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Abstract Coupling complex regulatory and metabolic networks for the purpose of
dynamic modeling requires knowledge of the quantitative kinetics of the participat-
ing reactions as well as the variation of parameters in the context of the physiological
state of the system. This chapter aims at demonstrating the integration of the differ-
ent networks for E. coli exposed to an increasing carbon limitation of a fed-batch
process with constant feeding of the carbon and energy source glucose. Starting
from a global observation of the response of the bacteria in terms of flux distribution
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and gene expression in the central metabolism, emphasis is given to the dynamic
modeling of regulation phenomena in the catabolism. The cra regulon which is
linked to the dynamic response of the metabolite fructose 1,6- bis(phosphate) serves
as an example to introduce a new concept, in which the binding constants are esti-
mated from DNA-binding site sequences of the regulatory proteins. By comparison
of the nucleotide frequencies within the DNA-binding sites for the individual target
genes of the regulon, it is possible to perform a reasonable estimation of the kinetic
parameters. Results of these estimations are compared with experimentally observed
transcript concentrations measured with the aid of quantitative PCR. In addition it
is shown how these outputs of the regulatory networks can be linked to the maximal
rates of the enzymes for the metabolic system of interest. The discussion of this
issue is embedded within a critical assessment of different conceptual frameworks
for modeling the metabolic network, which covers the spectrum of dynamic model-
ing at different levels of complexity, such as genome scale, modular approaches and
reduced models.

11.1 Introduction

Systems biology as an emerging field of research in bio-, engineering and sys-
tems sciences aims at a systems-level understanding of biological processes – and
ultimately whole cells and organisms. The grand, and currently unrealistic, hope
to even continue these efforts into a whole cell in silico model time and again
shapes the conceptual framework of this endeavour. There are several reasons
that the present state of affairs still falls short of this euphoric expectation. The
first is concerned with the fundamental question of a comprehensive definition
of a “whole cell model” and closely related to this uncertainty the query about
the purpose of such a model. Referring to the fundamental ideas and discussion
of Casti (1992a,b) about a model and its intended application, Bailey (1998) re-
minded us that “mathematical modeling does not make sense without defining,
before making the model, what its use is and what problem it is intended to help
to solve”. The second reason originates from a critical assessment of part of the
experimental work in the field of holistic measurements and related top down
approaches in inverse engineering for network inference. In spite of spectacular
developments in high-throughput technologies such as genome sequencing, tran-
scriptomics, metabolomics, fluxomics etc. – platforms which have monopolized
systems biology research in recent years – there is a tendency to fragment the whole
into various sub-omes and a great deal of arguments exists about what ome is more
important. However, due to multiple border crossings these omes are inseparable
parts of a single process – the complex and interwoven dynamics of the living
organisms.

Another issue to be addressed in the context of fragmentation is the often ob-
served focus on specific networks and treatment in separated and isolated territories,
such as metabolism, regulation and signal transduction. In the course of this partition
and kind of downward analysis, levels are reached where the whole meaning of the
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system is destroyed because of neglected interactions and missing integration. In
order to underline the systemic thinking, the exchanges of material and information
between the heuristically isolated modules of a system to be investigated may also
be termed “intra-actions”.

In this chapter we will highlight with a few examples the importance of inte-
gration of regulatory and metabolic networks in Escherichia coli and discuss the
framework of how this process of integration can be portrayed dynamically in the
structure of the mathematical model.

Taking up the aforementioned attenuation of the importance of defining first
the purpose of the mathematical model, the environmental changes triggering the
regulation of the metabolism have to be introduced. The example deals with the
regulation of the central metabolism of E. coli during a fed-batch process with con-
stant feeding rate of the carbon and energy source glucose (Fig. 11.1). This process
operation is important for technical processes for production of heterologous pro-
teins as well as bacterial metabolites. For large-scale applications, fed-batch, high
cell density cultivation strategies have proven suitable for considerably increasing
the volumetric productivity of these processes (Lee 1996, Yee and Blanch 1992).
Irrespective of more sophisticated closed-loop strategies, fed-batch cultivations are
usually carried out with open loop control via exponential or constant feeding. Expo-
nential feeding maintains the specific growth rate at a constant level. The maximum
biomass concentration that can be achieved with this strategy depends on sufficient
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Fig. 11.1 Glucose limited fed-batch cultivation of E. coli K-12 W3110 with constant feed rate.
The vertical solid line at t = 0 indicates glucose limitation. The concentrations of biomass (filled
squares), glucose (triangles) and acetate (open squares) are given as well as the time course of the
specific growth rate (μ) (broken line). Arrows above the graph indicate the time when the samples
were removed for microarray analysis (R, reference; T1 to T8, time series samples)
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oxygen supply and heat transfer capacities. At a constant feed rate, the specific
growth rate gradually decreases due to declining carbon and energy source levels
(Dunn and Mor 1975). The proceeding carbon limitation also leads to a range of se-
rious starvation phenomena with manifold regulatory responses of the cells. These
processes macroscopically manifest themselves in a loss of viability, such as was
illustrated by Hewitt et al. (2000, 1999, Hewitt and Nebe-Von-Caron 2001).

Bacteria control metabolism and growth rate through global genetic regula-
tory systems, i.e. regulons and modulons (Lengeler et al. 1999, Neidhardt and
Savageau 1996). Prominent examples in E. coli are the catabolite repression (crp
modulon) and the stringent response (relA/spoT modulon), two processes that are
active under carbon-limiting conditions. During stringent response (reviewed in
Braeken et al. (2006), Cashel et al. (1996) and Lengeler et al. (1999)), the limita-
tion of nutrients leads to the intracellular accumulation of ppGpp (guanosine 3′, 5′-
bis(diphosphate)), which is supposed to bind to the RNA polymerase (Artsimovitch
et al. 2004).

The transcription of genes involved in the translation process – in particular of
ribosomal RNA and ribosomal proteins – is negatively regulated by ppGpp. As a re-
sult, the protein biosynthesis rate declines, which in turn also leads to a reduction in
growth rate (Cashel et al. 1996, Lengeler et al. 1999). During amino acid limitation,
the synthesis of ppGpp or guanosine pentaphosphate (pppGpp), collectively referred
to as (p)ppGpp, is mediated by RelA (GDP pyrophosphokinase/GTP pyrophospho-
kinase). Under amino acid-limiting conditions, the ribosome-bound RelA protein is
stimulated by uncharged tRNAs at the A site of ribosomes (Wendrich et al. 2002).
However, the accumulation of (p)ppGpp depends also on the dual activity of the
SpoT protein as (p)ppGpp-hydrolase or (p)ppGpp-synthetase. Although it is known
from a homologous protein of Streptococcus dysgalactiae subsp. equisimilis that the
opposing activities of SpoT are reciprocally regulated (Hogg et al. 2004, Mechold
et al. 2002), the regulation of the SpoT protein in E. coli is still hypothetical. The
most important issue for understanding growth control is the signalling mechanism,
which leads to accumulation of ppGpp under carbon-limiting conditions, an aspect
that is still not entirely clarified.

