying zeros and gains. Varying
state-space matrices (As , Bs , Cs , Ds ), representing subsystems, are created from a
pair of poles and zeros:

As(l) = Re
[

pi(l) + pi+1(l) −pi(l)pi+1(l)
1 0

]
Bs (l) =

[
1
0

]

Cs(l) = Re
[−zi(l) − zi+1(l) + pi(l) + pi+1(l)

zi(l)zi+1(l) − pi(l)pi+1(l)

]T

Ds (l) = [1] (13)

These subsystems are then concatenated, yielding an LPV state-space system
that is quadratically dependent on the parameter l [5].

3 Pick-and-Place Machine: Modeling Details and Control
System

The proposed design methodology is applied to an industrial 3-axis pick-and-place
assembly robot with a gripper carried by a flexible beam (Figure 1a). The fast move-
ments of this machine may excite the vibrations of the variable-length flexible beam
(1st resonance frequency between 30 and 70 Hz). The Z-motion is gantry driven
by two linear motors and the X-motion over the carriage is also driven by a lin-
ear motor. The vertical Y-motion is actuated by a rotary brushless DC-motor which
drives the vertical flexible beam by a ball screw/nut combination. The position of the
linear motors and the beam length are measured using optical encoders, and the ac-
celeration at the gripper in the X-direction is measured using an accelerometer. The
objective is to move the gripper as accurately and fast as possible along a prescribed
trajectory in the working area.
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3.1 Mechanical Model

A flexible multibody model has been built to simulate the pick-and-place robot mo-
tion in X and Y directions (see Figure 1b). All components are modeled as rigid
bodies, excepted the flexible beam. The actuator force generated by the linear motor
(X-direction), is applied to the linear motor mass (action) and to the carriage (reac-
tion). The frames and the carriage masses are, respectively, 169.0 and 13.9 Kg. The
linear motor weights 25.9 Kg and the gripper 1.25 Kg. These values can be found
in the machine manual. The spring stiffness and the damping value between the car-
riage and the frame are, respectively, K1 = 9.15e6 N/m and D1 = 1042 Ns/m. The
frame suspension is connected to the ground by four connecting points. The stiff-
ness and the damping of these connections are, respectively, K2 = 5.3e7 N/m and
D2 = 5204 Ns/m. The damping D3 = 100 Ns/m represents the connection between
the linear motor and the carriage. The stiffness and damping values are adjusted to
match the experimental data. The flexible beam has a nominal diameter of 24 mm.
The material properties are: density ρs = 7800 kg/m3, Poisson’s ratio ν = 0.3,
damping ratio 0.01 and elasticity modulus E = 2.1 · 1011 N/m2.

Figure 2 shows the comparison between simulated and experimental FRFs for
two beam lengths (l = 0.41 m with the first resonance frequency at 285 Hz and
l = 0.36 m with the first resonance frequency at 350 Hz). The curves are in a good
agreement up to 400 Hz, which confirms the validity of the model. Differences
between the simulated and experimental FRFs are mainly due to the sensor position
estimation error.

Fig. 2 Comparison between the simulated (- - -) and the experimental FRFs (—): (a) motor posi-
tion/motor force; (b) gripper acceleration/motor force.
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Fig. 3 General control configuration: w are the disturbances, z are the signal to be minimized, y

are the controller inputs and u are the controller output.

3.2 Control System

A gain-scheduling controller is derived for the pick-and-place model considering
the length of the flexible beam as the varying parameter, l = l. The complete gen-
eral control scheme is shown in Figure 3. The design of the weighting functions
reflects the desired control specifications according to the guidelines presented in
Section 2.3. The desired bandwidth frequency of the close-loop is fBW = 20 Hz.
In an attempt to reduce the settling time, the desired maximum of the sensitivity
is mS = 2.64 dB and the desired maximum of the complementary sensitivity is
mT = 2.46 dB. These values were estimated based on a second order system with
fBW = 20 Hz and a settling time of 0.15 s. Finally, it is desirable that the maximum
of the process sensitivity should be mSP = GfST /rSP , where the GfST is the gain of
the plant at the first structural resonance and rSP = 0.5.

The H∞ control derivation is performed for four local configurations yielding
four linear-time invariant (LTI) controllers. The resulting controllers (see Figure 4)
are then interpolated via the methodology described in Section 2.4 yielding a gain-
scheduling controller.

Figure 5 shows the active response of the flexible multibody model described
in Section 3.1. The input in X-direction (see the pulse train in Figure 5), is applied
while the length of the beam is continuously varying. The gain-scheduling controller
adapts its gains according to the beam’s length. It can be observed that the vibrations
are quite well damped throughout the whole configuration space.
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Fig. 4 Local LTI controllers for four equidistant values of l ∈ [0.33, 0.53] m.
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Fig. 5 Active system response to a pulse train in X-direction while the length of the beam is
continuously varying.

4 Pick-and-Place Machine: Integrated Design

Some structural modifications can be evaluated in frequency and time domain, using
the same control design specifications (fBW , mS , mT and mSP ) for the nominal
machine. The diameter of the beam has a direct influence on the vibration of the
effector and it is thus considered as a design variable. Table 1 shows the mean (µ(γ ))
and the standard deviation (σ(γ )) of the achieved H∞ controller norm considering
the four local LTI controllers, and time-domain metrics: maximum overshoot and
maximum settling time. It can be observed that thinner diameters present worse
performance than thicker diameters but fulfill the design requirements.

61



M.M. da Silva et al.

Table 1 Frequency and time domain metrics for different structural designs.

diameter norm of the achieved H∞ controller time domain
[m] µ(γ ) σ (γ ) overshoot [%] settling time [s]

0.020 0.75 0.13 62 0.25
0.024 0.68 0.08 60 0.20
0.028 0.65 0.03 56 0.18
0.032 0.66 0.04 55 0.15

5 Conclusions

A simulation platform and control design guidelines for systematic design and eval-
uation of mechatronic systems with varying dynamics has been proposed and im-
plemented for a pick-and-place robot. In this way, the designer is able to predict
the machine dynamics and the control actions and to evaluate the performance of
mechatronic system with varying dynamics in frequency and time domain.
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Development of a Repulsive Magnetic Bearing
Device with an Adjustability Function of Radial
Stiffness

Max Eirich, Yuji Ishino, Masaya Takasaki and Takeshi Mizuno

Abstract This paper studies the ability to adjust the stiffness in the radial direction
on a non-contact levitated rotor by using an independent motion control of perman-
ent magnets. The method of stabilization in the axial direction, by moving a magnet
for support like an inverted pendulum, is applied. The repulsive forces in the radial
direction depend not only on the size and physical characteristics of magnets but
also on the relative positioning of magnets to each other in the axial direction. This
work shows the principles and the one of necessary methods of motion control for
successful adjustability of the radial stiffness.

1 Introduction

There are several methods to support a moving or rotating mass by using magnetic
forces without any mechanical contact [1–4]. One of the principal methods is to use
the repulsive forces of permanent magnets. In this type of magnetic bearing system
the object is levitated by the repulsive forces between permanent magnets. Such a
system does not need any energy to generate the levitation force and is stable in the
direction of repulsive forces (FR), but unstable in the normal direction to the FR .
In the previous works, experimental devices, using PD [5] and also state feedback
control [6] were developed where the levitated object was a cylindrical rotor and
permanent magnets were ring-shaped. While the permanent magnets for support
where mechanically connected in this works, the independent motion control of
permanent magnets has been proposed [7, 8]. The repulsive forces in radial direction
can be changed by adjusting of the relative position of the magnets for support to
each other. Since we use two pair of ring-shape permanent magnets, such adjustment
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Fig. 1 Principle positioning of ring-shape permanent magnets.

Fig. 2 Repulsive magnetic bearing apparatus. The inner and outer diameters of the outer magnet
are 24 mm and 32 mm respectively. The magnet for support has a 7 mm inner and 12 mm outer
diameter.

is achieved by controlling the motion of magnets for support independently. In this
work, the feasibility of such stiffness adjustment is demonstrated experimentally.

2 Mechanical Construction, Modeling and Simplification

2.1 Mechanical Construction

Figure 1 shows the principal positioning of magnets. Figure 2 shows a schematic
diagram of the developed magnetic bearing apparatus using the motion control of
permanent magnets. It is an outer-rotor type and includes one ring-shape permanent
magnet at the each end. Each voice coil motor drives an inner permanent magnet for
support. The displacement of rotor is detected by sensors 1 and 2. Since all motions
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Fig. 3 Physical model of the magnetic bearing apparatus.

in the radial directions are passively supported by repulsive forces, we assume, for
the simplicity, that the rotor moves only in the axial (horizontal) direction.

2.2 Modelling and Simplification

Figure 3 shows a physical model of the system illustrated by Figure 2 where
Fp1(t), Fp2(t) is the force generated by VCM’s, Cp1, Cp2 is the damping due to
the slide bearing and friction inside of VCM’s, kp1, kp2 is the stiffness of springs
inside of VCMs, ma is the mass of rotor, mp1,mp2 is the left and right mass driving
by the VCMs including permanent magnet, kl1, kl2 is the lateral factor’s between
the magnets.

The total forces produced by voice coil motors are Fp1 and Fp2. The gravitational
force acting on the rotor and the radial forces between the permanent magnets are
balanced in the equilibrium states.

Considering the symmetry, we assume that:

kl1 = kl2 (≡ kl), (1)

mp1 = mp2 (≡ mp), (2)

cp1 = cp2 (≡ cp), (3)

kp1 = kp2 (≡ ka). (4)

In addition it is assumed that the input signal to both amplifiers is the same. Then,
we can simplify the physical model as shown in Figure 4.

The equations of motion for the simplified system are:

maz̈a = kl(za − zp), (5)

mpz̈p = kl(zp − za) − cpżp − kpzp + ki ∗ i(t), (6)
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Fig. 4 Simplified physical model.

Table 1 Variables of the simplified system.

Variable Value Unit

ma 0.050 kg
mp 0.160 kg
kp 8500 N/m
kl 2500 N/m
ki 10 N/A
L 19 mH
R 3 Ohm
cp 90 Ns/m

L
di

dt
= −kiżp − Ri. (7)

Equation (7) describes the electrical relations for the voice coil motor where i is
the coil current, L the coil inductivity, R the coil resistance, and ki the transducer
constant of VCM.

Table 1 shows all variables from the simplified model together including the
values and units.

3 Control Design

For optimization we choose the state-feedback control as one of control schemes for
stabilization. From (5) to (7), the state space model describing the dynamics of the
system is obtained as:

ẋ(t) = Ax(t) + Bu(t), (8)

where
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(9)
Since the system described by (8) and (9) is controllable, the closed-loop poles can
be arbitrary assigned by state-variable feedback.

The control input is represented by

u(t) = Kx(t) = pd za + pν ża + qd zp + qν żp + qii, (10)

where
K = [pd pν qd qν qi]. (11)

The poles of close loop system are selected due the simulation and later fine adjust-
ment on the parameter of the matrix K while experimental operation. The poles are
placed approximately at: −300, −250, −200, −150 and −100 [1/s]. The values of
the matrix K for the closed-loop control become as follows:

pd = 7547 [V/m]

pν = −60 [Vs/m]

qd = 45533 [V/m]

qν = 115 [Vs/m]

qi = 14 [V/A]

4 Adjustability of Radial Stiffness

The amount of the repulsive forces is directly proportional to the lap of the mag-
net pair. When the overlap is full the repulsive forces are maximum (Figure 5).
Since we can control the motion of magnets independently we can change the dis-
tance between two inner magnets and make the overlap area smaller. As a result, we
achieve the decreasing of repulsive forces, shown in Figure 6.

5 Experiment

Figure 7 shows a photograph of the experimental device. The feasibility of stiff-
ness in the radial direction was investigated. For decreasing the overlap area it is
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Fig. 5 Full overlapping of magnets delivers the maximal amount of repulsive forces.

Fig. 6 Smaller repulsive forces as a result of smaller overlap.

Fig. 7 Magnetic bearing apparatus. The sensors A1 and A2 (A2 is not depicted in the picture)
detect the motion in the axial direction and sensors R1 and R2 in the radial direction.

necessary to increase the distance between the magnets for support. Therefore we
added a constant offset signal with the same amount but with the opposite sign to
each voice coil motor. After increasing the distance, the displacement in the radial
direction, by adding of two different masses 16 g (0.156 N) and 64 g (0.647 N) on
the point “M” in Figure 7, with changing of the offset value from 0 V to 1.5 V have
been measured and compared. Figures 8 and 9 show the results in detail and Table 2
shows a summarized overview. The spring constant is denoted by K [N/mm].
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Fig. 8 Characteristic diagram of magnetic spring stiffness between of two ring-shape permanent
magnets.

Fig. 9 Characteristic diagram of magnetic spring stiffness between of two ring-shape permanent
magnets.

6 Conclusions

A repulsive magnetic bearing apparatus using independent motion control of per-
manent magnets, to achieve the adjustability on radial stiffness, was developed. The
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Table 2 Overview on stiffness and offset relationship.

�m = 16 g �m = 66 g

Voff K [N/mm] Voff K [N/mm]

0 2.23 0 1.41
0.75 156 0.75 1.29
1.5 1.12 1.5 1.22

experimental results show that the stiffness can be adjusted. In the current config-
uration the range of adjustment is 50%. However the adjustability can be improved
by introducing more sophisticated control methods and by modifying the design of
permanent magnets. Research in such improvement is under way.
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Driver Assistance Technology to Enhance Traffic
Safety

Raymond Freymann

Abstract It is shown in how far driver assistance systems can contribute to enhance
the overall traffic safety. Thereby it must be considered as a goal to increase the per-
formance of active safety systems in the scope of an integrated approach, allowing
to realize a variety of interactions between the three elements involved in a traffic
scenario, say the driver, the vehicle and the driving environment. Focus is pointed
on the related technology, the inherent system complexity and aspects of customer
acceptance.

1 Introduction

Safety is a basic need of mankind. This entails that aspects of safety are fundamental
to the acceptance of any mobility system. In so far safety must be considered as a
long term megatopic driving the automotive industry [1]. Safety in the context of
automotive engineering [2] addresses two topic clusters: the active safety cluster
focusing on the avoidance of traffic accidents and the passive safety cluster dealing
with accident mitigation topics.

Active safety addresses as for example a full variety of chassis systems imple-
mented to enhance the handling and driving characteristics of a vehicle, such as
powerful braking and high precision steering systems as well as high stability axle
configurations. Typical passive safety features relate as for instance to the crash op-
timization of the car body structure, collapsing steering columns and the multitude
of integrated safety restraint systems, such as seat belts and airbags. The effective-
ness of active and passive safety systems is impressively expressed by the statistical
results from thoroughful (worldwide) traffic accident recordings and investigations
(Figure 1).
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Fig. 1 Traffic accident situation in Germany.

But since we are still far off from a zero traffic accident scenario, the question
in how to further reduce the still significant number of traffic accidents must be
raised. There is consensus existing among experts that the most promising break-
through technologies to cope with this topic will be located in the active safety
area [3]. In this context great expectations have been attributed to safety relevant
driver assistance systems. Indeed a deeper analysis of the situation clearly indicates
the many possibilities offered by the driver assistance technology. Driver assistance
addresses a full band of applications ranging from information based navigation
topics through vehicle guidance and stabilization systems to autonomous driving
scenarios.

In the following, focus will be pointed on the safety performance of driver assist-
ance systems related to the different categories addressed. The complexity as well
as the potential and risks inherent to the various systems will be discussed as well
as their acceptance by “the customer”.

2 The Diversity of Driver Assistance System

Focusing on traffic accidents indicates that there are always three elements involved
in an accident scenario: the driver, the vehicle and the driving environment. In the
past traffic safety initiatives were concentrating on the safety optimization of these
three components independently from one another. By today, it is well understood
that only an integrated optimization process, focusing on the optimization of the
total system, say addressing simultaneously the optimization of the three elements
involved, can lead to a significant further improvement in the traffic accident situ-
ation [4]. This indicates that the interaction (connectivity) between driver, vehicle
and environment (Figure 2) must be a central part of a promising accident reduction

72



Driver Assistance Technology to Enhance Traffic Safety

Fig. 2 ConnectedDrive: an integrated approach to active safety enhancement.

Fig. 3 Driver assistance systems

approach. There is no need to say that this field of interest is directly related to the
driver assistance technology.

It can be notified that driver assistance, as it has been introduced since the 70s
(Figure 3), was primarily dedicated to the temporary support of the driver in form of
the stabilization of the vehicle in critical driving situations. Control systems, such as
ABS (Antilock-Braking), ASC (Active Stability Control) and DSC (Dynamic Sta-
bility Control), being nowadays part of an overall integrated chassis control man-
agement system, can be considered as typical technologies in this field. But along
the time line a variety of systems were also introduced to assist the driver in the
guidance of the vehicle. Representatives of that category are ACC (Active Cruise
Control) and HC (Heading Control). Moreover it is of importance to consider, in the
overall context of driver assistance, so-called information systems which support the
driver in the navigation of the vehicle. Typical representatives within that category
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Fig. 4 Driver assistance systems classification.

are GPS navigation systems, actually already flanked by TMC (Traffic Message
Channel) traffic jam information capabilities and in the future by additional ad-hoc
traffic accident reporting systems making use of a direct wireless communication
between vehicles and the traffic infrastructure (Car2X) [5].

The examples addressed indicate the wide range of application of driver assist-
ance. In order to allow a more detailed discussion, it is helpful to cluster the various
systems, as is indicated in Figure 4.

The categorization is realized by a distinction between “low response” and “high
response” systems. In this context, “low response” means that the driver assist-
ance (control) system action/reaction can be overrun at any time by the driver. Low
response systems are related to vehicle navigation and guidance tasks. “High re-
sponse” systems are characterized by the fact that their control system output, due
to the short response time, cannot be overrun by the driver. These systems focus on
the stabilization of the vehicle and the autonomous guidance intervention. Accord-
ing to Figure 4, “high response” driver assistance are directly addressing inherent
safety critical (driving and traffic) situations.

It is true that the categorization levels of systems are not strictly defined in
each case. As for example the distinction between an Active Cruise Control sys-
tem (ACC) with enhanced braking capabilities and those of an Emergency Braking
system (EB) could be rather difficult to define.

3 Active Safety Systems

It can be stated that the introduction of “high response” driver assistance control sys-
tems in production vehicles has up to now been restricted to applications allowing
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Fig. 5 Block diagram of DSC system.

Fig. 6 Emergency brake system.

the required technology to be “completely part of the vehicle”. All sensor inform-
ation and control variables are vehicle fixed! This allows to realize even complex
applications, such as dynamic stability control (DSC), as depicted in Figure 5, with
an enormous reliability.
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Fig. 7 Decision taking process for autonomous intervention.

This aspect of realibility becomes (by far) more questionable if systems, like
autonomous collision avoidance (CA), shown in Figure 6, taking into account the
driving environment as a sensorial control system input, are considered. This state-
ment is based on the fact that systems relying on the driving environment informa-
tion do require, apart from the basic detection via sensors, a clear interpretation of
the actual traffic situation around the vehicle (Figure 7). This task might be difficult
to solve in the case of real driving situations and it is not realistic to assume that
it will be achieved correctly in most situations. Accordingly, there will always be
a rest of risk remaining if environmentally sensing high response driver assistance
systems were introduced. This remaining risk, which also from a legal point of view
(liability) [6] opens a full range of questions, entails that “some more time” will
elapse before we will see these systems operational in series production vehicles.

On the other hand there are plenty of realizable new advanced technologies under
development which can significantly contribute to reduce the number of (severe)
accidents. Analyzing accident cases (Figure 8) indicates that more than 50% of all
severe accidents are at least affected by some lack of driver information!

Consequently it must be asked in how far this lack of information can be
compensated by the driver assistance technology. In order to provide an additional
meaningful information to the driver, the assistance system must acquire relevant
data with regard to the traffic scenario “around” the vehicle. As will be shown in
the following two examples of application, near and far field data will have to be
considered.

Example 1: Lane Change Assistant. The near field perception capabilities of
driver assistance research vehicles have been dramatically improved during the past
years by the integration of radar, lidar and video systems (Figure 9). This entails
that, in case of a lane change maneuver on a highway, the sensor system can easily
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Fig. 8 What do we need to further reduce the total number of severe accidents?.

Fig. 9 Vehicle near field perception capabilities.

identify vehicles approaching on the pass lane [7]. The identification is achieved
with regard to relative distance and speed data. These data allow us to evaluate if a
lane change might be critical. In case the driver intends to perform a lane change,
which is normally initiated by the activation of the blinker light and/or a steering
wheel input, the assistance system is ready to give a (kinaesthetic, optical, acoustic,
etc.) warning if required.

Example 2: Wireless ad-hoc communication. The perception of the far field can-
not be realized via the on-board vehicle sensor network. It is however possible to

77



R. Freymann

Fig. 10 Direct vehicle to vehicle communication.

Fig. 11 Applications of ad-hoc connectivity.

provide relevant far field data to the vehicle by means of wireless communication
technologies. Imagine that an accident has taken place on a (highway) road. This
always entails a critical situation for all following vehicles.

Direct wireless communication (Figure 10) between the vehicles involved in the
accident and the approaching vehicles could avoid that the drivers of these vehicles
would get surprised when approaching/reaching the accident location.

It has to be mentioned that using (following) vehicles as “wireless hoppers” al-
lows to pass the information along rather long distances.

All in all the wireless ad-hoc communication, with its many applications (Fig-
ure 11), must be considered as a highly promising technology in the scope of future
accident reducing strategies [8].
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Fig. 12 Benefit/domination relationship of driver assistance systems.

From the topics addressed above it can be concluded that the field of driver as-
sistance does apply to a broad variety of practical applications. With consideration
of the actual level of technology available and the legal situation existing, it can
be expected that next implementation steps of the technology will not be related to
so-called “fast response” systems with an autonomous action. Apart from this futur-
istic vision, a far more realistic scenario foresees the introduction of a full variety
of traffic safety enhancing driver assistance systems related to the levels of vehicle
navigation and vehicle guidance [9].

4 Customer Acceptance

Having addressed a priori technical aspects in the previous chapters, focus will now
be placed on customer relevant issues. This is of relevance since finally the customer
decides about the integration of a driver assistance system (as a special option) into
his vehicle. This directly entails that only systems which – from the customers view
point – do provide a (significant) benefit can be a market success.

Customer research investigations clearly indicate that even if the customer is in-
creasingly sensitive to safety aspects, he is not (yet) accepting safety relevant driver
assistance systems which are directly interacting with the guidance of the vehicle.
A system domination in this field of driver oriented activities is not accepted! Ac-
cordingly, it is of importance to thoroughfully investigate for any driver assistance
system the relationship existing between the benefit to the driver and the domina-
tion percieved by the driver. In this context it can be foreseen that assistance systems,
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Fig. 13 Interaction between driver, vehicle and environment.

primarily located in the right lower corner of Figure 12, might find the acceptance
of the customer and thus become a market success.

A further criterion of customer acceptance is related to the design of the HMI
(Human Machine Interface) [10]. The driver expects that driver assistance systems
do provide a support to the driving task but do not create an additional workload
or distraction. This situation explains why driver assistance systems efficiently op-
erating in the background, such as ABS and DSC, have found a high penetration
rate. When driving, the driver must (and he also wants to) fully concentrate on the
primary task of driving; occasionally required secondary tasks need to be easily
achieved (Figure 13). This entails that it is of primary importance to focus on the
easy handling and comprehensible operation of assistance systems. Intensive invest-
igations with regard to these criteria are performed in the automotive industry in the
scope of usability and (dynamic) simulator tests [11].

These reflections underline the high importance of HMI investigations in the de-
velopment and integration process of driver assistance systems [12]. The realization
of a real premium HMI functionality is of a vital importance to the system accept-
ance!

5 Conclusion

An overview of the high potential of driver assistance systems for enhancing driv-
ing and traffic safety was given. The key for the realization of efficient systems
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is related to technologies in the sensor and the traffic/driving situation interpreta-
tion fields. A highly reliable technology is required if visionary “high response”
autonomous actions in the vehicle guidance are considered. Since this technology is
not yet available the next generation of systems will be primarily oriented to func-
tionalities allowing to enhance the traffic safety by “low-response” information and
guidance systems. Moreover it was clearly addressed that the overall layout of the
HMI interface of driver assistance systems is of a primary importance with regard
to the customer acceptance.
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Improving Absorption of Sound Using Active
Control

E. Friot, A. Gintz, P. Herzog and S. Schneider

Abstract Absorption of sound is a common problem especially at low frequencies.
Absorbing materials available today perform well at medium and high frequencies
but are much less performing at low frequencies at least when considering layers of
realistic thickness. By contrast active control of sound is the most powerful at low
frequencies where the sound field that is to be controlled is rather simple. Hence a
combination of passive materials and active control seems to be a promising way
to improve the efficiency of sound absorbing acoustic linings. The paper reflects
upon two main directions. First, it studies the elimination by active control of sound
of a sound field reflected by an absorbing layer. Such a procedure may be applied
to improve the quality of acoustic testing facilities like anechoic chambers around
or below its cut-off frequency. Secondly, the paper considers the design of hybrid
absorbing materials consisting of a passive materials whose sound absorption is
improved using either acoustic or mechanic actuators. Both studies are characterized
by a strong link of numerical studies and experimental verification.

1 Introduction

Absorbing materials available today, perform well at medium and high frequencies
but are much less performing at low frequencies at least when considering layers of
realistic thickness. By contrast active control of sound is the most powerful at low
frequencies where the sound field that is to be controlled is rather simple. Hence a
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combination of passive materials and active control seems to be a promising way to
improve the efficiency of sound absorbing acoustic linings.

The first part of this paper studies the estimation of the remaining reflexions in
anechoic chambers below its cut-off frequency.A real-time active control proced-
ure to suppress a scattered sound field has been presented in [2]. This study forms
the basis of the considerations dealt with here. The second part focuses on the de-
velopment of a hybrid panel used for sound isolation purposes in buildings. The
performance of existing passive panels is limited by the properties of the absorbing
material and its thickness. Using acoustic actuators, the low frequency properties of
the absorbing materials is improved to yield higher absorption of sound, see [3, 4].

2 Estimation of a Reflected Sound Field

At low frequencies acoustic linings of anechoic chambers do not sufficiently absorb
the incident sound field. The remaining reflections perturb measurements and define
the cut-off frequency of such a chamber. Using todays absorbing materials anechoic
chambers with a cut-off frequency below 80 Hz are difficult to design because of
the significant thickness of the lining required to avoid reflexions at low frequencies.
Here we consider a possibility of constructing an anechoic chamber with a cut-off
frequency below 80 Hz using an active control of sound procedure. The objective
of the study is to estimate and finally to cancel out the sound field reflected by the
lining at a position within the chamber where measurement are to be carried out.

The sound field reflected at the boundary �F of the fluid domain �F, see Figure 1,
can be evaluated using the boundary integral method. The sound field within the
domain �F at a position y can be expressed by the sound pressure p and the normal
velocity vν at the boundary �F using

p(y) +
∫

�F

∂φ(x, y)

∂ν
p(x) d�F − a

∫
�F

φ(x, y)vν d�F = pinc(y) y ∈ �F (1)

with an incident sound field pinc and the fundamental solution

acoustic lining forming the domain �B

set of Nmic microphones at �F

microphone at position y with pinc(y) = 0

dipole sound source

interior of the chamber �F

Fig. 1 Diagramm of the set-up used to estimate the sound field reflected at the boundary �F.
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φ(x, y) = ejk|x−y|

4π |x − y| = ejkr

4πr
, r = |x − y|, x �= y . (2)

of the Helmholtz equation in three dimensions, the wave number k = ω/c and
a = jωρf. Therein c denotes the speed of sound and ρf denotes the density of the
fluid. If the point y in Eq. (1) is chosen such that pinc(y) = 0 holds true then this
equation can be used to estimate the scattered sound field pscat using

pscat(y) = −
∫

�F

∂φ(x, y)

∂ν
p(x) d�F + a

∫
�F

φ(x, y)vν d�F y ∈ �F (3)

from the measured sound pressure p and the fluid velocity vν at a certain boundary
�F. Performing measurements for Nmic positions at that boundary of the source with
pinc(y) = 0 enables the estimation of the diffraction filter H s such that the sound
pressure scattered at the boundary �F can be obtained from the measured sound
pressures and velocities as

pscat = H s
[

p

vν

]
.

Disadvantage of such an approach is that the sound pressure and the fluid velocity
must be measured. But the sound pressure and the surface velocity on �F are not
independent. Their relation is determined by the properties of the domain �B. Sup-
posing that k is not an eigenvalue of the operator describing the sound propagation
in �B, a unique relation between the sound pressure and the fluid velocity can be
found such that

Zvν = p on �F (4)

holds true. The operator Z in Eq. (4) is often referred to as the acoustic impedance
boundary operator [5]. Supposing further that this operator is not singular we have

vν = Z−1p = Yp on �F (5)

with the acoustic admittance Y of the boundary �F. Using Eq. (3) with Eq. (5) yields

pscat(y) = −
∫

�F

(
∂φ(x, y)

∂ν
− aφ(x, y)Y

)
p(x) d�F = H sp y ∈ �F . (6)

Eq. (6) shows that the scattered sound field can be obtained from measuring the
sound pressure p on �F only. The estimation of these filters requires a dipole sound
source that is placed such that the reference microphone does not receive any direct
sound field from the source. The diffraction filters H s can now be used to estimate
the reflected sound field out of the measured sound field at the boundary �F for any
sound source.

The above proposed method has been used to estimate the reflections in a rect-
angular cavity measuring 2×1.1×1.2 m3 in the 20 to 400 Hz frequency range ex-
perimentally. The cavity was made of Siporex porous concrete and the walls were
considered perfectly sound reflecting. The sound field close to the walls has been
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Fig. 2 Sound pressure measured in the cavity and sound pressure obtained after the estimated
reflected sound field has been removed from the data.

measured at 32 positions that were equally distributed over the walls. A dipole sound
source was rotated in the cavity and the sound pressure at the walls and the scattered
field pscat were recorded for each rotation. Using Eq. (6) the diffraction filter H s was
estimated out of the experimental data. Figure 2 shows the sound pressure measured
in the cavity and the sound pressure obtained when the estimated reflected sound
field has been removed from the data. At least up to 300 Hz the resonance peaks
have been reduced by 20 dB. These promising results motivate the application of
the proposed method to estimate the wall reflexions in the 40 to 160 Hz frequency
range observed in the large anechoic chamber at the Laboratoire de Mécanique et
d’Acoustique (LMA) in Marseille. Once the reflected sound field can be estimated,
this information can be used to either feed active control procedures to cancel out
this sound field in the chamber or to post-process experimental data.

3 Hybrid Absorbing Panels

The objective of the second part of this study was the numerical study of the feas-
ibility of a hybrid absorbing panel to be used in buildings. Unless using absorbing
materials of unrealistic thickness, passive acoustic wall treatments are not efficient
in the low frequency range. In what follows we consider therefore to increase the
sound absorption of these panels by the use of active control of sound. The basic
concept of these hybrid panels consists of using an acoustic actuator (loudspeaker)
behind the absorbing material to influence the acoustic properties of the absorbing
material. A sample panel with dimensions 0.6×0.6×0.25 m3 containing four loud-
speakers and an absorbing material of 7.5 cm thickness was build at the LMA. So
far this panel was used to verify the validity of the numerical model later on used to
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X
Y Z

wooden box

absorbing material

loudspeaker

microphone I

microphone II

Fig. 3 Meshed geometry of the hybrid cell.

test several control strategies. Figure 3 shows the finite element model for this panel

ISOVER PB 38, was modeled using the equivalent fluid model. The material para-
meters, σ = 2.0e4 Ns/m4 and φ = 0.97, have been identified using an impedance
tube experiment. The passive absorption coefficient α of a layer of 7.5 cm thickness
is below α = 0.3 up to a frequency of 200 Hz. The electro-mechanical behavior of
the loudspeakers has been modeled using the model proposed by Thiele and Small
[6].

To influence the acoustic properties of the panel two strategies were considered
in the present study:

1. A given sound pressure behind the absorbing layer
The impedance of the layer at the surface facing the cavity is modified by pre-
scribing an appropriate pressure behind the layer. From the definition of the
flow resistivity σ of a porous material with a thickness e, see for example [1],
σ = (p1 − p2)/vν/e, with the sound pressure p1 and p2 on each side of the
panel, it follows that for p2 = 0, we have for the surface impedance Z of the
panel Z = σe. With an appropriate choice of the flow resistivity and the thick-
ness of the material the surface impedance of the panel can be made equal to the
impedance Z = ρfc of a plane wave. Such a panel will be perfectly absorbent
for plane waves in normal direction to the panel.

2. The control of the reflected sound field
Under the assumption that the sound field pscat reflected by the panel is known,
this quantity can be used directly as input for the active control algorithm. If
and how this sound pressure can be measured is still an open question. Note
that possible microphone position used to estimate the scattered sound field are
restricted to be within the panel. Microphones within the cavity are not allowed.

performance of these two strategies was studied using a numerical
model for a cavity measuring 1.2×1.8×2.4 m3. The walls are equipped with
2(2×3+2×4+3×4) = 52 panels covering the walls completely. In front of each
membrane of the loudspeakers two points, one on each side of the absorbing ma-
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X

Y

Z

Fig. 4 Model of a acoustic cavity equipped with hybrid wall panels.

terial, see Figure 3, were chosen as possible microphone positions. Microphone I
served to evaluate the reflected sound pressure and microphone II was used with
control strategy one. A part of the meshed walls, including the hybrid panels, is
shown in Figure 4. The matrix of the transfer functions of the microphones at posi-
tions I and II, H I and H II respectively, and the supply voltage Uq of the loudspeak-
ers has been calculated in the 20 to 200 Hz frequency range using the computer code
AKUSPOR developed at the LMA. A monopole sound source was used to generate
an incident sound field pinc in the cavity. The direct sound field at the microphones
in front of the absorbing layer pI and the total sound field behind the absorbing
layer pII were used to calculate the supply voltages U I

q and U II
q subsequently used

to simulate the active control procedure. To asses the different control strategies two
criteria were defined. The first

η1 =
∑

i∈I |pi
ctrl|∑

i∈I |pi
0|

(7)

compares the sound pressure pi
ctrl at a set of points I obtained with control with

the sound pressure pi
0 obtained without control. Hence the reduction of the sound

pressure is rated regardless of the incident sound field. The second criterion

η2 =
∑

i∈I |pi
inc − pctrl|∑

i∈I |pi
inc|

(8)

The sound pressure at various positions in the cavity with respect to the frequency
are shown in Figure 6. We observe that both strategies reduce the significant impact
of an acoustic mode of the cavity at 60 Hz. Hence the quite simple strategy of creat-
ing a zero sound pressure behind the absorbing material yields satisfactory results.

compares the sound pressure with control pi
ctrl with the incident sound field and

hence measures to what extent the sound field reflected by the walls has been re-
moved by the active control procedure. Results for both criteria are shown in Fig-
ure 5. Both strategies yield a significant reduction of the total sound pressure in the
cavity, see left sub-figure in Figure 5. The second control strategy became unstable
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Fig. 6 Sound pressure in the cavity with and without active control.

for frequencies above 160 Hz, however. But only the control strategy two, which
directly controls the reflected sound field, was able to reproduce the incident sound
field, see right sub-figure in Figure 5. The sound pressure distribution at 45 Hz on
the side of the absorbing material facing the cavity and in a part of the cavity are
shown in Figures 7 and 8. Strategy two reproduces quite well the incident sound
field everywhere on the surface of the absorbing material, but also within the cavity.
Strategy one does not reproduce the sound field obtained under free-field conditions,
as with this strategy the panels are perfectly absorbent only for plane waves, but the
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Fig. 7 Sound pressure level on the absorbing material. Incident sound field (upper left sub-figure),
total sound field in the cavity without control (upper right sub-figure), sound field with control
strategy two (lower left sub-figure) and with strategy one (lower right sub-figure). Frequency:
45 Hz. The gray scale gives the sound pressure level in dB [ref. 2e-5].

Fig. 8 Sound pressure level in the cavity (one quater of the cavity has been cut out). Incident sound
field (upper left sub-figure), total sound field in the cavity without control (upper right sub-figure),
sound field with control strategy two (lower left sub-figure) and with strategy one (lower right
sub-figure). Frequency: 45 Hz. The gray scale gives the sound pressure level in dB [ref. 2e-5].

sound pressure level within the cavity is reduced to the level of the direct sound
field.
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4 Conclusion

Two situations have been considered where the sound field scattered by an acoustic
wall treatment is to be determined and subsequently removed.

First, we have presented a method to estimate the reflexions of the acoustic lining
of an anechoic chamber in the very low frequency range. Using estimated diffraction
filters the sound field reflected by the lining can be evaluated using the results of
sound pressure measurements close to the lining. The estimation of these filters
requires a dipole sound source that is placed such that the reference microphone
does not receive any direct sound field from the source. The estimated diffraction
filters do not depend on the sound source and allow therefore the estimation of the
reflexions at the walls occurring when measurements are performed in the anechoic
room at low frequencies.

Secondly, we have studied hybrid wall panels with an improved low-frequency
absorption. Two control strategies were considered: (a) zero sound pressure behind
the absorbing material and (b) direct cancellation of the reflected sound field. Using
numerical experiments we have shown that the quite simple strategy (a) yields a
significant improvement of the sound absorption of the panels.

Acknowledgements The last author was financed by a grant from the French “Agence Nationale
de la Recherche” under the project BLAN06-134753. Numerical simulations were run on a Linux
Networx PC-Farm at the Center for Information Services and High Performance Computing at the
Technische Universität Dresden, Germany.

References

1. Allard, J.F. (1993) Propagation of Sound in Porous Media. Modelling Sound Absorbing Mater-
ials. Elsvier, London/New York.

2. Friot, E., Bordier, C. (2004) Real-time active suppression of scattered acoustic radiation.
Journal of Sound and Vibration 278(3), 563–580.

3. Furstoss, M., Thenail, D., Galland, M.A. (1997) Surface impedance control for sound absorp-
tion: Direct and hybrid passive/active strategies. Journal of Sound and Vibration 203(2), 219–
236.

4. Mazeaud, B., Sellen, N., Galland, M.A. (2004) Design of an adaptive hybrid liner for flow duct
applications. Presented at 10th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2004-
2852.

5. Ohayon, R., Soize, C. (1998) Structural Acoustics and Vibration. Academic Press, New York.
6. Small, R. (1973) Vented-box loudspeaker systems – Part 1: Small-signal analysis. Journal of

the Audio Engineering Society 21(5), 363–372.

91



Modeling and Control of a Pneumatically Driven
Stewart Platform

Hubert Gattringer, Ronald Naderer and Hartmut Bremer

Abstract Electrically driven Stewart platforms are used in the field of machine
tooling and robotics, where very accurate positions have to be reached associated
with heavy loads. In this paper we present a pneumatically driven Stewart platform
powered by fluidic air muscles. Due to the elasticity of the muscles and air as driv-
ing medium, the robot is predestined for applications where compliance plays a
major role. Compliant behavior is necessary for direct contact with humans. Fit-
ness is an area, where this contact is given and a fast movement is needed for the
body workout. Another field of application are simulators for computer games or 6D
cinemas. To realize the six degrees of freedom (x, y, z, α, β, γ ) for the Tool Center
Point (TCP) there are six fluidic muscles. Due to the fact that the muscles are only
able to pull on the platform, there is a spring in the middle that applies a compress-
ive force to the moving part of the robot. The spring is a non modified spiral spring
which is commonly used for the suspension of a passenger car. As a result of the
kinematical model (inverse kinematics, forward kinematics) the workspace is op-
timized. To dimension and test the dynamical behavior, a Matlab/Simulink model is
derived. This is done by applying the Projection Equation, a synthetical method for
obtaining the equations of motions for multi body systems. Based on the dynam-
ical model we develop a control concept in a cascaded structure (pressure control,
linearization, position control). A laboratory setup is used to validate the simulation
model. Both, simulations as well as experimental results demonstrate the success of
the proposed concept.
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1 Introduction

In modern life, manufacturing companies without robotic systems are hard to ima-
gine. Normally these are articulated robots for manipulation tasks and Hexapod sys-
tems in milling machines. In [12] and [13] a hexapod system is introduced using stiff
electrical drives with a very high accuracy. Some basics for parallel kinematic robots
can be found in [8, 9].

For applications where humans are directly involved, like fitness devices or sim-
ulators for virtual environments, compliance plays a major role. The compliance
can be reached by using pneumatic muscles as driving units instead of stiff electric
servo drives. In this paper we present a parallel kinematic built as a Stewart plat-
form with a movable upper platform and a fixed lower platform connected by six
fluidic muscles, see [14] for details. The muscles can only pull on the platform, so
a pre-stressed spring in the middle of the hexapod delivers the compressive forces.
Figure 1 shows the design of the system under consideration. To move the platform
in the 3D space some kinematical calculations are done. The inverse kinematical
problem is easily evaluated by vector chains, while the forward kinematics is solved
numerically. The Projection Equation [2] is used to derive a dynamical model of
the hexapod. By inserting the trajectories with their time derivatives, the inverse
dynamical model can be used to improve the behavior in the sense of a feed for-
ward control. The feedback control is realized as cascaded structure consisting of
a pressure control, linearization of the muscle behavior and a linear position con-
trol, see [4]. Some basic concepts for controlling fluid muscles can be found in [10].
Singh et al. [16] show the design and control of a single pneumatic actuator that also
acts against a pre-stressed spring. An enhancement of the valve-actuator behavior is
shown in [15]. Aschemann et al. [1] give a contribution to a flatness-based trajectory
control of a pneumatically driven carriage. In [7] instead of static characteristic lines
a dynamical model of the muscle is described improving the dynamical behavior of
the system.

2 Design

As already mentioned the hexapod consists of a moving platform and a fixed base
platform coupled by six fluidic muscles. The muscles run with a maximum pressure
of 6 bar delivering forces up to 6000 N/muscle by a weight of 0.2 kg, see Figure 5
for the characteristic lines of the used muscles. The platform in Figure 1 has a height
of 0.5 m by a diameter of 0.4 m. The weight is about 20 kg. Due to the construction,
friction effects only occur in the ball bearings at the ends of the muscles and are
therefore negligible. The muscle itself does not have any friction. The spring apply-
ing all compressive forces is from a passenger car with a stiffness in longitudinal
direction of about 105 N/m. The desired trajectories can either be planned offline,
or directly taken from a force feedback joystick with six degrees of freedom, built
again as a Stewart platform. A detailed description for this joystick is given in [11].
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Fig. 1 Photo of the system. The left side of the photo shows the joystick, while the right side is the
pneumatically driven hexapod.

The electrical buildup is shown in Figure 2. All the control schemes are designed by
using Matlab/Simulink. With the Real Time Workshop the control code is built for
a Real Time Application Interface (RTAI) patched linux kernel, running on an em-
bedded computer board with a 1 GHz processor. Phytec eNET-CAN Boards on the
PC104 bus of the embedded system perform the CAN communication (1MBaud)
to special designed analog–digital and digital–analog converters. These are directly
connected to the joystick and the hexapod. The measured values are the lengths of
each actuator by linear potentiometers and the pressure in the muscles. The actuat-
ing values are the voltages for the pressure sensitive valves.

3 Kinematics

For the kinematical and the dynamical model of the robot (in Sect. 4) the vector
q = (x, y, z, α, β, γ )T (TCP coordinates) is used comprising the minimal co-
ordinates. x, y, z are the coordinates of the TCP, while α, β, γ is a representation
of the orientation in Cardan angles, see Eq. (2) for a definition of the rotation se-
quence. Figure 3 shows a truncated model of the system. In contrast to serial robots,
the inverse kinematics is easy to solve, see [9]. The length of the ith leg mi is equal
to
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Fig. 3 Topology of a hexapod
leg.

r
mi

ai

bi

B

I

I mi = I r + AIB Bb − I ai ,

mi =
√

I mT
i I mi

(1)

with the position r of the moving plate and the rotation matrix AIB transforming
coordinate system B to system I . By choosing Cardan angles as representation for
the orientation for the moving plate, the rotation matrix is

AIB = AT
BI = (

Aγ AβAα

)T = AT
α AT

β AT
γ (2)

where Aα is an elementary rotation about the x axis, Aβ about the y axis and Aγ

about z, respectively.
In contrast to the inverse kinematics, the forward kinematics evaluates by given

muscle lengths the position and orientation of the TCP. A satisfying analytical solu-
tion is not available. There are some approaches in [6] which are not usable in
realtime computations. However, in this paper a numerical solution is chosen. A set
of constraint equations φ including the inverse kinematics,

φ = (
φ1 . . . φ6

)T
, φi = mi |q(n) − mi,d = 0, i = 1, . . . , 6,
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where mi,d is the desired length of muscle i leads to the Newton–Raphson iteration
scheme [3]

q(n+1) = q(n) − φ′∣∣−1
q(n) φ|q(n)︸ ︷︷ ︸

δ(n)

(3)

with q(n) the solution of the nth iteration, δ the Newton direction and φ′ = ∂φ/∂q
is the appropriate Jacobian. Due to perfect starting points only two iterations per
timestep are necessary for an adequate accuracy. To decrease the calculation time
for Eq. (3) it is more efficient to evaluate δ from

φ′∣∣
q(n) δ(n) = φ|q(n)

by solving this systems of equations iteratively, see [5] for details.

4 Dynamics

There are several methods for deriving the equations of motion. In this work, the
projection equation – a synthetical method – is used. Linear momentum p = m vc

and angular momentum L = J ωc are projected into the minimal space (minimal
velocities q̇) via the appropriate Jacobians

N∑
i=1

((
∂Rvc

∂ q̇

)T (
∂Rωc

∂ q̇

)T
) (

Rṗ + Rω̃IR Rp − Rfe

RL̇ + Rω̃IR RL − RMe

)
i

= Q.

All the values like the translational velocity vc or the rotational velocity of the center
of gravity ωc can be inserted in arbitrary coordinate systems R. In contrast to ωc,
ωIR is the velocity of the used reference system. The matrix J is the inertial tensor,
while ω̃ p characterizes the vector product ω × p. fe and Me are imposed forces and
moments acting on the ith body.

In the present case a body fixed reference system B is used for the description of
the moving plate. The velocities in this system read

Bωc = BωIB = [
Aγ Aβe1 Aγ e2 e3

]
⎛
⎝ α̇

β̇

γ̇

⎞
⎠ ,

Bvc = B ṙc + Bω̃IB Brc.

The weight of the muscles is about dimensions smaller than the moving plate
and load, so it can be neglected. Special investigations have to be performed in the
modeling of the muscles and the spring forces. The principle of virtual work reads

δW = δqT Q =
∑

δ I rT
i I Fi =

∑
δqT

(
∂I ri

∂q

)T

I Fi
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with
I Fi = Fi

I mi

‖ I mi‖ .

Fi is the force of the ith muscle, while I mi/‖ I mi‖ is the normalized direction, see
Eq. (1). The spring for the compressive forces is included with the help of a potential
Q = −(∂V/∂q)T , where the potential function V can be approximated by

V = 1

2
ctrans,z(z − l0)

2 + 1

2
ctrans,xy(x

2 + y2 + 1

2
crot,γ γ 2 + 1

2
crot,αβ(α2 + β2).

As can be seen in the potential function, there is a different stiffness in z (ctrans,z)
and x, y (ctrans,xy ) direction and in γ (crot,γ ) and α, β (crot,αβ ) direction. The values
are evaluated by an identification process. l0 is the length of the force free spring.
The dynamical modeling process delivers the equations of motion in the form

M (q) q̈ + g(q, q̇) = B(q)u, (4)

where u = (F1 . . . F6 )T is the control input of the six muscle forces. M(q) is
the mass matrix and g(q, q̇) contains all nonlinear effects like coriolis forces, grav-
itational forces and so on. To calculate the inverse dynamical model the equation
of motion is solved for the forces u by premultiplying Eq. (4) with B−1. Due to
the mechanical design, a singular position of the hexapod and therefore a singular
matrix B is not possible.

5 Control

To test the performance of the robot on a test rig, an embedded system, running
with a RTAI patched Linux kernel, is used to achieve the real time performance.
A Nano Luke Board equipped with a 1 GHz processor fulfills the requirements to
let all computations run in a sample time of 2 milliseconds. Matlab/Simulink is
used to develop the overall software system whereas the computationally intensive
functions are included as C code. Figure 4 shows the control concept in a schematic
way for one leg.

The desired values in TCP coordinates can either be generated by a trajectory
generator (offline) or by a joystick (online). The offline paths are needed for manip-
ulation tasks, while the online ones are useful in the field of fitness where a trainer
plans the motion. The TCP coordinates are via the inverse kinematics transformed
to the desired lengths and a desired stroke h in % for each muscle is calculated,

hd,i = md,i

m0
100%

(m0 . . . total length of the muscles). A PID controller delivers in combination with
the inverse dynamic model
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Fig. 6 Measured and desired TCP coordinates.

Fig. 7 Measured and desired
length of muscle 1.
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pressure of the ith muscle. The system is tested with desired trajectories shown
in Figure 6. The maneuver is a fast movement in z-direction, followed by x and y

movements for the TCP. There is a small control error due to limitations in the input
variables of the pneumatic valves.

Figure 7 exemplarily shows the desired (md,1) and the measured (m1) length of
muscle 1. The behavior is satisfactory with respect to the required accuracy. The
pressure control behavior for muscle 1 is shown in Figure 8.

6 Conclusions

In this paper we presented a new type of parallel mechanism using fluidic muscles as
an innovative driving system. A main advantage is the simple design of the Stewart
platform consisting of a moving plate, a fixed plate connected by six muscles and a
pre-stressed spring. The six degrees of freedom (x, y, z, α, β, γ ) are interrelated to
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Fig. 8 Measured and desired
pressure of muscle 1.
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the lengths of the muscles (m1, . . . ,m6) by kinematical computations. The inverse
kinematical problem is easily solved by vector chains, while the forward kinemat-
ics is evaluated by a Newton iteration scheme. From a dynamical point of view, the
system consists of nine bodies. A representation in minimal space, where constraint
forces are faded out, is evaluated by the Projection Equation leading to a simulation
model and an inverse dynamical model enhancing the control performance. Due to
the high nonlinearities of the pneumatic muscles, a lot of work has to be done in the
evaluation of the control concept. The shown cascaded scheme consisting of pres-
sure control, linearization, model based feed forward control leads to a satisfying
behavior. In the future investigations, observers to model the load (mass, center of
gravity) have to be implemented.
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Singularity-Consistent Torque Control of a
Redundant Flexible-Base Manipulator

Naoyuki Hara, Yusuke Fukazu, Yoshikazu Kanamiya and Daisuke Sato

Abstract A path tracking control method for a kinematically redundant manipulator
on a flexible base is proposed. The method is based on dynamic redundancy resolu-
tion through a vibration suppression constraint. It is shown that the end-effector path
can pass via an algorithmic singularity without destabilizing the system. Simulation
data from a planar system is presented, confirming that stable path tracking can be
achieved within large portions of the manipulator workspace.

1 Introduction

Manipulators mounted on a flexible base have been studied widely in the past in
view of two fields of applications mainly: nuclear waste cleanup [1,2] and space ro-
botics [3, 4]. In the former application, a manipulator is mounted on a long beam to
ensure access to a remote site. In the latter application, the manipulator is mounted
at the end of a large arm that allows for relocation of the manipulator base. Such
systems are known as “macro-micro” manipulators. Examples include the Cana-
dian SSRMS/Dextre and the Japanese JEMRMS/SFA manipulator systems on the
International Space Station.

Flexible base mounted manipulators induce base vibrations via the reaction force.
A few control methods have been proposed in the past that can ensure base vibration
suppression control [5–8], design of control inputs that induce minimum vibrations
[9], and end-point control in the presence of vibrations [10, 11].

Appropriate control methods depend very much on the structure of the manip-
ulator, e.g. dual-arm or single-arm and the presence of kinematic and/or dynamic
redundancy. In this work, we focus on a kinematically redundant flexible base ma-
nipulator. End-effector control in the presence of base vibrations becomes possible

Naoyuki Hara, Yusuke Fukazu, Yoshikazu Kanamiya and Daisuke Sato
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Musashi Institute of Technology, Tokyo, Japan;

H. Ulbrich and L. Ginzinger (eds.), Motion and Vibration Control, 103–112.
© Springer Science+Business Media B.V. 2009



N. Hara et al.

with such a manipulator. In addition, there is also a possibility for vibration suppres-
sion control via manipulator self-motion.

We should note, however, that redundancy resolution techniques usually suffer
from the presence of algorithmic singularities [12]. In the case of a flexible base
manipulator, algorithmic singularities are due to the imposed vibration suppression
constraint, and are located inside the workspace. As noted in [13], it is physically
impossible to realize vibration suppression at such manipulator configurations. The
work of Hanson and Tolson demonstrates this fact [14]. Unfortunately, the import-
ance of this problem has been usually underestimated in literature, even in recent
studies [15].

We have addressed the problem of flexible base manipulator teleoperation con-
trol in the presence of both algorithmic and kinematic singularities in a recent
work [16]. A velocity control framework has been designed, based on the Reaction
Null-Space [17] and the Singularity-Consistent [18] methods, named Singularity-
Consistent Vibration Suppression (SCVS) control. The aim was to achieve stable
teleoperation control throughout the entire workspace.

The aim of the present work is twofold. First, we highlight a problem with the
SCVS velocity controller related to the presence of algorithmic singularities due to
the Reaction Null-Space constraint. Second, we develop a dynamic torque control
framework and show how the algorithmic singularity problem can be tackled within
such framework.

2 Background and Notation

The equation of motion of a manipulator mounted on a flexible base can be written
in the following form [17]:

[
H b H bm

H T
bm Hm

] [
ν̇b

q̈

]
+

[
cb

cm

]
+

[
Dbνb

Dmq̇

]
+

[
Kb�ξ

0

]
=

[
0
τ

]
(1)

where �ξ ∈ �k denotes the positional and orientational deflection of the base from
its equilibrium, νb is the twist (velocity/angular velocity) of the base, q ∈ �n stands
for the generalized coordinates of the arm, H b(q,�ξ ), Db, and Kb ∈ �k×k de-
note base inertia, damping and stiffness, respectively. Hm(q) ∈ �n×n is the iner-
tia matrix of the arm, Dm stands for joint damping and H bm(q,�ξ ) ∈ �k×n de-
notes the so-called inertia coupling matrix. cb(q, q̇,�ξ , νb) and cm(q, q̇,�ξ , νb)

are velocity-dependent nonlinear terms, and τ ∈ �n is the joint torque. No external
forces are acting neither on the base nor on the manipulator.

