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Abstract In engineering of Escherichia coli for the production of chemicals de-
rived from the central metabolic pathway and in using E. coli as a biocatalyst for
reactions involving externally supplied specific substrates, there is a need to consider
the redox balance and cofactor availability for optimization of the process. Several
examples of taking into account the systems biology complexity of redox processes
through consideration of gene expression effects, protein level and activity effects,
and the role of small molecule effectors of enzyme activity, as well as the role of
activation and deactivation of sensitive active site structures are described in the
chapter. The manipulation of the availability of reduced cofactors through genetic
means and the application of such altered strains for metabolic engineering pur-
poses for the improved production of specific reduced molecules for biofuels, chiral
pharmaceutical intermediates, unconjugated colored compounds, and other valuable
chemicals is presented.
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17.1 The Central Pathway of E. coli Metabolism, a Systems
View of the Network and Cofactor Considerations

17.1.1 Aerobic Considerations

Under aerobic conditions the level of reduced cofactors formed in glycolysis and
in the TCA cycle can be largely converted to energy for the cell via the electron
transport chain and the associated oxidative phosphorylation events. The removal of
excess reductant under partial aerobic conditions by an NADH oxidase, particularily
an enzyme that forms water, has been demonstrated and can aid flow to more oxi-
dized products in lactic acid bacteria (Lopez de Felipe et al. 1998, Neves et al. 2002).
The expression of an NADH oxidase from Streptococcus pneumoniae was studied.
Results showed that expression of NADH oxidase altered the NADH/NAD+ ratio.
In an arcA host acetate formation was reduced and the biomass yield increased
(Vemuri et al. 2006) suggesting that if the NADH level can be kept low, then the
TCA cycle can function efficiently even at a high glucose concentration to process
the carbon feedstock without build up of intermediates that generate acetate.

In aerobic processes however, if a redox process for the formation of the de-
sired product is required, the cofactor can be recycled and reduced through the
metabolism of a suitable precursor. One also has to consider that the possible uti-
lization of the reduced cofactor through the electron transfer system can compete
and limit the availability of the reductant for the desired reaction. In this biocatalyst
mode the cells are usually held in a non-growing state, and the aerobically generated
reductant can be used more fully in a desired microbial conversion reaction.

The contribution of microaerobic conditions to aid cell energetics and growth
properties while allowing more efficient use of carbon for products has also been
observed. Early enzyme analysis pointed to factors in the transition (Doelle and
Hollywood 1978, Thomas et al. 1972) that were important. It appears the ability
to respire oxygen under microaerobic conditions aids E. coli in intestinal growth
and colonization (Jones et al. 2007). In metabolic engineering practice, a similar
strategy is used in the formation of partially oxidized products or where the redox
balance would not be appropriate for complete anaerobic metabolism. A number
of studies have focused on the contribution that the presence of various oxygen
binding proteins such as Vitreoscilla hemoglobin can make to enhanced respiration
under microaerobic conditions and the effects on cell physiology, productivity, and
metabolic pattern (Andersson et al. 2000, Frey et al. 2000, Kallio et al. 1996). Stud-
ies of the relative expression of genes (Liu and De Wulf 2004, Overton et al. 2006,
Salmon et al. 2003) and metabolite patterns under conditions of limited oxygen
have been made with wild type and various metabolic and regulatory mutant strains
under defined oxygen conditions (Alexeeva et al. 2000, 2002, 2003, Becker et al.
1997, Partridge et al. 2007, Shalel-Levanon et al. 2005a,b,c, Zhu et al. 2006, 2007a).
Such measurements have allowed models of the shift between aerobic and anaerobic
conditions to be formulated and their general features to be evaluated (Govantes
et al. 2000, Peercy et al. 2006, Schramm et al. 2007). The metabolite pattern of
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products derived from pyruvate arising in various mutant strains under conditions
of low oxygen is complicated by many factors influencing the in vivo activities of
the various enzymes around this node. For example the activities of Pdh and Pfl
are affected by gene expression levels, the NADH level and the relative amounts of
activation, deactivation of Pfl as well as the YfiD interaction with Pfl. The levels of
other enzymes acting around the pyruvate node and the TCA cycle and cytochrome
oxidase enzymes also influence the level of small molecules that can affect in vivo
activity and metabolic flux through the competing routes. Some discussion of these
influences is given in (Peercy et al. 2006, Shalel-Levanon et al. 2005b, Zhu et al.
2007a) (Fig. 17.1).
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Fig. 17.1 (a) Comparison of metabolites and fluxes of cultures of MG1655 DarcA (arcA disrup-
tion) and MG1655 DarcA, Dfnr strains grown in chemostat under 5% oxygen in the headspace. The
difference in lactate flux is most apparent. Other fluxes are shown as indicated. The NADH/NAD+
ratio is also shown. In the parent, MG1655 the other metabolites were not observed see Fig. 17.1b.
(b) Metabolite fluxes as a function of the oxygen concentration in the headspace at steady state.
PFL, lactate, ethanol, and succinate. The fluxes in the individual strains are indicated: (purple, dark
gray diamond) MG1655, (red,dark gray squares) MG1655 [DarcA], (green, light gray x) MG1655
[Dfnr], (blue, light gray triangles) MG1655 [DarcA, Dfnr]. The error bars indicate the standard
deviation of three samples taken after 7, 7.5, and 8 residence times
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17.1.2 Anaerobic Considerations