Besides various effects on growth-related functions (Cashel et al. 1996), the
alarmone ppGpp is known to be involved in the regulation of the sigma S factor
concentration (�S; rpoS gene) on the transcriptional and posttranscriptional level
(Hengge-Aronis 2002). As an alternative subunit of RNA polymerase, �S is in-
volved in the regulation of transcription in the general stress response in E. coli (also
designated as ‘stationary phase response’). It is assumed that elevated levels of �S

negatively regulate �D-dependent housekeeping genes, such as the TCA cycle genes
(Patten et al. 2004). Moreover, ppGpp influences the competition between different
stress-related sigma factors in the binding of the RNA polymerase core enzyme at
the expense of the sigma factor �D (Jishage et al. 2002) and the RNA polymerase
availability (Barker et al. 2001a,b, Cashel et al. 1996, Jensen and Pedersen 1990,
Traxler et al. 2006).



11 Dynamic Modeling of the Central Metabolism of E. coli 213

The crp modulon belongs to a group of global genetic regulatory systems,
which can be subsumed under the term catabolite control. One basic feature of
these systems is that the presence or absence of an extracellular carbon source is
indicated by an intracellular metabolite (catabolite) that serves as a signal for dere-
pression (catabolite activation) or deactivation (catabolite repression) of catabolic
genes (Saier et al. 1996). The crp modulon includes catabolic operons for the
utilization of various carbon sources and is regulated by the Crp-cAMP complex.
The synthesis of the alarmone cAMP (cyclic 3′, 5′-AMP) by the enzyme adenylate
cyclase (CyaA) is stimulated by the phophorylated EIIAGlc protein, a component
of the E. coli phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS)
(reviewed in Lengeler et al. (1999) and Postma et al. (1993)). It is assumed that
a low glucose uptake rate by the PTS and a high ratio of phosphoenolpyruvate
and pyruvate concentrations (cpep/cpyr) lead to the phosphorylation of the EIIAGlc

protein (Hogema et al. 1998). Consequently, limited glucose availability leads to
the synthesis of cAMP and the transcriptional regulator complex Crp-cAMP is
formed. Catabolite control is also exerted by the catabolite repressor/activator pro-
tein Cra (formerly designated FruR), which regulates numerous genes involved
in the carbon and energy metabolism (the cra modulon) (reviewed in Ramseier
1996, Saier and Ramseier 1996, Saier et al. 1996). The regulator protein Cra is
inactivated by the catabolites fructose 1-phosphate and fructose 1,6-bis(phosphate)
(Saier and Ramseier 1996).

Most of the aforementioned investigations have been performed during the shift
from exponential to stationary growth phase in batch cultivations. The dynamic
perturbation during these experiments is characterized by a rapid drop of glucose
concentration to zero in a short time period. As distinguished from this very fast
perturbation the fed-batch cultivation with constant feeding rate prolongs the period
of declining glucose concentrations towards a time span of several hours. This pro-
longation of the proceeding carbon limitation initiates a process of transient adapta-
tion during which the organisms dynamically changes activities of enzymes in the
catabolism and regulates the anabolism to adjust the synthesis of macromolecules
and reduce growth rate. The result of this concerted action of global regulation
differs from the short term regulation during the transient period from batch to
stationary phase and the subsequent starvation as well as the behaviour of the or-
ganisms during steady state conditions at varying dilution rate during continuous
operation.

With the goal to obtain a more in-depth understanding of these complex
regulation phenomena and their impact on the flux distribution in the central
metabolism experimental work has been initiated which covers three main areas,
namely microarray analysis, flux analysis and selected quantitative measurements
of metabolites and mRNA via PCR analysis. Results of this work have been already
summarized in the papers of Hardiman et al. (2007a) and Lemuth et al. (2008). Part
of these results will be presented once more within this chapter to support the tight
link between experimental work and computational approach.
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11.2 Reconstruction of the Global Regulatory
Structure of Carbon Limitation

Current systems biology research in dynamic modeling of the central carbon metabo-
lism of Escherichia coli aims at the comprehensive understanding of its global reg-
ulation in response to carbon limitation. The long-term goal is of course the support
of rational producer strain optimization based on mathematical modeling. Much
knowledge about regulatory processes during carbon limitation has accumulated
and is available from literature and databases. However, it is not clarified which
regulators are dominant under these conditions and thus, which regulators must
be considered in a mathematical model. For the assembly of the global regulatory
network underlying and for explaining the transient metabolic response to carbon
limitation it is necessary to link this a priori knowledge with experimental obser-
vations in order to identify the relevant components of the network. As mentioned
above, observing a single ‘ome’ alone is not adequate when such complex dynamic
processes are being investigated.

The works of Hardiman et al. (2007a) and Lemuth et al. (2008) demonstrate
the simultaneous experimental observation of concentrations of signaling molecules
(cAMP and ppGpp) and a time series of metabolic flux and transcriptome analyses
of Escherichia coli K-12 W3110 in a fed-batch cultivation applying a constant feed
rate (Fig. 11.1). These omic approaches were employed for the reconstruction of the
model structure, focussing on the most relevant parts that must be considered when
dynamic modeling the regulatory and metabolic behaviour.

The constant feeding strategy applied, provided an appropriate approach for
separating the time-dependent events during the transition from exponential to
carbon-limited growth (Fig. 11.1). Both intracellular alarmones ppGpp and cAMP
accumulated in large quantities after the onset of nutrient limitation, subsequently
declining to basal levels (Hardiman et al. 2007a). The limited supply of the car-
bon and energy source glucose led to significantly decreasing fluxes in glycolysis,
pentose phosphate pathway and biosynthesis, whereas TCA cycle fluxes remained
constant (Fig. 11.2a,b). The flux redistribution resulted in an enhanced energy gener-
ation in the TCA cycle and consequently, in a 20 % lower biomass yield (Hardiman
et al. 2007a). From the correlations of gene expression levels with the metabolic
fluxes that were observed (Fig. 11.2), this behaviour can be interpreted as fol-
lows and transformed into a model structure (Hardiman et al. 2007a, Lemuth et al.
2008).

The flux through the upper part of glycolysis is favoured whereas the flux through
the pentose phosphate pathway is minimized, which is most likely due to the re-
duced synthesis of gnd mRNA. The flux entering the pentose phosphate pathway
is used for biosynthesis at the expense of the reflux into the glycolysis pathway,
which might be regulated by the RpiA/Rpe split ratio. The reaction rates in the lower
glycolysis decrease due to decreasing mRNA levels, thereby providing a sufficient,
though minimal, efflux into the pentose phosphate pathway. The regulation of pfkA,
fbaA, pgk, pykF, gapA and eno transcription by the Cra regulator protein (cra mod-
ulon) is suggested to lead to this behaviour (Fig. 11.3). Signalling occurs through
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Fig. 11.3 Reconstruction of the global regulatory and metabolic network of carbon limitation.
Left: Catabolite repression can be seen as an offensive strategy since various catabolic operons are
induced, which encode transporters and metabolic pathways for the consumption of sugars other
than glucose. Moreover, many genes of the TCA cycle, glyoxylate shunt (GS), PTS system and
glycolysis are regulated by the Crp-cAMP regulator complex (crp modulon). Additionally, the Cra
protein represses genes of glycolysis and activates transcription of GS genes (cra modulon). Fbp
inactivates the Cra protein. The fbp concentration reflects the availability of extracellular glucose.
Right: Stringent response is an defensive strategy since it regulates many components of the tran-
lational and transcriptional machinery, most prominently, the reduction of rRNA transcription by
ppGpp (relA/spoT modulon). The dedicated reader is referred to Hardiman et al. (2007a) for a
detailed analysis of the major mechanisms that lead to the accumulation of the alarmones cAMP
and ppGpp and to the reduction of the fbp concentration during carbon limitation. The major
negative feedback regulation mechanisms leading to a resetting of the signals are also discussed
therein

