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Abstract The omics, which means comprehensive analysis of a specific layer in a
cellular system, are emerging as essential methodological approaches for molec-
ular biology and systems biology. However, single omics analysis does not al-
ways provide enough information to understand the behaviors of a cellular system.
Therefore, a combination of multiple omics analyses, the multi-omics approach,
is required to acquire a precise picture of living organisms. In this chapter, basic
concepts of omics studies, and recent technologies in the omics of metabolism and
published multi-omics analyses of Escherichia coli, are reviewed. Subsequently, a
large-scale multi-omics analysis of E. coli K-12, including transcriptomics, pro-
teomics, metabolomics and fluxomics, is presented. This study uncovered the com-
plementary strategies of E. coli that result in a metabolic network robust against
various types of perturbations, therefore demonstrating the power of a multi-omics,
data-driven approach for understanding the functional principles of total cellular
systems.

M. Tomita (=)
Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
e-mail: tomita@ttck.keio.ac.jp

S.Y. Lee (ed.), Systems Biology and Biotechnology of Escherichia coli, 41
DOI 10.1007/978-1-4020-9394-4_3, © Springer Science+Business Media B.V. 2009



42 N. Ishii and M. Tomita

3.1 Overview of Omics and Multi-omics Analysis

3.1.1 A New Approach in Molecular Biology — Omics

The history of molecular biology is defined by a number of innovations. Currently,
a new innovative breakthrough is joining the world of the molecular biology — the
so-called “omics” (Lee et al. 2005, Yadav 2007). The basic methods of modern
molecular biology have been, to simplify the situation somewhat, hypothesis-driven,
reductionist, and bottom-up. In most cases, only a few biochemical species are fo-
cused on in any one study based on hypotheses formed by the researcher(s) prior to
the start of the study. After that, exhaustive investigation is directed towards under-
standing the properties of the target molecules.

Although such an approach is still valuable for obtaining detailed and precise
knowledge of the target molecular species, some inherent problems exist in how
the conventional research flows. At the beginning stage of such classical research
schemes, the selection of the target strongly depends on the personal experience and
intuition of individual researchers. Moreover, information about limited numbers of
molecular species does not always provide insight into a biological “system” that
consists of networks formed by a number of interacting molecular species (Brugge-
man and Westerhoff 2007).

To overcome these weak points in traditional molecular biology, a novel re-
search area, the “omics”, is emerging. Omics means a comprehensive analysis of
biochemical molecular species or interactions of molecules belonging to a specific
layer in a cellular system. For example, “genomics” is defined as the study of
whole DNA sequences and the information contained therein. Many different words
having the suffix of “omics” have been proposed - transcriptomics, proteomics,
lipidomics, glycomics, interactomics, phenomics, and so on. However, all omics
approaches can be considered to share two major features in contrast to traditional
procedures.

One feature is changing the direction of the flow of analysis. Unlike traditional
methods, in omics approaches massive data is first collected with no prior hypothe-
sis, and meaningful targets are searched for within the obtained data set. The second
feature of omics is the attempt to understand the target as a total “system” by using
information of the relationships between many measured molecular species. From
this point of view, the omics can be expected to contribute to the progress of systems
biology.

In brief, omics can be said to be a data-driven, holistic, and top-down ap-
proach, as opposed to traditional approaches. Rapid advances in the development of
high-throughput measuring instruments are inducing dramatic growth in the omics
research area. The extreme progression of information technologies, including en-
hancements of public web-databases of biological knowledge (Caspi et al. 2008,
Kanehisa et al. 2008, Teufel et al. 2006, Wittig and De Beuckelaer 2001), also
support the expansion of omics studies, which require the handling of hundreds
or thousands of measured values.
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3.1.2 Omics for Metabolic Systems — Metabolomics
and Fluxomics

While many technologies are included in the “omics” family, most activity is
found in the following three areas: genomics, transcriptomics, and proteomics. Cur-
rently, whole genome sequences of many species have been deciphered by high-
performance DNA sequencers. Using the information of a complete genome se-
quence, most of the products (mRNAs and proteins) coded in the genome can be
predicted; nonetheless, post-transcriptional modifications cannot be ignored. Thus,
with transcriptomic or proteomic experiments, the near complete detection of bio-
chemical species, i.e., true omics analysis, is possible in principle. However, for
other omics studies, it is impossible to define an explicit number of targets.

