


Unexploded Ordnance Detection and Mitigation



This Series presents the results of scientific meetings supported under the NATO

Advanced Research Workshops (ARW) are expert meetings where an intense but
informal exchange of views at the frontiers of a subject aims at identifying directions for
future action 

re-organised. Recent volumes on topics not related to security, which result from meetings
supported under the programme earlier, may be found in the NATO Science Series.

Sub-Series

D. Information and Communication Security IOS Press
IOS Press

http://www.nato.int/science

http://www.iospress.nl

Springer

Springer

E. Human and Societal Dynamics

Springer

http://www.springer.com

The Series is published by IOS Press, Amsterdam, and Springer, Dordrecht, in conjunction
with the NATO Public Diplomacy Division.

A. Chemistry and Biology

C. Environmental Security
B. Physics and Biophysics

Series :

and Mediterranean Dialogue Country Priorities. The types of meeting supported are  
generally "Advanced Study Institutes" and "Advanced Research Workshops". The NATO
SPS Series collects together the results of these meetings. The meetings are co-
organized by scientists from NATO countries and scientists from NATO's "Partner" or
"Mediterranean Dialogue" countries. The observations and recommendations made at 
the meetings, as well as the contents of the volumes in the Series, reflect those of parti-
cipants and contributors only; they should not necessarily be regarded as reflecting NATO
views or policy.

latest developments in a subject to an advanced-level audience
Advanced Study Institutes (ASI) are high-level tutorial courses intended to convey the

Following a transformation of the programme in 2006 the Series has been re-named and

NATO Science for Peace and Security Series

Programme: Science for Peace and Security (SPS).

Defence Against Terrorism; (2) Countering other Threats to Security and (3) NATO, Partner 
The NATO SPS Programme supports meetings in the following Key Priority areas: (1) 

B Physics and Biophysics



Published in cooperation with NATO Public Diplomacy Division

Edited by

ABC

Unexploded Ordnance Detection
and Mitigation

Jim Byrnes
Promethe s Inc.,
Newport, RI, USA

u





Preface

The chapters in this volume were presented at the July–August 2008 NATO
Advanced Study Institute on Unexploded Ordnance Detection and Mitigation.
The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious
Tuscany region of northern Italy. For the ninth time we gathered at this idyllic spot
to explore and extend the reciprocity between mathematics and engineering. The
dynamic interaction between world-renowned scientists from the usually disparate
communities of pure mathematicians and applied scientists which occurred at our
eight previous ASI’s continued at this meeting.

The detection and neutralization of unexploded ordnance (UXO) has been of
major concern for very many decades; at least since the First World war. UXO
continues to be the subject of intensive research in many fields of science, includ-
ing mathematics, signal processing (mainly radar and sonar) and chemistry. While
today’s headlines emphasize the mayhem resulting from the placement of impro-
vised explosive devices (IEDs), humanitarian landmine clearing continues to draw
significant global attention as well. In many countries of the world, landmines
threaten the population and hinder reconstruction and fast, efficient utilization of
large areas of the mined land in the aftermath of military conflicts.

Current estimate state that there are about 110 million unexploded mines in more
than 60 countries, and that roughly 30,000 people per year, a large percentage of
whom are innocent civilians, are killed or maimed globally. Moreover, the injury
rate among those searching for and attempting to disarm mines, even outside war
zones, is as high as one casualty per 100 mines.

The combination of basic ideas in mathematics, radar, sonar, and chemistry with
ongoing improvements in hardware and computation, as well as very new advances
in multisensor data fusion, offers the promise of more sophisticated and accurate
UXO detection and identification capabilities than currently exist. Coupled with the
dramatic rise in the need for surveillance in innumerable aspects of our daily lives,
brought about by hostile acts deemed unimaginable only a few short years ago,
the time was ripe for scientists in these usually diverse fields to join together in a
concerted effort to combat both the new brands of terrorism and the long-standing
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vi Preface

existence of UXOs throughout the world. We envisage this ASI as one important
step.

To encompass the diverse nature of the subject and the varied backgrounds of the
participants, the ASI involved two broadly defined but interrelated areas:

• Mathematical, computer science, chemical and signal processing technologies
for automatic detection and identification

• Robotic and other methods for safe neutralization and removal of UXOs

A deep understanding of these topics and of their interdependency, is clearly
crucial to meet the challenges resulting from both the widespread existence of UXOs
and the increasing sophistication of those who wish to do us harm. The authors
whose works appear in this volume include many of the world’s leading experts in
these areas.

The ASI brought together world leaders from academia, Government and indus-
try, with extensive multidisciplinary backgrounds evidenced by their research and
participation in numerous workshops and conferences. This created and interactive
forum for initiating new and intensifying existing efforts aimed at furthering the
required interdisciplinary approach to the automatic identification and mitigation of
UXOs. The forum provided opportunities for young scientists and engineers to learn
more about these problem areas, and the vital role played by new mathematical and
scientific insights, from recognized experts in this crucial and growing area of both
pure and applied science.

The talks and following chapters were designed to address an audience consisting
of a broad spectrum of scientists, engineers, and mathematicians involved in these
fields. Participants had the opportunity to interact with those individuals who have
been on the forefront of the ongoing intense work in UXO detection and mitigation,
to learn firsthand the details and subtleties of this important and existing area, and to
hear these experts discuss in accessible terms their contribution and ideas for future
research. This volume offers these insights to those unable to attend.

The cooperation of many individuals and organizations was required in order
to make the conference the success that it was. First and foremost I wish to thank
NATO, and especially Dr. F. Pedrazzini and his most able assistant, Ms. Alison
Trapp, for the initial grant and subsequent help.

Very generous financial support was also received from:

• Office of the U.S. Deputy Assistant Secretary of the Army (Environment, Safety
and Occupational Health), Mr. Tad Davis, Mr. Hermann Spitzer and Mr. Bob
Lavelle

• U.S. Defense Advanced Research Projects Agency, Drs. Tony Tether and Bob
Leheny

• U.S. Army Research office, Dr. Russ Harmon
• U.S. Office of Naval Research, Dr. Tom Swean and Mr. Brian Almquist
• U.S. Office of Naval Research Global, Mr. Dave Marquis
• U.S. Army Space and Missile Defense Technical Center Office, Drs. Rodney

Roberston, Bob McMillan and Pete Kirkland
• Prometheus Inc.
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Wavelet Decomposition of Measures:
Application to Multifractal Analysis of Images

Patrice Abry1, Stéphane Jaffard2, Stéphane Roux1, Béatrice Vedel1

and Herwig Wendt1

Abstract We show the relevance of multifractal analysis for some problems in
image processing. We relate it to the standard question of the determination of cor-
rect function space settings. We show why a scale-invariant analysis, such as the
one provided by wavelets, is pertinent for this purpose. Since a good setting for
images is provided by spaces of measures, we give some insight into the problem of
multifractal analysis of measures using wavelet techniques.

Keywords: Fourier transform, function spaces, fractals, fractional integration,
Hölder regularity, image classification, image processing, measures, multifractal
analysis, scaling function, scale invariance, spectrum of singularities, wavelets,
wavelet leaders

1 Introduction

The detection of UXO (Unexploded Ordnance) uses sensor technologies, such
as: GPR (Ground Penetrating Radar), where electromagnetic waves penetrate the
ground and are reflected by layers with electrically different natures; IR (Infrared
sensors), based on the different thermal properties of different layers of the ground;
and Ultrasound sensors, which use ultrasound waves as a probe. In each case, one
faces difficult signal or image processing problems. Indeed, ill-posed inverse prob-
lems have to be solved in the presence of noise. Note however that these problems
are related to similar technological challenges which have been extensively studied
in the past. For instance, oil detection can be performed by studying the reflections
of vibrations emitted at the surface of the earth. Similarly, the deep structure of

1CNRS UMR 5672 Laboratoire de Physique, ENS de Lyon, 46, allée d’Italie, F-69364 Lyon cedex,
France, e-mail: { patrice.abry, sroux, herwig.wendt}@ens-lyon.fr, beatrice.vedel@u-picardie.fr
2Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université Paris Est,
61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France, e-mail: jaffard@univ-paris12.fr

J. Byrnes (ed.), Unexploded Ordnance Detection and Mitigation, 1
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the mantle of the earth is studied by such methods, but the (much more powerful)
vibrations used actually are earthquakes.

The resolution of such ill-posed problems in the presence of noise usually neces-
sitates preprocessing which involves denoising, deblurring, and then the inversion
of operators which are of pseudo-differential type. In order to be numerically stable,
these operations require the choice of a function space which

• Supplies a proper mathematical setting for the resolution
• Is a realistic framework for the kind of signals or images considered

While the first problem has attracted a lot of attention among mathematicians, the
second one is usually disregarded. However, in a completely independent way, this
question has been addressed since the 1940s, initially by physicists working to deter-
mine the function space regularity of fully developed turbulence. Their motivation
was, first, the fundamental comprehension of the physical phenomena at work, but
they also wanted to use this information as a classification tool in order to select
among the many turbulence models that have been proposed. Mutifractal analysis
is now used in a large number of problems in signal and image processing, but
still retains this initial motivation of a classification tool based on function space
regularity.

Images are often stored, denoised, and transmitted using their wavelet coeffi-
cients. In particular, due to the success of wavelet techniques in the 1990s, the JPEG
2000 benchmark is based on wavelet decompositions. Therefore, it is relevant to
analyze images directly using their wavelet coefficients instead of starting from the
pixel values, and many image processing techniques are now based directly on the
wavelet coefficients of the image. Multifractal analysis is one example of such a situ-
ation. It was introduced in signal processing in the mid-1980s (but relies on insights
developed as early as the 1940s by N. Kolmogorov), and can be interpreted as the
determination of the smoothness index of the signal analyzed inside some families
of function spaces. This smoothness index is stored through a one-dimensional fam-
ily of parameters, the scaling function, which is based on the computation of p-order
averages of local quantities (such as oscillations) of the signal. Initially introduced
as a tool for the study of fully developed turbulence, it turned out to be also pertinent
in order to study signals of many different origins and has lead to new methods of
classification and identification.

In Section 2 we start by describing wavelet bases and some of their properties;
a particularly relevant one is that by construction, their algorithmic form implies
that they are fitted to the dectection of scale-invariance properties in signals and
images. Another important property is that wavelets allow simple characterizations
of function spaces.

In Section 3 we give a short overview of the use of function spaces in image mod-
eling and image processing; indeed, it has become a key issue in many algorithms,
such as denoising, inpainting or texture classification.

In Section 4 we introduce the wavelet scaling function and give its most impor-
tant properties. We show that the information supplied by function space regularity
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is encapsulated in this scaling function, and that wavelet techniques yield numeri-
cally simple algorithms for the determination of this scaling function.

In Section 5 we recall the basics of multifractal analysis: we show that the scaling
function can be given an alternative interpretation in terms of the pointwise smooth-
ness of the signal. This interpretation has proved particularly important for several
reasons: It has allowed the introduction of other scaling functions, which are better
suited for that purpose, and it also allowed to extend the scaling function to nega-
tive values of p, see [9], which proved particularly important for some classification
problems, where the difference between several possible models can only be drawn
for negative p’s. We will focus on the wavelet leader scaling function which now
plays a key-role in several fields of applications because it is mathematically well
understood, numerically stable, and can be coupled with powerful statistical tests.

In Section 6 we show that this method cannot be directly used in image process-
ing because it assumes that the function studied is bounded, and such a requirement
is usually not a valid framework in image analysis. Therefore, one has to perform
first a preprocessing which associates to the image another bounded function; this
association should be one-to-one in order to lose no information, and should retain
as much as possible the relevant features of the image. A standard way to solve this
problem is to perform a fractional integration of large enough order. However, in
practice, this is difficult to realize; therefore, we introduce the notion of pseudo-
fractional integration which is numerically simple, and retains the same qualitative
properties. We investigate how this affects the multifractal properties of the image,
and we give a general condition, which is usually met in mathematical models, under
which these properties can be exactly determined.

2 Wavelet Bases

Recall that L2(Rd) is the space of square-integrable functions, i.e. of functions sat-
isfying ∫

Rd
| f (x)|2dx < ∞.

It is endowed with the norm

‖ f ‖2=
(∫

Rd
| f (x)|2dx

)1/2

.

Historically, the first wavelet basis was introduced by A. Haar in 1909. He noticed
that, if ψ = 1[0,1/2) − 1[1/2,1), then the collection of the function 1 and the ψ j,k =
2 j/2ψ(2 jx − k) for j ≥ 0 and k = 0, · · · ,2 j − 1 form an orthonormal basis of
L2([0,1]), and this irregular basis (its elements have discontinuities) nonetheless
displays some better properties than the trigonometric system: If f is a continuous
function, then the partial sums of the reconstruction converge uniformly to f . The
next wavelet basis, which has the same simple algorithmic form, was introduced
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by J. Strömberg in the 1980s: he constructed functions ψ , which can be arbitrarily
smooth, and so that the wavelet basis generated allows to decompose functions of
arbitary smoothness, or, by duality, distributions. An important feature noticed by
Strömberg, and which will play a key role in the following, is that therefore the
same wavelet basis can be used in order to analyse functions or distributions, with-
out any a priori assumption on their regularity, and on the function spaces to which
they belong. The “rule of thumb” is that the wavelet expansion of f will converge in
“most” function spaces that actually contain f , if the wavelets are smooth enough.
This is particularly important in signal and image processing, where smoothness
properties can vary significantly from one type of image to another, and therefore
the analysis tool should not imply unnecessary a priori assumptions on the data,
since their regularity is unknown (actually, one of our purposes will precisely be to
determine regularity indices in scales of function spaces).

We will now recall the algorithmic form of wavelet bases, in particular in several
dimensions. We refer to [5, 10, 11] for detailed expositions of the construction of
such bases.

Orthonormal wavelet bases on R
d are of the following form: There exists a func-

tion ϕ(x) and 2d − 1 functions ψ(i) with the following properties: The functions
ϕ(x− k) (k ∈ Z

d) and the 2d j/2ψ(i)(2 jx− k) (k ∈ Z
d , j ∈ Z) form an orthonormal

basis of L2(Rd). This basis is r-smooth if ϕ and the ψ(i) have partial derivatives up
to order r and if the ∂αϕ , and the ∂αψ(i), for |α| ≤ r, have fast decay.

Therefore, ∀ f ∈ L2, we have the following decomposition

f (x) = ∑
k∈Zd

Ckϕ(x− k)+
∞

∑
j=0
∑

k∈Zd
∑

i
ci

j,kψ
(i)(2 jx− k); (1)

the ci
j,k are the wavelet coefficients of f :

ci
j,k = 2d j

∫
Rd

f (x)ψ(i)(2 jx− k)dx, (2)

and
Ck =

∫
Rd

f (x)ϕ(x− k)dx. (3)

Note that, in (1), we do not use the L2 normalisation for the wavelets, but a
normalisation which is better fitted to the definition of the wavelet leaders that we
will give below.

Formulas (2) and (3) make sense even if f does not belong to L2; indeed, if one
uses smooth enough wavelets, they can be interpreted as a duality product betweeen
smooth functions (the wavelets) and distributions.

We will use more compact notations for indexing wavelets. Instead of using the
three indices (i, j,k), we will use dyadic cubes. Since i takes 2d −1 values, we can
assume that it takes values in {0,1}d − (0, . . . ,0); we introduce:

• λ (= λ (i, j,k)) =
k
2 j +

i
2 j+1 +

[
0,

1
2 j+1

)d

.
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• cλ = ci
j,k

• ψλ (x) = ψ(i)(2 jx− k).

The wavelet ψλ is essentially localized near the cube λ ; more precisely, when the
wavelets are compactly supported

∃C > 0 such that ∀i, j,k, supp(ψλ ) ⊂C ·λ

(where C ·λ denotes the cube of same center as λ and C times wider). Finally, Λ j
will denote the set of dyadic cubes λ which index a wavelet of scale j, i.e. wavelets
of the form ψλ (x) = ψ(i)(2 jx− k).

Among the many families of wavelet bases that exist, two will prove particularly
useful:

• Lemarié-Meyer wavelets: ϕ and ψ(i) both belong to the Schwartz class, see [11].
• Daubechies wavelets: the functions ϕ and ψ(i) can be chosen arbitrarily smooth

and with compact support, see [5].

Finally, note that in practice one never needs to compute integrals in order to
determine the wavelet coefficients of a signal or a function. There exist fast decom-
position and reconstruction algorithms which allow to compute the coefficients via
discrete convolutions (filtering algorithms). These algorithms were discovered by
S. Mallat: They are a consequence of the method of construction of wavelet bases,
see [5, 10].

3 Image Processing: The Function Space Approach

Image processing often requires a priori assumptions, which amount to deciding
that the image considered belongs to a given function space.

A standard approach consists of assuming that the relevant information in an
image can be modeled by a “cartoon”, which is composed of piecewise smooth
parts separated by discontinuities along piecewise smooth curves. This is typical of
photographs taken inside buildings, when no texture is involved. Note that natural
images rarely follow this assumption, since most objects are textured and often have
“fractal” edges (e.g. trees, clouds, mountains,...). However, the assumption of dis-
continuities along (not necessarily smooth) lines is mandatory in image processing,
because of the occlusion phenomenon: one object can be partially hidden behind
another; therefore, this “cartoon model” is the smoothest one we can expect in
practice. It is easy to associate a function space to such a model. Indeed, the gra-
dient of a cartoon will be smooth, except along the lines of discontinuities, where
Dirac masses will appear along those lines. Therefore the gradient will be a bounded
measure.

The space of functions whose gradient is a bounded measure is called BV (for
“bounded variation”). Note however that modeling using the space BV does not
entirely recapture the essence of the cartoon model, since a cartoon necessarily is
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a bounded function and, in dimension 2, a function in BV can be unbounded: The
reader will easily check that singularities which behave locally like |x− x0|−α for
α < 1 can occur. Therefore the alternative space BV

⋂
L∞ is often proposed (recall

that L∞ is the space of bounded functions).
Real-life images never are cartoons, since they always contain some parts with

either rough boundaries, textures or noise. A standard assumption is that they can
be modeled as a sum of a function u ∈ BV and another term v which will model the
noise and texture parts. There is much less consensus on which regularity should be
assumed for the second term v. The first “u+v model” (introduced by Rudin, Osher
and Fatemi in 1992 [14]) assumed that this part belongs to L2; however, the very
strong oscillations displayed by some textures have suggested that such components
do not have a small L2 norm, but might have a small norm in spaces of negative
regularity index (i.e. spaces of distributions). Therefore the use of spaces such as
divergences of L∞ functions (or divergences of L2 functions) were proposed (note
that, here again, derivatives have to be taken in the sense of distributions), initially
by Y. Meyer, see [12], and then by several other authors, see [4, 13] and references
therein. More sophisticated models also aim to separate the noise from the texture,
and therefore propose to split the image into three components (u + v + w models,
see [4]). All these methods are minimization algorithms based on the assumption
that each of these components belongs to a different function space.

The Rudin-Osher-Fatemi algorithm proposed to extract the cartoon component u
by minimizing the functional

J(u) =‖ u ‖BV +t ‖ f −u ‖2
2,

where f is the initial image, and t is a scale parameter which has to be tuned.
In 2001, Y. Meyer proposed to minimize the alternative functional

J(u) =‖ u ‖BV +t ‖ f −u ‖G,

where
‖ f ‖G= inf

g: f =∇·g
‖ g ‖∞ .

More recently, in 2003, Osher, Solé and Vese proposed another model which
recaptures the same fundamental idea but uses for the texture and noise component
a space of distributions easier to handle, the Sobolev space H−1, generated by partial
derivatives of order 1 of L2 functions. The corresponding functional is

J(u) =‖ u ‖BV +t ‖ f −u ‖2
H−1 .

Several alternatives have been more recently proposed, based on the same funda-
mental ideas, but using other function spaces. However the relevance of one partic-
ular function space is usually advocated using either theoretical arguments derived
from functional analysis, or practical arguments motivated by the algorithmic imple-
mentation. The fundamental problem of determining to which function spaces a
given image (or a part of a given image) belongs has been rarely considered. (See
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however [7] where the authors question the fact that natural images belong to BV ,
and actually answer in the negative.) The resolution of this problem is justified by
several reasons. A first motivation rises implicitly from the short review we just
performed: The function spaces used in modeling should fit the data. Another moti-
vation is that, if these function spaces depend strongly on the image that is consid-
ered, then this information might prove useful in image classification. This second
motivation is at the origin of multifractal analysis. Before describing the functional
information supplied by multifractal analysis, we turn to another fundamental ques-
tion in function-space modeling: Can one find a “natural” function space which a
priori contains all images?

Without any assumption, we can of course safely adopt the widest possible math-
ematical setting, which is supplied by distributions. However, the physical proce-
dure through which an image is captured tells us that it is a local average of the light
intensity, and therefore is a nonnegative quantity. Therefore an image is a positive
distribution; but a famous theorem of L. Schwartz asserts that positive distributions
necessarily are bounded measures. Therefore the setting supplied by bounded mea-
sures seems to be a conservative option for the choice of a “universal” space that
would contain all possible natural images.

4 The Wavelet Scaling Function

The first seminal ideas that led to mutifractal analysis were introduced by N. Kol-
mogorov, in the field of fully developed turbulence. Let f be a function R

d −→ R.
N. Kolmogorov associated to f its scaling function which is defined as follows.

Let p ≥ 1, and assume that, when h → 0,
∫

| f (x+h)− f (x)|pdx ∼ |h|η f (p), (4)

then η f (p) is the scaling function of f . It can be given a function space interpretation
with the help of the Lipschitz spaces Lip(s,Lp): Let s ∈ (0,1), and p ∈ [1,∞]; f
belongs to Lip(s,Lp(Rd)) if f ∈ Lp and

∃C > 0, ∀h, ‖ f (x+h)− f (x) ‖p≤C|h|s. (5)

It follows from this definition that, if η f (p) < p,

η f (p) = sup{s : f ∈ Lip(s/p,Lp(Rd))}. (6)

The initial definition given by Kolmogorov is difficult to use in practice, and suf-
fers from mathematical restrictions. An obvious one is that we have to assume the
precise scaling law (4); we also have to assume that f is a function, and we saw
that we actually want to analyze larger classes of mathematical objects (spaces of
measures, and distributions); finally, we want to derive the scaling function from the
wavelet coefficients of f , through a simple formula. One solution is to extend the
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characterization of the scaling function by using Besov spaces instead of Lipschitz
spaces. The easiest way to define Besov spaces is through their wavelet characteri-
zation (we assume that the wavelet basis used is smooth enough).

Let p ∈ (0,∞); a function f belongs to the Besov space Bs
p(R

d) (also referred to
as Bs,∞

p (Rd)) if and only if (Ck) ∈ l p and

∃C, ∀ j, ∑
λ∈Λ j

[
2(s−d/p) j|cλ |

]p
≤C. (7)

We will pay special attention to the case p = +∞: f belongs to Bs
∞(Rd) if and

only if (Ck) ∈ l∞ and
∃C, ∀λ , |cλ | ≤C2−s j. (8)

The spaces Bs
∞ coincide with the uniform Lipschitz spaces Cs(Rd); for instance, if

0 < s < 1, an equivalent definition is given by: f ∈ L∞ and

∃C, ∀x,y | f (x)− f (y)| ≤C|x− y|s.

The uniform Hölder exponent of f is

Hmin
f = sup{s : f ∈Cs(Rd)}; (9)

it yields an additional parameter for image processing and classification that will
prove important in the following.

The embeddings between Besov and Lipschitz spaces imply that, if f is an L1

function such that η f (p) < p, then its scaling function can be defined indifferently
using the Besov or Lipschitz scales:

η f (p) = sup{s : f ∈ Bs/p
p }. (10)

Let
S f (p, j) = 2−d j ∑

λ∈Λ j

|cλ |p

then

η f (p) = liminf
j→+∞

log
(
S f (p, j)

)
log(2− j)

, (11)

which follows immedialtely from (10). This formula has practical implications: it
allows to compute the scaling function through a linear regression on a log-log plot.
Figure 1 (top right) shows an example of a wavelet scaling function for a real-world
image.

Note that the uniform Hölder exponent of f can be derived from the scaling
function

Hmin
f = lim

p→+∞
η ′

f (p);

it can also be derived directly from the wavelet coefficients of f ; indeed, it follows
from (9) and the wavelet characterization of the Besov spaces Bs

∞ that, if
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Fig. 1 Image of snow (left), wavelet scaling function η f (p) (top right) and uniform Hölder expo-
nent Hmin

f (bottom right). Their respective estimated values are η f (1) = 0.254, η f (2) = 0.412 and
Hmin

f = −0.212.

ω j = sup
λ∈Λ j

|cλ |,

then

Hmin
f = liminf

j→+∞

log(ω j)
log(2− j)

. (12)

This is illustrated in Figure 1 (bottom right).
The derivation of the scaling function through (11) has several advantages:

• Since Besov spaces are defined for p > 0, it makes sense for p ∈ (0,1) whereas
Lipschitz spaces are not defined for p < 1. This yields an additional useful range
of values for classification.

• It does not make any a priori assumption of the regularity of f , which can be a
measure or even a distribution.

• It allows for an easy numerical implementation.

The knowledge of the scaling function allows to settle the issues we raised con-
cerning the function spaces which contain a given image. For instance, the embed-
dings between the Besov spaces and the other classical function spaces have the
following consequences:

Proposition 1. Let f be a distribution defined on R
2. The values taken by the scaling

function at 1, 2 and +∞ have the following implications:

• If η f (1) > 1, then f ∈ BV , and if η f (1) < 1, then f /∈ BV
• If f is a measure, then η f (1) ≥ 0, and, if η f (1) > 0, then f belongs to L1.
• If η f (2) > 0, then f ∈ L2 and if η f (2) < 0, then f /∈ L2.
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• If η f (2) > −2, then f ∈ H−1 and if η f (2) < −2, then f /∈ H−1.
• If Hmin

f > 0, then f is bounded and continuous, and if Hmin
f < 0, then f /∈ L∞.

• If Hmin
f > −1, then f ∈ G and if Hmin

f < −1, then f /∈ G.
• If f is a measure, then Hmin

f ≥−2.

Most of these statements are easy consequences of standard function space
embeddings. The second one is particularly important for the validation of many
models. Indeed, in several fields of applications, models which are singular mea-
sures are used. Since they are measures, it follows that η f (1)≥ 0, and since they are
not L1 functions, η f (1) ≤ 0. It follows that they must necessarily satisfy η f (1) = 0,
a sharp requirement which has the widest range of validity (it is completely non-
parametric, i.e. does not make the assumption that the measure has a particular form)
and it can be checked on real-life data in order to validate those models.

We only prove the first assertion which concerns measures because of the partic-
ular importance of this result (the other assertions have similar proofs). It is a direct
consequence of the following lemma.

Lemma 1. Let μ be a bounded measure on R
d; then its wavelet coefficients μ j,k

satisfy
∃C ∀ j, 2−d j ∑

λ∈Λ j

|cλ | ≤C. (13)

Conversely, if μ satisfies the slightly stronger requirement

∃C ∑
j

2−d j ∑
λ∈Λ j

|cλ | ≤C, (14)

then μ is an L1 function.

Proof of Lemma 1: Recall that a bounded measure μ is a linear form on the
space of continuous bounded functions, i.e. satisfies

|〈 f |dμ〉| ≤C ‖ f ‖∞

for any continuous bounded function f .
Denote by cλ the wavelet coefficients of μ , and by ελ their signs (with the con-

vention that sign(x) = 0 if x = 0). Let

f j = ∑
λ∈Λ j

ελψλ .

On one hand,
〈 f j|dμ〉 = ∑

λ∈Λ j

ελ cλ2−d j = 2−d j ∑
λ∈Λ j

|cλ |;

but, on the other hand,
〈 f j|dμ〉 ≤C ‖ f j ‖∞≤C′,

it follows that (13) holds.
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Conversely, suppose that (14) holds. Then

‖∑
j
∑
λ∈Λ j

cλψλ ‖1≤∑
j
∑
λ∈Λ j

|cλ | ‖ ψλ ‖1≤C∑
j
∑
λ∈Λ j

|cλ |2−d j < +∞.

So that the wavelet series of f converges normally in L1, so that f ∈ L1.

Using a wavelet formula for the obtention of the scaling function has additional
advantages. Up to now, we implicitly assumed that images are functions (or perhaps
distributions) defined on R

2 (or a subset of R
2 such as a square or a rectangle). Of

course, this is an idealization that we used because it is convenient for mathemati-
cal modeling. However, real-life images are sampled and given by a finite array of
numbers (usually of size 1,024× 1,024). This practical remark has an important
consequence: The problem that we just raised is ill-posed. Indeed, given any “clas-
sical” space of functions defined on a square, and such an array of numbers, one can
find a function in this space that will have the preassigned values at the correspond-
ing points of the grid. In other words, paradoxically, any function space could be
used. Let us however show extreme consequences of this simple remark.

Recall that the Fourier transform of a function f (x1,x2) is defined by

f̂ (ξ1,ξ2) =
∫

R2
f (x1,x2)e−i(x1ξ1+x2ξ2)dx1dx2.

One can, for instance, assume that images are band-limited which means that their
Fourier transforms vanish outside a ball centered at 0, and whose radius is propor-
tional to the inverse of the sampling width (according to Shannon’s theorem); note
that this assumption is often made, in particular in deblurring and denoising algo-
rithms. This assumption implies that the model used is composed of C∞ functions;
however it would lead to incompatibilities, for instance if we want to use a realistic
model which includes discontinuites along edges (which, as we saw, is a natural
requirement).

Another commonly met pitfall is that an image is given by grey-levels, and thus
takes values in [0,1]. Therefore, it may seem appropriate to use a modeling by
bounded functions, and this is indeed a classical assumption (note that the “car-
toon model” clearly implies boundedness). We will see that the wavelet techniques
we introduced allow to discuss this assumption, and show that it is not satisfied for
most images.

The resolution of the paradox we raised in this section requires the use of mul-
tiscale techniques such as the one supplied by wavelet analysis. Let us consider for
instance the last example we mentioned: Starting with a discrete image, given by
an array of 1,024× 1,024 numbers all lying between 0 and 1, how can we decide
if it can be modeled or not by a bounded function? It is clear that, if we consider
the image at only one scale (the finest scale in order to lose no information), then
the answer seems to be affirmative. However, as mentioned earlier, any other space
would also do. One way to solve the difficulty is to consider the image at all the
scales available (in theory, there are ten of them, since 1,024 = 210) and inspect if
certain quantities behave through this range of scales as is the case for a bounded
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function. If not, we can give an unexpected negative answer to our problem, but this
negative answer should however be understood as follows:

The image considered is a discretization at a given scale of a “hidden function”
defined on a square (to which we have no access) and, if the scaling properties of
this “hidden function” are, at all scales, the same ones as we observe in the range
of scales available, then it is not bounded.

The recipe in order to settle this point is the following: one uses (12) in order
to determine numerically the value of Hmin

f ,which is done by a regression on a log-
log plot, and using Proposition 1, it follows that, if Hmin

f < 0, then the image is not
bounded, and if Hmin

f > 0, then the image is bounded. Of course, if the numerical
value obtained for Hmin

f is close to 0 (i.e. if 0 is contained in the confidence interval
which can be obtained using statistical methods, see [15,16]) then the issue remains
unsettled.

The same method holds for the other classical function spaces, as a consequence
of Proposition 1. More generally, it allows to determine if the image belongs to a
given function space As

p, as soon as this space has “close embeddings” with Besov
spaces, see [2, 15]; this means that

∀ε > 0, Bs+ε
p ↪→ As

p ↪→ Bs−ε
p .

This includes for instance Sobolev spaces, Hardy spaces or Triebel-Lozorkin spaces.
Note that, of course, one can consider spaces with non-integer integrability exponent
p and non-integer smoothness index.

5 The Leader Scaling Function

In the mid-1980s, two physicists, U. Frisch and G. Parisi proposed an interpretation
of the scaling function in terms of the pointwise Hölder singularities of the function
considered, see [6]; this interpretation had a wide amount of consequences, see [2,3]
and references therein: It gave a deep insight into the understanding of the informa-
tion contained in the scaling function, and it led to the introduction of new scaling
functions which are better fitted for that purpose. The one we will describe in this
section is the only one which meets the two following requirements: Its mathemati-
cal properties are well understood and its numerical implementation is easy, in any
space dimension, see [1, 8].

We start by recalling the mathematical definitions related to pointwise Hölder
regularity.

Definition 1. Let f be a bounded function R
d → R, x0 ∈ R

d and let α ≥ 0; f
belongs to Cα(x0) if there exist C > 0 and a polynomial P of degree less than α
such that

| f (x)−P(x− x0)| ≤C|x− x0|α .
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The Hölder exponent of f at x0 is

h f (x0) = sup{α : f ∈Cα(x0)}.

The isohölder sets are

EH = {x0 : h f (x0) = H}.

Note that Hölder exponents met in signal processing often lie between 0 and 1, in
which case the Taylor polynomial P(x− x0) boils down to f (x0) and the definition
of the Hölder exponent means that, heuristically,

| f (x)− f (x0)| ∼ |x− x0|h f (x0).

U. Frisch and G. Parisi suggested that the scaling functions yield information
concerning sizes of the isohölder sets. These sizes are measured with the help of
Hausdorff dimensions, which we recall.

Definition 2. Let E ⊂ R
d and α > 0. Let us introduce the following quantities : Let

n ∈N; if L = {li} i∈N is a countable collection of dyadic cubes of width smaller than
2−n which forms a covering of E, then let

H α
n (E,L) = ∑

i∈N

diam(li)α , and H α
n (E) = inf(H α

n (E,L)) ,

where the infimum is taken over all possible coverings of E by dyadic cubes of
scales at least n. The α-dimensional Hausdorff measure of E is

H α(E) = lim
n→+∞

H α
n (E).