the metabolite fructose 1,6-bis(phosphate) (fbp; Fig. 11.3), whiches concentration
is proposed to reflect the availability of glucose. A reduction in the enzyme levels of
the lower glycolysis concomitantly with the observed decreasing flux levels might
be a hint for the control of metabolite concentrations (homeostasis). The carbon
flux entering the TCA cycle (influx is enhanced via gltA expression) is split into the
glyoxylate shunt (GS), the phosphoenolpyruvate(pep)-GS and the full TCA cycle.
GS and pep-GS provide a better pep, pyr and oac precursor supply. It is proposed
that the global regulation via the crp and cra modulons is the most relevant in this
respect – i.e. the Crp-cAMP regulator complex mainly induces the transcription of
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the TCA cycle genes, whereas the glyoxylate shunt (GS) genes are regulated by the
Cra regulator protein (positive) and the Crp-cAMP complex (negative) (Fig. 11.3).

In summary, the omic approaches reported by Hardiman et al. (2007a) and
Lemuth et al. (2008) demonstrate that the substrate is extensively oxidized in the
TCA cycle to enhance energy generation. However, the general rate of oxidative
decarboxylation within the pentose phosphate pathway and the TCA cycle is re-
stricted to a minimum. Fine regulation of the carbon flux through these pathways,
i.e. the EMP/PPP, RpiA/Rpe and TCA/GS/pep-GS split ratios, supplies sufficient
precursors for biosyntheses. The network topology regulating the central carbon
metabolism provided in (Hardiman et al. 2007a) is novel inasmuch as it compre-
hensively explains the obtained systems-level data of the metabolic transition from
exponential to carbon-limited growth typical of fed-batch processes – considering
not only signal transduction, transcriptional regulation and metabolic behaviour but
also the resetting of the signals (the two intracellular alarmones cAMP and ppGpp)
and the effect of the respective feedback mechanisms (ascribed to catabolite re-
pression and stringent response) on the dynamics in the central carbon metabolism
(Fig. 11.3).

Besides the reported correlating transcript levels and metabolic fluxes in the cen-
tral carbon metabolism, a picture of interesting interconnections between enhance-
ment and attenuation of further cellular functions is drawn in (Lemuth et al. 2008),
highlighting the importance of this adaptive behaviour for mathematical modeling
and optimizing biotechnical production processes. Most of the physiological rear-
rangements, if not all of them, can clearly be linked to the regulation of the intracel-
lular availability of precursors and energy, i.e., not only the supply and demand rates,
but also the (resulting) concentrations of precursors are discussed to be tightly con-
trolled. This physiologically highly important task is exemplified by the tempting
proposal that the global regulation of diverse functions such as chemotaxis, trans-
port and flagellar systems as well as glycolysis, TCA cycle and glyoxylate shunt are
interconnected in controlling the availability of the precursor phosphenolpyruvate
(pep). This and further major findings of Lemuth et al. (2008) are condensed in
the following: (i) A cluster of high-affinity transporters is synthesized, while the
activity of medium-affinity transporters is maintained. This is mainly due to their
regulation by the Crp-cAMP complex. The glucose flux entering the cell is directed
via transporters that do not use pep for phosphorylation. This preserves the pool
of this metabolite (homeostasis) and affects the EIIAGlc∼P-dependent activation of
cAMP synthesis through the enzyme adenylate cyclase (CyaA). (ii) These transport
systems in particular depend on a membrane proton gradient for proper function.
The expression of the proton gradient-dependent chemotaxis system is reduced,
thereby enabling the transport system effectively utilise the energy available. (iii)
Cellular growth is regulated predominantly by the stringent response (alarmone
ppGpp, relA/spoT modulon), however, no extensive induction of the general rpoS-
dependent response could be observed. This is attributed to the opposing regulation
via the crp and relA/spoT modulons (see also Lapin et al. 2006). It is expected that
slow substrate concentration changes do not trigger a strong starvation response
Teich et al. (1999). However, other stress responses were detected.
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Thus, a model topology has been reconstructed of the global regulation of the
E. coli central carbon metabolism through the crp, cra and relA/spoT modulons that
can be used for mathematical modeling metabolism and regulation (Fig. 11.3). In
a second step, physiological functions that are important for precursor and energy
availability (transport, chemotaxis, stringent and stress response) are suggested to
be implemented as further modules of the mathematical model.

11.3 Basic Principles of Deterministic Modeling
the Dynamics of Gene Expression

The development of deterministic models describing the regulation of gene expres-
sion (transcription, mRNA degradation and protein biosynthesis) has a long tradi-
tion. Already in a 1968 review, Rosen (1968) summarized important methods and
approximations essential for modeling and simulation of gene regulatory networks.
The majority of the models are similar in mathematical nature and more or less
rest upon the concept suggested by Yagil and Yagil (1971) and Yagil (1975). Based
on the operon model of Jacob and Monod (1961) these authors illustrated how to
derive the probability of transcription initiation if a gene is regulated by a repressor
or activation protein.

In the case of negative regulation it is defined as the ratio of the concentration of
operators free to be transcribed, cO , to the total concentration of operators, cO,t :

φneg = cO

cO,t
. (11.1)

Accordingly, the ratio of the concentration of activator proteins bound to DNA-
binding sites, cA.DN Sbs , to the total concentration of DNA-binding sites, cDN Abs,t ,
gives the probability:

φpos = cA.DN Sbs

cDN Abs,t
. (11.2)

The maximal rate of transcription can be achieved for φ → 1. In both cases the
probability is derived from the equilibrium assumption for the biochemical bind-
ing reactions of the regulator protein and its DNA-binding site. This is reasonable
because the initiation and the subsequent transcript and peptide elongation occur
on different time scales (McClure 1985, Stephanopoulos et al. 1998, Uptain et al.
1997). In case of effectors inhibiting or enhancing the binding activity of regulator
proteins (inducers or co-repressors), additional equilibrium reactions can be formu-
lated. Equation (11.3, 11.4) exemplify the inactivation of the repressor protein R by
binding the inducer molecule E and binding of the active repressor to the operator
DNA sequence O . Equation (11.5) depicts the equilibrium (binding) constants and
the derived probability of induction for negative regulation.
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R + n · E
k+1�
k−1

R.En (11.3)

R + O
k+2�
k−2

R.O (11.4)

φneg = cO

cO,t
= 1 + K1cn

E

1 + K1cn
E + K2cR,t

(11.5)

with

K1 = k+1

k−1
= cR.En

cR · cn
E

and K2 = k+2

k−2
= cR.O

cR · cO

The transcription rate is then obtained from

rtc,m RN Ai = rtc,max

∏

j

φ j f (μ) − kDegradation cm RN Ai − μcm RN Ai (11.6)

and the translation rate of the protein of interest is calculated from

rT L ,Pr oteini
= rmax,T Lcm RN Ai − μcPr oteini . (11.7)

The term f (�) considers the impact of the specific growth rate on the transcrip-
tion rate. Roels (1983) suggested the following form:

f (μ) = a + bμ

a + bμmax
, (11.8)

which reflects the linear dependency between mRNA biosynthesis and the specific
growth rate.

