
Chapter 5

HW/SW INTERFACE

Implementation and Modeling

Wolfgang Ecker, Volkan Esen, Thomas Steininger and Michael Velten

Abstract This chapter addresses HW/SW interface implementation and modeling. As
introduction, basic concepts regarding HW/SW interfaces on both HW and SW
side are presented in detail. The focus is on several aspects of register and bit
field read/write access, address mismatch, synchronization, and data alignment.
The HW micro-architecture is outlined in block diagrams, the SW code is listed
in C-code snippets. As new contributions, data flow abstraction for HW/SW
models and consistently derived RTL models, TLM models, and C code by using
a template approach are presented.

Keywords: Address Offset, Base Address, Bit Field, C, Low/High Level Driver, Endian-
ness, Interrupt, Register, SystemC, Template, Volatile, XML

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



96 HARDWARE-DEPENDENT SOFTWARE

5.1 Introduction

HW/SW interfaces at the lowest level deal primarily with the transfer of
data from one storage element to another. These storage elements are either
registers in the CPU, registers in the HW peripheral to be accessed, or cells
in a memory array. By execution of data move operations—primarily by a
processor but also by specific blocks as DMA (direct memory access) units—
the data is transferred from one address to another. These data move operations
are either coded as assembler instructions or compiled from a higher level pro-
gramming language. This seemingly simple mechanism gains high complexity
in today’s embedded systems:

Thousands, even tens of thousands of registers can be found in complex
SoCs. Flat or hierarchical bus systems, potentially each with an own
protocol, are used to access all these registers from one or more CPUs.
Alignment of data is only one issue that has to be considered in this
context.

Data transfer can be initiated by polling. Alternatively, an interrupt can
be executed by a CPU or a DMA (direct memory access) device. It
requires careful implementation to avoid side effects and to fulfill all
time constraints of all registers to be accessed.

The number of different kinds of registers invented by designers is al-
most unlimited. The simple read/write of a cell can be associated with
a variety of additional functionality that either constrains the read/write
access or causes side effects. The driving force here is either the limita-
tion of available addresses or performance optimization of the HW/SW
interface. To give two examples: A register is cleared after it has been
read in order to show that data has been consumed already or a trigger
impulse is generated and passed to the hardware core of a component in
order to request the execution of some algorithm.

At the software side also a simple mechanism is executed: Data is moved from
one object or address to another object or address. Complexity arises here from
the wide range of interpretation of the values, the effects hidden behind these
data transfers, and the interaction of the data transfer with the control flow of
the rest of the software. Especially the interrupt signaling mechanism shall
be mentioned here, which is another HW/SW interface to signal some request
from a hardware component to the software.

In order to cope with the complexities of the HW/SW interface, formal mod-
els and specifications have been developed uniquely describing the structure
and semantics of the interface. Based on the formal description, parts of the
hardware side of the interface and the software side of the interface can be
generated.



HW/SW Interface 97

In this chapter, we discuss first implementation issues of the HW/SW in-
terface from the ground up. A simplified serial interface peripheral device, in
the following referred to as SIF, is used throughout the chapter as an exam-
ple for the various alternatives and options of the HW/SW interface. Though
being simplified, this serial interface device contains all important use cases
related to a general industrial HW/SW interface. The serial interface is con-
tinuously extended and the final version is described in a data sheet like—data
book oriented—style (see Sect. 5.5).

Based on the serial interface device, various aspects of the HW/SW inter-
faces are discussed. They include reading and writing complete data words
to registers, access to single bits, synchronization between HW and SW, and
register address mismatch.

Finally, modeling aspects including models and meta models are discussed.
An outline of further aspects concludes the chapter.

5.2 Reading and Writing Data Words

As a first step towards the HW/SW interface, full data word read and write is
introduced. For that a SIFv1 is introduced having only the TXD REG and RXD
REG. Afterwards, the flags data transmitted and data received are
experimentally implemented, each flag as an own register.

5.2.1 General Approach

Today’s most often used HW/SW interface is a so called memory mapped
HW/SW interface. Here, memory elements of hardware devices are mapped
into the address space of the CPU executing the software. An address decoder
takes (mostly the upper) bits of the address and converts them to select signals
of the memory and the peripherals to be accessed. Potentially, additional ad-
dress signals are passed to the memory and the hardware devices in order to
select internal memory elements. An example is depicted in Fig. 5.1.

When the select signal is active, the memory elements are read when the
read signal is active, or written when the write signal is active. In modern
bus systems, address, data, enable, and read/write signals may be applied syn-
chronously in different time windows in order to enable, for instance, pipelined
access. They might also be encoded differently, for instance a read-not-write
signal R Wbar may replace the read RD and write WR signals in presence of a
bus enable signal.

When the CPU executes a read or write operation, the signal values are set
in an appropriate way in order to move one word from the memory cell or a
peripheral register to the CPU register, and vice versa. This read or write CPU
operation may be part of instructions that move data from and to variables of a
higher level programming language. In this way, a memory-mapped HW/SW



98 HARDWARE-DEPENDENT SOFTWARE

Figure 5.1. Simplified signal level connection of the SIF.

interface allows programing of a peripheral register interface using a higher
level language.

As an alternative to the memory mapped HW/SW interface option, special
instructions and hardware infrastructure may be provided as well. This option
is often used for 8-bit CPUs, as Zilog’s Z80 (see [Wik]), since the memory
space is limited and shall be reserved for data memory / program memory pur-
pose (i.e. no registers and no memory mapped I/O). As a drawback, this kind of
interface has no correspondence in higher level languages, so that only assem-
bler instructions can be used to transfer values over the interface. Higher level
languages require some assembler code in-lining to support register access in
this case.

In the future, also register mapped HW/SW interfaces may be introduced
as a part of an I/O co-processor strategy. A first step in this direction is imple-
mented in MIT’s raw architecture (see [MIT]). Here, data can be transferred
from one CPU to another by moving data to and from specific registers. Also,
this kind of interface can only be programmed in assembler or with inlined as-
sembler, since selected register access is not possible in higher level languages.



HW/SW Interface 99

In the future, concurrent descriptions of the HW/SW interface may arise that
can be used to automatically compile code for such concepts as well.

In the examples, a 32-bit CPU is assumed to be used supporting both 32 bit
address size and 32 bit data size. The CPU is able to read and write bytes as
well.

5.2.2 Full CPU Word Registers

As a first step, we introduce in the following two registers of the serial in-
terface device—one can be written and one can be read. The memory space
allocated by this first version is shown in Table 5.1.

To transmit data via the serial channel, this data must first be written to the
TXD register. Data received from the serial channel can be read from the RXD
register. This register has an offset of 0 to the base address of the peripheral as
well.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32

Table 5.1. SIFv1 register overview.

Shown in Fig. 5.1 is an address decoder that computes the enable signals for
all memory and peripheral devices communicating with the CPU. In the serial
interface example, the address decoder takes the upper 8 bits of the address to
compute 4 out of 256 possible enable signals. The byte address support of the
CPU requires additional 2 address bits. So, each enabled device has available
32−8−2 = 22 addresses for internal registers or memory space. So, a 16 MB
memory (4 · 220 addresses of 4 bytes each), for instance, can be enabled with
one of these signals.

Assuming for the rest of this chapter, that the serial interface enable is active,
when the upper 8 address bits take the value 0xFF, the base address of the
serial interface is 0xFF000000. The memory address space reserved for the
serial interface now ranges from this base address 0xFF000000 to address
0xFFFFFFFF. In turn, the serial interface only provides memory cells for the
base address 0xFF000000 and leaves the other addresses unused.

Accessing these registers from a C program can be done generally in two
ways, object-based or function-based. In the first way, types and objects are
declared and initialized to read and write the registers via those objects. In the
second way, a function layer is introduced to allow access to the registers.

In the object-based alternative, first a pointer is declared for each register as
shown in Listing 5.1.

The volatile-keyword in the listing gives the compiler the hint that the
object may change without CPU interaction. So, an access to that object is not



100 HARDWARE-DEPENDENT SOFTWARE

# i n c l u d e < s t d i n t . h >

v o l a t i l e u i n t 3 2 _ t ∗ r x d _ r e g _ p t r , ∗ t x d _ r e g _ p t r ;

Listing 5.1. Type and object declaration for direct register access.

removed by the optimizer of the C compiler. The type uint32 t is declared
in stdint.h and specifies an unsigned 32 bit type independent from the
target CPU.

The pointers are then initialized with the base address of the serial interface
as shown in Listing 5.2. The distinction between the rxd-register and the txd-
register is done in hardware via the read and write signal. Options herefore are
discussed later in this chapter.

r x d _ r e g _ p t r = ( v o l a t i l e u i n t 3 2 _ t ∗ ) 0 xFF000000 ;
t x d _ r e g _ p t r = ( v o l a t i l e u i n t 3 2 _ t ∗ ) 0 xFF000000 ;

Listing 5.2. Pointer initialization for direct object access.

The base address in these functions can be replaced by symbolic names—
either constants or macros—, which will be shown in Listing 5.3. By doing so,
the addresses can also be set via compile options.

# d e f i n e SIF_BASE_ADDRESS 0 xFF000000

r x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) SIF_BASE_ADDRESS ;
t x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) SIF_BASE_ADDRESS ;

Listing 5.3. Pointer initialization for direct object access with symbolic values.

To preserve type consistency, the integer literal is cast to the register pointer
type. Finally, transmitted data can then be accessed by dereferencing the point-
ers as shown in Listing 5.4. The type of the variable rx is assumed to be
uint32 t. The integer literal is cast to that value.

/∗ r e a d i n g a v a l u e from s e r i a l s t r eam ∗ /
rx = ∗ r x d _ r e g _ p t r ;

/∗ w r i t i n g a v a l u e t o t h e s e r i a l s t r eam ∗ /
∗ t x d _ r e g _ p t r = ( u i n t 3 2 _ t ) 0 x12345678 ;

Listing 5.4. Accessing the SIF register.

In the function-based alternative, first types and access functions are de-
clared, as shown in Listing 5.5. In this simple case, these functions contain



HW/SW Interface 101

exactly the statements of the object-based access alternative. These functions
can then be called—which is not shown in the code snippet—to transmit data
via the SIFv1.

void t r a n s m i t ( u i n t 3 2 _ t d a t a ) {
∗ (0 xFF000000 ) = d a t a ;

}

u i n t 3 2 _ t r e c e i v e ( ) {
re turn ( u i n t 3 2 _ t ) ∗ (0 xFF000000 )

}

Listing 5.5. Type and function declaration for data transmission.

Two further coding options are in use for accessing registers. The first one
uses macros instead of functions. This is more efficient, if the compiler does
not support function inlining optimizations. The other option uses classes,
class variables, and class methods to access the peripheral registers. Here, the
access to the registers of the serial peripheral device can be controlled more
efficiently (e.g., via private and public access rights, or via additional checks),
but the C++ compiler is mostly not able to produce as efficient a code as the
C-compiler, since the overhead caused by the class-based approach is often not
eliminated.

5.2.3 Registers Storing One Bit Each:
A First Approach to Bit Fields

It is quite obvious that a two register interface so far only works correctly if
the hardware read/write protocol blocks the read and write transactions until
they have been successfully finished. This means in the serial interface device
case, the read is blocked until a piece of data is successfully received from the
serial stream, and a write is blocked until a piece of data has been correctly
transmitted to the serial stream. This also blocks the CPU and prevents it of
from performing other activities. This is no ideal solution!

To avoid blocking the execution of other parts of SW, the SW must be able
to check if the serial interface can transmit further data, or if the serial interface
has received new data that can be read. Two additional registers, each storing
only zero or one, can offer this information to the software. The device is now
called SIFv2.

The interface of the SIFv1 extends as shown in Fig. 5.2 and Table 5.2.
Two additional, readable registers are introduced that also require two addi-

tional address lines for distinction. A multiplexer is used to internally select the
appropriate register value. For bus accesses, the SIFv2 now has one writable
register and three readable registers. The ready-for-transmission register has
an offset of 1, and the data-available register has an offset of 2.



