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Abstract The subsurface remote-sensing technology currently used in the United
States for UXO decontamination is relatively crude, consisting of DC (static)
magnetometry. Ultrawideband electromagnetic induction (EMI) is emerging as a
technology with reasonable discrimination potential. EMI devices operate in the
magneto-quasistatic (MQS) band, usually between tens of Hz and perhaps a cou-
ple hundred kHz, and engage a substantially different phenomenology than that of
wave electromagnetics. Over the relevant space scales, soil, fresh water, and rock
are effectively lossless in the MQS regime, which encourages EMI application.

Here we review the relevant EMI physics and phenomenology and then dis-
cuss state-of-the-art EMI discrimination methods like the Standardized Excitation
Approach (SEA). This can be used in signal matching to decide if an unseen target
belongs to a catalogued set. It can also quickly provide many examples of realis-
tic input to train statistical learning algorithms such as Support Vector Machines
(SVM). SVMs can also use SEA parameters themselves as discriminators. Most
realistic UXO-sensing scenarios are clutter limited. We examine computational
upward continuation as a clutter-mitigation strategy with a rational physical basis.
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1 Introduction

Surveying and cleanup of sites with potential contamination by unexploded ord-
nance (UXO) is an extremely high priority environmental objective in the United
States, yet one that is very challenging. The problem is complicated by its sheer size
(millions of hectares); hundreds, probably many hundreds of sites; diverse and often
problematical geological and terrain conditions; and great diversity in the sizes and
types of UXO. A comparable or larger scale problem exists at the international level,
beyond military training grounds to the sites of past conflicts. The problem comes
into focus when one notes that, while some very large UXO may be 10 m deep
underground, by far most UXO are within the top meter of soil, mandating very
shallow surveying. Further, we cannot yet sense what we are in fact most concerned
about, namely the explosive within intact shells. Therefore we have to sense metal
and only thereby characterize the object.

The first priority in UXO surveying is detection—making sure that some suffi-
ciently clear signal is obtained from essentially all UXO in the field. Unfortunately,
in the service of this objective, our sensors record responses from virtually every-
thing in the environment capable of producing a signal. Site remediators frequently
excavate hundreds of objects for each UXO that is found [4]. The resulting costs are
frequently prohibitive. Thus the second crucial requirement is that of discrimination.
Signal anomalies identified in broader surveying must be subjected to close investi-
gation to distinguish the nature of the responding object and to judge how likely it
is to be a UXO. This chapter focuses on discrimination, as opposed to detection.

Electromagnetic sensors of some kind are currently the most logical choice
with which to sense buried metallic bodies. Ground penetrating radar (GPR), while
used in many applications of geophysical, environmental, and infrastructure sur-
veying, has not generally been successful at distinguishing UXO. The combination
of ground surface reflection, signal loss over depth, and signal clutter due to both
metallic fragments and dielectric heterogeneities is simply too great. While holding
some potential as an adjunct to other sensing modes for close discrimination, even
ultrawideband (UWB), fully polarimetric GPR in the 10–810 MHz range coupled
with extensive processing is still challenged in the discrimination realm [6,14]. The
most common sensing mode by far in actual practice in the United States is static
(DC) magnetometry. Magnetometers detect perturbations of the earth’s field caused
by ferrous objects. While relatively reliable at least as detectors of steel, magnetome-
ters produce a rather crude picture by virtue of both current practice and inherent
information content in the signals. Discrimination capability is quite limited, though
progressing [16].

Between DC magnetometry and GPR lies electromagnetic induction (EMI) sens-
ing. One may hope that EMI sensors combine the best of magnetometry and GPR.
Like the former, they are immune to dielectric heterogeneities and, on our scale of
observation, the ground is essentially transparent to them. State-of-the-art sensors
are UWB, with frequencies of operation possibly from tens of Hz up to tens or,
rarely, hundreds of kHz, and some devices register vector response fields. Received
signals have high information content, being sensitive to object distance, shape,
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orientation, and composition. Altogether, whether alone or in tandem with other
kinds of sensors, EMI appears to offer the greatest immediate promise for discrimi-
nation of buried UXO.

2 Relevant Electromagnetic Theory and Phenomenology

To understand both the challenges and the potential of UWB EMI technology, it
is vital to gain some grasp of the fundamental physics and phenomenology in that
domain, particularly if one is approaching from what may be the more familiar realm
of electromagnetic waves.

2.1 Basic relations; waves vs. diffusion and potential fields

All the relevant phenomena are governed by Maxwell’s equations [9,20]. Faraday’s
Law pertains specifically to induction, stating that a time varying magnetic flux is
linked to circulation of E:

∇∇∇×E =

⎧⎪⎨
⎪⎩

−∂B
∂ t

Time domain (TD)

iωμH[e−iωt ] Frequency domain (FD)

⎫⎪⎬
⎪⎭ , (1)

where E is the electric field (V/m) and B (T) is the magnetic flux density, equal
to the magnetic field H (A/m) times the medium magnetic permeability μ (H/m).
Integrating the normal component of this equation over a surface S, e.g. the planar
region within the loop in Figure 1, produces an integral version of (1):

∮
Γ

dγ ·E = − d
dt

∫
S

dS Bn = −dΦ
dt

. (2)

The line integral around the edge of the surface, Γ , constitutes essentially a voltage,
an electromotive force. If there is a conductor surrounding the surface, this implies

Fig. 1 Schematic of a mag-
netic dipole formed by an
electric current loop, with
associated magnetic field
lines passing through the
loop.

