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Preface

The IUTAM symposium on “Mechanical properties of cellular materials” was held
from 17–20 September 2007 at the Laboratoire de Mécanique et Technologie (LMT-
Cachan), Cachan, France. It was aimed to bring together structural, mechanical
and material scientists working on different aspects of this new class of materials
(microstructure observation, micromechanical and multiscale modeling, phenom-
enological models, structural impact behaviour and numerical validation, etc.). The
symposium was mostly focused on the following topics:

(a) Microstructure control and their influences
(b) Multi-scale and macroscopic modeling and numeric validations
(c) Failure analysis, applicability of fracture mechanics
(d) High strain rate sensitivity

Forty external scholars have attended the technical sessions of the symposium. The
delegates were from 14 countries: Austria (2), Canada (1), China (6), France (12),
Germany (1), India (1), Japan (2), The Netherlands (1), Norway (2), Poland (1),
Slovenia (1), Switzerland (4), United Kingdom (4), USA (2). A number of local
researchers and Ph.D students have also attended the sessions and taken part in
the discussions. The symposium sparked off an original dialogue between material
scientists who make all kind of cellular materials and the mechanical scientists who
characterize and model the behavior of these materials.

This volume collects 22 written contributions to the symposium from invited
speakers, which provides a survey of the topics discussed in the symposium. Time
and effort spent by the authors in preparing their manuscripts for this book as well
as time spent by reviewers in their careful manuscript reading is greatly appreci-
ated. Thanks also are due to IUTAM bureau, Ecole Normale Supérieure de Cachan,
National Scientific Research Center (CNRS), French Association of Mechanics
(AFM), and EADS Innocampus foundation for sponsoring this event.

Finally, the editors would like to thank all the speakers and contributors, interna-
tional scientific committee members, local organizing committee members, session
chairs, symposium secretary Mrs. Catherine Genin, for their valuable contributions
to this symposium and make this volume possible.

Cachan, France Han Zhao
Cambridge, UK Norman Fleck
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Uniaxial Deformation of Microcellular Metals:
Model Systems and Simplified Analysis

R. Goodall, Y. Conde, R. Müller∗, S. Soubielle, E. Combaz, J.F. Despois∗,
A. Marmottant, F. Diologent, L. Salvo, and A. Mortensen

Abstract Microcellular aluminium can be produced by a process known as repli-
cation; this involves the infiltration of a packed bed of NaCl particles which are
subsequently leached after metal solidification. The resulting material features a
uniform distribution of equisized pores, the shape and volume fraction of which can
be tailored, as can the composition and microstructure of the metal making the re-
sulting metal “sponges”. These display a regular uniaxial stress-strain behaviour, at
both room and elevated temperature, which is interpreted using standard compos-
ite models for Young’s modulus coupled with variational predictions for non-linear
deformation of two-phase composites by Ponte-Castañeda and Suquet, adapted and
simplified for the specific case at hand.

1 Introduction

One of the main difficulties in studying new materials is that they are not easy to
produce. As a result, material available for testing comes from only a few sources,
most of which are primarily driven, not by academic pursuits, but rather by a
(legitimate) desire for engineering impact. Available advanced materials are there-
fore often ill-suited for the derivation of clear microstructure/property relations: to
this end, microstructurally simple materials having suboptimal properties are often
preferable. Given this fact, and also because the processing of advanced materials
is interesting per se, the approach we have adopted in our research on microcellular
metals has been to produce ourselves the materials that we study.

R. Goodall, Y. Conde, R. Müller, E. Combaz, J.F. Despois, F. Diologent, and A. Mortensen (�)
Laboratory for Mechanical Metallurgy, Ecole Polytechnique Fédérale de Lausanne (EPFL),
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GPM2 Laboratory, Institut National Polytechnique de Grenoble (INPG), Saint-Martin d’Hères,
F-38000 Grenoble, France

∗ Now with Novelis Switzerland S.A., Sierre, CH-3960, Switzerland

H. Zhao, N.A. Fleck (eds.), Mechanical Properties of Cellular Materials, 1
IUTAM Bookseries 12,
c© Springer Science+Business Media B.V. 2009



2 R. Goodall et al.

To produce samples of highly porous metals we use a process known as repli-
cation, which is well suited for the production of open-pore “foams” (more aptly
called “sponges”) of aluminium and its alloys [1, 2]. We present briefly in what fol-
lows our current research program on this theme, describing first the process and the
materials it produces, and then giving a few highlights on their uniaxial mechanical
behaviour and on the approach we have adopted towards its interpretation.

2 Replicated Microcellular Aluminium

As we practice it towards the production of microcellular aluminium, replication
processing consists of producing a porous preform of internally bonded NaCl
powder, which is infiltrated under pressure with an aluminium-based melt that is
subsequently solidified. The salt is then removed by dissolution in water, leaving
behind an interconnected network of metal containing between roughly 60% and
90% open pore space [1, 2].

What distinguishes the material produced in this way from other microcellular
metals are the following features:

• The cell distribution and size are regular and quite controllable (since these are
determined by the salt powder, which can be sorted, notably by sieving)—as a
consequence, the behaviour of these foams is free of the macroscopically visible
inhomogeneities or irregularities found with most commercial foams.

• Small cell sizes are possible: we have produced aluminium foams having an av-
erage cell diameter as small as 10µm. This, in turn, has two advantages, namely:
(i) samples featuring only a minority of cells situated along the machined outer
surface can be produced and tested [3], and (ii) plasticity size effects are observed
in these material.

• The metal making the cells can be of essentially any usual aluminium alloy, in-
cluding high-strength alloys and also 99.99% pure aluminium.

• And finally, the mesoscopic foam architecture can be controlled via alterations
in salt powder, in the salt preform preparation process, and also by varying the
infiltration pressure.

Figure 1 gives two examples of structures thus produced, showing how the pore
shape can be altered from irregular equiaxed (Fig. 1a) to spherical (Fig. 1b) by
melting the NaCl particles ahead of packing the preform [4]. The metal grain size
in replicated aluminium foam is generally much larger than the pore size: the vast
majority of its struts are thus single-crystalline.

Open-pore foams of 99.99% pure aluminium can be made by replication if atten-
tion is paid to avoid contamination in processing. Alternatively, an aluminium alloy
can be used, in which case the metal making the foam also has a microstructure of
its own (which we call the foam “microstructure”, as opposed to the internal foam
architecture, or “mesostructure”). Figure 2 gives an example of two microstructures
produced in the classical Al-4.5wt%Cu alloy by altering solidification conditions
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Fig. 1 Replicated pure aluminium foam structures of relative density 15%. Left: a foam produced
with as-received angular salt particles; right: a foam with spherical pores [4]

Fig. 2 Optical micrographs of 400 µm cell diameter Al-4.5% Cu foamsolidified at 50 ◦C/min
(left) showing dendrite arms with microsegregation and solidified at 0.5 ◦C/min (right), displaying
a loss of dendritic character and essentially no microsegregation

during processing. As seen, when solidified slowly, the metal making the foam can
be made non-dendritic and nearly free of microsegregation, in conformity with ex-
pectations from composite solification theory [5].

3 Monotonic Uniaxial Behaviour

Highly porous metals can be viewed as composites of the metal combined with a
zero-stiffness second phase. In this limit, models for the basic linear properties of
composite materials can be made sufficiently user-friendly to serve as a convenient
framework for the interpretation of uniaxial test data. Expressions for the Young’s
modulus of the microcellular material can then be obtained using established mod-
els. One example is the Tanaka-Mori model, which in the present instance equals
the Hashin-Shtrikhman upper bound: for this reason, few microcellular materials
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will match its predictions. Another is the differential effective medium model [6–8]
which turns out to match the Gibson-Ashby model in predicting that the foam modu-
lus Ef is proportional to the square of the relative density Vm. Other models available
include estimates made from three-point bounds, as well as expressions derived
by interpolation of results of large-cell finite-element simulations of realistic mi-
crostructures of microcellular materials. Relevant expressions are listed in [8].

At high levels of porosity typical of microcellular materials, the various compos-
ite elasticity models yield predictions for Ef that are widely separated. Therefore,
the Young’s modulus of a microcellular material provides a discriminating gauge
of their load-bearing efficiency. Using then its Young’s modulus as a measure of a
foam’s load-bearing capacity, we analyse the non-linear foam behaviour using re-
cent advances in non-linear composite micromechanics. For simplicity, we focus
on uniaxial deformation and assume that the metal making the microcellular ma-
terial deforms as if it were incompressible (which is not unreasonable given the
omnipresence of free surfaces). The Young’s modulus of the foam, Ef, is then sim-
ply proportional to the Young’s modulus, Eo, of the metal from which it is made:

Ef = F ·Eo (1)

where F is a function of Vm that, again, gauges the foam’s load bearing efficiency.
F can be derived from composite theory [8], or can even simply be the ratio of
measured foam to metal moduli. If the metal making the foam deforms in uniaxial
tension according to the simple Hollomon power law:

σ = c · (e)n (2)

where σ denotes stress and e strain while c and n are constants, then the foam will
exhibit the same power law with the same exponent n [9, 10]. As shown elsewhere
[8, 11], variational results given by Ponte-Castañeda and Suquet for the non-linear
deformation of composites predict the foam stress-strain law as:

σf = C · (ef)
n with

C
c

= F
1+n

2 V
1−n

2
m (3)

This result is easily transposed to steady-state power-law creep [11]. If the metal
creep law is:

ε̇ = ε̇o ·
(

σ
σo

)N

with ε̇o = K exp(−Q/RT ) (4)

then the creep rate of the foam is:

ε̇f = ε̇of ·
(

σf

σof

)N

with σof = σoF( 1+N
2N )V (N−1

2N )
m and ε̇of = ε̇o (5)
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Note that one recovers the expressions derived using engineering beam theory by
Gibson, Ashby et al. [12] for both the foam yield stress (with n = 0) and the foam
creep rate if F is proportional to Vm

2.

4 Comparison with Experiment

Replicated aluminium foams behave somewhat differently from current industrial
close-cell foams in that their stress-strain curves, in both tension and compression,
are relatively smooth and regular. Stress oscillations and the long, somewhat ir-
regular, plateau characteristic of commercial closed-pore foams, are not observed.
Figure 3 gives an example of compressive stress-strain curves for a series of mi-
crocellular aluminium-based materials of roughly equal density. Salient features of
their deformation are as follows.

None of the well-established analytical models for Young’s modulus match val-
ues measured on replicated aluminium foams: values obtained tend to be lower,
and match those for one of the less load-bearing structures simulated by Roberts
and Garboczy (the “Gaussian random field” structure). In load-bearing applica-
tions, the present replicated aluminium foams are thus clearly not the best available.

Fig. 3 Effect of the alloy on the uniaxial compression stress–strain curve of microcellular repli-
cated foams with 400 µm cell-size, all with ρ = 17%
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Commercial closed-cell foams, and also open-pore Duocel
TM

foams made from

polyurethane foams, are stiffer at equal relative density. That the Duocel
TM

foams
would outperform replicated aluminium agrees with intuition: the neat structure of a

polyurethane foam, which is reproduced in Duocel
TM

foams, features long straight
struts and small nodes, making it obviously better at carrying load than the less
regular structure of replicated aluminium foams, which have more material dis-
tributed at their nodes and short struts that narrow towards their middle. The reason
why polyurethane foams have a superior structure is that, in their processing, full
minimization of capillary energy can be reached: capillary forces displace what will
become the foam solid material away from foam nodes towards the foam struts, the
plateau-border shape of which is, furthermore, quite efficient from a structural stand-
point. The various solid particle preform preparation techniques we have used so far
have apparently been unable to duplicate this effect [4, 13–17], suggesting that there
is still room for improvement of the process in terms of the foam mesostructures it
produces.

Among replicated aluminium foams, equiaxed salt particles yield stiffer foams
than do more irregularly shaped non-equiaxed comminuted salt particles. On the
other hand, provided the particles are equiaxed, within the range of structures we
have produced so far, we have found surprisingly little difference in the mechanical
performance of the foams, even if resulting structures are obviously different [4, 15,
16]. The two structures in Fig. 1, for example, have roughly the same stiffness and
uniaxial flow curve at equal relative density.

Replicated microcellular aluminium flow curves can generally be fitted to a
simple power-law (Hollomon) relation linking stress and strain. Comparison of mea-
sured flow curves with theory shows good agreement overall; however, as has been
repeatedly observed [18], the foam flow stress constant C is too small by a “knock-
down” factor near three. More detailed experimentation would be useful to ascertain
and better quantify the effect, notably because in metal foams what constitutes the
intrinsic metal flow stress is often not known with precision (frequently, microin-
dentation hardness is used but this often is an imperfect measure). The question
thus remains open, and will perhaps find its explanation in the role played by such
processes as microinstabilities or internal damage in the plastic deformation of these
materials.

Indeed, a salient feature of the deformation of replicated aluminium foams is the
rapid development of internal damage. Many local and generally unstable modes of
irreversible deformation exist in these materials, including strut microbuckling, strut
neckdown and fracture, as well as the microfracture of brittle intermetallics; in situ
tomographic observation of deforming replicated aluminium gives clear evidence of
these effects, in both uniaxial compression and tension of replicated microcellular
aluminium. These cause a degradation in their flow stress and in the foam stiffness,
lower their rate of work hardening and thus limit their tensile ductility (in replicated
aluminium foam this is around a few percent, i.e., better than in many aluminium
foams but well below the elongation of their base metal).
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Although suboptimal from a structural standpoint, alloying the metal from which
the foam is made provides an efficient way to raise their performance. Indeed, the
replication process makes it possible to cast foam of essentially any aluminium alloy
(there are no bubble stability requirements, for example); hence, high-performance
aluminium alloys can be used. When heat-treated optimally (which poses interesting
processing challenges, in quenching for example), replicated foams can be made to
match strength levels obtained with commercial foams, both open and closed pore.

Very fine pores can be produced in replicated aluminium: in the finest structures
we have produced to date, foam struts are as small as one micrometre in diameter.
At these fine scales, plasticity size effects become apparent: all else constant, pure
aluminium foams show a rising flow stress and an increased rate of work hardening
as their pore size decreases. This effect, similar to plasticity size effects seen for
example in “nanopillars” (these fine-scale microcellular aluminium samples can in
fact be viewed as a vast array of many thousand “nanopillars”), is interesting in its
complexity, showing notably a dependence of the flow stress on the oxidation state
of the foam pore surface.

Under constant load at elevated temperature, replicated aluminium foams yield
classical three-stage metallic creep curves. The steady-state creep rate obeys a sim-
ple power-law, with the expected activation energy. For pure aluminium, the creep
exponent exceeds that of the metal by roughly three—an observation which suggests
that replicated microcellular aluminium conform with the stress-invariant substruc-
ture model of Sherby [19]. The material furthermore shows a very high dependence
of its secondary creep rate on relative density (it varies roughly as Vm

−20), also in
broad agreement with the analysis summarized above (Eq. (5)).

5 Conclusion

The replication process provides a method for the production of microcellular
open-pore aluminium (“foam” or “sponge”) with wide latitude for meso- and mi-
crostructural control. Resulting materials show a regular and reproducible uniaxial
deformation behaviour which can be interpreted on the basis of current composite
micromechanical theory. Comparison of data with theory shows broad agreement;
however, on selected points micromechanical theory is insufficient to capture fully
the behaviour of the material. These include the presence and role of internal dam-
age, as well as the presence of plasticity size effects, which become apparent in the
finest foams produced in our laboratory.

We gratefully acknowledge support of this research program by the Swiss
National Science Foundation, Project No. 200020-100179/1, by internal funds
of the Laboratory for Mechanical Metallurgy at EPFL, and by the Ministère de
l’Education Nationale de la Recherche et de la Technologie of France at the INPG.
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Mechanical Properties and Design of Lattice
Composites and Structures

Dai-Ning Fang, Xiao-Dong Cui, Yi-Hui Zhang, and Han Zhao

1 Introduction

Recently, lattice materials have been attractive for use as cores in light-weight sand-
wich panels, for energy-absorption and packaging applications, or as heat transfer
devices. Lattice structure is a kind of periodic trusses patterned like moleculelattice.
Usually there is no filling in the space between frames of those 2D or 3D construc-
tions, thus sufficient quantity of mass can be reduced.

The mechanical properties of 2D lattice materials have been discussed at length,
including the stiffness, yield, buckling, impact behavior, and etc. [1–5]. Since yield
and fracture are major structural collapse modes for the lattice structures, a compre-
hensive understanding of their yielding and fracture behaviors are indispensable for
engineering applications. Deshpande et al. [6] analyzed the elastic properties, plas-
tic yielding and elastic buckling surfaces of octet truss structure. Zhang et al. [7]
designed two novel statically indeterminate planar lattice structures, the SI-square
and N-Kagome lattice structures (see Fig. 1), calculated their initial yield surfaces,
and verified their special mechanical properties. Recent work by Fleck et al. [8]
predicts the fracture toughness of three 2D lattice materials, and it reveals that the
Kagome has an elevated macroscopic toughness by a characteristic elastic zone near
the crack tip to release the stress in quasi-static state.

Noting that initial structural imperfection is inevitable in the manufacture of lat-
tice materials, the effects of imperfection should be determined urgently. Besides,
the tensile and compressive yield strengths of composite materials are commonly
different, thus the collapse behavior of such kind of lattice structures made from
composite materials should be different from those made from metals.

In this paper, the analytical yield surfaces of two planar lattice structures are
calculated first in Section 2 when the tensile and compressive yield strengths of the
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Fig. 1 The configurations of the (a) SI-square and (b) N-Kagome lattice structures, and (c–d) the
two unit cells under combined in-plane stress states

solid material are different, and a generalized Deshpande-Fleck yield criterion is put
forward. In Section 3, the effects of initial imperfection on the dynamic stretching
of 2D lattices are investigated by finite element method for the three topologies: the
regular hexagonal honeycomb, the regular triangular honeycomb and the Kagome
lattice, as sketched in Fig. 4. A complete evolution of crack induced by the structural
imperfection is also discussed.

2 A Generalized Yield Criterion

For lattice structures under different kinds of in-plane loadings, three types of stress
may exist inside the cell walls: bending, tension or shear stress. The lattices dom-
inantly subjected to tensile or compressive stress are called stretching-dominated
structures. The SI-square and N-Kagome lattice structures both belong to this cat-
egory of lattice structures. In the present analysis of yield surface, the material of
cell walls is assumed to be perfectly elastic-plastic. Timoshenko’s beam and column
theories [9] are adopted, and each cell wall is simplified as a strut only subjected to
axial force.

2.1 Analytical Yield Surfaces

Consider a case that the unit cell of the SI-square lattice structure is subjected to
the in-plane axial stresses σ1 and σ2 in two orthogonal directions, and shear stress,
τ12, as shown in Fig. 1c. The calculation indicates that the two struts in the same
direction have same internal forces and just yield simultaneously. Therefore, only
four pairs of internal forces are considered which can be obtained easily from the
equilibrium equations, i.e.

N1 =
2−√

2
2

(σ1 +σ2)bl − τ12bl, N2 = −
(√

2−1
)

σ1bl +σ2bl

N3 = σ1bl −
(√

2−1
)

σ2bl, N4 =
2−√

2
2

(σ1 +σ2)bl + τ12bl
(1)
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where Ni is the internal force of ith strut, i = 1..4. l and b are the wall length and out-
of-plane dimension of the lattice structure, respectively. The in-plane wall thickness
is noted as t.

Without loss of generality, let the tensile and compressive yield strengths be equal
to σys and Rσys, respectively, where R is a scaling factor. In this case, the yield
condition for the ith strut can be written as |Ni| = Qσysbt, i = 1..4, where Q = 1 for
Ni > 0, and Q = R for Ni < 0. The initial yielding of the unit cell occurs when any
strut in the unit cell yields. Therefore, the initial yield equation of the SI-square cell
under in-plane stress state can be expressed as

max
[|Ni|

/
(Qbtσys)−1

]
= 0, i = 1..4 (2)

The full expression of normalized initial yield surface equation is obtained by sub-
stituting Eq. (1) into Eq. (2).

The analytical yield surface of the N-Kagome cell (shown in Fig. 1d) can be
calculated similarly. Here, the similar deduction is not iterated.

The analytical yield surfaces of the SI-square and N-Kagome cells are demon-
strated in Figs. 2 and 3, where r denotes the relative density. The initial yield surfaces
are closed, convex and anisotropic. It is clear that with the decrease of the compres-
sive yield strength, some boundaries of the yield surfaces shift inward while the
others stay at the original location. The ratio of compressive yield strength to tensile
yield strength, R, may influence both the shape and size of the yield surface.

Fig. 2 The initial yield surfaces of the SI-square cell with different ratios of compressive yield
strength to tensile yield strength in different stress spaces

Fig. 3 The initial yield surfaces of the N-Kagome cell with different ratios of compressive yield
strength to tensile yield strength in different stress spaces



12 D.-N. Fang et al.

2.2 Smoothed Yield Surface by a Generalized Deshpande-Fleck
Yield Criterion

While the yield surface equations presented in Section 2.1 are useful for displaying
the yield stress under specific load paths, a closed-form smooth yield surface would
be advantageous in applications. In this section, further discussion is made on the
applicable condition of the Deshpande-Fleck yield criterion [6] in the case of plane
stress or plane strain state. The original form of Deshpande-Fleck yield criterion is
given by

Φ ≡ A(σ1 −σ2)
2 +B(σ2 −σ3)

2 +C (σ3 −σ1)
2

+Dτ2
12 +Eτ2

23 +Fτ2
13 +Gσ2

m −1 = 0 (3)

where A-G are material parameters to be determined, and σ1, σ2, σ3, τ12, τ23 and
τ13 are the six stress components. Under the in-plane stress state, this criterion can
be written as

Φ ≡ (
A+C +G

/
9
)

σ1
2 +

(−2A+2G
/

9
)

σ1σ2
2

+
(
A+B+G

/
9
)

σ2
2 +Dτ12

2 −1 = 0 (4)

According to analytical results of the three uniaxial yield strengths, σ∗
pl1, σ∗

pl2
and σ∗

pl3, the in-plane shear yield strength τ∗12 and the hydrostatic yield strength
σ∗

m, those parameters, A–D and G in Eq. (4), can be calculated by the following
equations,

A+C +G/9 = 1/σ∗
pl1

2, A+B+G/9 = 1/σ∗
pl2

2,

C +B+G/9 = 1/σ∗
pl3

2, D = 1/τ∗12
2, G = 1/σ∗

m
2 (5)

Since this yield surface is a quadratic, convex and closed curve, it must be an ellip-
tical curve. Therefore, the coefficients in Eq. (4) should satisfy

(−2A+2G
/

9
)2 −4

(
A+C +G

/
9
)(

A+B+G
/

9
)

< 0 (6)

This condition can be simplified by substituting Eq. (5) in, i.e.

∆ =
[(

1
/

σ∗
pl1 −1

/
σ∗

pl2

)2 −1
/

σ∗2
pl3 −1

/
3σ∗2

m

]
[(

1
/

σ∗
pl1 +1

/
σ∗

pl2

)2 −1
/

σ∗2
pl3 −1

/
3σ∗2

m

]
< 0 (7)

where ∆ is a coefficient determined by the structural parameters. It is found by
further calculation that this condition (Eq. (7)) is valid for the SI-square cell but not
satisfied by the N-Kagome cell.

In order to generalize the Deshpande-Fleck plastic yield criterion for the case
that the tensile and compressive yield strength of the solid material are different,
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a generalized Deshpande-Fleck yield criterion is put forward by incorporating six
linear terms of stress components, i.e.

Φ = A(σ1 −σ2)
2 +B(σ2 −σ3)

2 +C (σ3 −σ1)
2 +Dτ12

2 +Eτ23
2 (8)

+Fτ13
2 +Gσm

2 +Hσ1 + Iσ2 + Jσ3 +Kτ12 +Lτ23 +Mτ13 −1 = 0 (9)

where A-M are material parameters, which can be determined by the uniaxial and
shear yield strength with respect to the material principal axes and the hydrostatic
yield strength.

For the in-plane stress state, this yield criterion can be simplified as

Φ = A(σ1 −σ2)
2 +Bσ2

2 +Cσ1
2 +Dτ12

2

+Gσm
2 +Hσ1 + Iσ2 +Kτ12 −1 = 0

(10)

For the SI-square cell, the in-plane uniaxial yield strength and shear yield strength
can be calculated from the in-plane yield surface. The out-of-plane yield strength
and hydrostatic yield strength can be obtained from the triaxial yield surface equa-
tion [7], i.e. σ∗

pl3 = rσys for tensile yielding and σ∗
pl3 = −Rrσys for compressive

yielding, σ∗
m =

√
3rσys

/
3.

The smooth yield surfaces of the SI-square cell given by this generalized
Deshpande-Fleck criterion are compared with the analytical surfaces in Fig. 2.
It is demonstrated that the generalized yield criterion is capable of capturing the
shift of the yield surface for different ratios R. Good agreement is found between
the predicted yield surface of the generalized yield criterion and analytical results in
(σ1,τ12) space and (σ2,τ12) space. However, in (σ1,σ2) space this generalized yield
criterion overestimates the yield stresses under biaxial tension. Since the mechan-
ical properties of the N-Kagome cell do not satisfy the applicable condition of the
Deshpande-Fleck yield criterion, the corresponding prediction of the generalized
Deshpande-Fleck yield criterion is not carried out.

3 Finite Element Simulation of the Dynamic Stretching

In this section, the deformation progress of the lattice materials with structural im-
perfection under the dynamic stretching and the effects of structural imperfection
on energy-absorption are analyzed by means of the finite element simulation. Each
lattices with and without imperfection (sketched in Fig. 4.) are simulated using
ABAQUS explicit (version 6.5).

In the finite element simulations, the constitutive relations of the metal material
are characterized by JOHNSON COOK plastic model in plastic phase. The uniaxial
tensile behavior is characterized by

σ =
{

Eε, ε ≤ εY[
A+B

(
ε̄ pl
)n][

1+C ln
(

˙̄ε pl
/

ε̇0
)]

, ε > εY
(11)



14 D.-N. Fang et al.

Fig. 4 The 2D lattices investigated in this study: (a) hexagonal honeycomb, (b) triangular honey-
comb, and (c) Kagome lattice. The dash line marks the location of imperfection

where A,B,C,n, ε̇0 are the material parameters, σ the true stress, E the elastic mod-
ulus, εY the initial yield strain, ε̄ pl , ˙̄ε pl the equivalent plastic strain and its rate.

In order to avoid the influence of boundary effect, 50 unit cells by 50 unit cells are
employed to compose each lattice [8]. Euler–Bernoulli beam elements with linear
interpolation functions (element type B21 in ABAQUS notation) is suffice in the
finite element analysis and numerical convergence is confirmed by refined meshes
and shorter time steps. The dynamic stretching is carried out by imposing a pair of
constant velocity V0/2 on the two ends in the vertical direction. To eliminate the
influence of wave propagation, an initial velocity V = (V0/L0)x2 is imposed on the
entire lattice in the vertical direction considering the compressibility of the lattice
materials [10, 11], where x2 and L0 denote the coordinate as sketch in Fig. 4 and the
length of the lattice structure in the x2 direction, respectively.

3.1 The Deformation Progress of the Lattice Materials Under
Dynamic Stretching

The dynamic stretching behaviors of the lattice materials mentioned above are
investigated by finite element method, including the perfect and imperfect struc-
tures. Bending-dominated hexagonal honeycomb exhibits a different behavior with
stretching-dominated lattices, and the influences of this distinction on the dynamic
stretching behavior are discussed.

The deformation progress of bending-dominated hexagonal honeycomb is
demonstrated first. The characteristic stages during the stretching are captured
and displayed in Fig. 5. At the earlier stretching stage, the beams near the imper-
fection start to bend, and the imperfection turns to be a round hole from the original
shape; as the stretching goes on, four cracks develop from the imperfection simulta-
neously, and then they propagate gradually along the ±30◦, ±150◦ directions with
the x1 axis respectively; the crack propagation directions change when the effect
of shrinking achieves a certain extent, and the cracks finally encounter each other,
forming a approximate round hole; two apparent shrinking strips are formed at the
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Fig. 5 The deformation of hexagonal honeycomb under dynamic stretching: (a) t̄ = 3, (b) t̄ = 12.5,
(c) t̄ = 25, (d) t̄ = 70

two sides of the hole in the vertical direction, and the hole is torn into two symmetric
parts till the whole lattice is stretched to fracture. The stress in the bilateral parts of
the hole along the stretching direction is obviously under the average level because
of the forming of the hole.

Considering the similarity of the deformation behavior of the stretching-
dominated Kagome and triangular lattices, only the Kagome lattice is taken for
illustration of the deformation progress. As sketched in Fig. 6, the imperfection
in Kagome lattice translates to a transverse propagating crack at the beginning;
similar to the hexagonal honeycomb, four cracks in the ±60◦, ±120◦ directions
with the x1 axis develop after the transverse crack propagates across several unit
cells; compared with the hexagonal honeycomb, the velocity of crack propagate is
much higher and the cracks almost penetrate the whole lattice before the fracture
of the entire lattice. Therefore, the hexagonal honeycomb exhibits more potential in
preventing the crack propagation than the Kagome and triangular lattices.
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Fig. 6 The deformation of Kagome lattice under dynamic stretching: (a) t̄ = 16.5, (b) t̄ = 35,
(c) t̄ = 60

3.2 The Effect of Structural Imperfection on Energy-Absorption

Obviously, structural imperfection reduces the energy-absorption ability of the lat-
tice materials. Under dynamic stretching, the plastic dissipation is calculated to
analyze the effect of structural imperfection on energy-absorption, and the numeri-
cal result is normalized according to

t̄ = t
/

td , td = ε̄ pl
f L
/

V0 = 0.026s
Ūp = Up

/
Us,Ue =

(
rV σ2

Y

)/
(2E) = 2×105J

(12)

The numerical result in Fig. 7 shows the time histories of the plastic dissipation of
the lattices for the three topologies. The effect of structural imperfection on plastic
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Fig. 7 The time histories of plastic dissipation of the lattices for three topologies

dissipation of the lattice materials can be neglected at the earlier stage of the dy-
namic stretching since the cracks induced by the structural imperfection do not grow
large enough until the transition time, t̄ ≈ 30. The effect of structural imperfection
on plastic dissipation can not be neglected any more after that. The three kinds of
lattices almost have the same transition time from Fig. 7.

With the same relative density, the stiffness of hexagonal honeycomb is far less
than the other two kinds of lattices, so the plastic dissipation is a less value at the
beginning. Large deformation occurs as the sketching goes further, the topology of
hexagonal honeycomb transfers to an approximate rectangle. Therefore, the rising
velocity of its plastic dissipation increases quickly. The Kagome lattice shows slight
advantage in plastic dissipation compared with the triangular honeycomb.

4 Conclusions

The distinction between the tensile and compressive yield strengths of the solid
material can influence the yield surfaces of the lattice structures in both the shape
and size. A generalized Deshpande-Fleck yield criterion can capture this shift of
yield surface. It is found that the Deshpande-Fleck yield criterion can not keep the
predicted yield surfaces closed for certain types of lattice structures. And a simple
applicable condition of the Deshpande-Fleck yield criterion is presented.

The deformation progress of the lattices with structural imperfection under
dynamic stretching is also simulated, and the bending-dominated hexagonal hon-
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eycomb exhibits a different behavior which grants it potential in preventing crack
from propagating. A transition time is found in determining the effects of structural
imperfection on energy-absorption.
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Nano-Cellular Materials with Unusual
Mechanical and Physical Properties

H.L. Duan, J. Wang, and B.L. Karihaloo

Abstract Surface stress has a profound effect on the mechanical and physical prop-
erties of nano-structured materials, especially of nanoporous materials. This paper
begins with an overview of the theory of elasticity with surface stress. This is fol-
lowed by the prediction of the effective elastic constants and coefficients of thermal
expansion of nanoporous materials with spherical or cylindrical voids. It is shown
that the elastic constants of nanoporous materials can be tailored to desired values
through pore surface modification or coating.

Keywords Generalized Young-Laplace equation · Surface stress · Nanoporous
materials · Effective elastic constants · Effective coefficient of thermal expansion

1 Introduction

Surface forces have a substantial effect on the physical properties of materials at the
nanoscale, as evidenced for example by the dramatic increase in the elastic constants
of nanowires, nanobeams, nanoplates, etc. over and above the elastic constants of
the parent bulk materials (Gleiter, 2000; Miller and Shenoy, 2000; Cuenot et al.,
2004; Zhou and Huang, 2004; Duan et al., 2005a; Wang et al., 2006). This increase
is attributed to the surface stress effect. Judicious modifications of the surface can
therefore open the possibility for practical realization of nano-materials with novel
properties. Nanochannel-array materials with ordered arrays of nanopores possess
a large surface area and thus provide an obvious opening for designing functional
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nano-porous/cellular materials with new physical and chemical properties (Masuda
and Fukuda, 1995; Martin and Siwy, 2004). Pore surface modification with func-
tional organo-silane has already been achieved with nanochannel-array materials
(Shi et al., 2004). Thus pore surface modifications are possible and these can be
exploited to create nano-porous materials that are very stiff and light and have very
low thermal conductivity. One important and immediate application of these materi-
als may be in the fabrication of sandwich structures, as porous/cellular materials are
widely used as cores in sandwich construction in many important industries because
they are light and excellent thermal and noise insulators. Sandwich construction is
indispensable to aerospace/aircraft and other transport industry and to modern con-
struction industry. The porous/cellular core of a sandwich has to carry the major
part of the shear loading (Gibson and Ashby, 1997), but as it lacks shear stiffness it
has to be very thick to be dimensionally stable. Nano-porous/cellular materials with
stiffness that matches or even exceeds that of the parent materials would enable con-
siderable reduction in the size and weight of structural elements without sacrificing
their strength and other important physical properties.

In this paper we will show that by changing the surface properties, the proper-
ties of the nanochannel-array materials can be tailored. We suggest two possible
routes to the practical realization of the surface modification for the stiffening of
the nanochannel-array materials. Stiff nano-cellular materials have high dimen-
sional stability, low weight, low thermal conductivity and high bending stiffness
and strength. These critical properties have the potential to make a radical break-
through in sandwich-type construction which is preferred in aerospace/aircraft and
other transport industries.

2 Theory of Elasticity with Surface Stress

The basic equations of surface elasticity consist of the generalized Young-Laplace
equation for solids and the constitutive equation of the surface. The former is (Gurtin
and Murdoch, 1975)

σ ·n = −∇S · τ (1)

where n is the unit normal vector to the surface, and σ denotes the stress tensor in the
bulk materials. τ is the surface stress tensor, ∇S · τ denotes the surface divergence
of a tensor field τ (Gurtin and Murdoch, 1975). The generalized Young-Laplace
equation (Eq. (1)) can be derived in various ways, for example, by the principle of
virtual work. For a curved surface Γ with two orthogonal unit base vectors e1 and
e2 in the tangent plane and a unit vector n perpendicular to the surface, ∇S ·τ can be
expressed as follows (Duan et al., 2005b):

∇s · τ = −
(

τ11

R1
+

τ22

R2

)
n+

e1

h1h2

[
∂ (h2τ11)

∂α1
+

∂ (h1τ21)
∂α2

+
∂h1

∂α2
τ12 − ∂h2

∂α1
τ22

]

+
e2

h1h2

[
∂ (h2τ12)

∂α1
+

∂ (h1τ22)
∂α2

− ∂h1

∂α2
τ11 +

∂h2

∂α1
τ21

]
(2)
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where α1 and α2 denote the two parameters determining the surface such that α1 =
constant and α2 = constant give two sets of mutually orthogonal curves on Γ, and
h1 and h2 are the corresponding metric coefficients. R1 and R2 are the radii of the
principal curvatures, and τ11, τ22 and τ12 are the components of the surface stress
tensor τ. As can be seen from Eq. (2), the first term on the right corresponds to the
classical Young-Laplace equation; the remaining terms signify that a non-uniform
distribution of the surface stress or a uniform surface stress on a surface with varying
curvature needs to be balanced by a bulk shear stress in the bulk materials.