102 HARDWARE-DEPENDENT SOFTWARE

Figure 5.2. Simplified signal level register access.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF TRANSMITTED R 1 32 32
SIF RECEIVED R 2 32 32

Table 5.2. SIFv2 register overview.

For this purpose, the SW interface for readable registers must be extended
as well. As an initial solution, two more register pointers are declared and
initialized, as shown in Listing 5.6.

The offset of the new registers is hard-coded in each pointer initialization
and added here to the base address. Since the CPU supports byte access, the
increment between two registers is 4.

The read access to the new status registers is similar to the received data as
shown in Listing 5.4.

Listing 5.7 shows a more elegant and more frequently used option. Here,
a C struct is used to describe all registers. Since each of the entries in the
C struct has the size of the CPU word, the address of each entry automatically
increases by 4. The explicit increment of addresses, as used in Listing 5.6, is
not necessary here.



HW/SW Interface 103

v o l a t i l e u i n t 3 2 _ t ∗ r x d _ r e g _ p t r ,
∗ t x d _ r e g _ p t r ,
∗ d a t a _ t r a n s m i t t e d _ p t r ,
∗ d a t a _ r e c e i v e d _ p t r ;

/∗ I n i t i a l i z e r e f e r e n c e s t o r e a d a b l e r e g i s t e r s ∗ /
r x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000000 ;
d a t a _ t r a n s m i t t e d _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000004 ;
d a t a _ r e c e i v e d _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000008 ;

/∗ I n i t i a l i z e r e f e r e n c e s t o w r i t a b l e r e g i s t e r s ∗ /
t x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000000 ;

Listing 5.6. Type and object declaration for additional flags.

v o l a t i l e u i n t 3 2 _ t ∗ t x d _ r e g _ p t r ;

s t r u c t r _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d ;

} ∗ r _ r e g _ p t r ;

Listing 5.7. Type and pointer declaration for data transmission.

In order to access the registers, the dereferencing mechanism of C is used,
as shown in Listing 5.8. Since a pointer is used to refer to the registers, the
dereferencing operator −> is used.

/∗ r e a d i n g a v a l u e from s e r i a l s t r eam ∗ /
rx = r _ r e g _ p t r −> r x d _ r e g ;

/∗ read f l a g s ∗ /
r e a d y _ f o r _ t r a n s m i s s i o n = r _ r e g _ p t r −> d a t a _ t r a n s m i t t e d ;
d a t a _ a v a i l a b l e = r _ r e g _ p t r −> d a t a _ r e c e i v e d ;

Listing 5.8. Object access to flag registers.

u i n t 3 2 _ t i s _ r e a d y _ f o r _ t r a n s m i s s i o n ( ) {
re turn ( u i n t 3 2 _ t ) ∗ (0 xFF000000 ) [ 1 ] ;

}

u i n t 3 2 _ t i s _ d a t a _ r e a d y ( ) {
re turn ( u i n t 3 2 _ t ) ∗ (0 xFF000000 ) [ 2 ] ;

}

Listing 5.9. Function access to flag registers.



104 HARDWARE-DEPENDENT SOFTWARE

The function-based approach—to show an alternative access in Listing 5.9—
makes use of the C index operator. Beginning with the base address of the
serial interface peripheral, the rxd reg and the transmission flags can be ac-
cessed by indices 0, 1, and 2, respectively. The compiler converts this to an
address increment of the size of referenced elements in byte. In our case, the
size is 32 bits or 4 bytes. So, the index of the transmission flags are addressed
under 0xFF000004 or 0xFF000008.

Also a mix of both approaches—object-based register access and method-
based register access—is possible. Doing so, the data structures of the object-
based access are used by the functions to implement the access. As benefit
over pure object-based access, the functions provide an additional layer, which
hides future HW changes from higher level software. Also additional sanity
checks are possible to be embedded here.

Registers holding transmission status and other things often use just one
bit, or a few bits. This is waste of address space but potentially acceptable
if a sufficient number of address lines, that means a sufficiently large address
space, is available. However, peripheral register accesses cause performance
penalties. Merging several of those bits efficiently in one register can reduce
the number of register accesses (e.g. for peripheral configuration, or check)
and thus improve performance.

Further on, it is quite error prone that readable and writable registers have
a different address size and information located at different addresses. It is
more clear and safe to have one linear address space only, which in turn would
allow having one C struct specifying all registers—the readable registers, the
writeable registers and the read/writable registers—at the SW side. Both of
these issues are discussed in the next section in more detail.

5.3 Bit Fields

The need for bit fields sharing one register has been introduced in the previ-
ous section. Now, different aspects of the bit field based interface are discussed.
It is shown that in this application registers lose their role as memory element
and take the role of a shell accessed under a specific address. In other words,
registers take the role of an alias.

Bit fields—now representing the memory elements—are associated with
that shell, which specifies their word access from the CPU. Internal bit offsets,
as shown for the serial interface in Table 5.9, are used for bit addressing in
the data word. Besides the data registers, txd-register and rxd-register, and the
bit fields data transmitted and data received also the bit fields con-
trolling the parity bit (tx enable parity, tx odd parity, rx enable
parity, and rx odd parity) are introduced.



HW/SW Interface 105

5.3.1 Introducing Bit Fields

In order to introduce bit fields, a third version of the serial interface SIFv3,
is introduced. The registers are shown in Table 5.3.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF FLAG REG R 1 32 32

Table 5.3. SIFv3 register overview.

Readable Bit Fields Instead of having two separate registers storing the two
flags data transmitted and data received, one common flag reg-
ister is used. This flag register stores the data transmitted flag at bit
number 0, and the data received flag at bit number 1.

All other bits with numbers from 2 to 31 are unused. Since no hardware
resources need to be spent to store the unused bits, the bit fields (and not the
registers) specify the hardware size and properties of the required flipflops or
registers. Reading from those bits cannot be avoided, since the CPU always
reads a full 32 bit word. Depending on the specification, an undefined value or
a constant, for instance 0 as used in the example, is returned for each of those
bits. The updated diagram of the serial interface is shown in Fig. 5.3.

Figure 5.3. Registers with readable bit fields.

To access these flags, so-called bit fields in C are used. First, as shown in
Listing 5.10, a C struct specifies the flags and unused bits of one register. Next,



106 HARDWARE-DEPENDENT SOFTWARE

a struct is defined that specifies the readable registers: the rxd reg data
register and the flag reg flag register.

v o l a t i l e u i n t 3 2 _ t ∗ t x d _ r e g _ p t r ;

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
c o n s t u i n t 3 2 _ t unused : 3 0 ;

}

s t r u c t r _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;

} ∗ r _ r e g _ p t r ;

Listing 5.10. Type and object declaration for bit field based register access.

The bit fields are then accessed with the dereferencing operator −>, as
shown in Listing 5.11. The bit fields holding the flags are selected as struct
elements in the corresponding register using the dot operator. The way of
reading a full data word from a register remains unchanged.

/∗ r e a d i n g a v a l u e from s e r i a l s t r eam ∗ /
rx = r _ r e g _ p t r −> r x d _ r e g ;

/∗ read f l a g s ∗ /
r e a d y _ f o r _ t r a n s m i s s i o n = r _ r e g _ p t r −> f l a g _ r e g . d a t a _ t r a n s m i t t e d

;
d a t a _ a v a i l a b l e = r _ r e g _ p t r −> f l a g _ r e g . d a t a _ r e c e i v e d ;

Listing 5.11. Register flag access via C bit fields.

A function-based coding option is shown in Listing 5.12. Instead of using
a pre-initialized pointer, which would have been possible here as well, hard-
coded addresses are used. The data register is read without offset, the flag reg-
ister is read via base address and index offset 1. The compiler, knowing the ad-
dress scheme of the CPU, translates this to the address 0xFF000004. In case
of bits not residing at bit position 0, the bit fields themselves are then extracted
via masking the unused bits by performing a bitwise and operation with a cor-
responding bit mask. Potentially—as needed for the data ready flag—
the bits have to be right aligned upfront by using the C shift right opera-
tion.

Writable Bit Fields In order to write configuration information to the serial
interface, an additional writable register with bit fields is introduced as SIFv4
in Fig. 5.4 and Table 5.4.



HW/SW Interface 107

u i n t 3 2 _ t i s _ r e a d y _ f o r _ t r a n s m i s s i o n ( ) {
re turn ( u i n t 3 2 _ t ) (∗ ( 0 xFF000000 ) [ 1 ] ) & 0 x00000001 ;

}

u i n t 3 2 _ t i s _ d a t a _ r e a d y ( ) {
re turn ( u i n t 3 2 _ t ) ( ( ∗ ( 0 xFF000000 ) [ 1 ] ) >> 1) & 0 x00000001 ;

}

Listing 5.12. Register flag access via C shift and logical operators.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF FLAG REG R 1 32 32
SIF CFG REG W 1 32 32

Table 5.4. SIFv4 register overview.

Figure 5.4. Registers with writable bit fields.

A decoder is inserted here in order to decode address values to register select
signals.

None of these bit fields can be written individually, so writing to one bit
field automatically modifies the other bit fields. However, the configuration
register—and so the bit fields—cannot be read, since reading address 1 gets
the value of the flag register.

For this purpose, as a first solution, a shadow variable is introduced that
holds the last written value to the configuration register. Setting or clearing



108 HARDWARE-DEPENDENT SOFTWARE

a bit field is then first performed on the shadow variable, and afterwards the
shadow variable is written to the register.

s t r u c t c o n f i _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t : 2 8 ;

}

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.13. Type and object declaration for writing configuration bit fields.

/∗ shadow v a r i a b l e f o r c o n f i g u r a t i o n r e g i s t e r w i t h b i t f i e l d s ∗ /
s t a t i c c o n f i g _ r e g _ t c o n f i g _ r e g _ s h a d o w ;

/∗ w r i t e f l a g s v i a shadow v a r i a b l e ∗ /
c o n f i g _ r e g _ s h a d o w . t x _ e n a b l e _ p a r i t y = 1 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

/∗ w r i t i n g a v a l u e t o s e r i a l s t r eam ∗ /
w _ r e g _ p t r −> t x d _ r e g = 0 x12345678 ;

Listing 5.14. Flag configuration via C bit fields.

As shown in Listing 5.13, structs for written bit fields are declared in the
same way as for read bit fields. The use of the above mentioned shadow vari-
able is shown in Listing 5.14. Since setting a bit field with one statement is in
this case no longer possible, the use of functions for setting and clearing the
bits, as shown in Listing 5.15, is the preferable solution. Besides encapsulation
of the shadow register handling, additional checks may be included as well.

Listing 5.15 shows several alternatives how access functions for registers
and bit fields can be built. The function write cfg tx enable parity
sets the bit fields via bit wise or operation. As an alternative, the C bit fields
and the structs defined for object based register access can be used as shown
in function write cfg tx odd parity. Without them, a bit wise and
operation with 0xFFFFFFFE would have been used (bit masking of the least
significant bit). Finally, the function write cfg tx odd parity com-
bines two flag accesses on the shadow variable before writing it to the registers.
This improves performance, since the shadow variable needs to be written to



HW/SW Interface 109

/∗ shadow v a r i a b l e f o r c o n f i g u r a t i o n r e g i s t e r w i t h b i t f i e l d s ∗ /
s t a t i c c o n f i g _ r e g _ t c o n f i g _ r e g _ s h a d o w ;

void w r i t e _ c f g _ t x _ e n a b l e _ p a r i t y ( ) {
c o n f i g _ r e g _ s h a d o w | = 0 x00000001 ;
∗ (0 xFF000000 ) [ 1 ] = c o n f i g _ r e g _ s h a d o w ;

}

void w r i t e _ c f g _ t x _ o d d _ p a r i t y ( ) {
c o n f i g _ r e g _ s h a d o w . t x _ o d d _ p a r i t y = 1 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

}

void s e t _ r x _ p a r i t y ( boo l o d d _ p a r i t y ) {
c o n f i g _ r e g _ s h a d o w . r x _ o d d _ p a r i t y = o d d _ p a r i t y ;
c o n f i g _ r e g _ s h a d o w . r x _ e n a b l e _ p a r i t y = 1 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

}

void c l e a r _ r x _ p a r i t y ( ) {
c o n f i g _ r e g _ s h a d o w . r x _ e n a b l e _ p a r i t y = 0 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

}

Listing 5.15. Register flag access via C shift and logical operators.

the register only once, but semantic information about the content of the bit
fields is required in this case.