Electric
Current

H field
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an electric current loop. Depending on what part of the system is forced, such a
current loop may induce a changing magnetic flux Φ , as in our EMI transmitters;
or, conversely, an imposed change in magnetic flux may induce a current loop, as
when our transmitted magnetic fields encounter a metallic object (see Figure 1).

An infinitesimal magnetic dipole of moment m produces an H field [20]

H(r) =
3r̂r̂− I
4πr3 ·m. (3)

where m is the dipole moment of the current loop. For this ideal dipole approxima-
tion to apply, the distance r from the center of the loop need only be greater than a
couple times the loop diameter.

As all our EMI transmitters and responding objects of interest form finite dipoles,
the relation in (3) is fundamental, at least as an approximation. In particular, the 1/r3

spatial dependency of signals produces crucial limits on applicability and resolution
of the technology. Except rarely, where noted, we will assume in what follows that
the sensor’s transmitters and receivers are co-located. In this case, (3) applies over
the same distance, r, in both directions between transmitter and responding object,
for a total signal falloff proportional to 1/r6. As we shall see below, ground lossiness
does not afflict EMI with signal loss in the same way that it does GPR, where it is a
serious problem. Instead, the 1/r6 signal falloff in EMI is due purely to the inherent
geometry of the quasistatic fields. There is little that can be applied to counteract it.

Ampère’s Law relates the curl of the magnetic field to various currents:

∇∇∇×H =

⎧⎪⎨
⎪⎩

[Jsc]+Jenv +
∂D
∂ t

[Jsc]+σE− iωεE

⎫⎪⎬
⎪⎭ . (4)

The source current Jsc is taken to be non-zero only in isolated, concentrated regions
(e.g., a wire loop as in Figure 1), and we do not analyze it further. The conduction
current density in the environment, Jenv (A/m2), is related to the electric field via
the electrical conductivity σ (S/m); and ∂D/∂ t is the “displacement current,” where
D = εE and ε is the permittivity of the medium (F/m). The exposition that follows
explores the ways in which the magnitudes of the last two terms on the right, relative
to one another and to the quantity on the left, fundamentally determine the nature of
the electromagnetic phenomena at hand.

The divergence law for magnetic fields states, in effect, that there are no isolated
magnetic charges (poles):

∇∇∇ ·B = 0 =∇∇∇ ·μH. (5)

In magnetically homogeneous regions, H will be divergence-free as well. Equa-
tion (5) also means that the magnetic field lines in Figure 1 actually form closed
loops. As a convenient fiction, we may introduce nonzero equivalent magnetic
charges qm on the right in (5), outside of regions of application, in order to gen-
erate mathematically the fields within regions of interest (ROI). This is valid as long
as the source distributions imply fields that satisfy the governing equations within
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the ROI as well as the appropriate conditions on its boundary. A qm-based approach
is used in the clutter-suppressing upward continuation system described below.

Using (5) for H together with (1) in the curl of (4) produces a Helmholtz-type
equation:

∇2H =

⎧⎪⎨
⎪⎩

σμ
∂H
∂ t

+με
∂ 2H
∂ t2 (TD)

(iωσμ+ω2με)H = −k2H (FD)

⎫⎪⎬
⎪⎭ , (6)

where k has different meanings depending on the parameter range that applies.
When the second derivative with respect to time dominates then (6) becomes a wave
equation, possibly with a significant loss term. In that case, k is a true wave num-
ber. When the first derivative with respect to time dominates, then (6) becomes a
diffusion equation and k is no longer a true wave number.

The relative magnitude of the two time-derivative terms in (6) is probably best
apprehended from the ratio of their corresponding frequency-domain expressions,
namely σ/ωε . In the GPR frequency range (107–109 Hz) we may assume that the
fields form waves in air (σ ∼ 0) and that penetration of metallic reflectors is negligi-
ble. They serve as perfect reflectors. The dielectric constant of soil, κ = ε/ε0, ranges
from about 6 for dry soil to a maximum of about 30 for soil completely saturated
with water. For ground, σ ranges from a low of about 10−3 S/m (particularly for dry
and granular soil) up to about 1 S/m for media saturated with seawater. Altogether,
for GPR we have

Diffusion
Wave

∼ σ
ωε

=

{
10−3, lowest σ , highest f
102, highest σ , lowest f

. (7)

In principle, either waves or diffusion may dominate. In the absence of saltwater in
the soil, a more typical maximum of the ratio in (7) is on the order of unity. Thus
wave phenomena are typically dominant or at least highly significant.

Magneto-quasistatics is defined by the condition that the displacement current
∂D/∂ t is negligible. This can occur when the ε term on the right hand side of (6) is
overshadowed by the σ term. It is the case over essentially the entire EMI band in
soil and metal.

Diffusion
Wave

∼ σ
ωε

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Soil ⇒
{
∼101, lowest σ , highest f
∼108, highest σ , lowest f

}

Metal σ ∼ 107 S/m, ⇒ σ/ωε � 1.

(8)

While diffusion can be very important, waves are essentially always negligible. In
the EMI realm there are no true reflections, diffractions, resonances, etc., of the sort
expected in the wave regime.