Under the simplifying assumptions, described in [17], the equation of motion can
be linearized around the equilibrium of the base, as follows:

H bν̇b + Dbνb + Kb�ξ = −H bmq̈. (2)

Then, choose the control acceleration as
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q̈c = H+
bmGbνb + (U − H+

bmH bm)ζ , (3)

where Gb is a positive definite matrix, and H+
bm ∈ �n×k denotes the Moore-Penrose

generalized inverse of the inertia coupling matrix, U denotes the unit matrix of
proper dimension, and ζ is an arbitrary vector. Since H bmH+

bm = U and H bm(U −
H+

bmH bm) = 0, it becomes apparent that controlled damping can be achieved by a
proper choice of matrix Gb.

Note that the second term on the RHS of the above equation stands for the Reac-
tion Null-Space. In [17], the term was used to ensure the desired end-effector motion
constraint. In [16] it was shown that the desired end-effector motion can be realized
without the Reaction Null-Space term.

We aim to control both end-tip motion and flexible base vibrations. Denote by
νe ∈ �m the manipulator end-effector twist. Then we have:

ν̇e = J q̈ + J̇ q̇ + ν̇b, (4)

where J (q) ∈ �m×n is the manipulator Jacobian.

3 Singularity-Consistent Redundancy Resolution with Vibration
Suppression Capability

3.1 Redundancy Resolution via Additional Constraint

A well known method for resolving kinematic redundancy is to impose an additional
constraint [12]. We derive such an additional constraint in terms of joint acceleration
from the vibration suppression control acceleration (3):

H bmq̈ = Gbνb. (5)

Note that the Reaction Null-Space term has been thereby ignored.
Let us assume now that the dimension k of base deflection space equals the de-

gree of redundancy of the manipulator, that is k = n − m. Combining the imposed
end-effector acceleration constraint from (4) with the above additional constraint,
we obtain: [

ν̇ ′
e

Gbνb

]
= J vs q̈, (6)

where ν̇′
e = ν̇e − J̇ q̇ − ν̇b, J vs = [

J T H T
bm

]T ∈ �n×n. The joint acceleration can
then be written as:

q̈ = J−1
vs

[
ν̇ ′

e

Gbνb

]
. (7)
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Though the above solution was obtained in a straightforward manner, we must
note that performance will inevitably degrade when matrix J vs becomes singular.
The condition det J vs = 0 means that the linear system (6) becomes singular. When
displayed in workspace, the singularities are mapped to both isolated points and
continua. A well-known subclass of singularities are the kinematic singularities,
defined by the condition det JJ T = 0. For articulated manipulators, these appear
mainly at the workspace boundaries. The rest of the singularities, referred to as
“algorithmic singularities,” are located within the workspace, though. Since the ad-
ditional constraint used here is the vibration suppression constraint, we can expect
that the capability to suppress vibrations will deteriorate around these algorithmic
singularities [13]. In addition, the system may destabilize. This hinders the task
planning problem significantly.

3.2 Singularity-Consistent Solution for the Acceleration

To cope with the singularity problem, we will rewrite the above joint acceleration (7)
according to the Singularity-Consistent method [18]. First, we compose the column-
augmented Jacobian and the respective homogeneous equation:

J̄ vs
¨̄q = 0, (8)

where

J̄ vs =
[

J −ν̇ ′
e 0

H bm 0 −Gbνb

]
∈ �n×(n+2) (9)

and
¨̄q = [

q̈T 1 1
]T

. (10)

Next, we write the set of solutions to the above homogeneous equation as fol-
lows:

¨̄q = N̄vsbvs, (11)

where N̄vs = [
n̄m n̄b

] ∈ �(n+2)×2. The two column vectors of N̄vs are: n̄m =[
nT

m det J vs 0
]T

and n̄b = [
nT

b 0 det J vs

]T
, and bvs = [

bm bb

]T
is a vector with

arbitrary components. The last equation can be expanded as:

q̈ = bmnm(q, ν̇ ′
e) + bbnb(q, νb) (12)

−1 = bm det J vs (13)

1 = bb det J vs. (14)

nm(q, ν̇ ′
e) denotes a vector field component that ensures reactionless motion along

the desired end-effector trajectory. The nb(q, νb) vector field component, on the
other hand, ensures vibration suppression.
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It is easy to show that if the two arbitrary scalars bm and bb are determined
from the last two equations, respectively, and substituted into (12), then the joint
acceleration obtained will be the same as that in (7), and hence, the system may
destabilize around singularities.

One possible way to deal with such problem is by proper choice of bm and bb.
This is the essence of the Singularity-Consistent method. We sacrifice thereby per-
formance in terms of end-effector acceleration along the desired path and in terms
of vibration suppression capability, but gain overall stability.

We should note also an important property of the above solution: the bmnm com-
ponent restricts the manipulator motion in a conservative way due to the Reaction
Null-Space constraint H bmq̈ = 0.1 The algorithmic singularities appear as a con-
sequence of this constraint. The CoM should not be restricted to move in such con-
servative way, because inevitably an algorithmic singularity will be reached [16].

4 Pseudoinverse-Based Solution

To relax the constraint on the CoM motion, we will employ a Moore–Penrose gen-
eralized inverse (pseudoinverse)-based acceleration component for the end-effector
motion. Recall that the general solution for the joint acceleration can be written
as [12]:

q̈ = J+ (
ν̇ − J̇ q̇

) + (U − J+J )ζ a, (15)

where ζ a is an arbitrary n−vector. We can then replace bmnm in (12), to obtain:

q̈ = J+ (
ν̇ − J̇ q̇ − ν̇b

) + bbnb(q, νb). (16)

When analyzing the above equation, recall that the set of joint accelerations q̈n =
bbnb satisfies the two constraints: J q̈n = 0 and H bmq̈n = Gbνb. The former con-
straint means that vector nb belongs to the null space of the Jacobian: nb ∈ N (J vs).
Hence, from a well known property of the pseudoinverse-based inverse kinematics
solution for kinematically redundant manipulators, it can be concluded that the two
components of the above joint acceleration are orthogonal [12]. Thus, their mutual
interference will be minimized, and we can expect that the vibration suppression
constraint will be enforced constantly during end-effector motion, without disturb-
ing it.

1 We should note that nm is derived as the null-space vector of a matrix obtained from J̄ vs by
removing its last column.
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Fig. 1 A planar 3R manipulator on a flexible base.

5 Implementation of the Method

We will demonstrate the method with the help of the planar 3R manipulator shown
in Figure 1. The base deflects along the x axis. Hence, the reaction moment and the
reaction force component along the y axis can be neglected as a disturbance. We
have: n = 3, k = 1. The parameters of the manipulator are shown in the figure.

End-tip path tracking control (meaning that m = 2) is envisioned according to
the following control law:

v̇ref = p̈d + Kv(ṗd − ṗ) + Kp(pd − p). (17)

p and v ≡ ṗ denote end-tip position and velocity, respectively. The subscript (◦)d
denotes a desired quantity, Kv and Kp are positive definite feedback gain matrices.

Using (16), the reference joint acceleration is written as

q̈ref = J+ (
v̇ref − J̇ q̇ − v̇b

) + bbñbgbvbx, (18)

where vb = [vbx, 0]T is the base velocity vector, gb is the vibration suppression
gain and nb = ñbgbvbx .

Further on, the joint torque vector can be written as

τ = Hm(q)q̈ + hT
bm(q)v̇bx + Dmq̇ + cm(q, q̇), (19)

according to the equation of motion. The joint damping term plays the important
role of damping out the momentum, conserved during vibration suppression [17].

Next, insert the reference joint acceleration (18) into the last equation, to obtain
the control torque as:
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τ c = HmJ+ (
v̇ref − J̇ q̇ − v̇b

) + Dmq̇

+cm + hT
bmv̇bx + bbHmñbgbvbx . (20)

6 Simulation Results

Starting from initial configuration q1 = 0.0, q2 = q3 = 0.5 rad (nonsingular), the
manipulator end-tip is required to track a straight-line path parallel to the x axis.
The desired current end-tip position, speed and acceleration along the straight-line
are calculated from a fifth-order spline function. During this motion, the CoM ac-
celerates/decelerates along the low-stiffness (x axis) direction. Hence, vibrations are
induced, that are then to be suppressed by the vibration suppression component (the
last term on the r.h.s. in (20)). We should also note that an algorithmic singularity
will be encountered along the path.

In the first simulation, the final time for the spline function is set to 9 s. The
vibration suppression gain is gb = 30 kgs−1, the feedback gain matrices are Kp =
diag [20000, 20000] s−2 and Kv = diag [200, 200] s−1. Joint damping is set
to Dm = diag [0.05, 0.05, 0.05] kgms−1. The vibration suppression scalar bb is
determined from bb = 1/detJ vs . In the neighborhood of the algorithmic singularity,
vibration suppression is turned off (by setting bb = 0) to avoid destabilization. The
neighborhood is determined by a threshold, selected as |bb| = 1.0 × 104 m−2s−2.

The results from the simulation are shown in Figure 2. It becomes apparent
that vibration is successfully suppressed during the motion. At around 5 s, the al-
gorithmic singularity is crossed. From Figure 2(c) it can be observed that CoM
acceleration increases around the singularity. Nevertheless, no significant base de-
flection is observed, and the end-tip error remains within acceptable limits.

In the next simulation, we shortened the execution time of the same path, from
9 s to 3 s, reading to higher overall velocities/accelerations (see Figure 3). The base
deflects significantly around the algorithmic singularity. In addition, large peak velo-
cities are observed and the system tends to destabilize. After passing the singularity,
vibration suppression is invoked again, further vibrations are suppressed and the
system stabilizes.

7 Conclusions

We have developed a path tracking control method for a kinematically redundant
flexible base manipulator, capable of simultaneous vibration suppression, based on
dynamic redundancy resolution. The effect achieved is similar to that of reaction-
less path motion control. In addition, we have shown that it is possible to cross
an algorithmic singularity without destabilizing the system, despite using high PD-
feedback gains.
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Fig. 2 Straight-line tracking and vibration suppression in case of a relatively slow movement.

Unfortunately, with faster movements, the base may deflect locally, around the
singularity, since vibration suppression is switched off for a short time to avoid
destabilization. We intend to tackle this problem in a future work by proper end-tip
speed/acceleration replanting.
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Fig. 3 Straight-line tracking and vibration suppression in case of a relatively fast movement.
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Semi-Active Control of a Targeted Mode of
Smart Structures Submitted to Multimodal
Excitation

S. Harari, C. Richard and L. Gaudiller

Abstract Active control of smart structures equipped with piezoelectric elements
has shown its efficiency for two decades now. However, the electric power required
by amplifiers for driving actuators appeared to be a severe limitation to the develop-
ment of these techniques. In order to reduce this power requirement, semi-passive
techniques developments such as Synchronized Switch Damping control were car-
ried out. These ultra-low power techniques perform very well for monomodal ex-
citation but their performances are limited in the case of multi-modal or complex
vibrations. This paper deals with the implementation of an enhanced semi-active
technique using methods developed for active control. A new multimodal control
technique is proposed. It is based on SSD-Inductance semi-active technique. A Lu-
enberger observer separates the modal variables from the voltage of the piezoelectric
sensors. Then, the SSDI control can be targeted separately on each mode to control
the vibration. This technique does not need operative power supply. An application
of the proposed method on a clamped-free smart beam is proposed. Modal damp-
ings of the controlled smart structure are first of all predicted by simulations. Then
experimental results validate the proposed principle. Results obtained show the effi-
ciency of the method and demonstrate its capabilities to control different modes on
a broad frequency range.
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1 Introduction

The use of piezoelectricity is now well established for controlling structure. The
high integrability of piezoelectric elements, their compactness, light-weight and
their high bandwidth make them well suited to be used as actuators and sensors
in smart structures.

Therefore smart structures are often used in active control. The two main lim-
itations of this method are that it requires external power sources to allow energy
exchanges between the actuators and the structure and that a large number of com-
ponents are often necessary. However among active control technique, the modal
method shows good performance for controlling some vibration modes with a min-
imum of components [3] and for concentrating energy on targeted modes. Gaudiller
et al. showed that modal control is well adapted for reducing operative energy by
using nonlinear modal control algorithms [4], for removing restored potential en-
ergy [9], while being adapted to complex smart structures via modal adaptive al-
gorithm [2].

As an alternative to active control, passive control has been proposed. The
method consists in connecting the piezoelectric element to a specific electrical pass-
ive network, which dissipates mechanical energy. This method is interesting because
it does not require operating energy as in active control [6] but its efficiency must
be reinforced.

In order to increase damping performance of passive techniques, semi-active con-
trol strategies have been developed. It consists of modify the electric boundary con-
ditions of the piezoelectric elements synchronously with the structure motion. It is a
reliable and stable way of controlling structures that is a great advantage compared
with active control. Several methods have been investigated for semi-active vibra-
tion damping and energy reclamation using piezoelectric elements. This method
based on nonlinear treatment demonstrated an intermediate performance between
active and passive control; however, in the case of complex excitation, the damping
obtained by semi-active techniques is less important. Several methods have been
investigated to bypass this drawback. Corr and Clark [1] proposed a method by
using numerical filtering techniques in order to target specific modes. The use of
filters inevitably involves phase shifts, which leads to a loss of efficiency. A State-
Switched Absorber (SSA) is used by Holdhusen and Cunefare [7] in case of mul-
timodal disturbance. Synchronised Switch Damping (SSD) techniques [10] which
are implemented in this paper consist of leaving the piezoelectric elements in open
circuit except during a very brief period of time when the electric charge is either
suppressed, in a short circuit or inverted with a resonant network. Richard et al. [11]
showed that for a harmonic regime, optimal switching should occur on each ex-
tremum of the voltage of the piezoelectric element strain that is not true any more
in the case of multimode excitation. Therefore statistical analysis to define optimiz-
ation moments for the switching sequence was proposed in order to maximize the
extracted energy and vibration damping [5, 12]. The main limitations are related in
the case of complex or random excitation where the synchronization on the strain
extremum is not trivial.

114



Semi-Active Control of Smart Structures Submitted to Multimodal Excitation

The proposed method is based on a modal approach using semi-active and active
techniques. The method based on modal separation is presented on the first section.
The second section describes the application on a free-clamped beam equipped with
piezoelectric elements. The finite element model used for simulation is detailed and
results are presented. The experimental set-up, the identification and then the results
are described.

2 Principle

The aim of the method presented is to control a targeted mode of the structure under
multimodal excitation.

2.1 Multimodal Smart Structure Modelling

When using classical hypothesis of structural modeling, and using finite element
modeling, the dynamic behaviour of a smart structure can be described as:

mδ̈ + cδ̇ + kEδ = −αV (1)

where δ is the displacement vector, m, c and kE are respectively the mass, damping
and stiffness matrices when the actuator is in short circuit, α is the electromechanical
coupling vector and V is the actuator voltage.

The electric equation can be described by:

I = αδ̇ − C0V̇ (2)

where I is the current outgoing and C0 the piezo element capacity.
The previous equations can be written in a modal basis φ after the following

change of variables:
δ = φq (3)

where φ is the mode shape matrix and q the modal displacement vector.
In modal coordinates, Eqs. (1) and (2) become:

Mq̈ + Cq̇ + KEq = −θV (4)

I = θ t q̇ − C0V̇ (5)

with M , C, KE respectively the mass, damping and stiffness modal matrices and θ

the modal electromechanical coupling vector defined by:

θ = φtα (6)
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The norm of φ is chosen such that:

φtMφ = Id (7)

Then:
KE = diag((ωE)2), C = 2diag(ξ)diag(ωD) (8)

where ξ is the modal damping vector, ωE and ωD the frequency vectors when the
actuator is in short circuit and in open circuit respectively.

The modal coupling coefficients kij of the structure are defined for the mode j

and the piezoelectric element i as:

kij = (ωD
j )2 − (ωE

ij )
2

(ωD
j )2

(9)

2.2 Strategy for Complex Excitation

The proposed control is based on the SSDI technique (Synchronized Switch Damp-
ing on Inductor) which consists of adding a device in parallel with the piezoelectric
element as shown in Figure 1a. The device is composed of a switch and an in-
ductance L connected in series. The switch is almost always open, except when a
voltage extremum occurs. At this moment, the switch is closed, until the voltage on
the piezoelectric element has been reversed (Figure 1b). The inversion is possible
thanks to the capacitance C0 of the piezoelectric element and the inductance which
constitutes an oscillator network. The inversion time corresponds to a half period
of the oscillating circuit (Figure 1c). The voltage inversion is not perfect, because a
part of the energy stored on the piezoelectric element capacitance is lost mainly in
the inductance. This technique is fully described in [10].

When the structure is excited by a wide bandwidth excitation, many extrema
appear on the voltage, which correspond to the modes of the structure excited. So
the previous SSDI control strategy, which consists of inverting the voltage on each
voltage extremum is not optimal. In order to obtain better performance, the idea of
the method proposed here is to reverse the actuator voltage when the modal displace-
ment of the targeted mode is extremum as depicted on Figure 1b for the q1 modal
variable. This inversion is then possible if the modal displacement is computed.

This modal displacement qi can not be directly carried out by the sensors meas-
urement. Several methods can be used to obtain the modal displacement. The tech-
nique used here is based on an observer [8]. The observer estimates the sensor
voltage V̂s from the modal control signal, from the sensor measurements Vs and
thanks to the model. The modal displacement qi is then estimated and carried out
by the internal closed loop observer due to the convergence between the voltage
sensors measured Vs and the voltage sensors estimation V̂s . The observer can be
adjusted in order to eliminate quickly the estimation error.
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Fig. 1 (a) The SSDI circuit, (b) The voltage typical waveforms, where Va is the piezoelectric
actuator voltage and q1 is the corresponding first modal displacement and (c) the voltage inversion.

Fig. 2 Strategy of SSDI mulitmodal control.

The main limitation of this method is that it requires a modal model of the smart
structure including both actuator and sensors. However, the parameters of the model
can be identified accurately with an appropriate method. Moreover, the number of
modes taken into account by the observer can be limited by the number of controlled
modes.

3 Application

The method is applied on a clamped-free beam in spring steal (XC80) with three
P188 piezoelectric inserts which are bonded on the beam with Araldite D epoxy
resin. One is the actuator and two others are used as sensors. The method will be
applied in order to control selectively the first mode, then the second mode of the
structure. The placement of the sensors and the actuator are therefore optimized in
order to obtain a large modal coupling coefficients k1 and k2 on the two first modes
(k1, k2 ∼= 10%). The characteristics of the smart structure is given in Table 1.
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Table 1 Smart beam characteristics.

Beam density ρ = 7800 Kg.m−3 Beam width b = 2.0 × 10−2 m
Ceramic density ρc = 7700 Kg.m−3 Beam height h = 1.0 × 10−3 m
Beam Young modulus E = 2.2 × 1011 Pa Beam length l = 3.0 × 10−1 m
Permittivity component εS

11 = 12.75 × 10−9 F/m Actuator position xA = 1.0 × 10−3 m
εS

33 = 7.411 × 10−9 F/m Sensor 1 position xS1 = 1.3 × 10−1 m
Sensor 2 position xS2 = 1.7 × 10−1 m

Elastic compliance SE
11 = 15.44 × 1012 m2/N Actuator length lA = 5 × 10−2 m

constant SE
33 = 20.09 × 1012 m2/N Sensors lengths ls = 2.5 × 10−2 m

Piezoelectricity contents d31 = −186 pC.N−1 Ceramic width bC = b = 2.0 × 10−2 m
d33 = 425 pC.N−1 Ceramic height hC = 4.0 × 10−4 m

3.1 Simulation

The simulated control (Figure 2) uses equations (4) and (5) and the modal charac-
teristics are computed by a FE code. The vector of measurement Vs is introduced in
the modal observer. The estimate modal displacement q̂i , obtained by the observer,
allows to determine the optimal moment for the voltage inversion.

The characteristics of the equations of the smart structure are determined using
a finite element model. The smart structure is modelled with the ANSYS FE code.
The beam is modelled by using Solid45, eight node volume elements, with three
degrees of freedom per node. The solid5 elements are used to model piezoelectric
actuators and sensors. They are eight node elements with four degrees of freedom
per node: three displacements and the electric potential. A mesh with 9,000 elements
allows to obtain the modal model of the smart structure with a good accuracy.

The simulations are performed using the Matlab/SimulinkTM software environ-
ment. The observer uses the previous model of the smart structure until 1200 Hz.
The structure is excited by a ten Volt pulse during 0.3 ms applied on the actuator.
The observer gains are chosen in such a way that the system is stable and rapid com-
pared to the dynamic of the controlled structure, without observer. The inductance
is selected in order to minimize the losses in the SSDI device.

Two simulations are realized: successively, the first mode is controlled and then
the second mode is controlled. The frequency responses are carried out via a FFT.
Voltage on sensor 1 is used as a monitoring of the structure motion. Figures 3 and 4
compare this voltage in the controlled and non controlled cases. Simulations anticip-
ate an attenuation of 18.73 dB on the first mode and 27.05 dB on the second mode.
Frequency response comparison shows that no residual mode is excited. Vibration
damping appears to be performant on the targeted mode.
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Fig. 3 Simulated frequency response on the first sensor when the smart stucture is uncontrolled
(grey line) and when the first mode is controlled (black dotted line).
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Fig. 4 Simulated frequency response on the first sensor when the smart stucture is uncontrolled
(grey line) and when the second mode is controlled (black dotted line).

3.2 Experimentation

The proposed control strategy is implemented using a dSPACE DSP board DS-1104
and the programming and implementation are done using the Matlab/SimulinkTM

software environment. The experimental set-up is presented in Figure 5.
Thanks to the two sensors voltages, the modal displacements of the eight first

modes are numerically estimated by the observer and the extremum of the displace-
ment targeted by the control are localized on the corresponding modal variable. The
switch trigger is generated by the digital output of the control board, connected on a
hard SSDI device. The excitation of the smart structure is carried out using an elec-
tromagnet driven by an audio amplifier. A pulse applied during 0.4 ms is applied on
the electromagnet.

The modal model of the structure (Eqs.(4) and (5)) used by the observer has to
be determined. The modal characteristics of the model are identified. The identific-
ation is realized using measured frequency responses using swept sine excitation.
The results of experimental identification of the non-controlled structure and the
corresponding computed results agree quite well.
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Fig. 5 Experimental setup.
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Fig. 6 Experimental frequency response on the first sensor when the smart stucture is uncontrolled
(grey line) and when the first mode is controlled (black dotted line).
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Fig. 7 Experimental frequency response on the first sensor when the smart stucture is uncontrolled
(grey line) and when the second mode is controlled (black dotted line).

The impulsional response is presented Figure 6 when the first mode is controlled
and Figure 7 when the second mode is controlled. The modal semi-active control
induces a 19.88 dB attenuation on the first mode and 24.54 dB on the second mode.
As simulated, on the considered bandwidth lying between 0 and 1200 Hz, spillover
is not observed.

Experimental and simulated results of modal damping and modal damping ratio
are summarized Table 2 and make it possible comparison. A good agreement is
noted.
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Table 2 Simulated and experimental modal damping ratio ξ and attenuation on first sensor.

Simulation Experimentation
Modal damping ratio Attenuation Modal damping ratio Attenuation

Uncontrolled Controlled Uncontrolled Controlled
Mode 1 ξ = 0.0010 ξ = 0.0076 −18.73 dB ξ = 0.0010 ξ = 0.0076 −19.88 dB
Mode 2 ξ = 0.0019 ξ = 0.0155 −27.05 dB ξ = 0.0014 ξ = 0.0047 −24.54 dB

Fig. 8 Simulation robustess
test on the control of the
second mode.
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3.3 Robustness

Robustness tests are carried out in simulation by modifying the frequencies used by
the model of the observer. For a sufficiently fast observer such as the used observer,
the simulations show that the control is stable and robust.

Unlike in usual modal active control, the stability and the performances are not
too badly affected. Indeed, a bad identification causes a slight time shift in the mo-
ment of switch as this time definition is not very critical close to a maximum. This
result is pointed out in Figure 8 which presents the increasing of the modal damping
of the second mode in function of the frequency shift (in percent). For a variation
of five percent of all the frequencies in the model used by the observer, the gain
decreases from –27.05 dB to –25.54 dB. The robustness appears very good.

4 Conclusion

The control strategy presented in this paper allows a performant modal damping
targeted on a specific mode of a structure thanks to a combination between SSDI
semi-active and active control technique. The proposed method presents many ad-
vantages. This semi-active method can be used under wide bandwidth excitation
with a good efficiency for the targeted mode. This method is as effective as the ori-
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ginal SSDI which perform only when the excitation is monomodal. It requires low
energy which is well adapted to on-board structures; moreover it induces large mass
reduction. A simple battery must be useful to supply the observer and the power
required by the switch could be easily self-powered. Mode targeting performance is
a consequence of observer strategy which allows a very good mode filtering keeping
a good accuracy in terms of frequency and phases. Moreover, the method presents
a very good robustness. The results obtained by simulations are close to those ob-
tained by experimentation. Simulations could be used as prediction of measure-
ments. The current studies extended the method to control simultaneously several
modes of the smart structure.
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Model-Based Fault Detection on a Rotor in an
Actively Supported Bearing Using Piezoelectric
Actuators and the FXLMS-Algorithm

B. Hasch, O. Lindenborn and R. Nordmann

Abstract This paper examines the application of the Filtered-X Least Mean Square
(FXLMS) algorithm in the domain of model-based fault detection and fault dia-
gnosis to prevent errors in rotating machinery and increase the reliability. The ad-
vantage of this model-based approach is the combination of unbalance detection and
vibration reduction. Using the FXLMS method, it is possible to detect harmonic dis-
turbance and identify the fault unbalance in a stationary operating point. In reality,
this fault may occur in aero engines e. g. due to burst of blade or loss of parts. The
aim is to detect an unbalance at an early state before the rotor approaches the re-
gion of resonance, where this fault would lead to large radial displacements and
forces. The experimental setup consists of an elastic shaft. One of its ball bearings
is actively supported by two piezoelectric stack actuators. The rotor with its two disc
elements has its first flexural mode at a frequency of 59 Hz and is able to operate up
to a rotating frequency of 80 Hz. Eddy current sensors detect the radial displacement
of the rotor. These displacement signals are provided to the adaptive filters, which
realise external damping through the actuators and generate information about the
fault even at low frequencies. When the filter parameters reach a constant value,
quantitative information about the magnitude of the unbalance can be calculated
using the plant model. This model-based approach guarantees detection of a fault
occurring spontaneously, whereas signal-based methods have difficulty identifying
this fault far away from resonance. The concept is explained in detail. Simulation
results and experiments on the test rig show the suitability of the method.
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1 Introduction

In rotating machinery, common recurring problems are significant vibrations gen-
erated by unbalances. Damping the vibrations is a usual approach to reduce crit-
ical displacements. A possible solution is the application of external damping with
squeeze-film dampers (SFD) [6]. On top of that, active components and different
control strategies are used to cope with this problem. Another advantage of active
components is the possibility to optimise operational behaviour at different operat-
ing points and to carry out an action depending on the situation. Betschon and Schöb
[1] use for example a rotor in magnetic bearings and adaptive feedforward control
for vibration reduction. In [3] piezoelectric stack actuators are used to reduce vi-
brations of a shaft. Another interesting aspect is the vibration isolation to minimise
forces caused by unbalance. This approach to isolate hard mounts as well as the
reduction of vibrations through the FXLMS-algorithm is shown in [10].

It is also possible to use these active components for the improvement of reli-
ability, safety and efficiency of systems. Therefore, faults have to be detected be-
fore they lead to a failure of the machine. Especially aircraft engines have to be
fail-safe. Isermann [4] gives an overview and compares the different methods for
model-based approaches for fault detection like parity equations, parameter estim-
ation methods and state observers. Some faults that occur in rotating machinery
are mass unbalance, cracked shafts and shafts with radial run-out. Platz [9] uses
model-based methods to identify cracked and unbalanced shafts using residual vi-
brations and equivalent loads in the time and frequency domain. Harihara et al.
[2] test signal-based and model-based methods for fault detection on an induction
motor and shows, that model-based methods help to avoid the probability of false
alarms. On the other side, they are more complex than signal-based methods. Patton
and Chen [8] show the application of observer-based methods for a non-linear jet
engine system, concentrating on the robustness of the observer.

The method presented in this paper first tries to reduce stationary vibrations
caused by unbalance. In a second step, the parameters, which were estimated by the
FXLMS-algorithm, are used to calculate the amplitude of the unbalance. Therefore,
a model of the plant is used. When unbalance occurs spontaneously, the method
produces a significant residual. In the subsequent section the test rig is presented
and the control strategy is explained in more detail. This section is followed by the
validation with results of the simulation and the experiment. Finally there are some
concluding remarks.

2 Modelling of the System

This section begins with a description of the test rig, where the examinations take
place. In the second part it is shown, how a reduction of the vibration and the fol-
lowing determination of the amplitude of the fault unbalance is realised with the
developed strategy using the FXLMS-algorithm.

124



Model-Based Fault Detection on a Rotor Using the FXLMS-Algorithm

Used sensor planePiezoelectric actuator

Active bearing Axial position of unbalance

Toothed drive belt
Motor

Fig. 1 Test rig with sensors and actuators.

Fig. 2 First bending mode of the rotor showing sensor-outputs and force-inputs of the state space
system.

2.1 Experimental Setup

The test rig consists of a flexible rotor with one actively supported roller bearing
using two piezoelectric stack actuators visualised in Figure 1.

The rotational power is generated by a three-phase, asynchronous motor connec-
ted with the rotor by a toothed drive belt. To measure the orbits of the first mode,
eddy current sensors are placed in the middle of the shaft where large amplitudes can
best be detected. Furthermore, the current rotation speed is measured by an incre-
mental sensor, which is located on left hand side directly behind the active bearing.
One roller bearing of the shaft is actively supported by two piezoelectric stack actu-
ators in radial direction at right angles towards each other as shown in Figure 1. It is
possible to stimulate the rotor with a maximum frequency of 800 Hz. Force sensors,
which work on the principle of strain gauge, are placed between the piezoelectric
actuators and the bearing, to measure the force fed into the shaft. A circular spring
element is used in order to keep the piezoelectric actuators pressurised in the whole
working area and hold the collocated force sensors in place.

The supercritical shaft has an operating speed up to a rotating frequency of 80 Hz.
The deformation of the rotor at first flexural mode of 59 Hz is visualised in Figure 2
for x-direction.

For controller synthesis, the flexible shaft is modelled with the Finite Element
Method and reduced to a state space system. The piezoelectric actuators can be mod-
elled as springs equivalent to the actuator stiffness and a base displacement, which
represents the actuator deformation. The whole plant G(s), visualised in Figure 1,
is a Multi-Input-Multi-Output (MIMO) state space system of the flexible shaft sup-
ported by an elastic mounting. The input of the plant consists of actuator input u(t)

and disturbance input d(t) for x- and y-direction. The output vector y(t) includes
the displacement in the middle of the rotor for x- and y-direction.
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Fig. 3 Block diagram of the
control strategy with feedback
loop.

Real plant

Fig. 4 Block diagram of
the control strategy without
feedback loop. Real plant

In the experiment a dSPACE real-time system is used to apply the control al-
gorithm using a sample time of T0 = 0.0002 s.

2.2 Control Strategy and Modelling of the Plant

The FXLMS-algorithm is a widely used method for rejection of periodic disturb-
ance, for instance, in the field of active noise control. The basic structure of the
FXLMS-algorithm is described in [7] for sensor disturbance on a discrete Single-
Input-Single-Output (SISO) one degree of freedom system. Betschon and Schöb [1]
propose a similar concept to suppress harmonic disturbances on rotors in magnetic
bearings. The outcome of this is the block diagram in Figure 3, at which the trans-
fer function of the plant G(z) is split into the disturbance transfer function Gd(z)

and the input transfer function Gu(z).Therein, C(z) is the transfer function of the
controller and

H(z) = C(z)Gu(z)

1 + C(z)Gu(z)

the transfer function of the closed loop. The concept is enhanced on MIMO systems.
No underlying feedback loop is used in this case. It is not essential, whereas a

feedback controller is absolutely necessary in rotor test rigs with magnetic bear-
ings. Provided that the desired value ydes is constant and harmonic vibrations occur
around this value, the block diagram of Figure 3 simplifies to the block diagram in
Figure 4.

A first goal is to reduce vibrations caused by unbalance. Therefore, the rotating
frequency � has to be available to the FXLMS-algorithm as reference signal. The
algorithm calculates the signal r�(k), that is applied to the piezoelectric actuators
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using the inverse transfer function matrix of the plant G−1
u (z). Equation (1) shows

the cost function that has to be minimised with the help of the FXLMS-algorithm:

Ji = ε2
i = (yi − ydesi )

2 (1)

Index i represents the coordinate for x- respectively y-direction, which are minim-
ised independently. That means two adaptive filters are used. Equation (2) represents
the result of the algorithm, with the amplitudes of the corresponding sine- and cosine
function calculated in Eqs. (3) and (4).

r�(k) = w0(k) sin(�kT0) + w1(k) cos(�kT0) (2)

w0(k) = w0(k − 1) + 2ηε sin(�kT0 + ϕ0) (3)

w1(k) = w1(k − 1) + 2ηε cos(�kT0 + ϕ0) (4)

The convergence factor η is chosen according to Betschon and Schöb [1] and Na
and Park [7]. ϕ0 represents the phase shift between the reference signal and the
rotor position. The inverse transfer function G−1

u (z) of the FEM model leads to r�:

r� = Gu(z)u (5)

The summation block in Figure 4 results in y:

y = Gu(z)u + Gd(z)d (6)

Assuming that the algorithm minimises y to zero and solving Eq. (6) for d, the result
is Eq. (7):

d = −G−1
d (z)Gu(z)u = −Gd(z)

−1r�(k) (7)

With Eq. (2) the result is Eq. (8):

d = G−1
d (z)(w0 sin(�kT0) + w1 cos(�kT0)) (8)

If the inverse transfer function matrix G−1
d (z) is known, it is possible to suggest the

force caused by unbalance.

d = me�2
(

sin(�kT0 + ϕu)

cos(�kT0 + ϕu)

)

The amplitude of the unbalance me and even its phase angle ϕu related to the radial
position of the rotor can easily be calculated under ideal conditions. The influence of
the circular preload spring coupling is neglected because the coordinates are weakly
coupled. This simplifies the inversion of the transfer function matrices. Thus, it is
possible to reliably generate a residual that indicates the occurrence of unbalance
independently of the operation point. It is even possible to estimate the magnitude
and phase if the axial position of the unbalance is known. If a rotor model is not
available, a residual can still be generated, but there is no information about the
magnitude of the disturbance.
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3 Validation

In the simulation part the system behaviour of the presented control strategy is dis-
cussed under ideal conditions, where all assumptions are fulfilled. The experiments
carried out demonstrate that the proposed results of the simulation can be qualitat-
ively achieved on the described test rig.

In both, simulation and experiment, a test unbalance of 50·10−6 kg m is fixed on
the rotor as described. First, both adaptive filters are switched on at a stationary op-
eration point of the rotor at 50 Hz, which leads to a reduction of vibrations caused by
unbalance. At the same time, the calculation of the unbalance starts. When the ad-
aptation of the filter parameters is finished, the estimation of the unbalance reaches
its limit. The results of different stationary operation points are presented.

3.1 Simulation Results

The elucidated control strategy is implemented in MATLAB Simulink. The dynamics
of the flexible shaft are represented by the Finite Element Method model described
in Section 2.2. In the simulation G−1

u (z) is the exact inverse transfer function of
Gu(z), which represents the idealised case for this algorithm. A frequency of 50 Hz
is chosen to show the behaviour exemplarily. Thus, vibrations in the middle of the
shaft can be observed, but the operation point is a few Hz away from resonance
frequency, where instability occurs caused by small damping [5].

Figure 5 shows the amplitudes of the vibrations in the middle of the rotor at a
rotating frequency of 50 Hz. The signals are overlaid by an artificial noise to imitate
the behaviour of the displacement sensors. The algorithm is activated at t = 2 s and

Fig. 5 Simulation results showing the behaviour of displacements in the middle of the rotor and
unbalance estimation at a stationary operation point of 50 Hz.
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Fig. 6 Estimation of unbal-
ance at stationary operation
points with an unbalance of
50·10−6 kg m.

a reduction of the vibrations to a minimum is visible. The ideal progression is illus-
trated, too. The diagram on the right hand side of Figure 5 shows the progression of
the calculated unbalance. At first, there is no information about the magnitude of the
unbalance available. By activating the algorithm the values increase and converge a
limit. They are to be found near the set unbalance of 50·10−6 kg m.

Figure 6 shows the amplitudes of the unbalance in the middle of the rotor for
different rotating frequencies in ranges of 5 Hz, when the adaptation of the filter
parameters has stopped. The mean value of the two estimations is presented. It is
visible, that the calculation of the unbalance corresponds well to the set value during
the whole operating range. It turns out that the estimation is worse in the area of low
frequencies, where the signal to noise ratio is small.

3.2 Experimental Results

The algorithm runs on a dSPACE real time system that uses a sampling frequency
of 5 kHz. The needed inverse transfer functions G−1

u (z) and G−1
d (z) are identical to

the ones used in the simulation.

3.2.1 Behaviour of the System When the Algorithm Is Switched on

The experiment takes place at a rotating frequency of 50 Hz like in the simulation.
Figure 7 shows the progress of the amplitudes of the vibration in the middle of the
rotor. After the algorithm is switched on, the vibrations reduce to a minimum. The
calculation of the amplitude of the unbalance starts at the same time. It becomes
clear that the filter for x-direction shows a higher value than the filter in y-direction.

A cause for this might be the circular preload spring between the actuators, that
leads to a larger coupling of the coordinates than assumed. Then the actuators in-
fluence each other. In the simulation, this interaction was neglected. Additionally,
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Fig. 7 Experimental results showing the behaviour of displacements in the middle of the rotor and
unbalance estimation at a stationary operation point of 50 Hz.

Fig. 8 Estimation of unbal-
ance at stationary operation
points with an artificial un-
balance of 50·10−6 kg m and
estimation without artificial
unbalance.

the estimation is twice as much as the set test mass for unbalance. The reason for
that is, that the rotor is not fully balanced. Besides, the rotor has a slight radial run-
out. The unbalance test mass is fixed on the side, where the deformation is greatest.
Measurements without artificial test mass were made to verify this assumption (Fig-
ure 8). It shows, that the estimation of the unbalance increases extremely below
rotating frequencies of 25 Hz. The influences, which were not taken into account
in the simulation, are high at these low frequencies particularly. One of these is the
stimulation of the rotor by the teeth of the toothed drive belt. Besides the sensor
noise, the wanted harmonic signal is overlaid by higher harmonic vibrations. The
estimation of the amplitudes above the first flexural mode decreases as a whole.
This may come from the uncertainties of the model. Besides the measurements with
the artificial test mass of 50·10−6 kg m, measurements were made without test mass
at different frequencies. These show, that the rotor is not fully balanced. An inter-
esting aspect is, that the measurements become more reliable at higher frequencies,
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Fig. 9 Experimental results showing the behaviour of displacements in the middle of the rotor and
unbalance estimation at a stationary operation point with an unbalance applied during operation.

because the desired harmonic signal caused by unbalance is smaller than with arti-
ficial test mass.

3.2.2 Behaviour of the System When Unbalance Spontaneously Occurs

Although it is not possible to give an accurate prediction of the magnitude of the
unbalance in the whole operation area in the experiment, the concept is suitable to
generate residuals that indicate the occurrence of the fault “unbalance”. Therefore it
is not essential to know what value the unbalance really has.

Figure 9 shows the behaviour of the system when the algorithm is activated and
when unbalance occurs spontaneously. For this purpose an artificial test mass (mag-
net) was fixed in the middle of the rotor at t = 4 s and a constant rotating frequency
of 26 Hz. In the left part of Figure 9, the signals of the displacement sensors are
plotted against time. An attempt to detect the fault unbalance with limit value mon-
itoring would hardly be possible because the displacements of the desired harmonic
signal are pretty small far away from resonance. On the right hand side of Figure 9,
a steep edge is visible shortly after the test mass is fixed at the rotating shaft. Before
the artificial unbalance occurs, it is visible that the estimations for x- and y-direction
differ. Even the amplitudes indicate only the magnitude of the unbalance, this signal
can be used as a residual, that reliably indicates the fault unbalance. Even below the
first bending mode, this method produces significant residuals for identification of
spontaneously occurring unbalance such as blade loss or impact of foreign objects.
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4 Conclusion

The remarkable result of this study is the multifunctional application of piezoelec-
tric actuators in combination with the FXLMS-algorithm for vibration reduction
and fault detection. For harmonic disturbance like unbalance the control strategy
presented not only allows vibration reduction of the rotor initialised by the disturb-
ance. Furthermore it is possible to identify the magnitude of the unbalance. The
simulation results show the ideal case where the real plant is identical to the model
used in the algorithm. Focus of future work is the experimental identification of
the plant to improve the model and increase the performance of the fault detection.
Another interesting aspect to be looked at is the reliable estimation of the phase.
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Act-and-Wait Control Concept for a Force
Control Process with Delayed Feedback

Tamás Insperger, László L. Kovács, Péter Galambos and Gábor Stépán

Abstract The act-and-wait control concept is applied to a force control problem
with feedback delay. The point of the concept is that the feedback loop is switched
off and on periodically during the control process so that the duration of the switch
off period is larger than the feedback delay. The concept is compared to the tra-
ditional, continuous control concept, when the feedback loop is continuously act-
ive. Stability charts are constructed that plots the critical proportional gains, where
the process looses stability, as function of the feedback delay. It is shown that the
proportional gains can significantly be increased without loosing stability, if the
act-and-wait concept is used. Consequently, the force error can significantly be de-
creased this way. The theoretical results are confirmed by experiments.

1 Introduction

Force control is a frequent mechanical controlling problem in engineering. The aim
is to provide a desired force between the actuator and the environment (or work-
piece). The main difficulty of this problem is that the force sensor and the environ-
ment touched by the actuator are elastic, moreover, the compliance of the environ-
ment is often unknown. In order to achieve high accuracy in maintaining the pre-
scribed contact force against Coulomb friction, high control gains are to be used [1].
In these practical realizations of force control, however, the robot often loses stabil-
ity, and starts to oscillate at a relatively low frequency. These oscillations are mainly
caused by the digital effects and the time delay in the feedback loop [2]. In the
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current paper, we concentrate on the effect of the feedback delay on the stability
properties of the process. Such time delays arise due to acquisition of response and
excitation data, information transmission, on-line data processing, computation and
application of control forces. In spite of the efforts to minimize time delays, they
cannot be eliminated totally even with today’s advanced technology due to physical
limits. The information delay is often negligible, but for some cases, it still may
be crucial, for example, in space applications [3], in controlling congestion in the
Internet [4] or in robotic applications with time-consuming control force computa-
tion [5].

The problem with time-delayed systems is that the corresponding phase space is
usually infinite dimensional, therefore, infinite number of poles are to be controlled
using finite number of control parameters. Thus, complete pole placement is not
possible for these systems using traditional constant feedback gains. The act-and-
wait control concept is an effective tool to deal with pole placing for systems with
feedback delay. The act-and-wait technique was introduced in [6] for discrete-time
systems and in [7] and [8] for continuous-time systems. The point of the technique
is that the controller is periodically switched on and off with switch off period being
larger than the feedback delay. The resulted switched system can be described by
a finite dimensional discrete map associated with finite number of poles. Thus, sta-
bilization requires the control over finite number of poles instead of infinitely many
ones.

In this paper, the act-and-wait concept is applied to a digital force control prob-
lem. The structure of the paper is as follows. First, in Section 2, the act-and-wait
concept is summarized briefly for continuous-time systems based on [7]. Section 3
presents the mechanical model of the force control process under study using the
traditional, continuous control concept. Section 4 deals with the application of the
act-and-wait concept in the model. The two methods are compared in Section 5.
Section 6 presents the experimental verification of the theoretical predictions. The
paper is concluded in Section 7.

2 The Act-and-Wait Concept for Continuous-Time Systems

Consider the linear system

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input, A ∈ R
n×n and

B ∈ R
n×m are given constant matrices. Consider the autonomous delayed feedback

controller
u(t) = Dx(t − τ ), (2)

where D ∈ R
m×n is a constant matrix and τ is the delay of the feedback. We assume

that the delay τ is a fixed parameter of the control system and cannot be eliminated
or tuned during the control design.
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System (1) with controller (2) imply the delay-differential equation (DDE)

ẋ(t) = Ax(t) + BDx(t − τ ). (3)

Due to the time delay, this system has infinitely many poles (called also character-
istic roots or characteristic exponents) determined by the transcendental character-
istic equation

det
(
λI − A − BD e−τλ

) = 0. (4)

The system is asymptotically stable if all the poles are located in the left half of the
complex plane. Stabilization of system (1)–(2) rises the following pole placement
problem: for given matrices A and B and for given feedback delay τ , we are looking
for matrix D so that the real parts of all the infinitely many poles of the system
are negative. The difficulty of this problem is that infinitely many poles should be
controlled by finite number of control parameters, i.e., by the elements of matrix D.

An effective way of managing pole placement problem for systems with feedback
delay is the application of the so-called act-and-wait controller

u(t) = g(t)Dy(t − τ ), (5)

where g(t) is the T -periodic act-and-wait switching function defined as

g(t) =
{

0 if 0 ≤ mod(t, T ) < tw,

1 if tw ≤ mod(t, T ) < tw + ta = T .
(6)

Using controller (5) instead of (2), the delayed feedback term is switched off for
period of length tw (wait), and it is switched on for period of length ta (act).

System (1) with controller (5) can be written in the time-periodic DDE form

ẋ(t) = Ax(t) + g(t)BDx(t − τ ). (7)

According to the Floquet theory of DDEs, stability is determined by the nonzero
eigenvalues of the system’s monodromy operator, called also characteristic multi-
pliers. The system is asymptotically stable if all the characteristic multipliers are
inside the unit circle of the complex plane.

In [7], it was shown that if the length tw of the waiting period is larger than the
feedback delay τ , then the system can be transformed into an n × n discrete map.
This way, the number of characteristic multipliers can be reduced to n. For instance,
if tw ≥ τ and 0 < ta ≤ τ , then the solution over an act-and-wait period T can be
given as

x(T ) =
⎛
⎝ eAT +

T∫
tw

eA(T −s)BD eA(s−τ ) ds

⎞
⎠

︸ ︷︷ ︸
�

x(0). (8)

Stability properties of this discrete map are determined by the eigenvalues of the
coefficient matrix �. Now, the stabilization problem can be composed in the fol-
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lowing way: for given matrices A and B and for given feedback delay τ , we are
looking for matrix D and parameters tw ≥ τ and ta so that the eigenvalues of matrix
� are in modulus less than one. This way, the infinite dimensional pole placement
problem is reduced to an n-dimensional one: n eigenvalues of � should be placed
using the control parameters in D.

3 Model of Force Control Process with Feedback Delay

The 1 DoF mechanical model of the force control process is shown in Figure 1. Here,
the modal mass m and the equivalent stiffness k represent the inertia and the stiffness
of the robot and the environment, while equivalent damping b models the viscous
damping originated from the servo motor characteristics and the environment. The
force Q represents the controller’s action and C is the magnitude of the effective
Coulomb friction.

Considering a proportional force controller, the control force can be given as

Q(t) = Fd − P(Fm(t) − Fd), (9)

where P is the proportional gain, Fd is the desired force and Fm is the measured
force. The equation of motion reads

m q̈(t) + bq̇(t) + kq(t) = Fd − P(Fm(t) − Fd) − Csgnq̇(t). (10)

This type of control force computation was also considered in [1]. Assuming steady-
state condition by setting all the time derivatives to zero, considering a constant
Coulomb friction force and using that Fm = kq(t), the force error can be given as

Fe = C

1 + P
. (11)

Thus, the higher the gain P is, the less the force error is. Theoretically, there is no
upper limit for the gain P , since the constant solution q(t) ≡ qd of (9) is always

Fig. 1 Mechanical model of
the force control process.
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asymptotically stable when C = 0. Experiments show, however, that the real system
with feedback delay is not stable for large gain P [9].

In practical realizations, the control force can be written in the form:

Q(t) = Fd − P(Fm(t − τ ) − Fd) = kqd − P(kqm(t − τ ) − kqd), (12)

where τ is the time delay in the feedback loop. Thus, the equation of motion reads

m q̈(t) + bq̇(t) + kq(t) = kqd − P(kq(t − τ ) − kqd) − Csgnq̇(t). (13)

Stability analysis of this system can be given by analyzing the variational system
of Eq. (13) around the desired motion qd. For this computation, we neglect the dry
friction from the model. Considering that q(t) = qd + x(t), the variational system
reads

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = −ω2

nPx(t − τ ), (14)

where ωn = √
k/m is the natural angular frequency of the uncontrolled undamped

system, and ζ = b/(2m ωn) is the damping ratio. This system is stable if all the
roots of the characteristic equation

λ2 + 2ζωnλ + ω2
n = −ω2

nP eλτ , (15)

have negative real parts. This transcendental equation has infinitely many charac-
teristic roots in the plane of complex numbers. Still, stability boundaries can be de-
termined by assuming pure imaginary characteristic roots in the form λ = iω, where
ω gives the angular frequency of the arising vibrations during loss of stability.

4 Application of the Act-and-Wait Control Concept

As it was mentioned in the introduction, the act-and-wait controller (5) can be used
to reduce the number of poles of the system. If the length tw of the waiting period
is larger than the feedback delay τ , then the system can be transformed to a 2-
dimensional discrete map. The variational system associated with the act-and-wait
control concept reads

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = −g(t)ω2

nPx(t − τ ), t ∈ [tj , tj+1) (16)

that can be transformed into the state-space form (1) and (5) with

x(t) =
(

x(t)

ẋ(t)

)
, u(t) = (

x(t)
)
, A =

(
0 1

−ω2
n −2ζωn

)
, B =

(
0
1

)
.

If tw ≥ τ and 0 < ta ≤ τ , then the monodromy matrix � of the system can be
determined according to Eq. (8). Let µ1 denote the critical (maximum in modulus)
eigenvalue. The system is stable if |µ1| < 1. The frequency of the arising vibrations
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during loss of stability is related to the phase angle

ω1 = 1

T
Im(ln(µ1)) = 1

T
arctan

(
Imµ1

Reµ1

)
(17)

with −π < ω1 ≤ π . The vibration frequencies are

f = ± ω1

2π
+ k

T
[Hz], k = 0,±1,±2, . . . . (18)

The control force corresponding to the act-and-wait control concept can be given
as

Qa&w(t) = Fd − g(t)P (Fm(t − τ ) − Fd), (19)

where g(t) is the T -periodic act-and-wait switching function defined in (6). Thus,

Qa&w =
{
Fd − P(Fm(t − τ ) − Fd) if 0 ≤ mod(t, T ) < tw,

Fd if tw ≤ mod(t, T ) < tw + ta = T .
(20)

This means that the control force is just equal to the desired force for period of
length tw, and the feedback is switched on only for periods of length ta.

5 Theoretical Stability Charts and Force Errors

In order to compare the act-and-wait control concept given by Eq. (20) to the tra-
ditional, continuous control concept given by Eq. (12), stability properties are ana-
lyzed as the function of control gain P and feedback delay τ . The mechanical para-
meters are k = 16414 N/m, b = 1447 Ns/m, m = 29.57 kg. The Coulomb friction
is C = 16.5 N. The length of the waiting period was set to be equal to the feedback
delay, i.e., tw = τ , while the ratio of the acting period length and the delay was set
to a fixed number ta/τ = 0.2.

Panel (b) in Figure 2 presents the theoretical stability charts for both cases. Sta-

the analysis of the characteristic equation (15). The boundaries corresponding to the
act-and-wait concept were determined by numerical evaluation of the eigenvalues
of matrix � over a 200×200-sized grid of parameters τ and P . Both stability charts
were checked using the first-order semi-discretization method developed to stability
analysis of time-periodic DDEs [10].

Panel (a) shows the vibration frequencies corresponding to the upper stability
boundaries. It can be seen that the continuous control case is associated with a single
vibration frequency, while for the act-and-wait control case, a series of vibration
frequencies arise according to Eq. (18). Panel (c) presents the maximum force error,
which is determined by the maximum stable gain P and formula (11).
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Fig. 2 Theoretically pre-
dicted stability charts (b),
frequency diagram (a) and
the maximum force error (c)
for the continuous and for the
act-and-wait control concept.
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It can be seen that if the act-and-wait controller is used, then significantly higher
proportional gains can be used without loosing stability that results in significantly
smaller force error.

6 Experimental Validation

For the experimental validation of the theoretical results, a HIRATA (MB-H180-
500) DC drive robot was used (see Figure 3). The axis of the robot was connected to
the base of the robot (environment) by a helical spring of stiffness k = 16414 N/m.
The contact force was measured by a Tedea-Huntleight Model 355 load cell moun-
ted between the spring and the robot’s flange. The driving system of the moving axis
consisted of a HIRATA HRM-020-100-A DC servo motor connected directly to a
ballscrew with a 20 mm pitch thread. The robot was controlled by a micro-controller

Fig. 3 Experimental setup.

DC
motor
DC

motor

moving robot armmoving robot arm

spring

load
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load
cell
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Fig. 4 Experimental and theoretical stability charts (b) and force errors (c), theoretical vibration
frequencies (a), and experimental PSD diagrams (right panels) for the continuous control concept.

based control unit providing the maximum sampling frequency 1 kHz for the over-
all force control loop. This controller made it also possible to vary the time delay as
integer multiples of 1 ms, and to set the control force by the pulse with modulation
(PWM) of supply voltage of the DC motor. Time delay was varied between 20 and
200 ms, that are significantly larger than the sampling period 1 ms, therefore, the
system can be considered as a continuous-time system. The modal mass and the
damping ratio were experimentally determined: m = 29.57 kg and b = 1447 Ns/m.
The Coulomb friction was measured to C = 16.5N. More details on the experi-
mental identification of the system parameters can be found in [11]. The desired
force was Fd = 50 N.