The Hausdorff dimension of E is

dim(E) = sup{α > 0 ; H α(E) = +∞} = inf{α > 0 ; H α(E) = 0} .

If E is empty then, by convention, dimH (E) = 0.

If f is bounded, the function H → dim(EH) is called the spectrum of singularities
of f .

A uniform Hölder function is a function satisfying Hmin
f > 0. In particular, it is

continuous. One can prove the following relationship between the scaling function
of a function and its pointwise Hölder singularities, see [8].

Theorem 1. Let f : R
d → R be a uniform Hölder function. Then

dim(EH) ≤ inf
p>p0

(
d +H p−η f (p)

)
,

where p0 is such that η f (p0) = d p0.

We will introduce an alternative scaling function for which a stronger relation-
ship with the spectrum of singularities can be proved. Its definition is similar to
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the wavelet scaling function, except that wavelet coefficients have to be replaced by
wavelet leaders, which are defined as follows.

Let λ be a dyadic cube; 3λ is the cube of same center and three times wider. If f
is a bounded function, the wavelet leaders of f are the quantities

dλ = sup
λ ′⊂3λ

|cλ ′ |.

Let x0 ∈ R
d ; λ j(x0) is the dyadic cube of width 2− j which contains x0; and

d j(x0) = dλ j(x0) = sup
λ ′⊂3λ j(x0)

|cλ ′ |.

It is important to require f to be bounded; otherwise, the wavelet leaders of f can
be infinite. The reason for introducing wavelet leaders is that they give information
on the pointwise Hölder regularity of the function. Indeed, one can show that (see [8]
and references therein) if f is a uniform Hölder function, then

h f (x0) = liminf
j→+∞

(
log(d j(x0))

log(2− j)

)
.

Therefore, it is clear that a scaling function constructed with the help of wavelet
leaders will incorporate pointwise smoothness information. For any p ∈ R, let

Tf (p, j) = 2−2 j ∑
λ∈Λ j

|dλ |p.

The leader scaling function is defined by

∀p ∈ R, ζ f (p) = liminf
j→+∞

log(Tf (p, j))
log(2− j)

.

An important property of the leader scaling function is that it is “well defined” for
p < 0, which is not the case for the wavelet scaling function. By “well defined”, we
mean that it has the following robustness properties if the wavelets belong to the
Schwartz class (they still partly hold otherwise, see [2, 8]):

• ζ f is independent of the wavelet basis.
• ζ f is invariant under the addition of a C∞ perturbation.
• ζ f is invariant under a C∞ change of variable.

Note that the wavelet scaling function does not possess these properties when p
is negative.

The leader scaling function can also be given a function-space interpretation for
p > 0. Let p ∈ (0,∞); a function f belongs to the Oscillation space Os

p(R
d) if and

only if (Ck) ∈ l p and

∃C, ∀ j, ∑
λ∈Λ j

[
2(s−d/p) jdλ

]p
≤C.
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Then
ζ f (p) = sup{s : f ∈ O

s/p
p .

Properties of oscillation spaces are investigated in [2, 8].
We denote by L u the Legendre transform of a concave function u, i.e.

(L u)(H) = inf
p∈R

(d +H p−u(p)) .

The leader spectrum of f is defined through a Legendre transform of the leader
scaling function as follows

L f (H) = (L ζ f )(H).

Of course, the leader spectrum of f has the same robustness properties as the leader
scaling function.

Theorem 2. If f is uniform Hölder then,

∀H, dim(EH) ≤ L f (H).

We already saw that the cartoon assumption implies that f ∈ BV ∩L∞. We can
actually get a sharper result which yields the exact scaling functions of cartoons for
p > 0.

Lemma 2. Let f be a piecewise smooth function with discontinuities along piece-
wise smooth curves. Then its wavelet and leader scaling functions are given by

∀p > 0, η f (p) = ζ f (p) = 1.

This result gives a numerically sharp and simple way to decide if the cartoon
assumption is satisfied for an image.

Proof: We use compactly supported wavelets, and we first compute the contri-
bution of the wavelet coefficents such that the support of the wavelet intersects the
curves of dicontinuities. There are ∼C2 j such coefficients, and the size of these
coefficients are ∼C. It follows that

2−2 j∑ |cλ |p ∼C2− j.

The contribution of the other wavelet coefficients is negligible, because they decay
faster than 2−A j for any A > 0.

It also follows that the wavelet leaders are of the same order of magnitude. Hence
the lemma holds.

As stated above, we can use wavelet leaders only if the function considered is
bounded, and the mathematical results we mentioned only hold under the slightly
stronger property that the function considered is uniform Hölder. Note however
that we do not expect this assumption to be usually satisfied for images, since it
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implies continuity, an assumption which, as already stated, is not realistic in image
processing. Recall however that the condition Hmin

f > 0 (which is the definition of
uniform hölderianity) can be practically checked, and inspection of image databases
shows that, indeed, images quite often have negative Hmin

f , which shows the neces-
sity of a modification of the computation of the leader-based scaling function for
practical purposes.

6 Multifractal Formalism for Unbounded Functions
and Measures

In order to be able to use the wavelet leader-based method described above, one
has to associate to the image a bounded function, in a one-to-one way in order to
lose no information; furthermore, this association should retain as much as possible
the relevant features of the image. For instance, it should keep the locations of the
Hölder singularities, and transform the wavelet scaling function in a simple way. In
one dimension, the simplest way to solve this problem is to perform an integration of
the function. If one starts with a bounded measure, it is clear that one will obtain in
this way a bounded function; thus, at most two integrations will be sufficient in
order to obtain a uniform Hölder function. In dimension larger than one, the natural
substitute is given by fractional integration, which we now describe. Note that, even
in dimension 1, the tool supplied by fractional integration can prove useful, since it
allows to tune the order of integration, which need not be an integer.

In dimension 1, taking a derivative of order s ∈ N amounts to multiplying the
Fourier transform of the function by (iξ )s; therefore, the inverse operator (integra-
tion of order n) amounts to dividing the Fourier transform by (iξ )s. This may pose a
problem if the Fourier transform does not vanish at the origin, therefore, one prefers
to use the alternative operator, Is defined by

Îs( f ) = (1+ |ξ |2)−s/2 f̂ (ξ );

indeed, it has the same behavior at high frequencies, but does not have the drawback
we mentioned; another advantage of this definition is that it immediately extends to
non-integer values of s. The operator Is is the fractional integration of order s.

Let us recall a few simple properties of Is which show that it is relevant for our
purpose.

First, the uniform regularity exponent Hmin
f is always shifted exactly by s:

∀ f , Hmin
Is( f ) = Hmin

f + s.

This simple property shows a possible strategy we can follow in order to perform the
multifractal analysis of an image which is not bounded: First determine its exponent
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Hmin
f , then, if Hmin

f < 0, perform a fractional integration of order s > −Hmin
f ; it

follows that the uniform regularity exponent of Is( f ) is positive, and therefore its
leader scaling function is well defined. This is essentially the strategy we will fol-
low except for a slight modification which will allow us to eliminate the numerical
computation of the fractional integration.

The pointwise Hölder exponent of a function f is shifted by an amount larger
than or equal to s under a fractional integration of order s:

if s > 0, hIs( f )(x0) ≥ h f (x0)+ s.

We usually expect this Hölder exponent to be exactly shifted by s. This is the case
for Hölder singularities of cusp-type, i.e. such that

| f (x)− f (x0)| ∼ |x− x0|α .

However, this is not the case if the singularity has strong oscillations near x0, such
as for the chirp functions

|x− x0|α sin
(

1
|x− x0|β

)
.

We will give a simple sufficient condition under which the function has no chirp and
the fractional integrals satisfy

∀x0, ∀s > 0, hIs( f )(x0) = h f (x0)+ s.

The wavelet scaling function is always tranformed in a simple way under the
action of a fractional integration:

∀p > 0, ηIs( f )(p) = η f (p)+ sp.

Note that such a transformation is easier to check on the Legendre tranforms, since
it implies that

L (η f−s)(H) = L (η f )(H − s)

(the spectrum is shifted under fractional integration). Such simple formulas do not
exist for the leader scaling function. In particular, the shape of its Legendre trans-
form can be modified (it is not just shifted) under a fractional integration. This is
both an advantage and a drawback; indeed, on one side, it shows that the scaling
functions of all fractional integrals contain non-redundant information. On the other
hand, there is no canonical way to pick a particular order of fractional integration in
order to perform the multifractal analysis.

However, numerically, a fractional integration in a bounded domain is difficult
to realize; In practice, it is equivalent to perform a pseudo-fractional integration
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which is numerically simple, and retains the same properties: its scaling functions
and pointwise exponents are the same as for a fractional integral. Let us first define
this transform.

Let f be a function, or a distribution, with wavelet coefficients cλ , and let ψλ be
a given wavelet basis. The pseudo-fractional integral of f of order s, denoted by
Ĩs( f ), is the function whose wavelet coefficients on the same wavelet basis are

c̃λ = 2−s jcλ .

Therefore, one obtains the pseudo-fractional integral by just multiplying the wavelet
coefficients of f by 2−s j.

Theorem 3. The following properties hold for any function or distribution f :

• For any s ∈ R, the wavelet scaling functions of Is( f ) and Ĩs( f ) coincide.
• If s > −Hmin

f then, the leader scaling functions of Is( f ) and Ĩs( f ) coincide.
• If s > −Hmin

f then
∀x0, hIs( f )(x0) = hĨs( f )(x0).

The strategy in order to perform a multifractal analysis of a distribution is, this
is illustrated in Figure 2 First determine its uniform Hölder exponent Hmin

f , then
compute the leader scaling function associated to Ĩs( f ) for an s > −Hmin

f , i.e. based
on the “pseudo-leaders”

d̃λ = sup
λ ′⊂3λ

2−s j′ |cλ ′ |,

finally, compute the Legendre transform of this scaling function. If the function
considered has cusp singularities only, then we expect that

L (ζĨs( f ))(H) = D f (H − s), (15)

for a certain function D f which is independent of s. This allows to define a “canon-
ical” spectrum D f (H). If it is not the case, then retaining all this collection of trans-
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Fig. 2 Leader scaling function (left) of the image in Figure 1, obtained with s = 0.5. Superposition
of L (ζĨs)(H) (right), obtained from the image in Figure 1 with s = 0.5, s = 0.75 and s = 1.
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forms for all values of (large enough) s, yields exhaustive information on the oscil-
lations of f .

We now give a simple condition under which a function has only cusp-type sin-
gularities, and therefore (15) holds.

Theorem 4. Let f be a bounded function. Let M(λ ) denote the scale j′ where the
supremum is attained in the definition of the wavelet leaders

dλ = sup
λ ′⊂3λ

|cλ ′ |. (16)

If
sup
λ∈Λ j

(M(λ )− j) = o( j)

then (15) holds, and

∀x0, ∀s > 0, hĨs( f )(x0) = h f (x0)+ s.

Proof: Let λ ′(λ ) denote the cube where the supremum is attained in (16), and
denote by j′ its scale. It follows that

j ≤ j′ ≤ j +ω( j), where ω( j) = o( j).

Let
ds
λ = sup

λ ′⊂3λ
|2−s j′cλ ′ |.

Since s > 0 and j′ ≥ j,

ds
λ ≤ 2−s j sup

λ ′⊂3λ
|cλ ′ | = 2−s jdλ .

Let ε > 0. For j large enough, ω( j) ≤ ε j, so that

ds
λ ≥ |2−s j′cλ ′(λ )| = 2−s j′dλ ≥ 2−s( j+ε j)dλ ;

therefore:
2−s( j+ε j)dλ ≤ ds

λ ≤ 2−s jdλ . (17)

Since

hĨs( f )(x) = liminf
j→+∞

log(ds
λ )

log(2− j)
,

it follows from (17) that

∀ε > 0, h f (x)+ s ≤ hĨs( f )(x) ≤ h f (x)+ s+ ε;

so that the second assertion of the theorem follows.



20 P. Abry et al.

It also follows from (17) that

∀p > 0, 2−d j2−sp j∑(dλ )p ≤ 2−d j∑(ds
λ )p ≤ 2−d j2−sp( j+ε j)∑(dλ )p.

Therefore
ζ f (p)+ sp ≤ ζIs( f )(p) ≤ ζ f (p)+ sp(1+ ε)

and the first assertion of the theorem follows.
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Abstract Many important gasses and liquids, including the aggressive or anomalous
ones for which our attention is higher, have strong absorption lines in the near and
mid infrared spectral range. Infrared sensors exploit the fact that most gasses and
liquids present unique infrared signatures in the 2–14μm wavelength region. Due
to this uniqueness infrared sensors provide conclusive identification and measure-
ment of the target sample with little interference from other unwanted volatile com-
pounds. Infrared sensors have the characteristics of being highly accurate, reliable,
and, in general, low noise devices. In this chapter we will consider the most impor-
tant infrared sources and sensors as well as the absorption techniques employed
in this context. Furthermore the acousto-optic principle will be presented and dis-
cussed in some detail as the promoter of a multi-wavelength infrared generator.
Finally system performance and data on gas detection will also be introduced and
commented upon.

Keywords: Infrared spectra, near, medium, far infrared intervals, infrared sources,
infrared detectors, acousto-optic devices, volatile compounds infrared absorption

1 Optical Radiation

The International Commission on Illumination (CIE) recommended the division of
optical radiation into the following three bands: [14, 15].

• IR-A: 700–1,400 nm
• IR-B: 1,400–3,000 nm
• IR-C: 3,000–1 mm
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A commonly used sub-division scheme is:

• Near-infrared (NIR, IR-A DIN): 0.75–1.4 μm in wavelength, defined by the water
absorption, and commonly used in fiber optic telecommunication because of low
attenuation losses in the SiO2 glass (silica) medium. Image intensifiers are sensi-
tive to this area of the spectrum. Examples include night vision devices such as
night vision goggles.

• Short-wavelength infrared (SWIR, IR-B DIN): 1.4–3 μm, water absorption
increases significantly at 1,450 nm. The 1,530–1,560 nm range is the dominant
spectral region for long-distance telecommunications.

• Mid-wavelength infrared (MWIR, IR-C DIN) also called intermediate infrared
(IIR): 3–8 μm. In guided missile technology the 3–5 μm portion of this band is
the atmospheric window in which the homing heads of passive IR “heat seeking”
missiles are designed to work, homing on to the IR signature of the target aircraft,
typically the jet engine exhaust plume.

• Long-wavelength infrared (LWIR, IR-C DIN): 8–15 μm. This is the “thermal
imaging” region, in which sensors can obtain a completely passive picture of the
outside world based on thermal emissions only and requiring no external light or
thermal source such as the sun, moon or infrared illuminator. Forward-looking
infrared (FLIR) systems use this area of the spectrum. Sometimes also called the
“far infrared”.

• Far infrared (FIR): 15–1,000 μm.

NIR and SWIR is sometimes called reflected infrared while MWIR and LWIR
is sometimes referred to as thermal infrared. Due to the nature of the blackbody
radiation curves, typical “hot” objects, such as exhaust pipes, often appear brighter
in the MW compared to the same object viewed in the LW.

Another scheme is based on the response of various sensors [30]:

• Near Infrared (NIR): from 0.7 to 1.0 μm (from the approximate end of the
response of the human eye to that of silicon).

• Short-Wave Infrared (SWIR): from 1.0 to 3 μm (from the cut off of silicon to
that of the MWIR atmospheric window). InGaAs covers to about 1.8 μmeters;
the less sensitive lead salts cover this region.

• Mid-Wave Infrared (MWIR): from 3 to 5 μm (defined by the atmospheric win-
dow and covered by Indium antimonide [InSb] and HgCdTe and partially by lead
selenide [PbSe]).

• Long-Wave Infrared (LWIR): from 8 to 12, or from 7 to 14 μm: the atmospheric
window (Covered by HgCdTe and microbolometers).

• Very-Long Wave Infrared (VLWIR): from 12 to about 30 μm, covered by doped
silicon.

These divisions are justified by the different human responses to this radiation:
near infrared is the region closest in wavelength to the radiation detectable by the
human eye, mid and far infrared are progressively further from the visible regime.
Other definitions follow different physical mechanisms (emission peaks, vs. bands,
water absorption) and the newest follow technical reasons (The common silicon
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sensors are sensitive to about 1,050 nm, while InGaAs sensitivity starts around
950 nm and ends between 1,700 and 2,600 nm, depending on the specific con-
figuration). Unfortunately, international standards for these specifications are not
currently available. The boundary between visible and infrared light is not precisely
defined. The human eye is markedly less sensitive to light above 700 nm wave-
length, so shorter frequencies make insignificant contributions to scenes illuminated
by common light sources. But particularly intense light (e.g., from lasers, or from
bright daylight with the visible light removed by colored gels) can be detected up
to approximately 780 nm, and will be perceived as red light. The onset of infrared
is defined (according to different standards) at various values typically between 700
and 800 nm.

2 Infrared Sources

2.1 Thermal infrared sources

Thermal sources are resistors of various sorts heated by applying an electric current.
Some can be electrically modulated by interrupting the current flow. Others have a
larger thermal mass and cannot be modulated effectively at a frequency suitable
for most analytical instruments. Black Bodies (B.B.) usually belong to both cate-
gories. In fact for many years it has been possible to design and fabricate small B.B.
made by thin wires heated at high temperature while, after the advent of microma-
chining engineering, integrated B.B. have been fabricated and successfully tested.
Traditional B.B. have the possibility to deliver high power that can offer modu-
lated B.B. energy through external choppers able to operate mechanically up to a
frequency of 5 kHz. Electro-optical choppers can allow an even higher frequency
to be reached for particular applications. A B.B. can be considered as a passive
structure able to adsorb any radiation frequency and emit a radiation spectra related
to its average temperature. Its radiant emittance, or radiance, can be expressed as
R = εσT , where ε is the emissivity, σ is the Stefan-Boltzman constant equal to:
σ = 5.67 ·10−8 W/(m2 ·K4) and T is the absolute temperature value.

2.2 IR Light Emitting Diodes (LEDs)

2.2.1 Tunable laser diodes

Laser diodes generate light by a single photon being emitted when a high energy
electron in the conduction band recombines with a hole in the valence band. The
energy of the photon and hence the emission wavelength of laser diodes is there-
fore determined by the band gap of the material system used. Different diode lasers
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are available for specific applications in the range over which tuning is to be per-
formed. These lasers can be also tuned by either adjusting their temperature or by
changing injection current density into the gain medium. While temperature changes
allow tuning over 100 cm−1, it is limited by slow tuning rates (a few hertz), due to
the thermal inertia of the system. On the other hand, adjusting the injection current
can provide tuning at rates as high as ∼10 GHz, but it is restricted to a smaller
range (about 1–2 cm−1) over which the tuning can be performed. The typical laser
linewidth is on the order of 10−3cm−1 or smaller.

2.2.2 Quantum Cascade Lasers

Quantum cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to
far-infrared portion of the electromagnetic spectrum. A QCL however does not use
bulk semiconductor materials in its optically active region. Instead it comprises a
periodic series of thin layers of varying material composition forming a so called
superlattice. The superlattice introduces a varying electric potential across the length
of the device, meaning that there is a varying probability of electrons occupying dif-
ferent positions over the length of the device. This is referred to as one-dimensional
multiple quantum well confinement and leads to the splitting of the band of permit-
ted energies into a number of discrete electronic subbands. By a suitable design of
the layer thicknesses it is possible to engineer a population inversion between two
subbands in the system which is required in order to achieve laser emission. Since
the position of the energy levels in the system is primarily determined by the layer
thicknesses and not by the material, it is possible to tune the emission wavelength of
QCLs over a wide range in the same material system. In quantum cascade structures,
electrons undergo intersubband transitions and photons are emitted. The electrons
tunnel to the next period of the structure and the process repeats. Additionally, in
semiconductor laser diodes, electrons and holes are annihilated after recombining
across the band gap and can play no further part in photon generation. However in
a unipolar QCL, once an electron has undergone an intersubband transition and has
emitted a photon in one period of the superlattice, it can tunnel into the next period
of the structure where another photon can be emitted. This process of a single elec-
tron causing the emission of multiple photons as it goes through the QCL structure
gives rise to the name cascade and yields a quantum efficiency greater than unity,
which leads to higher output powers than semiconductor laser diodes.

3 Sensor Types and Related Materials

3.1 Detection mechanisms

The most important types of infrared sensors can be classified on the basis of their
intrinsic working mechanisms as illustrated below [25].
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3.1.1 Quantum sensors

They can be divided in three categories:

(a) Photon sensors

(a.1) Photoconductive(intrinsic) Hg(1−x) CdxTe, Pb(1−x)SnxTe, Pb(1−x)SnxSe.
For each x-value a different cut-off frequency is obtained.

(a.2) Photoconductive(extrinsic) Ge, Ge− Si, InSb, GaAs are the most interest-
ing materials. Germanium can be doped by different materials and the fol-
lowing performances can be obtained as far as the cut-off frequency is con-
cerned. Ge : Au(9 μm), Ge : Hg(14 μm); Ge : Cd(23 μm); Ge : In(105 μm);
Ge : Sb(125 μm). Types of photoconductivity:

(a.3) Photovoltaic (photodiodes).
(a.4) Superconducting sensors (based on the Josephson effect).

(b) Thermal sensors (operating at room temperature)

(b.1) Golay cell
(b.2) Thermistor bolometer
(b.3) Thermocouple
(b.4) Thermopile
(b.5) Pyroelectric

(c) Thermal sensors (operating at cryogenic temperature)

(c.1) Carbon bolometer
(c.2) Ge bolometer
(c.3) Si bolometer
(c.4) InSb free carrier-absorption bolometer
(c.5) Superconducting bolometer

Another kind of classification concerns the presence or not of an external power
supply during the signal detection procedure. In this context we have:

1. Active sensors which are those not requiring any external supply, such as

(1.a) Photovoltaic
(1.b) Thermocouple and thermopiles
(1.c) Pyroelectric

2. Passive sensors requiring external DC bias

(2.a) Photoconductive
(2.b) All kind of bolometers
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3.2 Photon sensors

Photon sensors are based on the absorption of long-wavelength radiation as a result
of a specific quantum event, such as the photoelectric emission of electrons from a
surface, or electronic transitions in semiconductor materials. Therefore, the output
of photon sensors depends on the photon’s absorption rate and not directly on photon
energy. They normally require to be cooled to cryogenic temperatures in order to get
rid of excessive dark current, but have high performance, with larger detectivities
and smaller response times. They respond only to photons whose energy hν is equal
to or larger than the energy gap or than the ionization energy. The rate of carrier
generation due to a given incident power P is given by:

G(s−1) = ηP/hν (1)

for hν ≥ Eg, and G = 0 for hν ≤ Eg. If τ does represent the lifetime of the carriers
in a photoconductor we have Δn = Gτ , while in photovoltaic sensors the current is
given by I = qG.

Photon sensors can be further subdivided into photoconductive and photovoltaic
devices. The function of photoconductive sensors are based on the photogeneration
of charge carriers (electrons, holes or electron-hole pairs). These charge carriers
increase the conductivity of the device material. Detector materials possible to be
utilized for photoconductive sensors are:

• Indium Antimonide (InSb)
• Quantum Well Infrared Photodetector (QWIP)
• Mercury Cadmium Telluride (HgxCdTe(1−x))
• Lead Sulfide (PbS)
• Lead Selenide (PbSe)
• Lead Tin Telluride (PbxSnTe(1−x))

Photovoltaic devices (Figure 1a) require an internal potential barrier which
derives from the presence of a built-in electric field in order to be able to sepa-
rate the photo-generated electron-hole pair. Such potential barriers can be created
by the use of p-n junctions or Schottky barriers. While the current-voltage charac-
teristics of photoconductive devices are symmetric with respect to the polarity (if we
neglect small deviation due to the presence of delocalized space charge regions at
the contacts or inside the non perfect material) of the applied voltage, photovoltaic
devices exhibit rectifying behavior. Photon sensors may also be classified on the
basis of whether the photo-transitions take place across the fundamental band gap
of the infrared sensitive material, or from impurity states to either of the valence or
the conduction band. In the first case they are denoted intrinsic, in the latter case
extrinsic. The quantum well type of detector discussed below is however not easily
classified according to this criterion. (See Figure 2).

In most cases photon sensors need to be cooled to cryogenic temperatures, i.e.
down to 77 K (liquid nitrogen) or 4 K (liquid helium). In some favorable cases
thermoelectric cooling down to 200 K is sufficient (e. g. 3–5 μm wavelength mer-
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(a) Photovoltaic device. (b) Photoconductive device.

Fig. 1 Photon sensors.

Fig. 2 Photoconductivity processes showing the electron transitions in four different cases.

cury cadmium telluride). The main workhorse in the field of photon sensors is mer-
cury cadmium telluride (HgCdTe), and to a less extent indium antimonide (InSb).
Vigorous work has been done on cadmium telluride both in the US and Europe
since its discovery in 1959 and work is still being done. Cadmium telluride is used
both for the 3–5 μm (MWIR) and 8–12 μm (LWIR) atmospheric transmission win-
dows, whereas indium antimonide is only used for the 3–5 μm range. Platinum
silicide (PtSi) Schottky barrier sensors also work in the MWIR domain. Large
(512× 512 pixels) PtSi focal plane arrays have been fabricated, they are compat-
ible with silicon CCD/CMOS technology, and show high performance, due to the
extremely good pixel to pixel uniformity, in spite of the very low quantum effi-
ciency. As regards FPAs for the 3–5 μm window, both cadmium telluride, InSb and
PtSi materials pose no major technological problems and are considered to be a fin-
ished product. In contrast, to date, no photon sensors FPAs operating in the 8–12 μm
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window exhibit sufficient performance to be operated at 77–80 K. In the course of
only the last five years, sensors based on low-dimensional structures have evolved
as viable candidates for FPAs (focal plane arrays), especially in the LWIR region.
These so called band-gap engineered sensors operate on account of electronic tran-
sitions between electronic states arising as a result of size quantization, i.e. electron
energy quantization due to the small layer dimensions in the growth direction. There
are three main candidates of interest for IR sensor arrays:

(i) The AlGaAs/GaAs quantum wells
(ii) The strained SiGe/Si superlattices (SL)
(iii) The strained InAs/GaInSb SLs and others

Among them the most mature is the AlGaAs/GaAs quantum well (QW) structure,
which is a spin-off from GaAs technology. This sensor type is generally named
Quantum Well Infrared Photoconductor or QWIP. Here special grating structures
are necessary in order to achieve a high quantum efficiency of the detector. QWIP
FPAs need operating temperatures around 70–75 K in order to work properly, tem-
peratures which are easily achievable by miniature Stirling coolers. The main advan-
tages of SiGe/Si QWs are the compatibility with silicon technology and that grating
structures are not necessary. The cooling requirements seem, however, to be more
extensive than for AlGaAs/GaAs quantum wells. InAs/GaInSb so called type II
SLs in theory offer the possibility of high sensitivity and operating temperatures
of an intrinsic detector. In addition, the materials processing and uniformity are
expected to be superior to that of III–VI materials such as cadmium telluride. How-
ever, presently the maturity of the sensor technology is far from being comparable
to cadmium telluride sensors.

3.3 Thermal sensors

In contrast to photon sensors, the operation of thermal sensors is straightforward .
The absorption of infrared radiation in these sensors raises the temperature of the
device, which in turn changes some temperature-dependent parameter such as elec-
trical conductivity, gas pressure or thermal polarizability. All these kinds of thermal
sensors show a remarkably flat response of the detectivity versus the wavelength (see
Figure 3). Thermal sensors may be thermopile (Seebeck effect), bolometer, Golay
cell sensors, thermopile or pyroelectric sensors (LiTaO3). This last sensor deserves
a remark; in fact the current generated in a given load resistor is proportional to the
average temperature rate and for this reason it is sometimes called a derivative tem-
perature detector. If p represents the pyroelectric coefficient and A is the detector
area, the current is given by:

I = p ·A · d(< T >)
dt

. (2)
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Fig. 3 Theoretical response of thermal and photosensors.

Fig. 4 Thermal detector.

The most relevant advantage of thermal sensors is that they can operate at room
temperature. However, the detectivity is lower and the response time longer than for
photon sensors. This makes thermal sensors suitable for focal plane array operation,
where the latter two properties are less critical.

A thermal detector is conveniently divided into three functional parts:

• Absorber for infrared radiation
• Membrane or other structure for achieving thermal insulation
• Temperature detector

The absorber can be a finely subdivided metal such as platinum black, or be
based on an interferometric structure. A simple model useful to understand the
operating principle of a thermal detector is shown in Figure 4. From this figure
it is possible to derive the heat equation of this device which can be expressed as
follows:

C · d(ΔT )
dt

+G ·ΔT = Re[W · e jωt ] (3)



30 A. D’Amico et al.

where:

• C is the heat capacity of the detector.
• G is the thermal conductance between the sensor and the heat sink at temperature

T0.
• W is the adsorbed peak power.
• ω is the angular modulation frequency.

Leaving out the mathematical details the solution of the heat equation rewritten as:

d(ΔT )
dt

+
ΔT
τ

= Re
[

W
C

· e jωt
]

(4)

which considers the modulated response is given by:

ΔT =
(

W
C

· e jωt
)
· (1+ jωt) (5)

where τ = C
G is the thermal time constant of the device. The real time dependence

of the temperature change versus the frequency is then given by:

ΔT =
W
G

· 1√
1+ω2τ2

. (6)

If ωτ is less than 1 the temperature rise does not depend on the heat capacity C
which is usually minimized for achieving fast responses. In order to obtain high
sensitivity it is of utmost importance that the detector element is thermally insulated
from the detector substrate. Therefore, when fabricating thermal detector arrays it is
common to make thin membranes using micro-mechanical processing techniques.
The material may be silicon nitride or silicon dioxide, which both are compatible
with silicon processing techniques.

The temperature detector is usually integrated into a suitable membrane, and
utilized to detect the usually minute temperature change resulting from exposure
to infrared radiation from a room-temperature scene and subsequent absorption.
Thermal sensors are conveniently classified according to their means of detecting
this temperature change:

• A resistive bolometer contains a resistive material, whose resistivity changes with
temperature. To achieve high sensitivity the temperature coefficient of the resis-
tivity should be as large as possible and the noise resulting from contacts and the
material itself should be low. Resistive materials could be metals such as plat-
inum, or semiconductors (thermistors). Metals usually have low noise but have
low temperature coefficients (about 0.2%/K), semiconductors have high tem-
perature coefficients (1–4%/K) but are prone to be more noisy. Semiconductors
used for infrared sensors are e.g. amorphous, polycrystalline silicon, or vanadium
oxide.
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• A thermoelectric device (thermocouple or thermopile) is based on the presence of
one or several junctions between two materials. The junctions properly arranged
and connected develop a thermo-emf that changes with temperature, the so-called
Seebeck effect. In order for the sensitivity to be high the Seebeck coefficient
should be as high as possible. Certain alloys containing antimony and bismuth
have very high Seebeck coefficients of 150 μV/K. The CMOS compatible com-
bination aluminum/polycrystalline silicon gives about 65 μV/K.

• A pyroelectric sensor is based on the fact that certain dielectric materials of low
crystal symmetry exhibit spontaneous dielectric polarization. When the electric
dipole moment depends on temperature the material becomes pyroelectric. Usu-
ally a capacitor is fabricated from the material and the variation of charge on it
is sensed. Common pyroelectric materials used for infrared sensors are T GS (tri-
glycine sulphate), LiTaO3 (lithium tantalate), PZT (lead zinc titanate) and certain
polymers.A dielectric bolometer makes use of pyroelectric materials operated in
a way to detect the change of the dielectric constant with temperature. A suitable
material for this application is SBT (Strontium Barium Titanate).

• The Golay detector is based on the volume or pressure change of an encapsulated
gas with temperature. The volume change is measured e.g. by the deflection of
light rays resulting from the motion of properly positioned mirrors fastened to
the walls of the gas container.

3.4 Infrared imaging

There are two basic types of infrared imaging systems: mechanical scanning systems
and systems based on detector arrays without a scanner. It should be mentioned that
detector arrays as well are used for scanning systems, but the number of detector
elements (picture elements – pixels) generally is smaller in this case.

A mechanical scanner utilizes one or more moving mirrors to sample the object
plane sequentially in a row-wise manner and project these onto the detector. The
advantage is that only one single detector is needed. The drawbacks are that high
precision and thus expensive opto-mechanical parts are needed, and the detector
response time has to be short. As mentioned above, detector arrays are also used for
this application. For example, a long linear detector array can be used to simultane-
ously sample one column of the object plane. By using a single moving mirror the
whole focal plane can be sampled. In contrast, when a single detector is used, two
mirrors moving in two orthogonal directions must be used, one of them moving at
high speed, the other one at lower speed.

Detector arrays operated as focal plane arrays (FPA) (or staring arrays) are
located in the focal plane of a camera system, and are thus replacing the film of a
conventional camera for visible light. The advantage is that no moving mechanical
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parts are needed and that the detector sensitivity can be low and the detector slow.
The drawback is that the detector array is more complicated to fabricate. However,
rational methods for semiconductor fabrication yield economic advantages, pro-
vided that production volumes are large. The general trend is that infrared camera
systems will be based on FPAs, except for special applications.

The spatial resolution of the image is determined by the number of pixels of
the detector array. Common formats for commercial infrared sensors are 320×240
pixels (320 columns, 240 rows), and 640× 480. The latter format (or something
close to it), which is nearly the resolution obtained by standard TV, will probably
become commercially available in the next few years. Today, for example, indium
antimonide and platinum silicide sensors are commercially available in the 320×
240 pixels format. Typical pitches between pixels are in the range 20–50 μm.

