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HIGH-LEVEL DEVELOPMENT, MODELING
AND AUTOMATIC GENERATION
OF HARDWARE-DEPENDENT SOFTWARE
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Abstract With the increasing software content in modern embedded systems, software
development clearly dominates the design cost. The development of Hardware-
dependent Software (HdS) is especially challenging due to its tight coupling
with the underlying hardware. Therefore, automatic generation of all embedded
software including the HdS is highly desirable to meet today’s shortened time-
to-market demands.

In this chapter, we describe a system-level design approach that offers a
seamless solution for generating embedded software, starting from an abstract
specification and going to an implementation. In our high-level development en-
vironment, the application is developed in a platform-agnostic format that hides
most implementation detail. The target platform and the mapping of the applica-
tion to the platform are described separately. A system compiler then automati-
cally generates a system model at the transaction level for performance analysis
and development. The same system model later serves as an input to a software
generation process, which generates the final binaries for all processors in the
system. These binaries include the application, device drivers, and operating
system code.

Using a design flow with automatic software generation offers significant
productivity gains. At the same time, it allows the designer to focus on the
algorithms without being burdened by implementation-level detail.
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8.1 Introduction

Software development starts dominating the design cost of modern complex
Multi-Processor System-on-Chip (MPSoC). The software content is increas-
ing since it allows to flexibly implement complex features and to quickly react
to customer demands. In this context, Hardware-dependent Software (HdS)
is especially challenging, due to its tight coupling with the underlying hard-
ware (HW). Traditional approaches of manually implementing HdS become
very time consuming. With a large amount of implementation detail, a manual
implementation is tedious and error prone. Additionally, validating and debug-
ging software executing on real hardware delays this important process until
the availability of the final hardware platform. This hinders a parallel devel-
opment of hardware and software and may result in missing the tight time-to-
market constraints. On the other hand, a validation using low-level instruction
set simulation suffers from a slow simulation, especially in a multi-processor
context.

To increase productivity, we envision an integrated design flow that elimi-
nates the need for low-level programming. In this chapter, we propose high-
level HdS development that hides HW dependencies from designers and allows
focusing on algorithms without being burdened by driver-level details.

In our high-level environment, as outlined in Fig. 8.1, the application is
developed in a platform-agnostic specification written in a System-Level De-
sign Language (SLDL). The specification model consists of a hierarchical
process graph containing sequential C code in each process. In the hierar-
chy, processes are composed in a parallel-sequential fashion. Communication
between processes is captured in abstract communication channels and shared
variables, independent of their later implementation.

Figure 8.1. System design flow overview.
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The targeted hardware platform is specified separately, containing proces-
sor and hardware allocation, mapping of processes to processors and hardware
blocks, and the definition of the communication topology and its parameters.
While mapping the specification to the platform, the designer also specifies im-
portant software aspects, such as task mapping, the definition of task priorities,
and selection of the scheduling policy for each processor.

Based on application and platform specification, our system compiler auto-
matically maps the application down to a set of processors and busses, creating
a set of tasks for each processor, and generating the communication drivers
between processes depending on their HW/SW mapping. The application-
specific hardware-dependent code is generated by the system compiler. As
one output, it generates a system model at selectable abstraction level (with
different amount of detail).

The abstract system model is valuable for virtual prototyping, early perfor-
mance estimation, and validation of the feasibility of the HW/SW mapping. It
also enables functional validation of the application over the given platform.
Furthermore, it exposes the effects of dynamic scheduling for each processor,
allowing optimization of priority mapping and guiding static load balancing.
Altogether, the system model is a convenient virtual debugging platform that
is usable before HW availability.

Most importantly, the system model serves as an input to the back-end SW
generation, which generates and cross-compiles the C code. In particular, it
generates the firmware, drivers and interrupt handlers, which implement the
external communication of the processor. It also adjusts the application code
to execute on top of the selected Real-Time Operating System (RTOS). Fi-
nally, the linker creates the final software binary for each processor. For early
validation of those binaries, a system model with integrated Instruction Set
Simulators (ISSs) can be used.

We informally distinguish between software synthesis and software genera-
tion. Both produce an implementation out of an abstract input model by adding
implementation level detail. In contrast to generation, synthesis includes in ad-
dition an automatic optimization for a given objective or cost function. In our
work described in this chapter, we describe a pure generation-based approach
that does not include an optimization.

The rest of this chapter is organized as follows. We first discuss the context
of software generation and survey current approaches. Then, Sect. 8.2 de-
scribes in detail the envisioned HdS development based on a platform-agnostic
input and abstract system models. Section 8.3 provides an overview on SW
generation and Sect. 8.4 focuses on the generation of HdS. Section 8.5 dis-
cusses application examples and demonstrates the approach for six real-life
applications. Section 8.6 summarizes and concludes the chapter.
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8.1.1 Context and Related Work

Designing a modern complex MPSoC is challenging both in terms of hard-
ware and software. The current manufacturing capabilities offer tremendous
integration capabilities and a high degree of implementation freedom. For op-
timization, a vast exploration space has to be explored and analyzed in the de-
sign process. At the same time, the market demands a shorter time-to-market
to yield competitive products. Hence, the challenge is to design increasingly
complex embedded systems in a shorter period of time.

System-level design is accepted as the main approach to address the com-
plexity challenges. It uses a unified approach to design hardware and software
concurrently. System-level design uses higher levels of abstraction to describe
a system. Ideally, this allows to describe a system solely as a composition of
algorithms, so that the designer can maintain the system overview, while not
being burdened by the vast amount of implementation details.

To capture systems jointly with hardware and software, System Level De-
sign Languages (SLDLs) have been developed, such as UML, graphical input,
Esterel and C-based languages. In this chapter, we focus on C-based SLDLs.
Examples of C-based SLDLs are SystemC [GLMS02], which is widely used in
academia and industry, and SpecC [GZD+00]. These languages are based on
C++ and ANSI-C, respectively, and have been extended to also capture system
and hardware aspects, such as parallelism, pipelining, signals, and bit-vectors
to just name a few added concepts.

Abstract models for system-level design are often described as Transaction
Level Models (TLMs) [GLMS02], which abstract away the details of pins and
wires [CG03]. By omitting implementation-level detail, TLMs execute dra-
matically faster than bit-accurate models. Therefore, they are widely used for
design space exploration and early development.

Today, TLMs are typically written manually [HYL+06] and are moreover
rarely used for generation of a complete final implementation. Specialized
partial solutions are already very successful, e.g. for generating the interface
description between RTL hardware and software (see Chap. 5). To increase
productivity, we envision a design flow that spans from an abstract, untimed,
and platform-agnostic specification down to an actual implementation on real
hardware, as we will describe in this chapter.