During the measurements, the time delay was fixed and the proportional gains
was increased slowly, until the process lost stability for perturbations larger than 50
N. The displacement of the force sensor was recorded during the loss of stability
in order to analyze the frequency content of the motion. Then, the gain P was set
to 90% of the critical value to obtain a stable process, the system was perturbed
three times and the resulted force errors was documented (three for each fixed time
delay).
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Fig. 5 Experimental and theoretical stability charts (b) and force errors (c), theoretical vibration
frequencies (a), and experimental PSD diagrams (right panels) for the act-and-wait control concept.

Figure 4 presents the comparison of the theoretical and the experimental results
for the continuous control case. In panels (b) and (c) crosses denote the experi-
mental stability boundaries and the experimental force errors, respectively. Panel
(a) presents the theoretically predicted vibration frequencies that are also shown in
the experimental power spectra density (PSD) diagrams by black dots. It can clearly
be seen that the experimental results shows good agreement with theoretical pre-
dictions. Especially the stability boundaries and the vibration frequencies coincide
well. The experimental force errors were larger than the theoretical ones for certain
cases.

Figure 5 presents similar comparison of the theoretical and the experimental res-
ults for the act-and-wait control case. The experimental results verify the theoretical
predictions: for the act-and-wait control concept, the proportional gains can essen-
tially be increased without loosing stability. Since the force error is inversely pro-
portional to the gain P according to Eq. (11), it can significantly be decreased by
using the act-and-wait concept. This is clearly confirmed by the experiments, the
measured force errors were significantly smaller for the act-and-wait controller than
for the continuous controller, as it is shown in panels (c) in Figures 4 and 5.
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7 Conclusions

The act-and-wait control concept was applied to a force control problem with feed-
back delay and compared to the traditional, continuous control concept. Stability
charts were constructed that plots the critical proportional gains, where the process
looses stability, as function of the feedback delay. It was shown that the applica-
tion of the act-and-wait concept allows the use of larger proportional gains without
loosing stability. Since the force error decreases with the control gain applied, the
accuracy of the force control process can significantly be increased if the act-and-
wait concept is used. The theoretical results were confirmed by experiments for
a range of feedback delays. Vibration frequencies at the stability boundaries were
used to verify the model. The theoretically predicted frequencies agreed well with
the experimentally determined PSD diagrams, and the decreasing tendency of the
force error for increasing feedback delay were also confirmed by experiments.
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Design of a Disturbance Observer and
Model-Based Friction Feedforward to
Compensate Quadrant Glitches

Abstract Accurate motion control requires measures to compensate the effects of
friction that contribute to positioning and contour tracking errors. The complex non-
linear behaviour of friction at motion reversal causes a unique tracking error known
as quadrant glitch. Friction can only be partly compensated using linear feedback
control strategies such as PID, cascade P/PI or state-feedback control. Model and
non-model based friction compensation strategies are necessary to acquire suffi-
ciently high path and tracking accuracy. This paper analyses and validates experi-
mentally three different friction compensation strategies for a linear motor-based xy

feed drive of a high-speed milling machine: (i) friction model based feedforward,
(ii) an inverse-model-based disturbance observer, and (iii) the combination of fric-
tion model feedforward and disturbance observer. Two different friction models are
considered: a simple static friction model and the recently developed Generalized
Maxwell-slip (GMS) friction model. The combination of feedforward based on the
GMS friction model and the inverse model-based disturbance observer yields the
smallest radial tracking error and glitches.

1 Introduction

Friction is a highly nonlinear phenomenon especially at velocity reversal. Quad-
rant glitches, characterized by spikes at quadrant locations during circular motion,
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are a direct result of this highly nonlinear behaviour. Friction can only be partly
compensated using linear feedback control strategies such as PID, cascade P/PI or
state-feedback control. More advanced technique must be incorporated to achieve
sufficiently high path and tracking accuracy.

Several simple and advanced friction models are proposed in the literature. The
most simple friction models consider the friction sliding regime only. These mod-
els are a static map between friction force and velocity, e.g. viscous, Coulomb and
Stribeck friction models. A first attempt in describing the more complex friction
behaviour in pre-sliding regime was accomplished in 1977 [4]. In 1995, the LuGre
model is proposed. The model captures most of the observed frictional behaviours
including Coulomb friction, Stribeck effect, and hysteresis [3]. The model is known
for its simplicity and relatively good performance but it fails to describe the hyster-
esis non-local memory behaviour of friction force in pre-sliding regime.

The Leuven model is an improvement of the LuGre model that includes non-
local memory hysteretic behaviour. Recently, a further improvement of the Leuven
model, called the Generalized Maxwell-slip (GMS) friction model [1], is developed
and exhibits superior results in simulation of friction behaviour in the pre-sliding
and sliding regimes. The main disadvantage of the GMS model is its complexity
and large number parameters, which complicates its application in control.

Various model and non-model based friction compensation schemes for different
applications are discussed in literature. A survey on friction models and compens-
ation methods for control of machines with friction is given in [2]. Several altern-
ative approaches have been developed such as: a Maxwell-slip-model-based non-
linear gain scheduling controller yielding fast response and low steady-state error
for friction compensation in electro-mechanical systems [7], a repetitive controller,
a non-model based friction compensation approach yielding improve tracking per-
formance and quadrant glitches [8], and the GMS friction model feedforward and
a Kalman filter based disturbance observer, yielding the best tracking performance
in friction compensation on a dedicated test setup (a tribometer) [6]. This paper
focuses on the modelling, identification, and compensation of friction forces in ma-
chine tools for accurate drive control system. Both friction-model based feedfor-
ward, using a simple static friction model and the advanced GMS model, and an
inverse-model disturbance observer [9] are considered.

This paper is organized as follows. Section 2 describes the experimental set-up.
Section 3 discusses the different friction models and their identification methods.
Section 4 discusses the experimental validation of the different friction compensa-
tion schemes and finally, Section 5 concludes the paper.

2 Experimental Set-up

The test setup that is considered in this paper is a linear-drive based xy feed table of
a high-speed milling machine (see Figure 1). The upper stage y-axis is driven by a
single ETEL iron-core linear motor. The bottom stage x-axis is driven by two ETEL
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Fig. 1 A xy feed table with three linear drives for high speed milling application.

iron-core linear motors. The stages run on Schneeberger preloaded roller guideways.
Both axes are equipped with a 0.25 µm resolution Heidenhain linear encoder. The
velocity signal is calculated by means of numerical differentiation of the position
in combination with a first-order low-pass filter. This filter is added to attenuate
amplified measurement noise associated with the derivative action. The controller
is implemented on a dSPACE 1103 DSP controller board linking the host computer
to the ETEL drives. The dynamic coupling between both axes is negligible. The
system dynamics can be described by two single-input single-output models.

The linear dynamic relation between input voltage and table position z [m], with
z = x and z = y for the x and y axes respectively, is identified experimentally as a
second order model with a time delay:

G(s) = Z(s)

U(s)
= B

s(s + A)
· e−sTd , (1)

with A = 28.57 volt/s, B = 4.526 m, Td = 0.00065 s for the x-axis and A =
20.00 volt/s, B = 8.916 m, Td = 0.00065 s for the y-axis.

3 Friction Models

Friction is categorized according to its presliding and sliding regimes. In pre-sliding
regime, friction force is predominantly dependent on displacement. In sliding re-
gime, the friction force is predominantly dependent on the sliding velocity.

3.1 Static Friction Model

Static friction models describe the steady-state friction behaviour in sliding regime
and hence are dependent on the sliding velocity v. The considered static friction
model incorporates Coulomb, viscous, and Stribeck friction,
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Fig. 2 Measured and modelled static friction-velocity map.

F(v) =
{

Fc + (Fs − Fc) · exp

(
−

∣∣∣∣ v

Vs

∣∣∣∣
δ
)

+ σ · |v|
}

· sign(v). (2)

Fc, Fs , and σ represent the Coulomb, static and viscous friction coefficients respect-
ively. The Stribeck friction model parameters are the Stribeck velocity Vs and the
Stribeck shape factor δ.

3.1.1 Identification of Static Friction Model

At constant velocity, the motor force equals the friction force and is represented by
the force control command signal. Constant velocity is enforced using a manually
tuned PID controller and a constant velocity reference signal. This experiment is
repeated for the following constant velocities of 0.010, 0.040, 0.080, 0.2, 0.4, 0.5,
1, 2, 4, 5, 8, 10, 14, 16, 20, 25, and 30 mm/s. Figure 2 shows the measured and
the fitted static friction force model (2). The identified parameters are Fc = 105N,
Fs = 165 N, 1/Vs = 0.001 sµm−1, σ = 0.00004 Nsµm−1, and δ = 1.

3.2 Generalized Maxwell-Slip Model (GMS) [1]

The GMS friction model incorporates: (i) the Stribeck curve for constant velo-
city, (ii) hysteresis function with non-local memory for the pre-sliding regime, and
(iii) frictional memory for the sliding regime. It has similar structure to the Maxwell-
slip structure, that consists of a parallel connection of N different elementary slip-
blocks and springs (see Figure 3). Each block represents a generalized asperity of
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Fig. 3 Maxwell-slip friction with N-elementary slip blocks.

the contact surface that can either stick or slip and each element i has a common
input, the position z, an elementary stiffness ki , a state variable αi that describes the
element position, a maximum elementary Coulomb force Wi and a friction output
Fi . A new state equation that characterizes sliding dynamics of each elementary
slip-block replaces the original Coulomb law in the Maxwell-slip model structure.

Sticking occurs during motion reversal and as velocity approaches zero. During
sticking, the dynamic behaviour of an elementary slip-block is then described by a
spring model with stiffness ki :

dFi

dt
= kiv. (3)

Slipping occurs if the elementary friction force Fi equals a maximum value Wi =
αis(v). αi is the normalized sustainable maximum friction force of each element
during sticking and s(v) is the Stribeck curve. The state equation describing the
dynamic behaviour of an elementary slip-block is

dFi

dt
= sign(v) · C ·

(
αi − Fi

s(v)

)
. (4)

The constant parameter C indicates the rate at which the friction force follows
the Stribeck effect in sliding. The total friction force is the summation of the output
of all elementary state models and a viscous friction term σ (if present).

F(v) =
N∑

i=1

Fi(v) + σ · v(t). (5)

3.2.1 Identification of GMS Model Parameters

A GMS model with four elementary slip-blocks is selected, yielding a total of 13
model parameters: two parameters from each of the four elements and another five
parameters from the state equations in sliding regime. Friction behaves as a hys-
teretic function of displacement with non-local memory behaviour in pre-sliding
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Fig. 4 Friction force and position for sinusoidal reference signal of 0.1 Hz and amplitudes of
(a) 15 µm and (b) 450 µm.

Fig. 5 Virgin curve with selected points for identification of GMS friction model parameters.

Table 1 Identified GMS friction model parameters.

Fc = 105 n Fs = 165 N Vs = 1000 µms−1 σ = 0.00004 Nsµm−1 δ = 1

αi [N] α1 = 0.566 α2 = 0.227 α3 = 0.170 α4 = 0.039
ki [N/µm] k1 = 99.94 k2 = 1.364 k3 = 1.081 k4 = 0.119

regime. This behaviour is characterized by the so-called virgin curve. The virgin
curve is derived from a sinusoidal excitation of the system. The frequency and amp-
litude of the sinusoidal are selected to minimize inertia effect and to remain in the
pre-sliding regime. The measurement obtained with the small excitation amplitude
(Figure 4a) provides detailed information about the friction-displacement behaviour
in pre-sliding regime away from breakaway, while the measurement obtained with
the larger excitation amplitude (Figure 4b) provides information close to breakaway.
Figures 4a and b clearly indicate which part of the measurement is selected to com-
pose the virgin curve (see Figure 5). The parts are combined, reduced by a factor of
2 (the combined parts constitute a double-stretched version of the virgin curve), and
shifted to the origin (0 µm, 0 N) to generate the virgin curve.
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Fig. 6 Cascade P/PI controller with friction model-based feedforward and an inverse-model-based
disturbance observer.

The four αi ’s and ki’s slip-block parameters are estimated from the manually
selected knots and slopes Ko,Ka,Kb,Kc of a piecewise linear function that ap-
proximates the virgin curve (see Figure 5). From the theory of superposition, Ki ’s,
ki’s, and αi ’s are related as in (6). The identified GMS model parameters and the
static friction model parameters (Fc, Fs , Vs , σ , and δ) are summarized in Table 1.

α1 + α2 + α3 + α4 = �Wi

k1 + k2 + k3 + k4 = Ko

k2 + k3 + k4 = Kb

k4 = Kc . (6)

4 Friction Force Compensation Design and Experimental
Validation

This section discusses the friction compensation design and the experimental val-
idation for the considered system. Each axis is controlled independently using the
same control structure shown in Figure 6. It consists of a position controller, static
and GMS friction models feedforward, and an inverse-model-based disturbance ob-
server.

4.1 Position Controller and Feedforward Friction Compensation

The position controller is a cascade PI velocity feedback and P position feedback
controller. The parameters are selected based on gain margin and phase margin
considerations of the open loop transfer function [5]. Velocity feedforward and an
inverse-model position reference feedforward are added to eliminate tracking errors
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Fig. 7 Bandwidth limitations of the Q-filter.

caused by inertial effects and viscous friction. Feedforward friction compensation
is based on either the static friction model (2), or the GMS model (3–5). The input
to these models is the reference tracking velocity v.

4.2 Inverse Model-Based Disturbance Observer

The disturbance observer estimates the disturbance forces along with any modelling
errors by subtracting the control command signal from the estimated input obtained
by the inverse of the nominal plant model Gn(s) which is identical to model (1)
without delay. The delay is removed from the plant model in order to obtain a causal
inverse. A low pass filter, known as the Q-filter [9], is added to provide system
stability. The bandwidth of the filter Q is limited by the unmodelled dynamics,
expressed as a multiplicative perturbation �(f ),

�(f ) = Gm(f ) − Gn(f )

Gn(f )
. (7)

Gm(f ) and Gn(f ) are the frequency response functions of the system and of Gn(s)

respectively. The robust stability of the disturbance observer inner loop is guaran-
teed if [9]

||T (jω) · �(ω)||∞ ≤ 1 . (8)

T (s) is the complimentary sensitivity transfer function of the disturbance observer
loop. Figure 7 visualizes for the x-axis the Q-filter bandwidth limitation at 60 Hz.
The magnitude of the Q-filter frequency characteristic must lie below the amplitude
characteristic of the inverse multiplicative perturbation �(f ) line and thus limits the
observer overall compensation performance.
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Fig. 8 Measured circular tests (30 mm radius) and radial tracking error for different friction com-
pensation schemes at 100 mm/s tangential tracking velocity.

Table 2 Quadrant glitch magnitudes for different friction compensation strategies.

Friction Compensation Schemes a b c d e f

Quadrant Glitch Magnitude 22 µm 7 µm 6 µm 8 µm 5 µm 3 µm

4.3 Experimental Results

Friction compensation performance is validated based on the magnitude of the quad-
rant glitch that occurs near zero velocity or at motion reversal. It is typically demon-
strated on a xy feed table during circular tracking test. The friction compensation
performances is analysed and compared for the following different control config-
urations:

(a) no friction feedforward and no inverse model disturbance observer
(b) static friction model feedforward
(c) GMS friction model feedforward
(d) inverse model disturbance observer
(e) static friction model feedforward and inverse model disturbance observer
(f) GMS model feedforward and inverse model disturbance observer

Figure 8 shows the circular test results of the various friction compensation schemes.
Feedforward friction compensation and inverse model-based disturbance observer
reduce the quadrant glitches considerably.

A combined disturbance observer and feedforward of GMS friction model yields
the best quadrant glitch reduction. A quadrant glitch magnitude of less than 3 mi-
crometer was recorded. Table 2 summarizes the experimental results.
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Fig. 9 Measured circular tests for tangential tracking velocity of 10 mm/s.

The improvement obtained by the GMS friction model over static friction model
is small such that for this tangential tracking velocity (100 mm/s), the use of com-
plex GMS friction model cannot be motivated. However, by reducing the tracking
velocity to 10 mm/s, the presliding regime becomes more dominant and the benefit
of using the GMS friction model that includes hysteresis with non local memory
becomes more pronounced. This is illustrated in Figure 9.

5 Conclusions

Quadrant glitches, caused by the complex non-linear behaviour of friction at velo-
city reversal, can be compensated effectively using a combination of friction model
feedforward and an inverse-model based disturbance observer. The benefits of using
an advanced friction model like the Generalized Maxwell-slip (GMS) model are es-
pecially clear at slow motions where the pre-sliding friction is dominant. A simple
approach based on separate pre-sliding and sliding measurements is presented to
identify this complex GMS model.
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Active Vibration Control of Multibody Rolling
Contact System

Veli-Matti Järvenpää and Lihong Yuan

Abstract. The aim of this work is to use multibody analysis to study rolling contact
vibrations and then test the active control methods to eliminate these vibrations. The
system considered is the rolling contact of two metal rolls. The contact is softened
by using a thin polymer coating on one roll. The polymer cover generates a regen-
erative vibration source to the contact because the polymer does not recover fully
before re-entering to the contact. This phenomenon creates a limit cycle vibration
condition to the contact. The modeling of the system is based on the multibody
dynamics. The metal rolls are modeled as super elements by using multibody equa-
tions and the component mode synthesis approach. The polymer cover is modeled
analytically by giving an expression for the contact line load. The nonlinear stiffness
of the cover is included. The regenerative vibration source is introduced to the sys-
tem as a time delay term in the line load equations. The time domain responses are
solved by using numerical time integration. The active vibration control is carried
out by introducing external force actuators into the multibody model. The strategy is
to create a feedback force with same magnitude and an opposite phase as the regen-
erative vibration source. As results the time domain responses of several different
cases are compared and discussed.

1 Introduction

The rolling contact of two paper machine calendering rolls is studied. The paper
calendering process is used to produce a paper with constant thickness. So-called
nip contact of two metal rolls is used to finish the paper surface. Calendering units
are located at the end of the paper manufacturing line. In a unit the rolls are com-
pressed together by hydraulic actuators to create optimal line load conditions for the
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Fig. 1 The roll contact layout.

process. The paper web enters to the nip and undergoes deformations and surface
polish to achieve equal thickness. The contact is softened by introducing a poly-
mer cover on the surface of one roll due to the process requirements. The polymer
cover layer increases the length of the contact in the running direction and therefore
produces averagely more smooth paper surface finish. The polymer layer between
the rolls, however, makes the dynamics of the rolling contact more complicated to
understand. Because the polymer material is soft, hyperelastic and also viscoelastic
the mechanical behavior of the rolling contact becomes nonlinear. It has been ex-
perienced that the polymer cover can create complex vibration phenomena. The
dynamics is sensitive to the operational and design parameters and this can create
undesired vibrations which are difficult to predict accurately. The aim in this paper
is to use numerical simulation model of the roll contact to study the active control
designs for the system. The model is based on the test roll unit in TUT’s laboratory
environment (Figure 1). This test unit is about half scale of the real size machine
with 4.4 meter length cast iron rolls with one polymer coated roll. It includes build-
in wireless strain and acceleration measurement and data transfer system. The paper
web has not been included in the test unit, but this still is very beneficial environment
to study the dynamics of the roll contact.

The numerical model is based on multibody dynamics [1, 2]. Each roll has its
own 3D super element, which are based on the component mode synthesis approach
by using modal coordinates with sets of lowest semi-definite eigenvectors [3, 4].
The basic geometry of the rolls is modeled by using finite element meshes. The
main task is to introduce an appropriate contact formulation to the rolls. The contact
of the rolls is 3-dimensional line contact, which includes the crowning of the roll
surfaces and the non-linear polymer material characteristics. The contact model is an
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Fig. 2 The finite element meshes.

analytical formulation of the line load distribution. Because the rolls are making spin
rotation, the line load needs to smoothly move on the surfaces within each element
and across element boundaries. This has been modeled by describing equivalent
element nodal forces to the surface elements as a function of the rotation angle.
The contact formulation is described by an expression which relates the contact
penetration and the contact width in the rolling direction. The penetration function is
calculated from the nodal displacements and the line load is solved accordingly. The
contact is described by contact force coupling in the right hand side of the system
equations. The complete dynamical model consists of two super elements and the
contact formulation. The time domain solution of the system requires a non-linear
time integration procedure [5] and it is implemented in MATLAB environment.

The viscoelastic recovery of the polymer is included in the system equations
as a time delay term. The method of steps is used in the numerical solution. The
deformation history of the cover is recorded as a penetration function and this is
introduced to the system equations as a delayed feedback or a regenerative vibration
source. The time delay is non-constant depending on the roll rotation time. To obtain
the correct deformation history at the right times according to the stepping of the
time integration solution procedure, a time domain interpolation of the penetration
history is used.

2 Equations of Motion

The modeling is based on following assumptions. Firstly, one spin rotation for each
roll is considered. The other rotations are assumed small, because the roll bearings
at roll ends limit roll movements. This simplifies the coordinate transformation sig-
nificantly. The roll translations are included and they are compensated by forces due
to the bearing stiffness. The rolls are illustrated in Figure 2. Secondly, the lumped
mass formulation is used. Linear continuum element meshes are used for determin-
ing the modal vectors of the rolls. Finally, the deformations are described by a set of
modal vectors. The semi-definite (free-free) modal vectors are used (Figure 3). The
equations of motion of a roll are [3, 4]
[

(xG + �η)
T Mxy(xG + �η) (xG + �η)

T MT
S �

�T MS(xG + �η) �T M�

][
θ̈

η̈

]
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Fig. 3 The 1st free-free bending mode (left) and 1st shell mode (right) of a roll.

+
[

2(xG + �η)
T Mxy �η̇ 0

0 2θ̇�T MS �

][
θ̇

η̇

]
(1)

+
[

0 0

0 �T K�

][
θ

η

]
−

[
0

θ̇2 �T Mxy(xG + �η)

]
=

[
fT ∂RT

∂θ
(xG + �η)

�T Rf

]
,

where θ is the rotation angle of a roll; η the vector of modal coordinates; � the
modal matrix; xG the vector of initial x and y nodal coordinates; M the lumped
mass matrix; Mxy the mass matrix with nodal mass in x and y directions only; Ms

skew symmetric mass matrix; K the stiffness matrix; f the applied force vector and;
R the rotation matrix in xy plane.

The roll xyz coordinate system is oriented that z axis is coaxial to the rotation
axis and the xy plane is parallel to the cross-section of the roll.

3 Contact Modeling

The polymer cover is much softer than the metallic rolls. This makes the contact
spring force modeling most suitable for this type of a contact. The principle is il-
lustrated in Figure 4. The contact is described as a line contact by using a contact
line load distribution between the rolls which represents the polymer cover of the
upper roll [4]. This approach is similar as the elastic foundation model [7]. Typically
the stiffness distribution is almost constant in the axial direction due to the proper
design of the roll crowning. The crowning is introduced by the enforced displace-
ment function cr(z) which describes the total value of the crowning.

The contact line load is non-linear due to the viscoelastic material properties of
the polymer cover [7]

p(z) = Kn ε(z, t)3/2 . (2)

The Kn is the contact coefficient which takes into account the viscoelastic material
behavior. Only the initial modulus and the initial recovery time are considered in
[7].The contact penetration ε(z, t) splits into three different components
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Fig. 4 The contact line load between opposing elements. The stiffness of the polymer coating and
the crowning of the rolls are functions of z-axis of rolls.

ε(z, t) = x1(z, t) − x2(z, t) + cr(z) + zpw(z, t), (3)

where the first two parts represent the relative roll motion at the contact line, the
third is the crowning function and the last zpw(z, t) is any external disturbance in
the contact as for example the paper thickness variation, which is not considered
here. The contact line load with the regenerative vibration source takes the form [8]

p(z) = Kn{ε(z, t) − γ ε(z, t − T )}3/2, (4)

where T is the delay time, which is the roll revolution time. An alternative way to
represent the line load (4) is to use a cubic expression

p(z) = kn([ε(z, t) − γe ε(z, t − T )]
+ α2[ε(z, t) − γe ε(z, t − T )]2 + α3[ε(z, t) − γe ε(z, t − T )]3), (5)

where α2 and α3 are non-linear parameters and kn is the contact coefficient. The
decay factor is [9]

γe = e−T/τrelaxation . (6)

The material specific relaxation time is

τrelaxation = τrelaxation (cpolymer, Epolymer), (7)

where cpolymer and Epolymer are the damping and the elastic modulus of the polymer,
respectively. Depending on the relaxation time the contact is affected by the cover
deformations not completely vanished.
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Fig. 5 The control design setup.

4 Control Design

The basis of the control scheme is to use the simulation model to represent a real-
case rolling system as an input-output black box. This means that like in reality the
detailed model of the rolling system is not available. The system can be observed
by measurements only. Figure 5 illustrates this principle. The aim is use numerical
data obtained from on-line simulation to close-loop control the actuator feedback
force. Very simple linear control is used. The idea is to detect the rolling contact
force amplitude, frequency and phase and adjust the actuator force accordingly to
the opposite phase to kill the resonance limit cycle.

In numerical model this kind of approach is reasonably achievable. Real sys-
tems, however, include various uncertainties such as measurement inaccuracies and
control loop delays, which are not considered here.

5 Numerical Results

Numerical simulation results are presented next. The aim is to study single running
speed in which the delay effect causes limit cycle resonance in the contact vibra-
tions. The reference result is the averaged contact line load response. In the method
of steps procedure the initial history for the time delay determination must be cre-
ated first. The rolls are accelerated to their desired speeds and the roll contact is
closed. Relatively long initial simulation of 30 seconds is made to get rid of any
transient effects and to obtain as smooth steady state running condition as possible.
The desired line load is set to 14.9 kN/m and moderate Rayleigh damping is used
for the rolls. No damping is introduced to the roll contact.

The characteristic of the roll contact vibration is the excitation of the roll beating
vibration mode. This mode means that the upper and lower rolls have bending mode
vibrations with opposite phases and the rolls are beating each other in the contact
line. The natural frequency of this mode in this numerical study is about 92 Hz.
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Fig. 6 The contact vibration resonance (upper) and the controlling principle (lower).

The running web speed of the rolls is 575 m/min. The time domain response of the
contact line load is shown in Figure 6. The damping and the delay parameters are
selected to produce large amplitude vibrations for illustrative purposes. The highest
frequency component in the responses is the beating natural frequency and the limit
cycle is clearly shown. Figure 6 illustrates the controlling principle of the actuator
force as well.

Three cases of the actuator force location are considered. The actuator excitation
is located at the bearings, at the roll shafts and most interestingly inside the roll
cylinder at the contact line. In the design sense the bearing location is most natural
because two other locations are on the surface of the rotating rolls.

5.1 Case 1: Actuator at Bearings

The actuator force is applied to the bearings by considering the stiffness of the bear-
ings only (Figure 7). If the mounting structure of the roll installation is considered
as well then the bearing location would be slightly more flexible. The controlled
response is shown in the Figure 10 and it turns out that the actuator force at the
bearing location has very small effect to the vibration levels.

5.2 Case 2: Actuator at Shafts

The actuator force is applied to the roll shafts (Figure 8). The actuator force at the
bearing location has moderate effect to the vibration levels (Figure 10).
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Fig. 7 The actuator setup Case 1.

Fig. 8 The actuator setup Case 2.

Fig. 9 The actuator setup Case 3.

5.3 Case 3: Actuator Inside Roll Cylinder

The actuator force is applied inside the upper roll cylinder at the contact line (Fig-
ure 9). This case is different because many force locations are used in the simulation.
In this case the actuator forces have the best effect to the vibration levels (Figure 10).
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Fig. 10 The force responses in Cases 1 to 3.

6 Conclusions

The numerical modeling and active control study of a calandering roll contact with
limit-cycle vibrations is presented. The modeling of the rolls, the non-linear line
load contact and the time delay system is described. The resonance state of the
roll system is detected in the numerical simulation results and the actuator force is
applied in different locations in three cases to study how well this resonance can be
controlled. According the results the best location is inside a roll cylinder which also
is the most difficult location to implement in practice. The most practical location
in the bearings shows the poorest performance in the results. However, the results
illustrate mostly the relative performance of the three locations and the performance
at the bearings can be somewhat improved by increasing the force amplitude. Also
practical difficulties related to actual control of real systems are not considered. It
can be concluded, however, that the results are promising. More research is needed
to verify the applicability of the control to the real systems.
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Vibration Control of Hard Disk Drive with
Smart Structure Technology for Improving
Servo Performance

Itsuro Kajiwara, Toshio Uchiyama and Toshihiro Arisaka

Abstract In hard disk drives, vibration suppression is very important to boost the
servo performance for achieving the enhanced density of the disk and following
precision of the system. It has been expected that technology of smart structure will
contribute to the development of small and light-weight mechatronics devices with
the required performance. This study proposes a new vibration control mechanism
with smart structures technology in order to achieve significant vibration suppres-
sion in hard disk drive systems. First, modeling of the system is conducted with
finite element and modal analyses. Next, the control system design and closed-loop
simulation are performed with the proposed vibration control mechanism composed
of piezoelectric sensors and actuators. Finally, a multidisciplinary design optimiza-
tion on actuator location and control system is examined to enhance the closed-loop
performance of the system.

1 Introduction

In advanced mechanical systems such as magnetic and optical disk devices, struc-
tural vibration has to be suppressed to achieve the required control performance of
the devices. It is required for developing the next generation hard disk drive (HDD)
to suppress the actuator vibration under 40 kHz in order to achieve 2 Tb/in2 of
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the areal density. It has been expected that technology of smart structures will con-
tribute to the development of small and light-weight mechatronics devices with the
required performance. So far, research on smart structures has been carried out us-
ing electro-rheological fluids, shape memory alloys and piezoelectric materials. The
piezoelectric materials are generally installed on the structural surface as actuator
and sensor to control the static and dynamic responses [1–3]. To date, distributed
parameter systems such as cantilever type structures have been mainly taken as the
controlled object [4–7]. In HDD applications of piezoelectric actuator and sensor,
a track-seeking control using a piezoelectric actuator for dual-stage actuator was
investigated [8] and a piezoelectric bimorph shunt damping was applied to reduce
disk-spindle vibration [9]. Further enhancement of vibration control performance
is necessary to achieve the required density of future HDD systems. The control
performance of the smart structure highly depends on the location of the actuator
corresponding to the control input position. Designing the actuator location with
high controllability is expected to enhance the control performance of the structural
vibration suppression.

In this study, the technology of the smart structure is introduced into the HDD
to achieve the required vibration suppression. The smart structure is composed of
the piezoelectric sensors and actuators in order to control the structural vibration
[10, 11]. First, the finite element and modal analyses of the HDD are conducted to
confirm the vibration modes and frequency response of the system. The vibration
characteristics and problem of the system are made clear through the structural ana-
lysis. Second, two actuator mechanisms are considered as vibration control device:
namely, one is the direct piezoelectric (PZT) actuation mechanism and another is the
proof-mass actuation mechanism. The controller design and closed-loop simulation
are conducted to evaluate the vibration control performance. Finally, a multidiscip-
linary design optimization on the actuator location and control system is studied
to enhance the closed-loop performance of the system. The design problem to im-
prove the H2 or H∞ performance is defined, and the actuator location and control
system are simultaneously designed by the presented 2-step procedure using genetic
algorithm (GA), resulting in an enhanced performance for the vibration control. It
has been verified by some simulations that an enhanced performance on the vibra-
tion suppression can be achieved by the proposed vibration control mechanisms and
multidisciplinary design optimization approach.

2 Modeling of Controlled Object

The FEM model of the HDD as a controlled object is shown in Figure 1 which has
10,362 nodal points. The frequency response of the head displacement due to the
voice coil input is shown in Figure 2. The resonance peaks existing in the frequency
range 6–30 kHz may easily cause a vibration instability problem in the closed-loop
system with respect to the head following control when enhancing the control per-
formance. The smart structure technology is introduced into the HDD to control the
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Fig. 1 FEM model of HDD.

actuator vibration for enhancing the following control performance. Piezoelectric
elements are employed as actuator and sensor in the smart structure. A MEMS ac-
celerometer is also supposed to be installed on the structural surface to detect the
acceleration which is used for a feedback signal. In this study, modeling of smart
structure is carried out with the finite element and modal analyses by which the
modeling of arbitrary shape structures and the control system design can be effect-
ively executed. Equation of motion of the n degrees-of-freedom system is described
as

Ms ẍ + Cs ẋ + Ksx = B1sw + B2su (1)

where Ms and Ks are the mass and stiffness matrices, respectively, and Cs is the
assumed proportional viscous damping matrix. x, w and u are the displacement, dis-
turbance and control input vectors, respectively. The finite element analysis (FEA)
is conducted by ANSYS. The degree-of-freedom of Eq. (1) becomes generally too
large because of using FEA that the control system should not be designed directly
to this spatial model. The coordinate transformation into the modal space is appro-
priate to conduct the model reduction for control system design. Adopting the lower
natural modes �, Eq. (1) is transformed to the reduced-order state equation with the
transformation x = �ξ :

q̇ = Aq + B1w + B2u (2)

where

q =
{

ξ

ξ̇

}
, A =

[
0 Ir

−� −�T Cs�

]

B1 =
[

0
�T B1s

]
, B2 =

[
0

�T B2s

]

� is the diagonal eigenvalue matrix and the modal matrix � is normalized with the
mass matrix. B2s can be determined by the relation between the control input u and
the force caused by the piezoelectric actuator [10, 11].

The output equation is generally described as

y2 = C2q + D21w + D22u (3)
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Fig. 2 Frequency response of the head displacement.

In this study, a rotational angle and acceleration are detected by the piezoelectric
sensor and accelerometer as feedback signal, respectively. These sensors are suitable
to be installed in the smart structures since the external reference is not required for
them. In case of the piezoelectric sensor, the rotational angle ys (= asVs) which is
proportional to the output voltage Vs with a proportion constant as determined by
the piezoelectric property is formulated by giving each coefficient matrix of Eq. (3)
as

C2 = C0�, D21 = 0, D22 = 0, � =
[

� 0
0 �

]
(4)

where ys = C0x0 and x0 = (xT , ẋT )T . In case of the acceleration output, substitut-
ing the modal transformation x = �ξ into Eq. (1) yields the modal acceleration:

ξ̈ = −�T Cs�ξ̇ − �ξ + �T B1sw + �T B2su (5)

From Eq. (5) and the detected acceleration ya = Ca ẍ, each coefficient matrix in
Eq. (3) for the output equation becomes

C2 = Ca�[−� − �T Cs�], D21 = Ca[0 �]B1, D22 = Ca[0 �]B2 (6)
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Fig. 3 Vibration control mechanism. Fig. 4 Multi-input and multi-output system.

3 Vibration Control Mechanism and System

3.1 Vibration Control Mechanism

Figure 3 shows the candidates of the vibration control mechanism. Two actuator
mechanisms are considered in this study: namely, one is the direct PZT actuation
mechanism and another is the proof-mass actuation mechanism. In the direct PZT
actuation mechanism, the tabular PZT actuators are directly attached on the struc-
tural surface and apply the control forces to the structure. In the proof-mass actu-
ation mechanism, a minute mass connected to the top of the layered PZT whose
back side is connected to the structural surface vibrates due to the vibration input
to the PZT and causes the inertia force as control input. Figure 4 shows an image
of multi-input and multi-output system using the multiple sensors and proof-mass
actuation mechanisms.

3.2 Vibration Control System

The block diagram of the control system is shown in Figure 5. H2 and H∞ control
problems are considered in this study. The controller K(s) is obtained by conducting
the control problem:

min ‖Ty1w‖2: H2 control (7)

min ‖Ty1w‖∞: H∞ control (8)

where Ty1w is the transfer function matrix between the disturbance w and the con-
trolled variable y1. The controlled variable is described as y1 = (wzzT

1 , wuuT )T ,
where z1 is the controlled response, wz and wu are the weight parameters for the
controlled response and control input, respectively. In this study, acceleration and
modal controls are considered by defining y1 as spatial acceleration and modal co-
ordinates, respectively. The controller satisfying the control problem (7) or (8) is
designed based on the LMI approach.
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Fig. 5 Block diagram of the
control system.

3.2.1 Acceleration Control

The controlled response z1 which is defined by the accelerations on spatial coordin-
ates is described as

z1 = Cz1q + Dz11w + Dz12u (9)

Each coefficient matrix in Eq. (9) is obtained by the relation between the spatial
and modal accelerations. This controlled response is appropriate to reduce high fre-
quency response due to the acceleration evaluation.

3.2.2 Modal Control

In the modal control problem, z1 is composed of the modal coordinates and formu-
lated as

z1 = W10q (10)

where W10 is the modal weight matrix defined by

W10 = diag[w1, w2, . . . , wp] (11)

Weighting each modal coordinate with each coefficient easily achieves the modal
shaping which can mainly suppress the target modes vibration. Frequency weight
functions are generally used for achieving the frequency shaping, however, the order
of the controller in this case is increased according to the orders of the frequency
weight functions. The modal control shown in Eqs. (10) and (11) does not increase
the order of the controller and so is practically advantageous for developing the real
systems.

The output feedback u = K(s)y is described as the state equation form:

qc = Acqc + Bcy

u = Ccqc + Dcy (12)

where the matrices Ac, Bc, Cc and Dc are designed by the LMI approach.
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4 System Optimization with H2 Control

Describing the piezoelectric actuator location and control design variables as ηs and
ηc, respectively, a simultaneous optimization problem can be defined as

min : J(ηs, ηc)

subj: gmin
c ≤ gc(ηs, ηc) ≤ gmax

c (13)

where J(ηs, ηc) and gc(ηs, ηc) are the objective and the constraint functions de-
pending on both shape and control design variables such as the closed-loop norms
described in the control problems (7) and (8). The optimization problem (13) is
executed by GA [11].

The control design variable is the weight coefficient qw multiplied to the con-
trolled response in the performance index for controller design. The strategy for
the optimization of the actuator location is that the both end nodal points at which
the actuator is placed are employed as the design variables. In this case, the design
variable takes a discrete value corresponding to a nodal point number as shown in
Figure 6 and so GA is employed to search the optimal design variables. The design
variables should be coded in GA to obtain an optimal solution. In this approach, the
design variables are described by the binary code with m bits:

η1 . . . ηp︸ ︷︷ ︸
node i

, ηp+1 . . . η2p︸ ︷︷ ︸
node j

, η2p+1 . . . ηm︸ ︷︷ ︸
qw

, (14)

where ηk (k = 1, . . . ,m) shows the genes, all of which can take the values of 0
or 1. The symbols η1 . . . ηp and ηp+1 . . . η2p indicate the nodal point numbers of
both ends of the piezoelectric actuator, and η2p+1 . . . ηm shows the variable of qw.
The optimal values of the design variables maximizing the fitness function defined
as −J are searched by GA composed of three basic operations: selection, crossover
and mutation. The genetic operation in this approach is based on simple GA, and
the appropriate condition of GA operation is set, namely: (1) the selection is based
on the roulette selection strategy, (2) one-point crossover is adopted as the cros-
sover strategy, (3) the mutation strategy is performed by inversion of a gene that is
stochastically selected, and (4) the elitist preserving strategy is adopted to leave the
large fitness individuals to the next generation.

5 Simulation Results

5.1 Control Effect of Proof-Mass Actuation Mechanism

The vibration control performance is evaluated with a proof-mass actuation mech-
anism. The purpose of this application is to reduce the vibration response between
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Fig. 6 Nodal points where
piezoelectric actuator is
placed.

the frequency range 6–20 kHz. Figure 7 shows the actuator/sensor location and dis-
turbance input points in the smart carriage arm with the proof-mass actuation mech-
anism. The proof-mass actuation mechanism is placed at the same position with the
spindle axis in y-direction so that the control force would not influence the move-
ment of the arm in rotational direction. The mass and stiffness of the mass-actuation
mechanism are set to m = 1 × 10−4 kg and k = 3.55 × 106 N/m, respectively. The
number of the adopted modes is 10 and H∞ control is applied with the evaluation
of the controlled acceleration of the head. The disturbance force is supposed to be
applied at the voice coil motor (VCM). The conditions of the control system design
are ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Disturbance: w (VCM input)

Actuator location: At the spindle axis position in y-direction

Controlled variable: y1 =
{

wzẍhead
wuu

}

Observed output: y2 = ẍ

(15)

The acceleration at the proof-mass actuator location in x-direction is the sensor out-
put and the head acceleration in x-direction is the controlled response. The control-
ler is designed by giving wz = 10−3 and wu = 0.1, and the closed-loop frequency
response of the head displacement for the VCM disturbance is shown in Figure 8.
Vibration in high frequency region is effectively reduced and the cut-off frequency
may be extended from 1800 Hz to 5300 Hz by this control system. It has been veri-
fied by this simulation result that the enhanced vibration control performance can
be achieved by the proposed vibration control mechanism.

5.2 Optimization of Direct PZT Actuation Mechanism

The multidisciplinary design optimization of actuator location and control system is
conducted to enhance the vibration control performance. The direct PZT actuation
mechanism is adopted in this case. The optimization problem is defined as
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Fig. 7 Conditions of the proof-mass actuation mechanism.

Fig. 8 Closed-loop FRF of xhead with H∞ control.

min : Hz

subj: Hu ≤ Hmax
u (16)

where Hz and Hu are the H2 norms with respect to the controlled response and
control input, respectively. The control system is designed by the H2 modal control
problem. First, each optimization of a single actuator location and control system
corresponding to each mode of the three resonance peaks in the frequency range
6–20 kHz is conducted by GA. Next, the three inputs and one output system is
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constructed by synthesizing three actuators optimally located and the control system
is designed with this system.

The optimization problems for vibration suppression of each mode are defined
as

1st mode:

⎧⎪⎨
⎪⎩

min : Hz

subj: Hu ≤ 8 × 103

W10 = diag[1000, 1, 1], Q = I, R = 10−7I
(17)

2nd mode:

⎧⎪⎨
⎪⎩

min : Hz

subj: Hu ≤ y × 102

W10 = diag[1, 1000, 1], Q = I, R = 10−7I
(18)

3rd mode:

⎧⎪⎨
⎪⎩

min : Hz

subj: Hu ≤ 7 × 103

W10 = diag[1, 1, 1000], Q = I, R = 10−7I
(19)

The mode number is in order of the modes exist in the frequency range 6–20 kHz.
In the control system design, the controlled variable is described as

y1 =
{

Q1/2z1

R1/2u

}
(20)

where z1 is the controlled response, and Q and R are the weight matrices. The modal
weight matrix W10 in Eq. (11) is given in the optimization problems (17), (18) and
(19). The control design variable is the weight coefficient qw multiplied to Q with
respect to the controlled response. Node number of the FE model is used as the
actuator location variable corresponding to the both end points of the actuator. In
this case, the design variables take discrete values and so GA is employed to search
the optimal design variables.

The optimal actuator location is shown in Figure 9. In Figure 9, the locations of
the actuators 1, 2 and 3 are obtained by the optimization with (17), (18) and (19),
respectively. The optimal control design variable qw and the resulting performance
indices with respect to controlled response and control input are

Optimization problem (17):

{
qw = 1.00 × 102

Hz = 1.29 × 10−5, Hu = 7.55 × 103

Optimization problem (18):

{
qw = 3.02 × 102

Hz = 8.66 × 10−7, Hu = 6.81 × 102

Optimization problem (19):

{
qw = 1.58 × 102

Hz = 2.18 × 10−6, Hu = 6.67 × 103

The three inputs and one output system is constructed by the three actuators op-
timally located. The sensor location is shown in Figure 9. The H2 modal con-
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Fig. 9 Optimal actuator location.

Fig. 10 Closed-loop FRF with three actuators.

troller is designed with this system by giving the weight parameters as W10 =
diag[1000, 1000, 1000], Q = I and R = 10−7. Figure 10 shows the closed-loop
frequency response of the head displacement for the VCM disturbance. It is ob-
served from Figure 10 that excellent vibration suppression has been achieved by
this control system. It is also verified that the optimization of the multiple actuator
locations and control system is significantly effective to realize an ideal vibration
characteristics of the system.
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6 Conclusions

The vibration control effects with the proposed vibration control mechanisms have
been evaluated by simulation in this study. It can be expected that the proposed
mechanisms practically realize a significant vibration suppression of the system.
Furthermore, the enhanced vibration control performance has been achieved by the
multidisciplinary design optimization of the actuator location and control system. It
is also made clear that the system with multiple actuators effectively improves the
closed-loop performance. In future, the micro-actuator for vibration control will be
developed and implemented in the HDD system. The vibration control performance
and robust stability against structural characteristic uncertainty will be evaluated by
experiment and compared to the simulation results.
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An Industrial-Robots Suited Input Shaping
Control Scheme

Amine Kamel, Friedrich Lange and Gerd Hirzinger

Abstract Compliance in robot mounted force/torque sensors is useful for soft mat-
ing of parts in many assembly tasks. Nevertheless, it generates nearly undamped
oscillations when moving a heavy end-effector in free space. In this paper, input
shaping control is investigated to damp such unwanted flexible modes. However,
the conventional method presents a major drawback: To eliminate the oscillatory
dynamics, the desired motion profiles have to be shaped and thus modified. This
means that although the unwanted vibrations are damped, the robot motion does not
meet the desired one. In this paper we first review the conventional input shaping
technique. Second we show how the mentioned problem may be fixed in the design
phase by discretizing the filter and by using a predictive approach that compensates
the shaped signals time delay and minimizes the resulting control error. Simulation
results are presented.

1 Introduction

Compliant force/torque sensors are frequently used in robot assisted assembly tasks.
They do not only perform measurements, but also inhibit high frequency-motions
that commonly occur in the contact phase. This advantage drops into a drawback
if the end-effector is moved in free space. In fact, due to the sensor compliance,
poorly damped oscillations emerge which lead to unprecise motion of the tool. Such
oscillatory behavior is critical in many applications with high speed and precision
requirements. In this paper we address the problem of wheel assembly to a continu-
ously moved car (Figure 1).

Amine Kamel, Friedrich Lange and Gerd Hirzinger
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Fig. 1 (a) Setup for wheel assembly. (b) Compliant end-effector with force/torque sensor in the
center of the springs.

A camera is mounted at the tool to correct the motion profiles when needed and
to detect the car hub. Undamped oscillations inhibit this process and have hence to
be eliminated.

Input shaping also known as command preshaping is one of the easiest success-
fully applied feedforward control techniques that have been designed to suppress
residual vibrations occurring within speedy maneuvers. Some pre-knowledge about
the plant is used to generate commands which move the system without vibrations.
The first form of input shaping, also called posicast control, was presented 1957 by
Smith [1]. It consists in generating two transient oscillations that cancel each other
and lead to a vibrationless response. The first paper of the conventional input shap-
ing was presented by Singer and Seering [2]. Desired system inputs were convolved
with an impulse train. The resulting commands move the system without residual
vibration. Very good estimations of the plant parameters were essential to eliminate
the oscillatory dynamics. Many researchers addressed this problem and developed
robust input shapers by adding more impulses to the filter. Singhose [3] presented a
design method to add any desired order of robustness to the filter.

To suite input shaping to industrial robots, three major matters have to be dis-
cussed:

1. Filtering the inputs induces some time delay which leads to system performance
degradation. In the task presented above, positional ramps are commonly com-
manded to move the tool from a given Cartesian position to another. Hence the
ramp response time delay has to be compensated.

2. The conventional theory of input shaping has been primarily developed in the
continuous time domain. Hence the application to systems with long sampling
period leads to implementation problems. This can be fixed by digitizing the
shaper.

3. An input shaper modifies slightly the reference signals to damp the vibrations
of the end-effector. This means, although the oscillations are eliminated, the tool
will not move as desired since modified trajectories are commanded! Hence, an
exact tracking of the desired path and a total vibrations damping seem to be
two contradictory goals that cannot be simultaneously fully fulfilled. However
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a tradeoff can be reached by minimizing the sum of the sensor deflection and
the deviation between the desired and commanded signals. A formulation and a
computationally efficient solution of such optimization problems are presented
in this paper.

2 Review of the Conventional Input Shaping

The original method has been primarily developed for linear second order systems
with the transfer function:

G(s) = y(s)

u(s)
= K

ω2
0

s2 + 2Dω0s + ω2
0

(1)

g(t) = Kω0√
1 − D2

e−ω0Dt sin (ωd t) (2)

With a static gain K , a positive damping ratio D smaller than 1, a natural frequency
ω0 and a damped natural frequency ωd = ω0

√
1 − D2. u(s) and y(s) denote re-

spectively the system input and output.
It is known that applying an impulse A0δ(t − t0) to such a plant will result in

an oscillating response g0(t). However a well chosen second impulse A1δ(t − t1)

can excite a second oscillation g1(t) that totally cancels the first one for t ≥ t1. This
idea can be extended to an impulse sequence with n impulses

fδ (t) =
n−1∑
i=0

Aiδ(t − ti); ti < ti+1; i ∈ {0, 1, . . . , n − 1} (3)

which compensates any oscillation immediately after applying the last impulse. By
convolving this sequence with any desired command signal, new control inputs are
generated which move the system without vibration. This command generation pro-
cess is called input shaping. To eliminate the oscillations, the filter has to satisfy the
following conditions (see [2])

C(ω0,D) =
n−1∑
i=0

Aie
ω0Dti cos(ωd ti) = 0 (4)

S(ω0,D) =
n−1∑
i=0

Aie
ω0Dti sin(ωd ti ) = 0 (5)

The constraints (4) and (5) can be satisfied by setting all the amplitudes Ai to zero
or by allowing them to have infinite values. Such trivial solutions are uninteresting
for practical sakes and have to be eliminated. Therefore we require that:
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n−1∑
i=0

Ai = 1 (6)

This condition makes sure that the filter has a unity static gain. Thus, the steady state
values of the references and the commands will be the same. Since the range of the
commands is dependent on the actuators, we can set constraints to the actuators’
limitations and then solve for positive and negative amplitudes which satisfy them
[7]. A general form of these constraints is:

Aimin ≤ Ai ≤ Aimax and �Aimin ≤ �Ai ≤ �Aimax (7)

Thereby Aimin / max and �Aimin / max are the respective minimal/maximal allowed amp-
litude and increments values.

For a first order robustness, also the derivatives of (4) and (5) with respect to ω0
are constrained to zero [2].

n−1∑
i=0

Aitie
ω0Dti cos(ωd ti ) = 0 (8)

n−1∑
i=0

Aitie
ω0Dti sin(ωd ti ) = 0 (9)

Equations (4), (5), (6), (8), (9) and the restrictions (7) define a constrained set of
nonlinear equations (CSNE) that can be numerically solved for amplitudes Ai and
time instants ti to get a zero vibration robust input shaper.

3 Ramp Time Delay Compensation

Long sequences of impulses afford many design degrees of freedom and allow to
accommodate the input shaper to complex and demanding constraints. However, the
longer the sequence is, the bigger is the filtering time delay. In this section we focus
on the ramp time delay compensation since positional ramps are common for the
task presented above.

Let τ be the ramp response time delay when applying input shaping. Kamel et
al. described in [9] the dependency of τ from the input shaper parameters and the
plant parameters:

τ = 2D

ω0
+

n−1∑
i=0

Aiti (10)

2D/ω0 describes the delay caused by the plant (1) whereas
∑n−1

i=0 Aiti is the shaping
delay. By setting τ to zero, the dead time will be totally compensated:

180



An Industrial-Robots Suited Input Shaping Control Scheme

n−1∑
i=0

Aiti = −2D

ω0
(11)

Notice that the statement (11) compensates not only the input shaping time delay
but the one of the plant too! This feature may now be included into the filter design
by adding (11) to the CSNE as an additional constraint.

However requiring a total dead-time elimination leads often to huge amplitude
values within short sequences of impulses. This can be avoided either by lengthen-
ing the sequence or by using predictive path scheduling within a known time delay
(backward time shifting): When the desired trajectory is a priori known, then the
control inputs may be time advanced [8]. In this case, (10) is used to enforce some
known time delay τ0 which can be compensated due to command shifting (see [9]).

4 Time-Discrete Input Shaping

The discretization of input shapers has been the emphasis of many publications
[4–6]. Singer described in [4] a digital shaper by fixing the time between the im-
pulses and only changing the magnitudes Ai . Based on the ideas in [4], Kamel et al.
described in [9] a systematic design to generate a time discrete input shaper for low
sampled robotic systems. This will be briefly reviewed in this section.

In order to fit the time instants of the impulses to the sampling period T we can
explicitly constrain all ti and τ0 to be a multiple of T . An intuitive choice may be:

ti = iT ; τ0 = mT (12)

where i ∈ {0, 1, . . . , n − 1} and m ∈ N are design parameters used to set the ramp
time delay to a known value.

Adding (12) to the CSNE eliminates the time instants and replaces them by the
known integers i. Note that the nonlinear statements are transformed to linear ones
by fixing the time instants ti . Thus the CSNE becomes a constrained set of linear
equations (CSLE):

CA = b (13)

with the C ∈ R
6×n, the amplitude set A ∈ R

n and the right side b ∈ R
6 (see

[9]). The problem can now be stated as follows: Find a vector of amplitudes A that
satisfies the CSLE stated above. For n > 6, the statement (13) is under-determined.
The problem has consequently for a given sequence length n an infinity of solutions
from which we need to select one that satisfies (7) if it exists. This task can be solved
by many numerical iterative tools. An iterative algorithm is presented in [9] to solve
this problem and to keep the length of the impulse sequence to a minimum.
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e(t)ẽ(t)

end-effector

Fig. 2 Signal flow diagram of the total positional control error.

