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7.2.1 Erdős-Rényi Random Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.2 Small-World Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.3 Barabasi-Albert Scale-Free Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Topology of Biological Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.1 Network Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.2 Metabolic Network of E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.3 Protein Interaction Network of E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Beyond Static Graph Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.1 Understanding the Robustness of Metabolic Network . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.2 Beyond the Static Graph Analysis: Spatio-Temporal Dynamics . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Abstract Diverse complex systems such as cells, Internet and society can be
mapped into networks by simplifying each constituent as a node and their interaction
as a link. Traditionally it has been considered that these networks are random, but
recent series of studies show that they are far from being random and have common
inhomogeneous topology through generic self-organizing process. In this chapter,
we briefly introduce the network analysis methods which were re-developed in
statistical physics community recently. First, we introduce basic complex network
models such as Erdős-Rényi model, small-world model, scale-free model which
were developed to describe complex systems. And then, we applied these meth-
ods to biological system, such as metabolic network and protein-protein interaction
network of E. coli. We measure the global and local characteristics of the network
structure. Finally we briefly review recent works on biological networks especially
on dynamic aspect.
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7.1 Introduction: Complex Bio-Networks

During the latter half of the 20th century, biology has been dominated by reduction-
ist approaches that have provided a wealth of knowledge about individual cellular
components and their functions. Typically, these approaches have entailed careful
examination of a limited number of individual components in a biological system,
hypothesis building based on the empirical observations, and further experiments to
test these hypotheses. Reflecting the value of following this approach, biomedical
researchers from a range of disciplines have deliberately restricted their analyses
to well-defined systems with relatively few components, implicitly attempting to
reduce biological phenomena to the behavior of individual molecules.

Despite the enormous success of the reductionist approach, a discrete biologi-
cal function can only rarely be attributed to an individual molecule. Indeed, most
biological functions arise from complex interactions among its various compo-
nents (individual proteins, nucleic acids, small molecules, etc.). The need for more
comprehensive approaches that address the full complexity of a biological sys-
tem has now surfaced, largely with the emergence of genomics, in which the
entire DNA sequences for a number of organisms now allows the definition of
their gene portfolios. Extrapolation between genomes has accelerated the defini-
tion of what amounts to a “parts catalog” of cellular components in a large num-
ber of organisms. Also, large-scale efforts for studying the effects of systematic
gene disruptions and for measuring expression levels of all genes under different
conditions by microarray and proteomics approaches for entire genomes are well
underway.

In turn, these advances have created an unprecedented opportunity towards de-
veloping a comprehensive understanding of biological systems, in part through the
identification of the fundamental logic and derivative constraints that limit cell be-
havior. While the datasets available to us are far from being complete, they do offer
a critical mass and coherency for such analyses, and for the subsequent capacity
for model development and prediction through simulation of the ensuing model.
Therefore, it has been studied to identify such underlying constraints and to model
in quantitative terms the structure and functional (including regulatory) properties
of the complex biological networks that maintain proper functioning various organ-
isms. This analysis is aided by the coincidence of two recent scientific develop-
ments: the emergence of databases containing integrated data on the topology of
various networks of biological significance, and the recent advances in understand-
ing and quantifying the topology of complex (non-biological) networks which we
are going to review in the next sections.

This chapter has been organized as follows. In Section 7.2, we introduce several
basic network models which were developed to describe the ubiquitous complex
networks found in real world. In Section 7.3, we analyzed metabolic network and
protein-protein interaction network of E. coli in details. Section 7.4 includes recent
advance in network-biology especially about the dynamic aspect of bio-network
analysis. Most of this chapter was taken from recent papers written by the author
(Eom et al. 2006, Jeong 2003, Kim et al. 2007).
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7.2 Simple Models of Complex Networks

Modeling complex networks has a long history, and has been particularly active as
a branch of combinatorial graph theory. However, the study of random networks
in association with the real-world networks such as information systems, economic
systems, and biological systems has begun recently. In this section, we briefly review
a few important theoretical network models, and discuss recent empirical results on
the network topology, which indicate the need for new approaches in understanding
network development and describing their topology.

