
Hardware-dependent Software
Principles and Practice



Wolfgang Ecker · Wolfgang Müller ·
Rainer Dömer
Editors

Hardware-dependent Software
Principles and Practice



Wolfgang Ecker

Infineon Technologies AG
Munich, Germany
E-mail: wolfgang.ecker@infineon.com

Wolfgang Müller

Universität Paderborn
C-LAB
Paderborn, Germany
E-mail: wolfgang@acm.org

Rainer Dömer

University of California, Irvine
Henry Samueli School of Engineering
Irvine, CA, USA
E-mail: doemer@uci.edu

ISBN 978-1-4020-9435-4 e-ISBN 978-1-4020-9436-1

Library of Congress Control Number: 2008938549

c© 2009 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: Wolfgang Müller and Christof Poth

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



As the editors spend
considerable time for the
preparation of this book,

they would like to thank their
families for their support.

Wolfgang Ecker dedicates
this book to his wife Monika

and children Johannes,
Stephanie, and Matthias.

Wolfgang Müller dedicates
this book to his wife Barbara

and children Philipp,
Maximilian, and Tabea.

Rainer Dömer dedicates this
book to his wife Julia and

children Sophie, Klara, and
Simon.



Contents

Preface xi

Chapter 1

Hardware-dependent Software—Introduction and Overview 1
Wolfgang Ecker, Wolfgang Müller and Rainer Dömer

1.1. Increasing Complexity 2
1.2. Hardware-dependent Software 6
1.3. Chapter Overview 10
References 13

Chapter 2

Basic Concepts of Real Time Operating Systems 15

Franz Rammig, Michael Ditze, Peter Janacik, Tales Heimfarth, Timo Kerstan,
Simon Oberthuer and Katharina Stahl

2.1. Introduction 16
2.2. Characteristics of Real-Time Tasks 17
2.3. Real-Time Scheduling 20
2.4. Operating System Designs 25
2.5. RTOS for Safety Critical Systems 31
2.6. Multi-Core Architectures 34
2.7. Operating Systems for Wireless Sensor Networks 37
2.8. Real-Time Requirements of Multimedia Application 40
2.9. Conclusions 42
References 44

Chapter 3

UEFI: From Reset Vector to Operating System 47
Vincent Zimmer, Michael Rothman and Robert Hale

3.1. Introduction 48
3.2. The Ever Growing Ever Changing BIOS 48
3.3. Time for a Change 51



viii HARDWARE-DEPENDENT SOFTWARE

3.4. UEFI and Standardization of BIOS 52
3.5. Framework, Foundation, and Platform Initialization 59
References 66

Chapter 4

Hardware Abstraction Layer—Introduction and Overview 67
Katalin Popovici and Ahmed Jerraya

4.1. Introduction 68
4.2. Software Stack 70
4.3. Hardware Abstraction Layer 74
4.4. Existing Commercial HAL 78
4.5. Overview of the Software Design and Validation Flow 80
4.6. HAL Execution and Simulation Using Software Development Platforms 83
4.7. Experiments 87
4.8. Conclusions 91
References 92

Chapter 5

HW/SW Interface—Implementation and Modeling 95
Wolfgang Ecker, Volkan Esen, Thomas Steininger and Michael Velten

5.1. Introduction 96
5.2. Reading and Writing Data Words 97
5.3. Bit Fields 104
5.4. Register Address and Data Mismatch 113
5.5. Textual Specification of the SIF 121
5.6. Register Header File 127
5.7. SIF Driver Functions 131
5.8. Synchronization 135
5.9. Template Based Code Generation 137
5.10. Modeling the HW/SW Interface 141
5.11. Conclusions 148
References 149

Chapter 6

Firmware Development for Evolving Digital Communication Technologies 151
Stefan Heinen and Michael Joost

6.1. Introduction 152
6.2. Evolution of Wireless Standards and the Consequences 153
6.3. System Level Design Flow 155
6.4. Hardware / Firmware Interface 161
6.5. Test Bench 165
6.6. Summary 171
References 171



Contents ix

Chapter 7

Generation and Use of an ASIP Software Tool Chain 173

Sterling Augustine, Marc Gauthier, Steve Leibson, Peter Macliesh,
Grant Martin, Dror Maydan, Nenad Nedeljkovic and Bob Wilson

7.1. Introduction 174
7.2. Range of Processor Configurability 175
7.3. Models for Generating Software Development Tools 176
7.4. Evolution of Tool-Development Approaches 179
7.5. The C/C++ Compiler 183
7.6. The Assembler 186
7.7. The Linker 188
7.8. The Loader 190
7.9. The Disassembler 191
7.10. The Debugger 192
7.11. Other Software-Development Tools 192
7.12. Operating Systems and Other System Software 192
7.13. The Instruction Set Simulator (ISS) 194
7.14. System Simulation 196
7.15. The IDE (Integrated Development Environment) 197
7.16. Conclusions and Futures 201
References 202

Chapter 8

High-Level Development, Modeling and Automatic Generation of Hardware-
Dependent Software

203

Gunar Schirner, Rainer Dömer and Andreas Gerstlauer
8.1. Introduction 204
8.2. Software-enabled System Design Flow 208
8.3. Software Generation Overview 210
8.4. Hardware-dependent Software Generation 211
8.5. Experimental Results 223
8.6. Conclusions 228
References 229

Chapter 9

Accurate RTOS Modeling and Analysis with SystemC 233
Henning Zabel, Wolfgang Müller and Andreas Gerstlauer

9.1. Introduction 234
9.2. SystemC RTOS Model 240
9.3. Related Approaches 252
9.4. Applications 254
9.5. Conclusions 258
References 259



x HARDWARE-DEPENDENT SOFTWARE

Chapter 10

Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 261
Matthias Krause, Oliver Bringmann and Wolfgang Rosenstiel

10.1. Introduction 262
10.2. Concepts of AUTOSAR 264
10.3. Different System Views on Distributed Embedded Systems 269
10.4. Applying SystemC for AUTOSAR Software Verification 273
10.5. Integration of Timing Behavior into Virtual Prototypes 283
10.6. Application Example 286
10.7. Conclusions 290
References 291

Index 295



Preface

Hardware-dependent Software (HdS) plays a key role in desktop computers
and servers for many years. Recently, the relevance of HdS in the domains of
embedded systems and Systems-on-Chip (SoCs) has significantly increased,
mainly due to its flexibility, the possibility of late change, and the quick adapt-
ability.

Modern SoCs, on a single die integrated embedded systems, often contain
multiple programmable cores, including general purpose processors, digital
signal processors (DSPs), and/or application specific instruction set processors
(ASIPs) requiring a large amount of low level software. Mobile phones and
automotive control systems meanwhile come with complex boot loaders and
include multiple communication protocol stacks of considerable size. Here and
in many other application areas, the number and complexity of standards that
need to be supported have steadily grown. For mobile phones, for instance,
the set of currently expected standards includes GSM, GPRS, EDGE, UMTS,
Bluetooth, TCP/IP, and IrDA, to only name a few.

In this context, HdS has become a crucial factor in embedded system design
since it allows to accommodate and adapt late changes in the hardware plat-
form as well as in the application software. Thus, even last minute changes
can be quickly performed. On the other hand, changes in the HdS are often
hard to track and can have a complex impact on the system with a potential
for total system failure. HdS also critically influences the system performance
and power management. Consequently, HdS must be carefully designed and
maintained.

In contrast to its importance in the area of electronic systems design, the
role of HdS is most often underestimated. Considering todays literature, we
can only find very few introductory and application-oriented text books. To
overcome this gap, we have brought together experts from different HdS areas
in this book. By providing a comprehensive overview of general HdS princi-
ples, tools, and applications, we feel that this book provides adequate insight
into the current technology and upcoming developments in the domain of HdS.
The reader will find a text book with self-contained introductions to the princi-
ples of Real-Time Operating Systems (RTOS), the emerging BIOS successor



xii HARDWARE-DEPENDENT SOFTWARE

UEFI, and the Hardware Abstraction Layer (HAL). Further chapters cover in-
dustrial applications, verification, and tool environments.

This book would not have been possible without the help and contribu-
tions of many people. First of all, we would like to thank Mark de Jongh
and Cindy Zitter from Springer Verlag who supported us throughout the pub-
lication process. We also thank the contributing authors for their great coop-
eration through the entire process. For the review of individual chapters and
valuable comments and suggestions, we acknowledge the help of Stephen A.
Edwards (Columbia University), Petru Eles (Linköpings Universitet), Andreas
Gerstlauer (University of Texas, Austin), Grant Martin (Tensilica Inc.), and
Graziano Pravadelli (Universita di Verona). Finally, we thank Christof Poth
who provided us with the sparkling picture for our book cover.

Wolfgang Ecker
Infineon Technologies AG, Munich, Germany

Wolfgang Müller
Paderborn University, Paderborn, Germany

Rainer Dömer
University of California, Irvine, USA



Chapter 1

HARDWARE-DEPENDENT SOFTWARE

Introduction and Overview

Wolfgang Ecker, Wolfgang Müller and Rainer Dömer

Abstract Rapidly rising system complexity has created a growing productivity gap in the
design of electronic systems. One critical component is Hardware-dependent
Software (HdS), the importance of which is often underestimated. In this chap-
ter, we introduce HdS and illustrate its role in the overall system design context.
We also provide a brief overview and define a basic HdS terminology and con-
clude with a brief outlook over the following chapters in this book.

Keywords: Hardware-dependent Software, Systems Complexity, Productivity Gap

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



2 HARDWARE-DEPENDENT SOFTWARE

1.1 Increasing Complexity

Microelectronics are an integral part of our daily life. Electronic devices
affect, support, and enable us in countless tasks and areas, including commu-
nication, transportation, work, and entertainment. Automotive applications are
a classic example. A modern car or truck is filled with multiple dozens of
electronic control units (ECUs) consisting of micro controllers, digital signal
processors (DSPs) and application specific integrated circuits (ASICs). The
control of mechanical machinery by use of electronic devices does not even
stop at bicycles. For example, Shimano Inc. has recently introduced its Di2
electronic gear shifting option for high-end bicycles [Shi08].

In general, the number of new electronic devices in use is steadily increas-
ing. For instance, the annual sales volumes of classic electronic mass products,
such as personal computers (PCs) and mobile phones, are still inclining. In
2007, worldwide 271.2 million units of PCs were shipped and mobile phone
sales surpassed 1.15 billion in the same year (Gartner 2007).

Figure 1.1. Increasing CPU complexity over time. [Source: Intel R© Corp.]

At the same time, the complexity of electronic systems is growing expo-
nentially. Moore’s law still holds true, the number of transistors that can be
integrated on a single chip still doubles every 18 months [Moo65]. Clearly,
this development is driven by increasing requirements for larger memory sizes
and higher processing speeds. Consequently, general purpose PCs and servers
have reached 64-bit multicore architectures and integrate a large set of dedi-
cated components. Figure 1.1 shows this complexity growth for the x86 family
of Intel processors.



Hardware-dependent Software 3

On the other hand, for many special purpose embedded applications, entire
systems can be integrated on a single die, resulting in complex System-on-
Chip (SoC) architectures. Such dedicated SoCs typically include several pro-
grammable cores such as general processors, DSPs, and application specific
instruction set processors (ASIPs). While traditionally most embedded sys-
tems were based on 8-bit processors, simple reduced instruction set computers
(RISC), or MIPS-based micro control units (MCUs), the 32-bit market today
has surpassed the 8-bit market in 2007 (iSuppli 2008).

1.1.1 Growing Software Content

Naturally, the massive growth in computing power and available memory
size in the hardware platforms has had a tremendous impact on the supported
software. For example, the extended hardware capabilities allow the use of
comprehensive software libraries and support new programming languages
(Java and C#, for instance) and integrated development environments (IDEs),
such as Eclipse and .NET. These, in turn, yield a significant growth in software
design productivity, which again enables larger and more advanced applica-
tions.

Consequently, the complexity of software is increasing exponentially as
well. In the general case, Humphrey observed that the size of software used
for any given function is growing by 10x every 5 years [Wat02]. For the case
of embedded applications, some sources report an even higher growth rate.
We can observe that the embedded software complexity doubles in size every
10 months.1

For embedded systems, which traditionally are very constrained in process-
ing power and memory size due to their embedded nature (i.e. mobile, low
power, low cost), today larger applications become possible. For one, the
introduction of 32-bit MCUs allows the use of more complex programming
languages, such as C/C++ and dialects. This results in higher software de-
sign productivity which, in turn, allows the introduction of more innovative
applications in the embedded area. Indeed, the vast majority of innovations in
embedded systems is attributed to advances in microelectronics and software
design. In the automotive industry, for instance, over 90% of all innovations
over the last years are electronics-based.

The growing dominance of electronics and software and the associated
growth of costs is not only limited to mass products in embedded systems.
For example, while the F-4 fighter jet essentially came with no firmware, the
current F-22 fighter jet is fully equipped with microelectronics. At the same

1In some applications the network became the limiting factor. According to Nielson’s law [Nie98], the
network bandwidth doubles only every 21 months.



4 HARDWARE-DEPENDENT SOFTWARE

time, the costs from the F-4 to the F-22 has increased drastically, from $20
million to $257 million, and half of these costs are attributed to the embedded
software [Gan05]. In automotive systems design, in contrast, the software con-
tent currently accounts for ‘only’ 8% of the total cost of an average car (Frost
& Sullivan 2005). However, this ratio is steadily rising.

1.1.2 Productivity Gap

It is well-known in the hardware design community that, for a number of
years now, the potential in chip complexity outpaces the design capabilities.
This creates the hardware design productivity gap [Sem04].

Figure 1.2. Hardware, Software, and System Design Gap. [Sources: ITRS, IFX, STM]

In particular, chip capacity doubles every 18 months according to Moore’s
law [Moo65], whereas the productivity growth in hardware design over the
last years is estimated at 1.6x over 18 months. The latter is mostly attributed to
the reuse of intellectual property (IP). Since the hardware capacity is growing
faster than the productivity in its design, we face the so-called hardware design
gap, as illustrated in Fig. 1.2.

Now, if we factor in the estimated software design growth, the situation for
entire systems only gets worse. In particular, the productivity in software de-
sign reportedly increases by about 2x every 24 months. However, to satisfy the
actual needs in embedded software complexity, we would need an estimated
growth of 2x over 10 months (as discussed earlier in Sect. 1.1.1). Thus, in addi-



Hardware-dependent Software 5

tion to the hardware design gap, we face a corresponding software design gap
at the same time. Considering both problems together, as shown in Fig. 1.2,
the two gaps combined result in a large system design gap.

We would like to emphasize that the real system design challenge is not
only the addition of the two design gaps, but moreover the close interaction
and tight dependency between the software and hardware domains. In other
words, the necessary interfacing of software and hardware adds another layer
of complexity. Thus, Hardware-dependent Software (HdS) is at the core of this
system design challenge.

1.1.3 Design Productivity

To better understand the issues in software design productivity, we elaborate
in this section briefly on the economics of software development and how its
complexity can be measured and estimated.

The principal concern with increasing software size and complexity is the
scalability of the development process. To reach an understanding of gen-
eral scalability and provide a method for estimation of software design costs,
Boehm presented an economic model, called COCOMO (Constructive Cost
Model) [Boe81]. This model is based on the experience collected from multi-
ple software projects and provides two interesting equations that estimate the
amount of required effort and resources for software development. The first
equation,

SM = 2.8 · KLoCM where M = 1.2 (1.1)

determines the number of staff months (SM) needed to develop a given amount
of software code. Here, KLoC denotes the number of thousands of lines of
code. The second equation,

DT = 2.5 · SM0.32 (1.2)

then allows to estimate the length of the needed development time (DT) in
terms of chronological months.

As an example, a software module consisting of 10,000 lines of code is
estimated to require about 44.4 staff months, according to the above equations,
or about 5 software developers over a period of 9 months.

Both Eqs. 1.1 and 1.2 are already adjusted for the case of embedded software
development (using the embedded mode of COCOMO which defines constants
for medium-sized projects with tight hardware, software, and operational con-
straints, as they are typical for embedded software design). For better accuracy,
the estimation equations can also be calibrated with additional coefficients, i.e.
multiplied by a set of several cost factors Ci , like the required reliability, the
product complexity, and the presence of real-time constraints. Furthermore,



6 HARDWARE-DEPENDENT SOFTWARE

whereas Boehm [Boe81] set M = 1.2 in Eq. 1.1, Ganssle [Gan04] proposes
an M between 1.5 and 2.0 based on his experience.2

1.1.4 Productivity Crash

Of course, development efforts in real projects vary widely and we have
to caution that estimation models, such as COCOMO in Sect. 1.1.3, can only
provide a first and very rough approximation. In larger projects, we often
face a productivity crash when we increase the number of developers beyond
a certain threshold. Clearly, this drop in productivity can be attributed to the
amount of interaction between the developers.

The reason for the productivity crash follows from the main dilemma that
the number of interactions increases in the order of O(n2) where n is the num-
ber of involved team members. In other words, doubling the number of team
members results in four times the number of distracting interactions. Some
studies on software projects report roughly an optimistic 5% loss in produc-
tivity for each interaction. Studies by Joel Aron at IBM have shown that the
productivity of a programmer can be significantly reduced to approx. one sixth
when working in a team with a high number of interactions3 [Bro95].

A potential solution to deal with this dilemma is to spilt a software project
into completely autonomous parts, which can be independently processed by
different developers [Gan05]. Given the module-based and hierarchical struc-
ture of typical multi- or many-core SoC projects, we can anticipate that this
strategy may be successfully applied in such situations.

In other words, there is reasonable hope that a productivity crash can be
significantly relaxed in the embedded design area when partitioning the design
into independent blocks and applying component-based design. Following this
argument, the strategy of independent development should also be applicable
to networks of distributed embedded systems, such as those commonly found
in automotive systems, for instance.

1.2 Hardware-dependent Software

Until a decade ago, only about 10% of the development costs of electronic
systems were spent on software, whereas 90% of expenses went into the hard-
ware. Today, this ratio has shifted significantly towards software.

2For M = 1.75, 10,000 lines of code require about 157 staff months, or about 13 developers over 1 year.
3He found that the productivity of a programmer largely varies between 10,000 instructions per staff-year
for programmers with very few interactions to 1,500 machine instructions per staff-year for many interac-
tions. This included design and programming and doubled when also covering system test.



Hardware-dependent Software 7

1.2.1 Software Dominance

In the system design era, where hardware design has moved up to include the
entire system-on-chip design task, software design and validation have gained
tremendously in importance. In fact, software design starts to dominate the
overall design process.

Figure 1.3. Hardware-dependent Software dominates in 90 nm designs.

The shift in focus from hardware- to software-centric design can be demon-
strated in the relative design effort spent over different process technologies.
Figure 1.3 illustrates the software/hardware ratios over different process tech-
nologies in 2002. We can clearly see that with older fabrication technol-
ogy, i.e. in a 250 nm process, more effort is spend on hardware as on soft-
ware design. However, in todays’ state-of-the-art process technology, e.g. a
90 nm process, the software design effort clearly dominates over the hard-
ware.

In addition to the constantly rising system size and complexity, there are two
more drivers that increase the demand for more software content in systems,
namely flexibility and configurability.

Many systems need flexibility and feature-richness for different varia-
tions. Such flexibility can only be efficiently provided through the reuse
and sharing of available hardware resources. This, in turn, requires the
programming of hardware resources by use of software.

Software configuration of standard hardware components is necessary to
reduce overall system costs. This applies in particular to systems built



8 HARDWARE-DEPENDENT SOFTWARE

in mass-production, such as in the areas of telecommunication and auto-
motive electronics. Many cars and mobile phones, for instance, support
software reconfiguration, e.g. through a flash loader, after shipment.

We would like to emphasize here that both drivers, flexibility and config-
urability, specifically apply to the Hardware-dependent Software (HdS), as op-
posed to the general application software. In other words, the parts of software
most critical towards reconfiguration are those software modules that closely
interact with the underlying hardware.

1.2.2 Importance of Hardware-dependent Software

In todays large scale interdisciplinary projects, the importance of Hds is
still not understood. Therefore, the need for HdS is underestimated in the
project planning phase, and sometimes even completely ignored. In contrast,
HdS often becomes a crucial factor when the project progresses, and when the
problem is discovered late, it usually becomes very expensive.

For instance, Ganssle [Gan04] reports costs for typical commercial firmware
of about $15 to $30 per line of code, measured from the start of the project until
it is shipped. However, it is not unusual for firmware costs to even reach $100
per line or more, if proper documentation and other secondary development
tasks are included. As a consequence, a tiny 5 KLoC software module can
easily reach a six digit budget.

In retrospective, the notion of HdS and its importance in electronic design
automation (EDA) came up with the introduction of platform-based design
[SVM01]. To discuss and address the issues, the Virtual Socket Interface Al-
liance (VSIA) initiated a development working group (DWG) on the topic of
HdS in 2002. As a result of this working group, an initial taxonomy and termi-
nology has been developed. Details can be found in [BMA05].

In the context of this chapter (and the entire book), we will define Hardware-
dependent Software (HdS) as the software in an embedded system that closely
interacts with the underlying hardware platform. More specifically,

HdS is specifically built for a particular block of hardware,
i.e. HdS is meaningless without that hardware.

HdS and hardware together implement a systems’ functionality,
i.e. the hardware is meaningless without the HdS.

HdS provides the application software with an interface to easily access
the hardware features.



Hardware-dependent Software 9

1.2.3 Hardware-dependent Software Architecture

Consistent with our definition of HdS in the previous section, we can iden-
tify HdS as a layer of software modules in between the application software
and the underlying hardware platform. In other words, HdS can be seen as low
level software.

Figure 1.4. HdS in a layered software architecture.

Figure 1.4 illustrates the layering of the general HdS architecture. At the top
third of the figure, we find the application software layer which is supported
by a layer of various HdS modules in the middle. The HdS layer, in turn, is
supported by the underlying hardware at the bottom third of Fig. 1.4.

HdS typically runs in the kernel space of an operating system, whereas mid-
dleware and application software run in user space. As such, HdS includes the
software modules for boot code, device drivers, hardware-dependent portions
of protocol stacks, and DSP algorithms.

More specifically, the general software stack of a typical HdS architecture,
as shown in Fig. 1.4, consists of the following main components:

Application Software. One or multiple applications implement the overall
functionality of the system. Application software may consist of mul-
tiple processes and/or threads. However, in most embedded systems,
application software serves one single application with a dedicated pur-
pose.



10 HARDWARE-DEPENDENT SOFTWARE

Middleware. Middleware represents a software layer that provides applica-
tion-specific services. For instance, middleware can provide message-
oriented communication services or SQL-oriented data access. Mid-
dleware sometimes is also referred to as an adapter layer between the
application software and the operating system.

Operating System. An operating system (OS) is a software component that
manages and coordinates application software tasks for sharing of avail-
able software and hardware resources. If an OS supports resource shar-
ing under real-time constraints, it is called a real-time operating system
(RTOS).

Communication Protocol Stacks. Communication protocols are typically
implemented by layered software modules (more or less following a
subset of the 7 layers in the ISO/OSI reference model) on top of device
drivers.

Device Drivers. A device driver provides software access to a hardware re-
source, possibly through a hardware abstraction layer. Most device
drivers provide six standard functions to initialize/reset the device, open,
close, read and write data streams, and perform I/O control.

Boot Firmware. The boot firmware manages the initial boot process of a
computer and typically resides in a read-only memory (ROM). It typ-
ically includes self-test routines, e.g., power-on self-test (POST), and a
boot loader that initiates the actual OS. Examples of boot firmware are
the basic I/O system (BIOS) and the newer unified extensible firmware
interface (UEFI) used in regular personal computers (PCs).

Hardware Abstraction Layer. The hardware abstraction layer (HAL) is a
software layer that provides an abstract interface to access hardware re-
sources. The HAL is typically divided into access, register, and func-
tional shielding.

We should emphasize that the layered software architecture discussed above
is conceptual and simplified. Depending on the actual embedded system and
its application, the software modules used will vary widely in size and may be
even left out entirely.

1.3 Chapter Overview

In the remainder of this book, we will focus on specific aspects of HdS in
more detail. Together, the following chapters provide a composition of basic
principles with current and upcoming practices and tools for HdS development.



Hardware-dependent Software 11

The chapters are generally self-contained, so that they can be read in the
given or a different order. Therefore, all topics, the reader is already familiar
with, can also be easily skipped if desired.

Figure 1.5. HdS coverage in the following book chapters.

The following chapters cover the various aspects of HdS quite comprehen-
sively. As a broad overview, Fig. 1.5 illustrates the coverage of HdS topics
discussed in each chapter in front of the background of the general HdS soft-
ware architecture.

After this introductory chapter, the first three chapters focus on three spe-
cific components of HdS, namely RTOS, boot firmware, and HAL. In par-
ticular, Chap. 2 introduces RTOS principles and explains its basic services
including process management, scheduling algorithms, and inter-task commu-
nication and synchronization. With respect to different application-specific
requirements, appropriate RTOS techniques and kernel types are discussed as
well.

Next, Chap. 3 presents a novel approach around the boot firmware which is
needed to start any computer properly. It presents an overview of the Unified
Extensible Firmware Interface (UEFI) which is expected to replace the old
BIOS in the next years.



12 HARDWARE-DEPENDENT SOFTWARE

Chapter 4 then digs into the details of the layered organization of the HdS
architecture and discusses in particular the hardware abstraction layer (HAL).
A main topic of this chapter are the techniques that achieve flexibility as well
as portability of software by use of the HAL application procedural interface
(API).

Thereafter, Chap. 5 outlines the modeling and implementation of the hard-
ware/software interface in detail. The chapter takes great care of describing
the software programmers’ view of the interface and provides many practical
examples in form of C source code fragments.

Chapter 6 then extends the hardware/software interface discussion and
presents, in a proven industrial setting, techniques that automatically derive in-
terface descriptions for both hardware and software from a common high-level
description. As such, this chapter describes the state-of-the-art in industrial
telecommunication firmware development.

The second part of this book is dedicated to EDA tools and the critical tasks
of verification and validation. Chapter 7 focuses on EDA tools for application-
specific instruction set processors (ASIP). In particular, the issues of configura-
bility and extensibility of an ASIP-specific tool chain are discussed, including
the effects on the integrated development environment (IDE), the compiler,
profiler, instruction-set simulator (ISS), and other supporting tools.

Chapter 8 describes how automatic software generation can significantly re-
duce the design time of HdS. The chapter proposes a system-level design flow
that allows to generate HdS automatically from an abstract system specifica-
tion. A system compiler is presented which generates a software implementa-
tion, including software binaries of the application, communication protocols,
and operating system code.

Chapter 9 covers RTOS simulation, estimation and configuration for differ-
ent scheduling strategies and task priorities. An RTOS simulation based on an
abstract SystemC model is presented which supports modeling of scheduling,
preemption and interrupts, in the context of a system design flow.

Finally, Chap. 10 describes verification of AUTOSAR-based automotive
systems by means of SystemC simulation at transaction level. It outlines how
different AUTOSAR standard entities, like basic software (BSW), virtual func-
tional bus (VFB), and run-time environment (RTE), map to a SystemC-based
design flow for timing analysis.



Hardware-dependent Software 13

References

[BMA05] Brian Bailey, Grant Martin, and Thomas Anderson. Taxonomies
for the Development and Verification of Digital Systems. Springer,
Berlin, 2005.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall
PTR, Upper Saddle River, 1981.

[Bro95] Frederick P. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, Boston, anniversary edition, 1995.

[Gan04] Jack Ganssle. Firmware basics for the boss. Embed. Syst. Design,
January 2004.

[Gan05] Jack Ganssle. Subtract software costs by adding CPUs. EE Times,
April 2005.

[Moo65] Gordon E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8):114–117, April 1965.

[Nie98] Jakob Nielsen. Nielsen’s Law of Internet Bandwidth, April 1998.
www.useit.com

[Sem04] Sematech Inc. International technology roadmap for semiconduc-
tors (ITRS), 2004 update, design, 2004. www.itrs.net

[Shi08] Shimano, Inc. Shimano Turns on the Power, August 2008.
bike.shimano.com

[SVM01] Alberto Sangiovanni-Vincentelli and Grant Martin. Platform-based
design and software design methodology for embedded systems.
IEEE Des. Test Comput., 18:23–33, 2001.

[Wat02] S. Humphrey Watts. The future of software engineering: Part V.
Software Engineering Institute, First Quarter 2002.

http://www.useit.com
http://www.itrs.net
http://bike.shimano.com


Chapter 2

BASIC CONCEPTS OF REAL TIME OPERATING
SYSTEMS

Franz Rammig, Michael Ditze, Peter Janacik, Tales Heimfarth, Timo Kerstan,
Simon Oberthuer and Katharina Stahl

Abstract Real-time applications usually are executed on top of a Real-time Operating
System (RTOS). Specific scheduling algorithms can be designed. When possi-
ble, static cyclic schedules are calculated off-line. If more flexibility is needed
on-line techniques are applied. These algorithms are bound to priorities which
can be assigned statically or dynamically. Designing a proper RTOS architec-
ture needs some delicate decisions. The basic services like process manage-
ment, inter-process communication, interrupt handling, or process synchroniza-
tion have to be provided in an efficient manner making use of a very restricted
resource budget. Various techniques like library-based approaches, monolithic
kernels, microkernels, or virtual machines/exokernels are applied, based on spe-
cific demands. Safety critical application can be supported by separation of ap-
plications either in the time or the space domain. Multi-core architectures need
special techniques for process management, memory management, and synchro-
nization. The upcoming Wireless Sensor Networks (WSN) generate special de-
mands for RTOS support leading to dedicated solutions. Another special area is
given by multimedia applications. Very high data rates have to be supported un-
der (soft) RT constraints. Based on the used encoding techniques (e.g. MPEG)
dedicated solutions can be created.

Keywords: RTOS, Scheduling, Safety Critical Systems, Wireless Sensor Networks

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



16 HARDWARE-DEPENDENT SOFTWARE

2.1 Introduction

Most embedded systems are bound to real-time constraints. In production
control the various machines have to receive their orders at the right time to
ensure smooth operation of a plant and to fulfill customer orders in time. Rail-
way switching systems obviously have to act in a timely manner. In flight
control systems the situation is even more restrictive. Inside technical artifacts
many operations depend on timing, e.g. the control of turbines or combustion
engines. This is just a small fraction of such applications. Even augmented
reality systems are real-time applications as augmenting a moving reality with
outdated information is useless or even dangerous.

“Real-time” means that the IT system is no longer controlling its own time
domain. Now it is the progress of time of the environment which dictates
how time has to progress inside the system. This environmental time may be
the real one of our physical world or it may be artificially generated by some
surrounding environment as well. For the embedded system there is no differ-
ence between these options. Kopetz defines real-time systems as “A real-time
computer system is a computer system in which the correctness of the system
behaviour depends not only on the logical results of the computation, but also
on the physical instant at which these results are produced” [Kop97]. This
means that in strict real-time systems a late result is not just late but wrong.
The meaning of “late” of course has to be defined dependent on the specific
application. In case of an air-bag controller it is intuitively clear what real-
time means and it is easy to understand that a late firing of the air-bag is not
only late but definitely wrong.

It can be concluded that in real-time systems the program logic of appli-
cation tasks has to be augmented by information about timing. Such timing
information contains the earliest point of time the task may be started as well
as the latest allowed finishing time. This, together with the program logic may
be seen as a specification for the computing system what to do and when to do
it.

Many such tasks may have to be executed concurrently on an embedded
computing system. Such situations usually are handled by some kind of op-
erating system. The same is true in case of real-time systems. But now an
additional objective function is introduced, an objective function which domi-
nates most other ones: Formulated real-time constraints have to be respected.
An operating system which is capable of taking care of this is called a “Real-
time Operating System (RTOS)”. Of course some additional information is
needed by an RTOS to manage real-time tasks. Especially the worst-case ex-
ecution time (WCET) on the specific target architecture of any real-time task
has to be available. Determining the WCET of a task is a demanding goal
on its own. It must never be underestimated. On the other hand the potential



Basic Concepts of Real Time Operating Systems 17

over-estimation has to be reduced as far as possible to allow efficient system
implementations.

The above discussion indicates that we first have to discuss fundamental
properties of real-time tasks. On this basis we can then introduce basic tech-
niques used in RTOS to handle such tasks. We will concentrate on real-time
scheduling and on schedulability analysis.

2.2 Characteristics of Real-Time Tasks

First of all a real-time task is a task like any other. However, there is an
essential difference to other computation: the notion of time. Time means that
the correctness of the system depends not only on logical results but also on the
time the results are produced. In contrary to other classes of systems in a real-
time system the system time (internal time) has to be measured with same time
scale as the controlled environment (external time). One parameter constitutes
the main difference between real time and non-real-time: the deadline. Any
postulated deadline has to be met under all (even the worst) circumstances.
This has the consequence that real-time means predictability. It is a wide-
spread myth that real-time systems have to be fast. Of course they have to
be fast enough to enable guaranteeing the required deadlines. Most of all,
however, a real-time system has to be predictable. Ensuring this predictability
even may slow down a system.

Real-time systems can be characterized by the strictness of real-time restric-
tions.

A real-time task is called hard if missing its deadline may cause catastrophic
consequences on the environment under control. Typical application areas can
be found in the automotive domain when looking at e.g. power-train control,
air-bag control, steer by wire, and brake by wire. In the aeronautics domain
engine control or aerodynamic control may serve as examples.

A RT task is called firm if missing its deadline makes the result useless, but
missing does not cause serious damage. Typical application areas are weather
forecast or decisions on stock exchange orders.

A RT task is called soft if meeting its deadline is desirable (e.g. for per-
formance reasons) but missing does not cause serious damage. Here typical
application areas are communication systems (voice over IP), any kind of user
interaction, or comfort electronics (most body electronics in cars).

Concerning timing, a real-time task Ji can be characterized by the following
parameters: Arrival time ai , WCET Ci , (absolute / relative) deadline di / Di ,
start time si , finishing time fi (see Fig. 2.1).

The arrival time ai is the time Ji becomes ready for execution. Sometimes
it is also called request time or release time, denoted by ri . It is a parameter



18 HARDWARE-DEPENDENT SOFTWARE

Figure 2.1. Parameters of a real-time task.

under control of the application task. A task which is not known to the RTOS
obviously is also not considered by it.

Another parameter that comes with the application task is its computation
time Ci . This is the WCET which has to be determined previously and has to
be known by the RTOS. Of course it is the WCET only under the assumption
that the task is not interfered by any other task. Interference can happen only
when managed by the RTOS. So any influence by interference due to other
tasks is known by the RTOS and has to be considered by the RTOS.

The third parameter that comes with the application task is its deadline.
Here a distinction has to be made between an absolute deadline, denoted
by di and a relative one, denoted by Di . Absolute deadline means a value
with respect to the global time of the entire system while relative deadline
means relative to the arrival time of the respective task. In any case, it has
to be guaranteed by the RTOS that the tasks will be finished not later than
the deadline, independent from any circumstances, even the worst imaginable
ones.

The remaining two parameters are under control of the RTOS. It is the RTOS
that decides when to start an application task, i.e. to set the start time si . Of
course it can never be earlier than the arrival time ai as before this time the task
is entirely unknown to the RTOS.

In a similar manner it is up to the RTOS when a task reaches its finishing
time fi . It can be calculated to be at least si +Ci . However, Ji may be disturbed
by other tasks so that the finishing time fi may be later. Whenever this happens,
it happens under control of the RTOS. Therefore it is the responsibility of the
RTOS to guarantee that fi is not later than the respective deadline.

Orthogonally to the distinction into soft, firm, and hard real-time two main
classes of tasks can be identified: periodic and aperiodic ones. Both types are
generic tasks, i.e. over time a sequence of instances is generated. Usually such
an instance is called job. All instances share the same code and therefore the
same WCET and relative deadline. In case of periodic tasks these instances
show up with a fixed period, denoted by Ti . This means that once knowing the
first arrival time, all following arrival times are pre-defined. The first arrival



Basic Concepts of Real Time Operating Systems 19

time, i.e. the arrival time of the first instance usually is called the phase of this
(generic) task, denoted by φi.

In the case of aperiodic tasks no period is present, i.e. the next arrival time
of an instance of an aperiodic task is unknown a priori and may happen at any
time. Usually the assumption is made, that up to the absolute deadline of a task
instance no additional instance will be issued into the system.

Periodic tasks reflect directly the “sense–execute–act” loop in control ap-
plications. They therefore represent the main workload of embedded systems.
Any RTOS usually is optimized into the direction of handling such tasks in an
optimized manner. Aperiodic tasks appear for initialization reasons, for setting
of parameters and, most importantly, for the handling of interrupts that show
up in an aperiodic manner. There is a certain style of programming embed-
ded systems which reduces the software to a strictly event driven system. The
NesC programming language used for TinyOS [CHB+01] follows this princi-
ple. So, whenever this style of programming has to be supported, the handling
of aperiodic tasks becomes a major issue of the RTOS.

Tasks of a given task set may be independent or dependent. A task Ji is
called dependent on task Jk if Ji cannot be started before Jk has been finished.
Dependence is a transitive property. A task Ji is called direct predecessor
of task Jk if there is no task Jm between them such that Jm is dependent on
Ji and Jk is dependent of Jm. Dependencies can be defined using a directed
acyclic graph (DAG). Obviously dependencies introduce additional constraints
that need to be handled by the RTOS.

Unfortunately direct support for expressing dependencies is rarely found in
modeling and programming languages. UML Sequence Charts represent de-
pendencies, however in a rather unwieldy manner. In programming languages
dependencies have to be coded in detail and therefore are hard to be identified
in the program code.

Another constraint on task sets is introduced by non sharable resources.
A resource is any object to be used by a task. In HW this may be some circuitry
like an ALU or a bus, in SW it may be a certain data structure, a set of variables,
or a memory area. A resource is called private resource if it is dedicated to
a particular task, i.e. it is not used by any other one. In contrary to this a
shared resource is to be used by more than one task. In HW a bus is a typical
example of a shared resource. It is also a typical example for this class of
shared resources that need most care in handling: an exclusive resource is a
shared resource where simultaneous access from different tasks is not allowed.
Coming back to the bus example, a bus is an ordinary shared resource from
the point of view of components reading from this bus but an exclusive one for
any writer.

Like in the case of dependencies, direct support for specifying the class
of resources is lacking in both, modeling and most programming languages.



20 HARDWARE-DEPENDENT SOFTWARE

There are techniques to handle such cases. In HW design special arbiters have
to be included into the circuit. Unfortunately in VHDL, e.g., they are just com-
ponents like any others, i.e. they cannot be identified easily. In SW the concept
of a so called critical section is introduced. This is a piece of code that is to be
executed under mutual exclusion constraints. The management then has to be
coded directly, e.g. using semaphores [Dij68]. They constitute the link to the
operating system as it is the OS which provides the semaphore operations as
system services. It will be shown later that the concept of semaphores needs
careful rethinking when real-time systems have to be built.

To sum up, real-time tasks can be characterized by a well defined set of
parameters. Fortunately in most publications the same abbreviations are used
for them.

� set of tasks. This set may consist of aperiodic ones, periodic ones, or
both.

τi a generic task. This means that over time many instances of this task
will exist.

τij instance j of task τi .

ri,j release time of τi,j . The release time is an absolute value and specific
for each instance.

φi phase of τi (= τi,1, i.e. release time of first instance). It is a parameter of
the entire generic task.

Ti period of τi (= interval between two consecutive activations).

Di relative deadline of τi (relative to release time, therefore a parameter of
the entire generic task).

di,j absolute deadline of τi,j (di,j = φi + (j − 1)Ti + Di). It is a property of
the specific instance.

si,j start time of τi,j (si,j ≥ ri,j ). It is an absolute value and specific for each
instance.

fi,j finishing time of τi,j (fi,j ≤ di,j ). It is an absolute value and specific for
each instance.

2.3 Real-Time Scheduling

Given is a set of n generic tasks � = {τ1, . . . , τn}, a set of m processors
P = {P1, . . . , Pm}, and a set of s resources R = {R1, . . . , Rs}. There may
exist precedences, specified using a precedence graph (DAG) and, as we are
considering real-time systems, timing constraints are associated to each task.



Basic Concepts of Real Time Operating Systems 21

The goal of real-time scheduling is to assign processors from P and resources
from R to tasks from � in such a way that all task instances are completed un-
der the imposed constraints. This problem in its general form is NP-complete!
Therefore relaxed situations have to be enforced and/or proper heuristics have
to be applied. In principle scheduling is an on-line algorithm. Under certain
assumptions large parts of scheduling can be done off-line. Generating static
cyclic schedules may serve as an example. In any case all exact or heuristic
algorithms should have very low complexity.

In principle scheduling algorithms may be preemptive or non preemptive.
In preemptive approaches a running task instance may be stopped (preempted)
at any time and restarted (resumed) at any time later. Any preemption means
some delay in executing the task instance, a delay which the RTOS has to take
care of as it has to guarantee respecting the deadline. In case of non preemptive
scheduling a task instance once started will execute undisturbed until it finishes
or is blocked due to an attempt to access an unavailable exclusive resource.
Non preemptive approaches result in less context switches (replacement of one
task by another one, usually a very costly operation as many processor loca-
tions have to be saved and restored). This may lead to the conclusion that non
preemptive approaches should be preferable in real-time scheduling. However,
not allowing preemption imposes such hard restrictions on the scheduler’s free-
dom that for most non-static cases predictable real-time scheduling solutions
with an acceptable processor utilization rate are known only if preemption is
allowed. In the sequel basic preemptive real-time scheduling algorithms for
periodic and aperiodic tasks will be discussed shortly.

2.3.1 Rate Monotonic Priority Assignment

All real-time scheduling algorithms strictly rely on priorities. So the basic
principle is that at any point of time always this task instance τij is executed
which has the highest priority among all active task instances. A task instance
τij is active in the period between its release time ri,j and its finishing time fi,j .
In this section it is assumed that a task set � of independent tasks τi with no
resource conflicts has to be scheduled.

Rate Monotonic Priority Assignment (RM) is a so-called static priority sche-
duling algorithm. In such algorithms priorities are assigned a priori and are
never modified during runtime of the system. RM assigns priorities simply in
accordance with its periods, i.e. the priority is as higher as shorter is the period
which means as higher is the activation rate. So RM is a scheduling algorithm
for periodic task sets. It is assumed that the periods of the different tasks differ,
we have so called multi-rate systems (handling of single-rate systems is trivial).
In addition it is assumed that the relative deadlines of the tasks are identical to
the periods (Di = Ti). RM is intrinsically preemptive as it may happen that



22 HARDWARE-DEPENDENT SOFTWARE

a task instance is running when a new instance of a lower-period, i.e. higher
priority task is released. In such a case the currently running task is preempted
in favor of the newly arriving one. See Fig. 2.2 for an example of a schedule
produced by RM. There are two tasks, τ1 (period T1 = 3, WCET C1 = 1)
and τ2 (period T2 = 7, WCET C2 = 4). The first two instances of τ2 are
preempted once, the third one twice due to starting new instances of the higher
priority τ1.

Figure 2.2. RM example schedule.

It can be shown [But04, p. 78ff] that RM is optimal among all fixed prior-
ity scheduling algorithms in the sense that if RM does not provide a feasible
schedule than no other fixed priority algorithm can.

A hard real-time system cannot be started before carefully analyzing its
schedulability. A specific schedule is called feasible if all instances τij of all
tasks τi can be completed according to a set of specified constraints. A set of
tasks is called schedulable if at least one algorithm does exist that can produce
a feasible schedule. When applied to RM the algorithm has already been se-
lected. The question now is to decide a priori whether a given task set � is
schedulable by RM.

A simple test is given by comparing the utilization of the given task set
with the utilization of the worst imaginable task set which is still schedulable
by RM. This constitutes a least upper bound (LUB) of utilization among all
potential task sets.

Given a set � of aperiodic tasks the processor utilization factor U is the
fraction of processor time spent in the execution of the tasks set. Ci/Ti is the
fraction of processor time spent in executing task τi . The utilization U of �

can be calculated simply by the sum

U =
n∑

i=1

Ci

Ti

. (2.1)

Obviously this can be done off-line as no runtime parameters are used in this
formula. It can be shown [But04, p. 87ff] that the utilization LUB, Ulub, i.e.
the utilization of the worst case task set is given by Ulub = n(2

1
n − 1) which

converges towards Ulub = ln 2 ≈ 0.69 with increasing n. As the number n of
tasks in the given task set � is known a priory as well, Ulub can be calculated



Basic Concepts of Real Time Operating Systems 23

off-line and as a consequence the schedulability analysis can be performed
off-line. Unfortunately Ulub = n(2

1
n − 1) is sufficient but not necessary to

guarantee the feasibility of a given task set. There may exist specific task sets
which are schedulable under RM despite the fact that for their utilization U it
holds that Ulub < U < 1.

n∑

i=1

Ci

Di

≤ n
(
2

1
n − 1

)
, (2.2)

Ri = Ci +
i−1∑

j=1

⌈
Ri

Tj

⌉
Cj . (2.3)

In RM the assumption is made that the relative deadlines of the tasks are iden-
tical to the periods (Di = Ti). This restriction can be relaxed easily by re-
placing Ti by Di in the definition of priority assignment. The algorithm then
is called Deadline Monotonic Priority Assignment (DM). Even the schedu-
lability analysis can be transferred directly resulting in the condition as in
Eq. 2.2, which in this case, however is even more pessimistic than in the
RM case. A crisp schedulability test for fixed priority assignment strategies
like RM and DM is given by the so-called Response Time Analysis. In this
case for each task τi the largest finishing time among all instances τij with
respect to its relative deadline Di is calculated precisely. This largest fin-
ishing time is called response time Ri of task τi . If for all tasks τi of the
given task set � Ri is not greater than the relative deadline Di , schedulabilty is
proven.

The response time Ri can be calculated by Ri = Ci + Ii where Ci is the
WCET of τi and Ii is the interference due to pre-emption by higher priority
tasks. The question is how to calculate Ii . For this we have to sum up over
all higher priority tasks τj , j < i the number of inferences given by �Ri / Tj�
multiplied by the duration of the respective interference Cj . This results in the
definition of the response time Ri of task τi as shown in Eq. 2.3.

Unfortunately this is a recurrent equation as the argument Ri stands on both
sides of the equation. By an iterative algorithm, however we can calculate the
least fixpoint of the equation. If it is less or equal to the relative deadline the
test for this specific task is successful, otherwise it fails. The test is successful
for the entire task set � if it does not fail for a single task τi . So this test
is rather computation intense. Fortunately it can be carried out off-line as no
runtime parameters have to be known.

2.3.2 Earliest Deadline First Scheduling

In contrary to RM or DM, Earliest Deadline First (EDF) scheduling is a
dynamic priority assignment. Now task instances τij always get assigned a



24 HARDWARE-DEPENDENT SOFTWARE

priority inverse proportional to their absolute deadline dij i.e. the priority is
as higher as the absolute deadline is shorter (ties are broken in favor of al-
ready running task instances). This means that whenever a task instance is
released the priorities have to be re-calculated and the priority of a task (i.e.
of its instances) may vary during runtime. Despite this difference the handling
of task instances is the same as in the case of RM or DM: At each instance
of time this task instance is executed that currently has the highest priority
among all active task instances. Therefore, like RM or DM, EDF is intrinsi-
cally preemptive. Figure 2.3 shows an example schedule produced by EDF for
the same task set as used in Fig. 2.2. The third instance of τ2 is preempted
only once as in the case of equal absolute deadlines the already running task is
preferred.

Figure 2.3. EDF example schedule.

It can be shown [But04, p. 51ff, 92] that EDF is optimal among all periodic
task scheduling techniques in the sense that if EDF does not provide a feasible
schedule then no other periodic task scheduling algorithm can. Another good
property of EDF is that schedulability analysis is really simple for EDF. A sim-
ple utilization test can be applied where Ulub = 1, i.e. the utilization just has
to be compared with the constant 1.

EDF can also be applied to aperiodic task sets. Its optimality guarantees
that the maximal lateness is minimized when EDF is applied. Lateness Li,j

of a task instance τij is defined as the time between absolute deadline and
finishing time: Li,j = fi,j − di,j .

So it seems that EDF has only advantages over fixed priority algorithms.
Despite this fact those algorithms still serve as the workhorse in most RTOS
systems. It is argued that EDF is more complicated to implement as at runtime
it has to rearrange priorities while RM or DM do not. EDF is also considered to
be extremely sensitive to overload conditions where a so-called Domino Effect
may happen, i.e. missing a single deadline may result in missing the deadlines
of all tasks of a task set. In a recent publication [But05] however, it has been
shown that most of the arguments against EDF are not relevant in practical
applications.



Basic Concepts of Real Time Operating Systems 25

2.4 Operating System Designs

The most common Operating Systems are based on kernel designs. The
kernel design has been around for almost 40 years and offers a clear separation
between the operating system and the application running on top of it, as they
are allocated in different memory locations. The processes can use the kernel
functionality by performing system calls. System calls are software interrupts
which allow switching from the application to the operating system. Therefore
the kernel needs to install an interrupt handler for different modes of operation,
depicted in Fig. 2.4, that can be enabled in the program status word (PSW):
User mode and Supervisor mode. For this reason, protection is done in modern
SoCs at peripheral side. Some registers can be changed only if the CPU signals
a specific execution mode (e.g. master mode) via a set of additional HW-signals
in the bus infrastructure.

Processes outside the OS are executed within user mode and are not al-
lowed to execute instructions which are only available in supervisor mode.
This means that the user mode instructions constitute a non-critical subset of
the supervisor mode instructions. During runtime of a process the supervisor
mode bit within the PSW is disabled and can only be enabled if an interrupt
such as a system call or an external interrupt occurs. The operating system is
responsible for enabling the user mode at the time a user process is activated.
Typically a user process has its own virtual memory address space which sep-
arates it completely from the kernel. However this is not possible on all em-
bedded microcontrollers as they may lack a memory management unit (MMU)
enabling the use of virtual memory.

The use of virtual memory, if there is a MMU available, has to be realized
without any unbound memory accesses like swapping on an external disk or re-
placing translation lookaside buffer (TLB) entries by searching a dynamically
sized page table.

To use the functionality provided by the OS kernel it is necessary to define
an interface that allows applications to use it. This interface is called the appli-

Figure 2.4. Execution modes. Figure 2.5. Application binary interface.



26 HARDWARE-DEPENDENT SOFTWARE

cation binary interface (ABI). The ABI defines a set of system calls, a register
usage convention, a stack layout and enables binary compatibility whereas
an application programming interface (API) enables source code compatibility
through the definition of a set of function signatures providing a fixed interface
to call these functions. Figure 2.5 shows the location of the ABI within an
architectural schemata.

The kernel itself can be built in many ways and usually provides the fol-
lowing basic activities: Process management, process communication, in-
terrupt handling, and process synchronization.

Process management is responsible for process creation, process termina-
tion, scheduling, dispatching, context switching and other related activities.

Interrupt handling in a RTOS is different to the standard implementation of
an ordinary OS. In an ordinary OS interrupts can preempt running processes at
any time. This can lead to unbound delays which are not acceptable in a RTOS.
Therefore the handling of interrupts is integrated into the scheduling so that it
can be scheduled along with the other processes and a guarantee of feasibility
can be achieved even in the presence of interrupt requests.

Another important role of the kernel is to provide functionalities for the syn-
chronization and communication of processes. The use of ordinary semaphores
is not possible within a RTOS as the caller may experience unbound delays in
case of a priority inversion problem. Therefore the synchronization mecha-
nisms need to support a resource access protocol such as Priority Inheritance,
Priority Ceiling or Stack Resource policy [But04, p. 191ff].

As already stated there are different ways to realize a kernel. Today the
main design question is whether to us a monolithic kernel, a microkernel or a
combination called hybrid kernel [Sta01, Tan01].

2.4.1 Library-Based RTOS (“Kernel-Less” Approach)

For systems without MMUs the RTOS can be built as a library which is
linked together with the application. This results in one single executable
which is executed in one single address space. Therefore no loader is required
to dynamically load applications at run-time, by this minimizing the operating
system code. Another advantage of a library-based RTOS and the execution in
a single common address space is that system calls can be simply implemented
as function calls. Thus no context-switches are required when calling an op-
erating system function. This is often more efficient and less time consuming
as a full context switch with address space changes when having an RTOS
implemented as a kernel in a separated address space. The disadvantages of
a library based RTOS running on systems with no “full MMU” is the lack of
security through hardware memory separation. All application and operating
system activities have to be implemented as threads in the same address space.



Basic Concepts of Real Time Operating Systems 27

Bugs in one part of the system can easily affect the whole system. But on small
microcontrollers on which only one application is executed this disadvantage
is acceptable.

An example for a library based operating system is the operating system
library DREAMS. Operating systems and run-time platforms for even hetero-
geneous processor architectures can be constructed from customizable compo-
nents skeletons out of the DREAMS (Distributed Real-time Extensible Appli
cation Management System) library [Dit99]. By creating a configuration de-
scription all desired objects of the system have to be interconnected and cus-
tomized afterwards in a fine-grained manner. The primary goal of that process
is to add only those components and properties that are really required by the
application.

2.4.2 Monolithic Kernels

The monolithic approach of building a kernel is straightforward. All func-
tionality provided by the OS is realized within the kernel itself. “The structure
is that there is no structure” [Tan01]. The kernel consists of a set of procedures
which are able to call each other without any restrictions. Figure 2.6 shows
a call graph of a totally unstructured monolithic kernel versus a monolithic
kernel which is separated into service functions and help functions to bring at
least some structure into the kernel. The service functions are the entry points
for the interrupts which are demultiplexed in the main function and delegated
to the associated service function.

Figure 2.6. Unstructured vs. structured monolithic kernel.

The service functions can use any support function they need. The main
advantage of monolithic kernels is their performance. As reaction to a sys-



28 HARDWARE-DEPENDENT SOFTWARE

tem call a context switch to the operating system has to be performed and the
appropriate service functions have to be executed in the kernel space. This is
pretty simple, as there are only function calls that need to be performed.

In the case of monolithic kernels it cannot be excluded that any single
fault occurring within the kernel functions can lead to a total crash of the
whole system. In most cases device drivers included in a monolithic kernel
are very error-prone. Several studies on software dependability report fault
densities of 2 to 75 bugs per 1000 lines of executable code. Drivers, which
typically comprise 70% of the operating system code, have a reported error
rate that is 3 to 7 times higher. A common example that can lead to a to-
tal crash is an unchecked pointer that may contain a wrong address. This
results in overwriting of sensitive kernel data such as the kernel code itself
[OW02, Sta01, Tan01, BP84, THB06].

2.4.3 Microkernels

To clean up the structural mess of monolithic kernels Fig. 2.7 shows micro-
kernel design was developed. It reduces the services provided by the kernel
dramatically by putting all services, which are not essentially necessary for the
microkernel, into user space as isolated processes. The service processes typ-
ically behave like servers of the client-server model. To use such a service an
application needs to send a message with a service request to the service which
receives the request, completes the request and sends back a response message
to the client application.

Figure 2.7. Microkernel architecture.

The big question is which services are not essentially necessary for the mi-
crokernel. The common approach puts the following services into the micro-
kernel itself: Dispatcher, Scheduler, and Memory Manager.

Whether it is necessary to put the memory manager into the microkernel is
a topic that has been discussed for a long time without any general agreement.
However some memory management for the kernel objects itself is needed
within the microkernel.

The big advantage of microkernels against monolithic kernels is the clear
separation of services from the kernel itself making the kernel a very small



Basic Concepts of Real Time Operating Systems 29

piece of software that provides a better fault isolation and can be maintained
more easily than a monolithic kernel. The fault isolation prevents crashing
the whole system. Even if e.g. a driver located in user space fails it is not
possible for the driver to manipulate any kernel sensitive data like the kernel
code.

The price we have to pay for the better structuring and fault isolation is that
we get a high amount of interprocess communication through message passing
and a high amount of context switching. The reason for this is that for every
system call at least two messages have to be sent and four context switches
have to be performed. This is illustrated in Fig. 2.8.

Figure 2.8. Client/Server IPC.

In contrast to monolithic kernels we also have to deal with an impact on the
real-time behavior, because now system calls are not necessarily executed at
the time they have been initiated. The reason is that the services behave like
regular processes that have to be scheduled by the real-time scheduler. There
are several approaches to deal with that problem. A very simple one is to
use priority message queues for the service requests within the server and to
apply priority inheritance on the server processes to guarantee that no unbound
blocking time can occur [Sta01, Tan01].

2.4.4 Virtual Machines and Exokernels

The main idea of system virtual machines is to provide an exact copy of
the available hardware for every virtual machine. Therefore a small con-
trol program is necessary to assign the available hardware to the virtual ma-
chines. This program is called the virtual machine monitor (VMM) or hy-
pervisor (cf. Fig. 2.9). This program is the only code executed in supervi-
sor mode and ensures that the virtual machines are clearly isolated from each
other.



30 HARDWARE-DEPENDENT SOFTWARE

Figure 2.9. Virtual Machine Monitor.

The biggest issue to be solved is the question whether virtualization can
be achieved efficiently. To answer this the instruction set architecture (ISA)
plays the most important role. The ISA is divided into sensitive and innocuous
instruction. Sensitive instructions interact with hardware and need to cause
a trap to activate the VMM. Innocuous instruction can be executed natively
if possible (provided that the ISAs of the host and the virtual machine are
identical). If instructions cannot be executed natively they need to be emulated.
For emulation the target code to be executed on a different host ISA needs to be
transformed before it can be executed. The question whether an efficient VMM
can be built is reduced to the question whether the set of sensitive instructions
is a subset of the set of privileged instructions as in Fig. 2.10 [PG74].

Figure 2.10. Efficiency classification of ISAs.

Exokernels are very similar to virtual machine monitors, but they differ in
the way that exokernels do not provide an exact copy of the available hardware.
Instead they partition the available resources and assign them to the virtual ma-
chines running on top of the exokernel. A good example is the main memory
of the system. VMMs provide an exact copy of the complete main memory



Basic Concepts of Real Time Operating Systems 31

to the virtual machines running on top of the VMM. The VMM needs to map
the memory of every virtual machine to the real physical memory. Exoker-
nels do not have to manage such a mapping as the different virtual machines
would have only access to disjoint subsets of the available physical memory
[Tan01, SN05].

2.5 RTOS for Safety Critical Systems

Computer systems that operate systems of critical responsibility are called
safety-critical systems. Typically, a small deviation in the environment or the
system’s behavior, a failure or an error appearing within such a system can
yield in hazardous situations and may cause catastrophes. Safety-critical sys-
tems therefore must not only guarantee real-time behaviour but furthermore
they require absolute dependability and availability of system service. To
free application developers from implementing safety and real-time mecha-
nisms into each application, operating systems serve as the underlying plat-
form designed towards supporting real-time and all safety-incorporating non-
functional features.

Because of the critical consequences of a system failure, standards are re-
quired to specify the design and the development process. They define the
methods and techniques that are required to prevent system failures and enforce
a state-of-the-art quality-of-service in safety-critical applications. Two relevant
standards exist: IEC 61508 and DO-178B. The title of the international stan-
dard IEC 61508 is “Functional safety of electrical/electronic/programmable
electronic safety-related systems”. It is a generic safety standard that forms
the basis for many other—domain specific—standards. This standard defines
requirements on the lifecycle of safety-related systems, from system develop-
ment to its operation. It identifies measures and techniques for preventing fail-
ures and contains methods for controlling possible system failures. DO-178B
is titled “Software Considerations in Airborne Systems and Equipment Certi-
fication” and specifies guidelines for the development of avionic software. It
builds up a stringent application-dependent safety standard.

As recent trends are heading towards the integration of applications of dif-
ferent criticality levels on one single platform, operating systems for safety-
critical applications face the challenge of guaranteeing the availability of the
processor time as well as the availability of resources (full protection in time
and in space domain). These challenges must be inherently incorporated into
the RTOS architecture. The Avionics industry formulated these architectural
requirements in the ARINC 653 specification to guide manufacturers of avionic
application software towards maximum standardization.



32 HARDWARE-DEPENDENT SOFTWARE

2.5.1 Protection in Time Domain

Running multiple applications with different criticality levels on one proces-
sor may lead to no provision for guaranteeing processor time for critical appli-
cations. Consider the following scenario: Two applications of different criti-
cality levels, each with one thread at the same priority run on a single system.
Thread 1 is a non-critical thread whereas thread 2 is a critical one that needs
at least 45% of the processor time to process its workload. As the two threads
get assigned the same priority, a scheduler will assign each of the threads 50%
of the processor time. In that case, the critical thread 2 will get its work done.
Suppose that thread 1 spawns a new thread with the same priority. Then, the
scheduler handles three threads at the same priority. As a consequence each of
the threads will get only 33% of the processor time. Hence, the critical thread
2 is not able to handle its workload any more. The requirement of protection
in time domain results clearly from this example.

2.5.2 Protection in Space Domain

Due to predictability reasons, many RTOS designers do not use virtual
memory management. The fact that multiple applications with different criti-
cality levels run on one single processor involves that processes share the same
memory space. This implies that a process is able to corrupt the code, data
or the stack of another process, intentionally or unintentionally. Furthermore,
a process can also corrupt data or code of the operating system kernel which
affects the safety and reliability of the system. In fact, it can lead to unexpected
system behavior that infects the predictability and it can even bring down the
entire system. Therefore, the protection of the memory is one key issue in
RTOS for safety critical systems.

2.5.3 Secure Operating System Architecture

The answer to the requirement of protection is an architecture that defines
a fully and securely partitioned real-time operating system. The partitioning
is carried out also in two dimensions: Spatial Partitioning and Temporal Parti-
tioning.

In particular, the basic design of such an operating system complies with
the design of an ordinary RTOS. The fundamental difference is located above
the operating system’s core layer within the application layer which in fact is
a construction of several separate partitions of the ordinary application layer
(cf. Fig. 2.11). Each partition is assigned to an integrity level only allowing
the running of applications compliant to this level. Furthermore, it consists
of a small Partition Operating System that provides operating system services
according to the safety features required by the safety integrity level. Further-



Basic Concepts of Real Time Operating Systems 33

Figure 2.11. OS architecture for safety critical systems.

more, the Partition OS in fact runs the proper applications. The operating sys-
tem core layer is responsible for the hardware-dependent functions, the device
drivers, the scheduler, etc.

2.5.4 Providing Protection in Time Domain

The Scheduler implements temporal partitioning as it is responsible for as-
signing processor time to the partitions. Temporal partitioning requires an op-
timized two-level scheduler (cf. Fig. 2.12). The processor time for each par-
tition is assigned statically. Within one scheduler period, also called major
frame, each partition gets a guaranteed time window, a minor frame, to run
its intrapartition processes. Within the minor frame, only the processes of the
appendant partition can be executed. A partition is able to run more than one
process. These processes have to be scheduled within the partition’s processor

Figure 2.12. Two-level partition scheduler.



34 HARDWARE-DEPENDENT SOFTWARE

time frame. The partition remains the owner of the processor for the whole
time frame, even if not all the processor time is needed for computation. Con-
sidering the given example above, a thread can only create a new thread within
its own partition. Hence, the thread that creates the new thread has to share
its time slice with the new thread without affecting the processor times of the
other partitions.

2.5.5 Protection in Space Domain

To avoid corruption of the data of a safety-critical application individual ad-
dress spaces for processes are essential. Spatial partitioning is implemented by
assigning one fragment of the entire memory to each partition. The memory
space can only be accessed by the processes of that partition. Such a fragmen-
tation of the memory requires the support of an integrated Memory Manage-
ment Unit (MMU). When the scheduler switches between the minor frames, a
new set of logical addresses is assigned to the memory manager. Hence, each
partition can only access the logical address space that is mapped by the MMU
which makes careless malicious corruption across the processes of different
criticality levels impossible.

2.6 Multi-Core Architectures

Multiprocessor architectures are an attempt to solve the lack of computa-
tional power in embedded systems by enabling computational concurrency.
Using multiple lower-cost processors instead of cost-expensive high perfor-
mance processors corresponds to the cost constraints of the embedded system
market. However, multiprocessor architectures imply further challenges on
the software and hence on operating systems that support these architectures
[WJ04] .

Multiprocessor architectures consist of multiple processing entities (PE)
connected via an interconnection network. Each one of the processing enti-
ties may represent a microprocessor (central processing unit—CPU); it also
may constitute any other hardware component such as a controller, decoder
etc. There are several approaches for interconnecting the PEs but the typical
ones are: shared bus, crossbar and micro network (network on chip). Depend-
ing on the type of interconnection a system shows up different performance
(communication collisions), costs (e.g. chip area) and reliability (e.g. single-
point-of-failure).

The design of an operating system that is applied in multiprocessor systems
is strongly dependent on the underlying system architecture. The software
design process is strongly coupled or even an inherent part of the hardware de-
sign. Basically, the operating system architecture for multiprocessor systems
extends the architecture of uniprocessor operating systems: like in uniproces-



Basic Concepts of Real Time Operating Systems 35

sor operating systems it consists of the hardware abstraction layer and the core
operating system. Furthermore, the operating system for multiprocessor appli-
cation provides an inherent abstraction of the underlying system for the appli-
cation. In fact, it abstracts design decisions of the multiprocessor architecture
like:

communication programming model: shared memory vs. distributed
memory
synchronous vs. asynchronous communication
control strategy: centralized vs. decentralized
redundancy mechanism
hardware configuration
topology: static vs. dynamic
system architecture: homogeneity vs. heterogeneity

Beyond these design decisions that inherently incorporate into the RTOS
implementation, resource management and scheduling, memory management,
synchronization and interprocess communication (IPC) provide further chal-
lenges for a multi-core real time operating system.

2.6.1 Processor Management and Scheduling

The processor management and the scheduling policy strongly depend on
the design decisions of control strategy and the architectural design. The ini-
tial problem of the processor management is the assignment of processes to dif-
ferent processors. In the case of centralized control, the scheduling algorithm
deals with NP-completeness. In homogeneous systems, each process can be as-
signed to any processor in the system whereas in heterogeneous architectures
specific tasks can only be executed on specialized task-specific/application-
specific system components. This architectural decision in turn affects also
the complexity of a feasibility analysis. Multiprocessor systems enable real
concurrency and hence task-level parallelism. One challenge of the scheduling
policy is to enable processes belonging to one single job and having strong
interaction, cooperation and communication in-between these processes to be
executed simultaneously. Task Concurrency Management (TCM) addresses
the dynamic and concurrent task scheduling problem of multiprocessor real-
time operating systems. It introduces a two-phase scheduling method: design-
time scheduling and run-time scheduling. An application is represented by a
set of concurrent thread frames (TF) that consist of many thread nodes (TN),
which are independent sections of code belonging to a single thread of con-
trol, the thread frame. At design-time, the scheduling is applied on each
identified TN and results in a set of possible solutions that include different
mappings, orderings and, as two-phase scheduling is a cost-oriented approach



36 HARDWARE-DEPENDENT SOFTWARE

(cost-performance, energy-oriented etc.), performance measures. From these
possible solutions the design-time scheduler generates a Pareto-optimal set.
However, to guarantee hard real-time requirements the schedules generated by
the design-time exploration rely on worst-case conditions. Instead of dealing
with the complex problem of computing schedules at run-time, the run-time
scheduler operates on the TFs by determining one configuration of the Pareto
curve established at design-time. Such a exploration at design-time signifi-
cantly reduces computational cost at run-time. Details of the TNs mapping are
invisible for the run-time scheduler which furthermore reduces its complex-
ity.

2.6.2 Memory Management

Programming parallel processing applications raises two main questions:
how do processes on different processors share data and how do these processes
coordinate themselves? The answer to these questions in the first instance
depends on the memory organisation of the system. We talk about distrib-
uted memory management if the processors possess private memories and
about shared memory in case of a single address space. In the case of dis-
tributed memory management, data sharing and process cooperation is real-
ized via message-passing. In contrast to that, shared memory management
offers processors one single address space to share and exchange data. Shared
memory systems require synchronisation mechanisms to prevent interferences
between processes while operating on shared data.