Besides the generalized Young-Laplace Eq. (1), we need a surface constitutive
equation to solve boundary-value problems with the surface stress effect. For an
elastically isotropic surface, it is (Duan and Karihaloo, 2007){

τ = λs(trεs)1+2µsεs −∆Tαsκs1
εs = 1

2

(
D⊗u+D⊗uT

)
,D⊗u = P · (∇s ⊗u)

(3)

where P = I(2)−n⊗n, I(2) is the second-order identity tensor in a three dimensional
space, εs is the surface strain tensor, λs and µs are the surface moduli, κs = 2(λs +
µs), αs is the coefficient of thermal expansion (CTE) of the surface, 1 is the second-
order unit tensor in two-dimensional space, and ∆T is the temperature difference.

Apart from Eqs. (1) and (3) for the surface, the basic set of equations for solving
elastostatic boundary-value problems consist of the conventional equilibrium equa-
tion, strain-displacement relation, and constitutive equation for the bulk materials.

3 Effective Elastic Moduli and CTE of Nanoporous Materials

Duan et al. (2005a), and Duan and Karihaloo (2007) gave the micromechanical
framework to predict the effective elastic moduli and the effective coefficient of
thermal expansion (CTE) of the heterogeneous materials containing nanoinhomo-
geneities. In the following, we will predict the effective elastic moduli and CTE
of nanoporous materials containing spherical or cylindrical voids by using this
framework.

3.1 Nanoporous Materials with Spherical Voids

Following the micromechanical framework in the paper of Duan et al. (2005a), it
is found that the three homogenization schemes, namely the composite spheres as-
semblage model (CSA, Hashin, 1962), the Mori-Tanaka method (MTM, Mori and
Tanaka, 1973), and the generalized self-consistent method (GSCM, Christensen and
Lo, 1979) give the same result for the effective bulk modulus of the nanoporous
materials with spherical voids. The resulting expression for the effective bulk mod-
ulus is

κe =
2µ
[
4 f µκT

s +3κ(2−2 f +κT
s )
]

9 f κ +6µ(2+κT
s − f κT

s )
(4)
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where f is the volume fraction of the nanopores in the material, κT
s = 2(λ T

s +
µT

s ),λ T
s = λs/(Rµ),µT

s = µs/(Rµ), R is the radius of spherical void, µ and κ are
the shear and bulk moduli of the matrix.

In order to obtain a simple analytical solution for the effective shear modu-
lus, we use the Mori-Tanaka method to predict the effective shear modulus of the
nanoporous materials with the spherical voids; the resulting expression of the effec-
tive shear modulus is

µe =
µ [5+8 f ξ3(7−5ν)]

5− f (5−84ξ1 +20ξ2)
(5)

in which ν is the Poisson ratio of the matrix, and the constants ξ1,ξ2 and ξ3 are

ξ1 = 15(1−ν)(κT
s +2µT

s )
112H , ξ2 = 15(1−ν)(4+3κT

s +2µT
s )

16H

ξ3 = 5(2+κT
s )(1−µT

s )
16H

H = −7−11µT
s −κT

s (5+4µT
s )+ν [5+13µT

s +κT
s (4+5µT

s )]

(6)

The effective Young modulus corresponding to κe and µe given in Eqs. (4) and (5)
is Ee = 9κeµe/(3κe +µe). Moreover, the effective CTE of the nanoporous materials
with spherical voids can be obtained from Levin’s formula with surface stress (Duan
and Karihaloo, 2007)

ακ − 2αsκs
3R

κ − 2κs
3R

=
αeκe − f ακ − 2 f αsκs

3R

κe − f κ − 2 f κs
3R

(7)

3.2 Nanoporous Materials with Cylindrical Voids

For the nanoporous materials with aligned cylindrical nanopores (called as
nanochannel-array materials), for brevity, we assume that the matrix is linearly elas-
tic and isotropic and the surface of the aligned cylindrical nanopores is isotropic.
Since the nanochannel-array materials have aligned and approximately hexagonal
close-packed array of cylindrical pores, they will exhibit an overall transversely
isotropic property. Therefore, we shall predict the five effective elastic constants:
the transverse plane-strain bulk modulus kTe, the longitudinal Young modulus ELe,
the longitudinal Poisson ratio νLe, the longitudinal shear modulus µLe, and the trans-
verse shear modulus µTe. The subscript “L” denotes a longitudinal property along
the axis of the pores, and “T” a transverse property perpendicular to them. We shall
use three micromechanical models, namely, the composite cylinder assemblage
model (CCA), the generalized self-consistent method (GSCM), and MTM to pre-
dict the effective elastic constants of the nanochannel-array materials with aligned
cylindrical nanopores. GSCM and CCA give the same predictions for ELe, kTe and
νLe, i.e.,
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ELe =
µ{[18κ(1− f )+8 f µκ∗

s ](2−2 f + µ∗
s +3 f µ∗

s )+3κκ∗
s (3−2 f − f 2 +8 f µ∗

s )}
(3κ + µ)(4−4 f + χ∗)+3 f µχ∗

kTe =
µ [3κ(4−4 f + χ∗)+ µ(4−4 f + χ∗ +3 f χ∗)]

12 f κ + µ [4(3+ f )+3(1− f )χ∗]

νLe = ν − 2 f (1−ν) [4µ∗
s − (1−ν)χ∗]

4(1− f )+(1+ f −2 f ν)χ∗
(8)

where χ∗ = κ∗
s + 2µ∗

s , λ ∗
s = λs/(aµ), κ∗

s = 2(λ ∗
s + µ∗

s ), µ∗
s = µs/(aµ), and a is

the radius of the cylindrical void. In order to obtain a simple analytical solution,
MTM is used to predict the effective transverse shear modulus µTe. The expression
of µTe is

µTe =
µ [4(1− f )+(3− f −2ν)χ∗]

4(1+3 f −4 f ν)+ [3(1+ f )−2(1+2 f )ν ]χ∗ (9)

The corresponding effective transverse Young modulus (ETe) of the nanochannel-
array materials is

ETe =
4µTekTe

kTe + µTe +4ν2
LeµTekTe/ELe

(10)

It is seen that unlike the classical results without surface stress effect, the effective
moduli of the nanoporous materials with spherical or cylindrical voids depend on
the size of the voids. The effective moduli are functions of the two intrinsic length
scales lκ(= κs/µ) and lµ = (µs/µ).

4 Tailoring of Stiffness

It is seen from above that the effective elastic moduli and CTE depend on the surface
moduli λs and µs. Therefore, the effective elastic moduli and CTE can be tailored by
surface modification. More details can be found in the paper of Duan et al. (2006).
An alternative route to achieving the stiffening of a transversely isotropic nano-
cellular material is by coating the cylindrical pore surfaces. Following the procedure
in the recent work of Wang et al. (2005), it can be proved that the effect of the surface
elasticity is equivalent to that of a thin surface layer on the pore surface. In this case,
the surface elastic moduli λs and µs in Eq. (3) can be expressed by elastic constants
and thickness of the coating layer

λs =
2µcνct
(1−νc)

, µs = µct, αs = αc (11)

where νc, µc and αc are the Poisson ratio, the shear modulus and CTE of the surface
coating layer, respectively, and t is its thickness. Therefore, by a proper choice of the
properties and thickness of a coating layer, the properties of nanoporous materials
can be tailored.
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Fig. 1 The ratio of the
specific effective Young
modulus of a nano-cellular
material to that of the non-
porous solid (E∗

Te/E∗) versus
the porosity f and the pa-
rameter A (= log10(µc/µ)).
The blue area represents the
region where E∗
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the red area the region where
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In practical applications such as in aerospace engineering, the specific stiffness,
i.e. stiffness/density ratio, of a material is very important. The ratio of the specific
Young modulus of the nanoporous material, denoted by E∗

Te, to that of the non-
porous solid, denoted by E∗, is

E∗
Te

E∗ =
ETe

βE
, β = 1− f + f

γc

γ

(
2t
a

+
t2

a2

)
(12)

where γc and γ are the densities of the coating and the matrix, respectively. E∗
Te/E∗ is

only dependent on the ratio t/a of the coating thickness to the radius of the pores, and
not dependent on the absolute size of the pores. Thus this technique is not limited
to nanopores. To show the effect of the coating, the variation of E∗

Te/E∗ versus the
porosity f and the parameter A (= log10(µc/µ)) is plotted in Fig. 1. The parameters
used in Fig. 1 are t/a = 0.1 and γc/γ = 1. It is seen that E∗

Te/E∗ > 1 can be obtained
at values of A > 1. If the coating material has a smaller density, then the ratio E∗

Te/E∗
will be larger than that shown in Fig. 1.

5 Conclusions

This paper shows that the surface stress has an important effect on the mechanical
and physical properties of materials at the nano-scale. We have also shown that the
properties of the nano-cellular materials can be tailored by judicious manipulation
of the pore surface elasticity and suggested two possible routes to achieving this.
The same surface modification techniques can also be used for nano-porous solids
with open cells. The results of the present paper provide an opening for designing
nano-cellular materials with novel physical/mechanical properties by means of pore
surface manipulation.



Nano-Cellular Materials with Unusual Mechanical and Physical Properties 25

References

Christensen RM., Lo KH. Solutions for effective shear properties in three phase sphere and cylinder
models, J. Mech. Phys. Solids. 27, 315–330, 1979.

Cuenot S., Frétigny C., Demoustier-Champagne S., Nysten B. Surface tension effect on the me-
chanical properties of nanomaterials measured by atomic force microscopy, Phys. Rev. B. 69,
165410, 2004.

Duan HL., Karihaloo BL. Thermoelastic properties of heterogeneous materials with imperfect
interfaces: generalized Levin’s formula and Hill’s connections, J. Mech. Phys. Solids. 55,
1036–1052, 2007.

Duan HL., Wang J., Huang ZP., Karihaloo BL. Size-dependent effective elastic constants of
solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids. 53,
1574–1596, 2005a.

Duan HL., Wang J., Huang ZP., Karihaloo BL. Eshelby formalism for nano-inhomogeneities, Proc.
R. Soc. A. 461, 3335–3353, 2005b.

Duan HL., Wang J., Karihaloo BL., Huang ZP. Nanoporous materials can be made stiffer than
non-porous counterparts by surface modification, Acta Mater. 54, 2983–2990, 2006.

Gibson LJ., Ashby MF. Cellular Solids - Structure and Properties, 2nd edition, Cambridge,
Cambridge University Press, 1997.

Gleiter H. Nanostructured materials: basic concepts and microstructure, Acta Mater. 48,
1–29, 2000.

Gurtin ME., Murdoch AI. A continuum theory of elastic material surfaces, Arch. Rat. Mech. Anal.
57, 291–323, 1975.

Hashin Z. The elastic moduli of heterogeneous materials, J. Appl. Mech. 29, 143–150, 1962.
Martin CR., Siwy Z. Molecular filters-pores within pores, Nat. Mater. 3, 284–285, 2004.
Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honey-

comb structures of anodic alumina, Science. 268, 1466–1468, 1995.
Miller RE., Shenoy VB. Size-dependent elastic properties of nanosized structural elements, Nan-

otechnology. 11, 139–147, 2000.
Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting

inclusions, Acta Metall. 21, 571–574, 1973.
Shi JL., Hua ZL., Zhang LX. Nanocomposites from ordered mesoporous materials, J. Mater. Chem.

14, 795–806, 2004.
Wang J., Duan HL., Zhang Z., Huang ZP. An anti-interpenetration model and connections be-

tween interface and interphase models in particle-reinforced composites, Int. J. Mech. Sci. 47,
701–718, 2005.

Wang J., Duan HL., Huang ZP., Karihaloo BL. A scaling law for properties of nano-structured
materials, Proc. Roy. Soc. A. 462, 1355–1363, 2006.

Zhou LG., Huang HC. Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84, 1940–1942,
2004.



The High Strain Rate Response of Adipose
Tissue

K. Comley and N.A. Fleck

Abstract Microscopy suggests that adipose tissue can be idealised as an oil-filled
closed-cell foam. Collagenous viscoelastic basement membrane forms the solid
walls of the foam and the cavities of the foam are filled with lipid. The lipid has
sufficiently low viscosity that it can be treated as an incompressible inviscid fluid.
Measurements of the uniaxial compressive stress versus strain behaviour of the tis-
sue have been made for strain rates from quasi-static to 6,000s−1. Screw driven
tensile test machines were used to collect data at strain rates less than 200s−1. A split
Hopkinson pressure bar constructed from polycarbonate was used for strain rates
greater than 1,000s−1. The measured stress versus strain curves are non-linear with
stiffening at increasing strains. The response at low strain appears to be strongly rate
sensitive. It is instructive to fit a standard linear solid (or Kelvin model) comprising
three elements: a spring (stiffness E1) and dashpot (viscosity η) in series, which are
both in parallel with a second spring (stiffness E2) to the data. The stiffness modulus
E2 is taken as the average stress at 10% strain and low strain rates and is found to be
1.15 kPa. E1 is taken to be 0.5 GPa which corresponds to the assumed bulk modulus
of the tissue. A least squares regression fit of the experimental data gives a time
constant of 97 ns.

1 Introduction

The compressive stress versus strain response of adipose tissue has been measured
for strain rates, ε̇ , from quasi-static to 6,000s−1. The high strain rates were achieved
using a split Hopkinson pressure bar constructed from Polycarbonate. It is shown
that a standard linear solid can be used to model the constitutive properties of the
tissue.
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1.1 Microstructure of Adipose Tissue

Adipose tissue (fat) comprises a matrix of lipid filled cells called adipocytes, two
collagen based structures: interlobular septa and basement membrane, together with
various other structures such as blood vessels. Sixty percent to 80% of the weight of
adipose tissue is lipid, 5–30% water and the remaining 2–3% is protein (Greenwood
and Johnson, 1983).

Light microscopy of adipocytes shows a thin rim of cytoplasm surrounding the
bulk of a single lipid vacuole and a small nucleus, see Fig. 1b. The diameter of
each cell is approximately 80µm. At body temperature lipid is a light viscous oil
(Cormack, 1987), see Fig. 1a.

Each adipocyte is entirely surrounded by a two dimensional woven filamentous
collagenous structure and forms part of the Basement Membrane (Abrahamson,
1986), see Fig. 1c. It is composed of type IV collagen. Using an Scanning Electron
Microscope (SEM) it is observed that the basement membrane of each adipocyte is
connected to its neighbour in a foam-like structure, see Fig. 2.

Fig. 1 Diagram of adipose tissue and is constituents

Fig. 2 Scanning Electron Micrograph of the basement membrane
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The lobules of adipocytes are threaded by a dilute concentration of Type I
collagen bundles known as the interlobular septa (Urmacher, 1997), see Fig. 1b.
The spaces between the adipocytes and collagen matrices are filled with ground
substance.

It is suggested that adipose tissue can be treated as an oil-filled, closed-cell foam.
The solid walls of the foam are formed by viscoleastic basement membrane, and the
cavities contain lipid. The viscosity of the lipid is sufficiently low that it behaves as
an incompressible inviscid fluid.

2 Experimental Setup

2.1 Specimen Preparation

Fresh Porcine skin tissue from three different pigs was supplied by a local abattoir,
Dalehead Foods, Linton. The skin samples, including subcutaneous fat to depths
of 20 mm, were removed from the jowl of the pig immediately after slaughter. The
samples were stored in Phosphate Buffered Saline (PBS) at room temperature prior
to testing, which always commenced within 3 h of slaughter.

Circular cylindrical samples of the adipose tissue were cut to a diameter of 10 mm
from the skin using a sharp punch. The samples were of height h = 3mm for the
Hopkinson bar tests and h = 8mm for the low strain rate tests.

2.2 Test Methods

2.2.1 Low Strain Rate Testing (Below 2s−1)

Cylindrical samples were compressed between smooth plastic platens using an In-
stron screw driven tensile test machine. The samples were compressed to a fixed
displacement at a given rate. The force generated in the samples was recorded via a
5 N load cell with an accuracy of 20 mN.

2.2.2 Medium Strain Rate Testing (20–250s−1)

Cylindrical samples were compressed to a fixed displacement at a given rate be-
tween smooth plastic platens using a Schenk hydraulic tensile test machine and a
purpose built cantilever beam transducer (Doebelin, 1966). The beam was made
from aluminium and fitted with four strain gauges in a standard Wheatstone bridge
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arrangement. The measurement accuracy for a static load was 50 mN. The stiff-
ness and sensitivity of the beam (Fleck, 1983) was 20.46 N/mm and 141µε/N
respectively.

Displacement of the platens was measured using a Linear Displacement Trans-
ducer (LDT) accurate to 0.01 mm under static conditions. The deflection of the beam
during loading must be subtracted from the measured deflection. A formula for the
deflection of the beam was determined experimentally and validated by comparing
it to standard beam theory.

2.2.3 High Strain Rate Testing (Above 1,000s−1)

High strain rate compression tests were conducted using a split Hopkinson pressure
bar (Follansbee, 1985). The sensitivity of the pressure bars was increased by the use
of polycarbonate instead of steel. Wave dispersion effects were found to be negligi-
ble, in agreement with the attenuation measurements of Wang et al. (1992).

3 Results

The measured uniaxial compression response of adipose tissue is shown in Figs. 3–5
for the three strain rate regimes. In broad terms the stress versus strain curves are
non-linear with stiffening at increasing strain.

All the tests were carried out at room temperature in dry conditions (i.e. the
specimens were not submerged in a saline bath). Low strain rate validation tests
with the tissue fully saturated in saline at 37◦C, were carried out to more closely
mimic in-vivo conditions. No significant differences in the response were observed.
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Fig. 3 Unconfined uniaxial compression of adipose tissue at strain rates between 0.002 and 2s−1.
A standard linear solid is used to model the data
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Fig. 5 Unconfined uniaxial compression of adipose tissue using a split Hopkinson pressure bar at
strain rates between 1,500 and 6,300s−1

4 Discussion

The sensitivity of the response to strain rate is explored by plotting the measured
stress at a fixed level of 10% strain against strain rate, see Fig. 6. This level of strain
was chosen as the response is approximately linear. We conclude from Fig. 6 that
the stress level is insensitive to strain rate for ε̇ < 10s−1, but increases sharply with
strain rate for ε̇ > 10s−1. We note that the stress increases from about 1,000 Pa to
about 1 MPa as ε̇ is increased from 102 to 104 s−1.

It is instructive to attempt a curve-fit of the Standard Linear Solid (Lakes, 1998)
to the data. The Standard Linear Solid is represented by three elements: a spring
(stiffness E1) and dashpot (viscosity η) in series, which are both in parallel with a
second spring (stiffness E2).
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Fig. 6 Uniaxial compression of adipose tissue at 10% strain (+). A standard linear solid model
has been fitted to the data (−)

The input conditions are
ε(t) = 0, t ≤ 0
ε(t) = ε̇t, t > 0

(1)

The relaxation time for the solid is defined as

τ ≡ η
E1

(2)

The differential equation for the Standard Linear Solid is given by

dσ
dt

+
σ
τ

=
dε
dt

(E1 +E2)+
εE2

τ
(3)

From which a viscoelastic modulus, E(t), can be derived

E(t) = E2 +E1e
−t/τ (4)

The Boltzmann Superposition Integral for stress as a function of strain is

σ =
∫ t

0
E(t −u)

dε(u)
du

du (5)

and substitution of Eqs. (1) and (4) into Eq. (5) gives

σ(t) = E2ε̇t +E1ε̇τ[1− exp(−t/τ)] (6)

It remains to match Eq. (6) to the observed response in order to obtain values for
(E1, E2 and η). The value of the stiffness modulus E2 is taken as the average stress
at 10% strain at low strain rates and was found to be 1.15 kPa. This is consistent
with the values of elastic moduli reported in Samani et al. (2003) and Nightingale
et al. (2003).
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The standard linear solid predicts an instantaneous modulus of (E1 + E2). The
tests reported here do not investigate a sufficiently high strain rate for the unrelaxed
modulus to be measured: here we take E1 to be 0.5 GPa, corresponding to the bulk
modulus of tissue reported by Saraf et al. (2007).

A least squares regression gives a time constant of 97 ns. Hence the dynamic vis-
cosity, η = τE1, of the basement membrane is estimated to be 48 Pa s. Conclusions

Microscopy suggests that adipose tissue resembles a fluid-filled closed-cell foam.
A test method has been developed to measure the compressive response of animal
fat over a wide range of strain rate. The measured response is strongly rate sensitive
and the standard linear solid gives a reasonable fit to the observations.
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X Ray Tomography Study of Cellular Materials:
Experiments and Modelling

E. Maire, O. Caty, A. King, and J. Adrien

Abstract This paper summarizes different results obtained by the authors applying
X-ray tomography to the study of cellular materials (metals, ceramics and poly-
mers). From the 3D images, three different kinds of analysis are carried out. The
first is image processing to retrieve the morphological characteristics (density, size,
tortuosity) of the studied materials. The second is the analysis of the deformation
modes using in situ or ex situ mechanical tests (tension, compression, fatigue). The
third is devoted to FE calculations in which models are produced to represent as
exactly as possible the architecture of these materials as seen in tomography. These
different points are successively presented and exemplified in the present paper.

1 Introduction

For a good understanding of the physico-mechanical properties of a cellular mate-
rial, the cellular microstructure i.e. the morphology of the arrangement of the solid
and gaseous phases in the cellular material has to be characterized. Ideally, these
measurements should be performed on a three-dimensional (3D) image of the sam-
ple. Cellular materials are not easy to observe by means of standard microscopy
techniques. This is due to the highly porous nature of the structure which precludes
easy polishing. SEM is often used but it only allows to see the outer surface of the
solid phase in the cells located close to the surface of the sample to study. It is very
well known however that edge effects are strong in these materials so what we see
at the surface is likely to be different than what happens in the bulk.

X-ray tomography has appeared recently to be a very powerful tool allowing to
characterize the microstructure of cellular materials [1–9]. Compared to confocal
microscopy, it allows to visualize the complete structure and not only the first layer
of cells close to the surface. Being non destructive, it is also probably easier to
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implement than serial sectioning that requires filling of the holes. Thus it appears
to be one of the more versatile techniques capable of providing non destructive 3D
images of a complete sample of cellular material.

Based on different experiments and examples obtained by the authors in recent
years, it will be emphasized in the present paper that X-ray tomography is well
adapted to the characterization of different aspects of the microstructure of various
cellular solids. It will also be shown that the technique can be used to study the
deformation modes by means of in situ loading in compression, tension, and fatigue.
Different methods for using tomography results as inputs for models, especially
Finite Element meshes, will finally be discussed.

2 X-Ray Tomography

The general principle of the tomography technique has been described in many pa-
pers [10, 11]. Its experimental implementation requires an X-ray source, a rotation
stage and a radioscopic detector. Two kinds of set-ups can be used for studying a
cellular micro structure:

• Standard tomography can be performed using a laboratory X-ray source. Pro-
totypes have been designed in industrial or academic laboratories [12]. Several
experimental set-ups of this kind are also now commercially available and give
good quality images with a resolution down to about 2µm.

• A synchrotron source is required to perform high resolution x-ray tomography.
This experiment can be performed on several beam lines at the ESRF in Grenoble
or at several other synchrotron sources in the world (SPRING 8 in Japan, SLS in
Switzerland, etc.).

To understand better the deformation modes of a material, it can be very useful to
observe a same zone at different strain levels. However it is not trivial to apply an in
situ deformation during a tomographic experiment because the testing device has to
rotate without obstructing the irradiation of the sample by the x-ray source. In the
present study, we use a special loading device developed to allow such a rotation
[10]. The forces between the top and the bottom grip are transmitted through a
polymer tube surrounding the sample which is transparent to X-rays.

3 Image Analysis of the Initial Microstructure

The important parameters to characterize the cellular microstructure of a cellu-
lar material are: the global density and its fluctuation in the sample, the cell size
distribution and the wall thickness distribution. Some of these parameters can be
obtained using conventional techniques (weighing, 2D image analysis) but for some
of them it is necessary to use 3D data to get a complete characterization. Density
can trivially be measured after segmentation of a 3D data set. Tomography gives
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Fig. 1 Relative density (measured in slices such as the white thick line) along one direction for
the honeycomb cellular ceramic shown in the inset
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in the figure on the left is
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a superior information as it allows density to be mapped in 3D. Density profiles
such as this shown in Fig. 1 for a honeycomb Al2O3 cellular material (relative den-
sity: 20%) can be calculated. This can be used to measure the homogeneity of the
distribution of the solid phase inside a material.

The tortuosity T of the pathways through a porous network is a key parameter
for modeling different transport properties (acoustic or thermal waves for example),
or for fluid dynamics through the pores. In the present study, T is calculated by the
following procedure (see also Fig. 2, summarizing the procedure in 2D): firstly, all
of the pore voxels located in the central plane (the seed plane) of a representative
volume of material are labeled with number 1. All adjacent pore voxels (according
to a neighbouring criterion) are then labeled 2, and so on through the pore network,
effectively creating a distance map of the distance through the phase of interest
from the original seed plane. A graph can then be plotted of the average label value
in each plane parallel to the seed plane as a function of the linear distance normal
to the seed plane. Because the path through the network is tortuous, the gradient of
this plot is greater than unity and the gradient of a line is fitted to the plot gives a
measure of T .
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This procedure can be repeated for different directions through the microstruc-
ture to reveal any anisotropic effects. In our case the measurement is performed in
the three orthogonal principal directions of the images. A segmented 3D data set is
an ideal object on which to measure this kind of property of the material with no bias
due to sampling effects as it would be the case for a 2D data set. The voxel nature of
the data can induce a bias in the measurement of an oblique distance. Depending on
the neighbouring criterion (NC) used, the distance map calculated can then vary sig-
nificantly. If the criterion ‘only face touching’ (six possible neighbours for a voxel)
is selected, the distance measured is very large and tortuosity is overestimated. If
the criterion ‘face + edge + vertex touching’ (27 possible neighbours for a voxel)
is selected, the distance is conversely very small and tortuosity is underestimated.
The better criterion is ‘face + edge touching’ (12 neighbours for a voxel) because in
most of the cases, it allows to calculate a distance close to the actual Euclidean dis-
tance. T can vary from 1.1 when using 27 neighbours to 1.7 (using six neighbours)
in a same data-set.

It is of course also most useful to obtain a measure of the characteristic size
of each of the two phases. Measuring a typical size in an interconnecting network
of two phases is not a trivial procedure. A typical size can be calculated using a
computational processing procedure composed of a sequence of standard mathe-
matical morphology operations applied to the binarized 3D images. This sequence
of operation allows to measure the granulometry (i.e. the density distribution of
the thickness) of the studied phase in the material [13–15]. Again, because of the
voxel nature of the data-set, the NC used to perform the erosion/dilation steps has
a direct impact on the value of the size measured. The measurement can also be
anisotropic if the SE is chosen anisotropic (no erosion in one direction for example)
Fig. 3 shows the comparison of such a granulometry measurement performed using
three isotropic NCs (6 or 26 neighbours and also a criterion based on the Euclidean
distance) on a same data-set of porous plaster material (relative density: 50%).

4 Deformation Studies

Several authors have used in situ or ex situ deformation experiments for analyzing
the mechanical properties of cellular materials [1–6, 16]. We have for instance pub-
lished [17] an in-situ tomographic study of the deformation of some of the most
standard commercially available aluminum closed cell foams. Most of these studies
concerned materials loaded in a monotonous mode. In [18], we have also studied a
more isotropic loading mode by constraining the compression of syntatic polymer
foams inside bulk polymer cylinders.

The example in the present paper is more recent. It shows the evolution of the
structure of a sintered hollow Ni spheres structure (relative density: 11%) during
compression/compression fatigue. The Fig. 3 shows a tomographic slice extracted
from the bulk of the material at different number of cycles during the fatigue life.
One can see from this set of images that like it is the case in many examples of
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these cellular materials, the global deformation of the sample is due to very local
damage events. Different damage modes can be distinguished: preexisting defects,
buckling, bending of cell walls. . . Note also that as the number of cycles increases, a
large number of fracture events can be observed. The same material when loaded in
compression monotonously shows much less fracture. Another contribution in the
field of fatigue is the article of Banhart et al. in the present book.

Using digital image correlation, it is possible to measure the displacement at the
scale of the microstucture provided that two images of a same region at two different
deformation states are available. These images are very easy to obtain at least in 2D
using standard in situ experiments in SEM or Optical Microscopy. These methods
have thus been extensively developed using 2D images as inputs. Algorithms based
on 3D images are now available to process tomographic datasets in the same way
[4, 19] and have been used in [20] to analyse the deformation of cellular materials.
A good example of this kind of study can also be found in the article of Hild et al.
in the present book.

5 Simulating Physical and Mechanical Properties

The architecture has a crucial effect on the global behavior of metal foams. It has
quickly become apparent that when developing models to describe these materials
it is necessary to consider the cellular structure. The following different approaches
can be used:

• Meshes generated from a Voronoi description of the microstructure
• Voxel/element meshes
• Meshes of the actual shape of the cellular architecture
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Implementing the methods of the first family requires the extraction, from the tomo-
graphic image, of the coordinates of the cell vertices and then to construct beam or
plate elements defined by these points [16]. This provides a direct representation of
the actual cellular structure of the foam. Alternately, using image analysis methods
such as these presented in the preceding section, one can get information such as the
cell size distribution. It is then possible to create a numerical structure (for example,
from sphere packing) having the same distribution.

The second family is based on a straightforward transcription of the voxel struc-
ture of a tomographic image into a mesh of cubic elements (the lateral dimension of
each element is equal to the resolution in the tomographic image. The mesh has the
same dimensions (number of elements in each direction) as the image. The mechan-
ical properties of each element are tailored by the gray level of the corresponding
voxel. This method is rather time consuming because, to be representative, the im-
age and hence the mesh must be large enough, leading to long calculation times.

The third family is the one we chose in [21]. The actual shape of the beams
and struts of the architecture are exactly reproduced thanks to their description by
tetrahedral elements. Ulrich et al. [22] have compared the voxel/element and the
tetrahedral mesh of the actual shape in the case of a classical cellular material: tra-
becular bone. The tetrahedral mesh was found to be more accurate for the same
resolution. This method is more difficult to implement because an appropriate mesh-
ing technique and the definition of the volumes to mesh are required but commercial
softwares are now available for this purpose. An example of such a mesh, produced
for the foams presented in Fig. 3 is shown in Fig. 4. The FE model obtained re-
produces the actual structure of the cellular material. It can be loaded numerically,
allowing the determination of local regions where stresses concentrate. The output

Fig. 4 Tomographic slices of a random assemblage of hollow nickel spheres at different deforma-
tion stages during a fatigue compression/compression experiment
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of the calculation can then be post processed using a fatigue initiation criterion.
The method is currently being improved for the case of cellular materials with large
cells and very thin walls. In this case, the solution is to replace the tetrahedral ele-
ments currently used with shell elements and to give to the shell the exact thickness
measured using the 3D images.

6 Conclusion

The paper has shown that X-ray tomography can be used to characterize different
cellular materials. Examples of results have been given for three kinds of analysis.
Firstly, the 3D data sets can be used to determine the morphology of the structure
in terms of density distribution mapping, tortuosity and size measurement. In these
last two cases, the voxel nature of the image induces bias in the measurement which
must be accounted for. Secondly, X-ray tomography has been used to analyze the
deformation modes during different kinds of in situ testing (compression, tension,
and fatigue). Thirdly, different methods for using tomography results as inputs for
models, especially Finite Element meshes, have been discussed. The one chosen by
the authors with the aim of reproducing most accurately the actual shape has been
described in more detail (Fig. 5).

Fig. 5 FE mesh and boundary conditions for the random assemblage of hollow nickel spheres
shown in Fig. 4
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Anisotropic Mechanical Properties
of Lotus-Type Porous Metals

H. Nakajima, M. Tane, S.K. Hyun, and H. Seki

Abstract The mechanical properties of lotus metals were experimentally inves-
tigated and the effect of the anisotropic pores on the mechanical properties was
clarified. The mechanical strength in the direction parallel to the pore direction
linearly decreases with increasing porosity, while that perpendicular to the pore
direction drastically decreases. This is caused by the anisotropy of stress concen-
tration. The porosity dependence of the mechanical strength obeys a power-law
formula.

1 Introduction

Porous metals including foamed metals possess unique features such as low den-
sity, high surface area, sound absorption, etc. [1, 2]. Therefore, the porous metals
are expected to be used in various fields. However, conventional porous metals pos-
sess a shortcoming of low strength. This is because their pore shape is irregular
and the distribution of pores is random. Hence, the conventional porous metals with
low strength cannot be used as structural materials although they show unique fea-
tures. Lotus-type porous metals (lotus metals) with cylindrical pores oriented in
one direction, shown in Fig. 1, can be fabricated by unidirectional solidification
of metals in pressurized gas atmospheres (pressurized gas method) or casting into
a mold in which gaseous compounds are placed (thermal decomposition method)
[3–5]. Owing to the cylindrical pores oriented in one direction, stress hardly con-
centrates around the pores for loadings in the longitudinal direction of the pores
(pore direction). Furthermore, the porosity of lotus metals is small compared with
that of conventional porous metals. Therefore, the mechanical properties of lotus
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20 mm

Fig. 1 Pore structure of lotus-type porous metals fabricated by continuous casting method [4]

metals are superior to those of the conventional porous metals [6]. Thus, lotus metals
are expected to be used as light-weight structural materials. When lotus metals are
used as structural materials, the anisotropic mechanical properties originating from
anisotropic porous structure should be clarified. It should be noted that the mechan-
ical properties of conventional porous metals except for some metallic foams [7, 8]
are almost isotropic.

In the present paper, anisotropic mechanical properties (elastic constants, ulti-
mate tensile strength, compressive yield stress, and fatigue strength) of lotus metals
are summarized and the effect of the anisotropic pores on the mechanical properties
is discussed.

2 Elastic Constants

Lotus metals macroscopically exhibit hexagonal (transverse-isotropy) elastic sym-
metry with c-axis parallel to the pore direction [9–11]. In this case, there are five
independent elastic constants, c11, c33, c13, c44 and c66 = (c11–c12)/2. To deter-
mine all of them, we used the resonant ultrasound spectroscopy (RUS) [12] and
mode-selective electromagnetic acoustic resonance (EMAR) [13] techniques. By
using RUS, we measured the resonant spectrum consisting of eight vibration groups:
flexure (B1u, B2u, B3u), torsion (Au), shear (B1g, B2g, B3g), breathing (Ag), where
the group notation follows [14]. Subsequently, the mode identification regarding
the shear and breathing groups was carried out with EMAR. The elastic constants
were determined through iterative calculations from the resonant spectrum obtained
by this RUS-EMAR combination technique.

Figure 2 shows the porosity dependence of Young’s moduli E⊥ and E// of (a)
lotus iron [9], (b) lotus magnesium [10], and (c) lotus copper [11], where E//

and E⊥ indicate Young’s moduli in the directions parallel and perpendicular to the
pore direction, respectively. For all the lotus metals, E// decreases linearly with



Anisotropic Mechanical Properties of Lotus-Type Porous Metals 45

100

80

60

40

20

0
1.00.80.60.40.20.0

E⊥
E//

50

40

30

20

10

0
1.00.80.60.40.20.0

Porosity, pPorosity, p

Porosity, p

E⊥
E//

200

150

100

50

0

Y
ou

ng
's

 m
od

ul
us

, E
 (

G
P

a)
 

Y
ou

ng
's

 m
od

ul
us

, E
 (

G
P

a)
 

Y
ou

ng
's

 m
od

ul
us

, E
 (

G
P

a)
 

1.00.80.60.40.20.0

E⊥

E//

ba

c

Fig. 2 Porosity dependence of two Young’s moduli, E// in the direction parallel to the pore di-
rection and E⊥ in the direction perpendicular to the pore direction. Each line is obtained by fitting
Eq. (1) to the measurements. (a) Lotus iron, (b) lotus magnesium, and (c) lotus copper

increasing porosity, while E⊥ decreases drastically with increasing porosity. This
is because stress hardly concentrates around pores for a loading in the pore direc-
tion direction, while large stress concentration occurs for a loading in the direction
perpendicular to the pore direction.