As explained below, it is possible for both terms on the right hand side of (4)
to be negligible relative to the derivatives in the term on the left. In this case, the
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magnetic field is irrotational and can be represented simply in terms of the gradient
of a scalar potentialΨ [9, 20]:

∇∇∇×H = 0 −→ H = −∇∇∇Ψ . (9)

Combining this with the divergence-free condition on H produces a simple Laplace
governing equation in terms ofΨ :

∇∇∇ ·H = 0 −→ ∇2Ψ = 0. (10)

A scalar potential may be generated most simply via scalar sources, i.e. equivalent
magnetic charges qm situated outside the ROI within which the divergence free con-
dition applies to H:

Ψ(r) =
∫

S0

dS′
qm(r′)

4π |r− r′| . (11)

By construction,Ψ obtained from (11) from any set of qm outside the ROI will sat-
isfy the equations in H within the ROI, as per (9) and (10). To obtain the particular,
realistic field required in any circumstance, one uses the gradient of (11) to enforce
the standard boundary conditions in H [9, 20] on the boundary of the ROI. This is
the strategy we will employ for upward continuation.

2.2 Character of the EMI regime: metal

Metallic targets are significantly penetrable over much of the EMI band (Figure 2).
From the point of view of discrimination of unknown targets, this is both fortunate
and unfortunate: metal type matters. Figure 3, left, shows the frequency response to
a uniform excitation H field by a hypothetical 20-cm diameter metal sphere, a case
for which there is an analytic solution [23]. The response is construed in terms of a
component in phase with the excitation field (real-valued part) and a part in phase
quadrature with it (imaginary part). Around the high-frequency limit, penetration
of the excitation field is so slight that essentially only surface currents exist and
asymptotic behavior is reached, independent of material type. In accordance with
Lenz’s law, these surface currents circulate in such a way as to oppose the primary
field, hence the negative real value of the response there.

At the low-frequency end of the spectrum, approaching magnetostatic condi-
tions, penetration of the object by the excitation field is complete but there are no
induced currents because ∂B/∂ t is negligible. If the metal is permeable (μ > μ0),
as in the example in the figure, a magnetization (polarization) response appears
in the absence of macroscopic induced currents. It is aligned with the excitation
field (positive sign) and is due to microscopic magnetic dipole structures within
the material. For non-permeable materials (μ = μ0), the inphase response will be
zero at the low-frequency limit, descending from there toward the high-frequency
asymptote. Between the low- and high-frequency regimes, over most of the band,
one encounters some mixture of magnetization and induced (macroscopic) current
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Fig. 2 Skin depth vs. frequency for various common metals over the EMI band.
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Fig. 3 Left: Frequency response of a sphere with properties of steel, σ = 4×106 S/m, μr = 100.
Right: Normalized transverse and axial responses by a prolate spheroid of the same material.

responses within the object. The quadrature component is due to induced volume
currents and is delayed relative to the excitation field because of the finite conduc-
tivity of the material. This effect peaks somewhere within the band.

Given that D and its derivatives are negligible in magneto-quasistatic fields,
one can manipulate the equations above to show that induced currents must be
divergence-free. There can be no accumulations of free charge, and all induced cur-
rents must form continuous, closed loops. The current loops induced by impinging
primary (excitation) fields thus effectively form finite-dimensional magnetic dipole
structures. For the special case of a homogeneous sphere, the induced currents and
polarization throughout its volume produce a secondary field outside the object that
is exactly the same as would be produced by an infinitesimal magnetic dipole at its
center.
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While essentially all metallic objects produce some variant of the relaxation-type
curves in Figure 3, left, the particulars are case-dependent. Material type, size, pro-
portions, and orientation all influence the location of the quadrature peak as well as
many specific details in the relations between the two components. Figure 3, right,
shows normalized quadrature response spectra of a hypothetical steel prolate spher-
oid, 20 by 5 cm, with the same material parameters as the sphere on the left and with
its axis oriented parallel and then perpendicular to the excitation field. A new ana-
lytical solution is available for these cases [1]. Note that the peak in this component
shifts much higher in frequency for the transverse orientation. Examining spectral
features such as this is the basis for frequency-domain (FD) discrimination.

These spectral features also correspond to response patterns in time when
the object is subjected to an imposed change in the surrounding magnetic field.
Responses to any such excitations can only decay through the time following the
change, but with patterns of magnitude, temporal gradient, etc., dependent on the
object’s particulars. Time-domain (TD) discrimination examines the features of
such received temporal decay curves. Note that, while responses proceed through
time in TD EMI sensing, signal time does not correspond to distance to a respond-
ing entity, as in radar. On our EMI time and space scales there is no true wave-type
propagation, and all distances sensed respond effectively at the same time.

2.3 Character of the EMI regime: air

One can show that the magnitude of ∂D/∂ t in air in the EMI band is negligible com-
pared to the terms in ∇∇∇×H. Because the electrical conductivity of air is also neg-
ligible, neither displacement nor conduction currents are significant, and the right
hand side of (4) is zero. With an irrotational H field, the simple scalar Laplace equa-
tion (10) governs. Viewed another way, as long as there is time variation of the fields,
they are waves on some scale, but not on our scale of observation (∼1 m). Wave-
lengths range from some kilometers at the top of the band up to perhaps 10,000 km
near the bottom. Over our scale of observation there is no discernible phase dif-
ference between one point and another; no delay. The fields have the structure of
static fields with time dependence imparted only by boundary conditions/forcing
functions.