7.2.1 Erdős-Rényi Random Network Model

The most investigated random network model has been introduced by two Hun-
garian mathematicians, Erdős and Rényi (ER) (Bollobas 1985, Erdős and Rényi
1960) (see Fig. 7.1a), who were the first to study the statistical aspect of random
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Fig. 7.1 Examples of model networks (a) Erdős-Rényi network, (b) Watts-Strogatz Small-world
network, (c) Barabasi-Albert scale-free network. Typical degree distribution of (d) ER (e) SW (f)
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graphs using the probabilistic method. The popularity of the ER model lies in its
simplicity: It assumes that all vertices are equivalent, and any pair of vertices is
connected with the same probability pE R . ER discovered that many properties of
random graphs, such as the emergence of trees or cycles, appear quite suddenly at
a threshold value pE R(N ). Within the physical literature, the ER model is known
as infinite-dimensional percolation, belonging to the universality class of the mean
field percolation (Stauffer and Aharony 1992). To compare the ER model with
other network models, we need to focus on the connectivity distribution. As ER
have shown, the probability that a vertex has k edges follows a Poisson distribution
P(k) = e−λkλ/k!, where the expectation value of degree 〈k〉 = λ is (N − 1)pE R ,
therefore ER network exhibits random and homogeneous structure (See Fig. 7.1d).
However, it was found that degree distribution of most real world networks is far
from being random which leads us to develop new network model.

7.2.2 Small-World Network Model

In 1998 Watts and Strogatz (WS) reported that many systems display both a high
degree of local clustering reminiscent of finite-dimensional lattices (for example, a
square lattice), and small-world phenomena characterizing random networks. Local
clustering describes the tendency of groups of nodes to be all connected to each
other, while small-world phenomena describes the property that any two nodes in the
system can be connected by relatively short paths. To account for the transition from
the local order to the small world behavior, they introduced the small-world network
model (see Fig. 7.1b) (Watts and Strogatz 1998), which has been investigated rather
intensely lately (Barthelemy and Amaral 1999a, Suki et al. 1998). In this model,
starting from a regular lattice, each link between nodes is rewired with probability
pW S , such that long range link can be formed to ensure small-world characteristics.
The connectivity distribution of the WS model depends on the parameter pW S: for
pW S = 0, P(k) is narrowly peaked at the average connectivity of the regular lattice,
while for finite pW S, P(k) gets broader, converging to the Poisson connectivity
distribution of the ER random graph (See Fig. 7.1e), which again turns out to be not
appropriate to describe the inhomogeneous topology of the real world networks.

7.2.3 Barabasi-Albert Scale-Free Network Model

All existing network models we have considered so far fail to incorporate two
generic aspects of real networks. First, they assume that networks have a fixed num-
ber of nodes. In contrast, most networks form and grow by the continuous addition
of new nodes, that link to the nodes already present in the system. For example,
the Internet expands by the attachment of new communication devices and routers
to the system, and the World-Wide Web (WWW) grows by the addition of new
web pages and domains. Second, the models assume that the probability that two
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vertices are connected is random and uniform. In contrast, most real networks ex-
hibit preferential connectivity. For example, new Internet domains are preferentially
linked to major highly connected routers (nodes) to obtain broader bandwidth, or a
newly created webpage will more likely link to well known, popular webpages with
already high connectivity. Consequently, the probability with which a new node is
connected to the existing nodes is not uniform, but there is a higher probability to
be connected to a node that already has a large number of links (Fig. 7.1c). Barabasi
et al. demonstrated that these two ingredients are sufficient to explain the inho-
mogeneous power-law distribution observed in real networks (Barabasi and Albert
1999). The network generated by this model evolves into a scale-invariant state,
the probability that a node has k edges following P(k) ∼ k−3 , i.e., a power-law
with an exponent γ = 3 (See Fig. 7.1f). Furthermore, the Barabasi’s group showed
that excluding any of the two ingredients will eliminate the power-law connectivity
(Albert and Barabasi 2000) and they developed a continuum theory (Barabasi et al.
1999) that allowed them to calculate the exponent γ , and predict the dynamics of
the scale-free network. And they have also shown that the power-law distribution is
robust against various local actions on the network structure, such as establishing
links between existing nodes, or rerouting existing links from one node to another
(Albert and Barabasi 2000). While these events can modify the scaling exponent
γ , they do not eliminate the inhomogeneous nature of the network connectivity.
The user’s main goal is to maximize the benefits of the online environment, which
can be best achieved by connecting to nodes where the best service is available, a
flocking attitude that eventually leads to a few highly connected nodes and power
laws. Consequently, complex communication networks inevitably evolve to develop
scale-free network connectivity, and thus display topological inhomogeneities. (Al-
bert et al. 1999b, Huberman and Adamic 1999)