Under anaerobic growth the reductant formed in glycolysis must be recycled by
reactions using available substrates. This process generates the reduced metabolites
derived from pyruvate in many bacterial species and the reduced products of the
mixed acid fermentation in E. coli. By limiting the alternative pathways for cofactor
recycling, the metabolic course of the flux into the downstream parts of the central
pathway is affected. The dissipation of the reducing equivalents can also be han-
dled through the formation of hydrogen either directly or through the release of a
compound such as formate which can easily be converted to hydrogen and carbon
dioxide. Bacteria have elaborate sensing mechanisms for oxygen and regulate the
specific cytochrome oxidases as well as many other genes through transcriptional
regulators such as ArcA and Fnr. The area of aerobic/anaerobic gene regulation
mechanisms will not be covered here as it is reviewed elsewhere in this volume
and in other reports (Gunsalus and Park 1994, Sawers 1999). The various electron
carriers; flavins, nucleotide cofactors, quinones and ferredoxins, act with specific
enzymes and while there is interconversion among the reduced compounds the re-
dox potential and relative quantity of each within the cell suggests a distinct role
for the individual carriers in the cell. The efficiency of rapid equilibrium among the
pools of reduced electron carriers is dependent on a number of factors including the
relative location in the cell, association of key molecules with other cell components,
and specific binding constants and kinetic parameters of competing reactions. These
factors can be adjusted by engineering but the physiological response of the cell is
often complicated.

17.2 Strategies for Engineering Metabolic Outputs
from Specific Branches

17.2.1 Multiple Deletions in Alternative Pathways

17.2.1.1 Pyruvate and Acetate

Pyruvate is formed under aerobic conditions when it is desired to produce it in high
quantity (Causey et al. 2004, Sakai et al. 2007, Tomar et al. 2003, Zelic et al. 2006,
2004a,b). Some similar features have been implemented in the high production of
acetate by E. coli (Causey et al. 2003). The general strategy for high production
of these compounds involves high glycolytic fluxes and the removal of competing
pathways, either for the carbon or for the reductant in order to minimize the poten-
tial formation of further metabolism of the compound (e.g. pyruvate conversion to
lactate). In the case of acetate production, the elimination of reactions involving a
key precursor (e.g. pyruvate conversion to other products) can affect the yield and
culture performance. Since these compounds are dealt with elsewhere in this volume
the specifics of metabolic engineering of E. coli for production of these products will
not be discussed here.



17 Engineering E. coli Central Metabolism 355

One area of interest related to industrial production is the reduction of acetate
formation that can inhibit growth and limit productivity in a variety of processes
including recombinant protein production. Several strategies have been investigated
to avoid acetate formation. In cultures, limited glucose addition can avoid some of
the problems but requires careful control of the culture. These engineering strategies
have become widely practiced as computer controls and sensors have become more
sophisticated but are still a concern for optimization and reproducibility in large
scale processes. The reduction of glucose uptake and the avoidance of build-up of
the glycolytic intermediate, pyruvate, can be accomplished via genetic changes af-
fecting the glucose transport system (Backlund et al. 2008, Chen et al. 1997, De
Anda et al. 2006, Hernandez-Montalvo et al. 2003, Lara et al. 2008, Picon et al.
2005, Wong et al. 2008, Yi et al. 2003) or the presence of modified sugars (Aristidou
et al. 1999, Chou et al. 1994). A large number of studies on the effects of ptsG
mutations on production of acetate and other compounds, recombinant proteins,
and growth have shown the importance of coordination of glucose uptake with
downstream metabolism to avoid excessive acetate production and performance
limitations.