Mixed Readable and Writable Bit Fields Conceptually, redundancy as ex-
istent in the configuration register and its shadow variable is a source of bugs.
Furthermore, shadowing provides no appropriate solution if a bit field is also
modified by peripheral internal actions. Hence, in a new version SIFv5, the
writable bit fields shall be readable as well.

Therefore, the readable bit fields in the flag register are extended by the
writable bit fields as shown in Listing 5.16 and Table 5.5. In order to make
them read/writable, the write must be triggered by CPU write to the appropri-
ate address, and the value must be multiplexed to the output by a CPU read.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF FLAG REG RW 1 32 32

Table 5.5. SIFv5 register overview.



110 HARDWARE-DEPENDENT SOFTWARE

s t r u c t f l a g _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t : 2 6 ;

}

s t r u c t r _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e f l a g _ r e g _ t f l a g _ r e g ;

} ∗ r _ r e g _ p t r ;

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.16. Readable and writable register with flags.

Having this structure available, the flags can be changed consistently, as
shown in Listing 5.17.

In function write cfg tx enable parity, first the current values of
the flags are read from the status register, then aligned, and next assigned to the
temporary shadow variable config reg shadow. Afterwards, the flag is set
in the temporary variable. Finally, the updated flags stored in the temporary
variable are assigned to the bit fields in the register. The temporary variable
config reg tmp is not necessary, the flag update might have been done in
one expression alone.

void w r i t e _ c f g _ t x _ e n a b l e _ p a r i t y ( ) {
c o n f i g _ r e g _ t c o n f i g _ r e g _ t m p = ( c o n f i g _ r e g _ t )

( ( ( ∗ 0 xFF000000 ) [ 1 ] ) >> 2) & 0 x0000000F ;
c o n f i g _ r e g _ t m p | = 0 x00000001 ;
∗ (0 xFF000000 ) [ 1 ] = c o n f i g _ r e g _ t m p ;

}

Listing 5.17. Bit field update by reading and writing a complete register.

Access control for bit fields Another alternative, SIFv6, to overcome shadow
registers is the introduction of additional bits in combination with new coding
as it is shown in Table 5.6.

For one flag, generally three options are possible when adding an additional
bit for control:



HW/SW Interface 111

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF CONFIG REG W 1 32 32

Table 5.6. SIFv6 register overview.

The two bits in the register act as RS signals to the flipflop storing the
flag. If “00” is assigned, then nothing changes, if “01” is assigned, then
the flipflop, i.e. the flag, is set, and if “10” is assigned, then the flipflop
is cleared. The assignment “11” is illegal.

The two bits in the register act as JK signals to the flipflop. As expected
from the JK-flipflop behavior, this has the same behavior as the RS op-
tion, except the case “11” is legal and forces the toggle of the flag.

One bit in the register acts as new value for the flag and the other as
enable. This alternative can also be used to enable several bits in paral-
lel, for instance, to write a configuration value that has more than two
alternatives.

It is obvious to say that control in the options above may be coded in a
different way, for instance in a low active way. Having enable and data in
different registers is also an option but requires three register accesses: enable–
write–disable.

Listing 5.18 shows the application of the third alternative to the parity con-
figuration bits. Each bit, marked by the name suffix val is guarded by an
enable bit with the name suffix en.

s t r u c t c o n f i g _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 4 ;

}

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.18. Bit field access via access control.



112 HARDWARE-DEPENDENT SOFTWARE

The flags can now be easily set or reset, as shown in Listing 5.19. Here, the
tx enable bit is set and the tx odd parity is cleared. The bit fields
configuring the RX path are not changed, since the corresponding enable bits
are not set.

/∗ e n a b l e p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g = 0X00000003 ;

/∗ s e t odd p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g = 0X00000008 ;

Listing 5.19. Register bit field access with guarded value access.

Unfortunately, the bit fields in C cannot be used since two of them cannot
be assigned in one statement. For this reason, it is better to define the two
bits—one for the value and one for the enable—in one entry of the struct.
Making use of such a type definition, as shown in Listing 5.20, finally allows
to set or clear the bit with one statement, as shown in Listing 5.21. Here, also
the symbolic names set bit, clear bit, and keep bit are defined as
constants. Macros are also an option here.

c o n s t a n t u i n t 3 2 _ t s e t _ b i t : 2 = 3 ;
c o n s t a n t u i n t 3 2 _ t c l e a r _ b i t : 2 = 1 ;
c o n s t a n t u i n t 3 2 _ t k e e p _ b i t : 2 = 0 ;

s t r u c t c o n f i g _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 4 ;

}

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.20. Bit field via dual-bit access control.

/∗ e n a b l e p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g . t x _ e n a b l e _ p a r i t y = s e t _ b i t ;

/∗ s e t odd p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g . t x _ o d d _ p a r i t y = c l e a r _ b i t ;

Listing 5.21. Register flag access via enabled setting of bit fields.



HW/SW Interface 113

If the bit fields are modified by the peripheral core as well and new values
have an influence on the new settings of the bit fields, then they must be made
readable as well.

A structured approach to Bit Fields. All options shown above have both
advantages and disadvantages. Avoiding side effects partially is not possible,
if bit fields are changed by the peripheral core; bit fields have to be specified
twice in the read registers and write registers, in order to allow reading and
writing them; reading and writing bit fields might have to be done at different
addresses or bit offsets; re-assignment of bit sets might be needed.

For this reason, we propose to reserve one address for each register, inde-
pendently if it is written, read, or read and written. The read and write signal is
no longer used to distinguish bit fields. Furthermore, we request, that registers
that are written by software, can also be read by software.

This implies that multiplexers and decoders must be implemented here in
such a way that values and bit fields can be accessed under the same address
and bit position for read and write access.

The application of this methodology to an industrial style peripheral is shown
after discussion of impact of bus infrastructure and a textual specification of the
serial interface peripheral later on.

5.4 Register Address and Data Mismatch

In this section, advanced topics on the HW/SW interface are discussed.
They deal mostly with not having a bijective mapping between CPU address
space and peripheral address space. To give examples, the IP may have holes
in the data and address space, multiple registers may be accessed under one
address, or one register may be accessed under multiple addresses.

5.4.1 Hierarchical Bus

In order to relate the advanced topics to real architecture structures, our bus
is extended in direction of a hierarchical bus (see Fig. 5.5). The bus is split in
a CPU bus—mostly a high speed bus—and a peripheral bus—mostly a slower
bus with potentially less address signals and data signals.

As interface between these buses, a so called bridge is introduced. In the
example, the bridge is selected by the same signals as formerly the serial in-
terface unit. Since the bridge introduces a new hierarchy in the global address
map, the addressing scheme so far needs to be updated slightly. Thus, the first
8 address bits are now used to select devices connected to the CPU bus. The
bridge to the peripheral bus can be considered as such a device. The remaining
24 address lines are passed to the bridge. The upper 8 lines (lines 24 to 16)



114 HARDWARE-DEPENDENT SOFTWARE

Figure 5.5. Simple hierarchical bus system.

are decoded within the bridge in order to select a specific device (i.e., periph-
eral) connected to the peripheral bus. With regard to these 8 address bits, the
address of the serial interface unit is now assumed to be 0xFF. Due to this
adapted address map, the new base address of the serial interface unit from the
CPU perspective is 0xFFFF0000. This value is the compound of the base
address of the bus bridge (i.e., 0xFF000000) and the base address of the
serial interface unit within the peripheral bus (i.e., 0xFF0000). This yields
16 bits for addressing resources within the serial interface peripheral. Taking
into account that the lower two bits are reserved for byte addressing, 14 bits re-
main for addressing internal registers of the serial interface which restricts the
maximum number of addressable 32-bit registers of the serial interface unit to
16 · 210—still a more than sufficient number.



HW/SW Interface 115

5.4.2 Byte Addressing

Most embedded 32 bit CPUs also support half-word and byte addressing.
In this case, not only 32 bits can be accessed at once, but also just 16 bits and
8 bits. Byte addressing with 32 bit wide RXD registers and TXD registers does
not provide any benefit, in fact, it makes the access worse. To show this case, a
SIFv7 is introduced in Table 5.7. Here, each register has its own address. The
addressable unit has changed from 32 bit to 8 bit.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 8
SIF RXD REG W 1 32 8
SIF CONFIG REG W 2 32 8
SIF FLAG REG R 3 32 8

Table 5.7. SIFv7 register overview.

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e unsigned d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e unsigned d a t a _ r e c e i v e d : 1 ;
v o l a t i l e unsigned : 6 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e unsigned t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e unsigned t x _ o d d _ p a r i t y : 1 ;
v o l a t i l e unsigned r x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e unsigned r x _ o d d _ p a r i t y : 1 ;
v o l a t i l e unsigned unused : 4 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e u i n t 8 _ t t x d _ r e g [ 4 ] ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;

} ∗ r e g _ p t r ;

Listing 5.22. Struct for byte addressing.

Listing 5.22 shows a data structure definition that matches with byte ad-
dressing. The flag register and configuration register is filled up to 8 bits
only. The 32 bit data is now represented by a 4 element array of the data
type uint8 t. This uint8 t is also taken from the stdint.h include file.
If 4 byte alignment of the structs is ensured—as is the case in the example—
also the type uint32 t can be used instead of the 4 element array. In both
cases, the data word can be written at a glance using CPU word access—but
only by using ugly casting.



116 HARDWARE-DEPENDENT SOFTWARE

If 4 byte alignment of the structs cannot be guaranteed—as would be if the
8 bit flag register preceded the 4x 8 bit data register—the data word must be
assigned byte by byte, which would cause a 4x overhead in writing the data.
Both, flag register and config register can be accessed in any case by a byte
access without any penalty.

If only 8 bit data registers were assumed—now in SIFv8—the access would
become simpler. This is shown in Table 5.8 and Listing 5.23.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 8 8
SIF RXD REG W 1 8 8
SIF CONFIG REG W 2 8 8
SIF FLAG REG R 3 8 8

Table 5.8. SIFv8 register overview.

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t : 6 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 4 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 8 _ t r x d _ r e g ;
v o l a t i l e u i n t 8 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;

} ∗ r e g _ p t r ;

Listing 5.23. Struct for byte addressing with byte data words.

As a drawback, only 8 bit values can be transmitted. Also (not shown), the
hardware architecture must be changed accordingly.

5.4.3 Endianness

Mix of byte access and word access becomes challenging if different orders
of bytes are implemented on the CPU side and on the serial interface side. This
implementation aspect, also known as endianness, requires additional adapta-
tion effort, either on the HW side, or on the SW side.



HW/SW Interface 117

Best known are big endian, the numeric option, where the most significant
byte comes first, and little endian, the literal option, where the most significant
byte comes last. The little endian option also has the advantage of that a byte
value followed by three zero byte values is read in the same way in case of
byte, half-word, and word access.

Also known is a middle endian or mixed endian option (16 bit), where the
most significant half word comes last and the least significant half word comes
first. The advantage of this version is the seamless support of 16 bit encoded
characters.

The easiest and most efficient adaptation of different endian encodings is
on the hardware side. First, the peripheral can have a generic parameter, that
allows to statically reconfigure a peripheral interface to big endian or little en-
dian. This allows avoiding the remapping effort since the endianness of the
CPU and the peripheral can be made identical for the cost of rewiring some
signals, in other words, for free. A remapping of the bytes at the ports of the
peripheral has the same effect. Also an easy and quite efficient adaptation is
the use of CPUs that can be dynamically reconfigured to support big endian
or little endian reading and writing of 4 byte words. This costs some hard-
ware overhead but has the advantage that a mix of big endian and little endian
peripherals can be supported as well.