7.3 Topology of Biological Networks

It is increasingly appreciated that the robustness of various cellular processes is
rooted in the dynamic interactions among its many constituents (Barkai and Leibler
1997, Bhalla and Iyengar 1999, Yi et al. 2000), such as proteins, DNA, RNA, and
small molecules. The existence of complex interactions among various components
of a cell or simple microorganisms has long been appreciated, but in the absence
of large-scale databases and a sufficiently developed theoretical framework, no
meaningful analysis of these interactions was deemed possible. However, recent
large-scale sequencing projects coupled with systematic two-hybrid analyses have
provided complete sequence information for a number of genomes, and also al-
lowed the development of protein interaction-(Rain et al. 2001a, Uetz et al. 2000)
and integrated pathway-genome databases (Kanehisa and Goto 2000, Karp et al.
1999, Overbeek et al. 2000) that provide organism-specific connectivity maps of
metabolic- and, to a lesser extent, various other cellular networks. Yet, due to the
large number and the diversity of the constituents and reactions forming such net-
works, these maps are extremely complex, offering only limited insight into the
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organizational principles of these systems. Our ability to address in quantitative
terms the structure of these cellular networks, however, has benefited from recent
advances in understanding the generic properties of complex networks (Albert et al.
2000, Watts and Strogatz 1998), which will be described in this section.

7.3.1 Network Analysis Methods

Until recently, complex networks have been modeled using the classical random
network theory (Bollobas 1985, Erdős and Rényi 1960) which assumes that each
pair of nodes (i.e., constituents) in the network is connected randomly with proba-
bility p. This process leads to a statistically homogeneous network, in which most
nodes have approximately the same number of links, 〈k〉 (Fig. 7.1a). On the other
hand, recent empirical studies on the structure of the World-Wide Web (Albert et al.
1999a), Internet (Faloutsos et al. 1999), and social networks (Barabasi and Albert
1999) have demonstrated that these systems are described by scale-free networks
(Barabasi and Albert 1999) (Fig. 7.1c), for which degree distribution P(k) follows
a power-law, i.e. P(k) ∼ k−γ . Unlike exponential networks, scale-free networks
are extremely heterogeneous, their topology being dominated by a few highly con-
nected nodes (hubs) which link the rest of the less connected nodes to the system
(Fig. 7.1c). This degree distribution P(k) is a good measure for analyzing connectiv-
ity of the complex network and also has been applied to several biological networks
as well.

Another basic measure for network analysis is a clustering coefficient. The clus-
tering coefficient Ci of node i is the ratio of the total number y of the links con-
necting its nearest neighbors to the total number of all possible links between all
these nearest neighbors, Ci = 2y/ki (ki −1) where ki is the degree of node i . The
clustering coefficient of a network, C , is the average of this value over all the nodes.
Most real networks have much larger value of clustering coefficient than model net-
works such as ER or BA network due to, e.g., the community or modular structure
(Dorogovtsev and Mendes 2002). Finally, the assortativity r , which measures the
correlation between degrees of node linked to each other, is defined as the Pearson
correlation coefficient of degrees between pairs of nodes (Newman 2002). Positive
values of r stand for the positive degree-degree correlation which means that nodes
with large degrees tend to be connected to one another. Most social networks have
this positive degree correlation r > 0 (assortative mixing), like the co-authorship
network of arxiv.org network (Newman 2001). On the other hand, most biological
and technological networks show negative degree correlation r < 0 (disassortative
mixing), including protein interaction network (PIN) and Internet AS network. If
there is no degree correlation among nodes (neutral), as in the case of BA model,
the value of r is in the vicinity of 0. There is another convenient way to check the
degree correlation, which is measuring the quantity 〈knn〉 = �k ′k ′ p(k ′/k), i.e. the
average degree of nearest neighbors of nodes with degree k (Pastor-Satorras et al.
2001). Assortative mixing is represented by a positive slope of the 〈knn(k)〉 graph,
while the others by horizontal (neutral) or a negative slope (disassortative).
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While these quantities are measures for global properties of the network, local
properties of the network have been analyzed via motif analysis. Subgraph patterns
and network motifs have been applied recently to understand the local structure of
complex networks (Milo et al. 2004, 2002, Vazquez et al. 2004). Subgraph patterns
consist of more than three nodes and the links connecting only these nodes, which
represent the minimum subnetworks of complex networks. Examples of triad sub-
graph patterns are shown in Fig. 7.4a. Network motifs are the subgraph patterns that
occur in a complex network at numbers that are significantly higher than those in
a random network (Milo et al. 2002). These are believed to represent the simplest
building blocks of complex networks and the topologically characteristic interaction
patterns within complex networks. Recently, it was also shown that certain motifs
have been enhanced through the evolution of a network, which supports the func-
tional importance of the motifs (Vazquez et al. 2004). For example, in transcription
networks, a biochemical network responsible for regulating the expression of genes
in cells, the network motifs are thought to be circuit elements that perform key in-
formation processing functions (Mangan and Alon 2003, Milo et al. 2002, Shen-Orr
et al. 2002). The feed-forward loop, one motif of transcription networks, can act as
a circuit that reduces noise and responds only to a persistent signal.