The inactivation of genes that encode the major acetate formation pathway en-
zymes (acetate kinase, ack and phosphotransacetylase, pta; and pyruvate oxidase,
poxB) can relieve acetate formation (De Mey et al. 2007) although such mutations
may reduce the growth rate under some conditions or in certain genetic backgrounds
(Abdel-Hamid et al. 2001, Flores et al. 2004, Vemuri et al. 2005). The effects of
fluctuations in oxygen on the formation of acetate and recombinant proteins has
been examined with the observation that the genes of fermentative metabolism can
be removed with accompanying improved performance (Lara et al. 2006). The dif-
ferences in E. coli strains have been studied and the flux through the glyoxyate
pathway, acetate uptake and synthesis, and gluconeogenesis were different among
some widely used laboratory strains and accounted for the differences in acetate
formation in cultures of E. coli B and JM109 (Phue et al. 2005) and the extent of
flux through anaplerotic pathways influences acetate excretion (Farmer and Liao
1997). Acetate formation can also be addressed through diversion of the precursor,
pyruvate, to a non-toxic compound such as acetoin by incorporation of the gene
encoding an acetolactate synthase from another organism (Yang et al. 1999).

17.2.1.2 Lactate

While lactate is readily formed by lactic acid bacteria and other microbes, it is
formed naturally in differing amounts by various E. coli strains. Lactate formation
in E. coli has been engineered, with either stereoisomer being formed depending on
the particular characteristics of the lactate dehydrogenase employed (Chang et al.
1999, Dien et al. 2001, Fong et al. 2005, Hua et al. 2006, Zhou et al. 2003a,b,
Zhou et al. 2005, Zhu et al. 2007b). In this case the fermentation is anaerobic and
the other pathways that could use the reduced cofactor formed in glycolysis are
removed (e.g. pyruvate conversion to acetyl-CoA and subsequently on to ethanol).
Efficient natural production of this compound by other organisms is available and
several engineered E. coli strains also perform well.
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17.2.1.3 Succinate

In the case of succinate production, the conversion of glycolytic intermediates to
oxaloacetate is a key step and in order to obtain high conversion enzymes capa-
ble of forming OAA or malate (Hong and Lee 2001, Kim et al. 2004, Lin et al.
2004, 2005e, Sanchez et al. 2005b, Stols et al. 1997, Vemuri et al. 2002) are usu-
ally overexpressed either through recombinant techniques or by enhancement of the
natural system. There is a two fold problem in attaining the highest possible molar
yield from glucose; one is the limitation of reductant (Hong and Lee 2002), if the
2 molecules of NADH formed in glycolysis are used to reduce the oxaloacetate,
only one molecule of succinate can be formed. There is an alternative way to form
succinate that does not consume NADH, i.e. through the glyoxylate route of the
TCA cycle. This route also is limited to production of one molecule of succinate
from one glucose due to loss of carbon in this normally aerobic pathway (Lin et al.
2005a,c,d). The correct partitioning of oxaloacetate between the reductive and ox-
idative routes can increase the overall yield while maintaining the NADH balance
(Cox et al. 2006, Sanchez et al. 2006).

A variety of mutations to route the products of glycolysis to succinate have been
investigated with the effects of redox systems (Yun et al. 2005) and the sugar uptake
system (Chatterjee et al. 2001, Wang et al. 2006) showing a significant effect in
some backgrounds due to the effects on pyruvate formation. Performance on var-
ious hexose and pentose sugars have been studied with glucose generally offering
the highest yield compared to fructose or xylose (Andersson et al. 2007, Lin et al.
2005b). Computational methods have also been employed to identify high yielding
strains (Lee et al. 2005) or model the immediate metabolic network (Cox et al.
2006). Strains made with an idea of optimal succinate production have included
those with a number of defined mutations (Sanchez et al. 2006) and evolved strains
derived from a defined parent (Jantama et al. 2008). In the studies various experi-
mental conditions have been examined with the key factors of yield from feedstock,
rate of production, productivity per cell mass, and final titer being components of
the calculation of the potential of the process.