Although difficult to comprehensively measure, omics analysis of metabolism
in cellular systems is highly important (Fiehn 2002). The phenotype of a strain is
strongly connected to the profile of metabolite concentrations in the cell. In many
cases, adaptations of living cells to environmental changes can be achieved by re-
configuration of enzymatic reaction rates in some metabolic pathways. Therefore,
metabolomics (Dettmer et al. 2007, Kell 2004, Mashego et al. 2007, Oldiges et al.
2007, Rabinowitz 2007, Wang et al. 2006), which is the omics study for metabolic
compounds (low molecular weight, typically less than 1 kDa), is desired to obtain a
more precise overview of life.

Traditionally, large-scale metabolite analysis has been performed by gas chro-
matography mass spectrometry (GC-MS) (Fiehn et al. 2000), and GC-MS is fre-
quently used in plant metabolomics studies (Sanchez et al. 2008). Other instruments,
including liquid chromatography mass spectrometry (LC-MS) (Chen et al. 2007,
Tolstikov et al. 2007) and nuclear magnetic resonance (NMR) (Grivet et al. 2003,
Jordan and Cheng 2007, Ward et al. 2007), have also been successfully applied to
metabolome analyses.

Capillary electrophoresis mass spectrometry (CE-MS) has emerged as a power-
ful new tool, and various CE-MS methods have been developed for the analysis of
charged metabolites (Gaspar et al. 2008, Monton and Soga 2007, Sniehotta et al.
2007, Song et al. 2008). The advantages of CE-MS compared to other separation
technologies are that this method exhibits extremely high resolution and that al-
most any charged species can be infused into MS. (Soga et al. 2003) developed a
metabolome analysis method by CE-MS whereby metabolites were first separated
by CE based on charge and size and then selectively detected using MS by monitor-
ing over a large range of m/z values. Since hundreds of metabolites can be detected
simultaneously by CE-MS, our understanding of the metabolic layer in cellular sys-
tems is being greatly expanded. More recently, (Soga et al. 2006) also constructed
a coupling of CE and time-of-flight MS (TOFMS), and their CE-TOFMS analy-
sis revealed that serum ophthalmate is a sensitive indicator of hepatic glutathione
depletion in mice.

Another new methodology, called fluxomics (Sanford et al. 2002, Sauer et al.
1999, Wiechert et al. 2007), which means detailed metabolic flux analysis (MFA)
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(Stephanopoulos et al. 1998) of large-scale metabolic pathways, has joined the
omics family for investigating metabolic systems. MFA includes mathematical pro-
cedures for the estimation of unmeasurable reaction rates in a metabolic pathway by
using measurable data, such as specific consumption rates of substrate and specific
production rates of byproduct. MFA itself has relatively a long history — the first
MFA is believed to have been conducted by Aiba and Matsuoka in 1979 (Aiba
and Matsuoka 1979, Stephanopoulos et al. 1998). However, after the 1990s, the
use of stable-isotope labeled substrates has become a common technique, and some
advanced algorithms to handle the information of labeled metabolites for calculating
metabolic fluxes have been developed (Noh et al. 2006, Sauer 2006, Shimizu 2004,
Wiechert 2001). Accordingly, metabolic pathways that have complex topologies can
be treated by current MFA technologies, i.e., metabolic fluxes distributed in a wide
network can now be estimated. Therefore, fluxomics can be considered as one of
the omics methodologies. Figure 3.1 shows a bibliographic search containing the
words “metabolomics or metabolome” or “fluxomics or fluxome” using PubMed
(http://www.pubmed.gov/). An exponential increase in the number of metabolomics
studies and the genesis of fluxomics research can be observed.