2.6.3 Synchronisation

Processors in multiprocessor real-time systems require knowledge about the
overall system time/clock. Therefore, synchronization of the global system
clock is essential to ensure time-dependent performance. Due to dependability
reasons, distributed clock synchronization mechanisms are preferred for mul-
tiprocessor RTOS as they do not provide a single-point-of-failure. There exist
some approaches to ensure the synchronization of the global system time like:
Time-Triggered Protocol (TTP), TT-Ethernet and FlexRay (in the automotive
industry) [Par07]. TTP is a protocol for fault-tolerant communication between
distributed real-time systems. The synchronization of the clock is achieved in a
masterless manner based on identifying time differences of arriving messages.
To ensure a dependable communication, the communications controllers de-
fine exact time slices for sending and receiving per system node. The clock
synchronization mechanism defined in FlexRay is similar to that one in TTP.
Basically, the synchronization is processed by sending micro ticks between the
processors. The main difference is that FlexRay enables the synchronization
of heterogeneous processor clocks by identifying local deviations of receiving



Basic Concepts of Real Time Operating Systems 37

micro ticks. Similar to TTP, the communication policy in FlexRay is imple-
mented through predefined time slots.

RTEMS1 is a known example for a multiprocessor real-time operating sys-
tem. Furthermore, the automotive industry has defined OSEK-OS2, a standard
for operating systems designed to operate on the numerous controllers that are
nowadays installed in cars.

2.7 Operating Systems for Wireless Sensor Networks

Given the recent advances in wireless sensor network (WSN) technology,
it is possible to construct low-cost and low-power miniature sensor devices
that can be spread across a geographical area in order to monitor their physi-
cal environment. Consisting of nodes equipped with a small processing unit,
memory, a sensor, a battery and a wireless communication device, WSNs en-
able a myriad of applications ranging from human-embedded sensing to ocean
data monitoring. Since each single node has only constrained processing and
sensing capabilities, coordination among devices is necessary.

Due to their specific nature, sensor networks have different requirements
compared to standard systems, such as self-configuration, energy-efficient op-
eration, collaboration, in-network processing, as well as, a useful abstraction
to the application developer. Given these requirements, a WSN OS must have
a very small footprint and, at the same time, it must provide a limited number
of common services for application developers, such as hardware management
of sensors, radios, task coordination, power management, etc. (see [Sto05]).
In the following section, we discuss some specific aspects relevant to OS for
WSNs.

2.7.1 Aspects of Operating Systems for WSNs

We identify the following important aspects in WSNs:

Hardware Management. The OS should provide abstract services (e.g. for
sensing and data delivery to neighbors). Given the lack of a memory manage-
ment unit (MMU) in typical hardware, an OS library should implement this
functionality (for more details see, e.g. [SRS+05]).

Task Coordination. There are two task coordination approaches:

Event-based Kernels: Tasks are implemented as event handlers that run
until completion. This enables concurrency without the need to elaborate
mechanisms like per-thread stacks or mutual exclusion. The main advan-

1http://www.rtems.com
2http://www.osek-vdx.org

http://www.rtems.com
http://www.osek-vdx.org


38 HARDWARE-DEPENDENT SOFTWARE

tage of this approach is its small memory footprint: because processes
cannot block, just a global stack is necessary. However, a major problem
occurring is the difficulty to implement applications with state-driven
programming: the event-driven model is hard to manage by developers
and not all problems are easily described as state machines. Further,
interleaved concurrency is hard to realize in such systems.

Preemptive Thread Multitasking Kernels: Preemption leads to the neces-
sity of saving the current state of the registers to the stack. The neces-
sity of one stack per thread leads to a relatively high memory footprint.
Moreover, the context switch operation is rather time-consuming, i.e.
for a task set composed mainly of IO-bound tasks or small tasks, the
overhead caused by the context switch is relatively high. This problem
can however be solved by assigning a static context to each process (as
done e.g. in safety critical systems). In summary, given the resource con-
strained hardware of WSNs, the above points provide arguments against
this OS paradigm. Nonetheless, preemptive multitasking supports the
development of more complex, elaborate distributed applications and
enables a straightforward porting of existing embedded applications.

WSNOS Architecture. Given the lack of MMUs in the typical WSN node
hardware, the following OS architectures are predominantly employed (in con-
trast to e.g. monolithic kernel, microkernel or exokernel architectures in clas-
sical OS):

Library-based OS: A set of functions implementing abstractions to facil-
itate the hardware management. Typically, it does not provide memory
protection.

Component-based OS: The OS consists of composable, self-contained
components (also called “building blocks” or “modules”), which are, in
contrast to library-based OS, interconnected via clear interfaces and in-
teract with each other. They typically realize a well-defined function,
such as the computation of a Cyclic Redundancy Check (CRC), and
comprise code and state. Besides, the increased amount of modularity
and configurability, this paradigm also suits the event-based program-
ming approaches of WSNs. One example of a component-based OS is
TinyOS, in which components are wired together explicitly using events
for interaction (for details see [KW05]).

Often there are no clear borders between communication stack, OS services,
and application. Cross-layer approaches are commonly used.

Power Management. Given the energy constraints of WSNs, different power
management techniques have been developed (according to [DC05]):



Basic Concepts of Real Time Operating Systems 39

Duty Cycling: Reduces the average power utilization by cycling the
power of a given subsystem.

Batching: Amortizes the high cost of start-up by bundling several oper-
ations together and executing them in a burst.

Hierarchy Techniques: Order the operations by their energy consump-
tion and invoke the low-energy ones prior to the high-energy ones in a
fashion similar to the short-circuit techniques used by several compilers
for the evaluation of boolean expressions in various languages.

Redundancy reduction: Using compression, aggregation or message sup-
pression.

The low-power operation mode in WSNs can be addressed at various levels.
In [DC05], the following levels have been recognized: sensing, communica-
tion, computation, storage, energy harvesting and reconfigurability support.

2.7.2 Examples of WSNOS

TinyOS. TinyOS [CHB+01] is a very efficient OS for WSNs that uses event-
based task coordination in order to run on very resource-constrained nodes.
The execution model is similar to a finite state machine. It consists of a set
of components that are included in the applications when necessary. TinyOS
addresses the main challenges of a sensor network: constrained resources, con-
current operations, robustness, and application requirement support.

Each TinyOS application consists of a scheduler and a graph of components.
The components are described by their interface and internal implementation.

The concurrency model in TinyOS consists of a two-level scheduling hier-
archy: events preempt tasks, but tasks do not preempt other tasks. Each task
can issue commands or put other tasks to work. Events are initiated by hard-
ware interrupts at the lowest levels. They travel from lower to higher levels
and can signal events, call commands, or post tasks. Wherever a component
cannot accomplish the work in a bounded amount of time, it should post a task
to continue the work. This is because a non-blocking approach is implemented
in TinyOS, where locks or synchronization variables do not exist. This means
that components must terminate.

Mantis Operating System (MOS). The Mantis operating system (MOS) is
a WSN OS designed to behave similarly to UNIX and provides a larger func-
tionality than TinyOS. It is a lightweight and energy-efficient multithreaded OS
for sensor nodes.

In contrast to TinyOS, the MANTIS kernel uses a priority-based thread
scheduling with round-robin semantics within one priority level. To avoid race
conditions within the kernel, binary and integer semaphores are supported.



40 HARDWARE-DEPENDENT SOFTWARE

The OS offers a multiprogramming model similar to that present in conven-
tional OS, i.e., the OS complies with the traditional POSIX-based multithread-
ing paradigm. All threads coexist in the same address space. The existence
of multiple stacks (one per thread) makes MOS more resource-intensive than
single-threaded OS (e.g. TinyOS).

The kernel of Mantis OS also provides device drivers and a network stack.
The network stack is implemented using user-level threads and focuses on the
efficient use of the limited memory.

Contiki. The Contiki [DGV04] operating system provides dynamic loading
and unloading of programs and services during run-time. It also supports dy-
namic downloading of code enabling the software upgrade of already deployed
nodes. All this functionality is offered at a moderate price: the system uses
more memory than TinyOS but less than Mantis OS.

The main idea of Contiki is to combine the advantages of event-driven and
preemptive multithreading in one system: the kernel of the system is event-
driven, but applications desiring to use multithreading facilities can simply use
an optional library module for that. A Contiki system is partitioned in core and
loaded programs. This partition is determined at compilation time. The core
comprises the kernel, program loader, run time libraries, and communication
system.

2.8 Real-Time Requirements of Multimedia Application

The timing constraints for multimedia traffic originate from the requirement

to maintain the same temporal relationship in the sequence of informa-
tion on transmission from service provider to service requester

from the necessity of preferably low offset delays between information
departure and arrival

the requisite to keep multiple types of media in sync

Consequently, each piece of information needs to be transmitted within a
bound time frame and the traffic becomes real-time. Any failure to meet the
timing constraints impairs the user-perceived Quality of Service (QoS) of net-
worked multimedia applications. Different types of applications, however,
have different QoS requirements. Common multimedia applications can be
classified as multimedia playback applications, streaming applications, and
real-time interactive.

Multimedia playback applications transmit content that is pre-encoded
and stored on a video server. A typical representative of this application
is Video on Demand (VoD). As the video transmission is one-way and



Basic Concepts of Real Time Operating Systems 41

does not involve conversational or low-latency bound elements, this type
of application is tolerant to delays and delay variations.

Streaming applications, as opposed to playback applications, require en-
coding video content on the fly as it is not available beforehand. This
type of application does not involve conversational elements, but the
latency of the transmission has a strong impact on the perceived user
experience of the content. A typical candidate for a streaming appli-
cation is Internet Protocol TV (IPTV) and presentable content covers
live transmissions of sport events. Consequently, streaming applications
have tighter requirements on delay bounds and delay variations.

Real-time interactive applications exhibit the most challenging require-
ments with respect to delay and jitter. The interactive character of the
applications requires conversational elements that often include speech
and video. Video conferencing and interactive gaming are common rep-
resentatives for this type of application. As the human perception is
more sensitive to audio than it is to video it requires an undelayed syn-
chronization between the two. Therefore, the delay bounds for this type
of application are even more stringent than those for streaming applica-
tions.

QoS denotes a collective assemblage of components that (1) transform the
qualitative set of user and application requirements into quantifiable perfor-
mance metrics for resource allocation and (2) enforce them along the network
path between a service requester and a service provider [Dit08]. Common per-
formance metrics include the network bandwidth and acceptable bounds for
packet loss, delay, and jitter. The key to QoS enforcement is to differentiate
traffic into isolated transmission queues and provide resources on a per-flow
(Intserv) or per-class (Diffserv) basis. This is accomplished by QoS traffic
control and its approaches for call admission control (CAC), traffic classifica-
tion, traffic shaping & policing, packet queueing, and packet scheduling. The
cohesions of the individual approaches are depicted in Fig. 2.13.

The purpose of CAC is to protect traffic in a shared network by determining
if an additional traffic flow’s request for resources can be approved without
causing interference to the resource allocation of admitted flows. It relies on
a flow’s traffic characterization that describes its performance metrics. A traf-
fic classifier investigates packets for their priority level and forwards them to
respective transmission queues that implement the traffic differentiation and
isolation. Traffic policing and shaping ensure that flows conform to their traf-
fic characterization, thereby defending the network against unexpected traffic
bursts. The differentiated transmission queues are served by a scheduler ac-
cording to a predefined scheduling policy that ensures the resource enforce-
ment.



42 HARDWARE-DEPENDENT SOFTWARE

Figure 2.13. QoS Traffic Control Approaches.

The transmission of multimedia traffic across wireless networks imposes
new and unique design challenges to the QoS traffic control and requires lever-
aging of the interaction among individual QoS approaches (1) toward lower
layers of the communication model to optimize the resource provisioning of
the scarce network resources and (2) in direction of the higher layers to per-
form content adaptation with different levels of granularity. The new chal-
lenges trace back to imperfect wireless transmission channels and the highly
fluctuating traffic loads of multimedia applications. They are addressed by uni-
directional cross-layer management approaches which can be partitioned into
cross-layer optimization and cross-layer adaptation. Cross-layer optimization
targets to improve the utilization or throughput of multimedia traffic in wireless
networks by exploiting the time-varying channel characteristics. Cross-layer
adaptation adjusts the content quality in respect to the traffic load toward the
higher layers of the communication model. Popular approaches for multiple
layer adaptation are Joint Source Channel Coding (JSCC) concepts [KYF+05].

2.9 Conclusions

Embedded applications in most cases are bound to real-time constraints
and are usually executed on top of a Real-time Operating System (RTOS).
Real-time tasks have to be annotated with basic timing information in order
to enable the underlying RTOS to manage them properly. Such parameters
include arrival time, worst case execution time (WCET) and (relative or ab-
solute) deadline, just to mention the most important ones. Explicitly provid-
ing these information distinct real-time applications from ordinary ones where
such information (usually characterized as non-functional properties) is avail-
able only in implicit manner. Having such characteristics in hand, specific
scheduling algorithms can be designed. Most real-time applications show pe-
riodic behavior. When possible, static cyclic schedules are calculated off-line.
If more flexibility is needed on-line techniques are applied. These algorithms
are bound to priorities which can be assigned statically as in the case of Rate



Basic Concepts of Real Time Operating Systems 43

Monotonic (RM) or Deadline Monotonic (DM) priority assignment, or dy-
namically as in the case of Earliest Deadline First (EDF). The latter one can
be applied to a-periodic tasks as well. Task sets that consist of both periodic
tasks and a-periodic ones, are more complicated to handle. An approach for a
unified management of such situations is the introduction of so called servers.
A server in this context is a periodic task that offers its processor utilization for
executing a-periodic tasks.

Designing a proper RTOS architecture needs some delicate decisions. The
basic services like process management, inter-process communication, inter-
rupt handling, or process synchronization have to be provided in an efficient
manner making use of a very restricted resource budget. Various techniques
like library-based approaches, monolithic kernels, microkernels, or virtual ma-
chines/exokernels have been developed, each of them dedicated to specific de-
mands. The classical approach is given by monolithic kernels. They allow
efficient handling of service requests. Microkernels export as many services as
possible into user space, thus reducing the risk of kernel corruption. Library-
based approaches are more or less kernel-less. They can be adapted precisely
to the needs of applications to be supported. Recently exokernels did gain in-
terest. They support safety requirements in an elegant manner based on their
virtualization technique.

Safety critical application can be supported by separation of applications ei-
ther in the time or the space domain. Dedicated RTOS architectures preferably
follow the concept of virtual machines/exokernels. By providing separated ad-
dress spaces (space domain) or strictly separated time frames in scheduling
(time domain) the mutual influence of tasks is substantially reduced. Multi-
core architectures need special techniques for process management, memory
management, and synchronization. Especially scheduling needs consideration
as most of the classical RT scheduling methods are proven to be optimal only
for mono-processor systems. An excellent fundamental architecture for dis-
tributed real-time systems is provided by time-triggered architectures, making
use of time-triggered communication protocols.

The upcoming Wireless Sensor Networks (WSN) generate special demands
for RTOS support leading to dedicated solutions. The nodes of a WSN are
equipped with extremely restricted resources. Due to power constraints they
have to be inactive for a large fraction of time. This implies special demands
concerning communication and synchronization. As a consequence of these
special requirements dedicated RTOS concepts have been developed. Strictly
even-based approaches (e.g. UCB’s TinyOS) may serve as an example. How-
ever, a tendency towards more standard multi-threading execution models can
be observed. Another special area is given by multimedia applications. Very
high data rates under (soft) RT constraints have to be supported. Based on
the used encoding techniques (e.g. MPEG) dedicated solutions can be created.



44 HARDWARE-DEPENDENT SOFTWARE

In such solutions the frames within an MPEG Group of Pictures (GoP) can
be scheduled in such a way that the number of frames to be dropped can be
reduced.

The RTOS layer in an embedded system provides interesting glue between
the underlying HW and the applications to be executed. Designing a fully
predictable service provider in a highly efficient manner and at the same time
making use of minimal resources is really challenging. This challenge is still
open despite the fact that impressive solutions have been found by the RT com-
munity.

References

[BP84] Victor R. Basili and Barry T. Perricone. Software errors and com-
plexity: an empirical investigation. Commun. ACM, 27(1):42–52,
1984.

[But04] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications (Real-Time Sys-
tems Series). Springer-Verlag Telos, Santa Clara, 2004.

[But05] Giorgio C. Buttazzo. Rate monotonic vs. EDF: judgment day.
Real-Time Syst., 29(1):5–26, 2005.

[CHB+01] David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk,
and Alec Woo. A network-centric approach to embedded software
for tiny devices. In EMSOFT ’01: Proceedings of the First Interna-
tional Workshop on Embedded Software, pages 114–130. Springer,
Berlin, 2001.

[DC05] P.K. Dutta and D.E. Culler. System software techniques for low-
power operation in wireless sensor networks. In ICCAD ’05: Pro-
ceedings of the 2005 IEEE/ACM International Conference on
Computer-aided Design, pages 925–932. IEEE Computer Society,
Washington, 2005.

[DGV04] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki—
a lightweight and flexible operating system for tiny networked sen-
sors. In LCN ’04: Proceedings of the 29th Annual IEEE Interna-
tional Conference on Local Computer Networks, pages 455–462.
IEEE Computer Society, Washington, 2004.

[Dij68] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys,
editor, Programming Languages, pages 43–112. Academic Press,
New York, 1968.

[Dit99] Carsten Ditze. Towards Operating System Synthesis. Phd thesis,
Department of Computer Science, Paderborn University, Pader-
born, Germany, 1999.



Basic Concepts of Real Time Operating Systems 45

[Dit08] M. Ditze. Coordinated Cross-Layer Management of QoS Capa-
bilities for Transmitting Multimedia Traffic across Wireless IEEE
802.11 Networks. To be published as University of Paderborn PhD
Thesis, 2008.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic, Norwell,
1997.

[KW05] Holger Karl and Andreas Willig. Protocols and Architectures for
Wireless Sensor Networks. Wiley, New York, 2005.

[KYF+05] A. Katsaggelos, Y. Eisenberg, F. Zhai, R. Berry, and T. Pappas. Ad-
vances in efficient resource allocation for packet-based real-time
video transmission. Proc. IEEE, 93(1):288–299, 2005.

[OW02] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of
faults in a large industrial software system. In ISSTA ’02: Proceed-
ings of the 2002 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 55–64. ACM, New York, 2002.

[Par07] Dominique Paret. Multiplexed Networks for Embedded Systems.
Wiley, New York, 2007.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements
for virtualizable third generation architectures. Commun. ACM,
17(7):412–421, 1974.

[SN05] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms
for Systems and Processes. Morgan Kaufmann, San Mateo, 2005.

[SRS+05] Brian Shucker, Jeff Rose, Anmol Sheth, James Carlson, Shah
Bhatti, Hui Daia, Jing Deng, and Richard Han. Embedded op-
erating systems for wireless microsensor nodes. In Handbook of
Sensor Network: Algorithms and Architectures. Wiley, New York,
2005.

[Sta01] William Stallings. Operating Systems. Prentice Hall, Upper Saddle
River, 2001.

[Sto05] Ivan Stojmenovic, editor. Handbook of Sensor Networks: Algo-
rithms and Architectures. Wiley, New York, 2005.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall,
Upper Saddle River, 2001.

[THB06] A.S. Tanenbaum, J.N. Herder, and H. Bos. Can we make operating
systems reliable and secure? Computer, 39(5):44–51, 2006.

[WJ04] Wayne Wolf and Ahmed Jerraya. Multiprocessor Systems-On-
Chips. Morgan Kaufmann, San Mateo, 2004.



Chapter 3

UEFI: FROM RESET VECTOR TO OPERATING
SYSTEM

What we call the beginning is often the end. And to make an end is to make a beginning.

The end is where we start from.—T.S. Eliot

Vincent Zimmer, Michael Rothman and Robert Hale

Abstract In PCs, the firmware that sits at the reset vector is called a BIOS. The BIOS
has increased in size, complexity, and extensions apace with the complexity and
richness of PCs. The increases have finally reached the point that no amount of
patching will fix the old architecture. The new architecture, known as the Unified
Extensible Firmware Interface (UEFI) [UEFc, ZRH] and Platform Initialization
(PI) [UEFb] keep the learning’s of the last years but impose a modern software
engineering structure that supports the basic requirements of system initializa-
tion, configuration, and abstraction of boot devices, but which is also designed
to be extensible enough to address the new features of hardware to come.

Keywords: BIOS, Firmware, UEFI, EFI, Boot ROM

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



48 HARDWARE-DEPENDENT SOFTWARE

3.1 Introduction

Time was when computers were humans who did computations. Then com-
puters became machines that filled rooms, requiring constant attention by spe-
cially trained operators. Automation all but completely replaced the human
computers.

The machines in those early days were finicky and crashed often. Reboot-
ing was a time consuming and complex process requiring the operator to flick
switches and load tapes in a complex order. An untold number of discover-
ies, and an even larger number of hours of effort later, computers are personal,
ubiquitous and, at least relatively, easy to use.

As a part of that evolution, automation has all but completely replaced the
human operators. Untrained end-users now seem to do what operators trained
for years to do in the past, and on systems that are arguably vastly more com-
plex. The simple boot ROM, auto-loader, or, in the PC world, BIOS, has gone a
long way to replace the operator, and, in a real sense, carried the PC revolution
on its back.

Boot ROMs were at first quite small and simple, if for no other reason
because ROMs were quite small and expensive. Minicomputers in the early
1980s still booted from 512 byte ROMs. In 2008 the average BIOS ROM is
512 K bytes or 1024 times as large as its minicomputer counterpart. The first
BIOS for the IBM* Personal Computer was 8 K bytes. Servers can use BIOS
of over well over 4 MB, four times the size of the PC’s entire address space.

This chapter is about what has prompted the growth in BIOS. It is also about
the next generation of BIOS, how it is architected, and some of the subtle
capabilities it provides. With the specifications now well over 2000 pages in
length, it cannot do so in any great detail. Instead, we try to give some idea of
the underlying motivations, design decisions, and possibilities inherent in this
fundamental part of modern computers.

3.2 The Ever Growing Ever Changing BIOS

The system BIOS (the BIOS on the motherboard) was initially divided into
two parts, POST (“for Power On Self Test”) and Run-time. POST gains con-
trol via the reset vector and is responsible for the initialization, testing, and
configuration of on-board devices.

The problem of ‘drivers’ for add-in cards was solved most elegantly by pro-
viding ‘Option ROMs’, pieces of code that allow the BIOS to access the cards’
devices. These option ROMs were non-volatile memory components which
typically resided on the hardware of the add-in card itself. In implementation,
however, Option ROMs were always second class citizens, with difficulty get-
ting control after initialization and even accomplishing fundamental tasks like
allocating memory.



UEFI: From Reset Vector to Operating System 49

The final function for POST is to load the initial bootstrap loader for the
Operating System and hand control to it. The intent was then that the OS
would use the BIOS as an abstraction for accessing on-board devices using the
BIOS run-time interfaces.

The BIOS design was quite successful in its initialization role. The run-time
abstractions were at a low enough level that they proved to be only really useful
so the OS could access boot devices (video, keyboard, hard drive) before it had
loaded its own drivers.

Over the years, requirements changed, initially prompting a set of mar-
ginally related BIOS extensions and finally prompting the definition of a com-
pletely new architecture.

3.2.1 The Evolution of the Power-On Self-Test

POST’s goal is to provide the OS with a functioning fully configured plat-
form. That is certainly not what the BIOS finds at the reset vector. The BIOS
typically finds little other than the basic processor and ability to access its own
memory functional. The rest must be initialized.

System initialization comprises three basic parts: finding the devices, con-
figuring the devices, and testing the devices. BIOS devices traditionally cover
a different set of components than an operating system: the chip that generates
the frequencies used on the rest of the motherboard is a device to a BIOS but
is typically invisible to an OS.

In the early days of BIOS, finding devices (enumeration) was not supported
since it required additional hardware support that was too expensive at the time.
As the hardware prices have decreased and end user support costs increased,
device enumeration became more important. Modern buses including PCI,
PCIe, ATA, SCSI, and USB have mechanisms which BIOSs use to locate and
configure devices.

The BIOS is responsible for configuring the chips in the chipset. Chips are
designed for basic functionality at reset. They require configuration to adapt
them to each other, the board, and add-in devices and, in some cases, to work
around bugs in the Silicon. Given the extremely high cost of hardware changes,
BIOS workarounds are strongly preferred. This requirement, as much as any,
motivated the BIOS to move from ROMs to Flash. Flash can be reprogrammed
in the field, reducing recalls and improving support.

Given the high integration of modern PCs the utility of most BIOS testing
has disappeared: The fact that the BIOS runs proves that most of the mother-
board is working. It is more common to test connections to peripheral devices.
Oddly, RAM is treated as a peripheral until it is initialized and tested.

The most complex and ever changing enumeration requirement is RAM. In
early days, RAM initialization could occur within the first several hundred in-



50 HARDWARE-DEPENDENT SOFTWARE

structions and typically took less than a page of assembly code. Today’s RAM
must be located and its characteristics discovered (using the System manage-
ment bus (SMBUS) [SMBUS]) and described to the chipset using algorithms
that require thousands of lines of C code. This added complexity does allow
for use of faster memory and adapting memory speeds to board and chipset.

The complexity of the BIOS routines stems from the nature of the hard-
ware/chipset. For example, fast paged-mode Dynamic Random Access Mem-
ory (DRAM) in the mid-90’s was initialized with maybe 50 lines of code. The
algorithm was simple: a table had the five or six settings of the memory con-
troller, the BIOS would attempt each setting and test to see if it “worked” (e.g.,
no aliasing, bits written could be read back, etc.). A modern memory controller
for double data-rate DRAM, such as DDR3, may take several thousand lines of
code to read serial eeprom data from the memory part, train the analog chan-
nel/compensation, and finally program the memory. So BIOS typically tracks
the complexity of the hardware. And add to this complexity comprehending
the requirements of various vendors who alternately provide the chipset, cen-
tral processing unit (CPU), system board, clock generator chip, DRAM mod-
ules, SMBUS controllers, etc.

As time has passed, the BIOS has taken on other requirements. The BIOS
is now responsible for describing the board it resides on to the operating sys-
tem and applications that manage the system. Items described include board
type, asset numbers, and how the board’s power management features are to
be accessed.

3.2.2 Run Time Evolution

The initial interfaces which abstracted peripherals were creatures of their
time. They were real mode (8 or 16 bit). They mirrored the devices of their
day: the maximum address space supported on a hard drive was 540 MB and
the maximum memory space supported was one megabyte. In the interven-
ing years, the industry has adopted a series of specifications, some clean and
elegant, some not so, to extend the interfaces where required while retaining
backwards compatibility.

3.2.3 Software Engineering

The remarkable thing about most BIOS is the amount of code that is reused.
BIOS developers routinely expect to reuse over 95% of the code from platform
to platform. This is a result of careful design and diligent monitoring as well as
schedules that permit no alternative. A byproduct of this reuse has been a high
degree of consistency and compatibility. Code is written once, tested once, and
reused millions of times. Code that is known to change (chipset, processor) is
isolated and cocooned with interfaces.



UEFI: From Reset Vector to Operating System 51

Traditionally, BIOS have been developed in assembly language and man-
aged using commonly available source code control systems. Custom tools are
used to manipulate the results to fit in the parts.

The BIOS run-time, while limited and archaic has been consistent enough
that many generations of operating systems have booted and continue to boot
on what are essentially extensions to the same interfaces. It thus may come
as a surprise that there is no consistency internally between different vendors
BIOS. The internal structures and architecture are almost completely incom-
patible. It is impossible for a company to provide a single set of code that
works unmodified when integrated into all system BIOS.

3.3 Time for a Change

By around 2000, it became clear to many in the industry that the interfaces
that had served us well for 20 years had become obsolete. Thirty two bit oper-
ating systems were hobbled by booting using 8 bit interfaces; 64 bit operating
systems would simply not work. There was simply no way to fit the required
code in the single 512 byte boot sector BIOS allowed for the first stage OS
boot loader.

Again, the industry could have defined yet another patch on the existing
system to allow for extensions to the 512 bytes and have lived for another
year or two. But then the 64 bit operating systems would be using 8 bit in-
terfaces to load subsequent boot stages. It became clear that something more
modern was required. Existing alternatives were examined and, one by one,
rejected.

A modern set of interfaces had to be defined that met the needs of the Oper-
ating System community and the system developers. There was also substan-
tial agreement that the never quite solved problems of the option ROM vendors
should be resolved by this new solution.

3.3.1 EFI and UEFI

The new set of interfaces was known as the Extensible Firmware Interface
or EFI for short. The U (for Unified) was added a few years later, when an
industry forum took over ownership of the specification.

The fundamental structures in EFI define extensibility, acknowledging that
technology will evolve. Software engineering advances in the intervening
20 years were embraced by creating what amounts to an object architecture.
This architecture was designed to be usable by all classes of systems from
deeply embedded/handheld platforms to mission-critical, large, scalable servers.
Basic services such as memory allocation and resource management were made
a part of the core set of services. The fundamentals have the feel of an embed-
ded non-preemptive real-time system.



52 HARDWARE-DEPENDENT SOFTWARE

Traditional interfaces, such as those for various types of peripherals, were
defined using the extensible interfaces as will be defined in future years for new
devices not yet thought of. Importantly, this enables option ROMs to become
full members of the system. EFI embraces the idea of driver-like interfaces
that exist only during boot and a much more minimal ‘run-time’ set of calls.

A new disk partitioning methodology was also defined which allows for
greatly expanded number of larger sized partitions than what had previously
been available.

The interfaces have been extended to support more devices (iSCSI for ex-
ample) and more advanced features such as the Human Interface Infrastructure
(HII), which supports mechanisms to support user and remote configuration of
system devices with all of the localization and similar support expected of a
modern system.

Backwards compatibility is a hard thing to grow out of. We do not expect to
see the last of the old “legacy” BIOS interfaces disappear for many years. We
are now on our way with UEFI.

3.4 UEFI and Standardization of BIOS

The BIOS evolved from crisis to crisis with small groups forming to address
a need and driving industry adoption. EFI has been more encompassing and
specification driven from the start. To continue that model, and to achieve in-
put and buy-in from the industry, the Unified EFI Forum (“UEFI”) was created
in 2005. This organization now owns the UEFI specification, covering the in-
terfaces between Boot Firmware, OS, and Option ROMs, and the Platform Ini-
tialization specifications, covering common interfaces between the reset vector
and UEFI.

At the highest level, the UEFI Specification covers all the data one might
expect to be described for launching a boot target. However, when digging
into a little more detail, a reader quickly realizes that the UEFI specification
covers many concepts that one might expect in a modern operating system.
Ultimately, the intent of the UEFI specification is to address the issues in the
pre-operating system environment that are known today, but also to provide
sufficient extensibility to the described infrastructure so that the underlying
architecture should be able to easily adapt to changing technology.

3.4.1 Providing Interface Extensibility

In the UEFI programming environment, the interfaces which a firmware
component (i.e. UEFI Driver) would provide are commonly known as “pro-
tocols”. The protocols describe the parameters and data which are exchanged
when programmatically interacting with a UEFI driver. To ensure that there is
a uniform interpretation of these interfaces, the specification clearly defines a



UEFI: From Reset Vector to Operating System 53

contract which associates a 128-bit globally unique identifier (GUID) with the
described interface description. When bound together, a GUID and an inter-
face (itself nothing more than a something like a C struct) form a protocol.

An example of installing an instance of the EFI SERIAL IO PROTOCOL
can be shown in the following example from the ISA serial driver in the open
source EFI Developer Kit (EDK) [EDK]:

1 # d e f i n e EFI_SERIAL_IO_PROTOCOL_GUID \
2 {0xBB25CF6F , 0xF1D4 , 0x11D2 , 0x9A , 0x0C , 0x00 , 0x90 , 0x27 ,
3 0x3F , 0xC1 , 0xFD}
4

5 EFI_GUID g E f i S e r i a l I o P r o t o c o l G u i d =
6 EFI_SERIAL_IO_PROTOCOL_GUID ;
7 typedef s t r u c t _EFI_SERIAL_IO_PROTOCOL {
8 UINT32 Rev i s ion ;
9 EFI_SERIAL_RESET Rese t ;

10 EFI_SERIAL_SET_ATTRIBUTES S e t A t t r i b u t e s ;
11 EFI_SERIAL_SET_CONTROL_BITS S e t C o n t r o l ;
12 EFI_SERIAL_GET_CONTROL_BITS GetCon t ro l ;
13 EFI_SERIAL_WRITE Wri te ;
14 EFI_SERIAL_READ Read ;
15 EFI_SERIAL_IO_MODE ∗Mode ;
16 } EFI_SERIAL_IO_PROTOCOL ;
17

18 EFI_STATUS EFIAPI S e r i a l C o n t r o l l e r D r i v e r S t a r t (
19 IN EFI_DRIVER_BINDING_PROTOCOL ∗This ,
20 IN EFI_HANDLE C o n t r o l l e r ,
21 IN EFI_DEVICE_PATH_PROTOCOL ∗RemainingDevicePath
22 )
23 / / Rou t ine D e s c r i p t i o n :
24 / / S t a r t t o management t h e c o n t r o l l e r passed i n Arguments :
25 / / Th i s − p o i n t e r t o t h e EFI_DRIVER_BINDING_PROTOCOL
26 / / i n s t a n c e .
27 / / C o n t r o l l e r − handle o f t h e c o n t r o l l e r t o t e s t .
28 / / RemainingDevicePath − p o i n t e r t o t h e remain ing p o r t i o n
29 / / o f a d e v i c e path .
30 / / Re turns : EFI_SUCCESS − Driver i s s t a r t e d s u c c e s s f u l l y
31 {
32 EFI_STATUS S t a t u s ;
33 EFI_INTERFACE_DEFINITION_FOR_ISA_IO ∗ I s a I o ;
34 SERIAL_DEV ∗ S e r i a l D e v i c e ;
35 UINTN Index ;
36 UART_DEVICE_PATH Node ;
37 EFI_DEVICE_PATH_PROTOCOL ∗ P a r e n t D e v i c e P a t h ;
38 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY ∗ OpenInfoBuf fe r ;
39 UINTN EntryCount ;
40 EFI_SERIAL_IO_PROTOCOL ∗ S e r i a l I o ;
41 S e r i a l D e v i c e = NULL;



54 HARDWARE-DEPENDENT SOFTWARE

43 / / Get t h e Parent Device Path
44 S t a t u s = gBS−>OpenPro toco l (
45 C o n t r o l l e r ,
46 &gEf iDev icePa thPro toco lGu id ,
47 (VOID ∗∗) &Paren tDev icePa th ,
48 This−>DriverBind ingHandle ,
49 C o n t r o l l e r ,
50 EFI_OPEN_PROTOCOL_BY_DRIVER
51 ) ;
52 i f (EFI_ERROR ( S t a t u s ) && S t a t u s != EFI_ALREADY_STARTED) {
53 return S t a t u s ;
54 }
55

56 / / Grab t h e IO a b s t r a c t i o n we need t o g e t any work done
57 S t a t u s = gBS−>OpenPro toco l (
58 C o n t r o l l e r ,
59 EFI_ISA_IO_PROTOCOL_VERSION ,
60 (VOID ∗∗) &I s a I o ,
61 This−>DriverBind ingHandle ,
62 C o n t r o l l e r ,
63 EFI_OPEN_PROTOCOL_BY_DRIVER
64 ) ;
65 i f (EFI_ERROR ( S t a t u s ) && S t a t u s != EFI_ALREADY_STARTED) {
66 goto E r r o r ;
67 }
68

69 / / I s s u e a r e s e t t o i n i t i a l i z e t h e COM p o r t
70 S t a t u s = S e r i a l D e v i c e −>S e r i a l I o . Rese t (& S e r i a l D e v i c e −>S e r i a l I o ) ;
71

72 / / I n s t a l l p r o t o c o l i n t e r f a c e s f o r t h e s e r i a l d e v i c e .
73 S t a t u s = gBS−> I n s t a l l M u l t i p l e P r o t o c o l I n t e r f a c e s (
74 &S e r i a l D e v i c e −>Handle ,
75 &gEf iDev icePa thPro toco lGu id ,
76 S e r i a l D e v i c e −>DevicePath ,
77 &g E f i S e r i a l I o P r o t o c o l G u i d ,
78 &S e r i a l D e v i c e −>S e r i a l I o ,
79 NULL
80 ) ;

Since the underlying UEFI environment is designed for extensibility, this
means that UEFI provides mechanisms for agents to advertise UEFI protocols
for use by others. For instance, participation in this level of interaction is not
limited to components which were shipped with a platform. It is fully expected
that add-in devices (e.g. RAID, network, etc.) when plugged into the system
will have the capacity to export their own interfaces which the firmware can
use.

Figure 3.1 shows a timeline of events where the UEFI subsystem will dis-
cover and launch drivers regardless of if the driver was present during platform



UEFI: From Reset Vector to Operating System 55

Figure 3.1. BIOS component interaction.

construction or not. One thing to note which is somewhat surprising to many
is that even the operating system (O/S) loader (which is provided by the O/S)
is a UEFI-compliant driver which directly uses the underlying UEFI proto-
cols.

The drivers involved in the boot process need to ensure a substantial level of
cooperation since a platform may find itself launching an add-in device’s driver
which exposes Block I/O abstractions to storage media. The platform may then
discover an O/S vendor’s O/S loader, which in-turn will use a variety of other
exposed BIOS abstractions. These standard interfaces make it possible for a
large contingent of BIOS components to be constructed and run in a portable
fashion on various UEFI codebases.

3.4.2 The Boot Processing Logic

The UEFI specification defines a variety of Non-volatile random access
memory (NVRAM) variables which are intended to indicate platform policy.
These variables encompass various configuration related settings (e.g. current
language to use, current console to use, etc.) as well as variables associated
with what drivers to load during the initialization process.

Table 3.1 enumerates the variables commonly associated with the boot
process. The listed variables can be placed into two subcategories, one which
is related to being a final boot target, and the other being an auxiliary driver
which is not intended to be a final boot target. The primary distinction is that



56 HARDWARE-DEPENDENT SOFTWARE

Boot#### A boot load option
BootOrder An ordered boot load option list
BootNext The boot option for the next boot only
Driver#### The driver load option
DriverOrder An ordered driver load option list

Table 3.1. Variables associated with boot processing.

the Boot* oriented variables are anticipated to be the final item(s) launched by
the underlying BIOS.

It should be noted that some of the variables above have some #### notation
included in their name. The #### represents a unique number in printable
hexadecimal representation using the digits 0–9, and the upper case versions
of the characters A-F. The #### will always be four digits so small numbers
will use leading zeros.

Both the Boot#### and Driver#### variables contain data which relates to
“where” the driver is located. The location associated with these drivers is
described using something known as a device path.

A device path is a means of describing a programmatic path to a particular
device. With the aforementioned boot processing variables, sufficient infor-
mation can be understood from the variable content so that all the enumerable
buses can be discerned and the location of the driver can be determined.

When an operating system is installed, one of the normal processes it under-
takes would be for it to add a reference to its O/S loader as a Boot#### vari-
able. The BootOrder determines which Boot#### variables are to be executed
and in what order, and BootNext is used when across the next platform reset
and only on the next platform reset a particular driver needs to get launched
first.

3.4.3 The UEFI System Partition

Since the O/S loader is typically a UEFI compatible driver, the ability for
the underlying UEFI infrastructure to find the O/S loader is required. UEFI
codebases are required to have the ability to interpret certain basic file systems
(e.g. FAT32), but most modern operating systems have evolved to using other
file systems which the UEFI subsystem may not be able to interpret. UEFI
defines the concept of a system partition which can be used by vendors to store
UEFI drivers.

In Fig. 3.2, we illustrate how a platform partition may be dedicated as a
UEFI system partition, including the Logical Block Addresses (LBA) of the
disk media. In addition, this partition is required to have been formatted using
the FAT (File-Allocation-Table) file system so that items stored in this repos-
itory can easily be retrieved by the UEFI BIOS. Platforms with UEFI-based



UEFI: From Reset Vector to Operating System 57

Figure 3.2. GUID Partition Table Scheme.

BIOS must support FAT12, FAT16, and FAT32 variants of the FAT file system.
What variant the system partition is formatted with is defined by the size of the
partition itself.

One very common usage of the system partition is for the O/S to store its
O/S loader; however it is very reasonable to envision a usage where various
other UEFI compatible platform utilities are placed in this same area. With
various different parties vying for the usage of this common repository, it was
envisioned that there might be file naming conflicts. To try to address this
situation as much as possible, a registry was constructed [UEFa] so that differ-
ent vendors could place material on the system partition without as much of a
concern about file name collisions.

3.4.4 Advances in Configuration Infrastructure

The ability to advance interoperability of various BIOS components were
not limited solely to items which are largely invisible to the end-user. Even
though BIOS has largely been a user-invisible technology, which in other words
could be phrased, “In almost all situations, BIOS should not be noticed by the
user aside from a possible splash screen”, the expansion of the capabilities
associated with the BIOS as well as a robust programming environment has



58 HARDWARE-DEPENDENT SOFTWARE

anticipated that user-visible solutions based on the underlying BIOS would
come about. These solutions would encompass solutions that are pretty stan-
dard operations such as configuration of both platform and add-in devices, as
well as possible other solutions which might provide user interfaces.

To facilitate the acceptance of these solutions, several areas were addressed
to simplify shipping BIOS solutions in a global market. One area had to do
with localization of text. The configuration infrastructure that was put in place
into the most recent versions of UEFI has the support for string tokenization.
This made it so that drivers could much more easily support multiple languages
in a given string reference. In lieu of hard-coded references to strings a pro-
gram would now simply be able to reference a string via its string number. The
simplicity in this enables that there is no special software that needs to be writ-
ten by users of UEFI systems to support multiple languages. As the example
in Fig. 3.3 illustrates, one simply references String #4, and based on the cur-
rent language setting of the UEFI system, the appropriate language would be
retrieved.

Figure 3.3. Example of string tokenization.

In addition to strings, the ability for a platform to display characters has
always been fixed by the platform vendor. This posed issues with the ability
for third party vendors to provide strings which might not be displayable by
the platform being executed on. The UEFI configuration infrastructure intro-
duces a means by which character glyphs can be introduced by third parties so
that these glyphs can be used to help render what would previously had been
undisplayable strings.

The interaction between the BIOS and the add-in devices has always been
a black box operation in that there was no programmatic interaction between
the components. There was also no way for the BIOS to discern any informa-
tion from the device aside from what was described by the bus that the device
was plugged into. In UEFI, the configuration infrastructure enables devices to
provide configuration access protocols which can facilitate a variety of inter-
action that was formerly impossible. In addition, since this infrastructure also
demands that configurable devices contribute their content (e.g. strings, forms,
etc.) in a standard form, the BIOS can now proxy user interface functional-



UEFI: From Reset Vector to Operating System 59

Figure 3.4. Add-in devices can now be programmatically configured.

ity for the device as well as make the content portable so that it can be used
remotely, locally, or even in the O/S.

Figure 3.4 describes the EFI HII CONFIG ACCESS PROTOCOL pub-
lished by each configurable I/O controller driver. Given these protocols, a
single platform device manager can interact with each device and provide a
consistent user interface (or remote access) to the devices.

3.5 Framework, Foundation, and Platform Initialization

EFI solved the more visible issues in the firmware. The issues of interop-
erability inside the BIOS architecture were no less profound but much more
isolated.

Intel took the lead in defining what it hoped to be a unified architecture
which is now owned by the UEFI Forum and known as the Platform Initial-
ization (PI) specification. As its basis, PI uses the same structures and core
services as found in EFI. The architecture was then defined backwards from
the Operating System towards the reset vector. Phases were defined to own the
reset vector, manage the system up to the point RAM was initialized, RAM-
resident initialization, boot device selection, and the run-time.

To address the transition from legacy to EFI, the PI can support multiple
boot modes, including a module known as the Compatibility Support Module
(CSM), which allows PI to boot into legacy Operating Systems using those
same interfaces defined in 1980.

3.5.1 Platform Initialization Versus UEFI

It is the purview of the UEFI Platform Initialization, or what we shall refer
to as the “PI”, to describe these building blocks. To that end, we will describe



60 HARDWARE-DEPENDENT SOFTWARE

Figure 3.5. Temporal view of the system.

both a temporal and spatial view of the system. The temporal view of the PI
boot is shown in Fig. 3.5. The spatial view is shown in Fig. 3.6.

What is of interest in the temporal view is that the boot flow of the machine
is broken up into phases, of which there are several of interest, including the se-
curity (SEC) phase , the Pre-EFI Initialization (PEI), and the Driver Execution
Environment (DXE).

3.5.2 SEC: The Security Phase

On common aspects of all processors and platforms is that they restart in
a given fashion. On x86, the location is 4G – 16 bytes, for example. At this
point, there is typically no initialized memory and a very rudimentary machine
state. The most notable feature is the lack of memory for a heap and call-stack.

The SEC phase stands for “Security”. The intent of this moniker was to
describe the first location in PI where a system root of trust in BIOS could be
implemented, although without platform hardware enhancements, this is not
the case in most SEC construction today.

For PI, the SEC is responsible for preparing to invoke the PEI environment
& the creation of temporary memory. On Intel-based systems, in order to
avoid the cost of custom SRAM or other early memory store, we configure the



UEFI: From Reset Vector to Operating System 61

Figure 3.6. View of the PI modules.

processor cache as a temporary memory (or “cache-as-RAM” / CAR) store for
the stack and heap. This small, early stack, in addition to putting the proces-
sor in the PEI-prescribed mode of execution (e.g., 32-bit protected mode on
IA-32). The SEC “executes-in-place” (XIP) from the firmware store.

The SEC’s ultimate goal is to put the machine in the state prescribed by the
UEFI PI specification. This includes a single thread of hardware execution,
some call-stack with a minimum size, and passing a possibly non-zero list of
data structures into the PEI core.

The SEC is a single component of the portion of the flash part where the
processor passes control upon a machine restart. For the PI bindings of x64,
IA-32, and Itanium, this is near the end of the flash volume with the SEC
core aligned to end at 4 Gbyte. Alternate architectures, such as ARM, instead
expect to pass control to firmware at address zero. To accommodate both,
there is a specific aspect of the firmware file system, namely the “Very Top
File”, that is required to be at either the “beginning” or “end” of the firmware
store.



62 HARDWARE-DEPENDENT SOFTWARE

3.5.3 Firmware File systems, HOB, Boot Modes,
and Capsules

The initial phase of execution, SEC, described how to pass off control to the
second phase, namely PEI, but introduced terms such as “firmware volume”
and “firmware file”. In PI there are certain data structures and capabilities that
will span all phases of PI execution. As such, before progressing toward the
PEI and DXE descriptions, a description of these common elements is in order.

The firmware file system of PI includes volumes, files, and sections. The
volume is the outermost container and is akin to a partition on disk. Within the
volume there can be a plurality of firmware files. And finally, within the file can
be a series of sections. The actual encoding of the file system is important for
direct discovery of modules and data structures in the early, execute-in-place
execution flow.

The file system can describe the literal binary encoding of the firmware
volume and files in the storage, or they can be abstracted by API’s in the PEI
and DXE phase of execution.

Another important object is the Hand-Off-Block (HOB). The HOB is an
in-memory list of data structures that are created by various PEI modules and
consume by the DXE core and DXE modules. Some of the HOB’s are re-
quired, such as a description of the memory resource map and the location
of additional firmware volumes containing DXE drivers, or they can be ven-
dor/domain specific data that an early PEIM needs to convey to a later DXE
driver.

A capsule is a firmware volume file that is described by a particular HOB in
PEI. Capsules are used to convey an update from a runtime environment back
into the PI phases.

The boot-mode is a value that describes the type of machine restart, includ-
ing manufacturing mode, the Advanced Configuration and Platform Interface
(ACPI) [ACPI] S5 mechanical restart, or a system flash update. PEI phase
typically detects and operates upon the boot mode.

3.5.4 PEI: The Pre-Initialization Phase

The Pre-EFI Initialization (PEI) phase of execution is the portion of the
UEFI PI infrastructure that receives control from SEC and commences exe-
cution, like SEC, in XIP. The PEI core is the component that receives control
from the SEC. The PEI core expects to have some RAM (typically from cache)-
based stack that is described by the SEC hand-off, along with the location of
the “Boot firmware volume”, or the firmware volume that may contain other
PEI modules in addition to the PEI core. The PEI Core is an executable image,
such as PE/COFF or a reduced subset, that has its relocations fixed-up for XIP
operation.



UEFI: From Reset Vector to Operating System 63

Given the stack and a pointer to a firmware volume, the PEI core, in turn,
uses integrated read-only firmware volume and file system capability to search
for PEI Modules (PEIM). A PEI module, like the PEI core, is an XIP exe-
cutable image in the firmware volume. The PEI module exists in a firmware
file that describes the file type as designating a “PEIM”.

The PEI modules can be delivered by various business interests, including
the processor manufacturer, chipset vendor, and the system board manufac-
turer. The PEIM’s expose capabilities to other PEIM’s via something referred
to as a PEIM-to-PEIM Interface (PPI).

The firmware file, in addition to the PEI executable image, may also contain
a firmware file system section referred to as a dependency expression. The
dependency expression (DEPEX) represents a binary-encoded data structure
that uses Reverse Polish Notation (RPN) to describe which PPI’s are required
by a given PEIM prior to its execution.

The ultimate rationale for the PI PEI phase of execution is to do the min-
imum amount of work in order to discover some permanent, main memory
that is sufficient to pass control to subsequent phase of execution. By “per-
manent” we mean any physical memory initialized in PEI cannot be relocated
to some other portion of the address space by a later phase of execution (e.g.,
DXE). This is the case because the final action of PEI is to invoke a PPI re-
ferred to as the “DXE IPL”, or the “Driver Execution Environment Initial Pro-
gram Loader”. DXE IPL will discover the DXE core file in its volume, load,
and pass control to the DXE core with the HOB list. If the memory were to
“move” during DXE, the DXE core and any memory allocations in PEI that
were marked as requiring preservation into the operating system runtime (e.g.,
AcpiNvs memory type) would be violated.

3.5.5 DXE: The Driver Execution Environment

The Driver Execution Environment, or DXE, is the phase of execution that
received control from PEI. The input parameterization of PEI includes the
HOB list mentioned before. A picture of the required HOB’s is shown in
Fig. 3.7.

The DXE core initially provides the UEFI system table and a series of mem-
ory only services since this file is ostensibly portable across any microarchi-

Figure 3.7. Hand-off blocks into DXE.



64 HARDWARE-DEPENDENT SOFTWARE

tecture for which it has been compiled. As such, the DXE core needs to be pa-
rameterized by details of the particular platform, including interrupt manage-
ment, time keeping, UEFI variable management. This is provided by a series
of DXE drivers in the firmware volume. The DXE drivers are also PE/COFF
executables, but unlike most PEI modules, since the DXE phase commences
with system memory, the DXE core and drivers can be decompressed and ex-
ecute from main memory. Because of the performance and space-savings of
this capability, the DXE drivers host higher-level, more algorithmically com-
plex operations.

Figure 3.8 describes the UEFI system table and the associated DXE archi-
tectural protocols [UEFb] that provide the platform-specific implementation
of some of the UEFI services. For example, the UEFI service SetVariable()
has an associated Variable Write architectural protocol (AP) (whose instance
is one of the blocks in Fig. 3.8). The use of the architectural protocols is akin
to a platform hardware abstraction layer (HAL) that allows for modifying only
the respective AP in response to differing platform needs.

Figure 3.8. DXE interfaces.

The operations hosted in the DXE phase include initialization of the I/O
buses, such as the Peripheral Component interconnect (PCI) [PCI], creation
of the System Management BIOS (SMBIOS) [SMBIOS] tables, and provide
the implementation of the UEFI or conventional PC/AT BIOS. The former
provision of the UEFI interfaces is by having the DXE core, whether through



UEFI: From Reset Vector to Operating System 65

its memory-only services, or via a DXE call abstracted to an alternate interface,
provides a fully compliant set of API’s.

Unlike PEI, which refers to the interfaces it uses as PPI’s, the DXE drivers
expose to each other GUID’d API’s that are the same as UEFI protocols.
Namely an API and/or data set named by a GUID.

During DXE phase of execution, though, all UEFI interfaces (or BIOS, for
that matter) are initially available. The DXE drivers uses the same binary en-
coding of DEPEX’s as PEIM’s in order to allow the DXE core to orchestrate
discovery and dispatch of DXE drivers. DXE expands upon the AND, OR, and
NOT opcodes of the PEI DEPEX with additional operators BEFORE, AFTER,
and SOR in order to support the richer dispatch model of DXE.

Once the DXE core has dispatched all of its drivers and is ready to “boot” a
subsequent pre-OS environment, whether it be the UEFI or PC/AT BIOS, the
DXE core invokes the Boot Device Selection (BDS) service. The BDS imple-
ments the “boot manager” capability of the UEFI specification or provides a
DXE call-down into the BIOS Boot Specification (BBS) [PhTe] capabilities.
The BDS is the first opportunity to expose a user interface/splash screen. The
BDS also orchestrates the behavior under various boot modes while in DXE.
As such, the BDS represents the system board manufacturers specific business
needs and look-and-feel. Unlike other DXE drivers that may be provided by
chipset or processor vendors, the BDS is most likely heavily modified for a
given manufacturer.

Again, DXE provides the subsequent pre-OS execution environment for
UEFI or BIOS boots, but it is responsible for machine state construction and
hand-off. DXE is typically only extensible for the system board manufactur-
ers and doesn’t admit execution of third party modules, such as PC/AT option
ROM’s or UEFI drivers. The interposition of any foreign content, such as a
capsule firmware volume for an OS-present update utility, will typically only
be executed/exposed when it is shown that the capsule was produced by the
system board manufacturer (e.g. cryptographically signed).

Also, since the BDS is the last DXE component and bridges the gap into
PC/AT or UEFI execution, each of which supports 3rd party adapter ROM’s
on cards or disk, the BDS is the last opportunity to lock down the system
board resources. This includes locking the SMRAM or the block-lockable
flash.

In addition to the DXE phase of execution, DXE registers components for
other process modes and/or machine states. The other modes include the Sys-
tem Management Mode (SMM) on x64 and Platform Management Interrupt
(PMI) / Machine Check Architecture (MCA) of the Itanium processor family.
Each of these 2 machine phases have specific protocols that allow for load-
ing DXE drivers into System Management RAM (SMRAM) or OS-reserved
memory for SMM and PMI, respectively.



66 HARDWARE-DEPENDENT SOFTWARE

In addition, DXE provides drivers to publish data tables and other services,
such as ACPI, SMBIOS, and the Itanium System Abstraction Layer (SAL)
System Table (SST).

The transition to UEFI and PI from today’s BIOS or proprietary boot so-
lutions represents a seismic transition for the industry. But after the develop-
ment effort and transition costs have been overcome, the “extensibility” of both
UEFI and PI will offer a platform for future innovation.

References

[ACPI] ACPI. Advanced Configuration and Power Interface.
www.acpi.org

[EDK] EDK. EFI Developer Kit. www.tianocore.org

[PCI] PCI. Peripheral Component Interconnect. www.pcisig.org

[SMBIOS] SMBIOS. System Management BIOS. www.smbios.org

[SMBUS] SMBUS. System Management Bus. www.smbus.org

[PhTe] Phoenix Technologies. BIOS Boot Specification.
www.phoenix.com/NR/rdonlyres/56E38DE2-3E6F-
4743-835F-B4A53726ABED/0/specsbbs101.pdf

[UEFa] UEFI. UEFI Registry.
www.uefi.org/specs/esp registry

[UEFb] UEFI. Unified Extensible Firmware Interface Platform Initial-
ization Specifications, Volumes 1–5, Version 1.1. November 5,
2007. www.uefi.org

[UEFc] UEFI. Unified Extensible Firmware Interface Specification—
Version 2.1. January 23, 2007. www.uefi.org

[ZRH] V. Zimmer, M. Rothman, and R. Hale. Beyond BIOS: Implement-
ing the Unified Extensible Firmware Interface Specification with
Intel’s Framework. ISBN 0-9743649-0-8, Intel Press, September
2006. www.intel.com/intelpress/sum efi.htm

http://www.acpi.org
http://www.tianocore.org
http://www.pcisig.org
http://www.smbios.org
http://www.smbus.org
http://www.phoenix.com/NR/rdonlyres/56E38DE2-3E6F-4743-835F-B4A53726ABED/0/specsbbs101.pdf
http://www.phoenix.com/NR/rdonlyres/56E38DE2-3E6F-4743-835F-B4A53726ABED/0/specsbbs101.pdf
http://www.uefi.org/specs/esp_registry
http://www.uefi.org
http://www.uefi.org
http://www.intel.com/intelpress/sum_efi.htm


Chapter 4

HARDWARE ABSTRACTION LAYER

Introduction and Overview

Katalin Popovici and Ahmed Jerraya

Abstract Embedded software is playing an increasing role in heterogeneous Multi-Proces-
sor System-on-Chip (MPSoC) architectures due to its high complexity. In order
to reduce the long and fastidious design process, embedded software needs to
be reused over several MPSoCs. Thus, software portability becomes a key chal-
lenge.

In this chapter, we present a clear separation between the hardware inde-
pendent and the hardware dependent software layers, through adopting a multi-
layered organization of the software stack. We introduce a component based
software design flow, which allows the gradual generation and validation of the
various software layers to obtain the final software stack. Then, by changing
the Hardware Abstraction Layer (HAL), the software stack can be executed on
different MPSoC architectures. The HAL represents the lowest software layer,
which totally depends on the target architecture. The HAL abstraction, through
the use of well defined HAL APIs, makes easier the software portability and
enables flexibility. The paper shows that the HAL APIs allow early software
development before the hardware architecture is available, but also architecture
exploration. The proposed methodology is applied to design the software stack
for the Motion JPEG multimedia application and to execute it on diverse proces-
sors by changing the HAL and preserving the HAL APIs.

Keywords: MPSoC, Software Design, Software Validation, HAL, HAL Abstraction

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



68 HARDWARE-DEPENDENT SOFTWARE

4.1 Introduction

Current Multi-Processor System-on-Chip (MPSoC) architectures integrate
a large number of processing subsystems on the same chip [Wol06]. The
processing subsystems usually contain different types of programmable proces-
sing units or CPUs, depending on the target application domain. Thus, DSP
(Digital Signal Processor) is mostly used for signal processing applications;
microcontrollers are more common for control-intensive applications, while
ASIP (Application Specific Instruction Set Processors) represent stored-
memory CPUs whose architectures are tailored for a particular set of appli-
cations.

As more and more heterogeneous processors and hardware components are
integrated together, the design and validation of the software running on these
complex heterogeneous architectures become a major bottleneck, because the
software is even more complex [Tur05]. The key issue of the software design
for MPSoC is to produce efficient software code with strong time to market
constraints. Producing efficient code requires that the software takes into ac-
count the capabilities of the target architecture. This generally requires a long
and fastidious software debug cycle. The classic way to accelerate the software
design process relies on automatic software code generation from high level
programming models that abstract the architecture, but this approach produces
a huge expense in the efficiency of the generated code.

The software is generally organized into several stacks made of two lay-
ers: application and Hardware-dependent Software (HdS). The validation and
debug of the Hardware dependent Software (HdS) is the main bottleneck in
MPSoC design, because each processor subsystem requires specific HdS im-
plementation to be efficient [JW05]. Current research studies proved that the
HdS debug represents 78% of the global system total debugging time of an
MPSoC design cycle [YYS+04]. This may be due to incorrect configuration
or access to the hardware architecture, e.g. a wrong configuration of the mem-
ory mapping for the interrupt control registers.

Besides software complexity, portability becomes a major issue to decrease
the overall design and validation time, because it allows software reuse over
several SoCs. Portability enables execution of the same software on different
hardware architectures. In terms of design reuse, the portability enables reuse
of the software designed for a particular MPSoC architecture to another. Thus,
portability reduces the design efforts, otherwise necessary to adapt the software
for the new hardware architecture.

In order to reduce its complexity and enable easy software portability, we
propose structuring the HdS into three software components: a real time op-
erating system (RTOS) aimed to schedule the different application tasks, a
specific communication library to implement the communication protocol and



Hardware Abstraction Layer 69

the hardware abstraction layer (HAL) to access the hardware resources. The
HAL represents the thin software layer that totally depends on the underlying
target architecture. Structuring the HdS in these well defined layers accessi-
ble through application programming interface (API) is essential to support
software flexibility and portability on different hardware platforms.

Traditional MPSoC design flow starts with the application partitioning into
hardware and software tasks that are mapped on processing elements. The
definition of generic HAL APIs for the target application domain makes it
possible to start designing the software before the hardware is complete, thus
enabling concurrent hardware and software design. In fact, the software design
is structured in two main phases. The first phase is the hardware independent
software design (application tasks, OS), which may start after the definition of
the HAL APIs. The second phase represents the HAL design and integration
into the software stack. Figure 4.1 shows these steps. Separating the hardware
dependent and hardware independent software designs also makes the architec-
ture exploration easier, since the hardware independent software can be reused
over several architectures. Only the HAL must be altered in case of different
architectures.

Figure 4.1. Hardware-software design flow.

In this chapter, we give the basic definitions for the different software com-
ponents, and we emphasize the importance of the HAL layer in the context
of MPSoC to provide software portability across different hardware platforms.
We present a component based software design flow that allows generation and
validation of the different software elements. In order to allow the software
reuse, we define the abstraction of the HAL through APIs and the validation



70 HARDWARE-DEPENDENT SOFTWARE

of these HAL APIs. The proposed methodology is applied to design and to
adapt the software stack to different processors for the Motion JPEG decoder
application.

The chapter is composed of seven sections. Section 4.1 gives a short intro-
duction to present the context of MPSoC software design. Section 4.2 defines
the organization of the software stack into different components. Section 4.3
discusses the role of HAL in the software stack and explains how to achieve
software portability through abstraction of the HAL. Section 4.4 enumerates
several existing commercial HAL. Section 4.5 summarizes the main steps of
the proposed software design and validation flow. Section 4.6 presents the
HAL execution and simulation using specific software development platforms.
Section 4.7 addresses the experimental results, followed by conclusion.

4.2 Software Stack

This section defines the software stack running on the different processing
subsystems and presents its layered organization in several software compo-
nents.

4.2.1 Software Stack Definition

The software stack represents the software running on a processing sub-
system. In heterogeneous MPSoC architectures, each processing subsystem
executes a software stack. The software stack is made of two layers: the ap-
plication tasks code and the hardware dependent software (HdS). The HdS
layer includes three software components: the Operating System (OS), specific
I/O communication software and the Hardware Abstraction Layer (HAL). The
HdS is responsible for providing application and architecture specific services,
i.e. scheduling the application tasks, communication between the different
tasks, external communication with other processing subsystems, or hardware
resources management and control. The following paragraphs detail the soft-
ware stack organization, including all these different components.

4.2.2 Software Components

The software stack is structured in different software layers that provide
specific services. Figure 4.2 illustrates the software stack organization in two
layers: application layer and HdS (Hardware-dependent Software) layer. In
the first section we present the application layer. Then, the HdS layer will be
defined.

Application Layer. The application layer contains the software code for ap-
plications such as multimedia (e.g. MP3, MPEG4 and JPEG 2000) or commu-
nications (e.g. protocol stack and physical layers). It may be a multi-tasking



Hardware Abstraction Layer 71

Figure 4.2. Software stack organization.

description or a single task function of the application targeted to be executed
on a particular processor subsystem.

A task or thread is a lightweight process that runs sequentially and has its
own program counter, register set and stack to keep track of where it is. In this
chapter, the terms task and thread are used as interchangeable terms. Multiple
tasks can be executed in parallel by a single CPU (single-core processor sub-
system) or by multiple CPUs of the same type grouped in a single subsystem
(multi-core processor subsystem). The tasks may share the same resources of
the architecture, such as processors, I/O components and memories. On a sin-
gle processor core node, the multithreading generally occurs by time slicing,
wherein a single processor switches execution between different threads. In
this case, the task processing is not literally simultaneous, as the single proces-
sor is doing only one thing at a time. On a multi-core processor subsystem,
threading can be achieved via multiprocessing, wherein different threads can
run literally simultaneously on different processors inside the processor node
[Tan95].

The application layer consists of a set of tasks that makes use of Application
Programming Interface (API) to abstract the underlying HdS software layer.
These APIs correspond to the HdS APIs.

HdS Layer. The HdS layer represents the software layer which is directly
in contact with, or significantly affected by, the hardware that it executes on,
or can directly influence the behavior of the underlying hardware architecture
[Pos03]. The HdS integrates all the software that is directly depending on the
underlying hardware, such as hardware drivers or boot strategy. It also pro-
vides services for resources management and sharing, such as scheduling the
application tasks on top of the available processing elements, inter-task com-
munication, external communication, and all other kinds of resources manage-
ment and control. The federative HdS term underlines the fact that, in an em-
bedded context, we are concerned with application specific implementations
of these functionalities that strongly depend on the target hardware architec-
ture [JBP06].



72 HARDWARE-DEPENDENT SOFTWARE

To decrease the complexity of the HdS debug, the HdS is organized into
three software components: operating system (OS), communication manage-
ment (Comm) and hardware abstraction layer (HAL). Figure 4.2 illustrates
these software components.

Operating System. The operating system (OS) is the software component that
manages the sharing of the resources of the architecture. It is responsible for
the initialization and management of the application tasks and communication
between them. It provides services, such as tasks scheduling, context switch,
synchronization and interrupt management. In the following, we define each
of these basic OS services.

The tasks scheduling service of the OS usually follows a specific algo-
rithm, called scheduling algorithm. Finding the optimal algorithm for the tasks
scheduling represents a NP-complete problem [VBL05]. There are different
categories of scheduling algorithms. The classic criteria are hard real-time
versus soft real-time or non real-time; preemptive versus cooperative; dynamic
versus static; centralized versus distributed.

Contrary to non real-time, the real-time scheduler must guarantee the exe-
cution of a task in a certain period of time. Hard real-time must guarantee that
all the deadlines are met.

Preemptive scheduling allows a task to be suspended temporally by the OS,
for example when a higher-priority task arrives, resuming later when no higher-
priority tasks are available to run. This is associated with time-sharing be-
tween the tasks. Examples of preemptive scheduling algorithms are: round
robin, shortest-remaining-time or rate-monotonic schedulers. The cooperative
or non-preemptive scheduling algorithm runs each task to its completion. In
this case, the OS waits for a task to surrender control. This is usually associated
with event-driven operating systems. Examples of non-preemptive algorithm
are the shortest-job-next or highest-response-ratio-next.

With static algorithms, the scheduling decisions (preemptive or non-pre-
emptive) are made before execution. Contrary to static algorithms, the dynamic
schedulers make their scheduling decisions during the execution.

The implementation of the scheduler may be centralized or distributed. In
case of a centralized scheduler implementation, the scheduler controls all the
task execution ordering and communication transactions. In case of a distrib-
uted scheduler implementation, the scheduler distributes the control decision
to the local task schedulers corresponding to each processor [CYC+05].

When a task is ready for execution and it is selected by the scheduler of
OS according to the scheduler algorithm, the OS is also responsible to perform
the context switch between the currently running task and the new task. The
context switch represents the process of storing and loading the state of the
CPU which runs the tasks, in order to share the available hardware resources



Hardware Abstraction Layer 73

between different tasks. The state of the current task, including registers, is
saved, so that in case the scheduler gets back for execution the first task, it can
restore its state and continue normally.