The illustrated approach enables modeling of superimposed regulation mecha-
nisms by several regulators and can be extended by the binding of RNA polymerase
to the promoter DNA sequence. It is therefore suitable for implementation of gene
expression kinetics in large metabolic models.

With increasing amount of knowledge available about the details of catabolite
repression (reviewed by Deutscher et al. 2006) more sophisticated models have been
developed. Many of these modifications are based on the approach of Lee and Bailey
(1984a,b) in which a transcription efficiency is defined as:

η = ψP (1 − ψR) (1 + αψA) (11.9)

with the fraction of occupied promoters ψP , the influence of a repressor (1 − ψR)
and an activator (1 + ��A). In addition to the comprehensive models suggested by
Kremling et al. (2007, 2001, 2000) (Kremling and Saez-Rodriguez 2007, Kremling
and Gilles 2001) and Bettenbrock et al. (2006) this approach has been applied by
Wong et al. (1997) as well as Van Dien and Keasling (1998) to mention a few.
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In a different line of approaches Boolean networks are used for modeling reg-
ulatory phenomena. These models have been already introduced in the 1960’s by
Stuart Kauffman (1969). The conceptual framework of Boolean networks is based
on the assumption that binary on/off switches functioning in discrete time steps can
describe important aspects of gene regulation (Albert 2004, McAdams and Arkin
1998). In the context with the intended coupling of regulatory and metabolic net-
works, such a Boolean approach for description of the regulatory network would
eventually lead to a hybrid model in which the concentrations of metabolites are
expressed as continuous values and connected via enzyme kinetics to describe the
dynamics of the metabolic networks described by a system of ODEs.

An alternative option to avoid the computational effort with the hybrid models
is to approximate the switch like behavior of the expression with the aid of Hill
kinetics. In case of a repression the rate of transcription can be represented by

r = rmax,transcription
1

1 +
(

cR

K R

)nR
, (11.10)

whereas for the event of an activation

r = rmax,transcription
1

1 +
(

K A

cA

)n A
(11.11)

could be an appropriate approximation. A more generic formulation based on the
“general” Hill equation suggested by Cornish-Bowden (1995) and Hofmeyr and
Cornish-Bowden (1997) for reversible reactions in case of metabolic reactions leads
to a very useful rate expression for the concerted action of multiple activators and
repressors (Likhoshvai and Ratushny 2007):

dcT argetgene(s)
m RN A

dt

= rmaca,T C

k +
cAs,1∑
si1

(
Rsi1

Ksi1

)hsi1

+
cAs,2∑
si1,2

R
hs11
si1

R
hsi2
si2

K
hsi1 +hsi2
si1,2

+ · · · +
cAs,M∑

si1,...,siM

M∏
k=1

R
hsik
sik

K

M∑
k=1

hik

si1...M

1 +
cI s,As,1∑
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(
Rsj1

Ksj1

)hs j1

+
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Rhsiw
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K

N∑
w=1

hs jw

s j1...N

.

(11.12)

Here the binding of regulatory proteins R includes inhibition (binding sites Is)
and activation (bindig sites As). Figure 11.4 depicts the application of this equation
for an example of joint regulation of two genes through two repressors – and one
activator molecule. Starting from the framework of statistical mechanics Bintu et al.
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Fig. 11.4 Dynamic modeling
of gene expression regulated
by two repressors and one
activator based on general hill
kinetics (Ilya Peshkov,
Novosibirsk, Russia: personal
communication)
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(2005) derived various “regulatory factors” for several different regulatory motifs
very similar to the generic structure of Equation (11.12).

For portraying the sigmoid character of the dynamic response alternative appro-
aches are based on generic sigmoidal functions (Weaver et al. 1999), such as

f (x) = 1

1 + e−x
. (11.13)

With the aid of additional terms representing system and measurement noise,
Haixin et al. (2007) have used this approach in connection with Kalman Filtering
for the problem of genetic regulatory network inference from time series microar-
ray data.

Another powerful method in the context of sigmoidal functions is built on the
conceptual framework of neural networks (Vohradsky 2001a,b). The model has
the form

dzi

dt
= rmax

1

1 + exp

[
−

(
∑

j
wi j y j + bi

)] − kdeg radationzi (11.14)

with connection weights wi j , delay parameter bi and rate constant for degradation
k. zi is the target gene regulated by the genes y j connected to the target (predic-
tor genes).

The focus of application of most of the aforementioned approaches for dynamic
modeling of gene regulatory networks is on network inference based on time series
“profiles” of microarray data. A crucial point in the evaluation of the majority of
these applications is the missing distinction and the rigorous mathematical descrip-
tion of the two processes of transcription and translation. Using nonlinear stability
analysis Hatzimanikatis and Lee (1999) have shown that a combination of gene
expression information at the mRNA level and at the protein level is required to
describe even simple models of gene networks. This issue is all the more important
for coupling gene regulatory networks with metabolic networks because at least
the output of the regulatory network is linked at the protein level to change en-
zyme concentrations in the metabolic rate expressions. If balance equations for the
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translation process are neglected, the overall dynamics are corrupted by a mixture
of characteristic time constants for transcription and translation.

11.4 Dynamic Model for the Intra-actions Between
the Regulatory and Central Metabolic Networks
of Escherichia coli: Translation of Sequence
Information into Kinetic Parameters

The focus of this chapter is on the dynamic modeling of the intra-actions between
the regulatory and metabolic networks depicted in Figs. 11.2 and 11.3. The ulti-
mate goal of this approach is to quantitatively describe the dynamical changes of
traffic patterns and variations in flux distributions in response to the environment
changes caused by the diminishing supply of carbon and energy source glucose.
The kinetics to describe the dynamics of the regulation phenomena is modeled in
terms of probabilities of transcription as described in Section 11.3. The approach
is based on a translation of gene sequence information into parameters of bind-
ing constants for the individual regulator protein-DNA-binding site interaction of
interest. The methodology will be exemplified for the Cra-modulon, illustrated in
Fig. 11.3.

The usage of Equations (11.1, 11.2, 11.3, 11.4, and 11.5) for modeling gene
expression in large metabolic networks as illustrated in Fig. 11.3 requires the avail-
ability of the parameters K1 and K2 from literature, data bases or their identification
from experimental observations. For estimation of the binding constant K1 for the
reaction between the regulatory protein and its effector E (Equation 11.3) this is
of course feasible. However, K2,i has to be determined for each individual gene i
coding for the enzymes or regulatory proteins being components of the network.
For large networks or large regulons/modulons such an approach is not practica-
ble because of the experimental effort. This is one of the reasons that verification
of such models is most often dominated by identification methods for the estima-
tion of large sets of parameters. To circumvent this kind of problems we there-
fore choose an approach in which the individual binding constants are estimated
from the gene sequence information of the DNA-binding side (Hardiman et al.
2007b).