A combination of metabolomics and fluxomics has been established by Toya
et al. (Toya et al. 2007). They used CE-TOFMS to measure mass distributions of
intermediate metabolites in cells cultured by isotope-labeled glucose, and performed
flux analysis with the measured mass distribution patterns. Since the pool sizes
of intermediate metabolites are generally so small, isotopic pseudo-steady states
of intermediate metabolites are immediately achieved (Wiechert and Noh 2005).
Accordingly, MFA using CE-TOFMS can be applied to metabolic systems under
drastic dynamical change, such as in a batch culture, which is practically impor-
tant in fermentation industries. Other methods of MFA using LC-MS to determine
labeling patterns of intermediate metabolites have also been reported (Costenoble
et al. 2007, Noh et al. 2007, Schaub et al. 2008, van Winden et al. 2005). Further
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collaborations of metabolomics and fluxomics are expected to be developed and to
be employed in investigations of complex and large-scale metabolic systems.

3.1.3 Integration of Various Omics Analyses — Multi-omics

These days various omics analyses are frequently employed in many experimen-
tal studies. However, it has been gradually realized that obtaining useful biological
knowledge from a single type of omics data (for example, DNA microarray only) is
no easy task. One reason is that single omics analysis provides us with information
about only one layer of a cellular system. Obviously, multiple functional cellular
layers, including the mRNA, protein, and metabolite layers, are interacting with
each other; thus the response of a total cellular system to given perturbations cannot
be fully captured from a single layer. Figure 3.2 shows a schematic diagram of the
functional layers and their interactions in a cellular system.

In conclusion, not just one omics analysis, but multiple omics analyses are re-
quired for deep and precise understanding of a cellular system. This recognition
seems to be shared by many researchers (Andersen et al. 2008, De Keersmaecker
et al. 2006, Joyce and Palsson 2006, Steinfath et al. 2007). Toyoda et al. proposed
the concept of the “omic space”, which consists of multi-layered state variables, and
suggested a data integration framework and graphic presentation method of multi-
ple omics data (Toyoda et al. 2007, Toyoda and Wada 2004). Figure 3.3 displays
a conceptual diagram of the “omic space”. (Lee et al. 2005) indicated the essen-
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tiality of the combination of multiple omics analyses for strain improvements in
fermentation industries. (Paley and Karp 2006) developed the “Omics viewer” that
can show different types of data sets (for example, measurements of gene expres-
sion and metabolite concentrations) simultaneously on a metabolic pathway map.
(Arakawa et al. 2005) also developed a mapping tool to display complex omics data
together.

Excellent studies using a combination of multiple omics methods have begun
to be reported. Confining examples to studies of Escherichia coli, the following
works can be found: Yoon et al. (2003) carried out combined transcriptomic (DNA
microarray) and proteomic (two-dimensional gel electrophoresis; 2-DE) analyses
of E. coli during high cell density cultivation, which is required for higher produc-
tivity of recombinant proteins. They showed that patterns of gene expression were
mostly similar to patterns of protein expression, except for several discrepancies
observed for a few genes (Fig. 3.4). Fong et al. (2006) investigated transcriptomics
(DNA microarray) and fluxomics ('3C-labeled glucose was used as a substrate, and
label patterns of amino acids of hydrolyzed cells were measured by GC-MS) of E.
coli to reveal the mechanisms of adaptive mutations of some gene-disrupted strains.
They found that activation of latent pathways and flux changes in the tricarboxylic
acid (TCA) cycle in the adaptive evolved strains correlate well with changes in the
transcriptome. Bore et al. (2007) performed transcriptomics (quantitative reverse-
transcription polymerase chain reaction; qRT-PCR) and proteomics (peptide mass
fingerprinting) to study E. coli adaptation to benzalkonium chloride, which is a
commonly used disinfectant and preservative. Their analysis indicated that benza-
Ikonium chloride treatment might result in superoxide stress in E. coli. Wittmann
et al. (2007) studied the fluxome (GC-MS analysis of labeled proteinogenic amino
acids) and metabolome (enzymatic analyses) of E. coli during temperature-induced
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Fig. 3.4 Transcriptome and proteome analysis of E. coli during high cell density culture. (From
Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS (2003) Combined transcriptome and proteome
analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng. 81(7):753-767.
Copyright (© 2003 by Wiley Periodicals, Inc. Reprinted with permission of Wiley-Liss, Inc., a
subsidiary of John Wiley & Sons, Inc.). X axis, cell concentration (g DCW/L); Y axis, expression
level in log?2 scale for transcriptome (gray) and in absolute value of volume % for proteome (black);
gray-colored gene name, only mRNA level was detected; black-colored gene name, both mRNA

