
Chapter 4

HARDWARE ABSTRACTION LAYER

Introduction and Overview

Katalin Popovici and Ahmed Jerraya

Abstract Embedded software is playing an increasing role in heterogeneous Multi-Proces-
sor System-on-Chip (MPSoC) architectures due to its high complexity. In order
to reduce the long and fastidious design process, embedded software needs to
be reused over several MPSoCs. Thus, software portability becomes a key chal-
lenge.

In this chapter, we present a clear separation between the hardware inde-
pendent and the hardware dependent software layers, through adopting a multi-
layered organization of the software stack. We introduce a component based
software design flow, which allows the gradual generation and validation of the
various software layers to obtain the final software stack. Then, by changing
the Hardware Abstraction Layer (HAL), the software stack can be executed on
different MPSoC architectures. The HAL represents the lowest software layer,
which totally depends on the target architecture. The HAL abstraction, through
the use of well defined HAL APIs, makes easier the software portability and
enables flexibility. The paper shows that the HAL APIs allow early software
development before the hardware architecture is available, but also architecture
exploration. The proposed methodology is applied to design the software stack
for the Motion JPEG multimedia application and to execute it on diverse proces-
sors by changing the HAL and preserving the HAL APIs.

Keywords: MPSoC, Software Design, Software Validation, HAL, HAL Abstraction

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009

68 HARDWARE-DEPENDENT SOFTWARE

4.1 Introduction

Current Multi-Processor System-on-Chip (MPSoC) architectures integrate
a large number of processing subsystems on the same chip [Wol06]. The
processing subsystems usually contain different types of programmable proces-
sing units or CPUs, depending on the target application domain. Thus, DSP
(Digital Signal Processor) is mostly used for signal processing applications;
microcontrollers are more common for control-intensive applications, while
ASIP (Application Specific Instruction Set Processors) represent stored-
memory CPUs whose architectures are tailored for a particular set of appli-
cations.

As more and more heterogeneous processors and hardware components are
integrated together, the design and validation of the software running on these
complex heterogeneous architectures become a major bottleneck, because the
software is even more complex [Tur05]. The key issue of the software design
for MPSoC is to produce efficient software code with strong time to market
constraints. Producing efficient code requires that the software takes into ac-
count the capabilities of the target architecture. This generally requires a long
and fastidious software debug cycle. The classic way to accelerate the software
design process relies on automatic software code generation from high level
programming models that abstract the architecture, but this approach produces
a huge expense in the efficiency of the generated code.

The software is generally organized into several stacks made of two lay-
ers: application and Hardware-dependent Software (HdS). The validation and
debug of the Hardware dependent Software (HdS) is the main bottleneck in
MPSoC design, because each processor subsystem requires specific HdS im-
plementation to be efficient [JW05]. Current research studies proved that the
HdS debug represents 78% of the global system total debugging time of an
MPSoC design cycle [YYS+04]. This may be due to incorrect configuration
or access to the hardware architecture, e.g. a wrong configuration of the mem-
ory mapping for the interrupt control registers.

Besides software complexity, portability becomes a major issue to decrease
the overall design and validation time, because it allows software reuse over
several SoCs. Portability enables execution of the same software on different
hardware architectures. In terms of design reuse, the portability enables reuse
of the software designed for a particular MPSoC architecture to another. Thus,
portability reduces the design efforts, otherwise necessary to adapt the software
for the new hardware architecture.

In order to reduce its complexity and enable easy software portability, we
propose structuring the HdS into three software components: a real time op-
erating system (RTOS) aimed to schedule the different application tasks, a
specific communication library to implement the communication protocol and

Hardware Abstraction Layer 69

the hardware abstraction layer (HAL) to access the hardware resources. The
HAL represents the thin software layer that totally depends on the underlying
target architecture. Structuring the HdS in these well defined layers accessi-
ble through application programming interface (API) is essential to support
software flexibility and portability on different hardware platforms.

Traditional MPSoC design flow starts with the application partitioning into
hardware and software tasks that are mapped on processing elements. The
definition of generic HAL APIs for the target application domain makes it
possible to start designing the software before the hardware is complete, thus
enabling concurrent hardware and software design. In fact, the software design
is structured in two main phases. The first phase is the hardware independent
software design (application tasks, OS), which may start after the definition of
the HAL APIs. The second phase represents the HAL design and integration
into the software stack. Figure 4.1 shows these steps. Separating the hardware
dependent and hardware independent software designs also makes the architec-
ture exploration easier, since the hardware independent software can be reused
over several architectures. Only the HAL must be altered in case of different
architectures.

Figure 4.1. Hardware-software design flow.

In this chapter, we give the basic definitions for the different software com-
ponents, and we emphasize the importance of the HAL layer in the context
of MPSoC to provide software portability across different hardware platforms.
We present a component based software design flow that allows generation and
validation of the different software elements. In order to allow the software
reuse, we define the abstraction of the HAL through APIs and the validation

70 HARDWARE-DEPENDENT SOFTWARE

of these HAL APIs. The proposed methodology is applied to design and to
adapt the software stack to different processors for the Motion JPEG decoder
application.

The chapter is composed of seven sections. Section 4.1 gives a short intro-
duction to present the context of MPSoC software design. Section 4.2 defines
the organization of the software stack into different components. Section 4.3
discusses the role of HAL in the software stack and explains how to achieve
software portability through abstraction of the HAL. Section 4.4 enumerates
several existing commercial HAL. Section 4.5 summarizes the main steps of
the proposed software design and validation flow. Section 4.6 presents the
HAL execution and simulation using specific software development platforms.
Section 4.7 addresses the experimental results, followed by conclusion.

4.2 Software Stack

This section defines the software stack running on the different processing
subsystems and presents its layered organization in several software compo-
nents.

4.2.1 Software Stack Definition

The software stack represents the software running on a processing sub-
system. In heterogeneous MPSoC architectures, each processing subsystem
executes a software stack. The software stack is made of two layers: the ap-
plication tasks code and the hardware dependent software (HdS). The HdS
layer includes three software components: the Operating System (OS), specific
I/O communication software and the Hardware Abstraction Layer (HAL). The
HdS is responsible for providing application and architecture specific services,
i.e. scheduling the application tasks, communication between the different
tasks, external communication with other processing subsystems, or hardware
resources management and control. The following paragraphs detail the soft-
ware stack organization, including all these different components.