17.2.2 Alteration of Cofactor Availability (NADH)

Efforts to modify the NADH availability for cell metabolism have been undertaken
for many years and have been based on observations of differing metabolic prod-
ucts formed using similar sugars with different oxidation levels such as glucuronic
acid, glucose, and sorbitol. In these cultures the pattern of products formed, acetate,
ethanol, formate, lactate, and succinate changes with the more oxidized products
dominating in the culture from the oxidized substrates and the more reduced prod-
ucts being enhanced upon culture growth on sorbitol, a more reduced substrate.
More oxidized products can be formed by depleting the NADH by an NADH oxi-
dase as mentioned above. Here we will consider the changes in metabolites when an
effort is made to augment the normal amount of NADH produced by the wild type
E. coli strain.
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Manipulation of the conversion reaction of pyruvate to acetyl-CoA and the sub-
sequent release of formate, if formed, can alter the amount of reductant available to
the cell. The production of NADH will favor the formation of more reduced prod-
ucts. There are three general enzymes that can catalyze this reaction each giving its
own reduced product; pyruvate dehydrogenase that forms NADH and acetyl-CoA
(Cassey et al. 1998, Guest et al. 1981, 1989, Guest and Stephens 1980, Haydon
et al. 1993), pyruvate ferredoxin oxidoreductase that forms reduced ferredoxin or
flavodoxin and acetyl-CoA (Blaschkowski et al. 1982, Reed et al. 2003, Serres et al.
2001), and pyruvate formate lyase that forms formate and acetyl-CoA (Birkmann
et al. 1987, Knappe and Blaschkowski 1975, Knappe et al. 1984, Knappe and Sawers
1990, Pecher et al. 1982, Sauter and Sawers 1990, Sawers and Bock 1988, Varenne
et al. 1975) with a number of articles describing the free-radiacal enzyme and its
activation under anaerobic conditions and inactivation under aerobic conditions and
the participation of proteins such as AdhE, YfiD and PflA in defining the activity
of the protein (Becker et al. 1997, 1999, Chase and Rabinowitz 1968, Hoover and
Ludwig 1997, Knappe and Wagner 1995, Kulzer et al. 1998, Nnyepi et al. 2007,
Reddy et al. 1998, Sawers et al. 1998, Sawers and Watson 1998, Wagner et al. 2001,
Zhang et al. 2001, Zhu et al. 2007a). If the reaction gives rise to NADH directly
the reduced nucleotide cofactor can be used for production of a desired reduced
product. The pyruvate dehydrogenase is generally the active enzyme under aerobic
conditions and it is replaced by the pyruvate formate lyase under limiting oxygen
conditions. The pyruvate dehydrogenase can still operate under anaerobic condi-
tions, however high NADH is often inhibitory to the reaction (Snoep et al. 1993,
Zhu et al. 2007a). The role of PdhR in regulating the Pdh system and effects of
mutations of pdhR on expression and metabolism have been studied (Haydon et al.
1993, Kim et al. 2007, Ogasawara et al. 2007, Quail and Guest 1995, Zhou et al.
2008). As an added feature, the production of formate, while the final step under
neutral pH conditions by Pfl, formate is further hydrolyzed to hydrogen and carbon
dioxide under acidic conditions by the formate hydrogen lyase system (Bagramyan
and Trchounian 2003, Birkmann et al. 1987). This reaction thereby removes the
acidic metabolite formate but does not generate any useful reductant or energy for
the cell but could reduce some acid stress due to formate accumulation. The effect
of formate hydrogen lyase and other hydrogenases has been studied with regard to
hydrogen production (Maeda et al. 2007a, Redwood et al. 2008, Yoshida et al. 2005,
2007). In some cases an uptake hydrogenase can recapture a portion of the hydrogen
released and it can thereby affect the pattern of metabolites (Francis et al. 1990,
Laurinavichene and Tsygankov 2001, Maeda et al. 2007b, Redwood et al. 2008).