Since lotus metals are fabricated though the unidirectional solidification method,
the preferential orientation in the crystal growth usually appears. This is the case for
lotus copper and lotus magnesium; their preferential growth directions are 〈100〉 for
lotus copper and 〈0002〉 and

〈
112̄0

〉
for lotus magnesium. Since 〈100〉 of copper

is soft direction in terms of elastic stiffness, the nonporous copper (p = 0) shows
an elastic anisotropy, E⊥ > E//, as seen in Fig. 2c. In contrast to lotus copper, non-
porous magnesium virtually exhibits an elastic isotropy because the elastic property
of single-crystal magnesium is nearly isotropic [15]. Since lotus iron has no texture,
two directional Young’s moduli of nonporous iron are substantially equal to each
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Table 1 Values of m for Young’s modulus, ultimate tensile strength and fatigue strength in the
direction parallel and perpendicular to the pore direction

Young’s modulus

Lotus Cu Lotus Fe Lotus Mg

// ⊥ // ⊥ // ⊥
1.1 2.3 1.2 2.6 1.3 2.6

Ultimate tensile strength Fatigue strength

Lotus Cu Lotus Fe Lotus Cu

// ⊥ // ⊥ // ⊥
1.1 3.0 1.2 3.6 0.9 2.7

other despite the fact that the single crystal iron shows a relatively strong elastic
anisotropy. Thus, it is noted that the texture effects on the matrix metal are observed
case by case.

By extensive researches on the effective physical properties, e.g. the electrical
conductivity, the yield stress, and the elastic modulus of the porous materials, their
porosity dependencies are experimentally found to follow the power-law formula
[16–18];

M = M0(1− p)m, (1)

where M and M0 are the physical properties of porous and nonporous material,
respectively, and m is the coefficient determined empirically. The solid and broken
lines in Fig. 2 indicate Eq. (1) fitted to the measurement data. Thus, one finds that
the measurements almost lie on them, which indicates that Eq. (1) approximately
holds for the elastic constants of the anisotropic porous metals. The m values for
each lotus metal are shown in Table 1.

3 Tensile Strength

Tensile tests were performed on lotus copper and lotus iron fabricated with hydro-
gen or nitrogen atmosphere using the Instron Universal Testing Machine (Model
4482, Instron Corp., Canton, MA, USA) at room temperature. Figure 3a shows the
porosity dependence of the ultimate tensile strengths, where σt// and σt⊥ represent
the ultimate tensile strength along the directions parallel and perpendicular to the
pore directions, respectively [6]. The ultimate tensile strength of lotus copper ex-
hibits anisotropy, which is also caused by the anisotropy of stress concentration.
Furthermore, the tensile strength is also found to exhibit a power law behavior (the
m values are shown in Table 1). Figure 3b shows the porosity dependence of the ulti-
mate tensile strength of lotus iron fabricated in hydrogen (Fe-H) or nitrogen (Fe-N)
atmosphere [19]. The ultimate tensile strength of lotus iron fabricated in nitrogen
atmosphere is larger than that in hydrogen atmosphere, and for a loading in the pore
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Fig. 3 Porosity dependence of the ultimate tensile strength of (a) lotus copper and (b) lotus iron
fabricated in hydrogen (Fe–H) or nitrogen (Fe–H) atmosphere, where σt// and σt⊥ represent the
ultimate tensile strength along the directions parallel and perpendicular to the pore directions,
respectively. Each line is obtained by fitting Eq. (1) to the measurements

direction the tensile strength of lotus iron fabricated in nitrogen atmosphere is al-
most consistent with the tensile strength of nonporous iron, which are caused by the
solid solution hardening of solute nitrogen.

4 Fatigue Strength

Constant stress amplitude fatigue tests were carried out on lotus copper with a servo-
valve-controlled electro-hydraulic testing machine (V-1912, Saginomiya Corp.) in
air at room temperature. Cyclic tension-compression stress of R = −1 was applied
to nonporous and lotus copper specimens, where R is the ratio of the minimum stress
to the maximum stress. The frequency of cyclic stress was 5 Hz.

Figure 4 shows the log plots of σa against the number of cycles to failure Nf

for nonporous and lotus copper, where cyclic stress was applied in the direction (a)
parallel and (b) perpendicular to the pore direction [20]. The lines denote fittings of
the following function to the experimental data:

log σa = C log Nf +D (2)

where C and D are fitting coefficients. For both the directions, the numbers of
cycles to failure of lotus copper and nonporous copper decrease with increasing
stress amplitude. The fatigue strength at finite life decreases in both the directions
with increasing porosity. Nonporous copper does not show anisotropy in the fatigue
strength at finite life. On the other hand, the fatigue strength at finite life of lotus
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Fig. 4 Log plots of stress
amplitude σa against the
number of cycles to failure
Nf for lotus copper, where
cyclic stress was applied in
the direction (a) parallel and
(b) perpendicular to the pore
direction
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copper shows significant anisotropy; the fatigue strength in the perpendicular direc-
tion is lower than that in the parallel direction.

Figure 5 shows the fatigue strength at Nf = 105 of nonporous and lotus copper
as a function of porosity. The lines denote the fittings of Eq. (1) to the experimental
data. The porosity dependence of the fatigue strength is similar to those of the elas-
tic constants and ultimate tensile strength, and it obeys the power-law equation of
Eq. (1) (the m values are shown in Table 1).
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Fig. 5 Fatigue strength at
Nf = 105 of nonporous and
lotus copper as a function
of porosity p, where stress
was applied in the directions
parallel and perpendicular to
the pore direction; σNf=105,//
and σNf=105,⊥ are the fatigue
strength in the directions par-
allel and perpendicular to the
pore direction, respectively.
The lines denote the fittings
of Eq. (1) to the experimen-
tal data
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5 Conclusion

The mechanical properties (elastic constants, ultimate tensile strength, compressive
yield stress, and fatigue strength) of lotus metals were studied and the effect of
the anisotropic pores on the mechanical properties was clarified. The mechanical
strength in the direction parallel to the pore direction linearly decreases with in-
creasing porosity, while that in the perpendicular to the pore direction drastically
decreases, which is caused by the anisotropy of stress concentration. The poros-
ity dependence of the mechanical strength obeys a power-law formula. Thus, the
power-law formula is useful to predict the mechanical strength of lotus metals.
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Mechanical Behavior of Nickel Base Foams
for Diesel Particle Filter Applications

M. Duchamp, J.D. Bartout, S. Forest, Y. Bienvenu, G. Walther, S. Saberi, and
A. Boehm

Abstract An original processing route by powder metallurgy was developped to
alloy pure Ni foams so, that the foam becomes refractory for high temperature appli-
cations. The modelling of such a foam at high temperature starts from the behavior
of the basic constitutive material, then we use micromechanical models to predict
the mechanical properties under tension and in compression creep. A 3D finite ele-
ment analysis of a volume analysed by X-ray tomography is performed to study the
foam deformation mechanisms in both conditions.

1 Introduction

Open-cell Ni foams are mainly used as battery electrodes. The very large specific
surface of the INCOFOAM� pure Ni foams also leads to outstanding filtration prop-
erties [1, 2]. A Diesel Particulate Filter (DPF) application requires the alloying of the
INCOFOAM� material to improve the oxidation resistance and to provide thermal
stability. For that purpose, a foam alloying route using powder metallurgy was de-
veloped by INCO and IFAM (patent number: DE 103 01 175.7). The alloyed foams
designed for the DPF application are named INCOFOAM�HighTemp. The typical
alloy composition of the foams studied in this work is that of Inconel 625. A short
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review of the alloying techniques is given in [13, 14]. Inconel 625 foams were re-
cently synthesized by powder metallurgy in [10, 11] and by vapor deposition in [9].

The objective of the work is to provide tools for the design of DPF considering
critical aspects of the life-time of a real filter, from its manufacturing to the in service
conditions. The manufacturing of complex filter shapes can induce damage in the
foam that could affect the durability of the filter component. Creep in the filter is
likely to start during high temperature regeneration regime.

A predictive model for tensile properties for both Ni and alloyed foams is pre-
sented. It assumes that the bending of the struts is the main deformation mechanism
in the foam [7]. A simplified morphology is deduced from 3D reconstruction of
microtomography of Ni foams [3], 2D image analysis and electrical resistivity mea-
surements. Creep of alloyed foams is also investigated in this work. Two creep
mechanisms are evidenced from the experimental point of view and we confronted
an existing model [14] to a large experimental data set of alloyed foams creep mea-
surements. The proposed model describes better high temperature (above 800◦C)
creep than low temperature creep. A 3D investigation of microtomographic foam
images with the Finite Elements Method is finally used in order to assess the as-
sumptions of the models presented before.

2 Materials and Experimental Techniques

2.1 Materials

The Ni base alloyed foams are obtained by a powder metallurgy alloying route using
pure Ni foams INCOFOAM� as a template. The materials considered in this work
are given in Table 1. The INCOFOAM� are produced as foam plates and we dis-
tinguish a coiling direction RD, a transverse direction TD and the normal direction
ND. The process is divided into three steps: binding, coating and finally sintering.
The amount and the composition of the powder sintered on the foam is set to reach
the theoretical composition of Inconel 625. SEM pictures of both a pure Ni foam
INCOFOAM� and an alloyed foam INCOFOAM�HighTemp having the same ini-
tial morphology are presented in Fig. 1. The porous Ni foam structure is not affected
by alloying. In both cases, the hollow struts can be seen. We define the volume frac-
tion Φ of a foam as the ratio between the solid volume and the total volume of the
foam. We also define the mechanical volume fraction of a foam Φmech which is the
volume fraction of the foam that really contributes to the mechanical properties of
the foam. For pure Ni foams, we consider that Φmech = ΦNi whereas for alloyed
foams, we can see on Fig. 1 that a reduced part of the sintered particles mass re-
ally contributes to the mechanical properties of the foam. For the alloyed foams, we
deduce ΦNi ≤ Φmech ≤ ΦAlloyed . This point will be discussed further in this work.

We also applied the alloying procedure by powder metallurgy to 10 µm thick pure
Ni foils to study the influence of the alloying process on the constitutive material of
the foam. A cross section SEM picture of the alloyed foil is given in Fig. 2.
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Fig. 1 SEM pictures of (a) initial Ni foam (b) alloyed foam (c) initial Ni foam cross section (d)
alloyed foam cross section

Fig. 2 Alloyed Ni foil with powder metallurgy. SEM picture of (a) the foil surface (b) the foil
cross section

Microtomography analyses [3, 4] on Ni foams have shown that the cell volume
distribution is monomodal and centered on 0.025 mm3. The corresponding cell
diameter is equal to 390 µm. The cells are not spherical but elongated ellipsoids.
Their main axes called a < b < c have also a monomodal distribution centered on
a = 316 µm, b = 399 µm and c = 479µm. The ratios of the equivalent axes R = b/a
and Q = c/a represent the morphological anisotropy of the foam. We have: R=1.27
and Q = 1.52. These axes have a preferential orientation in the space linked to
the manufacturing process: a-axes are mainly oriented in the TD direction, b and
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c-axes are tilted in the ND-RD plane (see Fig. 6). The strut length distribution is
monomodal centered on 149 µm.

2.2 Experimental Techniques

Tensile tests were carried out on all foam types presented in Table 1. Dogbone ten-
sile samples were cut out of the foam strips. They were tested in a conventional
tensile testing machine at room temperature. Load was measured with a 500 N load
cell and elongation was measured with a light resistive extensometer (gauge length
100 mm). Tensile tests were carried out on the foils presented in Table 1.

Table 1 Materials used for this study. CVD is used for Chemical Vapor Deposition and EP for
ElectroPlating

Ni foams INCOFOAM�

Label Electrical Measured cell Cell size Thickness Manufact.
Φ (%) anisotropy diameter a (µm ) (µm ) (mm) process

C450 3.2 1.66 288 450 1.5 CVD
C450 2.6 1.27 N/C 450 1.6 CVD
C450 13 1.64 316 450 1.5 CVD
D580 2.5 1.36 382 580 1.9 EP
D580 2.1 1.44 N/C 580 1.9 EP
D800 2.1 1.39 466 800 2.5 EP
D800 1.6 1.46 N/C 800 2.5 EP
D1200 1.9 1.36 788 1,200 3.0 EP
D1200 1.3 1.18 N/C 1,200 3.0 EP

Alloyed foams INCOFOAM�hightemp

Label Electrical a Thickness Ni base
Φ (%) anisotropy (µm ) (mm) foam

A763 8.4 1.65 285 1.5 C450 3.2
A808 7.6 1.08 295 1.6 C450 2.6
A782 6.8 1.34 422 2.0 D580 2.5
A809 5.5 1.25 353 2.0 D580 2.1
A790 4.9 1.34 650 2.5 D800 2.1
A810 3.8 1.54 522 2.5 D800 1.6
A793 4.7 1.28 803 3.1 D1200 1.9
A811 2.8 1.34 724 3.1 D1200 1.3

Foils

Label Constitutive Foil
material thickness (µm)

FCommercial Commercial Inconel 625 25
FAlloyed IN625 10
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Monotonic compression and creep compression tests were also carried out on the
alloyed foams. Discs (diameter 20 mm) were cut out of the foam strip with a turning
lathe and tested at high temperature in a radiative furnace. The applied creep stress
levels are set close to the plateau stress of the compressive stress–strain curves of
the foams.

Resistivity measurements were performed on foam samples (20 × 3 cm) cut
in RD and TD with a modified four wire technique. The electrical anisotropy is
the ratio of resistivity in the TD and the RD directions. It was applied on both
Ni foams and alloyed foams. This measure gives a good approximation of foam
anisotropy [6]. The ratio of measured resistivity along directions TD, ΩT D and RD,
ΩRD give the anisotropy ratio assuming the model of Fig. 6. This ratio is called
electrical anisotropy in Table 1.

ΩT D

ΩRD
=

c
a

= Q (1)

The measured electrical anisotropy values lye between 1.18 and 1.66.

3 Experimental Results

3.1 Tensile Tests

Tensile tests were performed at room temperature on pure Ni foams and alloyed
foams. Some tensile curves are given in Figs. 3 and 4. As already observed in [6],
foams have a strongly anisotropic behavior. The stress levels along RD are about
twice the stress level along TD. Another effect is the stiffening of the foam due to
the alloying process. The stress level is about five times higher for the alloyed foam.
We observe a certain embrittlement due to the alloying process. The ductility of the
foams is divided by a factor two.

Tensile tests were also performed on the foils presented in Table 1. The com-
mercial foil FCommercial exhibits a stress peak typical for superalloy tensile curves
whereas the alloyed foil FAlloyed exhibits a smoother behavior. This can be due
to the wrinkling of the foil surface caused by capillarity forces during the high
temperature sintering process. The foil FAlloyed, obtained by powder metallurgy
technique, is less ductile. The ultimate strain at fracture is five times lower than
that of the commercial foil FCommercial. We identified an elastoplastic constitutive
model with the von Mises criterion f and a linear hardening coefficient H described
by the Eqs. (2, 3). The calibrated parameters can be found in 2 as well as the param-
eters for 10 µm thick pure Ni foils found in [5].

ε = εe + ε p, f (σ) =

√
3
2

σdev : σdev −σy (2)

σy = σ0 +H p, ε̇ p = ṗ
∂ f
∂σ

(3)
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Fig. 3 Experimental, simulated and predicted tensile tests of foam strips cut in the RD and the TD
of (top) D580 2.5 and D580 2.1 (bottom) D800 2.1 and D800 1.6

Fig. 4 Experimental and predicted tensile tests of foam strips cut in the RD and the TD of A782
6.8 and A809 5.5
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where σdev is the deviatoric part of the stress tensor and p the equivalent plastic
deformation.

3.2 Creep Tests

Creep tests were performed on alloyed foam disks. When a constant stress is applied,
a steady-state strain rate occurs after a short transient. The steady-state strain rate of
cellular materials can be related to the uniaxial stress by the power law:

ε̇∗ = A∗σ∗n∗ (4)

where the constant A∗ depends on the temperature. This equation is the analogous to
the power law equation for bulk materials (with the macroscopic constants A∗ and
n∗) like in equation 9. We tested the alloyed foams at 500◦C, 600◦C, 700◦C, and
800◦C and we plotted the stress and the strain rate values in Fig. 5. A transition in

Table 2 Identified material data of the linear hardening law (Eqs. 2, 3) for foils FCommercial,
FAlloyed and a 10 µm pure Ni foil [5]

Young’s modulus Yield stress Hardening modulus
E (GPa) σ0 (MPa) H (MPa)

FCommercial 200 478 5,800
FAlloyed 200 373 2,080
Pure Ni foil [5] 204 70 1,800

Fig. 5 Log–log diagram for different INCOFOAM�HighTemp types tested at different
temperatures
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Table 3 Power-law equation parameters for different kinds of INCOFOAM�HighTemp

Low stress High stress

Alloyed Temperature n∗ A∗ n∗ A∗

foams (◦C) (−) (MPa−n∗ s−1) (−) (MPa−n∗ s−1)

A793 4.7 600 7.6×10−2 1.4×10−7 5.7 2.3×10−8

700 1.7 1.9×10−5 3.4 1.6×10−5

A790 4.9 500 1.5 1.1×10−8 6.6 7.6×10−10

800 1.7 9.8×10−6 6.4 3.7×10−5

A782 6.8 600 1.2 1.1×10−7 2.8 5.3×10−8

700 1.1 7.2×10−6 2.5 4.5×10−6

A808 7.6 700 3.1×10−1 8.3×10−7 2.3 4.4×10−7

A809 5.5 700 7.8×10−1 1.1×10−6 3.3 1.3×10−6

A810 3.8 700 4.6×10−1 1.7×10−6 3.6 4.2×10−6

A811 2.8 700 1.0 1.7×10−6 5.1 5.0×10−6

the n∗ creep stress exponent is observed for stress values in the order of 0.5 MPa at
temperatures above 700◦C and stress values in the order of 1 MPa at temperature
below 700◦C . We identified the constants A∗ and n∗ (see Table 3) for low stresses
and high stresses. The low stress regime n mean value is equal to 1.0, high stress
regime n mean value is equal to 4.2.

4 Modeling of the Foam Behavior

4.1 Tensile Elastoplastic Behavior of Foams

A simple mechanical model for pure Ni and of alloyed foams in tension at room
temperature is presented. It incorporates the previous morphological parameters (pa-
rameters Φ , Q,R and the measured cell equivalent axis a).

The model is based on the assumption that the bending of the struts is the main
deformation mechanism of the foam [7]. The idealized cell geometry of Fig. 6 is
used to link the morphological parameters to the foam volume fraction Φ :

Φ =
4t2 (a+b+ c)

abc
=

4t2

a2

Q+R+1
RQ

(5)

where t the beams thickness. Subsequently, the anisotropy ratio R is taken equal to
1 for simplicity.

When the cell is deformed in the direction parallel to the RD, the beams parallel
to TD and ND are bent. The bending of the nonlinear beams is computed with the
Finite Element Method using 2D simulation under plane stress conditions. Prescrib-
ing the bending of a strut in the plane by applying an angle θ to the right edge, we
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Fig. 6 Simplified foam cell
elongated in the coiling
direction

compute the deflection δ of the beam and we post-process the bending moment M
in the beam at each step of the computation. When the foam is tested in the RD
direction, then the beams of length a and b and of thickness t are bent. We impose
that δa = δb = δRD and we compute both the bending moments in the a beam Ma

and in the b beam Mb. When the foam is tested in the TD direction, we apply the
same procedure to b and c beams.

Then, scale transition rules are introduced to link the deflection to the overall de-
formation of the foam, on the one hand, and between the bending moment moment
on a single beam and the foam stress, on the other hand. Scale transition parameters
B and C are introduced in Eqs. (6 and 7). They depend on the foam morphology.
They are identified from the macroscopic stress-strain curves for a given morphol-
ogy of Ni foams: B = 0.4±0.1 and C = 95±25. These values are valid for a wide
range of Ni foams morphologies (450, 580, 800 and 1,200 µm cell size). The influ-
ence of the choice of the cross section of the beam can also be shown to affect the
parameter B and C. For simplicity, a rectangular section is chosen. Subsequently,
the constants B and C identified for a pure Ni foam morphology are kept unchanged
to predict the behavior of lighter pure Ni foams and to predict the behavior of the
corresponding alloyed foams.

σ∗
RD =

C
ab

(
Ma

a2 +
Mb

b2

)
, ε∗RD = B

δRD

c
(6)

σ∗
T D =

C
bc

(
Mb

b2 +
Mc

c2

)
, ε∗T D = B

δT D

a
(7)

In Fig. 3, the calibrated tensile curves are plotted with the experimental tensile
curves for two different Ni foam morphologies D580 2.5 (b) D800 2.1 (solid lines),
and for the lighter foams inherited from the same foam morphology (a) D580 2.1
(b) D800 1.6 (dash lines). The anisotropy changes slightly, the thickness t of the
beams decreased and the parameter a was taken constant equal to 382 µm . We ob-
serve a good agreement between the model and the experiment for the stress levels.
However, yield stresses are over-estimated. This is a consequence of the idealized
elongated cell orientation along RD. If the cells had a distributed orientation in the
RD-TD plane, the elastic–plastic transition domain would be smoother.

The alloying process of foams has two effects on the foams mechanical prop-
erties: the foam constitutive material strengthening and the increasing of the
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mechanical volume fraction. Our assumption is that the first phenomenon is the
most important: Φmech = ΦNi. The behavior law of the FAlloyed (Section 3.1)
representing the constitutive material is implemented in the model to predict the
stress-strain curves of the alloyed foams A782 6.8 (based on the D580 2.5) and
A809 5.5 (based on the D580 2.1). Parameter Q is set to the measured value but we
kept unchanged the other morphological parameters. In particular, the scale tran-
sition parameters B and C are the parameters calibrated on the D580 2.5 Ni foam.
In Fig. 4, the predicted and the experimental tensile curves are plotted. We observe
a good agreement between experimental and predicted curves. The yield stress of
foams is overestimated for the predictions in the RD and the elastic modulus is
underestimated for tensile tests in the TD.

4.2 Creep of Alloyed Foams

The metallic foams placed in the exhaust line are mainly exposed to gas flow that
creates forces on foam struts. The foams are loaded in compression and we expect
them to deform especially at high temperature by creep deformation. The alloying
of the pure Ni foams increases the creep resistance of the foams by solid solution
strengthening mainly. The creep model given in [14] is used in this section. The
alloyed foams were tested at temperatures in the 500−800◦C range for stresses in
the 0.1− 3 MPa range. Moreover, the volume fraction range is relatively large (if
we consider Φmech = ΦNi: 1.3−3.2% or Φmech = ΦAlloyed : 2.8−8.4%). Our large
experimental data set enable an accurate validation of the creep model.

Two different approaches of foam creep modeling were developed in the litera-
ture. The approach in [14] accounts for a creep mechanism transition. The stress in
the foam struts for a macroscopic stress σ∗ is estimated as follows:

σstrut ≈ σ∗

Φmech
(8)

In this section, we do not make assumptions on the value of Φmech. In Table 4, the
range of the volume fraction and the range of applied stress in the struts during creep
tests are computed for each alloyed foam.

In Fig. 7, the tested temperature-stress domain and the DPF application domain
are localized to identify the creep deformation mechanism that occurs during the
creep tests. At high stresses and high temperature, power-law creep occurs in the
struts and at low stresses and low temperature, diffusional creep occurs in the struts.
The creep tests were carried out in the transition between power-law creep domain
and diffusional creep domain. This explains the slope transition in the log–log di-
agram 5. The total foam creep rate is assumed to be the sum of two contributions.
The power-law creep rate equation for bulk material is given by:

ε̇ = Kσnexp

(−Q
RT

)
(9)
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Table 4 Ranges of estimated applied stress in the struts during creep tests and in service conditions
of alloyed foams

Alloyed Φmech Creep tests DPF application
foam range σstrut (MPa) σstrut (MPa) σstrut (MPa)
label

σ∗ = 2.5 MPa σ∗ = 0.1 MPa σ∗ = 0.01 MPa

A763 8.4 3.2−8.4 30−78 1−3 0.1−0.3
A782 6.8 2.5−6.8 37−100 1−4 0.1−0.4
A790 4.9 2.1−4.9 51−119 2−5 0.2−0.5
A793 4.7 1.9−4.7 53−131 2−5 0.2−0.5
A808 7.6 2.6−7.6 33−96 1−4 0.1−0.4
A809 5.5 2.1−5.5 45−113 2−5 0.2−0.5
A810 3.8 1.6−3.8 66−156 3−6 0.3−0.6
A811 2.8 1.3−2.8 89−192 4−8 0.4−0.8

Fig. 7 Tested domain (black square) and DPF application domain (dashed square) in the defor-
mation mechanism map of a typical Ni-20%Cr alloy [8]
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where K is the Dorn constant, n is the stress exponent, Q is the activation energy,
R is the gas constant and T is the temperature in Kelvin. The diffusional creep rate
equation for bulk material is:

ε̇ =
14σΩ
κT d2 Deff , with Deff = DV

[
1+

π
d

δDb

DV

]
(10)

where Ω is the atomic volume, κ the Boltzmann constant, d the grain size, and De f f

is the effective diffusion coefficient. DV is the diffusion coefficient for lattice diffu-
sion of Ni, and δDb the diffusion constant for boundary diffusion. The values of all
the parameters are given in [8] for the typical Ni-20%Cr alloy and are used for mod-
els computation of creep of the alloyed foams. Considering the “bamboo structure”
of the Ni foams exhibited in [5], we take the grain size d equal to 10 µm that is to
say the typical thickness of the walls of the struts.

In the first model, the deformation mechanism of the foam is assumed to be the
bending of the struts [7]. We directly use the equations introduced in [14]. Thus, the
total foam creep model equation can be written:

ε̇b∗ = K
0.6

(n+2)

(
1.7(2n+1)

n

)n

Φ−(3n+1)/2
mech σ∗nexp

(−Q
RT

)
+

14.3Ω
κT d2 σ∗Φ−2

mechDe f f

(11)

The second model was developed in [12] and assumes that the foam deformation
mechanism is the pure strut compression of beams oriented in the same direction as
the loading direction. The total foam creep is in this model:

ε̇c∗ = K

(
Φmech

3

)−n

σ∗nexp

(−Q
RT

)
+

14Ω
κT d2 σ∗

(
Φmech

3

)−1

De f f (12)

Experimental creep data measured at 500◦C, 600◦C, 700◦C, and 800◦C are com-
pared with both bending and compression model in Figs. 8 and 9. The values that we
used are proposed in [8]: n = 4.6, Q = 285 kJ/mol, and K = 3.8 MPa−4.6 s−1. The
effect of “mechanical” volume fraction was also plotted, solid lines representing the
real volume fraction model, the dash lines representing the initial Ni foam volume
fraction. As observed in [16–18], the compression model is in better agreement with
the experimental data than the bending model that overpredicts by about two orders
of magnitude the experimental data. We reach a good agreement at high tempera-
ture considering that Φmech = ΦNi. This model overpredicts the experimental data at
temperature below 600◦C by about two orders of magnitude. These results remain
true for the other data that are not presented here.

4.3 Finite Element Modelling of Real Foam Microstructures

The increasing computing capacity enables us to perform more realistic simulations
taking the actual shape of the cells into account. We used the finite element method
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Fig. 8 Comparison between experimental creep data and both the bending model and the com-
pression model based on power-law creep (high stresses) and diffusional creep (low stresses) of
the struts of the (a) A790 4.9 at 500◦C (b) A782 6.8 at 600◦C. The influence of mechanical vol-
ume fraction is plotted: solid lines represent the maximal volume fraction Φmech = ΦAlloyed (all the
added mass on the foam during the sintering process contributes to mechanical properties) and dash
lines represent the minimal volume fraction Φmech = ΦNi (the alloying of the foam only modifies
the initial strut material)
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Fig. 9 Comparison between experimental creep data and both the bending model and the com-
pression model based on power-law creep (high stresses) and diffusional creep (low stresses) of
the struts of the (a) A793 4.7 at 700◦C (b) A790 4.9 at 800◦C . The influence of mechanical vol-
ume fraction is plotted: solid lines represent the maximal volume fraction Φmech = ΦAlloyed (all the
added mass on the foam during the sintering process contributes to mechanical properties) and dash
lines represent the minimal volume fraction Φmech = ΦNi (the alloying of the foam only modifies
the initial strut material)
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on the microtomographic volume analyzed in [3] (a 200×200×99 voxel) to identify
the deformation mechanisms of the foam during monotonic tensile tests.

The AmiraTM software is used to generate a mesh from the raw binary figures
cropped to a 800× 800× 800µm3 volume. The considered volume contains about
four cells. The foam surface is first triangulated with the help of the marching cube
algorithm and the number of triangles is set to a reasonable number. Then, a volume
mesher generates a tetrahedral mesh using the advancing front method. The obtained
mesh has 77,000 elements. The measured volume fraction was 19% whereas the real
volumic fraction is only 13%. This procedure provides meshes with a very good
quality that can be directly implemented in the ZeBuLonTM finite element code. We
used second order tetrahedral elements [15]. The behavior law of Ni is the elastic–
plastic law with linear hardening identified in Section 4.1. Node sets are created on
the opposite faces of the cube volume element in direction TD. One of the node set
displacement is prescribed to zero and the other is set to ten pixel in the TD.

The computation was performed with a single PC (2 GHz CPU frequency and
4 Gb memory) within 13 h. In Fig. 10, the plastic deformation map is presented.
Plastic deformation initiate mainly at the nodes. The local plastic deformation is
much higher than the overall foam deformation. At higher deformation levels, the

ba

dc

Fig. 10 Plastic deformation during a simulated tensile test of a foam cube with dimensions
8003 µm3. Deformation is magnified by a factor 20
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Fig. 11 Experimental and FEM simulated tensile tests of the C450 13 Ni foam at room
temperature

plastic deformation is located in the struts the direction of which is parallel to the
loading direction. These struts are loaded in tension. The other struts undergo very
low deformation. We post-processed the computation to get a macroscopic stress–
strain. In Fig. 11, we plot the maximum local plastic deformation and the average
stress in direction RD vs. the macroscopic strain. The simulated elastic modulus is
too high in comparison to the experiment, but the plastic slopes are in very good
agreement. We report a factor 10 between the local maximum plastic deformation
and the global foam deformation. This means that there is practically no pure elastic
regime in a foam tensile test.

One possible reason for the discrepancy between the computed and experimental
elastic stiffness may be the size of the volume element considered which is probably
far from the representative volume element size of the material, at least for elastic
properties. The elastic bending of some particular struts is found to be the first mech-
anism that occurs in the foam, assumed in the simple model of Section 4.1.
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Anisotropy in Buckling Behavior of Kelvin
Open-Cell Foams Subject to Uniaxial
Compression

D. Okumura, A. Okada, and N. Ohno

Abstract This paper describes buckling modes and stresses of elastic Kelvin open-
cell foams subjected to [001], [011] and [111] uniaxial compressions. Cubic unit
cells and cell aggregates in model foams are analyzed using a homogenization the-
ory of the updated Lagrangian type. The analysis is performed on the assumption
that the struts in foams have a non-uniform distribution of cross-sectional areas as
observed experimentally. The relative density is changed to range from 0.005 to
0.05. It is thus found that long wavelength buckling and macroscopic instability
primarily occur under [001] and [011] compressions, with only short wavelength
buckling under [111] compression. The primary buckling stresses under the three
compressions are fairly close to one another and almost satisfy the Gibson-Ashby
relation established to fit experiments. By also performing the analysis based on the
uniformity of strut cross-sectional areas, it is shown that the non-uniformity of cross-
sectional areas is an important factor for the buckling behavior of open-cell foams.

1 Introduction

Gibson and Ashby (1982) estimated the buckling collapse strength Σc of elastic
foams under compression by applying the Euler buckling theory to a cell model
consisting of orthogonal struts. They thus analytically derived

Σc = CEs(ρ0
/

ρs)2, (1)

D. Okumura and N. Ohno (�)
Department of Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku,
Nagoya 464-8603, Japan

A. Okada
Defense Aircraft Engineering Department, Mitsubishi Heavy Industries, Ltd., 10, Oye-cho,
Minato-ku, Nagoya 455-8515, Japan

H. Zhao, N.A. Fleck (eds.), Mechanical Properties of Cellular Materials, 69
IUTAM Bookseries 12,
c© Springer Science+Business Media B.V. 2009



70 D. Okumura et al.

where C is a coefficient, Es denotes Young’s modulus of the base solid, and ρ0/ρs

indicates the relative density. They showed that Eq. (1) fits experimental results
considerably well if C ≈ 0.05, i.e.,

Σc ≈ 0.05Es(ρ0
/

ρs)2. (2)

The above equation is therefore regarded as an experimentally verified semi-
empirical relation.

The cell model of Gibson and Ashby mentioned above has a simple cell mor-
phology that is based on orthogonal struts with identical cross-sectional areas. The
cell morphology can be rendered fairly realistic by use of Kelvin’s tetrakaidecahe-
dral cells, which are arranged in a body-centered cubic lattice to fill the space. The
buckling behavior of elastic Kelvin open-cell foams under compression has been an-
alyzed using finite element methods by Laroussi et al. (2002), Gong and Kyriakides
(2005), Gong et al. (2005b), and Demiray et al. (2006). One of the findings in these
studies is that long wavelength buckling occurs in such open-cell foams subjected
to uniaxial compression in the [001] direction, yet the buckling behaviors in other
loading directions have not been analyzed. The analysis performed by Gong and
Kyriakides (2005) and Gong et al. (2005b) is regarded as an accurate one, because
they took into account the non-uniformity of strut cross-sectional areas observed ex-
perimentally (Gong et al., 2005a). It is then of interest to discuss the Gibson-Ashby
relation (2) in light of the buckling stresses of Kelvin open-cell foams furnished
with non-uniform and uniform distributions of strut cross-sectional areas. It is also
of interest to analyze the buckling behaviors in other typical directions such as [011]
and [111], which have not been investigated yet.

In this study, buckling modes and stresses of elastic Kelvin open-cell foams
subjected to [001], [011] and [111] uniaxial compressions are analyzed using the up-
dated Lagrangian type two-scale theory developed by Ohno et al. (2002) and Oku-
mura et al. (2004). By supposing cubic unit cells and cell aggregates in model foams,
the analysis is performed on the assumption that the struts in foams have a non-
uniform distribution of cross-sectional areas as observed by Gong et al. (2005a). The
analysis is also performed by ignoring the non-uniformity of strut cross-sectional
areas. The relative density is changed to range from 0.005 to 0.05. The buckling
stresses and modes obtained are then discussed to investigate the dependence on
uniaxial compression directions and the influence of strut cross-sectional area distri-
butions. It is thus shown that the primary buckling stresses determined for the three
compression directions are fairly close to one another and justify the Gibson-Ashby
relation (2) unless the non-uniformity of strut cross-sectional areas is ignored.

2 Open-Cell Model Foams and Cubic Unit Cells

Figure 1 illustrates the open-cell model foams analyzed, in which Kelvin’s
tetrakaidecahedral cells are periodically arranged in a body-centered cubic lat-
tice. The model foams are supposed infinitely large and subjected to uniaxial
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Fig. 1 Kelvin open-cell foam
and directions of uniaxial
compression

Fig. 2 (a) Cubic unit cell Ycu, (b) strut-junction connection, and (c) shape of struts and junctions

compression in a direction fixed in the space. Figure 1 shows three typical compres-
sion directions, [001], [011] and [111], considered in this study.