The following algorithm is used to obtain the network motifs (Milo et al. 2002).
We scanned for all possible three-node subgraphs in the network and recorded
the number of occurrences of each subgraph. To identify a statistically signifi-
cant subgraph pattern, we compared the network to an ensemble of suitably ran-
domized networks. Each node in the randomized networks contained the same
number of incoming and outgoing links as the corresponding node in the origi-
nal network. In addition, the randomized networks that were used to estimate the
significance of n-node subgraphs were generated to preserve the same number of
appearances of all (n − 1 ) node subgraphs as in the original network. For each
subgraph i , the statistical significance of the subgraph is described by the Z score
Zi = (Nreal

i − 〈Nrand
i 〉)/std(Nrand

i ). Nrand
i is the number of appearances of the

subgraph i in the network, and 〈Nrand
i 〉 and std(Nrand

i ) are the average and standard
deviation of its appearances in the ensemble of randomized networks, respectively.
The subgraph pattern exhibiting a high Z score is the statistically significant pattern.
In this analysis, the network motifs were selected when those subgraph patterns have
a Z score greater than 2.

With this well-developed theoretical framework in hand and with the availability
of detailed databases, we are now in position to initiate the analyses of complex
bio-networks. Some of the first questions we asked included the following: What
is the topological structure of metabolic and other cellular networks in global and
local perspective? (See Fig. 7.2) What are the biologically and topologically relevant
quantities that characterize them? Are there generic and common structural charac-
teristics that apply to all cells, including both prokaryotes and eukaryotes? How are
the specificity and the differential properties of various organisms reflected in the
structure of these networks? In the following section we will summarize our results
obtained on the large-scale structure of biochemical reaction pathways and protein
interaction networks, especially for the case of E. coli, main topic of this book.
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Fig. 7.2 Metabolic network including the central pathways and the membrane formation pathways.
Circles denote essential and non-essential metabolites distinguished by the colors (black: essential
metabolite; gray: essential metabolite constituting biomass; and white: non-essential metabolite).
Cofactors are not drawn here because the number of the associated reactions is too large for visual
examination. Each box represents the metabolic reaction for different functional classes specified
by different colors and line styles

7.3.2 Metabolic Network of E. coli

To address the large-scale structural organization of metabolic networks, we have
examined the topologic properties of the core metabolic network of 43 different
organisms based on data deposited in the WIT (now ERGO) database (Jeong et al.
2000, Overbeek et al. 2000). In the metabolic network, nodes are substrates which
are connected to each other through the actual metabolic reactions (Fig. 7.4B). As
illustrated in Fig. 7.3a, results convincingly indicate that in E. coli the probability
that a given substrate participates in k reactions follows a power-law distribution,
i.e., the E. coli metabolic network belong to the class of scale-free networks. Fur-
thermore, it is found that scale-free networks describe the metabolic networks in
all organisms in all three domains of life, including 6 Archaea, 32 Bacteria, and
5 Eukaryotes, indicating the generic nature of this structural organization. Also,
essentially identical results were obtained when we examined the topologic prop-
erties of the information transfer pathways of the 43 different organisms based
on ‘Information transfer’ portions of data deposited in the WIT/ERGO database
(Overbeek et al. 2000). Another general feature of many complex networks is their
small-world character (Strogatz 2001, Watts and Strogatz 1998), i.e., any two nodes
in the system can be connected by relatively short paths along existing links. In
metabolic networks these paths correspond to the biochemical pathway connect-
ing two substrates. The degree of interconnectivity of a metabolic network can be
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Fig. 7.3 Topological
properties of E. coli
metabolic network. (a)
Degree distribution P(k),
showing inhomogeneous
structure for both in and out
degrees, (b) Clustering
coefficient C(k), showing
typical decreasing behavior
as a function of degree k like
many other biological
networks, (c) Assortativity,
average degree of neighbor
node 〈Knn(k)〉, showing
dissortative mixing again like
many other biological
networks
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characterized by the network diameter, defined as the shortest biochemical pathway
averaged over all pairs of substrates. For all non-biological networks they examined
to date the average connectivity of a node is fixed, which implies that the diameter of
the network increases logarithmically with the addition of new nodes (Barabasi and
Albert 1999, Barthelemy and Amaral 1999b, Watts and Strogatz 1998). In contrast,
we find that the diameter of the metabolic network is the same for all 43 organisms,
irrespective of the number of substrates found in the given species (Jeong et al.
2000). This is surprising and unprecedented, and is possible only if with increas-
ing organism complexity individual substrates are increasingly connected in order
to maintain a relatively constant metabolic network diameter. Within the special
characteristics of living systems this attribute may increase an organism’s fitness to
efficiently respond to external changes or internal errors. For example, the transition
time between two metabolic steady states is apparently largely governed by time
constants involved in changing the enzyme concentrations (Cascante et al. 1995),
an attribute which could be best achieved when only a few alternative biochemical
reactions need to be activated. In Fig. 7.3b, clustering coefficient of E. coli metabolic
network shows C(k) ∼ k−α which represents the hierarchical and modular structures
embedded in the biological networks (Ravasz et al. 2002). L ike other biological net-
work, metabolic network of E. coli shows dissortative mixing (Fig. 7.3c), such that
substrates with larger degrees (hubs) tend to interact with substrates with smaller
degrees.