The reducing equivalents available in formate can be recaptured to NADH rather
than be released to hydrogen by incorporation of a NADH-dependent formate dehy-
drogenase (Berrios-Rivera et al. 2002a,b, Galkin et al. 1997, Sanchez et al. 2005a,
Slusarczyk et al. 2000). Such NADH coupled enzymes are known in a number of
organisms and those of Candida have been used in vitro and in vivo for regeneration
of the NADH pool. Optimal enzymes from Candida boidinii and Mycobacterium
vaccae that are more stable have been generated by mutation (Slusarczyk et al. 2000,
Tishkov and Popov 2006, Yamamoto et al. 2005) and NADH-dependent formate
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Fig. 17.2 (a) NADH coupled formate dehydrogenase pathway. The native NAD independent for-
mate hydrogen lyase pathway uses (FDHF: formate dehydrogenase, NAD independent) to convert
formate to hydrogen and carbon dioxide. The newly added NAD+ dependent pathway (in blue,
light gray) uses (FDH1: NAD+ dependent formate dehydrogenase, FDH1 encoded by fdh1 from
Candida boidinii) to convert formate to carbon dioxide and the reduced cofactor NADH. (b) Effects
on ethanol formation of expression of a NADH-dependent formate dehydrogenase in E. coli. The
E. coli strain GJT001 is a W3110 derivative parental strain and BS1 has an inactivated fdhF gene.
The plasmid pDHK29 is the vector and pSBF2 contains the fdh1 gene from Candida boidinii.
Growth was in L-broth plus 20 g/L glucose

dehydrogenases from other organisms have been isolated (Nanba et al. 2003a,b).
Such enzymes are used to recycle NADH for use in formation of valuable com-
pounds such as the pharmaceutical precursor, ethyl (S)-4-chloro-3-hydroxybutanoate
(Yamamoto et al. 2005). The formation of chiral pharmaceutical intermediates using
NADH regeneration has been reviewed (Patel 2000) (Fig. 17.2).

17.2.2.1 Ethanol

The capture of all available reducing power from glycolysis and present in pyruvate
is needed for optimal formation of 2 molecules of ethanol from glucose. In E. coli
such high formation of ethanol has been achieved through the addition of the pdc
and adh genes from Zymomonas mobilis (Ingram et al. 1987, 1999, Jarboe et al.
2007). The recapture of the reductant in formate via a NADH-dependent formate
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dehydrogenase can also give essentially complete conversion of glucose to ethanol
(Berrios-Rivera et al. 2002b, 2004) and chemostat cultures have shown the effect on
metabolites using different carbon sources (Sanchez et al. 2005a).

17.2.2.2 E. coli Cells as Single Step Biocatalysts

The use of regenerated NADH to carry out a reduction by a whole cell biocatalyst
has some advantage over using a purified enzyme in that the cell takes care of the
recycling step and the cofactor is confined within the cell. Several papers have used
such recycling systems in roles as cellular biocatalysts for amino acid (Galkin et al.
1997) and mannitol production (Kaup et al. 2003, 2004, 2005).

17.2.3 Alteration of Cofactor Availability (NADPH)

The pentose phosphate pathway, zwf and isocitrate dehydrogenase, icd are generally
considered to be the major sources of reductant NADPH which is used in many
biosynthetic reactions. The preference for NADPH can limit the production of the
desired product since the NADPH pool is considerably smaller than the pool of
NADH. Efforts to enhance the equilibration between the two reduced nucleotide
cofactors has been investigated. There are two transhydrogenases in E. coli, udhA
(sthA) and pntAB. The proton-translocating transhydrogenase PntAB was identi-
fied as the major source of NADPH under aerobic growth with the pentose phos-
phate pathway contributing almost as much and isocitriate dehydrogenase making
up most of the remainder. While the energy-independent transhydrogenase UdhA
(SthA), seemed to be essential under metabolic conditions with excess NADPH
formation suggesting it played more of a role in dissipating NADPH to NADH
(Sauer et al. 2004). Alterations of the transhydrogenase do indeed increase the level
of NADPH-dependent products that are formed (Weckbecker and Hummel 2004).
Another strategy to produce more NADPH for a conversion is to use a biocatalyst
with a special system and substrate for producing NADPH based on the oxidation
of the specific exogenous added substrate by a NADPH-dependent redox enzyme
and the use of the NADPH for synthesis of the desired reduced product (e.g. a
chiral alcohol). Another approach is to guide more metabolism through the pentose
phosphate pathway where NADPH is formed in an early step. Several papers have
analyzed the effects of mutations affecting glycolytic enzymes or overexpression
of glucose-6-phosphate-1-dehydrogenase, zwf, in the context of NADPH usage. A
discussion in consideration of the effects on PHB production is given below.