2.4 The EMI regime in soil

Here σ is finite and one can show that conduction currents will typically have
a larger effect than displacement currents. At the same time, the effect of σ is
negligible: Skin depths are much greater than the scale of observation (Figure 4).
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Fig. 4 Skin depths for dif-
ferent soil conductivities,
assuming a representative
dielectric constant of 16.
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In this sense, the soil is transparent to signals in the EMI band. In the absence of
seawater, the upper two lines probably furnish reasonable bounds under common
circumstances. With induced soil currents negligible and displacement currents even
smaller, once again the H field is irrotational and a scalar Laplace potential equa-
tion governs. Further, note that as tangential E fields are continuous between soil
and buried metal objects, the ratio of induced current magnitudes in each will be
approximately the ratio of their conductivities, which is ∼109. Currents induced in
the metal dominate the response signal within the soil, given that we only sense a
soil volume that is not many orders of magnitude greater than that of a target of
interest. Of course, this situation may not be the case in the absence of metal targets
and when large volumes or depths of ground are sensed, e.g. ∼kilometers in deep
geophysical prospecting. Overall, in our case, for all practical purposes the trans-
mitted field reaches a metallic buried object essentially unaffected by the ground,
and system responses both within the soil and above ground at the receiver are dom-
inated by the response of the target.

While induced soil currents do not produce significant signal responses, magnet-
ically permeable soil can still, however, produce a significant half-space response,
including rough surface effect, which we indeed see in field work. The relative per-
meability μr is unity in free space; for soil it is typically construed in terms of the
(volumetric) magnetic susceptibility as (1+χ). Even though χ magnitudes are gen-
erally on the order of 10−3 or less [4], this can still be enough to produce a half-space
response that is notable relative to that of buried metal targets. Some UXO sites are
particularly problematic, such as volcanic terrains (e.g., Maui and Kaho‘olawe in
Hawai‘i). The nature and character of soil susceptibility are currently an area of
active research. Our recent experience suggests that, for common soil, the instanta-
neous response (real-valued χ , constant over the band) is large relative to a trailing
relaxation response, with only the latter affecting TD instruments [26].
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2.5 The EMI realm, summary

In the MQS EMI band, on our scale of observation:

• There are no waves nor attendant wave phenomena (reflection, diffraction, refrac-
tion. . . ). To emphasize the difference, we speak of the transmitted field impinging
on a target as the “primary” (as opposed to “incident”) field, and the field from
the object’s response as the “secondary” field.

• One can map the vector, UWB subsurface response over an area of ground sur-
face in terms of inphase and quadrature components in the FD, overall using
perhaps five decades of frequency, or using decay time points in the TD.

• Metal targets are penetrable, completely so at the very bottom of the band, with
possibly negligible penetration (surface currents only) at the very top of the band.
Different metal types respond differently, and the magnetic field within the metal
operates by diffusion.

• In both soil and air, both conduction and displacement currents, i.e., both diffu-
sion and wave effects, are negligible. Magnetic fields are irrotational and can be
expressed in terms of a scalar Laplacian potential. The only significant induced
currents are those in metal objects, which dominate the secondary fields in the
soil and air in their vicinity.

• In contrast to GPR, there is no significant delay, travel time, or phase difference
over space – fields have the structure of magnetostatic fields, with time depen-
dence imposed by boundary conditions/forcing functions. In TD EMI, elapsed
signal time corresponds to duration of signal decay in an object at a given depth.
It does not correspond to depth of responding entities. All depths respond essen-
tially at once and a single picture emerges over each portion of the ground sur-
face.

• Soil lossiness has a negligible effect. In that sense the ground is transparent to
EMI signals, though half-space-type magnetic responses from permeable soils
are seen.

3 Standardized Excitation Approach Forward Modeling in EMI

For use in many kinds of discrimination algorithms, we benefit from rigorous but
fast simulations of EMI responses by objects of interest, taking into account the
particular sensor characteristics. The Standardized Excitation Approach (SEA) for-
mulation based on fundamental spheroidal modes can calculate the sensor responses
produced by a geometrically complex, materially heterogeneous object, accounting
for near and far field effects and all internal interactions [7, 19, 21, 25]. The total
response to any excitation is constructed simply as an appropriate superposition
of responses to defined excitation modes. These modes form a sufficient basis to
express any excitation. As the simulations are extremely fast relative to detailed
numerical solution of the governing equations, they can be run many times in the
course of an inversion or classification computation.
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Fig. 5 Schematic of a radar
beam incident upon a UXO,
indicating the beam’s decom-
position into constituent plane
waves.

Plane-wave
constituents

Einc(r)

Radar
beam

Consider an analogy to decomposition of radar beams into constituent plane
waves (Figure 5). At each frequency, an incident radar beam can be decomposed
into a bundle of plane waves, all of the same frequency but with different vector
wave numbers k j depending on the direction of propagation of each:

Einc(r) =∑
j
β jEinc

j (r), Einc
j (r) = eik j ·r. (12)

If, either by computation or experiment on a particular object, one catalogues its
response to a unit magnitude of each of these constituent Einc

j , then one can easily
construct the total response to the bundle of them constituting the complete beam.
One can do this for any sensor-target arrangement as quickly as one can solve for
the β j in (12).