In order to ensure a correct runtime and communication order between the
different tasks running on parallel, synchronization is required. The tasks can
synchronize by using semaphores or by sending/receiving synchronization sig-
nals (events) each other. The mutex is a binary semaphore which ensures mu-
tual exclusion on a shared resource, such as a buffer shared by two threads, by
locking and unlocking it, whenever the resource is accessed by a task [TW97].

The interrupt handler is another OS service used for the interrupts manage-
ment. There are two types of processor interrupts: hardware and software.
A hardware interrupt causes the processor to save its state of execution via a
context switch, and begins the execution of an interrupt handler. Software in-
terrupts are usually implemented as instructions in the instruction set of the
processor, which cause a context switch to an interrupt handler similar to a
hardware interrupt. The interrupts represent a way to avoid wasting the proces-
sor’s execution time in polling loops waiting for external events. Polling means
when the processor waits and monitors a device until the device is ready for an
I/O operation.

Examples of commercial OS are the eCos [eCos], FreeRTOS [FRTOS],
LynxOS [LOS], VxWorks [VxW], WindowsCE [WCE] or μITRON [uIT].

Communication Software Component. The second software component of the
HdS layer constitutes the communication component, which is responsible for
managing the I/O operations and, more generally, the interaction with the hard-
ware components and the other subsystems. The communication component
implements the different communication primitives used inside a task to ex-
change data between the tasks running on the same processor or between the
tasks running on different processors. It may include different communica-
tion protocols, such as FIFO (first-in-first-out) implemented in software, or
communication using dedicated hardware components. If the communication
requires access to the hardware resources, the communication component in-
vokes primitives that implement this kind of low level access. These function
calls are done in form of the HAL APIs.

The HAL APIs allow for the OS and communication components to access
the third component of the software stack, that is the HAL layer.

Hardware Abstraction Layer. Low level details about how to access the re-
sources are specified in the Hardware Abstraction Layer (HAL) [YJ03]. The
HAL is a thin software layer which totally depends on the type of processor
that will execute the software stack, but also depends on the hardware resources
interacting with the processor. The HAL includes the device drivers to imple-
ment the interface for the communication with the device. This includes the



74 HARDWARE-DEPENDENT SOFTWARE

implementation of the drivers for the I/O operations or other peripherals. The
HAL is also responsible for processor specific implementations, such as load-
ing the main function executed by an OS, more precisely the boot code, or
implementation of the load and restore CPU registers during a context switch
between two tasks, but also software codes for configuration and access to the
various hardware devices, e.g. MMU (Memory Management Unit), timer, in-
terrupt enabling/disabling etc. More details about the HAL will be given in the
following sections.

The structured representation and the organization of the software stack into
several layers (application tasks, OS, communication and HAL), as previously
described, have two main advantages: flexibility in terms of software compo-
nents reuse by changing the OS or the communication software components,
and portability to other processor subsystems by changing the HAL software
layer.

The following paragraphs give the definition of the HAL software compo-
nent and highlight its role in enabling software portability. Thereafter, the main
steps required by the design and validation of these different software compo-
nents are explained in detail.

4.3 Hardware Abstraction Layer

In this section, the definition of the HAL is given. This is followed by
the HAL abstraction through well defined APIs to enable software portability
across various hardware platforms.

4.3.1 Definition and Examples of HAL

The HAL is defined in [eCos] as all the software that is directly dependent
on the underlying hardware. If the hardware architecture is changed, changes
also have to be made to the HAL. The HAL can be implemented in the assem-
bly language recognized by the processor or in specific C code. In fact, the
HAL includes two types of software code:

Processor specific software code, such as context switch, boot code or
code for enabling and disabling the interrupt vectors.

Device drivers, which represents the software code for configuration
and access to hardware resources, such as MMU (Memory Management
Unit), system timer, on-chip bus, bus bridge, I/O devices, resource man-
agement, such as tracking system resource usage (check battery status)
or power management (set processor speed).

The HAL offers a set of services to the upper level OS and communication
libraries that grant them access to the hardware platform. Generally, the HAL
provides the following kinds of services:



Hardware Abstraction Layer 75

Integration with an ANSI C standard library to provide the familiar C
standard library functions, such as printf(), fopen(), fwrite(), exit(), abs(),
atof(), etc. An example of such a library is the newlib library, which rep-
resents an open-source implementation of the C standard library .newlib
for the use on embedded systems [newl].

Device drivers to provide access to each device of the hardware platform.

The HAL API to provide a consistent interface to HAL services, such as
device access, interrupts handling and debug facilities.

System initialization to perform the initialization of the tasks for the
processor before the execution of the main() function of the application.

Device initialization to instantiate and initialize each device in the hard-
ware platform before the execution of the main() function of the appli-
cation.

The device drivers, that are part of the HAL, are the interface between a
hardware resource and the application or OS. Usually, the drivers are hard-
ware dependent and OS specific. Typical device drivers provide access to the
following classes of hardware components:

Character-mode devices, which represent hardware peripherals that send
and/or receive characters serially, such as an UART (Universal Asyn-
chronous Receiver/Transmitter) device.

Timer devices, which are hardware peripherals that count clock ticks and
generate periodic interrupt requests.

File subsystems, which provide a mechanism for accessing files stored
within physical devices. Depending on the internal implementation, the
file subsystem driver may access the underlying devices either directly
or by using a separate device driver. For example, a flash file subsystem
driver may access a flash memory by using dedicated HAL APIs for the
flash memory devices.

Ethernet devices to provide access to an Ethernet connection for a net-
working stack, such as the NicheStack TCP/IP stack [NS].

DMA devices that are peripherals that perform bulk data transactions
from a data source to destination. Sources and destinations can be mem-
ory or another hardware device, such as an Ethernet connection.

Flash memory devices, which are nonvolatile memory devices that use a
special programming protocol to store data.



76 HARDWARE-DEPENDENT SOFTWARE

Besides the implementation of the device drivers, the HAL includes proces-
sor specific code as well, such as the implementation of the context switch or
interrupt handling.

Figure 4.3 presents an example of processor specific HAL code, which per-
forms a context switch between two application tasks running on an ARM7
processor. This example of HAL software code uses the assembly language
specific to the ARM7 processor in order to access some particular processor
registers (R0-R14, PC-Program Counter). The context switch needs two basic
operations to be performed: store the status of the processor registers used by
the current task and load the status of the registers of the new task.

Figure 4.3. HAL implementation for the context switch on the ARM7 processor.

Figure 4.4 illustrates another example of low level software code implemen-
tation that enables and disables the IRQ interrupts for the ARM7 processor.
The interrupts are enabled and disabled by reading the CPSR (Current Pro-
gram Status Registers) flags and updating bit 7 corresponding to bit I (IRQ
Interrupt).

Figure 4.4. HAL implementation for enabling and disabling ARM interrupts.



Hardware Abstraction Layer 77

4.3.2 Software Portability Based on HAL API

In the context of software design for MPSoC, software portability becomes
a key issue. Portability enables execution of the same software on different
hardware architectures. In terms of design reuse, the portability enables reuse
of the software designed for a particular MPSoC architecture to another. Thus,
portability reduces the design efforts, otherwise necessary to adapt the software
for the new hardware architecture. The portability also eases the exchange of
the software code and architecture exploration, e.g. trying different types of
processors to find an optimal target processor.

As it was described in the previous paragraphs, the structural organization
of the software stack is made of several layers separated by well defined APIs.
The lowest level software component represents the HAL layer which is a to-
tally hardware architecture dependent layer. The OS and communication soft-
ware components make use of HAL APIs. Thus, without the implementation
of the HAL APIs for the target processors, the software code still remains
processor independent.

The HAL APIs gives to the operating system, communication and applica-
tion software an abstraction of the hardware-dependent HAL, e.g. data types
like the integer “int” data type in the standard C programming language, which
has different bit size depending on the processor type. Furthermore, the HAL
APIs ease OS porting on new hardware architecture. The HAL APIs can be
classified in the following categories [eCos]:

Kernel HAL APIs, such as task context management APIs (e.g. context
creation, delete or context switch APIs, task initialization), stack pointer
and program counter management APIs (e.g. get/set IP(), get/set SP())
or processor mode change APIs (e.g. enable kernel/ user mode()).

Interrupt management APIs, e.g. APIs which enable/disable interrupt
request from an interrupt source (e.g. vector enable/ disable(vector id)),
configure interrupt vector (e.g. vector configure(vector id, level, up)),
mask/unmask interrupt for a processor (e.g. interrupt enable/disable()),
the implementation of the interrupt routine services (e.g. interrupt at-
tach/ detach(vector id, isr)) or HAL APIs that acknowledge to the inter-
rupt source that the interrupt request has been processed (e.g. clear inter-
rupt( vector id)).

I/O HAL APIs, which configure the I/O devices and allows their ac-
cess. For example, to configure a MMU device, the following I/O HAL
APIs may be required: APIs for page management (e.g. enable/disable
paging()), address translation (e.g. virtual to physical()), TLB (Trans-
lation Lookaside Buffer) management, such as set TLB entry
(e.g. TLB add()) or get TLB entry virtual/physical page frame (e.g.



78 HARDWARE-DEPENDENT SOFTWARE

get TLB entry()). Other I/O HAL API examples can be considered the
APIs for cache memory management, such as Instruction/Data Cache
Enable/Disable().

Resource management APIs, such as APIs for power management
(e.g. check battery status, set CPU clock frequency) or APIs to configure
the timer (e.g. set/reset timer(), wait cpu cyle()).

Design time HAL APIs, which facilitates the software design process,
or more precisely, the simulation. Example of such kind of API is the
consume cpu cyle() to simulate the advance of the software execution
time.

The HAL APIs are used by the upper software layers, like OS and com-
munication components. Figure 4.5 shows an example of utilization of the
HAL API in a fragment of code inside the OS scheduler. Thus, the OS sched-
uler searches for a new task in status ready for execution. If there is a new
ready task, the scheduler performs a context switch, by calling the HAL API

cxt switch(. . . ). During the context switch, the OS saves the status and regis-
ters (program counter, stack pointer, etc.) of the processor running the current
task and loads those of the new task.

Figure 4.5. Example of HAL API function call inside the OS scheduler.

4.4 Existing Commercial HAL

In the following section, we give several examples of existing commercial
HAL that are used in both academic and semiconductor industry areas.

Even if the HAL represents an abstraction of the hardware architecture,
since it has been mostly used by OS vendors and each OS vendor defines its
own HAL, most of the existing HAL is OS dependent. In case of an OS de-
pendent HAL, the HAL is often called board support package (BSP). In fact,
the BSP implements a specific support code for a given hardware platform
or board, corresponding to a given OS. The BSP also includes a boot loader,
which contains a minimal device support to load the OS and device drivers for
all the devices on the hardware board.



Hardware Abstraction Layer 79

The embedded version of the Windows OS, namely Windows CE, provides
BSP for many standard development platforms that support several micro-
processors family (ARM, x86, MIPS) [WCE]. The BSP contains an OEM
(Original Equipment Manufacturer) adaptation layer (OAL), which includes
a boot loader for initializing and customizing the hardware platform, device
drivers, and a corresponding set of configuration files.

The VxWorks OS offers BSP for a wide range of MPSoC architectures,
which may incorporate ARM, DSP, MIPS, PowerPC, SPARC, XScale and
other processors family [VxW]. In eCos, a set of well-defined HAL APIs are
presented [eCos]. However, there’s no clear difference between HAL and de-
vice driver. Examples of HAL APIs used by eCos are:

Thread context initialization:
HAL THREAD INIT CONTEXT()

Thread context switching:
HAL THREAD SWITCH CONTEXT()

Breakpoint support:
HAL BREAKPOINT()

GDB support:
HAL SET GDB REGISTERS(), HAL GET GDB REGISTERS()

Interrupt state control:
HAL RESTORE INTERRUPTS(), HAL ENABLE INTERRUPTS(),
HAL DISABLE INTERRUPTS()

Interrupt controller management:
HAL INTERRUPT MASK()

Clock control:
HAL CLOCK INITIALIZE(), HAL CLOCK RESET(),
HAL CLOCK READ()

Register read/write:
HAL READ XXX(), HAL READ VECTOR XXX(),
HAL WRITE XXX(), and HAL WRITE VECTOR XXX()

Control the dimensions of the instruction and data caches:
HAL XCACHE SIZE(), HAL XCACHE LINE SIZE()

In the software development environment for the Nios II processor provided
by Altera [HAL], the HAL serves as a device driver package, providing a con-
sistent interface to the system peripherals, such as timers, Ethernet MAC and
I/O peripherals.



80 HARDWARE-DEPENDENT SOFTWARE

In Real-Time Linux a HAL, called Real-Time HAL (RTHAL), is defined to
give an abstraction of the interrupt mechanism to the Linux kernel [RTL]. It
consists of three APIs for disabling and enabling interrupts and return from the
interrupt.

An example of HAL that does not depend on the targeted OS is the a386
library [A386]. The a386 represents a C library which offers an abstraction of
the Intel 386 processor architecture. The functions of the library correspond
to privileged processor instructions and access to the hardware. The library
serves as a minimal hardware abstraction layer for the OS. Later, the library is
ported on ARM and SPARC processors.

4.5 Overview of the Software Design and Validation Flow

This section gives an overview of the software design and validation flow.
The overall flow is illustrated in Fig. 4.6.

The software design flow has three main steps: application software gen-
eration, software stack construction, and performance and software validation
through simulation on a development platform [PJ07].

The software design flow starts with a manual design step to build the high
level application model that captures the grouping of the application functions

Figure 4.6. Software design and validation flow.



Hardware Abstraction Layer 81

into tasks, and the tasks into processor subsystems. Thus, it combines the ap-
plication behavior with the architecture specification, and the application map-
ping information onto the architecture. The result of this step represents a com-
bined architecture/application model. This high level application model may
use explicit communication units to abstract the intra-subsystem communica-
tion (communication between the different processor subsystems) and inter-
subsystem communication (communication between the tasks mapped onto
the same processing subsystem).

4.5.1 High Level Application Model

The high level application model represents a functional description of the
application annotated with the application mapping information on the target
architecture. We use Simulink environment [Math] to capture this representa-
tion. We use a specific writing style and annotation to capture the architecture
details and the mapping of the communication and computation. At this level,
the software is made of a set of functions grouped into tasks and the tasks
grouped into software subsystems. The communication between functions,
tasks and subsystems make use of abstract communication links to represent
logical communication, e.g. standard Simulink links or explicit communication
units that correspond to specific communication paths of the target platform.
The links and units are annotated with communication mapping information.
The simulation at the system architecture level allows validating the appli-
cation’s functionality. The hardware-software interfaces are fully abstracted.
This model captures both the application and the architecture in addition to the
computation and communication mapping.

4.5.2 Application Software Generation

During the application software generation, the Simulink application func-
tions are transformed into behaviorally equivalent C code for each task. This
step is similar with the code generation provided by Real Time Workshop, but
the generated code uses an optimized buffer memory [Han06 +].

The generated code is made of two parts: computation and communication.
The computation part represents the C behavior of the application functions,
while the communication part involves high level communication primitives,
such as send(. . . )/recv(. . . ) or channel write(. . . )/ channel read(. . . ). The im-
plementation of these APIs relies on the underlying OS and communication
libraries.

4.5.3 Software Stack Composition

During the software stack composition, the previously generated applica-
tion tasks code are compiled and linked together with an OS, communication



82 HARDWARE-DEPENDENT SOFTWARE

and HAL library [GPY+07]. The OS library contains the components that
implement several OS services, such as scheduling, interrupt routine services,
tasks management (create/kill/exit). The communication library contains the
implementation of the high level communication primitives, e.g. MPI (Mes-
sage Passing Interface) primitives [MPI], the TTL communication primitives
[vdW04+] or YAPI communication APIs [KSW+00]. The implementation of
these communication primitives can be blocking or non-blocking. The HAL li-
brary contains the implementation of the low level hardware access primitives,
e.g. context switch primitives, enable/disable interrupts, boot code or specific
DMA configuration primitives. The software stack composition is performed
in two main steps:

OS and communication software components integration

HAL integration

The result of each of these steps has to be validated in order to verify the
application execution on the target hardware architecture, as it will be detailed
in the next section.

4.5.4 Software Validation

The software validation allows verifying the execution of the software with
explicit hardware-software interaction. Traditional software development stra-
tegies make use of the concept of software development platform to debug the
software before the hardware architecture is ready.

As illustrated in Fig. 4.7, the software development and validation platform
is an abstract model of the architecture in form of a run-time library or simu-

Figure 4.7. Software development and validation platform.



Hardware Abstraction Layer 83

lator aimed to execute the software (e.g. Instruction Set Simulator). The com-
bination of this platform with the software code produces an executable model
that emulates the execution of the final system including hardware and software
architecture. Generic software development platforms have been designed to
fully abstract the hardware-software interfaces, i.e. MPITCH is a run-time ex-
ecution environment designed to execute parallel software code written using
MPI [MPI].

In this chapter, we use software development platforms implemented in
SystemC TLM [GLMS02] in order to execute and debug the software code
[PGR+07].

Depending on the software component to be validated (application tasks
code, tasks code execution upon an OS, HAL integration in the software stack),
the SystemC platform may model only a subset of hardware components, more
precisely those components that are required for the software validation. The
rest of the hardware components, which are not relevant for the software val-
idation, are abstracted. For example, the debug of the application tasks code
does not need explicit implementation of the synchronization protocol between
the processors, such as mailboxes, semaphores or mutexes, while the debug of
the integration of the tasks code with the OS requires such kind of detail in the
SystemC platform.

The debug is performed using standard debuggers such as GNU debuggers
or tracing SystemC waveforms during the simulation. The software validation
is an iterative process because the different software components need different
detail levels.

4.6 HAL Execution and Simulation Using Software
Development Platforms

In order to explore and reuse the validated software components for better
performance achievement, by executing them on various hardware architec-
tures, the HAL layer plays a key role to guarantee software portability. Thus,
the following sections will focus on the HAL execution on a virtual proto-
type using Instruction Set Simulators (ISS), and HAL APIs simulation using a
transaction accurate SystemC development platform.

4.6.1 HAL Execution on Virtual Prototype

The integration of the HAL layer into the software stack needs to be vali-
dated for functional verification purpose. In order to validate such kind of HAL
code, there are two possible execution techniques of HAL:

1. direct loading the software code onto the processor’s program memory
and execute it on a real chip or an equivalent FPGA-based emulation
board;



84 HARDWARE-DEPENDENT SOFTWARE

2. using a software development platform that models the target architec-
ture and incorporates Instruction Set Simulators (ISS) for the processors.

In this chapter, we detail the HAL execution using a SystemC develop-
ment platform that combines ISS for the software execution and SystemC
for the hardware simulation. This platform is also known as virtual proto-
type [HYL+06] and the execution model corresponds to classical hardware-
software cosimulation models with ISS [Row94] [SG00].

The integration of instruction set simulators for the software execution on
specific processors with hardware simulators of the architecture behavior is
largely used in MPSoC domain. By using ISS, this approach allows simulating
a detailed hardware-software interaction, including the HAL of the software
stack. For performance verification, the timing information can be measured
instead of estimated.

The execution model of the virtual prototype resides on a cosimulation be-
tween the software stack simulator and the hardware simulator [NYBJ02]. Two
types of simulators are combined: ISS for simulating the programmable com-
ponents running the software and SystemC for the dedicated hardware part
[EPTP07].

The hardware-software simulation is driven by SystemC. The SystemC ini-
tializes the processor SystemC modules that encapsulate the ISS. During the
simulation, the ISS features a simulation loop which fetches, decodes and ex-
ecutes instructions one after another. The ISS is developed as sequential soft-
ware running on a single processor. The simulation performed at this level is
cycle accurate. The simulation of the virtual prototype allows validating the
HAL integration into the final software stack.

Figure 4.8 shows the execution model of an architecture made of two proces-
sors, ARM7 and XTENSA. The model contains two ISS to execute the binary

Figure 4.8. Virtual prototype execution model.



Hardware Abstraction Layer 85

codes, corresponding to the ARM7, respectively XTENSA processors. The
rest of the architecture components are cycle accurate SystemC components
modeled at TLM with execution timing information. The two software stacks
that are executed by the two processors include the application tasks code,
communication and operating system layer and the processor specific HAL.

4.6.2 HAL Simulation on Transaction Accurate SystemC
Platforms

Instead of executing the HAL on the virtual prototype, as it was previously
described, the HAL can be simulated using the APIs provided by the OS run-
ning on the host machine. In this manner, the HAL APIs are executed natively
on the host machine, thus providing a simulation model of the OS and the
inter-processor communication scheme [BYJ04].

For example, the implementation of the ctx switch (old tid, cur tid) HAL
API, which performs a context switch between two tasks, relies on the APIs
provided by the OS running on the host machine (Windows, Linux, UNIX,
etc.). Figure 4.9 exemplifies the implementation of the context switch on a
host machine running Linux OS, which makes use of sigsetjmp and siglongjmp
APIs to save and switch the context of a task.

Figure 4.9. Simulation of the ctx switch() HAL API.

Using this kind of HAL simulation model, the software stack still remains
processor independent. Therefore, by abstracting the HAL through the use
of HAL APIs, the application tasks code, OS and communication software
components can be migrated between various processors. In this case, the only
requirement is that those processors need to support the implementation of the
HAL APIs, thus allowing software portability.

In order to verify the hardware-software interface, the HAL APIs are re-
quired to be executed upon a development platform with detailed hardware-
software interaction. In the following, we present the execution model that
allows the HAL native simulation and makes use of a transaction accurate
hardware platform implemented in SystemC. The hardware platform contains



86 HARDWARE-DEPENDENT SOFTWARE

all the hardware resources that are required for the HAL APIs native execution
and validation.

The combination of the transaction accurate platform with the software
stack based on HAL APIs results in an executable model. The full hardware-
software executable model is based on a co-simulation between SystemC for
the hardware components including the abstract execution models of the proc-
essors, and the native execution of the software stacks [NYBJ02].

Each software stack is a SystemC thread which creates a Linux process for
the software execution. At the beginning of the simulation, the SystemC plat-
form launches a GNU standard debugger (gdb) Linux process for each software
stack in order to start its execution. The software stack interacts with the cor-
responding SystemC abstract processor module through the Linux IPC layer.
The hardware-software interface uses Linux shared memory (IPC Linux shm)
for the interaction, data and synchronization exchange between the software
and the hardware.

Figure 4.10 shows the execution model of two software stacks running on
two processors, ARM7 and XTENSA. This represents a co-simulation between
the gdb Linux processes of each software stack gdb1 and gdb2 (one gdb per
each software stack) and one SystemC Linux process for the whole SystemC
simulation of the hardware platform. The interface between the three Linux
processes is performed using the Linux IPC shared memory.

Figure 4.10. Transaction accurate SystemC execution model.

The simulation of the transaction accurate architecture allows validation of
the integration of the tasks code with the OS and the communication protocol,
providing a simulation model for the HAL APIs. The simulation allows debug-
ging the software access to the hardware resources (e.g. access to the AMBA



Hardware Abstraction Layer 87

bus, interrupt lines assignment, OS scheduling, etc.). It makes possible the
debug of the access of the OS functions to the hardware resources through the
HAL APIs, e.g. read(. . . )/ write(. . . ) from/to the memory, explicit synchro-
nization using mailboxes or the interrupt routine services. The simulation also
gives more precise statistics on the communication and computation perfor-
mances, such as number of exchanged bytes during the application execution
or estimation of the processors cycles spent on communication.

4.7 Experiments

In this chapter, we present the HAL integration for the Motion JPEG de-
coder application. This application targets various hardware architectures, in-
volving Xtensa processor [Xte], ARM processor [ARM] or Atmel DSP [mVD].

The Motion JPEG Decoder application represents an image processing mul-
timedia application. In this chapter, the baseline Motion-JPEG decoder is
used as target application example, which represents the basic JPEG decod-
ing process supported by all the JPEG decoders [Wal91]. The JPEG decoder
performs the decompression of an encoded JPEG bitstream (01011. . . ) and
renders the decoded bitmap images on a screen. The JPEG compression algo-
rithm operates on blocks of 8 × 8 pixels of the image. The main functions of
the Motion JPEG application, as illustrated in Fig. 4.11 are:

Variable Length Decoding (VLD), which transforms the input binary
sequence into a symbol sequence using the Huffman tables

Differential Pulse Code Demodulation (DPCD) applied upon the DC co-
efficient

Run Length Decoding (RLD) applied upon the 63 AC coefficients

Zigzag Scan, which reconstructs the matrix of the DCT coefficients from
the DC and 63 AC elements

Inverse Quantization (IQ), which uses the quantification tables

Figure 4.11. Motion JPEG decoder.



88 HARDWARE-DEPENDENT SOFTWARE

Inverse Discrete Cosine Transformation (IDCT), which transforms the
DCT coefficients from frequency domain to spatial domain.

The experimentation is carried out by using three types of processor cores.
The first processor core represents the Xtensa processor [Xte]. This processor
works at 350 MHz frequency and has 8 Kbytes data cache and 8 Kbytes in-
struction cache memories. The second core belongs to ARM9 processors fam-
ily and represents the ARM926EJ-S type of core [mVD]. This runs at 200 MHz
frequency and is equipped with 16 KBytes data cache and 16 KBytes instruc-
tion cache memories. The third processor represents the magicV VLIW DSP
Atmel processor, running at 100 MHz [Wal91].

The Motion JPEG application aims to be executed on these different types
of processors. A small OS is used to start the execution of the application
and to initialize diverse hardware devices, i.e. I/O devices. The execution and
portability of the application software is performed by changing the HAL com-
ponent of the software stack. The processor specific application code optimiza-
tion techniques are not considered during the experimentation, in order to pre-
serve the application code hardware independent. Due to the use of the HAL
APIs, the application code and OS remains unmodified, thus enabling software
portability. The OS makes use of the same HAL APIs for all the hardware ar-
chitectures. We illustrate three examples of HAL APIs that are identical for
the different processors. These HAL APIs are the following:

set context() HAL API, which initializes the task that will be executed
by the processor, more precisely the stack

vector enable() HAL API, which enables the interrupts

vector disable() HAL API, which disables the interrupts

Figures 4.12, 4.13 and 4.14 illustrate the diverse implementations of the
same HAL APIs targeting the Xtensa, ARM9, respectively DSP processor.
The implementation for the ARM9 processor mainly uses assembly language.
The implementations of the HAL APIs for the Xtensa processor and the DSP
are based on other APIs, provided by the processors vendors.

After the compilation of the software stack, composed of the Motion JPEG
decoder application, a tiny OS and the HAL specific to each CPU, the resulted
memory requirements are as follows: 3072 bytes data memory and 4802 bytes
of code size for the program memory in case of the Xtensa processor, 3056
bytes data memory and 5092 bytes program memory for the ARM9 processor,
respectively 739 bytes data memory and 2806 bytes program memory for the
DSP. Table 4.1 summarizes these values and also the code and data size of the
HAL for the three different types of processors.



Hardware Abstraction Layer 89

Figure 4.12. Implementation of set context() HAL API for different processors.

Figure 4.13. Implementation of the vector enable() HAL API for different processors.



90 HARDWARE-DEPENDENT SOFTWARE

Figure 4.14. Implementation of the vector disable() HAL API for different processors.

Processor Application HAL

Data [Bytes] Code [Bytes] Data [Bytes] Code [Bytes]
Xtensa 3072 4802 112 1185
ARM9 3056 5092 14 1248
DSP 739 2806 52 296

Table 4.1. Code and data size.

Figure 4.15 illustrates the total execution cycles measured when executing
the whole Motion-JPEG application on the different processors using ISS. In
all the cases, the input bitstream represents a 10 frames image encoded using
QVGA format, and stored in the local memory of the processor. As shown
in Fig. 4.15, the number of execution cycles required to decode the 10 frames
image is approximately 137 Mega cycles on the Xtensa processor, 71 Mega
cycles on the ARM9 processor and 164 Mega cycles on the DSP. Table 4.2
indicates the characteristics of each of these processors, as specified by the IP
vendors, in terms of speed (clock frequency), surface and corresponding power
consumption. The processors are configured as shown in Table 4.2.

The performance difference between the processors is explained by the avail-
ability of the additional cache memories and improvement in number of cycles
required for the load/store operations. The real time requirement of 25 frames
decoded per second implies an execution per frame within 8 Mega cycles on
a CPU running at 200 MHz, 4 Mega cycles on a CPU running at 100 MHz



Hardware Abstraction Layer 91

Figure 4.15. Execution clock cycles of Motion JPEG decoder QVGA.

Processor Frequency Surface Power Consumption
Xtensa (core) 350 MHz 0.26 mm2 26.25 mW
ARM9 200 MHz 2.78 mm2 96 mW
DSP 100 MHz 13.2 mm2 229.2 mW

Table 4.2. Frequency, surface and power consumption.

and 14 Mega cycles on a CPU running at 350 MHz. Thus, the Motion JPEG
decoder can be executed in real-time by using the ARM9 processor and the
Xtensa configurable processor. The surface of the hardware in case of the
ARM9 processor is 2.78 mm2 with a power consumption of 96 mW. The ex-
ecution on the DSP can be improved by using DSP specific optimization fea-
tures in order to speed up the critical computing part of the application. But the
processor specific application optimization reduces software portability. The
DSP is the biggest power consumer among the three targeted processors, and
it implies a surface of 13.2 mm2. The Xtensa core is the optimal processor in
terms of surface and consumption, but it is not equipped with any extra hard-
ware accelerators in the configuration used during the experimentation.

4.8 Conclusions

In this chapter, we presented a layered organization of the software stack
into application tasks code, operating system and communication libraries, and
HAL. The structured representation of the software stack separates the hard-
ware independent and hardware dependent software layers, thus allowing easy
software portability. The different software components are generated and vali-
dated gradually by using specific software development platforms. Abstracting
and simulating the HAL through HAL APIs allows software reuse and flexibil-



92 HARDWARE-DEPENDENT SOFTWARE

ity. To illustrate the effectiveness of the proposed methodology, we generated
the software stack for the Motion JPEG application targeting different hard-
ware architectures. The execution of the Motion JPEG on multiple processors
(Xtensa, ARM9, DSP) was possible due to the clear separation between the
hardware independent software code (application tasks code, OS and commu-
nication) and the hardware dependent HAL.

References

[A386] A386. a386.nocrew.org

[ARM] ARM. www.arm.com

[BYJ04] A. Bouchima, S. Yoo, and A.A. Jerraya. Fast and accu-
rate timed execution of high level embedded software using
HW/SW interface simulation model. In Proceedings of ASP–
DAC 2004, January 2004, Yokohama, Japan, 2004.

[CYC+05] Y. Cho, S. Yoo, K. Choi, N.E. Zergainoh, and A.A. Jerraya.
Scheduler implementation in MPSoC design. In Proceedings
of ASP–DAC 2005, 18–21 January 2005, Shanghai, China,
pages 151–156, 2005.

[eCos] eCos. www.ecos.sourceware.org/docs-1.3.1/
ref/ecos-ref.b.html

[EPTP07] C. Erbes, A.D. Pimentel, M. Thompson, and S. Polstra.
A framework for system-level modeling and simulation of em-
bedded systems architecture. EURASIP Journal on Embedded
Systems, Volume 2007, Article ID 82123, June 2007.

[FRTOS] FreeRTOS. www.freertos.org

[GLMS02] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic, Dordrecht, 2002.

[GPY+07] X. Guerin, K. Popovici, W. Youssef, F. Rousseau, and A. Jer-
raya. Flexible application software generation for hetero-
geneous multi-processor system-on-chip. In Proceedings of
COMPSAC 2007, 23–27 July 2007, Beijing, China, 2007.

[HAL] HAL. www.altera.com/literature/hb/nios2/
n2sw nii5v2 02.pdf

[Han06 +] S.I. Han et al. Buffer memory optimization for video codec
application modeled in simulink. In Proceedings of DAC 2006,
San Francisco, USA, pages 689–694. IEEE Press, New York,
2006.

[HYL+06] S. Hong, S. Yoo, S. Lee, S. Lee, H.J. Nam, B.S. Yoo, J. Hwang,
D. Song, J. Kim, J. Kim, H. Jin, K. Choi, J.T. Kong, and S. Eo.

http://a386.nocrew.org
http://www.arm.com
http://www.ecos.sourceware.org/docs-1.3.1/ref/ecos-ref.b.html
http://www.ecos.sourceware.org/docs-1.3.1/ref/ecos-ref.b.html
http://www.freertos.org
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf


Hardware Abstraction Layer 93

Creation and utilization of a virtual platform for embedded
software optimization: An industrial case study. In Proceed-
ings of CODES+ISSS 2006, Seoul, Korea, 2006.

[JBP06] A. Jerraya, A. Bouchhima, and F. Petrot. Programming models
and HW–SW interfaces abstraction for multi-processor SoC.
In Proceedings of DAC 2006, San Francisco, USA, pages 280–
285. IEEE Press, New York, 2006.

[JW05] A. Jerraya and W. Wolf. Hardware–software interface code-
sign for embedded systems. Computer, 38(2):63–69, 2005.

[KSW+00] E.A. de Kock, W.J.M. Smits, P. van der Wolf, J.Y. Brunel,
W.M. Kruijtzer, P. Lieverse, K.A. Vissers, and G. Essink.
YAPI: application modeling for signal processing systems. In
Proceedings of DAC 2000. IEEE Press, New York, 2000.

[LOS] LynxOS. www.lynuxworks.com/rtos

[Math] The MathWorks. www.mathworks.com

[MPI] MPI. www-unix.mcs.anl.gov/mpi

[mVD] magicV VLIW DSP. www.atmel.com

[newl] newlib. sourceware.org/newlib

[NS] NicheStack. www.iniche.com/nichestack.php

[NYBJ02] G. Nicolescu, S. Yoo, A. Bouchhima, and A.A. Jerraya. Vali-
dation in a component-based design flow for multicore SoCs.
In Proceedings of ISSS’02, 2–4 October 2002, Kyoto, Japan,
2002.

[PGR+07] K. Popovici, X. Guerin, F. Rousseau, P.S. Paolucci, and A. Jer-
raya. Efficient software development platforms for multimedia
applications at different abstraction levels. In Proceedings of
IEEE RSP 2007, May 2007, Porto Alegre, Brazil, pages 113–
122, 2007.

[PJ07] K. Popovici and A. Jerraya. Simulink based hardware-
software codesign flow for heterogeneous MPSoC. In Pro-
ceedings of SCSC 2007, 15–18 July 2007, San Diego, USA,
pages 497–504, 2007.

[Pos03] F. Pospiech. Hardware dependent software (HdS). Multi-
processor SoC aspects—An introduction. In Proceedings of
MPSoC 2003, 7–11 July 2003, Chamonix, France, 2003.

[Row94] J.A. Rowson. Hardware/software cosimulation. In Proceed-
ings of DAC 1994, San Diego, USA, pages 439–440. IEEE
Press, New York, 1994.

[RTL] RTLinux. www.fsmlabs.com

http://www.lynuxworks.com/rtos
http://www.mathworks.com
http://www-unix.mcs.anl.gov/mpi
http://www.atmel.com
http://sourceware.org/newlib
http://www.iniche.com/nichestack.php
http://www.fsmlabs.com


94 HARDWARE-DEPENDENT SOFTWARE

[SG00] L. Semeria and A. Ghosh. Methodology for hardware/software
co-verification in C/C++. In Proceedings of ASPDAC 2000,
Yokohama, Japan, pages 405–408, 2000.

[Tan95] Andrew S. Tanenbaum. Distributed Operating Systems. Pren-
tice Hall, Englewood Cliffs, 1995.

[Tur05] J. Turley. Survey says: Software tools more important than
chips. Embedded Systems Design Journal, 2005.

[TW97] Andrew S. Tanenbaum and Albert S. Woodhull. Operating
Systems: Design and Implementation. Prentice Hall, Engle-
wood Cliffs, 1997.

[uIT] uITRON4.0. www.sakamura-lab.org/tron/itron

[VBL05] N. Ventroux, F. Blanc, and D. Lavenier. A low complex
scheduling algorithm for multi-processor system-on-chip. In
Proceedings of Parallel and Distributed Computing and Net-
works, 15–17 February 2005, Innsbruck, Austria, 2005.

[vdW04+] P. van der Wolf et al. Design and programming of embedded
multiprocessors: an interface-centric approach. In Proceedings
of CODES+ISSS 2004, Stockholm, Sweden, pages 206–217,
2004.

[VxW] VxWorks. windriver.com/vxworks

[Wal91] G.K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, Special Issue on Digital Multi-
media Systems, 34(4):30–44, 1991.

[WCE] Windows CE.
www.microsoft.com/windows/embedded

[Wol06] W. Wolf. High Performance Embedded Computing. Morgan
Kaufmann, San Mateo, 2006.

[Xte] Xtensa. www.tensilica.com

[YJ03] S. Yoo and A. Jerraya. Introduction to hardware abstraction
layers for SoC. In Proceedings of DATE 2003, 3–7 March
2003, Munich, Germany, pages 336–337, 2003.

[YYS+04] M.W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and A. Jerraya.
Debugging HW/SW interface for MPSoC: Video encoder sys-
tem design case study. In Proceedings of DAC 2004, 7–11
June 2004, San Diego, USA, pages 908–913. IEEE Press, New
York, 2004.

http://www.sakamura-lab.org/tron/itron
http://windriver.com/vxworks
http://www.microsoft.com/windows/embedded
http://www.tensilica.com


Chapter 5

HW/SW INTERFACE

Implementation and Modeling

Wolfgang Ecker, Volkan Esen, Thomas Steininger and Michael Velten

Abstract This chapter addresses HW/SW interface implementation and modeling. As
introduction, basic concepts regarding HW/SW interfaces on both HW and SW
side are presented in detail. The focus is on several aspects of register and bit
field read/write access, address mismatch, synchronization, and data alignment.
The HW micro-architecture is outlined in block diagrams, the SW code is listed
in C-code snippets. As new contributions, data flow abstraction for HW/SW
models and consistently derived RTL models, TLM models, and C code by using
a template approach are presented.

Keywords: Address Offset, Base Address, Bit Field, C, Low/High Level Driver, Endian-
ness, Interrupt, Register, SystemC, Template, Volatile, XML

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



96 HARDWARE-DEPENDENT SOFTWARE

5.1 Introduction

HW/SW interfaces at the lowest level deal primarily with the transfer of
data from one storage element to another. These storage elements are either
registers in the CPU, registers in the HW peripheral to be accessed, or cells
in a memory array. By execution of data move operations—primarily by a
processor but also by specific blocks as DMA (direct memory access) units—
the data is transferred from one address to another. These data move operations
are either coded as assembler instructions or compiled from a higher level pro-
gramming language. This seemingly simple mechanism gains high complexity
in today’s embedded systems:

Thousands, even tens of thousands of registers can be found in complex
SoCs. Flat or hierarchical bus systems, potentially each with an own
protocol, are used to access all these registers from one or more CPUs.
Alignment of data is only one issue that has to be considered in this
context.

Data transfer can be initiated by polling. Alternatively, an interrupt can
be executed by a CPU or a DMA (direct memory access) device. It
requires careful implementation to avoid side effects and to fulfill all
time constraints of all registers to be accessed.

The number of different kinds of registers invented by designers is al-
most unlimited. The simple read/write of a cell can be associated with
a variety of additional functionality that either constrains the read/write
access or causes side effects. The driving force here is either the limita-
tion of available addresses or performance optimization of the HW/SW
interface. To give two examples: A register is cleared after it has been
read in order to show that data has been consumed already or a trigger
impulse is generated and passed to the hardware core of a component in
order to request the execution of some algorithm.

At the software side also a simple mechanism is executed: Data is moved from
one object or address to another object or address. Complexity arises here from
the wide range of interpretation of the values, the effects hidden behind these
data transfers, and the interaction of the data transfer with the control flow of
the rest of the software. Especially the interrupt signaling mechanism shall
be mentioned here, which is another HW/SW interface to signal some request
from a hardware component to the software.

In order to cope with the complexities of the HW/SW interface, formal mod-
els and specifications have been developed uniquely describing the structure
and semantics of the interface. Based on the formal description, parts of the
hardware side of the interface and the software side of the interface can be
generated.



HW/SW Interface 97

In this chapter, we discuss first implementation issues of the HW/SW in-
terface from the ground up. A simplified serial interface peripheral device, in
the following referred to as SIF, is used throughout the chapter as an exam-
ple for the various alternatives and options of the HW/SW interface. Though
being simplified, this serial interface device contains all important use cases
related to a general industrial HW/SW interface. The serial interface is con-
tinuously extended and the final version is described in a data sheet like—data
book oriented—style (see Sect. 5.5).

Based on the serial interface device, various aspects of the HW/SW inter-
faces are discussed. They include reading and writing complete data words
to registers, access to single bits, synchronization between HW and SW, and
register address mismatch.

Finally, modeling aspects including models and meta models are discussed.
An outline of further aspects concludes the chapter.

5.2 Reading and Writing Data Words

As a first step towards the HW/SW interface, full data word read and write is
introduced. For that a SIFv1 is introduced having only the TXD REG and RXD
REG. Afterwards, the flags data transmitted and data received are
experimentally implemented, each flag as an own register.

5.2.1 General Approach

Today’s most often used HW/SW interface is a so called memory mapped
HW/SW interface. Here, memory elements of hardware devices are mapped
into the address space of the CPU executing the software. An address decoder
takes (mostly the upper) bits of the address and converts them to select signals
of the memory and the peripherals to be accessed. Potentially, additional ad-
dress signals are passed to the memory and the hardware devices in order to
select internal memory elements. An example is depicted in Fig. 5.1.

When the select signal is active, the memory elements are read when the
read signal is active, or written when the write signal is active. In modern
bus systems, address, data, enable, and read/write signals may be applied syn-
chronously in different time windows in order to enable, for instance, pipelined
access. They might also be encoded differently, for instance a read-not-write
signal R Wbar may replace the read RD and write WR signals in presence of a
bus enable signal.

When the CPU executes a read or write operation, the signal values are set
in an appropriate way in order to move one word from the memory cell or a
peripheral register to the CPU register, and vice versa. This read or write CPU
operation may be part of instructions that move data from and to variables of a
higher level programming language. In this way, a memory-mapped HW/SW



98 HARDWARE-DEPENDENT SOFTWARE

Figure 5.1. Simplified signal level connection of the SIF.

interface allows programing of a peripheral register interface using a higher
level language.

As an alternative to the memory mapped HW/SW interface option, special
instructions and hardware infrastructure may be provided as well. This option
is often used for 8-bit CPUs, as Zilog’s Z80 (see [Wik]), since the memory
space is limited and shall be reserved for data memory / program memory pur-
pose (i.e. no registers and no memory mapped I/O). As a drawback, this kind of
interface has no correspondence in higher level languages, so that only assem-
bler instructions can be used to transfer values over the interface. Higher level
languages require some assembler code in-lining to support register access in
this case.

In the future, also register mapped HW/SW interfaces may be introduced
as a part of an I/O co-processor strategy. A first step in this direction is imple-
mented in MIT’s raw architecture (see [MIT]). Here, data can be transferred
from one CPU to another by moving data to and from specific registers. Also,
this kind of interface can only be programmed in assembler or with inlined as-
sembler, since selected register access is not possible in higher level languages.



HW/SW Interface 99

In the future, concurrent descriptions of the HW/SW interface may arise that
can be used to automatically compile code for such concepts as well.

In the examples, a 32-bit CPU is assumed to be used supporting both 32 bit
address size and 32 bit data size. The CPU is able to read and write bytes as
well.

5.2.2 Full CPU Word Registers

As a first step, we introduce in the following two registers of the serial in-
terface device—one can be written and one can be read. The memory space
allocated by this first version is shown in Table 5.1.

To transmit data via the serial channel, this data must first be written to the
TXD register. Data received from the serial channel can be read from the RXD
register. This register has an offset of 0 to the base address of the peripheral as
well.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32

Table 5.1. SIFv1 register overview.

Shown in Fig. 5.1 is an address decoder that computes the enable signals for
all memory and peripheral devices communicating with the CPU. In the serial
interface example, the address decoder takes the upper 8 bits of the address to
compute 4 out of 256 possible enable signals. The byte address support of the
CPU requires additional 2 address bits. So, each enabled device has available
32−8−2 = 22 addresses for internal registers or memory space. So, a 16 MB
memory (4 · 220 addresses of 4 bytes each), for instance, can be enabled with
one of these signals.

Assuming for the rest of this chapter, that the serial interface enable is active,
when the upper 8 address bits take the value 0xFF, the base address of the
serial interface is 0xFF000000. The memory address space reserved for the
serial interface now ranges from this base address 0xFF000000 to address
0xFFFFFFFF. In turn, the serial interface only provides memory cells for the
base address 0xFF000000 and leaves the other addresses unused.

Accessing these registers from a C program can be done generally in two
ways, object-based or function-based. In the first way, types and objects are
declared and initialized to read and write the registers via those objects. In the
second way, a function layer is introduced to allow access to the registers.

In the object-based alternative, first a pointer is declared for each register as
shown in Listing 5.1.

The volatile-keyword in the listing gives the compiler the hint that the
object may change without CPU interaction. So, an access to that object is not



100 HARDWARE-DEPENDENT SOFTWARE

# i n c l u d e < s t d i n t . h >

v o l a t i l e u i n t 3 2 _ t ∗ r x d _ r e g _ p t r , ∗ t x d _ r e g _ p t r ;

Listing 5.1. Type and object declaration for direct register access.

removed by the optimizer of the C compiler. The type uint32 t is declared
in stdint.h and specifies an unsigned 32 bit type independent from the
target CPU.

The pointers are then initialized with the base address of the serial interface
as shown in Listing 5.2. The distinction between the rxd-register and the txd-
register is done in hardware via the read and write signal. Options herefore are
discussed later in this chapter.

r x d _ r e g _ p t r = ( v o l a t i l e u i n t 3 2 _ t ∗ ) 0 xFF000000 ;
t x d _ r e g _ p t r = ( v o l a t i l e u i n t 3 2 _ t ∗ ) 0 xFF000000 ;

Listing 5.2. Pointer initialization for direct object access.

The base address in these functions can be replaced by symbolic names—
either constants or macros—, which will be shown in Listing 5.3. By doing so,
the addresses can also be set via compile options.

# d e f i n e SIF_BASE_ADDRESS 0 xFF000000

r x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) SIF_BASE_ADDRESS ;
t x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) SIF_BASE_ADDRESS ;

Listing 5.3. Pointer initialization for direct object access with symbolic values.

To preserve type consistency, the integer literal is cast to the register pointer
type. Finally, transmitted data can then be accessed by dereferencing the point-
ers as shown in Listing 5.4. The type of the variable rx is assumed to be
uint32 t. The integer literal is cast to that value.

/∗ r e a d i n g a v a l u e from s e r i a l s t r eam ∗ /
rx = ∗ r x d _ r e g _ p t r ;

/∗ w r i t i n g a v a l u e t o t h e s e r i a l s t r eam ∗ /
∗ t x d _ r e g _ p t r = ( u i n t 3 2 _ t ) 0 x12345678 ;

Listing 5.4. Accessing the SIF register.

In the function-based alternative, first types and access functions are de-
clared, as shown in Listing 5.5. In this simple case, these functions contain



HW/SW Interface 101

exactly the statements of the object-based access alternative. These functions
can then be called—which is not shown in the code snippet—to transmit data
via the SIFv1.

void t r a n s m i t ( u i n t 3 2 _ t d a t a ) {
∗ (0 xFF000000 ) = d a t a ;

}

u i n t 3 2 _ t r e c e i v e ( ) {
re turn ( u i n t 3 2 _ t ) ∗ (0 xFF000000 )

}

Listing 5.5. Type and function declaration for data transmission.

Two further coding options are in use for accessing registers. The first one
uses macros instead of functions. This is more efficient, if the compiler does
not support function inlining optimizations. The other option uses classes,
class variables, and class methods to access the peripheral registers. Here, the
access to the registers of the serial peripheral device can be controlled more
efficiently (e.g., via private and public access rights, or via additional checks),
but the C++ compiler is mostly not able to produce as efficient a code as the
C-compiler, since the overhead caused by the class-based approach is often not
eliminated.

5.2.3 Registers Storing One Bit Each:
A First Approach to Bit Fields

It is quite obvious that a two register interface so far only works correctly if
the hardware read/write protocol blocks the read and write transactions until
they have been successfully finished. This means in the serial interface device
case, the read is blocked until a piece of data is successfully received from the
serial stream, and a write is blocked until a piece of data has been correctly
transmitted to the serial stream. This also blocks the CPU and prevents it of
from performing other activities. This is no ideal solution!

To avoid blocking the execution of other parts of SW, the SW must be able
to check if the serial interface can transmit further data, or if the serial interface
has received new data that can be read. Two additional registers, each storing
only zero or one, can offer this information to the software. The device is now
called SIFv2.

The interface of the SIFv1 extends as shown in Fig. 5.2 and Table 5.2.
Two additional, readable registers are introduced that also require two addi-

tional address lines for distinction. A multiplexer is used to internally select the
appropriate register value. For bus accesses, the SIFv2 now has one writable
register and three readable registers. The ready-for-transmission register has
an offset of 1, and the data-available register has an offset of 2.



102 HARDWARE-DEPENDENT SOFTWARE

Figure 5.2. Simplified signal level register access.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF TRANSMITTED R 1 32 32
SIF RECEIVED R 2 32 32

Table 5.2. SIFv2 register overview.

For this purpose, the SW interface for readable registers must be extended
as well. As an initial solution, two more register pointers are declared and
initialized, as shown in Listing 5.6.

The offset of the new registers is hard-coded in each pointer initialization
and added here to the base address. Since the CPU supports byte access, the
increment between two registers is 4.

The read access to the new status registers is similar to the received data as
shown in Listing 5.4.

Listing 5.7 shows a more elegant and more frequently used option. Here,
a C struct is used to describe all registers. Since each of the entries in the
C struct has the size of the CPU word, the address of each entry automatically
increases by 4. The explicit increment of addresses, as used in Listing 5.6, is
not necessary here.



HW/SW Interface 103

v o l a t i l e u i n t 3 2 _ t ∗ r x d _ r e g _ p t r ,
∗ t x d _ r e g _ p t r ,
∗ d a t a _ t r a n s m i t t e d _ p t r ,
∗ d a t a _ r e c e i v e d _ p t r ;

/∗ I n i t i a l i z e r e f e r e n c e s t o r e a d a b l e r e g i s t e r s ∗ /
r x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000000 ;
d a t a _ t r a n s m i t t e d _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000004 ;
d a t a _ r e c e i v e d _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000008 ;

/∗ I n i t i a l i z e r e f e r e n c e s t o w r i t a b l e r e g i s t e r s ∗ /
t x d _ r e g _ p t r = ( u i n t 3 2 _ t ∗ ) 0 xFF000000 ;

Listing 5.6. Type and object declaration for additional flags.

v o l a t i l e u i n t 3 2 _ t ∗ t x d _ r e g _ p t r ;

s t r u c t r _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d ;

} ∗ r _ r e g _ p t r ;

Listing 5.7. Type and pointer declaration for data transmission.

In order to access the registers, the dereferencing mechanism of C is used,
as shown in Listing 5.8. Since a pointer is used to refer to the registers, the
dereferencing operator −> is used.

/∗ r e a d i n g a v a l u e from s e r i a l s t r eam ∗ /
rx = r _ r e g _ p t r −> r x d _ r e g ;

/∗ read f l a g s ∗ /
r e a d y _ f o r _ t r a n s m i s s i o n = r _ r e g _ p t r −> d a t a _ t r a n s m i t t e d ;
d a t a _ a v a i l a b l e = r _ r e g _ p t r −> d a t a _ r e c e i v e d ;

Listing 5.8. Object access to flag registers.

u i n t 3 2 _ t i s _ r e a d y _ f o r _ t r a n s m i s s i o n ( ) {
re turn ( u i n t 3 2 _ t ) ∗ (0 xFF000000 ) [ 1 ] ;

}

u i n t 3 2 _ t i s _ d a t a _ r e a d y ( ) {
re turn ( u i n t 3 2 _ t ) ∗ (0 xFF000000 ) [ 2 ] ;

}

Listing 5.9. Function access to flag registers.



104 HARDWARE-DEPENDENT SOFTWARE

The function-based approach—to show an alternative access in Listing 5.9—
makes use of the C index operator. Beginning with the base address of the
serial interface peripheral, the rxd reg and the transmission flags can be ac-
cessed by indices 0, 1, and 2, respectively. The compiler converts this to an
address increment of the size of referenced elements in byte. In our case, the
size is 32 bits or 4 bytes. So, the index of the transmission flags are addressed
under 0xFF000004 or 0xFF000008.

Also a mix of both approaches—object-based register access and method-
based register access—is possible. Doing so, the data structures of the object-
based access are used by the functions to implement the access. As benefit
over pure object-based access, the functions provide an additional layer, which
hides future HW changes from higher level software. Also additional sanity
checks are possible to be embedded here.

Registers holding transmission status and other things often use just one
bit, or a few bits. This is waste of address space but potentially acceptable
if a sufficient number of address lines, that means a sufficiently large address
space, is available. However, peripheral register accesses cause performance
penalties. Merging several of those bits efficiently in one register can reduce
the number of register accesses (e.g. for peripheral configuration, or check)
and thus improve performance.

Further on, it is quite error prone that readable and writable registers have
a different address size and information located at different addresses. It is
more clear and safe to have one linear address space only, which in turn would
allow having one C struct specifying all registers—the readable registers, the
writeable registers and the read/writable registers—at the SW side. Both of
these issues are discussed in the next section in more detail.

5.3 Bit Fields

The need for bit fields sharing one register has been introduced in the previ-
ous section. Now, different aspects of the bit field based interface are discussed.
It is shown that in this application registers lose their role as memory element
and take the role of a shell accessed under a specific address. In other words,
registers take the role of an alias.

Bit fields—now representing the memory elements—are associated with
that shell, which specifies their word access from the CPU. Internal bit offsets,
as shown for the serial interface in Table 5.9, are used for bit addressing in
the data word. Besides the data registers, txd-register and rxd-register, and the
bit fields data transmitted and data received also the bit fields con-
trolling the parity bit (tx enable parity, tx odd parity, rx enable
parity, and rx odd parity) are introduced.



HW/SW Interface 105

5.3.1 Introducing Bit Fields

In order to introduce bit fields, a third version of the serial interface SIFv3,
is introduced. The registers are shown in Table 5.3.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF FLAG REG R 1 32 32

Table 5.3. SIFv3 register overview.

Readable Bit Fields Instead of having two separate registers storing the two
flags data transmitted and data received, one common flag reg-
ister is used. This flag register stores the data transmitted flag at bit
number 0, and the data received flag at bit number 1.

All other bits with numbers from 2 to 31 are unused. Since no hardware
resources need to be spent to store the unused bits, the bit fields (and not the
registers) specify the hardware size and properties of the required flipflops or
registers. Reading from those bits cannot be avoided, since the CPU always
reads a full 32 bit word. Depending on the specification, an undefined value or
a constant, for instance 0 as used in the example, is returned for each of those
bits. The updated diagram of the serial interface is shown in Fig. 5.3.

Figure 5.3. Registers with readable bit fields.

To access these flags, so-called bit fields in C are used. First, as shown in
Listing 5.10, a C struct specifies the flags and unused bits of one register. Next,



106 HARDWARE-DEPENDENT SOFTWARE

a struct is defined that specifies the readable registers: the rxd reg data
register and the flag reg flag register.

v o l a t i l e u i n t 3 2 _ t ∗ t x d _ r e g _ p t r ;

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
c o n s t u i n t 3 2 _ t unused : 3 0 ;

}

s t r u c t r _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;

} ∗ r _ r e g _ p t r ;

Listing 5.10. Type and object declaration for bit field based register access.

The bit fields are then accessed with the dereferencing operator −>, as
shown in Listing 5.11. The bit fields holding the flags are selected as struct
elements in the corresponding register using the dot operator. The way of
reading a full data word from a register remains unchanged.

/∗ r e a d i n g a v a l u e from s e r i a l s t r eam ∗ /
rx = r _ r e g _ p t r −> r x d _ r e g ;

/∗ read f l a g s ∗ /
r e a d y _ f o r _ t r a n s m i s s i o n = r _ r e g _ p t r −> f l a g _ r e g . d a t a _ t r a n s m i t t e d

;
d a t a _ a v a i l a b l e = r _ r e g _ p t r −> f l a g _ r e g . d a t a _ r e c e i v e d ;

Listing 5.11. Register flag access via C bit fields.

A function-based coding option is shown in Listing 5.12. Instead of using
a pre-initialized pointer, which would have been possible here as well, hard-
coded addresses are used. The data register is read without offset, the flag reg-
ister is read via base address and index offset 1. The compiler, knowing the ad-
dress scheme of the CPU, translates this to the address 0xFF000004. In case
of bits not residing at bit position 0, the bit fields themselves are then extracted
via masking the unused bits by performing a bitwise and operation with a cor-
responding bit mask. Potentially—as needed for the data ready flag—
the bits have to be right aligned upfront by using the C shift right opera-
tion.

Writable Bit Fields In order to write configuration information to the serial
interface, an additional writable register with bit fields is introduced as SIFv4
in Fig. 5.4 and Table 5.4.



HW/SW Interface 107

u i n t 3 2 _ t i s _ r e a d y _ f o r _ t r a n s m i s s i o n ( ) {
re turn ( u i n t 3 2 _ t ) (∗ ( 0 xFF000000 ) [ 1 ] ) & 0 x00000001 ;

}

u i n t 3 2 _ t i s _ d a t a _ r e a d y ( ) {
re turn ( u i n t 3 2 _ t ) ( ( ∗ ( 0 xFF000000 ) [ 1 ] ) >> 1) & 0 x00000001 ;

}

Listing 5.12. Register flag access via C shift and logical operators.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF FLAG REG R 1 32 32
SIF CFG REG W 1 32 32

Table 5.4. SIFv4 register overview.

Figure 5.4. Registers with writable bit fields.

A decoder is inserted here in order to decode address values to register select
signals.

None of these bit fields can be written individually, so writing to one bit
field automatically modifies the other bit fields. However, the configuration
register—and so the bit fields—cannot be read, since reading address 1 gets
the value of the flag register.

For this purpose, as a first solution, a shadow variable is introduced that
holds the last written value to the configuration register. Setting or clearing



108 HARDWARE-DEPENDENT SOFTWARE

a bit field is then first performed on the shadow variable, and afterwards the
shadow variable is written to the register.

s t r u c t c o n f i _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t : 2 8 ;

}

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.13. Type and object declaration for writing configuration bit fields.

/∗ shadow v a r i a b l e f o r c o n f i g u r a t i o n r e g i s t e r w i t h b i t f i e l d s ∗ /
s t a t i c c o n f i g _ r e g _ t c o n f i g _ r e g _ s h a d o w ;

/∗ w r i t e f l a g s v i a shadow v a r i a b l e ∗ /
c o n f i g _ r e g _ s h a d o w . t x _ e n a b l e _ p a r i t y = 1 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

/∗ w r i t i n g a v a l u e t o s e r i a l s t r eam ∗ /
w _ r e g _ p t r −> t x d _ r e g = 0 x12345678 ;

Listing 5.14. Flag configuration via C bit fields.

As shown in Listing 5.13, structs for written bit fields are declared in the
same way as for read bit fields. The use of the above mentioned shadow vari-
able is shown in Listing 5.14. Since setting a bit field with one statement is in
this case no longer possible, the use of functions for setting and clearing the
bits, as shown in Listing 5.15, is the preferable solution. Besides encapsulation
of the shadow register handling, additional checks may be included as well.

Listing 5.15 shows several alternatives how access functions for registers
and bit fields can be built. The function write cfg tx enable parity
sets the bit fields via bit wise or operation. As an alternative, the C bit fields
and the structs defined for object based register access can be used as shown
in function write cfg tx odd parity. Without them, a bit wise and
operation with 0xFFFFFFFE would have been used (bit masking of the least
significant bit). Finally, the function write cfg tx odd parity com-
bines two flag accesses on the shadow variable before writing it to the registers.
This improves performance, since the shadow variable needs to be written to



HW/SW Interface 109

/∗ shadow v a r i a b l e f o r c o n f i g u r a t i o n r e g i s t e r w i t h b i t f i e l d s ∗ /
s t a t i c c o n f i g _ r e g _ t c o n f i g _ r e g _ s h a d o w ;

void w r i t e _ c f g _ t x _ e n a b l e _ p a r i t y ( ) {
c o n f i g _ r e g _ s h a d o w | = 0 x00000001 ;
∗ (0 xFF000000 ) [ 1 ] = c o n f i g _ r e g _ s h a d o w ;

}

void w r i t e _ c f g _ t x _ o d d _ p a r i t y ( ) {
c o n f i g _ r e g _ s h a d o w . t x _ o d d _ p a r i t y = 1 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

}

void s e t _ r x _ p a r i t y ( boo l o d d _ p a r i t y ) {
c o n f i g _ r e g _ s h a d o w . r x _ o d d _ p a r i t y = o d d _ p a r i t y ;
c o n f i g _ r e g _ s h a d o w . r x _ e n a b l e _ p a r i t y = 1 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

}

void c l e a r _ r x _ p a r i t y ( ) {
c o n f i g _ r e g _ s h a d o w . r x _ e n a b l e _ p a r i t y = 0 ;
w _ r e g _ p t r −> c o n f i g _ r e g = c o n f i g _ r e g _ s h a d o w ;

}

Listing 5.15. Register flag access via C shift and logical operators.

the register only once, but semantic information about the content of the bit
fields is required in this case.

Mixed Readable and Writable Bit Fields Conceptually, redundancy as ex-
istent in the configuration register and its shadow variable is a source of bugs.
Furthermore, shadowing provides no appropriate solution if a bit field is also
modified by peripheral internal actions. Hence, in a new version SIFv5, the
writable bit fields shall be readable as well.

Therefore, the readable bit fields in the flag register are extended by the
writable bit fields as shown in Listing 5.16 and Table 5.5. In order to make
them read/writable, the write must be triggered by CPU write to the appropri-
ate address, and the value must be multiplexed to the output by a CPU read.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF FLAG REG RW 1 32 32

Table 5.5. SIFv5 register overview.



110 HARDWARE-DEPENDENT SOFTWARE

s t r u c t f l a g _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t : 2 6 ;

}

s t r u c t r _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e f l a g _ r e g _ t f l a g _ r e g ;

} ∗ r _ r e g _ p t r ;

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.16. Readable and writable register with flags.

Having this structure available, the flags can be changed consistently, as
shown in Listing 5.17.

In function write cfg tx enable parity, first the current values of
the flags are read from the status register, then aligned, and next assigned to the
temporary shadow variable config reg shadow. Afterwards, the flag is set
in the temporary variable. Finally, the updated flags stored in the temporary
variable are assigned to the bit fields in the register. The temporary variable
config reg tmp is not necessary, the flag update might have been done in
one expression alone.

void w r i t e _ c f g _ t x _ e n a b l e _ p a r i t y ( ) {
c o n f i g _ r e g _ t c o n f i g _ r e g _ t m p = ( c o n f i g _ r e g _ t )

( ( ( ∗ 0 xFF000000 ) [ 1 ] ) >> 2) & 0 x0000000F ;
c o n f i g _ r e g _ t m p | = 0 x00000001 ;
∗ (0 xFF000000 ) [ 1 ] = c o n f i g _ r e g _ t m p ;

}

Listing 5.17. Bit field update by reading and writing a complete register.

Access control for bit fields Another alternative, SIFv6, to overcome shadow
registers is the introduction of additional bits in combination with new coding
as it is shown in Table 5.6.

For one flag, generally three options are possible when adding an additional
bit for control:



HW/SW Interface 111

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 32
SIF RXD REG W 0 32 32
SIF CONFIG REG W 1 32 32

Table 5.6. SIFv6 register overview.

The two bits in the register act as RS signals to the flipflop storing the
flag. If “00” is assigned, then nothing changes, if “01” is assigned, then
the flipflop, i.e. the flag, is set, and if “10” is assigned, then the flipflop
is cleared. The assignment “11” is illegal.

The two bits in the register act as JK signals to the flipflop. As expected
from the JK-flipflop behavior, this has the same behavior as the RS op-
tion, except the case “11” is legal and forces the toggle of the flag.

One bit in the register acts as new value for the flag and the other as
enable. This alternative can also be used to enable several bits in paral-
lel, for instance, to write a configuration value that has more than two
alternatives.

It is obvious to say that control in the options above may be coded in a
different way, for instance in a low active way. Having enable and data in
different registers is also an option but requires three register accesses: enable–
write–disable.

Listing 5.18 shows the application of the third alternative to the parity con-
figuration bits. Each bit, marked by the name suffix val is guarded by an
enable bit with the name suffix en.

s t r u c t c o n f i g _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y _ v a l : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y _ e n : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 4 ;

}

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.18. Bit field access via access control.



112 HARDWARE-DEPENDENT SOFTWARE

The flags can now be easily set or reset, as shown in Listing 5.19. Here, the
tx enable bit is set and the tx odd parity is cleared. The bit fields
configuring the RX path are not changed, since the corresponding enable bits
are not set.

/∗ e n a b l e p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g = 0X00000003 ;

/∗ s e t odd p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g = 0X00000008 ;

Listing 5.19. Register bit field access with guarded value access.

Unfortunately, the bit fields in C cannot be used since two of them cannot
be assigned in one statement. For this reason, it is better to define the two
bits—one for the value and one for the enable—in one entry of the struct.
Making use of such a type definition, as shown in Listing 5.20, finally allows
to set or clear the bit with one statement, as shown in Listing 5.21. Here, also
the symbolic names set bit, clear bit, and keep bit are defined as
constants. Macros are also an option here.

c o n s t a n t u i n t 3 2 _ t s e t _ b i t : 2 = 3 ;
c o n s t a n t u i n t 3 2 _ t c l e a r _ b i t : 2 = 1 ;
c o n s t a n t u i n t 3 2 _ t k e e p _ b i t : 2 = 0 ;

s t r u c t c o n f i g _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y : 2 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 4 ;

}

s t r u c t w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.20. Bit field via dual-bit access control.

/∗ e n a b l e p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g . t x _ e n a b l e _ p a r i t y = s e t _ b i t ;

/∗ s e t odd p a r i t y i n t h e t r a n s m i s s i o n pa th ∗ /
w _ r e g _ p t r −> c o n f i g _ r e g . t x _ o d d _ p a r i t y = c l e a r _ b i t ;

Listing 5.21. Register flag access via enabled setting of bit fields.



HW/SW Interface 113

If the bit fields are modified by the peripheral core as well and new values
have an influence on the new settings of the bit fields, then they must be made
readable as well.

A structured approach to Bit Fields. All options shown above have both
advantages and disadvantages. Avoiding side effects partially is not possible,
if bit fields are changed by the peripheral core; bit fields have to be specified
twice in the read registers and write registers, in order to allow reading and
writing them; reading and writing bit fields might have to be done at different
addresses or bit offsets; re-assignment of bit sets might be needed.

For this reason, we propose to reserve one address for each register, inde-
pendently if it is written, read, or read and written. The read and write signal is
no longer used to distinguish bit fields. Furthermore, we request, that registers
that are written by software, can also be read by software.

This implies that multiplexers and decoders must be implemented here in
such a way that values and bit fields can be accessed under the same address
and bit position for read and write access.

The application of this methodology to an industrial style peripheral is shown
after discussion of impact of bus infrastructure and a textual specification of the
serial interface peripheral later on.

5.4 Register Address and Data Mismatch

In this section, advanced topics on the HW/SW interface are discussed.
They deal mostly with not having a bijective mapping between CPU address
space and peripheral address space. To give examples, the IP may have holes
in the data and address space, multiple registers may be accessed under one
address, or one register may be accessed under multiple addresses.