4.2.2 Software Components

The software stack is structured in different software layers that provide
specific services. Figure 4.2 illustrates the software stack organization in two
layers: application layer and HdS (Hardware-dependent Software) layer. In
the first section we present the application layer. Then, the HdS layer will be
defined.

Application Layer. The application layer contains the software code for ap-
plications such as multimedia (e.g. MP3, MPEG4 and JPEG 2000) or commu-
nications (e.g. protocol stack and physical layers). It may be a multi-tasking

Hardware Abstraction Layer 71

Figure 4.2. Software stack organization.

description or a single task function of the application targeted to be executed
on a particular processor subsystem.

A task or thread is a lightweight process that runs sequentially and has its
own program counter, register set and stack to keep track of where it is. In this
chapter, the terms task and thread are used as interchangeable terms. Multiple
tasks can be executed in parallel by a single CPU (single-core processor sub-
system) or by multiple CPUs of the same type grouped in a single subsystem
(multi-core processor subsystem). The tasks may share the same resources of
the architecture, such as processors, I/O components and memories. On a sin-
gle processor core node, the multithreading generally occurs by time slicing,
wherein a single processor switches execution between different threads. In
this case, the task processing is not literally simultaneous, as the single proces-
sor is doing only one thing at a time. On a multi-core processor subsystem,
threading can be achieved via multiprocessing, wherein different threads can
run literally simultaneously on different processors inside the processor node
[Tan95].

The application layer consists of a set of tasks that makes use of Application
Programming Interface (API) to abstract the underlying HdS software layer.
These APIs correspond to the HdS APIs.

HdS Layer. The HdS layer represents the software layer which is directly
in contact with, or significantly affected by, the hardware that it executes on,
or can directly influence the behavior of the underlying hardware architecture
[Pos03]. The HdS integrates all the software that is directly depending on the
underlying hardware, such as hardware drivers or boot strategy. It also pro-
vides services for resources management and sharing, such as scheduling the
application tasks on top of the available processing elements, inter-task com-
munication, external communication, and all other kinds of resources manage-
ment and control. The federative HdS term underlines the fact that, in an em-
bedded context, we are concerned with application specific implementations
of these functionalities that strongly depend on the target hardware architec-
ture [JBP06].

72 HARDWARE-DEPENDENT SOFTWARE

To decrease the complexity of the HdS debug, the HdS is organized into
three software components: operating system (OS), communication manage-
ment (Comm) and hardware abstraction layer (HAL). Figure 4.2 illustrates
these software components.

Operating System. The operating system (OS) is the software component that
manages the sharing of the resources of the architecture. It is responsible for
the initialization and management of the application tasks and communication
between them. It provides services, such as tasks scheduling, context switch,
synchronization and interrupt management. In the following, we define each
of these basic OS services.

The tasks scheduling service of the OS usually follows a specific algo-
rithm, called scheduling algorithm. Finding the optimal algorithm for the tasks
scheduling represents a NP-complete problem [VBL05]. There are different
categories of scheduling algorithms. The classic criteria are hard real-time
versus soft real-time or non real-time; preemptive versus cooperative; dynamic
versus static; centralized versus distributed.

Contrary to non real-time, the real-time scheduler must guarantee the exe-
cution of a task in a certain period of time. Hard real-time must guarantee that
all the deadlines are met.

Preemptive scheduling allows a task to be suspended temporally by the OS,
for example when a higher-priority task arrives, resuming later when no higher-
priority tasks are available to run. This is associated with time-sharing be-
tween the tasks. Examples of preemptive scheduling algorithms are: round
robin, shortest-remaining-time or rate-monotonic schedulers. The cooperative
or non-preemptive scheduling algorithm runs each task to its completion. In
this case, the OS waits for a task to surrender control. This is usually associated
with event-driven operating systems. Examples of non-preemptive algorithm
are the shortest-job-next or highest-response-ratio-next.

With static algorithms, the scheduling decisions (preemptive or non-pre-
emptive) are made before execution. Contrary to static algorithms, the dynamic
schedulers make their scheduling decisions during the execution.

The implementation of the scheduler may be centralized or distributed. In
case of a centralized scheduler implementation, the scheduler controls all the
task execution ordering and communication transactions. In case of a distrib-
uted scheduler implementation, the scheduler distributes the control decision
to the local task schedulers corresponding to each processor [CYC+05].

When a task is ready for execution and it is selected by the scheduler of
OS according to the scheduler algorithm, the OS is also responsible to perform
the context switch between the currently running task and the new task. The
context switch represents the process of storing and loading the state of the
CPU which runs the tasks, in order to share the available hardware resources

Hardware Abstraction Layer 73

between different tasks. The state of the current task, including registers, is
saved, so that in case the scheduler gets back for execution the first task, it can
restore its state and continue normally.

In order to ensure a correct runtime and communication order between the
different tasks running on parallel, synchronization is required. The tasks can
synchronize by using semaphores or by sending/receiving synchronization sig-
nals (events) each other. The mutex is a binary semaphore which ensures mu-
tual exclusion on a shared resource, such as a buffer shared by two threads, by
locking and unlocking it, whenever the resource is accessed by a task [TW97].

The interrupt handler is another OS service used for the interrupts manage-
ment. There are two types of processor interrupts: hardware and software.
A hardware interrupt causes the processor to save its state of execution via a
context switch, and begins the execution of an interrupt handler. Software in-
terrupts are usually implemented as instructions in the instruction set of the
processor, which cause a context switch to an interrupt handler similar to a
hardware interrupt. The interrupts represent a way to avoid wasting the proces-
sor’s execution time in polling loops waiting for external events. Polling means
when the processor waits and monitors a device until the device is ready for an
I/O operation.

Examples of commercial OS are the eCos [eCos], FreeRTOS [FRTOS],
LynxOS [LOS], VxWorks [VxW], WindowsCE [WCE] or μITRON [uIT].