Detector arrays are more complicated to fabricate, since besides the detector ele-
ments with the function of responding to radiation, electronic circuitry is needed
to multiplex all the detector signals to one or a few output leads in a serial man-
ner. The output from the array is either in analogue or digital form. In the former
case analogue to digital conversion is usually done external to the detector array.
The electronic chip used to multiplex or read out the signals from the detector ele-
ments are usually called simply readout integrated circuit (ROIC) or (analogue)
multiplexer.

The ROIC is usually made using silicon CCD (charge coupled device) or CMOS
technology. However, the detector elements must often be fabricated from more
exotic materials as discussed above. The exceptions are e. g. platinum silicide or
micro-bolometers which can be based on silicon technology. In the former case a
hybrid approach is most common, in which case all the detector pixels are fabricated
from a separate detector chip. This detector chip is then flip-chip bonded to the ROIC
chip. Flip-chip bonding involves the processing of metal bumps onto contact holes,
one per pixel, of both the detector chip and the ROIC . Using special equipment,
the two chips are first aligned to each other. Then the chips are put in contact, while
applying heat and/or mechanical force. During this process the two chips become
electrically connected to each other via the metal bumps. Usually indium is used for
the bumps due to its excellent low temperature properties.

Uniformity of the detector elements across the array is a key issue for obtaining
high performance. In fact, individual pixel response characteristics differ consider-
ably across an array in most cases. Therefore so called pixel correction has to be
done prior to the presentation of the final image. This amounts to calibrating each
individual pixel, by exposing the array to calibrated surfaces of known temperature.

IR sensor can be divided in two broad categories: incoherent and coherent.
Incoherent infrared sensors can be seen as sensors sensitive to the photon energy.
Examples are: photomultiplier, photoconductors, bolometers, etc. For all of them in
the detection process, information of phase and frequency is lost. Coherent IR sen-
sors are all those that can maintain frequency and phase information; examples are
linear amplifiers heterodine sensors (mixers).
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4 Figure of Merit of Incoherent IR Sensors (I.I.R.S.)

The most important figures of merit for I.I.R.S. are:

4.1 Noise Equivalent Power (NEP)

It is defined as the r.m.s. value of a sinusoidally modulated radiant power falling on
the sensor able to determine signal to noise ratio equal to unity.

The NEP (or PN) depends on the (S/N) noise bandwidth of the preprocessing
circuit.
The smaller this bandwidth, the lower the NEP. The NEP is given with reference to
1 Hz bandwidth (W/

√
Hz).

The NEP should be written as follows:
NEP (500 K, 900, 1) where, as an example, 500 K represents the Black Body tem-
perature, 900 is the chopping frequency, and 1 Hz is the bandwidth.
PN can be experimentally estimated by the following relationship:

PN(orNEP) = I ·AS ·
Vn/Vs√
Δ f

(7)

where I is the irradiance falling on the sensor area AS, (Vn/Vs) is the noise to signal
ratio evaluated in the bandwidth (Δ f ).

4.2 Responsivity

It can be represented by the electrical output of a sensor divided by the power (P) of
the radiation striking it. Since electrical output can be either voltage or current, one
distinguishes between voltage and current responsivity.

R =
Vs

P
=

Vs

I ·As
. (8)

The responsivity unit is [V/W ].
It is worth underlining that the responsivity is linked to the NEP and to the D∗ as

follows:
R =

Vn

PN ·
√
Δ f

=
D∗ ·Vn√
As ·Δ f

. (9)

It is relevant also to mention that the responsivity is frequency dependent (see Figure
5) and in most cases its behaviour can be expressed as follows:

R( f ) =
R0√

1+ω2τ2
. (10)
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Fig. 5 Frequency dependence of the responsivity.

Responsivity can be measured for monochromatic radiation, in which case the
responsivity is called spectral responsivity. Alternatively, a blackbody source kept
at a fixed temperature can be used. In this case one talks about black body respon-
sivity. Spectral responsivity plotted versus wavelength is often used for presentation
of a detector’s spectral response properties.

4.3 Detectivity D∗

Whereas responsivity takes into account the detector’s signal properties only, the
detectivity or D∗ value is a measure of its signal to noise properties. The D∗ value
is normalized with respect to detector area (provided that the signal to noise ratio
increases with the square root of the detector area, which is often the case, at least
for photon sensors). It is defined as:

D∗ =
R

VN
·
√

AS ·Δ f =
R
IN

√
AS ·Δ f (11)

where VN and IN is the noise voltage and current, respectively, R is the responsivity,
AS the detector area and Δ f the noise bandwidth.

4.4 Temperature resolution (NETD) and other important
parameters

NETD is an abbreviation for Noise Equivalent Temperature Difference and is a mea-
sure of the smallest object temperature difference that can be detected by an IR
camera.
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When dealing with I.R. sensors also the following parameters are important:

• Operating temperature: temperature of the I.R. sensor.
• Cut-Off wavelength: wavelelength above which the response goes to zero.
• Dλp : which is similar to the normal D∗ apart from the fact that here the input

power is related to a small Δλ generated, for instance, by a monochromator.
• Response time: time which goes from 0.1 to 0.9 of the overall response.
• Noise mechanism: which describes the kind of noise (shot, thermal, flicker,

burst).
• Resistance/squares: representing a measure of a thin film of sensitive material.
• Mode of operation: describes how the device is applied and how the output volt-

age (current) is taken.

Figure 6 gives a broad representation of the most important infrared sensors in
terms of detectivity (D∗) versus wavelengths. Only a few sensors, namely pyro-
electric, Golay cell, thermopile, thermistor (letters S-T-U-V), have a flat response
from the visible to above 20 μm. Other sensors (letters A-B-C-D-E-F-G-H-R-I-J-
L-R-O) have a band pass behaviour in the 1–5 μm region, others (K-N-M-Q) show
broad response covering many microns of range. The envelope of all the curves are
located below the ideal limit of both photoconductive and photovoltaic sensors.

When IR sensors are taken into consideration it is worth keeping in mind the
following radiation terms:

• Radiant power: P (Watts).
• Spectral radiant power: Pλ (W/μm).

Fig. 6 Detectivity versus wavelength in the infrared region of different sensors.
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• Radiant intensity: I (W/steradiants).
• Spectral radiant intensity: Iλ (Watts/steradiant. μm).
• Radiant emittance: Re (W/m2).
• Spectral radiant emittance: Reλ (W/m2 ·μm).
• Radiance: RΩ (W/m2 · steradiant).
• Spectral radiance: RΩλ (W/m2 · steradiant ·μm).
• Irradiance: IR (W/m2).
• Reflectivity (R); Absorptivity(α); Transmittivity(T ); Emissivity(E): which are all

expressed by numbers, each less than one, in practical cases.

After this brief introduction to IR sensors we will talk about the acousto-optic tech-
nique which seems to be suitable for the detection of aggressive volatile compounds
in the 8–14 μm region. Below we list a number of aggressive compounds to which
a great deal of attention is paid:

• Nerve Agents: Sarin, Ciclosarin, Tabun, Soman, VX
• Blister Agents: Nitrogen Mustards (HN-1, HN-2, HN-3), absorption @ 14 μm
• Pulmonary Agents: Cloropicrina, Perfluoro-Isobutilene (PFIB), Fosgene
• Blood Agents: CNCl

5 Acousto-Optic Devices

The early studies on acousto-optic phenomena, i.e. the optical interactions with
acoustic waves, go back to around the 1920s, as pointed out by C.F. Quate and
M. Born in their articles [2, 37]. The acousto-optic interactions occur in an optical
media (usually solid, sometimes liquid, rarely a gas) when an optic wave and an
acoustic wave are present in the same place and time. A possible scenario is shown
in Figure 7. The strain of the medium due to the pressure fluctuation of the acoustic

Fig. 7 Scenario.
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wave causes diffraction, refraction, interference and reflection of the optical wave
[38]. After the advent of the laser acousto-optics research was especially dedicated
to the development of devices able to modulate and deflect the laser beam [7,12,20].
Here we develop a bit of theory, taken from the literature, related to the acousto-
optic mechanism and give some explanations of some related devices, essential for
the generation of power in relatively small Δλ , to be used in volatile compound
absorption based detection techniques.

5.1 Acousto-optic interaction theory

5.1.1 The elasto-optical effect

Let E(r, t) and H(r, t) be respectively the electric field and the magnetic field of the
light beam. Thus Maxwell’s equation within the medium can be written as

∇×E = −u0
∂
∂ t

H (12)

∇×H =
∂
∂ t

(εE) (13)

D = εE (14)

∇ ·D = ρ = 0 (15)

by Gauss’ law. The optical properties of a medium are completely characterized by
the electric impermeability tensor β = ε0ε−1 (not to be confused with the impedance
of the medium), where ε−1 is the inverse of the tensor ε . So Equation (14) can be
inverted and rewritten as

ε0E = βD. (16)

In the directions for which E and D are parallel, both tensor ε and β share the same
principal axes and are represented by a diagonal matrix. Thus the principal values
of β are

ε0

ε1
=

1
n2

1
;
ε0

ε2
=

1
n2

2
;
ε0

ε3
=

1
n2

3
(17)

where ε1 = ε11, ε2 = ε22 and ε3 = ε33.
The quadratic representation of the electric impermeability tensor β

∑
i j
βi jxix j = 1 i,j=1,2,3 (18)
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Fig. 8 The index ellipsoid.

Table 1 Lookup table for the index m or n that represents the pair of indices (i,j) or (k,l).

j i:1 2 3

1 1 6 5
2 6 2 4
3 5 4 3

is called the index ellipsoid or optical indicatrix (Figure 8). Using principal axes as
the coordinate system the quadratic form is described by

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1. (19)

For example, if the medium is isotropic then the indicatrix will describe a spher-
ical surface or, if it is a uniaxial crystal, the surface will be an ellipsoid of revolu-
tion [26].

When the medium is perturbed by a sound wave S(r, t), the compression and
refraction waves change the local density and the resulting strain of the component
atoms and molecules of the scattering medium change the optical polarization [12].

As a consequence the permittivity tensor ε changes its coefficients, and hence β
too according to the equation

βi j = β0i j +Δβi j, (20)

where
Δβi j = pi jklSkl i,j,k,l=1,2,3. (21)

Δβi j is the variation due to the perturbation, β0i j is the indicatrix coefficient before
the perturbation and pi jkl are the elastooptic or photoelastic constant coefficients
of the strain-optic tensor of fourth rank. They reflect a particular symmetry due to
symmetry both of Δβi j and of Skl , in particular pi jkl = p jikl = pi jlk = p jilk [22, 41].
In this way it is possible to contract the pair of indices (i,j) to a single index m =
1,2, . . . ,6 using the Nye’s notation reported at Table 1 [42]. Also the pair of indices
(k, l) can be contracted to the index n = 1,2, . . . ,6 in the same way. For example the
pair (k, l) = (1,2) is labeled n = 6.
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Moreover the symmetry of the crystal adds other constraints on the coefficients. For
example the matrix pmn of a cubic crystal [32, 40, 42] has the structure

pmn =

⎡
⎢⎢⎢⎢⎢⎢⎣

p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Furthermore if the medium material is isotropic

p44 =
1
2

(p11 + p12) . (22)

Other photoelastic matrices for different types of crystal have been published by
Mason [27], Nye [34] and Krishnan [24].

Table 2 reports some elastoplastic coefficients. More detailed tables can be found
in [8, 46].
For example, let us now consider a longitudinal acoustic wave characterized by a
displacement ux = A0sin(ωact−kacx), uy = 0 and uz = 0, traveling into an isotropic
cubic crystal (n0x = n0y = n0z) along the x direction. Thus the strain tensor Si j,
defined as

Si j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
(23)

where i, j = 1,2,3 denotes the coordinate (x, y, z), which has all components vanish-
ing except

S11 = S1 = S0cos(ωact − kacx) = −kacA0cos(ωact − kacx). (24)

By substituting (24) and (20) into (21) we find

β11 =
1

(nx)2 + p11S1 (25)

Table 2 Elastoplastic coefficients and refractive index.

Material l (mm) n P11 P12 P44 P31 P13 P33 P41 P14 P66

Fused
quartz

0.63 1.46 0.121 0.270 −0.075

GaP 0.63 3.31 −0.151 −0.082 −0.074
GaAs 1.15 3.37 −0.165 −0.140 −0.072
TiO2 0.63 2.58 0.011 0.172 0.0965 0.168 0.058
LiNbO3 0.63 2.20 0.036 0.072 0.178 0.092 0.088 0.155
LiTaO3 0.63 2.18 0.0804 0.0804 0.022 0.086 0.094 0.150 0.024 0.031
KDP 0.63 1.51 0.251 0.249 0.225 0.223 0.246 0.058
H2O 1.33 0.31
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β22 = β33 =
1

(nx)2 + p12S1 (26)

βi j = 0, i �= j. (27)

Equations (25), (26), (27) show that the initial isotropic crystal has become a
uniaxial crystal (two refractive index are equal) and the quadratic form of the optical
indicatrix represents an ellipsoid of revolution whose axes no = n2 = n3 and ne = n1
are given by

1
(no)2 =

1

(n0x)
2 + p12S1 (28)

1
(ne)2 =

1

(n0x)
2 + p11S1 (29)

where no and ne represent the ordinary and extraordinary refractive index.
Using the approximation

1√
1+a

≈ 1− 1
2

a with a � 1 (30)

it is possible to write (28) or (29), with i = e,o as

ni =
n0x√

1+(n0x)
2 pmnSm

= n0x

[
1− 1

2
(n0x)

2 pmnSm

]

= n0x −
1
2

(n0x)
3 pmnSm (31)

and hence
Δni = ni −n0x = −1

2
(n0x)

3 pmnSm. (32)

The variation of the reflective index Δn is negative compared with the positive
strain perturbation S. Other than the longitudinal wave, also, the transverse share
wave is very common in acousto-optic devices. Here the displacement wave, ux = 0,
uy = 0 and uz = A0sin(ωact − kacx), travels in an isotropic cubic crystal along the x
direction but vibrates orthogonally in the z direction. Thus the strain tensor has all
components zero except

S13 = S31 = S5 = S0cos(ωact − kacx) = −1
2

kacA0cos(ωact − kacx) (33)

and the crystal will become biaxial (the three principal indices are different from
each other). Reassembling (32) and using (33), the principal refractive index will be
given by

nx = n0x −
1
4

(n0x)
3 kacA0cos(ωact − kacx) (34)

ny = n0x (35)
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nz = n0x +
1
4

(n0x)
3 kacA0cos(ωact − kacx). (36)

If we want to consider the variation of the permitivity ε related to the photoelastic
effect we can write [23, 44]

ε(r, t) = ε0(1+CS(r, t)) = ε0 + ε′(r, t), (37)

where ε(r, t) = ε0CS(r, t) is the time-varying permitivity and C is a constant depen-
dent on the medium material.

Furthermore, if we assume that the acoustic wave is a planar traveling wave with
sinusoidal vibration, then the relationship between the variation of the refractive
index Dn(x,t) and the acoustic strain wave can be written as [21]

Δn(x, t) =
n
2

CS(x, t) (38)

and
C = −n2 p. (39)

Note that the above (39) defines the constant C using the refractive index n as a
scalar, and hence (39) can usually be applied to a liquid [40].

5.1.2 Raman-Nath diffraction

Let us consider now a progressive sinusoidal perturbation wave S(r,t) propagating
into an optical medium large L and width W, characterized by a permeability μ0 and
a permitivity ε, and the electric field E(r,t) incident at an angle θ0 upon the acoustic
beam as shown in Figure 9a and b. In order to model the acousto-optic interaction
we have to consider the Maxwell equation stated above considering ε as a function
of x, y, z coordinates and time t. Eliminating H, we obtain [31]

u0ε0
∂ 2D
∂ t2 = ∇2E+

∇ε

ε
∇×E+

(
∇ε

ε
∇
)

E+(E∇)
∇ε

ε
. (40)

Since ωac << ωop
|∇ε|λ << 1. (41)

Thus (40) can be written as

∇2E−μ0ε0
∂ 2

∂ t2 (εE) = 0 (42)

Hence, assuming that the frequency of time variation of ε is very small compared to
that of E, (42) is reduced to

∇2E = μ0ε
∂ 2

∂ t2 (E) or ∇2E =
n(r, t)2

c2
∂ 2

∂ t2 (E) (43)
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(a) Propagation acoustic wave. (b) Standing acoustic wave.

Fig. 9 Schematic of acousto-optic devices.

where c is the light velocity in free space and n(r, t) = c
cmedium(r,t) is the refracting

index of the medium [46].
Let S(r,t) be the sinusoidal perturbation propagating along the x axis, so S(r,t)

can be written as
S(x, t) =

1
2

S0 exp [ j(ωact − kacx)]+ c.c. (44)

and let E(r, t) be defined as

E(r, t) =
1
2

Eop(r)exp [ j(ωopt −kop · r)]+ c.c. (45)

where S0 is the amplitude of the perturbation, Eop is the amplitude in free space and
c.c. is the complex conjugate. Furthermore let n(x,t) be the refractive index of the
medium perturbed in time and space by the pressure acoustical wave, given by

n(x, t) = n0(x)+Δn(x, t) (46)

where Δn(x, t) can be written according to (32) as

Δn(x, t) = −1
2

(n0)
3 pS0 sin(ωact − kacx). (47)

As the scattering process is essentially lossless, or reactive, the wave energy-
momentum conservation principles are applicable. In the case of a plane mono-
chromatic optical and acoustic wave propagated in a medium that is optically
inhomogeneous, nonmagnetic and isotropic, the energy-momentum relations are
given by
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Fig. 10 Momentum scatter-
ing of a plane and monochro-
matic optical and acoustic
waves in isotropic medium.

h̄ks = h̄kop + h̄kac

h̄ωs = h̄ωop + h̄ωac

where the subscript s means scattered, h̄ is Planck’s constant h divided by 2π , ks, kac
and kop are respectively the scattered, acoustic and optic wave vector, and kac and
kop are defined as kac = ωac

vac
and kop = ωop

vop
= ωopn0

c .
Figure 10 shows the vector representation of the moment conservation. Along

the interaction area, the perturbed optical field E can be written as [5, 18, 46]

E(x,z, t) =
1
2

+∞

∑
m=−∞

Em(z)exp [ j(ωmt −km · r)]+ c.c. (48)

where
ωm = ωoc +mωac (49)

km = kop +mkac (50)

km · r = kop[zcos(ϑ0)− xsin(ϑ0)]+mkacx. (51)

Em(z) represents the amplitude of the mth diffracted light with circular frequency
ωm = ωop +mωac.
Substituting (46) and (48) in (43) and neglecting second-order terms, we obtain the
following difference-differential equation derived by Raman and Nath [31]

dEm(z, t)
dz

+
ξ
2L

(Em+1 −Em−1)+ j
mkac

cos(ϑo)
[sin(ϑ0)−msin(ϑB)]Em = 0 (52)

where

ξ = − k fΔnL
cos(ϑo)

(53)

is a parameter related to the acoustic pressure and 2sinϑB = kac
kop

(Snell’s law). Here
k f is the optical wave number in free space and ϑB is the Bragg angle in the medium.
The Bragg angle definition (52) implies a momentum-conservation relation in which
the frequency shift of the diffracted light beam is neglected.

Solutions of (52) are obtained using exponential Fourier transform theory and
numerical methods [9, 44, 47].
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An approximate solution with a boundary condition E0(0, t) = 1 and Em(0, t) = 0
(n �= 0) when ωa << ωo, hence msinϑB ≈ 0, is

Em(z) = exp
(
− j

1
2

mkacz tanϑo

)
Jm

⎛
⎝ξ sin

(
kacz tan ϑo

2

)

kacL tan ϑo
2

⎞
⎠ (54)

where Jm is the Bessel function of order m [46]. The normalized intensity (to the
incident beam) of the mth diffracted light at z = L is given by

Im(z) |z=L = [Em(z)E∗
m(z)]x=L = J2

m

(
ξ

sin(γ)
γ

)
(55)

where E∗
m(z) is the complex conjugate of Em(z) and γ = kacL tan ϑo

2 ≈ Q kop
kac

sinθ0
2 .

The last approximation is acceptable because common applications require θ0 << 1.
The parameter Q, defined by Klein and Cook [18,19], is used in order to establish

a criterion of diffraction feature. It is given by

Q =
k2

ac

kop

L
cosϑ0

= 2kacL
sinϑB

sinϑ0
≈ k2

ac

k f n0
L. (56)

Again the last approximation is acceptable if θ0 << 1.
The Q value does not define severe limits for the working region, but in practice

it is used as [19]

• Q < ≈ 0.3 for the Raman-Nath region
• Q ≈ 1 for the transition region
• Q ≥ 4π for the Bragg region

Figure 11 shows the zeroth and first order intensity levels as functions of Q at
Bragg incidence with ξ = π .

In order to develop an acousto-optic device and to choose the diffraction region
of operation (Raman-Nath or Bragg) one has to consider

• The optical path length L
• The optical angle of incidence ϑo
• The acoustic frequency fa

So, for a short path L
λ < 10 and low frequency (usually f < 10 MHz), inde-

pendent of the incidence angle, we will have Raman-Nath diffraction, and for high
frequency f > 100 MHz, long path L

λ > 10 and incident angle ϑo ≈ ±ϑB we will
have Bragg diffraction [11].

5.1.3 Bragg diffraction

It is found that the maximum intensity of diffracted light occurs when the incident
light beam angle ϑo is ϑo ≈±ϑB. In this situation, called Bragg reflection, only the
zeroth and first order diffraction are predominant while higher orders are neglected.
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Fig. 11 Intensity of the zeroth and first order vs. Q at Bragg incidence ξ = π .

Thus for ϑ0 ≈ +ϑB (52) is reduced to

dE0(z, t)
dx

+
ξ
2L

E1(z, t) = 0 (57)

and
dE1(z, t)

dx
− ξ

2L
E0(z, t)+

ζ
L

E1(z, t) = 0 (58)

where
ζ =

kacL
cos(ϑo)

[sin(ϑ0)−msin(ϑB)]. (59)

Solutions for E0 and E1 using E0(0) = 1 and E1(0) = 0 are given by [36]. The
normalized intensities (to the incident light Ii) I0 and I1 at x = L are

I0 = |E0|2 = 1− I1 (60)

I1 =
(

ξ
2γ‘

)2

sin2 γ‘ (61)

where

γ ′ = ζ 2 +
(
ξ
2

)2

. (62)

If ϑ0 = +ϑB and hence ζ = 0 then (61) is reduced to

I1 = sin2
(
ξ
2

)
and I0 = cos2

(
ξ
2

)
(63)

Furthermore if ξ is small then I1 =
(

ξ
2ζ

)2
sin2 ζ .
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5.1.4 Diffraction efficiency

In order to relate the intensity I1 of the refracted light beam to the power Pa [W ] and
the figure of merit M we introduce the acoustic intensity Iac [Wm−2] given by

Iac =
1
2
ρν3SS∗. (64)

Thus
Pas = IacHL =

1
2
ρν3

acSS∗HL (65)

where ρ is the density, ν is the acoustic velocity, H is the thickness of the acoustic
beam, and S∗ is the complex conjugate of strain S. Here the suffix notation is omitted
for simplicity.
Using (32), the variation of refractive index can be written as

Δn = −1
2

n0
3 pS = −1

2
n3

0 p

√
2Pac

ρν3
acHL

. (66)

Substituting (66) in (53)

ξ =
k f

1
2

n3
0 p√
ρν3

ac

√
2PacL

H

cos(ϑo)
. (67)

Thus the normalized intensity of the first order diffracted light at the Bragg incidence
is (using 63)

I1 = sin2

(
π

λop cosϑB

√
1
2

M2Pac
L
H

)
(68)

where

M2 =
n6 p2

ρν3
ac

. (69)

The efficiency η is given by the ratio of the intensity of the diffracted light I1 over
the incident beam Iinc

η =
I1

Iinc
= sin2

(
π
λop

√
1
2

M2Pac
L
H

)
. (70)

Using the Taylor approximation,

η ≈ π2

2λ 2
op

M2Pac
L
H

. (71)

So the efficiency of the diffraction (or deflection) is proportional to the acoustic
power Pac, the material figure of merit M2 and the geometric factors L/H while it
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is inversely proportional to the square of the optical wavelength. From (71) a good
acousto-optic material should have a high figure of merit in addition to good optical
and acoustical characteristics such as low attenuation. The figure of merit M2 is not
the only one, but others have been defined and used according to the application.
The most common figures of merit are [5]

M1 =
n7 p2

ρν

M2 =
n6 p2

ρν3

M3 =
n6 p2

ρν2

M3 =
n8 p2

ρν−1

in which n is the optical index of refraction, p the appropriate component of the
photoelastic tensor, ρ the mass density, and ν the acoustic phase velocity.

It is common practice to use M2 as a reference and to define M1, M3 and M4 in
relation to M2, n and ν .

In fact M1 = M2nν2. It is used to optimize the efficiency bandwidth Δ f ∝ nν2

[13]. Thus, the efficiency can be written as

η ≈ 9M1
Pac

λ 3
op fopΔ f H

. (72)

M2 is used when the diffraction efficiency is directly related to the acoustic power
Pac and the medium geometry L and H

η ≈ π2

2
M2

PacL
λ 2

opH
. (73)

M3 = M2nν is used to design a reflector where the thickness H is as large as the
optical beam size [8], and hence the relative diffraction efficiency will be

η ≈ 9M3
Pac

λ 3
op fop

. (74)

M4 = M2
(
nν2
)2 is applicable in the design of wideband deflectors or modulators

where power density is the limiting factor. Thus, the efficiency will be given by

η ≈ 16M4

λ 4
op f 2

opΔ f 2
Pac

LH
. (75)
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5.2 Acousto-optic devices applications

Acousto-optic devices have long been used in a variety of laser intracavity appli-
cations. These applications can be divided into two categories: zeroth beam order
applications and diffracted beam applications. Diffracted beam applications are the
most common (such as modulator, deflector, tunable filter, frequency shifter) while
one of the zeroth order beam applications is A-O Q-switching.

5.2.1 Modulator

The acousto-optic interaction is also used to modulate light both in amplitude and
in frequency. Usually this type of device operates in the Bragg region where only
one diffracted order is predominant. For proper modulator operation, the divergence
of the optical beam φop should be approximately equal to that of the acoustic beam
φac [5].

For a Gaussian beam the divergence can be written as

φop =
4λop

πnd
(76)

and for an acoustic wave generated by a flat transducer of width L′

φac =
λac

L′ . (77)

Thus the divergence ratio is given by

a =
φop

φac
. (78)

At low values of a the maximum modulation frequency fm approaches its limit (see
Figure 12a)

fm ≈ 0.75
τ

(79)

where τ = d
νac

is the acoustical transient time across the optical beam. Increasing
the a value, it also increases the intensity value of the diffracted light, as it is shown
in Figure 12b.

The maximum product frequency bandwidth – peak intensity is given for a values
between 1.5 and 2. That corresponds to

fm ≈ 0.65
τ

. (80)

In general, to characterize the modulator the rise time τR is used that is propor-
tional to the acoustic traveling time τ through the laser beam. It is given by

τR = βτ (81)
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(a) Product bandwidth modulation vs. a. (b) Normalized maximum peak diffracted light
vs. a.

Fig. 12 Modulator behavior according to the ratio of the optical and acoustic divergence.

where β is a constant depending on the laser beam profile. For example, for the
T EM00 beam it is equal to 0.66.

Another requirement for the modulator device is that the diffracted and the undif-
fracted beam must be well separated. This implies that the Bragg angle ϑB should
be at least equal to the optical divergence φop

ϑB = arcsin
(
λop

2λac

)
≈ λop

2λac
=
λop fac

2νac
= φop =

4λop

πd
, (82)

hence the minimum center frequency is

fac,min =
8
πτ

. (83)

Combining (83) and (80) we find the relation between center frequency and mod-
ulation bandwidth

fac,min ≈ 4 fm. (84)

The acousto-optic modulator has a nonlinear transfer function MTF (Figure 13b)
defined by

MT F = exp

(
−
(

fm

1.2 f0

)2
)

f0 =
0.35
τR

. (85)

In order to measure the separation level between the light intensity of the zeroth
order and that of the first order the contrast ratio CR [29], defined as

CR =
I1

I0
, (86)
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(a) Modulator: the incident light intensity is
constant while the acoustical signal is variable
in frequency and intensity.

(b) qualitative plot of the modulator transfer
function according to the acoustic frequency.

Fig. 13 Modulator working principle.

is used, where I1, is the light intensity of the first-order diffracted beam and I0 is the
light leakage of the incident beam in the direction of the first-order beam when the
AO modulator is not energized. The CR value is defined for both pulse modulation
mode conditions (dynamic CR) and static conditions (static CR). The dynamic CR
has great importance in laser communication systems in order to measure the cross
talk between zeroth and first-order channels. In general the CR value is limited by
crystal imperfection and by the scattered light.

As shown by (79) the time taken for the acoustic wave to travel across the diame-
ter of the light beam limits the modulation bandwidth. So to increase the bandwidth
the diameter of the light beam must be as small as possible.

Modulators are used:

• In infrared communication applications due to the existence of several materials
working in that spectral region [1, 3, 48]

• As multiplexer and demultiplexer in optical pulse code modulation using low
acoustic power and standing acoustic waves

• Inside a laser cavity as Q-switching, Mode Locking and cavity dumping

5.2.2 Deflector

An acoustic-optic deflector changes the angle of the deflecting beam proportionally
to the driver acoustic frequency, so that the higher the frequency, the larger the
diffracted angle (Figure 14). It can be used to modulate the incident beam by shifting
the position of the reflected beam on the output collimator.

The angle between the undiffracted beam and first-order diffracted beam is equal
to two times ϑB:
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Fig. 14 Deflector working principle.

2ϑB = arcsin
(
λop

2λac

)
= arcsin

(
λop fac

2νac

)
. (87)

Thus the total angle of deflection Δϑd for a frequency change Δ fac is

Δϑd =
λop

va

Δ fac

cosϑ0
≈ λop

va
Δ fac (88)

if ϑ0 is neglected.
In a deflection system, there are two important performance parameters: resolu-

tion (maximum number of resolvable angular positions) and speed. The resolution
N is defined as the range of deflection angles Δϑd,max divided by the angular spread
of the diffracted beam φd(divergence)

N =
Δϑd,max

φd
. (89)

The divergence of the diffracted beam φd will be equal to that of the incidence beam
φop if a in (78) satisfies a << 1

φop = ξ
λop

d
, (90)

where ξ is a multiplication factor (near unity) that depends on the amplitude distri-
bution of the optical beam and the criterion used for resolvability [39], and d is the
diameter of the deflected beam (or of the incident beam if they are equal). Combin-
ing (89), (88) and (90)

N =
τΔ fac

ξ
(91)
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where
τ =

d
νac cosϑ0

. (92)

As with the modulator, the performance of the deflector is related and limited to
the transient time τ across the optical beam. But here, to the contrary, in order to
increase the number of resolvable spots N, τ should be increased (directly propor-
tional). Another limitation is due to the length L of the optical path. The spread angle
in which the deflector works properly depends on whether a wide enough spectrum
of plane waves is available in the radiation pattern of the transducer to satisfy the
Bragg angle condition at all frequencies

λac,nom

L
>

1
2
λ

vac
Δ fac (93)

or

L <
1
2
λ 2

ac,nom

λop

fac,nom

Δ fac
(94)

where λac,nom and fac,nom are the nominal sound wavelength and frequency respec-
tively. Equation (94) indicates that for large Δ f the path length L must be decreased.
This reduces the diffraction efficiency (73), and also increases the strength of addi-
tional orders by moving out of the Bragg region (56). Such difficulties may be over-
come by using a phased array transducer.

Deflectors are used as:

• Scanner
• Switches
• Spectrum analyzer
• Hologram, printing, photolithography
• Display driver
• Cavity dumper

5.2.3 Tunable filter

The AOTF (Acousto-optic Tunable Filter) working principle is based on the ani-
sotropic collinear/non collinear wave interaction or isotropic collinear interaction
[37]. A collinear interaction is present when the light propagates in the same direc-
tion as the acoustic wave (the wavevectors kac and kop are parallel). In this case,
the grating fringes are perpendicular to the direction of light propagation and the
grating behaves as a pure reflection grating. On the contrary if kac and kop are not
parallel then a non collinear interaction will occur. In a bulk acousto-optic device
the polarization of light can be rotated 90 degrees by way of the photoelastic effect
produced by the acoustic strain wave. The filtered light will be separate from the
unfiltered if the interaction strength L is strong enough to allow polarization to flip,
for example from TE to TM. This process is resonant and narrow in spectral width
because the two polarization states propagate at different velocities. Coupling can
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be achieved only when the phase-matching condition is met, i.e., when the sound
wave momentum just compensates the TE and TM momentum mismatch [43].

The conservation of energy and momentum conditions with the phase matching
condition of an acousto-optic interaction of the collinear type give the following
relation [10]

ko = ke + kacor
ωon0(ω0)

c
=
ωene(ϑe,ωe)

c
+
ωac

νac
(95)

ωo = ωe +ωac (96)

ne(ϑe,ωe) =

√√√√ 1
n2

o
cos2ϑe

+ n2
e

sin2ϑe

(97)

where ke and ko are the incident and diffracted optical momentum at the propagation
angles ϑe and ϑo respectively, n0(ω0) and ne(ϑe,ωe) are the refractive indexes of
the ordinary and extraordinary polarizations, and we and wo are the frequencies of
the incident and diffracted light.

Combining (95) and (96)

(ωe ±ωac)no

c
=
ωene

c
± ωac

νac
. (98)

Reassembling (98) yields

±ωac

νac
± ωacno

c
= (ne −no)

ωe

c
. (99)

That can be approximated by neglecting the term ωacno
c

ωac ≈ |ne −no|
νac

λop
. (100)

As the doped surface refractive index, such as of the waveguide surface, is more
than one percent of that of the body, and hence the difference between the modal
index and the substrate refractive index is less than one percent, it is possible to
write (100) as [35]

ωac ≈ |nT E −nT M| νac

λop
. (101)

5.2.4 Frequency shifter

This component is used to change the frequency of the diffracted light, but also it can
be a modulator or e deflector. It uses the principle of energy momentum conservation
so that the scattered circular frequency is given by

ωs = ωop +ωac. (102)
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(a) Frequency up shifter. (b) Frequency down shifter.