To parallel this procedure in EMI, for magnetic fields, one decomposes the pri-
mary field into fundamental or “standardized” excitations,

HPR(r) =∑
j

b jHPR
j (r), (13)

and constructs the total response Hs as the corresponding sum of responses to each
excitation mode:

HPR
j (r) → Hs

j(r), Hs(r) =∑
j

b jHs
j(r). (14)

Cataloguing the response to each excitation mode means solving for some set of
parameters, S j

k, for each fundamental ( jth) input, i.e., setting Hs
j(r) = ∑k S j

kGk(r).
One can obtain the S j

k from data in controlled measurements on an object of interest
by calculating the b j for various sensor-object configurations via (13), then using
these in the combination of (13) and (14):

Hs(r) =∑
j

b j∑
k

S j
kGk(r). (15)
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With the b j known and a sufficient number of measurements of the left-hand side
of (15), one can solve for the necessary S j

k. For a given object or object type, this
need only be done once. While the data or particular beam composition may be a
function of the sensor position r, the S j

k are not. When their nature or structure is
defined, they are invariant characteristics of the object.

The nature of the modal response function Gk(r) just depends on the nature of the
response parameters S j

k that are applied. For example, if the S j
k are equivalent charges

at the object location, then the Gk(r) will just be the appropriate Green function for
that source type, see e.g. (11). The S j

k can be used thereafter for repeated forward
modeling, requiring only that one decompose any excitation at hand, i.e. obtain the
applicable b j for each sensor-object configuration. As we shall see, having obtained
the characteristic S j

k for candidate objects, one can use them within fast forward
models during optimization to determine whether recorded signals are most likely
to have been produced by one of the candidates. Alternatively, one can infer the S j

k
for unknown targets and then use those parameters themselves as discriminators.

The fundamental problem in formulating the SEA approach in EMI resides in
the requirement that one produce some appropriate basis HPR

j (r) for decomposing
the primary fields. In the EMI/MQS regime, there are no plane waves nor, for that
matter, any waves at all. One solution is to apply basic solutions of the Laplace
equation in the spheroidal coordinate system,

HPR(η ,ξ ,φ) = −∑
m,n

bm,n∇∇∇
(

Pm
n (η)Pm

n (ξ )
{

sinmφ
cosmφ

})

= −∑
j

b j∇∇∇ψ PR
j (η ,ξ ,φ),

(16)

where Pm
n is the associated Legendre function of the first kind of order m and degree

n, and j denotes admissible combinations of m and n ( [1] and references therein).
We frequently choose prolate spheroidal systems, with origin at the (possibly hypo-
thetical) object location, because UXO typically have elongated, rotationally sym-
metric shapes, requiring few terms in the series. Figure 6 shows example magnetic
field lines for some of the lowest modes in the series in (16).

pmn = 011 pmn = 001 pmn = 002 pmn = 012

Fig. 6 Any primary field can be considered as the superposition of a set of predefined spheroidal
excitation modes HPR

j (r). Here we see the magnetic field lines corresponding to some of the most
fundamental modes.
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Instead of using responses by equivalent sources (e.g. charges), one can construct
the response to each fundamental excitation using an analytic spheroidal function
series, similar to the one expressing the primary field:

Hs
j(η ,ξ ,φ) = −∑

m,n
B j

m,n∇∇∇
(

Pm
n (η)Qm

n (ξ )
{

sinmφ
cosmφ

})

= −∑
k

B j
k∇∇∇ψ

s
j(η ,ξ ,φ),

(17)

where Qm
n is the associated Legendre function of the second kind of order m and

degree n. In this case, the S j
k in (15) are just the coefficients in the series in (17), i.e.

the B j
k. While this formulation presents its own difficulties relative to a source-based

response parameterization, it is distinguished by the fact that the B j
k are unique. That

is, one can show that they are characteristics of the object, regardless of excitation
or manner of observation, and any object possesses one and only one set of them in
a chosen coordinate system [7, 8].

A crucial feature of EMI SEA decomposition using spheroidal potential func-
tions is that very few of them are required. Figure 7 shows averages over instrument
position of the b j values obtained experimentally for a particular UXO, using a
relatively small FD sensor. The sensor-UXO separation was about one to two char-
acteristic lengths relative to both sensor and target. Also, this sensor produces rather
nonuniform primary fields relative to most other instruments. Even so, only about
four modes dominate the primary field distribution around the UXO. Figure 8 shows
a test in which the UXO response predicted by the SEA is compared to measure-
ments, using either four or eight excitation modes. The measurements proceed in
sweeps along the grid lines, producing peaks in the signal as the sensor moves past
the object. The plots on the right illustrate the character of the overall results. The
eight-mode formulation produces slightly more accurate results than the four-mode
one; however, the difference is not great and probably not justified on the basis
of cost vs. benefit. The reader is referred to the literature [8, 12, 19, 21, 24, 25] for

Fig. 7 The most significant
coefficients in the decom-
position of an example EMI
primary field.
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Fig. 8 SEA parameters for a model of the UXO are obtained from controlled measurements over
the grid, then used (plots on right) to predict the signal at other elevations of the sensor. The results
using 8 excitation modes show only slight benefits from inclusion of the higher-order coefficients.