Communication Software Component. The second software component of the
HdS layer constitutes the communication component, which is responsible for
managing the I/O operations and, more generally, the interaction with the hard-
ware components and the other subsystems. The communication component
implements the different communication primitives used inside a task to ex-
change data between the tasks running on the same processor or between the
tasks running on different processors. It may include different communica-
tion protocols, such as FIFO (first-in-first-out) implemented in software, or
communication using dedicated hardware components. If the communication
requires access to the hardware resources, the communication component in-
vokes primitives that implement this kind of low level access. These function
calls are done in form of the HAL APIs.

The HAL APIs allow for the OS and communication components to access
the third component of the software stack, that is the HAL layer.

Hardware Abstraction Layer. Low level details about how to access the re-
sources are specified in the Hardware Abstraction Layer (HAL) [YJ03]. The
HAL is a thin software layer which totally depends on the type of processor
that will execute the software stack, but also depends on the hardware resources
interacting with the processor. The HAL includes the device drivers to imple-
ment the interface for the communication with the device. This includes the

74 HARDWARE-DEPENDENT SOFTWARE

implementation of the drivers for the I/O operations or other peripherals. The
HAL is also responsible for processor specific implementations, such as load-
ing the main function executed by an OS, more precisely the boot code, or
implementation of the load and restore CPU registers during a context switch
between two tasks, but also software codes for configuration and access to the
various hardware devices, e.g. MMU (Memory Management Unit), timer, in-
terrupt enabling/disabling etc. More details about the HAL will be given in the
following sections.

The structured representation and the organization of the software stack into
several layers (application tasks, OS, communication and HAL), as previously
described, have two main advantages: flexibility in terms of software compo-
nents reuse by changing the OS or the communication software components,
and portability to other processor subsystems by changing the HAL software
layer.

The following paragraphs give the definition of the HAL software compo-
nent and highlight its role in enabling software portability. Thereafter, the main
steps required by the design and validation of these different software compo-
nents are explained in detail.

4.3 Hardware Abstraction Layer

In this section, the definition of the HAL is given. This is followed by
the HAL abstraction through well defined APIs to enable software portability
across various hardware platforms.

4.3.1 Definition and Examples of HAL

The HAL is defined in [eCos] as all the software that is directly dependent
on the underlying hardware. If the hardware architecture is changed, changes
also have to be made to the HAL. The HAL can be implemented in the assem-
bly language recognized by the processor or in specific C code. In fact, the
HAL includes two types of software code:

Processor specific software code, such as context switch, boot code or
code for enabling and disabling the interrupt vectors.

Device drivers, which represents the software code for configuration
and access to hardware resources, such as MMU (Memory Management
Unit), system timer, on-chip bus, bus bridge, I/O devices, resource man-
agement, such as tracking system resource usage (check battery status)
or power management (set processor speed).

The HAL offers a set of services to the upper level OS and communication
libraries that grant them access to the hardware platform. Generally, the HAL
provides the following kinds of services:

Hardware Abstraction Layer 75

Integration with an ANSI C standard library to provide the familiar C
standard library functions, such as printf(), fopen(), fwrite(), exit(), abs(),
atof(), etc. An example of such a library is the newlib library, which rep-
resents an open-source implementation of the C standard library .newlib
for the use on embedded systems [newl].

Device drivers to provide access to each device of the hardware platform.

The HAL API to provide a consistent interface to HAL services, such as
device access, interrupts handling and debug facilities.

System initialization to perform the initialization of the tasks for the
processor before the execution of the main() function of the application.

Device initialization to instantiate and initialize each device in the hard-
ware platform before the execution of the main() function of the appli-
cation.

The device drivers, that are part of the HAL, are the interface between a
hardware resource and the application or OS. Usually, the drivers are hard-
ware dependent and OS specific. Typical device drivers provide access to the
following classes of hardware components:

Character-mode devices, which represent hardware peripherals that send
and/or receive characters serially, such as an UART (Universal Asyn-
chronous Receiver/Transmitter) device.

Timer devices, which are hardware peripherals that count clock ticks and
generate periodic interrupt requests.

File subsystems, which provide a mechanism for accessing files stored
within physical devices. Depending on the internal implementation, the
file subsystem driver may access the underlying devices either directly
or by using a separate device driver. For example, a flash file subsystem
driver may access a flash memory by using dedicated HAL APIs for the
flash memory devices.

Ethernet devices to provide access to an Ethernet connection for a net-
working stack, such as the NicheStack TCP/IP stack [NS].

DMA devices that are peripherals that perform bulk data transactions
from a data source to destination. Sources and destinations can be mem-
ory or another hardware device, such as an Ethernet connection.

Flash memory devices, which are nonvolatile memory devices that use a
special programming protocol to store data.

76 HARDWARE-DEPENDENT SOFTWARE

Besides the implementation of the device drivers, the HAL includes proces-
sor specific code as well, such as the implementation of the context switch or
interrupt handling.

Figure 4.3 presents an example of processor specific HAL code, which per-
forms a context switch between two application tasks running on an ARM7
processor. This example of HAL software code uses the assembly language
specific to the ARM7 processor in order to access some particular processor
registers (R0-R14, PC-Program Counter). The context switch needs two basic
operations to be performed: store the status of the processor registers used by
the current task and load the status of the registers of the new task.

Figure 4.3. HAL implementation for the context switch on the ARM7 processor.

Figure 4.4 illustrates another example of low level software code implemen-
tation that enables and disables the IRQ interrupts for the ARM7 processor.
The interrupts are enabled and disabled by reading the CPSR (Current Pro-
gram Status Registers) flags and updating bit 7 corresponding to bit I (IRQ
Interrupt).

Figure 4.4. HAL implementation for enabling and disabling ARM interrupts.

Hardware Abstraction Layer 77

4.3.2 Software Portability Based on HAL API

In the context of software design for MPSoC, software portability becomes
a key issue. Portability enables execution of the same software on different
hardware architectures. In terms of design reuse, the portability enables reuse
of the software designed for a particular MPSoC architecture to another. Thus,
portability reduces the design efforts, otherwise necessary to adapt the software
for the new hardware architecture. The portability also eases the exchange of
the software code and architecture exploration, e.g. trying different types of
processors to find an optimal target processor.