Traditionally, SW generation has been addressed from very specific input
models and with a limited target architecture support. Some examples are
POLIS [BCG+97], DESCARTES [RPZM93], and Cortadella et al. [CKL+00].
The POLIS [BCG+97] approach uses a Co-design Finite State Machine
(CFSM) model, where each FSM represents a component in the system. Soft-
ware generation is performed by transforming the input model into an S-Graph,
and subsequent C code generation. This work focuses on reactive systems and
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is not designed for general applications. DESCARTES [RPZM93] uses a data
flow description (Asynchronous Data Flow (ADF) and an extended Synchro-
nous Data Flow (SDF)) as an input and supports heterogeneous systems. With
the specific input choice, these solutions favor a particular application type. In
contrast, a flexible generic C-programming model is desirable over these spe-
cific input models to cater to the needs of a broader programming audience and
to capture a wider range of application domains.

Abstract models, based on SLDLs with a generic C-programming model,
have been used for modeling software (SW) and its execution in abstract form
[KKW+06, GYNJ01]. Additionally, ISSs have been integrated into abstract
system models to create system co-simulation environments [BBB+05, CoWa].
Such, virtual platforms allow for a detailed analysis of the system before avail-
ability of real hardware, often revealing details not available on the target
[HYL+06]. While these approaches focus on simulation and validation, they
do not offer an integrated solution to generate the final implementation.

Some early approaches show solutions to use an abstract model, which con-
tains the common description of HW and SW, as a source for generating the
embedded software. Herrara et al. [HPSV03] describe SW generation from a
SystemC model. With SystemC being a library extension of C++, they pro-
pose to overload SystemC library elements for execution on the target system.
This has the advantage of reusing the same model for specification and target
execution. However, the approach partly replicates the simulation engine.

Krause et al. [KBR05] generate source code from SystemC and adjust the
application to execute on top of an RTOS. To flexibly target different RTOS
vendors, they capture the API in an XML format for a customized genera-
tion. This approach, however, does not describe in detail the generation of
communication and synchronization code and the creation of the final target
binary.

Gauthier et al. [GYJ01] describe a method for generating application-spe-
cific operating systems and the corresponding application SW. Their work fo-
cuses on the OS portion and does not address external HW. Our solution, on the
other hand, explicitly includes heterogeneous external HW. Yu et al. [YDG04]
show generation of application C code from an SLDL, however without show-
ing the final target binary. Our approach includes generation of communica-
tion drivers, multi-task adaptation, and the generation of the final binary im-
age.

The Phantom Serializing Compiler [NG05] translates multi-tasking POSIX
C code input into flat C code by grouping blocks to Atomic Execution Blocks
and custom scheduling them. This approach is oriented toward a pure SW so-
lution. In contrast, we address SW generation in a system context, specifically
taking HdS and external communication into account.
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8.2 Software-enabled System Design Flow

Electronic System Level (ESL) design addresses the complexity challenges
of designing a modern embedded system. One such flow is outlined in Fig. 8.1
and uses a two step design approach. This ESL flow, implemented in
[DGP+08], generates first a system TLM for detailed performance estimation
and early MPSoC development. In a second step, the TLM is used as an input
to automatically generate SW binaries for the processors in the target platform.

The input to the system design flow is the specification model. It describes
the algorithms of the system and their dependencies. The specification model is
captured in an untimed and platform-agnostic form using a C-based SLDL. For
the experiments reported in this chapter, we use the SpecC SLDL [GZD+00].
The concepts shown, however, are equally applicable to other C-based SLDLs,
such as SystemC, as well.

Important for a flexible and analyzable input specification is the separation
of computation and communication. This separation enables automatic refine-
ment of communication and mapping of computation to separate processing
elements. The computation is grouped in behaviors (or modules / processes),
and communication is expressed in channels. The upper portion of Fig. 8.2
shows a graphical representation of a simple system specification. The boxes
with rounded corners symbolize behaviors. The actual C code inside the be-
haviors (e.g. B2 and B3) is omitted for brevity.

The behaviors communicate via direct point-to-point channels. For an eas-
ier generation, these channels are selected from a feature-rich set of standard-
ized channel types. They allow for a wide range of communication types,
such as synchronous and asynchronous communication, blocking and non-
blocking communication (e.g. FIFO), as well as for synchronization only (e.g.
semaphore, mutex, barrier). Basically, these channels are similar to standard
communication primitives offered by middleware or an operating system.

Figure 8.2. Example specification with architecture mapping.
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Behaviors can be composed hierarchically to allow complex structures. They
can be arranged to execute in any order, such as sequential, parallel, pipelined,
or state machine controlled. In the example, behaviors B2 and B3 execute in
parallel. They communicate through channels C1 and C2. These channels
are of type “double handshake”, which implies blocking, synchronous com-
munication that is not buffered. The channels C3 and C4, for communication
between B3, B4 and B5, are finite depth FIFO channels. Using these standard
channels allows for a very intuitive programming approach, that is independent
of any hardware selection and application distribution.

A second input to our system design flow contains the architecture decisions
which describe the platform, as visualized in the bottom portion of Fig. 8.2.
The designer enters these decisions using an interactive Graphical User Inter-
face (GUI).

Architecture decisions include the allocation of processing elements (PEs)
(e.g. processors, HW components). In the example, an ARM7TMI processor
and two custom hardware components are allocated. PE-specific parameters,
such as clock frequency, are chosen during allocation. Additionally, the user
defines the mapping of behaviors to PEs, deciding which PE will execute the
computation inside each behavior. Behaviors, that are assigned to execute on
a processor, are wrapped into tasks. The user can then define important task
parameters, such as priority and stack size.

Besides dealing with the computation, the designer also controls the allo-
cation and mapping of communication protocols. The example mapping deci-
sions are illustrated in the bottom portion of Fig. 8.2. Here, a bus system of type
AMBA AHB [AMBA] is allocated. The call-out boxes symbolize mapping
the channels to that bus. For each channel, the user can also define essential
communication parameters. For one, the user can select the synchronization
scheme, such as polling or interrupt-based synchronization. Additionally, a
bus address, that identifies the channel on the communication medium, can be
selected.

Based on this these inputs, our system compiler [DGP+08] automatically
generates a system TLM that reflects the architecture decisions. For this model
refinement, components out of the component data base (compare Fig. 8.1)
are instantiated and connected. The communication between processing ele-
ments is refined from the standardized abstract channels down to communi-
cation based on the selected medium (here the AMBA AHB). The TLM, see
example in Fig. 8.4, allows for system exploration, performance analysis and
debugging. The TLM simulates significantly faster than a traditional ISS-based
model [SGD07].

Once the designer is satisfied with the performance and quality of the sys-
tem, the same TLM serves then as input for the back-end HW synthesis and
SW generation. The SW generation produces the final SW binaries that are
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executable on a set of processors composing the platform. It generates the
application code, and all drivers for communication in a heterogeneous sys-
tem. The SW application executes on an off-the-shelf RTOS, or by using an
interrupt-driven system for small applications.

8.3 Software Generation Overview

The SW generation, as shown in Fig. 8.3, uses the TLM as an input. As
described before, the TLM reflects all architecture decisions. Computation is
mapped to processing elements. Computation within each processor is grouped
to tasks, all essential task parameters are captured, and the tasks are executed
on top of an abstract RTOS (the concepts of RTOS modeling are also described
in Chap. 9). The external communication has been refined according to an
ISO/OSI layered approach. It is mapped to a set of busses and protocols us-
ing bus primitives. External synchronization is implemented (e.g. polling or
interrupt) based on the designer’s choice. Furthermore, the model contains all
structural information to implement the communication decisions. Therefore,
the input TLM contains all functional and structural information needed for the
target implementation. Please see [DGP+08] for a more detailed description
of the TLM generation.