5 Minimization of the Quadratic Control Error

At this level, it is very important to realize that a good performance of the filter does
not only depend on a good vibrations’ damping, but also on other important criteria.
In fact, the elimination of the oscillatory dynamics invokes implicitly a modification
of the commands. This means concretely that the robot will effectuate vibrationless
motions which unfortunately do not match exactly the desired motion. One way to
deal with this problem is to minimize the positional control error due to the filtering
and to the sensor deflections. To do so we first of all consider the signal flow diagram
as stated in Figure 2.

w(t) denotes the desired motion profile. For the following optimization task w(t)

is supposed to be a unity gain step σ(t). Using these commanded references, the
input shaper generates the system inputs u(t):

u(t) = f (t) ∗ w(t) =
n−1∑
i=0

Aiσ(t − ti) =︸ ︷︷ ︸
(12)

n−1∑
i=0

Aiσ(t − iT ) (14)

If the robot is supposed to be ideal (only rigid body interactions with no delay), then
u(t) corresponds to the measured position profile of the robot flange. In this case, the
difference ẽ(t) between the references w(t) and the input u(t) is the position error
caused by the input shaper. y(t) denotes the deflections measured in the compliant
sensor. One can easily verify that:

y(t) = d

dt
g(t) ∗ f (t) =

n−1∑
i=0

Ai
d

dt
g(t − iT ) (15)

where g(t) is the impulse response of plant (1). The total position error reads:

e(t) = ẽ(t) − y(t) = w(t) − u(t) − y(t) (16)
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5.1 Analytical Formulation of the Cost Function

Equations (14), (15) and (16) provide an analytical characterization of the control
error occurring when applying a positional step. We define the following minimiza-
tion problem:

min
A∈R

Iq subject to CA = b where Iq (A) = AT QA +
∞∫

0

e2(t) dt (17)

Q is a positive definite weighting matrix to penalize high amplitude values. One
can already feed the problem at this level to a numerical iterative solver. However,
the computational effort will be extremely high. Hence, it is recommendable to for-
mulate and solve the problem analytically. Due to (6) and to the fact that the input
shaper totally eliminates any oscillations immediately after applying the last im-
pulse, the control error e(t) exists only between t = 0 and t = tn−1 = (n − 1)T .
For the derivation below we suppose that a prediction over m sampling steps is
performed. This means that w(t) switches to 1 at t = mT .

∞∫
0

e2(t) dt =
(n−1)T∫

0

e2(t) dt =
(n−1)T∫

0

(w(t) − u(t) − y(t))2 dt (18)

= (n − m − 1)T − 2

(n−1)T∫
mT

u(t) + y(t) dt

︸ ︷︷ ︸
l

+
(n−1)T∫

0

(u(t) + y(t))2 dt

︸ ︷︷ ︸
q

l and q denote the terms of the cost function that respectively lead to a linear and
quadratic dependency on the magnitudes Ai . The linear term l can be easily com-
puted:

l =
n−1∑
i=0

Ai

(n−1)T∫
mT

σ(t − iT ) + d

dt
g(t − iT ) dt

=
n−1∑
i=0

Ai

⎛
⎜⎝

(n−1)T∫
max(m,i)T

dt +
(n−i−1)T∫

max(m−i,0)T

d

dt
g(t) dt

⎞
⎟⎠

=
n−1∑
i=0

Ai

[
(n − max(m, i) − 1)T + g((n − i − 1)T ) − g(max(m − i, 0)T )

]

=
n−1∑
i=0

Aiθi (19)
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To determine the quadratic term q we need first to compute some sub-integrals:

q1 =
(n−1)T∫

0

u2(t) dt =
n−1∑
i,j=0

AiAj

(n−1)T∫
max(i,j)T

dt

=
n−1∑
i,j=0

AiAj (n − max(i, j) − 1) T (20)

q2 =
(n−1)T∫

0

u(t)y(t) dt =
n−1∑
i,j=0

AiAj

(n−j−1)T∫
max(i−j,0)T

d

dt
g(t) dt

=
n−1∑
i,j=0

AiAj

(
g

[
(n − j − 1)T

] − g
[
max(i − j, 0)T

])
(21)

q3 =
(n−1)T∫

0

y2(t) dt =
n−1∑
i,j=0

AiAj

(n−1)T∫
0

d

dt
g(t − iT )

d

dt
g(t − jT ) dt

= hi,j ((n − 1)T ) − hi,j (0) (22)

where

hi,j (t) = −K2ω3
0 eω0DT (i+j)

4(1 − D2)
e−2ω0Dt

·
[

cos (ωdT (j − i))

D
− cos (2ωdt − ωdT (i+j) − ϕ)

]

Therefore:

q = q1 + 2q2 + q3

=
n−1∑
i,j=0

AiAj

[
(n − max(i, j) − 1)T + hi,j ((n − 1)T ) − hi,j (0)

+ 2(g[(n − j − 1)T ] − g[max(i − j, 0)T ])]

=
n−1∑
i,j=0

AiAjψi,j (23)

The equations (18), (19) and (23) give an analytical formulation of the cost function:
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Iq(A) = AT QA +
n−1∑
i,j=0

AiAjψi,j − 2
n−1∑
i=0

Aiθi + (n − m − 1)T

= AT (	 + Q︸ ︷︷ ︸
	̃

)A − 2AT θ + (n − m − 1)T (24)

Since analytical expressions for g and h are available, the computation of the matrix
	 and the vector θ does not need any numerical integration. Once computed, 	

and θ can be used to evaluate the costs for any given amplitude set A. Hence the
determination of the optimal solution Aopt does not need huge computational effort.
At this level, an iterative solver can be used to compute the optimum. However an
analytical solution can be derived to figure out the dependency of Aopt on 	 , C and
θ and hence on the plant parameters.

5.2 Analytical Solution of the Minimization Problem

Using an appropriate Lagrangian function, the constraints (13) may be coupled to
the cost function to compute a general solution for the problem formulated above:

Aopt = P

[
2θ − CT

((
CPCT

)−1 (
2CPθ − b

))]
(25)

with P = (
	̃ + 	̃T

)−1
. Note that this solution is only valid for regular matrixes P

and C. Note also that the stated solution is a minimum if and only if P is positive
definite. In fact, this restriction is not that dramatic, since we can always influence
P by the choice of the elements of the matrix Q.

6 Results

The robot motion and the end-effector oscillation are fairly decoupled when using
the approach of Lange and Hirzinger [8] to control the setup of Figure 1. Thus the
desired motion of the end-effector almost coincides with the actual motion and thus
deserves as input for the end-effector control. In particular, there is no interdepend-
ance with the robot joint states. Therefore input shaping can be directly applied to
the desired positions/orientations of the Cartesian components of the robot motion.

The individual components can be modeled by independent second order trans-
fer functions (1), considering only the dominant oscillation each. If several modes
would be significant in each case, input shaping could be applied to each of them,
thus yielding a sequence of input filters. In both cases, damping of the respective
oscillations reduces as well the cross-couplings between the individual degrees of
freedom.
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Fig. 3 Simulation results of the system response to finite rate step responses (a & b) and to a
typical robot motion profile (c) with w = 30 rad/s, D = 0.02, K = 8 ·10−4 and T = 12 ms; (a) no
prediction is applied i.e. m = 0, (b & c) predication over the first 18 sampling steps is applied
i.e. m = 17. Dotted: step response without input shaping. Dashed-dotted: step response using
an unoptimized input shaper (n = 36). Dashed: step response using an optimized input shaper
(n = 36) with Q = 0.1 · I (I is the unity matrix).

Figure 3 shows samples of our simulation results. Both optimized and unop-
timized filters could compensate the shaping time delay using a prediction over m

sampling steps. One can clearly see, that an optimized input shaper does not only
filter the oscillatory dynamics of the plant’s output, but also tracks the references
better than other shapers. For large impulse sequences, we could reduce the costs
Iq up to 35%.

Notice that compared with the shapers presented in [9] which only minimize
the sensor deflection, the current shaper minimizes also the deviation between the
references and the commands. Thus the deflected end-effector pose is controlled to
track the reference. Measurements of the sensor deflection are required only for the
identification of the system. They are not more used for control.
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7 Conclusion

The paper demonstrates that the well known method of input shaping can be mod-
ified to fit some principle features of today’s industrial robots. A systematical and
extendable computational framework is provided to generate such modified shapers.
Since fixed robot paths can be commanded in advance, the resulting time delay is not
unfavorable and could be compensated. Besides, control errors due to the shaping
process and to the oscillation of a compliant tool are minimized. Future work will
address the matter of the optimum sensitivity with respect to the plant parameters.
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Multi-Objective Road Adaptive Control of an
Active Suspension System

Guido Koch, Klaus J. Diepold and Boris Lohmann

Abstract In the design of automobile suspension systems, the classical conflict
between minimizing vertical chassis acceleration to increase passenger comfort and
keeping the dynamic wheel load small in order to ensure safe driveability must be
further eased due to increasing customer demands. In order to moderate the conflict-
ing suspension objectives, a switching controller structure for an active suspension
system is developed which schedules linear optimal regulators depending on the
present dynamic wheel load and suspension deflection. The goal is to maximize
ride comfort while the wheel load is below certain safety critical bounds and the
suspension deflection remains within given construction-conditioned limits. Stabil-
ity of the switching control system is analyzed using a multiple Lyapunov function
approach. The performance of the road adaptive suspension control system is com-
pared with a linear controller and the passive suspension system in simulations to
point out the benefits of the developed control concept.

1 Introduction

An automotive suspension system is expected to provide an optimum of ride comfort
for the passengers as well as safe driveability of the car, i.e. guaranteed tire-road con-
tact. While the comfort aspect can be characterized by minimum vertical chassis ac-
celeration, the safety aspect requires a stiff, well damped coupling between vehicle
and road in order to keep dynamic wheel load deviations small. Another objective
is that the suspension deflection should always remain below the constructionally
given limits in order to prevent impulse-like accelerations of the suspended mass
as well as excessive wear of the components. These three requirements are con-
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flicting, [2]. However, this conflict can be eased by controlled actuators in active
suspension systems.

Some works on suspension controller design present the idea of adapting the
control objectives and thus the controller dynamics to the current road excitation. In
[1, 4, 5] switching controllers are presented that minimize either the vertical chassis
acceleration or the suspension deflection. In [9], a control structure with adaptive
properties has been presented using a wheel load adaptive skyhook-control concept
for a semi-active suspension system.

The new approach in this paper is the design of a nonlinear controller structure
that adapts to the current road disturbance in order to optimize the suspension re-
garding the three conflicting objectives comfort, safe driveability and suspension
deflection limits. The main idea is that maximum comfort should be achieved while
safety for every road excitation is preserved by keeping the dynamic wheel load and
the suspension deflection below specified critical bounds. This is accomplished by a
switching controller structure based on six linear quadratic optimal controllers and
a switching logic. The required actuator force for control should be feasible.

The remainder of this paper is organized as follows: First, models for an act-
ive and passive vehicle suspension are presented in Section 2 and performance re-
quirements are specified. In Section 3, the controller structure and the calculation
of the scheduling variables initializing the switching are presented. Stability of the
switched control system for the active suspension is analyzed in Section 4 using a
multiple Lyapunov function approach. Finally, simulation results and a performance
comparison are presented.

2 Modelling and System Requirements

The lift movement of the suspension system can be modelled using the well-known
quarter car models illustrated in Figure 1 [7, 11]. In the high bandwidth active sus-
pension considered here an ideal actuator is integrated.

The model of the passive suspension results from the active suspension model
if F(t) = 0. The state-vector x and the output vector y are introduced as x =

z
w

z
g

z
c

c
c

d
c

m
c

c
w

m
w

z
w

z
g

z
c

F(t)

c
w

d
c

c
c

m
c

m
w

Fig. 1 Quarter car models of the passive (left) and active suspension (right).
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Table 1 Notation and parameter values [7].

Model parameter Symbol Value Unit

Quarter car chassis mass (sprung mass) mc 256 [kg]
Wheel assembly mass (unsprung mass) mw 31 [kg]
Suspension spring stiffness cc 20200 [N/m]
Tire stiffness cw 128000 [N/m]
Sprung mass damping coefficient dc 1140 [Ns/m]
Undamped uncoupled natural
frequency of the sprung mass ωc =

√
cc

mc
8.88 [rad/s]

Uncoupled natural frequency
of the unsprung mass ωw =

√
cw
mw

64.26 [rad/s]

[ zc − zw, żc, zw − zg, żw ]T and y = [ z̈c, Fdyn, zc − zw ]T where Fdyn de-
notes the dynamic wheel load force. With the control input u(t) = F(t) and dis-
turbance input ud(t) = żg(t) the quarter-car model can be expressed as a state
space model in the form

ẋ = Ax + bu + eud , y = Cx + du , (1)

A=

⎡
⎢⎢⎣

0 1 0 −1
− cc

mc
− dc

mc
0 dc

mc

0 0 0 1
cc

mw

dc

mw
− cw

mw
− dc

mw

⎤
⎥⎥⎦ , b=

⎡
⎢⎢⎣

0
1

mc

0
− 1

mw

⎤
⎥⎥⎦ , e=

⎡
⎢⎢⎣

0
0

−1
0

⎤
⎥⎥⎦ , (2)

C=
⎡
⎣− cc

mc
− dc

mc
0 dc

mc

0 0 cw 0
1 0 0 0

⎤
⎦ , d=

⎡
⎣

1
mc

0
0

⎤
⎦ . (3)

The model parameters are given in Table 1.

2.1 Performance Requirements

In order to ensure maximum ride comfort, the rms-value of the vertical chassis ac-
celeration ‖z̈c‖rms is to be minimized. The human sensitivity for vibration is fre-
quency dependent and the most sensitive frequency range for mechanical excitation
is 4–8 Hz [3]. Therefore, a fifth order shaping filter Gc(jω) with an amplitude char-
acteristic as depicted in Figure 2 and a state space representation

ẋf = Af xf + bf z̈c , z̈c,f = cT
f xf (4)

is introduced, [3]. Its impulse response is gc(t) such that z̈c,f = gc(t) ∗ z̈c.
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Fig. 2 Amplitude characteristic of the shaping filter Gc(jω) [3].

An augmented plant model with state vector xreg = [ xT , xT
f ]T is used to incor-

porate the shaping filter in the controller design (Section 3) such that the controlled
variables are yreg = [ z̈c,f , z̈c, Fdyn, zc − zw ]T . With h = [ 0 1 0 0 ] the aug-
mented plant model is

Pxreg =
[

A 0
bf hA Af

]
︸ ︷︷ ︸

Areg

xreg +
[

b
bf hb

]
︸ ︷︷ ︸

breg

u +
[

e
0

]
︸︷︷︸
ereg

ud , (5)

yreg =
[

0 cT
f

C 0

]
︸ ︷︷ ︸

Creg

xreg +
[

0
d

]
︸︷︷︸
dreg

u . (6)

Safety requirements

For stochastic road excitation the dynamic wheel load’s rms-value should be
bounded as follows1

max
(‖Fdyn‖rms

) ≤ �var = Fstat

3
, (7)

where Fstat = g (mc + mw) denotes the static wheel load. To ensure safety for
singular excitation events like potholes, the primary control objective changes from
comfort to safety, i.e. dynamic wheel load limitation, if

|Fdyn|
Fstat

≥ �sing = 0.75 . (8)

1 This is derived from the 3σ -rule and assures, assuming a normally distributed stochastic disturb-
ance signal, that Fdyn remains within ±Fstat for 99.7% of the time [10].
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Requirements on suspension deflection

A total of |�ẑ| = 0.1 m maximum suspension deflection is used as a limit in the
simulations of this study. Hitting the limit is modelled by an increase in cc as follows

c̃c =
{

cc for −0.1 ≤ zc − zw ≤ 0.1
15 · cc for |zc − zw| > 0.1 ∧ żc − żw > 0 .

(9)

3 Controller Design

For the road adaptive suspension control n = 6 linear quadratic optimal (LQR) con-
trollers with different weighting matrices Qy for separate primary control objectives
are designed in order to analyze the potential of the concept. For the application of
the classical LQR design formalism with output weighting in the cost functional

JLQR =
∫ ∞

0

(
yT
regQyyreg + uRu

)
dt (10)

with Qy = QT
y ≥ 0 and R > 0 chosen according to Table 2, the cost functional

needs to be slightly modified due to the direct feedthrough term dreg present in the
augmented suspension model. The resulting cost functional resulting from Eq. (10)
is

JLQR =
∫ ∞

0

(
xT
regQxreg + 2xT

regsu + uR̃u
)
dt (11)

with Q = CT
regQyCreg, s = CT

regQydreg and R̃ = dT
regQydreg + R. We substitute

the control input ũ = u + R̃−1sT x in Eq. (11) in order to remove the mixed term
2xT

regsu such that the conventional LQR design formalism can be applied [6]. The
optimal solution for each designed LQR-controller with weighting matrix Qy,i is
state feedback ui = −kT

i xreg with kT
i = R̃−1(bT

regPr,i + sT
i ) and Pr,i being the

symmetric, positive definite solution of the algebraic Riccati-equation

AT Pr,i + Pr,iA − (
Pr,ibreg + si

)
R̃−1(bT

regPr,i + sT
i

) + Qi = 0 ,

Pr,i = PT
r,i > 0 .

(12)

Wheel load adaptation

Figure 3 shows the control structure in which the LQR-controllers are implemen-
ted. In the following the part of the switching logic is presented that schedules the
controllers by the scheduling variable qadp(t) with 0 ≤ qadp(t) ≤ 1 depending on
the dynamic wheel load. The basic concept is described in [9] but is modified here
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Table 2 Controller weights Qy,i , R = 1 for all controllers.

Qy,i Value Controller Type

Qy,1 diag
(
3.5 · 105, 0, 0.1, 0

)
Most comfort oriented controller

Qy,2 diag
(
8 · 104, 0, 0.4, 0

)
Comfort oriented controller

Qy,3 diag
(
4 · 104, 0, 0.7, 0

)
Intermediate controller

Qy,4 diag
(
104, 0, 0.9, 0

)
Safety oriented controller

Qy,5 diag(10, 0, 1, 0) Most safety oriented controller
Qy,6 diag

(
0, 5.2 · 107, 10−3, 3 · 1012

)
Suspension deflection controller

-

kT
1

kT
2

kT
n

y

xu

ud

σ (qadp, qsusp)

switching logic

Fig. 3 Switching state feedback controller structure.

in details. In case of “hard” switching between the five comfort/safety oriented con-
trollers kT

i , i ∈ {1, . . . , 5} (see Table 2) the piecewise continuous switching function
is

σ
(
qadp (t)

) =
{ �qadp(t) · 5	 if 0 < qadp ≤ 1

1 if qadp = 0
(13)

where �·	 denote Gaussian brackets also known as the ceiling function. The sixth
controller is activated separately as described at the end of this section. The schedul-
ing variable qadp(t) increases with increasing wheel load and correspondingly as
qadp(t) ≈ 1, the most safety oriented controller kT

5 is chosen by the switching lo-
gic.

The current value of the scheduling variable is determined by two adaptation-
rates as qadp(t) = min(1, qs(t) + qf (t)). The slow adaptation rate qs(t) (illustrated
in the lower branch of block diagram in Figure 4) is used to adapt the suspension
controller to different variances of the road excitation signal. The variance of the
dynamic wheel load is

σ 2
Fdyn

= lim
T →∞

1

T

∫ T

0
F 2

dyndt.

After Laplace transformation we replace the integral term 1
s

by a first order low pass
filter thus approximating the dynamic wheel load’s variance by

σ 2
Fdyn

(s) ≈ 1

τss + 1
F 2

dyn(s).
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Fig. 4 Wheel load adaptation structure.

For τs the chassis mass eigenmodes’ time constant is chosen resulting in τs =
2π

√
mc/cc ≈ 0.71 sec.

The dynamic wheel load filtered in this manner is compared to the upper bound
�var given by Eq. (7). The deviation

es(t) =
σ 2

Fdyn(t)

F 2
stat

− �2
var

F 2
stat

is scaled by a constant gs = 1.5 and is integrated by an output-limited integrator
with an output signal range of [0, 1] resulting in qs .

If the vehicle hits an occasional pothole on an otherwise smooth road, it is im-
portant that an instant switching to a safety oriented controller occurs. Therefore,
it is necessary to introduce a fast adapting term qf (t) in the calculation of qadp(t)

which is shown in the upper branch of the block diagram (Figure 4).
To ensure that this fast adaptation part remains inactive as long as the relative

dynamic wheel load has not reached �sing = 0.75 defined in Eq. (8), the wheel load
is scaled by a nonlinear funtion h (based on a fourth order polynomial) shown in
Figure 5 which output value ef is only nonzero if |Fdyn|/Fstat > 0.75. Again a low
pass filter for ef with a time constant

τf = 5

9
· 2π

√
mw

cc + cw

≈ 0.05 sec

is used. The output qf is limited to a range of qf ∈ [0, 1] as well.

Suspension deflection adaptation

A second scheduling variable qsusp(t) is calculated which determines when the
sixth controller that suppresses excessive suspension deflection is activated by
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Fig. 5 Nonlinear scaling function h(Fdyn/Fstat ) for fast wheel load adaptation (left) and
f (zc − zw/|�ẑ|) for suspension deflection adaptation (right).

σ(qadp, qsusp). This is described in detail in Section 4 because its switching be-
haviour determines the stability of the system. The scheduling variable qsusp(t) is
calculated similarly to qf (t) with zc − zw/|�ẑ| as input. Again a nonlinear function
f (zc − zw/|�ẑ|) shown in Figure 5 is used being nonzero if |zc − zw|/|�ẑ| > 0.66.
The filter’s time constant is τsusp = 1/25 τf to ensure quick activation of the sus-
pension deflection controller.

4 Stability Analysis

Stability analysis of switched systems is a very important issue because it is not
guaranteed that switching between asymptotically stable subsystems (here: result-
ing from different controllers) results in an asymptotically stable switched system.
A well known stability analysis approach uses quadratic Lyapunov functions of the
form V (x) = xT Px, V (0) = 0, V (x) > 0, V̇ (x) < 0, P = PT > 0. If a mat-
rix P can be found such that these equations are fullfilled, the equilibrium x = 0
of the switched system is uniformly asymptotically stable, [8]. For numerical sta-
bility analysis, the Lyapunov function and the condition for P has been formulated
as a pair of linear matrix inequalities (LMI) for every closed loop system matrix
Acl,reg,i = Areg − bregkT

i of the switched active suspension system

(
AT

cl,reg,iP + PAcl,reg,i

)
< 0 for i ∈ {1, . . . , n} (14)

P = PT > 0 . (15)

These equations are solved numerically. Although no feasible solution for all six
controllers exists, two feasible solutions P1 and P2 have been obtained for two sub-
sets of LQR-controllers kT

i with i ∈ {1, . . . , 5} and kT
j with j ∈ {3, . . . , 6}. Switch-

ing between controllers within each subset thus results in an asymptotically stable
system for arbitrary switching signals σ(·) because the Lyapunov function is a com-
mon quadratic Lyapunov function (CQLF) of all systems within the subset [12].
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Soft switching

Because the active suspension system is improper regarding the control input,
a discontinuous control force resulting from a noncontinuous switching function
σ(qadp(t), qsusp(t)) would result in discontinuities of z̈c and thus decreasing pas-
senger comfort. To avoid these discontinuities “soft” switching by interpolating
between the controllers via qadp(t) and qsusp(t) directly is preferable. Therefore,
stability for linear interpolation between the state feedback controllers is analyzed.

Theorem 1. If two closed loop system matrices A1 and A2 resulting from control
loops with different state feedback controllers K1 and K2 for the same open loop
system matrix Aol have a CQLF characterized by P : P = PT > 0, the system
matrix

Acl = µA1 + (1 − µ)A2 , 0 ≤ µ ≤ 1 (16)

being a linear interpolation of A1 and A2 has the same CQLF characterized by P.

Proof. A CQLF of the two closed loop systems is defined by

∃P : AT
i P + PAi < 0 , P = PT > 0 ∀i ∈ {1, 2} . (17)

If we add the scaled Lyapunov functions for the closed loop system matrices we get

µ (AT
1 P + PA1)︸ ︷︷ ︸

<0

+(1 − µ) (AT
2 P + PA2)︸ ︷︷ ︸

<0

< 0 . (18)

For state feedback u = −Kix, i ∈ {1, 2} the closed loop system matrices have
the form Ai = Aol − BKi . Considering this and the fact that linear interpolation
between the controllers Ki would result in the state feedback gain matrix K̃ =
µK1 + (1 − µ) K2, Eq. (18) can be transformed into

[Aol − BK̃]T P + P[Aol − BK̃] < 0 . (19)

�

Multiple Lyapunov function approach for stable suspension deflection control

Because no CQLF could be obtained for the whole set of closed loop suspension
system matrices Acl,reg,i , the stability for the switching control using all six con-
trollers can be ensured using a multiple Lyapunov function approach, [12]. Asymp-
totic stability in the sense of Lyapunov while switching smoothly between the two
numerically calculated Lyapunov functions V1(x) and V2(x) is ensured by two con-
ditions:

1. Switching between the two Lyapunov functions is only allowed if the LQR-
controller being activated by the switching is either kT

3 , kT
4 or kT

5 because both
Lyapunov functions are valid for these controllers.
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2. It is only allowed to switch back to the Lyapunov function Vl(x) with l ∈ {1, 2}
at time t2 if the associated Lyapunov function has decreased since leaving it at
time t1 (with t1 < t2), i.e. Vl(x(t2)) < Vl(x(t1)) [12].

Due to the same quadratic structure of V1(x) and V2(x) for our control problem, it
is sufficient if condition 2 is fulfilled for l = 1 to guarantee asymptotic stability.

Switching to V2(x) is only necessary if the suspension deflection controller kT
6

should be activated. Ensuring that condition 1 is satisfied, the wheel load adaptation
parameter qadp(t) is smoothly increased automatically between 0.66 ≤ qsusp(t) ≤
0.77 (see Figure 5) such that qadp(t) is at the lower limit (qadp(t) = 0.5) of the
activation of controller kT

3 at least before the suspension controller kT
6 is enabled to

be switched to. For 0.8 ≤ qsusp(t) ≤ 0.9 the suspension controller kT
6 is definitely

activated (with a similar function as f ( zc−zw

|�ẑ| ) in Figure 5). Switching back to V1(x)

is only possible if qsusp(t) < 0.77 and additionally condition 2 is fulfilled for l = 1.

5 Simulation Results

The performance of the designed controller is compared to that of a conventional,
comfort focussed LQR-controller with Qy,LQR = diag

(
2.5 · 104, 0, 0.4, 0

)
and

the passive suspension. As excitation signal zg(t) a superposition of two synthetic
signals (bumps) and two subsequent real measured road track signals is used (Fig-
ure 6). The road excitation is zero for all points in time not depicted. Figure 7 shows
that the power spectral density (PSD) of z̈c is significantly reduced in the range of
the chassis’ resonance frequency (approx. 1.41 Hz). In the frequency range from 4–
8 Hz the adaptive controller performs best concerning comfort (approx. 17% better
than the passive suspension and 8% better than the LQR-controller). The comfort
gain vs. the LQR-controller would be more significant if a fully active suspension
model without passive suspension would be considered. Only the adaptive controller
keeps the suspension deflection limit at the first bump.

The proposed road adaptive controller achieves a comfort gain in an rms-sense
of approx. 20% in comparison to the passive system and of 11% compared to the
LQR-controller for the simulated road profile (Table 3). All control forces are in an
acceptable range.

Table 3 Performance of the road adaptive controller.

Quantity Unit Passive LQR Road adaptive Comment

‖z̈c‖rms
m
s2 3.06 2.75 2.45

‖gc ∗ z̈c‖rms
m
s2 2.85 2.56 2.36

‖Fdyn‖rms N 960.29 855.26 871.36 Limit: �var = 938.49 N
‖F(t)‖rms N - 156.19 262.66
max(|F(t)|) N - 2781 1771
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Fig. 6 Road signal zg(t) (left) and adaptation parameters qadp(t) (middle), qsusp(t) (right).
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6 Conclusion

A road adaptive suspension controller has been designed that switches smoothly
between different LQR-controllers depending on the current dynamic wheel load
and suspension deflection. The primary control objective is to maximize passenger
comfort while given limits for the dynamic wheel load and suspension deflection are
not violated. Stability of the system is guaranteed by a multiple Lyapunov function
approach implemented in the scheduling algorithm. The result is a performance gain
of approx. 20% vs. the passive system and 11% vs. the LQR-controlled suspension.
Only the road adaptive controller does not exceed the suspension limit.
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Development & Control of Master-Slave Robot
Hand Driven by Pneumatic Actuator

Hiroyuki Komatsubara, Nobutaka Tsujiuchi, Takayuki Koizumi, Hiroto Kan,
Yoichiro Nakamura and Masanori Hirano

Abstract We present an artificial muscle-type pneumatic actuator as the driving
source of a robot hand that is both safe and flexible. Some development of robot
hands using pneumatic actuators has already taken place. However, in using a pneu-
matic actuator, a big compressor is needed. So the driving system also needs to be
big, and enlargement of the driving system is a major problem.

Consequently, in this research, we develop a low-pressure, low-volume pneumatic
actuator for driving a robot hand that works flexibly and safely on the assumption
that it will be in contact with people. We examine the characteristics of this pneu-
matic actuator, and develop a five-fingered robot hand with pneumatic actuators.
Furthermore, we construct a master-slave system to enable the robot hand to per-
form the same operations as a human hand. We make a joint model that has one
degree of freedom using a pneumatic actuator, construct a control system for the
joint model and verify its control performance. Consequently, in this research, we
develop a low-pressure, low-volume pneumatic actuator for driving a robot hand that
works flexibly and safely on the assumption that it will be in contact with people. We
examine the characteristics of this pneumatic actuator, and develop a five-fingered
robot hand with pneumatic actuators. Furthermore, we construct a master-slave sys-
tem to enable the robot hand to perform the same operations as a human hand. We
make a joint model that has one degree of freedom using a pneumatic actuator, con-
struct a control system for the joint model and verify its control performance.
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1 Introduction

Recently, the range of places where robots are used has extended even to the office
and home, and robots have come to support human activities. Since human activit-
ies are various and change depending on the lifestyle, a robot must be sufficiently
flexible to adjust to supporting various tasks. Therefore, the development of an end
effector that can perform a variety of operations is hoped for. It is also necessary
for this kind of robot to functionally have a softness in the mechanism resembling
the living human body, and for the actuator to have enough gentleness in driving
that we can call it a “Safety actuator” [1]. For this purpose, an air pressure actuator
that provides essential softness by using the compressibility of air can be beneficial.
However, the past McKibben-type pneumatic actuator cannot be installed directly
in the robot hand due to size limitation. Moreover, a complex structure is needed in
installing the actuator by driving the fingers with wires. Therefore, a low-pressure
pneumatic actuator was developed in this research. This actuator can enable a low-
pressure drive by making the constituent material flexible and also contributes to the
miniaturization of the compressor. Moreover, it is miniaturized from past pneumatic
actuators so that it can be installed directly on the finger of the robot hand.

In our experiment, a robot hand that uses this pneumatic actuator was developed.
When a work area such as a clean room is assumed, this robot hand should do work
similar to a person’s hand. What is more, we construct a master-slave system to en-
able the robot hand to perform the same operations as a human hand. It is necessary
to construct a pneumatic actuator control system that makes complex movements
enabled for that. Various studies have been performed on the control of the actuator
[2, 3]. However, little research exists on controlling a robot hand with the actuator
installed directly in the finger. So we installed the actuator to single joint and then,
produced a joint model by which the winding and the progress operation is con-
trolled. The purpose of this research is to construct a positional control by using the
joint model, and to confirm its effectiveness.

2 The Structure of the Pneumatic Actuator

The most outstanding feature of a pneumatic actuator is its simplicity and conveni-
ence based on the compressibility of air, and the pneumatic actuator we developed
during this research is a type in which expansion and contraction operations are
performed by adjusting the pressure in a rubber balloon, which is assumed to be
similar to a human muscle. Some actuators like this have already been developed
[4]. A typical actuator of this kind is the McKibben-type artificial muscle [5]. Many
research consortiums are developing robots using such a pneumatic actuator [6, 7].

However, a pneumatic actuator that uses an artificial muscle such as the
McKibben-type artificial muscle needs a high level of air pressure to achieve the
necessary driving power. This is because such a pneumatic actuator is required to
generate a force equal to that of a hydraulic motor, hydraulic cylinder and electric
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Fig. 1 Schematic of pneumatic actuator.

motor. Consequently, applications for prosthetic hands lack practicality because a
big air compressor is needed when conventional actuators like those outlined above
are used. We therefore adjusted the design of our robot hand and developed a pneu-
matic actuator that was able to generate enough power to drive the fingers and grasp
objects using low air volume and low pressure.

Figure 1 shows the structure of the pneumatic actuator that we developed. It is
composed of a rubber balloon, a net that covers the rubber balloon, and a feeding
channel that sends compressed air to the balloon.

The actuator is inflated from the condition shown in Figure 1a to that in Figure 1b
by sending compressed air to the balloon in the actuator through the feeding channel
whereby the actuator generates the necessary force. Part of the actuator is fixed, as
shown in Figure 1. The rubber balloon is about 0.21 mm thick and is covered by
netting so that the actuator may efficiently shrink to the air volume sent.

The basic structure of the pneumatic actuator is the same as the McKibben-
type artificial muscle described previously. However, our pneumatic actuator can
be driven by lower pressure and lower air volume by making the components flex-
ible. This means that the robot finger can be driven, and can generate enough force
to grasp objects without the need for high pressure. What is more, this pneumatic
actuator can be arranged directly in a robot hand because it can be miniaturized.

3 Control of Joint Model

3.1 Joint Model

Figure 2 shows the schematic of the joint model used in the experiment. The range
of operation of the joint model is from −10 deg to 90 deg. A positional sensor
is installed in the joint model, and the angle of the joint model is measured. In
terms of the structure of the joint model, we arranged two actuators per joint, the
lines of the pneumatic actuators are tied to an upper material, and the actuators are
fixed to a lower material. When the pneumatic actuators shrink, this pulls the upper
material. One actuator shrinks, another progresses, and the joint model performs the
flexion operation and the extension operation. The amount of pressure change in
both actuators is equated.
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Fig. 2 Schematic of joint model.

Fig. 3 Experiment apparatus.

3.2 Experimental Aparatus

The flow diagram for the experimental apparatus is shown in Figure 3. A PC/AT
compatible machine (Pentium 4 2.8 GHz: Dell Corp.) acted as the host computer,
and a control experiment was conducted by sampling for 0.001 s on a DSP board
(DS1005: dSPACE Inc.) attached to an ISA Bus. An A/D-D/A converter and a
counter were built onto the DSP board and were used to acquire output signals from
a sensor. The control system was designed by MATLAB/SIMULINK. Compressed
air to drive the joint model is collected using the compressor and the accumulator,
and the inner pressure of the two actuators is controlled by the electro-pneumatic
regulator. The pressure in each actuator is measured with the regulator’s built-in
pressure sensor. The angle of the joint model is measured with the linear encoder
(Levex Corp. Wire in Pulse Coder).
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Fig. 4 Control system.

Fig. 5 Step signal response. Fig. 6 Close-up in Figure 3.

3.3 Construction of Control System

A PI control system as shown in Figure 4 was constructed. θr is the reference value
of the angle, θ is the measured angle. Moreover, because the vibration had happened
by about ±0.2 deg, the case beyond the limits of the instruction value ±0.2 deg in
this experiment the winding angle of two link arm was assumed to be PI control with
the gap that assumed deflection to be 0 when the deflection between the instruction
value and the winding angle was input to PI Controller. It was installed within the
range of ±0.2 deg and input 0 to the PI Controller.

The reference value of force is assumed to be a step signal, and a mixed sin-wave
signal. The mixed sin-wave signal is a synthetic of 0.2 Hz and 0.075 Hz.

3.4 Experimental Results and Prospects

Figure 5 shows the experiment result and the reference value of the angle when the
step input is assumed to be an instruction value. Moreover, a closeup is shown in
Figure 6.

It has been understood to obtain the response to which the vibration in the neigh-
borhood of the target value that has happened because of the PI control installs, and

205



H. Komatsubara et al.

Fig. 7 Consecutive step response. Fig. 8 Mixed sin-wave response.

is steady from Figure 6. As for the value of the steady state error 0.05 deg, it is
understood that the accuracy is high.

Table 1 Steady state error and time constant of PI control system with GAP.

A B C D

Steady state error [deg] 0.38 0.22 0.05 0.19
Time constant [s] 0.0717 0.1402 0.0551 0.1829

Next, the angle reference value and the experiment result when giving and exper-
imenting on the stairs reference value are shown in Figure 7. Moreover, is the angle
of the reference value separate in to a section between section A , section B, section
C, and section D. The steady state error and the time constant in each section are
shown in Table 1. From Table 1, the experiment value displays high accuracy.

Next, the angle reference value and the experiment result when giving as an
instruction value and experimenting on a mixed sinwave synthetic of 0.2 Hz and
0.075 Hz, are shown in Figure 8. In the delay at this time, both winding, and pro-
gressing were 0.2 s max and 0.7 s max in switching. Thus, it is understandable that
the experiment value has high accuracy.

From this experiment, the position of the two link arm was controlled from the
experiment on the above PI control with the gap. It was effective.

However, when the following progress operated in the experiment, overshoot was
generated when the reference angle become large (Figure 9). It is thought that this
is because of being not able to correspond to the bend and expand operation by a
fixed gain. So, a control system that applied a switching gain respectively when the
joint model bend and expand was constructed.

A rectangular wave of 50 deg is given as an angle reference value, and the result
of the control is shown in Figure 9. Compared with the PI control experiment result
of applying the fixed gain, it is improved, in state error 3.9 deg to 0.27 deg and
time constants from 1.5 s to 0.8 s. It is thought that an appropriate PI control can be
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Fig. 9 Response of the rectangle input with fixed (left) and switching (right) PI control.

Fig. 10 Five-fingered robot hand.

achieved by using the PI control system that applied a different gain to each finger
when it bends and expands.

4 Five-Fingered Robot Hand

By using the mechanism of the joint model, we produced a five-fingered robot hand
that imitates a human’s right hand (Figure 10). The pneumatic actuator was designed
and arranged to make the fingers of this robot hand have the same movable range as
that of a human’s fingers.

This robot-hand’s weight is 400 g, and the height is 500 mm (wrist included).
The height without wrist is 200 mm.

The index finger, middle finger, ring finger, and little finger have DIP joints, PIP
joints and MP joints. We arranged actuators for flexion operation in the DIP and PIP
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Fig. 11 Five-fingered robot hand using
pneumatic actuator

Fig. 12 Examples of the five-fingered ro-
bot hand holding an object.

Fig. 13 Data glove.

joints one by one. The extension operation is done by elastic gum. We arranged two
actuators for flexion operation and extension operation in the MP joint. The thumb
has an IP joint, an MP joint and a CM joint. In the thumb, we arranged actuators for
flexion operation in the IP joint and in the MP joint one by one. In order to give the
degree of rotation freedom and the degree of freedom of palmer adduction for the
CM joint, we arranged four actuators. The pinching operation becomes possible by
ensuring the thumb has a degree of rotation freedom.

Because the five-fingered robot hand has a movable range close to that of a hu-
man hand, it can assume positions for holding a variety of objects. Figure 12 shows
an example of the five-fingered robot hand holding an object. This hand can hold ob-
jects weighing up to 500 g. Therefore, the robot hand using the pneumatic actuators
can get enough power for daily activities such as holding a pen.

5 Master-Slave System

We constructed a master-slave system with the five-fingered robot hand above. The
master-slave system is one that achieves robot hand operation similar to that of a
human hand. A device such as a joystick is used in a conventional master-slave sys-
tem to control a robot arm. However, when the five-fingered robot hand is operated,
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Fig. 14 Master-slave system.

the operation is difficult when using such a device because the five-fingered robot
hand has a large number of degrees of freedom. In this research, we constructed
a master-slave system with a data glove (Roman-glove; LEVEX Corp.). The data
glove is a wearable measuring device that can measure the angle of each joint of the
fingers, as shown in Figure 13. Intuitively operating the robot hand without needing
any training for the operation becomes possible by using the data glove.

Compressed air, which is the energy source, is collected with a compressor (DPP-
AYAD compressor; KOGANEI Corp.) and an accumulator (DPT-T18-V air tank;
KOGANEI Corp.). Compressed air is supplied to the actuator when the output value
from the data-glove exceeds the threshold, and the air is expelled when the value
falls below the threshold; thus, the robot hand is driven. We can achieve operation
of the robot hand corresponding to that of a human hand in this way. The robot
hand is driven by supplying compress air to the actuator according to the output
value from the data glove. Figure 14 shows the robot hand to make the master slave
system drive. The hand and the right of man to whom the left wore the data glove
are the robot hands in Figure 14. It is understood that the robot hand does movement
corresponding to the operation of man’s hand from figure.

6 Conclusion

In this research, we developed a pneumatic actuator. To control of the robot hand
freely, we conducted a control experiment for a joint model of the five-fingered
robot hand. Moreover, we produced a five-fingered robot hand with these pneumatic
actuators, and constructed a master-slave system. From this research, we obtained
the following conclusions:

1. The robot hand has enough power for tasks in daily life
2. The PI control system with gaps is effective for the angle control of the joint

model; and
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3. The PI control system with a switching gain when it bends and expands is effect-
ive

4. We constructed a master-slave system that which achieves a level of robot hand
operation similar to that of a human;
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Surface Acoustic Wave Linear Motor Using
Glass Substrate

Hiroyuki Kotani, Masaya Takasaki and Takeshi Mizuno

Abstract A surface acoustic wave (SAW) linear motor is a kind of ultrasonic motor.
The advantages of the SAW linear motor are its thin structure, high thrust force, high
velocity and precise positioning. However, the stator transducer material (piezo-
electric material) of the SAW linear motor has constraints of size and shape. To
resolve this problem, a method is proposed to excite and propagate a SAW on a
non-piezoelectric material surface. Excitation and propagation of the SAW on the
non-piezoelectric material is realized by the combination of a LiNbO3 plate and a
glass substrate. The design and fabrication of the glass substrate transducer for the
SAW linear motor are described. The design employs a novel transducer structure,
which has been proposed previously. SAW excitation on the glass substrate stator
transducer is applied for the SAW linear motor. The fabricated motor worked suc-
cessfully. Driving characteristics of the glass substrate SAW linear motor are also
reported.

1 Introduction

A surface acoustic wave (SAW) linear motor [1][2], which is a kind of ultrasonic
motor, has many merits such as a large thrust force, high speed, quick response, and
precise positioning. Since a silicon slider [3] has been employed for the motor, the
motor can perform with a much larger output force of 10 N [4] and a fast no-load

Hiroyuki Kotani
Saitama University, Research Fellowship of the Japan Society for the Promotion of Science,
Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan; E-mail: hktn121@mech.saitama-u.ac.jp

Masaya Takasaki
Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan;
E-mail: masaya@mech.saitama-u.ac.jp

Takeshi Mizuno
Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

H. Ulbrich and L. Ginzinger (eds.), Motion and Vibration Control, 211–219.
© Springer Science+Business Media B.V. 2009



H. Kotani et al.

speed of more than 1.5 m/s [5]. The motor has the possibility of a precise positioning
resolution of several ten nanometers [6]. The driving frequency of the SAW device
has been increased to 100 MHz for miniaturization [7]. Energy circulation driving
methods have also been investigated for saving electric driving power [8].

The stator transducer of the SAW linear motor consists of a rectangular plate
of 128◦ Y-cut X-prop lithium niobate (LiNbO3) substrate, which is a piezoelectric
single crystal, and surface electrodes (interdigital transducers, IDTs) on its surface.
The LiNbO3 wafer, however, has size and shape constraints (a maximum length of
100 mm). Therefore a SAW linear motor of large size or any desired shape cannot
be realized.

To resolve this problem we proposed a method of SAW excitation and propaga-
tion on a non-piezoelectric material surface [9, 10] and its application for the stator
transducer of the SAW linear motor. The method uses the combination of piezo-
electric and non-piezoelectric materials. A glass substrate was taken as the non-
piezoelectric substrate. Using this structure, the excited SAW can propagate on the
glass substrate. The glass substrate transducer can be machined into a desired shape
and the cost using this method is more reasonable than that of the conventional
method. Previously, actuators using a glass substrate have been developed and re-
ported [11, 12]. Moser [11] developed a glass motor using the electrostatic force.
Hata [12] proposed an electrostatic microactuator constructed of a thin film metallic
glass. These actuators using glass substrates are not ultrasonic actuators, for they
apply electrostatic forces.

In this paper, we fabricate a glass transducer. SAW excitation on the glass sub-
strate stator transducer is applied for the SAW linear motor and the fabricated motor
works successfully. Driving characteristics of the glass substrate SAW linear motor
are also discussed.

2 SAW Linear Motor

2.1 Principle

In a propagating Rayleigh wave, which is a kind of SAW, particles on the surface
of an elastic material media move along an elliptical locus, as shown in Figure 1.
The slider arranged on the elastic substrate surface is driven by a frictional force in
the direction indicated by the arrow in the figure. The direction is the reverse of the
Rayleigh wave propagation. The slider requires pre-loading for there to be sufficient
frictional force for driving.
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Fig. 1 Principle of the friction
drive.
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Rayleigh wave propagationRayleigh wave propagation
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2.2 Basic Structure

Figure 2 outlines the basic structure of the conventional SAW linear motor. A
LiNbO3 128◦ Y-cut X-prop substrate is used as a piezoelectric material for the
SAW linear motor. When alternating current is applied to an IDT on the piezoelec-
tric substrate, a Rayleigh wave is generated and propagates. To generate a unique
propagating Rayleigh wave, the wave reflected at the end of the substrate should
be blocked. Therefore, SAW absorbers are arranged behind each IDT. Absorbed vi-
brational energy is transformed into thermal energy. Additionally, thermal energy
should be radiated, because LiNbO3 is a brittle and frangible material with a sharp
temperature gradient.

There are two IDTs on the stator transducer. The slider driving direction depends
on which IDT the driving current is applied to and hence can easily be changed. At
each end of the stator, IDTs as illustrated in Figure 3 are fabricated by means of
deposition. The electrode materials are chromium and aluminum. In this research,
the dimensions of the IDTs were 400 µm in pitch, 200 µm in electrode strip width,
and 20 mm in width. An IDT is composed of 10 strip electrode pairs. The operat-
ing frequency of the transducer depends on the IDT’s electrode dimensions and is
approximately 4.8 MHz in the following experiments. At an operating frequency of

Interdigital
transducer

(IDT)

Slider

Piezoelectric material

Preload

(A)

(B)Rayleigh
wave

Driving
direction

Fig. 2 Schematic view of the SAW linear motor.
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Fig. 3 Configuration of the
IDT electrode.
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Fig. 4 Photograph of the
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4.8 MHz, the vibration amplitude of the stator transducer surface is only a few ten
nanometers.

To realize stable contact at the driving surface, a silicon slider has been em-
ployed [3]. The silicon slider has many projections on its surface, which are
manufactured by dry-etching. The diameters of the projections are from 10 to
50 µm (several kinds of sliders were manufactured) and are much shorter than the
wavelength of the excited Rayleigh wave. On the other hand, a SAW linear mo-
tor using a segment-structured diamond-like-carbon (S-DLC) film slider has been
reported [13]. Figure 4 is a photograph of a S-DLC film projection sample. The sil-
icon wafer with the films can substitute for the conventional silicon slider. DLC is a
highly functional material and a surface coated with DLC film has properties such
as hardness, wear-resistance and low friction. Previously, S-DLC films have been
proposed to enhance the functions [14]. The S-DLC films appear as a distribution of
square projections. Projections on the conventional silicon slider could be replaced
with S-DLC films. In this research, a silicon wafer with S-DLC films was employed
as the slider.
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Fig. 5 Configurations for indirect excitation.

3 Indirect Excitation

We propose a method to excite and propagate a SAW on a non-piezoelectric ma-
terial surface using a piezoelectric material. In this paper, the method is referred to
as “indirect excitation”. The conventional method (a SAW being generated by an
IDT and propagating on the piezoelectric material directly) is referred to as “direct
excitation”. For indirect excitation, a combination of a piezoelectric substrate and
a non-piezoelectric substrate was employed. A glass substrate was applied as the
non-piezoelectric substrate and a LiNbO3 substrate as the piezoelectric substrate.
The excited SAW on the LiNbO3 propagated on the glass substrate indirectly. The
glass substrate can be machined into a desired shape and cut to a desired size. The
cost of this method is less than that of the conventional method.

Configurations to realize indirect excitation are shown in Figure 5. There are two
types of the indirect excitation. One is Type A, which is shown in Figure 5a. The
IDT on the LiNbO3 is connected to the glass substrate. The IDT is formed by a pho-
tolithographic process on the LiNbO3 wafer. The LiNbO3 wafer is cut to the same
size as the IDT and the glass substrate is cut to a size corresponding to the electrode
width of the IDT. The glass substrate is orientated such that the propagating direc-
tion is perpendicular to the IDT fingers. A preload is applied to the LiNbO3 and
enhances the acoustic connection between the glass and LiNbO3 substrates. A Type
A glass substrate SAW linear motor has previously been suggested and employed
successfully [15]. The other indirect excitation type is Type B. The back side of the
LiNbO3 surface (with the IDT facing up) is connected to the glass substrate with
a coupling material as shown in Figure 5b. A coupling material is used in contact
testing applications; e.g., the general non-destructive testing using ultrasonic vibra-
tion to facilitate the transmission of vibration energy between the transducer and the
target material. In this research, Type B indirect excitation was employed.

SAW excitation and propagation of Type B indirect excitation is illustrated in
Figure 6. The LiNbO3 excites a SAW, and the excited SAW propagates on the glass
substrate surface through the coupling material. Silicone oil was applied as the coup-
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Fig. 6 Excitation and propagation of SAW using indirect excitation Type B.
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Fig. 7 Photograph of the SAW linear motor using a glass substrate.

ling material. In the configuration of Type B indirect excitation, a preload mechan-
ism is unnecessary, because the excited wave is effectively transmitted on the glass
substrate surface through the coupling material. Therefore the preload to enhance
an acoustic connection between the LiNbO3 and glass substrate is unnecessary.

4 SAW Linear Motor using a Glass Substrate

4.1 Experimental Apparatus

The indirect excitation method was applied for the SAW linear motor. Figure 7
shows the SAW linear motor with a glass substrate for the stator transducer fab-
ricated on trial. The structure of the glass substrate SAW linear motor is shown in
Figure 8. The transducer consists of piezoelectric and non-piezoelectric materials.
A LiNbO3 128◦ Y-cut X-prop plate was used for the piezoelectric material as is
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Fig. 8 Structure of the SAW linear motor using a glass substrate.

applied in conventional direct excitation. A silica-glass substrate was used for the
non-piezoelectric material. The dimensions of the LiNbO3 plate were 25 mm ×
8 mm × 2 mm and the dimensions of the glass substrate were 100 mm × 20 mm ×
2 mm. The LiNbO3 plate with the IDT was aligned in the propagating direction and
fixed. The driving stroke of the apparatus was about 68 mm. A silicon wafer with
S-DLC films was used for the slider [13]. The size of the S-DLC films slider was
8 mm × 8 mm × 0.7 mm. The preload of the slider was provided by a combination
of a beam and coil springs and measured as approximately 10 N with strain gauges.

4.2 Driving Characteristics

The glass substrate SAW linear motor worked successfully. Transient responses of
the velocity to changes in the applied current for a preload of 10 N and a driving
frequency of 4.768 MHz are plotted in Figure 9. It is seen that the slider velocity
increased with increasing applied current. A maximum velocity of around 200 mm/s
at 0.5 A0-p was observed. It was experimentally confirmed the glass substrate SAW
linear motor obtained approximately the same slider velocity as did the conventional
SAW linear motor.

5 Conclusion

Indirect excitation using a combination of glass substrate and LiNbO3 plates was
realized. A SAW linear motor employing the glass transducer was fabricated and
worked successfully. The slider velocity increased with increasing applied current
and a maximum slider velocity of 200 mm/s was observed.
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Humanoid Robot LOLA – Research Platform for

Sebastian Lohmeier, Thomas Buschmann, Heinz Ulbrich and Friedrich Pfeiffer

Abstract This paper describes the design concept of the performance enhanced hu-
manoid robot LOLA. Our goal is to realize a fast, human-like walking motion. The
robot has 22 degrees of freedom, including 7-DoF legs with actively driven toe
joints. It is characterized by its lightweight construction, a modular, multi-sensory
joint design with brushless motors and an electronics architecture using decentral-
ized joint controllers. Special emphasis was paid on an improved mass distribution
of the leg apparatus to achieve good dynamic performance. The sensor system com-
prises absolute angular sensors in all links, two custom-made force/torque sensors in
the feet and a high-precision inertial sensor on the upper body. The trajectory gener-
ation and control system currently being developed aim at faster, more flexible, and
more robust walking patterns.

1 Introduction

Recent developments in enabling technologies (biped walking control, mechatron-
ics, computer technology) have lead to the design of sophisticated humanoid robots,
like ASIMO [5], HRP-2 [9] and WABIAN-2 [15]. Even if all robots achieve reliable
dynamic walking – compared with human beings – high walking speeds still remain
challenging.

Obviously, the control problems inherent in fast walking are the most challen-
ging field, since there are still many unsolved problems, e.g. fast walking and run-
ning [6, 8], sudden turning motions, walking on rough terrain and trajectory gen-
eration in complex environments. In our opinion, however, a careful design of the
mechanical hardware and the sensor system is just as essential, and and cannot be
separated from controller design. Rather, all components must be seen as tightly
coupled parts of a highly integrated mechatronic system. For example, the structural
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Fig. 1 22-DoF humanoid robot LOLA (left) and kinematic configuration (right).

stiffness and mass distribution can positively influence the dynamics of the overall
system. Moreover, the validity of model simplifications, e.g. the inverted pendulum
model used in the stabilizing controller, can be aided if disturbances by the highly
accelerated leg masses are minimized.

With the biped robot JOHNNIE which was developed at our institute from 1998
to 2003, a maximum walking speed of 2.4 km/h has been achieved [10]. Figure 1
(left) shows our new humanoid walking robot LOLA. The aim is to realize a fast,
human-like walking motion, including a significant increase in walking speed (goal:
5 km/h) and more flexible gait patterns. Furthermore, we want to increase the robot’s
autonomous, vision-guided walking capabilities. LOLA’s physical dimensions are
based on anthropometric data and correspond with a 180 cm tall adult. The weight
of the robot is 55 kg without batteries.

LOLA’s hardware approach tries to settle most of the technical problems dis-
covered in experiments with JOHNNIE and a thorough hardware analysis. The dis-
tinguishing characteristics of LOLA are its redundant kinematic structure with 7-
DoF legs, an extremely lightweight construction and a modular joint design using
brushless motors. The sensor system was revised in order to improve signal quality
and bandwidth. In our opinion, one of the keys to faster walking is greater robustness
and stability. The new control architecture tries to achieve this by adding an on-line
adaptation of gait parameters such as step length and width in real-time (cf. [1]).