11.4.1 Decomposition of the Binding Reaction

For the purpose of derivation of K2,i from the DNA-binding site sequence, the reg-
ulator protein R is first assumed to bind to the mononucleotides, b ∈ {A, C, G, T },
of the binding site sequence and that these interactions are independent and additive
according to Stormo (1988, 1990):

R + b � R.b (11.15)



11 Dynamic Modeling of the Central Metabolism of E. coli 223

Assuming again an equilibrium reaction, the binding constant is proportional to
the ratio of the bound pool to the unbound pool of bases:

Kb = cR.b

cR · cb
∝ cR.b

cb
= fb

pb
(11.16)

Equation (11.16) also illustrates that this ratio is equal to the ratio of the fre-
quency at which the base b occurs at the considered position in the DNA-binding
site sequence, fb, to the frequency of this base in the genome of the considered
organism, pb, which was proposed by Stormo (1988, 1990). Considering that the
binding to each nucleotide of the sequence is assumed to be independent, the binding
constant for the total DNA-binding site, K2, can be formulated as

K2 =
∏

n

Kb,n ∝
∏

n

fb,n

pb
(11.17)

where n corresponds to the position of the nucleotide b in the sequence. Various
scientific groups have investigated this relationship and found reasonable correla-
tions between calculated and experimentally determined binding affinities or the
equivalent free energy of binding (Equation 11.18). For instance, Berg and von Hip-
pel ((1987)) developed a statistical-mechanical theory based on the assumption that
specific DNA sequences have been selected according to their protein binding affin-
ity and that all sequences that show equal affinities are equally likely to occur in the
genome. The theory Berg and von Hippel (1987) was able to predict the correlation
between the activities (k2 K B values) of E. coli promoter sequences assuming that
nucleotides at different positions in the promoter sites contribute independently to
their activities. Many more contributions to the field demonstrated that there is a
strong linear relation between base frequency and binding strength (Berg and von
Hippel 1988, Fields et al. 1997, Stormo and Fields 1998, Takeda et al. 1989). For an
overview the dedicated reader is referred to (Stormo 1990, 2000).

�Gb = −RT ln Kb ∝ − ln

(
fb

pb

)
(11.18)

The findings of these authors are not surprising, because Equations (11.17, 11.18)
simply express that highly conserved DNA sequences are bound stronger than less
conserved ones by the respective regulator protein. Therefore, Equations (11.17,
11.18) provide a simple and valuable tool for the quantitative evaluation of any
DNA-binding site sequence with respect to a reference sequence.

11.4.2 Application to the cra Regulon of Escherichia coli

The regulator protein Cra is a major component of the global regulation of the
metabolic fluxes in glycolysis (EMP), the TCA cycle and the glyoxylate shunt (GS)
in glucose-limited fed-batch processes of E. coli (see Section 11.2 and Fig. 11.3).
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Binding of the Cra protein to the DNA-binding site of the transcription units i
(DN Absi ; Equation 11.21) of the cra modulon is inhibited by high concentrations
of fructose 1,6-bis(phosphate) (fbp; Equation 11.19).

Cra + fbp
K1� Cra . fbp (11.19)

4 Cra + DN Absi

K2,i� Cra4 . DNAbsi (11.20)

φneg
Cra.DNAbs,i

= cDN Abs,i(
cDN Abs,i

)
total

= 1

1 + K2,i

(
(cCra)total

1 + K1 c f bp

)4 (11.21)

φ pos
Cra.DN Abs,i

= cCra4.DN Abs,i(
cDN Abs,i

)
total

= 1 − φneg
Cra.DN Abs,i

(11.22)

rtc,m RN Ai = rtc,max

∏

j

φ j − kDegradationcm RN Ai − μcm RN Ai (11.23)

The probability of transcription initiation, φ, is determined by the fraction of
unbound (Equation 11.21) or bound (Equation 11.22) DNA-binding sites when tran-
scription is repressed or activated, respectively.

11.4.3 Comparison Between Model Prediction
and Experimental Observations

Figure 11.5 illustrates the mRNA concentrations of central carbon metabolism
genes measured using qPCR analysis during glucose-limited fed-batch cultivation
of E. coli (see Fig. 11.1) as well as concentrations predicted by the model described
by Equations (11.19, 11.20, 11.21, 11.22, and 11.23). The genes eno (encoding
enolase), pfkA (6-phosphofructokinase I) and pykF (pyruvate kinase I) are known
to be regulated by the Cra regulator protein (see Section 11.2). The repression of
their transcription (Fig. 11.5) results in a strong decrease of the respective mRNA
concentrations.
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Fig. 11.5 mRNA concentrations during glucose limited fed-batch cultivation of E. coli K-12
W3110. The concentrations of mRNA (�) were determined by qPCR analysis (standard deviation,
3 independent samples). Simulation data are indicated by solid lines. (a) eno mRNA (encoding
enolase), (b) pfkA mRNA (6-phosphofructokinase I) and (c) pykF mRNA (pyruvate kinase I)
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Obviously, the DNA-binding activity of the Cra protein is high due to the low
concentration of fructose 1,6-bis(phosphate) (fbp) during the fed-batch process
(Fig. 11.6). The strong decrease in fbp concentration (Fig. 11.6a,b) can be attributed
to the limited carbon supply (Section 11.2). However, according to Fig. 11.6a the
concentration of fbp apparently increases after two hours of fed-batch cultivation,
when the experimental data is related to the biomass concentration. Only when

Fig. 11.6 Fructose
1,6-bis(phosphate)
concentration during
glucose-limited fed-batch
cultivation of E. coli K-12
W3110. Concentrations were
determined after quenching
and extraction using
perchloric acid as published
in Hardiman et al. (2007a).
(a) Fbp concentration related
to biomass
[�mol (g dry weight)−1]. (b)
Fbp concentration related to
the cell volume
[mmol (l cytosol)−1] that is
obtained by deviding the
concentration given in (a) by
(c) the specific cell volume
vx [l cytosol (g dry weight)−1],
and which is in turn
approximated using the
growth rate-dependent
function

v̂X = 0.4860 · 2(1.144μ̂)

−0.636 + 0.635 · 2(0.718μ̂)

(Hardiman et al. 2007a)
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the growth rate-dependent variation of the cell volume is considered a meaningful
result may be obtained from the data (Fig. 11.6b). The time profile of the molar
intracellular concentration given in [mmol (l cytosol)−1] enables to explain the tran-
scriptome and metabolic flux data as described in Section 11.2. That is, the persist-
ing low concentration of fbp leads to the repression of glycolysis genes by the Cra
regulator protein and activation of transcription of glyoxylate shunt genes.

The model predicts the mRNA concentration satisfactorily during the batch and
the beginning of the fed-batch process and also at a later process phase where the
growth rate is very low (Figs. 11.1 and 11.6). Note, that the model used for the
simulations differs from the one introduced in Section 11.3. Equation (11.23) does
not take into account the growth rate dependence of transcription initiation, whereas
Equation (11.6) considers the impact of the specific growth rate on the transcription
rate. Although the Equations (11.19, 11.20, 11.21, 11.22, and 11.23) are sufficient
for a rough simulation of the mRNA concentrations (Fig. 11.5), the extension of the
model by growth rate dependent variables and further regulons/modulons is needed.
This is expected to make an important contribution to the understanding the global
regulation of the central carbon metabolism during carbon limitation.