Figure 8.3. Software generation flow [SGD08].

Our software generation is divided into C code generation and HdS gen-
eration. The C code generation [YDG04], generates flat C code out of the
hierarchical model captured in the SpecC SLDL. It converts behavior hierar-
chies into a set of C functions. Instance-specific variables are translated into a
set of data structure instances. Additionally, the channel connectivity between
behaviors is resolved into flat C code. In other words, the C code generation
solves similar issues as early C++ to C compilers that translated a class hierar-
chy into flat C code.
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The second portion, the HdS generation, generates code for processor inter-
nal and external communication, including drivers and synchronization (polling
or interrupt). It also generates code to execute multiple tasks on the same
processor. To create the complete binary SW image, it finally generates con-
figuration and build files (e.g. Makefile) which select and configure database
components. As such, a particular RTOS is chosen, properly adapted/ported to
the selected processor. A hardware abstraction layer (HAL) is included based
on the target platform, consisting of low-level drivers for the timer, the pro-
grammable interrupt controller (PIC), and the bus accesses.

Using a cross compiler, the final target binary (or binaries) is created, which
can execute on the target processor(s), or alternatively on a virtual platform.
A virtual platform allows validation and development of the final software bi-
naries already before the availability of real hardware. To generate a virtual
platform, our SW generation removes the model of the SW running on each
processor from the TLM and replaces it with an ISS that is wrapped for in-
tegration into the system model. Each ISS instance then executes one SW
binary.

8.4 Hardware-dependent Software Generation

The HdS generation uses the system TLM as an input (see example in
Fig. 8.4), which was generated by the system compiler based on the designer’s
architecture decisions. Following the mapping definitions, illustrated in
Fig. 8.2, the behaviors B1, B2 and B3 execute on the processor. The behav-
iors B4 and B5 are each mapped to an own HW accelerator. The TLM contains
hierarchical behaviors, channels, and additional HW to properly reflect the
platform characteristics. For example, it contains a model of a PIC that maps
multiple external interrupts to the available CPU interrupts, and a timer module
for periodic interrupts.

The HdS generation parses the input TLM into an abstract syntax tree and
then operates on this tree for code generation. For explanation, we distinguish
three generation aspects: communication generation, multi-task generation and
generation of the final target image. The following sections describe each as-
pect individually.

8.4.1 Communication Generation

The communication generation deals with processor internal and external
communication. In particular, it creates the driver code for communication
between the software and external HW. It also generates code for synchroniza-
tion, for which it inserts stubs into the application code, and generates interrupt
handlers and/or polling code.
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Figure 8.4. Processor and application TLM.

Internal Communication. Internal communication takes place between tasks
on the same processor. In the example shown in Fig. 8.4, the channels C1, C2,
Sem1 and Sem2 are used for internal communication. These are instances of
our standard channels as also used in the specification. To provide the par-
ticular communication on the target system, the abstract standard channels
are replaced with a target-specific implementation that uses the primitives of
an underlying RTOS (or an emulation thereof, in case an RTOS is avoided).
Note, that this implementation does not recreate the simulation environment
on the target. Instead, a target-specific implementation is used that recreates
the same interface and semantics as the abstract channels. For example, a
blocking synchronous communication channel is implemented on an RTOS-
based system with a semaphore, two events, and a memcpy using the services
of our RTOS Abstraction Layer (RAL), which we insert for independence of
the actual RTOS (for details, please refer to the later section about multi-task
generation).

External Communication. To support heterogeneous systems, we follow
the ISO/OSI layering model [ISO94] to implement external communication.
Examples of external communication are the channels C3 and C4 of the initial
specification (see Fig. 8.2). According to the mapping information, these chan-
nels capture communication between different processing elements
(e.g. processor and custom hardware). These channels no longer appear di-
rectly in the system TLM in Fig. 8.4. Our system compiler has refined the
abstract channels into stacks of half channels (namely Net, Driver, and MAC),
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which are inserted into the processor model. A matching stack of half channels
is inserted into each HW component (HW1 and HW2) as well.

At the top of the stack, the typed user data is marshalled into a flat untyped
data stream. This untyped stream provides a common representation that can
be interpreted among different processing elements regardless of bitwidth, en-
dianness and padding rules. This common representation for example allows
that a little endian processor can read and interpret the data stream of a big
endian processor.

The communication generation has access to the abstract syntax tree rep-
resenting the application code. Therefore, it can extract the necessary type
information from the application code and generate application-specific mar-
shalling code that uses standard conversion functions to create the untyped data
stream. For example, the user may define structure tReq that contains three el-
ements startTime, coeff1 and base, as shown in Listing 8.1.

Based on the information of the channel Net (see Fig. 8.4), the communica-
tion generation produces marshalling code that serializes the structure data into
a flat byte stream as shown in Listing 8.2. Note that, in contrast to using fixed
bitwidth types already in the specification, as discussed in Chap. 5 and Chap. 6,
our system-level approach contains platform-agnostic types (e.g. plain int) in
the initial specification model. The marshalling process here therefore is nec-
essary in order to create the platform-specific types.

Data from the input structure (pointer pD) is converted into the buffer
(pointer This−>buf ). The marshalling code uses standard conversion func-
tions for each basic data type (e.g. uhonlong()). Later in the generation process,
a processor-optimized implementation of the marshaling function is selected
from the database.

The next half channel, the Driver, contains information about the channel’s
system-wide addressing. It maps the end-to-end channel, which connects two
behaviors, to a set of point-to-point links. In a platform with many busses, an
end-to-end link may connect processing elements on different busses. Then,
multiple point-to-point links create the connection across the busses, which
are connected via communication elements (e.g. bridge or transducer). Note
that, in comparison to the Chapter 5 and Chapter 6, our system-level approach

1 t y p e d e f s t r u c t s tReq {
2 long s t a r t T i m e ;
3 s h o r t c o e f f 1 ;
4 unsigned s h o r t base ;
5 } tReq ;

Listing 8.1. User type definition in the specification model.
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1 void c_pre_req_CPU_send ( /∗ . . . ∗ / ∗This , s t r u c t tReq ∗pD) {
2 unsigned char ∗pB = This −>buf ;
3 h t o n l o n g ( pB , pD−>s t a r t T i m e ) ;
4 pB += 4 ;
5 h t o n s h o r t ( pB , pD−>c o e f f 1 ) ;
6 pB += 2 ;
7 h t o n u s h o r t ( pB , pD−>base ) ;
8 pB += 2 ;
9 c_link_CPU__CAN_CTRL_DLink_send ( /∗ . . . ∗ / This −>buf , 8 ) ;

10 }

Listing 8.2. Generated code for marshalling of user data.

generates a custom register addressing here on-the-fly, based on an available
system-wide view of the components and their address space.