As it was described in the previous paragraphs, the structural organization
of the software stack is made of several layers separated by well defined APIs.
The lowest level software component represents the HAL layer which is a to-
tally hardware architecture dependent layer. The OS and communication soft-
ware components make use of HAL APIs. Thus, without the implementation
of the HAL APIs for the target processors, the software code still remains
processor independent.

The HAL APIs gives to the operating system, communication and applica-
tion software an abstraction of the hardware-dependent HAL, e.g. data types
like the integer “int” data type in the standard C programming language, which
has different bit size depending on the processor type. Furthermore, the HAL
APIs ease OS porting on new hardware architecture. The HAL APIs can be
classified in the following categories [eCos]:

Kernel HAL APIs, such as task context management APIs (e.g. context
creation, delete or context switch APIs, task initialization), stack pointer
and program counter management APIs (e.g. get/set IP(), get/set SP())
or processor mode change APIs (e.g. enable kernel/ user mode()).

Interrupt management APIs, e.g. APIs which enable/disable interrupt
request from an interrupt source (e.g. vector enable/ disable(vector id)),
configure interrupt vector (e.g. vector configure(vector id, level, up)),
mask/unmask interrupt for a processor (e.g. interrupt enable/disable()),
the implementation of the interrupt routine services (e.g. interrupt at-
tach/ detach(vector id, isr)) or HAL APIs that acknowledge to the inter-
rupt source that the interrupt request has been processed (e.g. clear inter-
rupt(vector id)).

I/O HAL APIs, which configure the I/O devices and allows their ac-
cess. For example, to configure a MMU device, the following I/O HAL
APIs may be required: APIs for page management (e.g. enable/disable
paging()), address translation (e.g. virtual to physical()), TLB (Trans-
lation Lookaside Buffer) management, such as set TLB entry
(e.g. TLB add()) or get TLB entry virtual/physical page frame (e.g.

78 HARDWARE-DEPENDENT SOFTWARE

get TLB entry()). Other I/O HAL API examples can be considered the
APIs for cache memory management, such as Instruction/Data Cache
Enable/Disable().

Resource management APIs, such as APIs for power management
(e.g. check battery status, set CPU clock frequency) or APIs to configure
the timer (e.g. set/reset timer(), wait cpu cyle()).

Design time HAL APIs, which facilitates the software design process,
or more precisely, the simulation. Example of such kind of API is the
consume cpu cyle() to simulate the advance of the software execution
time.

The HAL APIs are used by the upper software layers, like OS and com-
munication components. Figure 4.5 shows an example of utilization of the
HAL API in a fragment of code inside the OS scheduler. Thus, the OS sched-
uler searches for a new task in status ready for execution. If there is a new
ready task, the scheduler performs a context switch, by calling the HAL API

cxt switch(. . .). During the context switch, the OS saves the status and regis-
ters (program counter, stack pointer, etc.) of the processor running the current
task and loads those of the new task.

Figure 4.5. Example of HAL API function call inside the OS scheduler.

4.4 Existing Commercial HAL

In the following section, we give several examples of existing commercial
HAL that are used in both academic and semiconductor industry areas.

Even if the HAL represents an abstraction of the hardware architecture,
since it has been mostly used by OS vendors and each OS vendor defines its
own HAL, most of the existing HAL is OS dependent. In case of an OS de-
pendent HAL, the HAL is often called board support package (BSP). In fact,
the BSP implements a specific support code for a given hardware platform
or board, corresponding to a given OS. The BSP also includes a boot loader,
which contains a minimal device support to load the OS and device drivers for
all the devices on the hardware board.

Hardware Abstraction Layer 79

The embedded version of the Windows OS, namely Windows CE, provides
BSP for many standard development platforms that support several micro-
processors family (ARM, x86, MIPS) [WCE]. The BSP contains an OEM
(Original Equipment Manufacturer) adaptation layer (OAL), which includes
a boot loader for initializing and customizing the hardware platform, device
drivers, and a corresponding set of configuration files.

The VxWorks OS offers BSP for a wide range of MPSoC architectures,
which may incorporate ARM, DSP, MIPS, PowerPC, SPARC, XScale and
other processors family [VxW]. In eCos, a set of well-defined HAL APIs are
presented [eCos]. However, there’s no clear difference between HAL and de-
vice driver. Examples of HAL APIs used by eCos are:

Thread context initialization:
HAL THREAD INIT CONTEXT()

Thread context switching:
HAL THREAD SWITCH CONTEXT()

Breakpoint support:
HAL BREAKPOINT()

GDB support:
HAL SET GDB REGISTERS(), HAL GET GDB REGISTERS()

Interrupt state control:
HAL RESTORE INTERRUPTS(), HAL ENABLE INTERRUPTS(),
HAL DISABLE INTERRUPTS()

Interrupt controller management:
HAL INTERRUPT MASK()

Clock control:
HAL CLOCK INITIALIZE(), HAL CLOCK RESET(),
HAL CLOCK READ()

Register read/write:
HAL READ XXX(), HAL READ VECTOR XXX(),
HAL WRITE XXX(), and HAL WRITE VECTOR XXX()

Control the dimensions of the instruction and data caches:
HAL XCACHE SIZE(), HAL XCACHE LINE SIZE()

In the software development environment for the Nios II processor provided
by Altera [HAL], the HAL serves as a device driver package, providing a con-
sistent interface to the system peripherals, such as timers, Ethernet MAC and
I/O peripherals.

80 HARDWARE-DEPENDENT SOFTWARE

In Real-Time Linux a HAL, called Real-Time HAL (RTHAL), is defined to
give an abstraction of the interrupt mechanism to the Linux kernel [RTL]. It
consists of three APIs for disabling and enabling interrupts and return from the
interrupt.

An example of HAL that does not depend on the targeted OS is the a386
library [A386]. The a386 represents a C library which offers an abstraction of
the Intel 386 processor architecture. The functions of the library correspond
to privileged processor instructions and access to the hardware. The library
serves as a minimal hardware abstraction layer for the OS. Later, the library is
ported on ARM and SPARC processors.

4.5 Overview of the Software Design and Validation Flow

This section gives an overview of the software design and validation flow.
The overall flow is illustrated in Fig. 4.6.

The software design flow has three main steps: application software gen-
eration, software stack construction, and performance and software validation
through simulation on a development platform [PJ07].