A more recent strategy is to incorporate a NADPH-utilizing step to replace a
natural NADH-dependent step in glycolysis. This approach of using an NADPH-
utilizing enzyme from another organism can provide additional NADPH for use by
an added pathway that consumes high amounts of the cofactor (a NADPH sink).
Several pathways utilize NADPH in high amount such as those for the biodegrad-
able polymer, polyhydroxybutyrate and many unsaturated colored compounds and
terpeniod compounds derived from the isoprenyl pyrophosphate pathway. Naturally
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Fig. 17.3 (continued)
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existing pathways in E. coli or specialized pathways can be introduced to assess
the effects of manipulation of NADPH on the production of these compounds. Fre-
quently NADPH is used as a recycling compound in combination with oxidative
metabolism, such as with P450 type enzymes and monooxygenases, and studies can
examine the efficiency of NADPH recycling systems on processes catalyzed by such
enzymes (Fig. 17.3).

17.2.3.1 PHB

The pathway to PHB and other polyhydroxylalkanoates uses NADPH in the reduc-
tion step of the individual monomers (Saito et al. 1977) and since a large amount of
this product can be formed in engineered E. coli, it can serve as a useful test system
for accessing the effects of attempts to alter NADPH availability. There have been
many studies of the production of PHB type molecules in E. coli (Fidler and Dennis
1992, Lee et al. 1994, Peoples and Sinskey 1989, Schubert et al. 1988, Slater et al.
1988, 1992, Timm and Steinbuchel 1992) and recent reviews have appeared (Dias
et al. 2006, Keenan et al. 2006, Nomura and Taguchi 2007, Rehm 2007, Steinbuchel
2005, Steinbuchel and Hein 2001). The influences of various approaches are dis-
cussed below.

The inactivation of the talA gene increased PHB content and effect was thought to
arise from effects on supplies of the intermediates NADPH and acetyl-CoA (Song
et al. 2006) and a similar effect was noted upon overexpression of the tktA gene
(Jung et al. 2004). Directly overexpressing zwf encoding glucose-6-phosphate de-
hydrogenase increased PHB accumulation (Lim et al. 2002). These alterations of
the pentose pathway would promote increases in the major precursors. Efforts have
been made to engineer additional NADPH availability by processing more of the
glucose through glucose 6-phosphate dehydrogenase by using a mutation causing
pgi gene inactivation. NADPH overproduction through the pentose phosphate path-
way in the pgi mutant strain causes some reducing power imbalance that ultimately
can affect the cell growth (Kabir and Shimizu 2003a,b). Experiments analyzing the
concentrations of intermediates and coenzyme ratios acetyl-CoA/CoA, total CoA,
and NADPH/NADP ratios showed that the PHB flux was highly sensitive to the
acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concen-
tration (response coefficient 0.7), and pH (response coefficient −1.25) (van Wegen
et al. 2001). It was less sensitive (response coefficient 0.25) to the NADPH/NADP
ratio. The total NADP(H) concentration (NADPH + NADP) had a negligible effect.

�
Fig. 17.3 (a) The pathway diagram shows the formation of NADPH in the pentose phosphate
pathway and the modification of the glycolytic pathway by replacement of the normal gapA by a
gapC gene from C. acetobutylicum. The GapC can form NADPH and lead to increased availability
of NADPH. (b) Metabolic flux distribution in control and modified E. coli strains. The data in
the figure indicate the net flux values in E. coli strains calculated from steady state cultures and
C-13 labeling experiments. In the top row is shown the values for E. coli MG1655 (pDHC29, the
vector) and the corresponding values from cultures of the E. coli gapA mutant strain harboring the
plasmid pHL621 containing gapC from Clostridium acetobutylicum are shown in the second row.
The values in brackets represent the exchange coefficients of the fluxes (Martinez et al. 2008)
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The effect of pta inactivation on PHB synthesis was studied in cultures grown on
several media with the observation that a decrease in Pta activity probably causes
some increase in acetyl-CoA as substrate for the PHB synthesis pathway, resulting
in increased PHB accumulation (Miyake et al. 2000). The effects of ack-pta and
pgi mutations on PHB synthesis was studied (Shi et al. 1999) and the improved
performance of the strain with the pgi mutation was observed, however the effect of
the alteration of acetyl-CoA suggested it was not so important in that situation.