The model foams mentioned above have a cubic unit cell Ycu, shown in Fig. 2a,
owing to the periodicities along [100], [010] and [001] (Gong and Kyriakides, 2005;
Gong et al., 2005a, b). As seen in Fig. 2a, a junction is formed by four connecting
struts, which have a non-uniform distribution of triangular cross-sectional areas.
This kind of junction has been observed experimentally (Gong et al., 2005a; Mills,
2007). Figure 2b and c illustrate the strut-junction connection and their shapes as-
sumed in this study; each strut is expressed using two truncated tetrahedrons and
one triangular bar, and each junction is comprised of two regular square pyramids.
Then, since one Ycu contains 24 struts and 24 pyramids, it is shown that the relative
density ρ0/ρs is represented as

ρ0
/

ρs = 8l−3
cu

[
25/4A3/2

1 +(l1 − l2)(A1 +A1/2
1 A1/2

2 +A2)+3A2l2
]

(3)

where lcu denotes the size of Ycu, and A1, A2, l1 and l2 are the areas and lengths
characterizing the struts (Fig. 2c). From now on, the foams with non-uniform and
uniform distributions of strut cross-sectional areas will be referred to as non-uniform
and uniform (cross-section) models, respectively.

The values of ρ0/ρs are taken to be 0.005, 0.010, 0.020, and 0.050 for the non-
uniform and uniform models in this study. It is assumed that the non-uniform model



72 D. Okumura et al.

has l2/l1 = 0.5 and A2/A1 = 0.15 based on the experimental measurements of Gong
et al. (2005a), while the uniform model has A2/A1 = 1. In the analysis, Young’s
modulus Es of a base solid was employed to non-dimensionalize stresses, and Pois-
son ratio νs was taken to be 0.3.

3 Macroscopic Instability Analysis

Macroscopic instability was first analyzed to investigate the possibility of long
wavelength buckling using the two-scale theory developed by Ohno et al. (2002)
and Okumura et al. (2004).

Figure 3 shows the macroscopic instability points found in the macroscopic insta-
bility analysis performed for the two models of ρ0/ρs = 0.01. As seen from the fig-
ure, the two models gave quite different results. When the non-uniform model was
employed, the macroscopic instability condition was satisfied under [001] and [011]
compressions. The uniform model, on the other hand, allowed the condition to be
fulfilled only under [011] compression. Macroscopic instability under [011] com-
pression was thus common to the two models. However, the macroscopic instability
condition was satisfied much earlier in the non-unified model than in the unified
model under [011] compression. We therefore can say that the non-uniformity of
strut cross sectional areas is an important factor for the stability of open-cell foams.

Let us remember that macroscopic instability of periodic solids is identified with
microscopic bifurcation with an infinitely long wavelength (Geymonat et al., 1993).
The results above then suggest that long wavelength buckling can occur in the non-
uniform model under [001] and [011] compressions and also in the uniform model
under [011] compression.

Fig. 3 Macroscopic instability points by non-uniform and uniform models of ρ0/ρs = 0.01 un-
der [001], [011], and [111] compressions
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4 Microscopic Bifurcation Analysis

Microscopic bifurcation analysis of the model foams was performed subsequently
to the macroscopic instability analysis discussed in the preceding section. Cell ag-
gregates were introduced as periodic units for that bifurcation analysis, because long
wavelength buckling was suggested by the macroscopic instability analysis.

The following three types of cell aggregates were employed as periodic units in

the microscopic bifurcation analysis: Y (3D)
N , Y [001]

N and Y [011]
N , which are aggregates

of Ycu as illustrated in Fig. 4a–c. The periodic unit Y (3D)
N contains N3 Ycus. This pe-

riodic unit allows us to find microscopic bifurcation that has the k[100]Ycu-, k[010]Ycu-

and k[001]Ycu-periodicities along [100], [010] and [001]. On the other hand, Y [001]
N and

Y [011]
N are effective for finding microscopic bifurcations that have long wavelengths

along [001] and [011], respectively.
The microscopic bifurcation points obtained for the non-uniform model are in-

dicated in Figs. 5 and 6. Under [001] and [011] compressions, the microscopic
bifurcation condition was satisfied at lower stresses with increasing number of cells

in Y (3D)
N , Y [001]

N and Y [011]
N (Figs. 5 and 6). The bifurcation stresses provided by Y [001]

16

and Y [011]
16 were almost equal to the macroscopic instability stresses under [001]

and [011] compressions, respectively (Fig. 6). It follows from these results that
long wavelength buckling occurred in the non-uniform model under [001] and [011]
compressions.

An identical bifurcation point was found under [111] compression using the

non-uniform model, though the number of cubic unit cells in Y (3D)
N was increased

from N3 = 1 to 63 (Fig. 5). Here it should be recalled that [111] compression
led to no macroscopic instability point, suggesting no long wavelength bifurca-
tion (Section 2). It is then clear that the microscopic bifurcation in the non-uniform
model under [111] compression had a short wavelength. The buckling behavior of
the non-uniform model under [111] compression was thus completely different from

Fig. 4 Illustration of cell aggregates Y (3D)
N , Y [001]

N , and Y [011]
N with N = 4
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Fig. 5 Microscopic bifurcation points determined by use of Y (3D)
N for non-uniform model of

ρ0/ρs = 0.01

Fig. 6 Dependence of microscopic bifurcation stress on the size number N of periodic units un-
der [001] and [011] compressions; non-uniform model, ρ0/ρs = 0.01

those under [001] and [011] compressions. It must be, however, pointed out that the
short wavelength buckling stress determined for the non-uniform model under [111]
compression was fairly close to the macroscopic instability stresses of that model
under [001] and [011] compressions (Fig. 5).

Figure 7 shows the microscopic buckling points determined for the uniform

model by use of Y (3D)
N . As seen from the figure, long wavelength buckling occurred

under [011] compression, in accordance with the result of macroscopic instability
analysis (Fig. 3).
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Fig. 7 Microscopic bifurcation points determined by use of Y (3D)
N for uniform model of ρ0/ρs =

0.01

Fig. 8 Relation between buckling stress Σc and relative density ρ0/ρs

5 Comparison to Gibson-Ashby Relation

As was shown in Sections 3 and 4, macroscopic instability or infinitely long wave-
length buckling primarily occurred in the non-uniform model under [001] and [011]
compressions and in the uniform model under [011] compression, and only short
wavelength buckling happened in the non-uniform model under [111] compression.
The buckling stresses determined for these primary buckling modes are plotted
against ρ0/ρs and compared to the Gibson-Ashby relation (2) in Fig. 8. As seen
from the figure, the buckling stresses attained in the present analysis provide com-
pressive strength Σc with the proportionality to Es (ρ0/ρs)2 as expressed in Eq. (1).
This implies that the bending of struts is effective for the buckling modes of elas-
tic Kelvin open-cell foams. However, since a simple cell model was employed to
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derive Eq. (1), the coefficient in this equation was determined by fitting several ex-
periments, as was remarked in Section 1. The resulting equation, Eq. (2), is thus
regarded as an experimentally verified semi-empirical relation. As demonstrated
in Fig. 8, the primary buckling stresses by the non-uniform model almost satisfy
Eq. (2), whereas the uniform model gives a considerable deviation from Eq. (2). We
therefore can say that the compressive strength of open-cell foams has been success-
fully evaluated by analyzing macroscopic instability and short wavelength buckling
of the non-uniform model.
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Elastic Buckling of 2-D Random Honeycombs:
Does a Representative Volume Element Exists?

F. Jouneid and K. Sab

Abstract Several studies have focused on the linear and non linear behavior of
elastic random honeycombs. In this paper, some numerical tests are presented to ex-
plore the existence of a Representative Volume Element (RVE) for elastic buckling
of these microstructures. The Voronoi tessellation technique and the finite element
method are used to estimate the load plateau of two-dimensional cellular solids
having irregular shapes. Elastic buckling and finite deformation calculations are
conducted and compared. For a given size of specimen and a given precision, the
Monte-Carlo method is used to determine the number of simulated specimens. The
existence of a RVE for elastic buckling is numerically established when the mi-
crostructure is not “too” irregular and all the cells are hexagonal. In this case, it is
found that the elastic buckling analysis gives a good estimation for the beginning of
the load plateau regime.

1 Introduction

In this paper, two-dimensional low density cellular solids (honeycombs) are con-
sidered. There are three phases in the behavior of elastic cellular material: An
elastic-linear regime followed by a plateau regime, corresponding to the buckling
of the cells, which ends with the thickening regime.

Many studies concerning the elastic-linear regime were performed analytically
and numerically (see [3]). Moreover, it is well-known that the elastic buckling of
regular hexagonal honeycombs leads to the plateau regime: Zhang and Ashby [11]
studied honeycombs’ buckling under in-plane biaxial stresses. Ohno et al. [6] es-
tablished the buckling condition for a given mode. Saiki et al. [8] determined the
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size of the representative volume element. Chuang and Huang [1] studied the ef-
fect of solid distribution of cell walls on the elastic buckling of honeycombs under
uniaxial compression using a semi-analytical method. Yang and Huang [10] com-
pleted this study by adopting a biaxial compression mode. Okumura et al. [7] studied
the post-buckling of elastic honeycombs under biaxial compression. Random two-
dimensional cellular solids have been studied by Silva and Gibson [9] who analyzed
the effect of non-uniform cell shape on the elastic properties of cellular solids. Zhu
et al. [13] studied the relationship between the perturbation degree of cell shape and
the elastic properties. The two studies used Voronoı̈ diagram for the generation of
the microstructure. Fazekas et al. [2] completed the previous works using another
method for the microstructure generation. Li et al. [5] added the effect of random
cell wall thickness to the random microstructure. Finally Zhu et al. [12] studied the
effects of random microstructure on the non linear regime.

The aim of this work is to numerically explore the existence of a RVE for the
elastic buckling of random two-dimensional cellular solids having irregular shapes.
The Voronoı̈ tessellation technique and the finite element method are used to es-
timate the load plateau of these microstructures. Both elastic buckling and finite
deformation calculations are conducted and compared.

2 Numerical Microstructures

We use the Voronoı̈ tessellation technique to generate our random microstructures.
When a set of seeds, placed in 2-D space simultaneously, grow in all directions with
a uniform speed, a 2-D Voronoı̈ diagram is formed. The Voronoı̈ tessellation struc-
ture is fully determined by the initial locations of the seeds. We have two layouts of
seeds: regular layout and perturbed layout. In the first case we lay out the centers of
such kind that the polygons of Voronoı̈ are hexagons, this is possible if the centers
are placed such as they are presented in the Fig. 1

In the second case (perturbed layout), the locations of the seeds used to construct
Voronoi diagrams with irregular cell shapes are perturbed from a regular lattice of

Fig. 1 Vornoi diagram of regular layout seeds
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(xi,yi)
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Fig. 2 Coordinate perturbations of the jth seed (x j,y j)

seeds. Figure 2 shows the coordinate perturbations of a regularly packed seed. The
perturbed coordinates of seed j, (x j,y j) may be represented by (1):

x j = xi +α(d cosθi)ϕi

y j = yi +α(d sinθi)ϕi
(1)

where (xi,yi) are the two coordinates of the same seed in the regular lattice, d is
the distance between two regularly packed (unperturbed) seeds, θ i (∈ [0,2π]) is a
random angle (with a uniform distribution) between the horizontal-axis and the line
connecting the unperturbed and perturbed seeds, ϕi(∈ [0,1]) is a random variable
with a uniform distribution, and α(∈ [0,1]) is the amplitude used to quantify the
degrees of cell shape irregularity. The smaller α is, the more regular the Voronoi di-
agram is. Regular hexagonal honeycombs are obtained when α = 0, and completely
irregular honeycombs are defined when α = 1.

Once the centers are placed, we generate the Voronoı̈ diagram thanks to a specific
data-processing program, to obtain periodic samples. In first step, the seeds are gen-
erated and translated in the 8 directions as shown in Fig. 3. Then, we generate the
corresponding Voronoi diagram and we extract the periodic sample. Using Matlab
software, the above described procedure (Fig. 4) allows us to generate samples of
various sizes with different levels of perturbation.

3 Finite Element Analysis

Three types of finite element analysis have been performed: linear regime, elastic
buckling and finite deformation. The above described 2D structures are viewed as
assemblies of Timoshenko elastic beams, which include bending, axial and shear
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Fig. 3 Construction of the periodic sample

Fig. 4 Various perturbed samples : (a) 4×4 cells at α = 30%, (b) 10×10 cells at α = 80%, (c)
24×24 cells at α = 80%

deformations. Finite deformation analysis has been performed using ABAQUS 6.4
software, while the other two types of analysis have been performed using Matlab
software. The relative density dr is equal to 1% for all samples. The solid Young’s
modulus and Poisson’s ratio are Es = 70,000 Mpa and νs = 0.3. Uniaxial com-
pression in the Y -direction is simulated. The normalization rule for the stresses is
Σ ∗ = 1

Esd2
r

Σ . All the generated random samples being periodic, periodic boundary
conditions [4] have been used. The homogenized Young modulus, the critical over-
all strain and the critical overall stress corresponding to the first buckling mode of the
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specimen have been computed for a wide range of volume size and a large number
of realizations of the random microstructure. The number of simulated samples N
is determined using Monte-Carlo method. The average ensemble E(Z) of random
variable Z can be computed as follows: let (Z1, ...,ZN) be N independent realizations
of Z and:

ZN =
1
N

(Z1 + ...+ZN) (2)

σ2
N =

1
N −1

N

∑
i=1

(Zi −ZN)2 (3)

εN = 1.96
σN

ZN
√

N
(4)

Then, the probability of finding E(Z) ∈ [ZN − εNZN ,ZN + εNZN ] is asymptotically
equal to 0.95. For all our simulations, the number of simulated samples N is such
that εN ≤ 2%.

4 Results and Discussion

4.1 Regular Honeycomb (α = 0)

Figure 5 shows the results for 4× 4 cells. The effective Young modulus Ehom is
0.105 Mpa, the effective Poisson ratio νhom is 0.9997, the critical overall strain
Ecr

22 is 9.14% and the normalized critical overall stress Σ ∗cr
22 is 0.1371. The same

results are obtained for 2× 2, 4× 4, 14× 14, 18× 18 and 32× 32 cells. Note that
the intersection of the two straight lines which approximate the stress-strain curve
coincides with the point (Σ ∗cr

22 ,Ecr
22) corresponding to the first elastic buckling mode

(Fig. 6). This is explained by the fact that this buckling mode is a global mode which
initiates the finite deformation of the specimen.

Fig. 5 (a) linear regime; (b) first buckling mode (c) finite deformation
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Fig. 6 Behavior of 4×4 determinist cells

Fig. 7 Critical strain Ecr
22 at α = 0.1

4.2 Random Honeycomb (α �= 0)

The Monte-Carlo method is used to explore the existence of RVE for elastic buck-
ling of random honeycombs (α �= 0). Ten values for α have been considered:
α = 10%, α = 20%,..., α = 90% and α = 100%. In Fig. 7, the average critical
overall strain is plotted versus the number of cells in the specimen, Nc, for α = 10%.

This figure shows that the RVE exists for Nc ≥ 64. A finite deformation anal-
ysis of some specimens (less than five) has been also conducted for Nc = 64 and
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α = 10%. The stress-strain curves obtained are almost the same. Figure 8 shows the
behavior of one specimen and the buckling point (Σ ∗cr

22 ,Ecr
22). As for the determinis-

tic case, the buckling point coincides with the beginning of the load plateau regime.
The same conclusion is valid for α = 0.2.

Indeed, Fig. 9 shows the existence of the RVE in this case. The buckling point
(Σ ∗cr

22 ,Ecr
22) and the non linear stress–strain curves for three samples containing Nc =

64 cells are plotted in Fig. 10.

Fig. 8 Stress–strain curve of a random specimen. Nc = 64, α = 10%

Fig. 9 Critical strain Ecr
22 at α = 0.2
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Fig. 10 Stress–strain curve of three specimens. Nc = 64, α = 20%

Fig. 11 Critical strain Ecr
22 at α = 0.3

The existence of RVE for elastic buckling is lost for α = 30%,..., α = 90% and
α = 100%. See Figs. 11 and 12 for α = 30% and α = 80% .The stress–strain curves
for four samples of 64 cells and α = 80% are shown in Fig. 13. Three buckling
points taken from Fig. 12 for the sizes 64, 256 and 576 cells are also plotted. As
the size of the sample increases, the critical overall strain corresponding to the first
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Fig. 12 Critical strain Ecr
22 at α = 0.8

Fig. 13 Stress–strain curve of 3 specimens. Nc = 64, α = 80%

buckling mode decreases to zero. This is due to very localized buckling modes which
are not representative for the global deformation of the samples. Hence, the elastic
buckling analysis is not relevant for the prediction of the load plateau regime.

We propose the following explanation for the loss of the RVE for elastic buckling.
The cells of the regular microstructure (α = 0) are hexagonal (six sides) and every
peak is connected to three peaks. When α increases, other cell shapes appear like
pentagons, squares and triangles. Numerical simulations show that this happens for
α ≥ 0.24. So, for α ≤ 0.23, all the cells are hexagonal and the first buckling mode
is a global one. We can set a link between the loss of RVE and the loss of the
hexagonality of cells.
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As a conclusion, the existence of a RVE for elastic buckling is numerically estab-
lished when the microstructure is not “too” irregular and all the cells are hexagonal.
In this case, it is found that the elastic buckling analysis gives a good estimation for
the beginning of the load plateau regime.
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Mechanical Properties of Semi-expanded Hollow
Sphere Structures

T. Daxner and R.W. Tomas

Abstract Recently, technologies for the production of cellular materials have been
proposed that allow for a seamless change of the geometries of such materials from
being similar to sintered hollow sphere structures to resembling comparatively reg-
ular polyhedra. In order to investigate, how the linear elastic properties of such
materials are effected by this change in geometry, analyses of the expansion pro-
cess are carried out by the finite element method for obtaining cell wall thickness
distributions. These material distributions are then transferred to finite element unit
cell models that are suitable for predicting the effective, macroscopic elastic prop-
erties. It is found that Young’s modulus, as well as the shear modulus increase
monotonically with increasing degree of expansion. Furthermore, negative Pois-
son’s ratios are predicted for configurations that are comparable to sintered hollow
sphere structures, while positive Poisson’s ratios are observed for highly expanded
configurations.

1 Introduction

By coating polymer spheres with a metal powder slurry, confined expansion of the
spheres, and subsequent sintering it is possible to produce a wide range of different
cellular structures: hollow metal sphere aggregates are the end product if no signif-
icant expansion of the polymer spheres takes place, and sintered polyhedra are the
result if the coated polymer spheres are subjected to a high degree of confined expan-
sion prior to sintering [1, 2]. With suitable process parameters, tailored intermediate
configurations can be produced. The question arises, which degree of expansion is
best with regard to achieving advantageous effective mechanical properties such as
high effective stiffness.
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Therefore, the focus of this study is on intermediate stages of expansion and their
corresponding geometrical and elastic properties.

2 Method

Finite element unit cell models are employed as idealized mechanical models for
the real micro-structures. These models are generated from densely packed hollow
sphere arrangements by a simulation of the actual expansion process of the polymer
spheres and their coating. This way, realistic geometries and wall thickness distri-
butions are obtained for the subsequent study of the sintered end products. Figure 1
shows the face-centered cubic arrangement of hollow spheres which is the assumed
base geometry for the idealized model.

Starting from this regular arrangement of spheres, the first task is to simulate
the expansion process of the polymer spheres and their coating in order to obtain
realistic geometries and wall thickness distributions for the subsequent study of the
semi-expanded end product.

Corresponding simulations are performed on a very small sub-cell of the face-
centered cubic arrangement, making full use of the many symmetries that can be
found in this example of a structure possessing cubic symmetry. Figure 2 shows
the basic setup of the finite element models that are employed for predicting the
expansion process. The expansion model corresponds to 1/48 of a full sphere owing
to the exploitation of all symmetries.

In reality, the driving force behind the expansion process is the release of gas by
the foaming agent. In the simulations, a uniform pressure load on the interior of the
spherical shell is assumed to be an appropriate representation of this process. For
the expansion analysis, an elastic–plastic cell wall material is chosen, with weak
linear hardening being prescribed for achieving a stable expansion process and rep-
resenting the ‘green’ state of the cell wall. 20-node, isoparametric brick elements
with quadratic shape functions are used both in the nonlinear expansion analysis
and in the subsequent linear elastic analysis. Appropriate boundary conditions on
the expansion model in Fig. 2 take into account the models’ symmetries.

Fig. 1 Rendering of a face-
centered cubic arrangement
of hollow spheres. The small
dark-grey sub-cell at the right
side of the image was used for
the determination of the shear
properties
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Fig. 2 Sketch showing the expansion model which contains 1/48 of a single sphere (relative den-
sity ρrel = 20%, degree of expansion ξ = 88%)

From selected stages of the expansion analysis, deformed meshes are extracted
and used for composing a symmetric unit cell model corresponding to the small
framed cube at the right hand side of Fig. 1. The orientation of this symmetric
sub-cell is chosen such that shear stress states in the x-y plane correspond to bi-
axial compression/tension stress states in the rotated 1–2–3 coordinate system (see
Fig. 1). For the cell walls in the sintered state a Poisson’s ratio of νS = 0.4 is as-
sumed.

The symmetric sub-cell is subjected to uniaxial tension in the three-direction for
predicting the effective Young’s modulus and the effective Poisson’s ratio as well as
to biaxial tension/compression for obtaining the effective shear modulus.

3 Results and Discussion

By simulating the expansion of the sphere coating, cell wall thickness distributions
for different stages of expansion are predicted. Referring to Fig. 2, the degree of
expansion ξ is defined as the radial displacement u of the point V2 divided by the
maximum distance umax this node has to travel for realizing a (fictitious) fully ex-
panded structure.

The minimal and the maximal wall thicknesses are given by the length of the
edges ‘v’ and ‘c’ in Fig. 2, respectively. Figure 3 shows cross-sections through the
coating shell along the points C1, C2, V2, and V1 for different stages of expansion.
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Fig. 3 Cross-sections of an expanding hollow sphere with a relative density of ρrel = 20% along a
plane containing an initial contact point (top left) and a vertex (bottom right) of the circumscribed
rhombic dodecahedron (a = 4R/

√
2)

The gradual reduction of the cell wall thickness during the expansion process is
shown in Fig. 3. The thinning of the shell is most pronounced along edge ‘v’ while
the region around edge ‘c’ shows the highest instantaneous wall thickness at all
times.

Focusing the attention on the lowest and the highest instantaneous wall thickness
as described above leads to Fig. 4. Both measures are normalized by the initial wall
thickness in this figure and plotted against the degree of expansion. Remarkably,
the curves for the normalized predicted wall thickness values nearly coincide for
different relative densities. The rate of cell wall reduction is highest at the edge ‘v’,
which experiences the largest displacement of all points on the shell. In contrast to
this, the edge ‘c’ at the contact point of the shell and its neighbor is not displaced
at all at its outer end, and, consequently, shows only very limited straining in the
in-plane and normal directions.

The strong decrease of the local wall thickness at edge ‘v’ and the corresponding
high plastic membrane strains can lead to porosity or rupture of the cell wall in this
region.

Simulating the expansion process leads to wall thickness distributions for differ-
ent degrees of expansion and different relative densities. Additionally, the deformed
finite element meshes of the semi-expanded shell can be used directly for building
up symmetric unit cell models suitable for predicting the effective elastic constants
Young’s modulus E∗, shear modulus G∗, and Poisson’s ratio ν∗, respectively. Being
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panding sphere, for different relative densities
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Fig. 5 Predicted, macroscopic Young’s modulus E∗, normalized by the modulus of the bulk ma-
terial ES for different relative densities and degrees of expansion

based on the proposed idealized face-centered cubic arrangement of cells, the pre-
dicted values can serve as estimates for the elastic properties of the real material and
for detecting trends in their dependence on the degree of expansion and the relative
density.

Corresponding data can be found with respect to the effective Young’s modulus
in Fig. 5 for a wide range of relative densities and degrees of expansion. The major
conclusion, which can be drawn from the results presented in Fig. 5, is, that the
elastic stiffness increases monotonically with the degree of expansion.
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Fig. 6 Predicted, macroscopic Young’s modulus E∗, normalized by the modulus of the bulk ma-
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A reason for this trend can be indicated by plotting the effective Young’s modu-
lus as a function of the relative density in a double-logarithmic diagram for different
degrees of expansion. Figure 6 shows a corresponding diagram. In this kind of dia-
gram the inclination of the individual curves allows conclusions about the dominant
deformation mechanism, because the elastic stiffness of cellular structures scales
linearly with the relative density for structures dominated by cell wall stretching
and, respectively, with the square of the relative density for bending dominated
structures. Interpreting Fig. 6 in this way indicates the dominance of bending de-
formation modes for structures that do not differ much from the case of unexpanded
hollow sphere arrangements, i.e., for low degrees of expansion. For highly expanded
hollow spheres, the inclination of the top-most line in Fig. 6 suggests a deformation
mode that corresponds to cell-wall stretching. Since stretching is mechanically more
efficient than bending, the increased relative stiffness of the expanded structures can
be explained.

The next linear elastic property under consideration is the effective Poisson’s
ratio ν∗. Again, the dependence on relative density and degree of expansion was
examined. Figure 7 shows the effective Poisson’s ratios that were predicted by the
finite element analyses. It can be seen, that Poisson’s ratios are negative for low
degrees of expansion, i.e., configurations that do not differ too much from the clas-
sical sintered sphere geometry. For these structures uniaxial compression leads to
contraction in the direction normal to the loading direction. The mechanical reason
for this behavior can be found in the deformation mode depicted in the lower in-
sert picture in Fig. 7; this deformation mode looks very similar to the one found for
snap-through buckling of spherical shells.

As the degree of expansion increases, the effective Poisson’s ratio also increases;
for very high degrees of expansion, ν∗ converges to values between 0.3 and 0.35
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Fig. 7 Predicted, effective, macroscopic Poisson’s ratio ν∗ for different relative densities and dif-
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depending on the relative density. Since the Poisson’s ratio changes sign from
negative to positive as the degree of expansion is increased, it is theoretically pos-
sible to find intermediate configurations with zero effective Poisson’s ratio for all
relative densities. With respect to relative density, Poisson’s ratio is found to in-
crease with increasing density.

The third effective property, that is necessary for fully describing the linear elas-
tic behavior of materials with cubic symmetry, is the effective shear modulus G∗.
Consequently, the relevant predicted relationships between the shear modulus, the
relative density, and the degree of expansion are depicted in Fig. 8. The shear mod-
ulus is found to vary less with the degree of expansion than the effective Young’s
modulus. For low degrees of expansion (ξ < 15) the effective shear modulus is
markedly lower than for higher degrees of expansion. This phenomenon, which
is more pronounced for higher relative densities, can be attributed to shear defor-
mation of the sinter bridges that connect the hollow spheres in the case of little
expansion. For higher degrees of expansion, the deformation is distributed more
uniformly throughout the structure, leading to a higher shear stiffness.

With the given set of elastic parameters, the effective Young’s modulus E∗, the
effective Poisson’s ratio ν∗, and the effective shear modulus G∗, the effective tensor
of elasticity of a material with cubic symmetry can be fully described. One important
additional result with respect to elastic anisotropy is the effective Young’s modulus
E∗

[111] that is relevant for uniaxial loading along the space diagonals of the cubic unit
cell. It can be calculated as:

E∗
[111] =

3E∗G∗

E∗ +G∗[1−2ν∗]
(1)
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Fig. 8 Predicted macroscopic shear modulus G∗, normalized by the modulus of the bulk material
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For the considered structures, this modulus is in the range of 75–95% of the effective
Young’s modulus E∗ predicted for the directions of the axes of cubic symmetry.

4 Summary

The expansion process and the linear elastic behavior of semi-expanded sintered
hollow sphere structures have been investigated.

With regard to the cell wall thickness distribution resulting from the expansion
process it was found that the local reduction of the wall thickness in relation to the
original wall thickness is more or less independent of the relative density.

The elastic stiffness along the axes of cubic symmetry was found to increase
monotonically with increasing degrees of expansion owing to a change of the lin-
ear elastic deformation mechanisms from predominantly cell wall bending for the
unexpanded case to cell wall stretching for the expanded case. Poisson’s ratio was
also shown to depend on the degree of expansion, with negative Poisson’s ratios
being predicted for low degrees of expansions and positive Poisson’s ratios being
the result for high degrees of expansion. For each relative density an intermediate
stage of expansion with zero lateral deformation (ν∗ = 0) under uniaxial loading
was found.
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Indentation Tests on Al Matrix Syntactic Foams

X.F. Tao, G.K. Schleyer, and Y.Y. Zhao

Abstract This paper investigates mechanical response of Al matrix syntactic foams
manufactured by pressure infiltration casting under indentation test. Syntactic foams
with ceramic microspheres of three different particle sizes and inner structures were
manufactured and tested. Because the hollow microspheres are stronger than the
porous ones, the syntactic foam with hollow microspheres has a higher compressive
strength than that of the foam with porous microspheres. As a result, the former
has a higher indentation load than the latter at any fixed displacement. However, the
latter is more ductile than the former. The indentation load is increased significantly
when a disc spreader is used. A combination of weak foam and a thick disc may
give rise to an optimum indentation resistance.

1 Introduction

Syntactic foam is a particular type of solid foam, which consists of hollow spheres
embedded in a continuous matrix. Such foams are originally made with polymeric
matrices and ceramic spheres. However, metallic syntactic foams containing hollow
ceramic spheres can also be fabricated by traditional casting or infiltration tech-
niques used for metal matrix composites. Compared to other metal foams which
have low densities, high specific stiffness, high energy absorbing capabilities and
good mechanical and acoustic damping capacities, the metallic syntactic foams have
much better ability of energy absorption although with a little higher density than
that of normal metal foams. They have the potential to serve as lightweight struc-
tures against impact.

In the applications of syntactic foams, failures due to indentation and penetration
are very common. Early work has indicated that the indentation behaviour of foam is
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largely determined by its compressive strength [1, 2]. Stupak and Donovan investi-
gated the effects of indenter and absorber geometries on the deformation mechanism
and energy absorption of polymer foams [3]. Indentation tests on a closed-cell alu-
minium foam were also conducted to study its response, including the effects of the
size and geometry of the indenter and the cell size of the tested foam [4, 5].

The objective of this work is to characterize the indentation resistance of Al
matrix syntactic foams fabricated by pressure infiltration casting with ceramic mi-
crospheres of different microstructures and sizes. The indentation behaviour of the
syntactic foams with a mild steel load spreader of different thicknesses is also stud-
ied, as they are most likely to be used with steel skins in impact applications.

2 Experimental

The raw materials used in the fabrication of the syntactic foam samples are Al alloy
6082 and ceramic microspheres supplied by Envirospheres Pty Ltd. The ceramic
microspheres have a composition of 60 wt% SiO2 and 40 wt% Al2O3 and a parti-
cle size range of 75–500µm. The inner structure of the individual microspheres is
either hollow or porous, designated in this paper as hollow ceramic microspheres
(HCM) and porous ceramic microspheres (PCM), as shown in Fig. 1. The ceramic
microspheres were divided into three different types according to their particle size.
The inner structure of the microspheres in each type is either PCM, or HCM or a
combination of the two, as shown in Table 1.

Three types of Al matrix syntactic foams, corresponding to Type A, B and C ce-
ramic microspheres and designated as Foams I, II, III, respectively, were fabricated
by pressure infiltration casting. The details of the fabrication process were described
in [6] and are briefly introduced here. A block of Al 6082 was placed at the top of
ceramic microspheres contained in a steel tube and was heated in an electric furnace

Fig. 1 Optical micrographs of the polished cross sections of two syntactic foam samples show-
ing the two different inner structures of (a) hollow ceramic microspheres (HCM) and (b) porous
ceramic microspheres (PCM), as indicated by the arrows
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Table 1 Classification of three types of microspheres

Type A B C

Size range (µm) 250–500 125–250 75–125
Inner structure PCM 65%PCM, 35% HCM HCM
Average compressive strength (MPa) 38 67 135

at 700◦C for 30 min. The assembly was removed from the furnace and the molten
Al alloy was pressed into the ceramic spheres. After full solidification, the sample
was removed from the tube and machined into a cylinder with a diameter of 20 mm
and a depth of 10 mm. Standard T6 heat treatment was performed on these samples
before indention tests.

Axisymmetric indentation tests were performed on the samples using a cylindri-
cal punch with a semi-sphere head. The punch had a diameter of 5 mm, thus the
indentation was at a distance of more than two indenter diameters from the sam-
ple edge such that the edge effect was negligible. All the three types of syntactic
foams were tested in five different conditions: either being indented directly with-
out a spreader or with a spreader, which is a circular mild steel disc with a diameter
of 20 mm and a thickness of 0.5, 1, 1.5 or 2 mm. The mild steel used for making the
spreader is BS 970 070M20, which has a yield strength of approximately 215 MPa
and a tensile strength of approximately 430 MPa. For each test condition, two sam-
ples were tested to ensure good reproducibility. The tests were performed on an
Instron 4,045 machine with a crosshead speed of 1 mm/min and a displacement of
about 9 mm for samples without a spreader and about 10 mm for samples with a
spreader.

3 Results and Discussion

3.1 Indentation Response Without a Spreader

Figure 2 shows the vertical cross section of a Foam I sample after the indentation
test. It illustrates the different deformation zones, which are present in all the sam-
ples tested. A hole was created in the top part of the sample where the indenter
penetrated through. Directly below the hole, a crush zone was formed due to com-
paction. Inside the indentation hole, traces of tearing were observed at the perimeter.

Figure 3 shows the indentation load-displacement curves of the three types of
syntactic foams, Foams I, II and III. For each curve, the load initially increases
nearly linearly with displacement. At a certain displacement, the load starts either
to drop abruptly or to increase with a lower gradient. With increasing displacement
further, the load increases steadily as the foam directly under the indenter densi-
fies. For Foam I, the curve is nearly linear up to a displacement of roughly 2 mm
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Fig. 2 Cross section of a syntactic foam sample after indentation

Fig. 3 Indentation load-displacement curves of three different types of syntactic foams without a
spreader

but has small oscillations. The load increases steadily with displacement up to a
displacement of about 8 mm, at which a drop in load appears. For Foams II and
III, the load increases nearly linearly with displacement until a sudden drop at a dis-
placement of about 2.5 and 3.5 mm, respectively. The load then increases again with
displacement. The curves of Foams II and III are much smoother than that of Foam I
with no discernible oscillations. The load at which the curve deviates from linearity
corresponds to the start of a significant collapse of the foam and is designated as
indentation collapse load, which is equivalent to the indentation yield load in some
cases. The indentation collapse loads of Foams I, II and III are 2.2, 3.2 and 4.9 KN,
respectively.

The indentation collapse load of a foam is determined to a large extent by its
compressive strength [1, 2]. The indentation load at any displacement is the sum of
the force required to crush the foam beneath the indenter and that required to tear the
foam at the perimeter of the indenter [5]. Because Foams I, II and III have a similar
volume percentage of Al, they are expected to have a similar shear strength [6]. The
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collapse load therefore largely depends on the maximum force required to crush
the foam and accordingly is a function of the compressive plateau strength of the
foam. Although the three types of ceramic microspheres have the same chemical
composition, HCM has a higher compressive strength than that of PCM, due to
different inner structures. The compressive strengths of Type A, B and C are 38,
67 and 135 MPa, respectively, as shown in Table 1. As a consequence, the resultant
syntactic foams, Foams I, II and III, have increasing compressive strengths, leading
to increasing indentation collapse loads.

Figure 4 shows the macro- and micrographs of the three types of syntactic foams
after indentation tests. In Foam I, no macroscopic damage is visible except within
the indentation area, and the damage at the perimeter of the indentation hole is not
significant. This explains the steady load-displacement curve of Foam I in Fig. 3.
The small oscillations in the curve are a result of the repeating cycles of yield, col-
lapse and densification of the ceramic microspheres [5]. In Foams II and III, cracks
spanning from the indentation hole to the outer edge of the samples are observed.
Considerable deformation is also observed in the region at the perimeter of the in-
dentation hole, indicating significant tearing damage. The initiation of the cracks is
believed to result in the abrupt drop in the load-displacement curves for Foams II
and III in Fig. 3.