Quite an overhead must be spent to adopt endianness in software. List-
ing 5.24 shows a possible implementation.

BE = ( ( ( LE ) > >24) | ( ( ( LE )&0x f f 0 0 0 0 ) >>8) |
( ( ( LE )&0x f f 0 0 ) <<8) | ( ( LE ) < <24) )

Listing 5.24. Expression for converting little endian to big endian.

Sometimes—mainly in context of serial transmission—the term endianness
is also used in conjunction with bits. In this case, the terms byte endianness
and bit endianness are applied to make a distinction. Byte endianness is the
classical endianness as described above. Bit endianness relates to bit orienta-
tion and defines if inside one byte, the most significant bit is first and the last
significant bit is last, or vice versa.

5.4.4 Busses with Different Data Width

A hierarchical bus system also allows busses with different data widths,
for instance a CPU bus size of 32 bit and a peripheral bus size and register
size of 8 bit each. All presented codings shown above can be kept if the bus
bridge serializes word access on the CPU side into 4 byte accesses—of course
considering the right endianness.



118 HARDWARE-DEPENDENT SOFTWARE

Another option is to use the lower byte of the CPU word only and ignore
the higher three bytes. In this case, a lot of unused bytes have to be filled into
the struct representing the registers in software. This is shown in Listing 5.25.

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t : 6 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 4 ;

}

s t r u c t u n u s e d _ u p p e r _ b y t e s _ t {
v o l a t i l e u i n t 3 2 _ t : 2 4 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 8 _ t r x d _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused1 ;
v o l a t i l e u i n t 8 _ t t x d _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused2 ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused3 ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused4 ;

} ∗ r e g _ p t r ;

Listing 5.25. Struct for LSB byte addressing with byte data words.

5.4.5 Several Registers Share One Address

Not only read and write signals are used to reduce consumed address space
of a peripheral. Also other techniques have been invented to extend the number
of addressable registers and bit fields. These techniques are also heavily used
in 8 bit CPU systems but lose their importance as more and more address space,
for instance in 32 bit CPUs, becomes available.

Auto-shadow is the first technique to be discussed. Here, one register is
visible at a specific address after hardware or software reset. After having
written to such a register, the register hides behind another register that can be
accessed instead. This is mostly applied for configuration registers, since they
are mostly configured once. On the software side, these two registers share
their address by being modeled as a union, as it is shown in Listing 5.26.



HW/SW Interface 119

s t r u c t c o n f i _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 8 ;

}

union w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.26. Type and object declaration for writing hidden configuration bit fields.

Writing these registers does not distinguish between the union or struct ver-
sion. The dot-operator is used in both cases. However, it must be ensured that
the hidden register is accessible when needed.

Another technique is the use of indexing bit fields. This can be done by
interpreting one part of a register as a value and the other as index. Also,
value and index can come from different registers. Writing to a register re-
quires in the first case to merge index and data into one word—comparable
with merging bit field information as discussed above. Writing to a register
in the second case requires an overhead of two write accesses, which may be
acceptable if the index, that means the bit field to be written to, changes only
infrequently.

5.4.6 One Register is Accessible via Several Addresses

This is exactly the opposite hardware implementation approach as described
in the section above. Here, one register or bit field can be accessed under
more than one address in the peripheral’s address space. Since this technique
allocates more addresses in the address space than absolutely necessary, it finds
its application more in 32 bit CPUs.

The first reason for such a technique is compatibility with older versions.
So to say, an alias to the old address is preserved. In the SW side of the in-
terface, two registers are specified in the register struct, but using different
names.

The second, and probably more important reason is the support of burst or
block transfers by the bus protocol. This burst transfer moves blocks from
one address to another—or the cache. To apply this protocol, for instance to
send data stored in the memory via the serial interface, the txd-register must
be accessible under a range of addresses. The register struct can be easily



120 HARDWARE-DEPENDENT SOFTWARE

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 3 0 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 8 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 3 2 _ t unused1 ;
v o l a t i l e u i n t 3 2 _ t unused2 ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;
v o l a t i l e u i n t 3 2 _ t r x d _ r e g [ 3 2 ] ;
v o l a t i l e u i n t 3 2 _ t t x d _ r e g [ 3 2 ] ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g _ a l i a s ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g _ a l i a s ;

} ∗ r e g _ p t r ;

Listing 5.27. Type and object declaration for writing hidden configuration bit fields.

extended by putting an array—here of size 32—instead of a single element to
the register struct. This is also known as mirror size 32.

Listing 5.27 shows exemplarily how alias registers and memory space for
allocation of data registers have an impact on the register struct. First, two un-
used registers are introduced to keep the flag register and config register at their
corresponding places. After the config registers follows the allocated space—
implemented as arrays as described above—and finally the alias registers.

5.4.7 Multiple SIF-Peripherals in One System

If more than one serial interface has to be used in a system, several base
addresses have to be served from the software point of view. This can be easily
achieved by declaring and initiating two register pointers.

To access those peripherals, either the code has to be duplicated, for instance
in object based access, or a register pointer has to be passed to the functions
accessing the serial interfaces. The latter case is shown in Listing 5.28.

void w r i t e _ c f g _ t x _ e n a b l e _ p a r i t y ( r e g _ t ∗ r e g _ p t r ) {
r e g _ p t r −> c o n f i g _ r e g | = 1 ;

}

Listing 5.28. Setting and clearing bit fields with reading.



HW/SW Interface 121

To call the functions, the struct declaration of Listing 5.22 is needed. As
pointers, now a sif1 reg ptr and a sif2 reg ptr must be declared (not
shown in a listing). These pointers must be initialized with the serial interfaces’
base addresses before they can be used in a call to those functions.

5.5 Textual Specification of the SIF

The following section gives an overview of the SIF peripheral. The hard-
ware interfaces are explained, followed by the description of its registers and
bit fields and their specification. The registers including their bit fields are the
basic building blocks of the HW side of the HW/SW interface of the peripheral.

5.5.1 Overview

The SIF model can be used for connecting two hardware systems via a serial
communication protocol.

Figure 5.6 shows the basic structure of the SIF peripheral model. The SIF
contains four different hardware interfaces—the bus interface, the external in-
terfaces, and an interface for interrupts. A detailed description of these inter-
faces will be given later on.

Figure 5.6. SIF structure overview.

Besides the hardware interfaces, the SIF model contains several registers as
shown in Fig. 5.6. These registers are accessible from the CPU core (this de-
notes the CPU where the SW is executed) over the bus interface. Therefore,
the registers are an essential part of the HW/SW interface. The SW can con-
figure the behavior of the SIF by writing to the control and protocol registers.
Furthermore, it can configure the baud rates for transmission and reception by
writing to the clock rate register. The SW can clear interrupts by writing to the



122 HARDWARE-DEPENDENT SOFTWARE

IRQ clear register and it can query the peripheral status by reading from the
status register. Data to be transmitted is written to the TX data (TXD) register,
and received data can be retrieved by reading from the RX data (RXD) register.

Depending on the current protocol and control register settings, the TX and
RX state machines perform different algorithms which influence the transmis-
sion and reception (e.g., heading reversal or bit inversion of transmitted/re-
ceived bits). A detailed description of the registers including their bit fields is
given later in this section.

5.5.2 Hardware Interfaces

Bus Interface. The SIF peripheral model can be connected to a bus through
its bus interface. This bus interface acts as a slave when connected to a bus.
Hence, the SIF cannot actively request a bus access. It reacts on read and write
accesses from devices connected to the bus as master. The structure of the SIF
bus interface is specified corresponding to the applied bus protocol—in this
example a simple bus protocol.

The CPU core, which is usually connected as a bus master, can access the
registers of the SIF through this bus interface. For selecting a specific register
of the SIF, the core needs to set an address (in this case the sum of the SIF base
address and the internal offset of the targeted register). The decoding of the
register offset is implemented within the SIF. In case of a write access, the data
from the bus is routed to the addressed register. In case of a read access, the
content of the addressed register is made visible on the bus. Accesses to SIF
registers, where applicable, trigger further actions, for instance starting of the
TX state machine or clearing of an interrupt.

External TX Interface. The external TX interface of the SIF enables the
data transmission to a connected external peripheral module or another SIF.
Data is transmitted actively through this interface, therefore it is specified as
a master interface. If data transmission is enabled, the data, which is written
from the core to the TXD register, is directly transmitted to the connected
external module.

External RX Interface. The module which is connected to the external RX
interface of the SIF, can actively send data to the SIF. Therefore, this interface
is specified as slave. The SIF can only receive data through this interface if the
connected external module transmits data and the reception is enabled. If the
serial reception has finished, the received data is written to the RXD register.
An interrupt can be scheduled to notify the CPU core that data is available.
Hence, the core can read the content of the RXD register.

Interrupt Interface. The interrupt interface of the SIF model contains all
available interrupts as outgoing ports. This interface acts as a master. The in-



HW/SW Interface 123

terrupt ports are connected to the Interrupt Control Unit (ICU) of the system.
The ICU handles all peripheral interrupts and notifies the core to serve an in-
terrupt. The core in turn initiates an interrupt service routine corresponding to
the active interrupt.

5.5.3 Registers and Bit Fields

As mentioned before, registers are key elements in the context of HW/SW
interfaces. Table 5.9 provides an overview of all registers of the SIF including
some general register parameters. These parameters are defined as follows:

Offset: Specifies the address of the register relative to the base address
of the peripheral

Width: Specifies the data width of the register in terms of bits

AddrUnit: Specifies the addressable unit of the register in terms of bits
(e.g., AddrUnit = 8 denotes that one address value addresses 8 bits of
data)

MirrorSize: Specifies the number of consecutive addresses a register
can be accessed through

Register Offset Width AddrUnit MirrorSize
SIF TXD REG 4 32 8 1
SIF CTRL REG 8 32 8 1
SIF MODE REG 12 32 8 1
SIF PRTC CFG REG 16 32 8 1
SIF CLK RATE REG 20 32 8 1
SIF IRQ CLEAR REG 24 32 8 1
SIF RXD REG 28 32 8 1
SIF STAT REG 32 32 8 1

Table 5.9. SIF register overview.

The TXD register and RXD register are used for data transmission and data
reception. The CTRL register is used for enabling or disabling data transmis-
sion or reception of the SIF. Furthermore, mode and interrupt behavior can be
configured here. The protocol behavior of the SIF can be configured by writ-
ing to the PRTC CFG register. Activated interrupts can be cleared using the
IRQ CLEAR register. The core can retrieve the current status of the SIF by
reading the content of the STAT register. The transmission and reception rate
can be controlled with the CLK RATE register.

A register can be seen as an alias for the offset address. The actual values
are accessible through the bit fields it contains. The complete protocol con-
figuration of the SIF, like parity settings, inversion, etc. happens through the



124 HARDWARE-DEPENDENT SOFTWARE

PRTC CFG register. Therefore, this register needs to be structured into bit
fields which are referring to specific protocol settings. A detailed description
of the registers including their bit fields is given in the following sections.

Register SIF TXD REG. The TXD register is written by the core. Its con-
tent is transmitted through the external TX interface. Table 5.10 shows the bit
fields of the TXD register including their parameters.

Offset: specifies the offset of the bit field within the register in bits

Width: specifies the width of the bit field in bits

AccessExt: specifies the external access type of the bit field via the bus
interface (e.g., from the core)—read only (R), write only (W), read and
write (R/W)

AccessInt: specifies the internal access type of the bit field from inside
the SIF (e.g., from the state machines)

The TXD register contains only one bit field which covers the complete register
width. It is writable and readable from the core, and only readable internally.
Every time the core writes data to the register and the transmit bit field, respec-
tively, the TXD state machine gets notified and transmits the data by accessing
the content of the bit field internally.