5.4.1 Hierarchical Bus

In order to relate the advanced topics to real architecture structures, our bus
is extended in direction of a hierarchical bus (see Fig. 5.5). The bus is split in
a CPU bus—mostly a high speed bus—and a peripheral bus—mostly a slower
bus with potentially less address signals and data signals.

As interface between these buses, a so called bridge is introduced. In the
example, the bridge is selected by the same signals as formerly the serial in-
terface unit. Since the bridge introduces a new hierarchy in the global address
map, the addressing scheme so far needs to be updated slightly. Thus, the first
8 address bits are now used to select devices connected to the CPU bus. The
bridge to the peripheral bus can be considered as such a device. The remaining
24 address lines are passed to the bridge. The upper 8 lines (lines 24 to 16)



114 HARDWARE-DEPENDENT SOFTWARE

Figure 5.5. Simple hierarchical bus system.

are decoded within the bridge in order to select a specific device (i.e., periph-
eral) connected to the peripheral bus. With regard to these 8 address bits, the
address of the serial interface unit is now assumed to be 0xFF. Due to this
adapted address map, the new base address of the serial interface unit from the
CPU perspective is 0xFFFF0000. This value is the compound of the base
address of the bus bridge (i.e., 0xFF000000) and the base address of the
serial interface unit within the peripheral bus (i.e., 0xFF0000). This yields
16 bits for addressing resources within the serial interface peripheral. Taking
into account that the lower two bits are reserved for byte addressing, 14 bits re-
main for addressing internal registers of the serial interface which restricts the
maximum number of addressable 32-bit registers of the serial interface unit to
16 · 210—still a more than sufficient number.



HW/SW Interface 115

5.4.2 Byte Addressing

Most embedded 32 bit CPUs also support half-word and byte addressing.
In this case, not only 32 bits can be accessed at once, but also just 16 bits and
8 bits. Byte addressing with 32 bit wide RXD registers and TXD registers does
not provide any benefit, in fact, it makes the access worse. To show this case, a
SIFv7 is introduced in Table 5.7. Here, each register has its own address. The
addressable unit has changed from 32 bit to 8 bit.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 32 8
SIF RXD REG W 1 32 8
SIF CONFIG REG W 2 32 8
SIF FLAG REG R 3 32 8

Table 5.7. SIFv7 register overview.

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e unsigned d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e unsigned d a t a _ r e c e i v e d : 1 ;
v o l a t i l e unsigned : 6 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e unsigned t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e unsigned t x _ o d d _ p a r i t y : 1 ;
v o l a t i l e unsigned r x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e unsigned r x _ o d d _ p a r i t y : 1 ;
v o l a t i l e unsigned unused : 4 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 3 2 _ t r x d _ r e g ;
v o l a t i l e u i n t 8 _ t t x d _ r e g [ 4 ] ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;

} ∗ r e g _ p t r ;

Listing 5.22. Struct for byte addressing.

Listing 5.22 shows a data structure definition that matches with byte ad-
dressing. The flag register and configuration register is filled up to 8 bits
only. The 32 bit data is now represented by a 4 element array of the data
type uint8 t. This uint8 t is also taken from the stdint.h include file.
If 4 byte alignment of the structs is ensured—as is the case in the example—
also the type uint32 t can be used instead of the 4 element array. In both
cases, the data word can be written at a glance using CPU word access—but
only by using ugly casting.



116 HARDWARE-DEPENDENT SOFTWARE

If 4 byte alignment of the structs cannot be guaranteed—as would be if the
8 bit flag register preceded the 4x 8 bit data register—the data word must be
assigned byte by byte, which would cause a 4x overhead in writing the data.
Both, flag register and config register can be accessed in any case by a byte
access without any penalty.

If only 8 bit data registers were assumed—now in SIFv8—the access would
become simpler. This is shown in Table 5.8 and Listing 5.23.

Register AccessExt Offset Width AddrUnit
SIF TXD REG R 0 8 8
SIF RXD REG W 1 8 8
SIF CONFIG REG W 2 8 8
SIF FLAG REG R 3 8 8

Table 5.8. SIFv8 register overview.

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t : 6 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 4 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 8 _ t r x d _ r e g ;
v o l a t i l e u i n t 8 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;

} ∗ r e g _ p t r ;

Listing 5.23. Struct for byte addressing with byte data words.

As a drawback, only 8 bit values can be transmitted. Also (not shown), the
hardware architecture must be changed accordingly.

5.4.3 Endianness

Mix of byte access and word access becomes challenging if different orders
of bytes are implemented on the CPU side and on the serial interface side. This
implementation aspect, also known as endianness, requires additional adapta-
tion effort, either on the HW side, or on the SW side.



HW/SW Interface 117

Best known are big endian, the numeric option, where the most significant
byte comes first, and little endian, the literal option, where the most significant
byte comes last. The little endian option also has the advantage of that a byte
value followed by three zero byte values is read in the same way in case of
byte, half-word, and word access.

Also known is a middle endian or mixed endian option (16 bit), where the
most significant half word comes last and the least significant half word comes
first. The advantage of this version is the seamless support of 16 bit encoded
characters.

The easiest and most efficient adaptation of different endian encodings is
on the hardware side. First, the peripheral can have a generic parameter, that
allows to statically reconfigure a peripheral interface to big endian or little en-
dian. This allows avoiding the remapping effort since the endianness of the
CPU and the peripheral can be made identical for the cost of rewiring some
signals, in other words, for free. A remapping of the bytes at the ports of the
peripheral has the same effect. Also an easy and quite efficient adaptation is
the use of CPUs that can be dynamically reconfigured to support big endian
or little endian reading and writing of 4 byte words. This costs some hard-
ware overhead but has the advantage that a mix of big endian and little endian
peripherals can be supported as well.

Quite an overhead must be spent to adopt endianness in software. List-
ing 5.24 shows a possible implementation.

BE = ( ( ( LE ) > >24) | ( ( ( LE )&0x f f 0 0 0 0 ) >>8) |
( ( ( LE )&0x f f 0 0 ) <<8) | ( ( LE ) < <24) )

Listing 5.24. Expression for converting little endian to big endian.

Sometimes—mainly in context of serial transmission—the term endianness
is also used in conjunction with bits. In this case, the terms byte endianness
and bit endianness are applied to make a distinction. Byte endianness is the
classical endianness as described above. Bit endianness relates to bit orienta-
tion and defines if inside one byte, the most significant bit is first and the last
significant bit is last, or vice versa.

5.4.4 Busses with Different Data Width

A hierarchical bus system also allows busses with different data widths,
for instance a CPU bus size of 32 bit and a peripheral bus size and register
size of 8 bit each. All presented codings shown above can be kept if the bus
bridge serializes word access on the CPU side into 4 byte accesses—of course
considering the right endianness.



118 HARDWARE-DEPENDENT SOFTWARE

Another option is to use the lower byte of the CPU word only and ignore
the higher three bytes. In this case, a lot of unused bytes have to be filled into
the struct representing the registers in software. This is shown in Listing 5.25.

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t : 6 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t r x _ o d d _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 4 ;

}

s t r u c t u n u s e d _ u p p e r _ b y t e s _ t {
v o l a t i l e u i n t 3 2 _ t : 2 4 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 8 _ t r x d _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused1 ;
v o l a t i l e u i n t 8 _ t t x d _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused2 ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused3 ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;
v o l a t i l e u n u s e d _ u p p e r _ b y t e s unused4 ;

} ∗ r e g _ p t r ;

Listing 5.25. Struct for LSB byte addressing with byte data words.

5.4.5 Several Registers Share One Address

Not only read and write signals are used to reduce consumed address space
of a peripheral. Also other techniques have been invented to extend the number
of addressable registers and bit fields. These techniques are also heavily used
in 8 bit CPU systems but lose their importance as more and more address space,
for instance in 32 bit CPUs, becomes available.

Auto-shadow is the first technique to be discussed. Here, one register is
visible at a specific address after hardware or software reset. After having
written to such a register, the register hides behind another register that can be
accessed instead. This is mostly applied for configuration registers, since they
are mostly configured once. On the software side, these two registers share
their address by being modeled as a union, as it is shown in Listing 5.26.



HW/SW Interface 119

s t r u c t c o n f i _ r e g _ t {
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 8 ;

}

union w_reg_t {
v o l a t i l e u i n t 3 2 _ t t x d _ r e g ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;

} ∗ w _ r e g _ p t r ;

Listing 5.26. Type and object declaration for writing hidden configuration bit fields.

Writing these registers does not distinguish between the union or struct ver-
sion. The dot-operator is used in both cases. However, it must be ensured that
the hidden register is accessible when needed.

Another technique is the use of indexing bit fields. This can be done by
interpreting one part of a register as a value and the other as index. Also,
value and index can come from different registers. Writing to a register re-
quires in the first case to merge index and data into one word—comparable
with merging bit field information as discussed above. Writing to a register
in the second case requires an overhead of two write accesses, which may be
acceptable if the index, that means the bit field to be written to, changes only
infrequently.

5.4.6 One Register is Accessible via Several Addresses

This is exactly the opposite hardware implementation approach as described
in the section above. Here, one register or bit field can be accessed under
more than one address in the peripheral’s address space. Since this technique
allocates more addresses in the address space than absolutely necessary, it finds
its application more in 32 bit CPUs.

The first reason for such a technique is compatibility with older versions.
So to say, an alias to the old address is preserved. In the SW side of the in-
terface, two registers are specified in the register struct, but using different
names.

The second, and probably more important reason is the support of burst or
block transfers by the bus protocol. This burst transfer moves blocks from
one address to another—or the cache. To apply this protocol, for instance to
send data stored in the memory via the serial interface, the txd-register must
be accessible under a range of addresses. The register struct can be easily



120 HARDWARE-DEPENDENT SOFTWARE

s t r u c t f l a g _ r e g i s t e r _ t {
v o l a t i l e u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
v o l a t i l e u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 3 0 ;

}
s t r u c t c o n f i g _ r e g _ t {

v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ e n a b l e _ p a r i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t t x _ o d d _ p a r o i t y : 1 ;
v o l a t i l e u i n t 3 2 _ t unused : 2 8 ;

}

s t r u c t r e g _ t {
v o l a t i l e u i n t 3 2 _ t unused1 ;
v o l a t i l e u i n t 3 2 _ t unused2 ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g ;
v o l a t i l e u i n t 3 2 _ t r x d _ r e g [ 3 2 ] ;
v o l a t i l e u i n t 3 2 _ t t x d _ r e g [ 3 2 ] ;
v o l a t i l e c o n f i g _ r e g _ t c o n f i g _ r e g _ a l i a s ;
v o l a t i l e f l a g _ r e g i s t e r _ t f l a g _ r e g _ a l i a s ;

} ∗ r e g _ p t r ;

Listing 5.27. Type and object declaration for writing hidden configuration bit fields.

extended by putting an array—here of size 32—instead of a single element to
the register struct. This is also known as mirror size 32.

Listing 5.27 shows exemplarily how alias registers and memory space for
allocation of data registers have an impact on the register struct. First, two un-
used registers are introduced to keep the flag register and config register at their
corresponding places. After the config registers follows the allocated space—
implemented as arrays as described above—and finally the alias registers.

5.4.7 Multiple SIF-Peripherals in One System

If more than one serial interface has to be used in a system, several base
addresses have to be served from the software point of view. This can be easily
achieved by declaring and initiating two register pointers.

To access those peripherals, either the code has to be duplicated, for instance
in object based access, or a register pointer has to be passed to the functions
accessing the serial interfaces. The latter case is shown in Listing 5.28.

void w r i t e _ c f g _ t x _ e n a b l e _ p a r i t y ( r e g _ t ∗ r e g _ p t r ) {
r e g _ p t r −> c o n f i g _ r e g | = 1 ;

}

Listing 5.28. Setting and clearing bit fields with reading.



HW/SW Interface 121

To call the functions, the struct declaration of Listing 5.22 is needed. As
pointers, now a sif1 reg ptr and a sif2 reg ptr must be declared (not
shown in a listing). These pointers must be initialized with the serial interfaces’
base addresses before they can be used in a call to those functions.

5.5 Textual Specification of the SIF

The following section gives an overview of the SIF peripheral. The hard-
ware interfaces are explained, followed by the description of its registers and
bit fields and their specification. The registers including their bit fields are the
basic building blocks of the HW side of the HW/SW interface of the peripheral.

5.5.1 Overview

The SIF model can be used for connecting two hardware systems via a serial
communication protocol.

Figure 5.6 shows the basic structure of the SIF peripheral model. The SIF
contains four different hardware interfaces—the bus interface, the external in-
terfaces, and an interface for interrupts. A detailed description of these inter-
faces will be given later on.

Figure 5.6. SIF structure overview.

Besides the hardware interfaces, the SIF model contains several registers as
shown in Fig. 5.6. These registers are accessible from the CPU core (this de-
notes the CPU where the SW is executed) over the bus interface. Therefore,
the registers are an essential part of the HW/SW interface. The SW can con-
figure the behavior of the SIF by writing to the control and protocol registers.
Furthermore, it can configure the baud rates for transmission and reception by
writing to the clock rate register. The SW can clear interrupts by writing to the



122 HARDWARE-DEPENDENT SOFTWARE

IRQ clear register and it can query the peripheral status by reading from the
status register. Data to be transmitted is written to the TX data (TXD) register,
and received data can be retrieved by reading from the RX data (RXD) register.

Depending on the current protocol and control register settings, the TX and
RX state machines perform different algorithms which influence the transmis-
sion and reception (e.g., heading reversal or bit inversion of transmitted/re-
ceived bits). A detailed description of the registers including their bit fields is
given later in this section.

5.5.2 Hardware Interfaces

Bus Interface. The SIF peripheral model can be connected to a bus through
its bus interface. This bus interface acts as a slave when connected to a bus.
Hence, the SIF cannot actively request a bus access. It reacts on read and write
accesses from devices connected to the bus as master. The structure of the SIF
bus interface is specified corresponding to the applied bus protocol—in this
example a simple bus protocol.

The CPU core, which is usually connected as a bus master, can access the
registers of the SIF through this bus interface. For selecting a specific register
of the SIF, the core needs to set an address (in this case the sum of the SIF base
address and the internal offset of the targeted register). The decoding of the
register offset is implemented within the SIF. In case of a write access, the data
from the bus is routed to the addressed register. In case of a read access, the
content of the addressed register is made visible on the bus. Accesses to SIF
registers, where applicable, trigger further actions, for instance starting of the
TX state machine or clearing of an interrupt.

External TX Interface. The external TX interface of the SIF enables the
data transmission to a connected external peripheral module or another SIF.
Data is transmitted actively through this interface, therefore it is specified as
a master interface. If data transmission is enabled, the data, which is written
from the core to the TXD register, is directly transmitted to the connected
external module.

External RX Interface. The module which is connected to the external RX
interface of the SIF, can actively send data to the SIF. Therefore, this interface
is specified as slave. The SIF can only receive data through this interface if the
connected external module transmits data and the reception is enabled. If the
serial reception has finished, the received data is written to the RXD register.
An interrupt can be scheduled to notify the CPU core that data is available.
Hence, the core can read the content of the RXD register.

Interrupt Interface. The interrupt interface of the SIF model contains all
available interrupts as outgoing ports. This interface acts as a master. The in-



HW/SW Interface 123

terrupt ports are connected to the Interrupt Control Unit (ICU) of the system.
The ICU handles all peripheral interrupts and notifies the core to serve an in-
terrupt. The core in turn initiates an interrupt service routine corresponding to
the active interrupt.

5.5.3 Registers and Bit Fields

As mentioned before, registers are key elements in the context of HW/SW
interfaces. Table 5.9 provides an overview of all registers of the SIF including
some general register parameters. These parameters are defined as follows:

Offset: Specifies the address of the register relative to the base address
of the peripheral

Width: Specifies the data width of the register in terms of bits

AddrUnit: Specifies the addressable unit of the register in terms of bits
(e.g., AddrUnit = 8 denotes that one address value addresses 8 bits of
data)

MirrorSize: Specifies the number of consecutive addresses a register
can be accessed through

Register Offset Width AddrUnit MirrorSize
SIF TXD REG 4 32 8 1
SIF CTRL REG 8 32 8 1
SIF MODE REG 12 32 8 1
SIF PRTC CFG REG 16 32 8 1
SIF CLK RATE REG 20 32 8 1
SIF IRQ CLEAR REG 24 32 8 1
SIF RXD REG 28 32 8 1
SIF STAT REG 32 32 8 1

Table 5.9. SIF register overview.

The TXD register and RXD register are used for data transmission and data
reception. The CTRL register is used for enabling or disabling data transmis-
sion or reception of the SIF. Furthermore, mode and interrupt behavior can be
configured here. The protocol behavior of the SIF can be configured by writ-
ing to the PRTC CFG register. Activated interrupts can be cleared using the
IRQ CLEAR register. The core can retrieve the current status of the SIF by
reading the content of the STAT register. The transmission and reception rate
can be controlled with the CLK RATE register.

A register can be seen as an alias for the offset address. The actual values
are accessible through the bit fields it contains. The complete protocol con-
figuration of the SIF, like parity settings, inversion, etc. happens through the



124 HARDWARE-DEPENDENT SOFTWARE

PRTC CFG register. Therefore, this register needs to be structured into bit
fields which are referring to specific protocol settings. A detailed description
of the registers including their bit fields is given in the following sections.

Register SIF TXD REG. The TXD register is written by the core. Its con-
tent is transmitted through the external TX interface. Table 5.10 shows the bit
fields of the TXD register including their parameters.

Offset: specifies the offset of the bit field within the register in bits

Width: specifies the width of the bit field in bits

AccessExt: specifies the external access type of the bit field via the bus
interface (e.g., from the core)—read only (R), write only (W), read and
write (R/W)

AccessInt: specifies the internal access type of the bit field from inside
the SIF (e.g., from the state machines)

The TXD register contains only one bit field which covers the complete register
width. It is writable and readable from the core, and only readable internally.
Every time the core writes data to the register and the transmit bit field, respec-
tively, the TXD state machine gets notified and transmits the data by accessing
the content of the bit field internally.

BitField Offset Width AccessExt AccessInt
transmit 0 32 R/W R

Table 5.10. Register SIF TXD REG bit fields overview.

Register SIF CTRL REG. The mode and control configuration of the SIF
happens through the CTRL register which is structured into ten bit fields as
shown in Table 5.11.

Transmission can be enabled or disabled by setting the transmit enable bit
field. In case the transmission of the SIF is disabled, the content available in
the TXD register will not be sent. The value is stored until the transmission is
enabled.

A similar behavior applies to the receive enable bit field which is used to
enable or disable the data reception of the SIF. In disabled state, any incoming
data through the external RX interface is ignored.

Interrupts for successful or failed data transmission and reception, respec-
tively, can be enabled or disabled by setting the interrupt on * bit fields.



HW/SW Interface 125

BitField Offset Width AccessExt AccessInt

interrupt enable on transmit 0 1 R/W R
interrupt enable on transmit error 1 1 R/W R
transmit enable 2 1 R/W R
reserved0 3 1 R/W R
interrupt enable on receive 4 1 R/W R
interrupt enable on receive error 5 1 R/W R
receive enable 6 1 R/W R
reserved1 7 1 R/W R

Table 5.11. Register SIF CTRL REG bit fields overview.

Register SIF MODE REG. The operation mode of the SIF can be config-
ured by setting the loop back and echo mode bit fields within the MODE reg-
ister. In loop back mode, the SIF loops the transmitted data back into the RX
state machine. In echo mode, received data is transmitted instantly through the
external TX interface. The bit field structure of the MODE register is shown in
Table 5.12.

BitField Offset Width AccessExt AccessInt

loop back 0 1 R/W R
echo mode 1 1 R/W R

Table 5.12. Register SIF MODE REG bit fields overview.

Register SIF PRTC CFG REG. The TX and RX protocol behavior of the
SIF can be specified by writing the bit fields of the PRTC CFG register. Ta-
ble 5.13 gives an overview of the bit field specification of the PRTC CFG reg-
ister. The bit field tx stop bit2 specifies whether a second stop bit should be
appended to the data. Parity checking can be activated with tx enable parity,
and the tx odd parity bit field specifies if an even or odd parity bit should be
appended. The tx inversion and tx heading bit fields are used for data inversion
and reversal of data heading, respectively. The SIF supports different character
length values for transmission or reception—8 bit, 16 bit, and 32 bit. The TX
character length can be specified with the tx character length bit field.

The same bit fields are available for the RX protocol with respective mean-
ings.

Register SIF CLK RATE REG. The settings of the CLK RATE register
define the baud rate for transmission and reception. The bit field specification



126 HARDWARE-DEPENDENT SOFTWARE

BitField Offset Width AccessExt AccessInt

tx stop bit2 0 1 R/W R
tx enable parity 1 1 R/W R
tx odd parity 2 1 R/W R
tx heading 3 1 R/W R
tx inversion 4 1 R/W R
tx char length 5 6 R/W R
reserved0 11 5 R/W R
rx stop bit2 16 1 R/W R
rx enable parity 17 1 R/W R
rx odd parity 18 1 R/W R
rx heading 19 1 R/W R
rx inversion 20 1 R/W R
rx char length 21 6 R/W R
reserved1 27 5 R/W R

Table 5.13. Register SIF PRTC CFG REG bit fields overview.

is shown in Table 5.14. The clock rate for the TX data path can be speci-
fied within the tx clock rate bit field and the rate for the RX path within the
rx clock rate bit field. The value of these bit fields is interpreted as a multiplier
to the bus clock period. The baud rate defines the speed at which the serial bits
are shifted out or read in, respectively.

BitField Offset Width AccessExt AccessInt

tx clock rate 0 16 R/W R
rx clock rate 16 16 R/W R

Table 5.14. Register SIF CLK RATE REG bit fields overview.

Register SIF IRQ CLEAR REG. Active interrupts of the SIF can be clear-
ed by writing the corresponding interrupt ID into the irq clear bit field within
the IRQ CLEAR register. The register specification is shown in Table 5.15.

BitField Offset Width AccessExt AccessInt

irq clear 0 4 R/W R

Table 5.15. Register SIF IRQ CLEAR REG bit fields overview.

Register SIF RXD REG. The bit field specification of the RXD register is
shown in Table 5.16. The RXD register contains only one bit field with the



HW/SW Interface 127

same width as the register itself. This receive bit field is declared as external
read only. If the SIF receives data through its external RX interface, the core
can read the received data by accessing this bit field.

BitField Offset Width AccessExt AccessInt

receive 0 32 R W

Table 5.16. Register SIF RXD REG bit fields overview.

Register SIF STAT REG. The access type of all bit fields within the STAT
register is specified as external read-only as it is shown in Table 5.17. The core
can access status information of the current state of the SIF by reading the bit
fields of this register. The bit fields data transmitted and data received contain
information about a successful data transmission and reception, respectively.
The bit fields data transmit error and data receive error contain information
about a failed data transmission and reception, respectively.

BitField Offset Width AccessExt AccessInt

data transmitted 0 1 R R/W
data received 1 1 R R/W
data transmit error 2 1 R R/W
data receive error 3 1 R R/W

Table 5.17. Register SIF STAT REG bit fields overview.

5.6 Register Header File

A C header file, as explained in the beginning, is generated to enable an
easy software access to the registers and bit fields of the SIF. The template
based generation framework is described in Sect. 5.9. The generated header
file contains a struct and a union for each register access function. A struct of
the complete address space of the SIF is also generated, which is used by the
access functions. The mechanism of the register access is explained in detail
in the following.

5.6.1 Register Bit Field Structure

A struct is declared for each register which represents its corresponding bit
field structure. Hereby the complete width of a register is divided into bit fields.
Listing 5.29 shows an example of the structs for the SIF TXD REG and SIF



128 HARDWARE-DEPENDENT SOFTWARE

STAT REG registers. The SIF TXD REG register only contains the transmit bit
field. Since this bit field has width 32 bit the struct sSIF TXD REGStructure
contains only one member referring to the transmit bit field. The declaration
of a bit field member within the register struct is shown in following rule:

[“const”] data type [bitfield name] “ : ” bitfield width “; ”

A bit field gets declared as const if it is specified as externally read-only. The
data type refers to the data type of the register. The bitfield name is optional
and refers to the specified name of the corresponding bit field. The bitfield
width refers to the width of the bit field. If no bit field is specified for a specific
area of a register, this area must be marked as unused. This is done by declaring
a const data type without a name and the width of the unused area. The decla-
ration order of the bit field members within the struct is given by the specified
bit offset of the bit field. The SIF STAT REG register contains four bit fields
which are declared as members within the struct sSIF STAT REGStructure.
All of these bit fields are specified as read-only, therefore they are declared as
const. The unused area of the bit field is declared as previously explained.

/ / SIF_TXD_REG
t y p e d e f s t r u c t {

u i n t 3 2 _ t t r a n s m i t : 3 2 ;
} sSIF_TXD_REGStructure ;

/ / SIF_STAT_REG
t y p e d e f s t r u c t {

c o n s t u i n t 3 2 _ t d a t a _ t r a n s m i t t e d : 1 ;
c o n s t u i n t 3 2 _ t d a t a _ r e c e i v e d : 1 ;
c o n s t u i n t 3 2 _ t d a t a _ t r a n s m i t _ e r r o r : 1 ;
c o n s t u i n t 3 2 _ t d a t a _ r e c e i v e _ e r r o r : 1 ;
c o n s t u i n t 3 2 _ t : 2 8 ; /∗ unused area ∗ /

} sSIF_STAT_REGStructure ;

Listing 5.29. Register bit field structure.

5.6.2 Register Union

A union is generated for each register which contains an entry referring to
the register value and an entry for the register structure. Listing 5.30 shows
an example declaration of the uSIF TXD REG union for the SIF TXD REG
register. The value of the complete register is accessible through SIF TXD
REG Content which is declared using the data type of the register. The values
of the bit fields are accessible through SIF TXD REG Structure which is de-
clared using the previously described bit field struct sSIF TXD REGStructure
as data type. The register unions are used as register types in the following
described module struct.



HW/SW Interface 129

/ / SIF_TXD_REG
t y p e d e f union {

u i n t 3 2 _ t SIF_TXD_REG_Content ;
sSIF_TXD_REGStructure SIF_TXD_REG_Structure ;

} uSIF_TXD_REG ;

Listing 5.30. Register union declaration.

5.6.3 Module Structure

A declaration of a struct is needed which represents the complete register
address range of the module. This struct contains all registers which are or-
dered referring to their specified offset. Listing 5.31 shows the module struc-
ture sSif of the SIF module. The previously described register unions are used
as data type for each register member. If an unused address area exists where
no register is specified, the area has to be marked as a reserved area. In case
of the SIF, no register is specified for offset “0”. Therefore, the first entry of
the sSif refers to a reserved area and is declared as const using uint32 t as
data type and the name reservedArea#. The # represents a number starting
with ”0” which is incremented for each reserved area declaration. With the
value in brackets, which represents the array size, it is specified how many sub
sequential addresses should be marked as reserved. Subsequent to the struct
declaration, the type definition sSif of the sSif struct is declared. The sSif
type is used within the following described register and bit field access func-
tions.

s t r u c t _ s S i f {
cons t u i n t 3 2 _ t r e s e r v e d A r e a 0 [ 1 ] ; / / Address o f f s e t = 0x0
uSIF_TXD_REG SIF_TXD_REG ; / / Address o f f s e t = 0x4
uSIF_CTRL_REG SIF_CTRL_REG ; / / Address o f f s e t = 0x8
uSIF_MODE_REG SIF_MODE_REG ; / / Address o f f s e t = 0 xc
uSIF_PRTC_CFG_REG SIF_PRTC_CFG_REG ; / / Address o f f s e t = 0 x10
uSIF_CLK_RATE_REG SIF_CLK_RATE_REG ; / / Address o f f s e t = 0 x14
uSIF_IRQ_CLEAR_REG SIF_IRQ_CLEAR_REG ; / / Address o f f s e t = 0 x18
uSIF_RXD_REG SIF_RXD_REG ; / / Address o f f s e t = 0 x1c
uSIF_STAT_REG SIF_STAT_REG ; / / Address o f f s e t = 0 x20

} ;

typedef s t r u c t _ s S i f s S i f ;

Listing 5.31. Component register structure.

5.6.4 Register Access Functions

The implementation of the functions for accessing the content of a complete
register are described now. Depending on the external access type of a register,



130 HARDWARE-DEPENDENT SOFTWARE

a set (for writing) and get (for reading) function are generated. The external
access type of a register is obtained using the bit field information. If a register
contains only bit fields which are read-only from external, then the access type
of the register is also read-only. In this case, only a get access function is gen-
erated. Listing 5.32 shows the register access functions for the SIF TXD REG
register. The transmit bit field within this register is specified as external read-
able and writable. Therefore, both a get and a set function are generated as
shown in the listing. The set function has no return value and has in its formal
argument list the sSif pointer sif and the value which should be written to
the register. The target SIF instance is specified using the sif argument which
refers to the base address of the SIF. The corresponding register is accessed by
using the −> operator on the sif pointer of the struct member SIF TXD REG.
This means the base address plus the address offset of the register is obtained
because the position of the SIF TXD REG member refers to the offset address
of the register. The register union uSIF TXD REG is used as the data type
for the SIF TXD REG member. Therefore, the value has to be assigned to the
SIF TXD REG Content member of SIF TXD REG. The get function is imple-
mented in a similar way. It has the register value as a return value and has no
value in its argument list. The implementation of the get function returns the
value of SIF TXD REG Content.

/∗ S e t comple te r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e void setSif_SIF_TXD_REG ( v o l a t i l e s S i f ∗ _ s i f _ ,

u i n t 3 2 _ t va lue ) {
_ s i f _ −>SIF_TXD_REG.SIF_TXD_REG_Content = va lue ;

}

/∗ Get comple te r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e u i n t 3 2 _ t getSif_SIF_TXD_REG ( v o l a t i l e s S i f ∗ _ s i f _ ) {

return _ s i f _ −>SIF_TXD_REG.SIF_TXD_REG_Content ;
}

Listing 5.32. Register read and write access functions.

5.6.5 Bit Field Access Functions

After the generation of the access functions for the registers, the access func-
tions for the bit fields are generated. Depending on the external access type of
a bit field, a set and get function has to be implemented. Listing 5.33 shows
the implementation of the access functions for bit field transmit within the
SIF TXD REG register. The argument lists and return values are equal to the
register access functions. The difference is located in the implementation of
the bit field set and get functions. In case of the bit field set function, the
value is assigned to the transmit member of SIF TXD REG Structure of reg-
ister union uSIF TXD REG. Within the register union, the bit field structure



HW/SW Interface 131

sSIF TXD REGStructure is used as data type for SIF TXD REG Structure.
Hence the register union enables the access to the complete register content, or
to a specific bit field of the register.

/∗ S e t e l e m e n t t r a n s m i t o f r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e void se tS i f_SIF_TXD_REG_transmi t ( v o l a t i l e s S i f ∗

_ s i f _ , u i n t 3 2 _ t v a l u e ) {
_ s i f _ −>SIF_TXD_REG.SIF_TXD_REG_Structure. t ransmit = v a l u e ;

}

/∗ Get e l e m e n t t r a n s m i t o f r e g i s t e r SIF_TXD_REG ∗ /
s t a t i c i n l i n e u i n t 3 2 _ t ge tSi f_SIF_TXD_REG_transmit ( v o l a t i l e

s S i f ∗ _ s i f _ ) {
re turn ( u i n t 3 2 _ t ) _ s i f _ −>

SIF_TXD_REG.SIF_TXD_REG_Structure. t ransmit ;
}

Listing 5.33. Bit field read and write access functions.

5.7 SIF Driver Functions

The register and bit field access functions which were described in the pre-
vious section are not directly used in a software application since they are too
low-level. Driver functions have to be implemented to enable a higher-level
software access to the hardware module. These driver functions make use of
the lower-level functions offered by the register header file. Unlike the reg-
ister header file, the driver functions cannot be generated using a meta-model
that only describes interfaces but no functionality. A part of the driver header
file including the most important driver functions is shown in Listing 5.34.
The generated register header file sif reg.h is included in the driver header file
sif drv.h, which is shown in the listing. The implementation of the sifOpen,
sifInit, sifWrite and sifRead functions is explained in detail in the following.
Other functions like sifIOCtl, sifClose, sifSelfTest, etc. are not explained within
the context of this section. One possibility for realizing software access to the
SIF module is represented by the following driver functions. Depending on
the operating system and the software environment, the implementation of the
drivers may be different.

5.7.1 SIF Open Function

The sifOpen function, which returns the sSif pointer of the specified SIF
module, is shown in Listing 5.35. The sifOpen function contains in its formal
argument list the unsigned integer id, whose value corresponds to a specific
SIF module of the hardware system. In case of the example which is shown in



132 HARDWARE-DEPENDENT SOFTWARE

/ / i n c l u d e r e g i s t e r header f i l e
# i n c l u d e "sif_reg.h"

/ / open s p e c i f i e d s i f
v o l a t i l e s S i f ∗ s i f O p e n ( unsigned i d ) ;
/ / i n i t i a l i z e s i f
void s i f I n i t ( v o l a t i l e s S i f ∗ p _ s i f ) ;
/ / w r i t e b l o c k t o s i f
void s i f W r i t e ( v o l a t i l e s S i f ∗ p _ s i f , c o n s t char ∗ s t r i n g ) ;
/ / read b l o c k from s i f
void s i f R e a d ( v o l a t i l e s S i f ∗ p _ s i f , char∗ b u f f e r ) ;
. . .

Listing 5.34. SIF driver header file.

the listing, the hardware system contains two SIF modules, one with the base
address 0x20000000, and another with the base address 0x30000000. Depend-
ing on the value of id, the base address of the corresponding SIF module is
assigned to the sSif pointer and returned.

v o l a t i l e s S i f ∗ s i f O p e n ( unsigned i d ) {
v o l a t i l e s S i f ∗pSIF ;
swi t ch ( i d ) {

case 0 :
pSIF = ( s S i f ∗ ) 0 x20000000 ; break ;

case 1 :
pSIF = ( s S i f ∗ ) 0 x30000000 ; break ;

d e f a u l t :
pSIF = 0 ; break ;

}
re turn pSIF ;

}

Listing 5.35. SIF open function.

5.7.2 SIF Init Function

After a specific SIF has been opened using the sifOpen function, it has to
get initialized. This is done by calling the sifInit function using the returned
sSif pointer as the argument. The implementation of the sifInit function is
shown in Listing 5.36. The specified SIF module gets initialized with a default
control and protocol configuration. The low-level bit field access functions
of the register header file are used for configuring the SIF CTRL REG and
SIF PRTC CFG REG registers. First, the SIF is enabled for data transmission
and reception, then the character length of both the TX and RX data are set to
32 bits. Not all configurations are shown in the listing. After the SIF module is



HW/SW Interface 133

opened and initialized, the application can write data to the SIF and read data
from it. The necessary driver functions for the data transfer are described in
the following.

void s i f I n i t ( v o l a t i l e s S i f ∗ p _ s i f ) {
/ / s e t d e f a u l t r x and t x c o n t r o l
se tS i f_SIF_CTRL_REG_t ransmi t_enab le ( p _ s i f , 0x1 ) ;
se tS i f_SIF_CTRL_REG_rece ive_enab le ( p _ s i f , 0x1 ) ;
. . .
/ / s e t d e f a u l t r x and t x p r o t o c o l
se tSi f_SIF_PRTC_CFG_REG_tx_char_length ( p _ s i f , 0x20 ) ;
se tSif_SIF_PRTC_CFG_REG_rx_char_length ( p _ s i f , 0x20 ) ;
. . .

}

Listing 5.36. SIF initialization function.

5.7.3 SIF Write Function

The sifWriteChar function, which is shown in Listing 5.37, is used within
the sifWrite function to write one character to the SIF. The argument list of
the sifWriteChar function contains the sSif pointer and the value to be writ-
ten. The function polls the value of the data transmitted bit field within the
SIF STAT REG register, until it is “0”, which means that the previous data has
been transmitted and a new value can be written. In that case, the set func-
tion for the SIF TXD REG register is called and the value gets written to the
SIF. The sifWriteChar function is not accessible by the application software,
since the interaction of the application software with the SIF is realized in data
blocks.

void s i f W r i t e C h a r ( v o l a t i l e s S i f ∗ p _ s i f , u i n t 3 2 _ t v a l u e ) {
whi le ( ! ge tS i f_S IF_STAT_REG_da ta_ t r ansmi t t ed ( p _ s i f ) )
;
setSif_SIF_TXD_REG ( p _ s i f , v a l u e ) ;

}

Listing 5.37. SIF write data word function.

The application software uses the sifWrite function for data transmission
which is shown in Listing 5.38. This function defines in its argument list
the character pointer string. Hence, the application software can write com-
plete strings to the SIF module. The implementation of the sifWrite function
serializes the given string into single data words depending on the specified
tx char length, and sends each data word to the SIF by using the previously
described sifWriteChar function. The implementation of the sifWrite and the
following sifRead functions are simplified for explanation purposes.



134 HARDWARE-DEPENDENT SOFTWARE

void s i f W r i t e ( v o l a t i l e s S i f ∗ p _ s i f , c o n s t char ∗ s t r i n g ) {
u i n t 3 2 _ t c h _ l e n g t h =getSif_SIF_PRTC_CFG_REG_tx_char_length (

p _ s i f ) ;
u i n t 3 2 _ t pkg_ leng th , t x _ d a t a ;
whi le (∗ s t r i n g ) {

p k g _ l e n g t h = 0 ;
t x _ d a t a = 0 ;
whi le ( ( p k g _ l e n g t h < c h _ l e n g t h ) && ∗ s t r i n g ) {

t x _ d a t a = t x _ d a t a | (∗ s t r i n g ++ << p k g _ l e n g t h ) ;
p k g _ l e n g t h = p k g _ l e n g t h + 8 ;

}
s i f W r i t e C h a r ( p _ s i f , t x _ d a t a ) ;

}
}

Listing 5.38. SIF write block function.

5.7.4 SIF Read Function

The data interface for the application software to the SIF is implemented
in the sifRead function, as shown in Listing 5.39. This function reads a data
word from the SIF, separates it into single characters depending on the
rx char length value, and appends the characters to the string array.

void s i f R e a d ( v o l a t i l e s S i f ∗ p _ s i f , char∗ s t r i n g ) {
u i n t 3 2 _ t c h _ l e n g t h =getSif_SIF_PRTC_CFG_REG_rx_char_length (

p _ s i f ) ;
u i n t 3 2 _ t r x _ d a t a , p k g _ l e n g t h ;

whi le ( ge tS i f_SIF_STAT_REG_data_rece ived ( p _ s i f ) ) {
r x _ d a t a = getSif_SIF_RXD_REG ( p _ s i f ) ;
p k g _ l e n g t h = 0 ;

whi le ( p k g _ l e n g t h < c h _ l e n g t h ) {
∗ s t r i n g ++ = ( r x _ d a t a & (255 << p k g _ l e n g t h ) ) >>

p k g _ l e n g t h ;
p k g _ l e n g t h = p k g _ l e n g t h + 8 ;

}
}

}

Listing 5.39. SIF read block function.

5.7.5 Test Software Application

Listing 5.40 shows a small test application which demonstrates the interac-
tion of the application software with two SIF modules. This test application
opens the first SIF (ID = 0), initializes it, writes a “Hello World!” string to
it, and reads the string again (the TBE connected to the external interfaces of



HW/SW Interface 135

the SIF receives all data and transmits it back to the SIF). The same is done
for the second SIF (ID = 1) within a loop. This small application shows that
all low-level details of the HW/SW interface are hidden from the application
software. Hence a developer of application software does not need to know all
hardware specific details of a specific peripheral.

# i n c l u d e "sif_drv.h"

i n t main ( ) {
unsigned i d = 0 ;
v o l a t i l e s S i f ∗pSIF ;

do {
char b u f f e r [ 1 0 2 4 ] ;
pSIF = s i f O p e n ( i d ++) ;
s i f I n i t ( pSIF ) ;
s i f W r i t e ( pSIF , "Hello World!" ) ;
s i f R e a d ( pSIF , b u f f e r ) ;

}
whi le ( i d < 2) ;

re turn 1 ;
}

Listing 5.40. SIF test application.

5.8 Synchronization

This section provides an overview on concepts which together form the syn-
chronization of HW/SW interfaces.

5.8.1 Register-Access Synchronization Schemes

Clock domains and synchronization. At the HW level, the settings of the
bus and the master and slave interfaces ensure that the accesses of the core to
peripherals are synchronized in terms of clock frequencies. It is possible that
a core runs with a different clock than a peripheral. In such a case, it is com-
mon to use clock divider circuits and data buffers in the HW for synchronizing
the data flow appropriately. Usually, the SW needs only to take care of the
configuration of these components to maximize throughput.

Blocking vs. non-blocking bus protocols. As explained in the previous sec-
tions, SW accesses the HW via pointers (i.e., addresses). An access to an ad-
dress is in turn broken down in the HW to read and write transactions. The
duration of each access can vary depending on the underlying bus protocol.
Such accesses can be categorized in the following way:



136 HARDWARE-DEPENDENT SOFTWARE

Non-Blocking: The duration of the access is a priori defined; the dura-
tion of read transactions may differ from write transactions, however.

Blocking: The duration of the access can dynamically vary, depending
on the current bus load and peripheral activity.

These categories need to be taken into account when modeling peripheral
drivers, because they can have a huge impact on the overall performance of
a system.

5.8.2 Functional Synchronization Schemes

Polling. The easiest way to functionally synchronize SW behavior to the be-
havior of a peripheral is to use polling. For instance, the SIF peripheral offers
a status register which yields whether the SIF is ready to transmit data or re-
spectively has data available to be fetched by the core. The SW can retrieve the
status of the SIF by accessing the corresponding register. After initiating one
transmission, the SW cannot know when the SIF is ready to transmit further
data. Therefore, one possible way to resolve this, is to read the status regis-
ter periodically. As soon as the read value indicates that the SIF is ready for
another transmission, the SW can stop reading the status register and proceed
with the next value to be sent. Listing 5.41 shows an example.

u i n t 3 2 _ t t x d _ a r r a y [ 4 ] = { 1 0 , 2 0 , 3 0 , 4 0 } ;
f o r ( i n t i = 0 ; i < 4 ; i ++) {

w_reg_p t r −>t x d _ r e g = t x d _ a r r a y [ i ] ;
whi le ! ( r _ r e g _ p t r −> f l a g _ r e g . d a t a _ t r a n s m i t t e d )
;

}

Listing 5.41. Polling of SIF status.

Yet being a simple solution, polling is not very efficient with regard to per-
formance, due to the periodic read access to the SIF status register. The next
section shows how interrupts can be used in order to notify the SW by the
peripheral, as soon as it is ready to transmit further data.

Interrupt Handling. Interrupt-based synchronization of SW with HW is
one of the dominant schemes used in embedded systems design. Herein the
basic principles of interrupt handling are explained. Most CPU cores in indus-
trial use provide interrupt mechanisms in order to decouple SW from the state
of a peripheral. The interrupt lines of each peripheral are connected to the so
called Interrupt Control Unit (ICU). By setting an interrupt line, a peripheral
indicates that it requests to interrupt the CPU core execution. Since it is pos-
sible that several peripherals can issue interrupt requests at the same time, the



HW/SW Interface 137

ICU implements some sort of interrupt prioritization scheme and notifies the
CPU core in turn by raising an interrupt to the CPU core. The HW-based inter-
rupt infrastructure of a core can vary. It has to take into account when exactly
to halt the current execution of a program and to save its context, in order to
serve a specific interrupt request. An ICU usually contains registers for each
interrupt input. A programmer can configure these registers by storing the ad-
dress of a specific interrupt service routine in each of these registers. Once the
CPU receives an interrupt from the ICU, it can retrieve the previously stored
address to the corresponding service routine and execute it. Such a service rou-
tine, among other things, needs to take care of clearing the specific interrupt in
the peripheral, which had raised it. Once the interrupt service routine has been
executed by the CPU core, the execution of the previously halted program re-
sumes. For that purpose, the CPU restores the program context automatically.
In the following example, it is assumed that the ICU interrupt input of number
42 is connected to the data transmitted interrupt line of the SIF. Furthermore,
it is assumed that the general setup of the ICU has been taken care of. List-
ing 5.42 shows a simple code example, which contains an interrupt service
routine. This routine is invoked whenever the data transmitted interrupt is
raised. It takes care of sending a further data value to the TXD register.

The function enable IRQ sets up the CPU internal interrupt infrastructure.
For that purpose, some assembly language code (omitted in the example) needs
to be inlined. The SIF TXREQ function is the actual interrupt service routine.
It ensures that the corresponding ICU interrupt line is enabled again by writing
value 42 to specific ICU register addressed by ICU REENABLE HW LINE.
Furthermore, the function clears the raised interrupt request in the SIF periph-
eral by writing to the interrupt clear register addressed by SIF CLEAR REG.
Following that, one value is written to the TXD register of the SIF. Within func-
tion send data, the ICU register, which is associated with port 42, is written
with the address of the interrupt service routine. Hence, when line 42 shows
an interrupt, this service routine will be called. Afterwards, the IRQ infrastruc-
ture is enabled. Following that, a while loop is entered, which can only be left
if the service routine has been called 4 times. Note, that instead of the while
loop, the SW could perform any other actions, because the data transmission
is handled by the interrupt service routine.

5.9 Template Based Code Generation

Before the implementation of an HW/SW system starts, a specification has
to be created which is normally provided as a textual description and not in
a formal way. This often leads to implementation inconsistencies or misun-
derstandings of the specification. Due to the increasing complexity of HW
systems formal methods for specifying interface information were developed.



138 HARDWARE-DEPENDENT SOFTWARE

_ _ i n l i n e void enable_IRQ ( void ) {
i n t tmp ;
__asm {

/ / c o r e d e p e n d e n t asm code
/ / f o r e n a b l i n g IRQs

}
}

v o l a t i l e i n t i ;
u i n t 3 2 _ t t x d _ a r r a y [ 4 ] = { 1 0 , 2 0 , 3 0 , 4 0 } ;

void _ _ i r q SIF_TXREQ ( void ) {
∗ICU_REENABLE_HW_LINE = 4 2 ;
∗SIF_CLEAR_REG = 0xF ;
i f (4 != i ) {

w_reg_p t r −>t x d _ r e g = t x d _ a r r a y [ i + + ] ;
}

}

void s e n d _ d a t a ( ) {
i = 0 ;
/ / s e t u p ICU R e g i s t e r f o r p o r t 42
∗ICU_CBPORT_42 = ( v o l a t i l e unsigned ) SIF_TXREQ ;
enable_IRQ ( ) ;
whi le ( i < 4 )
;
p r i n t f ("Data Transmitted" ) ;

}

Listing 5.42. Interrupt based transmission.

On the one hand, these formal descriptions can be used for IP reuse, on the
other hand, they can be used for the generation of consistent hardware and
HW/SW interfaces. The following sections introduce a UML based meta
model and a generated API which supports easy access to the specification
data, followed by a technique to import XML based textual specifications into
the meta model. In connection to that, a template-based generation framework
is described which enables a flexible use of the meta model for code genera-
tion.

5.9.1 UML Meta Model and its API

The basis of the generation framework is a UML based meta model which
contains the information about how to model the hardware interfaces, like the
bus interface and the register and bit field information referring to the HW/SW
interface. The specification of each register and bit field of a hardware mod-
ule would be tedious using UML. Hence, a UML meta model is developed
containing all interface and top-level mapping data. Most UML tools provide



HW/SW Interface 139

source code generation but only for a few target languages. Due to the variety
of target languages (SystemC, SystemVerilog, C, etc.), a flexible UML meta
model and generation framework is required. The existing standard IP-XACT
[SPI], which is based on XML, targets IP reuse and IP exchange by focusing
on the packaging of IP. But since we also need to incorporate more functional
aspects in order to support IP generation (e.g., generate stubs for the IP de-
velopment) as well, we defined our own data model instead. In order to fully
leverage the benefits of IP-XACT for automating third party IP integration we
developed import and export filters for IP-XACT as well.

Figure 5.7. Meta model API generation.

Figure 5.7 shows the generation of the API for accessing the data of the
meta model. The meta model itself is developed using a common UML tool
and exported as an XSD schema. From this schema a class library is gener-
ated which offers marshaling and unmarshaling of XML meta model data and
provides set, get, and add functions for the elements.

5.9.2 Specification Import

The previously described API for the meta model supports marshaling to
create an XSD schema compliant XML file. Hence, a tool is developed which
supports an easy import of textual specifications that were created compliant
to company specific guidelines. Figure 5.8 gives an overview of the tool which
converts textual specifications using the API. A Python [Pyt] conversion plug-
in and a textual specification—written with an editor and saved as XML—are
used as input while the meta model compliant XML is the output.

Figure 5.8. Specification import mechanism.



140 HARDWARE-DEPENDENT SOFTWARE

Within the tool the XML based textual specification is objectified using the
Python Gnosis library. The obtained object structure is iterated with the con-
version plug-in and its values and elements are passed to the meta model API.
At the end the object created by the API is marshaled to a formal XML spec-
ification. At the moment many different XML methodologies exist within a
single company which can be imported to support a company wide XML spec-
ification.

5.9.3 Template Based Code Generator

A flexible generation methodology has been developed which provides the
code generation for different target applications, for instance firmware header
files or the register interface of RTL or TLM models. This is achieved by
linking the meta model API to a template engine to access the data of the XML
from the template. Templates allow the separation of model and view, in our
case the data provided by the XML and the target code to be generated. We use
the Python MAKO template engine [Mak] which offers a template language
for conditional branches, loops, and hierarchical templates. Furthermore, the
complete Python scripting functionality can be embedded within a template.
A template can be composed of hierarchical templates, hence, it is possible to
reuse so called sub-templates for the generation of different target applications.

Figure 5.9. Template based code generator.

Figure 5.9 gives an overview of the template generator tool. The template
gets rendered by the MAKO template engine using the data provided within
the XML file.

5.9.4 HW/SW Interface Generation

The HW/SW interface is described by the registers of a hardware module
and by the connection of the CPU core through the bus to the module. Hence,
the meta model must contain both the register and bit field information as well
as the interconnect information of the module and the CPU core. In the fol-



HW/SW Interface 141

lowing an overview of the generation of software header files and the register
interface of a module is given.

Register header files offer low-level access functions to the memory mapped
registers of a hardware module. A register within a hardware module is ad-
dressable by using the base address of the module and the corresponding regis-
ter offset. Each register itself is divided into one or more bit fields. A bit field
is described by a bit offset, bit width and an access type which specifies if a bit
field is readable, writable, or both.

A hierarchical template structure was developed for the generation of a reg-
ister header file as it is shown in Fig. 5.10.

Figure 5.10. Hierarchical register header template.

The main template includes four sub-templates. The Header sub-template
generates register header file specific information like version, name, module
description, and so on. Furthermore, required type definitions are generated by
this sub-template.

The Declaration sub-template iterates over the registers of a module and
generates the register bit field structure and a register union which provides the
access to the bit field structure and the value of the registers. The declaration
of the register and bit field access functions is also generated here.

The ModuleStruct sub-template generates a representation of the address
space of the hardware module using the register offsets, the register data width,
and the addressable unit of the bus interface.

The Implementation sub-template generates the implementation of the ac-
cess functions.

Following the same methodology the RTL or TLM register interfaces are
generated in a consistent way.

5.10 Modeling the HW/SW Interface

The previous sections focus only on the software side of the HW/SW inter-
face. This section describes the modeling of a abstracted hardware module of
the SIF module using transaction level modeling in SystemC. First, a introduc-
tion to transaction level modeling is given. After that it is shown how the SIF



142 HARDWARE-DEPENDENT SOFTWARE

is integrated into a hardware system, including the description of its interface
implementations. At the end of this section a methodology for modeling high
performance simulation models is introduced, which enables complex SW tests
in an early design stage.

5.10.1 Transaction Level Modeling

Transaction level modeling plays a major role in the success of the devel-
opment of so called virtual prototypes (VP) which represent abstract models
of HW platforms. This allows breaking down a system to a set of components
or blocks (representing the actual architecture of the platform top level) com-
prised of concurrent processes. These blocks communicate with each other via
so-called transactions. A transaction represents a high-level form of a com-
munication protocol. All protocol-specific details are encapsulated within a
transaction. Hence, the actual act of initiating a transaction results in a remote
function call from within a process (parent). A designer focuses more or less
on the data that has to be transported rather than the protocol specifics.

In SystemC, the most established modeling language for TLMs, transactions
are modeled as functions which are defined in pure virtual interface classes
and are implemented in corresponding child classes which inherit from these
interfaces. The implementation details of a transaction strongly depend on the
targeted abstraction level. Yet two distinctions with regard to transactions can
be made:

Blocking: A blocking transaction may suspend its parent process which
means that the transaction is resumed in a later delta-cycle. This kind
of transaction can be invoked in suspendable SystemC processes, only
(i.e., SC_THREAD).

Non-Blocking: A non-blocking transaction is atomic and may not
suspend its parent process; the whole transaction is executed within
the same delta-cycle it has been invoked. This kind of transaction can
be called from within any SystemC process (i.e., SC_THREAD and
SC_METHOD).

Invoking a transaction results in dereferencing a pointer that holds the ad-
dress of the target object and in calling a member function of that object. The
whole call or even several calls can happen within a single delta-cycle (e.g.,
with non-blocking transactions). In contrast to that, communication in RTL
models is obtained via signals and hence, always consumes at least one delta-
cycle due to the induced value-changes that form the protocol. In order to pro-
vide connection semantics for transactions as well, SystemC provides a port
concept. Figure 5.11 shows a graphical representation.



HW/SW Interface 143

Figure 5.11. TLM interface.

Transactions are called over initiator ports. Transactions are provided by
target ports. Initiator ports are modeled in SystemC using sc_port and tar-
get ports using sc_export. Both these ports expect a template argument
which holds the interface definition, i.e., the pure virtual class which defines
the signatures of all transactions accessible through this interface. In order to
ensure easy IP reuse and interoperability, a transaction level modeling stan-
dard has been developed by the Open SystemC Initiative. This standard de-
fines different interface classes including transaction signatures and argument
types. These interfaces are organized in terms of their characterizations, i.e.,
into blocking or non-blocking interfaces, and the flow of data, i.e., unidirec-
tional or bi-directional. A module which contains a target port has to provide
an implementation for the transaction defined in the interface class which was
given as template argument to this target port. In the following sections the
so-called transport interface (see Listing 5.43) from the TLM standard is used.

/ / b i d i r e c t i o n a l b l o c k i n g i n t e r f a c e s
t empla te < typename REQ , typename RSP >
c l a s s t l m _ t r a n s p o r t _ i f : p u b l i c v i r t u a l s c _ c o r e : : s c _ i n t e r f a c e {
p u b l i c :

v i r t u a l RSP t r a n s p o r t ( c o n s t REQ & ) = 0 ;

v i r t u a l vo id t r a n s p o r t ( c o n s t REQ &r e q , RSP &r s p ) {
r s p = t r a n s p o r t ( r e q ) ;

}
} ;

Listing 5.43. Blocking transport interface class.

This interface is a bidirectional blocking interface. It defines a function
called “transport” which in turn is templated with two abstract data types (REQ,
RSP)—one which holds the information on a specific bus request, e.g., target
address and data, and one holding the response or rather the result of the trans-
action. The user needs to define request and response classes and needs to
provide these as template arguments to customize the transport interface. Both
initiator and target port need to use the very same interface, and thus also the
same classes for request and response in order to be connected.



144 HARDWARE-DEPENDENT SOFTWARE

5.10.2 SIF Transaction Level Model

Figure 5.12 shows the connections of the SIF to a bus of a hardware system.
This system includes a CPU core, a RAM and the SIF, which is externally
connected to a test-bench element (TBE). In the following the implementation
of the transaction level bus interface and the external RX/TX interface of the
SIF is explained.

Figure 5.12. TLM system.

Bus Interface. The bus interface of the SIF is specified as a blocking trans-
port interface of OSCI TLM 1.0 [OSC]. It is a bi-directional interface which
enables read and write access to a module. The initiator port (sc port) of the
bus is mapped to the target port (sc export) of the SIF. The target implements
the transport interface function. Listing 5.44 shows the implementation of
the bus interface of the SIF. First, the declarations of the bus request and bus
response classes are shown. The bus request class contains addr, data, and
access members. The enumeration type access type, which contains the val-
ues READ and WRITE, is used to indicate the type of the bus access. The
bus response class includes a data member which contains the requested data
in case of a read access and the integer variable status. The port bus port
of type sc export which is templated with the transport interface using the
bus request and bus response classes.

SIF RX/TX Interfaces. The non-blocking put interface is used for the ex-
ternal RX/TX interfaces of the SIF. This interface enables a uni-directional
transfer of the external payload. Listing 5.45 shows the implementation of the
external interfaces. First, the external payload class ext payload is declared. It
contains the data, the start and stop bits, and the parity information. The exter-
nal RX interface is declared as a non-blocking put sc export target port. There-
fore, the nb put transaction function has to be implemented within the SIF.
The external TX interface is implemented as a non-blocking put sc port initia-
tor port. Both non-blocking put interfaces are templated with the ext payload
class.



HW/SW Interface 145

# i n c l u d e < s t d i n t . h >

/ / bus p r o t o c o l
enum a c c e s s _ t y p e {READ, WRITE} ;

c l a s s b u s _ r e q u e s t {
p u b l i c :

a c c e s s _ t y p e a c c e s s ;
u i n t 3 2 _ t add r ;
u i n t 3 2 _ t d a t a ;

} ;

c l a s s b u s _ r e s p o n s e {
p u b l i c :

i n t s t a t u s ;
u i n t 3 2 _ t d a t a ;

} ;

/ / SIF bus i n t e r f a c e p o r t
sc_export < t l m _ t r a n s p o r t _ i f < b u s _ r e q u e s t , b u s _ r e s p o n s e > >

b u s _ p o r t ;

Listing 5.44. Blocking transport bus interface.

# i n c l u d e < s t d i n t . h >

/ / e x t e r n a l i n t e r f a c e pay load
c l a s s e x t _ p a y l o a d {
p u b l i c :

u n i t 3 2 _ t d a t a ;
unsigned c h a r _ l e n g t h ;
bool s t a r t _ b i t , s t o p _ b i t , s t o p _ b i t 2 , h a s _ s t o p _ b i t 2 ,

h a s _ p a r i t y , o d d _ p a r i t y _ b i t ;
} ;

/ / e x t e r n a l RX i n t e r f a c e
sc_export < t l m _ n o n b l o c k i n g _ p u t _ i f < e x t _ p a y l o a d > > r x d _ p o r t ;
/ / e x t e r n a l TX i n t e r f a c e
sc_port < t l m _ n o n b l o c k i n g _ p u t _ i f < e x t _ p a y l o a d > > t x d _ p o r t ;

Listing 5.45. External non-blocking put interface.

5.10.3 Data Flow Abstraction

Fast simulation models of the hardware are required for the development
of complex application software. Current transaction level simulation models
mostly do not meet this requirement. Therefore, new methodologies need to
be developed to close this gap. The first step in this direction is the abstraction
of the data flow from the software to the hardware, and vice versa. Figure 5.13



146 HARDWARE-DEPENDENT SOFTWARE

Figure 5.13. HW/SW data flow.

shows the data flow of the previously described SIF module and the application
software.

As it is shown in the figure, the software side deals with data blocks, and
the hardware side with single data words. In case of a write access to the SIF,
the data block gets divided into sequential data words by the sifWrite function.
In case of a read access, the data words are put together into a data block. The
basic concept of the data flow abstraction is explained in the following.

Basic Concept. As it was previously explained, the software side deals with
data blocks, but the hardware side with data words. The sifWrite and sifRead
driver functions act like a transactor in between which converts a block to
words and vice versa. Not only the conversion costs simulation performance,
but also the bus accesses for each data word. The solution for this problem is
the abstraction of the data flow, like it is shown in Fig. 5.14.

Figure 5.14. Abstracted HW/SW data flow.

As it is shown in the figure, the concept is that the data blocks are not con-
verted by the driver function to data words, but passed directly to the extended
SIF module, which is referred to as SIF+ module in the following. This means
that software and hardware functionality are not considered separately, but in a
common view. In this common view, both the software and the hardware side
are dealing with data blocks. Some requirements need to be fulfilled before the
common view of hardware and software can be realized.



HW/SW Interface 147

Requirements. The first requirement for merging hardware and software
functionality is that both the software and the hardware are executed on the
CPU of the host simulation system. That means that the software cannot be
instruction set simulated on the TLM CPU core, but must be emulated on the
simulation host. This can be solved by replacing the TLM CPU core of the
hardware system with a SystemC module, which wraps the C++ class mem-
bers referring to the TLM bus interface to C, and executes the C software. As
it is shown in Fig. 5.15 the TLM CPU core was replaced by the EMUCPU
SystemC module and the RAM module is no longer part of the system.

Figure 5.15. Host emulated system.

Now the implementation of the register and bit field access functions within
the register header file directly accesses the TLM bus interface. The template,
which generates the access function, can be reused by adding an argument
which specifies whether a header file should be generated for an instruction set
simulated or a host system emulated environment.

This leads to the next requirement to assure the consistency of the TLM
model and the abstracted model. The template-based generator helps to achieve
this requirement, since the existing templates can be reused for the generation
of the abstracted model; the normal TLM interfaces are still used for the con-
trol flow.

The last requirement is that both the bus interface and the external interfaces
of the SIF module need to be abstracted to support block data transfer. The
abstraction of the interfaces is described in the following.

Interface Abstraction. Both, the bus interface and the external RX and TX
interface need to be extended to support block transfer. In addition to the bus
interface, the SIF gets extended by an abstract interface which enables read
and write block transfers. The control flow of the SIF still happens through the
TLM bus interface, but the abstracted data flow is realized using the abstract
interface. An overview of the interfaces is given in Fig. 5.16.

As shown in the figure, the driver functions sifRead and sifWrite do not use
the register and bit field access functions anymore, but they directly access
the abstract interface of the SIF. The sifInit and sifIOCtl functions are still
accessing the TLM bus interface of the SIF using the register and bit field
access functions.



148 HARDWARE-DEPENDENT SOFTWARE

Figure 5.16. Abstracted SIF interface.

The abstraction of the external RX and TX interfaces is quite simple. It is
achieved by extending the ext payload class (see Listing 5.45) with a data block
member of data type char* and an integer block size member referring to the
number of characters contained within the data block array.

The SIF+ model is fully compatible to the SIF TLM module, since it still
contains the full TLM functionality. Therefore, it can be used in classical TLM
simulations.

5.11 Conclusions

Within this chapter the modeling and implementation of HW/SW interfaces
was explained, by high-lighting all involved areas, step by step. First some ba-
sic concepts were presented on both the HW side and the SW side explained
how accessing HW through SW is accomplished. This concept was elaborated
on in more detail taking also HW module internal register layouts into account.
Many examples were presented illustrating alternative modeling styles which
were also discussed. It was also illustrated how the internal communication
infrastructure within a HW architecture is dealt with by the SW along with
synchronization concepts for on-chip communication. Following these gen-
eral considerations more detailed examples were provided using an example
peripheral model. Based on this example the structure of low-level drivers was
explained in detail.



HW/SW Interface 149

As new contributions, it was also described how to improve the overall con-
sistency of the HW/SW interface by using a single-source approach for ob-
taining its implementation. In this approach a peripheral specification is for-
malized in terms of its register layout and internal address map. The formal
description serves as a basis for generating most parts of the HW/SW inter-
face, including also the generation of different abstraction views on the HW as
well some layers of the SW driver development. Furthermore, new concepts
were introduced for raising the abstraction level for HW modeling by abstract-
ing the data flow within the communication between HW and SW and also
merging parts of HW and SW to a single abstract HW interface.

The explained concepts on modeling HW/SW interfaces show the huge di-
versity and the non-negligible complexity of modeling HW/SW interfaces. Us-
ing virtual prototyping, a close interaction of designers developing drivers and
HW designers becomes possible at early stages of the whole design process.
By getting HW and SW even closer through data and interface abstractions,
a much better quality of the HW/SW interface can be achieved due to team
working over different design domains namely HW and SW. Hence, virtual
prototyping can also be considered as a bridge in between these domains.

References

[Mak] Mako Templates for Python. Hyperfast and lightweight templating for
the Python platform. www.makotemplates.org

[MIT] raw Homepage. raw Architecture Workstation.
www.cag.csail.mit.edu/raw

[OSC] OSCI TLM Working Group. OSCI standard for SystemC TLM.
www.systemc.org

[Pyt] Python Software Foundation (PSF). Python Programming Language.
www.python.org

[SPI] SPIRIT Consortium. IP-XACT Standard.
www.SPIRITconsortium.org/tech/docs

[Wik] Wikipedia’s Z80 Article. Zilog Z80.
en.wikipedia.org/wiki/Zilog Z80

http://www.makotemplates.org
http://www.cag.csail.mit.edu/raw
http://www.systemc.org
http://www.python.org
http://www.SPIRITconsortium.org/tech/docs
http://en.wikipedia.org/wiki/Zilog_Z80


Chapter 6

FIRMWARE DEVELOPMENT
FOR EVOLVING DIGITAL
COMMUNICATION TECHNOLOGIES

Stefan Heinen and Michael Joost

Abstract Advances in modern digital communication technologies enable higher data
transmission speeds and thus more and more sophisticated services can be of-
fered to the end user. For a semiconductor manufacturer playing in this arena,
the market demand for new products supporting the latest communication stan-
dards becomes an ever growing challenge. This is owing to the tremendous
complexity increase from one technology generation to its successor—in wire-
less communications this is roughly a factor of ten—while time-to-market has
to be preserved for the sake of competitiveness.

Putting more resources on product development projects can only be part of
the answer to the complexity increase. What is needed in the first place are
faster and more efficient development approaches. In this chapter we present a
product-proven firmware design flow that was recently successfully applied in a
Universal Mobile Telecommunications System (UMTS) baseband chip develop-
ment.

The described flow guides system level modeling in a consistent, reuse-
oriented fashion from abstract algorithmic exploration towards a virtual proto-
type for firmware integration and verification. Important key characteristics are
single source description and code generation of hardware / software interfaces
as well as a sophisticated test bench concept comprising stimulus generation,
response analysis and system state monitoring.

Keywords: Virtual Prototype, UMTS, Single Source Interface Specification, Code Genera-
tion

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



152 HARDWARE-DEPENDENT SOFTWARE

6.1 Introduction

Modern digital communication technologies have become widespread over
the last years. Especially, wireless cellular standards are getting more and more
powerful and meanwhile penetrate people’s daily life all around the world.
Consequences of the ongoing functionality enrichment are highly sophisticated
new products, which require continuous advances in both the hardware and the
software development process. To keep pace with the tremendous complex-
ity growth of future products, traditional development approaches have to be
reviewed, optimized and possibly replaced by new ones.

Looking from the end user perspective at the evolution of wireless cellu-
lar standards means in the first place that higher and higher data rates become
available, which give rise for more advanced services. However, the devel-
oper of such systems is confronted with an exponential growth of operation
modes and parameterization options. Due to the virtually infinite number of
configurations, system verification becomes the major challenge. Especially
for complex logic products, as e.g. baseband chips, the effort for system in-
tegration and verification can today already amount to more than 50% of the
R&D costs. Therefore the development of an efficient, model driven system
level design flow is an important step to meet today’s and future challenges.

Though methodology indeed is one indispensable prerequisite to manage
complexity, almost as important to achieve competitive development cycles
and products is to choose smart system architectures that ease verification and
allow to achieve a high test coverage with reasonable effort. A base band
solution developed for the 3.5G Universal Mobile Telecommunications System
(UMTS)—one of the most complex wireless systems in operation today—may
serve as a good example of how the verification aspect impacts the system
architecture as well as the firmware design and how system level methodology
can provide the necessary system verification framework [HS06, BSH+07].
In this chapter we will briefly browse through the development process with
special focus on firmware and system level verification.