Object Material Axis (2a) Axis (2b) e = b/a

S2 Steel 30 mm 182 mm 6
S3 Steel 30 mm 90 mm 3
S4 Steel 15 mm 90 mm 6
S7 Steel 30 mm 30 mm 1
A2 Aluminum 30 mm 91 mm 3
A3 Aluminum 15 mm 91 mm 6
C1 S4; S7
C2 A3; S7
U1 UXO of Figure 8, mainly steel
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Fig. 9 In a signal pattern matching test over the grid, optimization using the SEA model of the
mortar indicates correctly that the model is capable of producing the best match when the UXO in
fact produced the data, as opposed to the other objects. The other items produce lowest mismatches
that are roughly an order of magnitude worse [24].

discussion of alternatives in pursuing the modal parameters. Issues include control
of possible ill-conditioning when one seeks to use higher modes or those only mar-
ginally supported by the data.

The SEA model of the same UXO was also used in an optimization over posi-
tion and orientation to determine the best match (lowest mismatch) it can pro-
duce with each recorded signal from a collection of objects. These consisted of
machined metal spheroids, combinations of spheroids, and the UXO (Figure 9).
The SEA rendering of the UXO indeed produces the lowest mismatch to the actual
UXO signal.
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Further developments of the SEA include the Normalized Surface Magnetic
Charge (NSMC) formulation [18]. The NSMC uses a particularly simple breakdown
of the primary field together with synthesis of responses via connected equivalent
source distributions. The integral of the source mechanisms itself furnishes a dis-
tinctive characterization of the object.

4 Support Vector Machines and Their Application

A possible way to avoid time-consuming nonlinear searches during UXO discrim-
ination can be to perform “before the fact” inversion. One can run a trustworthy
model very many times to generate artificial data representative of the expected
parameter space. An algorithm could then take those results, make sense of them by
weighing the available empirical evidence without any reference to the underlying
model, and apply this knowledge to make predictions about unseen cases. In this
section we describe one such method, the Support Vector Machine (SVM) [2, 10].
We describe how an SVM can perform binary classification, a task to which most
classification and regression problems can be reduced, and then show the results of
some SVM experiments related to UXO discrimination.

The “examples” from which an SVM learns to classify are a set {xi} of n-
dimensional vectors. In the UXO problem these can be raw measured fields or
distilled parameters – dipole moments or spheroidal expansion coefficients, for
example – expected to contain evidence of the character of an object. Depending
on the classification we want to make we assign a yes/no attribute to each point:
examples belonging to the desired class have yi = 1 and the others yi = −1. SVMs
carry out the classification by finding a linear surface, a hyperplane, that divides the
parameter space into two distinct regions, each of which hopefully contains points
from only one of the categories (Figure 10). During the learning process the machine
readjusts the hyperplane parameters to accommodate every training vector until it

Fig. 10 Support vector classi-
fication. The weight vector is
perpendicular to the separat-
ing hyperplane. The negative
of the bias divided by the
norm of the weight is the
separation between the hyper-
plane and the origin. The
support vectors are circled.

w

wTx+b=0

wTx+b=−1

wTx+b=+1
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−b/||w||
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reaches an optimal compromise. At that point, only those examples whose removal
would significantly change the locus of the hyperplane suffice to specify a predict-
ing function. These points with high information content are the support vectors that
give the method its name.

Most data sets are not linearly separable in the space they occupy, and even bona
fide separable sets may be corrupted into nonseparability by noise. On the other
hand, it should be possible to make any set separable by projecting it into a space of
high enough dimensionality. The separating surface would be flat by construction
in the new space but could be curved – even multiply connected – in the original.
However, there must be a means to limit the capacity of the machine, its ability
to classify any data set without error: a machine with too much capacity is like a
model with too many adjustable parameters in its tendency to overfit data and noise
and concentrate on details rather than on essentials. We must be willing to tolerate
some mistakes if we want to generalize well, and the SVM algorithm incorporates
this in a transparent way [3].

A hyperplane in n dimensions is completely described by the equation

wTx+b = 0, (18)

where the weight vector w is perpendicular to it and the scalar bias b is proportional
to its separation from the origin (see Figure 10). Knowing w and b the machine
classifies any subsequent example z by evaluating f (z) = sgn(wTz+b).

Statistical learning theory [22] proves that the hyperplane that minimizes a prop-
erly defined “expected generalization error” for a given set of points is that with the
smallest norm [2]. An SVM sets out to solve the constrained minimization problem

min
w,b

1
2

wTw

s.t. (xT
i w+b)yi ≥ 1.

(19)

To prevent overfitting, we relax the constraints by introducing slack variables
that measure how far a point strays into the “wrong” side:

min
w,b

1
2

wTw+C∑
i
ξi

s.t. (xT
i w+b)yi ≥ 1−ξi, ξi ≥ 0.

(20)

Note that we also penalize the objective function for each misclassified example;
the proportionality constant C is the capacity we referred to above.

It is more convenient to solve this problem in its dual formulation. To paraphrase
an introductory calculus problem, instead of finding the rectangle with minimum
perimeter when given its area we will fix the perimeter and look for the rectangle
with maximum area. Both problems have the same answer, but the second involves
a simpler constraint and is easier to solve; this advantage is amplified in the multi-
dimensional problem (19), whose inequality constraints become equalities [10]:
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max
ααα

∑iαi − 1
2 ∑i, jαiyixT

i x jy jα j (21)

s.t. ∑iαiyi = 0, 0 ≤ αi ≤C.