The software design flow starts with a manual design step to build the high
level application model that captures the grouping of the application functions

Figure 4.6. Software design and validation flow.

Hardware Abstraction Layer 81

into tasks, and the tasks into processor subsystems. Thus, it combines the ap-
plication behavior with the architecture specification, and the application map-
ping information onto the architecture. The result of this step represents a com-
bined architecture/application model. This high level application model may
use explicit communication units to abstract the intra-subsystem communica-
tion (communication between the different processor subsystems) and inter-
subsystem communication (communication between the tasks mapped onto
the same processing subsystem).

4.5.1 High Level Application Model

The high level application model represents a functional description of the
application annotated with the application mapping information on the target
architecture. We use Simulink environment [Math] to capture this representa-
tion. We use a specific writing style and annotation to capture the architecture
details and the mapping of the communication and computation. At this level,
the software is made of a set of functions grouped into tasks and the tasks
grouped into software subsystems. The communication between functions,
tasks and subsystems make use of abstract communication links to represent
logical communication, e.g. standard Simulink links or explicit communication
units that correspond to specific communication paths of the target platform.
The links and units are annotated with communication mapping information.
The simulation at the system architecture level allows validating the appli-
cation’s functionality. The hardware-software interfaces are fully abstracted.
This model captures both the application and the architecture in addition to the
computation and communication mapping.

4.5.2 Application Software Generation

During the application software generation, the Simulink application func-
tions are transformed into behaviorally equivalent C code for each task. This
step is similar with the code generation provided by Real Time Workshop, but
the generated code uses an optimized buffer memory [Han06 +].

The generated code is made of two parts: computation and communication.
The computation part represents the C behavior of the application functions,
while the communication part involves high level communication primitives,
such as send(. . .)/recv(. . .) or channel write(. . .)/ channel read(. . .). The im-
plementation of these APIs relies on the underlying OS and communication
libraries.

4.5.3 Software Stack Composition

During the software stack composition, the previously generated applica-
tion tasks code are compiled and linked together with an OS, communication

82 HARDWARE-DEPENDENT SOFTWARE

and HAL library [GPY+07]. The OS library contains the components that
implement several OS services, such as scheduling, interrupt routine services,
tasks management (create/kill/exit). The communication library contains the
implementation of the high level communication primitives, e.g. MPI (Mes-
sage Passing Interface) primitives [MPI], the TTL communication primitives
[vdW04+] or YAPI communication APIs [KSW+00]. The implementation of
these communication primitives can be blocking or non-blocking. The HAL li-
brary contains the implementation of the low level hardware access primitives,
e.g. context switch primitives, enable/disable interrupts, boot code or specific
DMA configuration primitives. The software stack composition is performed
in two main steps:

OS and communication software components integration

HAL integration

The result of each of these steps has to be validated in order to verify the
application execution on the target hardware architecture, as it will be detailed
in the next section.

4.5.4 Software Validation

The software validation allows verifying the execution of the software with
explicit hardware-software interaction. Traditional software development stra-
tegies make use of the concept of software development platform to debug the
software before the hardware architecture is ready.

As illustrated in Fig. 4.7, the software development and validation platform
is an abstract model of the architecture in form of a run-time library or simu-

Figure 4.7. Software development and validation platform.

Hardware Abstraction Layer 83

lator aimed to execute the software (e.g. Instruction Set Simulator). The com-
bination of this platform with the software code produces an executable model
that emulates the execution of the final system including hardware and software
architecture. Generic software development platforms have been designed to
fully abstract the hardware-software interfaces, i.e. MPITCH is a run-time ex-
ecution environment designed to execute parallel software code written using
MPI [MPI].

In this chapter, we use software development platforms implemented in
SystemC TLM [GLMS02] in order to execute and debug the software code
[PGR+07].

Depending on the software component to be validated (application tasks
code, tasks code execution upon an OS, HAL integration in the software stack),
the SystemC platform may model only a subset of hardware components, more
precisely those components that are required for the software validation. The
rest of the hardware components, which are not relevant for the software val-
idation, are abstracted. For example, the debug of the application tasks code
does not need explicit implementation of the synchronization protocol between
the processors, such as mailboxes, semaphores or mutexes, while the debug of
the integration of the tasks code with the OS requires such kind of detail in the
SystemC platform.

The debug is performed using standard debuggers such as GNU debuggers
or tracing SystemC waveforms during the simulation. The software validation
is an iterative process because the different software components need different
detail levels.

4.6 HAL Execution and Simulation Using Software
Development Platforms

In order to explore and reuse the validated software components for better
performance achievement, by executing them on various hardware architec-
tures, the HAL layer plays a key role to guarantee software portability. Thus,
the following sections will focus on the HAL execution on a virtual proto-
type using Instruction Set Simulators (ISS), and HAL APIs simulation using a
transaction accurate SystemC development platform.

4.6.1 HAL Execution on Virtual Prototype

The integration of the HAL layer into the software stack needs to be vali-
dated for functional verification purpose. In order to validate such kind of HAL
code, there are two possible execution techniques of HAL:

1. direct loading the software code onto the processor’s program memory
and execute it on a real chip or an equivalent FPGA-based emulation
board;

84 HARDWARE-DEPENDENT SOFTWARE

2. using a software development platform that models the target architec-
ture and incorporates Instruction Set Simulators (ISS) for the processors.

In this chapter, we detail the HAL execution using a SystemC develop-
ment platform that combines ISS for the software execution and SystemC
for the hardware simulation. This platform is also known as virtual proto-
type [HYL+06] and the execution model corresponds to classical hardware-
software cosimulation models with ISS [Row94] [SG00].

The integration of instruction set simulators for the software execution on
specific processors with hardware simulators of the architecture behavior is
largely used in MPSoC domain. By using ISS, this approach allows simulating
a detailed hardware-software interaction, including the HAL of the software
stack. For performance verification, the timing information can be measured
instead of estimated.

The execution model of the virtual prototype resides on a cosimulation be-
tween the software stack simulator and the hardware simulator [NYBJ02]. Two
types of simulators are combined: ISS for simulating the programmable com-
ponents running the software and SystemC for the dedicated hardware part
[EPTP07].