We also examined the triad subgraph patterns of metabolic networks of 43 or-
ganisms and identified their network motifs including E. coli. In this analysis, the
direction of each link implies direction from an input substrate (educt) to an out-
put substrate (product) (Fig. 7.4b) (Eom et al. 2006). We found that all metabolic
networks have their own network motifs. To provide a more quantitative analysis,
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Fig. 7.4 Local properties of E. coli metabolic network. (A) Motif profile, all possible 13 types of
three node connected subgraphs. (B) Graphical reorientation of a chemical reaction. (C) The triad
significance profiles (TSPs) of metabolic networks. TSPs for E. coli and other organisms found in
WIT database were plotted
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we investigated the local structure of metabolic networks of each organism in detail
and identified the significance profile (SP) of each metabolic network (Milo et al.
2004). The SP is the vector of Z scores normalized to a unit length, of which the i-th
component is given by S Pi = Zi/(� j Z2

j )
1/2. The SP of a given network represents

the relative significance of the subgraphs in that network. It is important to compare
networks of different sizes because network motifs in large networks tend to have
higher Z scores than network motifs in small networks (Milo et al. 2004). The triad
significance profile (TSP) for each metabolic network is presented in Fig. 7.4c. The
TSPs of these networks are found to be almost insensitive to a removal of 20% of
edges or to an addition of 20% new edges randomly, representing that the results
are robust to possible missing or false-positive data errors. All metabolic networks
showed similar TSPs and three network motifs of triads 5, 10, and 13 were found
frequently. These motifs, especially 5 and 10, are well-known feed-forward loop
and its variation of function is a prevalence of short detours in metabolic network
(Gleiss et al. 2001, Heinrich and Schuster 1996). In contrast, triads 2, 4, and 8 were
anti-motifs that were significantly underrepresented. The correlation coefficient be-
tween the TSPs of metabolic networks in 43 organisms was about 0.78 showing that
metabolic networks have the same topological structure in both large-scale orga-
nization (inhomogeneous power-law degree distribution) and in local organization
(sharing common topological substructures).

7.3.3 Protein Interaction Network of E. coli

Next example of biological network is protein interaction network (PIN). Proteins
are traditionally defined by their individual actions as catalysts, signaling molecules,
or building blocks of cells and microorganisms. However, recent integrative ap-
proaches view their role as an element in a network of protein–protein interactions
with a ‘contextual’ or ‘cellular’ function within functional modules (Eisenberg et al.
2000, Hartwell et al. 1999). To uncover this role, it is important to assess the position
of a protein within the protein–protein interaction network. We first have assessed
the topologic characteristics of system-wide protein–protein interaction network
found in the yeast, S. cerevisiae, and the bacterium, H. pylori, obtained mostly by
systematic two-hybrid analyses (Ito et al. 2001, Rain et al. 2001b, Xenarios et al.
2000). Due to its size, a complete map of the yeast and H. pylori networks, while in-
formative, in themselves offers little insight into their large-scale characteristics (See
Fig. 7.5). Like other bio-networks, the probability that a given yeast protein interacts
with k other yeast proteins follows a power-law (Jeong et al. 2001) with an expo-
nential cutoff (Barthelemy and Amaral 1999a). This exponential cutoff is due to the
physical limitation of the binding sites in the protein structure. A similar result was
obtained for H. pylori as well. This indicates that the network of protein interactions
in both a bacterium and an eukaryotic cell forms a highly inhomogeneous scale-
free network. An important known consequence of the inhomogeneous structure is
the network’s simultaneous tolerance against random errors coupled with fragility
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Fig. 7.5 Protein-Protein interaction network, essential (gray) and non-essential (white) proteins
were connected through physical bindings