11.5 Conceptual Framework for Dynamic Models
of Metabolic Networks of E. coli Suitable
for Links to Regulatory Networks

A multitude of approaches is available for dynamic modeling of the metabolism of
E. coli. Here, we shall limit our discussion on continuous and deterministic models,
which are derived by considering the balance equations of the individual metabolites
and can be represented in the compact form:

dx
dt

= Nr (x (t) , P) − μx. (11.24)

N is the m x n stoichiometric matrix an r is the n-dimensional rate vector.
Based on dynamic measurements of intra- and extracellular metabolites in res-

ponse to a perturbation of a continuous culture with a pulse of glucose Chassagnole
et al. (2002) derived a rigorous dynamic model of the central metabolism of E. coli
(Fig. 11.7). The model is based on kinetic rate expressions for the individual en-
zymes, the original structures of which have been derived from investigations with
isolated enzymes at in vitro conditions. The key to afterwards generate the dynamic
in vivo model is, to extract the kinetic parameters of the biochemical reactions from
the in vivo metabolite measurements and, as such, considering the reactions in their
“systemic” context (Reuss et al. 2007).

To describe the dynamic systems behaviour, deterministic kinetic rate equations
of the form

ri = rmax,i f (c, p) (11.25)
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Fig. 11.7 Structure of the metabolic model of glycolysis and pentose phosphate pathway in Es-
cherichia coli (Chassagnole et al. 2002)

are formulated, where the capacity of the reaction is characterized by its maximal
rate and the kinetic function f represents the kinetic properties of the reaction. Sub-
strates, products and other metabolic effectors influencing the rate of the reaction
are represented by the state vector of metabolite concentrations c. The parameters
of the reaction are summarized in the vector p.

If the maximal rate of reaction can be assumed to be proportional to the con-
centration of the enzyme, Equation (11.25) provides a simple way to integrate the
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output of the regulatory network with respect to the concentration of the individual
enzymes.

The first step to embed the behaviour of the subsystem into the metabolic network
as a whole is provided by the estimation of the maximal rates of the individual
reactions. Applying the rate Equation (11.25) to the steady state leads to

r̃max,i = ri,steady state

f
(
csteady state, p

) . (11.26)

Let us assume that reaction rate r̃i at steady has been estimated from metabolic
flux analysis. Let us further assume that a first estimate of the structure of the kinet-
ics as well as the parameter vector p is available from in vitro measurements. If the
components of the concentration vector c influencing the rate of the reaction have
been measured at steady state, the unknown maximal rates are given as depicted in
Equation (11.26).

If the stoichiometric model used for metabolic flux analysis has a genome scale
or a metabolic submodel in case of 13C analysis is linked to such a model (Schaub
et al. 2008), the maximal rates estimated from Equation (11.26) are invariant to
the scale of the submodule used for the dynamic model. As such, these rates are
intrinsic properties of the system as a whole and in a meaningful way only depend
on the physiological state of the system. Further details of the strategy to identify
the in vivo kinetics from the measured stimulus-response date are discussed in the
original papers (Chassagnole et al. 2002, Rizzi et al. 1997) and summarized in a
review (Reuss et al. 2007).

The model structure depicted in Fig. 11.7 accounts for the enzymatic rate ex-
pressions for the glycolytic enzymes and therefore allows for connection of the
most important output signals of the Cra and Crp modulon (Fig. 11.3). Apart of
the necessary model extension for incorporation of TCA and glyoxylate shunt reac-
tions, however, interactions between the regulatory and metabolic networks exceed
the central metabolism by far. Particularly the precursor demand via e. g. amino
acid synthesis and the subsequent polymerisation reactions are regulated through the
alarmone ppGpp (Fig. 11.3) and demand further extension of the model structure.

Aside from the possibility to assign the large number of additional reactions with
mechanistic enzyme kinetics, which is an excessively laborious and time consuming
approach, conceptual frameworks based on canonical formulations of rate expres-
sions leading to less detailed large- scale models may prove to be useful. Such an
approach has been introduced by Reuss et al. (2007) and successfully applied for a
large-scale dynamic model for E. coli. The dynamic model follows from the reaction
network model of Escherichia coli introduced by Chassagnole et al. (2002). The
network comprises both catabolic and anabolic routes with protein, DNA, RNA,
polysaccharides, murein, and lipids building up biomass. Sequential reaction steps
and parallel routes are lumped. With 129 reactions, 133 balanced metabolites, and
seven conserved moieties, the degree of freedom of the null-space of the network
is fixed to 129–133 + 7 = 3. Additional informations regarding inhibition and
activation (metabolic regulation) have been gathered from the MetaCyc data base
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(www.metacyc.org, (Caspi et al. 2006)). The kinetic behaviour of the individual
reactions is assigned according to the universal linlog approach (Visser and Heijnen
2003, Visser et al. 2004, 2000):

r = J
cE

c0
E

⎛

⎝1+
∑

i

εS,i ln
cS,i

c0
S,i

+
∑

j

εP, j ln
cP, j

c0
P, j

+
∑

k

εA,k ln
cA,k

c0
A,k

+
∑

l

εI ,l ln
cI,l

c0
I,l

⎞

⎠ .

substrates products activators inhibitors
(11.27)

The variables are defined to the relative reference steady state, with concentration
levels state c0, fluxes J 0, and enzyme level c0

E . The parameters are the elasticity
coefficients

εM = cM

r

(

r


cM

)
. (11.28)

In total the network holds 921 kinetic parameters (elasticities). The dynamic sim-
ulation of the non-linear and stiff system of differential equations was performed
with the aid of the extrapolation solver LIMEX from the Konrad-Zuse-Centre for
Information Technology in Berlin (Ehrig et al. 1999). For estimation of the parame-
ters the evolutionary algorithm developed by the Computer Science Department of
the University of Tuebingen (Streichert and Ulmer 2005) has been applied. Results
of the comparisons between model simulations and experimental observation from
stimulus response experiments in which a pulse of glucose is added to the steady
state of a continuous culture have been presented by Reuss et al. (2007).

One key to understanding how these large scale models do compare with dy-
namic models based on mechanistic rate expression is to carefully examine the dif-
ferences between the simulation results of the two approaches. Visser et al. (2000)
compared the outcome of the linlog approach with the dynamic model of Chas-
sagnole et al. (2002). These authors noted a reasonable agreement for not to large
dynamic perturbations with respect to the external glucose concentration. An impor-
tant observation from this comparison and associated identification of the elasticity
coefficients in Equation (11.27) concerns the expected behaviour of the reversible
near-equilibrium reactions in the glycolysis. First, the individual elasticity coeffi-
cients of such reversible near-equilibrium reactions are not independent. Further-
more, it can be easily shown that the values of the elacticities must be very high
and, in consequence, the flux control coefficient tends to zero. In essence then, these
reactions are suited candidates for model reduction.