and protein level were detected

recombinant production of human fibroblast growth factor. Their analysis showed a
relationship between the adenylate energy charge drop and an increase in the gly-
colytic flux. Other regulations in central carbon metabolism were also estimated.
(Durrschmid et al. 2008) performed transcriptomics (DNA microarray) and pro-
teomics (two-dimensional difference gel electrophoresis (Marouga et al. 2005);
2D-DIGE) analyses of E. coli stress response mechanisms towards recombinant
protein expression. Their investigation of the expression of two model proteins
demonstrated that there is a distinct impact of recombinant proteins, particularly
on levels of known stress regulatory genes and proteins, as well as on the response
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Table 3.1 Reported multi-omics analyses of E. coli

Transcriptome Proteome Metabolome Fluxome
Yoon et al. 2003 o o
Fong et al. 2006 ) o
Bore et al. 2007 o o
Wittmann et al. 2007 ) o
Durrschmid et al. 2008 o o

associated with ArcA and psp. Table 3.1 summarizes these multi-omics research
studies targeting E. coli.

In 2001, the Institute for Advanced Biosciences (IAB) of Keio University was
founded at Tsuruoka City, Yamagata, Japan. The purpose of the IAB is to actual-
ize the crossover association of different research fields, including genomics, pro-
teomics, metabolomics and informatics, for the establishment of “integrative sys-
tems biology” to obtain a more complete picture of living organisms. E. coli was
selected as the primary target of the IAB, and a multi-omics approach was applied to
reveal the basic principles of cellular responses of E. coli to genetic or environmental
perturbations (Ishii et al. 2007). In the following section, a large-scale multi-omics
study performed in the IAB is presented.

3.2 Multi-omics Analysis of E. coli

3.2.1 Chemostat Cultures of the Keio Collection

The Keio collection (Baba et al. 2006), which is the complete collection of all
single-gene disruptants of E. coli K-12, was used for this study. From the Keio col-
lection, 24 single-gene disrupted strains were selected. These strains are disruptants
of genes in glycolysis or pentose phosphate pathway metabolism. These metabolic
pathways are parts of the “central carbon metabolism”, which functions to supply
energy and synthesize essential precursors used for cellular components. Since cen-
tral carbon metabolism is crucial for living cells, the disruption of genes involved in
this metabolism was expected to result in dramatic changes in the cellular system.
A uniform dilution rate of 0.2h~! was applied to the chemostat cultures of the Keio
collection strains.

Gene disruption can be thought of as an “internal” perturbation to the cell. On the
other hand, “external” perturbation can be added by changing environmental factors.
In this study, we chose substrate concentration change as the external perturbation.
This was carried out by changing the dilution rate of the chemostat culture. Table 3.2
summarizes the strains and culture conditions used, and Fig. 3.5 shows the pathway
map of central carbon metabolism of E. coli and the positions of disrupted single
genes examined in this study.
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Table 3.2 Strain and culture conditions

Strain E. coli BW25113

galM, glk, pgm, pgi, pfkA, pfkB, fbp, fbaB, gapC, gpmA, gpmB,
DPYKA, pykE, ppsA, zwf, pgl, gnd, rpe, rpiA, rpiB, tktA, tktB,

talA, talB
Medium Modified M9
Carbon source Glucose
Oxygen supply Aerobic
Temperature 37°C
pH 7.0
Dilution rate 0.2h~! (for single-gene disruptants)

0.1,0.2,0.4,0.5,0.7h~! (for wild-type)