2 Design Concept

Fast locomotion still poses a significant challenge for humanoid robots and requires
an accurate design of the overall mechatronic system. Especially the legs and feet
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require careful engineering in order to achieve a good dynamic behavior. Since the
robot’s mass and its distribution have a strong influence on global system dynamics,
the lightweight construction is of great importance and must be balanced with the
demand for high stiffness and powerful drives.

2.1 Kinematic Structure

One of the most important conceptual challenges is the definition of a kinematic
structure, enabling a natural, stable and fast gait. From experiments and simula-
tions we have seen that additional, redundant DoF can increase the robot’s range
of motion, flexibility and stability of gait patterns and walking speed. Considering
results from biomechanical research on dynamics and kinematics of biped walking
(e.g. [3, 14]) and experience with JOHNNIE [10] we chose a configuration with 22
actively driven DoF for LOLA (Figure 1 right): The legs have 7 DoF each, while the
upper body has two and each arm has three DoF.

Nearly all humanoid robots are designed with 6-DoF legs – 3 DoF in the hip, one
in the knee and two in the ankle. Each foot consists of one rigid body, therefore heel
lift-off during terminal stance phase can hardly be realized. Even small disturbances
lead to instabilities due to the line contact of the foot leading edge and the floor.
In human walking heel lift-off in the stance leg occurs during terminal swing, i.e.
shortly before the swing leg has floor contact [16]. Biped robots with one-piece foot
segments, however, cannot perform forward roll across the forefoot. Especially for
larger step lengths, this leads to an extended knee configuration at initial contact of
the swing leg resulting in large joint accelerations.

Therefore an additional, actively driven link between forefoot and heel, equival-
ent to the human toes is proposed for LOLA. Heel lift-off in the stance leg allows the
swing leg to be in a more extended configuration. Area contact of the toe segment
stabilizes the robot and facilitates forward roll across the forefoot which is expected
to reduce the joint loads in hip and knee compared to a 6-DoF leg configuration.
There are only very few humanoid robots with actively driven toe joints, e.g. H6
and H7 [13]. Recently, Ogura et al. [15] presented the robot WABIAN-2 walking
with passive toe joints.

2.2 Further Requirements for High-Speed Walking

Besides a suitable kinematical structure, further design goals can be defined to im-
prove the robot hardware for fast walking:

• Minimum overall mass,
• sufficient structural stiffness,
• high center of gravity,
• low moments of inertia of the leg links.
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Obviously, the overall mass should be minimized, while a sufficient stiffness of the
robot’s structure must be maintained. This prerequisite is common to all mobile
robots with high dynamic demands.

Unlike humans, the largest portion of a biped robot’s weight resides in its legs,
since motors and gears determine approximately a third of the overall weight. There-
fore the center of gravity (CoG) height is lower than that of humans, i.e. typically
at the height of the hip joint or even below. According to the Linear Inverted Pen-
dulum Model (3D-LIPM) by Kajita et al. [7], the CoG trajectory of the robot is a
piecewise hyperbolic curve, where the CoG lateral swing yCoG increases with lower
CoG positions:

yCoG ∼ cosh

(√
g

zCoG

Ts

)

The 3D-LIPM illustrates the influence of the CoG height zCoG on the lateral swing
of the upper body during walking: Especially at higher walking speeds, the stability
of the robot increases when the lateral swing of the upper body is low. But mass
distribution in the legs not only influences CoG height, but also the inertia of the leg
segments. Therefore, during the final iteration of the mechanical hardware we chose
three additional measures to further improve mass distribution: First, we designed
the leg segments as investment cast parts using FE-based topology optimization
methods to achieve high stiffness at a minimal weight (Section 3.4). Moreover, by
choosing an appropriate kinematic actuation principle for the leg links, the mass
distribution can strongly be influenced: For the knee joint, a roller screw-based lin-
ear actuator is used (Section 3.2). The ankle joint is actuated by a 2-DoF parallel
mechanism with linear drives, where the motors are mounted on the thigh next to
the hip joint (Section 3.3).

3 Mechanical Design

3.1 Modular Joint Concept

A detailed analysis by Gienger [4] has revealed that structural components make
43% of a humanoid robot’s weight. With approximately 31% the drive chains make
the second largest part, making the development of compact and lightweight joint
units a crucial factor. From the manufacturing and maintenance point of view, a fully
modular structure of the whole robot would be desirable, however, it collides with
the demand for minimal weight. For LOLA, all joints have the identical structure
with the sizes of gear and motor adapted to the requirements of each link. Many
parts are standardized for all drives, but some housings are specialized because of
weight and optimal load spread and distribution. This turned out to be the most
reasonable way to realize the robot at minimal weight while taking into account
ease of manufacturing [12].
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Fig. 2 Left: Comparison of the power density of commercially available DC motors and PMSM.
Right: Mechanical design of Harmonic Drive based joints (e.g. hip joint yaw axis).

To realize highly integrated joint units with maximum power density it is neces-
sary to use the latest technologies in the field of electrical drives, gears and sensors.
We are using high performance permanent magnet synchronous motors (PMSM)
from Parker Bayside because of their superior torque and speed capabilities (Fig-
ure 2 left). The motors come as kit motors, which facilitates a space- and weight-
saving integration into the joint.

Except for the knee and ankle, all joints employ Harmonic Drive gears as speed
reducers, which are the de-facto standard for humanoid robots. Their advantages
are well known and include no-backlash and high reduction ratios at a low weight.
The compact design of Harmonic Drive component sets allows a space-saving in-
tegration directly into the joint units. All gears are custom lightweight versions with
a T-shaped Circular Spline which is, in our experience, the best tradeoff between
weight and loading capacity. The Wave Generators, modified for low weight and
inertia, are made from aluminum or steel. As an example, Figure 2 (right) shows the
hip joint yaw axis.

3.2 Knee Joint

Even though the torques and velocities are comparable, using the hip joint pitch
drive in the knee is problematic because its mass would unacceptably increase the
thigh moment of inertia. In turn a large part of the enhanced hip joint output would
be spent on accelerating a heavier thigh. By employing a roller screw-based linear
drive (Figure 3 left), a better mass distribution in the hip-thigh area is achieved
compared to a Harmonic Drive based solution with identical performance: The thigh
inertia could be reduced by 65%, and the drive mass was reduced by more than 10%.
Thus, the driving power of the knee could be enhanced without decreasing the hip
joint’s performance. The mechanism is nonlinear and the torque-speed characteristic
corresponds to the human knee (Figure 3 right): The torque depends on the link
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Fig. 3 Left: Knee joint with roller screw-based actuator. Right: Torque and speed requirements of
knee joint (human torque capacity taken from [16]).

position and has its maximum at around 55◦, which is advantageous for typical
gait patterns of the robot. Conversely, maximum speeds increase at a stretched leg
configuration, where they are needed.

Compared to ballscrews that were used in our first designs [11], roller screws
have a significantly higher load rating which allowed us to further reduce the drive’s
weight. Moreover, due to their multi-point contact design, roller screws have the
ability to survive shock loads which makes them particularly suitable for the robot’s
legs.

3.3 Ankle Joint

As shown in [11], both axes of the ankle joint show clearly different torque-speed
characteristics. By employing parallel drives, the required peak motor torque can
be reduced by approx. 35%. Different from our previous designs, where the drives
acted as length variable steering rods, the ankle joint drives were modified in the
final design which is shown in Figure 4: The ankle joint (3) is actuated by two linear
drives (7) with the motors (4) mounted on the thigh (1) as close as possible to the
hip joint. Each linear drive (7) is connected to the motor (4) via a timing belt (5) and
a bevel gear (6) in the knee joint axis which is then connected to the roller screw
(8). Each linear drive consists of a roller screw (8) which is fixed to the shank, and a
linear bearing (9) which keeps the roller screw free from radial loads. A steering rod
(10) connects the roller screw nut and the foot segment. The incremental encoders
for motor control are mounted on the motor shaft, but the absolute angular sensors
(11) are mounted on the joint axes.
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Fig. 4 2-DoF parallel mechanism in the ankle joint of LOLA.

3.4 Design of Structural Components

Both thigh and shank were designed as investment cast parts. By using Rapid
Prototyping-based manufacturing, there are almost no limitations of a component’s
shape and it is possible to realize complex, thin-walled components. As an example,
the design process of the shank is shown in Figure 5. It connects the 1-DoF knee
joint and the 2-DoF ankle joint that are both actuated by roller screw drives. There-
fore, loads are transmitted not only at the joint flanges, but also at the hinging points
of the linear drives. Due to numerous points of force transmission of the linear
drives, thigh and shank show quite complex multi-axial stress conditions and strict
geometric constraints. Therefore we used the FEM-based topology optimization tool
OptiStruct to find an optimal design proposal which meets weight and/or stiffness
targets and other constraint criteria. Based on a mockup resembling the maximum
allowable designed space, an optimization model is built. Realistic results can only
be achieved if the force transmission by the roller screw drives is considered. There-
fore the thigh and the linear drives of knee and ankle are modeled as elastic bending
beams. The optimization result is the basis for the actual part design. After sev-
eral iterations of structural analysis and design refinement, the final geometry of the
component is developed. By using the original CAD data, the master pattern is made
by laser-sintering of plastic, which is then cast from aluminum.
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Fig. 5 Development process of structural components based on topology optimization, for ex-
ample the shank.

4 Sensor System

4.1 Joint Sensors

Each joint contains an incremental rotary encoder, an absolute angular encoder used
as link position sensor and a limit switch (cf. Figure 2 right). The incremental rotary
encoder mounted on the motor shaft is mainly used for motor control. The absolute
angular encoder (resolution 17 bit, accuracy 0.1◦) compensates elasticities and non-
linearities in the drive chain and eliminates the need for a homing routine, making
startup faster and easier. To improve operational security and to prevent the robot
from self-destruction each joint incorporates a limit switch in the form of a light
barrier.

4.2 Force/Torque Sensors

LOLA is equipped with two six-axes force/torque sensors that are tightly integrated
into the foot structure. The required measurement range was determined using our
detailed multibody simulation model [2] for a walking speed of 5 km/h. Based on
these data and multiple iterations of FEM-analyses, an optimal design of the sensor
body was developed (Figure 6). The sensor consists of a single aluminum part with
four deformation beams in a classic “Maltese-cross” arrangement. Each beam holds
two pairs of strain gauges that operate in a half bridge configuration in order to
compensate for temperature dependency. Thin membranes mechanically decouple
the individual beam deflections to a far extent and reduce cross talk. In order to
protect the sensor from damage during experiments, we have integrated an overload
protection. Mechanical end-stops engage into the flux of force at a vertical load cor-
responding three times the weight of the robot and thus unload the sensitive meas-
urement beams. Special emphasis has been devoted to the strain gauge application.
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Fig. 6 Schematic display of the 6-axis force/torque sensor (left) and the monolithic sensor body
before assembly (right).

The strain gauges are selected to match the elastic properties of the sensor material.
An exact application in combination with an appropriate temperature treatment fi-
nally lead to a high zero point stability of the signal. The calibration was done using
the least squares method. By applying more than 450 different load cases, a calib-
ration error less than 0.5% could be achieved. At a total weight of 395 g the sensor
includes all necessary electronics and a digital interface.

4.3 Inertial Measurement Unit

The inertial measurement unit (IMU) estimates the orientation and velocities of the
upper body. Simulations and experimental results with the robot JOHNNIE have
shown that the precision of this sensor significantly determines the performance of
the stabilizing controller. Therefore, the IMU must show high accuracy and a high
signal quality (i.e. low noise). Moreover, a low sensor bias results in a low long time
drift and a reliable calibration. We are using the inertial measurement unit iVRU-FC-
C167 (from iMAR Navigation) in a custom made lightweight version. The sensor
consists of three open-loop fiber-optic gyroscopes and three MEMS accelerometers.
The sensor fusion comprises internal error models and is integrated into the sensor,
which has a CAN interface.

5 Conclusions/Future Work

Despite recent advances, biped walking robots are still slow compared to humans
and have limited autonomy. The intention of the research presented here is to di-
minish this gap. This paper focused on the design concept of our new, 22-DoF hu-
manoid robot LOLA (180 cm, 55 kg). LOLA’s distinctive features are an extremely
lightweight construction and a redundant kinematic configuration, which allows for
more flexible and natural motions. All joints are equipped with absolute angular
sensors and are driven by AC brushless motors through Harmonic Drive gears or
linear mechanisms with roller screws. The electronics architecture is designed as
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an “intelligent sensor-actuator network” with a central controller. The new decent-
ral components increase the system’s performance from a technological point of
view. The trajectory generation and control system currently being developed aim
at faster, more flexible, and more robust walking patterns. In the near future, we will
integrate a camera head to enable autonomous locomotion. LOLA will serve as a
research platform for fast walking and visual-guided, autonomous walking.

Acknowledgements This work is supported by the “Deutsche Forschungsgemeinschaft” (grant
UL 105/29).
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Active Control of Flexural Vibration: An
Adaptive Anechoic Termination

B.R. Mace, E. Rustighi, N.S. Ferguson and D. Doherty

Abstract This paper describes an approach to the real-time, feedforward, adaptive
broadband control of flexural vibrations of a beam. A wave interpretation is used:
disturbance and control forces inject waves into the structure and the waves then
propagate through it. The general aim is to implement an anechoic boundary to
the structure which absorbs any energy incident upon it. Digital filters are imple-
mented to estimate, in real-time, the amplitudes of the propagating waves incident
on and reflected from the boundary by filtering the outputs of an array of sensors.
The reflected wave is used as the cost function in a filtered-X LMS adaptive con-
trol. The feedforward reference signal used is either the primary disturbance or the
incident wave – the former is rarely available outside the laboratory. Furthermore,
for a finite, resonant structure, with potentially many modes in the frequency range
of interest, the performance using the primary as a reference signal gives very poor
performance due to the difficulty of approximating the resonant cancellation path.
Control using the incident wave as a reference does not suffer from this problem.
Experimental results are presented. Broadband attenuation of around 20 dB in the
ratio of the reflected and incident powers is demonstrated experimentally. The effect
on the input frequency response of the structure is that substantial damping is added
to all the modes of vibration that lie within the broad frequency range of control: a
reverberant structure becomes anechoic. The high frequency limit is caused by the
delays in both the computational time and filtering phase lags. The adaptive system
achieves significant attenuation for broadband incident disturbances.
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1 Introduction

Active vibration control has received much attention in recent decades [1]. Modal
approaches have appeal at low frequencies, but encounter difficulties at higher fre-
quencies because of problems such as stability, robustness, spillover and the number
of modes involved. Wave-based approaches are then appealing since they have the
potential to provide control over a broad frequency band and require no prior knowl-
edge of the modes of the structure.

With regard to flexural vibration of beams, approaches aimed at absorbing energy
or minimising wave transmission have been presented in [2–4], for example. In this
paper a somewhat different approach is suggested: application of wave-based active
control using a control force, typically applied near a boundary, which absorbs the
energy of waves incident upon the boundary. This has the effect of producing a
non-reflecting, anechoic termination, so that the dynamics of the beam appear as
if the beam extends to infinity. Since modes can be regarded as standing waves,
this has the effect of removing modal behaviour or dereverberating the structure.
Von Flotow [5] suggested a feedback approach using analogue control, but since the
desired controller frequency response is not realisable the approach is only effective
over a narrow frequency band.

In this paper a digital feedforward control solution is proposed. A filtered-X LMS
algorithm [6] is used to provide adaptive control with the error signal being the am-
plitude of the propagating wave reflected from the boundary. The real-time error
signal is provided by filtering the outputs of an array of sensors (here, a pair of ac-
celerometers is used) by “wave filters”, described in [7], and used for active control
of flexural vibrations in [8] and, in [9], when nearfields are present. Two possible
reference signals are considered: the first is the signal input to the primary, disturb-
ing force – such a signal is rarely available except in the laboratory. The second
potential reference signal is the wave incident upon the boundary, this being found
in real-time using wave filters applied to the outputs of the same sensor array. Two
cases are considered. In the first the end of the beam opposite that at which control
is applied is anechoic. Good control can be achieved using either reference signal.
In the second the beam is finite and reverberant – this is of course the situation en-
countered in practical situations of interest. Using the incident wave as a reference
has very substantial benefits.

The next section describes the theoretical background. Then experimental results
for broadband active control are presented.
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2 Theory

2.1 Waves in Beams

Consider a thin, uniform Euler–Bernoulli beam lying along the x-axis and under-
going time harmonic motion at frequency ω. The displacement of the beam can be
written as the sum of four wave components as

W(x,ω) = φ+ exp(−ikx) + φ− exp(ikx) + φ+
N exp(−kx) + φ−

N exp(kx), (1)

where the time dependence exp(iωt) has been suppressed and where the wavenum-
ber

k = 4
√

ρAω2/EI. (2)

Here ρ,A and EI are the density, area and bending stiffness of the beam. The pres-
ence of damping leads to a small negative imaginary part in k. In Equation (1) φ±
represent propagating waves while φ±

N are evanescent or nearfield waves, which de-
cay rapidly with distance. Note that the wave motion is dispersive, i.e. different fre-
quencies propagate with different speeds. This complicates the situation compared
to the non-dispersive case, sound propagation for example, where wave propagation
merely involves a time delay.

A point force F exp(iωt) applied at x = 0 excites propagating waves e± and
evanescent waves e±

N in the regions x > 0 and whose amplitudes are [10]

e± = −i

4EIk3
F ; e±

N = −1

4EIk3
F. (3)

These waves subsequently propagate through the system according to Equation (1).
If positive-going waves φ+ and φ+

N are incident on a free end of the beam the re-
flected waves are determined by a matrix of reflection coefficients [10]

{
φ−
φ−

N

}
=

[ −i (1 + i)

(1 − i) i

]{
φ+
φ+

N

}
. (4)

2.2 Active Anechoic Termination

The layout of the active anechoic termination is shown in Figure 1. A disturbance
acts some distance from the boundary, generating waves which propagate towards
the boundary. A second force, the control, is applied at the boundary, or at a small
distance xe from it, the aim being for it to absorb any waves incident upon it and
hence to simulate the situation where the beam extends to infinity. This removes
resonant behaviour, potentially over a broad frequency band.
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Fig. 1 Active anechoic beam: (a) primary disturbance as reference signal; (b) incident wave am-
plitude as reference signal.

A pair of sensors (accelerometers in the experimental work presented below)
are attached to the beam at some distance from the end. The amplitudes of the
waves in the beam can be estimated in real-time using wave filters [7–9]. The wave
amplitudes mid-way between the sensors are estimated by the convolution of filters
g(t) and the time domain sensor outputs a1(t) and a2(t), i.e.

{
φ+

s (t)

φ−
s (t)

}
= g(t) ∗

{
a1(t)

a2(t)

}
. (5)

In practical implementations, such as that described below, digital control is typ-
ically used and digital FIR filters are designed to approximate these impulse re-
sponses. There are various issues to the design of these filters and details can be
found in [7–9]. One is that the FIR filter length is finite, and hence the accuracy
depends on the number of terms retained in the filters. More profoundly, the im-
pulse responses are non-causal. In [7–9] a delay of a given number nd of time steps
is introduced into the filters so that, in effect, the filter output at a given time is
the estimate of the wave amplitude nd time steps earlier. This introduces time de-
lays in the control loop and hence deteriorates the performance, especially at higher
frequencies.
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2.3 Feedforward Active Control and Reference Signals

Feedforward, adaptive control is used to provide the anechoic termination. The ref-
erence signal might be the primary disturbance (Figure 1a) if such a signal is avail-
able – this is the conventional approach to feedforward control. The alternative ref-
erence signal presented here is the amplitude of the positive going wave φ+

s (t) as es-
timated by the wave filters (Figure 1b). In both cases the negative-going wave φ−

s (t)

is used as the error signal in a filtered-X LMS adaptive controller. (In a conven-
tional system the response at a point or points might be used). The filtered-X LMS
algorithm requires two FIR filters. The first, that of the control, adapts to copy the
primary path from the reference signal to the error signal. The second, the secondary
path, is an estimate of the path from controller output to error signal (i.e. from the
input to the control shaker to the output of the wave sensors). This is required for
proper adaptation. The performance of the system, i.e. the control achieved and the
stability of adaptation, is better the more accurately both these paths are approxi-
mated by the FIR filters. The number of filter coefficients is of course limited by
controller time delays and complexity. There are three cases of interest and the sec-
ondary path in particular depends on the approach used.

2.3.1 Incident wave as reference signal

Suppose that the disturbance excites an incident propagating wave whose amplitude
at the centre of the pair of accelerometers is φ+

s . The total negative-going propagat-
ing wave φ−

s for a control force Fc is

φ−
s = (−i exp(−i2k(xc + xe)))φ

+
s + Gw(ω)Fc (6)

and is the sum of the reflection of the incident propagating wave φ+
s generated by

the disturbance and the net negative-going propagating wave injected by the control
force. In Equation (6)

Gw(ω) = −(i +exp(−i2kxe)+(1+ i) exp(−(1+ i)kxe)) exp(−ikxc)/4EIk3 (7)

comprises three terms, representing the negative-going propagating wave injected
by the control force, the reflection from the boundary of the positive-going propa-
gating wave injected by the control force and the propagating wave reflected from
the boundary due to the incidence of the nearfield wave injected by the control force.
The secondary path Gw(ω) is such that

φ−
s = Gw(ω)Fc (8)

and is a smooth function of frequency so that it can in principle be accurately ap-
proximated by an FIR filter with relatively few terms.

An anechoic termination is one where the control force generates waves such that
the net amplitude of the negative-going wave in Equation (6) is zero, i.e.
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Fc = Hw(ω)φ+
s ; Hw(ω) = (i exp(−ik(2xe + xc)))/Gw(ω), (9)

where Hw(ω) is the frequency dependent gain for incident wave amplitude con-
trol. Note that this is also a smooth function of frequency (unless the control force
is applied far enough from the end so that the denominator becomes small in the
frequency range of interest).

2.3.2 Primary disturbance as reference signal: other beam end anechoic

Now suppose that the input to the primary is used as a reference signal. This gen-
erates waves which propagate in both directions on the beam, hence contributing
to the incident wave φ+

s . If the far end of the beam (i.e. that opposite the control
point) is anechoic so that no wave is reflected from it (i.e. the beam in effect extends
uniformly to infinity) then the incident wave

φ+
s = exp(−ikxp)

( −i

4EIk3

)
Fp (10)

and the controller becomes such that

Fc = Hp(ω)Fp; Hp(ω) = − exp(−ik(xp + 2xe + xc))

(i + exp(−i2kxe) + (1 + i) exp(−(1 + i)kxe))
.

(11)
Again, both Hp(ω) and the secondary path (Equation (8)) are a smooth functions of
frequency, readily approximated by FIR filters.

2.3.3 Beam with reflective end

Finally, consider the case of most practical significance, that where the beam is finite
and where there are reflections from the end of the beam opposite that at which
control is applied. The presence of reflections from the ends of the beam causes the
beam to be resonant. The aim is then to provide active control over a broad band
of frequencies which contains many resonances. Control using the incident wave
amplitude as a reference signal merely involves the same situation as that described
in Section 2.3.1 above: while the incident wave might be resonant, the primary and
secondary paths are smooth functions of frequency.

This is not the case if the primary is taken as the reference signal. While the
primary path is that of Equation (11) the secondary path (if the end is perfectly
reflecting) is now

Gr(ω) = Gw(ω)/(1 + i exp(−i(2kL + θ))), (12)

where L is the total length of the beam and θ is the phase of the reflection coeffi-
cient at the far end. What is important is the denominator: it involves the resonant
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response of the structure, i.e. the contributions of subsequent reflections of the waves
injected by the control from the far end of the beam to φ−

s . There are typically many
such resonances so that Gr is very difficult at best to approximate using a FIR fil-
ter with a moderate number of terms. An IIR filter might be used, but this leads to
additional problems of stability and accurate approximation.

3 Experimental Results

In this section experimental results are presented. A thin steel beam of dimensions
6 m by 0.05 m by 0.00623 m was suspended by piano wire at four points along its
length. The beam was excited by two electromagnetic shakers. The control shaker
was attached at a distance xe = 0.019 m from one end. The other end of the beam
was either placed in a sandbox to simulate an anechoic boundary or was free, so
that it reflected waves strongly. The primary shaker was fixed at a position close
to the middle of the beam or close to the free end of the beam in these two cases
respectively. The two accelerometers were attached to the beam between the two
shakers. The other dimensions in Figure 1 are xp = 0.71 m and xc = 2.57 m.
Nearfields arising from the primary disturbance can be neglected in the frequency
range of interest. The beam wavenumber was measured as k = 0.0827

√
f using a

conventional 2-accelerometer technique.
Real-time control was implemented in Matlab using Simulink and the Real-Time

Workshop. Other instrumentation used included anti-aliasing and reconstruction fil-
ters, power amplifiers and a host PC. The wave amplitudes of the incident and re-
flected waves were estimated in real-time from the accelerometer outputs using the
wave filters described above. In the results shown nd = 5 and the FIR control filter
had 40 terms. The sampling frequency was 2048 Hz. Band-limited noise in the fre-
quency range 102–922 Hz was fed to the primary shaker. Filtered-X LMS control
was applied with an adaptation rate (i.e. the learning rate in the adaptive control)
µ = 0.005, the cancellation path from control shaker input to negative-going wave
amplitude being estimated off-line. Results are presented in terms of the ratio of
the reflected and incident powers after the adaptation is allowed to converge. These
powers were measured off-line using a well-established frequency domain method
so that they are independent of the wave amplitudes estimated from the real-time
wave filters. Also shown are the input frequency responses (acceleration per unit
force).

Figure 2 shows the ratios of the reflected and incident powers when the end of
the beam was in the sandbox. The performances with primary (PRef) and incident
wave (WRef) as reference signal are comparable, with attenuations of around 20 dB
being attained over much of the frequency range: WRef control is perhaps better at
lower frequencies but worse at higher frequencies when the effects of time delays in
the wave filters and the primary path become substantial. Figure 3 shows the input
accelerance for WRef control (that for PRef is similar). Figure 4 shows the ratios
of the reflected and incident powers when the end of the beam is free and hence
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Fig. 2 Ratio of reflected and incident powers, beam end in sandbox: . . . no control; (a) primary
disturbance as reference; (b) incident wave as reference.

Fig. 3 Input accelerance, beam end in sandbox: . . . no control; incident wave as reference.

the beam is resonant. PRef control breaks down because of the resonant behavior,
while WRef control still provides broadband control of 20 dB or so over most of the

frequency range of control.

4 Concluding Remarks

In summary, the active anechoic termination shown in Figure 1 is an adaptive, feed-
forward control system with the following elements. A primary source of vibration
lies some distance from the boundary near which a control force is applied. A pair of
sensors is used to estimate the amplitudes of the incident and reflected propagating
waves using real-time wave filters. The controller implements an adaptive, filtered-
X LMS algorithm. The error signal is the amplitude of the net wave reflected from
the end. The reference signal is either the signal input to the disturbance, if that is
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Fig. 4 Ratio of reflected and incident powers, beam end free: · · · no control; (a) — primary distur-
bance as reference; (b) — incident wave as reference.

Fig. 5 Input accelerance, beam end free: · · · no control; — incident wave as reference.

available, or the amplitude of the positive going propagating wave. Experimental
results showed broadband attenuation of 20 dB or so.

In practice it is unlikely that a reference signal from the primary would be avail-
able. In some cases the excitation might be spatially distributed – a turbulent bound-
ary layer for example – so that a single primary reference signal does not even exist.
Even if it were, major difficulties arise if the structure is finite, and hence resonant,
as is normally the case, with perhaps many modes of vibration in the frequency
range of interest. Using the primary as a reference leads to a cancellation path fil-
ter which shows strong resonant behaviour which is very difficult to approximate
accurately enough except with an FIR filter of inordinate length. Convergence and
performance of X-LMS control are thus severely compromised. Control based on
the incident wave amplitude however does not suffer from these disadvantages: a
reference signal is always available and the primary and secondary paths are both
smooth functions of frequency.

In principle the system adapts to drive the amplitude of the reflected wave to
zero. In practice the performance differs from the ideal because of various approx-
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imations and compromises. The performance is limited by the sampling rate and
various time delays in the system: hardware-related issues such as anti-alias and
reconstruction filter delays and processor delays; wave filter design issues; control
issues such as the length of the controller and cancellation path filters; physical time
delays resulting from the time it takes for waves to propagate from one point of
the system to another. Problems are exacerbated because bending wave motion is
dispersive, so that different frequency components travel at different speeds, so that
different time delays are associated with different frequency components. All these
result in compromises that affect the overall performance of the system.
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Enduring Rotary Motion Experiment of Devil
Stick by General-Purpose Manipulator

Keisuke Nakamura, Shigeki Nakaura and Mitsuji Sampei

Abstract Devil stick is a type of juggling which uses two sticks, one held by juggler
and one to be manipulated. Many varieties of tricks of devil stick have been per-
formed. In this paper, one of the tricks called “propeller” is specifically examined.
Previously, the motion of propeller was analysed theoretically, and a controller for
stable propeller motion by output zeroing control was proposed, and the validity of
the controller was confirmed by numerical simulations. In the analysis of propeller
motion, several conditions were assumed for simplifying the control problem. The
controller was implemented to a general-purpose manipulator, and several experi-
ments were carried out. However, those experiments could not successfully verify
the propeller motion because the assumptions used in theoretical analysis were un-
feasible. To correct this problem, an additional compensator is proposed, and the
validity of the compensator is confirmed by numerical simulations and experiments.
Finally, the enduring rotary motion of 37 rotations was achieved by an experiment.

1 Introduction

Devil stick is a kind of juggling which uses two types of stick. One is called “center
stick” which is manipulated and floats around in the air. The other one is called
“hand stick” which the juggler holds on and is hitting and pushing the center stick.
Many tricks with the devil stick have been performed practically, and some of those
maneuver motions were studied as control problems [1].

In this paper, one of the tricks called “propeller” is examined. That is the motion
to make the center stick rotate continuously by pushing with one hand stick (see
Figure 1). Kawaida [2] analysed the motion of propeller theoretically and proposed
a controller. Furthermore, he confirmed the validity of the controller by numerical
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Fig. 1 Propeller motion
The center stick rotates coun-
terclockwise. The numbers
in this figure shows the order
of the motion, which repeats
the motion from number 1 to
number 3 in order.

simulations. In the analysis of propeller motion, there were several assumptions for
making the control problem simple.

The controller was implemented to a general-purpose manipulator, and several
experiments were carried out [3, 4]. However, those experiments could not success-
fully achieve the propeller motion because the assumptions which were used in the
analysis could not be realized by the manipulator. The purpose of this paper is to
achieve the enduring rotary motion of devil stick by experiments. This is achieved by
examining the experimental setup, and a new additional compensator is proposed.

This paper is organized as follows. In Section 2, modeling, assumptions of the
model and state equations of the propeller motion are considered and explained. In
Section 3, a controller for the propeller motion are designed. In Section 4, the exper-
imental equipment, the results of previous experiments are explained. In Section 5,
a new additional compensator is introduced, and the validity of the compensator is
discussed. The results of experiments with an additional compensator is shown and
compared with the experiments without it in Section 6. Finally, Section 7 concludes
this paper.

2 Modeling and State Equations of the Devil Stick

The model of propeller motion and its parameters are shown in Figure 2 and Table 1
respectively. For the theoretical analysis, several conditions are assumed as follows:

Assumption 1 Friction force at the contact point is large enough, so the center
stick does not slip on the hand stick but rotates around it.

Assumption 2 The center stick keeps contacting with the hand stick, so the contact
point moves by rolling with rotation of the devil stick.

The schematic model of Assumption 1 and Assumption 2 is shown in Figure 3(a).
From the assumptions, following equation represents the relationship between φ and
d .

d(φ) = −ρφ + d0 , (1)

where d0 is the initial position of the contact point d .
Continuous rotation makes d diverge, which means the hand stick is going farther

from the center of the center stick. To achieve continuous rotation, it is essential to
keep d close to the center, so two conditions are assumed as follows:
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Fig. 2 Model of propeller motion in a
vertical plane.

Table 1 Parameters of the model of propeller motion.

r, θ : Position of the center of gravity of the

center stick in the polar coordinate

φ : Attitude angle of center stick

F : Force applied by the center stick

Fr , Fθ : (r, θ) direction’s component of F

Fn : n direction’s component of F

Ft : t direction’s component of F

d : Position of the contact point from the

center of gravity of the center stick

m : Mass of the center stick

J : Moment of inertia of the center stick

ρ : Radius of the hand stick

g : Acceleration of gravity

(a) Movement of the contact point by ro-
tations

(b) Movement of the contact point by
slipping

Fig. 3 Change of contact point.

Assumption 3 The contact point jumps to the initial position when the center stick
is made one turn (φ increases 2π).

Assumption 4 The time for the jump is assumed to be zero.

The schematic model of Assumption 3 and Assumption 4 is shown in Figure 3(b).
From the assumptions, equation(1) is rewritten as follows:

{
d(φ) = −ρ(φ − φjump) + dmax (φjump ≤ φ < φjump + 2π),

d(φ + 2π) = d(φ),
(2)

where φjump and dmax are φ and d at the moment of jump respectively.
From Figure 1, following equations of motion can be obtained.

r̈ = rθ̇2 − g sin θ + cos (θ − φ)

m
Ft + sin (θ − φ)

m
Fn (3)

θ̈ = −2ṙ θ̇

r
− g cos θ

r
− sin (θ − φ)

rm
Ft + cos (θ − φ)

rm
Fn (4)

φ̈ = d(φ)Fn

J
(5)
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Selecting state x and input u as

x = [r, θ, φ, ṙ, θ̇ , φ̇]T ] ,

u = F = [Ft , Fn]T (6)

the state equation of the propeller motion is described as follows:

dx
dt

= f (x) + G(x)u , (7)

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ṙ

θ̇

φ̇

rθ̇2 − g sin θ

− 2ṙ θ̇
r

− g cos θ
r

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, G(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

cos (θ−φ)
m

sin (θ−φ)
m

− sin (θ−φ)
rm

cos (θ−φ)
rm

0 d(φ)
J

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

3 Control Objective and Design

When a juggler manipulates a center stick and the rotation is stable, the following
behaviors of the center stick can be observed.

Behavior 1 The center of gravity(COG) of the center stick moves on a circle tra-
jectory with a fixed center point.

Behavior 2 The period of the rotation of the COG corresponds to the period of
rotation of the center stick.

Behavior 3 The center stick rotates at a uniform angular velocity.

To achieve Behavior 1, r has to be controlled to make it constant:

r = rr , (9)

where rr is the desired radius of the circle trajectory.
Behavior 2 means θ − φ has to be controlled to make it constant (see Figure 4).

Moreover, since the trajectory of the COG is a circle, the hand stick should give the
centripetal force to the center stick, which means

θ − φ = −π

2
. (10)

To achieve Behavior 1 and Behavior 2, input output linearization and output zero-
ing control are used. From equations (9) and (10), the output function is described
as follows:

y =
[

y1
y2

]
=

[
rr − r

−π
2 − (θ − φ)

]
. (11)
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Fig. 4 Control objective
This figure shows the move-
ment of the center stick. The
numbers from 1 to 5 represent
the order of the movement.
The COG of the center stick
follows a desired circle tra-
jectory as the stick rotates.

As a result of input-output linearization, following linearized state equations are
obtained.

ξ̇ = Aξ + Bv , (12)

η̇ = ζ1(ξ , η) + ζ2(ξ , η)v , (13)

y = Cξ , (14)

where

ξ = [
ξ1, ξ2, ξ3, ξ4

]T = [
rr − r, −π

2 − (θ − φ), −ṙ , −(θ̇ − φ̇)
]T

, (15)

η = [
η1, η2

]T = [
φ, φ̇

]T
, (16)

v = ÿ , (17)

A =
[

O2×2 I2×2

O2×2 O2×2

]
, B = [

O2×2 I2×2
]T

, C = [
I2×2 O2×2

]
,

ζ1(ξ , η) =
[

η2
d(η1)m(g cos (η1)−(−ξ4+η2)(2ξ3 sin (ξ2)+(−ξ4+η2)(rr−ξ1) cos (ξ2)))

J−d(η1)m(rr−ξ1) sin (ξ2)

]
, (18)

ζ2(ξ , η) =
[

0 0
−d(η1)m cos (ξ2)

J−d(η1)m(rr−ξ1) sin (ξ2)
−d(η1)m(rr−ξ1) sin (ξ2)
J−d(η1)m(rr−ξ1) sin (ξ2)

]
. (19)

The outputs of this system converge to zero by output zeroing control with state
feedback, then Behavior 1 and Behavior 2 are achieved successfully.

Behavior 3 means φ̇ must not converge to zero and must not diverge when the
center stick rotates stably. To achieve this behavior, the zero dynamics of φ̇ is ana-
lysed. The 2nd element of η̇ of equation (13) represents φ̈. Therefore, φ̇ can be
derived by solving the differential equation of η̇. From equations (13), (17), (18)
and (19), the zero dynamics of φ̈ can be obtained as follows by setting ξ = O:

φ̈ = d(η1)m(g cos η1 + rrη
2
2)

J
= d(φ)m(g cos φ + rr φ̇

2)

J
. (20)
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Since d(φ) is described as equation (2) which is a periodic function with the period
of 2π , φ̇ at the moment of k-th jump is defined as pk , and the relationship between
pk and pk+1 is derived as following recursion formula:

p2
k+1 = �1p

2
k + �2 , (21)

�1 = e−4πmrr (ρπ−dmax)/J , (22)

�2 = e−mrr(φjump+2π)(ρ(−φjump+2π)−2dmax)/J

×
∫ φjump+2π

φjump

−2gm(ρ(τ − φjump) − dmax) cos τ/J

e−mrrτ(ρ(τ−2φjump)−2dmax)/J
dτ , (23)

The general term of this recursion formula is described as

p2
k =

{
�k

1(p
2
0 − �2

1−�1
) + �2

1−�1
(�1 �= 1) ,

p2
0 + k�2 (�1 = 1) .

(24)

The value of p∞ depends on �1 and �2. When
{

0 < �1 < 1
�2 ≥ 0

(25)

are satisfied, p∞ = √
�2/1 − �1 is obtained, which means stable rotation.

The condition to satisfy 0 < �1 < 1 is given from equation (22),

−4πmrr(ρπ − dmax)/J < 0 ⇔ dmax < ρπ (
.
.
.
rr > 0,m > 0, J > 0) . (26)

Since �2 includes an integral term which is difficult to analyse, the condition �2 >

0 is derived by numerical calculations.

4 Experiments

The schematic drawing of the experimental environment is shown in Figure 5(a). A
commercial product of general-purpose manipulators is used in the experiments as a
human arm. A linear encoder, a rotary encoder and a force sensor are attached to the
end-effector of the manipulator to measure d , φ and F respectively. The manipulator
has absolute angle sensors (resolvers) in each joint, and r and θ can be measured by
those angles.

As discussed in Section 2, there are four assumptions to achieve the enduring
rotary motion. Therefore, the following two phases are to be realized in the experi-
ments.

Phase 1 From Assumption 1 and Assumption 2, the force F is applied to the center
stick by the hand stick. In this phase, the center stick does not slip on the
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(a) Experimental environment (b) Experimental equipment

Fig. 5 Experimental environment.

(a) Phase 1 (b) Phase 2

Fig. 6 Mechanism of switching phases.

hand stick but rotates around it. Furthermore, the contact point moves by
rolling with rotation of the devil stick.

Phase 2 From Assumption 3 and Assumption 4, the hand stick slips along the
center stick and comes back to the initial value of d (dmax in equation
(2)), and the time for the slip is sufficiently short.

These two phases are switched in each rotation under the condition represented by
equation (2).

A mechanism at the end-effector is designed to realize the switch between two
phases. A linear slider and a turn table are attached between the center stick and
the hand stick, which realise the motion of the direction of d and φ respectively. A
rubber tube connected to an air valve is also attached between two sticks, and these
two phases are switched by turning the valve on and off. A stainless wire is fixed
at the edges of the center stick (Point A and Point B in Figure 6), and it is winded
once onto the rubber tube. In phase 1, the rubber tube is pumped up, then the wire
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Table 2 Parameters of experimental
equipment.

m [kg] J [kg m2] ρ [m] g [m/s2] rr [m]

0.385 0.015 0.01 2.54 0.05

Fig. 7 �2 with experimental parameters.

(a) φ̇ (numerical simulation) (b) φ̇ (experiment)

Fig. 8 Comparison of the simulation and the experiment (the influence of Phase 2 upon φ̇).

grips the tube, and the hand stick does not slip on the center stick but rotates around
it (see Figure 6(a)). In phase 2, the rubber tube is deflated, then the wire releases the
tube, and the hand stick can slip on the center stick freely (see Figure 6(b)).

Experimental parameters m, J, ρ, rr have been chosen as shown in Table 2.
Several preliminary experiments were carried out in a vertical plane. However,

realizing the continuous rotation of devil stick in a vertical plane needed more speed
of the end-effector than that of the general-purpose manipulator. Therefore, the con-
tinuous rotation in those experiments was not successfully achieved.

To solve this problem, the plane at an angle of 15 degrees to the horizontal is
used for the operation of propeller motion instead of the vertical plane used in the
theoretical analysis. The acceleration of gravity is then reduced to g = 2.54 [m/s2].
The experimental equipment is shown in Figure 5(b).

dmax and φjump are determined so as to satisfy the conditions (25) and (26).
The result of calculation of �2 with experimental parameters is shown in Figure 7.
φjump = 3π/2 [rad] and dmax = 0.031 [m] have been chosen, as a result.

As described above, Phase 2 has to be done in sufficiently short time. However,
because of the limitation of the capacity of the general-purpose manipulator, As-
sumption 4 cannot be achieved by the manipulator.

Figure 8 shows the influences of Phase 2 upon φ̇ of both a simulation and an ex-
periment. In numerical simulations, the jump of the state d can be achieved without
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(a) Time behavior of φ̇ with accelera-
tion disturbance

(b) Time behavior of φ̇ with decelera-
tion disturbance

Fig. 9 Effect of the angular velocity compensation.

any effects. On the other hand, in the experiments, Phase 2 affects φ̇ severely. Since
this disturbance is indigenous, a new controller to compensate it is to be designed.

5 Angular Velocity Compensation

As discussed in Section 4, it is essential to compensate the disturbance of φ̇ in order
to realize the enduring rotary motion in experiments.

In numerical simulations, if the parameters dmax and φjump satisfy the conditions
(25) and (26), p∞ = √

�2/1 − �1, and the enduring rotary motion will be realized.
That means dmax and φjump can be constant values.

Since φ̇ is affected by Phase 2 and is described as the recursion formula (23)
which is the function of dmax and φjump, those parameters can be used for angular
velocity compensation. Here, the angular velocity compensation using dmax is used
because the change of dmax affects both �1 and �2, and �1 determines the common
ratio of the recursion (23) which severely affects the φ̇ of the next rotation.

In addition, since the recursion (23) includes an integral term and the value of
pk+1 depends on pk , a proportional controller is adopted to determine the value of
dmax in order to simplify the problem. The controller is described as follows:

dmax − ddesired = Kp(φ̇ − φ̇desired) , (27)

where ddesired and φ̇desired are the desired d and φ̇ when the center stick rotates
stably (the values are from numerical simulations), and Kp is a proportional gain.

Algorithmically, φ̇ in each rotation is measured just before Phase 2, and dmax is
determined in each rotation. The compensation using dmax is used as a subsidiary
controller of the original controller discussed in Section 3.
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The simulative comparison between the systems with and without angular velo-
city compensation is shown in Figure 9. As seen in the figure, the system without
angular velocity compensator is enormously affected by both acceleration and de-
celeration disturbance and cannot success to keep rotation. Clearly, it can be said
that the new angular velocity compensator is useful to realize the enduring rotary
motion. This compensator is also useful in terms of easy implementation.

Moreover, practically, changing dmax means changing the hitting point of the
center stick in each rotation. For jugglers, it is very difficult to know the contact
force between the center stick and the hand stick. That means a juggler manipu-
lates a center stick by watching it, only depends on the information of the position,
which is strongly related to dmax . Therefore, it can be said that this angular velo-
city compensator is exactly what jugglers do, and the compensator provides us how
the jugglers determine where to hit the center stick in each rotation, which is quite
important to know.

6 Experiments with Angular Velocity Compensation

The angular velocity compensator discussed in Section 5 is applied to the experi-
ments.

The experiment without angular velocity compensation can control the angu-
lar velocity at first, but once φ̇ is increased, the system cannot keep rotation (see
Figure 10). On the other hand, the system with angular velocity compensation can
manipulate the angular velocity by changing dmax (see Figure 11).

As a result, the enduring rotary motion of 37 rotations was achieved. The validity
of the original controller by output zeroing control and the additional controller for
compensation is confirmed by not only numerical simulations but also experiments.

However, as shown in Figure 11, the rotation tends to stop when the angular ve-
locity of the center stick becomes fast. In such case, the hand stick has to get back to
dmax in shorter time than usual ideally because the angle of switching phases should
be the same in each rotation. However, it is impossible because of the capacity of
the manipulator. The next possible work is to use an appropriate manipulator for the
experiments.

7 Conclusion

In this paper, the control problem of the enduring rotary motion of devil stick was
investigated.

As a theoretical analysis, the state equations of the system were derived, and
the controller was designed by input-output linearization and output zeroing con-
trol. The zero dynamics of φ̇ was analysed and the conditions to realize continuous
rotation were obtained.
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(a) Time behavior of φ̇ (b) Time behavior of d and dmax

Fig. 10 Experiment without angular velocity compensation.

(a) Time behavior of φ̇ (b) Time behavior of d and dmax

Fig. 11 Experiment with angular velocity compensation.

This control system was implemented to experiments, but the continuous rotation
was not realized because of an unfeasible assumption.

A new angular velocity compensator using dmax was designed, and the validity
of the compensator was confirmed by numerical simulations and experiments.
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Active Damping of Vibrations of a Lightweight
Beam Structure – Experimental Results

T. Pumhössel and H. Springer

Abstract Lightweight beam structures are used in various fields of applications, e.g.
in aerospace industry and civil engineering. The natural damping of such structures
is often very small which may result in a reduced lifetime. One possibility to in-
crease the damping is the use of active damping devices to apply state-dependent
moments and/or forces to the mechanical structure. In this contribution, a single
axial force is applied to a cantilever beam by using a string along with a piezoelec-
tric actuator. To introduce artificial damping to the lateral vibrations of the beam, a
nonlinear parametric feedback control law is used which is based on axial velocity
feedback of the tip of the beam. A test rig was built where the lateral vibrations of
the beam are measured with a laser-measurement device, and a piezoelectric sensor
measures and indicates the actual force in the string. Both signals are feed into the
realtime-controller, which calculates the corresponding control signal for the piezo-
electric actuator. The experimental results show highly increased damping capabil-
ities compared to the uncontrolled system.

1 Introduction

In various fields of applications, e.g. in aerospace industry and civil engineering,
lightweight beam structures are widely used. These structures often possess a very
low natural damping, which may lead to a reduction of lifetime. Several active meth-
ods exist to introduce artificial damping by using feedback controlled forces and/or
moments applied to the structure. The method of application is of great interest for
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a practical realization of the control concept. In [1], for example, a single axial force
is applied to a cantilever beam by using a string inside the beam along with a piezo-
electric actuator, whereas in [2] a string is located on the outside of a beam and is
driven by a DC-motor. The application of a single axial force to a beam results in a
time dependent stiffness matrix, as shown for example in [3]. To introduce artificial
damping to the lateral vibration of the beam, the stiffness parameter, and therefore
the axial force has to be controlled in a proper way. In many cases, axial velocity
feedback of the beam with constant amplification is used, see [3,4], whereas in [5,6]
the amplification depends on the actual axial velocity of the beam.

In this contribution, a test rig is presented consisting of a preloaded cantilever
beam with a string inside, connected to the free tip of the beam on one end, and
to a piezoelectric actuator on the other end, as proposed in [1]. The actual force in
the string is measured by a piezoelectric force sensor. The lateral beam vibration
is measured by a laser measurement device. Both signals are feed into a realtime
controller which calculates the control signal for the piezoelectric actuator. The ex-
perimental results demonstrate the increased damping of the lateral beam vibrations
compared to the uncontrolled system. It is shown that state-dependent amplification
gives much better results than simple axial velocity feedback with constant gain.

2 Differential Equations of the Closed-Loop System

The derivation of the equations of motion and the feedback control-law is only
briefly discussed in this paper, for details see [1, 7, 8]. Figure 1 shows a schem-
atic diagram of the investigated mechanical system. The cantilever beam is slotted
lengthwise to give space for the string (see section A-A). At the free end, the string
runs through an axial borehole in the beam and is connected to its tip. The lower
end of the string is guided through the baseplate and is connected to an actuator
system (not shown in Figure 1) which provides a constant displacement u0, result-
ing in preloading the beam with the force F0, and a time-dependent displacement
ũA(t) which causes a time-dependent force F̃ (t) in the string. The dimensions and
properties of the mechanical system can be seen in Table 1.

The nonlinear equations of motion where calculated using the Bernoulli–Euler
beam theory up to terms of cubic order and d’Alemberts principle. Therefore, lateral
and axial displacement fields of beam and string are inroduced (see Figure 1, right).
Using a Rayleigh–Ritz approach, the beam-string system is reduced to a model with
three degrees of freedom, VB(t) for the lateral motion of the beam, and US(t) and
VS(t), respectively, for axial and lateral motion of the string, represented by the
generalized displacement vector

q(t) = {
VB(t), US(t), VS(t)

}T
. (1)

Using d’Alemberts principle results in the nonlinear equations of motion
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Fig. 1 Schematic diagram of the beam-string system and definition of displacement fields.

M(q)q̈ + g(q, q̇) + K(t)q = f(t). (2)

More information about the symmetric mass-matrix M(q) and the vector of gener-
alized forces g(q, q̇) can be seen in [1]. The elongation ũA(t) of the actuator is part
of the stiffness matrix

K(t) =

⎡

⎢
⎢
⎢
⎣

k̄11,1 + k̄11,2

k

F0

l
+ k̃11

ũA(t)

l
0 0

0 k̄22 0

0 0
k̄33

k

FV

l

⎤

⎥
⎥
⎥
⎦

, (3)

and of the external excitation vector f(t) = {0, kũA(t), 0}T .
A material damping matrix C = diag {c11, c22, c33} is introduced, where the re-

lated damping ratios can be found in Table 1. The damping ratio D11 was calculated
based on the envelope curve of the measured lateral vibrations of the uncontrolled
beam, assuming an exponential decay of the form ae−bt , and determining a and b by
using the method of minimization the quadratic error. The damping ratios D22 and
D33 are of minor importance for the numerical results and therefore are set to the
standard-values for steel. Finally, the equations of motion of the open-loop system
can be written in the form

M(q)q̈ + Cq̇ + g(q, q̇) + K(t)q = f(t). (4)
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Table 1 Dimensions and properties of experimental setup.

Property Symbol Value Unit

material of beam AlMgSi0.5 T66 – –
length l 0.3008 m
cross-section AB 8.25 × 10−5 m2

geometrical moment of inertia IB 7.487 × 10−11 m4

density ρB 2700 kg/m3

Young’s modulus EB 0.7 × 1011 N/m2

material of string steel – –
cross-section AS 0.1767 × 10−5 m2

density ρS 7850 kg/m3

Young’s modulus ES 2.1 × 1011 N/m2

length g 0.094 m
prestress force F0 −100 N
max. elongation of actuator ũA,max 90 µm
max. operating voltage of actuator UA,max 100 V
material damping ratio D11 1.416597 × 10−3 –
material damping ratio D22 0.01 –
material damping ratio D33 0.01 –
output gain of controller card kR 10 –
gain of piezo-amplifier VPA 10 –

--

VB,r (t) = 0
D(VB, V̇B)

F̃r (t)
VPA VA

ũA(t)UAUR
actuator

controller card

piezo-
amplifier

VB(t)

VB(t)

F̃ (t)

mechanical
system

PI-force
controller

Fig. 2 Block-diagram of closed-loop system.

To introduce artificial damping to the lateral motion of the beam, the force F̃ (t) in
the string has to be controlled in a proper way. Figure 2 shows the block diagram of
the closed-loop system. An underlying PI-force controller is used to ensure that the
actual force in the string approaches the reference force properly. The elongation
ũA(t) of the piezoelectric actuator can then be written in the form

ũA(t) = kF kRVPAVA

(
kp(F̃r − F̃ ) + ki

∫ t

0
(F̃r − F̃ )dτ

)
, (5)

where kR represents the fixed output amplification factor of the controller card and
VPA the constant gain of the piezo-amplifier. The piezoelectric actuator is modelled
as a combination of a spring, which is already included in the equations of motion,
and a linear element that provides an elongation proportional to the applied voltage.
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Fig. 3 Effect of the controller parameter-sets PII,1, PII,2 and PII,3 on the behaviour of the ref-
erence force F̂ II

r in terms of the lateral vibration amplitude V̂B of the beam, compared with the
result of control law I.

The factor of proportionality is defined by VA = ũA,max/UA,max with ũA,max being
the maximum elongation at the maximum applied voltage UA,max according to the
datasheet of the manufacturer. For the sake of simplicity, kF is chosen to kF =
1/(kRVPAVA). Equation (5) can then be written in the form

ũA(t) = kp(F̃r − F̃ ) + ki

∫ t

0
(F̃r − F̃ )dτ. (6)

The control concept used in this contribution is based on axial velocity feedback of
the tip of the beam with constant amplification, see [3] for example, and with state-
dependent amplification, see [7]. In the first case, the control law can be written in
the form

F̃r (t)
↓= F̃ I

r (t) = −µI u̇B(l, t) = µI π2

8l
VBV̇B. (7)

In the second case, the reference force is defined by the equation

F̃r (t)
↓= F̃ II

r (t) = −µII (VB, V̇B)u̇B(l, t). (8)

Using µII (VB, V̇B) as proposed in [7] leads to

F̃ II
r (t) = η

π2

8l

ωBVBV̇B

(ωBVB)2 + V̇ 2
B + γ e−β(ω2

BV 2
B + V̇ 2

B)
, (9)

Inserting the approximations VB(t) � V̂B cos(ωBt) and V̇B(t) � −ωBV̂B sin(ωBt)

into equation (7), where ωB represents the first natural frequency of the beam, shows
that the amplitude F̂ I

r of the reference force decays very fast with the amplitude V̂B

of the lateral beam vibration, see Figure 3. State-dependent amplification results
in a complete different behaviour. The force amplitude F̂ II

r remains constant for
large deflections until it decays. Therefore, a larger damping effect can be expected
compared to control law I . The slope of the decay is controlled by the coefficients β
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Table 2 Controller parameters for both control laws.