The hardware-software simulation is driven by SystemC. The SystemC ini-
tializes the processor SystemC modules that encapsulate the ISS. During the
simulation, the ISS features a simulation loop which fetches, decodes and ex-
ecutes instructions one after another. The ISS is developed as sequential soft-
ware running on a single processor. The simulation performed at this level is
cycle accurate. The simulation of the virtual prototype allows validating the
HAL integration into the final software stack.

Figure 4.8 shows the execution model of an architecture made of two proces-
sors, ARM7 and XTENSA. The model contains two ISS to execute the binary

Figure 4.8. Virtual prototype execution model.

Hardware Abstraction Layer 85

codes, corresponding to the ARM7, respectively XTENSA processors. The
rest of the architecture components are cycle accurate SystemC components
modeled at TLM with execution timing information. The two software stacks
that are executed by the two processors include the application tasks code,
communication and operating system layer and the processor specific HAL.

4.6.2 HAL Simulation on Transaction Accurate SystemC
Platforms

Instead of executing the HAL on the virtual prototype, as it was previously
described, the HAL can be simulated using the APIs provided by the OS run-
ning on the host machine. In this manner, the HAL APIs are executed natively
on the host machine, thus providing a simulation model of the OS and the
inter-processor communication scheme [BYJ04].

For example, the implementation of the ctx switch (old tid, cur tid) HAL
API, which performs a context switch between two tasks, relies on the APIs
provided by the OS running on the host machine (Windows, Linux, UNIX,
etc.). Figure 4.9 exemplifies the implementation of the context switch on a
host machine running Linux OS, which makes use of sigsetjmp and siglongjmp
APIs to save and switch the context of a task.

Figure 4.9. Simulation of the ctx switch() HAL API.

Using this kind of HAL simulation model, the software stack still remains
processor independent. Therefore, by abstracting the HAL through the use
of HAL APIs, the application tasks code, OS and communication software
components can be migrated between various processors. In this case, the only
requirement is that those processors need to support the implementation of the
HAL APIs, thus allowing software portability.

In order to verify the hardware-software interface, the HAL APIs are re-
quired to be executed upon a development platform with detailed hardware-
software interaction. In the following, we present the execution model that
allows the HAL native simulation and makes use of a transaction accurate
hardware platform implemented in SystemC. The hardware platform contains

86 HARDWARE-DEPENDENT SOFTWARE

all the hardware resources that are required for the HAL APIs native execution
and validation.

The combination of the transaction accurate platform with the software
stack based on HAL APIs results in an executable model. The full hardware-
software executable model is based on a co-simulation between SystemC for
the hardware components including the abstract execution models of the proc-
essors, and the native execution of the software stacks [NYBJ02].

Each software stack is a SystemC thread which creates a Linux process for
the software execution. At the beginning of the simulation, the SystemC plat-
form launches a GNU standard debugger (gdb) Linux process for each software
stack in order to start its execution. The software stack interacts with the cor-
responding SystemC abstract processor module through the Linux IPC layer.
The hardware-software interface uses Linux shared memory (IPC Linux shm)
for the interaction, data and synchronization exchange between the software
and the hardware.

Figure 4.10 shows the execution model of two software stacks running on
two processors, ARM7 and XTENSA. This represents a co-simulation between
the gdb Linux processes of each software stack gdb1 and gdb2 (one gdb per
each software stack) and one SystemC Linux process for the whole SystemC
simulation of the hardware platform. The interface between the three Linux
processes is performed using the Linux IPC shared memory.

Figure 4.10. Transaction accurate SystemC execution model.

The simulation of the transaction accurate architecture allows validation of
the integration of the tasks code with the OS and the communication protocol,
providing a simulation model for the HAL APIs. The simulation allows debug-
ging the software access to the hardware resources (e.g. access to the AMBA

Hardware Abstraction Layer 87

bus, interrupt lines assignment, OS scheduling, etc.). It makes possible the
debug of the access of the OS functions to the hardware resources through the
HAL APIs, e.g. read(. . .)/ write(. . .) from/to the memory, explicit synchro-
nization using mailboxes or the interrupt routine services. The simulation also
gives more precise statistics on the communication and computation perfor-
mances, such as number of exchanged bytes during the application execution
or estimation of the processors cycles spent on communication.

4.7 Experiments

In this chapter, we present the HAL integration for the Motion JPEG de-
coder application. This application targets various hardware architectures, in-
volving Xtensa processor [Xte], ARM processor [ARM] or Atmel DSP [mVD].

The Motion JPEG Decoder application represents an image processing mul-
timedia application. In this chapter, the baseline Motion-JPEG decoder is
used as target application example, which represents the basic JPEG decod-
ing process supported by all the JPEG decoders [Wal91]. The JPEG decoder
performs the decompression of an encoded JPEG bitstream (01011. . .) and
renders the decoded bitmap images on a screen. The JPEG compression algo-
rithm operates on blocks of 8 × 8 pixels of the image. The main functions of
the Motion JPEG application, as illustrated in Fig. 4.11 are:

Variable Length Decoding (VLD), which transforms the input binary
sequence into a symbol sequence using the Huffman tables

Differential Pulse Code Demodulation (DPCD) applied upon the DC co-
efficient

Run Length Decoding (RLD) applied upon the 63 AC coefficients

Zigzag Scan, which reconstructs the matrix of the DCT coefficients from
the DC and 63 AC elements

Inverse Quantization (IQ), which uses the quantification tables

Figure 4.11. Motion JPEG decoder.

88 HARDWARE-DEPENDENT SOFTWARE

Inverse Discrete Cosine Transformation (IDCT), which transforms the
DCT coefficients from frequency domain to spatial domain.

The experimentation is carried out by using three types of processor cores.
The first processor core represents the Xtensa processor [Xte]. This processor
works at 350 MHz frequency and has 8 Kbytes data cache and 8 Kbytes in-
struction cache memories. The second core belongs to ARM9 processors fam-
ily and represents the ARM926EJ-S type of core [mVD]. This runs at 200 MHz
frequency and is equipped with 16 KBytes data cache and 16 KBytes instruc-
tion cache memories. The third processor represents the magicV VLIW DSP
Atmel processor, running at 100 MHz [Wal91].