The slave in our example is connected to the processor bus. Therefore,
direct communication is possible and no additional communication elements
are necessary. However, complex communication schemes spanning multiple
bus hierarchies are possible. Then, user messages are packetized to minimize
buffer requirements of intermediate communication partners. Depending on
the information in the Driver channel, the corresponding source code is gener-
ated.

The driver also implements a channel-specific synchronization mechanism,
which will be explained in the next section. Finally, the Driver transfers the
data using the Media Access Control (MAC) layer, which implements the
low-level access to the communication media. This layer provides services
to transport an arbitrary sized contiguous block of bytes to an address in the
system. According to the platform definition, the HdS generation selects later
a processor-specific MAC implementation. In a simple case of a processor’s
primary bus, the MAC may use the processor’s memory interface.

Synchronization. For a typical master/slave bus, external synchronization is
required for a slave to indicate it being ready for a data transfer (e.g. required
data being available). The designer choses the type of synchronization for
each channel, selecting between polling or interrupt-based synchronization.
Furthermore, the designer may choose to share interrupts between sources to
reduce the overall number of interrupt pins. These choices are reflected in the
generated system TLM.

If polling was chosen, polling code is generated as part of the driver code.
An example is outlined in Listing 8.3. The CPU accesses the slave’s polling
flag to check whether the slave is ready for the communication. This access is
performed using the MAC services analogous to the external communication
(see the call to function Ahb masterMemRead() in Line 5). If the slave is not
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1 void c_link_CPU__HW_DLink_send ( /∗ . . . ∗ / ∗This ,
2 c o n s t void ∗pData , i n t l e n ) {
3 unsigned char f l a g ;
4 do { /∗ p o l l s l a v e i f r eady ∗ /
5 Ahb_masterMemRead ( /∗ . . . ∗ / ,
6 HW1_DLink_0_FLAG_ADDR , &f l a g , s i z e o f ( f l a g ) ) ;
7 i f ( f l a g ) { /∗ break i f r eady ∗ /
8 break ;
9 }

10 /∗ d e l a y f o r p o l l . p e r i o d ∗ /
11 TaskDelay ( HW1_DLink_0_POLL_DELAY ) ;
12 } whi le ( 1 ) ;
13 /∗ s u c c e s s f u l l y synch ’ ed , t r a n s f e r da ta now ∗ /
14 Ahb_masterMemWrite ( /∗ . . . ∗ / ,
15 HW1_DLink_0_DATA_ADDR , pData , l e n ) ;
16 }

Listing 8.3. Polling synchronization example.

ready, the polling code uses RTOS services to delay execution for the polling
period (see function call TaskDelay() in Line 11), and repeats polling. Once
determined that the slave is ready, the polling loop terminates (Line 8) and
transfers the data (Line 14).

In case of interrupt synchronization, the TLM contains a model of the in-
terrupt chain. In Fig. 8.4, for example, the chain consists of the PIC, the sys-
tem interrupt handler SysInt, the application-specific interrupt handler INTC,
the user interrupt handler UsrInt1 and UsrInt2. Finally, semaphore channels
(Sem1, Sem2) connect each interrupt handler with the driver code, so that the
(short) interrupt handler can start the (long) driver to handle the communica-
tion. To implement interrupt-based synchronization, our HdS generation pro-
duces a chain of correlated code. The next paragraphs describe the interrupt-
based synchronization code, following the event sequence when sending a
message from B5, which is mapped to a hardware component, to B2, which
is mapped to the processor. The event sequence is illustrated in Fig. 8.5.

At t0, the behavior B2 expects a message. With the message not being avail-
able, B2 waits on the semaphore Sem1 and yields execution to the next lower
priority task B3. At t1, behavior B5, that is mapped to HW2, reaches the code
to send the expected message and signals via interrupt INTC the availability
of the message to the processor core. On the way, the PIC sets the processor
interrupt Int. This in turn triggers the interrupt chain on the processor, which
we have labeled 1 through 4.

1. The low-level assembly interrupt handler preempts the currently running
task B3. It stores the current context on the stack and then calls the sys-
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Figure 8.5. Events in external communication.

tem interrupt handler. The low-level assembly interrupt handler, which
is part of the RTOS port is inserted from the software database.

2. The system interrupt handler (see half channel SysInt in Fig. 8.4) com-
municates with the PIC. It determines through memory mapped I/O
the highest priority pending interrupt. It then invokes the application-
specific interrupt handler (see half channel INTC in the TLM in Fig. 8.4).
The SysInt code is one element of the Hardware Abstraction Layer (HAL)
stored in the database.

3. Since the interrupt in this example is shared between HW1 and HW2,
the actual source of the interrupt is determined next. The application-
specific interrupt handler INTC determines the source of the interrupt by
reading the status registers in HW1 and HW2. Subsequently, INTC then
calls the corresponding User Interrupt Handler (in this case UsrInt2 of
Fig. 8.4).

4. Finally, UsrInt2 calls the semaphore Sem1 to release the driver code that
executes in the behavior B2. The semaphore channel uses the earlier
described internal communication services.

After releasing semaphore Sem1, the interrupt handler terminates. Subse-
quently, the task for B2 becomes ready and is scheduled. Finally, after the
context switch, B2 reads the data from HW2.

For HdS generation, we implement this chain on the processor. The code
falls into two distinct portions. The first part is application-independent, and
therefore can be stored in the software database. The second portion is applica-
tion-specific and has to be generated out of the system TLM. The code for steps
1 and 2 belongs to the first portion that is application-independent, and their
code is taken from the database. The code for steps 3 and 4, on the other
hand, is application-specific, and is generated (step 3 based on INTC, and step
4 based on UsrInt2).
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1 void ARM7TDMI_INTC_body( /∗ . . . ∗ / ∗ Thi s ) {
2 unsigned char f l a g ;
3 Ahb_masterMemRead ( /∗ . . . ∗ / ,
4 HW1_DLink_0_FLAG_ADDR , &f l a g , s i z e o f ( f l a g ) ) ;
5 i f ( f l a g ) {
6 c _ o s _ s e m a p h o r e _ r e l e a s e ( /∗ . . . ∗ / This −>sem1 ) ;
7 }
8 Ahb_masterMemRead ( /∗ . . . ∗ / ,
9 HW2_DLink_1_FLAG_ADDR , &f l a g , s i z e o f ( f l a g ) ) ;

10 i f ( f l a g ) {
11 c _ o s _ s e m a p h o r e _ r e l e a s e ( /∗ . . . ∗ / This −>sem2 ) ;
12 }
13 }
14

15 void ARM7TDMI_OS_CPU_main( /∗ . . . ∗ / ∗ T h i s ) {
16 /∗ . . . ∗ /
17 c _ o s _ s e m a p h o r e _ _ i n i t ( /∗ . . . ∗ / This −>sem1 ) ;
18 c _ o s _ s e m a p h o r e _ _ i n i t ( /∗ . . . ∗ / This −>sem2 ) ;
19 B S P _ U s e r I r q R e g i s t e r ( INTNR_int1handler ,
20 ARM7TDMI_INTC_body , /∗ . . . ∗ / ) ;
21 /∗ . . . ∗ /
22 }

Listing 8.4. Interrupt handler outline for shared interrupt.