against the removal of the most connected nodes (Barabasi and Albert 1999). Yet,
if there is indeed a biologically relevant functional link between topology and error
tolerance, on average less connected proteins should prove less essential than highly
connected ones. We calculated this correlation and showed that the likelihood that
removal of a protein will prove to be lethal clearly correlates with the number of
interactions the protein has. For example, while proteins with five or less links
constitute 93% of the total number of proteins they find that only 21% of them
are essential. In contrast, only 0.7% of the yeast proteins with known phenotypic
profile have more than 15 links but single deletion of 62% of these proves lethal.
This implies that highly connected proteins with a central role in the network’s
architecture are three times more likely to prove essential than proteins with low
number of links to other proteins (Jeong et al. 2001).

We also analyzed PPI network of E. coli using protein complex data by
G. Butland et al. (Butland et al. 2005). We found that again degree distribu-
tion of E. coli PPI network shows inhomogeneous scale-free degree distribution
(Fig. 7.6a) and proteins with larger degrees are more essential than proteins with
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Fig. 7.6 Topological properties of protein-protein interaction network. (a) Degree distribution, (b)
degree vs essentiality showing that as degree increases, lethality of the protein also increases. (c)
Clustering coefficient C(k), (d) Assortativity, average degree of neighbor nodes

smaller degrees (Fig. 7.6b). Interestingly in Fig. 7.6c, it is observed that clustering
coefficient C(k) shows relatively neutral behavior implying E. coli protein interac-
tion network doesn’t have hierarchical characteristics. Also the assortativity of E.
coli protein interaction network seems to be neutral for outgoing link while it is
dissortative for incoming link like many other biological networks (see Fig. 7.6d).
Since PPI network by Han et al. is directed, we applied motif analysis algorithm
to find relevant subgraph pattern hidden in E. coli protein interaction network. As
seen in Fig. 7.7, quite different from the metabolic network, motif 11 is found more
frequently and motif 10 is suppressed. However, motifs 5, 6, 12, 13 are shared with
the metabolic network of E. coli.

7.4 Beyond Static Graph Analysis

So far, we have only considered spatial (geometrical) inhomogeneity of the com-
plex networks, however it is also important to deal with temporal heterogeneity of
the complex network. Links between nodes in the network can vary over time, for
example, not every reaction in the metabolic network is active all the time. And the
activity of each link in the metabolic network or regulatory network can be different
in time such that some of them are highly active under most conditions while oth-
ers are activated for certain specific conditions. Therefore, to fully understand the
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Fig. 7.7 Local properties of protein-protein interaction network of E. coli. TSPs for E. coli and
yeast transcription network were plotted together

biological networks we have to consider the weight and direction and the temporal
change of the network components. In this respect, we will introduce recent studies
on dynamic aspect of metabolic networks using flux balance analysis (FBA) and
protein interaction networks of E. coli in this section.

7.4.1 Understanding the Robustness of Metabolic Network

As complex biological systems are very robust to genetic and/or environmental
changes on all levels of organization, their inherent robustness has been of great
interest in biology as well as in engineering theory (Wagner 2005). The biolog-
ical function of E. coli metabolism can be sustained against single-gene or even
multiple-gene mutation possibly by utilizing the redundant pathways (Papp et al.
2004, Reed and Palsson 2004). While the investigations on the topological and func-
tional/phenotypic properties of metabolic networks have been increasingly popu-
lated as shown in previous sections, (Almaas et al. 2004, Covert et al. 2004, Guimera
and Nunes Amaral 2005, Papp et al. 2004) they still provide a limited understand-
ing of the metabolic robustness despite its biological significance. In this section,
we focus on the interplay between such robustness and the underlying metabolism,
and how the robustness can be accomplished at the level of the metabolites which
are the fundamental entities (Raymond and Segre 2006, Schmidt et al. 2003) inte-
grated/dissipated by the metabolic processes. To this end, we constructed the com-
putational models at a system level, and simulated them with a constraints-based
flux analysis (Price et al. 2004).