Control Law I General Controller Parameters

Symbol PI Unit Symbol PI to PII,3 Unit

µI 10454.7 Ns/m F̂r,max 15 N

V̂B,max 2e-3 m

Control Law II ωB 174.912 s−1

Symbol PII,1 PII,2 PII,3 Unit kp 0.01 × 10−6 –

V̂B,1 0.5e-3 0.2e-3 0.2e-3 m ki 0.007 –

s1 0.05 –

V̂B,2 1.2e-3 1.0e-3 0.5e-3 m

s2 0.90 –

η 7.315 Nm

β 93.134 65.467 515.054 (s/m)2

γ 0.296 0.025 0.044 (m/s)2

and γ which are calculated in more details in [7]. Figure 3 shows the results for three
different sets of parameters PII,1, PII,2 and PII,3. Table 2 gives detailed information
about the controller parameters for both control laws.

3 Test Rig and Experimental Results

Figure 4 shows the experimental setup. The test rig consists of the top- and the
baseplate, connected by four pillars. The available space in between the two plates
is used for the piezoelectric actuator, which is directly coupled to the piezoelectric
force sensor, and the tensioning device which allows to apply a constant static pre-
load F0 to the beam. The string is directly connected to the force sensor and runs
through the top plate and the beam clamping device. The detailed view on the left
side of the figure shows the slotted beam including the string. On the free end of the
beam, the string is feed through an axial borehole in the beam. A bushing clamped
onto the string allows to apply a compression force to the beam. To apply a certain
initial deflection to the tip of the beam, a simple mechanical lever mechanism is
used, mounted directly on the top plate.

The right half of the figure shows the electronic equipment. The lateral vibration
VB(t) of the beam tip is measured by a laser measuring head. The output signal of
the Laser Control Unit, which allows to adjust the data sampling frequency of the
laser, is directly feed into the realtime controller card in the host computer as well as
the force input signals F0 and F̃ (t). Therefore, two different charge amplifiers are
used. To allow a quasistatic measuring of the prestress force during application with
the tensioning device, a charge amplifier (CA 2) with a very large input impedance
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Fig. 4 Experimental setup consisting of mechanical test rig on the left hand side, measurement
and control equipment of the feedback loop on the right hand side.

is used. If the closed-loop control is working, the time dependent force component
F̃ (t) is measured with a conventional charge amplifier (CA 1). With this informa-
tions, the controller card calculates the output voltage UR according to the specified
control law. The piezoelectric actuator is driven by the piezo-amplifier with constant
gain. This results in an elongation of the actuator, and therefore in a variation of the
force in the string.

Figure 5 shows on the left side some measurement results for control law I, and
on the right one results for control law II with parameters-set PII,3. As initial condi-
tions a deflection VB(0) = 2 mm and velocity V̇B(0) = 0 of the beam tip were used.
Comparing the time series of the force F̃ (t) demonstrates the difference of the two
control laws. With control law I (axial velocity feedback and constant amplification)
the force amplitude decays very fast with time, whereas the use of state-dependent
amplification results in a constant amplitude up to about 1 s until the decay starts.
The top of Figure 5 shows the effect of the control laws on the lateral vibration
VB(t) of the beam. To give a better impression of the amount of artificial damping
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Fig. 6 Envelope curves of VB(t) of the uncontrolled system, for control law I and for control
law II for different sets of parameters P II,1, P II,2 and P II,3. Initial condition - 2.0E-3 m lateral
deflection of the beam tip.

introduced by the controller, the envelope curve (dashed line) of the uncontrolled,
free vibrating beam is shown for comparison. Using state-dependent amplification
results in a faster decay of the vibration amplitudes of VB(t) especially at the be-
ginning where the force amplitude is constant. The envelope curves of VB(t) for the
three different sets of parameters PII,1, PII,2 and PII,3 are summarized in Figure 6.
The parameter-sets are chosen in a way that with increasing parameter-set number
i of PII,i , the amplitude of the force in the string remains constant for a larger range
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Fig. 8 Time series of the damping ratio D calculated from the amplitude decay of VB(t) (experi-
mental result) by using the logarithmic decrement.

of lateral vibration amplitudes of the beam (remember Figure 3). The longer the
amplitude of F̃ (t) remains constant, the faster decays the lateral beam vibration i.e.,
the larger is the artificial damping effect caused by the feedback control law.

In Figure 7, a comparison of numerical and experimental results for the uncon-
trolled system and for the closed-loop system using state-dependent amplification
with parameters-set PII,3 can be found. The simulation results are obtained from a
numerical solution of equations (4), (6) and (9) using a standard software package.
Considering the results for the uncontrolled system shows that the assumption of a
velocity-proportional material damping does not fit the reality properly. Neverthe-
less, the numerical solution for the closed loop system (control law II) is close to
the experimental result. Especially for large amplitudes, the damping effect in this
range is dominated by the artificial damping introduced by the control law.

Figure 8 shows the damping ratio D calculated from measurement data of one
single period using the logarithmic decrement. Until about 1 s, where the amplitude
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of the force F̃ (t) is constant, see Figure 5, the mean value of the damping ratio D

is constant and approximately 0.7. This is about 4.9 times higher than the material
damping ratio of D = 0.142 of the uncontrolled system.

4 Conclusions

In this contribution, a test rig was presented that consists of a cantilever beam and
an actuator system to apply a single axial force to the tip of the beam was presented.
A control law for the single force based on axial velocity feedback with constant
and state-dependent amplification was implemented. The experimental results show
that the damping of lateral vibrations of the beam is highly increased compared to
the uncontrolled system, when a state-dependent amplification is applied.
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Investigation of Excitation Methods in Active
Control of Sound Transmission through a Thin
Planar Structure

Akira Sanada and Nobuo Tanaka

Abstract This study deals with the active control of sound transmission through a
thin planar structure. The effect of the active sound transmission control depends
significantly on the methods used to excite the structure, such as the location of
the actuators. However, the principle to determine the excitation method has not
been revealed clearly thus far. In this study, the methods used to excite a panel
with point actuators for active sound transmission control in the case of normal
incidence are investigated by simulations. Further, various actuation methods using
point actuators, e.g., center-point control, four-point control, sixteen-point control,
etc., are compared. On the basis of the simulation results, we propose an effective
excitation method in which the point actuators are located on the nodal lines at
frequencies slightly less than the resonant frequencies of the panel at which the
transmitted sound power significantly decreases. Then, it is shown that the proposed
method can suppress both the transmitted sound and vibrations in a low-frequency
range. Finally, experiments are carried out to confirm the simulation results and the
validity of the proposed method.

1 Introduction

The sound insulation property of a planar structure is dominated by the mass law;
hence, it is difficult to suppress the sound power transmitted through a lightweight
barrier, particularly, in a low-frequency range. Recently, a number of investigations
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using an active control to improve sound insulation have been carried out and repor-
ted since the active control is effective in the low-frequency range.

The sound power radiated from a vibrating structure is dominated by the radi-
ation mode, which is a set of vibration velocity distributions of the structure that
radiates the sound power independently. Some authors have reported that the trans-
mitted sound power can be actively controlled by sensing the power modes. In the
low-frequency range, where ka � π , the first radiation mode is dominant. The first
radiation mode resembles a piston-like motion of the panel and is a combination of
the structural modes associated with a volumetric component [1]. Johnson and Elli-
ott [2] have simulated the active control of sound transmission through a panel and
have compared the sensing strategies of cancellation of volume velocity and min-
imization of radiated sound power. They have concluded that a large control effect
can be obtained by sensing the volume velocity in the low-frequency range. Further,
they have proposed a method using a volume velocity sensor and a uniform force ac-
tuator to avoid control spillover. Henrioulle and Sas have carried out experiments on
the active sound transmission control using a PVDF volume velocity sensor/actuator
pair with a feedback control [3]. However, it is not clear whether a distributed ac-
tuator such as PVDF can produce a force of sufficient strength for practical use.
As compared to the distributed actuator, a point actuator is considerably easier to
handle and produces a larger actuating force.

It is well known that the effect of the active sound transmission control signific-
antly depends on the excitation methods of the structure, such as the location of the
actuators. Wang et al. have compared the actuation methods that employ multiple
piezoelectric and point actuators by a simulation [4]. However, the principle to de-
termine the excitation methods has not been revealed clearly thus far. In this study,
the methods used to excite the panel with the point actuators for the active sound
transmission control in the case of normal incidence are investigated by simulations.
Normal incidence transmission losses using a SISO feed-forward control are calcu-
lated for various actuation methods. We compare five types of actuation methods:
(i) center-point control, (ii) four-point control near the corners, (iii) sixteen-point
control, (iv) four-point control (the actuators are located on the nodal line at fre-
quencies slightly less than the resonant of the panel frequencies at which the trans-
mitted sound power significantly decreases), and (v) the (1, 3) mode control with six
point actuators [5]. Finally, experiments were carried out to confirm the simulation
results.

2 Simulation of Active Sound Transmission Control

2.1 Calculation Model

Figure 1 shows the theoretical model for sound transmission used in this study. The
assumptions are as follows: a simply supported panel with dimensions a × b is
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Fig. 1 Calculation model for
active sound transmission
control.

embedded in an infinite rigid baffle; both sides of the panel are semi-infinite spaces;
a plane sound wave with the amplitude pi is assumed to be normally incident on
the panel; and the forces generated by the actuators act on the panel to control the
structural vibration.

On the basis of these assumptions, the equation of motion of a thin flexible panel
can be expressed as

D′∇4z(r, t) + ρsh
∂2z(r, t)

∂t2 = 2pie
jωt − 2pt(r)ejωt + fc(r)ejωt , (1)

where r denotes an arbitrary position of the panel; z is the displacement; j = √−1;
ω is the angular velocity; ρs is the density; h is the thickness; D′ = D(1+jη) is the
bending rigidity including structural damping (η); fc is the control force generated
by the actuators; pt is the pressure generated by the vibration of the panel; and pi is
the pressure on the surface of the panel caused by the incident sound.

Assuming that the structural vibration is described by the summation of N

modes, the vibration velocity of the panel can be written as v(r) = �T (r) · v,
where �, v, and the superscript T denote the modal function vector, modal velocity
vector, and transpose of matrix, respectively.

Then, the modal velocity vector is given by

v = R · (2Fi0 + Fc), (2)

where

R =
(

1

jω
K + jωM + 2Ā

)−1

, (3)

Ã = jωρ

2π

∫
S

∫
S

�(r) · �T (r′)e
−jk�r

�r
dS′dS. (4)

Here, ρ denotes the air density and dS′ and dS are infinitesimal surface elements on
the planar structure. S denotes the panel area. �r = |r − r′|, where r′ denotes the
position of dS′. K and M denote stiffness and mass matrices. The modal excitation
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force vectors for the incident wave and control force, i.e., Fi0 and Fc, respectively,
are expressed as

Fi0 =
∫

S

�(r)pidS, (5)

Fc =
∫

S

�(r)fc(r)dS. (6)

In this study, a SISO feedforward control is used because it is simple and easy to
realize. Further, point actuators are used in this study because the point actuators are
easy to handle and generate a large actuating force.

In this case the forces acting on the panel by the point actuators can be given by

fc(r) = fe

M∑
k=1

Gδ(r − rk), (7)

where fe, G, and δ denote the control force, weighting factor, and Dirac delta func-
tion, respectively. From Eq. (6), Fc is expressed as

Fc = feFcm, (8)

where the ith factor of Fcm is

Fcmi =
∫

S

ψi(r)
M∑

k=1

Gδ(r − rk)ds. (9)

The transmitted sound power derived by integrating the sound intensity on the
panel is expressed as

Wt = vH · A · v, (10)

where the superscript H denotes the Hermitian transpose and A represents the sound
power matrix given by A = Re(Ã/2). Matrix A is a real symmetrical matrix. Then,
A is given by

A = Q�Q−1, (11)

where Q is a real and unitary matrix of orthogonal eigenvectors and � is a diagonal
matrix of the eigenvectors λi . Then, the sound power is expressed as

Wt = vH Q�Q−1v = uH �u =
N∑

i=1

λi |ui |2, (12)

where u denotes the radiation mode vector given by

u = Q−1v = QT v. (13)

Hence, the first radiation mode which is dominant in the transmitted sound
in the low-frequency range can be expressed as u1 = q1v, where q1 =
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[Q11,Q21, . . . ,QN1]. From Eqs. (2) and (13), the first radiation mode can be re-
written as

u1 = u1i + feu1c, (14)

where u1i = 2q1RFi0, the first radiation mode for the incident wave, and u1c =
q1RFcm, the first radiation mode element for the control force generated by the
actuators.

2.2 Actuation Methods

In this study, a simply supported rectangular aluminum panel (a = 0.4 m, b =
0.4 × √

2 m, h = 2 mm, η = 0.01) embedded in an infinite baffle is considered for
the case of normal incidence. The structural mode frequencies of the panel used in
the simulation are listed in Table 1. When a plane wave is normally incident, only the
(odd, odd) modes are excited because of the incident pressure distribution over the
panel surface, which is uniform; hence, only the (odd, odd) modes are considered in
this study.

The first radiation mode is constituted of only the (odd, odd) modes. Hence,
the actuators should be placed symmetrically with respect to the center point of the
panel. If the actuators are not located symmetrically, other types of vibration modes,
i.e., (odd, even), (even, odd), and (even, even) modes, will be excited that may cause
control spillover.

The five types of the actuation methods that can be used to excite the panel are
given below. Figure 2 shows the location of the point actuators.

1. Method 1: One point actuator is located at the center point of the panel.
2. Method 2: Four point actuators are located near the corners. Their position co-

ordinates are (−a/3,−b/3), (−a/3, b/3), (a/3,−b/3), and (a/3, b/3). These
actuators generate forces of the same magnitude, along the same direction.

3. Method 3: Sixteen point actuators are located at the points shown in Figure 2.
These actuators generate forces of the same magnitude, along the same direction.

4. Method 4: Four point actuators are located on the nodal line at 159.5 and
277.5 Hz, the frequencies at which the “cancellation phenomenon” occurs. The
phenomenon will be described subsequently. These actuators generate forces

Table 1 (Odd, odd) vibration modes of the target panel.

No. Mode Frequency [Hz] No. Mode Frequency [Hz]

1 (1, 1) 46.3 6 (3, 5) 663.7
2 (1, 3) 169.8 7 (5, 1) 787.2
3 (3, 1) 293.3 8 (1, 7) 787.2
4 (3, 3) 416.8 9 (5, 3) 910.7
5 (1, 5) 416.8
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Fig. 2 Location of the actu-
ators for the five types of the
actuation methods.

Fig. 3 Relation between the
actuating points in Method
4 and the vibration distri-
bution on the panel without
the active sound transmis-
sion control at 159.5 and
277.5 Hz. The position co-
ordinates of the actuating
points are (−0.079,−0.11),
(−0.079, 0.11),
(0.079,−0.11), and
(0.079, 0.11).

of the same magnitude, along the same direction. Figure 3 shows the relation
between the actuating points and the vibration distribution on the panel.

5. Method 5: Six point actuators are located at (−a/6,−b/3), (−a/6, 0),
(−a/6, b/3), (a/6,−b/3), (a/6, 0), and (a/6, b/3). The two actuators located
at (−a/6, 0) and (a/6, 0) actuate in a direction opposite to that of the other ac-
tuators. This actuation method can excite only the (1, 3) mode approximately in
the low-frequency range [5]. The active sound transmission control along with
the modal control has been proposed by the authors in a previous study [6].

An optimal control law of each method for minimizing the transmitted sound
power with the feedforward control is derived. Based on the optimal control law,
normal incidence transmission loss is theoretically obtained, thus confirming the
significance of the control strategies. Figure 4 shows the calculated normal incid-
ence transmission loss. Figure 5 shows the power factor of the first radiation mode.
These results are obtained when pi = 1 Pa. Below 100 Hz, all the methods exhibit
excellent control effect, suppressing the first radiation mode. However, there are
some frequency bands in which the control effect cannot be obtained for Methods 1,
2, and 3 because a factor of the first radiation mode cannot be controlled. This may
cause a problem when a noise source has a wide frequency band or the frequency is
changeable.

268



Active Control of Sound Transmission

Fig. 4 Calculated normal
incidence sound transmission
loss.

Fig. 5 Calculated sound
power of the first radiation
mode when pi = 1 Pa.

Fig. 6 Vibration distribution
at 128 Hz without the active
sound transmission control
and the location of the actuat-
ors in Method 2.

Figure 6 shows the vibration distribution at 128 Hz without the active sound
transmission control and the location of the actuators in Method 2. At 128 Hz, the
frequency at which the control effect cannot be obtained, the location of the actuator
is on the nodal line. Figure 7 shows the plot of |u1c|. The value of |u1c| is very small
at the frequency at which the control effect cannot be obtained. This implies that
the first radiation mode cannot be controlled at the frequency at which the location
of the actuator is on the nodal line of the vibration distribution on the panel without
the active control. Furthermore, for an ideal case, it is found that the number of
actuators does not significantly affect the control effect.
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Fig. 7 Amplitude of the first
radiation mode element |u1c|
for the control force of the
actuators and amplitude of
the first radiation mode |u1i |
for the incident sound when
pi = 1 Pa.

Fig. 8 Calculated results of
space-average mean square
vibration velocity.

It is usually observed that the sound power transmitted through a small-sized
panel decreases significantly at some frequencies in the low-frequency range, where
ka � π . This phenomenon is termed “cancellation phenomenon” in this study.
The authors considered this phenomenon in a previous work [6] and found that it
is caused by a decrease in the radiation efficiency due to the coupling between two
structural modes of a panel. If the frequency at which the control effect cannot be
obtained is tuned to the frequency at which the cancellation phenomenon occurs,
the high transmission loss can be obtained in the wide frequency range. This can be
achieved by Method 4. Four point actuators are located on the nodal line at 159.5
and 277.5 Hz, as shown in Figure 6. In Method 4, the control effect is significantly
greater as compared to the other methods. Figure 7 also shows |u1i| for the first
radiation mode for the incident sound. It is found that in this case, |u1c| is almost
proportional to |u1i| below approximately 350 Hz. In other words, the excitation of
the first radiation mode with Method 4 is almost equivalent to the excitation by the
incident sound. This may result in a large control effect. Figure 8 shows the space-
average mean square vibration velocity. In Method 4, not only the transmitted sound
power but also vibration is suppressed in the low-frequency range.

Method 5 is comparatively ineffective. However, in Method 5 the control effect is
obtained in the wide frequency range. This result shows that the transmitted sound
power can be controlled with the modal control. However, in this case, the vibration
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Fig. 9 Experimental setup and vibration control arrangement.

energy increases because the (1, 3) mode is excited in order to cancel the other terms
of the first radiation mode.

3 Experiments

In order to confirm the simulation results, the experiments on active sound trans-
mission control were carried out. The experimental setup is shown in Figure 9. In
order to measure the sound insulation property for normal incidence, two connected
rooms were used; one was an anechoic room and the other comprised walls covered
with an absorbing material to suppress reverberation. The anechoic room was used
as the receiving room, while the other room was used as the source room. A 2-mm-
thick aluminum panel (0.4 m × 0.57 m), on which a 1-mm-thick damping material
was stuck, was used. The panel was clamped on a knife-edge support to realize
the simply supported boundary condition. An adaptive feedforward control system,
which includes one control source and one error sensor, was used. The signal was
processed using the filtered-X LMS algorithm in the controller (DSP board). The
sampling frequency was 3 kHz and the number of taps was 1000. Voice-coil-type
point actuators were set on the panel. The error microphone was placed in the re-
ceiving room at a distance of 3.0 m from the panel. Four loudspeakers were placed
in front of the panel at a distance of 2.0 m from the panel and were driven by the
same signal from one signal generator. White noise of less than 1.6 kHz was used as
the noise signal. The reference signal was directly obtained from the signal gener-
ator. In the experiment the sound pressure at the place of the error microphone was
suppressed with the control. The insertion loss was measured instead of the trans-
mission loss because the normal incidence transmission loss is difficult to measure.
The transmitted sound power was measured using an acoustic intensity probe.

Figure 10 shows the experimental results of Methods 1, 2, 4, and 5. Below 350
Hz, all methods exhibit the control effect. However, there are some frequency bands

271



A. Sanada and N. Tanaka

Fig. 10 Measured insertion loss with and without control. The left-hand side figure shows the
results of Methods 1 and 2. The right-hand side figure shows the results of Methods 4 and 5.

in which excellent control effect cannot be obtained for Method 1 and Method 2.
These frequency bands are from 150 to 250 Hz for Method 1 and around 100 and
220 Hz for Method 2.

On the other hand, Method 4 exhibits excellent control effect in the wide fre-
quency range, having no frequency band in which the control effect cannot be ob-
tained in the low-frequency range. It is confirmed that the excitation method of
Method 4 has great advantages.

Method 5 also exhibits excellent control effect in the mid-frequency range from
100 to 350 Hz. However, below 100 Hz, the magnitude of the control effect is com-
paratively small because around the frequency of the (1, 1) mode, Method 5 requires
a large control force as compared to the other methods.

4 Conclusions

We have investigated the excitation methods used in the active control of sound
transmission for the case of normal incidence using point actuators. Initially, some
actuation methods were compared by simulations. From these results, it was found
that the excitation method that the point actuators are located on the nodal lines
at frequencies slightly less than the resonant frequencies of the panel at which the
transmitted sound power significantly decreases has a great control effect. Finally,
experiments were carried out to confirm the simulation results and the validity of
the method.
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Design of Feed-Forward Control for
Underactuated Multibody Systems with
Kinematic Redundancy

Robert Seifried and Peter Eberhard

Abstract For underactuated multibody systems with kinematic redundancy the
design of a feed-forward control for end-effector trajectory tracking is presented.
The feed-forward control design is based on an inverse model of the multibody
system which is derived from the nonlinear input-output normal-form. The compu-
tation of the inverse model requires a bounded solution of the internal dynamics.
This yields a two-sided boundary value problem which in general has a non-causal
solution, yielding a pre- and post-actuation phase. In this paper it is shown that in the
case of output trajectory tracking the additional degrees of freedom, resulting from
the kinematic redundancy, can be used to introduce free design parameters with
which a bounded and causal solution for the internal dynamics can be determined.

1 Introduction

Underactuation in multibody systems occurs, if only some generalized coordinates
have an associated control input. Typical sources of underactuation in multibody
systems include the presence of passive joints and body-flexibility. Trajectory track-
ing control of such systems is quite difficult and often requires a feed-forward con-
trol. In this paper, the design of a feed-forward control for underactuated multibody
systems with kinematic redundancy is presented, whereby the end-effector-point
should follow a desired output trajectory.

The feed-forward control design is based on an inverse model of the multibody
system. The starting point is the transformation of the multibody system into the
nonlinear input-output normal-form [5, 6]. Using the special structure of the second
order differential equation of motion and a separation into actuated and un-actuated
coordinates, the normal-form can be established in a straightforward way.
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Based on the nonlinear input-output normal-form the inverse model is estab-
lished, consisting of a chain of differentiators, a driven internal dynamics and an
algebraic part. The considered multibody systems are non-minimum phase. Thus,
in order to obtain a feasible feed-forward control for trajectory tracking, a bounded
solution for the internal dynamics must be found. This yields the solution of a two-
sided boundary value problem [2]. For non-redundant underactuated multibody sys-
tems this bounded solution is non-causal and, therefore, requires a pre- and post-
actuation phase. In contrast to trajectory tracking, it has been shown that in the
case of working point changes, bounded and causal feed-forward controller can be
designed [3]. Combining these two approaches, it is proposed that the additional
degrees of freedom which are available from the kinematic redundancy are used to
find a bounded and causal solution for the internal dynamics in the case of output
trajectory tracking.

The paper is organized in the following way: Section 2 shows the derivation
of the nonlinear input-output normal-form. Section 3 presents the structure of the
inverse model and available solution methods for the internal dynamics. In Section 4
the design of bounded and causal feed-forward control of redundant and under-
actuated multibody systems is developed. Section 5 demonstrates this idea through
simulation of an underactuated manipulator with kinematic redundancy.

2 MBS in Input-Output Normal-Form

An underactuated multibody systems with f degrees of freedom, generalized co-
ordinates q ∈ IRf and inputs u ∈ IRm with m < f , i.e. control forces and torques,
is considered. The nonlinear equation of motion is given by

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u, (1)

where M is the mass matrix, k the vector of generalized gyroscopic and centrifugal
forces and g the vector of applied forces. The input matrix B distributes the control
inputs u onto the directions of the generalized coordinates. In the case of an under-
actuated multibody system the input matrix B has rank m < f . Thus the method of
inverse dynamics known from fully actuated systems [9] cannot be used.

From a control point of view it is often helpful to transform the nonlinear system
into the so-called nonlinear input-output normal-form [5, 6]. The diffeomorphic co-
ordinate transformation is given by z = �(x) where x are the original coordinates
and z are the coordinates of the input-output normal-form. In general this transform-
ation requires a state space representation of the nonlinear system and the symbolic
computation of Lie-derivatives of the output y. However, even for multibody sys-
tems with very few degrees of freedom, these symbolic calculations become very
complicated. Therefore, in the following it is shown, that for a special type of out-
put the nonlinear input-output normal-form can be directly derived from the second
order differential equation of motion (1). The equation is partitioned into two parts:
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[
Maa(q) Mau(q)

MT
au(q) Muu(q)

] [
q̈a

q̈u

]
+

[
ka(q, q̇)

ku(q, q̇)

]
=

[
ga(q, q̇)

gu(q, q̇)

]
+

[
Ba(q)

Bu(q)

]
u. (2)

Thereby the sub-matrix Ba ∈ IRm×m has rank m. The first m rows of the equation of
motion (2) are referred to as actuated part associated with the m actuated coordin-
ates qa . The remaining f −m rows are referred to as the un-actuated part associated
with the f − m un-actuated coordinates qu. In the following, it is assumed that
Ba = I is the identity matrix and Bu = 0. These special choices represent interest-
ing cases of underactuated multibody systems in tree structure. Examples include
rigid multibody systems with passive joints and elastic multibody systems where
the elastic mode shapes are chosen according to clamped boundary conditions.

The nonlinear input-output normal-form depends on the choice of the system
output y, where in general the dimension of the input u and output y coincide. In
this paper it is assumed that the end-effector position can be described by an output
y which is a linear combination of actuated and un-actuated generalized coordinates

y = qa + �qu, (3)

where � ∈ IRm×fu . Thus, each of the components of the output is the sum of one
actuated generalized coordinate and a linear combination of the un-actuated gen-
eralized coordinates. For example such an output can be used to describe the end-
effector position of elastic manipulators [1]. For the special case of � = 0 the output
reduces to y = qa , which is the so-called collocated output [8].

The vector of generalized coordinates is given by q = (qa, qu)
T and the state

vector by x = (qa, qu, q̇a, q̇u)
T . In the following it is shown that

z = (y, qu, ẏ, q̇u)
T = (qa − �qu, qu, ẏ − �q̇u, q̇u)

T (4)

is an appropriate choice for the coordinates of the nonlinear input-output normal-
form. The coordinate transformation z = �(x) forms a local diffeomorphic coordin-
ate transformation since its Jacobian matrix J = ∂�(x)/∂x is non-singular [5, 6].

In order to derive the input-output normal-form the starting point is the expres-
sion of the actuated coordinates qa in terms of the output y and the un-actuated
coordinates qu, i.e. qa = y − �qu, q̇a = ẏ − �q̇u and q̈a = ÿ − �q̈u. Then,
these expressions can be used in the equation of motion (2). Note that the actuated
coordinates qa are also replaced in all the entries of M, k and g. For reasons of read-
ability these dependencies are dropped in most of the following calculations. From
the second part of the differential equation (2) an expression for q̈u can be obtained
as

q̈u = (
Muu − MT

au�
)−1(gu − ku − MT

auÿ
)
. (5)

Inserting equation (5) in the first part of equation (2) and reordering yields

M̃ÿ = q̃ − k̃ + u, (6)

where the terms are summarized according to the convention
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M̃ = Maa − (
Mau − Maa�

)(
Muu − MT

au�
)−1MT

au,

q̃ = ga − (
Mau − Maa�

)(
Muu − MT

au�
)−1gu,

k̃ = ka − (
Mau − Maa�

)(
Muu − MT

au�
)−1ku.

Solving equation (6) for ÿ and inserting it in equation (5), a differential equation for
q̈u can be derived. Summarizing these calculations yields the nonlinear input-output
normal-form

M̃ÿ = q̃ − k̃ + u(
Muu − MT

au�
)
q̈u = gu − ku − MT

auM̃−1(̃g − k̃ + u
)
.

(7)

The first equation has dimension m and describes the relationship between the input
u and output y. The second equation has in this case dimension f − m and is called
internal dynamics. The typical state space representation of the input-output normal-
form is omitted here, since input-output linearization, analysis of the zero dynamics
and model inversion can be directly performed from the second order differential
equations (7). Zero dynamics is a very useful concept in nonlinear control, which
is preferably analyzed in the input-output normal-form [5]. The zero dynamics of a
nonlinear system is the dynamics of the system under the constraint that the output
is kept exactly at zero, y = 0. A nonlinear system is called minimum phase if the
equilibrium point of the zero dynamics is stable. Otherwise the system is called
non-minimum phase. In the following presentation non-minimum phase systems
are considered, thus feedback linearization is not possible.

3 Inverse Model of Underactuated MBS

An inverse model provides the input ud which is required for exact reproduction of
a desired output trajectory y = yd . This input follows from equation (7) as

ud = M̃(yd , qu)ÿd − q̃(yd, qu, ẏd , q̇u) + k̃(yd, qu, ẏd, q̇u). (8)

The computation of the input ud depends on the desired output yd, ẏd and the un-
actuated states qu, q̇u. These latter ones are the solution of the internal dynamics of
equation (7) which is driven by yd , ẏd and ud . Replacing ud in the internal dynamics
of equation (7) by equation (8) yields for the values of the un-actuated states qu, q̇u

the differential equation
[
Muu(yd , qu)−MT

au(yd , qu)�
]
q̈u = gu(yd , qu, ẏd , q̇u)−ku(yd , qu, ẏd , q̇u)−MT

au(yd , qu)ÿd . (9)

In summary, the inverse model consists of three parts which are shown schem-
atically in Figure 1. The first part represents a chain of two differentiators for the
desired output vector yd , producing the values ẏd and ÿd . The second part of the
inverse model is the driven internal dynamics (9) for the qu coordinates. The third
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driven internal dynamics
[ ]

algebraic input equation

Fig. 1 Schematic representation of an inverse model of an underactuated MBS.

part of the inverse model is the algebraic equation (8) which computes from these
values the desired input ud .

Several methods for model inversion exist which differ in the solution of the in-
ternal dynamics (9). In classical model inversion [4] the qu, q̇u variables are found
through forward integration of the internal dynamic (9) from the starting time point
t0 to the final time point tf , using the initial values qu(t0) = qu0

, q̇u(t0) = q̇u0
.

However, in order to use the input ud in a feed-forward control, it must be bounded.
Thus depending on the stability of internal dynamics forward integration of the in-
ternal dynamics might yield unbounded qu, q̇u values and thus unbounded inputs
ud . Therefore, classical inversion can only be used for feed-forward control design
if the internal dynamics (9) remains bounded, which implies that non-minimum
phase systems cannot be treated.

Stable model inversion [2] is a method to solve the inversion problem for non-
minimum phase systems, such that the trajectories qu, q̇u of the internal dynam-
ics (9) and the control input ud remain bounded. However the solution might be
non-causal. It is assumed that the desired trajectory yd starts and ends in equilib-
rium points of the system and the corresponding equilibrium points of the internal
dynamics must be hyperbolic. Then, at each equilibrium point a stable manifold
Ws and an unstable manifold Wu exist [6]. Any trajectory starting on the stable
manifold Ws converges to the equilibrium point as time t → ∞ and any trajectory
starting on the unstable manifold Wu converges to the equilibrium point as time
t → −∞. The solution of the stable inversion is then formulated as a two-sided
boundary value problem, where the boundary conditions are described by the un-
stable and stable eigenspaces Eu

0, Es
f at the corresponding equilibrium points. These

are local approximations of the unstable manifold Wu
0 and stable manifold Ws

f at the
starting and ending equilibrium point, respectively [6]. This yields for the internal
dynamics bounded trajectories qu, q̇u which start at time t0 on the unstable manifold
Wu

0 and reach the stable manifold Ws
f at time tf . Thus the initial conditions qu0

, q̇u0
at time t0 cannot exactly be pre-designated. A pre-actuation phase [tpr , t0] is ne-
cessary which drives the system along the unstable manifold to a particular initial
condition qu(t0), q̇u(t0), while maintaining the constant output yd = yd(t0). Also a
post-actuation phase [tf , tpo] is necessary to drive the internal dynamics along the
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stable manifold close to its resting position. The two-sided boundary value problem
has to be solved numerically, e.g. by a finite difference method [10].

An interesting new approach for inversion-based feed-forward control design for
the transition task between two stationary working points is proposed in [3]. In this
approach a causal and bounded solution is found, irrespective of the stability of the
internal dynamics, i.e. no pre- and post-actuation phase is necessary. The bounded
solution of the internal dynamics (9) must satisfy the boundary conditions qu0

, q̇u0
at

starting time t0 and quf
, q̇uf

at end time tf which yields a two-point boundary value
problem. In state space, the internal dynamics (9) has dimension 2(f − m), while
there are the 4(f − m) boundary conditions qu0

, q̇u0
, quf

, q̇uf
to satisfy. In order to

solve this two-point boundary value problem, it is required to introduce additional
2(f − m) free parameters w. Since in the approach developed by Graichen et al. [3]
the control task is a working point change rather than output trajectory tracking,
the additional 2(f − m) free parameters w are provided by the construction of the
desired output trajectory yd (w) which connects the two stationary points.

4 Inverse Model with Kinematic Redundancy

In kinematic redundant multibody systems the number m of actuated generalized
coordinates qa is larger than the degrees of freedom fe of the end-effector position
re. Therefore, in underactuated multibody systems with additional redundancy, the
limitations resulting from under-actuation may be overcome by the use of these ad-
ditional actuated degrees of freedom. This is especially important for non-minimum
phase systems where model inversion requires the bounded solution of the unstable
internal dynamics. As summarized in the previous section stable inversion yields
bounded but non-causal solutions for output trajectory tracking while inversion with
additional design parameters yields bounded and causal solutions for working point
changes. In this section, it is proposed to combine these two approaches for under-
actuated multibody systems with kinematic redundancy for output trajectory track-
ing. Thereby, the additional degrees of freedom resulting from the kinematic redund-
ancy are used to introduce 2(f − m) free design parameters w which are necessary
to obtain a bounded and causal solution of the inversion problem.

First, an output y ∈ IRm of position variables must be defined which determines
through forward kinematics the end-effector position re = re(y). The dimension
of this output and the number of inputs have to coincide. This system output y is
split into y = (ye, yp)T , where ye ∈ IRfe and y ∈ IRm−fe . Now trajectories ypd

(w)

for the second output are established in such a way that they introduce 2(f − m)

free design parameters w. Following Graichen et al. [3] this output yp performs a
working point change. Now the desired trajectories for the first output yed

must be
determined in such a way that the end-effector follows the desired trajectory red .
Thus, the trajectory yed

follows from the inverse kinematics problem

red = re(yed
, ypd

(w)) ⇒ yed
= r−1

e (red , ypd
(w)). (10)
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This inverse kinematics problem poses a set of fe nonlinear equations for the fe-
dimensional output yed

. This is similar to the standard form of a non-redundant
inverse kinematics problem [9]. Due to relationship (10), the output yed

implicitly
depends on the free parameter w, and thus in the following it is written yd = yd (w).

Applying this result to the internal dynamics (9) yields the two-point boundary
value problem[

Muu(yd (w), qu) − MT
au(yd (w), qu)�

]
q̈u (11)

= gu(yd (w), qu, ẏd(w), q̇u) − ku(yd (w), qu, ẏd (w), q̇u) − MT
au(yd(w), qu)ÿd (w)

where the boundary values are given by

qu(t0) = qu0
, q̇u(t0) = 0 and qu(tf ) = quf

, q̇u(tf ) = 0. (12)

The solution of this two-point boundary value problem yields the bounded and
causal trajectory for the un-actuated coordinates qu and the set of 2(f −m) paramet-
ers w. Thus the trajectories for the output yd (w) are found such that the end-effector
follows the desired trajectory red , the internal dynamics fulfills the initial and final
conditions (12) and the solution is bounded for all states and inputs. In addition the
kinematic redundancy can also be used to perform additional secondary tasks such
as the predesignation of starting and final positions of some bodies of the system.

5 Example: Redundant and Underactuated Manipulator

For demonstration purposes, the presented model inversion techniques are applied
to the feed-forward control of a underactuated manipulator with kinematic redund-
ancy, which is shown schematically in Figure 2. The manipulator moves along the
horizontal plane and consists of a cart on which a chain of three arms is mounted.
The arms have length l1 = 1 m and l2 = l3 = 0.5 m. The manipulator is described
by the generalized coordinate q = (x, α1, α2, β)T and is actuated by the control in-
put u = (F, T1, T2)

T . The third arm is connected by a passive joint to arm 2 which
is supported by a parallel spring-damper combination.

The control goal is to force the end effector to follow a predefined end-effector
trajectory as closely as possible. For a somewhat stiff spring-damper combination,
the angle β remains small and the end-effector position can be approximated by

rEF ≈
[
x + l1 sin(α1) + (l2 + l3) sin(α1 + α2 + 1

2β)

−l1 cos(α1) − (l2 + l3) cos(α1 + α2 + 1
2β)

]
. (13)

This approximation of the end-effector can be described by the linearly combined
output y = (x, α1, α2 + 1

2β)T . Due to this approximation a small tracking error for
the end-effector position has to be expected. In this example the end-effector point
should follow a half-circular trajectory. The center of the half-circle is at position
(0,−1.5 m) and the radius is 1 m. The end-effector point should follow the traject-
ory in the short time period of 1.5 s, which describes an aggressive manoeuver. Also
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Fig. 2 Redundant manipulator with one passive joint.

the kinematic redundancy should be used to perform as secondary task of moving
the cart from starting position −1 m to the final position 1 m. Two different feed-
forward control schemas are developed and then tested by simulations:

Feed-forward control 1 (FF1): Bounded solution from the stable inversion ap-
proach [2], which yields a pre- and post-actuation phase. The computed trajectory
of the internal dynamics, which is in this case the β variable, is presented in Figure 3.
Note that in this example the starting and final position yields the same equilibrium
point of the internal dynamics. The plot clearly shows the start of the trajectory of
the internal dynamics on the unstable manifold at time t0 and the ending on the
stable manifold at time tf . Thus, pre- and post-actuation phases of at least 0.2 s
length are necessary, which is also clearly seen in Figure 4 of the input u. The figure
also shows that the secondary task, the motion of the cart from −1 m to 1 m, is
achieved.

Feed-forward control 2 (FF2): Model inversion with bounded and causal solu-
tion, following the presentation given in Section 4. The output y is separated into
ye = (α1, α2 + 1

2β) and yp = x. Thus, the cart trajectory is used to introduce the
two additional parameters which are necessary to satisfy the boundary conditions
of the internal dynamics at starting time t0 and final time tf . Since the cart should
continue to perform the same secondary task, i.e. move from −1m to 1 m, a start-
up phase [t0, ts ] and an ending phase [te, tf ] are introduced, each of duration 0.3 s.
In both phases an additional polynomial of sixth order with one free parameter is
added to the cart trajectory. The solution of the inversion is presented in Figures 3
and 5. The start-up and ending phase is clearly seen in the x trajectory of the cart.
Due to these two phases the internal dynamics starts at t0 and ends at time tf at
the equilibrium point β0 and thus the desired boundary condition are met exactly.
While during the start-up phase and ending phase large control inputs occur, this re-
quires only a modest increase of control energy by 13%. However, since no pre-and
post-actuation is necessary, this feed-forward control enables easily the execution of
several successive motions without interruption [7]. Alternatively to the introduction
of the free parameters w via a start-up and ending phase, the starting position and
final position of the cart can be used as free design parameters. While in this case
the secondary goal cannot be achieved, this approach yields a less strongly varying
input ud , see [7].

282



Feed-Forward Control for Underactuated Multibody Systems

Fig. 3 Internal dynamics with feed-forward control 1 (left) and feed-forward control 2 (right).

Fig. 4 Cart position and inputs for feed-forward control 1 with pre- and post-actuation.

Fig. 5 Cart position and inputs for feed-forward control 2 with start-up phase and ending phase.

The two feed-forward controllers are tested by simulation in combination with a
simple PID controller for the actuated generalized coordinates to account for small
disturbances. The end-effector trajectories and the velocities along the trajectory
are presented in Figure 6. It shows that the end-effector follows the desired traject-
ory closely. The maximal absolute tracking error in radial direction is about 3 mm.
The largest errors occur in the middle of the motion when β becomes large and
result from the approximation of the end-effector position by equation (13). Both
strategies result in having the end-effector at rest outside the interval [t0, tf ]. How-
ever, only with feed-forward control 2 the entire system is at rest outside [t0, tf ].
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Fig. 6 Simulated end-effector trajectory and velocity.

6 Summary

The design of feed-forward control for underactuated multibody systems was
presented. The nonlinear input-output normal-form which is the basis of the feed-
forward controller design was directly established from the second order differential
equation of motion. In general, the feed-forward control consists of a chain of dif-
ferentiators, a driven internal dynamics and an algebraic part. Depending on the
stability of the internal dynamics, different methods of solution exist to achieve a
bounded feed-forward control. In the case of a kinematic redundancy the additional
degrees of freedom can be used to introduce free parameters which are necessary
for the design of a bounded and causal feed-forward control.
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Fusion Filter for Orientation Estimation of
Biped Robot

Min-geun Song, Jinseong Park, Youngjin Park and Youn-sik Park

Abstract Tilt sensor is usually necessary for attitude control of a biped robot when
it walks on an uneven terrain. There are many sensors to measure the tilt angles,
and gyro sensor is widely used for estimation of tilt angles because it can offer the
sufficient bandwidth, so it is suitable for sensing the rapid motions that create high
frequency pose variations. However, its major disadvantage is the lack of accuracy
and drift over time. Vision sensor can estimate an accurate attitude of robot directly
from the image of camera. However, it is hard to control attitude of rapid or abrupt
rotation due to the time delay and its low bandwidth. In this paper, we implement a
fusion filter frame that combines two sensor signals using Extended Kalman Filter
(EKF) to compensate the weakness of two sensors. We use modified track-to-track
model as fusion method. The simulation and experimental results show that we ob-
tain the accurate attitude information through fusion filter combining two sensor
signals.

1 Introduction

Many attitude control algorithms for biped robots use the orientation, i.e. the roll,
pitch and yaw angles of the upper body as controlled variables. The performance
of the control depends on two properties of the measurement system: Accuracy and
bandwidth. Estimation errors of the attitude lead to an inaccurate tracking of the ref-
erence trajectories and the sensor bandwidth limits the bandwidth of the controller.

There are many sensors to measure the tilt angles. It is general to obtain tilt
estimates by processing gyro, inclinometer and accelerometer signals. Each sensor
has unique strength and weakness [1–4].
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Fig. 1 Kalman filter loop.

The tilt angle measured by accelerometer is usually contaminated by the trans-
lational acceleration and gravity effects. Therefore, the tilt estimate based on the
accelerometer leads to an error due to a translational acceleration. An inclinometer
measures the tilt angle with respect to the field of gravity. The inclinometer has
not enough bandwidth to control the attitude of the biped robot. The gyro sensor
is widely used for estimation of tilt angles because it has wide enough bandwidth
suitable for sensing the rapid motions that create high frequency pose variations. Be-
cause measured angular velocity from gyro is integrated to produce the attitude in-
formation, large drift in the attitude estimates is possible especially when an elapsed
time is long. To correct the accumulated drift, measurements from the other sensor
is necessary to provide absolute orientation data.

For the human-robot interaction, many biped robots already have vision sensor.
Vision signal can be utilized to estimate an accurate attitude of robot directly from
the same imagery using a point-based method. However, the major disadvantage of
the vision sensor is that image processing takes considerable computation time and
therefore introduces significant time delay and limits the bandwidth which, in turn,
makes the attitude control of rapid and abrupt motion difficult.

Each sensor has its own limitation for attitude control. The hybrid systems can
to compensate for the shortcomings of single type sensor based approach by us-
ing multiple measurements to produce the accurate attitude estimation. Combining
vision and gyro sensors offer one approach to overcoming aforementioned disad-
vantages of single sensor approaches.

In this paper, we implement a fusion filter framework that combines two sensor
signals using Extended Kalman Filter (EKF). We use modified track-to-track model
as fusion method [5]. There are two corrections sharing a common prediction, one
for the low rate vision measurements and another for the high-rate gyro measure-
ment. The two corrections process data independently, allowing different sampling
rates for each sensor system and reducing the computation. The accurate attitude in-
formation of robot can be obtained by combining two filtered sensor signal in each
correction.
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2 Kalman Filter [6]

Consider a dynamic system which can be modeled by a n-by-1 state vector x obey-
ing a discrete-time (DT) evolution equation

xk+1 = Akxk + Buk + wk, (1)

where A is an n-by-n state transition matrix, B is an n-by-p matrix and u is a p-
by-1 vector of known system inputs, and w is an n-by-1 process noise vector with
covariance matrix Qk. (Note that lower-case bold letters, Greek or Roman, denote
vectors, and upper-case bold letters denote matrices.) Suppose there are indirect
measurements of the state vector available at each time k, and that they can be
expressed as an m-by-1 measurement vector

zk = Hxk + vk, (2)

where H is an m-by-n system observation matrix, and v is an m-by-1 measurement
noise vector with covariance Rk. A Kalman filter is a recursive algorithm for com-
puting an estimate x̂k of state which is optimal in the sense of least square error
under certain circumstances. One form of the DT Kalman filter is

x̂k = x̄k + Kk(zk − Hx̄k), (3)

where the Kalman gain matrix K is computed from the estimation error covariance
matrix, P, according to

Kk = P̄k HT (H P̄k HT + R)−1 (4)

and P is updated according to the Ricatti equation:

P̄k+1 = Ak Pk AT
k + Qk, (5)

Pk = (I − Kk H)P̄k . (6)

Equations (1–5) and (6) comprise the Kalman filter recursive equations. These equa-
tions and sequence of the computational steps are shown pictorially in Figure 1.

The Kalman filter is very useful for combining data from several different in-
direct and noisy measurements to try to estimate variables which are not directly
measurable. Thus, while the gyro sensor measures orientation by integrating angu-
lar rate, and the vision sensor provide a low sample rate but drift-free measurement
of orientation, the Kalman filter weights the two sources of information appropri-
ately to make the best use of all the data from each. If the system dynamics are
nonlinear, it is possible to linearize about a nominal or actual trajectory and run a
Kalman filter on the linearized system. This is the basis of the extended Kalman
filter (EKF) and the fusion filter based on the EKF developed in Section 3.
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3 Algorithm Framework

3.1 Motion Model and System Dynamics

The first step in modeling is to decide what to put in the state and measurement
vectors. Since the basic purpose of the Kalman filter is to estimate orientation, it is
a given that it will be included in the state vector. In this paper, our implementation
uses Euler angles. The aeronautics convention used, where ϕ, θ and ψ , called yaw,
pitch, roll respectively, represent positive rotations about the z, y, and x body axes
in turn, with the positive x-axis pointing forward, positive y pointing right, and
positive z pointing down. There is a singularity in the Euler angle representation at
θ = ±90◦, but this was not found to produce any noticeable disturbances in practice.

Many researchers include angular rates in the state vector and gyroscopic angular
rate measurements in the measurement vector, This is very natural, as it allows the
Euler angle integration kinematics,

�̇(t) = W(�(t)) · ω(t)

�(t) =
⎡
⎢⎣

ψ(t)

θ(t)

ϕ(t)

⎤
⎥⎦ , ω(t) =

⎡
⎢⎣

ωX(t)

ωY (t)

ωZ(t)

⎤
⎥⎦

W(�(t)) =
⎡
⎢⎣

1 sin ψ(t) tan θ(t) cos ψ(t) tan θ(t)

0 cos ψ(t) − sin ψ(t)

0 sin ψ(t)/ cos θ(t) cos ψ(t)/ cos θ(t)

⎤
⎥⎦ (7)

to be incorporated into the system dynamics model, and allows the gyro measure-
ments to be utilized in the obvious way – as measurements.

We used the motion model as proposed by Chai et al. [7]; here the head motion
is represented by 6 × 1 vector:

xk = [�k ωk]T , (8)

where � is the orientation of the frame with respect to the world (we use Z-Y -X
Euler angles), ω is the angular velocity. With these states, the discretized system
dynamics are given by:

[
�k+1

ωk+1

]
=

[
I �T · W(�)

0 I3×3

]
×

[
�k

ωk

]
+

[
�T 2/2 · W(�) · ω̇k

�T · ω̇k

]
, (9)

where �T is the sampling period, W(�) is the Jacobian matrix that relates the
absolute rotation angle to the angular rate, and ω̇k are the system random distribution
noise.
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Fig. 2 Fusion filter framework.

3.2 Measurement Model

Once the process model has been designed, we should also concrete the measure-
ment model. This model describes how the estimation space maps into the observa-
tion space, that is, it relates the measurement vector and the state vector by linear
equation. We suppose that observation equations measure directly the system state.
So the vision system measures the camera pose � in world coordinate system. The
gyroscope produces angular velocity measurements. The sensors measurements can
then be represented by a measurement vector as follows:

�k = [ψk θk ϕk]T ωk = [ωxk ωyk ωzk]T . (10)

The measurement equation of gyro sensor is then given by:

z1
k = H 1 × xk + v1

k . (11)

The measurement equation of vision sensor is then given by:

z2
k = H 2 × xk + v2

k , (12)

where H 1,H 2 are equal to the [0 I3×3], [I3×3 0] respectively and v1
k , v2

k is the
measurement noise.

3.3 Fusion Method

The goal of the fusion filtering is to estimate the orientation of upper body, i.e. the
roll, pitch and yaw angles of the biped robot from the measurements of the vision
and gyro sensors. Since the vision and gyro sensors have different sample rates, we
implement a fusion filter using modified track-to-track fusion (MTF) [6] as shown
in Figure 2.

The filter has a prediction, corrections and fusion module. There are two correc-
tions sharing common prediction: one is for gyro measurement and another one is
for vision measurement. The final fused estimate can then be obtained from com-
bining two kinds of filtered sensor signal in each correction. This is a feedback to
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Fig. 3 Depiction of 3D motion trajectory.

the single state prediction, whose output is then fed to the two local observation
correction equations.

Finally, by the usual derivation of the Kalman filter, the following fusion al-
gorithm for modified track-to-track fusion Kalman filter algorithm can easily be
derived as:

Fusion filter algorithm:

P 12
k = (P 21

k )T = [I − K1
k H 1]P̄k[I − K2

k H 2]
Pk = P 1

k − [P 1
k − P 12

k ][P 1
k + P 2

k − P−12
k − P 21

k ]−1[P 1
k − P 21

k ]
x̂k = x̂1

k + [P 1
k − P 12

k ][P 1
k + P 2

k − P 12
k − P 21

k ]−1[x̂2
k − x̂1

k ]

4 Simulation

In order to evaluate the performance of the fusion filter, we first implement it with
purely synthetic data. So, a synthetic orientation of biped robot’s upper body is
described (Figure 3), and synthetic gyro and vision data are generated from it. A
synthetic white Gaussian random noise is added to the measurements with variance
0.01 for gyros, 0.01 for the vision sensor.

The filter parameters, i.e. measurement noise matrix R, process noise matrix Q
and the sampling time �Tgyro,�Tvision of the two sensors, are given in Table 1.

The process noise matrices were chosen empirically in order to achieve the best
performance of the filter. To evaluate the filter performances a mean square error
(MSE) analysis is performed. The MSE is given by:

MSE = 1

n

n∑
k=1

||xk − x̂k||2, (13)
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Table 1 Filter parameters.

Gyro sensor
Gyro sample rate 100 Hz
Gyro bias noise 0.5 Degree/sec
Gyro noise variance 1 Degree2/sec2

Vision sensor
Vision sample rate 10 Hz
Vision noise variance 0.1 Degree2

Vision delay 0.1 sec

Table 2 Estimation MSE using different q values.

Estimation MSE

q Roll Pitch Yaw

1 0.64216 0.49006 1.1644
10 0.42457 0.38714 0.49242
100 0.42078 0.38369 0.48434
1000 0.42026 0.3827 0.48141
10000 0.41993 0.38312 0.48136
100000 0.41743 0.3868 0.48137

where x(k) is the true orientation trajectory, and x̂(k) the estimation. In Table 2, the
best performance of the fusion filter is achieved with a different process covariance
(q) for each Euler angle.

The motion pattern is given by:

Roll → ψ(t) = 8.6◦ × sin(2π × t)

Pitch → θ(t) = 11.46◦ × sin(2π × t)

Yaw → ϕ(t) = 5.73◦ × sin(4π × t)

In Figure 4 result of motion estimation are presented. Without vision compensa-
tion, the gyro drifts at about 0.5 degree/sec. When the parameters are well fixed, we
note that the implemented filter succeeds to follow the true trajectories very closely.
The estimation error is less than 1 degree.
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Fig. 4 Date fusion and estimation of the motion orientation. (solid: true orientation, dash: estima-
tion, x: gyro, o: vision data).

Fig. 5 Experimental setup with rate gyro affixed to camera.

Table 3 Specification of the sensors.