The different behaviour between Foam I and Foams II and III is largely because
of the different compressive strengths of the foams. The region of the foam outside
the indentation hole is subject to an internal pressure when the sample is subjected

a b c

500µm 500µm 

500µm 500µm 500µm 500µm 500µm 500µm 250µm 250µm 250µm 

d e f

Fig. 4 Macrographs of the three types of syntactic foams: (a) I, (b) II and (c) III; and micrographs
of the regions near the indentation holes of the three types of syntactic foams: (d) I, (e) II and (f) III
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to indentation. Foam I has a relatively low compressive plateau strength. The stress
in the region outside the indentation hole may generate a compressive stress higher
than the compressive strength of the foam while the shear stress is still below the
shear strength of the foam. This region will undergo plastic deformation without
brittle fracture. Foams II and III, however, have relatively high compressive strength.
The stress in the region outside the indentation hole may generate a shear stress high
enough to cause brittle fracture but a compressive stress still below the compressive
strength of the foam. As a consequence, cracks are formed. The different sizes of
ceramic micropheres may also affect the ductility, as in the case of particulate re-
inforced metal matrix composites, where the coarser the reinforcement, the more
brittle the composite becomes [7].

It is worth noting that the Al matrix syntactic foams have a much higher indenta-
tion resistance than that of Al foams, although the density of the former is normally
much higher than that of the latter. For example, an Alporas closed-cell Al foam
with a density of 0.22g/cm3 has an indentation yield load of 0.1 kN when tested
using an indenter with the same shape and size as the one used in this study [5]. In
comparison, the syntactic Foams I, II and III have a density of about 1.45g/cm3 and
indentation collapse loads of 2.2, 3.2 and 4.9 kN, respectively.

3.2 Indentation Response with a Spreader

Figure 5 shows the load-displacement curves of the three types of syntactic foams
under indentation with a mild steel disc of 0.5, 1, 1.5 or 2 mm thick. The load-
displacement curves obtained without a spreader is also included for comparison
purposes. For Foam I, the load-displacement curve is very sensitive to the thickness
of the disc. For Foams II and III, however, increasing disc thickness from 0.5 to
1 mm or from 1.5 to 2 mm has no significant effect on the load-displacement curve.
The sharp drops in the indentation load-displacement curves are associated with the
perforation of the discs, whereas the small drops are associated with cracking of the
samples.

Figure 6 shows the top surfaces of the samples of Foam I after indentation with
discs of different thicknesses, before the discs were penetrated. In the indentation
test with a disc on the top of the syntactic foam sample, the disc acts as a load
spreader. The indentation load is distributed to a larger area than the cross section
of the punch before the disc is perforated. When the thickness of the disc increases,
as shown in Fig. 6, the disc transfers the indentation load to a larger area on the
foam. At any fixed displacement, the indentation load increases with increasing disc
thickness, as shown in Fig. 5a. Due to the good ductility of Foam I, no shear cracks
are observed in the samples for the four test conditions.

Figure 7 shows the top surfaces of the samples of Foams II and III after indenta-
tion with discs of different thicknesses, before the discs were penetrated. The effect
of load spreading of a 0.5 mm disc is similar to that of a 1 mm disc, and the effect of
a 1.5 mm disc is similar to that of a 2 mm disc. This phenomenon is also evidenced
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Fig. 5 Indentation load-displacement curves for the three types of syntactic foams with or without
discs (a) Foam I, (b) Foam II and (c) Foam III

0.5 mm 1 mm 1.5 mm 2 mm

Fig. 6 Top surfaces of Foam I samples after indentation with discs of different thicknesses, before
the discs were penetrated. The plastic deformation areas are indicated by circles

in the load-displacement curves in Fig. 5b and c. This is likely due to the higher
compressive strengths of Foams II and III than that of Foam I, which makes the
load spreading less sensitive to disc thickness. When the disc thickness is increased
from 0.5–1 to 1.5–2 mm, however, there is a significant difference in the response of
the foam to indentation. With a thick disc, the indentation load is spread to a greater
area, resulting in fewer and shorter cracks in the region outside the indentation hole,
as shown in Fig. 7. The indentation load at any fixed displacement is also increased
as shown in Fig. 5b and c.
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II, 0.5 mm II, 2 mm III, 0.5 mm III, 2 mm

Fig. 7 Top surfaces of Foam II and III samples after indentation with discs of different thicknesses,
before the discs were penetrated

Foam I has a slightly higher maximum indentation load than Foams II and III
when tested with a 2 mm disc spreader. It seems lower compressive plateau strength
of the foam facilitates better load spreading. Taken into account of the strength of
the disc, a combination of weak foam and a thick disc may lead to better indentation
resistance.

4 Conclusions

The three types of Al matrix syntactic foams, Foams I, II and III, have indentation
collapse loads of 2.2, 3.2 and 4.9 kN, respectively. The indentation collapse load
is largely determined by the compressive plateau strength of the syntactic foam,
which in turn depends on the compressive strength of the reinforcing ceramic mi-
crospheres. Foam I has better ductility than Foams II and III, because PCM is weaker
than HCM. When a disc is used in the indentation test, the indentation load is dis-
tributed to a larger area than the cross section of the punch. The indentation collapse
load is increased significantly. The thicker the disc, the higher the indentation load.
In some cases, a combination of weak foam and a thick disc may lead to better
indentation resistance.
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Fracture of Metal Foams: A Discrete Modelling
Approach

K.R. Mangipudi and P.R. Onck

Abstract A discrete model based on two-dimensional Voronoi tessellation has been
used to study damage and fracture in open-cell metal foams. The present study fo-
cuses on elastic-fracture behaviour of the foam. A competition mechanism among
various damaging struts leading to damage localization and formation of a fracture
band has been observed. The effect of relative density is presented in terms of scal-
ing relationships for the peak stress and peak strain are presented here. Finally the
detrimental effect of the effect of the presence of the precipitates will be studied as
well, showing a severe knock-down in the strength and ductility.

1 Introduction

Metal foams possess attractive mechanical properties like high stiffiness to weight
ratio. When used to build light-weight structures they require a good combination
of strength and ductility. They are ductile under compression but rather brittle in
tension with a few percent of overall strain to fracture. In closed-cell metal foams
the primary embrittling phases are inclusions and second-phase particles that form
during solidification [1]. The composition of these precipitates can be traced back to
the viscosity enhancing ingredients and foaming agents added during the foaming
process. In open-cell foams made by investment casting fractography revealed plate-
like precipitates on the grain boundaries which appeared to be mostly perpendicular
to the strut length [2].

When loaded in tension, struts in Duocel open-cell foam fail either by ductile
necking or by brittle failure due to cleavage of the grain boundary precipitates.
These brittle struts account for up to 20–30% of the total number of failed struts [2].
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During recent tensile experiments on open-cell foams using acoustic measurements
[3], brittle failure of the struts was identified with high amplitude recordings. In
annealed foam samples no significant high amplitude events were recorded, while
substantial acoustic emissions were recorded with samples in the T6-tempered con-
dition wherein the stress levels within the matrix can raise high enough to cause
cleavage of precipitates. The differences in the acoustic emission can be explained
by the presence of brittle precipitates clearly showing that a large acoustic activity is
connected to a small fracture strain. A heat treatment will change the microstructure
and the associated yield stress and hardening behaviour of the strut-material. How
this will affect the overall behaviour depends sensitively on the foam’s cellular ar-
chitecture, the precipitate distribution and its relative density. The goal of this work
is to study these dependencies using a multi-scale modelling framework that takes
all these ingredients into account.

2 Multi-scale Model

Random Voronoi structures in two dimensions are used to describe the structure of
open-cell metal foams (Fig. 1). The mechanical behaviour of each material point
in the strut is characterized by a uniaxial tensile curve featuring linear elasticity,
power law hardening and softening due to damage. Individual struts are discretized
with Euler-Bernoulli beam elements. An updated Lagrange formulation is adopted.
Within a linear Finite Element (FE) setup plasticity of the beam elements is in-
corporated using viscoplastic framework. In the following section, we summarize

Fig. 1 Information flow between different length scales
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the FE equations and discuss the application of the viscoplastic method to model
time-independent plasticity and fracture. It should be emphasized here that the vis-
coplastic framework is used only for numerical reasons; we are not dealing with
physical time-dependent processes.

2.1 Finite Element Equations

We make use of the additive decomposition of elastic and viscoplastic strain rates
(ε̇e and ε̇υ p respectively) and the elastic constitutive relation, viz.,

ε̇ = ε̇e + ε̇υ p, (1)

σ̇ = E ε̇e. (2)

Note that we make use of symbolic notation only; no reference is made to the ten-
sorial nature of the symbols. The virtual work principle in its rate form can be
written as ∫

v

{
(δε) σ̇ +(δ̇ ε)σ

}
dV =

∫
A

δu ḟext dA. (3)

With the help of Eqs. (1 and 2) and rearranging the terms, we have

∫
v

{
(δε)E ε̇ +(δ̇ ε)σ

}
dV =

∫
A

δu ḟextdA+
∫

V
(dε)σ̇∗dV. (4)

where σ̇∗ = E ε̇υ p Using the standard beam interpolation functions for the displace-
ments as a function of the nodal displacements and rotations, the following updated
Lagrangian finite element equations are obtained:

(KM +KG)U̇ = Ḟext + Ḟ∗, (5)

where KM and KG are the material and geometric stiffness matrices respectively,
U̇ is the rate of unknown nodal displacements and rotations and Ḟ∗ is the rate of
viscoplastic forces. Equation (5) is non-linear in time as the viscoplastic force rate
and geometric stiffness matrix are a function of the current stress state.

2.2 Plasticity and Fracture

2.2.1 Plasticity as a Limit of Viscoplasticity

The viscoplastic strain rate of a beam under uniaxial tension can be written as a
power-law dependence on the force P according to
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ε̇vp = ε̇0

(
P
P0

)n

, (6)

where ε̇0 and n are material parameters for creep, P0 = σ0t, σ0 is the reference stress
and t is the beam thickness. By adopting this power-law creep relation (Eq. (6)) and
setting the exponent n → ∞, rate-independent plasticity is recovered with σ0 as the
yield stress. In this limit, the material parameters (ε̇0 and n) loose their physical
significance and become parameters of the numerical algorithm.

In the classical Euler-Bernoulli (EB) elastic beam theory, the generalized strain
measures are the axial strain ε and curvature κ . For perfect plasticity, the viscoplas-
tic curvature rate can be expressed in a similar form as (Eq. 6):

κ̇υ p = κ̇0

(
M
M0

)n

, (7)

where M is the bending moment, M0 = (1/4)bt2σ0 is the plastic yield moment
and σ0 is the yield stress [4]. At the beginning of each time step, the vector of
the rate of the nodal viscoplastic forces Ḟ∗ is computed using Eqs. (6 and 7) based
on the generalized stress state in the previous increment (e.g. P and M). Taking
Eqs. (6 and 7) with a large n ensures that the normal force P and moment M in
the beam follow the reference force (σ0t) and reference moment (M0) when the
material is plastically loading. To incorporate strain hardening, the form of these
two equations is preserved and the reference quantities σ0 and M0 are taken to be
dependent on the accumulated plastic strain and curvature.

2.2.2 Plastic Hardening

The following hardening behaviour is considered for a material point in the beam
cross section:

σ =
ε
|ε|σY

(
1+

E
σY

|ε p|
)N

∀ |ε| > σY

E
, (8)

where E is the Young’s Modulus, N is the strain hardening exponent and σY is the
yield stress and ε p is the accumulated plastic strain.

Let a section along the strut length at location x (see Fig. 1) be subjected to an
axial strain ε̄ and a bending strain κ . Then the axial strain at the material point
p(x,y) is,

εxx(y) = ε̄ − yκ. (9)

The quantities ζ⊕ and ζ� in Fig. 1 represent the position of the boundaries be-
tween elastic and plastic portions of the beam and are given by

ζ⊕ = − 1
κ

(
εxx
(

t
2

)
|εxx

(
t
2

) | σY

E
− ε̄

)
and ζ� = − 1

κ

(
εxx
(−t

2

)
|εxx

(−t
2

) | σY

E
− ε̄

)
. (10)
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Plastic flow in the beam is initiated as soon as the first fiber (i.e. either the top or
the bottom fiber) has yielded. The non-linear stress state across the beam thickness
σ(y) is integrated to obtain closed form expressions for the normal force P0 =

∫
σdy

and the moment M0 =
∫

σydy as functions of axial strain ε̄ and curvature κ . This
integration is straightforward, but the final expressions are complex and are not
presented here. These stress resultants will be used as the reference quantities in the
Eqs. (6 and 7):

P0 = P0(ε̄,κ) and M0 = M0(ε̄,κ). (11)

2.2.3 Fracture

When the stress at either of the extreme fibers reaches the critical fracture stress
(σF ) of the material, damage is initiated which reduces the forces and momment to
zero with the help of a damage parameter D ∈ [0, 1]. In order to achieve mesh inde-
pendency, the damage parameter is formulated in terms of displacements instead of
strains. The fracture displacement in an infinitesimally thin fiber of initial length l0
located at y is computed from

∆u f (y) = l0(exp(ε̄ − yκ)− exp(εF)), (12)

where εF is the strain at σF. The damage parameter D is defined in such a way that
always a certain amount of specific fracture energy per unit area of the cross section
(Γ0) is dissipated,

D =
1

t∆Uf

∫ t
2

− t
2

∆u f (y)dy, (13)

where ∆Uf = 2Γ0/σF. At the initiation of fracture, the normal force (Pinit) and the
moment (Minit) in the beam element are recorded. We assume linear softening for
normal force and moment according to

(
P0

M0

)
= (1−D)

(
Pinit

Minit

)
. (14)

During the fracture of an element, Eq. (14) provides the reference quantities for the
viscoplastic framework to be used in Eqs. (6 and 7).

3 Results

Simulations are performed on Voronois of 7 × 7 cells with a narrow cell size
distribution. Each strut is divided into 100 equal-sized elements. When required,
precipitates are placed at random locations within the structure. In the simulations
presented here we neglect plasticity and limit ourselves to elasticity and fracture.
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Young’s modulus E is taken to be 70 GPa, σF = 105MPa and Γ0 = 60× 103 N/m.
Figure 2a shows a typical stress-strain curve for a 7× 7 Voronoi for these mate-
rial parameters. Three distinctive regions can be observed: (a) a linear regime, (b)
a nonlinear regime (roughly from point p until c) and (c) an unloading regime (af-
ter point c). The first regime is due to homogenous elastic deformation. During this
period the forces and moments in the struts monotonically increase with very little
gross deformation. The second regime (having a nonlinear stress-strain response)
is a very important phase of deformation and is associated with many mechanisms
important in determining the foam strength. In the early part of the second regime,
it can be seen from the strain maps that the strain is homogeneous throughout the
sample (e.g. Fig. 3a). Initiation of damage in the struts (at point p) takes place well
before the peak stress is attained (at point c, see Fig. 2a). Due to this early dam-
age, local unloading occurs and stresses get redistributed resulting in the non-linear
stress strain response. The overall tangent stiffness (dσ∗/dε∗) now becomes a lin-
ear combination of elastically loading struts and linearly unloading struts. When the
number of failing struts equals a critical value, overall unloading sets in (point c in
Fig. 2a). This situation appears when the random failure events localize to form a
fracture path defining a future crack (see strain maps c and d in Fig. 3). After point
d, the number of damaging struts does not increase further and all further strain ac-
cumulates in the fracture path (see Figs. 2a and 3). The damage accumulation in a
few failing struts is shown in Fig. 2b. It can be observed that an increase in dam-
age evolution rate in a few struts corresponds with a decrease in others (which are
away from the fracture path). These highly active elements are located in the frac-
ture plane as observed in Fig. 3. Figure 2b nicely shows the competition between
damaging struts in the strain range between 0.5% and 1.5%, until the fracture path
has been formed. Beyond a critical strain of 1.5% unloading of the structure de-
creases the overall stress linearly to zero, finally to attain complete separation of the
sample.
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Fig. 2 Elasto-fracture behaviour of a two-dimensional Voronoi structure. Point p corresponds to
the first damage event. The numbers a–d correspond to the strain maps shown in Fig 3. Fig. 2b
shows the damage parameter in individual failing struts for the sample in Fig. 2a
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Fig. 3 Strain maps of Voronoi structure. The figures correspond to points a–d labeled in Fig. 2a

3.1 Precipitate Volume Fraction and Ductility

Precipitates were placed randomly within the structure of Fig. 2a by declaring ran-
dom elements to contain a precipitate. The fracture energy of brittle failure (due to
the presence of a precipitate) is taken to be four times less than the ductile energy
and the precipitate fracture stress to be 90 MPa. The effect of the precipitates on the
overall stress–strain response of the Voronoi foam is shown in Fig. 4a for various
volume fractions of precipitates. The peak stress and peak strain are considerably
knocked down by the introduction of less than 1% of precipitates. The higher the
amount of precipitates, the higher is the softening rate (the unloading slope of the
curves in Fig. 4a). In Fig. 4b, the peak stress and the peak strain are plotted as a
function of the amount of precipitates. By the presence of only 5% precipitates, the
peak stress drops by 50%, identifying the precipitates to be highly detrimental for
the ductility of metal foams.

3.2 Effect of Relative Density

A strong dependence of the peak stress on relative density is observed (Fig. 5a).
The peak stress scales with relative density with an exponent of 2.19. This can be
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compared with the scaling of the plastic collapse stress which has an exponent of 2.0
for two-dimensional structures. The peak strain decreases with increasing relative
density.

4 Conclusions

Using a multi-scale model, we have studied the effect of precipitates and relative
density on damage evolution and fracture in two-dimensional Voronoi structures.
The peak stress and critical strain were found to decrease with increasing volume
fraction of precipitates. The critical strain decreases with relative density, but the
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peak stress increases, showing a power-law dependence on the relative density with
a power around 2.
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Fracture of Foamed Cementitious Materials:
A Combined Experimental and Numerical Study

D. Meyer, H.-K. Man, and Jan G.M. van Mier

Abstract Foamed cements have the advantage of low density and good thermal
isolation properties. In an effort to improve their low mechanical properties, a de-
tailed study of the failure mechanism of foamed cement is undertaken. By means of
in-situ micro compression tests inside an X-ray scanner, deformation and fracture
of small specimen can be observed in detail.

Using a simple beam lattice model, the material is modelled and fracture is simu-
lated, taking into account as much as possible detail of the material structure. Direct
3D comparison with the outcome of the experiments is possible which is further
assisted by using directly the material structures measured on the small samples
that are subsequently tested in the X-ray scanner. Some preliminary test results and
simulations are presented in this paper.

1 Introduction

Foamed cementitious materials are highly porous materials with favourable prop-
erties as low weight, high thermal insulation or high vapour diffusion. Due to its
porosity the strength is rather low and up to now it is not common as a load bear-
ing material. The overall goal of the work on foamed cement-based materials is to
develop a load bearing material for structural use while keeping its other favourable
properties.

The compressive strength of the material decreases with an increase of the foam
volume (see Meyer and van Mier, 2006), the tensile strength also, but addition of
plastic fibres increases tensile strength significantly (see Meyer and van Mier, 2007)
The goal in this part of the work on foamed cementitious materials is the detailed
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observation of the material fracture mechanisms in compression to find a way to
improve the material behaviour. Therefore X-ray tomography was used to detect the
material structure and the fracture process.

These tests were combined with numerical simulations, based on a 3D beam lat-
tice model. The material structure is directly projected onto the lattice structure. As
a consequence, direct 3D comparisons between simulations and mechanical testing
are possible.

2 Loading Stage and Tomography Device

X-ray tomography is a common technique to visualise the material structure and
cracks. Because of the limited space in common desktop scanners loading stages
were used outside the scanner, implying numerous manipulations that might impair
the specimen and test accuracy. With a micro loading stage, which allows test-
ing samples inside a desktop scanner, it is possible to avoid sample manipulations
between loading and scanning but also, to observe and record the load and defor-
mations during scanning. In Fig. 1a the scheme of the electro-mechanical loading
stage is given. Due to the limited space inside the scanner the loading device dimen-
sion decreased. An additional important constraint for using the device inside the
scanner was that no metal parts or wires should be in the range of the beam. This
was possible by building parts of the load frame out of carbon fibre composites. The
deformation was measured with the motor controller, as well as with an LVDT fixed
on the cross beam, which also contain the load cell.

Fig. 1 Loading stage for a X-ray tabletop scanner: (a) scheme; (b) photo of installed loading
device
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The capacity of the developed loading-stage is 750 N; the controller allows us to
run tests in force- and deformation-control as well as in mixed modes without un-
loading the sample. The loading stage can be seen in Fig. 1b. The loading stage was
also used outside the scanner, and to observe the specimens with an optical cam-
era a second loading frame out of glass was used. The used tomography device is
a µCT 40 from SCANCO MEDICAL AG (Bassersdorf, Switzerland). The scanner
has a maximum resolution of 6 microns; due to the geometry of our loading stage
10 microns were attainable. The beam energy was 70 kVp and 114µA with an inte-
gration time of 150 ms. For each rotation 4,000 projections were made. Limited by
the beam geometry, only 2.1 mm in height could be scanned during one rotation, so
called stacks. We limited the sample height to 6.3 mm (three stacks) to reduce the
scan time to 1 h per load step.

3 Sample Preparation and Mechanical Testing

The tested samples are foamed cement paste cylinders. The samples have a di-
ameter of 6.7 mm and a height in between 5.8 and 6.3 mm. The foamed cement
paste samples were produced ca. 10 months before scanning and testing to reduce
the influence of shrinkage, hydration and carbonatisation. The samples were cored
from blocks and cut into pieces before grinding them to their final shape. The drill
was cooled with compressed air, which also blew away the dust during coring. All
samples were grounded by hand using a special sample holder which allowed us to
achieve planar and parallel surfaces. Before testing the samples in an X-ray scan,
several tests were done outside the scanner to set the main test parameters, such
as preload and loading speed. These preliminary tests were also used to define the
load-steps for the scanned samples. To eliminate friction between specimen and
loading plates special Teflon-Grease-Teflon sandwiches were placed in between the
samples and the loading plates at bottom and top, following the method proposed
by RILEM TC 148; see Fig. 2a. This setup is very effective, which results in nearly
vertical cracks parallel to the loading direction, reaching the top and bottom layer
of the samples.

In the Fig. 2b the load-deformation diagram of the test presented in this paper is
shown. The scans where done at several load steps. During the scan the deformation
was kept constant to keep the cracks opened. In the force-deformation diagram re-
spectable relaxation rates can be observed. The big relaxation is not only based on
the sample behaviour; but is also influenced by the carbon load frame and the glued
joints.

The first scan was made on the unloaded sample. A second scan was planned
at 50% of the maximum load, one at 80%, a fourth at 90–95% and a final scan af-
ter reaching peak load. As can be seen in Table 1, these values could be achieved
very well for the presented sample. Generally it has to be admitted, that, the scatter
of the fracture properties could be remarkable, depending on the density of a sam-
ple. This means that it is generally difficult to reach the planned percentage of the
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Fig. 2 (a) Sample with Teflon-grease-Teflon sandwiches at loading plates. (b) Load-deformation
curve of a test with five scans

Table 1 Load steps, forces and cracking

Load step Force Fmax (%) Crack observed

LS 1 5 N Unloaded No
LS 2 150 N 55–60 Yes
LS 3 220 N 85–90 Yes
LS 4 255 N 95–100 Yes
LS 5 Post peak <100 Yes

maximum load. The load steps one to three were done deformation controlled to
a defined load. The final loadings were done in deformation-control in single load
steps of several microns each, which is the reason for the irregular shape of the
load-deformation curve.

4 Results and Analysis from X-Ray Tomography

From the tomography data several kinds of information can be obtained. One of the
easiest is to compare the stacks of images of each load step with the others to see if
cracks have occurred (see Fig. 3).

Due to the movement and deformation of the sample from one load step to the
next, traditional image processing techniques, such as image subtraction could not
be used for isolating cracks. One approach to do so, however, is the observation
of the change in void quantities from scan to scan (Table 2). An alternative way
to observe the crack growth could be the analysis of the total bubble surface in a
sample. The bubble surface of different load steps can be compared, as presented
in Fig. 4. Interesting is the observation, that the internal surface of the sample is
decreasing in the first load steps. The same trend is observed when the total sample
volume is plotted against the specimen deformation (see Fig. 4).
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Fig. 3 Formation of cracks observed on the same slice of the sample from unloaded to the
collapsed sample (xy-cylices)

Table 2 Pore size distribution for different load steps (only pores larger than 125 voxels = 50×
50×50 microns where considered)

LS Total Vpores [voxels] Connected Vpore [voxels] Connected Vpore [%] Number of voids [-]

LS 1 92,079,186 90,982,107 98.809 619
LS 2 93,334,630 92,341,281 98.936 616
LS 3 93,178,803 92,160,323 98.907 618
LS 4 93,326,435 92,306,307 98.907 587
LS 5 94,806,307 93,983,770 99.132 534

Fig. 4 Left: Development of internal bubble surface for the different load steps. Right: Develop-
ment of the total sample volume depending the load step

5 Reality Modelling and Numerical Simulation

Over the years it has been shown that beam-lattice analyses are a suitable tool for
simulating fracture in concrete, see Schlangen and van Mier (1992). Mostly these
kinds of simulations were done under tension, but not under compression where
it was not possible to achieve consecutively correct load-displacement response,



120 D. Meyer et al.

including the ratio of tensile over compressive strength with the same parameter
scaling, or to achieve correct fracture mechanism, see for example Margoldova and
van Mier (1997). Due to limitations in computing capacity, simulations were done
in two dimensions only. However, due to the increasing computing power and the
use of parallel computing, fracture simulations can now routinely be carried out in
3D, see Lilliu and van Mier (2003).

In the lattice model, concrete is represented by a network of Bernoulli beams.
Fracture is simulated by a subsequential removal of one beam in each step. As frac-
ture law, a combination of normal force and bending moment is applied:

σ
ft

=
1
ft

(
N
A

+α
max(Mi,Mj)

W

)
, (1)

where a is the cross section area of the beam element and W the section modulus.
Mi and Mj are the effective bending moments of the nodes i and j, which is given by:

Mi =
√

M2
x +M2

y . The parameter α denotes the role of bending in the fracture law.

In the past and present lattice simulations have been done on concrete, which
are modeled as a three-phase material (cement matrix, aggregates and the interface
zone). In the case of foamed cement paste, the numerical model can be reduced
into a “one”-phase material, consisting of a cement matrix containing large voids
(causing a heterogeneous stress field). The foamed concrete model is considered as
a simplified material system for studying compressive fracture in brittle disordered
materials. The matrix is rather homogeneous; the aggregates are replaced by voids
which imply that no ITZ has to be taken into account.

To compare experimental results with those from the simulations it is essential
to model the material heterogeneity as good as possible. In the present case we
decided to use the sample images (see Fig. 6) from the X-ray tomography as a basis
for including the voids (heterogeneity) in the (virtual) specimens. A method was
devised to transfer the tomography data directly into the numerical model.

The generation of the microstructure is done as follows (Fig. 5). At first a
3D triangular regular lattice is generated (Fig. 5 left). In the following step the

Fig. 5 Mapping the material structure into the lattice. Left: Generation of the 3D lattice mesh
before overlay of the microstructure (2,403,373 lattice elements). Centre: Overlay of the segmented
3D scans on top of the lattice. Right: after removal of the unnecessary beam elements (remaining
total of 683,490 elements)
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Fig. 6 Comparison of the scanned sample (left) with the lattice meshes, centre: lattice mesh with
a beam length of 0.1 mm (683,490 elements); right: lattice mesh with a beam length of 0.05 mm
(6,311,581 elements)

(segmented) 3D microstructure from the CT will be put as overlay onto the lattice;
the pixels serve as nodes (Fig. 5 centre).

The assignment of the element properties is determined as follows: if both nodes
of an element have the properties of the cement matrix, the resulting beam ele-
ment will be assigned matrix properties, in all other cases the beam element will
be removed immediately and results in void space (Fig. 5 right). With this rather
straightforward approach, 3D lattices, which correspond to the real samples, can be
constructed rather easily. The lattice mesh will be more accurate in comparison to
the real samples the smaller the beam elements are selected (see Fig. 6).

Simulations were done with regular lattices with a beam length of 0.1 mm
(683,490 beam elements) under uniaxial compression with α = 1. The stiffness of
the cement matrix is set to E = 25GPa; and the tensile strength of the matrix lattice
elements was assumed to be 5 MPa. The illustrations of Fig. 7 show crack patterns at
different loading stages. A vertical slice is made to depict the crack development in-
side the specimen. Up to the maximum force, crack initiation starts from the top and
the bottom of the holes (under compression the stress intensity has the highest value
there). These few small cracks grow vertical and parallel to the loading direction.
After reaching the peak, macrocracks start to grow from “hole to hole” (possibly
because of the stress intensity along the edges); these large localized cracks are not
growing parallel to the loading direction.

It has to be mentioned that in this model a frictional mechanism has yet to be
included. Moreover the used fracture law is still debatable.

6 Summary and Outlook

A loading stage was built and designed for the use inside a desktop tomograph.
Testing samples in combination to X-ray scanning gives the possibility to recon-
struct the 3D structure of specimens under various loadings to describe the material
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Fig. 7 Fracture simulation of a foamed cement paste specimen with a 3D lattice at different
loading stages (top left: maximum load; next three stages: post peak)

behaviour and the failure mechanism under compression. The transfer of the 3D
material structure from the tomography into a 3D lattice model for numerical sim-
ulations additionally allows the possibility of improving the failure criteria of the
simulations as well as to improve the understanding of fracture of foamed cementi-
tious materials under compression.

In the future, further investigations are planed on more samples with varying
porosity to evaluate the effect of porosity on the material behaviour in detail. These
tests will be done for both as physical and numerical experiment, thereby hopefully
reaching the final goal of an improved lightweight material with favourable proper-
ties as low weight and good thermal conductivity. In addition the development of a
failure criterion for compressive failure in numerical simulations using a 3D lattice
beam model is one of the expected outcomes.
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Modeling and Simulation of Highly Porous
Open Cell Structures: Elasto-Plasticity
and Localization Versus Disorder and Defects

M.H. Luxner and H.E. Pettermann

Abstract The mechanical properties of open cell structures are investigated by Fi-
nite Element simulations. Various three-dimensional generic structures built from
an elastic-plastic bulk material are treated both with regular architectures and disor-
dered derivations thereof. Their elastic and elastic-plastic behavior as well as their
susceptibility to deformation localization and their defect sensitivity are analyzed.
The direction dependent responses are predicted and the governing deformation
mechanisms at cell level are identified.

1 Introduction

Highly porous, cellular solids form the basis of many biological and engineering
structures. The better understanding of the former and the application of the latter
requires knowledge on the relationship between their architecture and their overall
mechanical response.

Several analytical and numerical approaches have been developed for describing
the mechanical behavior of cellular materials. Analytical models based on beam
theory are derived in e.g. [1]. Numerical approaches for closed cell structures are
treated e.g. in [2], open cell ones e.g. in [3].

In the present study the effect of structural disorder on the linear and nonlin-
ear mechanical behavior is evaluated by the Finite Element Method (FEM) under
consideration of elastic-plastic bulk material properties, large strain theory, and de-
formation localization.

First, the linear elastic properties are investigated by a periodic microfield ap-
proach. Based on three-dimensional periodic unit cell models the entire elastic
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tensors are predicted for six different generic structures with regular geometries. The
anisotropic stiffness and the directional sensitivities are presented. Out of these six
structures the two with the highest and the lowest degree of anisotropy are selected
for further studies. On large periodic unit cells geometrical disorder of varying
level is introduced to the structures and their effect on the linear elastic behavior
is studied.

Second, the nonlinear mechanical behavior is investigated in detail for the two
selected structures. Since this, in general, cannot be accomplished by means of pe-
riodic unit cell models, large finite sample models are employed which are loaded
by uniaxial compression. Different orientations of the structural lattice with respect
to the loading direction are realized. As for the linear cases, regular structures are
considered first and then a systematic study on the influences of structural disorder
is performed. Finally, the above investigations are extended to study the effect of
various defects on the overall mechanical behavior in simple cubic architectures.

In a related project corresponding structures are built by rapid prototyping and
tested experimentally [4].

2 Modeling Approaches

Six generic three-dimensional structures are selected in an effort to choose topolo-
gies with a variety of mechanisms governing their behavior. At first, all of them
show regular geometries which are repeated periodically in all principal directions.
Six different base cells to be investigated are shown in Fig. 1. They comprise Simple
Cubic (SC), Kelvin (KV), Weaire Phelan (WP), Gibson Ashby (GA), Body Centered

Fig. 1 Base cells of various generic structures and the predicted direction dependent Young’s
moduli
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Cubic (BCC), and Reinforced Body Centered Cubic (RBCC) structures [5, 6]. Each
structure consists of struts with circular cross sections of constant diameter. The di-
mensions of all base cells are 4× 4× 4 mm. All base cells possess cubic material
symmetry. Note that only struts belonging to a single base cell are shown. All inves-
tigations pertain to a relative density of 12.5%, except for the study of the density
dependence which rely on range from 10% to 20%.

For periodic structures the consideration of a base cell is sufficient in most cases.
However, when introducing structural disorder larger models are required. Disor-
dered structures are generated for SC and KV topologies by modifying arrange-
ments of 8× 8× 8 base cells. The vertices of the regular geometries are shifted
to random positions by a fixed distance. For the shifting direction a spatially ran-
dom distribution is adopted. The shifting distance, δ , is expressed in fractions
of the strut length, l, of a regular reference structure. Disorder magnitudes of
δ/l = 1/16,1/8,1/4, and 3/8 are realized, see Fig. 2. Such disorder in the struc-
tures, however, increases the strut lengths and, consequently, affects the density.
Thus, for representing the desired density the strut diameter is adapted accordingly.

Depending on the behavior to be predicted an appropriate modeling approach has
to be selected. Two different approaches for representing the structures as infinite
and finite media, respectively, are employed. The first approach is the unit cell (peri-
odic microfield) method, e.g. [2], which is used for the linear elastic investigations.

The periodic unit cell approach shows severe shortcomings with respect to its
ability of representing deformation localization since deformations cannot local-
ize in arbitrary planes. To overcome these limits and to investigate aspects of the
behavior of finite sized cellular solids, finite structures are modeled in the second
approach. The uniaxial compressive response of cuboidal and cylindrical samples

Fig. 2 Simple Cubic structures with various degrees of disorder and the predicted direction de-
pendent Young’s moduli [5]
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which show lattice orientations of [001], [021], [011], and [111] is investigated. The
top boundary conditions are assumed to represent a rigid plate, which remains paral-
lel to the (001) plane, but can move freely otherwise and can rotate around the [001]
axis. Furthermore, all degrees of freedom of the bottom face nodes are locked, rep-
resenting a rigid plate which is fixed. The finite sample analyses account for large
deformations.

Beam element based models are computationally cheap, however, straightfor-
ward modeling of a vertex suffers from two approximations. First, it does not
account for multiple volumes at overlapping domains. Second, such models do not
account for possible constraints in the vicinity of the vertices, caused by the material
aggregation in these domains. Thus, the distribution of the material in the intersec-
tions of the struts should be considered in terms of stiffness and density [3]. To find
the strut radius matching the desired relative density of the model the material distri-
bution in a vertex is approximated by a sphere with a radius equal to the strut radius.
The connected cylindrical struts end at the sphere’s surface, which leaves gaps and
may create overlaps. This approximation is used throughout this study for vertices
connecting more than two struts. An adaptation of the stiffness in the vicinity of the
vertices is introduced by using (quasi) rigid elements inside the spherical domain
defined above. This adaptation is considered preferable for vertices connecting four
or more struts.

All numerical investigations are carried out by means of the FEM package
ABAQUS/Standard (Version 6.5.3, ABAQUS Inc., Providence, RI). Beam element
based models are utilized throughout this study (except for the evaluation of the den-
sity dependence where continuum element models are used). At least four elements
are used for the discretization of the compliant part of a strut. For the beam cross
sections the number of Gauss points is chosen to be 24 (eight in circumferential
direction times three in radial direction). No contact or self contact is considered. A
verification of the beam modeling approach has been performed in [3].