The issue of this model reduction should be always addressed in the context
of the purpose of the model as emphasized in the beginning of this chapter. A
first, well-proven concept for model reduction in metabolic engineering is based
on the time hierarchy of the metabolism. The kernel of this method is a model
analysis, which considers the eigenvalues and eigenvectors of the Jacobian asso-
ciated to the dynamic model (Heinrich and Schuster 1996). The application of this
time-scale separation for the Cassagnole model (Chassagnole et al. 2002) results
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in assumptions of quasi-steady state conditions for 11 eigenvectors possessing the
highest values.

The result of this reduction, which shows reasonable agreement between the dy-
namic response of the original and reduced model, yields, however, a differential-
algebraic system. Because the algebraic equations do not allow an explicit analytical
solution it is necessary to resort to advanced and efficient solver for differential-
algebraic systems.

As a promising alternative to the modal analysis we employed a sensitivity anal-
ysis based on the flux control coefficients (Lapin et al. 2006). These coefficients
relate the fractional change of the steady state fluxes to the infinitesimal changes in
the total enzyme concentrations (Heinrich and Schuster 1996). From the hierarchy
of these flux control coefficients predicted from the original model reactions with the
highest values in relation to the flux control coefficient of the glucose uptake were
selected. The resulting network is depicted in Fig. 11.8 Because of low flux control

Fig. 11.8 Reduced metabolic network model for the sugar uptake system, glycolysis and pentose
phosphate pathway. Reduction of the original model (Chassagnole et al. 2002) is based on the
hierarchy of flux control coefficients. The numbers alongside the enzymes depict the metabolic
fluxes related to glucose uptake rate 100
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coefficients the reactions for the phosphoglucoisomerase, the triose phosphate iso-
merase, the phosphoglycerate kinase, the phosphoglyceromutase and the enolase
could be neglected. The low flux control coefficients result from the reversibility of
aforementioned reactions leading to very high values of the elasticity coefficient. For
the purpose of model reduction a rapid equilibrium is assumed for these reactions
and the dynamics of the metabolites are linked via equilibrium constants.

To summarize the efforts for designing the dynamic model for the central
metabolism it is important to emphasize that systems biology modeling of these
networks should not be restricted to the task of aggregating and integrating quanti-
tative information on individual enzyme kinetics to “whole-cell models”. An equally
important challenge is to reduce the complexity and to tailor the model structure for
the intended application. Thus, depending on its specific objectives, a model may
involve details at different levels.

11.6 Conclusions

The framework for integration of regulatory and metabolic networks provides sig-
nificant insights on the dynamic response of microorganisms to perturbations of the
environmental condition with characteristic times relevant for variations in gene ex-
pression. This issue is of particular importance for process operations with dynamic
variations in the supply of the carbon and energy source with high relevance for
high cell density fermentations. The importance of these regulation phenomena in
response to increasing carbon limitation is not restricted to the catabolism of the
cell. The strong impact on anabolic reactions (Fig. 11.3) leads to serious variation
of the protein expression dynamics with consequences on specific productivities in
case of production of recombinant proteins. Future work in our group aims at the
extension of integration of regulatory and metabolic networks for these important
anabolic phenomena based on dynamic models for protein and ribosome synthesis
linked to precursor supply from the central metabolism (Arnold et al. 2005, Elf and
Ehrenberg 2005, Elf et al. 2005, Götz and Reuss 1997).

As far as the integration of regulatory networks with modules of the central car-
bon metabolism is concerned the main contribution of this chapter arises from the
fact that a plausible conceptual framework has been developed which enable us to
link existing dynamic models for the metabolism with simple models for regulation
of transcription and translation of important target enzymes. The approach contains
a concise method for the formulation of gene expression. It is demonstrated how
the necessary model parameters regarding the gene regulation, i.e. the binding con-
stants of regulator proteins to the DNA-binding site of the individual genes of the
regulon, can be derived from the DNA sequence of the sites and minimal literature
information.

The overall approach may also serve as an example of how to successfully bridge
the top down and bottom up approach for the purpose of modeling and simulation
in systems biology. After application of top down analysis for identification of the
target genes in the central metabolism, the modeling cycle of the bottom up ap-
proach is initiated. This includes quantitative measurements of concentrations of
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key compounds such as single mRNA molecules, metabolites and even incorpora-
tion of “reductionistic” sequence information. This quantitative information at the
compound level is afterwards used for the verification of the dynamic model. The
ultimate goal of such a hybrid approach is that the characterization of the behavior
of the parts of the system should be consistent with the expected and/or observed
behavior of the system as a whole.
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Götz P, Reuss M (1997) Dynamics of microbial growth: modeling time delays by introducing a
polymerization reaction. J Biotechnol 58(2):101–114

Haixin W, Lijun Q, Dougherty E (2007) Modeling genetic regulatory networks by sigmoidal func-
tions: a joint genetic algorithm and Kalman filtering approach. In Third International Confer-
ence on Natural Computation (ICNC), pp 324–8

Hardiman T, Siemann-Herzberg M, Reuss M (2007b) Derivation of kinetic parameters for coupled
regulatory and metabolic network modeling from DNA-binding site sequences. In Foundations
in Systems Biology in Engineering (FOSBE), Conference Proceedings, Stuttgart, Germany, pp
255–9

Hardiman T, Lemuth K, Keller MA et al. (2007a) Topology of the global regulatory network of
carbon limitation in Escherichia coli. J Biotechnol 132(4):359–74

Hatzimanikatis V, Lee KH (1999) Dynamical analysis of gene networks requires both mRNA and
protein expression information. Metab Eng 1(4):275–81

Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York
Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the

�S (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66(3):373–95
Hewitt CJ, Nebe-Von-Caron G (2001) An industrial application of multiparameter flow cytometry:

assessment of cell physiological state and its application to the study of microbial fermenta-
tions. Cytometry 44(3):179–87

Hewitt CJ, Nebe-Von Caron G, Axelsson B et al. (2000) Studies related to the scale-up of high-cell-
density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a chang-
ing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol
Bioeng 70(4):381–90

Hewitt CJ, Nebe-Von Caron G, Nienow AW et al. (1999) Use of multi-staining flow cytometry to
characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch
cultures. Biotechnol Bioeng 63(6):705–11

Hofmeyr JH, Cornish-Bowden A (1997) The reversible Hill equation: how to incorporate cooper-
ative enzymes into metabolic models. Comput Appl Biosci 13(4):377–85

Hogema BM, Arents JC, Bader R et al. (1998) Inducer exclusion in Escherichia coli by non-PTS
substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of
enzyme IIAGlc. Mol Microbiol 30(3):487–98

Hogg T, Mechold U, Malke H et al. (2004) Conformational Antagonism between Opposing Ac-
tive Sites in a Bifunctional RelA/SpoT Homolog Modulates (p)ppGpp Metabolism during the
Stringent Response. Cell 117(1):57–68

Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol
3:318–56

Jensen KF, Pedersen S (1990) Metabolic growth rate control in Escherichia coli may be a con-
sequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and
catalytic components. Microbiol Rev 54(2):89–100

Jishage M, Kvint K, Shingler V et al. (2002) Regulation of � factor competition by the alarmone
ppGpp. Genes Dev 16(10):1260–70

Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature
224(5215):177–8



234 T. Hardiman et al.

Kremling A, Bettenbrock K, Gilles ED (2007) Analysis of global control of Escherichia coli car-
bohydrate uptake. BMC Syst Biol 1(1):42