BitField Offset Width AccessExt AccessInt
transmit 0 32 R/W R

Table 5.10. Register SIF TXD REG bit fields overview.

Register SIF CTRL REG. The mode and control configuration of the SIF
happens through the CTRL register which is structured into ten bit fields as
shown in Table 5.11.

Transmission can be enabled or disabled by setting the transmit enable bit
field. In case the transmission of the SIF is disabled, the content available in
the TXD register will not be sent. The value is stored until the transmission is
enabled.

A similar behavior applies to the receive enable bit field which is used to
enable or disable the data reception of the SIF. In disabled state, any incoming
data through the external RX interface is ignored.

Interrupts for successful or failed data transmission and reception, respec-
tively, can be enabled or disabled by setting the interrupt on * bit fields.



HW/SW Interface 125

BitField Offset Width AccessExt AccessInt

interrupt enable on transmit 0 1 R/W R
interrupt enable on transmit error 1 1 R/W R
transmit enable 2 1 R/W R
reserved0 3 1 R/W R
interrupt enable on receive 4 1 R/W R
interrupt enable on receive error 5 1 R/W R
receive enable 6 1 R/W R
reserved1 7 1 R/W R

Table 5.11. Register SIF CTRL REG bit fields overview.

Register SIF MODE REG. The operation mode of the SIF can be config-
ured by setting the loop back and echo mode bit fields within the MODE reg-
ister. In loop back mode, the SIF loops the transmitted data back into the RX
state machine. In echo mode, received data is transmitted instantly through the
external TX interface. The bit field structure of the MODE register is shown in
Table 5.12.

BitField Offset Width AccessExt AccessInt

loop back 0 1 R/W R
echo mode 1 1 R/W R

Table 5.12. Register SIF MODE REG bit fields overview.

Register SIF PRTC CFG REG. The TX and RX protocol behavior of the
SIF can be specified by writing the bit fields of the PRTC CFG register. Ta-
ble 5.13 gives an overview of the bit field specification of the PRTC CFG reg-
ister. The bit field tx stop bit2 specifies whether a second stop bit should be
appended to the data. Parity checking can be activated with tx enable parity,
and the tx odd parity bit field specifies if an even or odd parity bit should be
appended. The tx inversion and tx heading bit fields are used for data inversion
and reversal of data heading, respectively. The SIF supports different character
length values for transmission or reception—8 bit, 16 bit, and 32 bit. The TX
character length can be specified with the tx character length bit field.

The same bit fields are available for the RX protocol with respective mean-
ings.

Register SIF CLK RATE REG. The settings of the CLK RATE register
define the baud rate for transmission and reception. The bit field specification



126 HARDWARE-DEPENDENT SOFTWARE

BitField Offset Width AccessExt AccessInt

tx stop bit2 0 1 R/W R
tx enable parity 1 1 R/W R
tx odd parity 2 1 R/W R
tx heading 3 1 R/W R
tx inversion 4 1 R/W R
tx char length 5 6 R/W R
reserved0 11 5 R/W R
rx stop bit2 16 1 R/W R
rx enable parity 17 1 R/W R
rx odd parity 18 1 R/W R
rx heading 19 1 R/W R
rx inversion 20 1 R/W R
rx char length 21 6 R/W R
reserved1 27 5 R/W R

Table 5.13. Register SIF PRTC CFG REG bit fields overview.

is shown in Table 5.14. The clock rate for the TX data path can be speci-
fied within the tx clock rate bit field and the rate for the RX path within the
rx clock rate bit field. The value of these bit fields is interpreted as a multiplier
to the bus clock period. The baud rate defines the speed at which the serial bits
are shifted out or read in, respectively.

BitField Offset Width AccessExt AccessInt

tx clock rate 0 16 R/W R
rx clock rate 16 16 R/W R

Table 5.14. Register SIF CLK RATE REG bit fields overview.

Register SIF IRQ CLEAR REG. Active interrupts of the SIF can be clear-
ed by writing the corresponding interrupt ID into the irq clear bit field within
the IRQ CLEAR register. The register specification is shown in Table 5.15.

BitField Offset Width AccessExt AccessInt

irq clear 0 4 R/W R

Table 5.15. Register SIF IRQ CLEAR REG bit fields overview.

Register SIF RXD REG. The bit field specification of the RXD register is
shown in Table 5.16. The RXD register contains only one bit field with the



HW/SW Interface 127

same width as the register itself. This receive bit field is declared as external
read only. If the SIF receives data through its external RX interface, the core
can read the received data by accessing this bit field.

BitField Offset Width AccessExt AccessInt

receive 0 32 R W

Table 5.16. Register SIF RXD REG bit fields overview.

Register SIF STAT REG. The access type of all bit fields within the STAT
register is specified as external read-only as it is shown in Table 5.17. The core
can access status information of the current state of the SIF by reading the bit
fields of this register. The bit fields data transmitted and data received contain
information about a successful data transmission and reception, respectively.
The bit fields data transmit error and data receive error contain information
about a failed data transmission and reception, respectively.

BitField Offset Width AccessExt AccessInt

data transmitted 0 1 R R/W
data received 1 1 R R/W
data transmit error 2 1 R R/W
data receive error 3 1 R R/W

Table 5.17. Register SIF STAT REG bit fields overview.

5.6 Register Header File

A C header file, as explained in the beginning, is generated to enable an
easy software access to the registers and bit fields of the SIF. The template
based generation framework is described in Sect. 5.9. The generated header
file contains a struct and a union for each register access function. A struct of
the complete address space of the SIF is also generated, which is used by the
access functions. The mechanism of the register access is explained in detail
in the following.

5.6.1 Register Bit Field Structure

A struct is declared for each register which represents its corresponding bit
field structure. Hereby the complete width of a register is divided into bit fields.
Listing 5.29 shows an example of the structs for the SIF TXD REG and SIF



128 HARDWARE-DEPENDENT SOFTWARE

STAT REG registers. The SIF TXD REG register only contains the transmit bit
field. Since this bit field has width 32 bit the struct sSIF TXD REGStructure
contains only one member referring to the transmit bit field. The declaration
of a bit field member within the register struct is shown in following rule:

[“const”] data type [bitfield name] “ : ” bitfield width “; ”

A bit field gets declared as const if it is specified as externally read-only. The
data type refers to the data type of the register. The bitfield name is optional
and refers to the specified name of the corresponding bit field. The bitfield
width refers to the width of the bit field. If no bit field is specified for a specific
area of a register, this area must be marked as unused. This is done by declaring
a const data type without a name and the width of the unused area. The decla-
ration order of the bit field members within the struct is given by the specified
bit offset of the bit field. The SIF STAT REG register contains four bit fields
which are declared as members within the struct sSIF STAT REGStructure.
All of these bit fields are specified as read-only, therefore they are declared as
const. The unused area of the bit field is declared as previously explained.

/ / SIF_TXD_REG
t y p e d e f s t r u c t {

u i n t 3 2 _ t t r a n s m i t : 3 2 ;
} sSIF_TXD_REGStructure ;

/ / SIF_STAT_REG
t y p e d e f s t r u c t {

c o n s t u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
c o n s t u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
c o n s t u i n t 3 2 _ t d a t a _ t r a n s m i t _ e r r o r : 1 ;
c o n s t u i n t 3 2 _ t d a t a _ r e c e i v e _ e r r o r : 1 ;
c o n s t u i n t 3 2 _ t : 2 8 ; /∗ unused area ∗ /

} sSIF_STAT_REGStructure ;

Listing 5.29. Register bit field structure.

5.6.2 Register Union

A union is generated for each register which contains an entry referring to
the register value and an entry for the register structure. Listing 5.30 shows
an example declaration of the uSIF TXD REG union for the SIF TXD REG
register. The value of the complete register is accessible through SIF TXD
REG Content which is declared using the data type of the register. The values
of the bit fields are accessible through SIF TXD REG Structure which is de-
clared using the previously described bit field struct sSIF TXD REGStructure
as data type. The register unions are used as register types in the following
described module struct.



HW/SW Interface 129

/ / SIF_TXD_REG
t y p e d e f union {

u i n t 3 2 _ t SIF_TXD_REG_Content ;
sSIF_TXD_REGStructure SIF_TXD_REG_Structure ;

} uSIF_TXD_REG ;

Listing 5.30. Register union declaration.

5.6.3 Module Structure

A declaration of a struct is needed which represents the complete register
address range of the module. This struct contains all registers which are or-
dered referring to their specified offset. Listing 5.31 shows the module struc-
ture sSif of the SIF module. The previously described register unions are used
as data type for each register member. If an unused address area exists where
no register is specified, the area has to be marked as a reserved area. In case
of the SIF, no register is specified for offset “0”. Therefore, the first entry of
the sSif refers to a reserved area and is declared as const using uint32 t as
data type and the name reservedArea#. The # represents a number starting
with ”0” which is incremented for each reserved area declaration. With the
value in brackets, which represents the array size, it is specified how many sub
sequential addresses should be marked as reserved. Subsequent to the struct
declaration, the type definition sSif of the sSif struct is declared. The sSif
type is used within the following described register and bit field access func-
tions.

s t r u c t _ s S i f {
cons t u i n t 3 2 _ t r e s e r v e d A r e a 0 [ 1 ] ; / / Address o f f s e t = 0x0
uSIF_TXD_REG SIF_TXD_REG ; / / Address o f f s e t = 0x4
uSIF_CTRL_REG SIF_CTRL_REG ; / / Address o f f s e t = 0x8
uSIF_MODE_REG SIF_MODE_REG ; / / Address o f f s e t = 0 xc
uSIF_PRTC_CFG_REG SIF_PRTC_CFG_REG ; / / Address o f f s e t = 0 x10
uSIF_CLK_RATE_REG SIF_CLK_RATE_REG ; / / Address o f f s e t = 0 x14
uSIF_IRQ_CLEAR_REG SIF_IRQ_CLEAR_REG ; / / Address o f f s e t = 0 x18
uSIF_RXD_REG SIF_RXD_REG ; / / Address o f f s e t = 0 x1c
uSIF_STAT_REG SIF_STAT_REG ; / / Address o f f s e t = 0 x20

} ;

typedef s t r u c t _ s S i f s S i f ;

Listing 5.31. Component register structure.

5.6.4 Register Access Functions

The implementation of the functions for accessing the content of a complete
register are described now. Depending on the external access type of a register,



130 HARDWARE-DEPENDENT SOFTWARE

a set (for writing) and get (for reading) function are generated. The external
access type of a register is obtained using the bit field information. If a register
contains only bit fields which are read-only from external, then the access type
of the register is also read-only. In this case, only a get access function is gen-
erated. Listing 5.32 shows the register access functions for the SIF TXD REG
register. The transmit bit field within this register is specified as external read-
able and writable. Therefore, both a get and a set function are generated as
shown in the listing. The set function has no return value and has in its formal
argument list the sSif pointer sif and the value which should be written to
the register. The target SIF instance is specified using the sif argument which
refers to the base address of the SIF. The corresponding register is accessed by
using the −> operator on the sif pointer of the struct member SIF TXD REG.
This means the base address plus the address offset of the register is obtained
because the position of the SIF TXD REG member refers to the offset address
of the register. The register union uSIF TXD REG is used as the data type
for the SIF TXD REG member. Therefore, the value has to be assigned to the
SIF TXD REG Content member of SIF TXD REG. The get function is imple-
mented in a similar way. It has the register value as a return value and has no
value in its argument list. The implementation of the get function returns the
value of SIF TXD REG Content.

/∗ S e t comple te r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e void setSif_SIF_TXD_REG ( v o l a t i l e s S i f ∗ _ s i f _ ,

u i n t 3 2 _ t va lue ) {
_ s i f _ −>SIF_TXD_REG.SIF_TXD_REG_Content = va lue ;

}

/∗ Get comple te r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e u i n t 3 2 _ t getSif_SIF_TXD_REG ( v o l a t i l e s S i f ∗ _ s i f _ ) {

return _ s i f _ −>SIF_TXD_REG.SIF_TXD_REG_Content ;
}

Listing 5.32. Register read and write access functions.