When bifurcation buckling can become an issue, care has to be taken not to
proceed along the trivial equilibrium path. For the regular SC structure loaded in
the principal direction a small transverse force is applied to induce buckling affine
deformations. For all other cases, localization (if existing) is triggered by imperfec-
tions inherent the FEM models or by structural disorder.

The strut material is isotropic, elastic-plastic, and strain rate independent. The
Young’s modulus of the bulk material is 1,700 MPa, the Poisson’s ratio is 0.3, and
the yield stress is 18 MPa. Ludwik type hardening is assumed with a smooth transi-
tion to ideally plastic behavior at 42 MPa true stress and 5% logarithmic strain.

3 Elastic Results

Following [1] the Young’s modulus, E, is proportional to,

E(φ) ∝ ρrel
β (φ), (1)
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Table 1 Density exponent for various structures at different directions in the range of relative
density from 10% to 20% [3]

Structure [001] [011] [111]

SC 1.00 1.83 1.85
GA 1.98 1.74 1.76

BCC 1.03 1.02 1.01
RBCC 1.01 1.02 1.02

where ρrel is the relative density, β is the density exponent, and φ reflects the ori-
entation dependence. For selected regular structures and directions these predicted
exponents are listed in Table 1 [3]. The exponent indicates the deformation mech-
anism, as being close to one for normal or shear loading modes and being close to
two for bending modes.

Next, the elastic anisotropy for a relative density of 12.5% is studied [3, 5]. Peri-
odic unit cell models of single base cells are employed and the required number of
independent load cases is solved for each structure. From these responses the entire
elastic tensors are assembled. Three-dimensional visualizations of the normalized
Young’s moduli of these structures are given in Fig. 1. The SC structure shows the
most pronounced anisotropy and directional sensitivity with respect to the Young’s
modulus. It exhibits very stiff behavior in the principal directions and a strong de-
crease of the stiffness apart the principal directions. In contrast, the KV structure is
the most isotropic one and exhibits nearly equal values for the normalized Young’s
modulus in all directions. Because of the significant difference in their anisotropy
the SC and the KV structure are chosen for subsequent investigations on the influ-
ence of structural disorder. Unit cell models are employed but now consist of some
8× 8× 8 base cells. Inside the cells structural disorder is introduced as described
in Section 2. Four different degrees of disorder are analyzed. For each of them five
different models (having the same statistical descriptors but different discrete real-
izations) are generated and the elastic tensors are predicted [5].

In the case of the SC structure, Fig. 2, it can be seen that with increasing disorder
the normalized Young’s moduli in the principal directions decrease, whereas for the
other directions the normalized Young’s moduli increase. A pronounced anisotropy
remains even for the most disordered case.

The KV structure shows a very mild decrease of the normalized Young’s moduli
for all directions (not shown). For the most disordered case the Young’s moduli are
nearly uniform with respect to the direction, i.e. isotropy is approached closely.

4 Nonlinear Behavior and Localization

Inspired by nature (e.g. cancellous bone), the influence of structural disorder on the
nonlinear mechanical behavior is investigated on finite samples which are loaded by
uniaxial compression.
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Fig. 3 Predicted deformation patterns of cylindrical samples under uniaxial compression with
disorder δ/l = 1/8 for various lattice orientations [7]

In Fig. 3 the predicted deformation patterns of cylindrical samples with disorder
under uniaxial compression are presented [7]. For both the [001] and the [021] ori-
entations localization takes place in principal structural planes extending one and
two layers, respectively. Localization starts at different positions, but the localiza-
tion pattern is always the same. Two different localization patterns can be seen for
lattice orientation [011]. The first one can be described as a band of three to four
adjacent layers of collapsing cells leaving two non-localizing domains. The second
observed localization pattern shows a concentration of deformation in the center of
the sample surrounded by collapsing cells in the shape of an “X”.
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From the deformed KV structures (not shown) no localization is obvious. For all
cases the distributions of the deformations are rather homogeneous over the height
of the samples. Also any influence of disorder on the behavior can hardly be seen.

Details can be found in [5–7] where SC and KV structures are studied in detail.
Deformation plots and overall stress strain curves are given. Also given are diagrams
showing the distribution and evolution of the mesoscopic strain rates and energy
densities, and histograms showing the energy distribution in the models.

5 Influence of Defects

Three different classes of defects are introduced by removing a constant number
of struts from the structures [6], i.e. for all types of defects the same amount of
bulk material is removed from the samples and, therefore, their relative density is
decreased from 12.5% to 12.25%.

For the first class of defects 108 non-connected single struts are randomly re-
moved, see Fig. 4 (left). As a second approach 18 vertices are removed from the
structures, Fig. 4 (middle). The third class of defects is generated by removing three
clusters of struts consisting of 36 struts each, Fig. 4 (right). For each class of defects
and each lattice orientation five sets of defects are generated.

The differences in the nonlinear responses of the various structures are discussed
in terms of the peak stresses and the strains at which they occur, in the following
denoted as “peak strains”. The average peak stresses, the corresponding average
peak strains, and the standard deviations (indicated by the error bars) are printed in
stress–strain diagrams [6].

First, the structures with lattice orientation (001) are discussed, Fig. 5. Irrespec-
tive of the level of the structural disorder, the structures without defects sustain the

Fig. 4 Three different classes of defects in a simple cubic structure; each class of defects consists
of 108 removed struts [6]
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Fig. 5 Averages of the peak stresses and the peak strains of regular and disordered cylindrical Sim-
ple Cubic structures with and without defects for lattice orientation [001]; the error bars indicate
the standard deviations [6]

highest stresses and strains, followed by structures with missing vertices, missing
clusters, and missing single struts. Due to the defects the peak stresses of the regular
structures are decreased by about 11–14%, whereas for the disordered structures a
decrease of about 6–7% and 6–8% is observed, i.e. for disordered structures with
lattice orientation (001) defects result in a smaller decrease of the peak stress than
for a corresponding regular structure. With respect to the stiffness the missing single
strut defects always result in the strongest decrease [6].

Figure 6 shows the predicted responses for the structures with lattice orientation
[021]. Similarly to the structures with lattice orientation [001], the structures with-
out defects sustain the highest stresses and strains, followed by the structures with
missing vertices. For the other defects no consistent trend regarding the order of
the level of the peak stresses is observed. The missing clusters result in the lowest
peak stresses for regular and slightly disordered structures, whereas the missing sin-
gle struts exhibit the lowest peak stresses for the highly disordered structures. The
variations of the peak stresses and strains tend to increase with increasing level of
structural disorder. Other lattice orientations are discussed in [6].

As a general trend it is observed that for all investigated lattice orientations
the peaks of the stress–strain curves of the defective structures with high disor-
der move closer to each other. This shows that in terms of the peak stresses and
its corresponding strains the type of the defect has less influence within a strongly
disordered structure, but that the amount of the removed material becomes the gov-
erning aspect.
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Fig. 6 Averages of the peak stresses and the peak strains of regular and disordered cylindrical Sim-
ple Cubic structures with and without defects for lattice orientation (021); the error bars indicate
the standard deviations [6]

6 Conclusions

In the present work numerical simulations regarding the mechanical behavior of
regular and disordered open cell structures are carried out. Linear elastic as well
as nonlinear behavior including deformation localization and defect sensitivity are
studied. Three-dimensional Finite Element models based on beam elements with
specific consideration of the vertex regions are used, taking into account elastic-
plastic bulk material behavior, and large strain theory.

Elastic constitutive characterization of various generic structures is performed in
terms of density and directional dependence, and the governing deformation mech-
anisms are identified. The Simple Cubic and the Kelvin type structures are studied
further. Various degrees of structural disorder are introduced and the effects on the
linear elastic and nonlinear behavior are predicted. For the Simple Cubic structure
the disorder leads to a decrease of anisotropy. Next, the effect of structural disorder
on the localization of the deformation is studied under uniaxial compression. For the
Simple Cubic structures localization is found for the regular and slightly disordered
structures. At the highest level of disorder investigated localization is no longer oc-
curring in Simple Cubic structures. The Kelvin structures do not exhibit a marked
direction dependence in the nonlinear regime and no localization is found.

Finally, the effect of three different types of defects on the mechanical behavior of
regular and disordered open cell structures is investigated. It is shown that structural
disorder reduces the defect sensitivity.
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Mechanical Properties of Crimped Mineral
Wools: Identification from Digital Image
Correlation

J.-F. Witz, F. Hild, S. Roux, and J.-B. Rieunier

Abstract Mineral wool is usually used for thermal and acoustic insulation with no
need for mechanical performances. However there are some applications where this
material must have a significant stiffness and strength to sustain mechanical loads.
Crimping is performed to enhance the mechanical properties of mineral wool. As
this process is governed by a lot of parameters one looks for ways to characterize
the mechanical properties one-line. The aim of the present paper is to present an
identification technique for the elastic properties of such a medium, based on tex-
ture analysis, digital image correlation, and a Finite Element based identification.
Local anisotropic elastic behavior is identified through a combination of different
tools based on image processing. First the local orientation map is determined from
a reference image. Second, a series of images captured at different loading stages
is analyzed with a digital image correlation code to estimate the local displacement
field. Last, an inverse problem procedure is applied to evaluate the four elastic mod-
uli of the material. The first experimental step is to perform mechanical tests on this
type of material, and then the measurement and identification steps. A hexapod is
used to perform a biaxial experiment (compression and shear).

Keywords Image correlation · Identification · Anisotropic media · Mineral wool ·
Inverse problem

1 Introduction

Mineral wool is naturally textured product used for its thermal and acoustic prop-
erties. The natural layering of this material leads to a low thermal conductivity,
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and a very compliant material. When mechanical properties are required, an on-line
process called crimping, which aims at modifying the local orientation of fibers,
and therefore enhancing their mechanical performances. Both crimped and non-
crimped products display a local anisotropic structure, and for the crimped products
the preferential orientation varies spatially very significantly. The crimping process
depends on several parameters that lead to different structures with different me-
chanical properties.

The complexity of the microstructure coupled with the local and unknown me-
chanical properties make an a priori prediction of overall properties based on their
specific texture extremely desirable, this goal is being difficult to achieve because
of the complexity of the microstructure. It is proposed in the present study to tackle
this problem by exploiting different image processing techniques. The first one [1],
based on a single picture of the material, consists in analyzing the “texture”, or
the map of preferential orientation, as well as the degree of anisotropy. The sec-
ond one relies on the use of Digital Image Correlation (DIC), a photomechanics
technique [2], developed to estimate displacement fields from various pictures of a
specimen subjected to a mechanical loading. Last, an anisotropic elastic modeling
is proposed, using the anisotropy analysis. The latter is used in order to identify
the unknown anisotropic elastic moduli of elementary volumes by using measured
displacement fields as references. A scheme of the different steps is presented in
Fig. 1.

Section 2 introduces the material under study and the various textures which can
be produced through crimping. Section 3 presents briefly the local texture analy-
sis and its results on the crimped specimen under consideration. Section 4 gives
the basics of the DIC procedure that allows one to obtain displacement fields de-
composed over a continuous bilinear interpolation basis. A finite-element modeling
of the anisotropic elastic solid modeling adopted herein is introduced in Section 5.

Fig. 1 Identification process from digital images to elastic parameters of mineral wool
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The key procedure of identification of the local anisotropic elastic properties is pre-
sented in Section 6. Section 7 presents the experimental biaxial set-up. The results
of the identification process are shown in Section 8. Finally, Section 9 presents the
results of the computed displacement fields and their comparison with results of a
experimental compression/shear test.

2 Crimped Glass Wool

Glass wool is a cellular solid made of glass fibres with micrometric diameter and
millimetric to centimetric length sprayed with a binder, and cured in an oven for
freezing the arrangement of the fibres and hence providing some elasticity. However,
as such, the material is extremely compliant, a property used to reduce its volume
for transport and storage, while preserving its ability to recover its nominal density
for thermal insulation use. When mechanical performance are demanded (typically
medium density products), the fiber mat is processed before the curing stage to
produce a structure endowing the material with a higher mechanical strength. This
step is called crimping and it produces a better mechanical behavior due to a more
favorable fiber orientation. However, the increase of stiffness goes together with
an enhanced thermal conductivity. This duality can be balanced depending on ap-
plications. The crimping process shown schematically in Fig. 2 (top) performs a
compression of the fibre mat both across its thickness and along the line direction

Fig. 2 Schematic view of the crimping process (top) and examples of different textures produced
through crimping (bottom), with characteristic features such as “V-shaped” crimping (left), fine-
scale vertical texture (center), and coarse isotropic texture (right)
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because of the progressive reduction of velocity of the conveyor belts in which the
mat is fed. A horizontal compression is taking place at each belt transition which
produces a “buckling” or “folding” of the layers of higher fiber density. This pro-
cess modifies significantly the fibre orientation as shown in some examples in Fig. 2
(bottom). The elastic response of the finished product and its loading abilities are
very sensitive to the different parameters of this crimping process. The aim of this
study is to able to predict the mechanical performances from a simple examination
of its texture.

3 Anisotropy Analysis

The detection of local anisotropy is performed from black and white images of a
section of the material. The direction of longer persistence of the grey level is de-
fined as the principal axis of anisotropy. A lot of methods use the gradient of pictures
to capture changes in orientation assuming the image to be sufficiently smooth [3,
4]. The method used here does not require this smoothness assumption and allows
to capture the anisotropy encoded by the fine texture (i.e., high frequency modes)
[1]. The analysis is based on the regularized correlation texture tensor of small sub-
images, i.e. zones of interest (ZOI) extracted from a digital picture of the product
face. Let f (x) be the gray-scale value of each pixel of the subimage. The following
tensor is computed from the discrete Fourier transform f̃ (k).

T =
∫ ∫

| f̃ (k)|2 k⊗k
|k|2α dk (1)

For α = 0, the above tensor is interpreted as the curvature tensor of the autocorre-
lation function at the origin. Its two orthogonal eigen-vectors provide the directions
of highest and least persistence of the gray-levels and hence the anisotropy axis of
the texture of the sub-image. In case of non-smooth images, the curvature tensor of
the auto-correlation does not exist, and hence a power-law filtering (factor |k|2α ) is
introduced to smoothen the autocorrelation and render the estimation less prone to
pixel-scale noise. The parameter α is evaluated a priori from the regularity of the
analyzed image. The deviatoric part of the tensor Eq. (2)

A =
T−0.5tr(T)I

tr(T)
(2)

gives an estimate of the amplitude of the anisotropy, in addition to the dominant
orientation. Figure 3 shows an example of the extraction of the principal orientation
map on a crimped structure (specimen 90) with sub-image size equal to 32× 32
pixels. The dominant orientation and anisotropy amplitude are defined locally, there
is no continuity between the different ZOIs.
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Fig. 3 Anisotropy field of the studied specimen superimposed on the original image

4 Displacements Field Measurement

The texture of the mat after crimping is strongly heterogeneous, so it is impossi-
ble to use strain gauges or any method that needs contact. For this purpose, a full
field analysis of the displacement under different loadings is useful. A digital image
correlation (DIC) technique [5] is applied to a series of pictures taken at different
stages of loading, from a side view. The specificity of the latter is that it provides
a continuous displacement field based on finite element shape functions (quadratic
elements, polynomials of order 1 in both space directions). The latter techniques
allows one to obtain both a good resolution (32×32 pixels per element) and good
accuracy (5× 10−3 pixel on the pictures used) in the measurement. The scale is
0.125 mm by pixel. Let f (x) and g(x) be a gray-scale representation of the images
of a reference and deformed image respectively. One notes that contrary to con-
ventional materials that look uniform and need a paint speckle sprayed on them to
obtain a random texture on the picture, mineral wools are sufficiently heterogeneous
to be photographed without any surface preparation. The digital image correlation
technique is based on the assumption of the passive advection of the microstructure,
so that the displacement field u(x) obeys the following optical flow conservation
property

g(x) = f [x+u(x)] (3)

The ill-posed problem of determining the displacement field is first regularized
by prescribing a restricted subspace for u, here chosen to be finite-element shape
functions, Nn(x), quadratic elements, polynomials of order 1 in both space directions

uα(x) = ∑
α,n

aαnNn(x) (4)

where α gives the direction x or y of the component of the displacement, and n
labels the different shape functions. This basis will reveal convenient for the sub-
sequent identification step, as the same mesh will be used. Since the optical flow
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conservation cannot hold strictly pixel-wise, a weaker formulation is substituted
(least squares minimization)

a = argmin

{∫ ∫ (
g(x)− f [x+∑

n
anNn(x)]

)2

dx

}
(5)

As Eq. (5) is non linear, a multiscale approach using a Newton linearization scheme
on a series of low-pass filtered images down to the original (unfiltered) ones is
used. Thus the solution is obtained iteratively from solution of linear problems and
deformed image corrections, until the best match between the deformed and the
reference image. Each linear problem consists in solving

Ma = b (6)

where
Mαnβm =

∫ ∫
[Nm(x)Nn(x)∂α f (x)∂β f (x)]dx (7)

and
bαn =

∫ ∫
[g(x)− f (x)]Nn(x)∂α f (x)dx (8)

The matrix M is symmetric, positive (when the system is invertible) and sparse.
These properties are exploited to solve the linear system efficiently.

5 Material Modeling

To obtain the computed displacement fields, a Finite Element code was written.
It takes into account the local anisotropy of the material. The material is modeled
as a locally orthotropic medium. The local orientation and anisotropy amplitude
are included in the model from the direct texture analysis of the studied sample.
Locally, the material is assumed to be characterized by an anisotropic elasticity
tensor characterized by four elasticity values, Snn, Snt , Stt and Suu. If the anisotropy
amplitude A = 1, the material is locally non-crimped, and thus, the original elasticity
tensor is simply rotated to align to the determined direction of anisotropy from the
texture analysis. Otherwise (i.e., A < 1 ), it is assumed that the crimping takes place
at a smaller length scale than the element size, and an equivalent elasticity tensor is
assumed to result from a homogenization procedure. In the present case, a Reuss’
approximation (all directions are “equally loaded”) is made

〈K〉−1 =
∫ ∞

−∞
K−1(θ)p(θ)dθ (9)

where K(θ) denotes the intrinsic elasticity tensor rotated by an angle θ , and p(θ)
is a Gaussian distribution adjusted so that its mean and width match the determined
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local orientation and anisotropy amplitude. The effect of the anisotropy amplitude
is thus such that in its principal axis, the elasticity tensor has the following form.

〈S11〉−1 =
3 · 〈Snn〉−1 +3 · 〈Stt〉−1 +2 · 〈Snt〉−1 + 〈Suu〉−1

8
· · ·

· · · +
〈Snn〉−1 −〈Stt〉−1

2
·A+

〈Snn〉−1 + 〈Stt〉−1 −2 · 〈Snt〉−1 −〈Suu〉−1

8
·A4

〈S12〉−1 =
〈Snn〉−1 + 〈Stt〉−1 +6 · 〈Snt〉−1 −〈Suu〉−1

8
· · ·

· · · +
−〈Snn〉−1 −〈Stt〉−1 +2 · 〈Snt〉−1 + 〈Suu〉−1

8
·A4

〈S22〉−1 =
3 · 〈Snn〉−1 +3 · 〈Stt〉−1 +2 · 〈Snt〉−1 + 〈Suu〉−1

8
· · ·

· · · +
〈Stt〉−1 −〈Snn〉−1

2
·A+

〈Snn〉−1 + 〈Stt〉−1 −2 · 〈Snt〉−1 −〈Suu〉−1

8
·A4

〈S66〉−1 =
〈Snn〉−1 + 〈Stt〉−1 −2 · 〈Snt〉−1 + 〈Suu〉−1

8
· · ·

· · · −〈Snn〉−1 −〈Stt〉−1 +2 · 〈Snt〉−1 + 〈Suu〉−1

8
·A4 (10)

As a consequence, the entire elasticity map is obtained from the texture anal-
ysis of the real material, and is parameterized by the four elasticities of an ideal
uncrimped material. Using experimentally measured boundary conditions (displace-
ment from DIC), a standard finite element computation is performed to compute the
entire displacement fields.

6 Identification Technique

Different techniques exist to identify elastic properties. A first class called virtual
fields method uses special fields (i.e., virtual strain fields) to extract unknown elas-
tic parameters. A linear system is obtained and solved to get the unknowns [6, 7].
A second class of technique uses the constitutive law gap to identify isotropic and
anisotropic elastic properties [8]. Another route, the Equilibrium gap method [9, 10],
exploits the equilibrium conditions written at the nodes of a FE model where the
displacement is known. In the present case, the local properties will depend on the
dominant orientation. Consequently the finite element model updating [11] (FEMU)
is preferred. Another reason is that the measured displacement field is directly com-
patible with finite element simulations.
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6.1 Model Updating Procedure

The Model Updating procedure determines the elastic constants so that the com-
puted displacement field matches as well as possible the measured displacement
field. The computed displacement field is obtained by solving

KFEM({Si}).U0 = 0 (11)

for all internal nodes, and U0 imposed from the measured values at the boundary.
In this expression, K is the stiffness matrix that depends non-linearly on the four
elastic constants Si.

Once a first estimate of the displacement field is computed, four additional “influ-
ence” fields, Ui, i = 1, ...,4 are computed that correspond to incremental variations
of the displacement field for a corresponding change in each of the elastic constant

KFEM({Si}).Ui = −∂KFEM

∂Si
.U0 (12)

The difference between the measured Um and computed U0 displacement fields
is then projected onto the four influence fields through the minimization of the fol-
lowing objective function

J =
∫ ∫ (

Um −U0 −∑
i

γiUi

)2

dx (13)

The components γi allow one to correct the elastic constants to new values S′i such
that

S′i = Si exp(γi/Si) (14)

The procedure is carried over iteratively down to convergence. The residual error
field defined in Eq. (15), where σ2 is the variance of the measured displacement field
is used to quantify the discrepancy density after identification. This identification
process only gives the elastic parameters up to a multiplicative constant. There is no
way to evaluate the absolute value as no Neumann boundary conditions are used.

e(x) = (1/σ2)(Um(x)−U0(x))2 (15)

7 Experimental Set-up and Identification

In order to validate the model a non-classical loading path has been imagined. The
displacement fields are obtained using only one camera, so the loading path must be
in the image plan of the camera.
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The loading path is a combination of horizontal and vertical displacements as
shown in Fig. 4

Biaxial tests have been performed on a hexapod (Fig. 5) to induce compressive
and shear loadings. This device offers the possibility to follow complex strain path
and opens the way to characterize the mat under loadings close to service conditions.
Although the present analysis is limited to the elastic regime, extensions to non-
linearities are also accessed experimentally with this set-up.

Fig. 4 Load history along horizontal/vertical directions

Fig. 5 Hexapod instrumented with camera for DIC measurement of a mechanical test on glass
wool
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8 Identification Results

Experimental data were obtained from digital image correlations. The identification
has been tested on both uniaxial compression and combined compression/shear tests
(Table 1).

Fig. 6 shows that a good agreement is observed between measured and predicted
displacement fields.

Table 1 Identified local elastic properties (kPa) of specimen

Snn Snt Stt Suu

Identified value 100.22 0 6.90 95.60

Fig. 6 Comparison between vertical (left) and horizontal (right) fields, measured displacement
on the top, computed ones on the middle, and error on the bottom, for given compressive/shear
loading on the identified specimen
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The global error defined as the mean of Eq. (15) is less than 3.1%. The agreement
between measured and predicted fields is considered as quite good considering the
simplifying assumptions.

9 Validation

In order to test the predictive power of the previous approach, the displacement field
of a series loading stage on the same specimen has been computed based on the
previously determined elastic constants. Figure 7 show a direct comparison between
measurements and computation of both components of the displacement field. Two
cases are shown in the sequel which have the best and worst global error.

Fig. 7 Comparison between vertical (left) and horizontal (right) fields, measured displacement
on the top, computed ones on the middle, and error on the bottom, on a measured field with the
previously determined elastic parameters for a given load level.
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Fig. 8 Comparison between vertical (left) and horizontal (right) fields, measured displacement
on the top, computed ones on the middle, and error on the bottom, on a measured field with the
previously determined elastic parameters at another load level

On the example shown in Fig. 7 (best case) the global error (2.3%) reaches a
value even lower than the one obtained on the stage used for identification.

The field prediction shown in Fig. 8 (worst case) displays a higher level of dis-
agreement with the measured field (7.3%), The reason for this is not understood,
but may be due to a breakdown of the hypothesis of linear elasticity. However, the
quality of the prediction is still quite acceptable, and being the worst case, those
tests globally validate the approach and obtained results.

10 Conclusion and Perspectives

This study presents a global multiaxial identification procedure for mechanical prop-
erties based on different quantitative image analyses. From the observed texture of
a heterogeneous material, one has access to the local intrinsic elastic properties. As
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it is difficult to get a full benefit from a rich amount of data, the method that cou-
ples full field measurements and finite element updating allows one to automatically
find the best set of parameters for a given model, herein assumed linear orthotropic.
The complete procedure (mechanical test with image acquisition, DIC analysis of
the displacement field, texture analysis and identification), has been followed up
to the identification of elastic constants. The potential of this procedure to match
complex loads histories has been highlighted by invoking displacement fields in dif-
ferent testing condition, using the same elastic constants. Those displacement fields
and stiffness estimates compare quite well with ex post experimentally determined
values.

References

1. S. Bergonnier, F. Hild, S. Roux, Local anisotropy analysis for non-smooth images, Patt.
Recogn. 40 (2007) 544–556.

2. P.K. Rastogi, eds., Photomechanics, Springer, Berlin (Germany) (2000).
3. A.R. Rao, A taxonomy for texture description and identification, Springer New York (1990).
4. C. Germain, J.P. Da Costa, O. Lavialle, P. Baylou, Multiscale estimation of vector field

anisotropy. Application to texture characterization, Signal Process., Vol 83 (juillet 2003),
1487–1503.

5. G. Besnard, F. Hild, S. Roux, “Finite-element” displacement fields analysis from digital im-
ages: Application to Portevin-Le Châtelier bands, Exp. Mech. 46 (2006) 789–803.
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Influences of Inertia and Material Property
on the Dynamic Behavior of Cellular Metals

J.L. Yu∗, Y.-D. Liu, Z.-J. Zheng, J.-R. Li, and T.X. Yu

Abstract Cellular metals are widely used in light-weight structures and energy ab-
sorption devices. Although many experimental studies on the dynamic behavior and
rate sensitivity of cellular metals have been reported in the literature, there are some
conflicting conclusions on the rate effect of metallic foams. In this paper, some
numerical tests are presented to explore the effects of inertia, strain hardening and
strain-rate hardening of the cell wall material on the behavior of Voronoi honeycomb
samples under dynamic compression. Three deformation modes are found and cor-
responding nominal stress-strain curves and the plateau stress of the “specimens”
are obtained. The results reveal that inertia plays an important role in Shock Mode
and Transitional Mode but it does not affect the compressive stress-strain curve of
the honeycomb. The strain-rate sensitivity of the honeycombs is less significant than
that of the cell-wall material and becomes negligible under high impact velocities.
The strain-hardening effect of the cell-wall material is of less importance.

1 Introduction

As a new-class of multifunctional materials, cellular metals, have attracted con-
siderable research interest due to its excellent physical, chemical and mechanical
properties. Potential applications of cellular metals include light weight cores for
sandwich structures to increase the impact resistance, and improve the energy
absorbing capacity. Much effort, including both experimental investigation and
numerical analysis, has been made on the dynamic behavior of metallic foams, but
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there are some conflicting conclusions in the rate effect on the deformation behavior
of metallic foams in the literature.

Considerable amount of experimental studies has been carried out on the strain
rate sensitivity of metallic foams. Mukai et al. (1999) and Dannemann and Lankford
(2000) observed a strain rate effect for the closed-cell aluminum foam Alporas (Al-
Ca-Ti). In contrast, another closed-cell foam Alulight (Al-Mg-Si) formed by powder
processing technique does not exhibit a strain rate effect (Deshpande and Fleck,
2000). Hall et al. (2000) also derived that the strain rate effect is not significant
for a closed-cell 6,101 aluminum foam. Analogous confusions exist in open-cell
aluminum foams. Duocel (Al 6101-T6) is regarded as a strain-rate insensitive foam
(Danneman and Lankford, 2000; Deshpande and Fleck, 2000; Lee et al., 2006).
On the other hand, Kanahashi et al. (2000) reported a strong strain rate sensitivity
of an open-cell aluminum foam (SG91A). Nevertheless, Wang et al. (2006) found
that the yield strength of another open-cell aluminum foam with similar chemical
compositions of SG91A (Al-Mg-Si-Fe) are almost insensitive to the strain rate.

In order to clarify the inconsistencies in the literature mentioned above, Tan
et al. (2005a) carried out an extensive experimental study on the crushing behav-
ior of closed-cell Hydro/Cymat aluminum foam (Al-Si-Mg). They found that the
plastic collapse stress increases with the impact velocity, which is attributed to
micro-inertial effects. When the impact velocity exceeds a critical value the de-
formation of the foam is of ‘shock-type’ due to inertia effects. Below the critical
velocity, the dynamic plateau stresses are insensitive to the impact velocity. Mean-
while, a one-dimensional “steady-shock” model based on a rate-independent, rigid,
perfectly-plastic, locking (r-p-p-l) idealization of the quasi-static stress-strain curves
for aluminum foams was proposed (Tan et al., 2005b) to provide a first-order under-
standing of the dynamic compaction process.

Regular honeycombs (Ruan et al., 2003) and 2D Voronoi honeycombs (Zheng
et al., 2005) were used to investigate the mechanism of dynamic crushing of cel-
lular metals numerically. The influences of cell wall thickness and the irregularity
of honeycombs, as well as the impact velocity, on the deformation mode and the
plateau stress were investigated. However, the influence of the material properties
of cell wall on the dynamic response of foams has not been studied.

In this paper, we employ 2D Voronoi honeycomb in our numerical simulations.
The density and plastic hardening properties of the cell wall material are factitiously
changed to investigate the effects of inertia, strain hardening and strain-rate harden-
ing on the crushing behavior of Voronoi honeycombs.

2 Finite Element Models

The Voronoi technique is employed to generate 2D Voronoi honeycombs. The ir-
regularity of a Voronoi honeycomb with N cells in a square area A0 is defined as
(Zheng et al., 2005)

k = 1−δ/

√
2A0/

√
3N, (1)
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where δ is the minimum distance between any two nuclei. The relative density of a
Voronoi honeycomb is specified by

ρ̄ = ρ∗/ρs =
1

A0
∑hili, (2)

where ρ∗ is the density of honeycomb, ρs the density of its cell wall material, li the
ith cell wall length and hi the corresponding thickness.

In the present study, five random sample patterns are constructed in an area of
100×100mm2 with 200 nuclei. The irregularity of the samples is taken to be 0.45.
The cell wall thickness is identical for one sample and three values of thickness,
i.e. 0.26, 0.36 and 0.48 mm corresponding to the relative densities of 0.073, 0.1 and
0.135, are investigated.

ABAQUS/EXPLICIT is employed to analyze the uniaxial compression behavior
of Voronoi honeycombs under different impact velocities. In the finite element mod-
els, each edge of the cell wall is divided into a few shell elements of type S4R with
five integration points. Three kinds of cell wall materials are considered. The first
one is elastic-perfectly plastic with the Young’s modulus, yield stress and Possion’s
ratio being 66 GPa, 175 MPa and 0.3, respectively. The second one is elastic-plastic
material with linear strain-hardening. The third one is elastic-perfectly plastic mate-
rial with strain-rate hardening. The stress-strain relation in the plastic stage for the
last two materials are defined as

σ = σy +Bεp (3)

and
σ = σy

[
1+C ln

(
ε̇p/ε̇0

)]
, (4)

respectively, where εp is the equivalent plastic strain, σy the yield strength of the
cell wall material, ε̇p/ε̇0 the relative equivalent strain rate, and B and C are material
parameters. In this study we take B = 175MPa, C = 0.05 and ε̇0 = 0.1.

For quantitative comparison and analysis, the plateau stress is specified by

σp =
1

εD − εy

∫ εD

εy

σdε, (5)

where the densification strain εD is defined as (Tan et al., 2005a)

d
dε

(
1
σ

∫ ε

0
σdε

)∣∣∣∣
ε=εD

= 0, (6)

and εy is the yield strain, which is taken as 0.02 in this study.
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3 Results and Discussions

3.1 Inertia Effect

The influence of inertia on the crushing behavior of honeycombs is analyzed
by changing the density of cell wall material. Elastic-perfectly plastic material
property is assigned and four values of the density of cell wall material, i.e.
2.7× 103, 0.9× 103, 0.3× 103 and 0.1× 103 kg/m3 are chosen artificially. Zheng
et al. (2005) have found that the deformation of Voronoi honeycombs is compli-
cated but it can be catalogued into three modes. A Quasi-static Homogeneous Mode
occurs under low impact velocities, in which the crash bands are randomly located
and the deformation is macroscopically homogeneous. If the impact velocity is very
high, a Shock Mode occurs and cells crush sequentially in a planar manner from the
impact end. A Transitional Mode occurs in between, in which the crash bends are
more concentrated near the impact end. In the present study, it is found that when
the cell wall material density is 2.7×103 kg/m3, the critical velocities between the
corresponding modes are about 40 and 90 m/s, respectively, regardless of the cell
wall thickness (or the relative density of honeycomb).

Under the Homogeneous Mode, the calculated stress-strain curves under differ-
ent impact velocities for Voronoi honeycombs with the same sample pattern and
relative density (i.e., the cell wall thickness is fixed) almost remain identical, re-
gardless of different densities of cell wall material, as shown in Fig. 1. It is evident
that the inertia effect is negligible when the deformations of the honeycombs are
macroscopically homogeneous.

The plateau stresses on the impact surface and the support surface under differ-
ent velocities for the cell wall material density of 2.7× 103 kg/m3 are shown in
Figs. 2 and 3, where Regions I, II and III correspond to the Homogeneous, Tran-
sitional and Shock Modes, respectively. It is found that under the Homogeneous

Fig. 1 Stress–strain curves
under Homogeneous Mode
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Fig. 2 The plateau stress on the impact surface under different impact velocities
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Fig. 3 The plateau stress on the support surface under different impact velocities

Mode, the plateau stresses on the impact surface and the support surface are almost
the same, indicating an early achievement of internal force equilibrium. Also, the
plateau stress increases remarkably with the increase of the relative densities. Thus,
the plateau stress mainly depends on the relative density (the cell wall thickness), in
agreement with experimental results reported in the literature.

On the other hand, under the Transitional Mode and Shock Mode, the plateau
stress on the impact surface increases rapidly with the increase of impact veloc-
ity but the plateau stress on the support surface exhibits little velocity dependence.
This is in accordance with the inhomogeneous deformation of the sample. The en-
hancement of the plateau stress on the impact surface can be explained as follows.
The macroscopic strain along the impact direction is not uniform. The layer near
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the impact surface has the maximum macroscopic strain whilst the stress and strain
there are located in the densification portion of the nominal stress–strain curve. The
difference in macroscopic strain distribution between the two modes is that under
the Shock Mode it is shock-like while under the Transitional Mode it changes grad-
ually.

The plateau stresses on the impact surface under different velocities for the cell
wall material density of 0.3×103 kg/m3 is also shown in Fig. 2 for comparison. It
seems that with the reduction of inertia, the force equilibrium and uniform defor-
mation become much easier and the critical velocities for modes transition increase
dramatically.

3.2 Influence of the Cell-Wall Material Properties

To investigate the effect of the cell-wall material properties on the crushing behavior,
we select the linear strain-hardening and strain-rate hardening elastic-plastic materi-
als to study the responses of the Voronoi honeycombs under various velocities. The
density of cell wall material is 2.7×103 kg/m3 and the relative density is ρ̄ = 0.1.