Kremling A, Bettenbrock K, Laube B et al. (2001) The organization of metabolic reaction net-
works. III. Application for diauxic growth on glucose and lactose. Metab Eng 3(4):362–79

Kremling A, Gilles ED (2001) The organization of metabolic reaction networks. II. Signal pro-
cessing in hierarchical structured functional units. Metab Eng 3(2):138–50

Kremling A, Jahreis K, Lengeler JW et al. (2000) The organization of metabolic reaction networks:
a signal-oriented approach to cellular models. Metab Eng 2(3):190–200

Kremling A, Saez-Rodriguez J (2007) Systems biology - an engineering perspective. J Biotechnol
129(2):329–51

Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-
dimensional turbulent field of a stirred-tank bioreactor – A structured-segregated approach.
Chem Eng Sci 61(14):4783–4797

Lee SB, Bailey JE (1984a) Genetically structured models for lac promoter-operator function
in the chromosome and in multicopy plasmids: lac promoter function. Biotechnol Bioeng
26(11):1383–9

Lee SB, Bailey JE (1984b) Genetically structured models for lac promoter-operator function in
the Escherichia coli chromosome and in multicopy plasmids: lac operator function. Biotechnol
Bioeng 26(11):1372–82

Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):
98–105

Lemuth K, Hardiman T, Winter S, Pfeiffer D, Keller MA, Lange S, Reuss M, Schmid RD, Siemann-
Herzberg M (2008) Global transcription and metabolic flux analysis of Escherichia coli in
glucose-limited fed-batch cultivations. Appl Environ Microbiol 74:7002–15

Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Georg Thieme Verlag,
Stuttgart

Likhoshvai V, Ratushny A (2007) Generalized hill function method for modeling molecular pro-
cesses. J Bioinform Comput Biol 5(2B):521–31

McAdams HH, Arkin A (1998) Simulation of prokaryotic genetic circuits. Annu Rev Biophys
Biomol Struct 27:199–224

McClure WR (1985) Mechanism and control of transcription initiation in prokaryotes. Annu Rev
Biochem 54:171–204

Mechold U, Murphy H, Brown L et al. (2002) Intramolecular regulation of the opposing (p)ppGpp
catalytic activities of RelSeq, the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol
184(11):2878–88

Neidhardt FC, Savageau MA (1996) Regulation Beyond the Operon. In: Neidhardt FC, et al. (eds)
Escherichia coli and Salmonella: cellular and molecular biology, American Society for Micro-
biology Press, Washington DC

Patten CL, Kirchhof MG, Schertzberg MR et al. (2004) Microarray analysis of RpoS-mediated
gene expression in Escherichia coli K-12. Mol Genet Genomics

Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotrans-
ferase systems of bacteria. Microbiol Rev 57(3):543–94

Ramseier TM (1996) Cra and the control of carbon flux via metabolic pathways. Res Microbiol
147(6–7):489–93

Reuss M, Luciano A-V, Mauch K (2007) Reconstruction of dynamic network models from metabo-
lite measurements. In: Nielsen J, Jewett MC (eds) Metabolomics, Springer, Berlin, Heidelberg

Rizzi M, Baltes M, Theobald U et al. (1997) In vivo analysis of metabolic dynamics in Saccha-
romyces cerevisiae. 2. Mathematical model. Biotechnol Bioeng 55(4):592–608

Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam,
New York, Oxford

Rosen R (1968) Recent developments in the theory of control and regulation of cellular processes.
3. Int Rev Cytol 23:25–88



11 Dynamic Modeling of the Central Metabolism of E. coli 235

Saier MH, Jr., Ramseier TM (1996) The catabolite repressor/activator (Cra) protein of enteric bac-
teria. J Bacteriol 178(12):3411–7

Saier MH, Jr., Ramseier TM, Reizer J (1996) Regulation of carbon utilization. In: Neidhardt FC,
et al. (ed) Escherichia coli and Salmonella: cellular and molecular biology, American Society
for Microbiology Press, Washington DC

Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating
isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99(5):1170–85

Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and
methodologies. Academic Press, London

Stormo GD (1988) Computer methods for analyzing sequence recognition of nucleic acids. Annu
Rev Biophys Biophys Chem 17:241–63

Stormo GD (1990) Consensus patterns in DNA. Methods Enzymol 183:211–21
Stormo GD (2000) DNA binding sites: representation and discovery. Bioinformatics 16(1):16–23
Stormo GD, Fields DS (1998) Specificity, free energy and information content in protein-DNA

interactions. Trends Biochem Sci 23(3):109–13
Streichert F, Ulmer H (2005) JavaEvA: a Java based framework for Evolutionary Algorithms.

http://tobias-lib.ub.uni-tuebingen.de/volltexte/2005/1702/
Takeda Y, Sarai A, Rivera VM (1989) Analysis of the sequence-specific interactions between Cro

repressor and operator DNA by systematic base substitution experiments. Proc Natl Acad Sci
USA 86(2):439–43

Teich A, Meyer S, Lin HY, Andersson L, Enfors S, Neubauer P (1999) Growth rate related concen-
tration changes of the starvation response regulators sS and ppGpp in glucose-limited fed-batch
and continuous cultures of Escherichia coli. Biotechnol Prog 15:123–9

Traxler MF, Chang DE, Conway T (2006) Guanosine 3′, 5′-bispyrophosphate coordinates global
gene expression during glucose-lactose diauxie in Escherichia coli. Proc Natl Acad Sci USA
103(7):2374–2379

Uptain SM, Kane CM, Chamberlin MJ (1997) Basic mechanisms of transcript elongation and its
regulation. Annu Rev Biochem 66:117–72

Van Dien SJ, Keasling JD (1998) A dynamic model of the Escherichia coli phosphate-starvation
response. J Theor Biol 190(1):37–49

Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway
using linlog kinetics. Metab Eng 5(3):164–76

Visser D, Schmid JW, Mauch K et al. (2004) Optimal re-design of primary metabolism in Es-
cherichia coli using linlog kinetics. Metab Eng 6(4):378–90

Visser D, van der Heijden R, Mauch K et al. (2000) Tendency modeling: a new approach to ob-
tain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. Metab Eng
2(3):252–75

Vohradsky J (2001a) Neural model of the genetic network. J Biol Chem 276(39):36168–73
Vohradsky J (2001b) Neural network model of gene expression. FASEB J 15(3):846–54
Weaver DC, Workman CT, Stormo GD (1999) Modeling regulatory networks with weight matrices.

Pacific Symposium on Biocomputing 4:112–123
Wendrich TM, Blaha G, Wilson DN et al. (2002) Dissection of the mechanism for the stringent

factor RelA. Mol Cell 10(4):779–88
Wong P, Gladney S, Keasling JD (1997) Mathematical model of the lac operon: inducer exclu-

sion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnol Prog 13(2):
132–43

Yagil G (1975) Quantitative aspects of protein induction. Curr Top Cell Regul 9:183–236
Yagil G, Yagil E (1971) On the relation between effector concentration and the rate of induced

enzyme synthesis. Biophys J 11(1):11–27
Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures

of Escherichia coli. Biotechnology (NY) 10(12):1550–6