The Motion JPEG application aims to be executed on these different types
of processors. A small OS is used to start the execution of the application
and to initialize diverse hardware devices, i.e. I/O devices. The execution and
portability of the application software is performed by changing the HAL com-
ponent of the software stack. The processor specific application code optimiza-
tion techniques are not considered during the experimentation, in order to pre-
serve the application code hardware independent. Due to the use of the HAL
APIs, the application code and OS remains unmodified, thus enabling software
portability. The OS makes use of the same HAL APIs for all the hardware ar-
chitectures. We illustrate three examples of HAL APIs that are identical for
the different processors. These HAL APIs are the following:

set context() HAL API, which initializes the task that will be executed
by the processor, more precisely the stack

vector enable() HAL API, which enables the interrupts

vector disable() HAL API, which disables the interrupts

Figures 4.12, 4.13 and 4.14 illustrate the diverse implementations of the
same HAL APIs targeting the Xtensa, ARM9, respectively DSP processor.
The implementation for the ARM9 processor mainly uses assembly language.
The implementations of the HAL APIs for the Xtensa processor and the DSP
are based on other APIs, provided by the processors vendors.

After the compilation of the software stack, composed of the Motion JPEG
decoder application, a tiny OS and the HAL specific to each CPU, the resulted
memory requirements are as follows: 3072 bytes data memory and 4802 bytes
of code size for the program memory in case of the Xtensa processor, 3056
bytes data memory and 5092 bytes program memory for the ARM9 processor,
respectively 739 bytes data memory and 2806 bytes program memory for the
DSP. Table 4.1 summarizes these values and also the code and data size of the
HAL for the three different types of processors.

Hardware Abstraction Layer 89

Figure 4.12. Implementation of set context() HAL API for different processors.

Figure 4.13. Implementation of the vector enable() HAL API for different processors.

90 HARDWARE-DEPENDENT SOFTWARE

Figure 4.14. Implementation of the vector disable() HAL API for different processors.

Processor Application HAL

Data [Bytes] Code [Bytes] Data [Bytes] Code [Bytes]
Xtensa 3072 4802 112 1185
ARM9 3056 5092 14 1248
DSP 739 2806 52 296

Table 4.1. Code and data size.

Figure 4.15 illustrates the total execution cycles measured when executing
the whole Motion-JPEG application on the different processors using ISS. In
all the cases, the input bitstream represents a 10 frames image encoded using
QVGA format, and stored in the local memory of the processor. As shown
in Fig. 4.15, the number of execution cycles required to decode the 10 frames
image is approximately 137 Mega cycles on the Xtensa processor, 71 Mega
cycles on the ARM9 processor and 164 Mega cycles on the DSP. Table 4.2
indicates the characteristics of each of these processors, as specified by the IP
vendors, in terms of speed (clock frequency), surface and corresponding power
consumption. The processors are configured as shown in Table 4.2.

The performance difference between the processors is explained by the avail-
ability of the additional cache memories and improvement in number of cycles
required for the load/store operations. The real time requirement of 25 frames
decoded per second implies an execution per frame within 8 Mega cycles on
a CPU running at 200 MHz, 4 Mega cycles on a CPU running at 100 MHz

Hardware Abstraction Layer 91

Figure 4.15. Execution clock cycles of Motion JPEG decoder QVGA.

Processor Frequency Surface Power Consumption
Xtensa (core) 350 MHz 0.26 mm2 26.25 mW
ARM9 200 MHz 2.78 mm2 96 mW
DSP 100 MHz 13.2 mm2 229.2 mW

Table 4.2. Frequency, surface and power consumption.

and 14 Mega cycles on a CPU running at 350 MHz. Thus, the Motion JPEG
decoder can be executed in real-time by using the ARM9 processor and the
Xtensa configurable processor. The surface of the hardware in case of the
ARM9 processor is 2.78 mm2 with a power consumption of 96 mW. The ex-
ecution on the DSP can be improved by using DSP specific optimization fea-
tures in order to speed up the critical computing part of the application. But the
processor specific application optimization reduces software portability. The
DSP is the biggest power consumer among the three targeted processors, and
it implies a surface of 13.2 mm2. The Xtensa core is the optimal processor in
terms of surface and consumption, but it is not equipped with any extra hard-
ware accelerators in the configuration used during the experimentation.

4.8 Conclusions

In this chapter, we presented a layered organization of the software stack
into application tasks code, operating system and communication libraries, and
HAL. The structured representation of the software stack separates the hard-
ware independent and hardware dependent software layers, thus allowing easy
software portability. The different software components are generated and vali-
dated gradually by using specific software development platforms. Abstracting
and simulating the HAL through HAL APIs allows software reuse and flexibil-

92 HARDWARE-DEPENDENT SOFTWARE

ity. To illustrate the effectiveness of the proposed methodology, we generated
the software stack for the Motion JPEG application targeting different hard-
ware architectures. The execution of the Motion JPEG on multiple processors
(Xtensa, ARM9, DSP) was possible due to the clear separation between the
hardware independent software code (application tasks code, OS and commu-
nication) and the hardware dependent HAL.

References

[A386] A386. a386.nocrew.org

[ARM] ARM. www.arm.com

[BYJ04] A. Bouchima, S. Yoo, and A.A. Jerraya. Fast and accu-
rate timed execution of high level embedded software using
HW/SW interface simulation model. In Proceedings of ASP–
DAC 2004, January 2004, Yokohama, Japan, 2004.

[CYC+05] Y. Cho, S. Yoo, K. Choi, N.E. Zergainoh, and A.A. Jerraya.
Scheduler implementation in MPSoC design. In Proceedings
of ASP–DAC 2005, 18–21 January 2005, Shanghai, China,
pages 151–156, 2005.

[eCos] eCos. www.ecos.sourceware.org/docs-1.3.1/
ref/ecos-ref.b.html

[EPTP07] C. Erbes, A.D. Pimentel, M. Thompson, and S. Polstra.
A framework for system-level modeling and simulation of em-
bedded systems architecture. EURASIP Journal on Embedded
Systems, Volume 2007, Article ID 82123, June 2007.

[FRTOS] FreeRTOS. www.freertos.org

[GLMS02] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic, Dordrecht, 2002.