5.6.5 Bit Field Access Functions

After the generation of the access functions for the registers, the access func-
tions for the bit fields are generated. Depending on the external access type of
a bit field, a set and get function has to be implemented. Listing 5.33 shows
the implementation of the access functions for bit field transmit within the
SIF TXD REG register. The argument lists and return values are equal to the
register access functions. The difference is located in the implementation of
the bit field set and get functions. In case of the bit field set function, the
value is assigned to the transmit member of SIF TXD REG Structure of reg-
ister union uSIF TXD REG. Within the register union, the bit field structure



HW/SW Interface 131

sSIF TXD REGStructure is used as data type for SIF TXD REG Structure.
Hence the register union enables the access to the complete register content, or
to a specific bit field of the register.

/∗ S e t e l e m e n t t r a n s m i t o f r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e void se tS i f_SIF_TXD_REG_transmi t ( v o l a t i l e s S i f ∗

_ s i f _ , u i n t 3 2 _ t v a l u e ) {
_ s i f _ −>SIF_TXD_REG.SIF_TXD_REG_Structure. t ransmit = v a l u e ;

}

/∗ Get e l e m e n t t r a n s m i t o f r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e u i n t 3 2 _ t ge tSi f_SIF_TXD_REG_transmit ( v o l a t i l e

s S i f ∗ _ s i f _ ) {
re turn ( u i n t 3 2 _ t ) _ s i f _ −>

SIF_TXD_REG.SIF_TXD_REG_Structure. t ransmit ;
}

Listing 5.33. Bit field read and write access functions.

5.7 SIF Driver Functions

The register and bit field access functions which were described in the pre-
vious section are not directly used in a software application since they are too
low-level. Driver functions have to be implemented to enable a higher-level
software access to the hardware module. These driver functions make use of
the lower-level functions offered by the register header file. Unlike the reg-
ister header file, the driver functions cannot be generated using a meta-model
that only describes interfaces but no functionality. A part of the driver header
file including the most important driver functions is shown in Listing 5.34.
The generated register header file sif reg.h is included in the driver header file
sif drv.h, which is shown in the listing. The implementation of the sifOpen,
sifInit, sifWrite and sifRead functions is explained in detail in the following.
Other functions like sifIOCtl, sifClose, sifSelfTest, etc. are not explained within
the context of this section. One possibility for realizing software access to the
SIF module is represented by the following driver functions. Depending on
the operating system and the software environment, the implementation of the
drivers may be different.

5.7.1 SIF Open Function

The sifOpen function, which returns the sSif pointer of the specified SIF
module, is shown in Listing 5.35. The sifOpen function contains in its formal
argument list the unsigned integer id, whose value corresponds to a specific
SIF module of the hardware system. In case of the example which is shown in



132 HARDWARE-DEPENDENT SOFTWARE

/ / i n c l u d e r e g i s t e r header f i l e
# i n c l u d e "sif_reg.h"

/ / open s p e c i f i e d s i f
v o l a t i l e s S i f ∗ s i f O p e n ( unsigned i d ) ;
/ / i n i t i a l i z e s i f
void s i f I n i t ( v o l a t i l e s S i f ∗ p _ s i f ) ;
/ / w r i t e b l o c k t o s i f
void s i f W r i t e ( v o l a t i l e s S i f ∗ p _ s i f , c o n s t char ∗ s t r i n g ) ;
/ / read b l o c k from s i f
void s i f R e a d ( v o l a t i l e s S i f ∗ p _ s i f , char∗ b u f f e r ) ;
. . .

Listing 5.34. SIF driver header file.

the listing, the hardware system contains two SIF modules, one with the base
address 0x20000000, and another with the base address 0x30000000. Depend-
ing on the value of id, the base address of the corresponding SIF module is
assigned to the sSif pointer and returned.

v o l a t i l e s S i f ∗ s i f O p e n ( unsigned i d ) {
v o l a t i l e s S i f ∗pSIF ;
swi t ch ( i d ) {

case 0 :
pSIF = ( s S i f ∗ ) 0 x20000000 ; break ;

case 1 :
pSIF = ( s S i f ∗ ) 0 x30000000 ; break ;

d e f a u l t :
pSIF = 0 ; break ;

}
re turn pSIF ;

}

Listing 5.35. SIF open function.

5.7.2 SIF Init Function

After a specific SIF has been opened using the sifOpen function, it has to
get initialized. This is done by calling the sifInit function using the returned
sSif pointer as the argument. The implementation of the sifInit function is
shown in Listing 5.36. The specified SIF module gets initialized with a default
control and protocol configuration. The low-level bit field access functions
of the register header file are used for configuring the SIF CTRL REG and
SIF PRTC CFG REG registers. First, the SIF is enabled for data transmission
and reception, then the character length of both the TX and RX data are set to
32 bits. Not all configurations are shown in the listing. After the SIF module is



HW/SW Interface 133

opened and initialized, the application can write data to the SIF and read data
from it. The necessary driver functions for the data transfer are described in
the following.

void s i f I n i t ( v o l a t i l e s S i f ∗ p _ s i f ) {
/ / s e t d e f a u l t r x and t x c o n t r o l
se tS i f_SIF_CTRL_REG_t ransmi t_enab le ( p _ s i f , 0x1 ) ;
se tS i f_SIF_CTRL_REG_rece ive_enab le ( p _ s i f , 0x1 ) ;
. . .
/ / s e t d e f a u l t r x and t x p r o t o c o l
se tSi f_SIF_PRTC_CFG_REG_tx_char_length ( p _ s i f , 0x20 ) ;
se tSif_SIF_PRTC_CFG_REG_rx_char_length ( p _ s i f , 0x20 ) ;
. . .

}

Listing 5.36. SIF initialization function.

5.7.3 SIF Write Function

The sifWriteChar function, which is shown in Listing 5.37, is used within
the sifWrite function to write one character to the SIF. The argument list of
the sifWriteChar function contains the sSif pointer and the value to be writ-
ten. The function polls the value of the data transmitted bit field within the
SIF STAT REG register, until it is “0”, which means that the previous data has
been transmitted and a new value can be written. In that case, the set func-
tion for the SIF TXD REG register is called and the value gets written to the
SIF. The sifWriteChar function is not accessible by the application software,
since the interaction of the application software with the SIF is realized in data
blocks.

void s i f W r i t e C h a r ( v o l a t i l e s S i f ∗ p _ s i f , u i n t 3 2 _ t v a l u e ) {
whi le ( ! ge tS i f_S IF_STAT_REG_da ta_ t r ansmi t t ed ( p _ s i f ) )
;
setSif_SIF_TXD_REG ( p _ s i f , v a l u e ) ;

}

Listing 5.37. SIF write data word function.

The application software uses the sifWrite function for data transmission
which is shown in Listing 5.38. This function defines in its argument list
the character pointer string. Hence, the application software can write com-
plete strings to the SIF module. The implementation of the sifWrite function
serializes the given string into single data words depending on the specified
tx char length, and sends each data word to the SIF by using the previously
described sifWriteChar function. The implementation of the sifWrite and the
following sifRead functions are simplified for explanation purposes.



134 HARDWARE-DEPENDENT SOFTWARE

void s i f W r i t e ( v o l a t i l e s S i f ∗ p _ s i f , c o n s t char ∗ s t r i n g ) {
u i n t 3 2 _ t c h _ l e n g t h =getSif_SIF_PRTC_CFG_REG_tx_char_length (

p _ s i f ) ;
u i n t 3 2 _ t pkg_ leng th , t x _ d a t a ;
whi le (∗ s t r i n g ) {

p k g _ l e n g t h = 0 ;
t x _ d a t a = 0 ;
whi le ( ( p k g _ l e n g t h < c h _ l e n g t h ) && ∗ s t r i n g ) {

t x _ d a t a = t x _ d a t a | (∗ s t r i n g ++ << p k g _ l e n g t h ) ;
p k g _ l e n g t h = p k g _ l e n g t h + 8 ;

}
s i f W r i t e C h a r ( p _ s i f , t x _ d a t a ) ;

}
}

Listing 5.38. SIF write block function.

5.7.4 SIF Read Function

The data interface for the application software to the SIF is implemented
in the sifRead function, as shown in Listing 5.39. This function reads a data
word from the SIF, separates it into single characters depending on the
rx char length value, and appends the characters to the string array.

void s i f R e a d ( v o l a t i l e s S i f ∗ p _ s i f , char∗ s t r i n g ) {
u i n t 3 2 _ t c h _ l e n g t h =getSif_SIF_PRTC_CFG_REG_rx_char_length (

p _ s i f ) ;
u i n t 3 2 _ t r x _ d a t a , p k g _ l e n g t h ;

whi le ( ge tS i f_SIF_STAT_REG_data_rece ived ( p _ s i f ) ) {
r x _ d a t a = getSif_SIF_RXD_REG ( p _ s i f ) ;
p k g _ l e n g t h = 0 ;

whi le ( p k g _ l e n g t h < c h _ l e n g t h ) {
∗ s t r i n g ++ = ( r x _ d a t a & (255 << p k g _ l e n g t h ) ) >>

p k g _ l e n g t h ;
p k g _ l e n g t h = p k g _ l e n g t h + 8 ;

}
}

}

Listing 5.39. SIF read block function.

5.7.5 Test Software Application

Listing 5.40 shows a small test application which demonstrates the interac-
tion of the application software with two SIF modules. This test application
opens the first SIF (ID = 0), initializes it, writes a “Hello World!” string to
it, and reads the string again (the TBE connected to the external interfaces of



HW/SW Interface 135

the SIF receives all data and transmits it back to the SIF). The same is done
for the second SIF (ID = 1) within a loop. This small application shows that
all low-level details of the HW/SW interface are hidden from the application
software. Hence a developer of application software does not need to know all
hardware specific details of a specific peripheral.

# i n c l u d e "sif_drv.h"

i n t main ( ) {
unsigned i d = 0 ;
v o l a t i l e s S i f ∗pSIF ;

do {
char b u f f e r [ 1 0 2 4 ] ;
pSIF = s i f O p e n ( i d ++) ;
s i f I n i t ( pSIF ) ;
s i f W r i t e ( pSIF , "Hello World!" ) ;
s i f R e a d ( pSIF , b u f f e r ) ;

}
whi le ( i d < 2) ;

re turn 1 ;
}

Listing 5.40. SIF test application.

5.8 Synchronization

This section provides an overview on concepts which together form the syn-
chronization of HW/SW interfaces.

5.8.1 Register-Access Synchronization Schemes

Clock domains and synchronization. At the HW level, the settings of the
bus and the master and slave interfaces ensure that the accesses of the core to
peripherals are synchronized in terms of clock frequencies. It is possible that
a core runs with a different clock than a peripheral. In such a case, it is com-
mon to use clock divider circuits and data buffers in the HW for synchronizing
the data flow appropriately. Usually, the SW needs only to take care of the
configuration of these components to maximize throughput.

Blocking vs. non-blocking bus protocols. As explained in the previous sec-
tions, SW accesses the HW via pointers (i.e., addresses). An access to an ad-
dress is in turn broken down in the HW to read and write transactions. The
duration of each access can vary depending on the underlying bus protocol.
Such accesses can be categorized in the following way:



136 HARDWARE-DEPENDENT SOFTWARE

Non-Blocking: The duration of the access is a priori defined; the dura-
tion of read transactions may differ from write transactions, however.

Blocking: The duration of the access can dynamically vary, depending
on the current bus load and peripheral activity.

These categories need to be taken into account when modeling peripheral
drivers, because they can have a huge impact on the overall performance of
a system.