Listing 8.4 outlines the generated code for an application specific interrupt
handler (as described for step 3) that is shared between two interrupt sources.
The handler sequentially checks the interrupt sources using the MAC commu-
nication services (e.g. Line 3). Once the handler finds the interrupt initiating
hardware, it releases the associated user task that executes the driver code (see
call to c os semaphore release() in Line 6).

In addition, startup code is necessary to setup the interrupt chain on the
processor side. For one, the application-specific interrupt handler needs to be
registered to the system interrupt handler, so that it executes upon receiving of
the associated interrupt. In this example, our HdS generator produces startup
code that registers application-specific interrupt handler INTC to the system in-
terrupt handler for execution upon receiving INTC on the PIC (see Listing 8.4,
Line 19). To gather the necessary information, it traverses the connectivity and
architectural information stored in the TLM. It also generates code to instanti-
ate the semaphore channel and inserts appropriate calls into the driver code.

8.4.2 Multi-Task Generation

When multiple tasks are mapped to the same processor, they have to be
dynamically scheduled to alternate their execution. Our multi-task genera-
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tion produces code that uses an underlying multi-task engine in order to con-
trol tasks and schedule them. We support two different approaches for multi-
tasking. First, we mainly focus on a traditional execution on top of an off-the-
shelf RTOS. Furthermore, we provide an alternative of interrupt-based multi-
tasking that can execute on a “naked” processor without any operating system.

RTOS-based Multi-Tasking Our main focus rests on targeting an off-the-
shelf RTOS. This ensures using a reliable, well-tested operating system that
offers great flexibility and often comes with significant tool support from the
RTOS vendor. Operating systems are available in a wide range and focus.
Often, they are highly configurable to tailor the OS to the application needs.
By configuration, the memory footprint can be minimized to fit the needs of
the embedded system under design.

Our multi-task generation makes use of a canonical OS interface, which we
call the RTOS Abstraction Layer (RAL), see Fig. 8.6 (left). The very thin RAL
(few hundred lines of (mostly inlined) code), abstracts from the particular OS’s
function names and parameters. We have chosen the RAL approach to limit the
interdependency between our generation and the actual target RTOS. To ensure
a generic API, we investigated different RTOS APIs (uCOS-II, vxWorks, eCos,
ITRON, POSIX) and chose common primitives for task scheduling, communi-
cation and synchronization.

Figure 8.6. Software stack RTOS-based (left), interrupt-based (right).

Although the investigated RTOS APIs provided all necessary interfaces, this
may not be the case for other RTOS APIs. In such cases, the RAL implements
an emulation of the required functions that is constructed out of the available
primitives. This approach guarantees that always an identical API, the RAL,
is available to the generated SW generation, regardless of the particular RTOS
implementation.

The input TLM contains mapping of behaviors to tasks (Task B2, Task B3)
and their scheduling parameters. For RTOS-based multi-tasking, our HdS gen-
eration extracts the task control information from the TLM and generates task
creation calls to the RAL. It also initializes the task’s parameter set of the TLM
(e.g. priority, stack size) on the target. From SLDL statements, which describe
parallel execution of behaviors, our HdS generation produces code that calls
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the RAL for task creation and release, and furthermore inserts code to join the
multiple threads of execution after their completion.

To give an example, Listing 8.5 shows a partial specification following the
system definition already shown in Fig. 8.2. It instantiates the three behaviors;
B1, B2 and B3. It executes first B1 (Line 8) followed by a parallel execution of
B2 and B3 (Lines 9 through 12).

Listing 8.6 outlines the generated C-code. The sequentially executing B1 is
directly called in the parent’s main function (see call TB1 main() in Line 5).
The parallel executing behaviors B2 and B3 are spawned using the RAL API
function TaskCreate() (see Line 6 and Line 7). Note that TaskCreate() both
creates a task and releases it for immediate execution. After spawning the
tasks, the parent task waits until the created tasks have terminated (Lines 9
and 10).

In addition to the task control, processor internal communication is trans-
lated to RTOS-based communication. For that, the standardized communica-
tion channels (as described for the input) are implemented on top of the RAL.
Our multi-task generation instantiates the target implementation and connects
the channels according to the TLM connectivity information.

Interrupt-based Multi-Tasking In the second case, targeting a “naked”
processor, concurrent software execution is performed without any RTOS. In-
stead, interrupts are utilized to provide multiple flows of execution. We support
this alternative for systems where RTOS execution is not desirable. This may
be the case, when the system consist of only very few tasks, the code is tar-
geted to execute on a DSP, or when strict memory footprint limitations rule out
utilizing an RTOS. We describe a motivating example for an interrupt-based

1 b e h a v i o r B0 ( /∗ . . . ∗ / ) {
2 /∗ . . . ∗ /
3 TB1 B1 ( /∗ . . . ∗ / ) ; /∗ i n s t a n t i a t e b e h a v i o r B1 ∗ /
4 TB2 B2 ( /∗ . . . ∗ / ) ; /∗ i n s t a n t i a t e b e h a v i o r B2 ∗ /
5 TB3 B3 ( /∗ . . . ∗ / ) ; /∗ i n s t a n t i a t e b e h a v i o r B3 ∗ /
6

7 void main ( void ) {
8 B1 . main ( ) ;
9 p a r {

10 B2 . main ( ) ;
11 B3 . main ( ) ;
12 }
13 }
14 } ;

Listing 8.5. Specification of behaviors.
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1 void TB0_main ( /∗ . . . ∗ / ) {
2 o s _ t a s k _ h a n d l e B2_ thd l ;
3 o s _ t a s k _ h a n d l e B3_ thd l ;
4 /∗ . . . ∗ /
5 TB1_main ( /∗ . . . ∗ / ) ;
6 B2_ thd l = T a s k C r e a t e ( TB2_main , /∗ . . . ∗ / ) ;
7 B3_ thd l = T a s k C r e a t e ( TB3_main , /∗ . . . ∗ / ) ;
8

9 T a s k J o i n ( B2_ thd l ) ;
10 T a s k J o i n ( B3_ thd l ) ;
11 }

Listing 8.6. Generated RTOS-based multi-tasking code outline.

Figure 8.7. Reactive task template input (left) and output (right).

solution in Sect. 8.5. This case implements a GSM speech codec on a DSP
with only two reactive tasks.

For our interrupt-based multi-tasking alternative, the RAL (see Fig. 8.6
(right)) implements a (very thin) RTOS emulation. It provides a subset of the
RTOS services needed for software execution (e.g. events, processor suspen-
sion, and interrupt registration). To give an intuitive explanation, the multi-task
generation converts the lowest priority task to execute in the processor main
function, and all other tasks are converted to execute in a state machine fashion,
in the context of their interrupt handlers.

More formally, we assume that each task is composed of a sequence of
computation (C), synchronization (S), and data transfers (T). Figure 8.7 (left)
shows an example sequence for one task. As described before, the driver code
for communicating with external hardware contains both synchronization and
communication. If only interrupts are used for synchronization, then the task
main function can be transformed into a state machine, as shown in Fig. 8.7
(right).