A strain with altered NADPH availability was tested for PHB production. In this
strain the normal NADH-utilizing E. coli GAPDH was replaced with a NADPH-
utilizing enzyme from Clostridium acetobutylicum (Martinez et al. 2008). PHB ex-
periments were performed at 32 ◦C and 37 ◦C until glucose was exhausted. Cells
grew slower at 32 ◦C but higher amounts of PHB were produced. After 48h, the
modified E. coli produced 26% of PHB/DCW compared to 6.8% of PHB/DCW
of the control, showing an increase of 3.8-fold. The mutant strain of E. coli also
produced a significantly higher amount of PHB at 37 ◦C compared to the control
(11-fold) but the final concentration was lower than at 32 ◦C. These results showed
that the gapA mutation and introduction of the gapC gene did increase the PHB
production and further indicated the key role of NADPH availability in allowing
high PHB production (Fig. 17.4).

17.2.3.2 Lycopene

Lycopene, a highly unsaturated compound of interest for its color and food in-
gredient properties, consumes a large amount of NADPH during its biosynthesis.
Lycopene synthesis has been studied in E. coli with overexpression and engineering
of genes of the pathway (Alper et al. 2006, Cunningham et al. 1994, Kim et al.
2008, Kim and Keasling 2001, Linden et al. 1991, Misawa et al. 1990, Misawa
and Shimada 1997, Sandmann et al. 1990, Vadali et al. 2005, Wang et al. 2000,
Yoon et al. 2006, 2007a,b) and chemical variations of the basic carotenoid com-
pounds have also been formed in E. coli (Gallagher et al. 2003, Kajiwara et al.
1997, Lee et al. 2003, Schmidt-Dannert et al. 2000). A variety of approaches have
been used to improve production. These include the overexpression of chromoso-
mal genes of E. coli by the insertion of strong promoters to direct high level of
expression of selected genes (Alper et al. 2005a) or addition of plasmids bearing
these genes (Kang et al. 2005). The idea of balance among the levels of various
gene products in generating high flux through the pathway while avoiding build-
up of any toxic intermediates is a factor in this sort of pathway (Farmer and Liao

�
Fig. 17.4 (a) The pathway for production of PHB. The diagram shows the requirement for NADPH
in reduction of the intermediate for polymerization of the PHB precursor. (b) Aerobic PHB pro-
duction by control and gapA mutant E. coli strain overexpressing the gapC gene from C. aceto-
butylicum, both control and modified strains harbor the phb operon from Alcaligenes eutrophus
for PHB synthesis. Control strain: GJT001 (pDHC29 + pAeT29); gapC containing mutant strain:
MBS100G (pHL621 + pAeT29)
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2000, Farmer and Liao 2001, Matthews and Wurtzel 2000, Smolke et al. 2001).
As an example Farmer and Liao (Farmer and Liao 2000) manipulated precursor
availability to increase lycopene production, they showed the G3P pool could be
a limiting factor in their system. The effects of mutations on the synthesis of
lycopene have been investigated by computational and experimental approaches
(Alper et al. 2005b, Alper and Stephanopoulos 2008, Hemmi et al. 1998, Jin and
Stephanopoulos 2007). In recent studies, a large number of individual mutations
were screened and several genes were overexpressed in the host. Then combi-
nations of mutations with improved performance were genetically combined to
generate a strain with substantially greater production. This type of survey of
the metabolic landscape identified the best-engineered strain (T5(P)-dxs, T5(P)-
idi, rrnB(P)-yjiD-ycgW, delta gdh delta aceE delta fdhF, pACLYC), Further study