This chapter is organized as follows. In Sect. 6.2, we have a glance at the on-
going evolution of wireless cellular communication standards and identify the
consequences with respect to system complexity. To handle this ever growing
complexity, we derive a set of architectural design paradigms, which proved to
be highly successful in recent large scale product development projects. These
architectural measures are complemented by a set of methodical innovations.
An efficient reuse-oriented system level design flow is presented in Sect. 6.3.
A methodology to handle the overwhelming amount of hardware / firmware in-
terfacing registers that a chip of the considered complexity possesses is subject
of Sect. 6.4. The advantages of the applied approach are consistency through-
out the development process and reduced coding effort. Finally, in Sect. 6.5,



Firmware Developmentfor Evolving DigitalCommunication Technologies 153

we focus on the integration and verification challenge and address the task of
creating a complex system level test bench containing stimulus generators and
response analyzers.

6.2 Evolution of Wireless Standards and the Consequences

As indicated above, the main driving factor for the evolution of wireless
standards is the end-user’s request for higher transmission data rates, e.g. to
enable a faster download of Internet contents. Along with this usually comes
the demand for higher flexibility in order to exploit the available bandwidth on
the air interface in an efficient manner. For instance, it would be a bad idea
to do web browsing over a circuit switched connection reserved for one single
user, since precious resources would be occupied even if no download is taking
place. Clearly, a packet-oriented connection with variable transmission rate is
better suited in this case.

A good example for such an evolution is the extension of the UMTS stan-
dard (originally released in 1999) by the High Speed Downlink Packet Ac-
cess (HSDPA) feature. The basic innovation of HSDPA is a more bandwidth-
efficient modulation scheme called 16-point Quadrature Amplitude Modula-
tion (16QAM), which allows to transmit double the number of bits per time
unit as with the original 4-point Quadrature Phase Shift Keying (QPSK) mod-
ulation. In addition, so-called multi-code transmission is applied to bundle
transmission resources for one user temporarily. Clearly, HSDPA is enrich-
ing UMTS by further operation modes and configuration parameters, which
in total lead to an overwhelming flexibility and verification space. A similar
evolution can be observed when looking at past, current, and future standards
as shown by Table 6.1.

Standard Gener. Extensions
Global System for
Mobile Comm.
(GSM)

2G
2.5G GPRS General Packet Radio Service
2.75G EDGE Enhanced Data rates for GSM Evolution

Universal Mobile
Telecommunications
System (UMTS)

3G
3.5G HSDPA High Speed Downlink Packet Access
3.75G HSUPA High Speed Uplink Packet Access

MIMO Multiple Input Multiple Output
LTE Long Term Evolution

. . . 4G

Table 6.1. Examples of the evolution of mobile standards. Analog systems of first generation
(1G) are not considered.

When mapping such a standard on a technical realization, the system ar-
chitect will be confronted with a multitude of system states, lots of different



154 HARDWARE-DEPENDENT SOFTWARE

scheduling constellations, and processing paths with different timing demands,
e.g. time-critical loops or throughput-dominated processing. Based on his sys-
tem knowledge, the architect has to determine an appropriate hardware / soft-
ware split and to select an architecture with sufficient performance to fulfill
the system requirements. Here, however, the complexity of the system comes
into play. Due to the virtually innumerable1 number of system configurations,
it can become extremely difficult to prove that a certain architecture fits all
needs. Also, the wireless standard does not help much here, since it only spec-
ifies a very limited percentage of requirements and tests. The focus usually is
on basic performance requirements to be met. These specified tests comprise
some few percent (< 5% in case of UMTS) of the overall system functionality
which should be tested before such a complex system can run in production.
Thus, designing systems such that they are suited for efficient verification be-
comes a critical key task for the role of the system architect.

6.2.1 System Design Paradigms

More specifically, the system design and verification methodology must go
hand-in-hand with the specification of an easily verifiable system architec-
ture to achieve competitive development cycles and products. The considered
UMTS base band solution is a good example, showing how the verification
aspect has been taken care of in the system design. We comprised the most
important of the applied design paradigms below.

Orthogonalization of functionality. Functionality is clustered to independently
operating hardware / software blocks with small interfaces to other blocks. In
this way, interference of functional blocks is minimized; a clearly structured
vertical firmware architecture with few horizontal interconnects results, which
is easier to implement, verify, maintain and reuse.

Orthogonalization by hardware / software split. The hardware / software in-
terface is treated as a natural boundary for functional separation. Hardware
is designed to operate widely independent, which avoids time-critical hard-
ware / software interaction and unburdens the firmware from real-time con-
straints.

Restricted configuration grid. Hardware reconfiguration is only allowed at
specific time instances. This simplifies the scheduling of firmware tasks con-
siderably and helps to keep the control flow in the hardware lean.

1The recent evolution of wireless standards is characterized by an dramatic growth of operation modes, the
number of parameters for each system component, and the number of values they can take. For instance,
in UMTS we have normal mode / compressed mode, different diversity schemes, different decoders, huge
amount of puncturing / repetition possibilities in the outer receiver, lots of slot formats for the inner receiver
and so on. All these parameters can be combined almost arbitrarily.



Firmware Developmentfor Evolving DigitalCommunication Technologies 155

6.2.2 Methodology

Furthermore, to handle the complexity of the design and verification process,
an efficient methodology is required. When reviewing our traditional ap-
proaches, two innovative decisions made in this context turned out to be par-
ticularly beneficial in the course of the UMTS base band project.

System level modeling. The system is modeled in terms of a transaction level
Virtual Prototype (VP). Compared to a Field Programmable Gate Array (FPGA)
or the final silicon, the advantages of the VP are early availability (months be-
fore final netlist), better debugging capabilities, and flexible availability (no
board limitation; “virtual hardware” can easily be distributed and updated).

Single source hardware / software interface specification. The huge amount of
hardware registers of highly complex chips requires special care. Therefore,
error-prone and inefficient paper specifications were replaced by a machine-
readable, single-source description, which can be converted into different hard-
ware / software interface representations, such as Register Transfer Level (RTL),
SystemC2 / VP, and HyperText Markup Language (HTML) documentation.

6.3 System Level Design Flow

To understand the development cycle of a wireless modem chip, it is impor-
tant to know that standards like GSM or UMTS provide bit-exact specifications
only for the transmitter side, and hence for the transmission format to be used
on the air interface. The receiver side is specified indirectly in terms of perfor-
mance requirements, e.g. for a given transmission scenario, an upper limit of
the residual block error rate is defined. This way, the standard gives the play-
ers in the field room for differentiation by allowing them to realize their own
receiver algorithms for synchronization, demodulation, and error correction.

6.3.1 Algorithmic Exploration

Consequently, the beginning of the development cycle is characterized by
scientific engineering work on receiver algorithms, including their develop-
ment, evaluation and selection. Simulation at this development stage takes
place on a very abstract level since the focus is on algorithmic performance
and high simulation speed, rather than on architectural issues. A widely ap-
plied simulation approach in this algorithmic exploration phase is the so-called
Stream-Driven Simulation (SDS). Functional entities communicate in terms of
data streams, such that the developer is released from control flow or timing

2System Description Language, IEEE 1666.



156 HARDWARE-DEPENDENT SOFTWARE

Figure 6.1. Algorithmic model based on stream driven simulation.

issues and can fully concentrate on the algorithmic performance, while the
stream-driven simulator kernel takes care of buffer allocation and scheduling.

Figure 6.1 illustrates the typical structure of a stream-driven simulation.
Three composite models (H1–H3) are embedded into a test bench consisting
of a source block (SRC) and an evaluation block (EVL). Each of the composite
models may consist of a multitude of functional blocks (FB21–FB23) as exem-
plified for composite model H2.

Let us consider Fig. 6.1 as the sketch of a link level simulation of a wireless
system. Then SRC may represent a base station model including the propaga-
tion channel, H1–H3 are models of receiver entities, such as front end, demod-
ulator and channel decoder. Finally, EVL is a bit or block error rate counter,
which allows to evaluate the reception quality.

6.3.2 Hardware / Firmware Split

The simulation environment of Fig. 6.1 is an ideal playground to develop,
evaluate and optimize algorithms. As soon algorithms start to converge, a
first guess about the hardware/firmware split is made. This guess is based
on numerous considerations, such as chip area, power consumption, hard-
ware / firmware interface width, and flexibility. To reflect the hardware / firm-
ware split in the structure of our simulation model, we extract all firmware-
related functionality from the functional blocks, in Fig. 6.2 explicitly shown
for FB21–FB23, and comprise it in a dedicated FirmWare (FW2) block. Con-
sequently, this split lets functional blocks FBij convert into pure HardWare
(HWij ) models.

Figure 6.2. Algorithmic model structurally reflecting hardware firmware split.



Firmware Developmentfor Evolving DigitalCommunication Technologies 157

Block FW2 represents a collection of algorithmic functions and parameteri-
zation code providing the configuration for the hardware blocks HW21–HW23.
In particular, the parameterization code, which can be seen as a predecessor
of Hardware dependent Software (HdS), is still on an abstract level since the
configuration of the HW models in Fig. 6.2 is expressed in terms of parameters
rather than registers.

This issue is taken care of by a further refinement step that introduces a
Register File Model (RFM2) according to Fig. 6.3. The FW2 block is now com-
municating via RFM2 with the hardware models, i.e., at its execution, each
hardware model is provided a snapshot of the register file from which the
required parameterization information can be extracted. Thanks to our eX-
tensible Markup Language (XML)-based single source description of hard-
ware / firmware interfaces, the register file model is automatically generated,
as explained later in Sect. 6.4.

An important detail in this context is the interface between firmware (FW2)
and register file model RFM2. Register entities are not accessed directly but
through access methods, which are also automatically generated. Depend-
ing on the respective development stage within the flow, these access methods
can have different expansions, but the access method signature (consisting of
method name and parameter list) remains unchanged.

For instance, in the simulation model of Fig. 6.3, access methods are ex-
panded to code accessing the register file model. Later on, for use in the target
firmware, the access methods will expand to true register accesses. The ad-
vantage of this simple but effective methodology is evident; it allows to start
HdS development very early in the development cycle with a quite realistic
hardware model coming more or less for free.

Figure 6.3. Algorithmic model as means for HdS development and as hardware verification
test bench; RFM = Register File Model; BFM = Bus Functional Model.

Even though we are focusing on firmware development in this chapter, it is
worth mentioning that the model in Fig. 6.3 has a double use in our overall
design flow. As exemplarily depicted, hardware model HW23 is replaced by



158 HARDWARE-DEPENDENT SOFTWARE

its RTL counterpart RTL23. Such embedding of RTL becomes possible by
applying Bus Functional Models (BFM) as adapters translating streams into
RTL signals and vice versa. In this way, the hardware models become the
golden reference for RTL design.

6.3.3 Time-Behavior Modeling

Although the stream driven model shown in Fig. 6.3 offers already quite a
good platform for low level HdS development, its limitations become appar-
ent as soon as the true timing behavior of different functional units interacting
with each other in a system has to be modeled. Naturally, timed event-driven
simulation as e.g. provided by SystemC is better suited for such a purpose.
However, rewriting models for another simulator would not only generate ad-
ditional effort; it also bears the risk of conversion errors.

A one-to-one reuse of the “golden reference” hardware models is therefore
a must in subsequent modeling steps. In our case, the reuse was greatly fa-
cilitated by the ability of the applied stream-driven simulator to be run in a
“nutshell”, i.e. as a sub-function of another simulation model. This allows to
reuse not only isolated hardware model primitives (e.g. HW21 in Fig. 6.3) but
also their interconnectivity.

Figure 6.4 illustrates the integration of a stream-driven model into a time-
behavioral model. Easily the almost unchanged structure of model H2 from
Fig. 6.3 can be rediscovered; only the firmware part FW2 has been stripped
off. The stream-driven island (SDS) exchanges via buffered ports data and
register information with the surrounding Event-Driven Simulation (EDS) do-
main. To model the time behavior, two essential components have been added.
First, an automatically generated bus interface model (BIM2) providing a time-
aware transaction level interface for register read / write accesses as well as
controllers for reset handling (RST), clocking (CLC) and interrupt generation
(IRC). Second, a manually coded state machine controlling inputs / outputs
and the execution of the SDS kernel as indicated by dashed arrows in
Fig. 6.4.

Figure 6.4 gives a simplified example of a state machine having four states.
In the idle state (Id), the model waits to be activated. Triggered by a register
access or some other specific event, a transition into the load state (Ld) can
be issued. Now input data and register information are collected and stored
in the input buffers of the SDS. As soon as the scheduling conditions for the
SDS are fulfilled, the state machine enters the process state (Pr) in which the
SDS is executed and writes processed data as well as modified register infor-
mation to its output buffers. Finally, in the report state (Rp), the chunk of
data delivered by the SDS is transferred to the outside world with the correct
timing.



Firmware Developmentfor Evolving DigitalCommunication Technologies 159

Figure 6.4. Transaction level model with reused stream driven simulation kernel; SDS =
Stream Driven Simulator; EDS = Event Driven Simulator; RFM = Register File Model; BIM =
Bus Interface Model.

From the above, it becomes clear that the state machine alone determines
when inputs / registers are read and when outputs / registers are updated; the
SDS in fact runs in zero time from the event driven simulator’s point of view.
On the other hand, the scheduling conditions of the SDS have impact on the
granularity of timing relations between input and output. For instance, if the
SDS requires a data block of say 100 input items for being scheduled, and there
is one item coming in per 10 ms, 1 s simulation time elapses before the SDS can
be run. So the first output item can be delivered after 1 s the earliest. Real hard-
ware behaves differently; depending on the number of pipeline stages, it would
usually output the first data item much earlier. Fortunately, for firmware de-
velopment such inaccuracies in the modeling are often negligible. Timing ac-
curacy is definitely an issue for time-critical closed hardware / firmware loops,
and special care has to be taken in these cases.

In general, there is a trade-off between simulation accuracy on one hand,
and simulation speed / modeling effort on the other. The key for efficient and
successful modeling is therefore a careful analysis of the needed abstraction
level and the required accuracy. The modeler should therefore always do his
job in close cooperation with system experts, as well as hardware and software
developers.



160 HARDWARE-DEPENDENT SOFTWARE

6.3.4 Virtual Prototype

In the final step of our system modeling flow, the time-behavioral models
are integrated in a system architecture model consisting of the micro core (μC)
and bus subsystems. Figure 6.5 displays the overall structure of this Virtual
Prototype (VP). Beside the signal processing peripheral models (#1 . . . #n)
with their algorithmic SDS kernels, we recognize also pure EDS models
(#n+ 1 . . . #n+ k). These models cover control functionalities of the chip,
such as interrupt, memory or clock control.

Figure 6.5. Virtual Prototype (VP) for firmware development and verification; #1 . . . #n: sig-
nal processing peripheral models; #n+1 . . . #n+k: control peripheral models; ISS = Instruction
Set Simulator; SDS = Stream-Driven Simulator; EDS = Event-Driven Simulator; BIM = Bus
Interface Model; SRC = signal generator; EVL = signal analyzer.

To establish an overall simulation time, the Instruction Set Simulator (ISS)
coming with the μC subsystem and the event-driven simulator (EDS) are syn-
chronized. From the firmware programmers point of view, the VP functionally
and temporally “behaves” in the limits of chosen approximations like the real
hardware. Pre-developed HdS, firmware state machines and schedulers can



Firmware Developmentfor Evolving DigitalCommunication Technologies 161

now be put on the VP and incrementally, feature-by-feature can be brought up
and running, typically several months before real hardware is available.

In this firmware / VP integration phase, the remarkable debugging facilities
of the VP play an important role. For instance, many HdS errors can be easily
found by equipping hardware models with assertions indicating faulty con-
figurations or illegal register accesses. One further very powerful means is
combined firmware / hardware debugging, which allows to step through virtual
hardware and firmware code simultaneously.

Despite these advantages, it has to be noted that in fact a VP alone has only
limited value. Its real strength becomes apparent if the VP is integrated into a
test bench (indicated by SRC and EVL in Fig. 6.5), which can be run in a test
regression. Details on this will be covered in Sect. 6.5.

To conclude this section, we give some figures about our UMTS layer 1 mo-
dem VP. It comprises 9 algorithmic peripheral models controlling in total 12
SDS models (up to 3 per peripheral) and 10 control peripheral models. It is
important to mention that the peripherals in case of our UMTS modem are not
just small hardware accelerators, but represent full-blown subsystems. Owing
to the bit-exact signal processing modeling, the full layer 1 data path in down-
link and uplink can be simulated. The simulation speed has a real-time factor
of about 1/300 on a one-core 2.6 GHz PC, which is several orders of magnitude
faster than a comparable RTL simulation and well-suited for testing of layer 1
procedures (100 UMTS frames take about 5 minutes simulation time).

6.4 Hardware / Firmware Interface

The hardware / firmware interface of the UMTS-Layer 1 (UMTS-L1) system-
on-chip has a complexity of around one thousand registers and ten memories,
grouped in several peripheral units. These are used for the exchange of con-
figuration information, measurement data and events/interrupts between the
firmware and the hardware peripherals. This complexity is typical for todays
designs. In a development project characterized by a challenging time-to-
market time frame, and, consequently, a large number of engineers working
simultaneously on the design, the need for a consistent and flexible change
management regarding the frequent interface changes becomes indispensable.

The hardware / firmware interface has therefore been specified using a for-
mal description in XML. From this central definition all register interface de-
pendent representations have been derived by an automation tool, including

HTML and paper documentation

the bus/peripheral interface in Very High Speed Integrated Circuit Hard-
ware Description Language (VHDL) code, including the complete reg-
ister file, address decoder and interrupt wiring



162 HARDWARE-DEPENDENT SOFTWARE

low-level functions and constants for firmware drivers in programming
languages C++/C (ISO/IEC 9899, ISO/IEC 14882)

register definitions for debugger

Transaction Level Modeling (TLM) and cycle-true interfaces to hard-
ware models in the Virtual Prototype in SystemC

support for verification tools and test benches

The generated VHDL- and HdS code provides just the communication means
between each other entities. This code is combined with manually written
code covering the application-specific high-level aspects of software drivers
and hardware peripherals. The HdS is further completed by another layer that
coordinates both, inter-peripheral and global aspects of the System on Chip
(SoC) device (Fig. 6.6).

Figure 6.6. Hardware/Software interfaces.

The use of a formal specification, together with an automated generation
tool, allows to provide consistency among the many parties involved in the
hardware / firmware interface, even under the constraint of a ‘floating’, emerg-
ing interface definition. Furthermore, this implements a correct-by-construction
approach, as, regarding the implementation of the register interface, only the
tool needs to be verified for correct code generation, rather than each individual
peripheral’s instance.

There are several additional requirements on all flavors of documents and
code produced by the generator:



Firmware Developmentfor Evolving DigitalCommunication Technologies 163

semantic checks on the XML input, e.g. the consistency of interrupt
mask/status/set/clear registers

equalize the user input, e.g. transform names into redundancy-free, yet
unique identifiers

the documentation conforms to corporate layout standards

the code has to cooperate with proven libraries, e.g. VHDL code for bus
interface protocols, SystemC for Virtual Prototype integration

the code must be highly readable, and conform to in-house coding stan-
dards

must allow to analyze the generated code with a source-level debugger,
thus, non-cryptic, with full visibility

software code should allow ‘virtualization’ of hardware peripherals, pro-
viding sort of a hardware abstraction layer

last but not least, the SW code must execute highly efficient, consuming
minimal cycle count under all possible combinations of different register
accesses.

The consequence of these requirements is that the generator tool needs to
contain quite a significant amount of logic, not just a trivial style sheet-type
transformation of the XML source into some other format.

During the development and verification of HdS, the code needs to be ex-
ecuted in many different environments. Often these environments don’t rep-
resent hardware behavior in the same way as the target system. In particular,
it might not reside in the address space of the processor executing the HdS
code. Furthermore, different compilers might be involved, such as the target
compiler and the workstation compiler. Such environments include:

HdS module tests without hardware, simulating hardware peripheral be-
havior in the test bench

HdS running against a TLM model of the hardware (Virtual Prototype)

HdS running against a VHDL simulator of the hardware peripheral

HdS running on target system, with real hardware peripherals

Obviously, flexible moving among those environments has to occur without
modifications on the HdS source code. The standard method of representing
peripheral registers as a set of structures cannot handle these requirements ad-
equately, although the same execution speed on the target system is required.



164 HARDWARE-DEPENDENT SOFTWARE

The code generator for the hardware / firmware interface therefore generates
function-based access methods for register access, which can be individually
adapted to each environment.

Conventional system design has invented a plethora of different kinds of
registers, which usually implement some type of side effect, when the software
accesses the register content. To support all those different register types in a
design tool would cause an unlimited amount of effort. Furthermore, those side
effects often disturb system debugging, as then there are three parties involved
in monitoring and manipulating register contents, the hardware, the software,
and the debugger.

Fortunately, these side effects can easily be avoided, to the benefit of a lean
and simple communication between the HdS and the hardware peripherals.
We have found, by analyzing such attempts thoroughly in many embedded
system designs, that the system requirements could always be fulfilled without
disadvantages using a ‘canonical’ set of only three register types, providing
a clean and simple communication between the hardware peripheral and the
software layer (Table 6.2).

Register type Access Behavior
non-volatile R/W The software can write and read the register content. The

hardware peripheral uses the register content read-only,
and never modifies it.
Thus, the software can assume to know the value from its
most recent write operation, and thus avoid lengthy read-
modify-write cycles when modifying only parts of the reg-
ister content.
This type is used to configure the hardware peripheral.

read-only R The register content is set by the hardware, and read by
the software. The software cannot modify the register con-
tents.
This type includes interrupt status reporting.

write-only W The software can write the register content, but not read it.
The value is interpreted as active-1 encoded, that is, writing
a ‘1’ in a bit position invokes some action in the hardware
peripheral, while with writing a ‘0’ bit, the action is not
invoked.
This type includes the clearing of pending interrupts.

Table 6.2. Canonical Register Types.

For generating a bus/peripheral register interface in VHDL code, further
sub-constraints on those ‘architectural’ types are necessary, e.g. to determine
synchronization with clock signals. These details are usually not visible to the
software layer.



Firmware Developmentfor Evolving DigitalCommunication Technologies 165

6.5 Test Bench

The functional correctness of a software or hardware component is verified
in a test bench (Fig. 6.7). A key requirement for test benches is their capability
for regression testing, that is, provide an easy means to repeat all previously
developed test cases at any time, in order to assure that subsequent modifi-
cations to the test subject implementation did not induce faults or unwanted
side effects into already successfully tested aspects of the implementation. Ex-
ecution of the test suite must be fully automatic, so that the entire test suite
can run succeeding the regular nightly builds or completion of release ver-
sions.

Figure 6.7. Test bench scenario.

There is a multitude of different levels of test benches involved in the devel-
opment of a complex SoC like the UMTS-Layer1. Each level attempts to test
at a specific scope. The next higher level integrates the pre-tested components
into a test scenario at a larger scope. A monolithic test on the complete com-
plex product alone would not lead to a stable system in acceptable time, thus
there is demand for hierarchically structuring the test scenarios.

Examples of such testing scopes relating to software development are func-
tion tests at a module/unit scope, or certification tests of the entire mobile
phone with the UMTS network operators worldwide. What we will discuss
here is a medium-level scope including the entire SoC firmware and a realis-
tic representation of the hardware, either a model furnished as Virtual Proto-
type, or the Application-Specific Integrated Circuit (ASIC) running at a re-
duced clock speed. This scenario allows for both, the early integration of
all hardware and software components long before the ASIC is actually pro-
duced, as well as later on running the same tests against the ASIC. The Vir-
tual Prototype variant provides full visibility on the internals of all compo-
nents, and can thus support debugging even after the ASIC silicon is avail-
able.

6.5.1 Stimuli

An important part of a test bench is the generation of stimuli to drive the
implementation-under-test, as well as the analysis of the output generated by
the Implementation Under Test (IUT) in consequence to those stimuli. In all
but trivial scenarios, these parts can form a major part of the complexity of



166 HARDWARE-DEPENDENT SOFTWARE

the test environment. Static, pre-computed stimuli (test pattern) and output
expectations can only be used for rather low-complexity IUTs.

If the IUT contains multiple state machines, processes and timers interact-
ing with each other and with the external world, hence, the IUT is serving
communication protocols at one or more of its interfaces, the test must fol-
low sort of a dialogue with the IUT. The dialogue brings the IUT into a par-
ticular state, and allows to explore the IUT’s behavior from there. Such a
dialogue is usually highly dynamic. The test must react at the specific time
when the IUT emits a particular output, and respond with situation-dependent
actualized stimuli in conformance with the communication protocol require-
ments.

During the development of the IUT, it frequently happens that an updated
implementation of the IUT shows a minor variation in its response times com-
pared to its predecessor version, but within the limits of the communication
protocol. Such changes can cause huge changes to the timing conditions and
sequence of events during the test execution. A static test case attempting to
predict the exact timing and sequence of events, e.g. based on the earlier imple-
mentation, will consequently fail, although the IUT is still functionally correct
with respect to the protocol definition. Thus, this flexibility renders a static test
behavior useless.

The test environment must implement means to encode and decode the sig-
nals exchanged with the IUT, and also likely contain state-machines and timers,
according to the communication protocol needs. Furthermore, the same or
similar stimuli or analysis might be needed in a plurality of test cases, there-
fore, exporting these functionalities into a collection of sub-routines pays off
quickly. With this partitioning, the test case is significantly simplified by oper-
ating on an abstracted level.

In the scope of a UMTS-L1 SoC, the signals exchanged at the air interface
towards the base station (Node-B in UMTS terminology) are by far the most
complex signals to deal with in the test bench. Effectively, the test bench must
emulate the behavior of the base station in both directions, downlink (stimuli)
and uplink (responses). To reduce the efforts, we have excluded the radio fre-
quency aspects, hence, concentrated solely on the baseband behavior. Also,
behavior beyond the scope of layer 1 are not modeled in this environment. Be-
sides the generation of protocol-conform content, the downlink generator also
includes filters for signal shaping3 and a model representing signal distortions
by noise and volatile signal reflections, modeling the mobile phone moving
relative to the base station and buildings.

3UMTS defines a low-pass filter with root-raised cosine transfer function in order to reduce inter-symbol
interference on the bandwidth-limited transmission channel



Firmware Developmentfor Evolving DigitalCommunication Technologies 167

6.5.2 The Library Approach

The test bench for the UMTS-L1 SoC is supported by a software library
containing a collection of stimuli generators and analyzers for various types of
interfaces. It strictly follows a responsibility partition paradigm. The test case,
as the application using the library, defines what to test. The library supports
the test case in providing any low-level communication issues towards the IUT,
but without actually being bound to any particular test strategy (Fig. 6.8).

Figure 6.8. Library-supported test bench scenario.

The modular, re-usable design of the generator/analyzer library allows to
easily combine its building blocks in various scenarios. Thus, it cannot only be
used to test the IUT as a whole, but also, it can be used in other configurations
to test sub-components of the IUT.

The collection of stimuli generators and analyzers supports many interfaces,
including proprietary protocols, such as chip-internal and external bus inter-
faces, as well as commonly known standard protocols, such as ATM4 and
UMTS-L1, and can easily be extended to support further protocols.

The library structure used for testing the UMTS mobile system is repre-
sented in Fig. 6.9.

Monitoring the behavior of the library, as well as the IUT, during the test
execution is crucial for rapid debugging. Two aspects are considered, trace
and diagrams.

4Asynchronous Transfer Mode, protocol used in wire line communication.



168 HARDWARE-DEPENDENT SOFTWARE

Figure 6.9. UMTS stimuli and analyzers.

Trace

In addition to providing just the bare stimuli signals, a rapid debugging of
problems in the IUT or in the library requires that the library informs about its
configuration and internal activities in a human-readable format. Especially in
the case of UMTS-L1, the data exchanged with the IUT are (almost) random
bit patterns, so debugging a problem from this information is quite impossible.

While a general-purpose debugger allows to inspect all variables in a univer-
sal but unstructured way, this is complemented by the trace capabilities built
into the software, which show relevant information situation-dependent and
in protocol context. This helps in particular in analyzing and understanding
dynamic variations of the information, especially in large data sets. The li-
brary therefore provides extended trace capabilities, of which the example in
Fig. 6.10 gives an impression.

It shows the bits received on the uplink Enhanced Dedicated Physical Con-
trol Channel (E-DPCCH), and how the dynamic physical configuration of the
associated Enhanced Dedicated Physical Data Channel (E-DPDCH) is deter-
mined following the standards-defined algorithm. Obviously, reading the trace
requires a significant amount of knowledge on the protocol details.

Likewise, the IUT also emits similar trace information about its internal
operation. However, that trace is somewhat restricted due to the limitations
imposed by the processor and the communication channel. The IUT trace gen-



Firmware Developmentfor Evolving DigitalCommunication Technologies 169

Figure 6.10. Trace of the Enhanced Dedicated Physical Control Channel (E-DPCCH).

eration is part of the firmware, and constrained to a limited cycle count. It is
communicated to the outside world using a limited bandwidth serial interface.
This trace therefore concentrates more on high-level aspects. Nevertheless, a
flexible management of the over 600 observation points still allows to look into
selected details despite those limitations.

Ergonomic, human-readable trace messages and limited transmission band-
width are conflictive constraints, requiring a highly effective information com-
pression method. Consider that the above trace excerpt covers a period of
660 μsec on one communication channel, while the UMTS mobile has to cope
with around 20 simultaneous channels in up- and downlink, at a total trace link
capacity of only less than 180 bytes during this time period to transport all that
information to the outside world.

The population of observation points is quite floating during the develop-
ment phase. Therefore, this method needs to be sufficiently extensible and
easy to handle, so that the software designer can add or modify trace observa-
tion points at any time without much overhead.

Still, a considerable amount of resources of the SoC, in terms of processor
cycles, buffer and code memory, and communication paths implemented into
the hardware, need to be reserved for the purpose of tracing. The ability to look
deeply into the behavior of the SoC is crucial for success, not only during the
development, but also in field- and certification tests, as well as for long-term
maintenance.



170 HARDWARE-DEPENDENT SOFTWARE

The IUT trace should be consistent through all different platforms that the
HdS code runs on, that is, show the same trace messages in the final product
as in a unit test of a small software module. Obviously, some platforms are
intended for greater visibility onto the system’s internal behavior, and there-
fore provide better capacity, e.g. the software unit module test is not at all
bandwidth-limited with respect to the trace load. These platforms therefore
can display additional trace information, which cannot be implemented in the
final product platform.

6.5.3 Diagrams

Further insights into the operation of the IUT and the stimuli library are
gained by means of graphical diagrams. The graphical representation helps
to comprehend certain contexts more quickly than analyzing a pile of textual
trace messages.

A dedicated tool collects data from various observation points in the stim-
uli library and displays them in a number of diagrams in real-time during
the test run. In the context of UMTS, especially power-over-time, polar In-
Phase / Quadrature-Phase (I/Q), and code-domain diagrams of individual chan-
nels or composite signals, are useful.

The example in Fig. 6.11 shows the UMTS compressed mode gap with pre-
and post-power boosts. During the gap, the transmission from the base station
is stalled for a short moment, so that the mobile phone can measure the signal
strength from other base stations to eventually decide for a hand-over.

Figure 6.11. Compressed mode diagrams.



Firmware Developmentfor Evolving DigitalCommunication Technologies 171

Similar graphical representation is available, real-time or offline, based on
the trace information emitted by the mobile phone.

6.6 Summary

In this chapter, we consider firmware development in the context of the rapid
growing complexity of modern wireless communication standards. System in-
tegration and verification becomes a major challenge in the overall develop-
ment process of mobile platforms. Raising the efficiency in this area is a big
lever for shorter time-to-market and reducing R&D costs.

We presented a twofold strategy to reach this goal. On one hand, we aim at
controlling the system complexity by choosing appropriate hardware / firmware
architectures following the design paradigms given in Sect. 6.2. On the other
hand, we apply an advanced system integration and verification methodology
based on three major elements, (a) an efficient reuse-oriented system level de-
sign flow, yielding a Virtual Prototype, (b) a single source hardware / software
interface specification guaranteeing consistency and correctness by construc-
tion, and finally, (c) a sophisticated verification concept including software-
based stimulus generation and response analysis integrated in a regression-
capable test suite, which is applicable to both the Virtual Prototype and the
final hardware.

The described development strategy has successfully been proven in a recent
UMTS 3.5G product development and will be further applied and optimized
for future products.

References

[BSH+07] M. Brandenburg, A. Schöllhorn, S. Heinen, J. Eckmüller, and
T. Eckart. From algorithm to first 3.5G call in record time: a novel
system design approach based on virtual prototyping and its conse-
quences for interdisciplinary system design teams. In Proceedings
of DATE, 2007.

[HS06] S. Heinen and M. Steinert. Virtual Prototyping for a 3G baseband
chip based on VaST CoMET/Synopsys System Studio Cosimula-
tion. In Proceedings of SNUG Europe, 2006.



Chapter 7

GENERATION AND USE OF AN ASIP
SOFTWARE TOOL CHAIN

Sterling Augustine, Marc Gauthier, Steve Leibson, Peter Macliesh,
Grant Martin, Dror Maydan, Nenad Nedeljkovic and Bob Wilson

Abstract Software-development tool chains are hardware-dependent by their nature, be-
cause compilers and assemblers targeted to specific processors must generate
target-specific code. However, a processor that is both configurable and exten-
sible, with a variable instruction set architecture (ISA) melded to a basic archi-
tecture compounds the problems of adapting the software development tools to
specific processor configurations. The only tractable way to support such ex-
tensible processor ISAs is through a highly automated tool-generation flow that
allows the dynamic creation and adaptation of the development-tool chain to a
specific instance of the processor. To be of practical use, this process (automated
tool generation) must transpire in minutes. This chapter discusses the issues of
application-specific instruction set processor (ASIP) configurability and exten-
sibility as they relate to all the elements of a software development tool chain
ranging from an integrated development environment (IDE) to compilers, profil-
ers, instruction-set simulators (ISS), operating systems, and many other devel-
opment tools and middleware. In addition to drawing out the issues involved, we
illustrate possible solutions to these hardware-dependent software (HdS) prob-
lems by drawing on the experience of developing Tensilica’s Xtensa processor,
as an example.

Keywords: Software Development Tools, Configurable and Extensible Processors, ASIP,
IDE, ISS, Xtensa

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



174 HARDWARE-DEPENDENT SOFTWARE

7.1 Introduction

Software-development tool chains are of necessity hardware-dependent, in
that they must compile, generate, support, and deal with software that is ulti-
mately destined to be executed on a particular processor or family of proces-
sors (even if that software is written to be portable). Because these software-
development tools can be complex, writing them to be specific to only one
processor type and generation at a particular point in time is very inefficient.
Open-source tools such as those developed by the GNU project are meant to
run on many different types of target processors and thus must contain at least
rudimentary features that enable open-source developers to re-target them with
a reasonably contained effort. But the world of processors encompasses more
than just a variety of fixed-ISA processor architectures. It now includes con-
figurable and extensible processors, making it a much more complex and in-
teresting world.

If we look at configurable and extensible processors, the need to create a
dynamically adaptable software tool chain for every variant of a configurable
processor adds considerable complexity to the tool-generation task. Rather
than manually modify the tool chain every few months or years along with the
slowly evolving architecture of a fixed-ISA processor, the engineering team
for a configurable, extensible processor must provide an automated flow that
can generate a new tool chain for each new configuration in minutes or at
most hours. During system development, a development team may create
new processor architecture variations at the rate of one every few minutes,
day in and day out. You must multiply this variability over a worldwide set
of design teams to approximate the actual number of processor variations be-
ing created. Perhaps most important: these processor configurations are cre-
ated by system developers rather than by processor developers or the associ-
ated tool-chain developers, and the system-design community has little desire
or ability to modify the development-tool chain. They merely want to use
it to develop systems. They must have automation to make the task feasi-
ble.

This chapter discusses the challenges of creating software-development tool
chains for configurable and extensible processor systems used for generating
specific instances of application-specific instruction-set processors (ASIPs).
As will be seen, this kind of hardware-dependent software is both vital and
practical. It enables a viable SoC development methodology based on proces-
sor extension and the application of ASIPs to real product requirements. The
existence of commercial configurable processors is proof that such method-
ologies are possible. That such technologies have succeeded in SOC designs
over a wide application range testifies that such methodologies are practi-
cal.



Generation and Use of an ASIPSoftware Tool Chain 175

7.2 Range of Processor Configurability

Several examples of configurable and extensible processors exist. A good
summary is found in [IL06]. One such example is Tensilica’s Xtensa proces-
sor, which has been well documented in [Gon00], [WKMR01], [RL04] and
[Lei06]. Processor configuration and extension have a very wide scope: con-
figurable and extensible Xtensa processor features include:

Register file size

Endianness (little or big)

Addition of special function units such as multipliers, multiply-accumu-
lators (MAC), floating point units, and DSP instruction units

Local-memory interfaces for local instruction and data memory (RAM
and ROM), and a generalized local-memory interface

System-memory interfaces for attachment to global on-chip buses

Debug, tracing, and JTAG ports

Timers, interrupts, and exception vectors

One or more load-store units

Multi-operation VLIW instructions with flexible instruction encoding
allowing intermixing of native 16- and 24-bit instructions with multi-
operation 32- and 64-bit instructions

Five- or seven-stage pipeline

Definition of ports and queue interfaces of arbitrary width (as wide as
1024 bits) that connect directly into and out of the processor’s datapath.
Queue interfaces can be attached directly to hardware FIFOs. More than
300 such interfaces can be configured on a processor.

Instruction extensions, defined in a Verilog-like language called TIE
(Tensilica Instruction Extension) to define application-specific instruc-
tions. A TIE compiler translates these instruction-extension descriptions
directly into hardware execution units that are automatically embedded
in the processor’s datapath. These extensions are under the control of
the software tool chain. TIE allows a designer to specify input/output
arguments of an instruction, storage elements and registers (existing and
newly created), and the instruction syntax and semantics.



176 HARDWARE-DEPENDENT SOFTWARE

Figure 7.1. Processor generation via GUI-captured configuration and ADLs.

7.3 Models for Generating Software Development Tools

In general, you configure an extensible processor using one of two methods
or a combination of both. The first method involves some kind of Graphi-
cal User Interface (GUI) that allows you to select configuration parameters
using check boxes or other selection tools. Very often these parameters spec-
ify coarse-grained structural elements such as the cache sizes, the presence or
absence of various interfaces, and the inclusion or exclusion of special func-
tional units such as multipliers or floating-point units. Instruction extension
often requires an Architecture Description Language (ADL, see [MD06] for a
survey)—a specialized language particularly suited for describing instruction
set architectures or parts thereof. For example Tensilica’s TIE is an ADL—one
that has been developed over a number of years and over several architectural
generations.

Both ADL-based descriptions and GUI-captured configuration parameters
feed into a processor compilation and generation process as illustrated in
Fig. 7.1. There are two basic models for creating a software (SW) tool chain
based on the generation of a configured processor. These two models can be
roughly categorized as the “static compiled tools” approach, and the “dynamic
run-time tools” approach.

Figure 7.2 illustrates the static compiled tools approach. In this approach,
the act of processor generation also generates the source code for all software
tools (compiler, ISS, linker, etc.) and target software (operating systems, li-
braries, etc.). This source code completely captures the particular configura-
tion and extension properties of the particular instantiation of the configurable
processor being developed. These development tools are then compiled for a
specific host development platform using standard tools and they are then used
by SW developers on the host platform to develop, verify, and debug code for
the target processor.

In the dynamic run-time tools approach, the act of processor generation does
not produce the source code for all the software tools. Instead, it produces para-
meter files and possibly source code for part of the software tools (for example,



Generation and Use of an ASIPSoftware Tool Chain 177

Figure 7.2. Static compiled tools generation.

simulation descriptions for new instruction semantics, which can then be com-
piled into dynamic libraries). These parameter and control files are loaded or
accessed at run-time by parameterized software tools. For example, a compiler
might access a parameter file at run time to determine the configured size of a
processor’s register files; an ISS might dynamically access a compiled library
to find the semantics of an instruction extension. Figure 7.3 shows the dynamic
run-time tools-generation approach.

Each approach has advantages and disadvantages. The static compiled tools-
generation approach is simpler to implement. There is no need to separate
the tools into configuration-independent and configuration-dependent portions.
The static approach can produce a more optimized set of software tools (op-
timized for execution time, not necessarily optimized in features or quality of
results). For example, a compiler will often employ many data structures with
arrays indexed to the number of registers or other machine resources. Using
the dynamic approach, the compiler writer must either set maximum limits on
the resources or must use dynamic data structures. Either choice can result in
execution-time inefficiencies. Using the static approach, the compiler writer is
free to use static limits based on the actual processor configuration.

The dynamic approach makes it much easier for the system developer to
create and manage multiple processor configurations. A tool chain can be very



178 HARDWARE-DEPENDENT SOFTWARE

Figure 7.3. Dynamic run-time tools generation.

large while configuration files and dynamic libraries can be quite small. Build-
ing and potentially downloading large files from a vendor’s server can be very
time consuming. Storing many tool chains for several configured processors
can also consume a lot of resources. Considerable storage space can be saved
if the only variation in a software tool chain from one configured processor to
the next is a small set of configuration files and dynamic libraries.

Developing processor extensions, like developing software, is an iterative
process dominated by making small changes, testing, evaluating, and repeat-
ing. The difference between generating a new tool chain in one minute versus
one hour makes a substantial difference, both qualitative and quantitative, that
can lead to large increases in developer productivity. If tool-chain generation
required a day or a week, the resulting inefficiencies would make use of con-
figurable processors unwieldy and impractical.

The choice of a strategy can be made primarily on the choice of the proces-
sor-generation strategy. If the processor is designed by configuring and extend-
ing an existing processor, then much of the tool set remains constant through
the configuration process. Excess time will be needed to re-generate an essen-
tially similar output each time unless the dynamic approach is used. However,
if the processor is designed primarily by compiling an ADL description from
scratch each time instead of extending an underlying base architecture, then
the static compiled tools approach may make the most sense.



Generation and Use of an ASIPSoftware Tool Chain 179

The nature of the target software brings in additional considerations. A C li-
brary or an operating system can be compiled with a configuration-specific
compiler or these software packages can be compiled to a base processor con-
figuration that is common to an entire family of configured processors. Com-
piling to a base processor configuration allows for binary compatibility across
an entire family and helps third-party vendors to distribute binaries suitable for
multiple configurations. Using a configuration-specific compiler can, in some
instances but not others, make dramatic performance differences. An MP3 bi-
nary targeted for an audio DSP will certainly use a compiler configured for
that DSP while the C library printf function might be compiled with a base
configuration.

If processor generation is not based on extending an existing base architec-
ture, then trying to support the entire configuration space with one tool driven
by configuration and extension parameters and controls can be extremely com-
plex. The software-development tools must encompass the complete design
space in their parameters and controls. This requirement may lead to a very
difficult development process and a difficult maintenance problem, especially
if significant evolution occurs in the processor’s architecture from one genera-
tion to the next.

Separate from the decision of whether to employ static or dynamic tool
generation is the decision of whether to build the processor-specific tools on
a centralized server or on the client (i.e. developer) side. Building tools
on a centralized server is simpler and more reliable. Build processes can
be quite complex and trying to replicate a build process on the large variety
of customer systems can be problematic. On the other hand, building tools
on the client side is potentially faster and simpler for the system developer
and is easily scaled as the number of teams generating new processors in-
creases.

7.4 Evolution of Tool-Development Approaches

The Tensilica Xtensa processor-generation process originally employed a
static compiled tool-generation approach, as discussed in [Gon00]. This choice
was made predominantly for expediency; Tensilica was a new company and
needed to release a product quickly. However, the need for a dynamic system
soon became apparent. Extra processor-configuration options and the evolu-
tion of the TIE language including the added capabilities of increasingly pow-
erful processor extensions had two effects. First, customers started to build and
experiment with a much larger number of processor configurations. Second,
the development tools also became richer and more complicated, and therefore
took more time to build. Both effects increased the advantages of the dynamic
approach.



180 HARDWARE-DEPENDENT SOFTWARE

With the move to a dynamic tool-generation system, Tensilica had to choose
whether to build the dynamic parts on a centralized server or client-side at the
developer’s site. While considering these options, it became clear that proces-
sor configuration and extension had very different usage models. Extensibility
requires much more interactivity. Writing an extension instruction using an
ADL, just like writing an application program in a high-level language (HLL),
is an interactive activity involving several iterations to fix the syntax, several
more to get the semantics right, and several more to evaluate the effects of the
new instructions on the targeted application program. Allowing the system de-
veloper to make a processor-configuration change and to evaluate that change
in a minute tremendously improves productivity over a system that requires
even 10 minutes, let alone an hour, to make such changes. In contrast, simple
processor configurability requires much less interactivity. For example, when
configuring an additional interrupt, actually using the new interrupt in the ap-
plication code and creating devices in simulations that trigger the interrupt take
a lot of time. Waiting 10 minutes or even an hour to generate the development
tools in such cases will not make much difference.

While extensibility requires much more developer interactivity, configura-
bility touches larger portions of the development-tool chain. The more things
built on the client side, the longer the time required for the client-side build,
blunting some of the benefit of the dynamic approach. Therefore, Tensilica
chose a hybrid approach. TIE files (which add processor extensions) are com-
piled dynamically on the client side while almost all configurability aspects are
largely built into the tools in a configuration-build process run on Tensilica’s
servers.

There are a few exceptions to this general principle. For example, linker
scripts can all be regenerated on the client side—which is necessary because
users can change system memory maps long after the chip is built, for every
new board that incorporates that chip. Another example is in the ISS, which
allows the user to experiment with different cache sizes at run time to support
design-space exploration. Such exceptions are relatively few.

Over time, the TIE language and its usage evolved to support the descrip-
tion of much of the Xtensa processor’s core microarchitecture and not just the
extension instructions. Thus TIE moved from being a language for add-on
instructions to be more of a mainstream ADL. With this evolution, the TIE
compiler evolved to support some client-side software generation combined
with server-based generation. More on TIE can be found in [RL04]. Refer-
ence [WKMR01] describes TIE as it was introduced. This reference comments
that, as of the time of the paper (2001), “TIE is not intended to be a complete
processor description language.” Although TIE is still not a complete descrip-
tion language for Xtensa processors, it has evolved and grown considerably in
its descriptive ability.



Generation and Use of an ASIPSoftware Tool Chain 181

The hybrid Tensilica approach to tool generation is illustrated in Fig. 7.4. In
this approach, the processor is described by three basic parts:

Special-case processor infrastructure—parts of the Xtensa processor
hardware are described in Verilog or in parameterized Verilog form rather
than TIE. This portion of the processor description includes special in-
structions for synchronization and cache handling. To ensure that the
software tools have a complete picture of the ISA, hand-coded C de-
scribes these parts. The hand-coded C is compiled into an associated
library that’s used for the software tools, labeled special case isa.so.

The basic Xtensa processor core, configured by the system-design team
including such structural parameters as number of registers, memory in-
terfaces, etc. The basic processor core also includes the core RISC ISA
built into every Tensilica processor. This description is captured in the
TIE ADL and compiled into core libraries by the TIE Compiler (TC).

Extensions to the basic Xtensa core processor that define an application-
specific ASIP. These descriptions are captured in customer-written TIE,
which defines new instructions, new state (registers and register files),
and special interfaces into the processor’s data path (TIE queue inter-
faces and ports). TC is used to compile customer-written TIE into user
libraries.

The three sets of isa.so libraries (which are dynamically linked libraries or
dll’s on Windows hosts and shared object libraries (.so) or archives (.a) on
Linux hosts) are combined to make the configuration-specific library libisa for
the specific configured, extended Xtensa processor. This libisa file then serves
as an input into all the various software tools in the tool chain (compiler, de-
bugger, ISS, etc.) to give each tool a view of the configured and extended ISA
for which the software is being generated. In addition, other files emerge from
the compilation process, such as a core params file that describes additional
processor attributes. These other files also feed into the software tools. They
are conceptually similar to the libisa files discussed above. This basic software-
tools architecture underpins most of the hardware-dependent tool chain that we
discuss in the following sections.

Note that the official name of the libisa library is the xtisa library (i.e., the
Xtensa ISA library). Colloquially within Tensilica we call it libisa and these
terms are used interchangeably in this chapter.

Figure 7.5 illustrates the basic components of the Tensilica software tool-
chain. These will be discussed in much more detail in Sects. 7.5 through 7.15.



182 HARDWARE-DEPENDENT SOFTWARE

Figure 7.4. Tensilica software tools generation process.

Figure 7.5. Tensilica parameterized software toolchain.



Generation and Use of an ASIPSoftware Tool Chain 183

7.5 The C/C++ Compiler

Tensilica’s C/C++ compiler, called XCC, is based on the Open64 compiler
released as open-source by Silicon Graphics (SGI). Open64 is itself a hybrid of
SGI’s original proprietary MIPS compiler mated with the GNU compiler, gcc.
The gcc portion serves as the compiler’s front end: the compiler’s language-
specific part that parses and analyzes the input program. The optimizing and
code-generating back end of gcc is bypassed and the modified gcc front end in-
stead feeds into the SGI compiler’s optimizer and code generator. This hybrid
arrangement produces a compiler that is highly compatible with gcc yet offers
the superior optimization capabilities and flexibility of the SGI compiler.

Tensilica based its compiler on Open64 for several reasons. Using the gcc
front end makes XCC highly compatible with gcc, which is the most familiar,
most widely used compiler among Tensilica’s potential customers. At the same
time, Open64 is freely available and it is based on a widely used, commercial-
quality compiler, which gives XCC both accessibility and quality.

Open64 was designed to be a high-performance compiler. It generates high-
quality code at standard optimization levels and has many more advanced opti-
mizations such as interprocedural analysis, software pipelining, and feedback-
directed compilation. Finally and perhaps most importantly, Open64 was de-
signed to be flexible and easily modifiable, which are both critical for a com-
piler base slated to be enhanced to support processor configurability and ex-
tensibility. There are substantial enhancements in XCC that support processor
configurability and extensibility.

Before describing the compiler, it is useful to understand the programming
model. Processor configurability is not typically exposed to the programmer.
XCC, for example, will use a hardware multiplier to implement the C/C++
“*” operator when a hardware multiplier is available. If no hardware multi-
plier is available in the targeted processor configuration, XCC will emulate
the multiplier in software. Thus, the programmer need not be aware of the
configured hardware available in a specific processor configuration for normal
C/C++ multiplication.

Extension is sometimes invisible to the programmer because XCC has been
enhanced with many types of inference. However, extensions must often be
exposed because of their nature. Every TIE instruction is directly accessible
through C or C++ intrinsic functions. In addition, the TIE language allows de-
velopers to define new C data types that are mapped to TIE register files along
with appropriate instruction sequences to load and store these data types from
and to memory. The C/C++ programmer can use these new data types as if they
were native by declaring scalar variables, arrays, or structures of them. Data
operations are described via intrinsic functions but register allocation, instruc-
tion sequences for loading and storing new data types, and addressing arith-



184 HARDWARE-DEPENDENT SOFTWARE

metic and control-flow generation are all handled automatically just as native
data types are. The generated dll’s contain information about the side effects
and pipelining of all TIE instructions, enabling the C/C++ compiler to sched-
ule these instructions correctly and efficiently. Programming with custom data
types is usually much simpler than using C’s original data types because al-
gorithms directly map into appropriate operations using application-specific,
data-type extensions. There is a substantial reduction of the mental gymnastics
required of the programmer when application-specific data types are employed.
The reduction in mental complexity reduces errors and improves coding pro-
ductivity.

XCC additionally supports various types of TIE inference. TIE allows the
creation of flexible length instruction extension (FLIX) instructions, which are
a code-space-efficient variation of VLIW using variable-length instructions.
The TIE developer starts by creating simple custom operations. The TIE de-
veloper then defines one or more instruction formats consisting of several op-
eration slots. Finally, the TIE developer lists all the operations that can appear
in each operation slot in each FLIX instruction format.

The C/C++ programmer writes code in terms of operations, not instructions
and XCC automatically schedules and bundles these operations together into
FLIX instructions. The result is a code stream that employs wide FLIX instruc-
tions only where multiple simultaneous operations can be performed. Where
simultaneous operations cannot be executed, as determined by the compiler,
the code stream consists of the simpler, smaller instructions.

TIE also supports SIMD, or vector, versions of either standard or extension
scalar instructions. Vector instructions are marked in TIE with properties to
indicate that they are vector versions of particular scalar instructions. XCC in-
corporates a vectorizer that analyzes loops, identifies inherent parallelism, and
automatically uses SIMD instructions where possible to reduce loop execution
time and code size.

TIE supports fused instructions or fusion, in which one new instruction
is equivalent to a sequence of other instructions. For example, a TIE devel-
oper might write a multiply-shift instruction that multiplies two variables and
shifts the result by a fixed amount. Instruction fusion speeds execution and
reduces code size. XCC has a graph-based matching phase that searches for
and automatically infers fused instructions from the processor’s base instruc-
tions. The instructions used for fusion can be standard processor instructions
or TIE-defined extension instructions.

XCC is also capable of combining the basic inference techniques. For ex-
ample, XCC can infer the fusion of a SIMD instruction that resulted from the
vectorizer, and it might schedule the resultant operation inside a FLIX bundle
to maximize parallel operation.



Generation and Use of an ASIPSoftware Tool Chain 185

The following is an example of a simple multiply-accumulate (MAC) in-
struction captured in TIE. This uses a register file and state variables, and ac-
cepts 24-bit values from the register file, multiplying them together and accu-
mulating the result in the state variable. The resulting MAC instruction can be
invoked in C/C++ source code via a pragma or may be inferable by the XCC
compiler.

regfile XR 24 16 x

state ACCUM 56

operation MAC {in XR in0, in XR in1}{inout ACCUM} {

wire [47:0] prod = in0 * in1;

assign ACCUM = prod + ACCUM;

}

schedule mac_sched {MAC} {

use in0 1; use in1 1;

use ACCUM 2;

def ACCUM 2;

}

Configurability and extensibility are supported as integral parts of XCC.
The TIE compiler generates a shared library that describes the properties both
of TIE-defined extension and standard instructions. The generated library in-
cludes descriptions of the resources used by each instruction during every exe-
cution cycle, the operands and immediate ranges used, and the FLIX bundling
constraints. XCC uses this library to build resource tables for each instruction.
The compiler then uses these tables to schedule operations and bundle them
together into FLIX instructions. A pattern-based code generator performs the
code selection using rules that are dynamically created for each configuration
based on actual processor configuration parameters.

TIE data types are represented in the internal representation of the compiler
as native data types. Loads and stores of these TIE data types are represented as
standard load and store operations operating on these dynamically configured
data types.

Other instructions are represented as intrinsic functions. There are two
classes of intrinsics. The first, called intrinsic operations, are well-behaved
TIE instructions that produce no side effects. Intrinsic operations are subject
to the complete set of standard compiler optimizations including loop hoisting
and common sub-expression elimination. TIE instructions that produce side



186 HARDWARE-DEPENDENT SOFTWARE

effects are represented as intrinsic calls. While some parts of the XCC com-
piler will conservatively treat these instructions as function calls, the compiler
knows the side effects for each instruction in the context of different optimiza-
tions and can make appropriate decisions. For example, alias analysis knows
that a TIE load can never write to memory regardless of address computation
complexity, even if the load also reads or writes from arbitrary TIE states.

XCC serves as the basis for XPRES, a tool that can automatically generate
TIE processor extensions based on C or C++ source-code files. XCC ana-
lyzes the input C program for vectorization, fusion, and VLIW opportunities.
XPRES then performs a global search over combinations of potential TIE ex-
tensions to suggest one or more set of extensions that provide different amounts
of performance improvement at different cost points (gate counts). XCC can
then automatically infer and use all of the XPRES-generated TIE instructions
from the same or a sufficiently similar input program. The input program might
be a standard C/C++ program or might itself be a program already taking ad-
vantage of base extensions. XPRES bypasses the need to explicitly use TIE-
based intrinsic functions in many cases. For example, a developer might man-
ually write TIE to implement scalar fixed-point instructions and then rely on
XPRES to create vector versions of those instructions.

7.6 The Assembler

Like assemblers for many other processors, Tensilica based its assembler
on the GNU assembler and its chain of releases. The most difficult part of an
assembler to create is the code to handle symbols, symbol files, and relocations.
These issues were solved in the GNU tool chain a long time ago. As a result,
all assembler ports including the Xtensa derivative of the GNU assembler share
this proven code.

Tensilica’s assembler extends the GNU assembler by replacing most of the
table-driven aspects of the GNU assembler with the libisa mechanism dis-
cussed earlier. Instead of a hard-coded table of instructions, operands and
encodings, the assembler opens a dynamic library and programmatically deter-
mines the instructions present and their representations. This approach allows
the assembler to target any configuration without rebuilding the assembler it-
self. For example, Tensilica could change the ISA-defined bit representation
of an instruction and the assembler would continue to work without rewriting
or even recompiling the assembler source code.

By the admittedly imperfect lines-of-code measurement, the only GNU-
based assembler close to Tensilica’s in complexity is the assembler used for the
Intel’s IA64 architecture (Itanium). Three factors contribute to the complexity
of Tensilica’s assembler. First, using dynamic libraries to describe the instruc-
tion set, operands, register files, and other processor resources adds significant



Generation and Use of an ASIPSoftware Tool Chain 187

complexity when compared to hard-coded tables. Second, various trade-offs in
the Xtensa processor architecture have pushed complexity into the assembler.
Third, configurability can increase the burden on assembly-code writers and
Tensilica wished to ease that burden, not add to it.

Some things that the Tensilica assembler handles differently than other as-
semblers include:

Instruction Relaxation: If a written instruction uses a constant that
cannot be encoded as an operand, Tensilica’s assembler converts that
instruction into a series of instructions that match the semantics of the
original instruction. However, for a configurable processor, the opti-
mal instruction sequence could differ depending on the options selected.
Tensilica’s assembler therefore dynamically determines the options that
are present and then chooses the optimal instruction sequence. For ex-
ample, an instruction sequence could take a different amount of space on
different processor configurations, which would require assembly-code
writers to be conservative when they estimate the range of a branch.
Because Xtensa branch instructions have relatively limited range, using
the more conservative branch-instruction sequence can degrade perfor-
mance. With the Xtensa assembler’s sophisticated relaxation mecha-
nism, the assembly-code writer can use the shortest-range, most-efficient
branch instructions in their code and can be confident that the assembler
will substitute a less efficient branch-and-jump sequence automatically,
but only when necessary to reach the branch-target address. This feature
relieves the assembly-code writer from the burden of tracking ranges.
This feature does not derive from configurability or extensibility per
se, but is definitely a side-effect of the processor architecture and thus
hardware-dependent.

Instruction Scheduling: Again, this feature relieves the assembly writer
of much of the burden of tracking which instructions are present in a spe-
cific processor configuration and how long these instructions will take
to execute. For example, the Xtensa ISA supports several different se-
quences for loading large immediates. The optimal sequence and its
scheduling characteristics are configuration-dependent. The assembly-
code writer can simply choose the simplest variant, confident that the
assembler will later choose and schedule the optimal one. Furthermore,
some processor configurations contain Tensilica’s FLIX multi-operation
instructions, where one instruction contains several individual opera-
tions, all executed at once. Processor configurations incorporating FLIX
instructions often exhibit dramatic performance improvements, but it is
impossible for a third-party company to write assembly code that uses
an unknown FLIX scheme. Therefore, the assembler scheduler bundles



188 HARDWARE-DEPENDENT SOFTWARE

operations into FLIX instructions, which allows assembly-code writers
to target any configuration, ignore FLIX, and still get the performance
advantages of FLIX instructions with processor configurations that have
it.

Instruction Alignment: Like most modern architectures, Xtensa proces-
sors fetch instructions in power-of-two-sized words (specifically four or
eight bytes per instruction fetch). However, the Xtensa ISA is unusual
in that it consists of 16- and 24-bit instructions (and, for some extended
configurations, 32- or 64-bit FLIX bundles). An Xtensa processor takes
an additional single-cycle, taken-branch penalty if an instruction crosses
a fetch boundary. The mismatch between the instruction size (2, 3, 4,
or 8 bytes) and the instruction-fetch width (4 or 8 bytes) potentially
makes this branch penalty common—especially combined with the other
assembler transformations. To avoid this performance-robbing branch
penalty whenever possible, the assembler therefore automatically aligns
branch targets by:

1. Converting 2-byte instructions into equivalent 3-byte instructions;

2. Inserting padding in unreachable locations; and

3. Inserting no-ops in locations where the processor would otherwise
stall. This last feature is enabled by the instruction scheduler.

As above, this last characteristic does not arise from configurability or ex-
tensibility considerations, but it is definitely hardware-dependent. A code de-
veloper can turn off all these transformations to get classic assembler “What
you write is what you get” behavior. In fact, some assembly-code writers new
to the Xtensa architecture and Tensilica’s tool-chain do so. However, most
eventually turn these features back on when they see how much easier the code
is to write and how much more efficient it is after the assembler optimizes it.

7.7 The Linker

A linker serves as the intermediary between object files generated by the
compiler or the assembler and the executable code required to run the program
on a target processor. A formal definition of a linker is

“. . . a computer program used to link. The linker takes one or more object files,
assembles them into blocks which are to fit into particular regions in memory,
and resolves all external (and possibly internal) references to other segments of
a program and to libraries of precompiled program units. This prepares relocat-
able object code for execution, thus producing a binary executable file” [Lap01],
p. 280.



Generation and Use of an ASIPSoftware Tool Chain 189

To elaborate on this definition, the linker is responsible for placing the code,
data, and other sections of object files into an executable file. Object files con-
tain symbolic references and the linker must resolve these references to spe-
cific addresses based on target hardware. Symbolic references in object files
are identified by relocation records, often just called relocations, which specify
the symbolic address being referenced, the position in the object file where the
reference is located, and a relocation type. Each processor architecture defines
a set of relocation types that corresponds to the different kinds of symbolic
references supported by that architecture. The simplest relocation type is an
address. This relocation type is often used in data sections. The linker com-
putes the address value for the data and inserts it directly into the executable
image at the location specified by the relocation.

Other relocation types correspond to specific processor instructions. For ex-
ample, some processor architectures synthesize a 32-bit address constant with
a 2-instruction sequence, where the first instruction sets the high bits of a reg-
ister and the second instruction adds the low bits. Each of these instructions
needs a different relocation type. For the first “set-high” relocation, the linker
needs to insert the high bits of the address value into the instruction’s imme-
diate field. For the second “add-low” relocation, the low bits of the address
must go into the immediate field of a different instruction. In both cases, the
relocation type is tied to a particular manipulation of the address value (e.g.,
extracting the high or low bits) and also to a particular method for inserting
the value into the executable (e.g., shifting and masking into the immediate
operand field of a particular processor instruction).

Handling relocations for extensible ISAs presents a dilemma. If a new in-
struction, such as a conditional branch, supports symbolic references, a new
relocation type must be defined to be used with that instruction. Otherwise,
the linker will not know how to apply relocations on that instruction. Unfor-
tunately many software tools handle only a fixed set of relocation types for a
particular processor ISA. Generating a new and arbitrary set of relocation types
for each processor configuration is not viable with such tools. The Xtensa ar-
chitecture resolves this dilemma by defining a single generic relocation type
for most instructions. We then rely on information from the Xtensa ISA li-
brary to provide the relocation details. To handle the FLIX multi-operation
instructions discussed earlier, we actually define a set of these generic reloca-
tions, one for each operation slot in a FLIX instruction. By themselves, these
generic relocations do not provide enough information to be useful. To ap-
ply one of these relocations, the linker must decode the instruction, locate the
immediate operand field, evaluate an instruction-specific function to transform
the address value into an immediate operand value, and then encode that value
back into the instruction. All of these operations are performed via the Xtensa
ISA library.



190 HARDWARE-DEPENDENT SOFTWARE

This is a powerful and flexible approach to configurable relocations but this
approach also has some disadvantages. The advantage is clear: new instruc-
tions can be relocated without any changes to the linker. The disadvantages
are more pragmatic. Resolving relocations requires substantial information
from the Xtensa ISA library, which is implemented with shared object plug-
ins and runs on the host development platform. The full set of relocations are
currently not supported on target Xtensa systems. This creates a problem for
various dynamic loaders that read object files and resolve their relocations on
target systems; the set of such loaders includes the Linux kernel module load.
There is no fundamental problem here—it would be quite possible to generate
the necessary relocation information in a form that could be included in a dy-
namic loader running on the target. Another drawback is that applying Xtensa
relocations is considerably slower than for traditional fixed relocation types
because of the added complexity.

Long ago, the GNU tool chain incorporated the notion of “linker scripts”
that allow developers to define memory maps for linking purposes. These maps
include the locations for segments in local memories, reset vectors, interrupt
vectors, and other vectors. Tensilica’s processor generator automatically gen-
erates a memory map for each processor configuration during the processor-
generation step. From that map, we generate linker control scripts (several dif-
ferent kinds, for different uses—e.g. ISS, RTL simulation, FPGA prototyping,
and production target code). This default memory map is sometimes sufficient
but often requires manual modification to match the actual set of local and
global memories present or to reflect application-specific software partitioning
of these memories.

Using GNU-style linker scripts directly can be difficult because they are
very complicated. This is especially true for ROMing linker scripts for Xtensa
processors because the vector locations are completely configurable and the
resulting linker scripts are complex. To ease this burden, we have developed
some intermediate tools that generate the correct GNU linker scripts from sim-
pler memory maps. Another tool can be used to modify existing linker scripts
based on incremental changes to the memory map, rather than requiring that a
new map be generated from scratch whenever a change occurs.

7.8 The Loader

Although the linker will create a large, complete, and self-contained ob-
ject file for a single processor, some cases require special loaders. The term
“loader” is rather generic and several parts of Tensilica’s tool chain can carry
out loading functions, such as:

GDB (the debugger), which loads code onto a target board using On-
Chip Debug (OCD) capabilities



Generation and Use of an ASIPSoftware Tool Chain 191

The ISS, which loads code into a simulated target processor’s simulated
memory

The Makefile sequence, which builds a ROM image from a ROMable
executable

The Linux kernel module loader

The Linux user-side dynamic application loader, and

The Tensilica dynamic library loader, which is used—for example in au-
dio/video applications—where a configured processor may be capable
of running many different digital codecs but only has the local instruc-
tion memory to hold one or a few of them, keeping the rest in ROM or
flash memory to be loaded as needed. The library loader allows loading
code without the use of an operating system.

For a normal ELF executable file, the loader loads the ELF image contents into
the target processor for execution. If the executable is fully resolved by the
linker, the loader uses the ELF program headers (pheaders). If the executable
still has some unresolved relocations, the loader may need to resolve the reloca-
tion addresses using much the same techniques as the linker does as described
in the previous section. However, the Tensilica dynamic library loader does not
currently include all the relocation handling code that the linker does, because
this added code would make the loader very large and much more complex.
The lack of this added code limits dynamic library loading to simpler cases.
For example, it is possible to create position-independent codec libraries that
can be loaded anywhere in system memory. The actual loading location for
these codecs is then determined at run time. This ability preserves some flexi-
bility in using the resulting configured processor and its software in a complex
SoC. A similar capability is available in the Linux user-side dynamic applica-
tion loader.

7.9 The Disassembler

Very little needs to be said about the Xtensa disassembler. Its design very
naturally falls out from the structure of our hardware-dependent tool chain.
That is, the disassembler’s design falls out from the support libisa libraries
as depicted in Fig. 7.4. The disassembler decodes any object-file line and
distinguishes the instructions and operands using API routines. If a program
has been compiled and linked with the correct options to support debugging,
then the debugger can display meaningful symbol names in the disassembly
views instead of displaying absolute addresses and unintelligible function en-
try points.