Fig. 15 Schematic of frequency shifter.

This phenomenon is called the Doppler shift. If the incident acoustic wave is intro-
duced in the direction of the incident optical wave, the scattered optical frequency
is given by (Figure 15a).

fs = fop + fac. (103)

If the incident acoustic wave is introduced in the opposite direction of the incident
optical wave, the scattered optical frequency will be decreased (Figure 15b).

5.2.5 Q-switch

A Q-switch is a device that, inserted into a laser cavity, allows the production of
a short high energy light pulse [4, 6, 33] (Figure 16). The term Q means quality
factor of a laser cavity. It is defined as the ratio of the energy stored in the laser
cavity to the energy loss per cycle. Changing the cavity loss allows a change in the
Q factor. When a Q-switch is turned on, the cavity loss is large enough (low Q) to
inhibit laser radiation, despite continual pumping of the gain medium. When the
Q-switch is turned off, the cavity loss is reduced to its minimum (high Q) and all of
the energy stored in the gain medium is released in a single high-power laser pulse.
By repeating this process, a sequence of laser pulses is emitted. In the Q-switching
operation, the repetition rate has been limited by the time to repump the population
inversion [5].

The acousto-optic Q-switch acts as a fast optical shutter that changes its polar-
ization. The low-Q state is achieved by applying an acoustic wave to the Q-switch
such that the polarization is rotated by 90 degrees. In this way, the optical feedback
is lacking and the cavity can’t resonate. The high-Q state is achieved by turning off
the acoustic wave so that polarized laser light can move through the optical path of
the cavity with minimum loss.
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Fig. 16 Q switching LASER working principle.

The Q-switch laser can be used for: materials processing (marking, cutting, weld-
ing, drilling), medical (ophthalmology and dermatology), military (sensing, range
finding, target illumination) etc.

5.2.6 Mode lockers

Normally a laser can oscillate in many longitudinal modes, with frequencies that are
equally separated by the intermodal spacing fm given by [16, 40]

fm =
c

2Lm
, (104)

where Lm is the cavity length and c the light velocity. Furthermore these modes
oscillate independently in free-running modes, each with its own phase with respect
to the other. The mode locker (Figure 17a) forces the phase of each mode to remain
equal with respect to the other (all modes are locked in phase). In order to achieve
its objective the mode locker laser uses a q-switcher inside the resonator working at
frequency fac = fm.

Figure 17b shows some parameters that characterize a mode locker laser. These
parameters are:

Temporal period:

τm =
1
fm

, (105)

Pulse width:
τpulse =

τm

Nm
(106)

where Nm is the number of modes of oscillation,
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(a) Mode locker working principle. (b) Mode locker output pulses.

Fig. 17 Mode locker working principle.

Mean intensity:
Iavg = NmI0, (107)

where I0 is the intensity of each mode,
Peak intensity:

Ipeak = (Nm)2 I0 = NmIavg, (108)

Spatial period:
cτm = 2Lm, (109)

Pulse length:

cτpulse =
2Lm

Nm
. (110)

In order to have stable mode locking of a laser, temperature control of the laser’s
environment as well as temperature control of the mode locker modulator’s crystal
is necessary, as any change in cavity length will result in unstable mode locking
[49]. Stable mode locking of a laser also requires a very clean cavity. Any dust or
contaminant inside the laser cavity will influence the laser modes.

5.2.7 Cavity dumping

The Cavity Dumping technique is used to obtain a single high-intensity pulse. An
acousto-optic device placed into the laser cavity allows the production of a high
power pulse (Figure 18). The difference with Q-switching is that here a photon,
rather than a population difference, is stored in the resonator during off-times and
releasing during on-times [5]. This acousto-optic device replaces one mirror in the
absence of the acoustic grating, and diffracts energy out of the cavity when an
acoustic wave propagates into the mirror [17, 28].
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Fig. 18 Cavity dumping working principle.

6 Conclusions

This chapter gives an overview of work done over the years in the field of IR
power generation and detection. In the first part we described the classical back-
ground, while in the second part acousto-optic effects are reviewed in order to give
an idea of the complexity of the matter. The availability of stable IR sources in
the 1÷14 μm has opened the possibilities of detecting volatile compounds, even
aggressive ones which manifest adsorption power, particularly in the 8÷ 14 μm.
Requirements remain for a significant miniaturization of the acousto-optic appara-
tus, which as of now are too expensive, large and heavy.
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Knowledge Based Diversity Processing

Christopher John Baker1 and Hugh Duncan Griffiths2

Abstract In the past, radar sensing has tended to consist of relatively monolithic,
single entity systems that present their output (often in the form of detections on a
PPI display) as reports to an operator. The function of the operator is to interpret
these reports and subsequently either provide information via a command chain for
a decision on how to react, or to make such a decision themselves. In this way the
human operator has been the source of intelligence in the sensing system, often
aided and abetted by training and experience that has allowed a remarkably wide
set of tasks to be performed with a high level of ability. However, the advent of
electronic scanning coupled with advances in digital signal processing leads to a
class of radar known as ‘Multi-Function’ and these are now challenging traditional
methods by placing demands on the radar itself to make well informed, reliable
decisions as to how a mission should be conducted. This is leading to the concept
of intelligent or cognitive sensing. As a simple example an electronically scanned
radar system is able to re-point its beam in timescales that are much faster than
human reaction times. Where the beam should next be pointed therefore has to be
a decision made by the radar itself. To understand and exploit its environment as
fully as possible the system has the option of varying its parameters in a way that
is tailored to the information it is seeking. This we term ‘diversity processing’. A
logical strategy is to do this in the light of prior experience, its own perception of
the world and an appreciation of the task to be carried out. This we term ‘knowledge
based processing’. In this chapter we explore the early development of the concept
of ‘knowledge based diversity’, drawing upon examples from both synthetic and
natural echo locating systems to indicate how, eventually, true intelligence might be
incorporated into future sensors.
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processing, diversity, resource management

1University College London
2Defence College of Management and Technology, Shrivenham, Cranfield University

J. Byrnes (ed.), Unexploded Ordnance Detection and Mitigation, 61
c© Springer Science+Business Media B.V. 2009



62 C.J. Baker and H.D. Griffiths

1 Introduction

We begin by examining what is meant by terms such as ‘intelligence’ and ‘knowl-
edge’ to set the scene for the challenges faced by knowledge based diversity process-
ing systems. Artificial intelligence has been a topic of intense research for many
years and so called artificial intelligent methods of processing radar data, such as
neural networks, have been exploited for some time. However, these have been
implemented in a relatively simplistic way not really representative of true intel-
ligence. In fact intelligence might be better used to describe a property of the mind
(or in our case the radar signal processor) that encompasses many related abilities,
such as the capacities to reason, to plan, to solve problems, to think abstractly, to
comprehend ideas, to use language, and to learn. There are several ways to define
intelligence. In some cases, intelligence may include traits such as creativity, per-
sonality, character, knowledge, or wisdom. These are characteristics that go substan-
tially beyond any existing radar sensor system, as they imply a dynamic interaction
with the world in which they exist whilst attempting to achieve a chosen goal or
objective. Similarly, knowledge is defined in the Oxford English Dictionary vari-
ously as (i) expertise, and skills acquired by a person through experience or educa-
tion; the theoretical or practical understanding of a subject, (ii) what is known in
a particular field or in total; facts and information or (iii) awareness or familiarity
gained by experience of a fact or situation. Philosophical debates in general start
with Plato’s formulation of knowledge as ‘justified true belief’. There is, however,
no single agreed definition of knowledge presently, nor any prospect of one, and
there remain numerous competing theories. Knowledge acquisition involves com-
plex cognitive processes: perception, learning, communication, association and rea-
soning. The term ‘knowledge’ is also used to mean the confident understanding of
a subject with the ability to use it for a specific purpose if appropriate.

Although imprecise, these descriptions convey a sense of known information that
can be exploited to create a desired effect in the context of a perceived understanding
of the local and globally significant operating environments. Together they will form
the basis of future truly intelligent sensing systems and are providing the impetus
for much current research as demonstrated by the US ‘KASSPER’ [1] and ‘Sensors
as Robots’ [2] programmes. In this chapter we explore the underlying concepts that
provide the keys to greater and greater levels of cognition in sensor systems. In par-
ticular we draw upon the lessons that are being learnt from nature and especially
from echo-locating mammals which imply that a much more holistic approach to
systems operation may be necessary. We begin by reviewing the nature of informa-
tion that can be inferred from radar echoes, and then go on to explore how this is
enhanced by exploiting the full parametric diversity available to maximize the qual-
ity of sensed information upon which radar systems can make robust and reliable
decisions, and subsequently how this might be further enhanced by exploiting prior
knowledge.
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2 Acquiring Information from Radar

It is intuitive that the information acquired from a radar sensor is dependent on the
parameters used to design the system. The more we are able to adaptively adjust
these parameters, the more it is possible to maximize the quality and relevance of
the information acquired and hence to maximize the likelihood of ‘mission’ success.
Changes to the radar of this type we term diversity and the range of diversity possible
is embraced by the following:

– Bandwidth and or frequency: this might be wide bandwidths for high spatial
resolution or narrow bandwidth, long duration signals for high Doppler resolution.
– Orientation: this provides for spatial diversity. A simple example is SAR or
ISAR which use angular diversity to reduce speckle in multi-looked SAR or ISAR
imagery.
– Waveform design: where parameters such as pulse length, modulation and PRF
can be adjusted dynamically.
– Signal strength: it is clear that a low echo strength of received signals will be
corrupted by the effects of noise, and hence the signal-to-noise ratio must be suffi-
ciently high to avoid this.
– Time: the time evolution of behavior of an object can give important clues as to
its nature and intent.
– Phase centre: the use of multiple and adjustable phase centres can provide impor-
tant location information.
– Polarization: man-made targets are often made up of polarization sensitive struc-
tures that allow them to be more easily recognized against a background comprising
natural scatterers.
– Knowledge diversity: this can take almost any form of priors, memory mapping
and their associations.

In the following sections we examine aspects of these forms of diversity, showing
how some are already used in radar sensors but how performance could be improved
if the concepts of true intelligence could be appropriately adopted.

3 Information in Current Radar Systems

We begin this section by examining how resolution in the radial-range and cross-
range dimensions provides useful improvements in information content by creating
localized zones of scattering. Frequency or bandwidth span is conventionally used to
provide spatial resolution to isolate targets from one another. Wide-bandwidths can
result in improvements in down range resolution which further increase informa-
tion content by isolating scattering into separate discrete areas. This is an example
of using coherence between the transmitted and received signals. Synthetic aper-
ture techniques such as SAR and ISAR, e.g. [3], combine angle and bandwidth
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data coherently to provide high resolution in two dimensions. We also note that
frequency diversity employing a multiplicity of illuminating frequencies of non-
overlapping bandwidths can be used non-coherently to reduce the effects of speckle
as in multi-looked SAR or MIMO radar [4]. In this case the multi-looking is attempt-
ing to provide an improved estimate of the underlying radar cross-section and hence
improved information. Here we will examine in more detail how coherent use of
frequency diversity provides better spatial information.

Radar is a relatively simple sensor able to provide information about the position
of an object in 3-D space as a function of time. In essence this is facilitated by
the measurement of radial range from the radar to a target and the rate of radial
change of position of the target, both as a function of azimuth and elevation angles
as determined by the azimuth and elevation beamwidths. In this way targets can be
detected and tracked over time. By transmitting a short or modulated pulse a radar
is able to resolve between multiple targets with a resolution given by:

�r =
c

2B
(1)

where

�r = range resolution (m)
c = velocity of light (ms−1)
B = bandwidth of radar signal (Hz)

Thus wideband signals are necessary to achieve high spatial resolution. If �r
is a fraction of the target dimension as presented radially to the radar then it is
possible to begin to measure important target characteristics such as length. Indeed,
it is potentially possible to use difference in echo strengths from different parts of
the target to uniquely discriminate the target from other possible candidates. Such
an echo is termed a High Range Resolution Profile (HRRP) and Figure 1 shows
schematically the type of response that might be observed.

However, there are limits on how wide a bandwidth it is realistically possi-
ble to transmit and receive within a single pulse. This limit can be overcome by

Fig. 1 The HRRP generated by a wide band pulse for an aircraft target.
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Fig. 2 Spectrum reconstruction of the target reflectivity function by one single chirp pulse (a) and
by stepped-frequency coherent addition of sub-spectra (b).

transmitting and receiving a series of pulses where the centre frequency of each is
stepped incrementally such that the total bandwidth spanned is much greater that of
any single pulse. Each echo is digitised and recorded so that the full bandwidth span
can be re-constructed and significantly higher resolution achieved. Figure 2 shows
this schematically for a series of pulses.

In this example the separation of pulses in the frequency domain is equal to
their bandwidth. More typically they will be overlapped by as much as 50%. This
reduces the achieved bandwidth span and degrades resolution but avoids potentially
awkward bandwidth reconstruction at the band edges. Figure 3 shows an example
of range profiles of a Land Rover vehicle plotted as a series of intensity modula-
tions covering a total azimuth extent of 360. Discrete areas of high echo strength are
clearly visible as is their angular span. The scattering characteristics appear quite
varied, nevertheless this represents the base information for classification. However,
this method only provides high resolution in the radial direction and hence any scat-
ters lying at the same range will be measured as a single echo response. This means
that small changes in the viewing geometry will cause large and rapid fluctuations
in the range profile as scatters will interfere with one another constructively and
destructively. One method to militate against this is to provide resolution in the
cross range dimension using synthetic aperture techniques.

The real beamwidth of any radar antenna is determined approximately by the
ratio of the wavelength to the physical size of the antenna. In simple form this is
expressed as:

�Φ=
λ
D

(2)

where
�Φ= angular beamwidth (rads)
λ= wavelength (m)
D = diameter of antenna
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Fig. 3 History of HRR range profiles (8 cm of range resolution) from a series of X-Band stepped
frequency chirps illuminating a ground vehicle as it rotates over 360 degrees. At zero degrees, the
target (a Land Rover) is broadside oriented, while at 90 degrees has its end-view towards the radar.

If Equation (2) is multiplied by the range we get the width of the beam at that
range. Thus at a range of 10 km the beam size of a 1 m dish antenna operating at a
wavelength of 3 cm is 300 m which is much larger than, for example, vehicles and
most aircraft. To overcome this limitation large apertures can be synthesised (i.e.
effectively increasing D in Equation (2)) using the Synthetic Aperture Radar (SAR)
or Inverse Synthetic Aperture Radar (ISAR) techniques. These techniques create
large apertures (albeit on signal reception only) by collecting data over as a function
of viewing angle, thus effectively mapping out a much larger aperture than that of
the physical antenna. Figure 4 shows an example of ISAR imagery generated from
the HRRPs displayed in Figure 3.

The image in Figure 4 has the expected rectangular outline typical of a Land
Rover vehicle and the bonnet, cab and truck areas are clearly discernable. The scat-
terers observable as a function of angle in Figure 3 are now ‘focussed’ into discrete
zones showing that in fact they emanate from the same physical part of the truck.
In forming a 2-D image in this way we have now exploited both range resolution
(frequency diversity) and angle resolution (angular diversity) and hence this is an
example of exploiting diversity (i.e. combining range and angle) to improve the
information obtained by the radar to make better decisions. Indeed, it seems much
less of a leap of faith to make the assumption that the data shown in Figure 4 is in
a form to support human based classification. However, automating this process has
proved to be an extremely challenging problem in all but a few restrictive cases. The
reasons for this are chiefly to do with the fact that often ‘resolution cells’ still contain
multiple scatterers and hence they may again, scintillate rapidly with small changes
in viewing angle. Additionally, there is often a multipath component which adds to
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Fig. 4 Multi look ISAR image of the Land Rover target.

this scintillation. It is also possible for some resolution cells to contain part target
and part clutter which further exacerbates these effects. In addition not all objects
are comprised of discrete scatterers alone and other forms of re-radiation can take
place. Overall the form of backscatter from extended targets is extremely complex
and subject to great variability hence making consistent and reliable interpretation
by automatic means a substantial challenge. However, tasks such as navigation, col-
lision avoidance and object classification are executed with seeming ease by echo
locating mammals. In the next section we examine this in more detail with a view
to learning lessons that can be valuably employed in synthetic sensors.

Firstly, we examine one more component of diversity as provided by polarization.
It is well known that polarimetric information may be useful for classification since
it completes the information which can be obtained from the target returns. Radar
targets have different responses to different polarization signals. By emitting a mix-
ture of polarizations and using the receiving antenna with a specific polarization,
several different signals can be collected and used for recognition. For this purpose
it is necessary to illuminate the target with two signals having different polarization
vectors, for instance when linear polarization is used the polarizations are vertical
and horizontal. The polarization properties of the target can be completely repre-
sented by its scattering matrix [5]. The scattering matrix is defined as:

[
S11 S12
S21 S22

]
(3)

where S represents the state of polarisation. The components of the matrix are called
scattering components and are derived from the following relation:
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Table 1 Scattering matrix for some common geometrical shapes.

Shape Linear polarization Circular polarization Aspect

Sphere S =
[

1 0
0 1

]
S =
[

0 1
1 0

]
Every aspect

Flat Plate S =
[

1 0
0 1

]
S =
[

0 1
1 0

]
Radar signal
perpendicular to
the plate

Dihedral comer reflector S =
[

1 0
0 1

]
S =
[

0 1
1 0

]
Radar signal
perpendicular to
the comer’s axis

Trihedral comer reflector S =
[

1 0
0 1

]
S =
[

0 1
1 0

]
Radar signal
perpendicular to
the comer’s axis

{
ER

H = S11ET
H +S12ET

V

ER
V = S21ET

H +S22ET
V

(4)

where E is the electric field, the subscript means horizontal polarization, H, or ver-
tical polarization, V, and the superscript means reflected, R, or transmitted, T. S11
and S22 are the co-polar coefficients and S12 and S21 are the cross-polar coefficients.
Simple geometrical shapes present well-know polarization matrices; some examples
are show in Table 1.

In HRRPs the scattering matrix obtained in each range bin is the result of the
combination of the matrices of all the scattering points in the same range bin. There-
fore, the shape extracted from this matrix is not necessarily reliable for recognition.
In ISAR images, instead, if the resolution is high it is possible to begin to isolate
the scattering matrix of the main scattering point and consequently to estimate the
geometrical shapes of these points. The estimation of the shapes of scattering points
can be subsequently used as features for target recognition [6].

The polarimetric information content for both HRRPs and Images are examined
here qualitatively. Figure 5 shows the linear polarimetric range profiles as a func-
tion of rotation angle again for the Land Rover target. The information is largely the
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Fig. 5 Polarimetric range profiles of the Land Rover target.

same for features such as length and width but there are discernable differences in
detail with some scatters appearing in one polarisation and not another as well as
differences in echo strength and their angular persistence. Figure 6 shows the same
base data but this time processed into 2-D imagery. Again the main characteristics
are similar and there are small differences in detail but, perhaps, even less obvi-
ous. The overall advantage of polarimetric data in terms of improved classification
performance is still to be proven.

4 Diversity in Biologically Sensing System

Reliable and robust navigation, collision avoidance and object classification are car-
ried out with great success by echo locating mammals such as bats that are able to
detect, select and attack prey even in a dense clutter and hostile countermeasures
environment. Although the frequencies and waveform parameters used by synthetic
sensors and by echo locating mammals are not the same there remain close par-
allels that suggest lessons can be usefully learnt. Here we examine methods that
are exploited by mammals such as bats and dolphins and to see how they may be
applied, particularly concentrating on how diversity is utilized.



70 C.J. Baker and H.D. Griffiths

Fig. 6 Polarimetric images of the Land Rover target.

Bats have evolved echo location as a means of detecting, selecting and attack-
ing prey over a period of more than 50 million years into a highly sophisticated
capability on which they depend for their survival. It therefore seems self evident
that there is potentially a great deal that can be learnt from understanding how they
use this capability and applying such an understanding to synthetic sensing systems
such as radar and sonar. Bats are able to modify their PRF, transmitted power, wave-
form type, and bandwidth. They also use multiple perspectives as part of their hunt
strategies. These are all examples of exploiting diversity and could be implemented
in modern radar systems if we are able to understand how to do so appropriately.

Bats use two very different types of waveform for classification. The first has the
form of an un-modulated pulse that contains a number of harmonics. This is well
suited to the classification of moving targets exhibiting a micro-Doppler component
and there is evidence from biological studies that supports this hypothesis. The sec-
ond waveform consists of a near hyperbolic chirp, also with two or three harmonics
typically present. As the bats approaches the target the pulse length decreases and
the degree of hyperbolic curvature increases. In this way a greater bandwidth is
generated leading to finer and finer resolution as the bat gets closer and closer to the
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target. Again there is evidence from biological studies that this type of waveform is
used when engaging static targets such as flowers. There also seems to be a strong
relationship between the orientation of the bat, the position of the target, the precise
nature of the transmitted waveform and the clutter and reverberation environment.

Here, we examine both forms of real bats calls recorded during the classification
phase when attempting to identify potential prey supported by full scale measure-
ments of real targets. A data base of real bat calls has been used to extract digitised
versions that seem best suited to classification tasks. These include calls of horse-
shoe bats (Rhinolophidae) that use long constant frequency components that encode
acoustic glints in echoes from fluttering targets and the hyperbolic modulation of an
Eptesicus Nilssoni used when extracting nectar from a flower head.

Figure 7 shows the spectrogram of the calls of a Pearson’s horseshoe bat Rhinolo-
phus pearsonii when attempting target classification. The waveform is characterized
by a relatively large constant frequency component with a short wider bandwidth
modulation at either end. There are a series of harmonic replicas spanning quite a
considerable overall bandwidth. The method of classification being used is based
on exploiting the micro-Doppler signature which is best achieved with an extended
constant frequency component. The short wider band part of the sign is probably
used for ranging. The response to a simple model for the beating wing of an insect
is shown in Figure 8. The Doppler signal generated is a function of the harmonic
frequency and shows different degrees of sensitivity to the different constant fre-
quency transmissions. Thus the bat is able to select the best signal for classification
as well as using multiple copies for further confirmation.

Fig. 7 Spectrogram of the call made by a bat when attempting target classification.
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Fig. 8 Change in the received signal when modified by a simulation of a wing beat at an orientation
broadside to the target.

An additional possibility is that the bat also uses this harmonic type of waveform
to generate high resolution in range by effectively mimicking a frequency stepping
system (albeit in a single pulse). It does, potentially, have very attractive proper-
ties that make it worthy of further investigation for a variety of applications. For
example, Passive Bistatic Radar often uses illuminators of opportunity that emit
simultaneously on several frequencies that collectively span a much wider band-
width than that of any single frequency. By utilizing the total bandwidth transmitted
a relatively high resolution mode could be developed. However, the signals will be
under-sampled and there could be potentially significant sidelobes. This is another
example of the exploitation of diversity.

A further factor that is generally very important in the attack of prey is the trajec-
tory that is used. For example, when approaching a target located in a background
of leaf clutter the bats uses a low line of attack, presumably, to minimise backscat-
ter (i.e. clutter) from the leaves. Figure 9 shows the resulting interaction between
the illuminating waveform and the simple wing beat model when the relative angle
between the two is altered to 45 degrees. Here a reduction in the amplitude of the
modulation can be observed. The bat is able to deliberately alter its orientation and
transmission frequency with respect to the prey such that it maximises its sensi-
tivity to the micro-Doppler signature and hence has the best information set for
classification. Also, this provides important information as to the orientation of the
prey and that micro-Doppler aspect angle dependent information may be gleaned
that is used in the classification process. Clearly, there is a degree of speculation
in these hypotheses and further research is required to develop a more complete
understanding.
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Fig. 9 Change in the received signal when modified by a simulation of a wing beat at an orientation
angle of 45 degrees to that of Figure 6.

Figure 10 shows a sequence of waveforms that an Eptesicus Nilssoni bat used
when attacking a stationary target. The bat was constantly changing its orientation
such that it views the target over an angle range of approximately 270 degrees and is
gradually getting closer and closer to the target. In other words the bat is benefitting
by using a combination of angle and waveform diversity.

For each pulse the waveform approximates well to a hyperbolic function. As suc-
cessive pulse are emitted and received and the bat closes in on the target the pulse
length is reduced to conserve energy and avoid ambiguity. The degree of hyperbolic
curvature increases to improve resolution and tolerance to any differential Doppler.
Therefore, just prior to attack the bat operates with the highest resolution (of the
order of 1 mm) and has gained multi perspectives for classification. Indeed, the use
of the two receivers (ears) combined with very high resolution is suggestive of the
selection of a particular part of the target. Figure 11 shows one of the final pulses and
its ambiguity diagram in more detail. The high degree of Doppler curvature and sub-
sequent high range resolution and Doppler tolerance may be observed. The wave-
form and its dynamic adjustment as a function of the previously received echoes
are quite typical of nectar feeding bats. Thus we see that the waveform is being
altered in a number of ways as the viewing geometry is also changed. This suggests
diversity in a wide sense may be a key ingredient along the path to employment of
truly intelligent synthetic sensing systems. For synthetic sensor systems the equiva-
lent dynamical adjustment of sensor parameters is well within the scope of current
technology. The more demanding question is ‘what are the appropriate adjustments
that need to be made to maximise the success of a mission? This requires consider-
able further research.
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Fig. 10 Sequence of waveforms that an Eptesicus Nilssoni bat used when attacking a stationary
target.

Fig. 11 Example ambiguity diagram and waveform for an Eptesicus Nilssoni used in the attack
phase.

We now examine how the bat is able to recognize nectar providing plants against
a complex background as classification is a key component in intelligent sensing.
To investigate static target classification in more detail, high resolution range profile
data was acquired from experiments carried out at Bristol University [7]. The exper-
iments generate a wideband waveform that provides a resolution of approximately
1mm. This is used to illuminate a number of flower head targets mounted on a
narrow pin and recording the received echo as a function of orientation angle in
the ground plane. Figure 12 shows this experimental layout in schematic form.
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Fig. 12 Experimental geometry used to gather high range resolution profiles of flower heads as a
function of orientation angle (Courtesy of G Jones and M Holderoid, University of Bristol.)

This particular configuration has been chosen as bats and plants have co-evolved
to enable classification to take place reliably. In other words it is in the interests of
the bat to be able to recognise the flower as it is a source of food and for the flower to
be recognised by the bat as the bat is a means of pollination and thus the ingredients
for successful classification are in-built.

One strategy used by plants is to expose their flowers e.g. by suspending them on
modified long leafless braches into the sub-canopy. This helps bats to approach the
flower and the uncommon presentation stands out against other vegetation. Indeed it
might be that the local scattering environment offers many clues (prior knowledge)
that there are likely to be flowers present and is this an important classification
aid. However, many flowers are also presented closer to the plant or grow on stems
and branches (cauliflory). In such cases several echo acoustic cues might render the
flower unique such as:

– Echo strength can be higher than in leaves of the same size, because the bell-
shaped corolla of many chiropterophilous flowers collects and focuses sound back
towards the bat.
– Floral echoes last longer than echoes of leaves and branches, because sound is
reflected within the corolla.
– Floral echo fields are often omni-directional, which means that most sound
energy is always projected back into the direction of sound incidence. This contrasts
with other plant structures, such as leaves, which produce echoes of maximum
amplitude only when ensonified perpendicularly.
– Because flowers are complex targets and consist of many different reflectors
at different distances, interference generates specific peaks and notches in the echo
spectra, giving them a ‘coloured’ spectral appearance. This not usually occurs in
convex structures such as branches or leaves.
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Fig. 13 Example flower head (Crescentia cujete) and its corresponding high range resolution pro-
file together with a spectral representation (both as a function of orientation angle.

Figure 13 shows an example flower head (Crescentia cujete) and its correspond-
ing high range resolution profile together with a spectral representation (both as a
function of orientation angle).

The range profiles show clear structure that is present at all angles and exhibits
both similarities and differences to the high resolution radar profiles of the Land
Rover target. One difference that seems to be apparent from a visual inspection of
the profiles is that more features appear to persist over larger angular ambits. In
the radar profiles there appears much more variability and indeed, it is the angular
dependence that is responsible for improved classification performance as additional
perspectives are included. Figure 14 shows the same form of plot as 13 but for a
Viresa gladiflora. Again, similar behaviour may be observed although the detail of
the form and structure is significantly different.

In order to examine classification using such data in more detail a multi per-
spective classifier was applied. Three flower targets are used to make the case quite
demanding as in reality it is unlikely that the bat has to differentiate between two
flower heads in order to feed. Figure 15 shows the results of applying a Forward
feed neural network multi-perspective classifier. The plot also includes increasing
levels of noise.
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Fig. 14 Example flower head (Vires gladiflora) and its corresponding high range resolution profile
together with a spectral representation (both as a function of orientation angle.

Fig. 15 Multi perspective classification performance of the three flowers versus signal to noise
ratio.

There are two main conclusions that may be drawn. The first is that there is
a significant increase in classification performance in going from one to two to
three perspectives i.e. exploiting angle diversity. Secondly, as the signal to noise
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ratio increases the classification performance, as might be expected, also increases.
Indeed without noise the classification performance, even with a single perspective
is close to 100%. As noise is added eventually there is a more rapid drop off in
performance, indicative of the loss of key information, probably embedded in scat-
terers of smaller echo value? This therefore highlights the importance of having a
sufficiently high signal to noise ratio when echo locating.

In this section it was seen how the bats use a combination of waveform design
and orientation to carry out their mission. In other words they are exhibiting all the
requirements of a truly intelligent system (and with a processor the size of a ‘pea’)
and are utilizing diversity in doing so. The bat gathers information about its local
environment and then adjusts the parameters of the next call as well as changing its
position to ensure that it extracts the right or best information to continue and com-
plete its task as successfully as possible. Indeed, this simple examination of how
diversity is exploited by bats highlights that this natural sensing system is continu-
ally adapting its entire diversity range, seemingly to ever improve the information
the bat needs to fulfill its mission. In the next section we examine how angle diver-
sity via multiple viewing angles can be used to improve classification performance
in much the same way it might be used by bats.

5 Exploiting Diversity in Synthetic Sensors

In this section we look at the role of trajectory in the recognition process as invoked
in a synthetic radar sensor [8]. The same form of radar data as displayed in Figure 3
is utilized as an input to a classifier. As in the previous section we compare classifi-
cation performance as a function of the number of perspectives used. In this example
three classifiers are employed to ensure that the results are not biased by the classi-
fier itself. The three classifiers are (i) A Bayesian classifier, (ii) a neural network and
(iii) a K nearest neighbor classifier. Range profiles at approximately every eighteen
degrees are used to train the classifiers and then removed from the data set to be
classified. The results are displayed in Figure 16.

Figure 16 shows that the classification performance increases with increasing
number of perspectives no matter which type of classifier is used consistent with that
seen for the case of the bats data. This is also consistent with our own experiences.
Generally, if we wish to positively identify something that we expect to recognize
we will move our viewing position either to get a ‘better look’ or to re-enforce an
expectation of the objects identity. We might further conjecture that there will be
preferential look directions to exploit determined by the first look direction. For
example, objects that exhibit symmetry would not yield large additional amounts of
information if the viewing angle were altered by 180 degrees. This is further illus-
trated in Figure 17 which shows the multiperspective classification performance for
a Land Rover target as a function of viewing angle for a three perspective classifier.

Figure 17 shows that at certain angle combinations the classification performance
falls. The performance at position 0,0 is the monostatic case and is the worst of all.
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Fig. 16 Multi perspective classification performance of four vehicle targets versus number of per-
spectives using high resolution range profiles as input data.

Fig. 17 3-P correct classification rates versus the angular displacements and for the three-class
problem.

The diagonal represent the two perspective case and again performance is inferior to
the peak. The other troughs tend to occur at separation angles such as 180 degrees,
where the symmetry of the target means that there is little additional information to
be gleaned that can benefit the classifier. If the orientation of the target can be deter-
mined then this prior information can be used to arrange a second look to be one
that compliments the first adding maximal new information thus optimising overall
classification performance. This would be an example of a simple but genuinely
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intelligent radar sensor i.e. one that uses previous information to improve subse-
quent information and hence maximizes its chances of carrying out the desired task
successfully. In the next section we examine other prior information methods to
improve mission performance.

6 Prior Knowledge

As we have begun to explore in the previous sections, knowledge based radar sys-
tems might be thought of as the precursor to future systems that will employ artifi-
cial intelligence [9]. Indeed, it is logical that information already known from other
sources about the target area or task to be carried out can be used to direct the
operation of the radar or to interpret the radar’s findings more usefully. As we saw
in the section above the possibility also exists for data gathered in real time (or ‘on
the fly’) to be used for generation of relevant information or for better cuing of fur-
ther information. Another example could include an MTI radar that is also able to
operate in a SAR mode which can be used to provide coarse image information as
an aid to more accurate detection of moving targets. Historical data of the same type
(i.e. MTI data) for a given scene should also theoretically provide a useful ‘memory’
if a way can be found to exploit it when performing new MTI detection in real time.

The electronically scanned radar system is another example of a sensor that
brings the need for intelligent radar operation into sharp focus. Instantaneous, adap-
tive beam pointing enables combinations of functions such as tracking, surveillance,
and weapons guidance (previously performed by single dedicated radar systems) to
be implemented simultaneously. The decision as to where and when to re-point the
radar beam can and sometimes has to be taken in the interpulse period, far faster
than the rate at which a human operator could intervene. Thus the radar itself must
make these decision based upon a combination of what it has already observed, prior
knowledge and the mission objectives which is embracing the concept of intelli-
gence. One area where this might occur is that of sector prioritization. Military
understanding is used as the prior knowledge to allocate the sectors and determine
high level metrics for assigning priority. We consider such an example that also
utilizes fuzzy logic to give both a more humanistic decision making logic and to
preserve where possible radar resources for further allocation of tasks.