In the state machine, each synchronization point starts a new state. For ex-
ample, state ST2 was created due to synchronization point S1, and ST3 due
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1 void i n t H a n d l e r _ I 1 ( ) {
2 r e l e a s e ( S1 ) ; /∗ s e t S1 ready ∗ /
3 e x e c u t e T a s k 0 ( ) ; /∗ t a s k s t a t e machine ∗ /
4 }
5 void e x e c u t e T a s k 0 ( ) {
6 do {
7 swi t ch ( S t a t e ) {
8 /∗ . . . ∗ /
9 case ST1 : C1 ( . . . ) ;

10 S t a t e = ST2 ;
11 case ST2 : i f ( a t t e m p t ( S1 ) ) {
12 T 1 _ r e c e i v e ( . . . ) ;
13 } e l s e {
14 break ;
15 }
16 C2 ( . . . ) ;
17 S t a t e = ST3 ;
18 case ST3 : /∗ . . . ∗ /
19 S t a t e = ST1 ;
20 }
21 } whi le ( S t a t e == ST1 ) ;
22 }

Listing 8.7. Interrupt-based multi-tasking excerpt.

to S2. The state machine transitions to the next state upon successful synchro-
nization. For example, upon receiving of interrupt I1, the state machine would
transition from ST1 to ST2. Additional states are inserted to implement con-
ditional execution and loops. For example, the separation between the states
ST0 and ST1 has been introduced to accommodate the one-time execution of
the initialization code in C0.

The created task’s state machine is then executed in the interrupt handlers,
which were initially chosen for synchronization of that task (in this example,
the handlers of I1 and I2). In order to preserve the task priorities, the interrupts
have to be chosen accordingly. A higher priority task has to exclusively use
higher priority interrupts than a lower priority task. Consequently, the lowest
priority task executes in the main task (Tmain), the startup task of the processor.

Each local variable of a task’s main function is integrated into a global data
structure. Hence, the task execution no longer relies on an own stack, and may
be executed in separate calls to the task’s state machine.

Listing 8.7 outlines the generated C implementation. Please assume for ex-
planation that the task’s state machine is currently executing in the interrupt
handler for I1, ST1 is the current state, and that computation C1 has just fin-
ished. Next, the synchronization S1 is checked (line 11). In case the synchro-
nization has not yet occurred, the state machine terminates (line 14). Conse-
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quently, the do-while loop, the function executeTask0, as well as the interrupt
handler, all terminate. Thus, the processor can then serve a lower priority in-
terrupt, or the main function.

Upon receiving the next interrupt I1, the system interrupt handler calls the
registered user interrupt handler intHandler I1 (see line 1). In line 2, the han-
dler signals that S1 is ready and then calls the state machine again (line 3). The
current state is ST2, therefore the condition in line 11 is tested again. It now
passes, since the synchronization has occurred, receives the data (line 12), and
subsequently executes the computation C2 in line 16.

The switch-case statement (lines 7 to 20) is surrounded by a do-while-loop,
which is required to implement loops between states. In this example, the loop
is necessary to transition from state ST3 back to ST1 without terminating the
interrupt handler.

8.4.3 Binary Image Generation

The final aspect of HdS generation is the generation of a complete target
binary. Our generation uses a cross-compiler tool chain (gcc) that is specific
to the target processor and binary format. It generates configuration and make-
files for the binary image creation, which select components from the software
database, configure these components, and in addition control the compilation
and linking of generated code. This process is illustrated in Fig. 8.8.

An important aspect for establishing a flexible generation flow, with a wide
variety of configurations with many processor and hardware combinations, is
an effective design of the database. It is essential to identify the dependencies

Figure 8.8. Generation of target binary.
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of each database component with respect to the selected hardware/software
configuration, e.g. the selected processor, RTOS, cross compiler, and board
components. Capturing all dependencies is necessary for correctly selecting a
component. On the other hand, overly specializing a component would lead to
code duplication within the database, and yield a code bloat.

The matrix of arrows in Fig. 8.8 symbolizes the dependencies when select-
ing a component. Usually the most specific element is the RTOS port, since it
depends on the RTOS type, the processor, and the cross-compiler (for exam-
ple, for the call frame layout and the stack layout needed for the task creation).
Our software generation also produces a customized Makefile, which selects
the components according to the architecture information in the TLM, and then
uses the cross-compiler to generate the target binary. Automating this step has
the advantage, that the TLM serves as the sole input to the binary generation,
avoids duplication of the system configuration (i.e. in the Makefile), and fur-
ther minimizes the user effort.

8.5 Experimental Results

In this section, we describe some practical applications of your approach.
We have applied it to a set of real-life examples. Two examples are covered
in more detail. The first is a telecommunication example, the second uses
an application from the automotive domain. Following that, we describe our
generation results for several applications to more quantitatively compare the
results.

8.5.1 Interrupt-based Implementation Example

We start by showing a specific example of an interrupt-based multi-tasking
implementation. We implemented a GSM 06.60 [ETSI96] encoder and de-
coder on a Motorola DSP 56600 platform. As shown in Fig. 8.9, the DSP is
assisted by a HW accelerator and four HW blocks that deal with input and out-
put. The HW accelerator is dedicated to the computation-intensive codebook
search of the encoding process.

Figure 8.9. Media example of GSM transcoding.
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In our application, the DSP only executes two reactive tasks (encoding and
decoding). Also, an RTOS port for this particular DSP was not easily avail-
able. Therefore, we applied our interrupt-based multi-tasking approach to this
example. Following a shortest-job-first scheduling policy, the longer execut-
ing encoder is assigned the lower priority of the two tasks. Hence, the encoder
will execute in Tmain. The higher priority (shorter) decoder task is transformed
into a state machine. According to the architecture decisions, the decoder uses
IntB for synchronization. Hence, the generated decoder’s state machine will
execute in the interrupt handler of IntB.

Figure 8.10 shows the state machine for the decoder task, which consists
of 4 states. The states ST1 and ST2 have been created due to synchronization
(S1, S2). The interrupt IntB is used for both synchronization points. A GSM
speech frame consists of four sub-frames. Accordingly, ST2 is repeated four
times. The states ST0 and ST3, respectively, are inserted to accommodate ini-
tialization, which executes only at the beginning, and post processing, which
executes once per frame.

Figure 8.10. State machine for GSM decoder.

The input data is read by T1 and T2, which receive the initial parameters and
the compressed sub-frame data, respectively. The decoded speech samples are
transferred by T3 without any additional synchronization into the output HW
block. This particular transfer is performed without a preceding synchroniza-
tion, since the receiving I/O HW is always ready.

Figure 8.11 shows the time line for transcoding one sub-frame after the ini-
tialization has already passed. The processor is suspended at the start of the
time-line and waits for input data. At t1, IntA signals availability of input data,
and the registered interrupt handler is executed. The handler triggers event
e1 which the main task, Tmain is waiting on. Hence, after termination of the
interrupt handler Tmain is resumed. After some processing, the encoder feeds
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Figure 8.11. GSM transcoding execution.

the codebook accelerator. The encoder then suspends on event e2 waiting for
results from the accelerator. Again, the processor is suspended.