5.8.2 Functional Synchronization Schemes

Polling. The easiest way to functionally synchronize SW behavior to the be-
havior of a peripheral is to use polling. For instance, the SIF peripheral offers
a status register which yields whether the SIF is ready to transmit data or re-
spectively has data available to be fetched by the core. The SW can retrieve the
status of the SIF by accessing the corresponding register. After initiating one
transmission, the SW cannot know when the SIF is ready to transmit further
data. Therefore, one possible way to resolve this, is to read the status regis-
ter periodically. As soon as the read value indicates that the SIF is ready for
another transmission, the SW can stop reading the status register and proceed
with the next value to be sent. Listing 5.41 shows an example.

u i n t 3 2 _ t t x d _ a r r a y [ 4 ] = { 1 0 , 2 0 , 3 0 , 4 0 } ;
f o r ( i n t i = 0 ; i < 4 ; i ++) {

w_reg_p t r −>t x d _ r e g = t x d _ a r r a y [ i ] ;
whi le ! ( r _ r e g _ p t r −> f l a g _ r e g . d a t a _ t r a n s m i t t e d )
;

}

Listing 5.41. Polling of SIF status.

Yet being a simple solution, polling is not very efficient with regard to per-
formance, due to the periodic read access to the SIF status register. The next
section shows how interrupts can be used in order to notify the SW by the
peripheral, as soon as it is ready to transmit further data.

Interrupt Handling. Interrupt-based synchronization of SW with HW is
one of the dominant schemes used in embedded systems design. Herein the
basic principles of interrupt handling are explained. Most CPU cores in indus-
trial use provide interrupt mechanisms in order to decouple SW from the state
of a peripheral. The interrupt lines of each peripheral are connected to the so
called Interrupt Control Unit (ICU). By setting an interrupt line, a peripheral
indicates that it requests to interrupt the CPU core execution. Since it is pos-
sible that several peripherals can issue interrupt requests at the same time, the



HW/SW Interface 137

ICU implements some sort of interrupt prioritization scheme and notifies the
CPU core in turn by raising an interrupt to the CPU core. The HW-based inter-
rupt infrastructure of a core can vary. It has to take into account when exactly
to halt the current execution of a program and to save its context, in order to
serve a specific interrupt request. An ICU usually contains registers for each
interrupt input. A programmer can configure these registers by storing the ad-
dress of a specific interrupt service routine in each of these registers. Once the
CPU receives an interrupt from the ICU, it can retrieve the previously stored
address to the corresponding service routine and execute it. Such a service rou-
tine, among other things, needs to take care of clearing the specific interrupt in
the peripheral, which had raised it. Once the interrupt service routine has been
executed by the CPU core, the execution of the previously halted program re-
sumes. For that purpose, the CPU restores the program context automatically.
In the following example, it is assumed that the ICU interrupt input of number
42 is connected to the data transmitted interrupt line of the SIF. Furthermore,
it is assumed that the general setup of the ICU has been taken care of. List-
ing 5.42 shows a simple code example, which contains an interrupt service
routine. This routine is invoked whenever the data transmitted interrupt is
raised. It takes care of sending a further data value to the TXD register.

The function enable IRQ sets up the CPU internal interrupt infrastructure.
For that purpose, some assembly language code (omitted in the example) needs
to be inlined. The SIF TXREQ function is the actual interrupt service routine.
It ensures that the corresponding ICU interrupt line is enabled again by writing
value 42 to specific ICU register addressed by ICU REENABLE HW LINE.
Furthermore, the function clears the raised interrupt request in the SIF periph-
eral by writing to the interrupt clear register addressed by SIF CLEAR REG.
Following that, one value is written to the TXD register of the SIF. Within func-
tion send data, the ICU register, which is associated with port 42, is written
with the address of the interrupt service routine. Hence, when line 42 shows
an interrupt, this service routine will be called. Afterwards, the IRQ infrastruc-
ture is enabled. Following that, a while loop is entered, which can only be left
if the service routine has been called 4 times. Note, that instead of the while
loop, the SW could perform any other actions, because the data transmission
is handled by the interrupt service routine.

5.9 Template Based Code Generation

Before the implementation of an HW/SW system starts, a specification has
to be created which is normally provided as a textual description and not in
a formal way. This often leads to implementation inconsistencies or misun-
derstandings of the specification. Due to the increasing complexity of HW
systems formal methods for specifying interface information were developed.



138 HARDWARE-DEPENDENT SOFTWARE

_ _ i n l i n e void enable_IRQ ( void ) {
i n t tmp ;
__asm {

/ / c o r e d e p e n d e n t asm code
/ / f o r e n a b l i n g IRQs

}
}

v o l a t i l e i n t i ;
u i n t 3 2 _ t t x d _ a r r a y [ 4 ] = { 1 0 , 2 0 , 3 0 , 4 0 } ;

void _ _ i r q SIF_TXREQ ( void ) {
∗ICU_REENABLE_HW_LINE = 4 2 ;
∗SIF_CLEAR_REG = 0xF ;
i f (4 != i ) {

w_reg_p t r −>t x d _ r e g = t x d _ a r r a y [ i + + ] ;
}

}

void s e n d _ d a t a ( ) {
i = 0 ;
/ / s e t u p ICU R e g i s t e r f o r p o r t 42
∗ICU_CBPORT_42 = ( v o l a t i l e unsigned ) SIF_TXREQ ;
enable_IRQ ( ) ;
whi le ( i < 4 )
;
p r i n t f ("Data Transmitted" ) ;

}

Listing 5.42. Interrupt based transmission.

On the one hand, these formal descriptions can be used for IP reuse, on the
other hand, they can be used for the generation of consistent hardware and
HW/SW interfaces. The following sections introduce a UML based meta
model and a generated API which supports easy access to the specification
data, followed by a technique to import XML based textual specifications into
the meta model. In connection to that, a template-based generation framework
is described which enables a flexible use of the meta model for code genera-
tion.

5.9.1 UML Meta Model and its API

The basis of the generation framework is a UML based meta model which
contains the information about how to model the hardware interfaces, like the
bus interface and the register and bit field information referring to the HW/SW
interface. The specification of each register and bit field of a hardware mod-
ule would be tedious using UML. Hence, a UML meta model is developed
containing all interface and top-level mapping data. Most UML tools provide



HW/SW Interface 139

source code generation but only for a few target languages. Due to the variety
of target languages (SystemC, SystemVerilog, C, etc.), a flexible UML meta
model and generation framework is required. The existing standard IP-XACT
[SPI], which is based on XML, targets IP reuse and IP exchange by focusing
on the packaging of IP. But since we also need to incorporate more functional
aspects in order to support IP generation (e.g., generate stubs for the IP de-
velopment) as well, we defined our own data model instead. In order to fully
leverage the benefits of IP-XACT for automating third party IP integration we
developed import and export filters for IP-XACT as well.

Figure 5.7. Meta model API generation.

Figure 5.7 shows the generation of the API for accessing the data of the
meta model. The meta model itself is developed using a common UML tool
and exported as an XSD schema. From this schema a class library is gener-
ated which offers marshaling and unmarshaling of XML meta model data and
provides set, get, and add functions for the elements.

5.9.2 Specification Import

The previously described API for the meta model supports marshaling to
create an XSD schema compliant XML file. Hence, a tool is developed which
supports an easy import of textual specifications that were created compliant
to company specific guidelines. Figure 5.8 gives an overview of the tool which
converts textual specifications using the API. A Python [Pyt] conversion plug-
in and a textual specification—written with an editor and saved as XML—are
used as input while the meta model compliant XML is the output.

Figure 5.8. Specification import mechanism.



140 HARDWARE-DEPENDENT SOFTWARE

Within the tool the XML based textual specification is objectified using the
Python Gnosis library. The obtained object structure is iterated with the con-
version plug-in and its values and elements are passed to the meta model API.
At the end the object created by the API is marshaled to a formal XML spec-
ification. At the moment many different XML methodologies exist within a
single company which can be imported to support a company wide XML spec-
ification.

5.9.3 Template Based Code Generator

A flexible generation methodology has been developed which provides the
code generation for different target applications, for instance firmware header
files or the register interface of RTL or TLM models. This is achieved by
linking the meta model API to a template engine to access the data of the XML
from the template. Templates allow the separation of model and view, in our
case the data provided by the XML and the target code to be generated. We use
the Python MAKO template engine [Mak] which offers a template language
for conditional branches, loops, and hierarchical templates. Furthermore, the
complete Python scripting functionality can be embedded within a template.
A template can be composed of hierarchical templates, hence, it is possible to
reuse so called sub-templates for the generation of different target applications.

Figure 5.9. Template based code generator.

Figure 5.9 gives an overview of the template generator tool. The template
gets rendered by the MAKO template engine using the data provided within
the XML file.

5.9.4 HW/SW Interface Generation

The HW/SW interface is described by the registers of a hardware module
and by the connection of the CPU core through the bus to the module. Hence,
the meta model must contain both the register and bit field information as well
as the interconnect information of the module and the CPU core. In the fol-



HW/SW Interface 141

lowing an overview of the generation of software header files and the register
interface of a module is given.

Register header files offer low-level access functions to the memory mapped
registers of a hardware module. A register within a hardware module is ad-
dressable by using the base address of the module and the corresponding regis-
ter offset. Each register itself is divided into one or more bit fields. A bit field
is described by a bit offset, bit width and an access type which specifies if a bit
field is readable, writable, or both.

A hierarchical template structure was developed for the generation of a reg-
ister header file as it is shown in Fig. 5.10.

Figure 5.10. Hierarchical register header template.

The main template includes four sub-templates. The Header sub-template
generates register header file specific information like version, name, module
description, and so on. Furthermore, required type definitions are generated by
this sub-template.

The Declaration sub-template iterates over the registers of a module and
generates the register bit field structure and a register union which provides the
access to the bit field structure and the value of the registers. The declaration
of the register and bit field access functions is also generated here.

The ModuleStruct sub-template generates a representation of the address
space of the hardware module using the register offsets, the register data width,
and the addressable unit of the bus interface.

The Implementation sub-template generates the implementation of the ac-
cess functions.

Following the same methodology the RTL or TLM register interfaces are
generated in a consistent way.

5.10 Modeling the HW/SW Interface

The previous sections focus only on the software side of the HW/SW inter-
face. This section describes the modeling of a abstracted hardware module of
the SIF module using transaction level modeling in SystemC. First, a introduc-
tion to transaction level modeling is given. After that it is shown how the SIF



142 HARDWARE-DEPENDENT SOFTWARE

is integrated into a hardware system, including the description of its interface
implementations. At the end of this section a methodology for modeling high
performance simulation models is introduced, which enables complex SW tests
in an early design stage.

5.10.1 Transaction Level Modeling

Transaction level modeling plays a major role in the success of the devel-
opment of so called virtual prototypes (VP) which represent abstract models
of HW platforms. This allows breaking down a system to a set of components
or blocks (representing the actual architecture of the platform top level) com-
prised of concurrent processes. These blocks communicate with each other via
so-called transactions. A transaction represents a high-level form of a com-
munication protocol. All protocol-specific details are encapsulated within a
transaction. Hence, the actual act of initiating a transaction results in a remote
function call from within a process (parent). A designer focuses more or less
on the data that has to be transported rather than the protocol specifics.

In SystemC, the most established modeling language for TLMs, transactions
are modeled as functions which are defined in pure virtual interface classes
and are implemented in corresponding child classes which inherit from these
interfaces. The implementation details of a transaction strongly depend on the
targeted abstraction level. Yet two distinctions with regard to transactions can
be made:

Blocking: A blocking transaction may suspend its parent process which
means that the transaction is resumed in a later delta-cycle. This kind
of transaction can be invoked in suspendable SystemC processes, only
(i.e., SC_THREAD).

Non-Blocking: A non-blocking transaction is atomic and may not
suspend its parent process; the whole transaction is executed within
the same delta-cycle it has been invoked. This kind of transaction can
be called from within any SystemC process (i.e., SC_THREAD and
SC_METHOD).