3.2.2 Transcriptome, Proteome, Metabolome,
and Fluxome Analysis

The performed multi-omics analysis included layers closest to the genome and those
closest to the phenotype, i.e., including transcriptomics, proteomics, metabolomics
and fluxomics. Both cell-wide semi-quantitative analysis and targeted quantitative
methods were employed in the transcriptome and proteome analyses. The transcrip-
tome analysis was performed by DNA microarray for 4213 genes and qRT-PCR for
85 genes involved in central carbon metabolism. The proteome analysis was carried
out with 2D-DIGE (approximately 2000 proteins were detected) and quantitative
methods using liquid chromatography-mass spectrometry/mass spectrometry (LC-
MS/MS) for 57 proteins involved in central carbon metabolism. The metabolome
analysis was performed by CE-TOFMS for 579 metabolites. To perform the fluxome
analysis, '*C-labeled glucose was used as a substrate and mass distributions of pro-
teinogenic amino acids of cultured cells were measured by GC-MS. The metabolic
fluxes were calculated from the information of the obtained mass distributions. Ta-
ble 3.3 summarizes the omics technologies employed in this study. All measurement
data is published on our website (http://ecoli.keio.ac.jp/).

The obtained data set was used to analyze the response of the cellular system
to the perturbations. For this purpose, two-step normalizations were applied to the
measurement values (Ishii et al. 2007), and final converted values are named as
“expression index” (EI).

3.2.3 Observed Robustness in E. coli Metabolic System

Figure 3.6 shows Els of quantitative measurements (QRT-PCR for mRNAs, LC-
MS/MS applied methods for proteins, and CE-TOFMS for metabolites) for all sam-
ples. Upon first glance of this figure, mRNAs and proteins seem to vary with the
change of specific growth rate (equal to the dilution rate in a chemostat culture).
Surprisingly, no clear changes of mRNAs and proteins were found for most single-
gene disruptants, even when the disrupted gene concerns crucial central carbon
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Fig. 3.5 Map of E. coli K-12 central carbon metabolism. (Modified from Ishii et al. 2007). Bold
font, metabolites; italics, genes. Gray character genes are examined single-gene disruptions

metabolism. Moreover, no significant or regular change was observed for metabo-
lites in both growth rate changed samples and single-gene disrupted samples. Some
nucleotides in single-gene disruptants showed relatively large variances, but this is
probably because of instability and/or low extraction efficiency of the nucleotide
compounds. To authenticate these findings, averages of absolute values of the EI in-
cluded in a specific category (i.e., mRNAsS, proteins, or metabolites) were calculated
and referred to as the average expression index (AEI). Figure 3.7 shows the AEIs of
each category.
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Table 3.3 Employed technologies in the multi-omics study of E. coli

Number of measured chemical

Used technology  species

Transcriptomics DNA microarray 4213
qRT-PCR 85

Proteomics 2D-DIGE 2000 (approximately)
LC-MS/MS 57

Metabolomics CE-TOFMS 579

Fluxomics GC-MS 104 (isotopomers of fragment

from proteinogenic
amino acids)

Fig. 3.6 Heatmap of the EI
values of intracellular
components. (Modified from
Ishii et al. 2007). The
heatmap shows the EI values
of intracellular components
that were detected in more
than half the samples. RF,
reference sample (wild-type
cells cultured at a specific
growth rate of 0.2h™!); GR,
wild-type cells cultured at the
indicated specific growth
rates; KO, single-gene
knockout mutants cultured at
a specific growth rate of
0.2h7!
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mRNAs Proteins Metabolites

The AEIs for mRNAs and proteins gradually increased at higher growth rates.
This suggests that E. coli actively regulates global gene and protein levels to meet
increasing metabolic demands. Meanwhile, the AEI values for metabolites did not
change significantly with the growth rate. This relative stability in metabolite level
may be a consequence of the active regulation of enzyme expression. Focusing on
local pathways, large changes of expression levels of proteins related to energy sup-
ply under aerobic condition were observed accompanying an increase in the specific
growth rate (Ishii et al. 2007).

In contrast to the changes observed in wild-type cells cultured at various growth
rates, the AEIs for both mRNAs and proteins in most gene-disruptants showed small
changes, which fell within the range of variation observed in wild-type samples at
the same specific growth rate (i.e., reference samples). In comparisons of targeted
analyses of mRNAs (qRT-PCR) and proteins (LC-MS/MS), the AEI values in all
disruptants were smaller than the AEI values observed for wild-type cells at a spe-
cific growth rate of 0.7 h~!. Similar results were obtained for the AEI values repre-
senting the global analysis of expression of mRNAs (DNA microarray) and proteins
(2D-DIGE) (Ishii et al. 2007). An overview of the changes in AEIs explained above
is displayed in Table 3.4.