Later at t3, IntB signals the availability of sub-frame data for decoding. The
decoder state machine, which currently is in state ST2, is executed in the IntB
handler. It reads the input data (T2), decodes the sub-frame (Csub), and transfers
in T3 the decoded speech samples to the output HW. Again, the latter needs no
synchronization, since the output HW in the architecture is always available.
At t4, while decoding (in Csub), the decoder is preempted by the higher priority
IntC, which announces that the codebook search has finished. Subsequently,
the interrupt handler releases the event e2. After the decoder interrupt handler
has finished, the encoder resumes at t6 and finishes at t7. The same cycle re-
peats at t8 with the next sub-frame. Throughout the execution of our testbench,
3451 interrupts are triggered. More results are later available in Table 8.2.

8.5.2 Exploration Example

We use an automotive example to illustrate the exploration capabilities with
respect to comparing the two multi-tasking approaches. We model an Elec-
tronic Control Unit (ECU) containing an ARM7TDMI processor [ARM7]. The
processor executes three tasks; anti-lock break control, RPM computation, and
engine fan controller. Six sensors and actuators are connected to the ECU via
two CAN busses (Fig. 8.12). Three further sensors are integrated in the ECU
and are attached directly to the processor bus.

We have generated code for both approaches, first toward execution on
top of the RTOS μCOS-II [Lab02], and second for interrupt-based execution.
μCOS-II is a small, highly configurable RTOS that is mostly implemented in
ANSI C. Ports of this RTOS are available for a wide range of processors, which
dramatically simplified the integration.

Table 8.1 compares the generated RTOS-based and interrupt-based multi-
tasking implementations. For the latter case, we mapped the lowest priority
task, the fan control, to Tmain, while the other two tasks were converted to state
machines for execution in interrupt handlers.
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Figure 8.12. Automotive example application.

Multi-tasking RTOS-based Interrupt-based
Footprint 36224 Bytes 21052 Bytes
Alloc. Stacks 4096 Bytes 1024 Bytes
CPU Busy Cycles 6.706 MCycles 5.106 MCycles
# Interrupts 1478 1027

Table 8.1. Automotive example results.

As the results in Table 8.1 show, the automotive example profits from the
interrupt-based solution. Avoiding the RTOS code yields a smaller memory
footprint, since a simpler, more specific code is used instead. The footprint re-
flects the size of the ROM-able image and includes data, text and BSS segment.
Neither solution uses dynamic memory allocation.

The interrupt-based multi-tasking results also in a smaller stack size, since
all tasks share the same stack. Additionally, the interrupt-based solution shows
a lower CPU consumption. The CPU busy cycles drop from 6.7 MCycles to
5.1 MCycles. This drop is due to the simpler implementation. The RTOS
startup is avoided and fewer cycles are needed for the OS functionality (e.g.
for event handling and context switching) due to simplicity.

To give an inside view of the system’s performance, we analyze the interrupt
latency. For the purpose of our measurements, we focus on the delay from the
RPM sensor triggering the interrupt wire (to the PIC) to the first bus transaction
appearing on the bus to read the RPM sensor.

In the interrupt-based approach, the latency until reading the RPM sensor is
shorter (1001 cycles instead of 1794 cycles). This significant reduction is due
to the execution in the interrupt handler itself. To compare, in the RTOS-based
solution, the sensor is read in the task context, which results in an additional
event communication and a context switch.

Also, we counted the number of occurring interrupts, which drops from
1478 to 1027. The interrupt-based solution does not use the timer for keeping
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the system time, which explains the lower number of interrupts. On the other
hand, the number of interrupts for data synchronization remains constant in
both solutions.

Our automotive example clearly shows the benefits of the interrupt-based
execution. We position it, where applicable, as an effective alternative in spe-
cial cases (very few tasks, strict optimization requirements, or unavailability of
an RTOS). Since either implementation can be generated automatically, a com-
parative exploration becomes easily possible.

8.5.3 Generation Results

To show the benefits of an automatic HdS generation, we have applied our
HdS generation to a range of six target applications. The first two applica-
tions are the already described GSM transcoder and the car ECU. In addition,
we examined a JPEG encoder, an MP3 decoder implemented in software, an
MP3 decoder with 3 hardware accelerators, and a combined system with MP3
decoding and JPEG encoding.

Table 8.2 summarizes our generation results. The top section quantifies
each target applications’ complexity. It ranges from the simple JPEG with
2 I/O blocks to the combined application Mp3 HW + JPEG, which uses 6 I/O
blocks, 3 HW accelerators, and 4 busses.

Example GSM Car JPEG Mp3 Mp3 Mp3 HW
SW HW + JPEG

Complexity
IO/ HW/ Bus 4/ 1/ 1 9/ 2/ 3 2/ 0 /1 2/ 0/ 1 2/ 3/ 4 6/ 3/ 4
SW Behaviors 112 10 34 55 54 90
Channels 18 23 11 10 26 47
Tasks/ ISRs 2/ 3 3/ 5 1/ 2 1/ 3 1/ 8 3/ 14
Lines of Code, RTOS-based
Application – 153 818 13914 12548 13480
HdS – 649 210 299 763 1186
Lines of Code, Interrupt-based
Application 5921 210 797 13558 12218 –
HdS 377 575 187 256 660 –
Execution, RTOS-based
CPU Cycles – 6.7 M 127.7 M 185.8 M 44.5 M 174.6 M
CPU Load – 0.9% 100.0% 100.0% 30.9% 86.6%
Interrupts – 1478 805 4195 1144 1914
Execution, Interrupt-based
CPU Cycles 42.0 M 5.1 M 126.7 M 182.3 M 43.3 M –
CPU Load 42.5% 0.7% 100.0% 100.0% 30.5% –
Interrupts 3451 1027 726 4078 1054 –

Table 8.2. SW generation and execution results.
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Next, the table shows the number of generated lines of code for application
and HdS, each for the RTOS-based and the interrupt-based multi-tasking. As
described earlier, we have not implemented the GSM in an RTOS-based so-
lution, since we had no RTOS port available for the DSP. Also, we have not
realized the Mp3 HW + JPEG example in the interrupt-based form, since it
uses services we do not intend to replicate with interrupts. In the examples
with HW acceleration, the HdS code is larger due to the extra effort in com-
munication. Overall, a significant amount of code is generated (e.g. 1186 lines
for Mp3 HW + JPEG).

Automatically generating the software binaries yields a significant gain in
productivity. In all examples, our HdS generation completes in less than a
second. On the other hand, manually writing the HdS would take days. Thus,
the code generation in our approach has a significant impact on reducing the
overall design time of embedded systems with HdS context.

To validate the correctness of the generated code, we executed each synthe-
sized target binary on a virtual platform. For that, we integrated a Motorola
proprietary instruction set simulator (ISS) for the DSP, and the SWARM ISS
[Dal00] for the ARM7TMDI.

Each application executes functionally correct, yielding an output matching
the specification. Table 8.2 shows the execution statistics of the ISS cosimula-
tion. As in the car example, fewer CPU cycles (busy cycles only) are consumed
in the interrupt-based solution. However, with an increasing computation com-
plexity, the relative improvement becomes marginal. Similar to before, avoid-
ing the OS timer tick reduces the number of processed interrupts.