192 HARDWARE-DEPENDENT SOFTWARE

7.10 The Debugger

Tensilica offers multiple debuggers with Xtensa processors to support di-
verse customer needs. Underlying this approach is the software library strat-
egy depicted in Fig. 7.4. Of course, the libisa libraries are used to retrieve
all instruction information: encodings, operands, etc. In addition, a debug-
ger support library (libdb) is automatically generated along with the processor.
Libdb contains information required by all of the debuggers—for example, in-
formation on registers and their properties: name, size, alignment, saving and
restoration, etc. Both internally supported debuggers and various 3rd-party
debuggers access libdb to obtain all needed information about registers: the
fixed registers that are part of every Xtensa processor configuration and the
configured registers—TIE-defined registers created as part of the processor’s
instruction extensions.

Tensilica provides a variant of the GNU gdb debugger. It is called xt-gdb and
it supports basic debugging. The xt-gdb debugger also supports sophisticated
single-processor and multiprocessor debugging within the Xtensa Integrated
Development Environment (IDE), called Xtensa Xplorer. (The Xtensa Xplorer
debug environment is discussed in more detail in Sect. 7.15.)

7.11 Other Software-Development Tools

The assembler, linker, and other software-development tools and utilities
such as the objdump program and size utility, came from the GNU binutils
project. We modified these tools as appropriate for the Xtensa configurable
and extensible processor family and to allow them to deal with configuration
and extension issues (for example, we created xt-objdump). We donated these
changes back to the GNU project.

7.12 Operating Systems and Other System Software

We support the porting of operating systems and other software to Xtensa
processors via a hardware-dependent software layer called HAL. Normally,
the term “HAL” refers to a “Hardware Abstraction (or Adaptation) Layer”.
To be more precise, the Xtensa HAL is really a processor description, a PAL
(Processor Abstraction Layer), which describes those aspects of a processor
configuration that are visible to programmers. These are of particular impor-
tance to operating systems. Thus the HAL reflects both relevant software and
hardware aspects of the processor configuration. The use of a HAL allows
the operating-system writer to create low-level system code that conditionally
depends on processor configuration parameters. For example, the operating
system should initialize a cache only if that cache is present in the processor
configuration. In other words, operating systems need to be made aware of
certain processor configuration parameters for proper OS operation.



Generation and Use of an ASIPSoftware Tool Chain 193

The primary form of the Xtensa HAL is a small set of source-level header
files. With the header-file approach, the OS source code must be rebuilt for
each processor configuration. If a binary OS port and distribution is required,
the OS binary (usually in relocatable object form) is kept independent of proces-
sor configuration by adding an intermediate layer built using the generated
header files. A generic binary library version of the Xtensa HAL is provided
for this purpose, which may be augmented with a thin set of OS specific files
distributed in source form for certain performance critical code sequences sen-
sitive to processor configuration. The HAL header-file strategy is more reason-
able today than in times past because many contemporary operating systems
such as Mentor Graphics Nucleus, expressLogic ThreadX, and Linux are dis-
tributed in source code rather than binary form. Therefore, configuring the
OS requires nothing more than the inclusion of the correct HAL configuration
header file and OS recompilation.

The HAL header files describe many aspects of the processor configuration-
some that an operating system cares about and some that it may not. For ex-
ample, specific options that describe exception handling and indicating that
the configuration includes a zero-overhead loop instruction can maximize the
efficiency of an RTOS. The HAL header files also describe the processor’s reg-
isters and their properties because operating systems generally need to know
what registers to save and restore during interrupts and context switches.

The HAL layer is then used as part of an overall RTOS porting strategy
for Xtensa processors. An RTOS-porting layer is written once, incorporating
the HAL for the configuration and adapting the OS to the processor. This ap-
proach saves time when porting subsequent RTOS generations to a particular
processor configuration. We have used this approach successfully for sev-
eral generations of the Nucleus and ThreadX RTOSes. Some OS vendors
create their own Xtensa ports by using the generated HAL files and relevant
documentation; others involve Tensilica for assistance or for specific ques-
tions.

The HAL-based strategy is not used much for fixed-ISA processors, which
results in manual recoding of each OS for each new processor generation. The
only reason that hand-coded OS porting works at all for fixed-ISA proces-
sors is because OS porting occurs relatively infrequently for these proces-
sors.

Tensilica provides a very simple runtime called XTOS, which works with
customer-specific configurations and supports some OS basics such as inter-
rupts and exception-handling. However, XTOS does not support multithread-
ing or multitasking nor does it include device drivers beyond simple character
I/O. A number of Tensilica’s customers use XTOS for single-threaded appli-
cations when they do not need a full set of RTOS features.



194 HARDWARE-DEPENDENT SOFTWARE

7.13 The Instruction Set Simulator (ISS)

As discussed earlier in this chapter, the initial Xtensa ISS was regenerated
with each new processor configuration. We later changed this approach so that
the ISS now has a configuration-independent part and configuration-dependent
ISS libraries that are created during processor generation and within the TIE-
compilation development loop. There is a fairly strong correlation between
the ISS configuration-independent and -dependent portions and the processor
hardware structure. That is, much of the processor hardware is described in
TIE form and the corresponding Verilog processor description is generated by
the TIE compiler (TC); the rest of the processor hardware is described in hand-
coded Verilog.

The hand-coded-RTL part of the processor tends to describe the processor’s
infrastructure including the instruction-fetch engine, local-memory interfaces,
the load-store unit(s), cache-memory interfaces, write buffers, store buffers,
and the PIF (main bus) interface logic. Software analogs of these hardware
components constitute the configuration-independent core part of the ISS. Al-
though these parts are “configuration-independent,” the processor hardware
and the ISS are parameterized. Parameters include, for example, the presence
or absence of certain local-memory interfaces (for instruction RAM, instruc-
tion ROM, data RAM, and data ROM) and the bit width of these local-memory
interfaces. The configuration-dependent part of the ISS tends to correspond to
the TIE description that is used to generate the rest of the processor hardware
including the instruction semantics (for the processor’s base ISA and all TIE
instruction extensions), registers and register files, other TIE state, and excep-
tion semantics.

The Xtensa ISS is cycle-accurate and directly models the processor pipeline.
ISS instruction processing consists of three steps: stall computation, instruc-
tion issue, and semantic instructions for the activities occurring within each
pipeline stage. The stall computation is cycle-accurate and models pipeline
interlocks. The instruction-issue step defines use of registers within each stage
and sets up the computation for the stall functions of subsequent instructions.
The TIE compiler generates the configuration-dependent parts of the ISS dur-
ing the processor’s server-based configuration build or within the local (client-
side) TDK (TIE Development Kit) development loop. The associated xtensa
params files provide additional configuration-specific parameters and the core
and configuration-specific parts are connected to create the full ISS. The ISS
uses function pointers and dynamically loaded libraries for efficiency.

Interfaces and signals provide communication between the core and confi-
guration-dependent parts of the ISS. For example, when an instruction wishes
to load memory, the ISS has an interface called mem data in that is called via
the semantic functions generated by the TIE compiler. This function, which re-



Generation and Use of an ASIPSoftware Tool Chain 195

sides in the configuration-independent part of the ISS, then determines whether
the memory reference refers to local memory, to a cache, or if it needs to be
sent out via an interface to a system memory based on the address mapping
defined in the processor’s configuration.

The ISS uses core signals to communicate between its configuration-de-
pendent TIE part and its hard-coded, configuration-independent part, which
represents the HDL-coded part of the processor. These core signals are used
for special states, such as the DBREAK state. DBREAK allows the ISS user to
set a watch on various memory locations so that a breakpoint occurs when the
watched locations are accessed.

Instruction extensions written in TIE are modeled in the configuration-de-
pendent part of the ISS; much of the fixed ISA is also written in TIE and is
therefore modeled in this part of the ISS. Some instructions are partially mod-
eled in TIE for instruction decoding but the semantics are left blank and are
modeled via the hard-coded ISS core. Special signals are used to signal execu-
tion of such instructions to the ISS. For example, synchronization instructions
(ISYNC, DSYNC, and ESYNC) or cache-access operations such as dirty-line
replacement tend to be hardwired in the ISS using this communication mecha-
nism because they are very tightly bound to the processor infrastructure. (Con-
sequently, users cannot provide their own cache model.)

The Xtensa processor’s configurable nature combined with the dynamic na-
ture of the ISS results in some operation inefficiencies. For example, when
an interrupt or memory access occurs, the ISS must dynamically check the
settings of various configuration parameters (in this example, the interrupt set-
tings and the cache parameters) to determine which part of the ISS logic to
execute. Given a wide range of configuration parameters, the ISS code must
check a lot of Boolean and integer variables, resulting in a lot of branching
code. A well-written ISS for a fully fixed-ISA processor or a completely re-
generated, configuration-specific ISS would not have this overhead. However,
we feel we’ve made a reasonable tradeoff to create a flexible software system
that matches and complements the flexibility in the Xtensa processor archi-
tecture. Of course, many fixed-ISA processors also have some variability that
their ISSes must handle—checking cache parameters for example. In theory
we could move more of the overhead into the configuration-specific part of the
ISS but this choice would make the ISS harder to maintain and would increase
the amount of time taken to build new processor configurations. Although it is
hard to estimate the cost of this overhead, one reasonable estimate is that the
cycle-accurate mode of the Xtensa ISS runs at about half the speed that it would
if it was fully regenerated for each new processor configuration. We believe
this represents a good engineering compromise between speed and flexibility.

However, software developers always want more speed so we have recently
expanded our ISS strategy by adding a fast, functional, instruction-accurate



196 HARDWARE-DEPENDENT SOFTWARE

simulation capability called TurboXim, which uses just-in-time compiled-code
techniques to significantly speed simulation. (The speed improvement varies
widely depending on target code and processor configuration but, as a rule of
thumb, 20–50X speed improvements or more seem realistic.) Because Tur-
boXim performs just-in-time code generation and compilation for specific tar-
get code on a specific processor configuration, it knows exactly what code to
generate and avoids a lot of conditional processing. The instruction-accurate
(as opposed to cycle-accurate) TurboXim allows software and firmware devel-
opers to trade off speed for accuracy. Of course, developers would prefer to
have the speed while retaining 100% cycle accuracy, but this is not practical.

TurboXim reports the instructions executed but makes no attempt to predict
the actual executed cycles that the target code might use while executing on the
target processor. It is possible to add the ability to predict cycle counts using
table-lookup functions in a kind of “cycle-approximate” mode and this feature
remains a future possibility for this technology. Meanwhile, it is possible to
switch between cycle- and instruction-accurate simulations dynamically dur-
ing a simulation run. This ability enables a kind of hybrid simulation where
a sufficient amount of execution in cycle-accurate mode can be used to pre-
dict the overall cycle count of the complete simulation. Used in this manner,
a hybrid simulation might run 99% in instruction-accurate mode and only 1%
in cycle-accurate mode. Of course, some combination of both these methods
would be possible.

7.14 System Simulation

The ISS is provided as a standalone tool for single-processor software de-
velopment and for use within two system-simulation environments: XTMP,
which uses a proprietary C-based modeling API, and XTSC, which is based
on SystemC. These system-simulation environments allow the easy use of ISS
models for one or more configurations of the Xtensa processor and allow the
creation of generic models that can be adapted to configuration characteris-
tics with little or no model source-code modification. This is supported by
two mechanisms: transaction level modeling (TLM) approaches that provide
generic methods for classes of processor interfaces, and introspection, which
is supported by a variety of model-query methods that allow all the relevant
configuration characteristics of a particular configuration to be determined.

Examples of the TLM interfaces include TIE queue interfaces supported by
standard methods that work for all queue sizes, local-memory interfaces with
standard access methods that work for all memory widths (these local mem-
ory interfaces are very similar to the system PIF memory interfaces), and TIE
lookups, which support a common set of access methods for all lookup in-
stances. Examples of the introspection routines include APIs that allow the



Generation and Use of an ASIPSoftware Tool Chain 197

simulator to determine configuration parameters, the presence of all config-
ured interfaces, and access methods for the ports provided for these inter-
faces. When these configuration-specific interface methods and ports are com-
bined with a number of generic devices (such as memory devices, connectors,
routers, arbiters), then system-simulation models for multi-core systems can be
developed, and also linked to third party models and system simulation tools.

7.15 The IDE (Integrated Development Environment)

Tensilica’s integrated development environment (IDE), called Xtensa Xplor-
er, is based on the increasingly popular, open-source Eclipse development en-
vironment. Xtensa Xplorer provides two essential capabilities:

1. Access to the Xtensa Processor Generator (XPG), which allows a devel-
oper to define a particular Xtensa processor configuration by selecting
architectural parameters and by adding TIE descriptions of instruction
extensions (as discussed earlier).

2. A software-development IDE that allows the developer to manage target-
software sources and compiled-object files, to target and migrate soft-
ware to different processor configurations, to manage projects and li-
braries, to launch software compilations and ISS simulation runs, to de-
bug single-processor and multiprocessor configurations, to launch the
XTMP and XTSC multiprocessor simulation models, to profile software
execution, to model energy consumption, etc.

The IDE for Xtensa processors must be both very generic and very configura-
tion-aware. It must also have the capacity to allow selective addition of con-
figuration specifics to generic functions as it evolves. By basing our IDE on
Eclipse rather than developing an IDE from scratch, we have benefited from
the substantial body of work created by the Eclipse open-source community.
By doing so, however, we accepted a less-than-ideal foundation for Xtensa
Xplorer.

Several years ago, the Xtensa configuration tool, which provided access to
the XPG, was completely separate from the IDE. All processor configurations
were created using a Web-based tool and, after a specific processor config-
uration was built, the developer downloaded the freshly generated processor
RTL and the relevant software-development tools to a local workstation. The
world of processor configuration and software development, which took place
on a client workstation, was completely separate from the world of processor
generation, which occurred in Tensilica’s server farm.

With the move to the Xtensa Xplorer IDE, there was an opportunity to link
these two worlds more closely, thus providing a faster development flow. We
did this in a limited and strictly controlled way to limit our own develop-



198 HARDWARE-DEPENDENT SOFTWARE

ment time and risk. Thus, the Xtensa Xplorer IDE still maintains the con-
cept of two relatively separate spaces: the configuration space and the classi-
cal IDE develop–compile–build–run–debug space for target-software develop-
ment. The IDE space has only a limited view of the configuration space—just
enough for it to obtain the configuration information it needs to be an effective
development environment. In hindsight, this approach has been very benefi-
cial. It permits more independence between these parts of the tool chain and
allows the parts to evolve independently, with less development effort than if
they evolved in lockstep.

Being based on Eclipse, the Xtensa Xplorer environment could incorporate
capabilities of the Eclipse C Development Toolset (CDT) to serve the needs
of Xtensa developers. The CDT was built as a generic debug environment for
an open-source processor and debugger, which actually served as a good ar-
chitecture for a configurable IDE. The CDT’s operating principles are based
on an API that queries the specific debugger about relevant processor config-
uration parameters, such as the register set (size, names, and types). Then the
debugger’s user interface renders the register set on screen.

The underlying Xtensa Xplorer Eclipse debugger is xt-gdb, which we also
offer as a standalone debugging tool. This debugger provides configuration-
specific information via its text command/response API to the Xtensa Xplorer
debugger. Because xt-gdb allows the user to set breakpoints, to modify register
values, and offers other features while running, there is in fact a continuous
two-way flow of information between the Eclipse debugger and xt-gdb. If we
were dealing with a fixed-ISA processor with known configuration informa-
tion, then it would be possible to make this communication link a little more
efficient. On the other hand, the existing debugger architecture is easier to
evolve and the latency involved in these communication operations is rela-
tively low when running on modern workstations, despite the large amount of
dialogue between processes that produces reasonably high socket traffic.

CDT’s design proved useful for our purposes because it was architected to
support many different back ends. CDT assumes that the tools have reason-
able introspection so it provides a higher level of control. Thus we feel that
CDT achieves a reasonable balance between performance and hardware inde-
pendence. Other IDEs tend to blend their capabilities together in such a way
that it is difficult to see where the debugger starts or ends and where the rest of
the IDE starts or ends, which might potentially be nice in a closed world but
not very useful in a configurable one.

Many Eclipse-based C IDEs employ gdb or a variation of gdb as their de-
bugger; other IDEs from other vendors, including Mentor Graphics (EDGE)
and Nokia, use proprietary debuggers. Some companies, Wind River for ex-
ample, avoid the CDT for debugging completely and build directly on the
Eclipse debug framework. With command-line-driven tools such as gdb, com-



Generation and Use of an ASIPSoftware Tool Chain 199

mands might need many seconds to execute and can produce thousands of
lines of “user-readable” output, which is not very amenable to IDE integration.
Thus the MI layer in gdb was created to support UI-based IDEs. Although
MI defines many commands, only about 70–80% of them are implemented
(a byproduct of being an open source product) and thus there are some debug-
ging capabilities that must use communication approaches apart from the MI
layer.

The Xtensa configurator part of the IDE is very heavily hardware-dependent.
Here, a complex set of relationships between the parameters and their ranges or
settings define the processor’s configuration space. For backwards compatibil-
ity, the configurator knows about previous architectural generations. (We sup-
port more than five Xtensa processor generations with our development tools.)
To make the management of the configuration space tractable, we model the
options in Xtensa Xplorer rather than in the output range of the configura-
tion hardware or in processor features. For example, the configurator knows
that the floating-point (FP) option requires the Boolean-registers option, so we
don’t model the actual output of the FP option in terms of instructions and
operands. This is a way of abstracting the basic configuration set and space
into something simpler.

The configurator’s model of the configuration space thus becomes a collec-
tion of rules and valid parametric selections or values (or a value range). These
rules are organized into cascading value chains so that a selection of one para-
meter propagates into associated rules. These rules are expressed in Java. They
could be written in some kind of HLL and compiled into the configurator but
it seems reasonable to keep the rules in Java because that is Eclipse’s native
language. There are some generic rules, such as a value dependence on other
values being set, but there are also very specific rules such as dependencies
between parameters in specifying interfaces to local instruction or data RAMs.

The most complex rules deal with address specifications and dependencies.
For example, our exception handlers require that there is enough space to load
an address at the point of a branch. The required amount of space might be
12, 16, or 24 bytes depending on the actual instruction. This rule is expressed
using a complex set of rule code. The UI both predicts and constrains what the
downstream development tools can work with.

Because the exact instruction generation for an exception handler is not nec-
essarily known when the configuration rules are being written, there is a ne-
gotiation process to ensure that the configurator stays in the feasible region of
the configuration space. The configurator must also be aware of potential fu-
ture software upgrades so that the generated configurations are as compatible
as possible with future upgrades.

One key point that results from defining a configuration space in the config-
urator is that the configuration space of possible processors is actually derived



200 HARDWARE-DEPENDENT SOFTWARE

from the characteristics of the XPG build process. This space can become big-
ger than can reasonably be built into a rules-driven configurator. That is, there
may be feasible configurations that are extremely difficult to abstract into a
configurator. Although this aspect of configuration may seem like a limitation,
it has the beneficial side effect of constraining the range of what can be ex-
pressed, thus keeping configurations safe, predictable, and sane. Another way
of stating this concept is that the XPG process defines a model or space for
possible configurations that is strictly larger than the model or space defined
by the IDE configurator. Although this restriction may appear to be limiting, it
has not proven to be a problem in practice.

The current configurator rules, readers, writers, and generators require about
50,000–60,000 lines of Java code. This code is organized into a sequence (ac-
tually, a tree or network) of abstract models of the configuration space that
reflects the architectural evolution of the Xtensa processor. Because we need
to understand rules and options from many processor generations, the config-
uration rule base grows monotonically and becomes more complex over time.
It becomes an increasingly deep class hierarchy of rules, values, legal restric-
tions, and choices. This growth clearly increases the maintenance burden with
each new architectural generation, but such is the price of change.

One fundamental choice made in developing the IDE-based configurator,
the front end of the development process, was whether to drive it with the same
file types, formats, and files as the back end of the process, which generates
hardware. We made a conscious decision to keep these front- and back-end
files, file types, and file formats separate, which suits some parts of the process
better than others. The basic issue is that there are different concerns at dif-
ferent stages of the hardware-generation process that are best expressed with
different views and files. This aspect of the overall problem argues for separa-
tion rather than trying to have one omnibus master database.

For example, the configurator has a relatively simple view of some options.
The software tool chain generates dlls and shared object files that represent
the outcome of the configuration process: for example what the registers, new
instructions, latencies, and interlocks are and not what they could have been or
how they were specified. CAD-flow engineers care about interactions among
different components (which are not necessarily instruction blocks). In fact,
the configuration space of arbitrary hardware as described with an HDL is
far bigger than the TIE configuration space. Consequently, RTL developers
must test their resulting designs far more than is required of the relatively
restricted design space encompassed by the specification capabilities of the
Xtensa processor configurator and TIE. Thus processor generation based on
TIE gives a more robust system and a much lower risk of error.

An RTL-centric hardware team requires a much bigger set of rules and
tradeoff space that allow them to generate and test combinations and configu-



Generation and Use of an ASIPSoftware Tool Chain 201

rations that are impossible to specify via the IDE-based configurator. Having
the same rules and constraints across the whole engineering community and
tool flow would be unnecessarily limiting and cause additional work (to en-
force the rules given the different development histories) and might actually
reduce quality by reducing the scope of testing.

Much of the configurator guards against situations that could produce un-
reasonable results. These rules are enforced by the TIE compiler. The IDE
TIE editor has an integrated rules checker. Around 99% of the TIE grammar is
defined in the editor, which deals with low-level syntactic checks and options.
In addition, the TIE compiler has an internal mode that can generate a model
of the processor. The IDE uses this mode, for example, to show dependen-
cies between stages of TIE instructions and state variables and registers and
other semantic analysis. This use of the TIE compiler occurs in the TIE edi-
tor’s background mode. Background syntax checks run continuously for quick
feedback but semantic analysis is performed only on demand because it can be
quite time consuming.

7.16 Conclusions and Futures

Using a configurable and extensible processor demands a sophisticated set
of software development and verification tools. Such tools must support both
the process of determining the optimal configuration and programming the re-
sulting configured processor. Allowing an almost infinite range of processor
options makes the tool-creation process intractable unless it is highly auto-
mated.

In this chapter we have outlined some of the options open to creators of
this class of hardware-dependent software, illustrated with practical examples
based Tensilica’s Xtensa processors. Architectural growth and improvements
drove considerable evolution in our tool-development strategy. The options
available and choices made should be useful to anyone contemplating the de-
velopment and support of flexible processor architectures.



202 HARDWARE-DEPENDENT SOFTWARE

References

[Gon00] Ricardo E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2):60–70, 2000.

[IL06] Paolo Ienne and Rainer Leupers, editors. Customizable Embed-
ded Processors: Design Technologies and Applications. Morgan
Kaufmann, San Francisco, 2006.

[Lap01] Philip A. Laplante. Dictionary of Computer Science, Engineering
and Technology. CRC Press, Boca Raton, 2001.

[Lei06] Steve Leibson. Designing SOCs with Configured Cores: Un-
leashing the Tensilica Xtensa and Diamond Cores. Morgan Kauf-
mann, San Francisco, 2006.

[MD06] Prabhat Mishra and Nikil Dutt. Processor modeling and design
tools. In Luciano Lavagno Louis Scheffer and Grant Martin, ed-
itors, EDA for IC System Design, Verification and Testing, vol-
ume I of Electronic Design Automation for Integrated Circuits
Handbook. CRC Press/Taylor and Francis, Boca Raton, 2006.

[RL04] Chris Rowen and Steve Leibson. Engineering the Complex SOC:
Fast, Flexible Design with Configurable Processors. Prentice
Hall, Upper Saddle River, 2004.

[WKMR01] Albert Wang, Earl Killian, Dror E. Maydan, and Chris Rowen.
Hardware/software instruction set configurability for system-on-
chip processors. In Proceedings of the 38th Design Automation
Conference, pages 184–188. Assoc. Comput. Mach., New York,
2001.



Chapter 8

HIGH-LEVEL DEVELOPMENT, MODELING
AND AUTOMATIC GENERATION
OF HARDWARE-DEPENDENT SOFTWARE

Gunar Schirner, Rainer Dömer and Andreas Gerstlauer

Abstract With the increasing software content in modern embedded systems, software
development clearly dominates the design cost. The development of Hardware-
dependent Software (HdS) is especially challenging due to its tight coupling
with the underlying hardware. Therefore, automatic generation of all embedded
software including the HdS is highly desirable to meet today’s shortened time-
to-market demands.

In this chapter, we describe a system-level design approach that offers a
seamless solution for generating embedded software, starting from an abstract
specification and going to an implementation. In our high-level development en-
vironment, the application is developed in a platform-agnostic format that hides
most implementation detail. The target platform and the mapping of the applica-
tion to the platform are described separately. A system compiler then automati-
cally generates a system model at the transaction level for performance analysis
and development. The same system model later serves as an input to a software
generation process, which generates the final binaries for all processors in the
system. These binaries include the application, device drivers, and operating
system code.

Using a design flow with automatic software generation offers significant
productivity gains. At the same time, it allows the designer to focus on the
algorithms without being burdened by implementation-level detail.

Keywords: System-level Design, Development Environment, Firmware, Software Genera-
tion

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



204 HARDWARE-DEPENDENT SOFTWARE

8.1 Introduction

Software development starts dominating the design cost of modern complex
Multi-Processor System-on-Chip (MPSoC). The software content is increas-
ing since it allows to flexibly implement complex features and to quickly react
to customer demands. In this context, Hardware-dependent Software (HdS)
is especially challenging, due to its tight coupling with the underlying hard-
ware (HW). Traditional approaches of manually implementing HdS become
very time consuming. With a large amount of implementation detail, a manual
implementation is tedious and error prone. Additionally, validating and debug-
ging software executing on real hardware delays this important process until
the availability of the final hardware platform. This hinders a parallel devel-
opment of hardware and software and may result in missing the tight time-to-
market constraints. On the other hand, a validation using low-level instruction
set simulation suffers from a slow simulation, especially in a multi-processor
context.

To increase productivity, we envision an integrated design flow that elimi-
nates the need for low-level programming. In this chapter, we propose high-
level HdS development that hides HW dependencies from designers and allows
focusing on algorithms without being burdened by driver-level details.

In our high-level environment, as outlined in Fig. 8.1, the application is
developed in a platform-agnostic specification written in a System-Level De-
sign Language (SLDL). The specification model consists of a hierarchical
process graph containing sequential C code in each process. In the hierar-
chy, processes are composed in a parallel-sequential fashion. Communication
between processes is captured in abstract communication channels and shared
variables, independent of their later implementation.

Figure 8.1. System design flow overview.



High-Level Development, Modeling and Automatic Generation of HdS 205

The targeted hardware platform is specified separately, containing proces-
sor and hardware allocation, mapping of processes to processors and hardware
blocks, and the definition of the communication topology and its parameters.
While mapping the specification to the platform, the designer also specifies im-
portant software aspects, such as task mapping, the definition of task priorities,
and selection of the scheduling policy for each processor.

Based on application and platform specification, our system compiler auto-
matically maps the application down to a set of processors and busses, creating
a set of tasks for each processor, and generating the communication drivers
between processes depending on their HW/SW mapping. The application-
specific hardware-dependent code is generated by the system compiler. As
one output, it generates a system model at selectable abstraction level (with
different amount of detail).

The abstract system model is valuable for virtual prototyping, early perfor-
mance estimation, and validation of the feasibility of the HW/SW mapping. It
also enables functional validation of the application over the given platform.
Furthermore, it exposes the effects of dynamic scheduling for each processor,
allowing optimization of priority mapping and guiding static load balancing.
Altogether, the system model is a convenient virtual debugging platform that
is usable before HW availability.

Most importantly, the system model serves as an input to the back-end SW
generation, which generates and cross-compiles the C code. In particular, it
generates the firmware, drivers and interrupt handlers, which implement the
external communication of the processor. It also adjusts the application code
to execute on top of the selected Real-Time Operating System (RTOS). Fi-
nally, the linker creates the final software binary for each processor. For early
validation of those binaries, a system model with integrated Instruction Set
Simulators (ISSs) can be used.

We informally distinguish between software synthesis and software genera-
tion. Both produce an implementation out of an abstract input model by adding
implementation level detail. In contrast to generation, synthesis includes in ad-
dition an automatic optimization for a given objective or cost function. In our
work described in this chapter, we describe a pure generation-based approach
that does not include an optimization.

The rest of this chapter is organized as follows. We first discuss the context
of software generation and survey current approaches. Then, Sect. 8.2 de-
scribes in detail the envisioned HdS development based on a platform-agnostic
input and abstract system models. Section 8.3 provides an overview on SW
generation and Sect. 8.4 focuses on the generation of HdS. Section 8.5 dis-
cusses application examples and demonstrates the approach for six real-life
applications. Section 8.6 summarizes and concludes the chapter.



206 HARDWARE-DEPENDENT SOFTWARE

8.1.1 Context and Related Work

Designing a modern complex MPSoC is challenging both in terms of hard-
ware and software. The current manufacturing capabilities offer tremendous
integration capabilities and a high degree of implementation freedom. For op-
timization, a vast exploration space has to be explored and analyzed in the de-
sign process. At the same time, the market demands a shorter time-to-market
to yield competitive products. Hence, the challenge is to design increasingly
complex embedded systems in a shorter period of time.

System-level design is accepted as the main approach to address the com-
plexity challenges. It uses a unified approach to design hardware and software
concurrently. System-level design uses higher levels of abstraction to describe
a system. Ideally, this allows to describe a system solely as a composition of
algorithms, so that the designer can maintain the system overview, while not
being burdened by the vast amount of implementation details.

To capture systems jointly with hardware and software, System Level De-
sign Languages (SLDLs) have been developed, such as UML, graphical input,
Esterel and C-based languages. In this chapter, we focus on C-based SLDLs.
Examples of C-based SLDLs are SystemC [GLMS02], which is widely used in
academia and industry, and SpecC [GZD+00]. These languages are based on
C++ and ANSI-C, respectively, and have been extended to also capture system
and hardware aspects, such as parallelism, pipelining, signals, and bit-vectors
to just name a few added concepts.

Abstract models for system-level design are often described as Transaction
Level Models (TLMs) [GLMS02], which abstract away the details of pins and
wires [CG03]. By omitting implementation-level detail, TLMs execute dra-
matically faster than bit-accurate models. Therefore, they are widely used for
design space exploration and early development.

Today, TLMs are typically written manually [HYL+06] and are moreover
rarely used for generation of a complete final implementation. Specialized
partial solutions are already very successful, e.g. for generating the interface
description between RTL hardware and software (see Chap. 5). To increase
productivity, we envision a design flow that spans from an abstract, untimed,
and platform-agnostic specification down to an actual implementation on real
hardware, as we will describe in this chapter.

Traditionally, SW generation has been addressed from very specific input
models and with a limited target architecture support. Some examples are
POLIS [BCG+97], DESCARTES [RPZM93], and Cortadella et al. [CKL+00].
The POLIS [BCG+97] approach uses a Co-design Finite State Machine
(CFSM) model, where each FSM represents a component in the system. Soft-
ware generation is performed by transforming the input model into an S-Graph,
and subsequent C code generation. This work focuses on reactive systems and



High-Level Development, Modeling and Automatic Generation of HdS 207

is not designed for general applications. DESCARTES [RPZM93] uses a data
flow description (Asynchronous Data Flow (ADF) and an extended Synchro-
nous Data Flow (SDF)) as an input and supports heterogeneous systems. With
the specific input choice, these solutions favor a particular application type. In
contrast, a flexible generic C-programming model is desirable over these spe-
cific input models to cater to the needs of a broader programming audience and
to capture a wider range of application domains.

Abstract models, based on SLDLs with a generic C-programming model,
have been used for modeling software (SW) and its execution in abstract form
[KKW+06, GYNJ01]. Additionally, ISSs have been integrated into abstract
system models to create system co-simulation environments [BBB+05, CoWa].
Such, virtual platforms allow for a detailed analysis of the system before avail-
ability of real hardware, often revealing details not available on the target
[HYL+06]. While these approaches focus on simulation and validation, they
do not offer an integrated solution to generate the final implementation.

Some early approaches show solutions to use an abstract model, which con-
tains the common description of HW and SW, as a source for generating the
embedded software. Herrara et al. [HPSV03] describe SW generation from a
SystemC model. With SystemC being a library extension of C++, they pro-
pose to overload SystemC library elements for execution on the target system.
This has the advantage of reusing the same model for specification and target
execution. However, the approach partly replicates the simulation engine.

Krause et al. [KBR05] generate source code from SystemC and adjust the
application to execute on top of an RTOS. To flexibly target different RTOS
vendors, they capture the API in an XML format for a customized genera-
tion. This approach, however, does not describe in detail the generation of
communication and synchronization code and the creation of the final target
binary.

Gauthier et al. [GYJ01] describe a method for generating application-spe-
cific operating systems and the corresponding application SW. Their work fo-
cuses on the OS portion and does not address external HW. Our solution, on the
other hand, explicitly includes heterogeneous external HW. Yu et al. [YDG04]
show generation of application C code from an SLDL, however without show-
ing the final target binary. Our approach includes generation of communica-
tion drivers, multi-task adaptation, and the generation of the final binary im-
age.

The Phantom Serializing Compiler [NG05] translates multi-tasking POSIX
C code input into flat C code by grouping blocks to Atomic Execution Blocks
and custom scheduling them. This approach is oriented toward a pure SW so-
lution. In contrast, we address SW generation in a system context, specifically
taking HdS and external communication into account.



208 HARDWARE-DEPENDENT SOFTWARE

8.2 Software-enabled System Design Flow

Electronic System Level (ESL) design addresses the complexity challenges
of designing a modern embedded system. One such flow is outlined in Fig. 8.1
and uses a two step design approach. This ESL flow, implemented in
[DGP+08], generates first a system TLM for detailed performance estimation
and early MPSoC development. In a second step, the TLM is used as an input
to automatically generate SW binaries for the processors in the target platform.

The input to the system design flow is the specification model. It describes
the algorithms of the system and their dependencies. The specification model is
captured in an untimed and platform-agnostic form using a C-based SLDL. For
the experiments reported in this chapter, we use the SpecC SLDL [GZD+00].
The concepts shown, however, are equally applicable to other C-based SLDLs,
such as SystemC, as well.

Important for a flexible and analyzable input specification is the separation
of computation and communication. This separation enables automatic refine-
ment of communication and mapping of computation to separate processing
elements. The computation is grouped in behaviors (or modules / processes),
and communication is expressed in channels. The upper portion of Fig. 8.2
shows a graphical representation of a simple system specification. The boxes
with rounded corners symbolize behaviors. The actual C code inside the be-
haviors (e.g. B2 and B3) is omitted for brevity.

The behaviors communicate via direct point-to-point channels. For an eas-
ier generation, these channels are selected from a feature-rich set of standard-
ized channel types. They allow for a wide range of communication types,
such as synchronous and asynchronous communication, blocking and non-
blocking communication (e.g. FIFO), as well as for synchronization only (e.g.
semaphore, mutex, barrier). Basically, these channels are similar to standard
communication primitives offered by middleware or an operating system.

Figure 8.2. Example specification with architecture mapping.



High-Level Development, Modeling and Automatic Generation of HdS 209

Behaviors can be composed hierarchically to allow complex structures. They
can be arranged to execute in any order, such as sequential, parallel, pipelined,
or state machine controlled. In the example, behaviors B2 and B3 execute in
parallel. They communicate through channels C1 and C2. These channels
are of type “double handshake”, which implies blocking, synchronous com-
munication that is not buffered. The channels C3 and C4, for communication
between B3, B4 and B5, are finite depth FIFO channels. Using these standard
channels allows for a very intuitive programming approach, that is independent
of any hardware selection and application distribution.

A second input to our system design flow contains the architecture decisions
which describe the platform, as visualized in the bottom portion of Fig. 8.2.
The designer enters these decisions using an interactive Graphical User Inter-
face (GUI).

Architecture decisions include the allocation of processing elements (PEs)
(e.g. processors, HW components). In the example, an ARM7TMI processor
and two custom hardware components are allocated. PE-specific parameters,
such as clock frequency, are chosen during allocation. Additionally, the user
defines the mapping of behaviors to PEs, deciding which PE will execute the
computation inside each behavior. Behaviors, that are assigned to execute on
a processor, are wrapped into tasks. The user can then define important task
parameters, such as priority and stack size.

Besides dealing with the computation, the designer also controls the allo-
cation and mapping of communication protocols. The example mapping deci-
sions are illustrated in the bottom portion of Fig. 8.2. Here, a bus system of type
AMBA AHB [AMBA] is allocated. The call-out boxes symbolize mapping
the channels to that bus. For each channel, the user can also define essential
communication parameters. For one, the user can select the synchronization
scheme, such as polling or interrupt-based synchronization. Additionally, a
bus address, that identifies the channel on the communication medium, can be
selected.

Based on this these inputs, our system compiler [DGP+08] automatically
generates a system TLM that reflects the architecture decisions. For this model
refinement, components out of the component data base (compare Fig. 8.1)
are instantiated and connected. The communication between processing ele-
ments is refined from the standardized abstract channels down to communi-
cation based on the selected medium (here the AMBA AHB). The TLM, see
example in Fig. 8.4, allows for system exploration, performance analysis and
debugging. The TLM simulates significantly faster than a traditional ISS-based
model [SGD07].

Once the designer is satisfied with the performance and quality of the sys-
tem, the same TLM serves then as input for the back-end HW synthesis and
SW generation. The SW generation produces the final SW binaries that are



210 HARDWARE-DEPENDENT SOFTWARE

executable on a set of processors composing the platform. It generates the
application code, and all drivers for communication in a heterogeneous sys-
tem. The SW application executes on an off-the-shelf RTOS, or by using an
interrupt-driven system for small applications.

8.3 Software Generation Overview

The SW generation, as shown in Fig. 8.3, uses the TLM as an input. As
described before, the TLM reflects all architecture decisions. Computation is
mapped to processing elements. Computation within each processor is grouped
to tasks, all essential task parameters are captured, and the tasks are executed
on top of an abstract RTOS (the concepts of RTOS modeling are also described
in Chap. 9). The external communication has been refined according to an
ISO/OSI layered approach. It is mapped to a set of busses and protocols us-
ing bus primitives. External synchronization is implemented (e.g. polling or
interrupt) based on the designer’s choice. Furthermore, the model contains all
structural information to implement the communication decisions. Therefore,
the input TLM contains all functional and structural information needed for the
target implementation. Please see [DGP+08] for a more detailed description
of the TLM generation.

Figure 8.3. Software generation flow [SGD08].

Our software generation is divided into C code generation and HdS gen-
eration. The C code generation [YDG04], generates flat C code out of the
hierarchical model captured in the SpecC SLDL. It converts behavior hierar-
chies into a set of C functions. Instance-specific variables are translated into a
set of data structure instances. Additionally, the channel connectivity between
behaviors is resolved into flat C code. In other words, the C code generation
solves similar issues as early C++ to C compilers that translated a class hierar-
chy into flat C code.



High-Level Development, Modeling and Automatic Generation of HdS 211

The second portion, the HdS generation, generates code for processor inter-
nal and external communication, including drivers and synchronization (polling
or interrupt). It also generates code to execute multiple tasks on the same
processor. To create the complete binary SW image, it finally generates con-
figuration and build files (e.g. Makefile) which select and configure database
components. As such, a particular RTOS is chosen, properly adapted/ported to
the selected processor. A hardware abstraction layer (HAL) is included based
on the target platform, consisting of low-level drivers for the timer, the pro-
grammable interrupt controller (PIC), and the bus accesses.

Using a cross compiler, the final target binary (or binaries) is created, which
can execute on the target processor(s), or alternatively on a virtual platform.
A virtual platform allows validation and development of the final software bi-
naries already before the availability of real hardware. To generate a virtual
platform, our SW generation removes the model of the SW running on each
processor from the TLM and replaces it with an ISS that is wrapped for in-
tegration into the system model. Each ISS instance then executes one SW
binary.

8.4 Hardware-dependent Software Generation

The HdS generation uses the system TLM as an input (see example in
Fig. 8.4), which was generated by the system compiler based on the designer’s
architecture decisions. Following the mapping definitions, illustrated in
Fig. 8.2, the behaviors B1, B2 and B3 execute on the processor. The behav-
iors B4 and B5 are each mapped to an own HW accelerator. The TLM contains
hierarchical behaviors, channels, and additional HW to properly reflect the
platform characteristics. For example, it contains a model of a PIC that maps
multiple external interrupts to the available CPU interrupts, and a timer module
for periodic interrupts.

The HdS generation parses the input TLM into an abstract syntax tree and
then operates on this tree for code generation. For explanation, we distinguish
three generation aspects: communication generation, multi-task generation and
generation of the final target image. The following sections describe each as-
pect individually.

8.4.1 Communication Generation

The communication generation deals with processor internal and external
communication. In particular, it creates the driver code for communication
between the software and external HW. It also generates code for synchroniza-
tion, for which it inserts stubs into the application code, and generates interrupt
handlers and/or polling code.



212 HARDWARE-DEPENDENT SOFTWARE

Figure 8.4. Processor and application TLM.

Internal Communication. Internal communication takes place between tasks
on the same processor. In the example shown in Fig. 8.4, the channels C1, C2,
Sem1 and Sem2 are used for internal communication. These are instances of
our standard channels as also used in the specification. To provide the par-
ticular communication on the target system, the abstract standard channels
are replaced with a target-specific implementation that uses the primitives of
an underlying RTOS (or an emulation thereof, in case an RTOS is avoided).
Note, that this implementation does not recreate the simulation environment
on the target. Instead, a target-specific implementation is used that recreates
the same interface and semantics as the abstract channels. For example, a
blocking synchronous communication channel is implemented on an RTOS-
based system with a semaphore, two events, and a memcpy using the services
of our RTOS Abstraction Layer (RAL), which we insert for independence of
the actual RTOS (for details, please refer to the later section about multi-task
generation).

External Communication. To support heterogeneous systems, we follow
the ISO/OSI layering model [ISO94] to implement external communication.
Examples of external communication are the channels C3 and C4 of the initial
specification (see Fig. 8.2). According to the mapping information, these chan-
nels capture communication between different processing elements
(e.g. processor and custom hardware). These channels no longer appear di-
rectly in the system TLM in Fig. 8.4. Our system compiler has refined the
abstract channels into stacks of half channels (namely Net, Driver, and MAC),



High-Level Development, Modeling and Automatic Generation of HdS 213

which are inserted into the processor model. A matching stack of half channels
is inserted into each HW component (HW1 and HW2) as well.

At the top of the stack, the typed user data is marshalled into a flat untyped
data stream. This untyped stream provides a common representation that can
be interpreted among different processing elements regardless of bitwidth, en-
dianness and padding rules. This common representation for example allows
that a little endian processor can read and interpret the data stream of a big
endian processor.

The communication generation has access to the abstract syntax tree rep-
resenting the application code. Therefore, it can extract the necessary type
information from the application code and generate application-specific mar-
shalling code that uses standard conversion functions to create the untyped data
stream. For example, the user may define structure tReq that contains three el-
ements startTime, coeff1 and base, as shown in Listing 8.1.

Based on the information of the channel Net (see Fig. 8.4), the communica-
tion generation produces marshalling code that serializes the structure data into
a flat byte stream as shown in Listing 8.2. Note that, in contrast to using fixed
bitwidth types already in the specification, as discussed in Chap. 5 and Chap. 6,
our system-level approach contains platform-agnostic types (e.g. plain int) in
the initial specification model. The marshalling process here therefore is nec-
essary in order to create the platform-specific types.

Data from the input structure (pointer pD) is converted into the buffer
(pointer This−>buf ). The marshalling code uses standard conversion func-
tions for each basic data type (e.g. uhonlong()). Later in the generation process,
a processor-optimized implementation of the marshaling function is selected
from the database.

The next half channel, the Driver, contains information about the channel’s
system-wide addressing. It maps the end-to-end channel, which connects two
behaviors, to a set of point-to-point links. In a platform with many busses, an
end-to-end link may connect processing elements on different busses. Then,
multiple point-to-point links create the connection across the busses, which
are connected via communication elements (e.g. bridge or transducer). Note
that, in comparison to the Chapter 5 and Chapter 6, our system-level approach

1 t y p e d e f s t r u c t s tReq {
2 long s t a r t T i m e ;
3 s h o r t c o e f f 1 ;
4 unsigned s h o r t base ;
5 } tReq ;

Listing 8.1. User type definition in the specification model.



214 HARDWARE-DEPENDENT SOFTWARE

1 void c_pre_req_CPU_send ( /∗ . . . ∗ / ∗This , s t r u c t tReq ∗pD) {
2 unsigned char ∗pB = This −>buf ;
3 h t o n l o n g ( pB , pD−>s t a r t T i m e ) ;
4 pB += 4 ;
5 h t o n s h o r t ( pB , pD−>c o e f f 1 ) ;
6 pB += 2 ;
7 h t o n u s h o r t ( pB , pD−>base ) ;
8 pB += 2 ;
9 c_link_CPU__CAN_CTRL_DLink_send ( /∗ . . . ∗ / This −>buf , 8 ) ;

10 }

Listing 8.2. Generated code for marshalling of user data.

generates a custom register addressing here on-the-fly, based on an available
system-wide view of the components and their address space.

The slave in our example is connected to the processor bus. Therefore,
direct communication is possible and no additional communication elements
are necessary. However, complex communication schemes spanning multiple
bus hierarchies are possible. Then, user messages are packetized to minimize
buffer requirements of intermediate communication partners. Depending on
the information in the Driver channel, the corresponding source code is gener-
ated.

The driver also implements a channel-specific synchronization mechanism,
which will be explained in the next section. Finally, the Driver transfers the
data using the Media Access Control (MAC) layer, which implements the
low-level access to the communication media. This layer provides services
to transport an arbitrary sized contiguous block of bytes to an address in the
system. According to the platform definition, the HdS generation selects later
a processor-specific MAC implementation. In a simple case of a processor’s
primary bus, the MAC may use the processor’s memory interface.

Synchronization. For a typical master/slave bus, external synchronization is
required for a slave to indicate it being ready for a data transfer (e.g. required
data being available). The designer choses the type of synchronization for
each channel, selecting between polling or interrupt-based synchronization.
Furthermore, the designer may choose to share interrupts between sources to
reduce the overall number of interrupt pins. These choices are reflected in the
generated system TLM.

If polling was chosen, polling code is generated as part of the driver code.
An example is outlined in Listing 8.3. The CPU accesses the slave’s polling
flag to check whether the slave is ready for the communication. This access is
performed using the MAC services analogous to the external communication
(see the call to function Ahb masterMemRead() in Line 5). If the slave is not



High-Level Development, Modeling and Automatic Generation of HdS 215

1 void c_link_CPU__HW_DLink_send ( /∗ . . . ∗ / ∗This ,
2 c o n s t void ∗pData , i n t l e n ) {
3 unsigned char f l a g ;
4 do { /∗ p o l l s l a v e i f r eady ∗ /
5 Ahb_masterMemRead ( /∗ . . . ∗ / ,
6 HW1_DLink_0_FLAG_ADDR , &f l a g , s i z e o f ( f l a g ) ) ;
7 i f ( f l a g ) { /∗ break i f r eady ∗ /
8 break ;
9 }

10 /∗ d e l a y f o r p o l l . p e r i o d ∗ /
11 TaskDelay ( HW1_DLink_0_POLL_DELAY ) ;
12 } whi le ( 1 ) ;
13 /∗ s u c c e s s f u l l y synch ’ ed , t r a n s f e r da ta now ∗ /
14 Ahb_masterMemWrite ( /∗ . . . ∗ / ,
15 HW1_DLink_0_DATA_ADDR , pData , l e n ) ;
16 }

Listing 8.3. Polling synchronization example.

ready, the polling code uses RTOS services to delay execution for the polling
period (see function call TaskDelay() in Line 11), and repeats polling. Once
determined that the slave is ready, the polling loop terminates (Line 8) and
transfers the data (Line 14).

In case of interrupt synchronization, the TLM contains a model of the in-
terrupt chain. In Fig. 8.4, for example, the chain consists of the PIC, the sys-
tem interrupt handler SysInt, the application-specific interrupt handler INTC,
the user interrupt handler UsrInt1 and UsrInt2. Finally, semaphore channels
(Sem1, Sem2) connect each interrupt handler with the driver code, so that the
(short) interrupt handler can start the (long) driver to handle the communica-
tion. To implement interrupt-based synchronization, our HdS generation pro-
duces a chain of correlated code. The next paragraphs describe the interrupt-
based synchronization code, following the event sequence when sending a
message from B5, which is mapped to a hardware component, to B2, which
is mapped to the processor. The event sequence is illustrated in Fig. 8.5.

At t0, the behavior B2 expects a message. With the message not being avail-
able, B2 waits on the semaphore Sem1 and yields execution to the next lower
priority task B3. At t1, behavior B5, that is mapped to HW2, reaches the code
to send the expected message and signals via interrupt INTC the availability
of the message to the processor core. On the way, the PIC sets the processor
interrupt Int. This in turn triggers the interrupt chain on the processor, which
we have labeled 1 through 4.

1. The low-level assembly interrupt handler preempts the currently running
task B3. It stores the current context on the stack and then calls the sys-



216 HARDWARE-DEPENDENT SOFTWARE

Figure 8.5. Events in external communication.

tem interrupt handler. The low-level assembly interrupt handler, which
is part of the RTOS port is inserted from the software database.

2. The system interrupt handler (see half channel SysInt in Fig. 8.4) com-
municates with the PIC. It determines through memory mapped I/O
the highest priority pending interrupt. It then invokes the application-
specific interrupt handler (see half channel INTC in the TLM in Fig. 8.4).
The SysInt code is one element of the Hardware Abstraction Layer (HAL)
stored in the database.

3. Since the interrupt in this example is shared between HW1 and HW2,
the actual source of the interrupt is determined next. The application-
specific interrupt handler INTC determines the source of the interrupt by
reading the status registers in HW1 and HW2. Subsequently, INTC then
calls the corresponding User Interrupt Handler (in this case UsrInt2 of
Fig. 8.4).

4. Finally, UsrInt2 calls the semaphore Sem1 to release the driver code that
executes in the behavior B2. The semaphore channel uses the earlier
described internal communication services.

After releasing semaphore Sem1, the interrupt handler terminates. Subse-
quently, the task for B2 becomes ready and is scheduled. Finally, after the
context switch, B2 reads the data from HW2.

For HdS generation, we implement this chain on the processor. The code
falls into two distinct portions. The first part is application-independent, and
therefore can be stored in the software database. The second portion is applica-
tion-specific and has to be generated out of the system TLM. The code for steps
1 and 2 belongs to the first portion that is application-independent, and their
code is taken from the database. The code for steps 3 and 4, on the other
hand, is application-specific, and is generated (step 3 based on INTC, and step
4 based on UsrInt2).



High-Level Development, Modeling and Automatic Generation of HdS 217

1 void ARM7TDMI_INTC_body( /∗ . . . ∗ / ∗ Thi s ) {
2 unsigned char f l a g ;
3 Ahb_masterMemRead ( /∗ . . . ∗ / ,
4 HW1_DLink_0_FLAG_ADDR , &f l a g , s i z e o f ( f l a g ) ) ;
5 i f ( f l a g ) {
6 c _ o s _ s e m a p h o r e _ r e l e a s e ( /∗ . . . ∗ / This −>sem1 ) ;
7 }
8 Ahb_masterMemRead ( /∗ . . . ∗ / ,
9 HW2_DLink_1_FLAG_ADDR , &f l a g , s i z e o f ( f l a g ) ) ;

10 i f ( f l a g ) {
11 c _ o s _ s e m a p h o r e _ r e l e a s e ( /∗ . . . ∗ / This −>sem2 ) ;
12 }
13 }
14

15 void ARM7TDMI_OS_CPU_main( /∗ . . . ∗ / ∗ T h i s ) {
16 /∗ . . . ∗ /
17 c _ o s _ s e m a p h o r e _ _ i n i t ( /∗ . . . ∗ / This −>sem1 ) ;
18 c _ o s _ s e m a p h o r e _ _ i n i t ( /∗ . . . ∗ / This −>sem2 ) ;
19 B S P _ U s e r I r q R e g i s t e r ( INTNR_int1handler ,
20 ARM7TDMI_INTC_body , /∗ . . . ∗ / ) ;
21 /∗ . . . ∗ /
22 }

Listing 8.4. Interrupt handler outline for shared interrupt.

Listing 8.4 outlines the generated code for an application specific interrupt
handler (as described for step 3) that is shared between two interrupt sources.
The handler sequentially checks the interrupt sources using the MAC commu-
nication services (e.g. Line 3). Once the handler finds the interrupt initiating
hardware, it releases the associated user task that executes the driver code (see
call to c os semaphore release() in Line 6).

In addition, startup code is necessary to setup the interrupt chain on the
processor side. For one, the application-specific interrupt handler needs to be
registered to the system interrupt handler, so that it executes upon receiving of
the associated interrupt. In this example, our HdS generator produces startup
code that registers application-specific interrupt handler INTC to the system in-
terrupt handler for execution upon receiving INTC on the PIC (see Listing 8.4,
Line 19). To gather the necessary information, it traverses the connectivity and
architectural information stored in the TLM. It also generates code to instanti-
ate the semaphore channel and inserts appropriate calls into the driver code.

8.4.2 Multi-Task Generation

When multiple tasks are mapped to the same processor, they have to be
dynamically scheduled to alternate their execution. Our multi-task genera-



218 HARDWARE-DEPENDENT SOFTWARE

tion produces code that uses an underlying multi-task engine in order to con-
trol tasks and schedule them. We support two different approaches for multi-
tasking. First, we mainly focus on a traditional execution on top of an off-the-
shelf RTOS. Furthermore, we provide an alternative of interrupt-based multi-
tasking that can execute on a “naked” processor without any operating system.

RTOS-based Multi-Tasking Our main focus rests on targeting an off-the-
shelf RTOS. This ensures using a reliable, well-tested operating system that
offers great flexibility and often comes with significant tool support from the
RTOS vendor. Operating systems are available in a wide range and focus.
Often, they are highly configurable to tailor the OS to the application needs.
By configuration, the memory footprint can be minimized to fit the needs of
the embedded system under design.

Our multi-task generation makes use of a canonical OS interface, which we
call the RTOS Abstraction Layer (RAL), see Fig. 8.6 (left). The very thin RAL
(few hundred lines of (mostly inlined) code), abstracts from the particular OS’s
function names and parameters. We have chosen the RAL approach to limit the
interdependency between our generation and the actual target RTOS. To ensure
a generic API, we investigated different RTOS APIs (uCOS-II, vxWorks, eCos,
ITRON, POSIX) and chose common primitives for task scheduling, communi-
cation and synchronization.

Figure 8.6. Software stack RTOS-based (left), interrupt-based (right).

Although the investigated RTOS APIs provided all necessary interfaces, this
may not be the case for other RTOS APIs. In such cases, the RAL implements
an emulation of the required functions that is constructed out of the available
primitives. This approach guarantees that always an identical API, the RAL,
is available to the generated SW generation, regardless of the particular RTOS
implementation.

The input TLM contains mapping of behaviors to tasks (Task B2, Task B3)
and their scheduling parameters. For RTOS-based multi-tasking, our HdS gen-
eration extracts the task control information from the TLM and generates task
creation calls to the RAL. It also initializes the task’s parameter set of the TLM
(e.g. priority, stack size) on the target. From SLDL statements, which describe
parallel execution of behaviors, our HdS generation produces code that calls



High-Level Development, Modeling and Automatic Generation of HdS 219

the RAL for task creation and release, and furthermore inserts code to join the
multiple threads of execution after their completion.

To give an example, Listing 8.5 shows a partial specification following the
system definition already shown in Fig. 8.2. It instantiates the three behaviors;
B1, B2 and B3. It executes first B1 (Line 8) followed by a parallel execution of
B2 and B3 (Lines 9 through 12).

Listing 8.6 outlines the generated C-code. The sequentially executing B1 is
directly called in the parent’s main function (see call TB1 main() in Line 5).
The parallel executing behaviors B2 and B3 are spawned using the RAL API
function TaskCreate() (see Line 6 and Line 7). Note that TaskCreate() both
creates a task and releases it for immediate execution. After spawning the
tasks, the parent task waits until the created tasks have terminated (Lines 9
and 10).

In addition to the task control, processor internal communication is trans-
lated to RTOS-based communication. For that, the standardized communica-
tion channels (as described for the input) are implemented on top of the RAL.
Our multi-task generation instantiates the target implementation and connects
the channels according to the TLM connectivity information.

Interrupt-based Multi-Tasking In the second case, targeting a “naked”
processor, concurrent software execution is performed without any RTOS. In-
stead, interrupts are utilized to provide multiple flows of execution. We support
this alternative for systems where RTOS execution is not desirable. This may
be the case, when the system consist of only very few tasks, the code is tar-
geted to execute on a DSP, or when strict memory footprint limitations rule out
utilizing an RTOS. We describe a motivating example for an interrupt-based

1 b e h a v i o r B0 ( /∗ . . . ∗ / ) {
2 /∗ . . . ∗ /
3 TB1 B1 ( /∗ . . . ∗ / ) ; /∗ i n s t a n t i a t e b e h a v i o r B1 ∗ /
4 TB2 B2 ( /∗ . . . ∗ / ) ; /∗ i n s t a n t i a t e b e h a v i o r B2 ∗ /
5 TB3 B3 ( /∗ . . . ∗ / ) ; /∗ i n s t a n t i a t e b e h a v i o r B3 ∗ /
6

7 void main ( void ) {
8 B1 . main ( ) ;
9 p a r {

10 B2 . main ( ) ;
11 B3 . main ( ) ;
12 }
13 }
14 } ;

Listing 8.5. Specification of behaviors.



220 HARDWARE-DEPENDENT SOFTWARE

1 void TB0_main ( /∗ . . . ∗ / ) {
2 o s _ t a s k _ h a n d l e B2_ thd l ;
3 o s _ t a s k _ h a n d l e B3_ thd l ;
4 /∗ . . . ∗ /
5 TB1_main ( /∗ . . . ∗ / ) ;
6 B2_ thd l = T a s k C r e a t e ( TB2_main , /∗ . . . ∗ / ) ;
7 B3_ thd l = T a s k C r e a t e ( TB3_main , /∗ . . . ∗ / ) ;
8

9 T a s k J o i n ( B2_ thd l ) ;
10 T a s k J o i n ( B3_ thd l ) ;
11 }

Listing 8.6. Generated RTOS-based multi-tasking code outline.

Figure 8.7. Reactive task template input (left) and output (right).

solution in Sect. 8.5. This case implements a GSM speech codec on a DSP
with only two reactive tasks.

For our interrupt-based multi-tasking alternative, the RAL (see Fig. 8.6
(right)) implements a (very thin) RTOS emulation. It provides a subset of the
RTOS services needed for software execution (e.g. events, processor suspen-
sion, and interrupt registration). To give an intuitive explanation, the multi-task
generation converts the lowest priority task to execute in the processor main
function, and all other tasks are converted to execute in a state machine fashion,
in the context of their interrupt handlers.

More formally, we assume that each task is composed of a sequence of
computation (C), synchronization (S), and data transfers (T). Figure 8.7 (left)
shows an example sequence for one task. As described before, the driver code
for communicating with external hardware contains both synchronization and
communication. If only interrupts are used for synchronization, then the task
main function can be transformed into a state machine, as shown in Fig. 8.7
(right).

In the state machine, each synchronization point starts a new state. For ex-
ample, state ST2 was created due to synchronization point S1, and ST3 due



High-Level Development, Modeling and Automatic Generation of HdS 221

1 void i n t H a n d l e r _ I 1 ( ) {
2 r e l e a s e ( S1 ) ; /∗ s e t S1 ready ∗ /
3 e x e c u t e T a s k 0 ( ) ; /∗ t a s k s t a t e machine ∗ /
4 }
5 void e x e c u t e T a s k 0 ( ) {
6 do {
7 swi t ch ( S t a t e ) {
8 /∗ . . . ∗ /
9 case ST1 : C1 ( . . . ) ;

10 S t a t e = ST2 ;
11 case ST2 : i f ( a t t e m p t ( S1 ) ) {
12 T 1 _ r e c e i v e ( . . . ) ;
13 } e l s e {
14 break ;
15 }
16 C2 ( . . . ) ;
17 S t a t e = ST3 ;
18 case ST3 : /∗ . . . ∗ /
19 S t a t e = ST1 ;
20 }
21 } whi le ( S t a t e == ST1 ) ;
22 }

Listing 8.7. Interrupt-based multi-tasking excerpt.

to S2. The state machine transitions to the next state upon successful synchro-
nization. For example, upon receiving of interrupt I1, the state machine would
transition from ST1 to ST2. Additional states are inserted to implement con-
ditional execution and loops. For example, the separation between the states
ST0 and ST1 has been introduced to accommodate the one-time execution of
the initialization code in C0.

The created task’s state machine is then executed in the interrupt handlers,
which were initially chosen for synchronization of that task (in this example,
the handlers of I1 and I2). In order to preserve the task priorities, the interrupts
have to be chosen accordingly. A higher priority task has to exclusively use
higher priority interrupts than a lower priority task. Consequently, the lowest
priority task executes in the main task (Tmain), the startup task of the processor.

Each local variable of a task’s main function is integrated into a global data
structure. Hence, the task execution no longer relies on an own stack, and may
be executed in separate calls to the task’s state machine.

Listing 8.7 outlines the generated C implementation. Please assume for ex-
planation that the task’s state machine is currently executing in the interrupt
handler for I1, ST1 is the current state, and that computation C1 has just fin-
ished. Next, the synchronization S1 is checked (line 11). In case the synchro-
nization has not yet occurred, the state machine terminates (line 14). Conse-



222 HARDWARE-DEPENDENT SOFTWARE

quently, the do-while loop, the function executeTask0, as well as the interrupt
handler, all terminate. Thus, the processor can then serve a lower priority in-
terrupt, or the main function.

Upon receiving the next interrupt I1, the system interrupt handler calls the
registered user interrupt handler intHandler I1 (see line 1). In line 2, the han-
dler signals that S1 is ready and then calls the state machine again (line 3). The
current state is ST2, therefore the condition in line 11 is tested again. It now
passes, since the synchronization has occurred, receives the data (line 12), and
subsequently executes the computation C2 in line 16.

The switch-case statement (lines 7 to 20) is surrounded by a do-while-loop,
which is required to implement loops between states. In this example, the loop
is necessary to transition from state ST3 back to ST1 without terminating the
interrupt handler.

8.4.3 Binary Image Generation

The final aspect of HdS generation is the generation of a complete target
binary. Our generation uses a cross-compiler tool chain (gcc) that is specific
to the target processor and binary format. It generates configuration and make-
files for the binary image creation, which select components from the software
database, configure these components, and in addition control the compilation
and linking of generated code. This process is illustrated in Fig. 8.8.

An important aspect for establishing a flexible generation flow, with a wide
variety of configurations with many processor and hardware combinations, is
an effective design of the database. It is essential to identify the dependencies

Figure 8.8. Generation of target binary.



High-Level Development, Modeling and Automatic Generation of HdS 223

of each database component with respect to the selected hardware/software
configuration, e.g. the selected processor, RTOS, cross compiler, and board
components. Capturing all dependencies is necessary for correctly selecting a
component. On the other hand, overly specializing a component would lead to
code duplication within the database, and yield a code bloat.

The matrix of arrows in Fig. 8.8 symbolizes the dependencies when select-
ing a component. Usually the most specific element is the RTOS port, since it
depends on the RTOS type, the processor, and the cross-compiler (for exam-
ple, for the call frame layout and the stack layout needed for the task creation).
Our software generation also produces a customized Makefile, which selects
the components according to the architecture information in the TLM, and then
uses the cross-compiler to generate the target binary. Automating this step has
the advantage, that the TLM serves as the sole input to the binary generation,
avoids duplication of the system configuration (i.e. in the Makefile), and fur-
ther minimizes the user effort.

8.5 Experimental Results

In this section, we describe some practical applications of your approach.
We have applied it to a set of real-life examples. Two examples are covered
in more detail. The first is a telecommunication example, the second uses
an application from the automotive domain. Following that, we describe our
generation results for several applications to more quantitatively compare the
results.

8.5.1 Interrupt-based Implementation Example

We start by showing a specific example of an interrupt-based multi-tasking
implementation. We implemented a GSM 06.60 [ETSI96] encoder and de-
coder on a Motorola DSP 56600 platform. As shown in Fig. 8.9, the DSP is
assisted by a HW accelerator and four HW blocks that deal with input and out-
put. The HW accelerator is dedicated to the computation-intensive codebook
search of the encoding process.

Figure 8.9. Media example of GSM transcoding.



224 HARDWARE-DEPENDENT SOFTWARE

In our application, the DSP only executes two reactive tasks (encoding and
decoding). Also, an RTOS port for this particular DSP was not easily avail-
able. Therefore, we applied our interrupt-based multi-tasking approach to this
example. Following a shortest-job-first scheduling policy, the longer execut-
ing encoder is assigned the lower priority of the two tasks. Hence, the encoder
will execute in Tmain. The higher priority (shorter) decoder task is transformed
into a state machine. According to the architecture decisions, the decoder uses
IntB for synchronization. Hence, the generated decoder’s state machine will
execute in the interrupt handler of IntB.

Figure 8.10 shows the state machine for the decoder task, which consists
of 4 states. The states ST1 and ST2 have been created due to synchronization
(S1, S2). The interrupt IntB is used for both synchronization points. A GSM
speech frame consists of four sub-frames. Accordingly, ST2 is repeated four
times. The states ST0 and ST3, respectively, are inserted to accommodate ini-
tialization, which executes only at the beginning, and post processing, which
executes once per frame.

Figure 8.10. State machine for GSM decoder.

The input data is read by T1 and T2, which receive the initial parameters and
the compressed sub-frame data, respectively. The decoded speech samples are
transferred by T3 without any additional synchronization into the output HW
block. This particular transfer is performed without a preceding synchroniza-
tion, since the receiving I/O HW is always ready.

Figure 8.11 shows the time line for transcoding one sub-frame after the ini-
tialization has already passed. The processor is suspended at the start of the
time-line and waits for input data. At t1, IntA signals availability of input data,
and the registered interrupt handler is executed. The handler triggers event
e1 which the main task, Tmain is waiting on. Hence, after termination of the
interrupt handler Tmain is resumed. After some processing, the encoder feeds



High-Level Development, Modeling and Automatic Generation of HdS 225

Figure 8.11. GSM transcoding execution.

the codebook accelerator. The encoder then suspends on event e2 waiting for
results from the accelerator. Again, the processor is suspended.

Later at t3, IntB signals the availability of sub-frame data for decoding. The
decoder state machine, which currently is in state ST2, is executed in the IntB
handler. It reads the input data (T2), decodes the sub-frame (Csub), and transfers
in T3 the decoded speech samples to the output HW. Again, the latter needs no
synchronization, since the output HW in the architecture is always available.
At t4, while decoding (in Csub), the decoder is preempted by the higher priority
IntC, which announces that the codebook search has finished. Subsequently,
the interrupt handler releases the event e2. After the decoder interrupt handler
has finished, the encoder resumes at t6 and finishes at t7. The same cycle re-
peats at t8 with the next sub-frame. Throughout the execution of our testbench,
3451 interrupts are triggered. More results are later available in Table 8.2.

8.5.2 Exploration Example

We use an automotive example to illustrate the exploration capabilities with
respect to comparing the two multi-tasking approaches. We model an Elec-
tronic Control Unit (ECU) containing an ARM7TDMI processor [ARM7]. The
processor executes three tasks; anti-lock break control, RPM computation, and
engine fan controller. Six sensors and actuators are connected to the ECU via
two CAN busses (Fig. 8.12). Three further sensors are integrated in the ECU
and are attached directly to the processor bus.