Gyro sensor
Gyro range ±75 Degree/sec
Gyro noise 1.732 Degree/sec
Gyro bandwidth 40 Hz

Camera
Resolution 752 × 582 pixels
Pixel size 8.6 × 8.3 µm
Max. Frame rate 25 frames/sec

5 Experiment

We conducted experiment to test the proposed fusion approach. Figure 5 shows the
hardware sensor configuration. The sensor module contains a CCD video camera
(CV-M50IR) and the gyro sensor (ADXRS401).
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Table 4 Filter parameter.

Gyro sensor
Gyro sample rate 100 Hz
Gyro bias noise 3 Degree/min
Gyro noise variance 0.677 Degree2/sec2

Vision sensor
Vision sample rate 10 Hz
Vision noise variance 0.1430 Degree2

Vision delay 0.1 sec

Fig. 6 Date fusion and estimation of the motion orientation (solid: true orientation, dash: estima-
tion, x: gyro, o: vision data).

In Tables 3 and 4, the information of sensors is presented. The excitation is a sine
wave with an amplitude of 5 degree and a frequency of 0.5 Hz. The implemented
filter succeeds to follow the true trajectories very closely. The estimation error is
less than 1 degrees and the MSE of estimation is 0.2399.

6 Conclusion

We present an accurate and efficient method for estimation of biped robot orienta-
tion based on gyro and vision sensors. The gyro sensor is robust and high bandwidth
while it lacks accuracy and tends to drift over time. Vision tracking is accurate over
long periods, but it suffers from occlusion and high computation expense. To com-
pensate the weakness of two sensors, we implemented a fusion filter framework
based on the Extened Kalman Filter (EKF) using modified track-to-track fusion
method. The complementary filtering structure is treated as two parallel EKF banks
sharing one common state prediction module. The experimental results demonstrate
the effectiveness of this strategy.
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Control of Deployment Mechanism for Space
Application by Compliance Control and
Complementary System Representation

Abstract Recently, deployment system is often required for satellite to execute vari-
ous missions. Such a deployment system consists of two functions. One is the de-
ployment mechanism to deploy the components from folded configurations and the
other is latch mechanisms to fix the deployed components in desired configuration.
Deployment systems are often subjected to failure due to mechanical load by launch
rocket and vacuum metalizing by space high vacuum environment. To escape such
failures, deployment system without latch mechanism is sometimes used in space
applications. Behaviour of such a system includes continuous flexible dynamics and
discrete impact dynamics and degrades the attitude control performance of a satel-
lite. To improve such performance degradation, compliance control is implemented
to attitude control of satellite. Compliance control is often applied for the control
which includes contact state, but it is not easy to get precise information of contact
forces and torques of the motion with impact dynamics by conventional force sensor
system, which arise in very short period. Especially such a measurement is very dif-
ficult in space applications in which slow control timing is preferred for reliability
of the system and saving of power. Therefore, it is difficult to use compliance con-
trol for the system with impact dynamics effectively in space applications. In this
paper, complementary system representation is utilized to implement compliance
control more effectively for simple satellite model, and validity of proposed method
is shown by simulation.

1 Introduction

Recently, small size satellite is attracting much attention. The development cost of
such a small satellite is quite low, because COTS (commercial-off-the-shelf) elec-
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Fig. 1 Left: PETSAT (Panel Extension SATelite), Right: structural drawing of deployment mech-
anism with latch and without latch.

tronic products is improving their performances and reliabilities dramatically and
are utilized actively. And easy handling due to smallness of the satellite reduces
the development period and consequently the development cost of the satellite be-
comes lower and lower. Moreover, the launch cost of small satellite is getting quite
low compared to large satellite, because a lot of piggyback-style-launch is provided
in many countries. Therefore, the potential of small satellite is growing. However,
small satellite has also disadvantages, because there are a lot of difficulties in real-
izing large and long structure for mounting devices or some requirements from the
mission due to its smallness compared to large satellite. Therefore, the difficulties
bring limitation of utility of small satellite. To escape such a limitation, deployment
mechanism is used to realize large and long structure. Conventional deployment
mechanism consists of two elements. One is a mechanism which deploys the folded
component, for example it has some actuators, e.g. spring, motors and so on, to de-
ploy and some axes or guides to determine directions of deployment. The other is a
mechanism which fixes the deployed configuration, for example latch mechanism.
It is very important for mechanism of space application to consider two issues. One
is intense mechanical load produced by rocket engine during launch and such a load
can break the mechanical component. The other is ultrahigh vacuum environment
of space and they induce the vacuum metalizing of slide component made by metal.
In this way, a satellite with complicated mechanism is subjected to failures and their
reliability becomes lower than that with simple mechanism.

In order to improve the reliability of the satellite, a deployment mechanism
without a latch mechanism is sometimes used, which is called “non-latched de-
ployment mechanism” in the following. PETSAT (Panel ExTension SATellite) [1]
which will be launched in 2009 adopted this type of deployment mechanism [2]
(left-hand figure in Figure 1). Such a mechanism has mating component instead of
latch mechanism and mating state is kept by deployment force, which makes it pos-
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sible to keep desirable deployed configuration (right-hand figure in Figure 1). The
deployment force can be usually provided by simple springs to keep reliability and
non-stiff spring is chosen to prevent high impact force which may cause damages on
the deployment mechanism and other components. At the same time the deployed
configuration is deformed easily by attitude control force in such a system, because
the force by non-stiff spring is not so strong. Dynamics which attributes to such
a deformation include continuous flexible dynamics and discrete impact dynamics
and makes the attitude control performances of the satellite worse.

To avoid such a degradation of the performances, compliance control [3] is com-
bined to attitude control of satellite. Compliance control usually requires informa-
tion about contact state, but it is not easy to get precise information of contact state,
especially information of contact force or torque, by conventional method, e.g. the
measurement system with force sensor. But it is difficult to capture the enough in-
formation from force sensor because force sensor is subject to noise and contact
period of impact is quite short compared to processing time of measurement sys-
tem, especially processing time of the system for space application is much slower
for reliability and saving energy. Therefore, it is difficult to use compliance control
effectively in space applications.

On the other hand, much effort is devoted to a study of unilateral contact based
on complementary system [4] in recent years. According to the theory, contact or
torque force can be estimated from state variables of the system and the motion of
the system before/after contact can be derived numerically. Namely, it is possible to
implement compliance control law without force sensor.

In this paper, idealized simple non-latched deployment mechanism is controlled
by proposed control law that consists of compliance control with estimator by the
use of complementary system representation. Moreover, some numerical simula-
tions are carried out to show its effectiveness and its advantages of the proposed
method.

2 Model of Controlled Object

2.1 Model of the System

Simplified model of satellite with non-latched deployment mechanism is supposed
as shown in Figures 2 and 3 and consists of body, deployment component and de-
ployment mechanism. θ1 and θ2 are the angle of body and deployment component
about inertial coordinate-system �. l1 is the distance between rotational centre of
satellite O and rotational axis of the deployment component, of which length is l2.
Body and deployment component have mass of m1 and m2 and have moment of
inertia of I1 and I2 respectively. Input torque τ for attitude control of the satellite is
applied around O. Furthermore, the following assumptions are set for simplicity:
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Fig. 2 Simplified model of satellite.

Fig. 3 Non-latched deployment mechanism.

Assumptions

• Body and deployment component is assumed as rigid.
• Body is attached to pinned support at the centre of mass of the body and only

rotational motion of satellite is took into account.
• Air resistance is not taken into account for dynamics of the model.
• Frictional force around axis is not taken into account for the model.

The equation of motion of the system is derived by the use of Lagrange’s equa-
tions as follows:

M(q)q̈ + h(q, q̇)q̇ + Kq = Gτ, (1)

where q = [θ1 θ2]T is a generalized coordinate and
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M(q) =

⎡
⎢⎢⎣

m2l
2
1 + m3l

2
1 + I1

m2l1l2

2
cos(θ2 − θ1)

m2l1l2

2
cos(θ2 − θ1)

m2l
2
2

4
+ I2

⎤
⎥⎥⎦ , (2)

h(q, q̇) =
⎡
⎢⎣

0 −m2l1l2

2
sin(θ2 − θ1)θ̇2

m2l1l2

2
sin(θ2 − θ1)θ̇1 0

⎤
⎥⎦ , (3)

K =
[

k −k

−k k

]
, (4)

G =
[

1

0

]
, (5)

and m2 and m3 are mass parameters about the deployment mechanism. To represent
the dynamics of contact, contact torque λ is introduced into Equation (1) and the
equation of motion with λ is given as follows:

M(q)q̈ + h(q, q̇)q̇ + Kq = Gu + Wλ, (6)

where W is a coefficient matrix that transmits the contact torque in the direction of
generalized coordinate and satisfies following relation:

g̈ = ∂g

∂q
q̈ = WT q̈. (7)

Here, g = θ2 − θ1 is the relative displacement between contact surfaces.

2.2 Estimation of Contact Torque

For simplicity, Equation (6) can be rewritten as:

Mq̈ + H = Wλ, (8)

where H = hq̇ + Kq − Gu.
In the phase of compression, integrating of the equation of motion yields relation

about impulse as follows:

M(q̇C − q̇A) − W�C = 0, (9)

where q̇A is the relative angular velocities at tA when contact begins, q̇C is that at tC
when the phase of compression ceases and �C is the angular impulse added to the
system during the phase of compression. Furthermore, q̇A and q̇C are given by:
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q̇A = W−1ġA, (10)

q̇C = W−1 ġC, (11)

where ġA and ġC are relative angular velocity respectively. Substituting formu-
lae (10) and (11) into Equation (9) and transformation give a relation about the
phase of compression

ġC = WT M−1W · �C + ġA. (12)

Additionally, �C and ġC can be described by liner complimentary problem

(ġC ≥ 0) ∧ (�C ≥ 0) ∧ (ġC · �C = 0). (13)

In a similar fashion, relation about the phase of expansion between relative angular
velocities and impulse is given by

ġE = WT M−1W�E + WT M−1Wε�C + ġC, (14)

where ġE is that at tE when the phase of expansion ceases and �E is the angular
impulse added to the system during the phase of expansion. Additionally, �E and
ġE can be described by liner complimentary problem

(ġE ≥ 0) ∧ (�E ≥ 0) ∧ (ġE · �E = 0). (15)

Therefore, the contact torque can be analyzed form Equations (12) to (15) by the
use of numerical integral algorithm.

3 Controller Design

The system such as in Figure 2 causes vibratory motion of deployment mechanism
including impact phenomenon when the satellite moves, e.g. the movement for atti-
tude control. For example, the body of the satellite begins to rotate clockwise by the
torque for attitude control and it causes a relative displacement between deployed
element and body of the satellite due to inertia of deployed element, that is, deploy-
ment angle θ2 − θ1 has nonzero value. Then, such a value of θ2 − θ1 produces some
torque around axis of deployment mechanism and it causes a motion with impacts
and bounces at mating surface. Such a motion influences the performance of satel-
lite attitude control. Hence, the control objective is to move the satellite attitude to
the desired position promptly with less influence from the motion of deployment
component.

To remove the influence of such a motion, cooperative controller of position con-
trol and compliance control is applied to the system. Conventional compliance con-
troller requires information about contact force or torque, but it is not so easy to
implement the measurement devices of contact torque or force in the system which
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Fig. 4 Block diagram of control system.

has limitation of device mounting and is required reliability. Hence, contact torques
for compliance control are estimated from state variable by the use of unilateral
contact theory. In this research, the configuration of control system becomes like
the one in Figure 4 and it is position-based compliance controller which includes
aforementioned estimator.

To apply compliance control, the model represented by Equation (1) is taken into
consideration and is transformed into state equation as follows:

Ẋ = A(X) + BU, (16)

where X = [qT q̇T ]T .
The control input for position control is given by

U = −K(X − Xd), (17)

where K is the feedback gain, Xd = [qT
d q̇T

d ]T and qd and q̇d are desired value of
q and q̇ respectively. Moreover, qd = [θd θd ]T and q̇d = [0 0]T are set by control
objective.

To apply compliance control, θd is corrected according to contact torque as fol-
lows:

θ̂d = θd − K−1
c λ. (18)

Therefore, the closed loop system by compliance control is given by

Ẋ = Ā(X) + B̄(θd − K−1
c λ), (19)

where Ā(X) = A(X) − BKX and B̄ = BK[I2 02×2]. is determined based on
linear-quadratic regulator which is designed for linearized model around desired
configuration and Kc is set as negative value and determined by the results of numer-
ical simulation which satisfies the control objective. Here, this compliance control
match to negative compliance control and is different from general compliance con-
trol. Note that this research focuses on the validity of combination of compliance
control and unilateral contact theory, therefore discussion of negative compliance
control is omitted in this paper.
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Table 1 Parameters of the model.

Fig. 5 Angle, contact torque and input torque in the results of PD feedback controller about angle.

Fig. 6 Angle, contact torque and input torque in the results of proposed controller.

4 Numerical Simulations

To show validity of the proposed method, numerical simulations are carried out.
Model parameters for the simulations are defined as in Table 1.

Figure 5 shows the results of numerical simulation for PD feedback controller
about each angle and Figure 6 shows results for the proposed controller. Each figure

302



Control of Deployment Mechanism for Space Application

Fig. 7 Results of controller with force sensor in slow control timing.

Fig. 8 Results of proposed controller in slow control timing.

on the left shows trajectories of angle θ1 and θ2, a contact torque and an input torque.
And each figure on the right shows magnified figure of remarkable trajectory of each
angle. In both simulations, sampling time of the controller is set to 1 [msec], which
is comparatively fast in actual small satellite applications.

As is clear from the result, the proposed controller suppresses bounces of the
deployed element and the body of satellite more than the PD controller. Moreover,
convergence time of the angles about system with proposed controller state becomes
shorter slightly. Contact torque is suppressed by proposed controller. However, max-
imum value of control input is required more in the proposed method.

As mentioned above, the advantage of utilizing unilateral contact theory for es-
timating contact torque is the robustness about uncertainty of capturing contact
torque. To demonstrate such a feature of the proposed method, two kind of nu-
merical simulations are carried out for the model characterized by the parameter of
Table 1. The results of each simulation are shown in Figures 7 and 8 and each figure
shows trajectories of θ1 and θ2, contact torque and input torque as well as Figures 5
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and 6. Figure 7 shows the results of a compliance control which is supposed to cap-
ture the data of contact torque by a force sensor and Figure 8 shows the results of
the proposed way. In both simulations, sampling time of controller is set to ten times
of that of the simulations shown in Figures 5 and 6, that is to say 10 [msec]. By the
way, it is supposed that impact motion happens within 1 [msec], which is still longer
than the period of actual impact motion. Therefore, it can be said that sampling time
of 10 [msec] makes the probability of capturing contact torque data less than 10%
of that when controlled in sampling time of 1 [msec]. And this kind of uncertainty
is implemented into the simulation shown in Figure 7. As is clear from the results,
the deployed element bounces more in the conventional controller than the proposed
controller. At the same time, more short cycle bounces of small amplitude happen
in the simulation of Figure 8 compared to that of Figure 9. Relatively the result of
Figure 8 shows good performance about convergence of the θ1 and θ2, hence it can
be said that the proposed method have effectiveness compared to conventional one.

Note that the slow (10 times) sampling time changes the characteristic of closed
loop system with compliance control and the value of Kc used in the simulations of
Figures 5 and 6 become non desirable one. Therefore, new desirable value of Kc is
determined by numerical analysis and used for the simulations of Figures 7 and 8.

5 Conclusion

It is shown that the compliance control with the contact torque estimated by unilat-
eral contact theory is effective for the system which consists of flexible and impact
dynamics. Moreover, compared to compliance control which use force or torque
sensor, the proposed method is not subjected to the difficulties associated with un-
certainty of capturing contact torque data. Therefore, it can be said that the pro-
posed method has robustness on the data of contact torque. Furthermore, to apply the
method more practically, it is required to discuss the feasibility of calculation pro-
cess of contact torque estimation and extend the method to the system with multiple
non-latched deployment mechanisms which will bring high potential to deployment
mechanism for space applications.
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A Study on Locomotion Stability by Controling
Joint Stiffness of Biped Robot with Pneumatic
Actuators

K. Tsujita, T. Inoura, T. Kobayashi and T. Masuda

Abstract The development of an oscillator controller for a biped robot with antag-
onistic pairs of pneumatic actuators is reported. Periodic motions of the legs switch
between the swinging and supporting stages based on the phase of the oscillators.
The oscillators receive touch sensor signals at the end of the legs as feedback when
the leg touches the ground and compose a steady limit cycle of the total periodic dy-
namics of biped locomotion. Using this control system, relationship between muscle
tone and locomotion performance is investigated. The result shows that there is an
appropriate joint stiffness to keep the stable locomotion as well as rhythmic input
at actuator with state reset. Numerical simulations and hardware experiments are
implemented to verify the locomotion performance.

1 Introduction

Locomotion is an important function of mobility. Human bipedal locomotion is es-
pecially mobile and adaptable to variations in the environment. There has been a
lot of research on bipedal robots driven by DC rotary actuators with local position
feedback controls. However, most of them consume a lot of energy and their knees
are always bent because they are based on high-gain position control of the joints
with inverse kinematics for given trajectories of the legs. This type of robot cannot
utilize its own dynamics for good energy efficiency or adaptive adjustment of phys-
ical properties of the body mechanism during locomotion. Furthermore, DC rotary
actuators have serious difficulties in maintaining their power-weight ratios, which
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limits the functions of the robots’ mobility. Leg motions in bipedal locomotion have
two essential stages. One is the swinging stage and the other is the supporting stage.
In the swinging stage, the actuator forces are relaxed; the joints become less stiff
and more passive. In the supporting stage, stiffness of the joints increases due to
forces generated by the antagonistic pair of actuators. By controlling and tuning the
stiffness of the joints through the balanced adjustment of the generated force of such
a pair of actuators, the robot is expected to become more adaptive to variations in
the environment and in the surface of the ground.

This article reports the development of an oscillator controller for bipedal ro-
bots with antagonistic pairs of pneumatic actuators as well as study on relationship
between muscle tone and locomotion performance using the proposed control sys-
tem. In the proposed controller, nonlinear oscillators are assigned to each joint. Peri-
odic motions of the legs are switched between the swinging and supporting stages
based on the phase of the oscillators. Oscillators contain network architecture, inter-
act mutually with each other, and receive touch sensor signals as feedback signals at
the end of the legs when the leg touches the ground in the purpose of phase resetting
of the oscillator. These dynamic interactions make possible mutual entrainments
between oscillators and create a steady limit cycle of the total periodic dynamics of
bipedal locomotion.

By using this control system, the relationship between muscle tone and loco-
motion performance is investigated. The result shows that there is an appropriate
joint stiffness to keep the stable locomotion as well as rhythmic input at actuator
with state reset. Numerical simulations and hardware experiments are implemented
to verify the locomotion performance.

2 Model

Figure 1 is a schematic model of a planar bipedal robot. The robot has two legs, com-
posed of two links, and a main body. The contact model at the end of the leg assumes
one point of support. The motion of the robot is restricted to the sagittal plane, i.e.
it is assumed to be in 2D motion. The supporting and swinging legs are numbered 1
and 2, respectively. The position vector from the origin of the inertial coordinate to
the center of mass (C.M.) of the main body is defined as r0 = (r0x, r0y)T .

The rotational angle of the main body and each link of the legs are defined as
shown in Figure 1.

The state variable is defined as follows:

z = [
r0x r0y θ0 θ

(1)
1 θ

(1)
2 θ

(2)
1 θ

(2)
2

]T (1)

Equations of motion for state variable z are derived as:

Mz̈ + H = G + τ + Eλ (2)
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Fig. 1 Schematic model of a bipedal robot.

where M , H , G, and E are inertia matrix, nonlinear term, gravity term, and Jacobian
matrix, respectively. λ is the reaction force at the contact point of the supporting
leg. Vector τ is composed of the input torques at the rotational joints of the legs
τ

(i)
j , i = 1, 2, j = 1, 2, which are generated by the antagonistic pairs of pneumatic

actuators
τ = [

0 0 0 τ
(1)
1 τ

(1)
2 τ

(2)
1 τ

(2)
2

]T (3)

Actuator torque τ depends on the air pressure supplied and On/Off timing of the air
supply valves.

3 Control Scheme

Figure 2 shows the control scheme of the proposed system. The controller has a
nonlinear oscillator network with individual oscillators assigned to joints. The ant-
agonistic pairs of pneumatic actuators are driven by timing signals as functions of
the oscillator phases. The contact sensor signals are feedback for the oscillator net-
work. These dynamic interactions cause the entrainment and generate a stable limit
cycle for locomotion. With the oscillator phase defined as φ

(k)
m (k,m = 1, 2), the

oscillator network can be expressed in the following equations:

z(k)
m = exp(jφ(k)

m ) j : Imaginary unit (4)

φ̇(k)
m = ω + K(φ(l)

m − φ(k)
m − γlk)

307



K. Tsujita et al.

Oscillator network

Robot

A
ct

ua
to

r 
co

m
m

an
d

C
on

ta
ct

 s
en

so
r 

si
gn

al

Fig. 2 System architecture.
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Fig. 3 Actuation sequence.

+δ(φAk − φ(k)
m ) (5)

γ12 = −γ21 = π (6)

T (k)
mn = f (φ(k)

m ) (7)

where K is constant number and φAk is the nominal value of oscillator k’s phase at
the moment of leg k’s contact with the ground (i.e. touch down moment in fig. 3).
δ is the impulsive function. γlk is the nominal phase difference between oscillators
l and k. T

(k)
mn is the On/Off timing of the air valve of actuator n (n = extensor

or flexor) of joint m of leg k and is given as a function of the oscillator phase.
In concrete the actuators are driven for the motion sequence in the locomotion, as
shown in Figure 3. In Figure 3 illustrated actuators are actively shrinking according
to the supplied air pressure which are controlled in Eq. (7). The motion primitives
in Figure 3 are following the idea of Ekeberg and Pearson [18].
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Table 1 Physical parameters of robot.

Length of body 0.20 [m]
Length of thigh (between joints) 0.25 [m]
Length of shank (between joint and toe) 0.25 [m]

Total height 0.70 [m]

Mass of body 1.32 [kg]
Mass of thigh 0.59 [kg]
Mass of shank 0.47 [kg]

Total mass 3.44 [kg]

On the other hand, the muscle tone at the thigh actuators are voluntarily con-
trolled during to investigate the relationship it and locomotion performance. The
stiffness of the thigh joint is controlled during locomotion by controlling the antag-
onistic pairs of actuators as follows:

T
(k)

1n = Q(α, φ̂Ak) (8)

where T
(k)

1n (n = flexor, extensor) is the stiffness of the thigh actuators. α is the time
length for air-supplying to the actuators and it is the tuning parameter. This tones
controller changes the stiffness of the joints at the thigh according to the parameter
α.

4 Numerical Simulations

Table 1 shows the physical parameters of the robot.
Figure 4 shows the actual cycle durations when the nominal time periods for

the oscillators are changed during locomotion. The x and y axes are the nominal
and actual time periods of the walking cycle, respectively. From this result, we may
note that the system has a considerable capability of self-adaptation to variance of
walking speed, and results in wide basin of attraction.

Figure 5 shows the stability of the bipedal walk, the norm of eigenvalues of mat-
rix M associated with the fixed point of the Poincaré map, X(r) ∈ R10, X(r +1) =
MX(r), r is the number of intersection of Poincaré section. From this figure, the
norm of all the eigenvalues are smaller than one, i.e. the system is stable, and the
deviations of them according to the variance of the time period of walk are so small.
These results show that the system can continue stable locomotion over various
lengths of time. This means the system has a considerably wide basin of attraction
for limit cycle.

309



K. Tsujita et al.

Fig. 4 Walking cycle duration at variable reference.

Fig. 5 Norm of eigenvalues of Poincaré map.

5 Hardware Experiments

We performed a walking experiment using the robot shown in Figure 6. The model
robot has three legs, two side legs and one middle leg. The two side legs are connec-
ted to each other with a connection rod, and the motion of each side leg is the same.
This mechanism ensures that the motion of the robot is restricted to the sagittal
plane.

Figure 7 illustrates the architecture of the experimental setup. The host computer
electrically controls the air valves. The contact signal from the touch sensor is input
to the host computer through an A/D converter. The air pressure is adjusted to 0.5
[MPa].

Figure 8 shows the snapshots of the robot in bipedal walk. In the figure, numbers
under the photographs indicate the time order. In this case, the robot stably walked
on a treadmill. There was no large deviations nor perturbations during walking.
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Front view Side view

Fig. 6 Robot hardware.

Robot

Actuator command

Contact sensor signal

Air valves

Air tank

A/D conv.

Host computer

Fig. 7 Architecture of hardware setup.

These results of hardware experiments indicate the efficiency of the developed
system.

Figure 9 shows relationship between joint stiffness and walking time period for
biped robot and quadruped robot. From this figure, we can find that there is an ap-
propriate joint stiffness for stable locomotion. If the joint stiffness is too high, the
walking time period comes shorter and becomes unstable. To the contrary, from
Figure 10, we can find that if the joint stiffness is not enough to support the body,
the deviation of the walking time period increases to diverge, and becomes unstable
finally. These phenomena are resemble to the motor disorder of human locomotion.
This fact shows that there is an optimal joint stiffness for stable locomotion and ad-
aptive behavior in locomotion. Therefore, it is one way to control the joint stiffness
according to the locomotion condition to make it more and more adaptive and robust
to the change of environment or situations.
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Fig. 8 Snapshots of the bipedal walking: numbers under the photographs indicate the time order.

6 Summary

We developed a bipedal robot with antagonistic pairs of pneumatic actuators con-
trolled by a nonlinear oscillator network. Periodic motions of the legs are switched
between the swinging and supporting stages based on the phase of the oscillators.
The oscillators receive touch sensor signals at the end of the legs as feedback when
the leg touches the ground and compose a steady limit cycle of the total periodic
dynamics of bipedal locomotion.
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Fig. 9 Locomotion stability vs joint stiffness.
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Mechatronic Design of Hard-Mount Concepts
for Precision Equipment

J. van Dijk

Abstract The contribution of the paper is on the conceptual design of mounts, us-
ing MiMo state space models describing the spatial flexible multibody system dy-
namics. Furthermore the contribution is on the evaluation of acceleration feedback
versus force-feedback of a hard-mounted metrology frame suspension of a photo-
lithography machine. It includes the modal decoupling controller design. It will be
shown that from a vibration energy flow point of view the use of acceleration sensors
are preferred.

1 Introduction

The paper deals with the mechatronic design of hard-mounts for vibration isolation
in precision equipment. The contribution of the paper is on conceptual design using
adequate MiMo state space models describing the spatial system dynamics and the
evaluation of acceleration feedback versus force-feedback. The conceptual design,
including the modal decoupling controller design, for mounts for a metrology frame
suspension of a lithography machine (waver-stepper) is outlined.

Usually precision equipment is mounted on soft-mounts to provide disturbance
rejection from base vibrations. For this purpose the suspension resonance frequen-
cies are designed to be low (1 Hz). However, the use of soft-mounts may lead to
dynamic instability for equipment with a relatively high center of gravity [1]. An-
other approach is to use hard-mounts [2]. They provide a stiffer support and as a
consequence the suspension resonance frequencies are increased (10–20 Hz). In the
case of hardmounts the transmissibility of base vibrations is actively reduced, using
sensors, actuators and a control system.

J. van Dijk
Mech. Automation and Mechatronics Laboratory, Faculty of Engineering Technology, University
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The metrology frame provides the support for the optical device (lens). The lens
and the frame are considered rigid in the frequency region of interest (0–300 Hz).
But due to the their flexible connection the frame-lens combination has internal
modes in the region 80–100 Hz [3]. The idea is to design a hybrid-elastic mount with
a high stiffness (typically 200–400× higher than for pneumatic isolators). The hard-
mount concept discussed is based on an elastic structure and includes per mount 2
piezo-actuators. Three mounts will be used to support the metrology frame.

For evaluation of conceptual designs it is important to model the spatial sys-
tem dynamics of the equipment and to obtain Multiple input and Multiple output
transfer-matrices or state space descriptions. To obtain these MiMo models can be a
tedious task [1]. The multibody system approach is a well-suited method to model
the spatial dynamic behavior. In this approach the mechanical components are con-
sidered as rigid or flexible bodies that interact with each other through a variety of
connections such as hinges and flexible coupling elements.

An implementation of this method is realized in the program SPACAR [4], [5]
which has an interface to MATLAB. The method to obtain state space descriptions
with this program is based on a nonlinear finite element description for multibody
systems and accounts for geometric nonlinear effects of flexible elements due to
axial and transverse displacements. This modelling approach is applied to the de-
scribed setup in Section 2.

In Section 3 we evaluate the transmissibility from base-vibrations to internal
mode excitation. This is not common, but this is the effective transmissibility that
can jeopardize the accuracy of the device. In Section 4 the controller design based
on modal decoupling is described. In Section 5 we evaluate, using the obtained
MiMo state space models, the pros and cons of force feedback as well as acceler-
ation feedback. It will be shown that from a vibration energy flow point of view
acceleration sensors are preferred despite the fact that with these type of sensors co-
located control is not guaranteed [6]. Therefore, this conclusion is contradictive to
the conclusion drawn by Preumont et al. [6] but is drawn from a different viewpoint.
It will also be shown that force sensors can be used if special specifications of the
mechanical structure of the mounts are realized.

2 Modelling

Structural systems have dynamics which in linearized form can be described by
ordinary differential equations of the following form:

M q̈ + Dq̇ + Kq = f (1)

where M,D and K are the usual mass, damping and stiffness matrix, f is the vec-
tor of applied generalized forces. The vector q is used to denote the generalized
displacement vector or degrees of freedom. In [5] it is shown that in case of driving
terms which are not solely forces but are also rheonomic displacements or their time
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Table 1 Inertia properties of the frame and lens and equivalent stiffness properties of a leg.

Mass [kg] Ixx [kg/m2] Iyy [kg/m2] Izz [kg/m2]

frame 742 52.25 52.25 104.5
lens 851.6 72.95 72.95 49.15

length m long. stiffn. bend. stiffn. y bend. stiffn. z torsional stiffn.

0.283 8.389 · 106 N/m 371 Nm 371 Nm 5.84Nm

derivatives, (1) changes to the form:

Md · q̈d + Dd · q̇d + Kd · qd = −Mr · q̈r + B0 · σa (2)

where Md , Dd and Kd are the mass, damping and stiffness matrix corresponding
with the degrees of freedom qd and Mr is the mass-matrix corresponding with the
rheonomic degrees of freedom qr . B0 describes the location of the actuator-forces
σa with respect to the degrees of freedom. The restriction at (2) is that the degrees
of freedom qd are chosen as a vector of relative displacements.

The control theory uses often systems of first-order differential equations written
in state space form:

ẋ = A · x + B · u (3)

y = C · x + D · u (4)

u = H · y (5)

where y is the vector of sensor output signals, C is the output matrix and D the feed-
through matrix. The vector x is called the state-vector. Output feedback is described
by (5), where H is a frequency dependent gain matrix to satisfy some performance.
The relationship between the physical coordinate description given by (2) and the
state equations (3) is:

A =
[

O I

−M−1
d Kd −M−1

d Dd

]
, B =

[
O

M−1
d [−Mr,B0]

]
, x =

[
qd

q̇d

]
,u =

[
σa

q̈r

]

(6)
where −M−1

d Mr = Tu is a coordinate transformation.
Based on the extended representation as in (2), state space descriptions of the

metrology frame for analyses and active vibration control will be obtained using a
flexible multibody system approach as described in [5]. Table 1 gives an overview of
the inertia properties of the frame and lens. The moments of inertia Ixx , Iyy and Izz

are defined with respect to the center of gravity of the frame and lens respectively.
The frame is supported by mounts. Each mount consists of two legs which will

be modelled by simple flexible beam like structures. These flexible beams represent
the equivalent stiffness properties of the mount. The beam element is modelled as
an active element which provides for the passive elastic properties of the leg and the
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Fig. 1 Stylized view and FEM-model using beams of lens suspension frame of a wafer step-
per/scanner.

Fig. 2 Front and top view of the metrology frame.

longitudinal force of the piezo actuator. Table 1 shows the stiffness properties of the
elastic beam elements.

The metrology frame is modelled using 20 spatial beam elements numbered (1)
to (20) and hereafter simply called beams, see Figure 1(b). The beams (1), (2), (3),
(12), (13), (14) represent the frame. The beams (10) and (11) represent the lens. The
connection between frame and lens is modelled using 6 beams, beams (15), (16),
(17), (18),(19) and (20). Beam-elements (1), (2), (3), (10) (11), (12), (13), (14),
(18), (19) and (20) are rigid. The inertia properties of the rigid beams match the
inertia properties of frame and lens as in Table 1. Beams (4), (5), (6), (7), (8) and
(9) represent the active-elastic beams of the mounts and beams (15), (16) and (17)
represent the flexible connection blocks between frame and lens. All flexible beams
are considered mass-less with respect to the heavy frame and lens.

As dynamic degrees of freedom we choose the longitudinal deformations of the
suspension beams constituting the legs (qs ) and the deformations of one element
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representing a flexible connection blocks (qi) i.e.

qd =
[
e
(4)
1 , e

(5)
1 , e

(6)
1 , e

(7)
1 , e

(8)
1 , e

(9)
1 , e

(15)
1 , e

(15)
2 , e

(15)
3 , e

(15)
4 , e

(15)
5 , e

(15)
6

]T

(7)

where the numbers between the brackets denote the element numbers and the sub-
scripts denote the deformation direction.

The base is modelled as a rigid body configuration built-up by means of rigid
beam elements. Because we are interested in the open loop and later on also in
the closed loop transfer functions between base vibration and frame vibrations, the
base excitations are defined as rheonomic accelerations applied at the nodal points
between legs and base as shown in Figure 1(b). They are defined by the input vec-
tor (8), where the superscript numbers represent the associated node numbers, see
Figure 1(b).

u(floor) =
[
ẍ9, z̈11, ÿ13, z̈15, z̈17, ÿ19

]T

, (8)

u(actuator) =
[
σ (4)

a , σ (5)
a , σ (6)

a , σ (7)
a , σ (8)

a , σ (9)
a

]T

. (9)

y(frame-lens) =
[
ë
(15)
1 , ë

(15)
2 , ë

(15)
3 , ë

(15)
4 , ë

(15)
5 , ë

(15)
6

]T

(10)

y(force) =
[
σ

(4)
1 , σ

(5)
1 , σ

(6)
1 , σ

(7)
1 , σ

(8)
1 , σ

(9)
1

]T

(11)

y(frame) =
[
ẍ3, z̈3, ÿ5, z̈5, z̈7, ÿ7

]T

(12)

The input vector of actuator forces, associated with the active beams numbered (4)–
(9) are defined by (9).

The outputs are defined in two parts as well. The first part contains the output-
signals of so-called virtual performance acceleration sensors which measure the re-
lative acceleration between lens and frame in element number (15). These accel-
erations are included in the output vector as described by (10). The second part
contains the feedback sensors. Which are in the case of force-control the outputs
of force sensors described by (11). These sensors measure the longitudinal stress
resultant σ

(k)
1 of the elastic beams, i.e. the actuator forces summed with the normal

forces due to the elongation of the elastic beams. In the case of acceleration feed-
back control they are the accelerations of the frame in the nodal points 3, 5 and 7.
The feedback accelerations are included in the output vector (12).

3 Mode-Shape and Singular Value Analyses of the Model

Figure 3 shows the result of the mode-shape analysis. The figure shows the shapes
and corresponding frequencies of the suspension modes in which the lens and frame
behave as a rigid body. From Figure 3 it can be concluded that the fourth, fifth and
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Fig. 3 Mode shapes and natural frequencies of the suspension modes.
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Fig. 4 Generalised plant G with 12 inputs and 12 outputs and controller C with 6 inputs and 6
outputs.

sixth mode are two high frequent. It takes quite some actuator force to bring these
modes back to 1 Hz in the closed loop (active) case. As a consequence one has to
design the lens-support frame with a smaller basis. The consequence of a smaller
basis is a decrease in tilt- and torsional stiffness.

Figure 4 shows the 12 × 12 generalised plant G with the in- and output vec-
tors defined by Eqs. (8) to (12). Matrix G is partitioned in four transfer matrices
G11,G12,G21 and G22. Of interest are the singular values of the open loop trans-
fer matrix G11 between base accelerations and the performance accelerations. The
singular values represent the principle gains of the transfer matrix. Especially the
largest singular value is important because it shows the worst-case gain frequency
relationship between an input and an output vector of the given input and output set.
Therefore, in the open loop case this largest singular value gives an impression of
the passive vibration isolation. Figure 5(a) shows the largest singular value versus
frequency (solid line) of the transfer function G11. From this figure we can conclude
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that in the frequency region of the internal modes the transmissibility is close to one.
Assuming the base vibrations as white noise, Figure 5(a) indicates that the internal
modes are excited by the base vibrations.

4 Controller Design

In order to provide isolation of base vibrations from 1 Hz and beyond and to
provide sufficient artificial damping of the suspension modes additional control
forces u(actuator) are applied. These forces are computed on the basis of six accel-
erations, defined in y(frame) (12), or force output signals y(force) (11). The control
strategy is to combine proportional and integral feedback. This is equivalent with
adding virtual mass, which lowers the frequencies of the suspension modes and
adding artificial damping respectively.

The assumptions are the following. The system is considered rigid (no internal
modes) for the control design. Then there are 6 modelled modes. n = 6 relative
degrees of freedom (qs = [e(4)

1 , e
(5)
1 , e

(6)
1 , e

(7)
1 , e

(8)
1 , e

(9)
1 ]T ) have been chosen for

modelling. Demping can be neglected. The equations of motion (2) are then written
as:

Md · q̈s + Kd · qs = −Mr · q̈r + B0 · σa (13)

First we use proportional acceleration and integral acceleration feedback.

σa = −Ka · y(frame) − Kv · Ẏ (14)

in which Ẏ is the integral of the n accelerometer outputs (y(frame)). Equation (14)
can be rewritten as:

σa = −Ka · Tc · q̈s − Kv · Tc · q̇s

= −K ′
a · q̈s − K ′

v · q̇s (15)

in which Tc is some constant geometrical transformation between the degrees of
freedom qs and the positions Y of the accelerometers. Substitution of (15) into (13)
results in:

Md · q̈s + Kd · qs = −Mr · q̈r + B0 · (−K ′
a · q̈s − K ′

v · q̇s) (16)

Using a modal decoupling appoach [7], Eq. (16) can be rewritten in decoupled form
as:

(In + S′B0K
′
aS)z̈ + S′B0K

′
vSż + S′KdSz = −S′Mrq̈r (17)

in which In is the n × n identity matrix, S = M
−1/2
d · P and P is the matrix

whose columns are the normalized eigenvectors of M
−1/2
d KdM

−1/2
d . The left-hand

side of (17) is decoupled. Equation (17) is obtained after a succesive substitution
of q = M

−1/2
d r

¯
and r

¯
= P · z. Without constraints it can be stated that the new
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modal mass-matrix (In +S′B0K
′
aS) should yield (remark that all these matrices are

diagonal matrices):

(In + S′B0K
′
aS) = 1

ω2
n

· S′KdS (18)

where ωn is the desired corner frequency and therefore:

K ′
a = B−1

0
1

ω2
n

· Kd − B−1
0 Md

Ka = K ′
a · T −1

c

(19)

We define also the following:

S′B0K
′
vS = 2ζnωn · (S′B0K

′
aS + In)

K ′
v = B−1

0 · 2ζnωn · (B0K
′
a + Md)

Kv = K ′
v · T −1

c

(20)

where ζn is the desired relative damping. In here the actuators are delivering forces
in the direction of the degrees of freedom, therefore B0 = In. The consequence of
(19) and (20) is that the acceleration feedback controller is defined by

Hacc(s) = −
(

Ka + Kv · 1

s

)
(21)

Application of an equivalent approach results in the force feedback controller to
read:

KP = (ω2
n · In · Mdd)−1 · Kdd − In

KI = 2ζωn · (In + KP )

Hf (s) = −
(

KP + KI · 1

s

) (22)

In case of force-sensing the sensing is also in the direction of the defined degrees of
freedom making the matrix Tc the identity-matrix.

5 Evaluation of Acceleration versus Force Feedback

Figure 5(a) shows a plot of the largest singular value of the open and closed loop
transfer function matrix between base and internal mode accelerations. The closed
loop is either established by force feedback (dashed line) or by acceleration feed-
back (dotted line). It can be observed that the natural frequencies of all suspension
modes are brought back to 1 Hz by active means and that the suspension modes are
well damped. In the case of acceleration feedback the internal modes are lowered in
frequency and still undamped but the excitation is reduced 50 dB in magnitude. The
decrease in frequency of the internal modes can be understood from the following.
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Fig. 5 (a) Open loop (solid), acc. feedback (dotted), force feedback (dashed), (b) acc. feedback
(dotted), force feedback (dashed), low parasitic stiffness force feedback (solid).

The transfers between actuators and sensors, usually called secondary path, con-
tains zeros. There is no control at the frequencies of the zeros, with the consequence
that new resonances appear at the frequencies of these zero dynamics. The zero dy-
namics of the secondary path transfer, are determined by the dynamics in case the
sensors are blocked (zero output of acceleration sensors). As a consequence, these
zero dynamics correspond with the internal mode dynamics in case the frame is not
moving. These dynamics are lower in frequency then the frequencies of the internal
modes in the uncontrolled case. Therefore, in the acceleration feedback control case
the new internal mode frequencies correspond with the frequencies of the zeros in
the secondary path transfers.

In case of force feedback, Figure 5(a) shows that there is less reduction in excita-
tion of the internal modes by base-vibration compared to the acceleration feedback
case. This is due to the fact that the sensors are only capable of measuring forces
in longitudinal direction in the legs. Forces transmitted to the frame by bending and
torsion are not measured. This force distribution through these so called parasitic
paths can be analyzed again by analyses of the zeros in the secondary path. Since
these zero dynamics, in the case of force feedback, are determined in the situation
where the sensor outputs are zero. This is the case if the actuator forces compensate
the stiffness in longitudinal direction. The zero dynamics are then described by the
residual system dynamics where the longitudinal stiffnesses are set to zero. Say we
make these zero dynamics have passive behavior below the specification of 1 Hz.
Then, the performance in the controlled case is better. See Figure 5(b) (solid line)
for the result of lowering the bending and torsional stiffness to the required amount
such that the residual dynamics and as a consequence the zero dynamics, have fre-
quencies in the region 0.1 Hz to 0.8 Hz. Overall we can conclude that with accel-
eration feedback better performance is obtained then with force feedback. Given
the fact that in both controlled cases the same corner frequency and damping of the
suspension modes is established.
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6 Conclusions

Shown is that a flexible multibody modelling approach can give adequate state space
models for analysis and conceptual design of vibration isolation systems using hard-
mounts. It is shown that using a modal control approach the performance of hard-
mounts can be made comparable to the performance of soft-mounts. The advantage
is however an increased dynamic stability. When using acceleration feedback a bet-
ter performance is obtained then when using force feedback. Given that in both
controlled cases the same corner frequency and damping of the suspension modes
is established.
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Contact Transition Control of a Flexible
Structure Mounted Manipulator

Theeraphong Wongratanaphisan and Matthew O.T. Cole

Abstract A flexible structure mounted manipulator (FSMM) is a robotic system
that consists of a rigid manipulator installed on a supporting structure that is not
rigid. Another robotic system which possesses similar dynamic characteristics is a
micro-macro manipulator (MMM) in which a small (micro) manipulator, considered
rigid, is mounted on the tip of a long-reach (macro) manipulator, considered flexible.
Designing controllers for a FSMM or MMM is a difficult task as the motion of the
flexible structure adds complexity to the system dynamics. It is especially difficult
when the FSMM is required to interact with its environment. This paper investig-
ates force control techniques for a FSMM in contact transition phase. Three types
of controllers are compared: (1) discontinuous control, (2) impedance control, and
(3) robust impedance control. These controllers were implemented and tested on a
2-DOF FSMM lab-scale prototype and their performance evaluated and discussed.

1 Introduction

A flexible structure mounted manipulator (FSMM) is a robotic system that consists
of a rigid manipulator mounted on a structure that is not rigid (see Figure 1). Another
system that can have similar dynamic characteristics is a micro-macro manipulator
(MMM) in which a small (micro) manipulator, considered rigid, is mounted on the
tip of a long-reach (macro) manipulator, considered flexible. The MMM is capable
of operating tasks that cover a large working space. The macro manipulator can
be employed for low bandwidth large-scale positioning of the micro manipulator
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Fig. 1 (a) Typical robot manipulator, (b) flexible structure mounted manipulator.

which then operates in a narrower region with higher bandwidth. In each large-scale
positioning, the macro manipulator holds its posture until the micro manipulator
finishes its tasks. However, due to the flexibility of the macro manipulator the end-
point of the micro manipulator is difficult to position accurately. To date, FSMMs
and MMMs have found application in space robotics [6] and nuclear waste remedi-
ation [5]. They also have potential for use in inspection/maintenance tasks for large
structures such as buildings, highways and bridges.

One of the important aspects of control of a robot manipulator is when it is re-
quired to interact with its environment. In the transition phase of contact, the manip-
ulator experiences discontinuous dynamic characteristics which can result in high
impact force or instability. Hyde and Cutkosky [3] studied a number of control tech-
niques that can cope with this transition, as applied to a rigidly mounted linear soft
fingertip robotic system. For the FSMM the problem can be more serious as the dy-
namics of the flexible base complicate control of the system. When the manipulator
contacts the environment its dynamics can change dramatically and, with closed
loop control, the system can become unstable. Therefore, in tasks that require the
FSMM to contact its environment, the controllers must be designed with special
consideration of this problem.

This paper presents an experimental study of a FSMM during contact transition.
Three control techniques are studied: discontinuous control, impedance control and
robust impedance control. The first control method is a simple strategy which was
used as a baseline controller in [3] while the second is a popular controller for con-
tact tasks. However, these two controllers are designed without regard to the flex-
ibility of the supporting structure. The last control technique takes account of the
vibration of the base and involves a modified version of the second controller pos-
sessing improved stability characteristics under contact.

The remainder of this paper is organized as follows. Section 2 outlines the math-
ematical models related to the dynamics of the FSMM. Section 3 discusses the con-
trol laws of each controller. Section 4 describes experimental setup and the test
results. Finally, Section 5 provides the conclusion.
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2 Mathematical Models

2.1 Equations of Motion of a Robot Manipulator

Let θ ∈ �n×1 denote the vector of joint angles of the rigid manipulator and
X ∈ �m×1 denote the m (≤ 6)-dimensional task space vector of the end-effector
of the manipulator. �n×1 represents n-dimensional Euclidean space. X is called the
manipulation vector.

The manipulation vector is related to the joint angles by

X = f (θ) (1)

The first and second derivatives of X are given by

Ẋ = J (θ)θ̇ and Ẍ = J θ̈ + J̇ θ̇ (2)

where J is the Jacobian matrix. The equations of motion of a robot manipulator in
joint space are given by [1]

M(θ)θ̈ + N(θ, θ̇) + G(θ) = τ + J T fe (3)

where M is the mass matrix, N is the Colioris and centrifugal forces vector, G is
the gravitational force vector, τ is the actuator torque vector and fe is the vector
of external forces exerted at the end-effector. In task coordinate, the equations of
motion can be derived from (3) and (2) to give [4]:

M̃(X)Ẍ + Ñ(X, Ẋ) + G̃(X) = f + fe (4)

where the matrices and vectors with tilde ( )̃ are respective quantities but as a func-
tion of the manipulation vector X.

2.2 Equations of Motion of a FSMM

Let q ∈ �(n+p)×1 denote the vector containing the joint angles of the rigid manip-
ulator θ ∈ �r×1 and the states of the flexible structure ζ . The model to estimate
the states ζ can be obtained from a finite dimension approximation of the flexible
modes of the structure.

Here, the manipulation vector is related to the joint angles and the flexible struc-
ture states by

X = f (q) = f (θ, ζ ) (5)

The first and second derivatives of X are given by

Ẋ = J (q)q̇ = Jθ (θ, ζ )θ̇ + Jζ (θ, ζ )ζ̇ (6)
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and

Ẍ = J q̈ + J̇ q̇ = Jθ θ̈ + Jζ ζ̈ + J̇θ θ̇ + J̇ζ ζ̇ (7)

where Jθ and Jζ are Jacobian matrices of appropriate dimension. Note that J (q) =
[Jθ Jζ ]. For the FSMM, the equations of motion of the FSMM in joint space are
given by

M(q)q̈ + N(q, q̇) + G(q) = τ + J T fe (8)

The task coordinate equation of motion in this case can be written similarly to (4)
with inclusion of the states of the flexible structure.

2.3 Contact Transition

In general, the dynamics of the system under contact will depend on the environ-
ment parameters such as stiffness and damping as well as the form of the controller
implemented on the manipulator. For the FSMM, the contact dynamics will also
involve the motion of the flexible structure. In a more complicated scenario, the en-
vironment can itself be a dynamic system, however, this study will focus only on
the static environment case.

The range of motion during contact transition is generally small and therefore
the equations of motion (4) can be linearized and simplified to a 1-DOF system in
the task coordinates. In many cases, this simplified model can be used for controller
design.

3 Contact Transition Control

3.1 Discontinuous Control

The approach used here is similar to [3] in that the control laws are separated into
the pre-contact and post-contact phases, respectively:

τpre(t) = J T (JM−1J )−1M−1kv1 (vd(t) − v(t)) (9)

τpost (t) = J T (JM−1J )−1M−1 (
kf (fed(t) − fe(t)) − kv2v(t)

)
(10)

where v and vd are the actual and desired end-point velocities, respectively, kv1 and
kv2 are the end-point velocity gains and fe and fed are the actual and desired contact
forces, respectively. The switching between these two control laws is decided based
on the level of measured force from the contact force sensor.
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3.2 Impedance Control

Impedance control is one of the most well established force control approaches for
robot manipulator systems. It unifies position and force control into a single frame-
work [2]. Here the control law is designed to produce a desired impedance charac-
teristic between the motion of the end-effector and applied contact force. It is the
same for both contact and non-contact and is given by

τ (t) = −J T m

md
(bd (v(t) − vd(t)) + kd (x(t) − xd(t))) + J T

(
m

md

− 1

)
fe(t)

(11)
where md, bd and kd are the desired impedance (mass, damping, stiffness) paramet-
ers. m is the effective mass of the end-effector.

3.3 Robust Impedance Control

In this control approach, based on the linearized model of (4) the control law in (11)
is modified in order to improve stability under contact [7]:

τ (t) = −J T m

md
(bd (ṽ(t) − ṽd (t)) + kd (x̃(t) − x̃d(t))) + J T

(
m

md

f̃e(t) − fe(t)

)

(12)
Here the ˜ version of the variable has been filtered by a lead-lag type compensator
with transfer function Q(s) = (τ2s + 1)/(τ1s + 1). With proper choice of τ1 and
τ2 the controller can be improved in terms of robustness against unmodelled vibra-
tional modes of the manipulator base compared with the impedance controller (11).
Further details of the controller robustness analysis and design methodology can be
found in [7].

In all the control laws considered, the position x and velocity v are calculated
from the sensor devices that measure the manipulator joint angles. Therefore, x

and v are measured relative to the base of the manipulator which is also subject to
motion. This is different to the case where the manipulator is mounted on a rigid
base as then x and v relate to absolute motion.

4 Experimental Setup and Results

4.1 A 2-DOF FSMM Test Rig

Figure 2 shows the 2-DOF FSMM lab-scale prototype used in the experiments. It
consists of a 2-DOF rigid manipulator mounted on a platform which consists of
a steel rectangular plate fixed at its corners to four long vertical steel rods. The
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Fig. 2 The 2-DOF FSMM lab-scale prototype and experimental setup.

first natural mode of vibration of the flexible structure including the mass of the
manipulator has frequency 7.82 Hz. The damping of the base vibration is very low
(< 0.1). The arm of the manipulator moves in the horizontal plane; therefore there is
no effect of gravity. The manipulator arm is driven by d.c. motors through harmonic
gear drives which ensure no backlash. The arm movement angles are measured by
incremental encoders. At the tip of link 2, a six-axis force/torque sensor is installed
to measure contact forces. The system is installed near a vertical surface so that the
contact test can be performed. Table 1 lists the physical parameters of the system.

4.2 Experimental Setup and Procedure

The real-time controller is set up under MATLAB’s xPC Target system running at
1 kHz sampling rate. The coordinates of the manipulator base and the end-effector
are defined according to the diagram in Figure 3. Note that the environment has the
surface normal vector in the direction opposite to the positive X axis.
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Table 1 Parameters of the FSMM lab-scale prototype.

Item Parameter

mass of link 1 6.97 kg
mass of link 2 2.76 kg
moment of inertia of link 1 (ref. to c.m.) 0.2262 kg.m2

moment of inertia of link 2 (ref. to c.m.) 0.0098 kg.m2

mass of the base 11.97 kg
length of link 1 0.202 m
length of link 2 0.1625 m
center of mass of link 1 (from link joint) 0.0524 m
center of mass of link 2 (from link joint) 0.1288 m

Fig. 3 Coordinate system of
the FSMM.

environment
surface

xy

X

Y

1

2

In the contact transition control test, the manipulator’s end-effector was com-
manded according to each control law to move straight onto the surface made of a
hard 1 cm thick steel plate in the +X direction at various speeds. The performance
of the controller can be evaluated from the contact force signal component for the
X-direction.

4.3 Experimental Results

4.3.1 Discontinuous Control

The performance of this controller depends greatly on the force feedback gain kf

and the velocity gain kv2 . In general, good force tracking will require high kf . How-
ever, high kf will generally result in low damping. kv2 can be adjusted to increase the
damping. For the FSMM, however, the vibration from the base will affect the force
tracking performance and will impose a limit on how high kf can be adjusted. If kf

is too high, instability will occur. Figure 4 shows the responses of the impact/contact
force at the end-effector of the system under discontinuous control for impact speed
of 1, 2 and 3 cm/s. The desired contact force was set to 10 N. In Figure 4a, the
control parameters were kf = 0.6 and kv2 = 3000 Ns/m. The responses at these
speeds were stable and the contact force settled at around 6 N. In this case, the sys-
tem was stable even for approach speeds up to 10 cm/s. No higher impact speed was
attempted on this hard surface as the impact could damage the force sensor. As the
impact speed increases, the force overshoot increases. Figure 4b shows the unstable
case where the force gain kf and velocity gain kv2 were increased to 0.9 and 4000
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Fig. 4 Discontinuous control (a) kf = 0.6, kv2 = 3000 Ns/m (b) kf = 0.9, kv2 = 4000 Ns/m.