8.6 Conclusions

Embedded software generation is an essential aspect of implementing to-
days SoC. It avoids the tedious and error prone manual implementation. In
this chapter, we have presented a systematic approach for generating the final
target binaries from an abstract specification model. We have shown software
generation as an integral part of an ESL flow. Beginning from an abstract
model containing the application specification, our flow automatically gener-
ates a system TLM based on the designer’s architecture decisions. From the
generated TLM, the software generation then automatically generates the bi-
naries for each processor in the system. Together, this completes the ESL flow
for the software, offering a seamless solution from an abstract system model
down to an implementation on embedded processors.

The presented HdS generation addresses three parts: communication gen-
eration, multi-task generation, and binary image generation. It generates com-
munication drivers, interrupt handlers, and adjusts for the target multi-tasking.
Our approach supports targeting toward an existing RTOS. Furthermore, it of-
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fers an alternative to use interrupts for multi-tasking if an RTOS-based execu-
tion is undesirable.

We have demonstrated automatic generation using six real-life target appli-
cations: different media applications and a control system. The ESL flow with
integrated software generation addresses a wide range of target processors,
platforms and applications.

Automating the tedious and error-prone process of manual firmware devel-
opment results in significant gains in productivity. Not only is the automatic
generation much faster than a manual implementation, it also allows the de-
signer to focus on the essential algorithms, without the burden of implemen-
tation details. Further, with the automatic generation, alternative solutions can
be quickly and easily generated. This allows for a rapid exploration of the
embedded software design space, e.g. when investigating alternative mapping
solutions.

Acknowledgments

The authors thank the SCE research team at the Center for Embedded Com-
puter Systems at UC Irvine for their technical support. The authors also thank
the editors and reviewers of this book for their valuable feedback in improving
this chapter.

References

[AMBA] Advanced RISC Machines Ltd (ARM). AMBA Specification
(Rev. 2.0), ARM IHI 0011A.

[ARM7] Advanced RISC Machines Ltd. (ARM). ARM7TDMI (Rev. 4)
Technical Reference Manual, 2001.

[BBB+05] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco
Menichelli, and Mauro Oliver. MPARM: exploring the multi-
processor SoC design space with SystemC, VLSI Signal Process.,
41:169–182, 2005.

[BCG+97] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh,
Attila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto
Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki, and Bas-
sam Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The POLIS Approach. Kluwer Academic, Dordrecht, 1997.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling: an
overview. In Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, Newport
Beach, CA, October 2003.



230 HARDWARE-DEPENDENT SOFTWARE

[CKL+00] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, Marc Mas-
sot, Sandra Moral, Claudio Passerone, Yosinori Watanabe, and
Alberto Sangiovanni-Vincentelli. Task generation and compile
time scheduling for mixed data-control embedded software. In
Proceedings of the Design Automation Conference (DAC), Los
Angeles, CA, June 2000.

[CoWa] CoWare. Virtual Platform Designer. www.coware.com.

[Dal00] Michael Dales. SWARM 0.44 Documentation. Department of
Computer Science, University of Glasgow, November 2000.
www.cl.cam.ac.uk/~mwd24/phd/swarm.html.

[DGP+08] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin,
Lukai Cai, Haobo Yu, Samar Abdi, and Daniel Gajski. System-
on-Chip Environment: A SpecC-based framework for heteroge-
neous MPSoC design. EURASIP J. Embed. Syst., 2008.

[ETSI96] European Telecommunication Standards Institute (ETSI). Digital
cellular telecommunications system; Enhanced Full Rate (EFR)
speech transcoding, 1996. GSM 06.60.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. Sys-
tem Design with SystemC. Kluwer Academic, Dordrecht, 2002.

[GYJ01] Lovic Gauthier, Sungjoo Yo, and Ahmed A. Jerraya. Automatic
generation and targeting of application-specific operating systems
and embedded systems software. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., 20(11), November 2001.

[GYNJ01] Patrice Gerin, Sungjoo Yoo, Gabriela Nicolescu, and Ahmed A.
Jerraya. Scalable and flexible cosimulation of SoC designs with
heterogeneous multi-processor target architectures. In Proceed-
ings of the Asia and South Pacific Design Automation Conference
(ASPDAC), Yokohama, Japan, January 2001.

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerst-
lauer, and Shuqing Zhao. SpecC: Specification Language and De-
sign Methodology. Kluwer Academic, Dordrecht, 2000.

[HPSV03] F. Herrera, H. Posadas, P. Sánchez, and E. Villar. Systematic em-
bedded software generation from SystemC. In Proceedings of the
Design, Automation and Test in Europe (DATE) Conference, Mu-
nich, Germany, March 2003.

[HYL+06] Sungpack Hong, Sungjoo Yoo, Sheayun Lee, Sangwoo Lee, Hye-
Jeong Nam, Bum-Seok Yoo, Jaehyung Hwang, Donghyun Song,
Janghwan Kim, Jeongeun Kim, HoonSang Jin, Kyu-Myung Choi,
Jeong-Taek Kong, and SooKwan Eo. Creation and utilization of

http://www.coware.com
http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html


High-Level Development, Modeling and Automatic Generation of HdS 231

a virtual platform for embedded software optimization: an indus-
trial case study. In Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, Seoul, South
Korea, October 2006.

[ISO94] International Organization for Standardization (ISO). Reference
Model of Open System Interconnection (OSI), second edition,
1994. ISO/IEC 7498 Standard.

[KBR05] Matthias Krause, Oliver Bringmann, and Wolfgang Rosenstiel.
Target Software generation: An approach for automatic mapping
of SystemC specifications onto real-time operating systems. Des.
Autom. Embed. Syst., 10(4):229–251, 2005.

[KKW+06] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers,
and H. Meyr. A SW Performance estimation framework for early
system-level-design using fine-grained instrumentation. In Pro-
ceedings of the Design, Automation and Test in Europe (DATE)
Conference, Munich, Germany, March 2006.

[Lab02] Jean J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP
Books, Gilroy, 2002.

[NG05] Andre Nacul and Tony Givargis. Lightweight multitasking sup-
port for embedded systems using the phantom serializing com-
piler. In Proceedings of the Design, Automation and Test in Eu-
rope (DATE) Conference, Munich, Germany, March 2005.

[RPZM93] Sebastian Ritz, Matthias Pankert, Vojin Zivojnvic, and Heinrich
Meyr. High-level software synthesis for the design of communi-
cation systems. IEEE J. Select. Areas Commun., April 1993.

[SGD07] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Multi-
faceted modeling of embedded processors for system level de-
sign, Abstract. In Proceedings of the Asia and South Pacific De-
sign Automation Conference (ASPDAC), Yokohama, Japan, Janu-
ary 2007.

[SGD08] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Auto-
matic generation of hardware dependent software for MPSoCs
from abstract system specifications. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASPDAC),
Seoul, Korea, January 2008.

[YDG04] Haobo Yu, Rainer Dömer, and Daniel Gajski. Embedded software
generation from system level design languages. In Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-
DAC), Yokohama, Japan, January 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