We have generated code for both approaches, first toward execution on
top of the RTOS μCOS-II [Lab02], and second for interrupt-based execution.
μCOS-II is a small, highly configurable RTOS that is mostly implemented in
ANSI C. Ports of this RTOS are available for a wide range of processors, which
dramatically simplified the integration.

Table 8.1 compares the generated RTOS-based and interrupt-based multi-
tasking implementations. For the latter case, we mapped the lowest priority
task, the fan control, to Tmain, while the other two tasks were converted to state
machines for execution in interrupt handlers.



226 HARDWARE-DEPENDENT SOFTWARE

Figure 8.12. Automotive example application.

Multi-tasking RTOS-based Interrupt-based
Footprint 36224 Bytes 21052 Bytes
Alloc. Stacks 4096 Bytes 1024 Bytes
CPU Busy Cycles 6.706 MCycles 5.106 MCycles
# Interrupts 1478 1027

Table 8.1. Automotive example results.

As the results in Table 8.1 show, the automotive example profits from the
interrupt-based solution. Avoiding the RTOS code yields a smaller memory
footprint, since a simpler, more specific code is used instead. The footprint re-
flects the size of the ROM-able image and includes data, text and BSS segment.
Neither solution uses dynamic memory allocation.

The interrupt-based multi-tasking results also in a smaller stack size, since
all tasks share the same stack. Additionally, the interrupt-based solution shows
a lower CPU consumption. The CPU busy cycles drop from 6.7 MCycles to
5.1 MCycles. This drop is due to the simpler implementation. The RTOS
startup is avoided and fewer cycles are needed for the OS functionality (e.g.
for event handling and context switching) due to simplicity.

To give an inside view of the system’s performance, we analyze the interrupt
latency. For the purpose of our measurements, we focus on the delay from the
RPM sensor triggering the interrupt wire (to the PIC) to the first bus transaction
appearing on the bus to read the RPM sensor.

In the interrupt-based approach, the latency until reading the RPM sensor is
shorter (1001 cycles instead of 1794 cycles). This significant reduction is due
to the execution in the interrupt handler itself. To compare, in the RTOS-based
solution, the sensor is read in the task context, which results in an additional
event communication and a context switch.

Also, we counted the number of occurring interrupts, which drops from
1478 to 1027. The interrupt-based solution does not use the timer for keeping



High-Level Development, Modeling and Automatic Generation of HdS 227

the system time, which explains the lower number of interrupts. On the other
hand, the number of interrupts for data synchronization remains constant in
both solutions.

Our automotive example clearly shows the benefits of the interrupt-based
execution. We position it, where applicable, as an effective alternative in spe-
cial cases (very few tasks, strict optimization requirements, or unavailability of
an RTOS). Since either implementation can be generated automatically, a com-
parative exploration becomes easily possible.

8.5.3 Generation Results

To show the benefits of an automatic HdS generation, we have applied our
HdS generation to a range of six target applications. The first two applica-
tions are the already described GSM transcoder and the car ECU. In addition,
we examined a JPEG encoder, an MP3 decoder implemented in software, an
MP3 decoder with 3 hardware accelerators, and a combined system with MP3
decoding and JPEG encoding.

Table 8.2 summarizes our generation results. The top section quantifies
each target applications’ complexity. It ranges from the simple JPEG with
2 I/O blocks to the combined application Mp3 HW + JPEG, which uses 6 I/O
blocks, 3 HW accelerators, and 4 busses.

Example GSM Car JPEG Mp3 Mp3 Mp3 HW
SW HW + JPEG

Complexity
IO/ HW/ Bus 4/ 1/ 1 9/ 2/ 3 2/ 0 /1 2/ 0/ 1 2/ 3/ 4 6/ 3/ 4
SW Behaviors 112 10 34 55 54 90
Channels 18 23 11 10 26 47
Tasks/ ISRs 2/ 3 3/ 5 1/ 2 1/ 3 1/ 8 3/ 14
Lines of Code, RTOS-based
Application – 153 818 13914 12548 13480
HdS – 649 210 299 763 1186
Lines of Code, Interrupt-based
Application 5921 210 797 13558 12218 –
HdS 377 575 187 256 660 –
Execution, RTOS-based
CPU Cycles – 6.7 M 127.7 M 185.8 M 44.5 M 174.6 M
CPU Load – 0.9% 100.0% 100.0% 30.9% 86.6%
Interrupts – 1478 805 4195 1144 1914
Execution, Interrupt-based
CPU Cycles 42.0 M 5.1 M 126.7 M 182.3 M 43.3 M –
CPU Load 42.5% 0.7% 100.0% 100.0% 30.5% –
Interrupts 3451 1027 726 4078 1054 –

Table 8.2. SW generation and execution results.



228 HARDWARE-DEPENDENT SOFTWARE

Next, the table shows the number of generated lines of code for application
and HdS, each for the RTOS-based and the interrupt-based multi-tasking. As
described earlier, we have not implemented the GSM in an RTOS-based so-
lution, since we had no RTOS port available for the DSP. Also, we have not
realized the Mp3 HW + JPEG example in the interrupt-based form, since it
uses services we do not intend to replicate with interrupts. In the examples
with HW acceleration, the HdS code is larger due to the extra effort in com-
munication. Overall, a significant amount of code is generated (e.g. 1186 lines
for Mp3 HW + JPEG).

Automatically generating the software binaries yields a significant gain in
productivity. In all examples, our HdS generation completes in less than a
second. On the other hand, manually writing the HdS would take days. Thus,
the code generation in our approach has a significant impact on reducing the
overall design time of embedded systems with HdS context.

To validate the correctness of the generated code, we executed each synthe-
sized target binary on a virtual platform. For that, we integrated a Motorola
proprietary instruction set simulator (ISS) for the DSP, and the SWARM ISS
[Dal00] for the ARM7TMDI.

Each application executes functionally correct, yielding an output matching
the specification. Table 8.2 shows the execution statistics of the ISS cosimula-
tion. As in the car example, fewer CPU cycles (busy cycles only) are consumed
in the interrupt-based solution. However, with an increasing computation com-
plexity, the relative improvement becomes marginal. Similar to before, avoid-
ing the OS timer tick reduces the number of processed interrupts.

8.6 Conclusions

Embedded software generation is an essential aspect of implementing to-
days SoC. It avoids the tedious and error prone manual implementation. In
this chapter, we have presented a systematic approach for generating the final
target binaries from an abstract specification model. We have shown software
generation as an integral part of an ESL flow. Beginning from an abstract
model containing the application specification, our flow automatically gener-
ates a system TLM based on the designer’s architecture decisions. From the
generated TLM, the software generation then automatically generates the bi-
naries for each processor in the system. Together, this completes the ESL flow
for the software, offering a seamless solution from an abstract system model
down to an implementation on embedded processors.

The presented HdS generation addresses three parts: communication gen-
eration, multi-task generation, and binary image generation. It generates com-
munication drivers, interrupt handlers, and adjusts for the target multi-tasking.
Our approach supports targeting toward an existing RTOS. Furthermore, it of-



High-Level Development, Modeling and Automatic Generation of HdS 229

fers an alternative to use interrupts for multi-tasking if an RTOS-based execu-
tion is undesirable.

We have demonstrated automatic generation using six real-life target appli-
cations: different media applications and a control system. The ESL flow with
integrated software generation addresses a wide range of target processors,
platforms and applications.

Automating the tedious and error-prone process of manual firmware devel-
opment results in significant gains in productivity. Not only is the automatic
generation much faster than a manual implementation, it also allows the de-
signer to focus on the essential algorithms, without the burden of implemen-
tation details. Further, with the automatic generation, alternative solutions can
be quickly and easily generated. This allows for a rapid exploration of the
embedded software design space, e.g. when investigating alternative mapping
solutions.

Acknowledgments

The authors thank the SCE research team at the Center for Embedded Com-
puter Systems at UC Irvine for their technical support. The authors also thank
the editors and reviewers of this book for their valuable feedback in improving
this chapter.

References

[AMBA] Advanced RISC Machines Ltd (ARM). AMBA Specification
(Rev. 2.0), ARM IHI 0011A.

[ARM7] Advanced RISC Machines Ltd. (ARM). ARM7TDMI (Rev. 4)
Technical Reference Manual, 2001.

[BBB+05] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco
Menichelli, and Mauro Oliver. MPARM: exploring the multi-
processor SoC design space with SystemC, VLSI Signal Process.,
41:169–182, 2005.

[BCG+97] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh,
Attila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto
Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki, and Bas-
sam Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The POLIS Approach. Kluwer Academic, Dordrecht, 1997.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling: an
overview. In Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, Newport
Beach, CA, October 2003.



230 HARDWARE-DEPENDENT SOFTWARE

[CKL+00] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, Marc Mas-
sot, Sandra Moral, Claudio Passerone, Yosinori Watanabe, and
Alberto Sangiovanni-Vincentelli. Task generation and compile
time scheduling for mixed data-control embedded software. In
Proceedings of the Design Automation Conference (DAC), Los
Angeles, CA, June 2000.

[CoWa] CoWare. Virtual Platform Designer. www.coware.com.

[Dal00] Michael Dales. SWARM 0.44 Documentation. Department of
Computer Science, University of Glasgow, November 2000.
www.cl.cam.ac.uk/~mwd24/phd/swarm.html.

[DGP+08] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin,
Lukai Cai, Haobo Yu, Samar Abdi, and Daniel Gajski. System-
on-Chip Environment: A SpecC-based framework for heteroge-
neous MPSoC design. EURASIP J. Embed. Syst., 2008.

[ETSI96] European Telecommunication Standards Institute (ETSI). Digital
cellular telecommunications system; Enhanced Full Rate (EFR)
speech transcoding, 1996. GSM 06.60.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. Sys-
tem Design with SystemC. Kluwer Academic, Dordrecht, 2002.

[GYJ01] Lovic Gauthier, Sungjoo Yo, and Ahmed A. Jerraya. Automatic
generation and targeting of application-specific operating systems
and embedded systems software. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., 20(11), November 2001.

[GYNJ01] Patrice Gerin, Sungjoo Yoo, Gabriela Nicolescu, and Ahmed A.
Jerraya. Scalable and flexible cosimulation of SoC designs with
heterogeneous multi-processor target architectures. In Proceed-
ings of the Asia and South Pacific Design Automation Conference
(ASPDAC), Yokohama, Japan, January 2001.

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerst-
lauer, and Shuqing Zhao. SpecC: Specification Language and De-
sign Methodology. Kluwer Academic, Dordrecht, 2000.

[HPSV03] F. Herrera, H. Posadas, P. Sánchez, and E. Villar. Systematic em-
bedded software generation from SystemC. In Proceedings of the
Design, Automation and Test in Europe (DATE) Conference, Mu-
nich, Germany, March 2003.

[HYL+06] Sungpack Hong, Sungjoo Yoo, Sheayun Lee, Sangwoo Lee, Hye-
Jeong Nam, Bum-Seok Yoo, Jaehyung Hwang, Donghyun Song,
Janghwan Kim, Jeongeun Kim, HoonSang Jin, Kyu-Myung Choi,
Jeong-Taek Kong, and SooKwan Eo. Creation and utilization of

http://www.coware.com
http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html


High-Level Development, Modeling and Automatic Generation of HdS 231

a virtual platform for embedded software optimization: an indus-
trial case study. In Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, Seoul, South
Korea, October 2006.

[ISO94] International Organization for Standardization (ISO). Reference
Model of Open System Interconnection (OSI), second edition,
1994. ISO/IEC 7498 Standard.

[KBR05] Matthias Krause, Oliver Bringmann, and Wolfgang Rosenstiel.
Target Software generation: An approach for automatic mapping
of SystemC specifications onto real-time operating systems. Des.
Autom. Embed. Syst., 10(4):229–251, 2005.

[KKW+06] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers,
and H. Meyr. A SW Performance estimation framework for early
system-level-design using fine-grained instrumentation. In Pro-
ceedings of the Design, Automation and Test in Europe (DATE)
Conference, Munich, Germany, March 2006.

[Lab02] Jean J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP
Books, Gilroy, 2002.

[NG05] Andre Nacul and Tony Givargis. Lightweight multitasking sup-
port for embedded systems using the phantom serializing com-
piler. In Proceedings of the Design, Automation and Test in Eu-
rope (DATE) Conference, Munich, Germany, March 2005.

[RPZM93] Sebastian Ritz, Matthias Pankert, Vojin Zivojnvic, and Heinrich
Meyr. High-level software synthesis for the design of communi-
cation systems. IEEE J. Select. Areas Commun., April 1993.

[SGD07] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Multi-
faceted modeling of embedded processors for system level de-
sign, Abstract. In Proceedings of the Asia and South Pacific De-
sign Automation Conference (ASPDAC), Yokohama, Japan, Janu-
ary 2007.

[SGD08] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Auto-
matic generation of hardware dependent software for MPSoCs
from abstract system specifications. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASPDAC),
Seoul, Korea, January 2008.

[YDG04] Haobo Yu, Rainer Dömer, and Daniel Gajski. Embedded software
generation from system level design languages. In Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-
DAC), Yokohama, Japan, January 2004.



Chapter 9

ACCURATE RTOS MODELING AND ANALYSIS
WITH SYSTEMC

Henning Zabel, Wolfgang Müller and Andreas Gerstlauer

Abstract Today, mobile and embedded real-time systems have to cope with the migration
and allocation of multiple software tasks running on top of a real-time operating
system (RTOS) residing on one or several system processors. Each RTOS has to
be configured towards the individual needs of the application and environment.
For this, different scheduling strategies and task priorities have to be evaluated in
order to keep execution and response times for a given task set. Abstract RTOS
simulation is applied to analyze different parameters in early design phases. This
chapter presents a SystemC RTOS library for abstract yet accurate RTOS sim-
ulation, supporting modeling of preemption in the presence of prioritized and
nested interrupts. After introducing basic principles of abstract RTOS simula-
tion, we present our SystemC library in detail. Thereafter, we discuss related
approaches and close with applications in electronic automotive systems design
and some evaluations.

Keywords: RTOS Modelling, RTOS Simulation, SystemC, Task Scheduling, Interrupt Anal-
ysis

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



234 HARDWARE-DEPENDENT SOFTWARE

9.1 Introduction

Real-Time Operating Systems (RTOS) are required to provide a predictable
platform for the execution of multiple programs, i.e., software tasks, on single
microprocessors. As such, operating system and task scheduling effects largely
determine the overall software execution behavior, timing and quality metrics,
such as performance or power. Each RTOS has to be accurately configured for
the individual needs of the application and communication network. An RTOS
can be configured, for instance, by different task scheduling algorithms and
parameter settings like preemption, execution times, execution deadlines, and
periods.

In addition to scheduling and multi-tasking effects, however, the early con-
sideration of software and hardware exceptions, i.e., interrupts, are of utmost
importance. Exceptions have significant impact on the predictability of dead-
lines in the execution of tasks and their response times. Interrupt requests
(IRQs) issued by hardware events, such as timers and I/O operations, may trig-
ger the immediate execution of an Interrupt Service Routine (ISR). ISRs can
be nested and may have different priorities. They may either immediately exe-
cute simple instructions or activate a high priority software task in the case of
more complex operations. Hence, interrupts and interrupt handling in the OS
and software can have a large, non-negligible influence on and contribution to
overall task execution behavior on the processor.

9.1.1 RTOS Analysis and Simulation

Today, RTOS timing analysis is mainly performed by Worst Case Execu-
tion Time (WCET) and Worst Case Response Time (WCRT) analysis [PB00,
ESHR08], or by Instruction Set Simulation (ISS) [MAF91, NBS+02]. Addi-
tionally, logic analyzers, tracing hardware, and specialized trace boxes may
come into application.

WCET and WCRT usually employ a static, formal timing analysis based
on a graph representation extracted from source or machine code. They deter-
mine safe and theoretical worst-case upper bounds for execution and response
of software tasks for a specific processor and operating system. Estimation
of caching, pipelining, and branch prediction effects is still the subject of on-
going research but a few existing tools, like aiT (AbsInt), already aim to cover
some of those areas. In general, microprocessors with more complex pipelines
and caching are often avoided for real-time applications so that WCET and
WCRT analysis can give better estimations. However, the unpredictable occur-
rence of hardware and software exceptions remains a problem for worst-case
considerations.

Traditionally, ISS is mainly used for functional and performance analysis
based on a specific target processor and operating system. Instruction set sim-



Accurate RTOS Modeling and Analysiswith SystemC 235

ulators and debuggers usually come with the integrated development environ-
ment (IDE) of a specific microprocessor or -controller. ISS can be cycle-based
or timing-based. Timing results can be used for general feedback and analysis
or for back annotation into a cycle-accurate system simulation. ISS mainly
performs the emulation of assembly code at the machine code level covering
the execution of the complete application plus operating system by accurately
representing and simulating values of single variables and all registers. As
such, ISS requires the complete software executable including the real RTOS
to be available in binary form.

Though modern instruction set simulators already reach considerable speeds,
simulation times are typically still insufficient for early estimation and rapid
prototyping, especially for multi-processor simulation. Moreover, ISS is hardly
applicable for early design phases since it requires the complete target binary
to be already available. It is also limited to a specific processor and operat-
ing system, imposing too many constraints on later design steps. On the other
hand, a purely functional, native simulation is fast but may not be sufficiently
accurate due to its mismatch in concurrency models. A functionally correct
implementation is useless when it cannot guarantee execution within the dead-
lines imposed by a specific application.

9.1.2 Simulation Speed Trade-offs

In order to efficiently explore the design space, designers need models of the
embedded software running in its execution environment, providing rapid and
early feedback about effects of design decisions, such as the chosen schedul-
ing strategy. As outlined previously, traditional ISS is increasingly becoming
infeasible due to low speeds (especially in a multi-processor context) and the
need to have the final target binary readily available. Therefore, alternative
models at higher levels of abstraction with fast simulation speeds yet enough
accuracy are needed.

There have been several approaches aiming to develop high-level models
of embedded software and its runtime environment including the RTOS it-
self. Depending on the level of detail, typical trade-offs between speed and
accuracy of models can be observed. For example, in [SGD07] a model of
software processors is proposed that is gradually constructed out of succes-
sive layers of features and functionality (Fig. 9.1). At the highest level, the
Application is running natively on the simulation host. At the Task level, an
abstract RTOS model is introduced, and processes and communication chan-
nels are refined into tasks and Inter Process Communication (IPC) primitives
running on top of the RTOS model. In the processor models at the Firmware
(FW) and Transaction-Level Modeling (TLM) refinement steps, hardware ab-
straction (HAL) and processor hardware layers are introduced. As such, FW



236 HARDWARE-DEPENDENT SOFTWARE

Figure 9.1. Processor modeling layers [SGD07].

and TLM levels add models of the external bus communication (drivers and
bus interfaces) and the interrupt handling chain (interrupt handlers and inter-
rupt logic including processor suspension) on the software and hardware side,
respectively. Finally, a Bus-Functional Model (BFM) of the processor includes
pin- and cycle-accurate models of the bus interfaces and the protocol state ma-
chines driving and sampling the external wires.

Figure 9.2 shows results for comparing processor models at different fea-
ture levels against a traditional, cycle-accurate ISS. The graphs show simula-
tion speeds and model accuracy for an example of a Motorola DSP running
voice encoding and decoding tasks as part of a mobile phone baseband appli-
cation. Tasks are executed on the DSP on top of an RTOS kernel. Accuracy is
measured as the average error in frame encoding and decoding delays.

Figure 9.2. Speed and accuracy at different levels [SGD07].

These results confirm that significant speedups can be obtained with high-
level processor models. The application level is equivalent to a native execu-
tion of the task C code on the simulation host. As such, the full performance
of the simulation machine is available. However, due to the mismatch in con-
currency models, accuracy is low. Introducing a high-level RTOS model at
the task level accurately reflects dynamic scheduling effects, significantly re-
ducing the model error. As expected, OS and scheduling parameters typically



Accurate RTOS Modeling and Analysiswith SystemC 237

have a large influence on system metrics, such as timing or performance. On
the other hand, RTOS modeling adds little to no overhead and the task model
still executes at native speeds. Interestingly, another increase in accuracy is
achieved by introducing accurate models of the processor’s hardware interrupt
logic. This confirms that interrupt handling including processor suspension
and interrupt priorities can contribute significantly to overall software delays.

In the end, a processor model at the TLM level can achieve significant
speedups with an error of less than a few percent compared to traditional cycle-
accurate ISS models. Note that speed results are for sustained simulation per-
formance in a single-processor system as presented here. In specific cases
and for peak performance, speedups can be even higher and simulation speeds
of more than 2 GHz can be achieved. As such, high-level processor models
can form a viable alternative to traditional ISS-based software validation. As
pointed out above, however, a crucial component of any processor model is an
efficient and effective model of the RTOS including both dynamic scheduling
and interrupt handling effects.

9.1.3 RTOS Modeling
As previous studies have shown, fast simulation speeds at the task level

are reachable by means of an abstract RTOS model that simulates dynamic
scheduling effects. High-level processor and RTOS models are typically de-
scribed and implemented by means of a C-based system-level design lan-
guage (SLDL) like SpecC or SystemC, where all models are compiled and
running natively on the simulation host. At the application level (Fig. 9.3,
left), processes and tasks are executed directly on top of the underlying SLDL
kernel. Again, simulations run at native speeds yet concurrency models do not
match reality. On the other hand, in traditional ISS models (Fig. 9.3, right),
the actual target binary consisting of cross-compiled application linked against
the ported RTOS kernel and libraries is running in an instruction set simulator,
which in turn potentially sits on top of the SLDL kernel for co-simulation with
the rest of the system. ISS models can reach full cycle accuracy at the expense
of slow simulation speeds.

Figure 9.3. Application models (left), task models (middle) and ISS models (right) [GYG03].



238 HARDWARE-DEPENDENT SOFTWARE

The goal of high-level RTOS modeling is to provide the speed of native
application execution with the accuracy of an ISS model. Instead of running
the real operating system with all its associated overhead, an RTOS model ab-
stracts away unnecessary implementation details and only focuses on modeling
the key aspects. At the task level, the RTOS model is inserted as an additional
layer that sits between application and underlying SLDL kernel (Fig. 9.3, mid-
dle). It replaces the event handling and wraps around corresponding SLDL
primitives in order to ensure that at any given time only one task is active at
the SLDL interface. Internally, the RTOS model blocks all but the active task,
and it selects and dispatches tasks based on a model of the desired scheduling
algorithm. In the process, all necessary RTOS concepts such as multi-tasking,
dynamic scheduling, interrupt handling, preemption, inter-process communi-
cation (IPC) and task synchronization are modeled. As such, an RTOS model
provides an abstract implementation of an RTOS API, e.g., POSIX or μ-Itron.
When an abstract RTOS model aims to cover task switching and scheduling of
many existing RTOS standards or pseudo-standards using a single, fixed API,
we denote it as a canonical RTOS model [GYG03].

9.1.4 Abstract RTOS Simulation

Abstract RTOS simulation at the task level is typically based on partition-
ing of the application into hardware components and software tasks, including
Interrupt Service Routines (ISR). Tasks and ISRs are then further divided into
a sequence of time-annotated software segments. Timing information can be
back-annotated into each segment from performance measurements or timing
estimations obtained through ISS or WCET analysis, respectively. In order
to accurately capture data-dependent delays, segments are usually defined at
the basic block level, though it is possible to partition into more coarse-grain
segments.

Figure 9.4 shows an accurate ISS sequence with atomic blocks, i.e., single
instructions, compared against a simulation sequence of two time annotated

Figure 9.4. Instruction set simulation with time annotations vs. task level simulation with time
annotations.



Accurate RTOS Modeling and Analysiswith SystemC 239

segments, i.e., compositions of multiple atomic blocks. Here, the ISS executes
atomic blocks B1 to B7 annotated with their execution times T1 to T7. As on
the final hardware platform, ISRs can immediately execute after each atomic
block. At the task level, on the other hand, software blocks BA and BB each
combine atomic blocks B1–B4 with time annotations T1 + T2 + T3 + T4 and
B5–B7 with time annotations T5 + T6 + T7, respectively. In a C-based SLDL
simulation at the task level, occurrence of an interrupt after T1, for example,
will delay execution of the corresponding ISR until the end of T1+T2+T3+T4,
i.e., the ISR is executed and analyzed with a delay of T2 + T3 + T4.

Thus, abstracting the time T1 + T2 + T3 + T4 into one atomic segment can
lead to significant timing errors in simulation, in particular when multiple in-
terrupts occur within this interval. In addition, in case of multiple interrupts
within a segment, the sequence of the occurrences has to be considered for a
functionally correct simulation. As scheduling decisions for ISRs are based
on priorities, the sequence information is potentially lost when scheduling an
ISR after T1 + T2 + T3 + T4. In general, high-level abstract simulations of
segmented time at the task level can result in timing and functional inaccuracy,
depending on the chosen segment granularity. However, inaccuracies can be
avoided when the time interval is interruptible during simulation. If the lan-
guage semantics support preemption of time wait statements, the occurrence
of an IRQ allows a time interval to be divided into two parts where the second
part can be considered after the ISR. This allows scheduling decisions to be
made right in time, avoiding the previously mentioned inaccuracies due to a
delayed execution.

In the context of C-based SLDL simulation, each segment is typically com-
posed of a section of regular application code followed by a statement that
models the execution time of the code block and synchronizes with the RTOS
model and the simulation kernel. The execution order of individual segments
of different tasks is then determined by the scheduler in the RTOS model based
on scheduling strategies such as Earliest Deadline First (EDF), Rate Monotonic
(RMS), or Round-Robin (RR) scheduling. Again, with the decomposition of
the software into segments, the trade-off between simulation speed and accu-
racy depending on the granularity of segments has to be considered. With an
increasing number of segments, the number of interactions/synchronizations
with the RTOS scheduler and simulation kernel increases, resulting in a larger
number of simulated events and hence longer simulation times. On the other
hand, with a decreasing number of segments, segment sizes increase, which
in turn may result in inaccurate simulation results, especially in the case of
frequent interrupt occurrences.

Speed and accuracy trade-offs motivate the need for an accurate manage-
ment of time annotated segments in the RTOS model, as presented in the re-
mainder of this chapter. Inaccurate simulation in C-based SLDLs results from



240 HARDWARE-DEPENDENT SOFTWARE

their non-preemptive simulation kernels and is addressed by the implemen-
tation of our abstract SystemC RTOS model in the next section. Thereafter,
we discuss related work before we sketch an application using an automotive
system design example and close with some evaluation results.

9.2 SystemC RTOS Model

As background information, we first give an overview of the SystemC simu-
lation principles before outlining basic concepts of our RTOS library followed
by technical details.

9.2.1 SystemC Simulation

SystemC is a C++ library with language extensions defined as macros and
special classes. It implements an event-driven simulation kernel, which coordi-
nates the execution of SystemC processes, i.e., SC THREADs and SC METH-
ODs. Processes communicate via channels and shared objects. Synchroniza-
tion between processes is implemented via explicit and implicit events gener-
ated by the execution of explicit and implicit wait statements. When executing
a wait statement, the calling process is suspended. After all processes are sus-
pended, the simulation kernel starts processing events collected during process
execution. The simulation kernel sets processes ready-to-run when they have
received at least one event they are sensitive to during the current simulation
cycle. All processes which are ready-to-run are finally invoked in arbitrary se-
quential order. If there is no process available, the simulation time is advanced
to the next available time event. The simulation of time is modeled by wait
statements, which generate an event for the respective process in a future point
in time. One sequence of process execution and event processing in the sim-
ulation kernel is denoted as a simulation cycle. Any simulation cycle which
does not advance the simulation time is denoted as a delta-cycle.

It can easily be seen that, comparable to an RTOS, SystemC implements a
pseudo-parallel execution of sequential processes with cooperative multitask-
ing where suspension and invocation are controlled by the simulation kernel.
However, switching between two processes is explicitly defined by means of
wait statements. In multi-tasking operating systems, switching between two
tasks and ISRs is denoted as a context switch. We therefore have to distinguish
context switches of RTOS tasks and context switches of SystemC threads. In
contrast to SystemC simulation, a context switch in a preemptive multi-tasking
OS may occur after each instruction of a task and is not limited to explicit con-
text switches as in SystemC or in cooperative multitasking operating systems.

For RTOS task level simulation in SystemC, we model each task and ISR
by a SC THREAD. The sequential part of each task and ISR is divided into
timed segments, where the time annotation of a segment is defined by the



Accurate RTOS Modeling and Analysiswith SystemC 241

CONSUME CPU TIME function. As each SystemC thread has its own, inde-
pendent execution time line, we have to explicitly map task and ISR segments
into a sequential execution order with respect to a single time line associated
with a single thread of control inside a processor. The RTOS model has to
implement the mapping of task context switches to SystemC context switches
and the actual RTOS task scheduling for sequentialization of software seg-
ments. In our implementation, this is realized by a so-called RTOS context.
The RTOS context synchronizes the execution of segments through additional
internal SystemC events: an event that invokes the scheduler for selection of
the next runnable task (schedule event), an event for triggering the execution
of one segment of a specific task (wakeup event), and a preemption event to
handle interrupts. These events trigger SystemC context switches to model the
actual task context switches. The RTOS context in combination with an ade-
quate partitioning of tasks and ISRs into timed segments enables a functionally
correct and accurate timed simulation of tasks and ISRs on top of SystemC
without the need for any modifications of the SystemC kernel.

9.2.2 Basic Principles

Our SystemC abstract RTOS library (aRTOS) implements an abstract canon-
ical RTOS model that is based on SystemC V2.1 [IEEE06] and provides basic
functions for task and ISR synchronization, context switching, and scheduling
(Fig. 9.5).

RTOS Context. The RTOS API is defined and implemented by the class
sc rtos context. Each instance of the RTOS context represents a separate exe-
cution unit or processor core. It provides functions to register/deregister tasks
and ISRs as well as managing their synchronization and performing RTOS
context switches. Each RTOS context holds pointers to the task scheduler and
the ISR scheduler, which select the next runnable task or ISR for sequential
execution. The two schedulers are coordinated by a main schedule function of
the RTOS context, which is sensitive to the schedule event. The separation into
two schedulers is necessary since scheduling strategies for tasks and interrupts
may differ. Unlike software tasks, which are scheduled by the RTOS, ISRs are
preemptively scheduled by the processor following the priorities of individual
IRQs. Tasks and ISRs are implemented as SC THREADs, which are spawned
by the SC RTOS CTOR of an RTOS module. An RTOS module extends the
native SC MODULE. It is defined as an instance of the sc rtos module and
declared by the SC RTOS MODULE macro.

Task Control Block. Registration of a task or ISR is defined by means of
the task start or isr start function. They create an individual task control block
(TCB) sc rtos context tcb in the RTOS context at each registration. The regis-



242 HARDWARE-DEPENDENT SOFTWARE

Figure 9.5. UML class diagram of the SystemC RTOS library.

tration function accepts an optional pointer to additional task specific schedul-
ing information like deadlines and sampling rates. Correspondingly, task end
and isr end deregister a task or ISR by deleting its TCB from the context so
that it can no longer be accessed. The TCB basically holds individual task
and ISR information such as respective scheduling information, an unique
pid as a pointer to the corresponding SystemC thread and its current state
∈ {created, waiting, ready, running, dead}.
RTOS State Model. Tasks and ISRs follow a state model that is shown in
Fig. 9.6. State transitions are always forwarded to the scheduler that processes
the information in its implementation.

After registration, a task or ISR becomes created. Tasks further switch to
ready whereas ISRs become waiting in order to wait for an IRQ. ready tasks
and ISRs are considered by the scheduler as ready for execution, which finally
sets them to running. Herewith, the scheduler has to guarantee that only one
task or ISR becomes running at one time. At a preemption or in the case of a



Accurate RTOS Modeling and Analysiswith SystemC 243

Figure 9.6. States of a task.

CPU release, a running task is reassigned to ready. When waiting for a Sys-
temC event —implemented through wakeup event synchronization— or in the
case of an explicit deactivation, the state is set to waiting. Tasks and ISRs
in state waiting are waiting for internal synchronization and are not consid-
ered by the scheduler. State transitions to ready can be indirectly triggered by
other tasks or ISRs. Alternatively, they can be directly triggered by the re-
ceipt of a specific event, like an IRQ. After termination, a task/ISR becomes
dead and the corresponding TCB is removed by executing a final wrap-up so
that the corresponding SystemC thread can no longer be identified as a task
or ISR.

Segments. For RTOS simulation, the code of each RTOS task and ISR is
divided into sequential segments that are annotated with an interruptible speci-
fication of their execution time by means of a CONSUME CPU TIME() state-
ment. CONSUME CPU TIME() basically implements an interruptible state-
ment to advance simulation time. It synchronizes with the RTOS context by
means of an explicit and dedicated wakeup event inside a task yield call. The
RTOS context in turn notifies the individual task for invocation through this
event (see Fig. 9.7). Additionally, the wakeup event is used in task deactivate
for explicit synchronization as well as in the overloaded RTOS module wait
statement in task activate.

Figure 9.7. Task-context synchronization.

The following example gives a basic idea of a task definition in the RTOS
constructor of an RTOS module:



244 HARDWARE-DEPENDENT SOFTWARE

1 SC_RTOS_MODULE( Task )
2 {
3 p u b l i c :
4 SC_RTOS_CTOR( Task )
5 {
6 SC_THREAD( run ) ;
7 }
8 / / my methods . .
9 } ;

10 . . .
11 void run ( )
12 {
13 t a s k _ s t a r t ( < p t r > ) ;
14 / / i n f i n i t e loop
15 whi le ( t rue )
16 {
17 / / E x e c u t e n a t i v e C or SystemC code
18 my_code ( ) ;
19

20 / / S p e c i f y e x e c u t i o n t i m e
21 CONSUME_CPU_TIME ( 4 ,SC_MS ) ;
22 . . . .
23 / / E x e c u t e o v e r l o a d e d w a i t
24 w a i t ( < even t > ) ;
25 . . . .
26 }
27 t a s k _ e n d ( ) ;
28 }

The actual software task is defined as the SC THREAD run that is regis-
tered and deregistered via task start and task end. The task behavior is imple-
mented by an infinite loop with native C or SystemC code (mycode()), time
specifications, and optional overloaded wait statements for inter-task commu-
nication. ISRs are defined similarly and further outlined at the end of this
section.

9.2.3 Time Specification and Scheduler Synchronization

Recall that the body of each task and ISR is specified by a sequence of
software code segments followed by an interruptible timing specification. Fur-
thermore, RTOS modules issue overloaded wait statements for inter-task com-
munication. To synchronize with the RTOS context, the implementation of the
overloaded wait wraps the native SystemC wait enclosed in calls to context
methods as follows:

1 void s c _ r t o s _ m o d u l e : : w a i t ( s c _ e v e n t &e )
2 {
3 i n t p i d = m _ r t o s _ c o n t e x t −>t a s k _ w a i t ( ) ;



Accurate RTOS Modeling and Analysiswith SystemC 245

4 sc_module : : w a i t ( e ) ;
5 m _ r t o s _ c o n t e x t −> t a s k _ a c t i v a t e ( p i d ) ;
6 }

In this implementation, the overloaded wait first notifies the context that the
task or ISR changes to waiting, where task wait triggers a rescheduling for the
next delta-cycle. After the return of the function, the actual context switch is
executed in the SystemC kernel through the SystemC wait statement. After the
invocation, task activate notifies the context about the receipt of the event and
that the task or ISR is ready for execution. task activate reschedules the task
to become ready after which it waits for wait event, i.e., task activate blocks
the task or ISR until being notified by the scheduler.

Figure 9.8 shows a simple example with two tasks and their interaction with
the RTOS context. Task A executes an overloaded wait statement. This state-
ment first sets the task to waiting in the RTOS context. It then executes a
native wait statement, which gives control to the RTOS context. The sched-
ule function may thereafter set Task B to ready and hence start its execution.
Meanwhile, the SystemC thread of Task A is invoked in one of the next delta-
cycles and sets itself to ready by executing task activate. After the return of
Task B, the scheduler recognizes that Task A is ready and subsequently invokes
it again.

Figure 9.8. Overloaded wait statement.

The interruptible time specification via CONSUME CPU TIME is, further-
more, defined by the following code:

1 void s c _ r t o s _ c o n t e x t : : CONSUME_CPU_TIME ( s c _ t i m e &d )
2 {
3 s c _ e v e n t c o n t i n u e _ e v e n t ;
4 s c _ t i m e w a i t _ t i m e ( d ) ;
5 s c _ t i m e w a i t _ s t a r t ;
6

7 / / t i m e t o w a i t ?



246 HARDWARE-DEPENDENT SOFTWARE

8 whi le ( w a i t _ t i m e > SC_ZERO_TIME )
9 {

10 / / n o t i c e c u r r e n t t i m e
11 / / and s t a r t t i m e r
12 w a i t _ s t a r t = s c _ t i m e _ s t a m p ( ) ;
13 c o n t i n u e _ e v e n t . n o t i f y ( w a i t _ t i m e ) ;
14

15 / / w a i t on t i m e r or r e s c h e d u l e
16 w a i t ( c o n t i n u e _ e v e n t | m_preemption_
17 o c c u r r e d _ e v e n t ) ;
18 c o n t i n u e _ e v e n t . c a n c e l ( ) ;
19

20 / / compute r e a l w a i t i n g t i m e
21 s c _ t i m e now = s c _ t i m e _ s t a m p ( ) ;
22 w a i t _ t i m e −= now − w a i t _ s t a r t ;
23

24 / / r e l e a s e p r o c e s s o r and suspend u n t i l
25 w a i t _ e v e n t
26 t a s k _ y i e l d ( ) ;
27 }
28 }

The function realizes an interruptible time wait by first notifying an in-
ternal continue event at a specific future point in time. Thereafter, it sus-
pends itself until the time point is reached or an external event (m preemption
occurred event) occurs that triggers a rescheduling in case of a preemption,
e.g., due to a high priority task or an interrupt activation. This event is always
sent one simulation cycle before the execution of the scheduler. On each reac-
tivation upon the receipt of this event, the wait is aborted and the time that is
elapsed since its start is deducted from the total waiting time. The control is
finally returned to the RTOS context through task yield().

9.2.4 Scheduling Tasks and ISRs

The ISR scheduler and the task scheduler are both derived from class sc
rtos scheduler. They each overwrite and reimplement the schedule function
of the abstract base class sc rtos scheduler. This function implements the in-
dividual RTOS and ISR scheduling algorithms and returns the identifier of the
next selected task or ISR. The scheduler is invoked by the main scheduler
function schedule() of the RTOS context class whenever a scheduling event is
triggered. Each scheduler can create and manage its own state transition table
through the function notify task state(). This function notifies the schedulers
about state changes of ISRs and tasks including registration and deregistration.
Alternatively, it is possible to use the state table of the RTOS model itself. In
any case, the function schedule() selects the next runnable task based on this
information.



Accurate RTOS Modeling and Analysiswith SystemC 247

Tasks and ISRs are sensitive to the wakeup event of their TCB and block
themselves until they receive the event from the RTOS context via task yield
and task deactivate. Based on the return value of the scheduler, the context
notifies the particular task or ISR through a notify. This mechanism guarantees
that only one task is active at any time.

The schedule() function of the RTOS context is sensitive to schedule event,
which is generated in the delta-cycle after a task’s state change. In the same
simulation cycle, the m preemption occurred event is sent to the context to
guarantee that an already running task returns its control to the context. The
schedule function first checks for ISRs that are in state ready. In the case of at
least one ready ISR, the ISR scheduler is invoked and evaluates the next ISR
to run. If there is no ready ISR or if the ISR scheduler does not return an ISR
identifier, the task scheduler is executed.

Note that the scheduling interface also supports the implementation of nested
and non-maskable interrupts (NMIs). The latter, for instance, can be imple-
mented by returning an empty identifier or the identifier of the currently run-
ning task.

Our aRTOS library currently comes with a Round-Robin and priority-based
scheduler with and without preemption. However, the previously introduced
interface supports the implementation of arbitrary scheduling strategies.

9.2.5 Switching Context

Recall that the RTOS context interface supports the explicit definition of
task state changes for context switches using a state model with five differ-
ent states: created, ready, running, waiting and dead (cf. Fig. 9.6). Explicit
state transitions performing context switches can be executed by the following
functions:

task wait changes the task/ISR state to waiting and triggers a call of the
scheduler for the next delta-cycle. This function does not block and
is typically followed by a SystemC wait that realizes the actual context
switch. The function notifies the RTOS context about the following wait
statement and gives other tasks the opportunity to get invoked. The im-
plementation of the function is as follows:

1 i n t t a s k _ w a i t ( )
2 {
3 i n t t a s k = g e t _ t c b ( ) ;
4 / / s e t t a s k t o w a i t i n g
5 s e t _ t a s k _ s t a t e ( t a s k , WAITING ) ;
6 / / e n f o r c e r e s c h e d u l i n g
7 s c h e d u l e _ e v e n t . n o t i f y ( SC_ZERO_TIME ) ;
8 re turn t a s k −>p i d ;
9 }



248 HARDWARE-DEPENDENT SOFTWARE

task deactivate deactivates a task. It is used for the implementation of events
and semaphores through the RTOS context. Like the previous func-
tion, the current state changes to waiting and a call of the scheduler
is triggered for the next delta-cycle. Then, task deactivate waits for the
wakeup event of its TCB until another task reassigns the state of this
task to ready. After being invoked by the scheduler, the task/ISR state
changes to running. The function is implemented as follows:

1 i n t t a s k _ d e a c t i v a t e ( )
2 {
3 t a s k = g e t _ t c b ( ) ;
4 / / change s t a t e t o w a i t i n g
5 s e t _ t a s k _ s t a t e ( t a s k , WAITING ) ;
6 / / su spend
7 s c h e d u l e _ e v e n t . n o t i f y ( SC_ZERO_TIME ) ;
8 w a i t ( t a s k −>wakeup_event ) ;
9 / / change s t a t e t o r u n n i n g

10 s e t _ t a s k _ s t a t e ( t a s k , RUNNING ) ;
11 }

task activate changes the state to ready. The function can be used for two
different purposes. First, any calling task can set the state of another task
given as a parameter to ready. Second, the function should be applied
after each SystemC wait statement when the task is ready for activation.
The underlying SystemC thread can execute but the RTOS scheduler
has to finally release it. As with the previous function, the scheduler is
triggered in the next delta-cycle. After waiting for wakeup event, the
state changes to running. The function implementation is as follows:

1 void t a s k _ a c t i v a t e ( i n t p i d )
2 {
3 t a s k = g e t _ t c b ( ) ;
4

5 / / i f t h e t a s k i s i n v o k e d
6 i f ( t a s k −>p i d == p i d )
7 {
8 / / change s t a t e back t o ready
9 s e t _ t a s k _ s t a t e ( t a s k , READY ) ;

10

11 / / su spend and w a i t on i n v o c a t i o n
12 s c h e d u l e _ e v e n t . n o t i f y ( SC_ZERO_TIME ) ;
13 w a i t ( t a s k −>wakeup_event ) ;
14

15 / / change s t a t e t o ready
16 s e t _ t a s k _ s t a t e ( t a s k , RUNNING ) ;
17

18 } e l s e



Accurate RTOS Modeling and Analysiswith SystemC 249

19 {
20 / / Wake up a n o t h e r t h r e a d
21 t a s k = g e t _ t c b ( p i d ) ;
22

23 / / change s t a t e t o ready
24 s e t _ t a s k _ s t a t e ( t a s k , READY) ;
25 }
26 }

For explicit event management, the aRTOS library provides the class sc rtos
event with methods wait and notify. This class implements an event mechanism
directly by the RTOS model. The class and methods manage a list of tasks that
are waiting on the event. By calling the member function wait, the calling task
is entered into the task list for the event. Additionally, it is explicitly suspended
by invocation of task deactivate. Waiting tasks can then be reassigned to ready
by means of the sc rtos event member function notify.

9.2.6 Periodic Tasks

Periodic tasks are frequently used in implementations of embedded real-
time systems. A periodic task can be seen as a function that is periodically ex-
ecuted. The following code shows how to implement periodic tasks by means
of our library:

1 void run ( )
2 {
3 t a s k _ s t a r t ( < u s e r _ c a l l b a c k _ p t r > ) ;
4 whi le ( t rue ) / / e n d l e s s loop
5 {
6 / / w a i t on t r i g g e r
7 w a i t ( < t r i g g e r > ) ;
8

9 / / e x e c u t e n a t i v e code
10 my_code ( ) ;
11

12 / / consume t i m e
13 CONSUME_CPU_TIME ( <X> ,SC_MS ) ;
14

15 / / n o t i f y abou t end o f c y c l e
16 t a s k _ e n d _ c y c l e ( ) ;
17 }
18 t a s k _ e n d ( ) ;
19 }

The loop first waits for the invocation by a timer or another event, after
which the actual code is executed followed by a time specification. The task
then explicitly executes task end cycle, which notifies the scheduler about the
end of each period. Note that this enables the possibility to support the im-



250 HARDWARE-DEPENDENT SOFTWARE

plementation of periodic task scheduling. The actual scheduling has still to be
implemented by a software scheduler.

9.2.7 Interrupt Service Routines (ISRs)

As described previously, the functions isr start and isr end register a Sys-
temC task of an RTOS module as an ISR. In addition, our aRTOS library
provides three functions for waiting for an IRQ, as well as for entering and
returning from the ISR execution.

1 void run ( )
2 {
3 i s r _ s t a r t ( < p t r > ) ;
4 whi le ( t rue )
5 {
6 / / w a i t on i r q r e q u e s t
7 i s r _ w a i t ( < even t > ) ;
8

9 / / n o t i f y abou t e n t e r i n g ISR
10 i s r _ e n t e r ( ) ;
11

12 / / e x e c u t e n a t i v e code
13 my_ i s r_code ( ) ;
14

15 / / t i m i n g s p e c i f i c a t i o n
16 CONSUME_CPU_TIME ( . . ) ;
17

18 / / n o t i f y abou t r e t u r n from ISR
19 i s r _ r e t u r n ( ) ;
20 }
21 i s r _ e n d ( ) ;
22 }

As given in the previous code, the pattern for an ISR is similar to a periodic
task. The example defines the SystemC thread run as an ISR encapsulated
by calls to isr start and isr end. The body of the ISR runs an infinite loop.
In each iteration, the body of the loop first waits for an IRQ. The actual ISR
code and the specification of its execution time are enclosed by isr enter and
isr return in order to explicitly notify the scheduler about begin and end of
one invocation. Note that, since CONSUME CPU TIME is interruptible, this
implementation also covers cases where a higher prioritized IRQ interrupts the
execution of a low priority ISR. Details of the ISR functions are as follows:

isr wait waits for an IRQ that is defined as a signal<bool>. If the signal
equals true, the IRQ is present and absent otherwise. During the time
between the occurrence of the interrupt and the ISR execution it is pos-
sible that an IRQ returns to false. Our ISR event management considers
this case since it (i) waits on the wakeup event, i.e., on the activation by



Accurate RTOS Modeling and Analysiswith SystemC 251

the scheduler, and (ii) is sensitive to the falling edge of the IRQ. In case
the IRQ returns to false before, the ISR is reset to waiting. The complete
management is given by the following code:

1 void s c _ r t o s _ c o n t e x t : : i s r _ w a i t ( s c _ s i g n a l <bool > &i r q )
2 {
3 t a s k = g e t _ t c b ( ) ;
4

5 f o r ( ; ; )
6 {
7 / / s e t t a s k t o w a i t i n g
8 s e t _ t a s k _ s t a t e ( t a s k , WAITING ) ;
9

10 / / r e s c h e d u l e
11 s c h e d u l e _ e v e n t . n o t i f y ( SC_ZERO_TIME ) ;
12

13 / / w a i t on h igh s i g n a l
14 i f ( i r q . r e a d ( ) == f a l s e )
15 {
16 w a i t ( i r q . p o s e d g e _ e v e n t ( ) ) ;
17 }
18

19 / / s e t t a s k t o ready
20 s e t _ t a s k _ s t a t e ( t a s k , READY) ;
21

22 / / f i r e s c h e d u l e r
23 s c h e d u l e _ e v e n t . n o t i f y ( SC_ZERO_TIME ) ;
24

25 / / w a i t on s c h e d u l e r or i r q go ing low
26 w a i t ( ( t a s k −>wakeup_event )
27 | i r q . n e g e d g e _ e v e n t ( ) ) ;
28

29 / / i r q rema ins a c t i v e
30 i f ( s i g n a l . r e a d ( ) == t rue )
31 break ;
32

33 / / IRQ has been c a n c e l e d
34 }
35

36 / / Task i s r u n n i n g
37 s e t _ t a s k _ s t a t e ( t a s k , RUNNING ) ;
38 }

The function first changes the ISR state to waiting while waiting for an
IRQ. Upon the occurrence of an IRQ, the state changes to ready and
the ISR waits for the invocation by the ISR scheduler. Before isr wait
returns, the ISR state changes to running with the previously indicated
exception in case the IRQ has been deactivated in the meanwhile.



252 HARDWARE-DEPENDENT SOFTWARE

isr enter defines the beginning of the ISR code.

isr return defines the end of an ISR code. Since execution time of ISRs has
to be specified by CONSUME CPU TIME, which gives control to the
corresponding scheduler and additionally may be interrupted by higher
prioritized interrupts, the end of the ISR cannot be decided by just con-
sidering its state. Therefore, the end of the ISR code has to be explicitly
marked by a call to isr return.

9.3 Related Approaches

RTOS simulation with time annotated segments is either based on an ab-
stract canonical RTOS or on a standard RTOS API. Our approach implements
a canonical RTOS and is based in most parts on the work of Gerstlauer et al.
[GYG03]. More details of that SpecC library were outlined by Yu [Yu05], who
also introduced an approach for SoC software development and evaluation of
different scheduling algorithms and their impact on HW/SW partitioning in
early design phases. Communication between tasks, including interrupts, is
implemented by means of events. ISRs are modeled as tasks. As task schedul-
ing is implemented on top of the non-preemptive SpecC simulation kernel,
simulations may give inaccurate results, which has most recently been resolved
by Schirner and Doemer [SD08]. However, interrupts are still modeled as high
priority tasks and have to apply the same scheduling algorithm as the software
scheduler.

We can find multiple alternative approaches for RTOS simulation in Sys-
temC.

Early work by Hastano et al. [HKH04] outlines a simple RTOS simulation
in SystemC, where specific schedulers can be in principle derived from a ba-
sic class. They model processes by a 1-safe Petri-Net with atomic transitions
annotated by time and power consumption. Individual state transitions are
triggered by the μ-ITRON-OS based RTOS kernel via round-robin schedul-
ing, and I/O operations call hardware operations via a bus functional model.
They do not consider interrupt management.

Huss and Klaus [HK07] introduces a SystemC RTOS API for estimation
of scheduling strategies by means of a Gumbel distribution to approximate
execution times. Their API is in some parts comparable to our implementation.
However, they do not consider interrupt management.

Desmet et al. [DVD00] and Yoo et al. [SGGA02] are early approaches for
RTOS generation from SystemC. Later, [KBR06] introduced a tool-based ap-
proach for system refinement with RTOS generation. Step-wise refinement
covers abstraction levels from CP (Communicating Processes) to CA (Cycle
Accurate) models. In the context of the PORTOS (POrting to RTOS) tool, they
introduce the mapping of individual SystemC primitives to RTOS functions.



Accurate RTOS Modeling and Analysiswith SystemC 253

Mapping to different target architectures is implemented by a macro definition.
PORTOS is configured by a XML specification characterizing the individual
target platforms. Krause et al. [MGR08] introduce SCAS (SystemC Abstract
Scheduler) as an abstract SystemC library for timed functional models. SCAS
basically provides additional classes for FIFO communication (scas fifo)
and software tasks (scas module) with states and state changes. A SCAS
task overloads the eight different variants of the SystemC wait statement to
better reflect the preemptive nature of software tasks. However, interrupt man-
agement is not explicitly considered.

Hessel et al. [HRR+06] apply SystemC for abstract RTOS simulation within
an approach for multi-processor system-on-a-chip (MPSoC) development and
refinement of TLM SystemC models into individual software task and RTOS
assignments to different processors. Similar to Yu, they support basic descrip-
tions of task changes and task synchronization. Wait statements and blocking
read/writes are replaced by RTOS calls for refinement.

Destro et al. [DFP07] introduce a refinement for multi-processor architec-
tures in SystemC with a clear mapping from SystemC primitives to POSIX
function calls. Starting from functional SystemC, first processor allocation
and then HW/SW partitioning are performed. A final step maps SystemC to
a co-simulation of hardware in SystemC and software running on top of an
RTOS. After the mapping hardware threads are executed by a specific SystemC
compliant hardware scheduler. Mapping is basically done by the exchange of
SystemC macros and definitions, i.e., replacing systemc.h by a proprietary
sc2os.h.

Posadas et al. [PAV+05] have published several articles on RTOS simula-
tion. They introduce concepts of their freely available SystemC RTOS library
PERFidiX, which covers approximately 70% of the POSIX standard. Software
threads are partitioned into segments, which are annotated by timing informa-
tion and controlled by a time manager. Time is estimated at runtime by means
of overloaded operators of C primitives. PERFidiX supports interruptible wait
statements. For timing analysis, the simulation time of the software task is sus-
pended in the case of an interrupt and resumed after the execution of the ISR.
For functionally correct simulation of the access sequence to global variables
and communication, system calls and accesses to global variables are separated
in one segment. Interrupts are separately managed as predictable (e.g., time-
outs) and non-predictable interrupts. They report a gain in simulation speed
w.r.t. ISS of more than 142 times in one of their first publications, including
a 2x overhead in speed due to their operator overloading. [QPV+06] further
extends the approach for TLM, where interrupts are received from HW com-
ponents via the TLM bus interface. A separate SystemC thread monitors IRQs
and creates a POSIX thread for the corresponding ISR simulation on demand.



254 HARDWARE-DEPENDENT SOFTWARE

As it can be seen, only very few approaches consider interrupts and thus ad-
dress the problem of non-interruptible wait statements. In SystemC implemen-
tations, PERFidiX seems to provide an adequate solution of interruptible sim-
ulation of software tasks. However, in contrast to our implementation, PER-
FidiX is limited to the application of one scheduling strategy for software tasks
and ISR scheduling. Additionally, it is based on POSIX and cannot be applied
in earlier design phases when the decision on a specific operating system is
still open.

9.4 Applications

To bring our library into the perspective of realistic applications, we briefly
outline the integration into an automotive electronics system design flow and
present some evaluation results of a simulation study.

Industrial automotive system development flows apply Integrated Devel-
opment Environments (IDEs) that typically include editors, code generators,
instruction set simulators, and debuggers for MIL (Model-in-the-Loop), SIL
(Software-in-the-Loop), and HIL (Hardware-in-the-Loop) testing. For soft-
ware development and analysis, current IDEs, like the AUTOSAR-compatible
SystemDesk (dSPACE), combine software components (SWCs) to tasks, which
are finally configured and assigned to an individual microcontroller, the so-
called Electronic Control Unit (ECU). For simulation, the individual configu-
ration and assignment can be combined into a DLL, which can be dynamically
loaded for analysis where the actual operating system is typically not included
in the simulation. Such an analysis currently covers a timeless simulation con-
sidering the activation points of tasks rather than their duration. Our approach
additionally provides an analysis taking full account to all timing effects in-
cluding task duration for detailed scheduling analysis.

Some automotive IDEs include code generation tools, like TargetLink
(dSPACE), which automatically insert checkpoints as C-macros into the SWC
code for code coverage analysis. In TargetLink, those checkpoints correspond
to markers of basic blocks in the C code so that they can provide excellent
means to interface with our timed RTOS simulation. Therefore, without ap-
plying any changes to the SWC code itself, checkpoint macros can be easily
redefined for our SystemC task annotation, i.e., to retrieve the estimated worst
case execution time of a software segment from a timing graph and inserting
a call to the CONSUME TIME function. Furthermore, by the use of SystemC,
hardware components like I/O blocks or buses can be easily combined into one
simulation model.

Figure 9.9 depicts the integration of our abstract SystemC RTOS simula-
tion into an automotive systems IDE. Our system takes checkpoint-segmented
software components (SWCs) from the IDE and links them to the executable



Accurate RTOS Modeling and Analysiswith SystemC 255

Figure 9.9. Configurator for simulations of automotive networks [Bec08].

SystemC simulator. Additionally, each SWC has to be analyzed and a timing
graph with worst-case execution times generated. A final configuration file
describes the ECU architecture, the allocation of SWCs to ECUs, and their
association to the different timing graphs. Finally, a loader links the SWCs,
ECUs, our RTOS library, and the SystemC simulation kernel to create the final
executable of the simulator.

In our framework, the configuration is defined by an XML file where the
following example gives some fragments of an injection control configuration.

1 <ecu >
2 < i d >FUELSYS_ECU< / i d >
3 < c l a s s > s c _ c o n f _ e c u < / c l a s s >
4 . . .
5 < e c u _ t a s k _ s c h e d u l e r >
6 < c l a s s > s c _ c o n f _ e c u _ s c h e d u l e r < c l a s s >
7 < l i b r a r y > s c _ c o n f _ e c u _ s t y l e . d l l < l i b r a r y >
8 < h a s _ c o n t e x t >FUELSYS_ECU< h a s _ c o n t e x t >
9 < / e c u _ t a s k _ s c h e d u l e r >

10

11 < e c u _ i s r _ s c h e d u l e r >
12 . . .
13 < / e c u _ i s r _ s c h e d u l e r >
14

15 < e c u _ t a s k >< i d >MAIN< / i d >
16 < c l a s s > s c _ c o n f _ e c u _ t a s k < / c l a s s >
17 < l i b r a r y > s c _ c o n f _ e c u _ s t y l e . d l l < / l i b r a r y >



256 HARDWARE-DEPENDENT SOFTWARE

18 < h a s _ c o n t e x t >FUELSYS_ECU< / h a s _ c o n t e x t >
19 < h a s _ s c h e d u l e r >TASK_SCHEDULER< / h a s _ s c h e d u l e r >
20 < w r a p p i n g _ f u n c t i o n >
21 f u e l s y s : : M a i n A p p l i c a t i o n
22 < / w r a p p i n g _ f u n c t i o n >
23 < p r i o r i t y >3< / p r i o r i t y >
24 < a u t o s t a r t > t r u e < / a u t o s t a r t >
25 < / e c u _ t a s k >
26

27 < e c u _ s i g n a l >
28 < i d e n t i f i e r >ENGINE_MODEL_FUEL_RATE< i d e n t i f i e r >
29 < c l a s s > s c _ c o n f _ e c u _ s i g n a l < c l a s s >
30 < l i b r a r y > s c _ c o n f _ e c u _ s t y l e . d l l < l i b r a r y >
31 < d a t a t y p e > u i n t 1 6 < d a t a t y p e >
32 < h a s _ t r a c e r >VCD_SIGNAL_TRACER< h a s _ t r a c e r >
33 < w r a p p i n g _ s i g n a l > f u e l s y s : : R t e S i g n a l 1 < w r a p p i n g _ s i g n a l >
34 < a d d r e s s >0 x00ad518c < a d d r e s s >
35 < / e c u _ s i g n a l >
36 . . .
37 < / ecu >

The configuration specification starts with a main identifier. Thereafter, ref-
erences to C++ classes of a specific DLL implementing the task and ECU
scheduler functions are defined. Finally, a list of different SystemC tasks and
signals are given, each with its class identifier and the corresponding DLL.

In this context, we also performed several case studies for simulation per-
formance evaluation. The following results apply to parts of a motor manage-
ment. The evaluated application focused on the electrical differential drive of
an automatically guided vehicle and compares to principles of a real engine
management system with injection control, crank shaft hall sensors etc. The
vehicle subsystem is composed of two controllers for the wheels and a module
to communicate with the controlling PC via a serial interface. Tasks and ISRs
of our system are composed of WCET-annotated software segments. They im-
plement several drivers for hardware I/O in order to measure (1) the rotation
speed of each wheel by means of a hall encoder, (2) the electrical current and
(3) the voltage supply for the two drives. The software implements 5 ISRs and
11 tasks, where communication between tasks and ISRs is realized through
events. Simulation results validated that the task scheduler performs correctly
with a 250 Hz sampling rate of the controllers and a guaranteed estimated
wheel rotation of up to 300 rpm (rotations per minute). Each hall encoder has
two lines with a pulsed signal and a 90 degree phase shift. The rotation speed
is evaluated by measuring the time between two pulses where a sensor gen-
erates 180 pulses for each rotation. The rotation direction can be determined
by sensing the second signal at the rising edge of the first one. To identify the
correct direction, the second signal has to be read as soon as possible after de-
tecting a rising edge of the first. In the implementation, this means that the ISR



Accurate RTOS Modeling and Analysiswith SystemC 257

Task/ISR WCET WCRT Deadline
TIMER0 COMPARE ISR 54 214 16000
ENCODER0 ISR 74 601 4438
ENCODER1 ISR 74 679 4438
USART RX ISR 50 740 1527
USART UDRE ISR 53 239 1527

handle clock 1KHz 7 743 16000
handle clock 250Hz 9 752 64000
handle command 497 1232 1527
signal comm tx empty 324 590 1527
controller left 468 633 64000
controller right 468 1627 64000
analog update 127 1761 16000
transmit rpm 232 2424 64000
transmit ticks 274 1940 64000
transmit supply 259 1925 64000
transmit throttle 256 1922 64000

Table 9.1. Worst case and actual execution times of different tasks.

that is sensitive to the first encoder signal reacts within 1
4 of the minimal time

between two pulses. Thus, for 180 pulses per rotation and 300 rpm, the upper
bound for the response time (deadline) is supposed to be 4438 CPU cycles on
a 16 MHz microcontroller.

Table 9.1 shows the simulated (worst case) execution times, the measured
(worst case) response time, and the actual deadlines for the tasks and ISRs. All
times are shown in CPU cycles where the ISRs are listed first. The table shows
that all tasks and ISRs meet their deadlines. For task scheduling, we decided to
apply fixed priorities without preemption. Here, the simulation validated that
replacing the non-preemptive scheduler by a preemptive one has no significant
influence on the response times. Additionally, we could show that tasks and
ISRs keep their deadlines when we reduce the clock from 16 MHz to 4MHz
to save power, provided the bit rate for serial communication is reduced from
115200 bps to 38400 bps at the same time.

For comparing the accuracy of our RTOS simulation library with a conven-
tional approach, we investigated three different time annotations: (1) SystemC
wait statements with accuracy of a segment of duration n, (2) n SystemC wait
statements with accuracy of one cycle per statement (wait(1)), and (3) our
interruptible wait by the means of the CONSUME CPU TIME function. Ta-
ble 9.2 shows the measured response times of the ISR for the two wheel en-
coders.

We can see that the application of native SystemC wait statements over n

time units gives a significant simulation error. This is because each controller



258 HARDWARE-DEPENDENT SOFTWARE

(1) SystemC wait with (2) SystemC wait with (3) interruptible
segment accuracy 1-cycle accuracy

ENCODER0 ISR 572 cycles 132 cycles 134 cycles
ENCODER1 ISR 650 cycles 210 cycles 212 cycles
Simulation time 3.6 s 39.0 s 4.5 s

Table 9.2. Maximal response and simulation times with different time annotations.

task contains software segments with a maximum time of 468 cycles during
which they cannot be interrupted. Results also show that the invocation of n

wait(1) statements, i.e., 1-cycle accuracy, results in precise response times.
However, the simulation speed is poor due to the huge number of synchroniza-
tion points within the RTOS model. Our interruptible wait achieves response
times with negligible simulation error and a negligible overhead in simulation
speed. Additional studies have demonstrated that our approach consistently
keeps the simulation error below 2%. Our current studies have shown speed-
ups between 4000x–40000x of our models with respect to ISS. However, since
the applied ISS was optimized for debugging rather than for simulation speed,
this comparison should be considered with reservations.

9.5 Conclusions

This chapter introduced our aRTOS SystemC library for abstract, accurate
RTOS simulation. The library supports the development and evaluation of
RTOS schedulers and covers all relevant timing effects including preemption
with prioritized and nested interrupts. Our main studies and applications are
currently derived from software developed for automotive systems that have
evolved into fairly complex distributed, network-based systems over the last
years. Here, CAN, LIN, MOST and—most recently—FlexRay(TM) buses
come into application. Especially FlexRay(TM) with its high scalability re-
quires early attention and thus needs new approaches with respect to analysis
and simulation of the entire system. Our RTOS simulation provides fast and
accurate RTOS evaluation and configuration that can be integrated with com-
plex networks for overall system analysis. It therefore complements todays au-
tomotive integrated development environments that mainly execute a timeless
simulation. Our applications have demonstrated that our approach seamlessly
combines with AUTOSAR based development environments, where more de-
tails on the AUTOSAR standard can be found in the next chapter.

Acknowledgments

The work described in this chapter was partly funded by the research award
2007 of Paderborn University, the German Ministry of Education and Research



Accurate RTOS Modeling and Analysiswith SystemC 259

(BMBF) in the context of the ITEA2 project TIMMO (ID 01IS07002), and
the ICT project COCONUT (Grant Agreement No. 217069). We also grate-
fully acknowledge the contributions of Markus Becker and Ulrich Kiffmeier
(dSPACE) for the given application case studies.

References

[Bec08] M. Becker. Vergleichende Evaluation von Netzwerk-Simulatoren
anhand einer Fallstudie. Master’s thesis, Universitaet Paderborn,
2008.

[DFP07] P. Destro, F. Fummi, and G. Pravadelli. A smooth refinement flow
for co-designing HW and SW threads. In DATE’07: Proceedings
of Design, Automation and Test in Europe. IEEE Computer Soci-
ety, Los Alamitos, 2007.

[DVD00] D. Desmet, D. Verkest, and H. DeMan. Operating system based
software generation for systems-on-chip. In DAC’00: Design Au-
tomation Conference, 2000.

[ESHR08] R. Ernst, S. Schliecker, A. Hamann, and R. Racu. Formal meth-
ods for system level performance analysis and optimization. In
DVCon’08: Design and Verification Conference and Exhibitation,
San Jose, CA, 2008.

[GYG03] A. Gerstlauer, H. Yu, and D. Gajski. RTOS modeling for system
level design. In DATE’03: Design, Automation and Test in Europe,
2003.

[HK07] S. A. Huss and S. Klaus. Assessment of real-time operating sys-
tems characteristics in embedded systems design by SystemC
models of RTOS services. In DVCon’07: Design and Verification
Conference and Exhibitation, San Jose, CA, 2007.

[HKH04] P. Hastano, S. Klaus, and S. A. Huss. An integrated systemc frame-
work for real-time scheduling assessments on system level. In
RTSS’04: Proceedings of IEEE Int. Real-Time Systems Sympo-
sium, 2004.

[HRR+06] F. Hessel, V. M. Da Rosa, C. Eduardo Reif, C. Marcon, and T. G.
Serra Dos Santos. Scheduling refinement in abstract RTOS mod-
els. ACM Trans. Embed. Comput. Syst., 5(2):342–354, 2006.

[IEEE06] IEEE. IEEE Standard SystemC Language Reference Manual—
IEEE Std 1666-2005. IEEE Computer Society, New York, 2006.

[KBR06] M. Krause, O. Brinkmann, and W. Rosenstiel. A SystemC-based
software and communication refinement framework for distributed
embedded systems, 2006.



260 HARDWARE-DEPENDENT SOFTWARE

[MAF91] C. Mills, S. Ahalt, and J. Fowler. Compiled instruction set simula-
tion. Softw. Pract. Exp., 21(8):877–889, 1991.

[MGR08] M. Müller, J. Gerlach, and W. Rosenstiel. Abstrakte Model-
lierung von Hardware/Software-Systemen unter Berüsichtigung
von RTOS-Funktionalitä. In MBMVS’08: Proceedings of the 11th
Workshop of Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen, March
2008.