Invoking a transaction results in dereferencing a pointer that holds the ad-
dress of the target object and in calling a member function of that object. The
whole call or even several calls can happen within a single delta-cycle (e.g.,
with non-blocking transactions). In contrast to that, communication in RTL
models is obtained via signals and hence, always consumes at least one delta-
cycle due to the induced value-changes that form the protocol. In order to pro-
vide connection semantics for transactions as well, SystemC provides a port
concept. Figure 5.11 shows a graphical representation.



HW/SW Interface 143

Figure 5.11. TLM interface.

Transactions are called over initiator ports. Transactions are provided by
target ports. Initiator ports are modeled in SystemC using sc_port and tar-
get ports using sc_export. Both these ports expect a template argument
which holds the interface definition, i.e., the pure virtual class which defines
the signatures of all transactions accessible through this interface. In order to
ensure easy IP reuse and interoperability, a transaction level modeling stan-
dard has been developed by the Open SystemC Initiative. This standard de-
fines different interface classes including transaction signatures and argument
types. These interfaces are organized in terms of their characterizations, i.e.,
into blocking or non-blocking interfaces, and the flow of data, i.e., unidirec-
tional or bi-directional. A module which contains a target port has to provide
an implementation for the transaction defined in the interface class which was
given as template argument to this target port. In the following sections the
so-called transport interface (see Listing 5.43) from the TLM standard is used.

/ / b i d i r e c t i o n a l b l o c k i n g i n t e r f a c e s
t empla te < typename REQ , typename RSP >
c l a s s t l m _ t r a n s p o r t _ i f : p u b l i c v i r t u a l s c _ c o r e : : s c _ i n t e r f a c e {
p u b l i c :

v i r t u a l RSP t r a n s p o r t ( c o n s t REQ & ) = 0 ;

v i r t u a l vo id t r a n s p o r t ( c o n s t REQ &r e q , RSP &r s p ) {
r s p = t r a n s p o r t ( r e q ) ;

}
} ;

Listing 5.43. Blocking transport interface class.

This interface is a bidirectional blocking interface. It defines a function
called “transport” which in turn is templated with two abstract data types (REQ,
RSP)—one which holds the information on a specific bus request, e.g., target
address and data, and one holding the response or rather the result of the trans-
action. The user needs to define request and response classes and needs to
provide these as template arguments to customize the transport interface. Both
initiator and target port need to use the very same interface, and thus also the
same classes for request and response in order to be connected.



144 HARDWARE-DEPENDENT SOFTWARE

5.10.2 SIF Transaction Level Model

Figure 5.12 shows the connections of the SIF to a bus of a hardware system.
This system includes a CPU core, a RAM and the SIF, which is externally
connected to a test-bench element (TBE). In the following the implementation
of the transaction level bus interface and the external RX/TX interface of the
SIF is explained.

Figure 5.12. TLM system.

Bus Interface. The bus interface of the SIF is specified as a blocking trans-
port interface of OSCI TLM 1.0 [OSC]. It is a bi-directional interface which
enables read and write access to a module. The initiator port (sc port) of the
bus is mapped to the target port (sc export) of the SIF. The target implements
the transport interface function. Listing 5.44 shows the implementation of
the bus interface of the SIF. First, the declarations of the bus request and bus
response classes are shown. The bus request class contains addr, data, and
access members. The enumeration type access type, which contains the val-
ues READ and WRITE, is used to indicate the type of the bus access. The
bus response class includes a data member which contains the requested data
in case of a read access and the integer variable status. The port bus port
of type sc export which is templated with the transport interface using the
bus request and bus response classes.

SIF RX/TX Interfaces. The non-blocking put interface is used for the ex-
ternal RX/TX interfaces of the SIF. This interface enables a uni-directional
transfer of the external payload. Listing 5.45 shows the implementation of the
external interfaces. First, the external payload class ext payload is declared. It
contains the data, the start and stop bits, and the parity information. The exter-
nal RX interface is declared as a non-blocking put sc export target port. There-
fore, the nb put transaction function has to be implemented within the SIF.
The external TX interface is implemented as a non-blocking put sc port initia-
tor port. Both non-blocking put interfaces are templated with the ext payload
class.



HW/SW Interface 145

# i n c l u d e < s t d i n t . h >

/ / bus p r o t o c o l
enum a c c e s s _ t y p e {READ, WRITE} ;

c l a s s b u s _ r e q u e s t {
p u b l i c :

a c c e s s _ t y p e a c c e s s ;
u i n t 3 2 _ t add r ;
u i n t 3 2 _ t d a t a ;

} ;

c l a s s b u s _ r e s p o n s e {
p u b l i c :

i n t s t a t u s ;
u i n t 3 2 _ t d a t a ;

} ;

/ / SIF bus i n t e r f a c e p o r t
sc_export < t l m _ t r a n s p o r t _ i f < b u s _ r e q u e s t , b u s _ r e s p o n s e > >

b u s _ p o r t ;

Listing 5.44. Blocking transport bus interface.

# i n c l u d e < s t d i n t . h >

/ / e x t e r n a l i n t e r f a c e pay load
c l a s s e x t _ p a y l o a d {
p u b l i c :

u n i t 3 2 _ t d a t a ;
unsigned c h a r _ l e n g t h ;
bool s t a r t _ b i t , s t o p _ b i t , s t o p _ b i t 2 , h a s _ s t o p _ b i t 2 ,

h a s _ p a r i t y , o d d _ p a r i t y _ b i t ;
} ;

/ / e x t e r n a l RX i n t e r f a c e
sc_export < t l m _ n o n b l o c k i n g _ p u t _ i f < e x t _ p a y l o a d > > r x d _ p o r t ;
/ / e x t e r n a l TX i n t e r f a c e
sc_port < t l m _ n o n b l o c k i n g _ p u t _ i f < e x t _ p a y l o a d > > t x d _ p o r t ;

Listing 5.45. External non-blocking put interface.

5.10.3 Data Flow Abstraction

Fast simulation models of the hardware are required for the development
of complex application software. Current transaction level simulation models
mostly do not meet this requirement. Therefore, new methodologies need to
be developed to close this gap. The first step in this direction is the abstraction
of the data flow from the software to the hardware, and vice versa. Figure 5.13



146 HARDWARE-DEPENDENT SOFTWARE

Figure 5.13. HW/SW data flow.

shows the data flow of the previously described SIF module and the application
software.

As it is shown in the figure, the software side deals with data blocks, and
the hardware side with single data words. In case of a write access to the SIF,
the data block gets divided into sequential data words by the sifWrite function.
In case of a read access, the data words are put together into a data block. The
basic concept of the data flow abstraction is explained in the following.

Basic Concept. As it was previously explained, the software side deals with
data blocks, but the hardware side with data words. The sifWrite and sifRead
driver functions act like a transactor in between which converts a block to
words and vice versa. Not only the conversion costs simulation performance,
but also the bus accesses for each data word. The solution for this problem is
the abstraction of the data flow, like it is shown in Fig. 5.14.

Figure 5.14. Abstracted HW/SW data flow.

As it is shown in the figure, the concept is that the data blocks are not con-
verted by the driver function to data words, but passed directly to the extended
SIF module, which is referred to as SIF+ module in the following. This means
that software and hardware functionality are not considered separately, but in a
common view. In this common view, both the software and the hardware side
are dealing with data blocks. Some requirements need to be fulfilled before the
common view of hardware and software can be realized.



HW/SW Interface 147

Requirements. The first requirement for merging hardware and software
functionality is that both the software and the hardware are executed on the
CPU of the host simulation system. That means that the software cannot be
instruction set simulated on the TLM CPU core, but must be emulated on the
simulation host. This can be solved by replacing the TLM CPU core of the
hardware system with a SystemC module, which wraps the C++ class mem-
bers referring to the TLM bus interface to C, and executes the C software. As
it is shown in Fig. 5.15 the TLM CPU core was replaced by the EMUCPU
SystemC module and the RAM module is no longer part of the system.

Figure 5.15. Host emulated system.

Now the implementation of the register and bit field access functions within
the register header file directly accesses the TLM bus interface. The template,
which generates the access function, can be reused by adding an argument
which specifies whether a header file should be generated for an instruction set
simulated or a host system emulated environment.

This leads to the next requirement to assure the consistency of the TLM
model and the abstracted model. The template-based generator helps to achieve
this requirement, since the existing templates can be reused for the generation
of the abstracted model; the normal TLM interfaces are still used for the con-
trol flow.

The last requirement is that both the bus interface and the external interfaces
of the SIF module need to be abstracted to support block data transfer. The
abstraction of the interfaces is described in the following.

Interface Abstraction. Both, the bus interface and the external RX and TX
interface need to be extended to support block transfer. In addition to the bus
interface, the SIF gets extended by an abstract interface which enables read
and write block transfers. The control flow of the SIF still happens through the
TLM bus interface, but the abstracted data flow is realized using the abstract
interface. An overview of the interfaces is given in Fig. 5.16.

As shown in the figure, the driver functions sifRead and sifWrite do not use
the register and bit field access functions anymore, but they directly access
the abstract interface of the SIF. The sifInit and sifIOCtl functions are still
accessing the TLM bus interface of the SIF using the register and bit field
access functions.



148 HARDWARE-DEPENDENT SOFTWARE

Figure 5.16. Abstracted SIF interface.

The abstraction of the external RX and TX interfaces is quite simple. It is
achieved by extending the ext payload class (see Listing 5.45) with a data block
member of data type char* and an integer block size member referring to the
number of characters contained within the data block array.

The SIF+ model is fully compatible to the SIF TLM module, since it still
contains the full TLM functionality. Therefore, it can be used in classical TLM
simulations.

5.11 Conclusions

Within this chapter the modeling and implementation of HW/SW interfaces
was explained, by high-lighting all involved areas, step by step. First some ba-
sic concepts were presented on both the HW side and the SW side explained
how accessing HW through SW is accomplished. This concept was elaborated
on in more detail taking also HW module internal register layouts into account.
Many examples were presented illustrating alternative modeling styles which
were also discussed. It was also illustrated how the internal communication
infrastructure within a HW architecture is dealt with by the SW along with
synchronization concepts for on-chip communication. Following these gen-
eral considerations more detailed examples were provided using an example
peripheral model. Based on this example the structure of low-level drivers was
explained in detail.



HW/SW Interface 149

As new contributions, it was also described how to improve the overall con-
sistency of the HW/SW interface by using a single-source approach for ob-
taining its implementation. In this approach a peripheral specification is for-
malized in terms of its register layout and internal address map. The formal
description serves as a basis for generating most parts of the HW/SW inter-
face, including also the generation of different abstraction views on the HW as
well some layers of the SW driver development. Furthermore, new concepts
were introduced for raising the abstraction level for HW modeling by abstract-
ing the data flow within the communication between HW and SW and also
merging parts of HW and SW to a single abstract HW interface.

The explained concepts on modeling HW/SW interfaces show the huge di-
versity and the non-negligible complexity of modeling HW/SW interfaces. Us-
ing virtual prototyping, a close interaction of designers developing drivers and
HW designers becomes possible at early stages of the whole design process.
By getting HW and SW even closer through data and interface abstractions,
a much better quality of the HW/SW interface can be achieved due to team
working over different design domains namely HW and SW. Hence, virtual
prototyping can also be considered as a bridge in between these domains.

References

[Mak] Mako Templates for Python. Hyperfast and lightweight templating for
the Python platform. www.makotemplates.org

[MIT] raw Homepage. raw Architecture Workstation.
www.cag.csail.mit.edu/raw

[OSC] OSCI TLM Working Group. OSCI standard for SystemC TLM.
www.systemc.org

[Pyt] Python Software Foundation (PSF). Python Programming Language.
www.python.org

[SPI] SPIRIT Consortium. IP-XACT Standard.
www.SPIRITconsortium.org/tech/docs

[Wik] Wikipedia’s Z80 Article. Zilog Z80.
en.wikipedia.org/wiki/Zilog Z80

http://www.makotemplates.org
http://www.cag.csail.mit.edu/raw
http://www.systemc.org
http://www.python.org
http://www.SPIRITconsortium.org/tech/docs
http://en.wikipedia.org/wiki/Zilog_Z80


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