Ns/m, respectively. kv2 was initially kept at 3000 Ns/m but instability resulted im-
mediately after the impact and the control law switched back and forth between (9)
and (10). By increasing kv2 , the after-impact response improved. However, for high
impact speed, the after-impact response seemed to settle initially but finally became
unstable. With high force gain, the system seemed to be more sensitive to the base
vibration. Thus high force gain and large magnitudes of structure vibration due to
high-speed impact together cause instability.

4.3.2 Impedance Control

A number of desired impedance parameter sets were tested. Most of the tested para-
meter sets provided good responses. Figure 5a shows examples of stable force re-
sponses under impedance control with two sets of desired impedance parameters.
Here the results were very satisfactory as the impact speed resulting in the responses
shown in the figure was very high (30 cm/s). With the chosen parameters, the over-
shoot was much smaller (in many cases there was no overshoot) compared to the
results from discontinuous control and after the impact the end-effector remained in
stable contact with the surface. However, with some sets of desired impedance para-
meters the contact motion becomes unstable after the impact. Figure 5b shows the
responses with md = 50 kg, ωnd = √

kd/md = 20 Hz, ζd = bd/2
√

kdmd = 0.7.
Here, after the manipulator hit the wall it settled and remained in contact with
the surface. However, there remained oscillatory motion in the supporting structure
which could also be observed in the force measurements. In this case, the contact
response is considered unstable.
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Fig. 5 Impedance control (a) stable responses (b) unstable contact (md = 50kg, ωnd = 20 Hz,
ζd = 0.7).

4.3.3 Robust Impedance Control

Instability under contact occurs in the system under impedance control due to the
flexibility of the supporting structure. When there is vibration in the flexible struc-
ture, the manipulator displacement and velocity measured from sensors installed on
the manipulator are not absolute and this is the main cause of instability in imped-
ance control of FSMMs [7]. With the robust impedance control, the behaviour of
the system can be improved. Figure 6 shows responses of the system under robust
impedance control. The same impedance parameter set as in Figure 5b was used but
with the inclusion of the filter Q(s) with parameters τ1 = 0.02 and τ2 = 0.1. Here,
after impact, the oscillations died out and the manipulator remained in contact with
the wall. With high speed impact, a high level of vibration was induced in the struc-
ture following impact and it took some time for the system to settle. Nevertheless,
the robust controller does provide stable operation after impact. The disadvantage
of this filtering method is that it amplifies high frequency signals and therefore is
sensitive to sensor noise.

5 Conclusions

In this study, a selection of contact transition control techniques have been tested on
an FSMM. The discontinuous control method provides a simple control law which
can be implemented easily and if tuned appropriately can provide stable contact
after the impact. To avoid instability, the force gain kf should be kept low but at
the expense of tracking performance. However, overshoot is the main drawback of
this technique. Impedance control, although more complicated to implement, gives
satisfactory results for a wide range of desired impedance parameters and impact
speeds and is more superior than the discontinuous control in most cases. However,
for some design parameters, the impedance control may not provide stable contact.
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Fig. 6 Robust impedance control: md = 50 kg, ωnd = 20 Hz, ζd = 0.7, τ1 = 0.02, τ2 = 0.1.

In such cases a robust form of the impedance control can be used incorporating
an additional filter. The results obtained in this study are based on impact with a
rigid (high stiffness) surface. This study will be extended to cover low stiffness
environments, results for which may be different to those obtained here.
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Velocity Tracking Control of a Four-Rotor Mini
Helicopter

M. Yokoyama and K. Fujimoto

Abstract This paper presents an autonomous control strategy for a four-rotor mini
helicopter referred to as X4 flyer. Based on the so called backstepping method to-
gether with sliding mode control theories, a robust velocity tracking controller is
designed, in which both Euler angles and quaternion parameters are appropriately
employed. As a special case of velocity tracking control, when the demanded velo-
city is zero, the proposed controller achieves stable hovering. Numerical simulation
illustrates the robustness of the proposed controller against torque disturbances such
as a gust of wind.

1 Introduction

In order to assist urban search and rescue or environment monitoring, unmanned
vehicles have been developed for some decades. Among them, unmanned aerial
vehicles such as a helicopter which can achieve a vertical takeoff and landing have
been strongly concerned more recently. Although there are some kinds of heli-
copters, significant research interest has been directed towards a four-rotor mini
helicopter referred to as X4 flyer, which has fixed-pitch rotors mounted at the four
ends of a simple cross frame. Because of the fixed pitch and its symmetric struc-
ture, this omni-directional helicopter is dynamically excellent and its mathematical
model is quite simple. Although attitude stabilization or position tracking problem
of the X4 flyer has been investigated by many researchers and various types of con-
trollers have been proposed [1–3], very little has been done on velocity tracking
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Fig. 1 Schematic diagram of the X4 flyer.

control. In this paper, based on the so called backstepping method together with
sliding mode control theories, a robust velocity tracking controller is designed, in
which both Euler angles and quaternion parameters are appropriately employed. As
a special case of velocity tracking control, when the demanded velocity is identically
zero, the proposed controller achieves stable hovering.

Numerical simulation illustrates the robustness of the proposed controller against
torque disturbances such as a gust of wind or actuator dynamics.

2 Mathematical Model

A schematic diagram of the X4 flyer under consideration is shown in Figure 1.
The rotors can be grouped into the front-back pair, and the left-right pair. Since the
pairs rotate in opposite directions, one pair spins clockwise and the other spins anti-
clockwise. Thus the yawing moments generated by the rotors cancel out to zero. A
rolling moment can be generated by speeding up one of the rotors in the left-right
pair and slowing down the other. Similarly, a pitching moment can be generated by
speeding up one of the rotors in the front-back pair and slowing down the other.
A yawing moment can be generated by speeding up one pair and slowing down
the other pair. In each case above, if the amount of increase is the same as that of
decrease, the only effect is the generation of a single moment, because the collective
thrust is held constant. This is a basic control strategy for hovering.

The dynamical model is given as follows:

v̇ = −gez + ROA(q)e3ζ (1)

q̇ = G(q)ω (2)
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ω̇ = F(ω) + ξ + d (3)

where

G(q) = 1

2

⎡
⎢⎢⎣

q4 −q3 q2
q3 q4 −q1

−q2 q1 q4
−q1 −q2 −q3

⎤
⎥⎥⎦ , F(ω) =

⎡
⎢⎢⎣

J2−J3
J1

ω2ω3

J3−J1
J2

ω1ω3

J1−J2
J3

ω1ω2

⎤
⎥⎥⎦

The other variables and notations are defined as follows:

�O = {ex, ey , ez} inertial frame
�A = {e1, e2, e3} body-fixed frame
ROA orthogonal rotation matrix of the airframe in �O

v = [vx vy vz]T linear velocity of the origin of �A in �O

q = [q1 q2 q3 q4] quaternion vector corresponding to ROA

φ, θ, ψ roll, pitch, yaw of Euler angles, respectively
ω = [ω1 ω2 ω3]T angular velocity of the airframe in �A

J =
⎡
⎣ J1 0 0

0 J2 0
0 0 J3

⎤
⎦ inertia matrix of the airframe around the center of mass in �A

m mass of the airframe
fj (j = 1, . . . , 4) thrust generated by each rotor in �A

f = ∑4
j=1 fj collective thrust

τ = [τ1 τ2 τ3]T airframe torque generated by thrust in �A

ζ = f/m

ξ = [τ1/J1 τ2/J2 τ3/J3]T
d disturbance
g gravitational acceleration

3 Controller Design

A nonlinear controller is designed using the backstepping method. Since the collect-
ive thrust is always directed to the e3 axis in the body-fixed frame, the XYZ Euler
angles are used.

ROA(φ, θ,ψ) =⎡
⎣ cos θ cos ψ − cos θ sin ψ sin θ

sin φ sin θ cos ψ + cos φ sin ψ − sin φ sin θ sin ψ + cos φ cos ψ − sin φ cos θ

− cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ + sin φ cos ψ cos φ cos θ

⎤
⎦

(4)

Then the translation model can be written by
⎡
⎣ v̇x

v̇y

v̇z

⎤
⎦ = −gez + ROAe3ζ = −

⎡
⎣ 0

0
g

⎤
⎦ +

⎡
⎣ sin θ

− sin ψ cos θ

cos φ cos θ

⎤
⎦ ζ (5)
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The desired yaw angle ψ̃ may be assigned to be identically zero. In the first step of
backstepping procedure, the other desired angles φ̃, θ̃ as virtual control inputs and
the collective thrust ζ will be determined.

Defining the velocity tracking error v � v − r, where r denotes the reference
velocity, let

V1 = 1

2
vT v (6)

be a Lyapunov function candidate for the subsystem (5). Then the Lyapunov deriv-
ative along the system trajectories is given by

V̇1 = vT (−gez + ROAe3ζ − ṙ) (7)

If the condition
R

OÃ
(φ̃, θ̃ , ψ̃)e3ζ = −λv + gez + ṙ (8)

holds, then V̇1 = −λvT v < 0, where λ > 0. Substituting the second term in the
right-hand side of (5) into (8) yields

⎡
⎣ sin θ̃

− sin φ̃ cos θ̃

cos φ̃ cos θ̃

⎤
⎦ ζ = −λv + gez + ṙ �

⎡
⎣px

py

pz

⎤
⎦ (9)

From this equation, the stabilizing function are obtained as follows:

φ̃ = arctan

(−py

pz

)
, θ̃ = sgn(px) arctan

√
p2

x

p2
y + p2

z

, ζ =
√

p2
x + p2

y + p2
z .

(10)
In the second step, the desired angular velocity ω̃ as a virtual control to achieve

by
R

ÃA � ROÃ(φ̃, θ̃ , ψ̃)T ROA(φ, θ,ψ) (11)

the corresponding quaternion ε = [ε1, ε2, ε3, ε4]T is given by

ε1 = −1

4ε4
(R23 − R32), ε2 = −1

4ε4
(R31 − R13)

ε3 = −1

4ε4
(R12 − R21), ε4 = 1

2

√
1 + R11 + R22 + R33 (12)

where Rij denotes each element of RÃA. The dynamics of this quaternion can be
represented as

ε̇ = G(ε)[ω(φ, θ, ψ) − RT
OA(φ, θ,ψ)ROÃ(φ̃, θ̃ , ψ̃)ω̂(φ̃, θ̃ , ψ̃)] (13)

where ω̂ denotes the angular velocity corresponding to ROÃ, represented by
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ω̂ =
⎡
⎢⎣

˙̃
φ cos θ̃ cos ψ̃ + ˙̃

θ sin ψ̃

− ˙̃
φ cos θ̃ sin ψ̃ + ˙̃

θ cos ψ̃
˙̃
φ sin θ̃ + ˙̃

ψ

⎤
⎥⎦ (14)

Now we should stabilize the subsystem (13) regarding ω as a virtual control. Let

V2 = 1

2
[ε2

1 + ε2
2 + ε2

3 + (1 − ε4)
2] (15)

be a Lyapunov function candidate for the subsystem (13). It should be noted that this
Lyapunov function candidate does not include V1. The reason will be discussed in
some depth later when considering the closed-loop stability. The Lyapnov derivative
along the system trajectories is given by

V̇2 =
[
∂V2

∂ε

]T

G(ε)(ω − RT
OAROÃω̂) (16)

Choosing the stabilization function

ω̃ = −α

⎡
⎣ tanh(κε1)

tanh(κε2)

tanh(κε3)

⎤
⎦ + RT

OAROÃω̂ (17)

yields

V̇2 = −1

2

3∑
i=1

αεi tanh(κεi) < 0 (18)

In the third step, the torque control ξ will be determined to stabilize the attitude
dynamics including the previous subsystem. Defining the angular velocity error by
ω � ω − ω̃, let

V3 = V2(ε) + 1

2
ωT ω (19)

be a Lyapunov function candidate for the system. Then, using (3) the Lyapunov
derivative along the system trajectories is given by

V̇3 =
[
∂V3

∂ε

]T

G(ε)(ω̃ − RT
OAROÃω̂) +

[
∂V3

∂ε

]T

G(ε)ω

+
[
∂V3

∂ω

]T

[F(ω) + ξ − ω̃ + d] (20)

Substituting (17) into (20) yields

V̇3 = −1

2

3∑
i=1

αεi tanh(κεi)+
[
∂V3

∂ε

]T

G(ε)ω+
[
∂V3

∂ω

]T

[F(ω)+ξ − ˙̃ω+d] (21)
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In order to achieve robust tracking against the disturbance, employing the sliding
mode control theory, the torque control is determined by

ξ = −GT (ε)

[
∂V3

∂ε

]
− F(ω) + ˙̃ω − βσ − γ�−1 σ

‖σ‖ (22)

where σ � �ω is a switching function, � is a diagonal matrix of full rank, β and γ

are positive constants. The last term on the right-hand side is sometimes referred to
as unit vector control. Substituting (22) into (21) yields

V̇3 = −1

2

3∑
i=1

αεi tanh(κεi) − β

3∑
i=1

�iω
2
i + ωT

(
−γ�−1 σ

‖σ‖ + d
)

<
‖ω‖
‖σ‖ (−γ + ‖�‖ ‖d‖) (23)

Thus, if γ > ‖�‖ ‖d‖ holds, the Lyapunov derivative is always negative.
The closed-loop dynamics is represented as follows:

v̇ = −gez + ROÃ(φ̃, θ̃ , ψ̃)RÃA(ε)

⎡
⎢⎣

0
0√

p2
x + p2

y + p2
z

⎤
⎥⎦ (24)

ε̇ = G(ε)

⎛
⎝−α

⎡
⎣ tanh(κε1)

tanh(κε2)

tanh(κε3)

⎤
⎦ + ω

⎞
⎠ (25)

ω̇ = −
[
∂V3

∂ε

]T

G(ε)ω − βσ − γ�−1 σ

‖σ‖ + d (26)

As seen from these equations, the subsystem combined (25) with (26) is not affected
by the subsystem described by (24). This implies that the attitude dynamics is not
affected by the translation dynamics, which is a property of the plant to be con-
trolled in itself. Therefore, the asymptotic stability of the closed-loop system can be
guaranteed, because the both subsystems are asymptotically stable.

4 Simulation Results

In order to demonstrate the performance of the proposed controller, numerical sim-
ulations were carried out. It was assumed that all the state variables were accessible
for implementation. The parameter values of the X4 flyer used in the simulations are
the same as those of our experimental setup which was still being made with modi-
fying the Draganflyer from RCtoys. Although neither the motor dynamics nor the
drag force parallel to the blade motion is considered for the controller design in the
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Fig. 2 Disturbances.

previous section, their identified models were incorporated in the simulation. Using
the identified proportional gain of the motor, the identified aerodynamic coefficients
and so on, the control inputs were changed statically to the voltages supplied to the
motors.

Figure 2 shows the disturbance torque. The initial angles are [φ θ ψ] =
[60 50 40] deg and the initial velocities are zero. The initial voltage is equally sup-
plied to each motor for hovering. The reference velocity is identically zero from the
start to 6 sec, which demands hovering. Thereafter, the reference velocity changes
exponentially as shown in Figures 3 and 4(b).

Figure 3 shows the results for a slight different controller from the proposed con-
troller, which is obtained by removing the unit vector component from the proposed
controller in (22). The performance of this controller was much worse than that of
the proposed controller shown in Figure 4. It can be seen from Figure 4 that the
proposed controller achieved stable hovering and velocity tracking robustly in the
presence of disturbance. This means that the unit vector component often used in
sliding mode control plays an important role for robustness, since it provides locally
high gain property to the controller.

5 Conclusion

A velocity tracking controller for the X4 flyer was proposed. Due to the backstep-
ping method, its design procedure is very systematic and has much flexibility. In this
sense, the controller presented in this paper is one of the possible controllers. For
example, the hyperbolic tangent function used here can be changed to a more ap-
propriate nonlinear function. On the other hand, employing the sliding mode control
made it possible to achieve robust tracking performance against wind disturbance.
Although the motor dynamics was not considered, it would be straightforward to
extend the proposed controller through the backstepping procedure. In that case,
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Fig. 3 Simulation results without unit vector component.

however, the angular velocity of the four motors must be available for control. From
a practical point of view, it is not preferable to measure the angular velocity. As
shown in the simulation results, the proposed controller achieved robust perform-
ance in the presence of the motor dynamics.
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Fig. 4 Simulation results for the proposed controller.
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Hybrid Connected Control Method with
Equivalent Performance for Two Flexible
Parallel Buildings with Different Heights and
Stiffness

E. Yoshino, T. Watanabe and K. Seto

Abstract This study deals with a hybrid vibration control approach using Connec-
ted Control Method (CCM) in order to apply for two flexible parallel buildings with
different heights and stiffness. One of the authors had already proved the effective-
ness of the CCM for vibration control of flexible structures arranged in parallel. By
connecting these towers via certain damping device, the interactive force is expec-
ted to dissipate vibration energy. Besides, by using a passive damping device, the
damping effect for each tower cannot be independently tuned. Therefore the vibra-
tion response level of two towers against excitation may not be equal. To solve this
problem, a hybrid controller combined with passive and active controller is applied
for adjusting the amplitude of the first mode of each tower connected by the hybrid
controller. Sub-optimal control is applied for designing the hybrid controller. Vibra-
tion characteristics of both structures are adjusted by selecting suitably weighting
parameters of LQ control. Usefulness of this approach is demonstrated by simula-
tions and experiments.
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1 Introduction

Recently, a lot of high-rise buildings were constructed. Further high-rise buildings
have been planned and are under construction. Many studies about vibration control
devices have been performed and discussed. Mass damper systems are well known
as one of these vibration control devices. However, longer strokes of the actuator
are required to achieve higher performance. Therefore, mass dampers are not useful
for vibration control of the high-rise buildings.

An alternative method using the interactive force between two or more structures
by connecting them with dampers or actuators was proposed by one of the authors
(Mitsuta et al., 1992, Kamagata et al., 1996, Matsumoto et al., 1999). The method
is realized without heavy auxiliary mass. This method is named as connected con-
trol method (CCM) and the device used in CCM was called the Connected Control
Device (CCD). The CCM has been put into practical use for 45-, 40- and 35-story
triple towers in downtown Tokyo in 2001 (Seto, 2004). These buildings are called
“Harumi Triton Square”.

The CCM can be applied not only to two or more buildings, but also to single
building constructions composed of inner and outer substructures as shown in Fig-
ure 1. In such structures, the natural frequencies of the inner and the outer structures
are not equal in general. So certain damping effect can be expected by applying
CCM.

Besides, by using a passive damping device, when the connected structures have
different dynamic properties, the control performance may not be equal. As passive
damping is dependent on the dynamical properties of the structures, its performance
can be independently tuned. Hybrid control that utilizes passive and active control
is a solution to overcome such limitation.

In this research, two experimental structures are connected by using a hybrid
actuator. It is composed of an electromagnetic actuator and a magnetic damper, to
adjust the amplitude of the first mode of each tower. The electromagnetic actuator
adjusts the vibration performance, while the magnetic damper suppresses vibration.

Fig. 1 One building with an inner and an outer structure.
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The effectiveness of vibration control using the design strategy is demonstrated
through the simulation results and experiment results.

2 Control Object

The outline of two model structures with different stiffness is shown in Figure 2.
The acrylic floor plates are 200 mm in length, 100 mm in width, and 20 mm in

thickness. The weight of each plate is 470 g. The two-story structure is called struc-
ture 1 (St.1 for short), and this model structure has aluminum pillars with 3 mm in
thickness. On the other hand, the three-story structure is called structure 2 (St.2), and
the thickness of the pillars is 2 mm. The heights are 660 mm for St.1 and 980 mm
for St.2.

Fig. 2 Control object.

Fig. 3 Hybrid actuator.
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The hybrid actuator, which is composed of four permanent magnets and copper
conductors with a coil, is shown in Figure 3.

3 Modeling the Structures

The natural frequencies and modal shapes of the structures are measured by us-
ing the experimental modal analysis. Table 1 shows the natural frequencies and the
modal shapes.

A lumped mass model is introduced and the equivalent parameters of the model
are identified by using Seto’s modeling method (Seto and Mitsuta, 1991). According
to Seto’s method, the maximum amplitude point of each vibration mode should be
selected as a “modeling point”, where virtual lumped mass to describe equivalent
mass of each vibration mode is located. In this research, mass points are allocated
on each acrylic plate. Figure 4 shows the diagram of the lumped mass model.

Table 1 Natural frequencies and modal shapes

Fig. 4 Lumped mass model.
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4 Control System

In this research, sub-optimal control is applied because it is difficult to observe all
mass points. State space equation according to the model shown in Figure 4 is de-
rived as follows:

Ẋc = AcXc + Bcuc + EW (1)

where

Ac =
[−M−1

c Cc −M−1
c Kc

I 0

]
, Bc = [−M−1

c o]T

E =
[

M−1
c Cc M−1

c Kc

0 0

]
, W = {ẇ w}T (2)

The state space vector for the control object is described as follows:

Xc = [ẋ11 ẋ12 ẋ21 ẋ22 ẋ23 x11 x12 x21 x22 x23]T (3)

The block diagram is shown in Figure 5. To prevent spillover, a low-pass filter is
adopted.

A second order low-pass filter given by the following transfer function

G(s) = ωn

s2 + 2ζωn s + ω2
n

(4)

can be described as follows:

Ẋf = Af Xf + Bf uf

Yf = Cf Xf (5)

Fig. 5 Block diagram for filtered sub-optimal control.
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where

Af =
[−2ζωn −ω2

n

1 0

]
, Bf = [ω2

n 0]T , Cf = [0 1], Xf = {ẋf xf }T

(6)
and ωn and ζ are the angular cut-off frequency and the damping factor respectively.
Between this system and the controlled system, the following relationship exists

Yf = uc (7)

Combining these systems, we obtain an expanded system.

Ẋ = AX + Bu + EW

Y = CX (8)

where

A =
[

Af 0

BcCf Ac

]
, B = [Bf o]T , C =

[
Cf 0

0 Cc

]
, (9)

K = [Kf Kc]. (10)

K is the feedback gain matrix.
Here, state space vector X is described as

X = {XT
f XT

c }T = {ẋf xf ẋ11 ẋ12 ẋ21 ẋ22 ẋ23 x11 x12 x21 x22 x23}T . (11)

The weighting coefficients that correspond to each state variable for LQ control
are defined as

Q = diag[qẋf qxf qẋ11 qẋ12 qẋ21 qẋ22 qẋ23 qx11 qx12 qx21 qx22 qx23]T (12)

Next, the observable mass points are chosen as

Xo = [ẋ11 ẋ22 x11 x22]T . (13)

Therefore, transformation matrix M is given as

Xo = MX (14)

M =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ . (15)
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Thus, the sub-optimal feedback gain Ks is given by the following form:

Ks = KcM
T (MMT )−1 (16)

5 Computational Analysis

Using the model and the controller design procedure shown in the previous chapters,
computational analysis is performed to investigate the relation between weighting
coefficients and the vibration reduction effects on each structure. Figure 6 shows the
relation between weighting coefficient q and gain of first mode at each mass point.
Four kinds of weighting matrices are applied as follows. Transfer functions from
the displacement of the ground excitation to the displacement of each mass point
are calculated with various weighting coefficients q from 0 to 10000. The gains of
the transfer function at the fist mode are compared.

Figure 6a denotes the result with weighting matrix “Velocity-St.1”, Figure 6b
denotes the case with “Velocity-St.2”, and so on. In case Figures 6a and c, the level

Fig. 6 Relation between the weighting parameters and the gain of the first mode.
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of x11 and x22 are equal at certain value of q , while in Figures 6b and d, they cannot
be equal at any q .

(a) “Velocity-St.1” Q = diag [0 0 q q 0 0 0 0 0 0 0 0]T
(b) “Velocity-St.2” Q = diag [0 0 0 0 q q q 0 0 0 0 0]T
(c) “Displacement-St.1” Q = diag [0 0 0 0 0 0 0 q q 0 0 0]T
(d) “Displacement-St.2” Q = diag [0 0 0 0 0 0 0 0 0 q q q]T

According to these results, the weighting coefficients are selected q = 3.11 with
the weighting matrix “Velocity-St.1”, and with “Displacement-St.1”.

6 Simulation Results

Using the weighting matrices obtained in the previous chapter, computer simula-
tions are carried out. Figure 7 shows the transfer functions of X11 and X22 with the
controllers “Velocity-St.1” and “Displacement-St.1”, respectively. The amplitudes
of each mass point are equal in both cases.

Besides, Figure 8 denotes the time responses of X11 and X22 subjected to El
Centro excitation with two controllers.

El Centro wave is scaled so that the period of excitation is one-third of the ori-
ginal, and the maximum acceleration is one-eighth. The performances of the two
controllers are almost equivalent for St.1, while they are not for St.2.

Fig. 7 Simulation results of frequency responses.
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Fig. 8 Simulation results of time responses

7 Experimental Results

Figure 8 indicates that the weighting coefficients on displacements do not suppress
vibration well. Therefore, experiments of hybrid control are carried out only for
“Velocity-St.1” case. Ground Impulse excitation and earthquake excitation experi-
ments are carried out.

Figure 9 shows frequency responses measured by displacement sensors when
ground impulse excitation was applied. The gains at the first mode of x11 and x22
are equal. The characteristic of the obtained model corresponds well to the dynamics
of the structure.

Figure 10 shows that hybrid control decreases the resonance peak of the first
mode over 20 dB compared with no control. The hybrid control performance for
x11 achieved better than passive control though that for x22 is slightly worse.

Fig. 9 Comparison of the frequency responses of hybrid control between simulation and experi-
ment
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Fig. 10 Experimental results of frequency responses.

Fig. 11 Experimental results of time responses.

Table 2 Maximum displacement of time responses of El Centro wave excitation.

Table 2 shows maximum displacement of time responses, and Figure 11 shows
time responses of El Centro excitation. According to these results, it is confirmed
that hybrid control can make maximum displacement at each mass point closer, and
simultaneously suppress the structual vibration well.
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8 Conclusion

In this paper, the control design for hybrid CCM to achieve equivalent control effect
for two different structures is dealt with. The relation between weighting matrix and
control characteristics is investigated and the optimal weighting matrix is identified.
The controller designed by using the optimal weighting matrix realized the equiv-
alent performance for two different structures, and the effectiveness of presented
controller design procedure is studied.
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A One-DOF Controlled Magnetic Bearing for
Compact Centrifugal Blood Pumps

A. Yumoto, T. Shinshi, X. Zhang, H. Tachikawa and A. Shimokohbe

Abstract We propose a compact one-degree-of-freedom controlled magnetic bear-
ing for use in implantable centrifugal blood pumps. The magnetic bearing passively
supports the radial and tilt motions of the rotor by a combination of attraction and
repulsion using permanent magnets. A pair of electromagnets controls the axial mo-
tion of the rotor and stabilizes the levitation of the rotor. An experimental rotor,
which was 50 mm in diameter, 17 mm in height and 111 g in weight, could levitate
stably and could be rotated at a rotational speed of up to 2500 rpm without contact
by supplying it with compressed air. Then we consider the integration of a built-in
motor and the one-DOF controlled MB. The motor, consisting of a Halbach per-
manent magnet array in a rotor with fan-shaped coreless coils in the top and bottom
stators, rotates due to the reaction of the Lorentz force. The experimental rotor could
levitate and rotate at a rotational speed of up to 5100 rpm.

1 Introduction

Magnetically levitated (maglev) centrifugal blood pumps (CBPs) have been de-
veloped as ventricular assist devices because they have the potential for long-term
use and cause little damage to blood due to the absence of any mechanical contact
[3]. For example, DuraHeart [5], which was developed by Terumo Corp. (Tokyo,
Japan), is an implantable CBP which incorporates a maglev impeller and includes a
three-degrees-of-freedom (three-DOF) controlled active magnetic bearing (MB).

Maglev CBPs need to be small so that they can provide implantable cardiac as-
sistance for a variety of patients, from children to adults having small bodies. There-
fore, downsizing of the MBs, which take up a large volume in the pumps, is imper-
ative. The larger the number of controlled DOF of the MB, the larger the volume of
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Fig. 1 One-DOF controlled MB.

the MB becomes, due to the complexity of the mechanical system. In an attempt to
reduce the number of controlled DOFs of MB, our research group has developed a
maglev CBP using a two-DOF controlled active MB [1]. A direct drive motor is ap-
plied to rotate its levitated impeller. There are else several kinds two-DOF controlled
MBs for CBPs [3].

According to Horikawa’s research [6], in order to passively support the radial
and tilt motions of an impeller using only magnetic couplings, the axial length of
the impeller must be longer than its diameter. This means that disk-shaped impellers
can’t be levitated using only a magnetic coupling and a one-DOF controlled MB.
In this study, our final aim is to realize a compact centrifugal blood pump, whose
dimensions are less than 60 mm in diameter and less than 30 mm in height. As the
first step, we propose a new one-DOF controlled MB using a magnetic coupling
and magnetic repulsion that can levitate a disk-shaped rotor whose dimensions are
50 mm in diameter and about 20 mm in height. We then fabricate a one-DOF con-
trolled MB which includes a built-in motor and we evaluate several of its properties,
including non-contact levitation, rotational stability and rotational speed.

2 Design of a One-DOF Controlled MB

2.1 Principles of a One-DOF Controlled MB

Figure 1 shows a cross-sectional view of the proposed one-DOF controlled MB,
which can stably levitate a disk-shaped rotor using one-DOF control. The MB pass-
ively supports the radial and tilt motions of the rotor and actively controls the axial
motion. The MB is equipped with two kinds of magnetic components. The first is a
combination of permanent magnets and electromagnets (PM-EM), which are posi-
tioned at the center of the MB.
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The second is a pair of repulsive permanent magnets (RPM), which are placed
outside the PM-EM. In order to measure and then feedback the displacement of the
rotor in the axial direction, a non-contact displacement sensor is placed at the center
of the MB.

The PM-EM component consists of ring-shaped permanent magnets, flange-
shaped back yokes and coils. This component is used to provide passive radial
support and active axial control. The closed magnetic circuits between the rotor
and the top and bottom stators generate positive stiffness in the radial direction,
whereas they generate negative stiffness in the tilt and axial directions. The RPM
component, which consists of ring-shaped permanent magnets, generates magnetic
repulsion. This magnetic repulsion generates positive stiffness in the tilt and axial
directions, but negative stiffness in the radial direction.

In the design of the one-DOF controlled MB proposed here, there is a trade-off
relationship between radial and tilt stiffness. In the radial direction, the PM-EM
positive stiffness must cancel the RPM negative stiffness. On the other hand, in the
tilt direction, the positive stiffness from the RPM must cancel the PM-EM negative
stiffness. According to Earnshaw’s theorem [2], there is negative stiffness in at least
one direction. This is because the rotor must be controlled in the axial direction.

2.2 Magnetic Field Analysis

In order to increse the passive stiffness in the radial and tilt directions, the actual
dimensions of the one-DOF controlled MB (as shown in Figure 2) were determined
using a finite element static magnetic field simulator (MAXWELL3D ver.10, Ansoft
Corp.). In the simulation model, the permanent magnets and the back yokes are as-
sumed to be neodymium permanent magnets and pure iron, respectively. The radial
and tilt stiffnesses were calculated at 1.2 × 104 N/m and 4.5 Nm/rad, respectively.

In order to generate the necessary force at start-up, the minimum current was
estimated at 330 Aturns. An amplifier with a maximum current of more than 3.3A
was chosen for the driving coils because there were 100 turns on each coil.

Fig. 2 Simulation model of the one-DOF controlled MB.
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Fig. 3 Experimental MB and its rotor.

Fig. 4 Configuration of the displacement sensors.

Fig. 5 Block diagram of the control system.

3 Fabrication of a One-DOF Controlled MB

3.1 Experimental Setup

Photographs of the experimental one-DOF controlled MB and its associated rotor
are shown in Figure 3. The rotor is 50 mm in diameter, 17 mm in height and 111 g in

360



A One-DOF Controlled Magnetic Bearing for Compact Centrifugal Blood Pumps

Table 1 Model and control parameters.

weight. The diameter of the rotor is approximately the same as that of the impeller
that is used in the maglev CBP, which we have also developed [1]. This time the
rotor core is made of duralumin and its surface roughness is less than Ra 1.6 µm so
that it can be used as a sensor target.

Figure 4 shows the configuration of the displacement sensors that are used to
evaluate the rotor’s vibration. An eddy-current displacement sensor ch1 (PU-03A,
ADE Corp.) measures the displacement of the rotor in the Z-axis direction, which is
used as part of the active axial control system. Six other eddy-current displacement
sensors are set to measure the rotor’s vibration along the X-axis, the Y -axis, and in
the � and � directions.

3.2 Design of Controller

In order to stabilize the rotor, a compensator including two degrees of numerator
and denominator was used, as shown in Figure 5. Furthermore, to reduce the steady
state current and the power consumption, a zero power compensator was also added
[4]. The model parameters and the compensator parameters are shown in Table 1.
The controller was implemented using a digital signal processor (DS1104, dSPACE
Inc.) including A/D and D/A converters with a sampling frequency of 20 kHz.

Two coils in the top and bottom stators were connected serially and were driven
by a linear power amplifier. A current sensor (LA25-NP, LEM) measured the current
in the coils that were used for the zero power compensator [4].
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Fig. 6 Responses in the 5-DOF at a start up.

Table 2 Measured and simulated passive stiffness.

4 One-DOF Controlled MB Performance

4.1 Rotor Vibration without Rotation

The start-up response of the rotor in the active controlled direction (Z direction) and
the passive supported directions (X,Y , and � directions) are shown in Figure 6. In
this experiment, the zero power compensator was not added to the control system.
The presence of magnetic levitation without any contact was verified by these re-
sponses. The vibration amplitudes at steady state in the radial and tilt directions
were less than 10 µm and 5 mrad, respectively.

The measured mass, the calculated moment of inertia and the measured natural
frequencies of the rotor are used to estimate the radial and tilt stiffnesses of the
device. The natural frequencies are derived from the vibration in Figure 6 using a
fast Fourier transform (FFT) algorithm. The natural frequencies of the radial and tilt
vibration modes were found to be 60 and 74 Hz, respectively. Using the rotor mass
M , the radial stiffness KX and KY can be calculated as follows.

KX = KY = M · (2π · 60)2 = 1.6 × 104 N/m. (1)
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Fig. 7 Vibration amplitudes.

With the moment of inertia of the rotor J , the tilt stiffness values K� and K� can
be calculated as follows:

K� = K� = J · (2π · 74)2 = 4.2 Nm/rad. (2)

The experimental and the simulated stiffness values are compared in Table 2. We
believe that inaccuracies in the assembly process have caused the difference between
the experimental and simulated stiffness results.

4.2 Rotor Vibration with Rotation

The levitated rotor was rotated by supplying it with compressed air. In order to
reduce the heat generation from the coils, a zero power compensator was added to
the control system. The rotor could rotate at rotation speeds of up to 2500 rpm.
The relationship between the vibration amplitude of the rotor in each direction and
rotational speed is shown in Figure 7.

At rotational speed of less than 2000 rpm, the vibration amplitudes of the rotor
in the Z, � and � directions are approximately constant. However, the amplitudes
in the X and Y directions increase with increasing rotational speed because the nat-
ural frequency in the radial direction (60 Hz) was closer to the rotational frequency
(33.3 Hz) than that in the tilt direction (74 Hz).

363



A. Yumoto et al.

Fig. 8 Rundown curve.

4.3 Rotational Loss

In order to evaluate the rotational loss of the one-DOF controlled MB, the deceler-
ation curve of the rotational speed was measured. At a speed of over 2000 rpm, the
air supply was stopped, causing the rotational speed to decrease. Making the sup-
position that the rotational speed decreased exponentially, the experimental result
and the result from curve-fitting are shown in Figure 8. The rotor continued rotating
for more than 15 minutes after the compressed air was turned off. This demonstrates
the low rotational resistance of the MB. With this design of MB, any changes in the
magnetic field on the rotor’s surface are so small that eddy-current loss and hyster-
esis loss are also very small.

5 Design and Fabrication of a One-DOF Controlled MB Motor

In order to apply this design of MB for use in centrifugal blood pumps, the rotor
must be rotated by a built-in motor. It is preferable that the motor should not influ-
ence the passive stiffness of the MB. We decided to use a coreless motor because
this type of motor does not generate cogging torque and so any influence on the
stiffness of the MB can be minimized.

The integration of the proposed coreless motor into the MB is shown in Figure 9.
Twenty pieces of permanent magnet are embedded into the top and bottom sides
of the rotor, respectively. Ten fan-shaped coreless coils are placed in the top and
bottom stators, respectively. These permanent magnets are magnetized periodically
to generate 10 poles in the direction in which the magnets face the stator. This is
known as a ‘Halbach permanent magnet array’. The current direction, the magnet-
ized directions and the force are shown in Figure 10.

Each of the coreless coils, which form the motor, contain 60 turns. Ten sets of
these coreless coils are connected serially in the top and the bottom stators, re-
spectively. The coils are driven by linear power amplifiers and are controlled by
the DSP through a D/A converter. The DSP estimates the rotation angle by using
Hall elements, which detect the sinusoidal magnetic flux that leaks from the Hal-
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Fig. 9 Integration of the proposed coreless motor.

Fig. 10 Relationship between coreless coil and Halbach array.

Fig. 11 Photograph of the experimental rotor.

bach permanent magnet array. The D/A converter outputs signals to the amplifiers,
which are synchronized to the outputs from the Hall elements. Figure 11 shows the
experimental rotor and the magnetized directions of the Halbach permanent magnet
array.

The one-DOF controlled MB motor could levitate stably and could rotate at a ro-
tational speed of up to 5100 rpm. The rotational speed could exceed the first critical
speed of the radial vibration mode, which was 3100 rpm.
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6 Conclusion

The use of a one-DOF controlled MB was proposed to enable the further minimiz-
ation of maglev CBPs. This unit passively supports both the rotor’s radial motion
by using a magnetic coupling and the rotor’s tilt motion by utilizing the magnetic
repulsion that occurs between permanent magnets. The experimental one-DOF con-
trolled MB is capable of levitating its rotor. During the levitation process, the rotor
can achieve a rotational speed of up to 2500 rpm if it is supplied with compressed
air. It took more than 15 minutes to reduce the rotational speed from 2000 rpm to 0
rpm when the air was removed, due to the small inherent rotational loss.

We then applied a built-in coreless motor, which has an almost negligible effect
on the passive stiffness of the one-DOF controlled MB, and we observed that it
could rotate the rotor at a rotational speed of up to 5100 rpm.
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Active Flutter Suppression of a Nonlinear
Aeroelastic System Using PI-Observer

Fan Zhang and Dirk Söffker

Abstract In this paper a novel robust control is proposed for the purpose of act-
ive flutter suppression of a nonlinear 2-D wing-flap system in the incompressible
flow field. The controller consists of an optimized robust stabilizer in the form of
state feedback control and a Proportional-Integral Observer (PI-Observer). The op-
timized robust stabilizer is based on the former study about the time-domain robust
stable criterion and obtained by a numerical optimization process. The PI-Observer
is taken to estimate not only the system states but the bounds of the nonlinearities
which are necessary for the constraints of the optimization process. The simula-
tion results are given to show the performance of this control design approach in
suppressing the flutter and the limit cycle oscillations.

1 Introduction

It is well known that nonlinearities, no matter structural or aerodynamical, may ex-
hibit a variety of responses that are typically associated with nonlinear regimes of
response including Limit Cycle Oscillation, flutter, and even chaotic vibrations [1]
in aeroelastic systems. And significant decays of the flutter speed may happen and
cause unexpected or even fatal accidents. Therefore, it is necessary to take uncer-
tainties and nonlinearities into account in aeroelastic problems.

In studies of flutter suppression of nonlinear systems, an aeroelastic model has
been developed based on the research of the benchmark active control technology
(BACT) wind-tunnel model designed at the NASA Langley Research Center [2–5].
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For this kind of model a set of tests have been performed in a wind tunnel to ex-
amine the effect of nonlinear structure stiffness. And control systems have been
designed using linear control theory, feedback linearizing technique, and adaptive
control strategies [6–13]. The methods in these contributions, such as model refer-
ence adaptive control approaches [9], backstepping design methods [10, 11], robust
control design with high gain observers [12] and so on, stand for the general ap-
proaches dealing with the effect of structural nonlinearities in aeroelastic problems.

Different from the methods above, this paper proposes a new active control
strategy to suppress the instability caused by structural nonlinearities, thereby keep-
ing the system robustly stable. The control strategy starts from the time-domain
robust stability criterion for the system with structural uncertainties [14]. If the ro-
bust measure proposed according to the robust stability criterion can be minimized
by choosing a suitable state feedback matrix, the system will not only keep stable
but also gain the largest robustness against a uncertain disturbance. An optimization
procedure is adopted to find such a robust controller.

The optimization procedure requires the information of unknown states and the
bounds of perturbations, which can be provided by the PI-Observer. Advanced sim-
ulation results of the PI-Observer are given in [15, 16]. Actual experimental results
of the used special disturbance observer, the PI-Observer, are given in [17, 18]. The

unknown external input to known systems for diagnosis and control, is already real-
ized in several theoretical and experimental applications and publications [17, 19].
With the help of the PI-Observer, an optimized robust controller can be realized and
the nonlinear system is stabilized in the way of the state feedback control.

This contribution is organized in the following way: Section 2 introduces the
configuration of the nonlinear aeroelastic model; in Section 3 the new robustness
measurement is developed here firstly,providing the theoretical basis of this paper;
in Section 4 the design of the PI-Observer and how it estimates the nonlinear ef-
fect will be introduced briefly; in Section 5 the control strategy is reformulated in
context of flutter suppression of the aeroelastic model; Section 6 will give the simu-
lation results, where it can be seen that the proposed controller performs well against
structural nonlinearities, with flutter being suppressed at different wind speed.

2 Problem Statement: Configuration of the Nonlinear
Aeroelastic Model

The configuration of the nonlinear 2-D wing-flap system is shown in Figure 1. This
model has been widely used in the aeroelastic studies [6–8]. The two degrees of
freedom, the pitching and plunging movement, are respectively restrained by a pair
of springs attached to the elastic axis(EA) of the airfoil. A single trailing-edge con-
trol surface is used to control the air flow, thereby providing more maneuverability
to suppress instability. This model is accurate for airfoils at low velocity and has
been confirmed by wind tunnel experiments [6, 10].
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Fig. 1 2-D wing-flap aeroelastic model.

The government equations of this model are given as
[

mT mWxαb

mW xαb Iα

] [
ḧ

α̈

]
+

[
ch 0
0 cα

] [
ḣ

α̇

]
+

[
kh 0
0 kα

] [
h

α

]
=

[−L

M

]
, (1)

where plunging and pitching displacement are denoted as h and α respectively. In
Eq. (1) mW is the mass of the wing, mT is the total mass of the wing and its sup-
port structure, cα and ch are the pitch and plunge damping coefficients respectively,
kα and kh are the pitch and plunge spring constants respectively. The variables M

and L denote the aerodynamic lift and moment. In the case when the quasi-steady
aerodynamics is considered, M and L should be of the form as

L = ρU2bclα

[
α + ḣ

U
+

(
1

2
− a

)
b

α̇

U

]
+ ρU2bclββ ,

M = ρU2b2cmα

[
α + ḣ

U
+

(
1

2
− a

)
b

α̇

U

]
+ ρU2b2cmβ β , (2)

where clα and cmα are the lift and moment coefficients per angle of attack and clβ

and cmβ are lift and moment coefficients per angle of control surface deflection β.
The nonlinearity is supposed to exist in the pitching spring constant kα and has

the form of a polynomial of α,

kα =
4∑

i=0

kαiα
i = kα0 + k∗

α(α) , (3)

where k∗
α(α) = ∑4

i=1 kαiα
i . The coefficients kαi , i = 0, 1, . . . , 4 determined from

experimental data given in [10] are

[kαi ] = [6.833 9.967 667.685 26.569 − 5084.931]T . (4)

Defining the state vector x(t) = [α(t), h(t), α̇(t), ḣ(t)]T , one can obtain a state
variable representation of Eq. (1) in the form
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ẋ(t) = An x(t) + k∗
α N α(t) + B β(t) ,

y(t) = C x(t) , (5)

where C = [1 0 0 0], for the only measurable state is the pitch angle α. The explicit
expressions of An, N , B are given in [10].

3 Formulation of Robust Stability Control Problem

Assume a perturbed system can be described by the sum of a linear nominal system
and uncertain perturbations as

ẋ(t) = (A + E)x(t) , (6)

where A is a n × n real Hurwitz matrix denoting the nominal system, E is a n × n

perturbation matrix and can be expressed as

E =
r∑

k=1

kiEi, i = 1, 2, 3, . . . , r , (7)

where Ei is a constant matrix which shows how the uncertain parameter ki perturbs
the nominal matrix A.

Let P be the solution of the following Lyapunov equation:

AT P + P A + 2 I = 0 . (8)

Define Pi as

Pi = 1

2
(ET

i P + P Ei) . (9)

Following the results given in [14], the system (6) will be asymptotic stable if

r∑
i=1

|ki| σmax(Pi) < 1 , (10)

where symbol σmax(·) denotes the largest singular value. The proof of this result is
given in [14].

Being more robust stable means that the system can keep stable with larger per-
turbation. Correspondingly, when the stable condition Eq. (10) is satisfied, if a cer-
tain controller is found to make each σmax(Pi) in Eq. (10) minimized, the system (6)
can bear the largest perturbation of |ki| and therefore will be robust stable against
the perturbation |ki|.

Therefore, the understanding of this robust control can be formulated as: the goal
to make the system (6) most robust stable can be achieved by such a stabilizing
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controller that it makes each σmax(Pi) minimized, under the constraints of Eqs. (8)
and (10).

4 Estimation of System States and Unknown Effects via
PI-Observer

Equation (10) shows that the bound of the uncertain perturbation |ki| is necessary
for the constraints of the optimization process. For systems with structural nonlin-
earities, a PI-Observer can estimate the states and the unknown perturbations acting
upon the nominal system [16], which is explained here briefly.

The system to be controlled is assumed as a nominal known system with additive
unknown external inputs/unknown effects n(t) and additive measurement noise d(t)

ẋ(t) = Ax(t) + Bu(t) + Nn(t) ,

y(t) = Cx(t) + d(t) . (11)

Assume that the unknown input effect which includes model uncertainties and
disturbances is caused by the uncertainty modeled in Eq. (11). So the uncertainty
can be calculated if the estimation of n(t) is available. In the sequel, the task is
reduced to estimate the unknown effects n(t).

A PI-Observer design [16] can be written by

[ ˙̂z
˙̂n
]

=
[

A N

0 0

]
︸ ︷︷ ︸

Ae

[
ẑ

n̂

]
+

[
B

0

]
︸ ︷︷ ︸

Be

u +
[

L1
L2

]
︸ ︷︷ ︸

L

(y − ŷ),

ŷ = [
C 0

]
︸ ︷︷ ︸

Ce

[
ẑ

n̂

]
+

[
d(t)

0

]
. (12)

The error dynamics becomes
[

ė(t)

ḟe(t)

]
=

[
A − L1C N

−L2C 0

] [
e(t)

fe(t)

]
+

[
L1 d(t)

L2(.t) − ṅ(t)

]
. (13)

Assuming that the extended system is observable and the feedback matrices L1
and L2 can be calculated by solving the Riccati equation

AeP + PAe
T + Q − PCe

T R−1CeP = 0 , (14)

the observer feedback matrix L is denoted by

L =
[

L1
L2

]
= PCT R−1. (15)
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Fig. 2 Schematic behavior of the estimation error [18].

If the extended system is observable, the gains ‖L2‖ increases under some con-
ditions by increasing the control design parameter, which is here the coefficient q of
the weighting matrix for the Riccati solution. To achieve an approximative decoup-
ling from the unknown inputs, here from the uncertainties Nn to the states x

‖[Is − (Ae − LCe)]−1Ne‖∞ < ε , (16)

ε → 0 is required, so the weighting parameter has to be q → ∞. In practical
applications, the parameter should be q � 1, which yields from

q � 1 to ‖L2‖ � ‖L1‖. (17)

The important remark here is that the design parameter q can not be arbitrary
increased. The estimation error depending on the LTR design parameter q is illus-
trated qualitatively in Figure 2. The curve f : ṅ(t) in Figure 2 denotes the error
caused by the derivative of the unknown inputs and the curve f : d(t), h(t) denotes
the error caused by the uncertainties. The optimal parameter q depends on the qual-
ities of the model and the measurement and on the derivative of the unknown input.

As a result, in the best case, the PI-Observer can estimate the external input as
well as the internal states.Additional background and details of the approach are
given in [16, 18].

5 Robust Control of the Nonlinear Aeroelastic system

For the nonlinear aeroelastic system (5), suppose the state feedback control, β(t) =
−Kx(t), is implemented to realize the robust control, where K is the state feedback
matrix.

Substitute β(t) = −Kx(t) into Eq. (5), the close loop system can be expressed
as

ẋ(t) = Ã x(t) + k∗
α Ñ x(t), (18)
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where Ã and K̃ with proper dimensions are given as

Ã = (An − B K), and Ñ = [ N | 0 ] . (19)

It can be seen that Eq. (18) has the same form as Eq.(6). The nonlinear term
K∗

α can be treated as the uncertain part. The estimation of |k∗
α| can be obtained

simultaneously by a PI-Observer. To suppress the flutter in system (5), regarding
the robust control strategy in Section 3, the state feedback controller K should be
found by solving the following optimization problem:

min . σmax(Pi) ,

s.t. P ∈
{
P : ÃT P + P Ã + 2I = 0

}
,

|k∗
α| σmax(Pi) < 1. (20)

Now the problem relies on the optimization process to deduce the matrix K .
In this contribution, due to the fact that the system has only four states and one
nonlinearity, the optimization is solved numerically. The whole control loop consists
of two relatively different parts: the PI-Observer estimates system states and the
nonlinear perturbation online and returns these values to the optimizer, while the
optimizer finds the optimal state feedback matrix K which is used to keep the system
robust stable against the nonlinear perturbation.

6 Simulation Results

In this section, numerical results for the robust stability control of such a system are
presented. The values of the model parameters are taken from [10] as

ρ = 1.225 kg/m3 b = 0.135 m , clα = 6.28 ,

cα = 17.43 Ns/m , ch = 27.43 Ns/m , clβ = 3.358 ,

kh = 2844.4 N/m , cmα = (0.5 + a)clα , cmβ = −0.635 ,

mW = 2.0490 kg , xα = [0.0873 − (b + a b)]/b m ,

mT = 12.387 kg , and Iα = mW x2
α b2 + 0.0517 kg/m2 . (21)

Suppose at t = 0 s the state feedback matrix K is given by the LQR method with
respect to the nominal system matrix An. This makes sense because it provides an
asymptotical stable system at t = 0 s, i.e., Ã is a Hurwitz matrix. Take this K as the
initial condition for the optimization process.

Following the robust stability control strategy introduced before, the simulation is
performed with different value of a and U .The optimization process is performed by
genetic-algorithm-based procedure because of its ability to find the global minimum
with less sensitivity to the initial conditions and to solve problems with nondiffer-
entiable objective functions. The initial conditions for the state variables of the sys-
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Fig. 3 System open-loop
response of α.
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Fig. 4 Time history of pitching motion
(U = 16 m/s, a = −0.6847).
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Fig. 5 Time history of plunging motion
(U = 16 m/s, a = −0.6847).

0 1 2 3 4 5 6 7 8 9 10

−30

−25

−20

−15

−10

−5

0

t(s)

β(
de

g)

Fig. 6 Time history of control input (U =
16 m/s, a = −0.6847).
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Fig. 7 LCO suppression of pitching mo-
tion, control implemented at t = 5 s (U =
16 m/s, a = −0.6847).

tem are selected as α(0) = 5.75 (deg), h(0) = 0.01 m, α̇(0) = 0 (deg/s), and
ḣ(0) = 0 m/s. The initial conditions for the estimated states of the observer are as
the same as those of the system. The initial condition of the estimation of the non-
linearity is set to 0. The uncontrolled system is not asymptotic stable, which can be
seen from the simulation of the open loop response shown in Figure 3.

Simulation of the close-loop system is performed with different wind speed U

and structural parameter a (nondimensional distances from midchord to the elastic
axis). Figures 4–6 shows the time histories of pitching, plunging, and control surface
deflection with U = 16 m/s and a = 0.6874. It can be seen from the figures both
the pitching motion and the plunging motion are quickly regulated to the original
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Fig. 8 Time history of pitching motion
(U = 20 m/s, a = −0.8).
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Fig. 9 Time history of plunginging motion
(U = 20 m/s, a = −0.8).
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Fig. 10 Time history of control input (U =
20 m/s, a = −0.8).
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Fig. 11 LCO suppression of pitch motion,
control implemented at t = 5 s (U =
20 m/s, a = −0.8).

within 2.5 seconds. When the wind speed U = 20 m/s, which is much higher than
the flutter speed of the nominal system, the simulation results are given in Figures 8–
10 and show that the system is also asymptotic stable with the presence of the robust
active control, neglecting the system nonlinear effects.

Figures 7 and 11 show the LCO suppression with different U and a. The system
is allowed to evolve open loop response for 5 seconds at first to observe the devel-
opment of the LCO. At t = 5 s the active controller is turned on and the open-loop
oscillation is immediately attenuated.

7 Conclusion

In this contribution a novel robust state feedback control strategy is proposed to sta-
bilize an aeroelastic system with structural nonlinearities, illustrated by an example
of flutter suppression in a 2-D wing-flap system with nonlinear stiffness in an in-
compressible flow field. A PI-Observer is used to estimate both the system states
and the nonlinear perturbation. With the information provided by the PI-Observer,
based on the robust measure proposed according to the robust stability criterion in
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time domain, an optimization procedure is utilized to find the optimal state feedback
matrix for the purpose of flutter suppression. The simulation results are presented to
illustrate the ability of this approach in suppressing the instability of the aeroelastic
model against its nonlinear perturbation.
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