In comparison with the elastic-perfectly plastic material, the relative increase in
the plateau stress caused by the linear strain-hardening effect can be specified by

λ1 = (σ1 −σ0)/σ0, (7)

where σ0 and σ1 are the plateau stresses of the elastic-perfectly plastic material and
the strain-hardening material, respectively. Note that the relative increase in the flow
stress of the solid material is proportional to the plastic strain.

Similarly, the relative increase in the plateau stress caused by the strain-rate hard-
ening effect, compared to elastic-perfectly plastic material, can be defined as

η1 = (σ2 −σ0)/σ0, (8)

where σ2 is the plateau stress of the strain-rate hardening material. According to
Eq. (4), the relative increase in the flow stress of the solid material is described by

η2 = (σ −σy)/σy = C ln(ε̇p/ε̇0). (9)

The variation of the averaged relative increase in the plateau stress on the impact
surface of five random samples and their mean square deviations with the impact
velocity for honeycombs made of strain-hardening material is shown in Fig. 4. It
is found that λ1 takes a small value over the whole range of the impact velocities
studied, so the strain-hardening of cell wall material has minor influence on the
plateau stress under both quasi-static and dynamic cases. The effect might be well
submerged into experimental scatter for irregular cellular metals.
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Fig. 5 The plateau stresses on the impact surface under different impact velocities

A comparison of plateau stress on the impact surface of a honeycomb sample
made of elastic-perfectly plastic and strain-rate hardening materials is shown in
Fig. 5. The variation of the relative increase in the plateau stress with the nominal
strain rates for honeycombs made of strain-hardening material is shown in Fig. 6.

It is found from Fig. 5 that the increase in the plateau stress due to the strain-
rate sensitivity of cell wall material is small and almost independent of the impact
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Fig. 6 The relative increase in the plateau stress of honeycombs made of strain-rate hardening
material under different nominal strain-rates

velocity. The relative increase in the plateau stress is always less than the relative
increase in the flow stress of the corresponding solid material. About 20% increase
in the plateau stress is found under the Quasi-static Homogeneous Mode when the
strain rate is smaller than 400s−1 for the parameters used in this paper, as shown in
Fig. 6. It is interesting to note that under the Transitional Mode and Shock Mode,
the strain-rate effect seemingly decreases fast with the impact velocity. This can be
attributed to the enhancement of the plateau stress due to the inertia effect.

From the numerical results we also found that the critical velocities of deforma-
tion modes are almost independent of the strain hardening and strain-rate hardening
of the cell-wall material. The possible explanation is that the plastic strain in most
parts of the honeycomb is small except along the plastic hinge lines.

4 Concluding Remarks

The present numerical results indicate that inertia is a dominant factor which af-
fects the dynamic response of cellular metals. The strain-rate sensitivity of cell-wall
material leads to an increase in plateau stress but it can not explain the strong rate
dependence observed in some metallic foams. More elaborative experiments and
punctilious analysis are required to solve the existing puzzle.

Some possible mechanisms responsible to the rate sensitivity of metallic foams
need to be further explored, e.g., cell morphology, cell wall material distribution,
ductile-brittle transition of the cell wall material, strain-rate sensitivity of its failure
strain, and micro-structural characters associated with their manufacture.
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Shock Enhancement due to Shock Front
Propagation in Cellular Materials

S. Pattofatto, I. Nasri, H. Zhao, F. Hild, Y. Girard, and H. Tsitsiris

Abstract In this study, crushing experiments are performed on four kinds of cel-
lular materials using a large diameter (60 mm) nylon Hopkinson bar. The impact
velocities are chosen around the critical velocity corresponding to the occurrence of
a shock front predicted by the classical RPPL model (Reid and Peng, 1997). The
experimental setup allows to measure the stress enhancement due to the shock front
propagation. In particular, for one type of material, a high speed camera is used
to capture about ten images at 20,000 fps and then the strain field during testing
is obtained by a special image correlation program (CorreliLMT). This strain field
allows to measure directly the shock front velocity. Moreover, an improved model,
including the hardening curve, is proposed to predict this shock enhancement. Fi-
nally, numerical analyses using Ls-Dyna explicit code show that for all experiments
a macroscopic homogeneous phenomenological material law can reproduce essen-
tial features of stress enhancement due to shock front propagation.

Keywords Cellular material · Hopkinson bar · Image correlation

1 Introduction

The concept of shock enhancement effect under high speed impact (>100m/s) was
originally proposed by (Reid and Peng, 1997) to explain testing results on woods.
Afterwards, a number of authors also reported this effect for various cellular mate-
rials at high impact speeds (Lopatnikov et al., 2003, 2004; Tan et al., 2002, 2005;
Radford et al., 2005). For relatively low impact speeds, there is the so-called critical
velocity under which shock enhancement is not significant (∼50m/s). Experimental

S. Pattofatto (�), I. Nasri, H. Zhao, F. Hild, and H. Tsitsiris
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data in previous works prove the existence of the shock effect (Tan et al., 2002, 2005;
El Nasri et al., 2007; Zhao and Abdennadher, 2004; Zhao et al., 2005). However,
there is no convincing experimental proof because the only available experimen-
tal observation is the force measurement behind the supposed shock front. As a
consequence, a more direct experimental proof of the shock front propagation is
given here. With a single bar, tests with two configurations using a large diameter
soft Hopkinson bar behind/ahead of the shock front allow for the estimation of the
stress jump across the shock front. Moreover, the shock front is directly observed
and analyzed by using a high speed camera and image correlation that allow for the
measurement of strain jump during the tests. It also gives indirectly the speed of the
shock front.

A simple prediction of the shock front properties is also needed. For example,
the Rigid Perfectly Plastic Locking (RPPL) model proposed by (Reid and Peng,
1997) gives a fast estimation. However, the shock stress jump and shock front speed
predicted by the RPPL model are too sensitive to the parameters (e.g., the rigid
locking strain). It leads us to propose another model that assumes a power law
densification and gives a good prediction. Finally, numerical analyses for the two
testing configurations using LS-Dyna explicit finite element code (Hallquist, 1998)
with a macroscopic constitutive law (crushable foam) are presented. They show
that such a simple rate insensitive constitutive model is able to reproduce the shock
enhancement.

2 Materials and Experimental Set-up

Four kinds of cellular materials are investigated: aluminium Alporas (ductile) and
Cymat (brittle) foam, 5,052 aluminium honeycomb, nickel Ateca hollow spheres.
The average densities are the following:

Alporas foam Hollow spheres Cymat foam Honeycomb
245kg/m3 219kg/m3 235kg/m3 38kg/m3

Honeycomb is anisotropic and only its properties in the principal direction are of
interest here (i.e., that of hexagonal cell column axis), the others are more or less
isotropic. The crushing mode of these materials is different. The Cymat foam is
brittle and the crushing mechanism is cracking of the cell wall, whereas Alporas
foam, hollow spheres, and honeycombs are much more ductile and exhibit a mode
of successive folding of the cell walls. Typical nominal stress-strain curves of these
materials under quasi-static loading are shown in Fig. 1. The specimens are cylinders
with a diameter of 60 mm and a height of 40 mm.

A 62 mm diameter and 6 m long Nylon Hopkinson bar is used as measuring de-
vice and a gas gun with a 70 mm inner diameter barrel is used to launch a projectile.
The key measurement feature of these two testing configurations is the use of a
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Fig. 1 Nominal compression curve

Fig. 2 Two experimental configurations (a) configuration 1: direct impact Hopkinson bar test (b)
configuration 2: Hopkinson bar-Taylor test

large diameter Nylon Hopkinson bar necessary to study large specimens relative to
the size of the microstructure. The soft material of the bars is necessary to obtain
low signal/noise ratio when testing low strength cellular materials.

The originality of the experimental technique presented here is that two testing
configurations are considered to build one result. Thus, configuration 1 consists to
put the sample on the Hopkinson bar and to launch the flat ended Nylon bullet to
strike the sample (Fig. 2a). Configuration 2 consists to put the sample on the bullet
fired at about 60 m/s to strike the Hopkinson bar (Fig. 2b).
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Fig. 3 Depiction of the shock front in the two different testing configurations (a) configuration 1
(b) configuration 2

As regards the shock front theory related to the experiments, for configuration 1
the shock front will propagate from the bullet side so that the Hopkinson pressure
bar will measure the stress ahead of the shock front (Fig. 3a). For configuration
2, the shock front will propagate from the pressure bar side so that the Hopkinson
pressure bar will measure the stress behind the shock front (Fig. 3b). The stress
jump is the difference between the two stress profiles.

In addition, a high speed Photron camera is used to take images during one test
performed in configuration 1. The record rate of the camera is chosen to be 20,000
frames per second (fps) to obtain a sufficient resolution (256× 384 pixels), neces-
sary for the following digital image correlation analysis. The shutter speed is chosen
at 1/60,000 s so that the image is not blurred whereas the powerful lights ensure a
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correct contrast of the pictures. By considering an image sequence, the displacement
fields between images are calculated by a “finite element” correlation algorithm
(CorreliLMT) developed in our laboratory.

3 Measurement of Shock Enhancement

Correction of raw testing results is performed to reduce the influence of the initial
density of the tested samples. For Alporas foam, yield stress ahead of the shock
front (configuration 1) is significantly different from stress behind the shock front
(configuration 2).

4 Measurement of Shock Front Velocity with Image Correlation
Program

The presented test is conducted on Alporas foam only, ten images were processed up
to a nominal strain of about 40%. The main difficulty for the use of image correlation
on foam-like specimens is the collapse of cells during compaction, which induces
an important distortion of the texture. On the basis of the calculated strain field, a
quantitative estimation of the shock front velocity is obtained as follows. The mean
value of the strain is calculated for each longitudinal position. With this processing,
the strain field is converted into a uniaxial mean strain variation. The time history
of the mean strain is given in Fig. 4. It shows that, at 56 m/s, the strain field is not
homogeneous at the first image. The strain field shows that the specimen can be

Fig. 4 Strain field in the specimen (56 m/s)
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Fig. 5 Estimated position of the shock front

divided into two parts. One part on the right hand side in contact with the striker,
which is immediately compacted at 20% and increases finally up to 40%. The other
part on the left hand side, in contact with the bar, remains compacted at less than
10%. Same conclusions for the 47 m/s impact. The position of the shock front in the
specimen height is calculated by taking the bar face as the reference. The position of
the discontinuity is determined arbitrarily by the beginning of the sharp increase of
the strain in Fig. 4. Since the capture time of each image is known, the shock front
speed is determined (Fig. 5). It appears that the position is quasi-linear, which means
a constant shock velocity. For the 56 m/s impact velocity, the value is estimated at
87 m/s (it is estimated at 94 m/s with the Hokpinson bars measurement). For the
47 m/s impact velocity, the value is 70 m/s.

5 Numerical Analysis

The LS-Dyna explicit finite element code is used to perform numerical simulations.
The specimen whose diameter is 60 mm and thickness 40 mm is meshed with 32,000
cubic eight-node elements (with 20 elements in the length). The constitutive law of
the foam is given by the so-called “crushable foam model” available in the LS-Dyna
code (Hallquist, 1998). The comparison between experimental and numerical results
is carried out by computing the force measured by the Hopkinson bar in the two
configurations. The good agreement between simulated and measured force/time
histories validates the FE model and also the experimental procedure based on the
two configurations (see El Nasri et al., 2007). The simulated strain map at different
instants is also compared with the strain field obtained by image correlation. The
simulated average strain is compared to the experimental data. A good agreement is
obtained, as depicted in Fig. 6.
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Fig. 6 Comparison of simulated (FE) and measured (CP) strain discontinuity profiles

6 An Improved Predictive Shock Model

A simple shock model should be used to provide an acceptable prediction of the
shock enhancement. Let us consider the RPPL model (Reid and Peng, 1997), based
on two parameters: the locking strain εlock and the plastic flow stress σy. With the
simplifications of the RPPL model, the shock front velocity and stress behind the
shock front are calculated as:

U =
Vimpact

εlock
σshock −σy =

ρ0V 2
impact

εlock
(1)

However, the identification of the parameters of the model is not easy. The plastic
flow stress σy is more or less easy to identify and the value of the locking strain
is arbitrary due to the non-linear shape of the densification curve. Therefore, we
propose to account for the progressive densification feature. The same impact case
as discussed in Eq. (1) is considered. The fact that the densification is progressive
implies that the strain reached behind the shock front εshock is not explicitly known
as the locking strain in the RPPL model. The basic continuity equations (Eq. (1))
are replaced by:

U =
Vimpact

εshock
σshock −σy =

ρ0V 2
impact

εshock
(2)

and the solution is defined by using the supposed power law model of the material:

σshock = f (εshock) = σy + kεm
shock (3)
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Fig. 7 Shock enhancement effect: power law model and FEM numerical results

The derivation of the shock strain εshock is straight forward using Eqs. (2) and (3):

εshock =

(
ρ0V 2

impact

k

) 1
m+1

(4)

From experimental stress-strain data, the identification gives: σy = 1.70MPa, k =
21.2MPa and m = 6.4. From this power law model the relative shock stress jump
(σshock −σy)/σy is obtained. The shock enhancement effect is plotted in Fig. 7, so
as the comparison between the present model and the FEM simulation results. A
reasonable agreement is found. The model allows also to calculate the shock front
velocity with a good agreement with experiments (Pattofatto et al., 2007). As a
conclusion, the results show that the explicit solution of a power law model gives a
satisfactory prediction with a single identification.

7 Conclusion

In this paper, four types of cellular materials are studied. First, experiments based on
Hopkinson bar tests performed in two different configurations are presented. They
allow to measure the shock enhancement effect. In the case of experiments on Alpo-
ras foam, a new measurement technique based on digital images and a correlation
program is used to have a direct measurement of the velocity of the shock front.
Then, numerical simulations of tests in two different configurations are presented.
The results show that shock enhancement of foams is reproduced by numerical
simulations using a simple macroscopic, homogenous and rate-insensitive consti-
tutive law based on a nominal stress-strain relationship obtained in a quasi-static
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compression test. It means that such shock enhancement effect should not be taken
into account at the level of the constitutive law itself. Finally, an improved mod-
elling of the shock front effect in cellular materials is proposed. In fact the classical
RPRL model is said to be a good first-approximation but it can be improved by con-
sidering the non-linear shape of the densification curve of the foam. An improved
model based on a power law densification assumption allows for an easy determina-
tion of its parameters from experimental data, and gives results in good agreement
with experimental data.
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Close-Range Blast Loading of Aluminium Foam
Panels: A Numerical Study

A.G. Hanssen, L. Olovsson, T. Børvik, and M. Langseth

Abstract Hanssen et al. [1] carried out full-scale close-range blast loading tests
of aluminium foam panels. In this paper we simulate the experimental tests in [1]
by doing coupled finite element analyses which include the charge and blast wave
from the explosion using the non-linear finite element code LS-DYNA [2]. The
interaction between the detonation gases and the Lagrangian structure ensures a
fully coupled analysis between the loading and response of the structure.

Keywords Blast loading · Aluminium foam · Pendulum · Field test · LS-DYNA

1 Introduction

Hanssen et al. [1] completed a test program where aluminium foam panels were
subjected to close-range blast loading. The impulse and energy transfer was mea-
sured by use of a ballistic pendulum. By varying the foam density and charge mass
the effect on the energy and impulse transfer could easily be determined. Hanssen
et al. [1] reported that for the majority of the tests, the impulse and energy transfer
increased by adding an aluminium foam panel to the base plate of the pendulum.
Also, putting a cover plate in front of the foam panel further increased the impulse
and energy transfer. From analytical considerations based on shock wave theory, the
authors [1] argued that the addition of a foam panel with or without a cover plate
should not influence the impulse or energy transfer. It was therefore reasoned that a
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possible interaction effect between the flow or pressure build-up of the detonation
gases and the deforming aluminium foam panels would somehow increase the load
transferred to the pendulum. However, the authors [1] did not discuss the influence
of springback of the aluminium foam and cover plate, which could influence the
momentum transfer to the pendulum. If the cover plate and foam panel gained con-
siderable momentum in the opposite direction of the pendulum’s swing, then—from
conservation of momentum, the pendulum’s momentum would have to be increased
correspondingly. Unfortunately, the positions of the remains of the cover plate and
foam panel after the field test by Hanssen et al. [1] were not documented, which
could have indicated the significance of the springback.

The results by Hanssen et al. [1] has been utilised by other investigators, e.g. [4–
6] and some authors have used the experimental results for validation of numerical
codes [6].

This paper establishes a numerical model of the close-range blast tests and com-
pares the numerical results with the experimental ones. A sensitivity study is carried
out on changes in material properties and alternative detonation events.

2 Experimental Test Set-up

Figure 1 shows the ballistic pendulum used to study the energy and impulse transfer
from close-range blast loading of aluminium-foam panels [1]. In [1], a 23 factorial

Fig. 1 Experimental test set-up
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No foam panels2.5Reference testJ

No foam panels1.0Reference testI

3502.5YesH

3502.5NoG

3501.0YesF

3501.0NoE

1502.5YesD

1502.5NoC

1501.0YesB

1501.0NoA

Foam density (kg/m3)Charge mass (kg)Cover plateEvent/Run

Model parameters

Charge mass

Cover plate

Foam panel density

Parameters varied in investigation

Fig. 2 Experimental program and model parameters

design study was used where the three main parameters were varied according to
Fig. 2. The aluminium cover plate was 10 mm thick.

The impulse transfer was calculated from the maximum swing of the ballistic
pendulum, see [1] for details. The impulse transfers from all configurations tested
were compared to the baseline value, which was the impulse transfer to the bare
pendulum. The pendulum’s base plate had the same cross sectional dimension as
the test panels.

The relative horizontal stand-off distance e was 500 mm from the centre of the
charge to the front panels (test specimens), Fig. 1, and was kept constant for all tests.

Hanssen et al. [1] showed that the explosive loading was short in duration com-
pared to the eigenperiod of the ballistic pendulum (impulsive loading). This means
that the loading and also deformation of the foam panels were completed before the
pendulum gained any significant response. Hence, to ease the simulations in this
report, we add a rigid, stationary body to the back of the test specimens and record
the impulse transferred to this body during loading.

3 Finite Element Model

The LS-DYNA [2] finite element model consisted of three Lagrangian parts. These
are the 10 mm aluminium cover plate, the foam panel and the rigid backing plate.
The rigid backing plate was fixed during simulation. The thickness of the foam
panels was 70 mm when not using a cover plate and 60 mm when using a cover
plate, exactly as for the experiments in [1]. The foam panels and cover plate were
represented by brick elements (selectively reduced integrated elements).

The model contained two additional parts represented in an Eulerian reference
frame, Fig. 3. These are the air and the explosive charge. The ambient pressure of
the air was set to 1 bar.

Owing to symmetry, only 1/4 of the foam panels was represented in the model.
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Charge
Computational volume in Eulerian reference
frame for air and explosive gases

Eulerian mesh

Foam panel

Fig. 3 Finite element mesh

Contact between the explosive gases and the foam panels was defined using a
fluid-structure-interface (FSI) of the type ∗ALE FSI PROJECTION. This contact
was only applied between the cover plate and the explosive gases. For the simula-
tions without a cover plate, the FSI was applied between the explosive gases and the
foam panel.

The detonation of the explosive loading was represented by the card ∗INITIAL
DETONATION. A programmed burn was adopted. This means that the detona-
tion time of an element is equal to the distance from the detonation point divided
by the pre-defined detonation velocity (experimentally determined value defined in
∗MAT HIGH EXPLOSIVE BURN). The initiation point was located at the centre
of the charge for the majority of simulations. However, a sensitivity study on the
location of the detonation point is presented later.

To represent the aluminium AA5xxx material of the cover plates we used LS-
DYNA material model 107 (∗MAT MODIFIED JOHNSON COOK). The model
was calibrated using material data from Clausen et al. [7]. Material model 63 of
LS-DYNA was used to represent the foam material (∗MAT CRUSHABLE FOAM).
The compressive material curves for both foam densities investigated are given in
Fig. 4 and was motivated by material data by Hanssen et al. [8]. The charge mass
was represented by LS-DYNA material ∗MAT HIGH EXPLOSIVE BURN and
equation-of-state ∗EOS JWL. The ambient air was represented by ∗MAT NULL
and ∗EOS LINEAR POLYNOMIAL. We did not have the exact properties of the
explosive PE4 used in the experiments. However, we approximated the PE4 proper-
ties by those of high-explosive C4 from data given in [9].
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Fig. 4 Compressive input curve data to material model 63 of LS-DYNA

4 Numerical Results

Figure 5 shows the numerical blast loading sequence of Run D, which included a
cover plate in front of a low-density foam panel. The high charge mass is used, see
Fig. 2. It is evident that the numerical model handles the fluid structure interaction
well and that the foam panel is heavily compressed.

Figure 6 shows the foam panels subjected to blast loading. We use the following
numbering:

A: Impulse transfer in fluid-structure interface
B: Impulse transferred to rigid backing plate
C: Momentum of foam
D: Momentum of cover plate

Figure 7 gives the corresponding momentum vs. time curves for A–D based on Run
B, see Fig. 2. We see from the graph that the impulse transferred to the backing plate
(B) reaches a maximum when the foam and cover plate reverses their momentum.
The values in the graph represent the 1/4 model. We use momentum measure B when
comparing with experimental results later on.

Figure 8 shows the following:

A: Total force from blast loading on front cover plate
B: Total force on backing plate
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t=0 ms

t=0.14 ms

t=0.18 ms

t=0.30 ms

t=0.44 ms

t=0.60 ms

t=0.98 ms

t=1.48 ms

t=2.00 ms

Fig. 5 Sequence from blast loading, Run D

Blast front

AB

DC

Fig. 6 Test specimen subjected to blast loading

Fig. 7 Momentum-time curves for 1/4 model curves following the definition of Fig. 6
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Force
(MN)

time s (e-03)

Fig. 8 Force vs. time for front panel (A) and backing plate (B)

Fig. 9 Pressure on front panel versus reaction wall, from Hanssen et al. [1]

The graph is based on Run B from the simulations and represents the 1/4 model.
We see that the simulations capture the beneficial effect of foam panels used for
blast mitigation purposes. The compressive, constant crushing strength of the foam
panels controls the loads transferred to the rear structure. As a result of this the
loading on the rear part is prolonged in time compared to the frontal blast loading
(this is a direct result of conservation of momentum). This corresponds to analytical
consideration of Hanssen et al. [1], which derived the duration of loading on the
rear parts tm as function of the blast loading peak pressure p0, the compressive foam
strength σ0 and the blast loading duration t0, see Fig. 9.
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5 Numerical Sensitivity Study

We investigate two aspects of the test set up numerically. The first is the sensitivity
to the position of detonation point. The second is the effect of reducing the Young’s
modulus of the foam.

The first sensitivity study was done on Run B changing the location of the deto-
nation point, see (Fig. 10).

Figure 11 gives the corresponding momentum transfer to the rigid backing plate
for the 1/4 model. As seen, the effect of detonating the charge at the front end in-
creases the momentum transfer by 8% compared to a central detonation point.

A: central detonation point B: rear surface
detonation point

C: frontal surface
detonation point

Fig. 10 Sensitivity study on position of detonation point

Impulse
(Ns)

time s (e-03)

A: central detonation point
B: rear surface detonation point
C: frontal surface detonation point

Fig. 11 Momentum transfer to backing plate for detonation positions A–C (Fig. 10)
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In the second sensitivity study on Run B, the foam stiffness was reduced by a
factor of 3. Figure 12 compares the original Run B with the modified model using
the lower foam stiffness for the 1/4 model. It is evident that the foam stiffness influ-
ences the springback and then the momentum transfer to the backing plate. Lower
foam stiffness produces higher momentum transfer.

6 Comparison: Experimental Versus Numerical Results

Table 1 shows the numerical vs. experimental momentum transfer to the backing
panel for all tests. The same data is plotted in Fig. 13. For all events, the simulations
consistently underpredict the impulse transfer compared to the experiments. The

Impulse
(Ns)

time s (e-03)

A: Original Run B
B: Reduced foam stiffness

Fig. 12 Effect of reduced foam stiffness on momentum transfer to backing plate

Table 1 Numerical versus experimental results, momentum transfer to backing plate

Series Cover plate Charge Foam density Impulse transfer (Ns) Sim Deviation

Rep 1 Rep 2 (%)

A No Low Low 607.3 509.3 383.2 −31
B Yes Low Low 630.1 588.4 401.6 −34
C No High Low 978.4 1,088.4 880 −15
D Yes High Low 1,305.3 1,201 891.6 −29
E No Low High 539.7 537.6 422.8 −22
F Yes Low High 547 662.5 458.8 −24
G No High High 1,097.5 1155 869.2 −23
H Yes High High 1,171.6 922 −21
I Reference Low No foam 526.2 558.9 362.4 −33
J Reference High No foam 936.6 947.1 862 −8
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Fig. 13 Momentum transfer to backing plate, numerical versus experimental results

increase in impulse transfer when adding a cover plate is also captured by the model,
but the effect is less pronounced than in experiments. The simulations indicate a
small increase in the momentum transfer when adding a foam panel compared to
the reference tests on the bare pendulum.

7 Discussion

It was observed that the numerical model consistently underpredicts the momentum
transfer, also for the case of blast loading against a bare pendulum.

The main reasons for this might be:

1. The simulations do not account for the lower part of the pendulum’s arms, which
also are subjected to blast loading and momentum transfer, see Fig. 14.

2. The properties of the PE4 explosive are approximated as those of C4.
3. The detonation point within the explosive is not centered, but lies nearer the

surface. The amplification effect of a non-central detonation point was clearly
demonstrated in the numerical sensitivity study.

4. The Young’s modulus of the foam used in the tests could have been lower than
what was use for the numerical model. As shown in the sensitivity study, a lower
stiffness of the foam will increase the springback/rebound effect and therefore
increase the momentum transferred to the pendulum.

5. The results may be very sensitive to deviations from a perfectly spherical charge
in the same way as the results are sensitive to the position of the detonation point.
It is unclear how carefully the charges in the experiments were shaped.
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Lower parts of pendulum arm

Fig. 14 Ballistic pendulum used in tests

8 Conclusions

It has been demonstrated that the current simulations predict the trend of the full-
scale blast loading experiments. However, the simplified model of the pendulum
(neglecting the pendulum arms in the fluid structure interaction) quantitatively un-
derpredicts the experimentally measured impulse transfer by 20–30%.

The simulations have revealed that significant scatter in experimental result may
be due to variation of the detonation point within the charge.

The importance of controlling the Young’s modulus of the foam in a numerical
model must be underlined, since this has influence on the extent of the spring-
back/rebound effect and therefore also the transfer of momentum to the rear struc-
ture. It must be concluded that this effect is a likely reason for the increased impulse
and energy transfer observed in the experiments [1].
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Description of the Behaviour of Cellular
Composite with Weak Filling Material

E. Postek and T. Sadowski

Abstract The aim of this presentation is to show the behaviour of a cellular com-
posite material. The material is two-phase consisting of metallic, relatively rigid
interfaces and weak filling material. Such type of a generic composite is used as core
filler between external layers of sandwich composite material applied in aerospace
engineering. We investigate the limit load of a sample varying the initial void ratio
in the filling. We are using the Tvergaard-Gurson in order to describe porosity exis-
tence in the material and elasto-plastic models with the assumption of presence of
the finite deformations. The geometrical model is three-dimensional.

1 Introduction

A generic model of a two-phase composite is presented. This model can be used for
an analysis of a cellular composite with weak filling material. The initial porosities
can be as high as 60%. The problem is highly non-linear because of initial stress
stiffness, plasticity and possibly voids nucleation. In our case we follow the analy-
sis up to appearance of plastic strain which develops close to junctions of the stiff
skeleton and close to surfaces where the pressure is applied.
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2 Formulation

2.1 Incremental Equation of Equilibrium

The problem is elasto-plastic with the assumption of large displacements [1–3]. We
consider nonlinear terms of the strain tensor. The virtual work equation is of the form

δΠ =
∫

Ωo

t+∆t

oS ·δ t+∆t
oEdΩo −

∫
Ωo

t+∆tfδ t+∆tudΩo −
∫

∂Ωo
σ

t+∆ttδ t+∆tud (∂Ωo
σ ) , (1)

where S and E are the second Piola-Kirchhof stress tensor and Green Lagrange
strains, f, t and u = {u,v,w} are body forces, boundary tractions and displacements.
All of the quantities are determined at time t + ∆t in the initial configuration. To
obtain the above equation at time t + ∆t in the configuration at time t the relations
[4, 5], are used

t+∆t
oS =

ρ
ρo

t+∆t
tS, t+∆t

oE =
ρ
ρo

t+∆t
tE, ρdΩt = ρo dΩo (2)∫

Ωt

t+∆t
tS ·δ t+∆t

tE dΩt =
∫
Ωt

t+∆ttδ t+∆tu dΩt +
∫

∂Ωt
σ

t+∆ttδ t+∆tu d
(
∂Ωt

σ
)
. (3)

Now, we apply incremental decomposition to the quantities in the equation above:
strains, stresses, displacements and forces

t+∆t
tE = t

tE+∆E, t+∆t
tS = t

tS+∆S, t+∆tu = tu+∆u, t+∆tf = tf+∆S. (4)

Since the second Piola-Kirchhoff tensor at time t in the configuration t is equal to
the Cauchy stress tensor the stress decomposition is of the form

t
tS =t

t τ and t+∆t
tS =t

t τ + ∆S. Then, we employ the following strain increment
decomposition into its linear and nonlinear parts in the following form ∆E =
∆e + ∆η, ∆e = Ā∆u and ∆η = ¯̄A(∆u′)∆u′/2 where ∆u′ is the vector of the dis-
placement increment derivatives w.r.t. Cartesian coordinates and Ā, ¯̄A are the linear
and nonlinear operators [2]. The operators act on linear and nonlinear parts of the
strain tensor.

Substituting the described relations, into the virtual work equation, Eq. (3), and
assuming that the equation is precisely fulfilled at the end of the step we obtain the
following incremental form of the virtual work equation.

∫
Ωt

(t
tτ ·δη+∆S ·δ∆e

)
dΩt =

∫
Ωt

∆f δ∆udΩt +
∫

∂Ωt
σ

∆t δ∆u d
(
∂Ωt

σ
)
. (5)
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Employing the finite element approximation ∆u = N∆q and ∆u′ = B′∆q where N
is the set of shape functions and ∆q is the increment of nodal displacements and
considering the following set of equalities

t
tτ

Tδη = t
tτδ

(
¯̄A
)

∆u′ = δ
(
∆u′)T t

t τ̄ ∆u′ = δ (∆q)T t
t τ̄ B′

L, (6)

where t
t τ̄ is the Cauchy stress matrix

t
t τ̄ =

⎡
⎢⎣

t
tτ

t
tτ

t
tτ

⎤
⎥⎦ t

tτ =

⎡
⎣ t

tσxx
t
tτxy

t
tτxz

t
tσyy τyz

t
tσzz

⎤
⎦ , (7)

we obtain the following discretized form of the virtual work equation

⎛
⎝ ∫

Ωt

B′
L

Tt
t τ̄B′

L dΩt

⎞
⎠ ∆q+

∫
Ωt

BT
L∆S dΩt =

∫
Ωt

NT∆f dΩt +
∫

∂Ωt
σ

NT∆t d
(
∂Ωt

σ
)
. (8)

Now, we will deal with the constitutive model and employ the linearized constitutive
equation, in fact with the stress increment, ∆S.

2.2 Finite Strains

When considering the finite strains effect [6, 7], the gradient F = ∂ (X+u)/∂x is
decomposed into its elastic and plastic parts, F = FeFp. To integrate the constitutive
relations the deformation increment ∆D is rotated to the un-rotated configuration by
means of rotation matrix obtained from polar decomposition F = VR = RU, ∆d =
RT

n+1∆DRn+1, then the radial return is performed and stresses are transformed to
the Cauchy stresses at n + 1, σn+1 = Rn+1σu

n+1RT
n+1. The stresses are integrated

using the consistent tangent matrix [8] and the integration is done in the un-rotated
configuration as for small strains.

3 Constitutive Model

The constitutive model is the Gurson Tvergaard model [9–11] with the yield func-
tion as follows

F =
(

σM

σ̄

)2

+2q1 f cosh

(
3q2σm

2σ̄

)
− (1+q3 f 2) , (9)
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where σM is the Mises stress, σm is the mean stress, σ̄ is the Mises stress in the
matrix, f is the void ratio and q1,q2 q3 are the Tvergaard coefficients.

The stress integration algorithm comprises the elastic trial stress (predictor) and
the corrector. It conforms the radial return algorithm. The algorithm can be derived
basing on [12]. The elastic trial stress are of the form

σE
m+1 = σm +D ∆ε pl . (10)

The deviatioric and the volumetric stress are of the form

qm+1 =

√(
3
2

Si jSi j

)
m+1

pm+1 = −1
3
(σ11 +σ22 +σ33)m+1. (11)

The increment of the plastic strains can be obtained from the normality condition.

dε pl = dλ
∂F
∂σ

(12)

Further, the plastic strains increment and the unit normal vector are of the form

∆ε pl = ∆λ
(
−1

3
∂F
∂ p

I+
∂F
∂q

n
)

m+1
nm+1 =

3
2qm+1

Sm+1. (13)

The stress at the end of the (m+1) takes the form

σm+1 = σE −D∆ε pl . (14)

Since the increment of plastic strains is

∆ε pl =
1
3

∆εpI+∆εqnm+1, (15)

the stress at the end of the step may be expressed as follows

σm+1 = σE
m+1 −K∆εpI−2G∆εqnm+1. (16)

The updated stresses are of the form

σm+1 = σE
m+1 −K∆εpI− 3G∆εq

qT
m+1

SE
m+1, (17)

where the quantities designated with the index (E) are the elastic trial stresses.
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4 Numerical Example

We consider two cases of the material of the different Young’s moduli of the fill-
ing material. The Young’s moduli are 0.2E + 11N/m2 and much lower 0.005E +
11N/m2. Both moduli significantly lower the Young’s modulus of the skeleton
which is 2.1E + 11N/m2. The yield limits are 15.0E + 6 and 297.0E + 6N/m2.
The initial porosity of the filler is 0.3. We observe the most characteristic features of
the behaviour of the material. Our interest is focused on the vertical displacements,
equivalent total strains, plastic strains and Mises stress.

Observing all figures (Figs. 1–4) we may notice qualitatively different perfor-
mance of both materials. The vertical z-displacements (Fig. 1) is more equally
distributed and is lower, 0.725E-5 mm, in the case A than in the case B, 0.358E-
3 m. This z-displacements distribution gives a picture of roughness of the material
during loading. The weaker sample becomes thinner close to the loaded edge. When
concerning the total equivalent strain (Fig. 2) we may notice higher contrasts in the
case of stronger material. The strain is distinctly lower in all interfaces than in the
cells. The maximum strain, 0.691E-3 is lower than in the case of the weaker mate-
rial, 0.418E-1.

Fig. 1 Veritical displacements distributions (cases A and B)

Fig. 2 Equivalent strain distribution (cases A and B)
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Fig. 3 Equivalent plastic strain distribution (cases A and B)

Fig. 4 Mises stress distribution (cases A and B)

The equivalent plastic strain distribution (Fig. 3) is different in both cases. In the
case of stronger material there are more equivalent plastic spots within the sam-
ple than in the case of weaker material. The plastic strain are more localized in the
weaker sample. The equivalent plastic strain reads 0.309E-3 and 0.286E-1, respec-
tively.

The Mises stress distributions are presented in Fig. 4. The Mises stress is the
highest in the junctions of the skeleton and in the edges of the skeleton. The maxi-
mum stress is higher in the sample with weaker filling material (0.386E+9Pa) than
in the case of stiffer sample (0.642E + 8Pa). The stress contrasts are higher in the
case of weaker sample.

The calculations were performed for the same load level, 80.4E+6Pa.