The attribution of priority to regions and targets of interest may be done in a
variety of ways [10]. For example the decision tree structure shown in Figure 18
could be used. The information required to take the decision is supplied by radar
data operating in tracking and high resolution modes. The different variables pro-
vide differing types of information used to set priority. These are threat, hostility,
weapons system capabilities, track quality and the target position. The selection of
these variables has been by expert judgment based upon operational experience.
They may require further refinement with further experience. The logical relation-
ships between these variables then determine the setting of priorities. Fuzzy logic
can be used to provide a softer way of making decision by allowing variables to take
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Fig. 18 Decision tree for sectors for target priority assessment.

values in between an either ‘on’ or ‘off’ state. The nature of the inferential rules link-
ing the fuzzy variables can be written again using expert judgment and then tuned
using simulation and real experience. In fact the actual number of rules used in the
inference system may be less than the number initially set. This is because some
combinations of rules are unlikely to be found in real systems. The reduced number
of rules does not reduce system performance as associations used to determine the
truth of an assertion is largely determined by the dominating term.

The evaluation of the fuzzy rules must follow the sequence proposed in the deci-
sion tree. Thus the system inputs are fuzzified and successively used to assess other
fuzzy variables in the cascade to the point where the final priority is evaluated.
Graphic representations are invaluable in helping to assess how the fuzzy rules are
operating. These may be generated by fixing all the variables except the two being
assessed. Figure 19 shows an example of this where it is assumed that three variables
(track quality, position and weapons capabilities) are maintained at a fuzzy value of
0.5 and both the threat and the hostility are varied over their entire ranges. This
configuration might represent a situation in which the target is located at a medium
range and has medium importance with respect to the weapons system of the radar
platform.
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Fig. 19 Graphic representation of the fuzzy rules with the position, track quality and weapons
systems fixed.

It is observed that, as might be expected, the priority increases as a consequence
of increases in the degree of threat and hostility of a target. Conversely, low degrees
of threat and hostility place the priority at a low level. Two other areas may also
be identified on this surface. The first is related to the degree of hostility varying
between 0.5 and 1 (medium to very high) and the degree of threat varying between
0 and 0.5 (very low to medium). The resulting priority increases as a result of rises
in the degree of threat or hostility. However, the sensitivity to rise in the degree of
hostility is greater than that of the threat. This behavior is explained by examining
situation in which targets with medium and high probability of being the enemy are
moving away from the radar platform. The hostility of the target is determined by
its probability of being an enemy but the threat is determined more by its trajec-
tory and position. Thus the situation is dominated by the identity of the target. The
second area corresponds to degrees of threat varying between 0.5 and 1 and low
levels of hostility. The resulting priority increases are a consequence of rises in the
degree of threat or hostility. However, the behavior is different to the previous area.
Thus the sensitivity to increases in the degree of threat is greater than the sensitivity
to increases in the degree of hostility. This is explained by considering situations
where, having low probabilities of being the enemy, targets move on threatening
trajectories towards the radar platform. In this case, the way the target is approach-
ing the radar platform has a greater effect in determining the final priority than its
identity. Of course the manner in which these relationships are formulated is itself
a variable and is one in which the expert judgment plays a key role. Thus there is
a learning process during which these rules and relationships will be refined in the
light of experience.
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Having defined and tuned the fuzzy if-then rules the method for prioritising the
relative importance of tracked targets can be validated against test trajectories. In the
example presented here the scenario consists of targets with different identities and
velocities. The analysis shows that by knowing the identity of the targets their priori-
ties may vary. This provides valuable information to be accounted for when deciding
how to allocate radar resources in overload situations. Two cases are presented for
targets moving towards the radar platform on constant-velocity straight line trajec-
tories. These have been chosen as they represent situations of a high degree of threat
where targets may be moving towards the radar platform in order to start an attack.
In addition, they represent the behaviour of the method when a variable such as
approach is fixed. This helps simplify the analysis and the evaluation of the reasons
for the results of the prioritisation. The system can also be examined in more com-
plex scenarios where all variables involved in the prioritisation are changing over
the simulation.

The left hand side of Figure 20 shows the first test trajectory where a target
moves towards the radar platform on a straight line, having a constant velocity of
300 m/s. The red dot indicates the origin of the trajectory. Three targets are assumed
in the analysis. They have the same dynamics and flight height; however, their prob-
abilities of being enemy are different as follows: 1 (enemy), 0.5 (unknown) and 0.1
(friendly), corresponding to the red, blue and green curves respectively. The evolu-
tion of the resulting priorities is seen in right hand-side figure shows that, in general,
all priorities increase as the targets move towards the radar platform; and the greater
the probability of being enemy, the greater the resulting priority. Figure 18 also sug-
gests that priorities of targets which have unknown identity present a similar behav-
iour to friendly targets in the early stages of the trajectory. This may be explained
by the fact that during that period, the range of the targets is longer than the tactical
range of the platform weapon systems. This happens until around 80 s. From that
instant, as the target is moving close to the boundaries of this weapon systems

Fig. 20 Resulting priorities for three targets with different probabilities of being enemy, moving
on the same trajectory.
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Fig. 21 Resulting priorities for three targets with different probabilities of being enemy, moving
on the same trajectory. Target velocity: 800 m/s.

tactical range, the degree of threat of the unknown target is likely to increase. Thus,
its priority evolution has the similar behaviour to the priority evolution of the enemy
target. The closer the unknown target is, the higher and the closer to the enemy tar-
get its priority will be. At short ranges, if the identity of the target is still unknown,
the target is assumed to be enemy, and its resulting priority is assessed as that.

Figure 21 presents the results of a simulation where targets are assumed to move
on a straight line trajectory but this time with a velocity of 800 m/s. The same
probabilities of being enemy as in the previous case are considered. Due to the high
velocity and short ranges, the evolution of the priorities is now rather different.
During the first few seconds of simulation, both unknown and enemy targets have
slightly higher priorities than in the first example. This may be explained by their
high velocities.

All target priorities remain fixed until about 30 s, when the target position is get-
ting close to the weapon systems operational range. Before 30 s, all targets have the
maximum priority possible for the set of characteristics of their dynamics, identity
and the capabilities of the weapon systems. Thereafter, the priorities are increased in
order to allow the radar platform to face the threat. It is observed that, from around
30 s to 60 s of simulation time, the priority of the unknown target presents a high rate
of increase. The analysis indicates that more importance is progressively given to
this target which is gradually assumed to be like an enemy target, because its veloc-
ity is very high, the target is approaching the radar fast, and its identity is unknown
over this period. From around 60 s to 85 s, the unknown target has the highest prior-
ity possible for the combination of input variables which determine its importance.
From 85 s, its priority increases again, reaching its highest at around 100 s, when
the target position is within operational range of the platform weapon systems and
as a consequence both enemy and unknown targets have the same priority. Such an
unknown approaching target is considered to be of highest importance because of its
potential degree of danger, represented by its velocity, the way it is approaching the
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radar platform. Like the unknown target, the priorities of both enemy and friendly
targets increase from around 30 s, as they are getting close to the weapon system
operational range. These priorities continue to increase reaching their maximum
values not later than 100 s of simulation, when the position in within the operational
range with a degree of membership of 100%.

The results of the situations examined here suggest that the fuzzy logic approach
is an intelligent and valid means for evaluating the priority of targets. By imitat-
ing the human decision-making process, and by combining dynamic characteristics
about radar tracking and military aspects, such as the ability of the weapon systems
of the radar platform to face potential threats, the fuzzy approach may represent
an effective and intelligent support for decisions regarding radar resource manage-
ment. It also demonstrates the range of behaviours that such an approach can cope
with and that it does so in a manner consistent with our definition of an intelligent
system.

Prior knowledge can also be introduced in a variety of other ways, but has only
been addressed by a few researchers [1, 2, 10]. For example, whilst there has been
much work carried out on DPCA and STAP for GMTI there has been much less
examining the role of prior information. This may well be a reflection of the fact that
the processing needed for useful simulation and implementation of such Knowledge
Based (KB) systems has only become available in recent years. However, it seems
intuitive that there is a lot to gain from using external information to improve the
performance of the MTI process. Some initial studies have examined the use of
Geographic Information Systems (GIS), which have information relating to aspects
such as land use, building disposition, terrain data etc and hence may be rewarding
sources of information.

A major question to be answered is ‘how to integrate these disparate data types
with the MTI process and hence what is the likely maximum improvement in MTI
accuracy that can be expected’? As yet there appears to be no emergent convinc-
ing answers and methodologies. It is complicated by the fact that there are different
qualities of terrain data, GIS data etc and so one would expect there to be a relation-
ship between the quality of data and the benefit it can bring to the MTI process. For
example, there are data of higher resolution than others but there has been no work
to confirm that improvements in resolution of the data used by KB techniques are
proportional to the performance improvement in MTI radar. Indeed, the key to good
KB data may lie in another property such as the existence and relative location of
roads and buildings. Similarly, should there be a lower limit on the quality of KB
data needed to ‘add value’ to the MTI processor and is there a level of MTI fidelity
that is required for KB to work? The issue of data fusion is clearly important in KB
research. Additionally, the amount of data available will continue to increase and the
ability of human analysis of it all will become an unrealistic prospect, if this is not
already the case. Yet refraining from any analysis of this data will almost certainly
mean missing out on useful information that could be the difference between detect-
ing a moving target of interest on the ground or not.

There are two strands for information fusion in this context: fusing data of the
same type and fusing data of different types. A KB MTI system can be thought of
as a fusion of different types of data. Fusion of the same type of data is of equal
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relevance: obviously the cumulative information from two maps at different scales
will be higher than the information from just one map, so how should the two maps
be fed into an MTI process? Should the maps be fused beforehand, or should the
fusion be one of a fusion of different types within the MTI system as described
above? The fusion of similar-type data may be thought of as a separate area. For
example, how should two maps or SAR images be fused for performance improve-
ment as part of a KB MTI system? There is significant work on the fusion of SAR
images from different radars, but not on using the result to provide knowledge for
GMTI. Using SAR data itself for MTI processing has been attempted with promis-
ing results, and this type of approach would involve the fusion of two different
types of MTI data, in which there has been little exploration. Furthermore maps
and terrain data can be considered historical compared to real-time MTI data. Could
therefore historical MTI data be used to provide extra knowledge? The literature on
KB techniques for MTI radar appears to show only that there is good potential for
increased MTI performance. The main focus of KB techniques in MTI radar has
been to intelligently select training data for STAP. There are many more areas that
are not yet investigated. Finally, it should be noted that, in published literature both
on STAP/DPCA and KB techniques, is that the application to real radar systems is
lacking. Real data provides the ultimate test for new systems because it brings with
it real world errors that are often difficult to simulate or even unexpected.

A summary of information sources that could be obtained before live GMTI gath-
ering but used for knowledge based processing with live data is shown below. Multi-
ple sources of the same time, but gathered at different times, could be used with data
fusion methods outlined above. Some sources are evidently more readily available
than others.

• GIS data from digital maps, encompassing terrain and land elevation information,
ground cover and transport routes

• Airborne, look-down optical imagery from reconnaissance aircraft or satellites
• GMTI data from historical runs over the area of interest
• Known clutter information of the scene (clutter maps for a radar with given para-

meters)

In a STAP system GIS data could be used to select more accurate training data for
generation of the interference covariance matrix. Optical imagery or high resolution
SAR imagery from the scene of interest could also be used to either select suitable
training data or to identify targets of interest. Image processing techniques would
be required in this case. Clearly this is an area of development with much further
research necessary before KB diversity systems become common place.

7 Conclusions and Summary

In this chapter we have examined and demonstrated the value of exploiting sen-
sor and platform diversity together with prior knowledge in improving system
performance. Analogy with echo locating bats provides encouragement that such
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techniques will lead to future developments that embody genuine intelligence,
potentially offering vastly superior capability over the systems of today. However,
there remains much research to be done before this potential can be realized and
there are still many questions remaining.
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Abstract Detection of landmines using electromagnetic induction (EMI) tech-
niques is well established and a range of metal detectors is commercially available.
Recent developments using dual sensor technology combining EMI and ground
penetrating radar (GPR) have enabled improved discrimination against small metal
fragments to be demonstrated in live minefields. Reductions of up to 7:1 compared
with the standard metal detector have been achieved in the field by hand held sys-
tems such as the UK-German MINEHOUND/VMR2 system and the US AN/PSS-
14 (formerly HSTAMIDS: Handheld Standoff Mine Detection System).

Stand off vehicle based radar systems are now being trialled in realistic condi-
tions. Airborne systems have also been trialled, but as yet have some way to go to
deliver useful performance. These three distinct modes of operation pose fundamen-
tally different challenges in terms of the physics of propagation and the radar system
design and will be discussed.

End user expectations in terms of performance are challenging and at present
only the hand held detectors are approaching these needs. This chapter reviews the
high-level performance requirements from an OA perspective in order to set the
performance envelopes of the radar designs. We also address the fundamental chal-
lenges in terms of propagation, proximity to the ground surface; ground topography
and signal to noise and signal to clutter bandwidth of operation with reference to
both close in and stand off landmine and IED detection. A review of the perfor-
mance of GPR systems at the higher TRL levels is provided.

A key issue in comparing the published results of controlled trials relates to
statistics of the depth of cover, the soil propagation characteristics, and the type
of landmine, the sample size, the physical placement of the landmine as well as
the characteristics of the clutter. This chapter will also highlight the future engi-
neering challenges to achieve not only detection but recognition and identification
using GPR.
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1 Introduction

Landmine detection using electromagnetic induction (EMI) techniques (commonly
termed metal detector (MD)) is well established and a range of these devices is com-
mercially available. Recent developments using dual sensor technology combining
EMI and ground penetrating radar (GPR) [1] have enabled improved discrimination
against metal fragments to be demonstrated in live minefields and reductions of up
to 7:1 compared with the standard metal detector have been achieved in the field by
hand held systems such as MINEHOUND [3] and AN/PSS-14 [5]. These systems
have reached the stage where they are being produced in large numbers.

Stand off vehicle based radar systems are now being trialled in realistic condi-
tions. Airborne systems have also been trialled, but as yet have some way to go to
deliver useful performance. These three distinct modes of operation pose fundamen-
tally different challenges in terms of the physics of propagation and the radar system
design and will be discussed in this chapter.

End user expectations in terms of performance are challenging and at present
only the hand held detectors approach these expectations. This chapter will review
the high-level performance requirements from an OA perspective in order to set the
performance envelopes of the radar designs. We also address the fundamental chal-
lenges in terms of propagation, proximity to the ground surface; ground topography
and signal to noise and signal to clutter bandwidth of operation with reference to
both close in and stand off landmine and IED detection.

A review of the performance of GPR systems at the higher TRL levels will be
provided as well as an introduction to the various algorithmic approaches to the
classification of landmines. A key issue in comparing the published results of con-
trolled trials relates to statistics of the depth of cover, the soil propagation charac-
teristics, and the type of landmine, the sample size, the physical placement of the
landmine as well as the characteristics of the clutter. We highlight the future engi-
neering challenges to achieve not only detection but recognition and identification
using GPR.

2 Background

Landmines can be either buried or laid on the surface of the ground or buried flush
with the surface of the ground. They are emplaced by a variety of techniques, includ-
ing being scattered on the surface by vehicles or helicopters. Thus landmines may
be found in regular patterns, or in irregular distributions. Where environmental con-
ditions result in soil erosion and movement caused by rain over several seasons the
landmines may be lifted and moved to new locations and can be covered or exposed.
Landmines are encountered in desert regions (i.e. Somalia, Kuwait), mountains (i.e.
Afghanistan, El Salvador), jungles (i.e. Cambodia, Vietnam) as well as urban areas
(i.e. Beirut, former Yugoslavia).

In general, most pressure sensitive landmines are not designed to operate when
buried deeply. In these circumstances the overburden ground material acts as a
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mechanical bridge and inhibits triggering of the detonator mechanism and also
reduces the force of the explosion. This fact is often taken into account in the speci-
fication of performance for a mine detector. For example a hand held mine detector
should be able to detect AT landmines at depths up to 300 mm and AP Landmines
at depths up to 100 mm with spacing between the detector head and ground sur-
face of up to 100 mm. Users of vehicle based close-in landmine detectors prefer
a greater ground clearance, although very successful operation of EMI arrays has
been achieved with very close (proximal) ground clearance. Landmines can also
be encountered at depths well beyond the range of most detection systems due to
movement of the soil. Mine detection systems can be employed in several different
roles: for close-in hand-held detection, for vehicle mounted standoff detection or
as a remote sensor mounted on low flying fixed or rotary wing aircraft. These are
mostly synthetic aperture radars (SAR).

The variety of environmental conditions in which landmines can be found is
enormous. Minefields are not only neat ordered rows of landmines in flat deserts but
can also be found among the debris of burnt out buildings and post-conflict urban
and rural environments. Clearly, mine detection equipment has to be designed to
work in a wide range of physical environments and the statement of operational
requirements issued by end-users will reflect this need. Detection equipment must
be able to be operated in climatic conditions, which range from arid desert, hillside
scree to overgrown jungle. Ambient operating temperatures can range from below
20◦C to 60◦C. Rain, dust, humidity and solar insolation all must be considered in
the design and operation of equipment. The transport conditions of equipment can
be arduous and these as well as man-machine interface issues are vitally important
to the design of detectors.

The large majority of civilian casualties are caused by anti-personnel landmines,
which come in a wide variety of types. Many are designed only to maim. The blast
type anti-personnel landmine will cause a traumatic amputation to a foot or leg,
often injuring the other leg and genitals as well. Fragmentation land mines are far
more deadly. Some models shoot hundreds of metal fragments in an arc that reaches
out 50 m. Other types spring into the air when triggered and then explode at waist
level. Anti-personnel mines can be buried in the ground or placed on the surface
and can be set off by pressure, trip wire, remote control or sensors. They can be laid
by hand, dropped from airplanes or spread by artillery. Many are made of plastic,
which means they cannot be located by metal detectors during clean-up operations.
Mine clearance has come a long way since the procedures adopted in the Second
World War as shown in Figures 1 and 2.

Anti-vehicle mines are less numerous but more powerful. A mine that can dis-
able a tank will destroy a civilian vehicle and kill its occupants. These mines usually
cannot be detonated by a person’s body weight alone, although when they are fit-
ted with an anti-handling device they become anti-personnel weapons. Anti-vehicle
mines are a particular threat to humanitarian aid workers who must travel roads
before they have been systematically cleared. Examples of manual clearance meth-
ods are shown in Figures 1, 2 and 3 showing the historical improvements in methods
and safety procedures.
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Fig. 1 UK Army landmine detection 1945. (Photo: IWM.)

Fig. 2 Sappers learning mine detecting and clearance methods at the Royal Engineers School of
Mine Warfare, Middle East 1942. (Photo: IWM.)
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Fig. 3 A woman deminer working for MAG excavating anti-personnel mine in Battambang
province in Cambodia. (Photo: MAG.)

3 Types of Landmines

In terms of detection techniques, landmines can be classified into several groups.
These are metallic landmines, minimum metal landmines and non-metallic land-
mines. The latter type is in a minority and cannot be detected with the metal detector,
in contrast to the metallic and minimum metal landmines. In addition to conven-
tionally manufactured landmines there are numerous examples of other versions,
which fall in the category of improvised explosive device (IED). These are often not
buried and hence are not landmines. The Geneva International Centre for Humani-
tarian Demining (GICHD) provides a useful introduction to types of landmine [7].
Other sources of information on landmines can be found on the US Department of
Defense CD Minefacts c© which contains details of over 675 landmines as well as
the US Department of Defense, Naval Explosive Ordnance, CD Ordata c© which is
a guide to UXO identification or many of the websites of Mine Action Centres and
Non-Governmental Organisations NGO’s. Some examples of typical landmines are
shown in Figures 4 and 5.

These landmines are generally detectable with standard metal detectors but the
completely non-metallic mine, though rarely encountered, can only be detected
using a radar based detector. The French 1947 AT shown in Figure 6 has been found
in Southern Lebanon and is constructed from bakelite and uses a glass based chem-
ical detonator. Mines that are flush buried are a major problem as can be seen in
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Fig. 4 Various anti-personnel blast landmines. (Photo: GICHD.)

Fig. 5 TM-57 metallic landmine and TM-62 P2 minimum metal antitank landmines. (GICHD.)

Fig. 6 Examples of the French 1947 AT landmine in Southern Lebanon. (Photo: Bactec.)
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Fig. 7 PMA2 AP landmine in Bosnia (photo: D J Daniels) and internal construction (ORDATA).

Figure 7, which shows the detonator just above the surface of the ground. The search
techniques must allow for this situation, as too close an approach is inadvisable.

It is very important to understand the physical construction of landmines as this
has a major influence on their radar cross-section (RCS). Some minimum metal
landmines are substantially solid explosive, but others have significant air gaps and
these enhance the radar scattering cross-section of the landmine. Landmines such as
the PMD-6 and PFM-1 are asymmetric and this affects the polarisation characteristic
of the RCS as well as causing differences between the centres of detection of radar
and a MD.

3.1 Performance requirements

The key performance factors of the specification of a landmine are its probability
of detection (PD) and its probability of false alarm (PFA). For a hand held sys-
tem the requirement is to achieve a PD = 1 and PFA = 0. The threshold between
the populations of true/false reports can be plotted as a sensitivity/specificity graph
and generates a receiver operating characteristic (ROC) curve. A typical example
is shown in Figure 8 which plots true positives against true negatives in a sample
population.

It will be noted that for a true positive or PD value of 1 incurs a true negative
or PFA of 0.4. The closer the ROC curve is to a step function the lower the PFA
for a PD equal to 1. The ROC curve is used as a means of evaluating detector per-
formance or aspects of the performance of a detector. It should be noted that where
human decision-making is involved the ROC curve could also be used to assess
both equipment and human performance. Given a certain spatial density of land-
mines the chance of survival can also be determined. In the case of vehicle-based
systems that provide route clearance this is an important parameter. For example, if
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Fig. 8 Receiver operating characteristic.

a mine density of 1 per km along a route 4 m wide is assumed, then for a sensor
PD of 0.9, the land mine detection system has a 60% probability of encountering a
landmine explosion within 10 km, on the basis of a probability of explosion of 0.5
for each of the mines encountered. The implications of this are that the attrition rate
of such systems will be high and the vehicle protection and cost and replace-ability
of the sensors and vehicle drive train are important system parameters.

The density of mines, PD and PFA of the sensor system fundamentally determine
the rate of advance of vehicle-based systems in the following ways. The density of
mines clearly affects the number of potential encounters, the PD affects the chances
of the vehicle being damaged by a landmine as well as the time spent in neutralising
the landmine and the PFA affects the time spent in clearing false alarms. Typical
example values are that the rate of advance is limited to a maximum of 11 kph for 1
mine per kilometer of a 4 m wide swathe, assuming a sensor probability of detection
of 0.9. The effect of clutter is to reduce this speed even further. For a situation with
0.1 mines per kilometer and 100 items of clutter per kilometer, a system probability
of detection = 0.9 and PFA of 0.01, the maximum speed that a vehicle could advance
would be 10 kph. Only an improvement in the probability of false alarm to 0.001
would enable the vehicle to increase significantly its rate of advance.

4 GPR for Landmine Detection

Ground penetrating radar (GPR) is an electromagnetic technique which is used to
measure the range and position of landmines buried within the ground or dielec-
tric material. The energy radiated by a GPR system occupies a frequency band of a
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decade or more from several hundred megahertz up to several gigahertz with com-
mensurate wavelengths of 1 m down to 10 cm in air but appropriately reduced by
the dielectric constant of the ground. The wavelengths are therefore the same order
of magnitude as the dimensions of the landmine and are very different from con-
ventional radar systems where the landmine dimensions are much larger than the
wavelength of the incident radiation. The typical average radiated power, integrated
over the band of interest, may be on the order of a few tens of milliwatts, but the
power per hertz may be as low as picowatts. For landmine detection it is important
that the radiated power is lower than that required to initiate some types of fuse.
The loss of the soil is often measured as a propagation loss in decibels per meter
and is dependent on the conductivity of the soil and the frequency of operation.
At 1 GHz it is possible to encounter attenuation losses of many tens of decibels per
meter. Some GPR systems are operated so that the landmine, which is within a lossy
dielectric, may be only a few wavelengths from the aperture of the antenna. The total
path losses within a few wavelengths may be as much as 100 dB depending on the
material. As GPR systems do not have a total loop gain much in excess of 120 dB
the designer has a major challenge to detect landmines signatures within very short
ranges of typically 20 ns.

Additionally GPR can be operated so that the antenna is very close to the ground
surface and landmine such that the energy transfer is predominantly either induction
or quasi-stationary (the near field), or can be operated such that the energy transfer
is in the far field region. GPR encounters extremely high levels of clutter at short
ranges and this as well as signal/noise ratio is its major technical challenge. All
these aspects pose special design problems for GPR, which is described in detail
by Daniels and Curtis [3]. The landmine is surrounded by soil, which is a lossy
dielectric whose relative dielectric constant depends mainly upon the water content.
Typically the relative dielectric constant of the soil varies from 3 in dry sand to
greater than 16 in wet and waterlogged soils.

The explosive used in landmines is typically nitrogen based with a relative dielec-
tric constant between 2.7 and 3.5, ammonium nitrate being the exception as shown
in Table 1. Landmines can also be found in fresh water, which has a relative dielec-
tric constant of approximately 80, but a very low loss tangent, hence it is quite
feasible to detect landmines in fresh water or soils saturated in fresh water, which
also has the benefit of increasing impedance contrast. Salt water on the other hand
completely attenuates radar signals. It should be noted that the ground and surface
are quite likely to be inhomogeneous and contain inclusions of other rocks of vari-
ous size as well as man-made debris. Thus the signal to clutter performance of the
radar is likely to be an important performance factor. Clutter may be regarded as any
radar return that is not associated with the wanted landmine and needs to be defined
with respect to a particular application.

Scattering of electromagnetic energy from a landmine results from the
impedance differences of the landmine compared with the host material. Canonical
targets such as cylinders, which are similar to landmines, have well understood free
space scattering characteristics that will be modified by the dielectric of the soil.
The mine may have a number of scattering centres, each with their own angular
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Table 1 Relative dielectric constants of explosives.

Substance Name Relative
dielectric
constant

TNT 2,4,6-Trinitrotoluene 2.70
Detasheet PETN 2.72
PETN Pentaerythritol tetranitrate 2.72
Comp B RDX TNT 2.90
Octol HMX TNT 2.90
Tetryl 2,4,6-Trinitrophenyl-N-methylnitramine 2.90
Semtex-H RDX-PETN 3.00
HMX Cyclotetramethylene-tetranitramine 3.08
Comp C-4 RDX 3.14
RDX RDX Hexahydro-1,3,5-trinitro-1,3,5-triazine 3.14
AN Ammonium nitrate 7.10
NG Nitroglycerin 19.00

radiation pattern and, in the case of plastic landmines, the internal structure of
the mine may generate additional scatterers. Most minimum metal landmines may
be considered as multiple layered dielectric cylinders, each interface causing a
reflection, the impact of the small internal metallic fuse being minimal. A simple
transmission line model representing the case where the angle of incidence is equal
to the angle of reflection can simulate the time domain signature of the latter.

GPR system design can be classified into two classes. Systems that transmit an
impulse and receive and process the reflected signal from the landmine using a sam-
pling receiver can be considered to operate in the time domain. Systems that transmit
individual frequencies in a sequential manner or as a swept frequency and receive
the reflected signal from the landmine using a frequency conversion receiver can be
considered to operate in the frequency domain. Handheld GPR systems use sepa-
rate, man-portable, transmit and receive antennas, which are placed just above the
surface of the ground and moved in a known pattern over the surface of the ground
under investigation. This generates, in real time, data or an image. By systematically
surveying the area in a regular pattern, a radar image of the ground can be built up.
Alternatively, the GPR may be designed to provide an audible warning of landmine
presence while the antenna is moved. Vehicle based or airborne systems use much
larger arrays of antennas to illuminate a swathe of the ground surface ahead of the
platform and rely on the movement of the vehicle to create the data, which may be
processed using SAR techniques.

The GPR image of a landmine is very different from its optical image because
the wavelengths of the illuminating radiation are similar in dimension to the land-
mine. This results in a much lower definition in the GPR image and one that is
highly dependent on the propagation characteristics of the ground. The beam pat-
tern of the antenna is widely spread in the dielectric and this degrades the spatial
resolution of the image, unless corrected. Refraction and anisotropic characteristics
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of the ground may also distort the image. For some longer-range systems, synthetic
aperture processing techniques are used to optimise the resolution of the image.

Unprocessed GPR images often show “bright spots” caused by multiple internal
reflections within the landmine as well as a distortion of the aspect ratio of the image
of the landmine caused by variations in the velocity of propagation. Symmetrical
targets, such as spheres, cause migration of the reflected energy to a hyperbolic
pattern. Radar images can be processed to compensate for these effects and this is
usually carried out off-line. A radar can be designed to detect specific landmines
by means of polarised radiation. This chapter considers the practical limitations of
radar for detecting buried landmines. The types of radar considered are those in
which the antenna is very close to the ground surface (proximal operation), radar
systems whereby the antenna is operated a few wavelengths from the surface of the
ground and finally radar systems whereby the antenna is many wavelengths from
the surface of the ground (stand-off operation).

There is an extensive literature on radar methods for landmine detection and a
variety of sophisticated modelling and processing methods have been applied to the
problem. However the ill-posed nature of operation in real soils has meant that few
of these techniques have proved robust when moved from the laboratory to the field
and simpler methods have often proved more reliable.

4.1 Attenuation

Electromagnetic waves propagating through soil incur an attenuation loss given by

La = 8.686 ·2 ·R ·2π f

√(
μ0μrε0εr

2

(√
(1+ tan2 δ )

)
−1
)

where

f = frequency in Hz
tand = loss tangent of material
εr = relative permittivity of material
ε0 = absolute permittivity of free space
μr = relative magnetic susceptibility of material
μ0 = absolute magnetic susceptibility of free space
R = range in metres

The graph in Figure 9 shows the two-way attenuation loss in decibels per meter
plotted against frequency for a material with a relative dielectric constant of 9 and
loss tangents of 0.1 to 0.9 in steps of 0.3 respectively. As the frequency is increased
from 1 GHz to 5 GHz, the attenuation loss for a soil with a loss tangent of 0.3
increases from 20 to 100 dB.
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The effect on the spectrum of typical radar is shown in Figure 10 which shows
the peak of the spectrum shifted to lower frequencies and the higher frequencies
considerably reduced.

4.2 Coupling energy into the ground

Buried mines pose a difficult detection problem for radars and their performance is
strongly influenced by the ground conditions. For close-in operation the efficiency
of the coupling process is high but this is not the case for standoff radar systems
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since, where lossy materials are involved, complex angles of refraction may occur.
With vertical polarisation at incidence angles less than the Brewster angle, trans-
mission losses at the air/ground interface are relatively small but at larger incidence
angles than the Brewster angle the losses increase more rapidly. Hence to max-
imise the operating range the radar should be mounted as high off the ground as
is possible. Thus for a given height, the performance of the radar will be set by
the relative dielectric constant of the ground. In addition to the problem of cou-
pling energy into the ground the effective cross section of all landmines decreases
when they are buried. Measurements and modelling suggest that under conditions
of negligible attenuation losses, as are expected in very arid ground or for shallow
burial depths, metal landmine to clutter ratios are expected to be degraded on bur-
ial by approximately 10 dB. Under the same conditions the cross section of plastic
mines is reduced by a larger factor because of reduced dielectric contrast between
the mine material and the surrounding soil, so that, in wet sandy soils, plastic mines
are more readily detected than in dry conditions. However plastic mines are subject
to substantially smaller burial losses in dry sand when they contain air voids. This is
beneficial for detection as plastic mines generally contain such voids to allow move-
ment behind the pressure plate. The radar system must have at least a 20 dB signal
to clutter ratio to detect buried landmines in all weather conditions. Thus in order
to detect buried plastic landmines with air voids the corresponding signal to clutter
ratio for surface-laid metal landmines must be better than 12 dB for dry conditions
and 18 dB for wet conditions.

4.3 Depth resolution

For traditional radar systems it is accepted that two identical targets can be separated
in range if they are 0.8 of a pulse width apart. Essentially range resolution is defined
by the bandwidth of the received signal and in this context it is the bandwidth of
the received signal which is important, rather than that of the transmitted signal.
The earth material acts as a low pass filter, which modifies the received spectrum
in accordance with the electrical properties of the propagating medium. A receiver
bandwidth in excess of 500 MHz and typically 1 GHz is required to provide a typical
resolution of between 5 and 20 cm, depending on the relative permittivity of the
material. Where interfaces are spaced more closely than one half wavelength the
reflected signal from one interface will become difficult to resolve with that from
another. It should be noted that the normal radar criteria for range resolution is less
appropriate for the case of a weak target adjacent to a strong target and there is no
accepted definition of resolution for the case of unequal size targets.

4.4 Plan resolution

The plan resolution is defined by the characteristics of the antenna and the sig-
nal processing employed. In general radar systems (apart from SAR) require a high
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gain antenna to achieve an acceptable plan resolution. This necessitates a sufficiently
large aperture at the lowest frequency to be transmitted. To achieve small antenna
dimensions and high gain therefore requires the use of a high carrier frequency,
which may not penetrate the material to sufficient depth. When selecting equip-
ment for a particular application it is necessary to compromise between plan reso-
lution, size of antenna, the scope for signal processing and the ability to penetrate
the material. Plan resolution improves as attenuation increases, provided that there
is sufficient signal to discriminate under the prevailing clutter conditions. In low
attenuation media the resolution obtained by the horizontal scanning technique is
degraded, but only under these conditions do synthetic aperture techniques increase
the plan resolution. Essentially the ground attenuation has the effect of placing a
“window” across the SAR aperture and the higher the attenuation the more severe
the window. Hence in high attenuation soils SAR techniques may not provide any
useful improvement to radar systems. SAR techniques have been applied to GPR,
but very often in dry soils with low attenuation.