[NBS+02] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr,
and A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In DAC’02: Proceedings of
Design Automation Conference, 2002.

[PAV+05] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder.
RTOS modeling in SystemC for real-time embedded SW simula-
tion: A POSIX model. Des. Autom. Embed. Syst., 10(4):209–227,
2005.

[PB00] P. Puschner and A. Burns. A review of worst-case execution-time
analysis. J. Real-Time Syst., 18(2/3):115–128, 2000.

[QPV+06] D. Quijano, H. Posadas, E. Villar, F. Escuder, and M. Martinez.
TLM interrupt modeling for HW/SW co-simulation in SystemC.
In DCIS’06: Proceedings of the XXI Conference on Design of Cir-
cuits and Integrated Systems, 2006.

[SD08] G. Schirner and R. Dömer. Introducing preemptive scheduling in
abstract RTOS models using result oriented modeling. In DATE
’08: Proceedings of Design, Automation and Test in Europe. IEEE
Computer Society, Los Alamitos, 2008.

[SGD07] G. Schirner, A. Gerstlauer, and R. Dömer. Multifaceted model-
ing of embedded processors for system level design, Abstract. In
ASP-DAC’07: Proceedings of the 2007 Conference on Asia South
Pacific Design Automation, 2007.

[SGGA02] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya. Automatic gen-
eration of fast timed simulation models for operating systems in
SoC design. In DATE’02: Proceedings of Design, Automation and
Test in Europe. IEEE Computer Society, Washington, 2002.

[Yu05] H. Yu. Software Synthesis for System-on-Chip. PhD thesis, Univer-
sity of California, Irvine, 2005.



Chapter 10

VERIFICATION OF AUTOSAR SOFTWARE
BY SYSTEMC-BASED VIRTUAL PROTOTYPING

Matthias Krause, Oliver Bringmann and Wolfgang Rosenstiel

Abstract This chapter focuses on simulation-based verification of AUTOSAR software.
It introduces the methodology and technical aspects behind AUTOSAR and out-
lines the affinities of the concepts of AUTOSAR and SystemC. It discusses in de-
tail how SystemC supports the implementation of AUTOSAR and how SystemC
can be applied with respect to the different AUTOSAR layers. Furthermore, it
illustrates the different views of car makers and tier 1 suppliers onto the system
and discuss how SystemC can support them. Therefore, the different layers of
abstraction within TLM (Transaction-Level Modeling) space are introduced and
different ways of integrating timing behavior into the entire system are shown.
The article is attended by a case study of a traffic sign recognition system, which
demonstrates the functional and timing evaluation of the entire system.

Keywords: Design Methodology, Embedded Software, Virtual Prototyping

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



262 HARDWARE-DEPENDENT SOFTWARE

10.1 Introduction

In recent years, the raising complexity of electronic systems has become
a new challenge within the automotive industry. This is particularly true for
software since most innovations in a car are made in the area of software. In
future, this trend will continue and the part of software will steadily increase in
the next years. Additionally, automotive electronic is a highly distributed elec-
tronic systems resulting in a further growing degree of interconnection and in-
teraction. An increasing number of subsystems are involved in providing a spe-
cific system function and more system functions are sharing a heterogeneous
network architecture. In this context, interaction becomes one of the most crit-
ical challenges of the design process. Another very automotive-specific prob-
lem is the differing view of OEM and tier 1 onto the system. Until recently,
an ECU (Electronic Control Unit) is a single unit for the supplier. But the
growing degree of interaction makes it necessary to consider the entire system.
This is particularly true for the manufacturer who is responsible for the entire
system and the integration of the several components. On the other hand, he
considers the suppliers components as black box units. In terms of interaction,
the black box consideration makes it difficult to focus the entire system.

Right now, a paradigm shift is proceeding from a ECU-centric view to an
entire system view. Also well-known requirements like quality and develop-
ment time are still important and result in the need of modularity, reuse and
scalability of the software. It is difficult to reconcile this with highly hardware-
dependent software of today’s automotive systems that causes significant soft-
ware modifications if changing the underlying hardware architecture. In sum-
mary, the likewise increased complexity of the systems caused many problems
also in terms of stability, error-proneness, performance, reusability, modular-
ity, processes and the like.

10.1.1 The AUTOSAR Initiative

Currently, AUTOSAR (AUTomotive Open System ARchitecture) [AS] ta-
ckles the problems. AUTOSAR is an international development partnership
consisting of a multitude of car manufacturers, suppliers and tool vendors,
defining concepts and workflows, how electronic automotive software-related
systems can be formally specified and processed. AUTOSAR focuses on a
software architecture that decouples software and hardware by offering a hard-
ware abstraction layer and a basic software. The application software is imple-
mented within modules. These software components communicate via well-
defined interfaces. The goal is to make the application software completely
independent from the underlying hardware architecture to allow an arbitrary
distribution onto different ECUs. Configuration and generation processes built
the final ECU software.



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 263

Lately, first standardization results of AUTOSAR have been published in
several specification documents which are available at the AUTOSAR web
page [AS]. Thus, car makers, suppliers and tool vendors start to transfer re-
sults into practice. However, the required engineering steps, or how-to-come
from a logical to a technical architecture and implementation, are not well sup-
ported by tools, yet. For instance, one request of AUTOSAR is “the simulation
of networked systems in combination with well defined timing information
and constraints” [AS06b]. This is of strong interest since it helps to capture
requirements and to analyze whether or not the intended system meets the
defined requirements. For example, the timing behavior of a software com-
ponent (i.e. the execution time) or of a dedicated communication can totally
differ with respect to different system configurations. (This affects in turn the
scalability and reusability of software components.) To allow the time based
simulation, an appropriate timing concept is required which has not been suf-
ficiently supported by AUTOSAR until now. AUTOSAR only offers timing
assertions within the specification semantic. On the other hand, SystemC vir-
tual prototypes provides a promising solution for simulation of distributed em-
bedded systems since they allow to include the timing behavior the underlying
platform architecture.

10.1.2 Virtual Prototyping

The introduction of virtual prototypes is also a consequent continuation of
the changeover from a single ECU-centric development approach to an entire
system view. They allow an early system simulation and analysis and hence
the evaluation of the entire system. The abstraction level of virtual prototypes
varies from an abstract and target platform independent level, that allows a
very early system simulation, to a detailed system model that enables accu-
rate timing consideration by integrating a detailed target platform description.
In between, various intermediate levels exist for gradual integration of target
platform aspects. Some work about virtual prototyping with SystemC is pre-
sented in several articles of the SystemC book [MRR03]. SystemC offers a
comprehensive way to simulate, analyze, and verify software by means of vir-
tual prototypes. Furthermore, it is even able to take the timing behavior of
underlying hardware and communication paths into account. It provides an
appropriate timing concept as well as an event-driven simulation kernel that
enables the simulation of concurrent processes. Today’s state-of-the-art mod-
eling/simulation tools are limited to a single functional timing consideration
(i.e. only the sequential timing order is considered). Already at a first glance,
there are many similarities between SystemC and AUTOSAR with respect to
the modeling structure between the both concepts.



264 HARDWARE-DEPENDENT SOFTWARE

10.1.3 Section Organization

The rest of the article is organized as follows: Sect. 10.2 gives a basic in-
troduction to the AUTOSAR standard. Section 10.3 discusses the different
system views onto distributed embedded systems with respect to the automo-
tive industry (manufacturers an suppliers view) and shows correspondences to
the abstraction levels of a SystemC based design flow. Section 10.4 points
out a methodology to verify AUTOSAR software by mapping the AUTOSAR
software onto SystemC virtual prototypes. Section 10.5 briefly introduces the
consideration and integration of timing behavior into virtual prototypes. Sec-
tion 10.6 demonstrates the introduced design methodology by an application
example. Section 10.7 concludes this article followed by the acknowledgment.

10.2 Concepts of AUTOSAR

AUTOSAR is revolutionizing the art of software development in automo-
tive application domain. Instead of the current state-of-the-art ECU-centric
development approach, AUTOSAR focuses on the entire system. A funda-
mental feature is the separation of application and infrastructure which allows
for a model-driven architecture like methodology, i.e. a platform independent
software development of functionality. Applications can exist and communi-
cate independently of a particular infrastructure and mapping onto ECUs in an
environment called Virtual Functional Bus (VFB).

However, AUTOSAR comprises even more: it specifies methodologies and
workflows on how to come from the system living in the VFB to software run-
ning onto particular ECUs and a three-layer ECU architecture. The ECU ar-
chitecture consist of an application layer, a middleware layer, called RunTime
Environment (RTE), and the infrastructure layer, called Basic SoftWare (BSW).
Assuming that the application elements of the application layer behave exactly
the same like in the VFB, then RTE and BSW implement the VFB for a partic-
ular ECU. Properties of AUTOSAR applications are described with a specific
language, called AUTOSAR software component template (as part of the en-
tire AUTOSAR metamodel). In general, the AUTOSAR software component
template is arranged into three parts regarding the structure, the behavior and
the implementation of models.

10.2.1 AUTOSAR Technology

Regarding the wide complexity of AUTOSAR, this section can only give a
short overview of the AUTOSAR technology. For further readings, please have
a look on the documents published at [AS]. The documents provide detailed
information about the AUTOSAR software architecture, methodologies and



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 265

tools as well as conformance tests. In addition, [Hei04] explains the methodol-
ogy of the definition and generation of data exchange formats in AUTOSAR.

Software Component Template. Referring to the structure, applications en-
capsulate functionality within software components, whereas software com-
ponents are available in two flavors: atomic software components and com-
positions. Atomic software components contain single threads of execution,
so-called Runnable Entities (RE), and are later-on mapped onto particular
ECUs. Compositions are means to structure atomic software components and
can therefore form hierarchies. It is remarkable that the top-most hierarchy
level then represent the entire system. Components communicate via ports
which are typed by interfaces. General communication paradigms between
entities are sender-receiver or client-server communication. In this sense, in-
terfaces are either described for sender-receiver or for client-server communi-
cation. The behavioral section contains the aforementioned Runnable Entities.
Runnable Entities can either be triggered by so-called RTEEvents and will just
be executed, or they can wait (inside) for an RTEEvent. In the first case, they
are referred to as category 1 Runnable Entities; in the latter as category 2.
Common RTEEvents are TimingEvents (a cyclic trigger), DataReceivedEvent
(a trigger caused by the reception of data) or OperationInvokedEvent (a trigger
caused by an request for an service). Additionally to the application software
components, special software components encapsulate the dependencies of ap-
plications on sensors and actors. Such components are dependent on the ECU
hardware. Beyond, there are concepts for implicit reading and writing of data,
data consistency mechanisms or mode managements, and others.

Virtual Functional Bus. To allow hardware and infrastructure independent
software view, AUTOSAR defines the Virtual Functional Bus. This bus vir-
tually specifies all kind of communications between all software components.
Therefore, all communications have to be implemented by well-defined ports.
There are two different kind of ports: A PPort provides a specific service or
data, a RPort requires a specific service or data. Ports are connected to inter-
faces which implement either client-server or sender-receiver communication.
In a sender-receiver communication pattern, the sender distributes informa-
tion to one or several receivers. On the other hand, in a client-server pattern,
the server provides services for a client that initiates the communication. Fig-
ure 10.1 illustrates the virtual functional bus and the notation for ports and
interfaces.

ECU Architecture. Software components, Runtime Environment and Ba-
sic Software compose the ECU architecture individually for each ECU by ap-
plying ECU configuration and ECU software generation tools. The runtime



266 HARDWARE-DEPENDENT SOFTWARE

Figure 10.1. Virtual Functional Bus.

environment is an abstraction layer for all communications of software com-
ponents with other software components (on the same or on other ECUs) or
with the basic software. The basic software by itself is the sum of all standard
software components and ECU specific components. They provide all neces-
sary services for the application software and must be configured individually.
Standard software components and ECU specific components include:

Operating System. The operating system is mainly the scheduler and
provides the dedicated scheduling algorithms. The scheduled objects are
the Runnable Entities. The scheduler provides priority-based scheduling
and protection functions at runtime. The AUTOSAR operating system
bases on the OSEK OS [OSEK05] operating system.

Services. The Services software components provide services for di-
agnostics, memory management, error management and other services
(e.g. CRC calculation).

Communication. The communication components are responsible for
input/output operations, network management and communication ac-
cess to the dedicated automotive busses (LIN [LIN], CAN [CAN], Flex-
Ray [FlRa]).

ECU Abstraction. The ECU Abstraction component provides a soft-
ware interface to allow hardware abstraction. The interface enables ac-
cess to the supported microcontroller drivers. This software component
is ECU specific.

Microcontroller Abstraction. The Microcontroller Abstraction inter-
faces the registers of a microcontroller and makes the higher software
layers independent of the microcontroller. The microcontroller abstrac-
tion component is accessed via the ECU abstraction software compo-
nents.



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 267

Complex Device Drivers. Complex Device Drivers are interfacing other
hardware components like sensor and actuator components as well as
peripheral components. Complex Device Drivers are also ECU specific
and in general used for resource critical applications. They offer a con-
tainer for specific software implementation by providing the standard
AUTOSAR interface for interconnection with the environment.

Figure 10.2 illustrates the ECU Software Architecture defined by AUTOSAR.

Figure 10.2. AUTOSAR ECU architecture.

Methodology and Workflow. AUTOSAR defines a design flow for a par-
ticular ECU implementation. The software components defined at VFB-level
are mapped onto a dedicated ECU. As illustrated in Fig. 10.3, the workflow
is divided into three categories: system configuration, ECU configuration and
component implementation. Mainly, the flow bases on templates defined by an
unique XML exchange format. The design process starts with the system con-
figuration. The system configuration input contains information about software
components, system constraints and ECU resources. The latter includes spec-
ification with respect to the processing unit, sensors and actuators, memory,
peripherals and the like, as well. The system constrains provides the informa-
tion to map software components onto ECUs and communications to busses.
Hence, also topology information is included. The configuration process out-
puts a system configuration description including a complete communication
matrix which describes the bus frames and schedules. Based on the communi-



268 HARDWARE-DEPENDENT SOFTWARE

Figure 10.3. AUTOSAR methodology.

cation description, the required information for each ECU are extracted. The
ECU configuration is a complex engineering process since it configures the
complete basic software with respect to the extracted system configuration.
The configuration concerns the runtime environment as well as all basic soft-
ware components (e.g. operating system, communication). For instance, the
configuration determines the task scheduling and integrates the required basic
software modules. The result of ECU configuration serves for code generation
of the basic software and run time environment. Software developers imple-
ment the software component with respect to the internal behavior description
of the software component. Compilation is ECU specific. Finally the com-
ponent object files are linked together with the RTE object files and the basic
software object files.

10.2.2 Authoring, Modeling and Simulation

Since first specifications have been published, several tool vendors
(e.g. dSPACE [dS], ETAS [ET], Vector Informatik [VI]) are providing tools
to support the AUTOSAR design methodology. Authoring tools are support-
ing the workflow, i.e. the configuration and mapping process. At the cur-



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 269

rent state of the art, they serve as input for the RTE generation (e.g. Vec-
tor Informatik DaVinci Developer, dSPACE SystemDesk), BSW generation
(e.g. Vector Informatik MICROSAR, ETAS RTA) as well as the code gen-
eration (e.g. dSPACE TargetLink, ETAS ASCET). Additionally, AUTOSAR
specifies how to interact with behavior models [AS06b] and, in particular, how
to apply Simulink [AS06a]. Also an UML metamodel for the tool Enterprise
Architect [EA] has been implemented and is provided at the AUTOSAR home-
page [AS]. Tool vendors are also integrating AUTOSAR into their product
lines for modeling (e.g. Vector Informatik: DaVinci System Architect), sim-
ulation and test (e.g. Vector Informatik CANoe, ETAS INCA). This article
contributes to simulation and verification of AUTOSAR software by applying
virtual prototyping based on SystemC. Currently, this development trend is an
actual object of research but of significant interest within the automotive indus-
try, since AUTOSAR claims toward supporting timing concepts for simulation
in combination with timing behavior in future.

10.3 Different System Views on Distributed Embedded Sys-
tems

In automotive industry exist different views onto the electronic system. Tier 1
supplier are mainly interested in a ECU-centric view whereby OEMs have to
consider the entire system. This problem is mitigated by AUTOSAR by in-
troducing the Virtual Functional Bus and the corresponding design methodol-
ogy. Also SystemC is affording an entire system view. To support the existing
AUTOSAR design flow, its innovations are picked up and consequently pro-
ceeded. Here, two points are essential and also supported by SystemC: The
first one is to use abstraction levels similar to AUTOSAR, particularly at the
architecture independent level (i.e. the VFB). The second one is the separation
of application and infrastructure. This separation also expresses the different
views of tier 1, which is mainly interested in the application, and OEM, which
is mainly interested in the infrastructure.

10.3.1 Manufacturers and Suppliers View

In automotive industry, parts of the functionality are developed by the sup-
pliers. Control functions are often developed with behavior modeling tools
and then transformed into source code of a programming language, usually
C/C++. Before AUTOSAR, application has almost been developed indepen-
dent from the entire system architecture as illustrated in Fig. 10.4. The in-
tegration of applications into the entire system has been performed lately, in
general with prototyping platforms. During design phase, basically three lev-
els of abstraction have been passed through: specification level with no timing



270 HARDWARE-DEPENDENT SOFTWARE

Figure 10.4. ECU-centric system view with separated consideration of infrastructure and com-
ponent.

behavior, a timed modeling level whereas time has been considered by se-
quenced behavior and cycle accurate timing by implementation at prototyping
platforms.

With AUTOSAR, the entire system is focused already in early design phases.
This paves the way for an early system integration. VFB, infrastructure and
component templates as well as the suggested workflow allow a much bet-
ter exchange of information between infrastructure (focused by the OEM) and
application (focused by tier 1) and hence, the consideration of the respective
requirements and requests.

With respect to potential system views, the former independent infrastruc-
ture and application views now span the matrix of Fig. 10.5. Several combina-
tions are possible, but not well supported until now. The different combinations
reflect the different interests of OEM and tier 1. Within the design space of the
matrix, the OEM would refine the infrastructure (black arrows in Fig. 10.5)
while the tier 1 would refine the application (gray arrows in Fig. 10.5). But
both would consider the behavior of the entire system. Nevertheless, specific
timing requirements are still considered late in the design phase after imple-
mentation on real prototypes. A more early system integration is possible by
introducing virtual prototyping models implemented in SystemC. Additional
modeling techniques including the TLM 2.0 standard [Mon07] and the event
based simulation kernel arrange the introduced matrix in more detail as ex-
plained within the next section. A more detailed discussion about this matrix
including a communication and software refinement flow in SystemC is found
in [KBR05].



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 271

Figure 10.5. Design space matrix for a joint and entire system view.

10.3.2 SystemC Design Methodology

In a SystemC-based design methodology, different modeling styles, includ-
ing transaction-level modeling [Mon07] and various levels of abstraction are
used. The OSCI Transaction Level Working Group [TLM] has defined dif-
ferent levels of abstraction for transaction-level modeling. These levels are
introduced in [Don04] and [DBR04] and are briefly presented below:

Communicating Processes (CP). At this level, the behavior is parti-
tioned into a network of parallel processes exchanging data through
point-to-point connection. Hence, there is no arbitration of the data
communication. Systems modeled at this level are still architecture and
implementation independent.

Communicating Processes with Time (CPT). This level is functionally
identical to CP and annotated with high-level performance data.

Programmers View (PV). The PV level is much more architecture spe-
cific. Bus or NoC models are instantiated to act as transport mechanisms
between the model components. The models are sequenced but untimed.
The PV level is register accurate.



272 HARDWARE-DEPENDENT SOFTWARE

Programmers View with Time (PVT). As with the CPT level, a PVT
level is functionally identical to the PV level but annotated with esti-
mated multi-cycle timing information.

Cycle Callable (CC). At this level, the system behavior includes cycle-
true details and communication models are protocol-true.

If the design process starts at the highest level of abstraction (i.e. CP), the
model can be refined stepwise down to CC level. Communication and compu-
tation are refined independently. This expands the matrix of Fig. 10.6 which is
traversed during the refinement process.

Figure 10.6. Abstraction level matrix of the refinement flow in TLM space.

The introduced view of the abstraction levels is strongly influenced by a
hardware design perspective. Since the focus is on embedded software, ab-
straction levels have to be examined more closely. By definition, point-to-point
communication is refined to an abstract bus model at PV level which means
that communication takes place in a sequential scheduled order. A sequential
order is also required for a software implementation of computation tasks, so
the execution switches from a parallel to a sequential order at PV level. By sep-



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 273

arating the communication from the computation, we can define the following
scenarios:

Communication at PV/PVT or either CC, and computation at CP/CPT.
The communication is refined to an abstract (timed or untimed), cy-
cle approximate or cycle accurate behavior model while keeping the
computation unscheduled and parallel. By refining the communication
from CP/CPT to PV/PVT the computation processes are allocated to a
processing element, but they are still simulated in parallel on the Sys-
temC simulation kernel.

Computation at PV/PVT and computation at CP/CPT. The communica-
tion is performed by point-to-point communication calls and (software-)
computation is refined to a scheduled order with or without timing infor-
mation (timed or untimed structured computation in Fig. 10.6). Please
note that both scenarios are defined as PV/PVT in Fig. 10.6.

Basically, there are multiple possible paths through these levels. An OEM has
to consider the infrastructure hence communication refinement down to a cycle
accurate level of abstraction is recommended in order to obtain significant sim-
ulation results with respect to the communication architecture (continuous line
in Fig. 10.6). Otherwise, tier 1 suppliers require an early refinement of compu-
tation while keeping the communication at a high level of abstraction (dashed
line). Finally, a mixed level modeling for distributed systems is possible. Some
of the computation may already be refined to a cycle accurate level while other
computation entities are still at a time level of abstraction. This is particularly
interesting for enhancements of systems application. New application features,
which are initially described at an high abstraction level, are allowed for early
integration into the virtual prototype which already introduces accurate timing
behavior. Different configurations, also reconfiguration and remapping of ex-
isting system components, are easy to implement and simulate in comparison
to a real prototyping platform.

10.4 Applying SystemC for AUTOSAR Software Verification

Since AUTOSAR has specified concepts, infrastructure and workflows, but
does neither consider timing concepts nor system evaluation, simulation of
the entire system is a recommended step to evaluate timing and behavior in an
early design phase. Early simulation helps to find errors and bottlenecks within
the design resulting in decreasing development time by preventing possible re-
designs. Moreover, simulation with virtual prototypes evaluates the timing
behavior of the entire target architecture that has also a strong impact on the
behavior of the entire system with respect to performance and possible errors.



274 HARDWARE-DEPENDENT SOFTWARE

Such a detailed timing simulation is not able with state-of-the-art behavior
modeling tools (e.g. Simulink).

SystemC enables entire system simulation. A particular value of SystemC,
with respect to the design at system level, is the ability to design and model
the functionality of embedded distributed systems as well as the required tar-
get architecture and infrastructure within one design language. This enables
simulation and evaluation of a software application on its underlying target
architecture and infrastructure respectively, both specified in SystemC. Addi-
tionally, SystemC introduces a simulation concept for the designs and provides
a simulation kernel as well. This concept includes timing notations and timing
behavior which is not part of AUTOSAR. In brief, SystemC offers those fea-
tures that are not defined within AUTOSAR or supported by additional sim-
ulation tools until now. Therefore, sharing both methodologies will lead to
an increase in value. The benefit is to enable simulation of interconnected
AUTOSAR software components by integrating timing behavior already at
a high level of abstraction to the communication as well as to the applica-
tion, and hence to detect timing caused errors at an early design time. As
a result, the simulation and evaluation of the entire system is affecting the
configuration and mapping decisions respectively of the AUTOSAR design
flow.

10.4.1 Affinities between AUTOSAR and SystemC

On closer examination, there are a lot of affinities between the AUTOSAR
Software Component Template and the SystemC language. In terms of struc-
ture, both have entities containing behavioral elements and both can form or-
dered hierarchies. Therefore, AUTOSAR software components can generally
be represented by SystemC modules (SC MODULE) as shown in Fig. 10.7.
Since there is no extra hierarchical element in SystemC, AUTOSAR composi-
tions map to SC MODULE, too.

Figure 10.7. Analogy regarding AUTOSAR software-components or compositions and Sys-
temC modules.



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 275

Figure 10.8 depicts the context of the “schedulable” (“triggerable”) entities.
In general, AUTOSAR Runnable Entities can directly be mapped to SystemC
processes. Furthermore, since AUTOSAR and SystemC distinguish two types
of schedulable entities, a one-to-one mapping of AUTOSAR Runnable Enti-
ties of category 1 to SC METHODs and of AUTOSAR Runnable Entities of
category 2 to SC THREADs is possible. That also means inherently that both
offer the opportunity of triggering schedulable entities via events and can wait
for an trigger.

Figure 10.8. Analogy regarding AUTOSAR Runnable Entities (RE) and SystemC methods
and threads.

Figure 10.9 shows analogies regarding communication. Both have the con-
cept of ports: AUTOSAR ports, regardless their direction (provided or re-
quired), have their counterparts in sc port. The same holds slightly true for
interfaces which type ports. The marginal difference here is that AUTOSAR
explicit states a specific kind of interface: sender-receiver or client-server. Sys-
temC, however, hides this detail within the concept of channels. In both tech-
nologies, ports can be exported throughout the entire hierarchy. AUTOSAR
realizes this by the concept of delegation connectors, whereas SystemC pro-
vides the specific sc export construct.

Figure 10.9. Analogy regarding AUTOSAR ports and interfaces and SystemC ports, interfaces
and channels.



276 HARDWARE-DEPENDENT SOFTWARE

10.4.2 Mapping of AUTOSAR Software Components
onto SystemC Virtual Prototypes

Like in the SystemC-based design methodology, also the AUTOSAR
methodology has different views which can be compared to abstraction lev-
els. Considering applications independent of a particular infrastructure and
mapping onto ECUs is the highest level in AUTOSAR. Similarly, the SystemC
based design approach starts at CP level. Systems modeled at CP level are
still architecture and implementation independent, and there is no arbitration
of the data communication. In contrast to the widespread view of SystemC
as a hardware modeling language, this level of abstraction is completely inde-
pendent of the partitioning into hardware and software. The communicating
processes describe software processes which are later completely mapped to a
target processor.

Mapping AUTOSAR VFB View to SystemC CP Level. As a consequence
of the similar abstraction views, an AUTOSAR design can be transformed into
an equivalent SystemC design at CP level. However, the design can be sim-
ulated by the provided SystemC simulation kernel. Since the VFB does not
contain functional behavior (i.e. the application implemented by the Runnable
Entities), the equivalent CP model just contains information regarding the in-
frastructure for the moment. The AUTOSAR application is developed inde-
pendently of the configuration flow (cf. Fig. 10.3) but implemented by the
guidelines of the software component template. Hence, such a component can
easily be integrated into the CP model which implements the software compo-
nent infrastructure and the VFB. If functional behavior of an application does
not exist as yet, communication traffic can be generated by cyclic or random
transmitting data of the corresponding data type. Cycle periods must be speci-
fied by the designer. This is possible because at VFB level the communication
relationships and data types as well as Runnable Entities are already specified.
The early integration of application into software components and the likewise
involved simulation supports the design process and the decisions of the con-
figuration and mapping process. Moreover, partial decision can be made and
immediately proved by the simulation. For example, the OEM may prove the
communication infrastructure by replacing the point-to-point connections by
the dedicated bus. This requires configuration concerning the communication
but not the operating system or ECU-configuration as well. On the other hand,
the entire SystemC model can be refined starting from CP level. As already
discussed in Sect. 10.3.2 (cf. Fig. 10.6), the SystemC design can be refined in
different ways, communication driven or computation driven. Refining a Sys-
temC model means gradually stepping from an abstract system specification to
the desired target architecture. Each step adds new information about timing



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 277

and architectural details to the design. The hardware (e.g. CPU) as well as the
bus protocol or either the timing configuration of the bus are responsible for the
global timing behavior. Structural information is given by the scheduling pol-
icy, the bus access method, and the bus protocol for example. Refinement aims
to make a decision which target platform should be used and to adapt the sys-
tem according to that architecture. After each refinement step, the chosen tar-
get architecture can be evaluated with respect to given requirements. However,
the user can refine communication and computation independently and keep
the computation at a high abstraction level and firstly refine the computation
or vice versa. Communication refinement is supported by encapsulating com-
munications into channels and separates them from the computation. Thus,
channels can easily be swapped, e.g. the channels implementing the point-to-
point communication (that derives from the VFB) are swapped by channels
implementing a specific behavior of a communication protocol. The applica-
tion is left untouched if the same interface is used as before. Bus models are
embedded within the hierarchy of the inserted channel. Such models can be
untimed, timed, cycle approximate or cycle accurate as well. Internal refine-
ment between the different accurate transaction level models is possible as well
as refinement to a register transfer level (RTL) model. In this case transactions
are replaced by signals. This refinement technique is described in [GLMS02]
in detail. Computation refinement from a unstructured (i.e. parallel processes
at CP level) to a structured (i.e. scheduled processes at PV level) execution
order is done by introducing a scheduling policy to the implementation of the
Runnable Entities which are mapped to a single processing element and which
are executed in parallel at CP level. Further refinement steps introduce the
complete basic software as well as the processing element models by itself.
The refinement process in SystemC is comparable with the configuration and
mapping process of AUTOSAR. The required information for SystemC refine-
ment is also available within the AUTOSAR configuration files. The informa-
tion is extracted to the appropriated XML configuration for SystemC. In turn,
the evaluation results are used for the configuration and mapping flow of AU-
TOSAR. Figure 10.10 shows both design flows and the transition points from
AUTOSAR to SystemC and vice versa. On the other hand, it is also possible
to transform AUTOSAR into a virtual prototype after configuration and map-
ping (as also illustrated in Fig. 10.10). However, this requires the evaluation of
transformation rules regarding the RTE.

Mapping AUTOSAR ECU View to SystemC. By applying the AUTOSAR
workflow, ECU view including RTE and BSW is generated. The RTE im-
plements the VFB, i.e. it implements the interfaces and events for triggering
Runnable Entities. In contrast to the transformation of VFB to CP, the RTE
transformation to SystemC PV/T requires changes of the transformation rules



278 HARDWARE-DEPENDENT SOFTWARE

Figure 10.10. Concurrent AUTOSAR and SystemC design flow with potential transition
points at VFB level and ECU level.

if also the virtual prototype has to provide the RTE.1 SystemC PV/T simu-
lates behavior that is running at one processing element not in parallel but in
a sequenced order by providing the dedicated scheduling mechanisms. The
Runnable Entities (or the communicating processes respectively) are parti-
tioned to a specified processing element. By taking a closer look at the transfor-
mation, several abstraction levels of the SystemC design space (cf. Sect. 10.3.2
and Fig. 10.6) can be the target. Figure 10.11 illustrates these possible target
levels. The ECU can be modeled by an abstract model of the OS considering
only the scheduler or also other OS components. This is the untimed or timed
programmers view. A cycle approximate view is implemented by using In-

1Basically, one can also consider the SystemC CP model as an implementation of the sum of all RTEs
connected with a “minimum BSW” only consisting of point-to-point communications and no scheduling,
bus, or other BSW components. Hence, neither configuration nor mapping is required.



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 279

Figure 10.11. Potential SystemC target levels for transformation from ECU view.

struction Set Simulators or even more accurate Processing Element (PE) mod-
els. Application, RTE and BSW do not need to be transformed into SystemC
but compiled and run as binary on the models. SystemC wraps the models and
acts as simulation master to connect several models with the communication
infrastructure. However, the implementation is very expensive and simula-
tion performance is very slow the more PE models are included. Therefore
transformation onto an abstract RTOS model is recommended and discussed
further.

The implementation of the BSW by an abstract RTOS model in SystemC
entails two questions: First, how the BSW is implemented in SystemC with re-
spect to the various configuration options. Second, dependent on the solution
of the first question, how are the Runnable Entities handled within the SystemC
simulation environment. The first question concerns the different modules of
the BSW. A more detailed consideration of the several modules clarifies this
point. Figure 10.12 shows the modular implementation of the BSW. The modu-
larization is due to the abstraction of the hardware (i.e. the microcontroller) and
the ECU as well. As already known, software components other then special-
ized SWCs are implemented independently of the underlying microcontroller
and ECU as well. BSW modules introduces dependencies on the infrastructure,
e.g. memory services (for memory configuration) and communication services
(dependent on the bus network). Furthermore, the hardware abstraction layers
modules are dependent on the ECU or external devices respectively. The driver
modules and parts of the system services are microcontroller dependent soft-
ware modules. Hence, the big question is which modules (supposed that they
are used within the configuration are) are used from the generated BSW code
(i.e. the source code is integrated into the SystemC model) and which modules
are represented by an abstract SystemC model.

Since hardware components are not considered at this abstraction level,
all hardware-dependent software modules of the BSW (i.e. complex drivers,



280 HARDWARE-DEPENDENT SOFTWARE

Figure 10.12. Basis software modules with different implementation alternatives for SystemC.

I/O drivers, communication drivers, microcontroller drivers and partially the
system services) should be abstracted by the SystemC BSW model. Fig-
ure 10.12 shows two options of using generated software modules of the BSW.
In case one, all modules that do not depend on the microcontroller are used
(service and hardware abstraction modules). In the second case, only some
system and communication services are used while the other modules are sim-
ulated by the abstract SystemC BSW model. In both cases, the RTE is not
translated into SystemC syntax but the generated RTE configuration is used.
This requires the implementation of a well defined interface between the RTE
and SystemC to integrate the BSW model into the interaction. Furthermore
also the interaction between source code and modeled BSW modules has to
be supported by SystemC interfaces. This may be a difficult task if the model
abstracts away some part of functionality. Besides, standardized interfaces be-
tween the single BSW modules are helpful to realize the implementation of
BSW module models. A more difficult task is the interaction of the system
services with the SystemC model. Some parts are directly connected with the
underlying microcontroller and no standardized interfaces are used (i.e. no
hardware abstraction is used within the system services). Such parts include
access to interrupt control registers, processor status words and stack point-
ers. Further direct hardware dependency may include memory protection, time
protection, time synchronization by a global time source and “privileged/non-



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 281

privileged modes” of the microcontroller. Hence, the hardware dependent
parts of the system services have to be detached and abstracted by the BSW
model.

To avoid this problems of interconnecting generated BSW modules with the
SystemC BSW model it may be more practical to model the entire BSW by an
abstract SystemC model. In this case the integration of the SWCs is similar to
the integration at CP level that has directly been derived from the VFB. This in-
cludes also the transformation of RTE to equivalent SystemC elements. How-
ever, as already mentioned, the transformation rules for RTE elements have
changed. This is due to the SystemC RTOS model since a process that derives
from a Runnable Entity is not longer implemented by a thread- or method-
process (SC THREAD, SC METHOD) but by a RTOS model task. This is
the object of scheduling for modeled RTOS scheduler. Furthermore, also the
special task concept of the AUTOSAR operating system has to be considered
by the RTOS model. A task can include more than one Runnable Entity (of
category 1). Those REs are executed sequentially within a task (basic task)
or executed depending on a OS event (extended task). Figure 10.13 illustrates
this behavior. The SystemC model has to implement the special task behav-
ior. Thus, only the RTOS model itself is implemented at SystemC thread level.
SystemC threads (SC THREAD) should be used rather than SystemC methods
(SC METHOD) to allow task interruption. More details on RTOS modeling
can be found in former chapters of this book. Finally, there should be no sug-
gestion which kind of suggested implementation the user has to accomplish. It
rather depends on the kind of application, e.g. how powerful is the available
RTOS model or which BSW modules are even in use.

Figure 10.13. AUTOSAR task concept and its implementation in SystemC.



282 HARDWARE-DEPENDENT SOFTWARE

Formal Transformation Rules. This section finally summarizes the trans-
formation rules discussed before. The affinities shown in Sect. 10.4 are the
basis of the transformation from AUTOSAR to SystemC. Basically, the com-
plete semantic of the Software Component Template has to be mapped to Sys-
temC semantic. This section summarizes the formal transformation rules for
the mapping from AUTOSAR to SystemC. This concerns the VFB (Table 10.1)
as well as the RTE (Table 10.2) whereby SystemC CP/T and PV/T has to be
distinguished.

AUTOSAR SystemC PV/T
ComponentType abstract class
AtomicSoftwareComponentType SC MODULE
SensorActuatorSoftwareComponent SC MODULE
CompositionType (hierarchical) SC MODULE
ComponentPrototype specific instance of an SC MODULE
PortPrototype abstract class
PPortPrototype sc export for client-server-communication and

sc port for sender-receiver-communication
RPortPrototype sc port
PortInterface abstract class
SenderReceiverInterface sc interface impl. sc channel
ClientServerInterface sc interface impl. sc channel
Datatype abstract class
PrimitiveType abstract class
Range abstract class
IntegerType / e.g. uint8 sc int, sc uint, int, . . . / e.g. uint<8>

RealType float, double
BoolType bool, sc bit
OpaqueType sc bv
CharType char
StringType sc string
ConnectorPrototype abstract class
AssemblyConnectorPrototype sc export-sc port binding for client-server-

communication and sc port-channel binding for
sender-receiver-communication

DelegationConnectorPrototype sc export-sc export binding or sc port-sc port
binding

Table 10.1. Formal transformation rules for the Virtual Functional Bus.

By using the UML 2 profile for AUTOSAR [AS06c], the transformation
rules are implemented by tool-based mapping of XMI onto SystemC. How to
map from UML to SystemC can be checked e.g. in [VSBR06].



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 283

AUTOSAR SystemC SystemC RTOS model
Internal Behavior In SystemC an AtomicSoftwareComponent

must only have one internal behavior.
Runnable Entity—category 1 SC METHOD sc os thread
Runnable Entity—category 2 SC THREAD sc os thread
RTEEvent abstract class
TimingEvent specific instance of sc event
DataReceivedEvent specific instance of sc event
DataReceivedErrorEvent specific instance of sc event
DataSendCompletedEvent specific instance of sc event
OperationInvokedEvent specific instance of sc event
AsynchronousServerCallReturnsEvent specific instance of sc event
ModeSwitchEvent specific instance of sc event
WaitPoint wait(specific sc event)
DataReadAccess implicit data access—specific
DataWriteAccess implementation of semantic in SystemC
DataReceivePoint explicit data access—via sc export

respectively sc port
DataSendPoint explicit data access—via sc export

respectively sc port

Table 10.2. Formal transformation rules for the Runtime Environment.

10.5 Integration of Timing Behavior into Virtual
Prototypes

SystemC offers timing behavior concepts to consider the timing of a system
during simulation. However, the user is responsible for reproducing the timing
behavior as accurate as possible (with respect to the chosen abstraction level).
This section gives a brief outline of timing integration into virtual prototypes.
The first part provides an overview of components which, directly or indirectly,
influence the timing of an entire system. The second part introduces options
of timing integration into system models. However, for detailed information
please refer to the indicated literature. A more detailed consideration would be
beyond the scope of this book.

10.5.1 Time Consuming System Components

Computation has no timing behavior as long as the target platform is un-
known. The timing is affected by the target platform component where the
computation is executed. Also, operating system and device drivers are indi-
rectly affecting the timing since they are executed on the target platform addi-
tionally to the application. Important components with focus on direct/indirect
time consumption are:



284 HARDWARE-DEPENDENT SOFTWARE

processing element: functional unit, pipeline, cache, register, counter.

peripherals: memory, bus scheduling, interrupts, sensor and actuator
components.

indirect time consummation: task switch time, interrupt latency, error
detection, scheduler, communication protocol.

Ideally, all these effects should be considered to calculate the timing behavior
of the system. In terms of automotive distributed systems, a focus of inter-
est is the communication timing that strongly depends on the communication
architecture and the bus scheduling. Also important are sensor (actuator) com-
ponents since they provide (require) data at dedicated time instants. This also
applies for algorithms that consume execution time on a processing element.

10.5.2 Determination and Integration of Timing Behavior

Since a lot of components are responsible for the timing behavior of the
entire system, the main question is how to incorporate the timing into the sim-
ulation model. There are basically two approaches possible if using SystemC
as modeling language:

Timing is integrated by instrumentation of the software application code
with timing values using the SystemC timing statement wait(T), whereas
T is a dedicated time value, i.e. the execution time of a piece of soft-
ware or the execution time of a communication. The main task of this
approach is the determination of the execution time by itself and the
placement of the timing statement into the source code.

Timing is incorporated by integration explicit models of the components
that are responsible for the time consumed by software. Such models
do reproduce the (parallel) behavior of hardware components due to the
delta-cycle simulation [SC05] of the SystemC simulation kernel. The
main task is to integrate and connect the IP model components with the
entire system. Automatic model refinement supports this task.

The main advantage of the code instrumentation approach is a very fast simu-
lation time since no complex hardware model components are required. On the
other hand, accurate timing instrumentation requires a detailed code analysis.
Considering the abstract BSW modeling discussed in the second subsection of
Sect. 10.4.2, the timing instrumentation is the method that has to be applied to
integrate timing information into the system model.

Determination of Application Timing Behavior for Code Instrumentation.
Determining the execution time of application software may be a difficult task



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 285

if accurate timing information should be obtained. There are several methods
to determine timing behavior for applications, but most of them are not very
accurate since it is only approximately estimated. This is true for running the
application on a dedicated processing unit, i.e. the target processor or on an
instruction set simulator. A coarse mean value can be determined and anno-
tated at the entry or exit point of a function. Although this is very inaccurate,
a simulation based on end-to-end timing can give a first rough impression of
the real time behavior of a running system. In contrast, also WCET/BCET
(Worst Case Execution Time/Best Case Execution Time/) analysis may be
used to determine end-to-end timing. But this approach is often too pes-
simistic/optimistic and does not consider dynamic aspects of execution like
branch prediction or caches. The accuracy also depends on the granularity
of the analysis. For instance, [KKW+06] presents an approach that instru-
ments timing by an application profiling tool [KFK+05]. The analysis bases
on source code and neither considers compiler aspects (optimization) nor spe-
cific architecture aspects (register, pipeline). The WCET/BCET-approaches
have in common to use a static timing estimation to represent the actual run-
time behavior during simulation. A more accurate way is the combination
of static timing analysis during compile time and dynamic timing simulation
during runtime. This approach analyses the cross-compiled binary code for
a dedicated target processor and determines the static timing behavior using
static processor models. The timing information is back-annotated into the
source code at the boundary of a basic block. Additionally, data dependencies
are considered during run-time of the simulation. This may cause the invoca-
tion of correction code depending on a simultaneous running model for branch
prediction and caches as well. They determine at runtime whether or not a
cache hit or cache miss occurs and whether or not the branch prediction fails.
A detailed description of this approach is found in [SBVR08].

Determination of Application Timing Behavior by Integration of Process-
ing Component. SystemC allows modeling and integration of processing
element units as well. In particular, processing element models are offered by
industry as IP components (e.g. IBM PowerPC [Ber05]) or delivered within
ESL tools (e.g. CoWare [CoWa] Platform Architect, Mentor [MG] System Ar-
chitect, Synopsys [Syn] DesignWare). The behavior of the target processing
unit is often implemented by an ISS (Instruction Set Simulator) [NBS+02] but
also by complex processor models that includes the complete processor units
(function units, pipelines, cache, register, counter, etc.). An ISS abstracts from
a processor by simulating the instruction set. Different kind of implemen-
tations are possible: interpreting ISS and compiling ISS which is the faster
solution in general. The compiling ISS may be static compiling or just-in-time
compiling. The integration into the entire SystemC model may be difficult,



286 HARDWARE-DEPENDENT SOFTWARE

particularly, if the ISS has to be wrapped in SystemC. The application code
runs as binary code in the instruction set simulator. The accuracy of execution
time strongly depends on the accuracy of the processing element model. For
instance, a register-transfer-level model is cycle accurate but requires much
simulation time.

Determination of Communication Timing by Integration of Communi-
cation Components. Expressing the timing behavior of a communication
model is more easy. Since the timing depends on the data transfer rate and
the amount of data, an association with timing values is possible. In par-
ticular, the communication scheduling is also important. It contains the in-
formation when a communication may access the communication medium.
Meanwhile, communication controller models are available and delivered by
industry (e.g. Freescale FlexRay Executable Reference Model [BFA05] in Sys-
temC). The integration process of communication model components is sup-
ported by refinement strategies that allow (semi-)automatic refinement from
CP- or PV- to CC-level. This is supported by well-defined communication in-
terfaces based on SystemC TLM 2.0 [Mon07] and the principle of separating
communication and computation.

10.6 Application Example

This section presents a use case for exploration of the potential of a given
system based on the aforementioned methodology. First, a traffic sign analysis
system is developed using the AUTOSAR design methodology. The system is
mapped onto SystemC CP level for first exploration steps. Afterwards, the sys-
tem is mapped onto an already existing target platform that runs legacy code.
The existing platform consists of five ECUs connected via FlexRay. Differ-
ent configurations are evaluated for the extended system. The use case is kept
quite simple and the results are easy to comprehend. However, a more complex
scenario is more difficult to understand for humans. Hence, simulation heavily
simplifies the evaluation.

10.6.1 Traffic Sign Analysis

The traffic sign analysis system consists of five components: an actuator
component camera, a sensor component display for result visualization, and
three software components. Each software component runs an algorithm: im-
age decoder for data compression, traffic sign recognition, and traffic sign clas-
sification. An additionally control value is the current car speed that controls
the data rate of the camera since a higher speed requires a higher data rate for
recognition. The software component including their ports and communica-
tions are shown in Fig. 10.14.



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 287

Figure 10.14. Virtual Functional Bus view of the traffic sign analysis system.

An early evaluation of the system becomes important since there are a lot
of unknown aspects especially regarding the data transfer. It is influenced by
the data transfer rate (i.e. how many pictures per second are analyzed), the
camera type (picture resolution, color depth), the image compression algo-
rithm (Huffman, Lempel–Ziv–Welch) and of course by the driving situation
that is responsible for the number of traffic signs that are detected within a
certain timing interval and also for the size of the compressed image since
data compression is individual for each image. The designer has to decide the
type of camera, the compression algorithm and the distribution of the software
components. To allow a proper calculation, the resolution should not stay be-
low a certain value. The data rate has also to guarantee that no traffic sign is
missed.

10.6.2 VFB Transformation onto CP Level

The first evaluation step is the simulation at SystemC CP level. CP evalua-
tion allows a functional verification of the system, e.g. the verification of the
algorithms. Furthermore, the simulation gives a first view onto the communi-
cation traffic. The timing of a communication is given by the data transfer rate.
With regard to the FlexRay that allows 10 MBit/s, an effective data transfer
rate of 5 MBit/s has been chosen for data transfer between decoder, recogni-
tion, classification and display. For data transfer between camera and decoder
a higher rate (50 MBit/s) has been chosen since it is already unrealistic to send
this data via FlexRay. Figure 10.15 shows some results of the simulation. The
x-axis represents the sending time of a message while the y-axis represents the
sending duration (i.e. the latency) of this message. Three types of messages
are drawn. The sending of the decoded image is periodic but has different la-
tencies (depending on the data size of the decoded image). The result of the
recognition and classification only occurs if traffic sign is recognized. As a
result, the timing of the communications can be evaluated to map them onto
the bus. The sending frequency for the decoded data is approximately one
image each 50 ms while the sending of an image takes between 14 ms and
23 ms.



288 HARDWARE-DEPENDENT SOFTWARE

Figure 10.15. Result of CP simulation.

10.6.3 ECU Mapping and Transformation onto PVT Level

As mentioned before, the target architecture is a system already existing that
consists of five ECUs connected by FlexRay. Additionally, a CAN network is
connected by a gateway to obtain information from the engine control sys-
tems. The following decisions have been made: A new ECU has been added
to the FlexRay network. This ECU includes the camera and also a processing
element that runs the decoder algorithm. The display software component is
mapped to the ECU that is responsible for all display functions. The recogni-
tion and classification software components were distributed to two additional
ECUs. The mapping is illustrated in Fig. 10.16, the new bus communications
are drawn by dotted lines. Assuming that the communication is the bottleneck
of the system the communication is refined first. The FlexRay bus is integrated
by a cycle callable transaction level model. Since the traffic sign analysis ap-
plication is not safety relevant, the communications may also be mapped to
the dynamic segment. The simulation environment allows for calibrating the
application parameters. Based on the results of the CP simulation, the com-
munication is distributed as follows: the decoded image data is mapped to the
static segment of the FlexRay bus. This is because this data is continuously
transmitted with only different data length. On the other hand the recognition
and classification results are mapped to the dynamic segment of the FlexRay
bus since they only occur sporadically.

The configuration of the static part of the FlexRay bus now depends on the
existing communication data and the new image data. Since the maximum
length of one communication cycle is limited by the existing communication
that uses the static frame, the static segments has to be configured so that the
latencies for both, the image data and the existing data, hold. The simulation
helps to proof the latency of image data that is not fixed within the static part
since the image size of a picture varies. Figure 10.17 shows two configura-



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 289

Figure 10.16. Mapping of software components onto the target architecture.

Figure 10.17. Different FlexRay configurations for two simulation scenarios.

tions of the FlexRay bus: Configuration one consumes the maximum possible
length for the communication cycle and reserves four static slots (Slot 2–5) for
the decoder within the static segment. Configuration two has a shorter com-
munication cycle with only two static slots (Slot 2–3) for the decoder.

As a result, the different latencies for the decoded image are shown in
Fig. 10.18. Also the latencies of the recognition and the classification result
within the dynamic segment are changing since the communication cycle is



290 HARDWARE-DEPENDENT SOFTWARE

Figure 10.18. Result of PVT simulation: latencies within the static and dynamic segment.

of configuration two is shorter then configuration one. They are also heav-
ily influenced by the existing communication traffic of the dynamic segment
that has a higher priority for sending. Figure 10.18 shows the latencies for the
recognition as well. The latency of the decoded image within the static seg-
ment is between 17 ms and 28 ms for configuration one while configuration
two takes between 25 ms and 41 ms. On the other hand, the maximum latency
of the recognition result within the dynamic segment is much lower (50 ms)
for configuration two than for configuration one which takes 72 ms.

10.7 Conclusions

An early system evaluation and verification are the key to raise the quality
of distributed electronic systems and to shorten development time and costs.
Since virtual prototyping has been established within the SoC industry, also
the automotive industry in terms of electronic development, and especially the
software development, can benefit from this methodology. The applicability
and the procedural method were shown in this article taking into account the
AUTOSAR standard (release 2.1). Concerning hardware-dependent software,
the goal of AUTOSAR is to hide the hardware specific features behind a stan-
dardized middleware layer to allow hardware independent implementation of
software applications. This fact can be utilized not only for abstraction of hard-
ware dependent software but also for easy integration into a virtual prototype
to verify the system in an early design phase. At the time of going to press, the
AUTOSAR has gone into phase 2, although, the introduced AUTOSAR con-
cept will remain in the future. The introduced work is also just the beginning
of a lot of ongoing work and hopefully this article encourages the reader for
further research.



Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 291

Acknowledgments

The authors would like to thank André Hergenhan and Gökhan Tabanoglu
for their contribution to this work.

References

[AS] AUTOSAR. www.autosar.org

[AS06a] AUTOSAR. Applying Simulink to AUTOSAR, specification ver-
sion 1.0.1 edition, June 2006.

[AS06b] AUTOSAR. Specification of Interaction with Behavior Models,
specification version 1.0.1 edition, June 2006.

[AS06c] AUTOSAR. UML Profile for AUTOSAR, specification version
1.0.1 edition, June 2006.

[Ber05] R. Bergamaschi. Transaction-level models for PowerPC and
CoreConnect. 11th European SystemC Users Group Meeting,
2005.

[BFA05] M. Baumeister, P. Fuhrmann, and F. Armbruster. Taking concept
models from standardization to silicon. Hanser Automotive Elec-
tronics + Systems, FlexRay Special Edition, 2005.

[CAN] CAN. www.can.bosch.com

[CoWa] CoWare. www.coware.com

[DBR04] A. Donlin, A. Braun, and A. Rose. SystemC for the design and
modeling of programmable systems. In Jürgen Becker, Marco
Platzner, and Serge Vernalde, editors, FPL 2004, volume 3203
of Lecture Notes in Computer Science, pages 811–820. Springer,
Berlin, 2004.

[Don04] A. Donlin. Transaction level modeling: flows and use models. In
Alex Orailoglu, Pai H. Chou, Petru Eles, and Axel Jantsch, edi-
tors, CODES+ISSS 2004, pages 75–80. Assoc. Comput. Mach.,
New York, 2004.

[dS] dSPACE. www.dspace.com

[EA] Enterprise Architect. www.sparxsystems.com

[ET] ETAS. www.etas.com

[FlRa] FlexRay. www.flexray.com

[GLMS02] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic, Dordrecht, 2002.

[Hei04] H. Heinecke. Automotive open system architecture—an industry-
wide initiative to manage the complexity of emerging automotive

http://www.autosar.org
http://www.can.bosch.com
http://www.coware.com
http://www.dspace.com
http://www.sparxsystems.com
http://www.etas.com
http://www.flexray.com


292 HARDWARE-DEPENDENT SOFTWARE

e/e-architectures. In Convergence International Congress and Ex-
position on Transportation Electronic, Detroit, MI, USA, 2004.

[KBR05] M. Krause, O. Bringmann, and W. Rosenstiel. Target software
generation: an approach for automatic mapping of SystemC spec-
ifications onto real-time operating systems. Des. Autom. Embed.
Syst., 10(4):229–251, 2005.

[KFK+05] K. Karuri, M. A. Al Faruque, S. Kraemer, R. Leupers, G. As-
cheid, and H. Meyr. Fine-grained application source code profil-
ing for ASIP design. In William H. Joyner Jr., Grant Martin, and
Andrew B. Kahng, editors, DAC 2005, pages 329–334. Assoc.
Comput. Mach., New York, 2005.

[KKW+06] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leu-
pers, and H. Meyr. A SW performance estimation framework for
early system-level-design using fine-grained instrumentation. In
Georges G. E. Gielen, editor, DATE 2006, pages 468–473. Euro-
pean Design and Automation Association, Leuven, 2006.

[LIN] LIN. www.lin-subbus.org

[MG] Mentor Graphics. www.mentor.com

[Mon07] M. Montoreano. Transaction Level Modeling using OSCI TLM
2.0. Technical report, Synopsys, 2007.

[MRR03] W. Mueller, W. Rosenstiel, and J. Ruf, editors. SystemC Method-
ologies and Applications. Kluwer Academic, Dordrecht, 2003.

[NBS+02] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr,
and A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In Proceedings of the 39th
Design Automation Conference (DAC 2002), pages 22–27. Assoc.
Comput. Mach., New York, 2002.

[OSEK05] OSEK/VDX. OSEK/VDX Operating Systems, version 2.2.3 edi-
tion, February 2005.

[SBVR08] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High per-
formance timing simulation of embedded software. In Proceed-
ings of the 45th Design Automation Conference, DAC 2008, Ana-
heim, CA, USA, June 8–13, 2008. Assoc. Comput. Mach., New
York, 2008.

[SC05] OSCI. SystemC Language Reference Manual, draft standard edi-
tion, 2005.

[Syn] Synopsys. www.synopsys.com

[TLM] Transaction Level Modeling Working Group.
www.systemc.org

http://www.lin-subbus.org
http://www.mentor.com
http://www.synopsys.com
http://www.systemc.org


Verification of AUTOSAR Software by SystemC-Based Virtual Prototyping 293

[VI] Vector Informatik. www.vector-informatik.com

[VSBR06] A. Viehl, T. Schönwald, O. Bringmann, and W. Rosenstiel. For-
mal performance analysis and simulation of UML/sysML mod-
els for ESL design. In Georges G. E. Gielen, editor, DATE 2006,
pages 242–247. European Design and Automation Association,
Leuven, 2006.

http://www.vector-informatik.com


Index

Abstract canonical RTOS model, 241
Abstract RTOS library, 241
Abstract RTOS model, 279
Access methods, 157
AcpiNvs, 63
Address translation, 106
Addressing

byte, 115
half-word, 115
word, 115

Advanced Configuration and Platform Interface
(ACPI), 62

Algorithmic performance, 155
Annotated segments, 238
Application, 235
Application binary interface, 25
Application layer, 70
Application Programming Interface (API), 71
Application software, 9
Application-specific instruction set processor 3, 12
Application-specific integrated circuit, 2
Architectural Protocol (AP), 64
ARINC 653, 31
ARM, 61
ARTOS, 241
ASIC, 2
ASIP, 3, 12, 173
ATA, 49
Atomic blocks, 238
AUTOSAR, 12, 254, 258, 262
Base address, 99
Basic block level, 238
Basic task, 281
BCET, 285
Behavior, 208
BFM, 236
BIOS, 48–49, 51
BIOS Boot Specification (BBS), 65
Bit field, 104

access control, 110
C, 105
external access, 124
internal access, 124
offset, 124

readable, 105
readable/writable, 109
shadow variable, 107
specification, 121
structured approach, 113
width, 124
writable, 106

Block I/O, 55
Block-lockable flash, 65
Board Support Package (BSP), 78
Boot Device Selection (BDS), 65
Boot

firmware, 10
manager, 65
order, 56
ROM, 48

Bus bridge, 113
Bus Functional Model (BFM), 157, 236
Bus interface model, 158
Cache-as-RAM (CAR), 61
Call admission control, 41
CAN, 258
Canonical RTOS model, 238
Capsules, 62
Case study, 256
Channel, 208
Chip

capacity, 4
complexity, 4

COCOMO, 5
Code generation, 81
Code instrumentation, 284
Commercial HAL, 78
Communicating processes, 271
Communication, 266

protocol stack, 10
refinement, 277

Communication software component, 73
Compatibility Support Module (CSM), 59
Complex device drivers, 267
Complexity, 2–3
Component-based design, 6
Computation refinement, 277
Concurrent hardware and software design, 69

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



296 HARDWARE-DEPENDENT SOFTWARE

Configuration, 7, 268
Constructive cost model, 5
Consume CPU time, 243
Context switch, 72, 76, 240–241, 247
Cooperative multitasking, 240
Critical section, 20
Cycle-accurate system simulation, 235
Cycle accuracy, 258
Cycle callable, 272
Deadline, 17, 257
Debug, 83
Debugging facilities, 161
Delta-cycle, 240
Dependency Expression (DEPEX) 63, 65
Dereferencing operator, 106
Development time, 5
Device driver 10, 75
Diagrams, 170
Digital Signal Processor (DSP), 2
DO-178B, 31
Dot operator, 106
DRAM, 50
Driver Execution Environment (DXE), 60
DXE

architectural protocols, 64
core, 62
IPL, 63
modules, 62

Dynamic timing simulation, 285
Earliest Deadline First (EDF), 239
Earliest Deadline First scheduling, 23
Economics, 5
ECU

abstraction, 266
configuration, 268
software architecture, 267

EDA, 8
EDA tools, 12
EDGE, 153
EFI Developer Kit (EDK), 53
Electronic Control Unit (ECU), 2, 225, 254
Electronic design automation, 8
Electronic System Level (ESL), 208
Embedded software, 4
Embedded software design, 5
Embedded system, 3
Endianness, 116

adopt, 117
big, 117
little, 117
middle, 117

Engine management system, 256
Event-based kernels, 37
Event-driven simulation, 158
Events, 240
Evolution of mobile standards, 153
Executes-in-place, 61

Execution model, 85
Execution time line, 241
Extended task, 281
Extensible Firmware Interface (EFI), 47, 51
External communication, 212
Fabrication technology, 7
FAT, 56
FAT12, 57
FAT16, 57
FAT32, 56–57
Files, 62
Firmware, 3, 8, 11, 235

costs, 8
development, 12, 151
file system, 62

Flexibility, 7
FlexRay, 258, 286
FLIX, 184, 187, 189
Formal specification, 162
Globally unique identifier, 53
Golden reference, 158
GPRS, 153
GSM, 153, 223
GUID, 53, 65
HAL APIs, 79
Hall encoder, 256
Hall sensors, 256
Hand-Off-Block (HOB), 62–63
Hardware Abstraction Layer (HAL), 10, 12, 64, 67,

73–74, 192
Hardware

architecture, 78
design gap, 4
drivers, 71
platform, 9

Hardware-dependent Software (HdS), 1, 5, 8, 68,
157, 204

Hardware-firmware split, 156
Hardware-in-the-Loop (HIL), 254
Hardware–software

interface, 12, 86
simulation, 84
split, 154

HdS
architecture, 9
layer, 70–71
topics, 11

Heterogeneous architectures, 68
Hierarchical bus, 113
HSDPA, 153
HSUPA, 153
Human Interface Infrastructure (HII), 52
HW/SW interface

memory mapped, 97
register mapped, 98
special instructions, 98

IA-32, 61



Index 297

IEC 61508, 31
Injection control, 256
Instruction set architecture, 30
Instruction set simulation, 234
Instruction set simulator (ISS), 84, 160
Instrumentation, 284
Integrated Development Environment (IDE), 3,

173, 197, 254
Intellectual Property (IP), 4
Inter Process Communication (IPC), 235
Interface, 12
Internal communication, 212
Interrupt-based multi-tasking, 219
Interrupt-based synchronization, 215
Interrupt handler, 73, 215
Interrupt handling, 234
Interruptible time specification, 245
Interrupt requests, 234
Interrupt Service Routine (ISR), 234, 250
Interrupts, 76
I/O controller driver, 59
I/O operations, 73
IRQ, 234
ISCSI, 52
ISR scheduler, 247
ISS, 173, 194
Itanium, 61, 65
IUT, 166
Joint source channel coding, 42
Kernel design, 25
KLoC, 5
Latency, 226
Layered organization, 70
Link level simulation, 156
Logical Block Addresses (LBA), 56
Logic analyzers, 234
LTE, 153
Machine Check Architecture (MCA), 65
Mapping, 268, 276
Marshalling, 213
Meta model, 138
Microcontroller abstraction, 266
Micro Control Unit (MCU), 3
Microelectronics, 2
Microkernel, 28
Middleware, 10
MIMO, 153
Model-in-the-Loop (MIL), 254
Monolithic kernels, 27
Moore’s law, 2, 4
Motion JPEG decoder, 87
MPSoC design flow, 69
μ-Itron, 238, 252
Multimedia application, 40
Multiprocessing, 71
Multiprocessor architectures, 34
Multi-Processor System-on-a-Chip (MPSoC), 253

Multi-rate system, 21
Nested and non-maskable interrupts, 247
Network bandwidth, 3
Nielson’s law, 3
Non-Volatile Random Access Memory (NVRAM),

55
Operating System (OS), 9–10, 72, 266
Orthogonalization, 154
OS boot loader, 51
OS loader, 55
PCI, 49
PCIe, 49
PE/COFF, 64
PEI Modules (PEIM), 62
PEIM-to-PEIM Interface (PPI), 63
PERFidiX, 253
Performance evaluation, 256
Periodic tasks, 249
Peripheral, 160
Peripheral Component Interconnect (PCI), 64
Personal Computer (PC), 2
PI boot, 60
Platform-based design, 8
Platform Initialization (PI), 59
Platform Management Interrupt (PMI), 65
Polling-based synchronization, 214
Portability, 68, 77
PORTOS, 252
POSIX, 238, 253
Power management, 38
Power On Self Test (POST), 48
PPort, 265
Pre-EFI Initialization (PEI), 60, 62
Preemptive scheduling, 72
Preemptive thread multitasking kernels, 38
Priority-based scheduler, 247
Process technology, 7
Processor core, 241
Processor utilization factor, 22
Productivity, 4, 6

crash, 6
gap, 4

Programmers View (PV), 271
Project planning, 8
Pseudo-parallel, 240
Quality of Service (QoS), 40
Rate monotonic, 239
Rate monotonic priority assignment, 21
Real mode, 50
Real-time, 16
Real-Time Operating System (RTOS), 11, 16, 234
Real-time scheduling, 21, 72
Real-time-tasks, 17
Reconfiguration, 8
Reduced instruction set computer, 3
Refinement, 277
Register access



298 HARDWARE-DEPENDENT SOFTWARE

C struct, 102
class-based, 101
function-based, 99
macro-based, 101
object-based, 99
structured approach, 113

Register
file model, 157
indexing bit fields, 119
types, 164
access functions, 129
addressable unit, 123
auto-shadow, 118
bit field structure, 127
block transfer, 119
mirror size, 123
offset, 123
specification, 121
width, 123

Regression, 161
Regression testing, 165
Resource, 19
Response time, 257
Response time analysis, 23
Reuse, 7
RISC, 3
RMS, 239
Round-robin, 239, 247
RPort, 265
RTL, 158
RTOS

Abstraction Layer (RAL), 218
API, 252
context, 241
models, 237
simulation, 12, 233
state model, 242

Safety-critical systems, 31
Scalability, 5
SCAS, 253
Schedulability, 22
Scheduler synchronization, 244
Scheduling, 241

algorithm, 72
decisions, 72

SCSI, 49
Sections, 62
Security phase (SEC), 60
Segments, 243
Semaphore, 20
Sequentialization, 241
Services, 266
SIF, 121

driver functions, 131
interrupt interface, 122
RX interface, 122
RX state machine, 122

TX interface, 122
TX state machine, 122

Simulation, 274
kernel, 240
model, 85
speed trade-offs, 235
time, 243

Single source, 155
SMRAM, 65
Software

complexity, 3–4
component, 265
component template, 264
content, 4, 7
database, 222
design, 3, 7
design cost, 5
design flow, 80
design gap, 5
design productivity, 3, 5
development, 5
development platforms, 83
dominance, 7
generation, 12, 81, 205, 210
portability, 77
reuse, 69
stack, 9, 70–71
stack composition, 81
synthesis, 205
validation, 82

Software-in-the-Loop (SIL), 254
SpecC, 206, 252
Specification model, 208
Speedups, 236
Staff months, 5
State machine, 158
Static timing analysis, 285
Stimuli generators, 167
Stream-driven simulation, 155
Synchronization, 73, 214, 241

interrupt, 136
polling, 136

System Abstraction Layer (SAL), 66
System architecture, 269
SystemC, 158, 196, 206, 237, 240, 252

model, 12
RTOS library, 233
simulation, 240
threads, 240

System design gap, 5
SystemDesk (dSPACE), 254
System-level

design, 206
design language, 206, 237
modeling, 155

System Management BIOS (SMBIOS), 64
System Management Bus (SMBUS), 50



Index 299

System Management Mode (SMM), 65
System Management RAM (SMRAM), 65
System-on-Chip (SoC), 3
System Table (SST), 66
Target binary, 222
TargetLink (dSPACE), 254
Task concurrency management, 35
Task control block, 241
Task level, 235
Template engine, 140
Test bench, 161, 165
Task, 71
Thread, 71
TIE, 175
Time-annotated software segments, 238
Time annotation, 257
Timed segments, 240
Time line, 241
Time specification, 244
Time-Triggered Protocol (TTP), 36
Timing behavior, 283
Trace, 168
Trace boxes, 234
Tracing hardware, 234
Transaction accurate architecture, 86
Transaction level, 158

Transaction Level Model (TLM), 142, 196, 206,
210, 235, 253

Transformation, 282
UEFI

drivers, 56
protocols, 54

UMTS, 153
Unified Extensible Firmware Interface (UEFI), 47,

52
USB, 49
Validation flow, 80
Virtual machines, 29
Virtual memory, 25
Virtual prototype, 84, 155, 160
Virtual prototyping, 263
VLIW, 175, 184
Volatile, 99
Volumes, 62
Wait statements, 240, 244
Wireless sensor network, 37
Worst Case Execution Time (WCET), 234, 285
Worst Case Response Time (WCRT), 234
WSNOS architecture, 38
X64, 61
XIP, 61–62
XML, 157, 161˙



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