Table 3.4 Changes in AEIs

Most of examined single-gene

Growth rate change (wild-type) disruptants
mRNAs + —
Proteins + —

Metabolites — —

+: Variation among samples was large. —: Variation among samples was small.
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These findings suggest that E. coli does not appreciably respond to the loss of a
single enzyme in central carbon metabolism by regulating the abundance of other
compensatory enzymes. Actually, in most single-gene disruptants, the expression
level of isozyme coding genes was almost same as the level in the wild-type strain
(Ishii et al. 2007). In single-gene disruptants, a stable metabolic state is maintained
by using remaining isozymes or by rerouting metabolic fluxes. For example, in the
zwf-disruptant, some fluxes flow in a countercurrent direction compared to the wild-
type, as reported in a previous study (Zhao et al. 2004)

Two exceptions were the pfkA-disruptant and rpiA-disruptant (Ishii et al. 2007).
In these strains, potential mutations in genes other than the disrupted gene were
checked, and various mutations enhancing the expression level of compensatory
isozymes of the disrupted gene (pfkB in pfkA-disruptant and rpiB in rpiA-disruptant)
were found, as reported in previous studies (Daldal 1983, Skinner and Cooper 1974).

3.3 Concluding Remarks

Changes in the dilution rate of a chemostat culture correspond to changes in the
concentration of growth-limiting substrates, and thus various settings of the dilu-
tion rate can be regarded as an environmental perturbation for E. coli. On the other
hand, the disruption of a gene can be thought of as an intracellular perturbation. Our
multi-omics analysis demonstrates that the metabolic network of E. coli is markedly
robust against both types of perturbations. E. coli can actively respond to changes
in the concentration of growth-limiting substrates by regulating the level of enzyme
expression to maximize growth rate, which is reflected in the observed stability
of metabolite levels. However, this strategy may come at a high cost, because the
cell must prepare additional systems (such as sensor proteins, signal mediators,
and transcriptional regulators) to detect and react appropriately to each specific
perturbation. This strategy contrasts with the finding that E. coli does not appear
to reconfigure mRINA or protein levels actively when most single metabolic genes
are disrupted. In this case, structural redundancy in the metabolic network itself
provides the necessary robustness. As a result, the levels of most metabolites remain
at wild-type levels, although some localized perturbations may occur. This strategy
seems to save more energy than the active regulation of mRNA or proteins, because
it requires no specific molecular machinery for detecting each mutation. Even if this
strategy appears insufficient in the face of some mutations, E. coli may survive by
accumulating additional mutations, as observed for pfkA and rpiA disruptants. Using
multiple strategies may thus enable E. coli to maintain a stable metabolic state when
exposed to various types of perturbations.

Biological robustness is one of the central subjects in systems biology (Kitano
2004), and conceptual descriptions or analyses with mathematical models have
been attempted to explain how robustness is achieved (Kitano 2007). Furthermore,
some omics or multi-omics analyses to study robustness in real cells have also
been reported. For example, (Becker et al. 2006) performed a proteomics analysis
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of Salmonella, and found extensive metabolic redundancies and access to diverse
host nutrients. (Gibon et al. 2006) measured the transcriptomes, proteomes, and
metabolomes of Arabidopsis rosettes wild-type and pgm-disruptant, and demon-
strated that the amplitudes of diurnal changes in metabolite levels in pgm were
similar or smaller than those in the wild-type. The above mentioned multi-omics
analysis of E. coli also supports the existence of robustness as a common principle
to ensure survival in the face of countless accidents.

The next challenge of the multi-omics data-driven systems biology of E. coli is
to construct a mathematical model incorporating the obtained multi-omics data to
elucidate a tangible mechanism of metabolic robustness in E. coli. Analyses using
a mathematical model will suggest methods for breaking cellular robustness to en-
hance the productivity of useful metabolic compounds. Finally, and needless to say,
the integrative multi-omics approach can be applied to many organisms, not just
microorganisms, and thus expanding applications of this approach can be expected
in the future.
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