To explore the robustness of E. coli metabolism from the metabolite perspective,
we should identify the metabolites which are substantial in cellular functions. In
this regard, all intracellular metabolites are classified into two categories, essential
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and non-essential metabolites according to the phenotypic effects on cell survival
when the consumption rate of the given metabolite is suppressed to zero. The re-
sultant list of essential metabolites is identified under many different environments
which are specified by combinations of several C, P, N, and S sources, and aer-
obic/anaerobic conditions (Kim et al. 2007). By disrupting multiple genes around
essential/non-essential metabolites in vivo, we could validate the predicted effects
of the metabolite essentiality on cell survival. For example, the associated genes
of an essential metabolite, tetrahydrofolate, were selected for the multiple-gene
disruption. Each single and double gene deletion mutant (�purN, �lpdA, �glyA,
and �purN �lpdA) could still survive albeit with some growth rate changes, but
simultaneous deletions of the triple genes (�purN �lpdA �glyA) did not allow
the cell to grow at all, reflecting that the combinatory suppression of the tetrahy-
drofolate pool is indeed fatal to the cell. On the contrary, 1-deoxy-D-xylulose
5-phosphate had been identified as a non-essential metabolite in silico, and ex-
perimental removals of all the reactions producing the metabolite by constructing
�dxs �xylB caused the only slight change and even increase of growth rate com-
pared with wild type. Throughout these experiments, the measured growth rates
of the gene deletion mutants relative to that of the wild type were found to be
consistent with the in silico predictions. These results indicate that deletion strains
for essential metabolites can suffer from the deleterious impact on cellular func-
tions, while those for non-essential metabolites show the negligible influence on
the actual growth. We also investigated the inherent network property of essential
metabolites to elucidate the correlation between the structural property and func-
tional behavior from the metabolite perspective. We found that essential metabo-
lites are likely to be connected with more reactions than non-essential ones. Fur-
thermore, the metabolic networks of 227 organisms with fully sequenced genomes
disclose that the metabolites essential for various growth conditions are com-
monly distributed across the organisms, showing the high degree of phylogenetic
conservation.

To better understand the robustness of the cellular metabolism from the metabo-
lite perspective, it is necessary to quantify the usage of all relevant fluxes to a single
metabolite. In this sense, we introduce the flux-sum (Φ) of the metabolite, which is
defined as the summation of all incoming or outgoing fluxes for given metabolite i
as follows:

	i =
∑

j∈Pi

Si jν j = −
∑

j∈Ci

Si jν j = 1

2

∑

j

∣∣Si jν j

∣∣

where Si j is the stoichiometric coefficient of metabolite i in reaction j , and j is the
flux of reaction j . Pi denotes the set of reactions producing metabolite i , Ci the set of
reactions consuming metabolite i . Under the stationary assumption, Φi is the mass
flow contributed by all fluxes producing (consuming) metabolite i . Based on this
measure pertaining to the behavioral characteristic of metabolites, we can analyze
the robustness of E. coli metabolism to maintain the cellular functions against the
genetic mutations. The sensitivity to genetic perturbation for a given metabolite can
be quantified by evaluating the relative fluctuation of Φi in response to each deletion



128 H. Jeong

of non-lethal reactions:
√〈

	2
i

〉 − 〈	i 〉2/ 〈	i 〉 where < . . . > denotes the average
over the reaction deletions. It turns out that the essential metabolites are more likely
to have small relative fluctuations. This indicates that flux-sums of essential metabo-
lites are relatively insensitive to genetic perturbation compared with those of non-
essential ones. Indeed, 94.3% of total metabolites found in the fluctuation range of
less than 0.0875 are essential, while there are only non-essential metabolites in the
twenty highest ranks in relative fluctuations. Thus, essential metabolites are resistant
to the internal variation compared with non-essential ones by maintaining the basal
mass flow of the corresponding metabolite, thereby leading to the robustness of the
cellular metabolism.

To clarify such resistance of essential metabolites against the internal distur-
bance, the severe perturbation was conducted by deleting the most contributing
reaction to the flux-sum for a given essential metabolite. Remarkably, for many
essential metabolites, the resultant flux loss is mostly recovered by the fluxes of
other remaining reactions, thereby leading to very small change of the flux-sum, in
spite of removing the dominant reaction5 with the largest flux value. For instance,
the flux-sum of an essential metabolite, carbamoyl phosphate, is reproducible by
other fluxes even when the largest flux from carbamate kinase is eliminated; other
reaction, carbamoyl-phosphate synthase can compensate such flux loss fully, thus
resulting in the recovery of 98.9% of the basal flux-sum. For many essential metabo-
lites, the flux-sum is only changed much less than the reduced flux corresponding to
the deleted reaction. Accordingly, even though the reaction with relatively high flux
is eliminated, the flux-sum can be compensated by other fluxes around the essen-
tial metabolite, recovering such flux loss. Moreover, using the stoichio-similarity,
we could develop the method to predict the most probable reaction which would
recover the flux-sum after disruption. Hence, we believe that cellular robustness
can be elucidated by such functional property of metabolic network manifesting the
resilience of essential metabolites against the disturbed flux configuration.