A key feature of non-contacting ground antennas is their illuminating footprint.
As a landmine radar image is effectively the convolution of the antenna footprint
with the landmine radar spatial cross section, the landmine image becomes blurred.
This effect increases with antenna to ground spacing and eventually results in land-
mines with small radar cross-section (AP mines) becoming vanishingly small.

Plan resolution actually improves as attenuation increases, assuming that there
is sufficient signal to discriminate under the prevailing clutter conditions. In low
attenuation media the resolution obtained by the horizontal scanning technique is
degraded, but under these conditions the use of advanced signal processing tech-
niques becomes feasible. These techniques typically require measurements made
using transmitter and receiver pairs at a number of antenna positions to generate a
synthetic aperture or focus the image. Unlike conventional radars, which generally
use a single antenna, most GPR systems use separate transmit and receive antennas
in what has been termed a bistatic mode. SAR techniques typically require measure-
ments made using transmitter and receiver pairs at a number of antenna positions to
generate a synthetic aperture or focus the image. Unlike conventional radars, which
generally use a single antenna, most landmine radar systems use separate transmit
and receive antennas to provide receiver isolation. The GPR community refer to
this as a bistatic mode, although actually the antenna system is closely spaced and
mobile. This is different from the traditional radar community that associates the
term bistatic with large separations.

4.5 Frequency of operation

The most basic model for assessment of signal level is derived from the far field
radar range equation, which does however have limitations with respect to cor-
rect representation of the actual operation of very short-range system. However,
it does enable a first order assessment of expected signal levels. In the absence of
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Fig. 11 Probability of detection of dielectric cylinders 10–50 cm at 1 GHz.

Fig. 12 Probability of detection of dielectric cylinders 10–50 cm at 3 GHz.

any clutter whatsoever in the ground and assuming a complete removal of the front
surface reflection it is possible to calculate the probability of detection as a function
of landmine range and landmine size. This is shown in Figure 11. The family of
curves represents the probability of detection versus range for dielectric cylinder of
diameters 10–50 cm in increments of 10 cm, working from left to right.

The signal to noise ratio (SNR) of the radar receiver is 14.6 dB and the mine
signal is 6 dB greater than the SNR. A frequency of 1 GHz was used with a landmine
er = 2.2, a soil relative permittivity er of 9 and ground attenuation of 27 dB m−1

at 1 GHz. The antenna to ground spacing is 10 cm. The smallest cylinder can be
detected at a depth of cover of 25 cm. At 3 GHz the radar performance as a function
of range is considerably reduced as the attenuation has increased to 82 dB m−1 as
shown in Fig. 12.
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4.6 Landmine scattering characteristics

Scattering of electromagnetic energy results from impedance differences in the land-
mine compared with the host material. Canonical landmines such as cylinders have
well understood radiation characteristics as described by Skolnik [10], that can
be modified for the dielectric of the soil. The mine may have a number of scat-
tering centres, each with their own angular radiation pattern and in the case of
plastic landmines the internal structure of the mine may generate additional scatter-
ers. Most plastic landmines can be considered as multiple layered dielectric cylin-
ders, of which each interface causes a reflection. A simple transmission line model
representing the case where the angle of incidence is equal to the angle of reflection
can simulate the time domain signature of the latter as shown in Fig. 13. The first
reflection is due to the ground surface and the subsequent reflections are due to the
landmine air void and explosive. The depth of cover of the mine is 10 cm and it is
10 cm in thickness.

For comparison the time domain signatures of various landmines buried at 5 cm
are shown in Fig. 14 and it can be seen that the simulation most closely resembles the
VS50 in shape. On the horizontal scale ten samples equals 0.25 ns and the vertical
scale represents relative amplitude.

If the metallic landmine is at an angle to the plane of the surface the peak response
may well be to one side of the actual physical position of the landmine. This is par-
ticularly critical for hand held radar systems. Other aspects of the radar cross section
of landmines are concerned with the relative contributions of specular reflection,
diffraction off discontinuities, travelling waves including direct illumination run-
ning wave, creeping wave on metal, trapped guided wave on dielectric as well as the
contribution due to resonant scatterers, which are a combination of discontinuities
that allow the echo to build up. Much effort has been applied to accurate modelling,
as described by Streich and Van der Kruk [11].
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Fig. 13 Simulated time domain signature of a buried landmine simulation.
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Fig. 14 Time domain signatures of buried mines taken with radar transmitting 1 ns duration
impulses.

4.7 Clutter

A major difficulty for operation of GPR systems is the presence of clutter within
or on the surface of the material or in the side and back lobes of the antenna and
sources of surface clutter. These has been modelled by Firoozabadi et al. [6]. Clutter
is defined as sources of unwanted reflections that occur within the effective band-
width and search window of the radar and are present as spatially coherent reflectors.
Animal burrows and cracks in the ground are examples of features that will cause
reflections. Careful definition and understanding are critically important in select-
ing and operating the best system and processing algorithms. Clutter can completely
obscure the buried landmine and a proper understanding of its source and impact on
the radar is essential. A key issue is the effect on the radar of variations in the topog-
raphy of the ground surface caused by potholes or ruts. Methods of processing the
radar signals that adjust the delay time to the front surface to “flatten it” will actu-
ally distort the radar signature of buried landmines. Abrupt discontinuities can also
cause multiple reflections, which become superimposed on later arriving reflected
energy. Such “interference” will be extremely difficult to remove. Radar systems
should not provide indications on the following small sources (small being defined
as not exceeding a surface area of 1.5 cm2):

• Small metal fragments
• Shrapnel
• Spent bullet and cartridge cases
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• Ground topographical variations less than 3 cm in any dimension
• Puddles of water up to 15 cm diameter
• Tufts of grass up to 5 cm in diameter and 5 cm high
• Rocks, stones less that 5 cm in maximum dimension
• Animal burrows less than 5 cm diameter
• Cracks and fissures in ground less than 1.5 cm in width

5 Vehicle Based Radar Systems

Vehicle based systems have been developed that use arrays of antennas and gen-
erate 3-D data, which is then processed to provide a rolling map of detections.
The signal and image processing options for vehicle based landmine detection are
more extensive because the radar and its platform generate 3-D data. In general
vehicle based systems concentrate on anti-tank landmines because it is difficult
to achieve adequate cross range resolution at realistic budgets. Options for signal
and image processing include image inversion and synthetic aperture techniques
for image enhancement principal component analysis (PCA) and independent com-
ponent analysis (ICA) techniques and hidden Markov models. ERA Technology
developed a 4 m wide antenna close-coupled GPR system for the UK Minder CAP
programme as shown in Figure 15. Against minimum metal mines buried up to
17.5 cm it achieved a PD of 0.77. It should be noted that during these trials 80% of

Fig. 15 UK Minder CAP programme countermine system.
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the on-road AT mines were buried low metal (TMA4, Type72) and the maximum
depth of burial was 17.5 cm. The most common depth of burial was 6” (15 cm)
and approximately 65% of the mines were buried with a depth of cover greater than
10 cm. Using the trial results we get an extended estimate of GPR performance for
off ground radars based on an average PD = 0.8 against a depth of cover of 10 cm
and for proximal GPR systems with an average PD = 0.8 against a depth of 17 cm.
It can be seen that the depth performance of the proximal GPR is greater because of
the improved coupling and reduced range-spreading losses. Although a number of
developmental vehicle-based GPR systems have been trialled and reported on over
the last 5 years, even the most extensively reported NIITEK radar system has yet to
move into production.

6 Handheld Radar Systems

Recent developments using hand held dual sensor technology combining elec-
tromagnetic induction EMI and ground penetrating radar (GPR) have enabled
improved discrimination against metal fragments to be demonstrated in live mine-
fields. Reductions of up to 7:1 compared with the standard metal detector have been
achieved in the field by hand held systems such as MINEHOUND [3] shown in
Figure 17 and AN/PSS-14 [5]. Handheld landmine systems are more limited in the
signal processing algorithms that can be applied because they usually only have a
single transmit-receive antenna pair and with only a few exceptions do not form an
image. Research into landmine discrimination based on the analysis of A-scans by
means of complex resonances, wavelets, time-frequency characteristics, neural net-
works, fuzzy sets, Gaussian mixture models, order statistics and template matching,
has been carried out. Methods based on time-frequency characteristics are reported
by Wong et al. [13], Lopera et al. [8], as well as Daniels et al. [4] who showed the
feasibility of discriminating between AP landmines and typical false landmines on
a small data set.

The AN/PSS-14 hand held detector trialled in Angola [5] reports the following
results for probability of detection using experienced operators at a 90% confidence
level (CL) range with a false alarm rate of 0.23–0.28 m−2. The trials carried out
in Bosnia, Cambodia and Angola using the MINEHOUND detector [3] reported a
ROC curve as shown in Figure 16. The ROC curve relates to over 1,069 encounters
in live minefields of which seven were actually mines. It should be noted that the tri-
als did not test the MINEHOUND in a blind test, but compared the MINEHOUND
with the CEIA MIL D1 metal detector, which was used first. The MINEHOUND
does not currently incorporate mine classification algorithms.

6.1 Assessment of radar performance

There is an potentially overwhelming body of literature on GPR for landmine detec-
tion and an approach for its assessment is to consider the comparability of the data,
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Fig. 16 ROC curve for MINEHOUND for trial in Bosnia.

Fig. 17 MINEHOUND dual
sensor landmine detector.

the maturity of the technology, the feasibility of implementing the proposed algo-
rithm and, most importantly, the performance in terms of the probability of detection
and the probability of false alarm.

There are a number of fundamental issues that govern the probability of detec-
tion. Both propagation parameters as well as the radar cross-section define the fun-
damental system performance as discussed by Daniels [2].

In comparing published results relating to controlled trials, it is critical to know
the statistics of the depth of cover, soil propagation characteristics, type of landmine,



Ground Penetrating Radar for Buried Landmine and IED Detection 109

the physical placement of the landmine as well as the characteristics of the clutter. In
the case of field trials in, or close to, live minefields it is more difficult to gather such
information; however, a statistically based approach may be a realistic alternative.
In reviewing published receiver operating characteristic (ROC) curves the statistics
of the sample should be known in order to understand the confidence that can be
placed in any data. Simonsen [9] provides a useful treatment of sampling statistics as
applied to landmine data. Clearly any assessment of the performance of algorithms
should also state the confidence limits that apply to ROC curves. However if the
sample size is known, it is relatively straightforward to determine bounds. Simonson
notes that 39 or more mines are needed to ensure at least an 80% chance of detecting
a difference when the two systems have detection probabilities of 0.90 and 0.60,
respectively.

Voles [12] considered this issue and showed that based on a Poisson distribution,
even if no mines were missed by a sensor in a test of 100 then at the 95% confidence
limit the highest value of probability of detection that can be claimed is 97%. Voles
also showed that to achieve a 99.6% probability of detection at a confidence level of
95% would require a test of 750 mines and none should be missed.

6.2 Future development of radar

The main challenge for hand held radar is the further reduction in the rate of false
alarm. At present the EMI detector encounters around 200 false targets to every AP
mine. The current generation of dual sensor detectors reduces the ratio to around
5:1. If robust classification techniques can be developed that reduce the ratio down
to around 30:1 the efficiency improvement in humanitarian operations will be even
greater.

Vehicle based radar has to achieve orders of magnitude performance improve-
ment to enable route clearing military operation to proceed at speed. A total system
performance of a probability of detection better than 0.99, with a probability of
false alarm less than 10−4, is called for if route clearance at convoy speeds is to
be achieved. Humanitarian clearance may tolerate speed reduction but still requires
high detection rates. This applies to both stand off and close in GPR systems.

Airborne radar is an enormous technical challenge. However a new generation of
unmanned airborne vehicles may provide suitable platforms for the close in GPR
systems if ground skimming can be achieved. This would allow reconnaissance
vehicles to run ahead of convoys and would reduce the need to mine protect vehicles.

7 Summary

• GPR systems for landmines have a loop gain on the order of 120 dB, which sets
their order of magnitude performance.

• The radiated power is limited by licence restrictions and EMC considerations as
well as the need to avoid detonation of certain types of fuses.
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• Most path losses are such that penetration is limited to 50 cm depth of cover for
most GPR systems.

• The propagation losses decrease as the fourth power of range to landmine for far
field conditions.

• The propagation losses may decrease at lower rates depending on the landmine
dimensions for near field boundary conditions.

• The received signal may be augmented by induction and quasi-stationary contri-
butions for landmines within the near field.

• The attenuation losses in materials rapidly increase with frequency, which means
that most systems will receive frequencies in the range 300 MHz to 1.5 GHz.
The use of transmitted frequencies above 2 GHz is unlikely to provide useful
performance in real world conditions and will severely limit depth performance.

• The attenuation losses in materials will reduce the effectiveness of multi-look
antenna arrays by effectively putting a window taper across the array.

• At 1 GHz the total losses in typical soils mean that, in ideal conditions, detection
ranges of 20–30 cm are feasible.

• In dry soils the dielectric contrast between the soil and mine reduces and this can
make the detection of mines with minimal air voids more difficult.

• Most GPR systems will achieve optimum performance in terms of range when
the antennas are operated in close proximity to the ground. As the antenna to
ground spacing increases, the antenna radiation pattern results in reduction of
the received signal from small landmines and increased vulnerability to clutter
from free space sources.

• Rough surfaces, ruts, potholes etc. degrade the signal to clutter ratio and reduce
the system performance.

• The angular response of mines that are tilted relative to the ground surface may
not be co-incident with their physical position and this should be considered
when neutralising.

• Stand off SAR radar systems have fundamental limits to performance at shallow
grazing angles, which constrains their forward look range to between 10 and
20 m.
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Overview of Statistical Tests for Unexploded
Ordnance Detection

Hakan Deliç∗

Abstract In this chapter, we outline the statistical procedures that can be employed
for the detection of unexploded ordnance (UXO). Phenomenological modeling
is first developed to relate the collected data to a sensor’s feature parameters,
which in turn allow for physics-based signal processing. Starting with the Bayesian
framework, we introduce minimax and robust detection that do not require prior
probabilities and distributional information on the measurement uncertainty, respec-
tively. Nonparametric tests that perform well for broad classes of distributions are
also presented. Finally, the generalized likelihood ratio test is described as a joint
estimation-detection method which first estimates the feature parameters and then
tests for the presence-absence of the UXO.

Keywords: Detection, Gaussian distribution, likelihood ratio test, modeling,
minimax, Neyman-Pearson, nonparametric test, UXO

1 Introduction

Unexploded ordnance (UXO) refers to explosive devices that lie below ground or
sea surface. Magnetometers, electromagnetic induction (EMI) and radar are typi-
cally used for sensing UXO. Excavation operations are risky and costly, and there-
fore false alarms should not exceed some acceptable level.

Detection of UXO involves several stages. Data are collected by sensors, prefer-
ably several distinct ones. Model parameters are extracted and refined in which
information from one device may help constrain the parameter space of another
sensor to minimize uncertainties. One example is the location estimate supplied by
a magnetometer serving as a constraint when analyzing the EMI data. The next step
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is the detection of UXO; that is, distinguishing between UXO and non-UXO objects
based on statistical tests performed on the measured parameter values. This may be
followed by classification of the UXO type.

In this chapter, we concentrate on various detection techniques that primarily
differ in the modeling assumptions. We characterize the problem in the form of two
hypotheses described as

H1 : UXO present,

H0 : UXO absent, or non-UXO present.

We will assume that the measurement uncertainties are represented by the multi-
variate Gaussian distribution. We adopt this distribution because of its maximum
entropy property and the mathematical convenience it brings along, rather than
being justified by empirical observation. However, we will also show methodolo-
gies that accommodate variations in the distributional form.

The simple, approximate magnetic-dipole model uses the magnetometer field
measurements to determine the UXO depth below ground and the magnetic-dipole
orientation [1, 9]. The EMI response can be modeled by generalizing the magne-
tometer model through a tensor that ties the excitation magnetic field and the mag-
netic dipole moment. Assigning unique magnetic dipoles to distinct components of
the same UXO and providing more information, the EMI models work with more
parameters such as the ordnance’s center location constrained by the magnetometer
data, UXO orientation (characterized by a unitary transformation matrix on the mag-
netization tensor), magnetization induced by ferrous elements, and the EMI resonant
frequencies [15]. A multisensor towed array system of magnetometers and EMI sen-
sors is shown to perform with a detection probability greater than 0.95 in [9]. The
detection of deeply buried UXO by means of a magnetometer equipped with cone
penetrometer technology is investigated in [14].

Ground-penetrating radar (GPR) in conjunction with synthetic aperture radar
(SAR) processing can be used from airborne [3] or ground platforms for UXO loca-
tion identification. In [4], a GPR in the 50–500 MHz range is deployed along with
magnetometers. The SAR processing produces three-dimensional images of possi-
ble UXO locations. Further data analysis is needed to decide on the actual UXO
presence [2]. For the application of a directional borehole radar, see [11].

2 Detection

Let x denote the feature vector whose elements are the magnetometer or EMI model
parameters. The signal measurements received from the sensor is the n-dimensional
vector v, which is a function of x. Extraction of x from v based on a phenom-
enological model is known as inversion. As an example, consider the EMI dipole
model [1, 15], where H′ denotes the excitation magnetic field and M is the mag-
netization tensor. The magnetic dipole moment is m = M ·H′. Assuming that the
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rotationally symmetric UXO is aligned along the z-axis, M can be represented as
the diagonal matrix

M(ω) = zT z

(
mz(0)+∑

k

ωmzk

ω− jωzk

)

+(xT x+yT y)

(
mp(0)+∑

k

ωmpk

ω− jωpk

)
(1)

where x,y,z are orthonormal row vectors and mz(0),mp(0) stand for the magnetiza-
tion induced by ferrous objects. Keeping only the first terms in each summation in
(1) is sufficient to have a physics-based signal model [1], where ωz1 and ωp1 can be
used as features in the detection set-up because the imaginary resonant frequencies
are functions of the UXO material properties and size.

2.1 Bayesian framework

Let πi, i = 0,1, be the a priori probability of Hi, i = 0,1, with π0 +π1 = 1. The prob-
ability π1 represents the prior knowledge, expectation or guess regarding the likeli-
hood of encountering an actual UXO. Thus, the higher π1, the greater the chance of
running into an UXO at the area of exploration.

Suppose that we can devise a cost coefficient ci j, i, j = 0,1 which represents the
cost of deciding on Hi when Hj is true. Assuming that c11 < c01, the expected
Bayesian risk associated with the choice between the presence and absence of a
UXO is minimized by the decision rule δB:

δB =
{

1 if L(v) ≥ t,
0 if L(v) < t

where the likelihood ratio (LR) and the threshold are respectively defined as

L(v) =
f1(v)
f0(v)

,

t =
(c10 − c00)π0

(c01 − c11)π1

with fi(v) = f (v|Hi), i = 0,1.
Determining the value of π1 with good accuracy is critical for the detection per-

formance when the Bayesian framework in (2.1) is employed. If the estimated π1
value is overshot, the test will yield more false alarms than necessary. Similarly,
an unrealistically low π1 may result in excessive number of undetected UXOs with
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possibly catastrophic consequences. Therefore, it is desirable to work with detectors
that do not require the priors, or that are insensitive to deviations from true values.

2.2 Minimax solution

Suppose that the prior probabilities (π0,π1) are unknown and they cannot be esti-
mated with sufficient precision. A conservative approach to detector design would
be to ensure good performance under the “least favorable” conditions, which is char-
acterized by the priors that maximize the Bayesian cost. Such a worst-case design
guarantees a minimum performance level in the event of parametric uncertainty: for
any other (π0,π1) pair, the detector will do even better.

Let R(δ |Hi) denote the Bayesian risk associated with the decision rule δ given
that hypothesis Hi, i = 0,1, is true. For the unknown prior π0, the expected risk is

R(δ ,π0) = R(δ |H0)π0 +R(δ |H1)(1−π0).

In accordance with the Bayesian paradigm, the goal now is to find a decision rule-
least favorable prior pair (δM,π0M) which solves the minimax problem:

(δM,π0M) = argmin
δ

max
π0M∈(0,1)

R(δ ,π0). (2)

The formulation in (2) can be viewed as a competitive game between the engineer
and nature. While the engineer attempts to minimize the cost by designing the best
detector, nature tries to maximize the penalty involved by selecting the least favor-
able prior. From the engineer’s perspective, nature wants to maximize the minimum
cost induced by his/her δ decision. In contrast, the engineer’s objective is to mini-
mize the maximum cost that occurs from the (π0,π1) selection. The pair (δM,π0M)
exhibits a so-called saddle point behavior described by

R(δM,π0) ≤ R(δM,π0M) ≤ R(δ ,π0M)

for all δ and π0.
The saddle point property stipulates that the following condition is satisfied for

any R(δ ,π0).

R(δM,π0M) = max
π0∈(0,1)

min
δ

R(δ ,π0) = min
δ

max
π0∈(0,1)

R(δ ,π0). (3)

The interpretation of (3) is simple and useful: If (δM,π0M) is a saddle point, then it
solves the minimax problem in (2), and vice versa. Moreover, the minimax solution
is the same as the maximin solution, and one can opt for one or the other depending
on their relative ease and complexity.
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2.3 Neyman-Pearson framework

In addition to the lack of reliable information about the prior probabilities, it may not
be possible to formulate meaningful cost coefficients as required by the Bayesian
set-up. The two error types may have asymmetrical penalties involved. Specifi-
cally, let

eI(δ ) = P{H1|H0 is true}
which is known as the false alarm probability, or type I error in statistics. Similarly,
the miss probability, or type II error is defined as

eII(δ ) = P{H0|H1 is true}.

It is clear that a false alarm event merely triggers a costly UXO removal operation
whereas a miss leaves the UXO undetected. It is impossible to minimize eI and
eII simultaneously. Recognizing that minimizing misses is far more important than
avoiding false alarms leads to the following constraint optimization problem:

Minimize eII(δ ) subject to eI(δ ) ≤ α. (4)

Note that without the bound on the false alarm probability, one could achieve
eII(δ ) = 0 by simply having δ = 1 at all times. Unfortunately, this is an infeasible
solution because it requires infinite time and resource budgets.

The solution of (4), which follows the construction of the appropriate Lagrangian
and the application of Kuhn-Tucker conditions, is stated in the Neyman-Pearson
Lemma.

δNP =

⎧⎨
⎩

1 if L(v) > λ (α),
r(α) if L(v) = λ (α),
0 if L(v) < λ (α),

where the threshold λ (α) and the randomization constant r(α)∈ [0,1] are such that
∫
V1

f0(v)dv+ r(α)
∫
V2

f0(v)dv = λ (α),

and

V1 =
{

v :
f1(v)
f0(v)

> λ (α)
}

,

V2 =
{

v :
f1(v)
f0(v)

= λ (α)
}

.

Once again, the optimal detector takes the form of a likelihood ratio test but in
Neyman-Pearson set-up, the threshold is determined by the false alarm rate α ,
instead of priors or cost coefficients. If the density functions fi(v), i = 0,1, are con-
tinuous everywhere, then randomization is not necessary and r(α) can be set to
unity.
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3 Gaussian Uncertainty

Suppose that the measurement uncertainties are represented by the multivariate
Gaussian random variable so that

fi(v) =
1

(2π)n/2|�i|1/2 exp
{
−1

2
(v−mi)T �−1

i (v−mi)
}

where mi and �i, i = 0,1, are respectively the mean vector and the covariance matrix
under Hi, i = 0,1. The natural logarithm of the likelihood ratio takes the form

L′(v) = loge L(v) = (v−m0)T �−1
0 (v−m0)− (v−m1)T �−1

1 (v−m1). (5)

The degree of correlation between successive measurements is hard to determine,
and as an approximation and to keep the design simple, one can assume that �i =
diag{σ2

i1,σ2
i2, . . . ,σ2

in}, i = 0,1. Letting mi = [mi1 · · · min]T and vi = [vi1 · · · vin]T ,
(5) becomes

L′(v) =
n

∑
k=1

(v0k −m0k)2

σ2
0k

−
n

∑
k=1

(v1k −m1k)2

σ2
1k

The optimal Bayesian test is

δB,G =
{

1 if L′(v) ≥ t ′,
0 if L′(v) < t ′

where

t ′ = loge
(c10 − c00)π0

(c01 − c11)π1
.

If there is sufficient evidence that the underlying uncertainty cannot be ade-
quately described by the Gaussian distribution, then it is possible to resort to robust
formulations that ensure good performance even if there are deviations from the
nominally assumed probability distribution. Let F0 and F1 respectively denote two
disjoint classes of multivariate probability density functions (PDFs) that represent
H0 and H1. Following a similar game as in the minimax construction, we then seek
to find a pair (δ ∗, f ∗1 (v)), where δ ∗ is an admissible decision rule and f ∗1 (v) ∈ F1,
such that

eII(δ , f ∗1 ) ≤ eII(δ ∗, f ∗1 ) ≤ eII(δ ∗, f1),∀δ ∈ D,∀ f1 ∈ F1, (6)

and
eI(δ ∗, f0) ≤ α,∀ f0 ∈ F0, (7)

where D is the class of admissible decision rules and α is a prespecified false alarm
rate. If there exists a δ ∗ that satisfies (6) and (7), then it is referred to as a robust
rule. The pair of density functions, f ∗0 and f ∗1 that satisfy (6) and (7) for the rule δ ∗

are called least favorable in F0∪F1. Moreover, δ ∗ is clearly a Neyman-Pearson test
at ( f ∗0 , f ∗1 ) and α .
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An interesting special case where F0 and F1 represent the following classes of
stationary and memoryless processes has been extensively studied by Huber [6].

F0 = { f (v) = (1− ε0) f0(v)+ ε0h(v), v ∈R,h ∈H}, (8)

F1 = { f (v) = (1− ε1) f1(v)+ ε1h(v), v ∈R,h ∈H} (9)

where R is the real line, H is the class of all symmetric density functions, ε0,ε1 ∈
(0,1) and v is some element of the feature vector v [7]. The robust detector under
the classes of distributions defined in (8) and (9) is the likelihood ratio test designed
for the corresponding least favorable f ∗0 , f ∗1 , which trims data that exceed certain
threshold values, thereby eliminating the outliers.

4 Nonparametric Detection

The measurement and modeling uncertainty is specified by a relatively restricted
family of distributions in (8) and (9). A detector that performs well for a broader
class arises from the nonparametric procedures. Let F−θ represent the class of sta-
tionary and memoryless discrete-time processes with common mean at −θ . Each
member of the class is denoted by the first-order probability density function f−θ .
The hypotheses H1 and H0 are described by Fθ and F−θ , respectively. A decision
rule consists of the triplet (T (v),λ ,r) where T (v) is the corresponding test function,
λ is the threshold and r is the randomization constant. The rule or test (T (v),λ ,r) is
nonparametric in (Fθ ,F−θ ) if and only if it induces the same false alarm probability
for all f−θ ∈ F−θ [7].

Let F denote the class of distributions obtained from either Fθ or F−θ when the
mean is set to zero for all members. For some f ∈ F , suppose that fθ is the PDF
induced by f when its mean is changed from zero to θ . Let n(α,β ,Tfθ ) be the num-
ber of data required by a Neyman-Pearson rule to attain the detection probability
(also known as the power of the test) β while satisfying the false alarm constraint
α when testing fθ against f−θ . Likewise, let n(α,β ,T, fθ , f−θ ) be the sample size
needed by the nonparametric test of fθ versus f−θ to achieve the power β with
false alarm α . The efficacy, EFF, and the asymptotic relative efficiency, ARE, are
defined as

EFF = lim
n→∞

(
∂
∂θ E[T (v)| fθ ]

∣∣
θ=0

)2

n ·var(T (v)| fθ )
,

and

ARE = lim
θ→0

n(α,β ,Tfθ )
n(α,β ,T, fθ , f−θ )

.

Efficacy indicates the asymptotic discrimination ability of the test when the hypothe-
ses are close to each other. Asymptotic relative efficiency measures the additional
sample size needed by the nonparametric test to yield the same power as the
optimal Neyman-Pearson rule when the two hypotheses are asymptotically close to
each other.
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4.1 Sign test

The sign test was originally introduced as an ad hoc formalization but it also evolves
as a limiting case of the robust test for the classes in (8) and (9). The associated test
function is

T (v) =
1
n

n

∑
i=1

sgnvi

where

sgnvi =
{

1 if vi > 0,
0 if vi ≤ 0.

The corresponding decision rule is

δS =
{

1 if T (v) > λ ,
0 if T (v) ≤ λ ,

where the threshold λ is chosen such that the false alarm constraint is satisfied.
The sign test is nonparametric in (Fθ ,F−θ ) for any n, and for fθ and f−θ gen-

erated by Gaussian PDF with variance σ2, its efficacy and asymptotic relative effi-
ciency are EFF = 8/πσ4 and ARE = 2/π [7]. Thus, the sign test requires about
57% more samples to reach the same performance level as the Gaussian-optimal
Neyman-Pearson rule (as θ → 0), but the latter experiences performance degrada-
tion when the Gaussian distribution is not actually a valid uncertainty model.

4.2 Optimal rank test

The rank tests first order the measurements {v1, . . . ,vn} from smallest to the largest
and then take the signs of the ordered data. The new vector z = [z1 · · · zn]T of the
signs, where

zi =
{

1 if the ith ranked datum in v has nonnegative sign,
0 if the ith ranked datum in v has negative sign,

is called the rank vector.
Given θ > 0 and some f ∈ F , the optimal-at- f rank test is

δO =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if
Kfθ (z)

Kf−θ (z) > λ ,

r if
Kfθ (z)

Kf−θ (z) = λ ,

0 if
Kfθ (z)

Kf−θ (z) < λ
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where

Kfθ (z) = n!
∫

· · ·
∫ n

∏
i=1

f (vi −θzi)dv,

Kf−θ (z) = Kfθ (−z),

and λ and r satisfy

P
{

Kfθ (z)
Kf−θ (z)

> λ | f−θ
}

+ r ·P
{

Kfθ (z)
Kf−θ (z)

= λ | f−θ
}

= α.

For the optimal-at- f rank test, ARE = 1, and the efficacy at f is the Fisher infor-
mation, i.e.,

EFF =
∫
R

[ f ′(x)]2

f (x)
dx

so long as f ∈ F possesses a Taylor series expansion [7].

4.3 Wilcoxon rank test

The Wilcoxon rank test [12] is as follows.

δW =

⎧⎨
⎩

1 if ∑n
i=1 izi > λ ,

r if ∑n
i=1 izi = λ ,

0 if ∑n
i=1 izi < λ ,

with λ and r such that

sup
f−θ∈F−θ

(
P

{
n

∑
i=1

izi > λ | f−θ

}
+ r ·P

{
n

∑
i=1

izi = λ | f−θ

})
= α.

While the optimal rank test is the Neyman-Pearson test for the rank vector z
extracted from a particular f ∈ F , the Wilcoxon test is designed for the entire
classes (Fθ ,F−θ ). For Gaussian PDF with variance σ2, the Wilcoxon rank test has
ARE = 3/ π < 1 and EFF = 6/πσ2 [7].

The tests described in this section are nonparametric in both (Fθ ,F−θ ) and
(F2θ ,F), which ensures broader applicability.

5 Generalized Likelihood Ratio Test

So far we have assumed that model parameters were known. In practice, these have
to be estimated beforehand or simultaneously with the detection procedure. In the
latter case, the generalized likelihood ratio test (GLRT) offers a joint estimation and
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detection methodology to solve the composite hypotheses that are represented by
the corresponding density functions as below.

H1 : f1(v|x),x ∈ X1,

H0 : f0(v|x),x ∈ X0.

Suppose that x̂i is the maximum likelihood estimate of x under Hi, i = 0,1, i.e.,
x̂i = argmaxx∈Xi fi(v|x). Then, the generalized likelihood ratio (GLR) is

LGLR(v) =
f1(v|x̂1)
f0(v|x̂0)

.

If the null hypothesis H0 is the absence of UXO, then x = x0 with no need for
estimation. The GLRT is

δGLRT =
{

1 if LGLR(v) ≥ λ (α),
0 if LGLR(v) < λ (α)

where λ (α) is such that
max
x∈X0

eI(δGLRT,x) = α

with the type I error now defined as

eI(δGLRT,x) = P{LGLR(v) > λ (α)|x,H0 is true} = α.

Model inversion to estimate x from the measurements is sensitive to errors in sensor
positions, and Bayesian methods employing the GLRT that improve the detection
performance are proposed in [10].