5 Final Remark

A generic numerical model of a material with weak filling material is presented.
The weak material is modelled using Tvergaard Gurson material. This approach is
convenient and allows to model material with high initial volume of voids.
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Studies on the Dynamic Behavior of Aluminum
Alloy Foams

H.-W. Ma, Z.-H. Wang, L.-M. Zhao, and G.-T. Yang

Abstract The compressive deformation behavior of open-cell aluminum foams
with different densities and morphologies was assessed under quasi-static and dy-
namic loading conditions. High strain rate experiments were conducted using a split
Hopkinson pressure bar technique at strain rates ranging from 500 to 2,000s−1.The
inverse analysis is used to correct the errors that transverse inertial effect and the
disperse effect because of the large diameter. The experimental results show that
the density is the primary variable characterizing the modulus and yield strength
of foams and the cell size appears to have a negligible effect on the strength of
foams. It is found that the yield strength is almost insensitive to strain rate, over a
wide range of strain rates and deformation is spatially uniform for the open-celled
aluminum foams.

1 Introduction

Metal foams, as a new class of engineering materials, have a great potential for
absorbing energy because they have an extended stress plateau in the compres-
sive stress–strain curve. Recent development of production methods for metallic
foams have offered a variety of application in fields such as the automobile,
railway and aerospace industries. In these applications, the foam is subject to
high-velocity deformations. Designing for these applications therefore demands a
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full characterization of their mechanical properties under a wide range of strain
rates. The quasi-static mechanical properties of aluminum alloy foams, such as
compressive strength and the elastic modulus, have been extensively studied and re-
viewed [1]. However, related studies under dynamic conditions have been relatively
limited due to the difficulty of characterizing the high strain rate behavior of alu-
minum alloy foams. Kenny [2] reported that the specific energy absorption of Alcan
foam (open-cell) was independent of applied strain rate in the range 10−3–103 s−1.
No measurements were made however, of the stress-strain curve under dynamic and
quasi-static loadings. In line with the findings of Kenny, Deshpande and Fleck [3]
found that the strain rate dependence of mechanical strength was negligible for the
Doucel (open-cell) and Alulight (closed-cell) foams. Lankford and Dannemann [4]
also showed that open-cell alluminum foam did not exhibit the strain rate depen-
dence of plateau stress. On the other hand, Mukai et al. reported that open-cell
SG91A AL [5], closed-cell foam Alporas [6], and open-cell AZ91Mg [7], all found
a high strain rate sensitivity of the plateau stress. Dannemann and Lankford [8] also
demonstrated the strain rate dependence of plateau stress for Alporas (closed-cell)
for high strain rates ranging from 4× 102 to 2.5× 103 s−1. Thus, it is noted that,
despite the fact that metallic foams are attractive materials for energy absorption,
only limited data are available for dynamic strain rates.

Dynamic behavior at high strain rates is often determined by using the SHPB
(Split Hopkinson Pressure Bar) experimental technique. In order to get more accu-
rate experimental data, the cell number should exceed ten in the specimen diameter
normally. The cell size of the metallic porous materials relatively is great in practice
engineering, sometimes beyond 20 mm, thus the diameter of the pressure bars in
the SHPB equipment needs been extended. With extending diameter of the pressure
bars, the bar transverse inertial effect and the disperse effect make errors increas-
ingly prominent. In order to overcome this difficulty, the inverse analysis is used
to dynamically calibrate the SHPB experimental set-up. The transfer function h(t)
of the pressure bar is given using the deconvolution in inverse analysis. The data
processing system is performed and an efficient method to investigate the dynamic
behavior of metallic porous materials is afforded.

Some studies have also been carried out to evaluate the effect of cell morphology
on the mechanical properties of metallic foams. Nieh et al. [9] observed the effect of
cell size and shape on the compressive behavior of open-cell AA6101-T6 aluminum
foams with different relative density and showed that the former, in contrast to the
latter, appeared to have a negligible effect on the strength of foam. It is noted that
these studies were all carried out at static strain rates. The effect of cell morphology
on the deformation behavior of metallic foams at dynamic strain rates has not been
investigated. In the present paper, open-cell aluminum alloy foams with different
cell sizes and relative densities were examined under quasi-static and dynamic con-
ditions in order to estimate the effect of cell size on the compressive mechanical
property and the energy absorption capability.
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2 Experimental

The open-cell aluminum alloy foams produced by the infiltrating process were used
in the present study. The composition of the cell wall material is AL-3wt.%Mg–
8wt.%Si–1.2wt.%Fe. The relative density (defined as the density of the foam
divided by the density of the cell wall material) of the foam ranges from 0.25 to
0.30 and the average cell sizes are 0.9 and 1.6 mm, respectively.

Dynamic compression test at strain rates in the range 102–104 s−1 was performed
using the split Hopkinson pressure bar (SHPB) technique. The selected specimens
are circular cylinders of diameter 35 mm and length 10 mm. With this choice of
specimen dimensions, the specimens have at least 6–10 cells in all directions. A brief
description of the experiment set-up was given below. The striker, incident pres-
sure and transmitter bars consist of 37 mm diameter aluminum bars and their length
are 800, 2,000 and 2,000 mm, respectively. The end surfaces were lubricated to re-
duce the frictional restraint. The compressive pulse generates by axial impact of the
incident pressure bar by the striker bar. When the compressive pulse reaches the
specimen, a portion of the pulse is reflected from the interface, while the remainder
is transmitted through to the transmitter bar. The incident pulse and reflect wave in
the incident bar are recorded by the resistance strain gauge attached at the incident
bar. The transmitted wave is also recorded by the semiconductor strain gauge at-
tached at the transmitter bar. Typical incident, reflected and transmitted waves are
shown in Fig. 1.

As the three waves are not measured at bar-specimen interfaces in order to avoid
their superposition, they have to be shifted from the position of the strain gages to the
specimen faces, in time and distance. This shifting leads to two main perturbations.
First, waves change in their shapes on propagating along the bar, especially for the
large diameter bars. Second, it is very difficult to find an exact delay in the time
shifting to ensure that the beginnings of the three waves correspond to the same
instant. Those perturbations, if not controlled, can introduce errors in the final result.

In this experiment, the inverse analysis method is used to correct wave disperses
due to waves shift from the position of the strain gages to the specimen faces. Firstly,
conduct a calibration such as impact with an elastic bar, and measure both the impact

Fig. 1 Initial and identified waves records from the incident and transmitter bars
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load f (t) and the response e(t), and then, estimate the transfer function according
to Eq. (1), ⎧⎨

⎩ e(t) = f (t)∗h(t) =
t∫

0
h(t − τ) f (τ)dτ

f (t) = h(t) = e(t) = 0, t < 0
(1)

where h(t) is the impulse response function of the linear system. The problem of
estimating the time history can be reduced to the process of deconvolution. A basic
scheme for deconvolution is to transform the convolution in the time domain into
a multiplication in the frequency domain using Fourier transforms resulting in and
then estimate the transfer function H(ω) according to Eq. (2)

E(ω) = H(ω)F(ω) (2)

where the symbols in uppercase denote the Fourier transforms of the corresponding
ones in lowercase. And then, measure the strain response e(t) induced by any impact
load f (t), and estimate the impact load according to Eq. (2) by utilizing the trans-
fer function obtained in the first step. Identified incident, reflected and transmitted
waves are shown in Fig. 1.

Compressive test was also performed at a quasi-static strain rate of 10−3 s−1 us-
ing a servo-hydraulic test machine and specimens are 35 mm in diameter and 30 mm
in height. The detailed experimental results were given in the following.

3 Results and Discussion

Figure 2 shows the stress-strain curves for different cell sizes with the same relative
densities under quasi-static and dynamic compression, respectively. The quasi-static
deformation of open-cell aluminum alloy foams is uniform, which is different from
the closed-cell foams with band formation. At overall macroscopic strains greater
than about 30% the whole specimen has crushed and uniform additional strain

Fig. 2 Stress–strain curves of aluminum alloy foams at different strain rates
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Fig. 3 Quasi-static and
dynamic compression stress–
strain curves of aluminum
alloy foams different in den-
sity and strain rate

occurring as observed by Deshpande [3]. The compressive stress–strain curve of alu-
minum alloy foams, either quasi-static or dynamic compression, exhibits universal
three deformation characteristics: an initial linear-elastic region; an extended plateau
region where the stress increases slowly as the cells deform plastically; and a final
densification as collapsed cells are compacted together. These deformation charac-
teristics of the aluminum alloy foams are similar to those of other metal foams [3, 4].
The only significant difference between the dynamic and static stress versus strain
curves is that, while the static curves are smooth, oscillations can be seen in the dy-
namic curves and the reason can be uninterrupted destabilization of aluminum alloy
foams with the plastic collapse in cell walls.

It can be seen from Fig. 2 that linear elasticity can only appear at very low strain
(smaller than about 0.05) and seems to be independent of the strain rate. It also
can be readily observed in this figure that the cell size appears to have insignificant
effect on plastic collapse, even at the dynamic strain rates. This is very similar to the
observations of Nieh et al. [9], reported a cell size effect at quasi-static strain rates
in Doucel foams.

Figure 3 shows quasi-static and dynamic stress-strain curves for various densi-
ties of foams. The higher the foams’ relative densities are, the shorter the plateau
region is, but higher densities also imply higher yield stresses. Gibson and Ashby
analyzed the relationship between the relative stress σ∗

pl/σys, and the relative den-
sity ρ∗/ρ , assuming that plastic collapse occurs when the moment exerted by the
compressive force exceeds the fully plastic moment of the cell edges, where σ∗

pl , ρ∗
are the plastic-collapse stress and the density of the cellular material, σys,ρ are the
yield stress and the density of the cell wall material, respectively. The relationship
between the relative stress and the relative density for open-celled material is given
by [1],

σ∗
pl

σys
= C (ρ∗/ρ)3/2 , (3)

Using this equation, the relationship between the relative stress and relative density
for the presently studied aluminum alloy foams is plotted in Fig. 4. Also included
in the figure are the data from other aluminum foams [6]. The experimental data
of the open-celled aluminum alloy foams, in the present investigation are shown
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Fig. 4 Relation between the
relative stress and relative
density for different alu-
minum foams

Fig. 5 Strain rate depen-
dence of yield stress per
(relative density)3/2 for differ-
ent aluminum Foams

in a reasonable agreement with the values predicted for the case of C = 0.3. This
indicates further that relative density is the most important variable determining
the mechanical properties of metallic foams. It is of interest to note in Fig. 2 that,
despite of six orders of magnitude difference in strain rate, the curves at both the
dynamic and quasi-static strain rates are practically the same. It appears that there is
no strain rate effect on stress for the open-celled in the present study. Note that we
adopt the criterion of a 20% elevation in strength to define the strain rate sensitivity.
It is consistent with the fact that metallic foams are highly heterogeneous imperfect
materials with dispersion strength of the order of 20%.

The specific yield stress (yield stress per (relative density)3/2) of the open-cell
foams as a function of strain rate is plotted in Fig. 5. As can be seen in this figure,
the strength for the presented foams at the dynamic strain rates are consistent, and
essentially the same as that observed at the quasi-static strain rate. This result indi-
cates that the yield stress exhibits the slight strain rate dependence. In contrast, the
Alporas foam shows the remarkable dependence. Its yield strength nearly doubles
with a six orders of magnitude increase in strain rate. Two reasons may contribute to
strain rate sensitivity of a cellular material: cell morphology and strain rate sensitiv-
ity of the cell wall material. To characterize the stress dependence on strain rate of
the cell materials, Lindholm et al. [7] have performed dynamic tests on 6000-series
aluminum alloys, with compositions close to those of the present foams. They found
that the strength increases by less than 15% when the strain rate is increased from
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Fig. 6 Energy absorbed of
aluminum alloy foams for
different densities

10−4 to 103. This suggests the absence of strain rate effect in the studied aluminum
alloy foams is associated with the cellular structure not the microstructure of the
cell edge material. Apparently, the intrinsic properties of the cell wall material are
overwhelmed by the extrinsic properties of the cell structure during compression.
The energy absorbed of aluminum alloy foams increase with the densities of the
foam in the experiment (Fig. 6).

4 Conclusions

The quasi-static and dynamic compressive stress–strain curves of aluminum alloy
foams for various relative densities and different cell sizes have been studied. Over
the range of strain rates employed, the present aluminum alloy foams exhibits slight
strain rate dependence in both yield strength and absorption energy. The relation
between the relative stress and relative density is a reasonable agreement with the
Gibson’s equation. It was concluded that the relative density is by far the most
important variable and mechanical properties of the present foams appear to be inde-
pendent of the cell size. Therefore, intensive efforts to modify the cell morphology
are probably not an effective way to improve the impact absorption energy capacity.
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Computational Modelling of Closed- and
Open-Cell Cellular Structures with Fillers

M. Vesenjak, A. Öchsner, and Z. Ren

Abstract The research focuses on computational modelling of closed- and open-
cell cellular structures subjected to impact loading conditions. The prime aim of
computational modelling is to determine and evaluate the influence of different para-
meters on macroscopic behaviour of cellular structures subjected to impact loading.
The explicit finite element code LS-DYNA is used for all computational simula-
tions, also for solving a coupled dynamic problem of interaction between the cellular
structure and the filler under large deformations. The influence of gas filler inside
the closed-cell cellular structure is analysed with the representative volume element
and use of the airbag model. The analysis of the pore fluid filler inside the open-
cell cellular structures is done with the combination of the finite element method
and the Smoothed particle hydrodynamics meshless method. Computational simu-
lations prove that the increase of relative density and strain rate results in increase
of the cellular structure stiffness. Parametric computational simulations have also
confirmed that the filler influences macroscopic behaviour of the cellular structures,
which depends on the loading type and the size of the cellular structure. In open-cell
cellular structures with higher filler viscosity and higher relative density, increased
impact energy absorption is observed.

1 Introduction

Cellular structures have an attractive combination of physical and mechanical prop-
erties and are being increasingly used in modern engineering applications. The most
important parameters of the cellular structures are the base material, morphology,
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topology, relative density. To achieve adequate properties of the cellular material,
the base material has to be carefully chosen in regard to its mechanical (strength,
stiffness) and thermal properties (thermal conductivity). The advantages of cellu-
lar materials are low density (light-weight structures), high acoustic isolation and
damping, hydrophobic (low water absorption), relatively high grade of deformation,
and energy absorption, durability at dynamic loadings and fatigue, recyclability [1].
Their micro- and macroscopic properties make them very attractive for use in au-
tomotive, rail, naval and aerospace industry as heat exchangers, filters, bearings,
acoustic dampers, bio-medical implants and elements for energy absorption. One
of the most important areas for the future application of cellular materials is in the
automotive industry, where their excellent impact energy absorption through defor-
mation is of crucial importance for increasing passive safety of vehicles [1, 2].

This paper investigates the influence of different parameters on the behaviour
of open- and closed-cell cellular structures accounting for pore fillers under impact
loading by means of computational simulations using the explicit finite element
code LS-DYNA [3, 4].

2 Cellular Material and Pore Fillers

Cellular materials have a characteristic stress-strain relationship in compression,
which can be divided into four main areas. After initial quasi-linear elastic response,
the cellular materials first experience buckling, plastic deformation and collapse of
intercellular walls in the transition zone. Under further loading the mechanism of
buckling, and collapse becomes even more pronounced, which is manifested in
large strains at almost constant stress (stress plateau) until the cells completely
collapse (densification). At this point, the cellular material stiffness increases and
consequently converges towards the stiffness of the base material. During this pro-
cess the cellular material is able to accumulate the mechanical energy through its
deformation.

During the manufacturing procedure of closed-cell cellular metals with gas in-
jection (air, CO2, O2, Ar) the gas in pores can reach up to 1,200 K and 100 MPa
according to Elzey et al. [5] and Öchsner et al. [6]. After solidification and cooling
down it can be assumed that the gas is trapped in the base material for a certain
time. During impact loading of such materials the gas inside the pores might signifi-
cantly influence the macroscopic cellular material behaviour. High gas compression
under impact loading causes significant gas temperature increase, which influences
the overall response of the cellular material that might result in inadvertent collapse
of intercellular walls and increase of the material structure porosity [7, 8]. Investi-
gations to incorporate the gas influence on macroscopic mechanical behaviour were
done by Kitazono et al. [9], where the authors have in their analytical approach as-
sumed a constant gas pressure in closed pore structure. However, this approach did
not consider the change of the gas pressure during the deformation and the concept
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of large plastic deformation. Therefore, the application of their model is limited to
time-independent, small deformations problems.

In open-cell cellular materials the gas can not be trapped in the cellular structure
without sealing of the material boundary. A logical solution to increase the energy
absorption in open-cell cellular materials is by filling the cellular structure with
viscous fluid. Such fluid offers certain level of flow resistance during collapse of
cellular structure due to its viscosity, which in turn increases the structure stiffness
during the deformation process. Preliminary investigations have shown that in com-
bination with high strain-rate loading this result in substantial increase of energy
absorption [8, 10]. Experimental testing and computational simulations carried out
have already shown that the filler significantly influences the macroscopic behaviour
of materials with open-cell cellular structure [10].

However, a successful computational simulation of the cellular material be-
haviour under influence of external loading necessitates use of suitable numerical
and constitutive models. Some of these models have been developed in the past, but
they are limited regarding the loading velocity and do not account for possible cell
filler influence on the macroscopic properties of the cellular material. Therefore, it
is reasonable to investigate the combination of cellular structures with filler by de-
termining its influence on the macroscopic behaviour of cellular metals by means of
computational simulations.

3 Modelling of Closed-Cell Cellular Structures

Detailed modelling of cellular material structure is usually not possible due to insuf-
ficient computer capabilities. The cellular materials are therefore usually modelled
by considering a “representative volume element”, which serves for detailed stud-
ies of their mechanical behaviour. A regular closed-cell cellular structure was used
in this study (Fig. 1) in order to avoid long computational times. The used rep-
resentative volume element was cube-shaped with the edge length of 1.8 mm and

Fig. 1 Regular cellular
structure
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Fig. 2 Interaction between the base material and the pore gas

a spherical pore with radius of 0.75 mm. This corresponds to a relative density of
0.7. Aluminium alloy AlCuMg1 was used as the base material [10]. The strain rate
effects were considered by implementing the Cowper-Symonds constitutive relation
[3, 4, 11–13]. The base material was meshed with fully integrated eight-noded brick
elements [4].

The change of pressure, volume and temperature of the gas inside the pore was
computed using a special airbag definition subroutine in the LS-DYNA [4, 11, 14].
It was presumed that the gas inside the cell has ideal properties (pV/T = constant).

The structure deformation (change of the pore volume) results in change of gas
temperature and internal pore pressure which acts on the structure. The initial pore
(gas) pressure was defined with a load curve pressure vs. time. Different initial pres-
sures (0.5, 5, 50 and 100 MPa) were used. The interaction between the base material
and the pore gas is shown in Fig. 2.

The uniaxial load was displacement controlled and applied to the upper surface
of the cell to reach a strain rate of 100s−1 (common for impacts). Two cases were
studied: compressive and tensile loading. In the first millisecond of the analysis only
the pressure was build up in the pores and only then the structure was exposed to
displacement controlled mechanical load. The lower surface was fixed in the verti-
cal direction. Periodic boundary conditions were prescribed at model side surfaces
[10]. The pore surface elements were defined as one contact group, thus effectively
accounting for multiple self-contacting regimes at large deformations during com-
putational analyses.

3.1 Computational Results

The computational results shows that the pore compresses more in case of lower
initial pore pressure than in case of higher pore pressure. High pore pressure also
results in higher base material deformation.
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Fig. 3 Influence of the pore pressure at compressive and tensile loading

Figure 3 illustrates the simulated behaviour of the closed-cell cellular struc-
ture under compressive and tensile impact loading with different initial pore gas
pressures at a strain rate of 100s−1. Under compressive loading the pore volume de-
creases and consequently the internal pore gas pressure increases. This mechanism
leads to increase of the macroscopic yield stress, since the gas pressure inside the
pore acts in the opposite direction than the external loading. With higher pore gas
pressure the cellular structure exhibits higher stress levels during the plastic defor-
mation and thus absorbs more impact energy. Furthermore, higher pore gas pressure
contributes to delayed and slower densification of the cellular structure, which oc-
curs at a higher strain. During tensile loading the higher pore gas pressure lowers
the macroscopic yield. With higher pore gas pressure the cellular structure exhibits
lower stress levels during the plastic deformation and thus absorbs less impact en-
ergy. Additional computational simulations have shown that the pore gas pressure
has higher influence on cellular structures with lower relative density.

The gas pressure change in regard to the initial pore gas pressure is shown in
Fig. 4. It is evident that the gas pressure change is higher in case of a lower initial
pressure [10].
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Fig. 4 Gas pressure change regarding the initial pore gas pressure

4 Modelling of Open-Cell Cellular Structures

The influence of viscous pore fillers on behaviour of regular open-cell cellular struc-
tures subjected to impact loading was also studied with dynamic computational
simulations. The compressive behaviour open-cell cellular structure (Fig. 5) has
been studied using three relative densities ρ/ρ0 = 0.42, 0.27 and 0.14. This cor-
responds to the basic geometry dimensions of d = 2.5, 3 and 3.5 mm and a = 4mm.
The FullCure 720 polymer was used as the base material with the following me-
chanical properties: E = 2,323MPa, ν = 0.3, Re = 48.9MPa (tension), Re = 91MPa
(compression), C = 1,050s−1 and p = 3.5 (strain rate constants).

The viscous pore filler (ρ = 1,000kg/m3 and η = 10−3 Pa s at 293 K) was mod-
elled and discretised with the meshless Smoothed particle hydrodynamics method
(SPH) [3, 10, 14]. The relationship between the change of volume and pressure
has been represented with the Mie-Grüneisen equation of state [3, 10]. The cellular
structure was loaded with a displacement controlled compressive load on the upper
surface achieving the strain rate of 1,000s−1. Due to regular geometry of cellular
structure, the symmetry boundary conditions have been applied. The cellular struc-
ture surface elements were defined as one contact group to account for possible
self-contact at very large deformations.

4.1 Computational Results

Figure 6 shows the outflow of the filler as a consequence of the cellular structure
deformation under dynamic compressive loading for two cases: (i) without pore
filler (left) and (ii) with pore filler (right).

The computational simulations have confirmed that the size of the model and
the number of the cells influence the macroscopic behaviour of cellular structure.
Higher number of cells increases the stiffness of the cellular structure and conse-
quently results in higher ability of energy absorption, since the filler is subjected to
higher flow resistance and needs more time during its outflow, as shown in Fig. 7.
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Fig. 5 Geometry of the open-
cell cellular structure

Fig. 6 Deformation of the cellular structure and the fluid filler outflow
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Fig. 7 The influence of the cell number on cellular structure behaviour

Fig. 8 The influence of relative density and cellular structure size

From the computational results it can also be observed that the filler influences more
the behaviour of a cellular structure with a higher relative density than a cellular
structure with a lower relative density. The reason for this effect can be found in the
pore sizes of the cellular structures.

Figure 8 illustrates the influence of relative density and cellular structure size
on relative Young’s modulus. From the figure it can be observed that the Young’s
modulus increases with increase of cellular structure size and relative density.
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5 Conclusions

The paper presents computational simulations of closed- and open-cell cellular
structures behaviour subjected to impact loading and very large deformations, ac-
counting for the influence of fluid filler inside the cellular structure’s pores and
connects three very important fields of engineering computational simulations: (i)
modelling of cellular structures, (ii) fluid-structure interaction, and (iii) impact load-
ing conditions.

The results of the closed-cell cellular structure simulations show that the gas in-
side the pores influences the macroscopic behaviour of the cellular structure. The
gas influence is more pronounced at lower relative densities of the cellular struc-
ture and changes regarding the loading type. Computational results of the open-cell
cellular structure have shown that the deformational energy absorption increases
with increasing the relative density, the size of the cellular structure and the number
of cells, due to a higher resistance and energy dissipation during the viscous filler
outflow.

Future research work will be focused on experimental testing and also detailed
study of cellular structure subjected to multi-axial impact loading conditions and
irregular cellular structures.
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Study of Cellular Materials Sandwich Under
Dynamic Loading for Bird Strike Application

Y. Girard, I. Elnasri, and H. Zhao

Abstract This paper reports an original inverse perforation tests on foam core sand-
wich panels under impact loading. The key point is the use of an instrumented
Hopkinson pressure bar as a perforator and at the same time a measuring de-
vice. It aims at a high quality piercing force record during the whole perforation
process, which is not available in common free-flying projectile—target testing
schemes. This new testing arrangement allows for the measurement of piercing
force-displacement curves under quasi-static and impact loadings of sandwich sam-
ples, which is made of 40 mm AlSi7Mg0.5 Cymat foam cores and 0.8 mm thick
2024 T3 aluminium sheet as top and bottom skins. Compared with quasi-static top
skin peak loads (the maximal load before the perforation of top skins) obtained un-
der same geometric and clamping conditions and even in the case that the used foam
core (Cymat) and aluminium skin sheet are known and have been confirmed to be
rate insensitive, a significant enhancement under impact loading (20%) of the top
skin peak load is found.

Keywords Perforation · Sandwich panel · Foam · Impact · Hopkinson bars

1 Introduction

Sandwich panels with cellular core materials offer a high specific strength and an
interest energy absorbing ability. Such properties make them a good solution for
the protection of aeronautic structures from impacting foreign objects. For example,
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Laboratoire de Mécanique et Technologie, ENS-Cachan/CNRS-UMR8535/Université Paris 6, 61,
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such panels are often used in front of aircrafts to prevent accidental bird strikes [1],
which can cause significant damages to equipments and therefore affect their safety.
Penetration/perforation resistances at high impact velocity of sandwich panels are
then required to qualify different panels made of different skin materials (alu-
minium, fibre-renforced polymer) and cellular cores (honeycomb, foam, hollow
sphere, etc.). Common penetration tests for lower velocity (<15m/s) could be per-
formed using a drop hammer with a perforator [2, 3]. The basic measurement in
this case is the deceleration of the impact mass, estimated by an accelerometer. The
force-displacement curves can be derived even though they are sometimes not accu-
rate enough. However, the common testing technique at higher velocity consists in
launching with a gas gun a free flying projectile against an immobile target [4, 5, 6].
Such a technique is also used in the case of sandwich panels [7, 8]. The main records
were velocities before and after perforation of the panel and there was a lack of
whole perforating force-displacement history. One can only have a global energy
absorbed during perforation [8, 9] and this makes it very difficult the understanding
of what was happened during high speed perforation processes. This paper presents
an inversed perforation test where panels samples were launched at high velocity
against an 6 m long pressure bar at rest, which plays the role of perforator and at the
same time force cell providing force and displacement recordings during the whole
perforation process.

2 Experimental Arrangement

The main deficiency of classical free flying projectile–target perforation tests re-
ported in the open literature is the lack of the force recording during the perforation
process. An evident solution is to use an instrumented long rod as the projectile, and
the piercing force is then measurable from recorded wave profiles as in the case of
a Hopkinson pressure bar [10, 11]. However, it was very difficult to launch a long
rod at a uniform speed without frictions during the test. In general, a length of sev-
eral meters is necessary because the measuring duration is determined by the length
over the wave speed in the rod [12]. An alternative is to launch the target sandwich
panel to strike the perforating long rod. Therefore, the proposed inversed perfora-
tion testing setup used a gas gun with a 70 mm inner diameter barrel and a 16 mm
diameter and 6 m-long rod with a semi-spherical nose at its perforating end. The
rod is instrumented by strain gauges aimed at accurate force measurements during
the whole perforation process. Figure 1 shows an outline of the experimental set-up.

Perforator Strain gauge
Target

6m

16
 m

m

60
 m

m

70
 m

m

Fig. 1 Experimental set-up
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Fig. 2 Photo of projectile

The cylindrical target sandwich sample is launched with the aid of a hollow tube-like
projectile, which is made from an aluminium tube with a welded bottom plate at one
end. Two Teflon rings are screwed on the tube which allow for a small friction be-
tween projectile and the barrel of the gas gun. The cylindrical sandwich samples
are mounted between the open end of the aluminium tube and an aluminium clamp-
ing ring. The fixture is realised by six uniformly distributed bolts slightly tightened.
Figure 2 provides a photograph of this projectile. The tube like projectile together
with fixture system has a weight of 720 g. The gas gun can launch such a mass to a
speed up to 60 m/s.

3 Measuring Technique with Pressure Hopkinson Bars

With aforementioned inversed perforation testing setup, the piercing strain im-
pulse can be recorded by the strain gauges cemented on the pressure bars. Indeed,
Hopkinson pressure bar analysis is based on the following basic assumption: the
waves propagating in the bars can be described by the one-dimensional wave propa-
gation theory. According to this wave propagation theory, the stress and the particle
velocity associated with a single wave can be calculated from the associated strain
measured by the strain gages. Therefore, the piercing force and velocity time history
are calculated by Eq. (1)

F(t) = Sb.Eb.ε (t)
v(t) = Cbε (t) . (1)

where Sb, Eb, Cb are respectively the cross sectional area, the elastic modulus and
elastic wave speed of the pressure bar.

However, such a theory cannot describe the eventual wave dispersion effect
which can introduce some error in the necessary virtual shift from the measuring
point to the perforating end in time and space because the measuring point is not
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located at the piercing end. Therefore, the correction of this dispersion effect on the
basis of the Pochhammer’s wave propagation theory is systematically performed
in the data processing of this wave shift [13]. The velocity of launched sandwich
plate before strikes is also available, measured with two optical barriers. With this
initial impact velocity, it is possible to estimate the piercing displacement. Indeed,
the sandwich plated mounted on the projectile is decelerated by the piercing force
measured by pressure bar. Thus, the velocity history of the sandwich sample and the
relative displacement time history can be evaluated by the Eq. (2).

vsandwich (t) = V0 −
t∫

0

F(τ)
M

dτ

U(t) =
t∫

0

(vsandwich (τ)−v(τ))dτ. (2)

where M is the sum of the mass of the sandwich sample and that of the projectile. In
this way, a corresponding force-displacement curve was found, which make possible
a quantitative comparison between quasi-static and impact piercing behaviour.

4 Quasi-Static and Impact Perforations of Foam Core Sandwich
Panels

The studied sandwich panels is made of 40 mm thick AlSi7Mg0.5 foam cores with
an average relative density around 0.085 and two 0.8 mm thick 2024 T3 aluminium
skins. It is a potential solution in the Airbus aircrafts. The cylindrical samples of
60 mm diameter were made, which have a range of weight (41–47 g) due to the
heterogeneity of foam cores. The behaviour of foam cores has been investigated
under quasi-static and impact loadings. Samples used in these material character-
isation tests are 60 mm diameter and 40 mm length cylinder. Quasi-static tests are
performed with universal testing machines and dynamic tests are performed with
a special large diameter Nylon Split Hopkinson pressure bar in [14]. The results
provide a general impression that this foam was not sensitive to the loading rate. In-
deed, a large number of tests at various loading rate shows that there is a significant
scatter but rate sensitivity is quite small (Fig. 3). The behaviour of aluminium skin
is also performed under shear quasi-static and dynamic loading. It proofs that the
aluminium is rate insensitive.

In order to obtain the same supporting condition for quasi-static and dynamic
loadings, the quasi-static test is performed using the tube projectile as the support-
ing and fixing system. The sandwich sample mounted on the projectile is put into a
universal testing machine, and a 16 mm rod with spherical nose is used for perfora-
tion. The size effect is neglected because the average pore size is quite small [15].
Perforation tests are conducted at controlled speeds (0.1 mm/s). Piercing forces were
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Fig. 3 Rate sensitivity of foam cores

Fig. 4 Bottom skin

recorded with a force cell and displacement is obtained from testing machine mea-
surements. Figures 4 and 5 show post-mortem photographs of the bottom skin and
the top skin respectively. One can note in particular the circular marks in these skins,
which illustrate a good clumping condition. Figure 6 shows two quasi-static perfo-
rating curves, which contain the two peak loads corresponding to the piercing of
top and bottom skins. Such curves are the characteristic results for cellular core
sandwich panels, reported in many previous works on various panels. In particular,
the present results is compared with perforation tests with same perforator but on
a 100× 500mm clumping system, the peak loads are very close to each other [? ].
Such a comparison provides another proof that clumping condition is well respected.
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Fig. 5 Top skin

Fig. 6 Two typical perforation tests

5 Dynamic Perforation

Perforation tests under impact speed up to 46 m/s have been performed with pre-
sented inversed perforation testing setup. Detailed post mortem images of sandwich
samples under impact loading are given in Fig. 7. One of the evident differences
is that the foam core has undergone a compression. Therefore, only the observa-
tion of the bottom skin failure is not affected by the stopping system (aluminium
bumper used to stop the residual velocity of the projectile after complete perfora-
tion of the sample). It can be seen that, petaling can occurs under impact loading,
which is different from the disking failure mode for bottom skin under quasi-static
loading. The force and displacement curve under impact loading can be obtained
using Eqs. (1, 2). Figure 8 illustrates a comparison between quasi-static and impact
perforations around 45 m/s.
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Fig. 7 Post mortem images of perforated sandwich samples. Incident top skins side (a, f), distal
skins side (b, g), opposed incident top skins side (c, h), opposed distal bottoms skins side (d, i),
foam cores (e, j). Samples tested at 27 m/s (a–e) and 46 m/s (f–j)

Fig. 8 Quasi-static and impact piercing force versus displacement curves

Such comparisons of static and impact perforation tests show a significant en-
hancement of the top skin peak load under impact loading. However, what is the
scatter of such results? Due to small number of supplied samples, only two impact
tests around 20 m/s and two tests around 45 m/s are performed. The scatter found
in impact test is quite high. However, the samples have not the same mass and the
density of foam core is then different. It is well-known that the foam core strength
depends much on its density [16]. On see that in these tests, the rule that denser
sample has a higher resistance is respected. In order to weaken such a mass density
effect, an affine correction with respect to the mass density is applied. Top skins
peak loads after correction are plotted with a logarithmic value of piercing speed
in Fig. 9. The enhancement under impact loading is then evident and the average
enhancement under impact loading is about 20%.
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Fig. 9 Density weighted of top skin peak loads

Fig. 10 Piercing force-displacement curve of 0.8 mm 2024 T3 sheet

The enhancement found for the top skin peak loads is quite puzzling. It should
not be due to the rate sensitivity of the aluminium sheet because the bottom skin
peak loads are nearly rate insensitive. In order to check this argument, the piercing
test on the 2024 T3 aluminium sheets mounted on the same tube-like projectile un-
der static and impact loading are performed. It shows, in Fig. 10, that there is nearly
no rate sensitivity of skin sheet. It is also noted that the foam core itself is not rate
sensitive [14]. This enhancement should be due to the different interaction mech-
anism under static and impact loadings. Indeed, the piercing force of the top skin
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depends on the foam core strength. Under quasi-static loading, there exists a simple
analytical model [17] which simplify the problem as a membrane sheet supported
by rigid plastic media. Under this membrane-rigid plastic support assumption, the
penetrating force depends on the tensile strength of the sheet and the equivalent sup-
porting strength of foam cores. As the foam core have a strain hardening [14], the
top skin peak load should depend on compressive strain of the foam core reached
before the failure of skin sheets, and this strain before the skin failure could be
different under static and impact loading, because of the inertia effect for example.

6 Conclusion

The presented inverse perforation testing technique using a long thin instru-
mented Hopkinson bar allows for the measurement of piercing forces during the
whole perforation process. Such measurement is missing in a classical free flying
penetrator- immobile target scheme under impact loading. The present method
makes it possible to compare directly impact piercing force-displacement curves
with the static ones. Such test is applied to sandwich panels made of an AlSi7Mg0.5

aluminium foam core and 0.8 mm thick 2024 T3 aluminium top and bottom skins.
Quasi-static, impact tests (around 2 m/s and around 45 m/s) are performed. A sig-
nificant enhancement of the top skin peak loads under impact loading is found. The
origin of such enhancement is puzzling because the skin sheet as well as foam cores
are nearly rate insensitive. A possible reason is the difference of strain hardening
reached under static and impact loading due to inertia effect. Such localised foam
core strength enhancement leads to the increase of the top skin peak loads.
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