Essential metabolites play a pivotal role in the cell survival, steadily maintaining
the mass flow to produce or consume the metabolites against any internal distur-
bance within the cell. In other sense, this metabolite perspective on the robustness of
E. coli provides us the cellular-level fragility: the failure of maintaining the flux-sum
of a single essential metabolite can suppress the whole cellular growth drastically.
Especially, for most essential metabolites (85%), reducing the flux-sum by half be-
low the basal level intentionally leads to the growth rate down to half or even less,
while only 28.9% of active non-essential metabolites have the same effect on the
cell growth for such flux-sum perturbation.

The functional robustness of metabolic networks reflects the resistance towards
internal defects and environmental fluctuations as an end product of a long evo-
lutionary process. Such fault-tolerance or robustness may be a key to cell survival
against environmental or genetic change. In this regard, a metabolite-based perspec-
tive could provide us a new guideline to interpret the cellular robustness. Essential
metabolites substantial to the cell survival are capable of rerouting metabolic fluxes
while sustaining their usage level. This capability of the essential metabolites leads
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to the quite dramatic tolerance to a wide range of internal disturbances. From a ther-
apeutic point of view, disrupting (knock-out) the multiple non-lethal genes around
an essential metabolite can lead to fatal cell damage; even attenuating (knock-
down) the relevant genes may cause the same effect. Thus, synthetic lethal muta-
tions (Tucker and Fields 2003, Wong et al. 2004) can be systematically identified
in conjunction with experimental screening techniques available (Ooi et al. 2003,
Tong et al. 2001), thereby facilitating the discovery of drug targets for the genetic
therapy.

7.4.2 Beyond the Static Graph Analysis:
Spatio-Temporal Dynamics

The topological data and approach discussed in previous sections represent a partial
snapshot of the metabolism. Indeed, the topology of the metabolic network pro-
vides only the genome-encoded potential metabolic activity of an organism. The
actual function of its metabolic network, however, is realized through the genetic
regulatory network that functionally activates and inactivates various enzymes or
groups of enzymes that catalyze biochemical reactions embedded in the metabolic
network topology. Thus, for an in-depth characterization of metabolism we need to
develop a better understanding of the regulatory network and its dynamics, as well.
An important limitation of any modeling effort is the lack of availability of enzyme
kinetic data, making impossible the full dynamic characterization of these pathways.
However, already available microarray data does give us important qualitative in-
formation on the correlation between the enzymatic activities of different pathways.
In this sense, there are several studies to analyze the available microarray data to
infer information about correlations between the various components of the E. coli
metabolism. These studies will offer valuable information on the dynamical features
of its metabolism that has never been included in previous modeling efforts. One of
simple but interesting works on temporal aspect of complex network was found
in protein interaction network. For the case of protein interaction network, it was
verified that considering dynamic aspect is crucial to understand the lethality of the
node properly. That is, although it was shown that highly connected proteins (hubs)
are more essential (lethal) than less connected proteins, recent study shows that all
hub proteins are not equivalent. Han et al. showed (Han et al. 2004) that there are
two different categories for the hub proteins, first one is ‘party’ hubs which interact
with their partner proteins simultaneously, the other is ‘date’ hubs which in contrast,
interact with different proteins at different locations and times using a filtered yeast
interactome (FYI), compiled from different sets of yeast mRNA expression data to
find the difference. (See Fig. 7.8) They found that date hub is more important than
party hub such that when party hubs are removed from the system, general connec-
tivity of the network remains still unaffected while the removal of date hubs breaks
network into pieces so that proteins cannot interact with each other. Therefore, it is
very important to consider spatial and temporal information when we analyze the
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Fig. 7.8 Two different types
of the hub. Party hub interacts
with many proteins at the
same time and location while
date hub interacts with many
proteins at different time and
locations

Date HubParty Hub

bio-network. In this sense, spatio-temporal dynamic analysis should be applied to
biological system along with static graph analysis.

Despite of the significant advance in network science during last decade, we are
still far from understanding the biological system even for simple organism like E.
coli. However, network biology which is still in its infancy, will give us an insight
to find a way to understand the biological system along with large scale data sets
generated and integrated into the database extensively.
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