The solution to the new problem is a vector of Lagrange multipliers αi, each of
which in a sense measures the information content of its corresponding point. Only
a small fraction of the examples, the support vectors, have nonzero αi. Note that in
this formulation the capacity limits the amount of knowledge that an example can
store; problematic points are eventually “sacrificed” in the interest of good gener-
alization. The symmetric convex quadratic programming problem (21) has no local
minima, and that, along with the sparsity of the solution, make the SVM a viable
and attractive classifier. The weight is given by w = ∑iαiyixi = ∑i∈SVαiyixi, the
bias can be computed by applying the Karush-Kuhn-Tucker conditions to the sup-
port vectors [3, 10], and the machine predicts new cases using

f (x) = sgn
(
∑

i∈SV

αiyixT
i x+b

)
. (22)

Having protected the generalization ability of the machine we are ready to
increase the dimensionality of the space. We use a device that follows from the
realization that in both (21) and (22) the data enter the problem only in the form of
scalar products. It is then possible to have a nonlinear separating surface while still
keeping the linearity of the machine by substituting

xT
1x2 → K(x1,x2) = φ(x1)

Tφ(x2) (23)

for some mapping φ(x). A function K that can be so expressed is called a kernel.
There is no one-to-one correspondence between mapping and kernel, and, more
important, it is not necessary to know φ to find K. The mapping may be into a space
of hundreds of thousands of dimensions, yet to gain access to it we only need the
much smaller and simpler kernel.

Some kernels stretch out the examples into the added dimensions in such a way
that gaps open up between the examples which permit a flat separating surface to
pass through. For example, Figure 11 shows the effect of applying to a nonseparable

Fig. 11 Applying a polynomial kernel to a nonseparable set of points projects it into a higher-
dimensional space and results in a linearly separable distribution. Left: original data in X , with two
classes corresponding to the circles and squares. Right: data projected into (X ,Y,Z) = (x

√
2,x2,1),

shown on the X-Y plane.
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Fig. 12 Two classes of points
interspersed, not linearly
separable, with yi = +1 for
the circles and yi = −1 for the
crosses. Dashed lines show
the Gaussian (RBF) potential
functions around each point;
the solid curve is the sum
of those functions, which
produces the class separator.

one-dimensional set the mapping x → φ(x) = [x
√

2 x2 1]T, which corresponds
to the polynomial kernel K(x1,x2) = (x1

Tx2 + 1)2. A very popular alternative, the
radial basis function (RBF) kernel

K(x1,x2) = exp(−(x1 −x2)
T(x1 −x2)/2σ2), (24)

surrounds every point with a (usually Gaussian) surface that resembles a potential
function in the sense that it “repels” the separating surface, as shown in Figure 12.
The explicit mapping is not known, though in any case in the hyperspace implied
by the kernel the separating surface will become flat. The Gaussian width σ is an
adjustable parameter; the RBF kernel is found to work best when σ is on the order
of the average separation between points.

One view of the RBF kernel, as well as other alternatives, is that it contains some
measure of proximity or similarity between two vectors x1 and x2. The function
attains a maximum when x1 = x2 and declines as the points become more distant
or dissimilar. (In the case of the polynomial kernel the similarity involves paral-
lelism rather than closeness.) This provides some measure by which the system can
determine whether new cases are similar to (i.e., in the same class as) others.

The SVM principle can also be applied to regression problems, where yi ∈ IR
instead of {−1,1}. The machine creates a surface with a surrounding tube of
adjustable width and wiggles it until a given loss function reaches a minimum. The
usual choice for this loss function assigns no penalty to points that rest inside the
tube and penalizes outliers linearly. The resulting optimization problem is similar
to (20): the objective function to be minimized has to strike a balance between fit-
ting accuracy (measured by the capacity and slack variables) and model simplicity
(measured by the norm of the weight vector) [10].

Figure 13 shows the results of an SVM classification experiment using synthetic
dipole parameters. We choose a range of spheroid diameters (from 1.5 to 15 cm)
and a range of elongations (from 0.5 to 4.5) representative of UXO and generate
1,000 spheroids with random diameters and elongations and with conductivities and
permeabilities representative of steel and aluminum. We then compute their induced
dipole moments under unit axial and transverse uniform primary field excitation
using analytic solutions of the EMI equations [1]. Then for given values of the diam-
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Fig. 13 SVM classification example using dipole moments.

Fig. 14 Top: Low-frequency
modal response magnitudes
B j

k corresponding to dipole
responses to uniform excita-
tion fields in the correspond-
ing directions, for a permeable
and a non-permeable spher-
oid. The smaller object pro-
duces larger values. Bottom:
Same, but for two spheroids
of the same material and with
the same volume. With dif-
ferent elongation ratios (1.5
and 2) they produce disparate
dipole responses at 2 kHz.
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eter we train an open-source SVM implementation [17] with 200 examples, telling
the machine which ones are larger than the given diameter and which ones are not.
After that, we test the SVM predictions on the 800 remaining examples. The figure
shows the success rate (defined as the number of correct predictions divided by the
total number of tests) as a function of increasing cutoff diameter. The second panel
displays the results of repeating the experiment using elongation as the classification
parameter. Classification is imperfect, but the results are encouraging [11].