6 Conclusion

We have provided a brief summary of the statistical tools that are available for
the detection of UXO. The application of the tests require accurate models that
relate various UXO parameters to observed data, as well as a good distributional
description for the uncertainties in measurements and modeling. Performance can
be assessed by plotting eII versus eI, the so-called receiver operating characteristic
(ROC). The ROC curve gives the detection probability for a given false alarm rate.
To combine detection and ordnance classification, it is possible to set up a multiple
hypothesis testing problem where each hypothesis Hi, i �= 0, corresponds to a possi-
ble UXO type with the associated feature vector, and H0 still represents the absence
of UXO. The need for accurate representation of measurement uncertainties can be
alleviated by using model-free approaches such as the support vector machine which
relies on preprocessing with training data [15]. For multiple closely spaced UXO
parts, blind source separation methods such as independent component analysis can
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precede the UXO detector [5]. Deploying multiple sensors with distinct distances
from the buried UXO can deliver significant classification performance improve-
ment as demonstrated in [13]. The reader is referred to the bibliography and the
references therein for further exploration into UXO detection.
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Low Frequency Radar for Buried Target
Detection

Hugh Griffiths1 and Alastair McAslan2

Abstract The detection and mitigation of unexploded ordnance (UXO) is recog-
nised to be a serious global issue. Many millions of landmines have been deployed
in recent conflicts, with few records of what has been laid and where. As well as
landmines, other types of UXO include unexploded shells, mortar bombs and mis-
siles, scatterable mines fired from mortars or artillery or dropped from aircraft or
helicopters, and cluster munitions. Not only do such weapons cause injury and death
to innocent civilians, but also they deny the use of substantial areas of land for agri-
cultural and other economic purposes, which may be critical in countries where the
threshold of poverty is already low. Ground-penetrating radar (GPR) is one of a fam-
ily of sensors that may be used to detect UXO. In addition, GPR may also be used to
detect other classes of target such as Improvised Explosive Devices (IEDs), weapons
caches, and tunnels; further applications of GPR include archaeology, forensics, and
the detection of buried pipes and cables. The purpose of this chapter is to present
an account of the principles of ground-penetrating radar and their use in detecting
buried UXO.

Keywords: Landmines, unexploded ordnance, radar, impulse radar

1 Historical Background

The history of landmines goes back a long way [7]. The Emperor Caesar used pits,
arrays of stakes, and devices called caltrops to impede the progress of the Gauls
in the siege of Alesia in 52 BC [5]. Similar devices were used in the battle of
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Table 1 Numbers of the German anti-tank Tellermine deployed in the World War II [7].

1939 108,100
1940 102,100
1941 220,900
1942 1,063,600
1943 3,414,000
1944 8,535,500

Bannockburn (1314) and the Wars of the Roses (1455–1485). After the discovery of
gunpowder in the 13th century explosive charges were used in siege warfare.

This led to the development of the fougasse – essentially an underground cannon,
placed forward of a defensive position to shower rocks and debris over a wide area.

The naval mine was developed and used during the American Civil War (1861).
In both the American Civil War and the Boer War, electrically-operated fougasses
and mines were laid, as well as pressure-operated landmines. In the First World
War, British engineers tunnelled under the German trenches and laid huge explosive
charges [4]. Anti-personnel mines were not much used, but with the introduction of
the tank in September 1916, anti-tank mines were soon introduced, initially impro-
vised from shells.

In the Second World War, both Anti-tank (AT) and Anti-personnel (AP) mines
were extensively used, especially by the Germans. Considerable advances were
made in mine technology, and in the technology of mine detection and mine
clearance.

Table 1 above indicates that the Germans kept careful records of the number, and
indeed the locations, of mines that they laid. However, whilst in post-World War
II conflicts mines have been used extensively, armies have not necessarily been so
careful in marking and recording the location of minefields.

Of the 48 countries in Africa, more than half are known to be mine-affected.
There are minefields in North Africa that remain from World War II. In Zimbabwe
(formerly Rhodesia) there are an estimated 1.5 million landmines, some of which
have been laid at random and only 10% of which have been removed. Somalia,
South Africa, Rwanda, Chad, Angola and Mozambique are also heavily affected.

Afghanistan and Cambodia are two of the most mine-infested countries of the
world. In the Korean War (1951–1953) some ten different countries made use of
anti-personnel mines. Some fields were so thick with AP landmines that they were a
constant threat even to those that laid them. In the Vietnam War entire villages were
surrounded by landmines, hand laid or dropped from the air, and no records were
kept of the mines laid. In Cambodia, humanitarian groups have demined areas just
to have them remined again. Cambodia has more amputees as a percentage of the
population than any other country in the world.

In Bosnia–Herzegovina, an estimated 3–6 million mines still remain uncleared.
Some maps were kept and have been turned over to the UN. In WWII landmines
were not used extensively in Europe until the end of the war. Minefield clearance
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Fig. 1 A minefield in the Falkland Islands.

is still being undertaken in countries such as Belgium, while in France land is still
contaminated by landmines.

In El Salvador in 1980–1991, mining was done without any charting, so many of
the original mine-layers were recruited for the demining operations. In a 1-month
conflict in 1995, tens of thousands of landmines were laid down on the borders
between Ecuador and Peru. Some efforts have been made to demine the area, but
about 6,000 mines still remain. In the Falklands War (1982) extensive use of anti-
personnel mines was made by the Argentine forces. Some clearance programmes
were established, but were short-lived due to heavy casualties on demining units, so
the minefields still remain (Figure 1).

Over 175 million landmines have been deployed since the end of World War II,
including more than 65 million since 1980. Mines are seen by warring factions as
attractive weapons as they are relatively cheap to acquire, easy to lay and invari-
ably have a devastating effect on the target. They differ from most other weapons,
however, by remaining active in the ground long after hostilities have ended. They
lie in fields and woodlands, alongside roads and footpaths, and in villages creat-
ing a humanitarian problem – with social, economic and environmental dimensions.
Anti-personnel landmines are designed to maim rather than to kill, since a wounded
combatant is more trouble to an army than a dead one. Not only do such weapons
take their toll on victims and families, but the presence of landmines in and around
communities, on roads, in farmland, and near rivers and wells prevents the produc-
tive use of land, water and infrastructure for development.

The term ‘minefield’ conjures up an image of flat open countryside, in which
rows of anti-tank and anti-personnel mines have been carefully laid, surveyed and
recorded, and which are bounded by minefield fences marked with white tape and
red warning triangles. In reality the situation is quite different. Minefields are often
laid in a hurry by poorly trained and ill equipped armies; mines are rarely laid
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according to a pattern; booby traps may have been set up; and the area may be
scattered with other forms of unexploded ordnance (UXO), from small items such
as phosphorus grenades, to artillery shells and missiles containing a deadly cocktail
of explosives and fuel.

In some situations the ground may be contaminated by scatterable mines fired
from mortars and artillery, or dropped from helicopters and aircraft. It is estimated
that two million tons of bomblets were dropped from US aircraft on Vietnam, Laos
and Thailand in the 1970s, aimed at disrupting movement along the Ho Chi Min
Trail. The bomblets were anti-personnel devices designed to explode on impact with
the ground, although it is now assessed that 25% failed to explode and they remain
an ongoing hazard to communities.

Of more recent concern is the use of cluster munitions. These are small weapons
– often no larger than a small cola can – containing a powerful explosive charge.
They are packed into containers and dropped from aircraft or fired from artillery
systems. Cluster munitions have a high failure rate; more than 20% fail to detonate
on reaching the ground and remain hazardous until they are cleared. Large numbers
were dropped in the Balkans, Afghanistan, Iraq, and more recently in the Lebanon.

So after the guns fall silent, and when the mines and UXO no longer have a
military purpose, the battlefield remains dangerous, and explosive remnants of war
have a major impact on communities attempting to recover from years of conflict.

2 The Role of Technology

Over 1,000 km2 of land have been cleared of mines and UXO since the start of mod-
ern humanitarian demining in the early 1990s. In its 2007 report, the international
NGO Landmine Monitor estimates some 140 km2 were cleared in 2006, as well as
over 310 km2 of UXO and other explosive remnants of war. This is a remarkable
achievement, and is a significant improvement on clearance rates of a decade ago.
But a massive challenge remains, and will continue for many more years – long
after international interest and funding has moved on to address other issues and
humanitarian concerns.

There is a pressing need to find smarter ways of clearing landmines and UXO.
This can be achieved in three ways: first, by improving the quality of the information
on the threat and its impact, and from this improved information to prioritise better
the use of clearance teams; second, by developing new survey and clearance proce-
dures; and third, by developing and deploying better equipment, including improved
sensors.

Over the past 15 years there has been substantial interest in finding a technical
‘silver bullet’. These ideas have included experimental prodders (with acoustic sen-
sors to detect the presence of metals and plastics), improved handheld metal detec-
tors, nuclear quadrupole detection, X-ray backscatter, vapour and chemical analy-
sis detectors, laser detection, the use of animals and insects, infrared detectors and
exploiting other parts of the electromagnetic spectrum including ground penetrating
radar (GPR).
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Indeed, following the Falklands conflict of 1983 the British Government funded
considerable research and development into smarter ways of locating and neutralis-
ing the landmines which scattered the islands, many buried in peat or scree which
would prove difficult to detect and clear using conventional metal mine detectors
and prodders. This work was halted in 1986 when it was clear that the systems
being proposed could not achieve the substantial improvements in clearance rates
being demanded by the British Government.

Notwithstanding this absence of a ‘silver bullet’ there is still a need to find and
apply better technologies to demining [9].

3 The Operational Needs

In 2000/01, the Geneva International Centre for Humanitarian Demining (GICHD)
was invited by the United Nations to establish a priority list of operational needs that
could benefit from improved equipment, processes and procedures. The GICHD’s
Study of Global Operational Needs [14] which was carried out in partnership with
Cranfield University identified a number of generic operational needs and equip-
ment requirements. The purpose of the study was to give guidance to research and
development, and provide the user and donor communities with the means to assess
more effectively the benefits and cost of technology to mine action programmes.
The ultimate aim of the study was to encourage the design, development and manu-
facture of safer, better and more cost-effective equipment.

The findings and recommendations of the study are still relevant today. Of the
12 capability areas identified by the study two were considered as potentially ben-
efiting greatly from better equipment: the close in detection of landmines, and sys-
tems which could more accurately determine the outer edge of mined areas. In par-
ticular, the study recommended that such equipments should not only have improved
detection accuracy but a much lower rate of false alarms – which leads to ineffi-
ciency and can result in complacency of the deminers.

One area of technology where there have been demonstrated improvements in
mine detection accuracy and false alarms is in the application of Ground-Penetrating
Radar (GPR).

4 Fundamentals of Ground-Penetrating Radar

GPR has been developed over the past couple of decades as a means of detecting
buried targets such as landmines. Other applications include the detection of buried
utilities such as pipes and cables, as well as archaeological and forensic applica-
tions. The technologies also have some similarities to those used for through-wall
radar detection and imaging [1, 13], foliage penetration (FOPEN) radar, and for
glaciological sounding [12].
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Fundamental to all of these applications are the propagation characteristics of
electromagnetic radiation through materials such as soil and concrete and at the
boundary between air and such materials, and how these characteristics depend on
frequency and on material properties. In general it can be appreciated that a lower
frequency may give lower propagation loss than a higher frequency, but will in gen-
eral give poorer resolution, both in range and in azimuth.

Daniels [8] has provided a comprehensive account of the design factors in
Ground Penetrating Radar and examples of systems and results. He states that ‘GPR
relies for its operational effectiveness on successfully meeting the following require-
ments:

• Efficient coupling of electromagnetic radiation into the ground
• Adequate penetration of the radiation through the ground having regard to target

depth
• Obtaining from buried objects or other dielectric discontinuities a sufficiently

large scattered signal for detection at or above the ground surface and
• An adequate bandwidth in the detected signal having regard to the desired reso-

lution and noise levels

Table 2 shows the losses for different types of material at 100 MHz and 1 GHz.
This shows that the loss is relatively low for dry materials, but that the loss increases
substantially with moisture content. It also shows how the losses increase with fre-
quency. However, it should also be understood that the attenuation of an acoustic
signal decreases with moisture content, so acoustic (sonar) sensors may in a sense be
considered complementary to radar sensors. Fusion techniques to optimally exploit
the strengths of both types of sensor may therefore be of interest [11].

Daniels also presents a taxonomy of system design options. The majority of
systems use an impulse-type waveform and a sampling receiver, processing the
received signal in the time domain. More recently, however, Frequency-Modulated
Continuous Wave (FMCW) and stepped frequency modulation schemes have been
developed, which allow lower peak transmit powers. Both types of system, though,
require components (particularly antennas) with high fractional bandwidths, which
are not necessarily straightforward to realise.

Table 2 Material loss at 100 MHz and 1 GHz [8]. (IET, 2004.)

Material Loss at 100 MHz Loss at 1 GHz

Clay (moist) 5–300 dB m−1 50–3000 dB m−1

Loamy soil (moist) 1–60 dB m−1 10–600 dB m−1

Sand (dry) 0.01–2 dB m−1 0.1–20 dB m−1

Ice 0.1–5 dB m−1 1–50 dB m−1

Fresh water 0.1 dB m−1 1 dB m−1

Sea water 100 dB m−1 1000 dB m−1

Concrete (dry) 0.5–2.5 dB m−1 5–25 dB m−1

Brick 0.3–2.0 dB m−1 3–20 dB m−1
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5 Imaging and Resolution

We can establish some of the fundamental relations for the resolution of an imaging
system. In the down-range dimension resolution Δr is related to the signal band-
width B, thus

Δr = c/2B (1)

where c is the velocity of propagation. High resolution may be obtained either with
a short-duration impulse or by a coded wide-bandwidth signal, such as a linear FM
chirp, a step-frequency sequence or a pseudo-random digital code, with the appro-
priate pulse compression processing. A short-duration impulse requires a high peak
transmit power and instantaneously-broadband operation; these requirements can to
some extent be relaxed in the case of pulse compression.

The rapid increase of attenuation as a function of frequency through most mate-
rials (Table 2) demands a low radar frequency. However, high range resolution
demands a high bandwidth (Equation (1)). Thus ground-penetrating radars will in
general have a high fractional bandwidth:

BF =
fh − fl

1
2 ( fh + fl)

=
B
fC

(2)

where fh and fl are, respectively, the upper and lower frequencies of the radar signal.
By convention, a radar with a fractional bandwidth of greater than 25% is charac-
terised as ultra-wideband (UWB) [19, 20]. In the case of an impulse-type radar fl
will tend to zero, so it can be seen from Equation (2) that such radars are inherently
ultra-wideband.

The cross-range resolution is complicated by the fact that in many cases the target
(at range r) will lie within the near-field of the antenna, i.e.

r <
2d2

λ
(3)

where d is the aperture dimension andλ is the wavelength. In the far-field, though, the
cross-range resolution is determined by the product of the range and beamwidth θB.
The beamwidth is determined by the value of d and thus the cross-range resolution
Δx at range r is given by

Δx = rθB ≈ rλ
d

. (4)

As most antenna sizes are limited by practical considerations, the cross range
resolution is invariably much inferior to that in the down range dimension. How-
ever, there are a number of techniques that can improve upon this. All of these are
ultimately a function of the change in viewing or aspect angle. Thus in the azimuth
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(cross-range) dimension the resolution Δx is related to the change in aspect angle
Δθ as follows:

Δx =
λ

4sin(Δθ/2)
. (5)

For a linear, stripmap-mode synthetic aperture, Equation (5) reduces to Δx =
d/2, which is independent of both range and frequency. Even higher resolution
can be obtained with a spotlight-mode synthetic aperture, steering the real-aperture
beam to keep the target scene in view for a longer period, and hence forming a
longer synthetic aperture.

Realistic limits to resolution may be derived by assuming a maximum fractional
bandwidth of 100%, and a maximum change in aspect angle of Δθ = 30◦ (higher
values than these are possible, but at the expense of complications in hardware
and processing). These lead to Δx = Δr = λ/2. In the last year or so results have
appeared in the open literature which approach this limit [2, 18].

Figure 2 shows that range resolution may be achieved by different methods. In
(i) the transmitted signal is an impulse waveform in the time-domain. This requires
specialised hardware to generate the high-voltage impulse in the transmitter and to
sample the echo in the receiver. In (ii) the transmitted signal is a linear FMCW sweep
and the received echo is deramped and processed in the frequency domain. The
requirements for the peak transmit power and the digital sampling and processing
rate in the receiver are considerably relaxed, but the technique does introduce range
sidelobes. These can be lowered by the usual weighting techniques, but nevertheless

Fig. 2 Form of transmitted signal and receiver processing for different GPR system options. Note
that the time axis of (i) is of considerably shorter duration than those of (ii), (iii) and (iv).
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Fig. 3 Physical layout of Ground Penetrating Radar system [8] (IET, 2004.)

the sidelobes from the direct transmit to receive antenna coupling or the strong
ground echo may mask target echo features (Figure 3). Similar comments apply to
(iii), in which the transmitted signal is a stepped-CW waveform, and (iv) in which
it is a pseudo-random biphase- or polyphase-modulated carrier. In both cases the
echo is digitised and processed with a matched filter (correlator) in the receiver. In
practice the vast majority of GPR systems are of the impulse type.

In contrast, holographic imaging techniques may be used with CW or quasi-CW
signals, giving high spatial resolution by exploiting spatial bandwidth rather than
frequency bandwidth.

In radar tomography [10] the observation of an object from a single radar loca-
tion can be mapped into Fourier space. Coherently integrating the mappings from
multiple viewing angles enables a three dimensional projection in Fourier space.
This allows a three dimensional image of an object to be constructed using conven-
tional tomography techniques such as wavefront reconstruction theory and backpro-
jection where the imaging parameters are determined by the occupancy in Fourier
space. Complications can arise when target surfaces are hidden or masked at any
stage in the detection process. This shows that intervisibility characteristics of the
target scattering function are partly responsible for determining the imaging prop-
erties of moving target tomography. In other words, if a scatterer on an object is
masked it cannot contribute to the imaging process and thus no resolution improve-
ment is gained. However, if a higher number of viewing angles are employed then
this can be minimised. Further complications may arise if (a) the point scatterer
assumption used is unrealistic (as in the case of large scatterers introducing trans-
lational motion effects), (b) the small angle imaging assumption does not hold and
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(c) targets with unknown motions (such as non-uniform rotational motions) create
cross-product terms that cannot be resolved.

Finally, image processing techniques (including singularity expansion methods,
wavelet transforms, pattern recognition techniques and neural networks) may be
used to reduce the effect of clutter and enhance targets. In general these attempt
to exploit prior knowledge of the nature of the targets and of the background noise
and clutter.

As an example of the results that can be achieved, Figure 4 shows images of a
buried antipersonnel mine at a depth of 15 cm, showing both the original image and
the results after image processing techniques have been used to enhance the target.
The mine was buried at a depth of about 5 cm at an angle of about 30 degrees,
in dry sand. In the raw image the mine target is barely evident, but after deconvo-
lution processing, in which the impulse response of the instrument is deconvolved
from the radar data [8], the improvement is clear. The third image shows the result of
applying Kirchhoff migration processing to the image, which in this case is less suc-
cessful. These show that, under the right conditions and with the use of appropriate
algorithms, significant enhancement is possible.

Fig. 4 Oblique antipersonnel mine at an angle of 30 degrees: (a) B-scan of raw data; (b) after
migration by deconvolution; (c) after Kirchhoff migration [8]. (IET, 2004.)
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Fig. 5 The MINEHOUND instrument (left), under test in Sarajevo (right) [8]. (IET, 2004.)

6 MINEHOUND

MINEHOUND (Figure 5) is a prototype low-cost, man-portable detector developed
for humanitarian demining purposes by ERA Technology, for the UK Department
for International Development (DfID). It consists of an ultra-wideband GPR and
a metal detector, with the output presented to the operator in audible form, and the
signature varies in a characteristic way as the detector is moved over a buried object.
Trial results are reported in [8].

7 The Mineseeker project

Another example of an advanced radar system for detection of abandoned UXO is
the Mineseeker project Figure 6 [6, 21]. The Mineseeker Foundation has the support
of some high-profile patrons, and represents a not-for-profit joint venture between
the Lightship Group and QinetiQ. The concept uses an ultra-wideband synthetic
aperture radar (UWB SAR) developed originally by engineers from DERA Malvern
(now QinetiQ), and gimbal-stabilised electro-optic sensors operating in the visible
and 3–5 μm IR bands, mounted on an airship platform. The airship has the particular
merits of being mobile, stable, low-cost and with long endurance, as well as the
ability to carry a substantial payload.

The pulse generator and high-speed digitiser subsystems used in the UWB radar
were developed by Kentech, the UWB antennas by researchers at Dundee Univer-
sity, and the synthetic aperture processing and target signature analysis algorithms
by Applied Electromagnetics Inc.

Basic parameters of the radar sensor are listed in Table 3 [21].
It has been demonstrated in trials that different mine targets have characteristic

signatures, so different mine types may be distinguished from each other and from
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Fig. 6 The Mineseeker airship. (Mineseeker Foundation, 2001.)

Table 3 Basic parameters of Mineseeker UWB SAR. (Mineseeker Foundation, 2001.)

Range resolution 5 cm
Azimuthal resolution 0.5 m
Instantaneous bandwidth >3 GHz
Frequency range 200 MHz to over 3 GHz
Pulsewidth of impulse waveforms >100 ps
Peak power 1 MW

other false alarm debris (Figure 7). These examples also show the information that
may be obtained from the polarimetric signatures of mines and other UXO, though
in practice the additional hardware complication of a polarimetric radar makes these
techniques very difficult.

MINESEEKER’s coverage rate (in terms of location and delineation) of more
than 100 m2/s is claimed, in contrast to 20–50 m2/day by manual demining.

The preceding are just two examples of practical GPR systems; many more are
described in [8].

8 Management of Humanitarian Demining Programmes

Whilst the emphasis here has been on the technology used to detect and neutralise
landmines and other UXO, equal prominence should be given to the management
of demining programmes, since even the most sophisticated technology is of little
use unless deployed in a systematic and properly managed way.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 7 Signatures of different targets obtained in trials with the Mineseeker UWB SAR: (a)
surface-laid calibration sphere, HH polarisation; (b) surface-laid mortar round (inert), VV polar-
isation; (c) surface-laid RBL755 cluster bomb sub-munition (inert), VV polarisation; (d) above-
ground PMR2a stake mine (inert), VV polarisation; (e) buried TMM1 metal anti-tank mine (inert),
VV polarisation; (f) buried RBL755 cluster bomb sub-munition (inert), HH polarisation; (g) buried
mortar round (inert), VV polaristion; (h) buried handgrenade (live), VV polarisation; (i) buried
PMR2a (live), VV polarisation. (Mineseeker Foundation, 2001.)
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Fig. 8 Mine action.

Work over more than two decades at the Defence College of Management and
Technology, Shrivenham (part of Cranfield University and of the Defence Academy
of the United Kingdom, and led by Alastair McAslan) has developed programmes
in the management of humanitarian demining, and earlier this year received the
Queen’s Anniversary Prize for Higher and Further Education, from Her Majesty the
Queen, for this work.

‘The management of mine action (Figure 8) at the national level is, essentially,
about ensuring that programmes, projects and day-to-day mine action activities are
carried out effectively, efficiently and safely. This involves defining the requirements
through assessment missions and site surveys, prioritising requirements, develop-
ing plans, securing funding, implementing projects and confirming that the require-
ments have been met’ [16, 17].

‘Resilience’ may be defined as understanding the risks to nations and organisa-
tions from factors as diverse as terrorism, natural disasters, health pandemics and IT
fraud, and hence firstly being able to minimise the risks and effects, and secondly
ensuring that the organisation is able to recover as quickly as possible. Demining
therefore represents one specific aspect of Resilience.

In March 2008 Cranfield University launched an MSc course in Resilience [22],
aimed at professional managers who wish to apply rigorous academic thought to
practical problems in their sector, and to acquire the necessary knowledge and
skills to analyse threats and build resilient organisations and systems. The course
includes an elective module of Managing Post Conflict Challenges, which has been
designed for national and international managers operating in mine-affected coun-
tries (Figure 9). Students on the course include graduates of the University’s national
mine action management training programmes.
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Fig. 9 Developing national management capabilities consists of training national managers in
mine-affected countries to run mine clearance programmes for themselves.

9 Conclusions

All of the foregoing has attempted to show first of all the extreme nature of the
UXO detection and disposal problem. Many millions of landmines and other types
of ordnance have been deployed in conflicts, with few records of what has been laid
and where. Not only do such weapons cause injury and death to innocent civilians,
but also they deny the use of substantial areas of land for agricultural and other eco-
nomic purposes, which may be critical in countries where the threshold of poverty
is already low.

Low-frequency ground-penetrating radar represents one of a number of sen-
sors that may be deployed to detect such targets. It is important to understand the
strengths and weaknesses of radar techniques for these purposes, and the synergy
with other types of sensor. Under favourable (i.e. dry) ground conditions and at
relatively low radar frequencies penetration to significant depths can be obtained.
However, low frequencies are unable to support wide radar bandwidths, so it is dif-
ficult to obtain high resolution at the same time as significant penetration.

Whilst such sensors must always respect the laws of physics, improvements in
RF hardware, in digital processing hardware and in processing algorithms mean that
steady advances will continue to be made. One promising area is in the complemen-
tarity of other types of sensor and hence of data and image fusion techniques to
better exploit the strengths of each.
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Abstract In this chapter, the original advanced algorithms for stepped-frequency
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tor, it is shown that the processor VIRTEX II Pro is suitable for implementation
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1 Introduction (UXO Signals and a Multi Sensor Approach)

Ground penetrating radar (GPR) is a well-known method of subsurface exploration,
which becomes extremely important for many environmental applications such as
unexploded ordnance (UXO) detection and geophysical implementation [8]. It is
well-known that most commercial GPR systems are ultra-wideband pulse radars,
in which range resolution is determined by the bandwidth of the transmitted pulse.
In these GPR, high range resolution is achieved by transmitting very short pulses
(or frequency-modulated pulses) to obtain the required bandwidth. The frequency-
stepped processing method is a technique developed to overcome the power band-
width limitations of pulse radars.

In this chapter, GPR range profile formation is carried out by reconstruction of
a wideband chirp by combining a set of stepped-frequency chirp signals in the time
domain. In order to optimize the parameters of the stepped-frequency algorithm,
a simple convolution-based algorithm for simulation of echoes from multi-layered
subsurface media has been developed. As a result, a simple algorithm for simulation
of frequency-stepped GPR images of multi-layered media has been developed for
parameter optimization of the basic GPR signal and image processing [3, 5].

Different approaches and algorithms for the basic GPR signal and image process-
ing are considered and studied in order to improve the image quality of underground
objects and enable a recognition of objects and estimation of their parameters. The
results of the study described in [1–6, 9, 10] show that different approaches and
algorithms for signal and image processing generally lead to similar results. How-
ever, in different situations, there can be alternatives. The results described here are
obtained in cooperation with MPS Ltd., the Institute of Information Technologies
(IIT-BAS) and the Institute for Parallel Processing (IPP-BAS), within the project
“Digital Ground Penetrating Radar” financially supported by the National Innova-
tion Fund (IF-02-85/2005-2007).

According to [8], underground objects of interest (e.g. pipes) are very similar
to unexploded ordnance (UXO). Therefore, our first conclusion is that algorithms
developed for GPR imaging and also for simulation of GPR images can be success-
fully used in a system for detection of unexploded ordnance (UXO).

Our second conclusion is that the multi-sensor unexploded ordnance detection
system (MUDS) approach, usually leading to image improvement, and the parame-
ter estimation of unexploded ordnance (UXO) by using different types of sensors
can also be successfully applied to the same GPR sensors with different algorithms
for signal and image processing.

2 Stepped-Frequency GPR Imaging

The novelty of the results obtained in [5] is that two stepped-frequency methods
intended earlier for SAR applications are used for GPR imaging and implemented
on the base of RSPs of Analogy Devices. These methods construct a synthetic
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high-resolution range profile by transmission of a burst of narrowband LFM pulses
with frequency bands separated by a fixed step. The first of them constructs the
wideband signal in the time domain as a combination of stepped-frequency nar-
rowband chirps. The other method constructs the wide frequency band of a wide-
band signal as a combination of the frequency bands of stepped-frequency narrow-
band chirps. In that case, the range resolution of a synthetic range profile produced
by GPR depends on the whole frequency range of the transmitted pulses. Starting
from the requirements to implement the stepped frequency processing on the base of
RSP AD6624 and AD6624A, four optimal parameter sets of the stepped-frequency
processing are proposed for its implementation in GPR. The criterion of optimiza-
tion was the minimal main lobe width and the minimal sidelobe peaks of the output
signal in a synthetic range profile of a homogeneous subsurface medium containing
a point target. The first variant of optimal parameter sets corresponds to stepped-
frequency GPR operating at 4.6–38.2 MHz, which generates synthetic range pro-
files with the range resolution of 1–2 m by transmitting 14 narrowband chirps at
each GPR position. The simulation results show that the method of constructing a
range profile in the time domain is a more appropriate one because it produces the
synthetic range profile with lower noise.

2.1 Time-domain processing

The time-domain technique uses a sequence of stepped-frequency narrowband
waveforms to produce a high-resolution synthetic range profile. In the time domain,
a long wideband chirp is constructed from M narrowband chirps, each of duration
Tp, separated in time by a repetition interval T . The central frequencies of narrow-
band chirps are spaced by step Δ f . Since the spectrum of each narrowband chirp
is a fraction of a constructed wideband chirp, all transmitted chirps should have the
same frequency rate:

b1 = b2 = ... = bM = b = Δ f /Tp. (1)

The total bandwidth of a reconstructed wideband pulse is expressed as:

ΔF = fmax − fmin = Δ f M. (2)

The central frequency of a transmitted narrowband chirp changes as:

f0,m = fc +[m− (1−M)/2]/Δ f , where fc = ( fmin + fmax)/2, m = 1, ...,M. (3)

The transmitted pulse belonging to the same burst can be described by:

vtx(t,m) = p(t)exp( j2π f0,mt), where p(t) = Arect(t/Tp)exp( jπbt2). (4)
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The pulse reflected from a point scatterer located at distance d is a time-delayed
version of the transmitted pulse, i.e.:

vrx(t,m) = vtx(t − τ,m), m = 1, ...,M. (5)

The time delay in (5) is τ = 2d/V , and V is the velocity of electromagnetic wave
propagation. After quadrature demodulation, the received signal at baseband is
given by:

vbb(t,m) = vrx(t,m)exp(− j2π f0,mt) = p(t − τ)exp(− j2π f0,mτ). (6)

The construction of a synthetic range profile is performed by the following process-
ing steps:

• Upsampling. In order to avoid overlaps in the constructed spectrum, the base-
band signals have to be upsampled by a factor of M, where M is the number of
transmitted pulses.

• Frequency shift. The frequency shift of vbb(t,m) is performed in the time
domain as:

v
′
bb(t,m) = vbb(t,m)exp( j2πδ fmt), where δ fm = [m+(1−M)/2]Δ f . (7)

• Phase correction. In order to avoid phase discontinuities in the wideband sig-
nal, the phase of each narrowband pulse must be corrected by a phase-correcting
term, given by:

Φm = exp( jπbT 2
p [m+(1−M)/2]2). (8)

• Time shift. Before coherent summing each narrowband pulse is shifted in the time
domain by:

δ tm = [m+(1−M)/2]/Tp. (9)

• Coherent summing. In the time domain, the wideband pulse v
′
(t) is formed by

coherently summing all the narrowband signals v
′
bb(t,m):

v
′
(t − τ) =

M−1

∑
m=0

v
′
bb(t −δ tm,m)Φm =

= Aexp[ jπb(t − τ)2]
M−1

∑
m=0

rect(
t − τ−δ tm

Tp
) = Aexp[ jπb(t − τ)2]rect(

t − τ
MTp

). (10)

The bandwidth and duration of the wideband chirp v
′
(t) are equal to MΔ f and MTp,

respectively.
• Pulse compression. The final operation of constructing a synthetic range profile

is performed by filtering the constructed wideband pulse (10). The filter impulse
response is formed as the time-reversed conjugate of the wideband pulse, which is
constructed from the transmitted narrowband pulses. The signal at the compression
filter output is given by:

r(t) =| FFT−1S( f )V ( f ) |,S( f ) = FFT [s(t)],V ( f ) = FFT [v
′
(t − τ)] (11)

where s(t) = con j[v
′
(t − τ)]W (t) under τ = 0, and W (t) is the weighting function.
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Fig. 1 Time-domain method. Fig. 2 The synthetic range profile.

2.2 Simulation results

The block scheme for formation of a synthetic range profile using the stepped
frequency algorithm in the time domain is shown in Figure 1. According to the
block scheme, the left channel for signal processing performs echo-signals while
the second channel forms the impulse response of a compression filter. The exam-
ples of both, the wideband signal and the synthetic range profile, constructed in
the time domain by combining 14 narrowband chirps are shown in Figure 2.
Comparison analysis of synthetic range profiles given in [5] shows that the two
stepped-frequency processing methods are of equivalent quality. However, it can be
seen that the first method is a more appropriate one because it produces the synthetic
range profile with lower noise.

3 Simulation of Stepped-Frequency GPR Images

At each transmission of a narrowband pulse, the EM wave radiated from a transmit-
ter antenna travels through the multi-layered media with a velocity that depends on
the electrical properties of layers. If the EM wave encounters a boundary between
two layers with different electrical properties, a part of the EM energy is reflected
or scattered back to the surface, while the rest of the energy continues to travel
downward. The radar receiver collects the return signal that contains several returns
from various layers of different dielectric properties. There are a variety of meth-
ods for simulation of GPR return signals. For a basic first-order simulation, a sim-
ple convolution-based modeling technique can be used [6]. More accurate results,
taking into account the effects of scattering due to random surfaces and the three
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dimensional antenna beam pattern can be obtained using advanced methods such as
the Finite Difference Time Domain (FDTD) method, at the cost of complexity and
computational time.

The novelty of the results obtained in [6] is that a sophisticated convolution-
based signal model is proposed for simulation of stepped-frequency GPR images.
This model takes into account the basic radar parameters (energy potential, fre-
quency, antenna beamwidth, number of transmitted chirps, wideband of transmitted
chirps and so on) and the basic parameters of a multi-layered medium (number of
layers, dielectric properties of layers, depth of layers, attenuation) and, therefore,
it results in more accurate simulation of stepped-frequency GPR images. The sim-
ulation results show that this algorithm can be successfully used for analysis and
parameter optimization of the signal processing algorithms in stepped-frequency
GPR.