[GPY+07] X. Guerin, K. Popovici, W. Youssef, F. Rousseau, and A. Jer-
raya. Flexible application software generation for hetero-
geneous multi-processor system-on-chip. In Proceedings of
COMPSAC 2007, 23–27 July 2007, Beijing, China, 2007.

[HAL] HAL. www.altera.com/literature/hb/nios2/
n2sw nii5v2 02.pdf

[Han06 +] S.I. Han et al. Buffer memory optimization for video codec
application modeled in simulink. In Proceedings of DAC 2006,
San Francisco, USA, pages 689–694. IEEE Press, New York,
2006.

[HYL+06] S. Hong, S. Yoo, S. Lee, S. Lee, H.J. Nam, B.S. Yoo, J. Hwang,
D. Song, J. Kim, J. Kim, H. Jin, K. Choi, J.T. Kong, and S. Eo.

http://a386.nocrew.org
http://www.arm.com
http://www.ecos.sourceware.org/docs-1.3.1/ref/ecos-ref.b.html
http://www.ecos.sourceware.org/docs-1.3.1/ref/ecos-ref.b.html
http://www.freertos.org
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf

Hardware Abstraction Layer 93

Creation and utilization of a virtual platform for embedded
software optimization: An industrial case study. In Proceed-
ings of CODES+ISSS 2006, Seoul, Korea, 2006.

[JBP06] A. Jerraya, A. Bouchhima, and F. Petrot. Programming models
and HW–SW interfaces abstraction for multi-processor SoC.
In Proceedings of DAC 2006, San Francisco, USA, pages 280–
285. IEEE Press, New York, 2006.

[JW05] A. Jerraya and W. Wolf. Hardware–software interface code-
sign for embedded systems. Computer, 38(2):63–69, 2005.

[KSW+00] E.A. de Kock, W.J.M. Smits, P. van der Wolf, J.Y. Brunel,
W.M. Kruijtzer, P. Lieverse, K.A. Vissers, and G. Essink.
YAPI: application modeling for signal processing systems. In
Proceedings of DAC 2000. IEEE Press, New York, 2000.

[LOS] LynxOS. www.lynuxworks.com/rtos

[Math] The MathWorks. www.mathworks.com

[MPI] MPI. www-unix.mcs.anl.gov/mpi

[mVD] magicV VLIW DSP. www.atmel.com

[newl] newlib. sourceware.org/newlib

[NS] NicheStack. www.iniche.com/nichestack.php

[NYBJ02] G. Nicolescu, S. Yoo, A. Bouchhima, and A.A. Jerraya. Vali-
dation in a component-based design flow for multicore SoCs.
In Proceedings of ISSS’02, 2–4 October 2002, Kyoto, Japan,
2002.

[PGR+07] K. Popovici, X. Guerin, F. Rousseau, P.S. Paolucci, and A. Jer-
raya. Efficient software development platforms for multimedia
applications at different abstraction levels. In Proceedings of
IEEE RSP 2007, May 2007, Porto Alegre, Brazil, pages 113–
122, 2007.

[PJ07] K. Popovici and A. Jerraya. Simulink based hardware-
software codesign flow for heterogeneous MPSoC. In Pro-
ceedings of SCSC 2007, 15–18 July 2007, San Diego, USA,
pages 497–504, 2007.

[Pos03] F. Pospiech. Hardware dependent software (HdS). Multi-
processor SoC aspects—An introduction. In Proceedings of
MPSoC 2003, 7–11 July 2003, Chamonix, France, 2003.

[Row94] J.A. Rowson. Hardware/software cosimulation. In Proceed-
ings of DAC 1994, San Diego, USA, pages 439–440. IEEE
Press, New York, 1994.

[RTL] RTLinux. www.fsmlabs.com

http://www.lynuxworks.com/rtos
http://www.mathworks.com
http://www-unix.mcs.anl.gov/mpi
http://www.atmel.com
http://sourceware.org/newlib
http://www.iniche.com/nichestack.php
http://www.fsmlabs.com

94 HARDWARE-DEPENDENT SOFTWARE

[SG00] L. Semeria and A. Ghosh. Methodology for hardware/software
co-verification in C/C++. In Proceedings of ASPDAC 2000,
Yokohama, Japan, pages 405–408, 2000.

[Tan95] Andrew S. Tanenbaum. Distributed Operating Systems. Pren-
tice Hall, Englewood Cliffs, 1995.

[Tur05] J. Turley. Survey says: Software tools more important than
chips. Embedded Systems Design Journal, 2005.

[TW97] Andrew S. Tanenbaum and Albert S. Woodhull. Operating
Systems: Design and Implementation. Prentice Hall, Engle-
wood Cliffs, 1997.

[uIT] uITRON4.0. www.sakamura-lab.org/tron/itron

[VBL05] N. Ventroux, F. Blanc, and D. Lavenier. A low complex
scheduling algorithm for multi-processor system-on-chip. In
Proceedings of Parallel and Distributed Computing and Net-
works, 15–17 February 2005, Innsbruck, Austria, 2005.

[vdW04+] P. van der Wolf et al. Design and programming of embedded
multiprocessors: an interface-centric approach. In Proceedings
of CODES+ISSS 2004, Stockholm, Sweden, pages 206–217,
2004.

[VxW] VxWorks. windriver.com/vxworks

[Wal91] G.K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, Special Issue on Digital Multi-
media Systems, 34(4):30–44, 1991.

[WCE] Windows CE.
www.microsoft.com/windows/embedded

[Wol06] W. Wolf. High Performance Embedded Computing. Morgan
Kaufmann, San Mateo, 2006.

[Xte] Xtensa. www.tensilica.com

[YJ03] S. Yoo and A. Jerraya. Introduction to hardware abstraction
layers for SoC. In Proceedings of DATE 2003, 3–7 March
2003, Munich, Germany, pages 336–337, 2003.

[YYS+04] M.W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and A. Jerraya.
Debugging HW/SW interface for MPSoC: Video encoder sys-
tem design case study. In Proceedings of DAC 2004, 7–11
June 2004, San Diego, USA, pages 908–913. IEEE Press, New
York, 2004.

http://www.sakamura-lab.org/tron/itron
http://windriver.com/vxworks
http://www.microsoft.com/windows/embedded
http://www.tensilica.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