A key discrimination quantity of interest to field workers is the size or vol-
ume of an unseen object. To motivate use of the SVM, as well as SEA parame-
ters, we note first that the basic dipole parameters do not necessarily correspond in
a simple way to volume. Larger objects do not always produce larger dipole val-
ues, especially for composite objects observed over a broad band. Dipole responses
can be extracted from within the lowest orders of excitation and response in the
complete set of B j

k. Figure 14 shows that both different materials and also differ-
ent object proportions can reverse the intuitive ordering of the responses in terms
of dipole magnitudes. Even while, by contrast, the (reasonably truncated) full set
of B j

k expresses all possible response behaviors of the objects, there is again no
simple, intuitively evident correspondence between the parameter magnitudes that
allows ready inference of volume [25]. We need a tool such as the SVM. As a
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test, an SVM was trained on sets of B j
k modal response parameters for spheroids of

different shapes, materials, and volumes. These had been sorted into “small” and
“large” classes based on a chosen volume cutoff. When the trained algorithm was
applied to 200 new (“unknown”) cases it classified them as shown in Table 1 [25].
These excellent results suggest that the limitations on classification in Figure 13 are
due to the shortcomings of the dipole parameters for classification, not to the SVM
itself.

The type of analysis just described becomes problematic when we go to the field
because it is difficult to obtain these intrinsic object characteristics from measured
data. To find the dipole moments – not entirely consistent discriminators anyway –
we first have to determine the target’s location and orientation, which results pre-
cisely in the nonlinear searches that we want to avoid. The spheroidal coefficients
are better discriminators but are nontrivial to determine, even when the location and
orientation are known exactly. On the other hand, practitioners in areas like hand-
writing recognition [2] routinely exploit the statistical, model-independent charac-
ter of the SVM algorithm and apply it to “raw” data that has not been distilled
into simpler or unifying parameters. Encouraged by their results, we have employed
the SEA [21] as a dependable and accurate model to generate synthetic secondary
fields for a collection of UXO at known depths and then used SVM regression to
extract unknown depths for other instances. Figure 15 shows a frequency-domain
example. A similar approach has been tried on measured data, with reasonable suc-
cess [13].

Table 1 SVM classification of spheroids based on their response coefficients.

Predicted large Predicted small

True large 99 1
True small 0 100

Fig. 15 SVM regression for
depth. The machine uses 800
training examples obtained
with the SEA and takes 600
tests, all with normalized
inphase and quadrature data
at f = 390 Hz and 14 spatial
points. Less than 3% of the
tests (highlighted with circles)
have their depth misjudged
outside the 5-cm range shown
by dim gray lines.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correct depth (m)

P
re

di
ct

ed
 d

ep
th

 (
m

)



Electromagnetic Methods for UXO Discrimination 217

5 Clutter Reduction by Upward Continuation

In most realistic situations, subsurface UXO discrimination is clutter-limited. Phys-
ical clutter causes signal clutter, which lowers the SNR to a point where signals
are unintelligible by any means of processing. This applies particularly to GPR but
afflicts EMI as well. Wherever ordnance has failed to explode other ordnance prob-
ably has exploded, leaving fragments of metal in or on the soil. As a general, order-
of-magnitude rule of thumb, the magnetic response of a metal body is proportional
to its volume. However, fragments are often shallower than a UXO, and thereby
nearer the sensor. The 1/r3 or 1/r6 factors for signal decay cited above can there-
fore make clutter signals quite strong relative to those from UXO, even while the
fragments are inherently much weaker scatterers. If one could observe the scene
from a greater elevation, the ratio of distances to UXO and to clutter would become
similar, eliminating this problem. While actual sensor elevation is impractical – if
only because the overall level of signal might well diminish to the level of the back-
ground – the same advantages can sometimes be obtained by computational upward
continuation of fields that are measured near the ground.

Our strategy here will be to obtain magnetic-field data over a grid near the surface
at some elevation zm. The data are then used to infer a sheet of equivalent sources
over the ground surface that reproduces the measured values. In particular, given the
ê component of H over a surface, we use the gradient of (11) to solve for qm over a
lower surface S0:

He(r) =
∫

S0

dS′ qm(r′)
ê · R̂
4πR2 , (25)

where R = r− r′, r is at elevation zm, and r′ is on the ground surface. For compu-
tational purposes (25) is discretized to form a matrix equation. In this instance, in
contrast to assumptions heretofore, let us assume that the object is responding to a
single broad primary field while the receivers sample the resulting single secondary
field at diverse points (the system depicted in Figure 16, where the survey field is
surrounded by a single large transmitter loop [5]). In effect, He forms a boundary
condition on the field above a plane at zm. The qm solution produces fields through

Fig. 16 Field setup, UXO,
clutter, and sensor.

Clutter
items

UXOUXO

ReceiversReceivers
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objects. The method can also provide large numbers of high fidelity training exam-
ples for statistical learning machines, such as the Support Vector Machine. The SVM
operates by implicitly mapping from an original data space to a hyperspace. In the
latter the originally intermixed classes for discrimination are separated quite sim-
ply by a (hyper)plane. Having trained SVMs using the SEA or analytical solutions,
we show some success in using the method to classify objects geometrically, based
on their dipole moment parameters; to classify them for size based on sets of their
unique SEA parameters themselves; and to estimate their depth using raw signals
instead of distilled parameters.

In realistic situations, UXO discrimination is clutter limited. Computational
upward continuation shows promise as a physics-based method of EMI clutter sup-
pression. A sheet of equivalent sources is inferred from data at one elevation. These
can then predict the signal at greater elevations, at which clutter influences fade.
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