B

A

Fig. 17.5 (a) Lycopene synthesis by the non-mevalonate pathway requires a high amount of
NADPH. (b) Effect of increased NADPH availability on lycopene production. The final lycopene
concentration of control and modified E. coli strains after aerobic culture is shown. The cultures
were grown in LB or 2YT medium supplemented with 20 g/L of glucose for 24h at 30 ◦C and
250 rpm. The data shown are the average of three replicate experiments where the error bars rep-
resent the standard deviation. Control strain: MG1655 (pDHC29, + pK19-Lyco); modified strain:
MSM (pHL621 + pK19-Lyco). pDHC29 is the control vector and pHL621 carries the gapC gene
coupling NADPH formation to the glycolytic pathway. pK19-Lyco carries the lycopene biosyn-
thetic pathway genes (Cunningham et al. 1994)
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with a large number of mutations demonstrated the complexity of mapping only
one genotype to one phenotype. The investigation of combinations identified a
particularly interesting mutant, the �hnr�yli E genotype, that exhibited a dras-
tically improved lycopene production (Jin and Stephanopoulos 2007, Alper and
Stephanopoulos 2008).

The effects of the above manipulation of NADPH forming pathway, GAPDH
alteration, on the levels and productivity of the strains has also been explored.
The cell growth of the altered E. coli strain was comparable to the parental con-
trol and no growth impairment was detected. A significant difference was found in
lycopene production between the two strains. The NADPH altered strain produced

B

A

Fig. 17.6 (a) Synthesis of �-caprolactone in recombinant Escherichia coli expressing cyclohex-
anone monooxygenase (CHMO) from Acinetobacter sp. (b) Effect of increased NADPH availabil-
ity on conversion of cyclohexanone to the lactone. The final lactone concentration of control and
modified E. coli strains after aerobic culture is shown. The cultures were grown in LB medium
and the expression of CHMO was induced with IPTG. After reaching stationary phase the cells
were was re-suspended in 20 ml of non-growing medium containing glucose and 30mM cyclohex-
anone and incubated for 20 h. Concentrations of cyclohexanone and �-caprolactone were analyzed.
Control strain: BL21 (DE3) contains (pDHC29, + pMM4); the BL21 gapC modified strain: MBS
100B contains (pHL621 + pMM4). pDHC29 is the control vector and pHL621 carries the gapC
gene coupling NADPH formation to the glycolytic pathway. pMM4 carries the cyclohexanone
monooxygenase (CHMO) from Acinetobacter sp (Walton and Stewayt 2002)
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lycopene equivalent to 2.5-fold that of the control in concentration. The overex-
pression of the NADPH-utilizing GAPDH from C. acetobutylicum together with
the knockout of the native NADH-dependent GAPDH improved lycopene syn-
thesis confirming that cofactor availability is a limiting factor for the system
(Fig. 17.5).

17.2.3.3 Single Step Biocatalyst

In the area of using engineered E. coli as a whole cell biocatalyst for a specific
conversion, the emphasis has been on placement of an oxidizing step into the cell
and supplying the cell with the substrate. In optimal cases the product of the oxi-
dation step is easily removed from the reaction. The NADPH formed in this step is
then used to provide the reductant for the synthesis of the desired product. A useful
example of this has been studied using the recycling of mono-oxygenases to form
lactones particularly chiral derivatives. In this kind of test system using a strain in
which the replacement of a normal glycolytic step using NAD with one capable of
using NADP, a positive effect was seen on the production rate and the amount of
desired compound formed per mole of glucose consumed. The mutant host strain
containing the clostridial GAPDH gene showed a higher �-caprolactone yield that
of the control strain, 2.97 compared to 1.72 mole �-caprolactone/mole glucose. One
mole of NADPH is consumed per mole of � -caprolactone produced; therefore the
mutant strain produced 73% more NADPH than the control strain under the condi-
tions examined (Fig. 17.6).

17.3 Conclusions

In a variety of studies, it has been shown that considerable changes in metabolic pat-
tern can be achieved by manipulation of the availability of the oxidation-reduction
cofactors, NADH and NADPH. The alteration in availability of CoA compounds
has also indicated that this approach can offer improvements in the synthesis of
compounds derived from central pathway CoA containing intermediates. The addi-
tion of these cofactor manipulations to the arsenal of metabolic engineering tools
should expand the sophistication of cell engineering as well as allow a greater un-
derstanding of the role of the various redox carrier systems and activated carriers in
cell metabolism and physiology.
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