3.1 Echo signal simulation

The synthetic high-resolution range profile is constructed by transmission of nar-
rowband LFM pulses with frequency bands separated by a fixed step. At the m-th
transmission of a narrowband LFM pulse, the signal reflected from a medium with
L layers can be described as:

r(m, t) = r0(m, t)+
L

∑
k=1

μm,k
√

SNRks(m, t)∗δk(m, t − τk)+N0(m, t) (12)

where r0(m, t) is the direct normalized pulse from transmitting to receiving anten-
nas; s(m, t) – the transmitted LFM pulse whose envelope is unity; SNRk is the signal-
to-noise ratio from the interface between layers k and (k +1); μm,k – multiplicative
noise; δk(m, t) – the impulse response of the interface between layers k and (k +1);
τk – the two-way time delay of a signal reflected from the interface between layers
k and (k +1); L – the number of layers; N0(m, t) is normalized Gaussian noise with
zero mean and unity variation; and “∗ ” denotes convolution. Using the basic radar
range equation and also taking into account the signal losses in the propagation path
from the transmitter to the receiver, the SNRk (in dB) can be evaluated as:

SNRk,dB =∏GPR,dB +σk,dB −40lg(
k

∑
j=1

zk)−LREF
k,dB −LAT

k,dB −LR1,dB −LR2,dB (13)

where ∏GPR,dB is the radar energy potential (in dB); σk,dB is the radar cross section
of the interface between layers k and (k + 1), zk is the thickness of layer k; LREF

k,dB
is the signal loss due to signal reflections from the interface between two layers;
LAT

k,dB is the attenuation loss; LR1,dB is the transmission loss from the antenna to the
material; LR2,dB is the retransmission loss from the material to the air. Typically,
for many earth materials, both LR1,dB and LR2,dB are about 2.5 dB. The signal losses
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due to reflection of a signal from the interface between layers k and (k + 1) are
calculated as

LREF
k,dB = −20lg(Γk

k−1

∏
j=1

(Tj, j+1Tj+1, j)) = −20lg(|Γk|
k−1

∏
j=1

(1−Γ 2
j, j+1)). (14)

The reflection coefficient Γk and the transmission coefficient Tk in (14) are defined
as:

Γk = (
√
εk+1 −

√
εk)/(

√
εk+1 +

√
εk);Tk =

√
4
√
εkεk+1/[

√
εk+1 +

√
εk]2 (15)

where εk is the permittivity of layer k. The attenuation loss of the material and the
radar cross section are calculated as:

LAT
k,dB = 4

k

∑
j=1

α jz j and σk = π(tan(Θ/2)
k

∑
j=1

z j)2 (16)

where α j is the attenuation constant in the j-th layer, andΘ is the beamwidth of the
transmitter/receiver antenna.

3.2 GPR image simulation

The simulation algorithm for GPR images is shown in Figures 3–4. As can be seen,
it includes two main stages: (1) – synthetic range profile formation. This procedure
is repeated for each of N positions of a transmitter/receiver system. (2) – B-mode
image formation. This procedure uses N synthetic range profiles obtained at a pre-
vious stage. According to Figure 3, simulation of M transmissions of LFM pulses
results in the signal matrix of M columns, where each column contains the echo

Fig. 3 Simulation of a range profile. Fig. 4 GPR image formation.
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signal received after transmission of a LFM pulse. The simulated signal matrix is
used for further construction of a synthetic range profile by one of the two meth-
ods, the time-domain method or the frequency-domain method [5]. According to
Figure 4, the signal matrix with N columns, containing N synthetic range pro-
files, is used for GPR image formation. The stage of image formation includes
such operations as interpolation, logarithmic-compression, quantization, and color
visualization.

3.3 Simulation results

The simulation of B-mode images of a four-layered medium is done by using the
convolution-based model described above. The simulated medium includes suc-
cessive layers of dry sand, green sand, saturated sand and granite with depths of
31, 21, 16 and 24 m, respectively. The electro-magnetic parameters of layers (rela-
tive permittivity and attenuation) are ε = (4;9;15;9) and α = (0.03;0.1;0.3;0.2),
respectively.

The following radar parameters are used for calculation of the SNR for each
layer: radar energy potential −20 dB; antenna beamwidth −200; pulse repetition fre-
quency -300 kHz; number of LFM pulses needed for construction of each synthetic
range profile −14, frequency bandwidth of a single LFM pulse −2.4 MHz; total fre-
quency bandwidth – [4.6÷38.2] MHz; sampling frequency at RF −80 MHz; sam-
pling frequency at baseband −2.5 MHz. The SNR calculated for a signal reflected
from layer 2 is 57 dB, from layer 3–40 dB and from layer 4–21 dB. The corre-
sponding two-way time delay of a signal reflected from layer 2 is 0.4μs, from layer
3–0.8μs, and from layer 4–1.25μs.

The time-domain stepped-frequency method is used to produce synthetic range
profiles. The synthetic range profile, constructed in the time domain, and the simu-
lated B-mode GPR image are shown in Figures 5 and 6 respectively.

Fig. 5 The synthetic range profile. Fig. 6 Simulated B-mode image.
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4 GPR Data Basic Processing

The most important basic processing algorithms which are used in [10] have been
developed earlier for GPR signal processing. The analysis of GPR data is carried
out by processing the data using different filtering techniques and gains.

The most important basic processing algorithms in our case are:
• Mean filter (vertical working low-pass filter). This filter acts on each trace

independently. The filter performs a mean over a selectable number of time samples
for each time step.

• Running average (horizontal working low-pass filter). This filter acts on the
chosen number of traces. The filter performs a running average over a selectable
number of traces for each time step.

• Stack traces (compression in horizontal direction). This filter performs a tem-
poral simultaneous stacking of a selectable number of traces.

• Median filter (pulse jamming and speckle noise reduction). This filter calculates
the median over a selectable time/range area for each time step.

• Background removal (spatial high-pass filter which makes visible the shallow
objects). This filter performs a subtracting of an averaged trace which is built up
from the chosen time/distance range of the actual section.

• Gain adjustment (corrects the attenuation losses and makes visible the deep
objects). The gain acts on each trace independently. The algorithm parameter (win-
dow length) forms a jumping window. The time window samples are normalized
in range [0–1]. The experimental results obtained enable one to conclude that the
algorithms for the basic signal processing presented in [10] can be successfully used
for analysis of GPR images.

4.1 GPR data basic processing – simulation results

In this section some results obtained by the above-mentioned algorithms are shown.
The simulated image of a subsurface medium with five layers masked by pulse
jamming is shown in Figure 7. It can be seen that after range profile formation, the
pulse jamming looks like speckle noise. In order to remove this noise, a median filter
can be applied over the selectable time/range area for each time step. In Figure 8, the
real radargram acquired by the radar GSSI SIR is contaminated with pulse jamming
(Figure 7). The same image “cleaned” by median filtering is shown in Figure 8. The
image presents five underground fuel storage tanks.

Benefits of the gain adjustment algorithm are illustrated in Figure 9. The sim-
ulated radargram of a subsurface medium with five layers that is reconstructed in
frequency is shown in Figure 9 (on the left). The gain adjustment applied to this
image is also shown in Figure 9 (on the right). The gain acts on each trace indepen-
dently. As a result, this algorithm makes the deep objects visible. The time window
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Fig. 7 Median filtering: nr. of time
samples = 3; nr. of traces = 21.

Fig. 8 Median filtering: nr. of time sam-
ples = 5; nr. of traces = 5.

Fig. 9 Gain adjustment corrects the attenuation losses.

samples are normalized in range [0–1]. However this process destroys the original
information of the signal. Therefore it is recommended to be applied only for dis-
playing the GPR radargram.

5 CFAR Filter Approach for GPR Processing

A conventional Constant False Alarm Rate (CFAR) detector is often used in primary
radar signal processing and is very effective in case of stationary and homogeneous
interference. Different approaches proposed in [7] are realized in different structures
of CFAR detectors for operating in non-stationary non-homogeneous background
and random impulse noise. One of them proposed by Rohling for a multi-target
situation is to use the ordered statistics for estimation of the noise level in the refer-
ence window. Another approach is to excise high-power samples from the reference
window before processing by the conventional cell averaging CFAR detector.

This approach is used by Goldman for design of an excision CFAR detector
(EXC CFAR) in order to improve the performance of CFAR detectors in the pres-
ence of impulse interference.

It is obvious that two CFAR processors can be used as 2D filters of GPR images.
The first of them visualizes images after adaptive thresholding (1 or 0), while the
second filter visualizes only amplitudes above the adaptive threshold.
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5.1 CFAR filters analysis

In modern radar, signal detection is declared if the signal value exceeds a prelimi-
nary determined adaptive threshold. The threshold is formed by current estimation
of the noise level in the reference window. In this processor, the target is detected
according to the following algorithm:

{
H1 : Φ(q0) = 1, q0 ≥ TαV
H0 : Φ(q0) = 0, q0 < TαV (17)

where H1 is the hypothesis that the test resolution cell contains echoes from the tar-
get and H0 is the hypothesis that the test resolution cell contains randomly arriving

impulse interference only. V =
N
∑

i=1
xi is the noise level estimate. The constant Tα is

a scale coefficient, which is determined in order to maintain a given constant false
alarm rate (CFAR).

The presence of randomly arriving impulse interference in both the test resolution
cells and the reference cells can cause drastic degradation in the performance of such
a CA CFAR processor.

To overcome the heavy noise environment where the detection is performed, a
CFAR processor with Binary Integration (CFAR BI) is proposed. This signal proces-
sor can be considered as N single dimensional CA CFAR processors working in par-
allel. The binary integration processor employs a two-step thresholding technique
for target detection. Firstly, a preliminary decision is made about each pulse of the
pulse train reflected from a target. Pulse detection is declared if the first adaptive
threshold is exceeded in the test cell. For this aim, the conventional CFAR detector
can be used. Secondly, the number of samples, where the first threshold is exceeded,
are counted and the obtained number of detections is compared with the second
threshold. Target detection is declared if the second threshold is exceeded. The
results in [7] show that the CFAR BI detector is more effective in conditions of
intensive randomly arriving impulse interference.

CFAR processors with post detection integrators are proposed for the case of a
homogeneous environment and chi-squared family of target models (CFAR PI). The
possibility for parallel processing of samples in the reference window can be real-
ized by a parallel computing architecture of the target detection algorithm. This post
detection integration (PI) CFAR processor consists of a single pulse matched filter,
square-law envelope detector, linear post detection integrator, noise level estimator
and comparator.

5.2 CFAR filters – simulation results

One real GPR image containing a waste water pipe and a land mine under a thin
layer of wet sand is presented in Figure 10. Three images after the CA CFAR
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Fig. 10 Geo-radar profile (waste water pipe
and a land mine).

Fig. 11 Geo-radar profile after CA CFAR
filtering (T = 1).

Fig. 12 Geo-radar profile after CA CFAR fil-
tering (T = 1.1).

Fig. 13 Geo-radar profile after CA CFAR
filtering (T = 1.3).

Fig. 14 Geo-radar profile after CFAR PI fil-
tering (N = 16,M = 16,T = 18).

Fig. 15 Geo-radar profile after CFAR BI
processing with binary rule 10/16).

filtering are shown on Figures 11–13. They are performed by a 16-element mov-
ing window in depth and scale constants T = 1,1.1,1.3.

When the scale factor increases the borders between layers become less visible.
For higher values of T the presence of foreign substances (land mines, pipes) is
more perceptible. When CFAR PI filtration is applied to the image from Figure
10, the result in Figure 14 is obtained. The performance is done with a rectangular
window of size (16 X 16) and T = 18.

After CA CFAR BI processing of the image from Figure 10, the result is shown
on Figure 15. The binary integration with rule 10/16 leads to the results depicted on
Figure 15. In this case the reference window is of size (16 X 16) and T = 6.
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6 Hough Approach in GPR Processing

The Hough Transform (HT) is regarded as a template matching method for feature
detection. The conventional HT approach is usually used for straight line detection
and linear objects localization. However, the HT can be successfully used for ellipse
or circle detection and even for arbitrary form detection. As a consequence, the HT
algorithm can be applied to buried mines detection transforming all image pixels by
automatic detection of circular shapes [1].

6.1 Hough transform based hyperbola detection

The standard hyperbola equation doesn’t meet all GPR constraints. To deal with the
antenna speed fluctuation and the anisotropic wave propagation an additional para-
meter is included in this equation. The slightly modified equation takes the form:

y(ti) =
√

k2(xr(ti)− x0)2 +d2
min. (18)

A parameter k may express the difference between the antenna speed and the basic
speed ν0x:

y(ti) =

√
[
k(xr(ti)− x0)

ti − tk
(ti − tk)]2 +d2

min =
√

[kν0x(ti − tk)]2 +d2
min. (19)

k may also express the variations of the velocity of wave propagation when spread-
ing through the subsurface medium:

y(ti) =
√

k2(xr(ti)− x0)2 +d2
min = k

√
(xr(ti)− x0)2 +( dmin

k )2 =

= k
√

(xr(ti)− x0)2 +D2
min = kν0x(ti − tk)

where ν0x is the accepted wave propagation velocity through the earth.
There are two approaches for hyperbola maximum localization by HT. The first

considers two consecutive standard (for straight line detection) HTs, followed by
a logical analysis of detection of the corresponding lines. The idea is to approxi-
mate a hyperbola with two straight lines (Figure 16) and find them with the standard
HT. These straight lines have the restricted space position (depending on the para-
meter variation), and the algorithm requires limited computer resources. The main
drawback is that the accumulator doesn’t contain information about coordinates of
points. As a result many hyperbolas will be detected, but most of them will be false.
A complex combinatorial algorithm has to be applied to reject ghost hyperbolas.
The second drawback concerns the horizontal hyperbola’s part. This part is usually
formed by the most powerful echoes from the target of interest with the highest
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Fig. 16 Hyperbola approximation with two
straight lines on hyperbola.

Fig. 17 Nonlinear asymmetrical weight-
ing (for the case of 60 received votes).

signal-to-noise ratio. That is the main reason to regard this part as the most reliable
source of information about the target position. But in the first approach it isn’t
considered at all.

The second approach applies the HT directly to Equation (19). In this case the
HT uses 3D parameter space. The three parameters are x0,y0,k. The larger parameter
space presumes more time for searching the peak and requires more memory. Still
the second approach is accepted as a more perspective one. The hyperbola strip
width is matched to errors, generated by the antenna speed fluctuation and by the
variable velocity of propagation. The hyperbola strip is convolved with a Gaussian
filter to weight the votes, falling from points, lying on the central (for this strip)
hyperbola, and the votes from points lying aside it (Figure 17).

6.2 Algorithm realization and simulation results

The generalized HT algorithm requires transformation of each image point from
the image (feature) space to the parameter space and accumulates their votes. Usu-
ally the GPR images include not less than 0.5 M pixels, every pixel with 216 or 28
intensity levels. The problem is to find such pixels of similar intensity lying on a
hyperbola (or near to it) that differ from the neighboring pixels. It is obvious that
the computer processing of a whole set of image points is a tedious task, requir-
ing serious computer resources. This problem is solvable, but the algorithm will be
intensity dependent, which is an undesired characteristic of every image processing
algorithm. To reduce the initial set of potential points belonging to hyperbolas, fil-
tering algorithms are applied. Real-time solution of the task includes several steps:
the GPR input; 2D FFT filtering; Canny edge detection; HT hyperbola detection;
visualization.

The strongest and almost constant echo-signals are received from borders
between different subsurface layers (Figure 18a). These echo-signals play a role as
powerful low frequency noise and should be removed from the image. The high
frequency noise is also present in the image and looks like one or a few grouped



UXO Signal Multi Sensor Detection and Estimation 155

Fig. 18 HT algorithm applications.

pixels in the image, strongly differentiating from the surrounding pixels. To reject
them a 2-D band-pass frequency filtering is applied over a raw GPR image. The
lowest and the highest several frequencies are rejected, including the constant or
DC Fourier component. The filter band-pass frequencies are matched to both the
antenna speed and the echo-signal attenuation. The band-pass frequency filtering is
realized in three steps: (1) Fast Fourier Transform (FFT); (2) Weighing the Fourier
components; (3) Inverse FFT. The image may be preprocessed in order to limit the
bandwidth. For example, Gaussian smoothing can be applied in advance.

For GPR data, the most suitable Fourier components of a 2-D frequency filter are
chosen as follows: For the highest frequencies, the last 5 Fourier components in both
directions, horizontal and vertical, are nulled. For the lowest frequencies, the first
30 Fourier components in the horizontal direction are nulled and the first 10 com-
ponents in the vertical direction are nulled (rectangular window). Using frequency
domain filtering, excellent robustness against correlated and frequency dependent
noise is achieved (Figure 18b). Careful analysis of the output image shows an
appearance of weak Gipps effects near the image borders, but without the influence
on the edge detection algorithm.

The Canny edge detector is used as an image contour detection algorithm. The
Canny method finds edges by looking for local maxima of the gradient of the
pixel intensity. The gradient is calculated using the derivative of a Gaussian fil-
ter. The method uses two thresholds for detecting the strong and the weak edges,
and includes the weak edges in the output only if they are connected with strong
edges. This method is therefore less sensitive to noise than the others, and it can
localize true weak edges. The Canny edge detector is used mainly to reduce the
number of pixels of interest by two orders of magnitude. The final result is very
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promising – the number of non-zero pixels in GPR images is reduced from 0.5 M
to several thousands. The values of chosen parameters are: 0.3 – for lower thresh-
old, 0.33 – for higher threshold and 3 – for standard deviation of the Gaussian filter
(Figure 18c).

The HT algorithm is realized as follows. Two windows, one for the left half
of a hyperbola and the second for the right half of a hyperbola are generated. Both
windows are applied to the image at the output of a Canny edge detector. As a result,
two accumulator spaces are obtained for the left and the right half of the hyperbola.
How to merge them? This step is very important for the final result of the whole
filtering. Practice proves that robust results are obtained only if there is symmetry
of votes for both parts.

The proposed algorithm realizes the common accumulator space by multiplica-
tion of contents of both accumulator spaces, element by element. It is clear that this
operation will amplificate accumulators in both parameter spaces with the equiva-
lent number of votes and will weaken accumulators with asymmetric distribution
but with the equivalent sum of votes to the previous case in both parameter spaces
(Figure 18b). Peak detection is performed after thresholding. The located objects
are displayed on Figure 18d.

7 A Bayesian Algorithm for Object Detection in GPR Data

A number of sophisticated techniques for background signal reduction and object
detection have been proposed, accounting for the nonstationary and correlated
nature of GPR signals. They usually incorporate complex models and time-
consuming learning stages for model parameter adjustment. The aim of this inves-
tigation is to use simple models with robust processing algorithms.

A GPR data processing algorithm relying on simple background and target mod-
els is suggested by Dr. Carevic, cited in [3]. It is based on the “variable dimension
filtering approach” to target tracking. Background estimation, target detection and
target-background separation are performed within a common Kalman filter-based
computational procedure. This algorithm is successfully applied to reduce the back-
ground interference signals and to detect shallow buried targets. However, in the
case of large state dimensions the target signal estimate can be unsatisfactory. Also,
additional information is needed for identifying target extent.

The novelty of the results obtained in [2, 3] is that the constructive elements of
a Kalman filtering approach are extended with the advantages of hybrid Bayesian
estimation. The set of GPR data is processed in two consecutive steps. At the first
step, a part of the algorithm of Dr. Carevic is realized: a Kalman filter (KF) esti-
mates the background signal, time-varying noise characteristics and detects possi-
ble targets. The estimated noise parameters are utilized at the second step, where an
Interacting Multiple Model (IMM) algorithm is applied. Using multiple models and
efficient Bayesian mechanism for information fusion, the IMM algorithm assesses
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more precisely the target signal and target extent. The IMM posterior model prob-
abilities assist in the decisions of the Kalman filtering procedure, increasing the
probability of target detection.

Change detection methodology provides efficient tools for automatic on-line (or
off-line) signal segmentation. The cumulative sum (CUSUM) tests are computa-
tionally simple and robust procedures, giving relevant results in the cases of slowly
time-varying signals before and after the abrupt change. A sequential CUSUM test
is developed and investigated using the innovation properties of the Kalman filter
as the next stage of the target recognition system. The experiments show promis-
ing results in terms of estimation accuracy, probability of target detection and false
alarm probability [3].

7.1 Processing algorithms

B-scan (or radargram) data contain the received GPR signals u(n,k), where n =
0, ...N −1 denotes the signal time samples and k = 0,1, ..., corresponds to the spa-
tial position of the receive antenna. In the framework of state space representation,
the radargram data are divided into P non-overlapping horizontal strips with depth
m. Based on appropriate models, a set of P KFs is run in parallel on each data
strip. Next, a set of P IMM filters is implemented, using the KFs’ output parame-
ters. The estimators work independently of each other, but exchange information for
more reliable decision making. The goal of this combined KF-IMM algorithm is to
detect and estimate target signals by fragmenting the data into target and background
regions. The algorithm can be summarized by the following two steps.

Step I: A KF for background estimation and target detection. Using a “quiescent
state model” [3] and the GPR measurements, the KF recursively produces a back-
ground state estimate with its associated state covariance. The properties of mea-
surement residual (innovation) are employed to detect the targets and to adapt the
filter to time-varying background parameters. The detection algorithm uses a χ2 test
and innovation-based statistic (normalized innovation squared (NIS) [3]) to detect
the presence of possible targets. Under the hypothesis that the target is not present
(“target-free” hypothesis), the NIS has a χ2 distribution with m degrees of freedom.
If NIS exceeds a threshold, determined by some level of significance, a procedure
for target detection is initiated. If the “target-free” hypothesis is rejected for at least
K1 consecutive spatial positions (traces) and for at least K2 of the total of P strips,
the target is considered to be detected and its size is determined proportionally to
the values of K1 and K2.

Noise identification. The correct knowledge of process and measurement noise
statistics is a prerequisite for consistent KF operation. In general, the noise statistics
are not known or partially known. The measurement error covariance can be esti-
mated on line or selected a priori according to some rules or practical considerations.
In the present realization it is determined through the variances of the radargram
data, calculated along the traces for each strip. Due to soil inhomogeneities, the
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background signal slowly varies with trace numbers k and soil layers p = 0,1, ...,P.
The filters are adapted to this feature by using time-varying process noise character-
istics. Two background adaptation procedures are implemented and experimented
here. According to the first one, the noise covariance is updated recursively by a
scaling factor. At each trace number k, the scaling factor is modified according to
logic, managed by the NIS values and a set of thresholds, selected according to χ2

distribution. A hybrid estimation technique for noise identification is also realized
and experimented.

Step II: An IMM filter for target signal estimation and target-background sep-
aration. Using multiple models, accounting for different data regions (background
or background plus target), the IMM algorithm has a potential for robust data seg-
mentation. The IMM design configuration incorporates three models. The first one
corresponds to the hypothesis that only a background is present. The process noise
covariance is obtained by the background adaptation procedure, implemented at
Step I. The target is modeled approximately as a stochastic bias with different mag-
nitudes. The next two models match to the hypotheses that a bias is available in
addition to the background. The input noise covariances are selected in such a way
that the signal jumps caused by the targets can be detected and estimated. The IMM
filter produces a combined state estimate as a weighted sum of model-matched esti-
mates. The posterior model probabilities segment the radargram data into target and
no-target areas. Comparison with the KF detection output can help for more reliable
target identification.

A great variety of change detection tests are proposed and investigated in the sta-
tistical literature. Here, the CUSUM test is appended to the KF algorithm (discussed
in Step I) in order to increase the probability of target detection.

A Kalman filter with CUSUM test for B-scan data segmentation. It is found in the
investigations devoted to GPR data processing, that the residual energy obtained by
removing background components from the GPR signal is more reliable for change
detection. Based on this inference, we apply the CUSUM algorithm to the differ-
ence between the radargram data and background state estimate. If the evolution
of this substacted signal is described by a simplified linear model, a KF can be
implemented to yield the subtracted signal state estimate. If the target is not present,
the measurement residual is zero mean, Gaussian and white. The signal anomalies,
caused by the objects, alter the parameters of the Gaussian distribution. Thus, the
task of target onset detection is transformed to the problem of change detection in
the Gaussian distribution. Practically, the change point detection is approximately
considered as the detection of changes in the mean value of the Gaussian distrib-
ution. A simple recursive two-sided CUSUM test is realized and experimented. It
confirms the decisions of the KF-based detector and provides additional informa-
tion for target onset. The CUSUM test is also applied to the transposed GPR image.
Thus, the test approximately outlines the borders between the layers and can be used
for the purposes of ground layers segmentation.
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7.2 Experimental results

Algorithm performance is studied over a series of real radargrams, acquired by GSSI
SIR Systems. The design parameters are chosen as follows: the depth of the hori-
zontal strips is m = 50 and the number of strips is P = 6. The parameters of the
KF detection algorithm are selected as follows: K1 = 15 and K2 = 2 . The com-
bined KF-IMM algorithm detects two objects in the image, presented in Figure 19a.
Outputs of the KF and IMM detectors are presented in Figures 20a, b, respectively.
Based on this information, the objects’ positions are approximately determined, as
can be seen in Figure 19b. The first object (a sewerage pipe under consideration) is
positioned over three consecutive layers (p = 2,3,4) and its presence is confirmed
by both detectors. Since the second object (positioned on strips p = 0,1) is a clut-
ter object, additional information about the pipe size is needed to discard it. The
KF-IMM algorithm detects two real objects in the image presented in Figure 21a.
The CUSUM test, implemented after the KF procedure, validates the presence of
the objects (Figure 21b).

Fig. 19 (a) Original GPR image and (b) estimated objects’ position by KF-IMM.

Fig. 20 (a) KF object detector and (b) IMM detector by KF-IMM.
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Fig. 21 (a) KF-IMM algorithm detects two pipes (b) CUSUM detector confirms the KF results
at p = 3.

7.3 Implementation of low-frequency GPR signal algorithms
using a conventional narrowband digital transmit-receiver
systems

The earlier described stepped-frequency approach with time domain reconstruction
reveals a possibility to obtain high-range resolution images with a conventional
narrow-band transmitter/receiver digital system for GPR implementation. A sur-
vey was performed to test the maximal frequency bandwidth by using a traditional
narrow-band transmit/receiver system composed of commercial signal process-
ing devices: ADC(AD6644), DAC(AD9772), receiver, synthesizer, on-line signal
processor running on a PC. In that way the whole ADSs and DACs bandwidth (60–
100 MHz) can be filled up with a set of narrow-band Receiver/Tranceiver Signal
Processors (RSP AD6624 and TSP AD6623 – 2.2 MHz) [4]. A multi-module and a
multi-channel digital system composed of narrowband receivers (RSPs) and trans-
mitters (TSPs) (Figures 22, 23) is developed in order to transmit and receive wide-
band signals within the whole frequency band of commercial ADCs and DACs. It
is a traditional hardware approach, which unfortunately requires multiple control of
a multi-module digital system and, evidently, involves high financial expenses [4].
Considering the limitation parameters of the Signal Processors (RSP AD6624 and
TSP AD6623), a Monte-Carlo approach for their parameter optimization is used.
Only four parameter sets of the stepped frequency processing are found for the
implementation in GPR. The theoretical calculations show that the role of a GPR
stepped-frequency algorithm in the time domain, quadrature demodulation and dec-
imation, can be implemented on the basis of a single 4-channel Analog Devices’s
AD6624 and AD6623 using at most two channels [4]. Figure 24 shows the MPS
signal processor based on two DSP signal processors and conventional industrial
box, which encapsulates the signal processing hardware and is used in MPS Ltd. for
a GPR system.
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Fig. 22 Block diagram of the digital receiving system based on four-channel receive signal proces-
sors (RSP) AD6624.

Fig. 23 Block diagram of the digital transmitting system based four-channel transmit signal
processors (RSP) AD662.

7.4 FPGA implementation of a low-frequency GPR
signal algorithm

This paragraph reveals a possibility for implementation of the stepped-frequency
algorithm with time-domain reconstruction on a hardware platform in real time i – a
step closer to real implementation. The hardware reconfigurable platform XUPV2P,
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Fig. 24 The conventional industrial box, which encapsulates the signal processing hardware in a
MPS Ltd. GPR system and the signal processor based on two DSP signal processors.

Fig. 25 Block diagram of the receiving struc-
ture).

Fig. 26 XUPT M Virtex-II Pro Develop-
ment System.

based on VIRTEX II Pro technology is used (Figure 26). A block diagram of the
algorithm suitable for a reconfigurable hardware implementation is presented in
Figure 25. All computational kernels from the algorithm are designed as sepa-
rate hardware blocks, and verified individually and stacked together. Considering
the previously described stepped frequency algorithm [5], a block diagram of the
receiver was made. It consists of: down conversion; interpolation; phase correction;
frequency shifting; buffering the whole constructed signal; correlation; envelope
detection, normalization and image storing. The block diagram of the receiver is
shown in Figure 25. The number of transmitted pulses is M = 14. The sampling
frequency of the signal is 80 MHz, the sampling frequency of the video signal –
2,25 MHz, minimal frequency carrier fmin = 4.6 MHz, maximal frequency carrier
fmax = 38.2 MHz, the step in frequency is d f = 2.4 MHz. The frequency sweep rate
is b = Δ f /T p. T p is the time duration of a narrow-band chirp, in our case –1.6 ms.
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The down converter is implemented according to the specifications of the Digi-
tal Down Converter (DDC) V1.0 (Xilinx IPT M) [9]. It encompasses the following
processing: Quadrature Amplitude Demodulation, Low Pass Filter and decimation
by 32. The input signal consists of 5376 samples. The tests were performed con-
sidering following parameters: System frequency rate: 100 Hz; Input signal fre-
quency: 80 MHz; Input data width: 16 bits; Output data width: B8=18 bits; Spu-
rious dynamic range of the digital synthesizer: 40 dB; Frequency resolution: 0.5
MHz; Phase angle: fixed; Output mixer width: 20 bits. The finite impulse response
(FIR) filter is included in the synthesis of the digital down converter, the decima-
tion rate is 16; the FIR filter length is 16 and the result precision is 12. The time
domain reconstruction follows. It consists of phase correction and frequency shift-
ing. Next a buffer for signal reconstruction (coherent summing) follows. It consists
of a standard storage buffer based on memory block core [2]. Considering the signal
processing principles the correlator consists of multiplication between received and
transmitted signals in the frequency domain. Therefore we put two 64-point FFT
transforms, one each for the received signal and for the transmitted signal. Next an
IFFT is needed to come back to the time domain (Figure 25) [8]. An envelope detec-
tor and a signal normalization follow (Figure 25). The envelope detector consists of
two multipliers and a sqrt block, which is based on the CORDIC v.3.0 architec-
ture [9]. The transceiver consists of a look-up table, which contains the signals for
transmitting. The number of signals is 14 and each of them consists of 128 sam-
ples. The transmitted signal is formed by the Tukey window before sending it to the
Digital to Analogue Converter.

Simulation results. The simulation results are obtained via the ModelsimT M

simulator [9]. A VHDL code was written, and studied through the ModelsimT M

simulator. After the performed simulation, the constraints for real time imaging
were defined. The correlation is performed for 108 μs. The total synthesis estima-
tion parameters are: number of slices = 8937; BRAM = 30; Mult18 x 18 = 62.
After the simulation performing the real time constraints took approximately 400
μs. According to the synthesis report, the usage of the processor was almost 75%.

8 Conclusions

The simulation results based on the Monte-Carlo approach enable us to conclude:
• The stepped-frequency GPR processing method for range profile formation in

the time domain, operating at 4.6–38.2 MHz, generates synthetic range profiles with
the resolution of 1–2 m by transmitting 14 narrowband chirps at each GPR position.

• A new convolution-based algorithm for simulation of stepped-frequency GPR
images from multi-layered media can be successfully used for analysis and parame-
ter optimization in stepped-frequency GPR.

• The basic algorithms for GPR signal and image processing such as mean fil-
ters (vertical working low-pass filter), running averages (horizontal working low-
pass filter), stack traces (compression in horizontal direction); median filters (pulse
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jamming and speckle noise reduction), background removals (spatial high-pass
filter) that make visible the shallow objects and gain adjustment algorithms (correct
the attenuation losses and make visible the deep objects) are effective algorithms for
GPR image processing.

• Applying CFAR filters and Hough filters to GPR image processing is a good
decision.

• The designed multiple models Particle Filter (PF) for contour determination
and segmentation in GPR images has shown encouraging results in terms of conver-
gence and accuracy, at the cost of acceptable computational complexity.

• Applying Kalman filters to GPR data processing gives promising results in
terms of estimation accuracy, probability of target detection and false alarm.

• The processor VIRTEX II Pro is suitable for implementation of the stepped-
frequency processing algorithm for synthetic range profiling in the time domain.

Generally speaking, the approaches and algorithms considered in this chapter can
be successfully used for UXO signal processing and multi-sensor (channel) UXO
signal processing.
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Advanced Multifunctional Sensor Systems
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Abstract This work addresses the role of multifunctional sensor systems in defence
and security applications. The challenging topic of imaging sensors and their use in
object detection is explored. We give a brief introduction to selected sensors oper-
ating at various wavelength bands in the electromagnetic spectra. Focus here is on
sensors generating time or range resolved data and spectral information. The sensors
presented here are imaging laser radar, multi- and hyper-spectral sensors and radar
systems. For each of these imaging systems, we present and discuss analysis and
processing of the multidimensional (n-dimensional) data obtained from these sen-
sors. Moreover, we will discuss the benefits of using collaborative sensors, based
on results from several ongoing Swedish research projects aiming to provide end-
users of such advanced sensor systems with new and enhanced capabilities. Major
applications of this kind of systems are found in the areas of surveillance and situa-
tion awareness, where the complementary information provided by the imaging sys-
tems proves useful for enhanced systems capacity. Typical capabilities that we are
striving for are, e.g., robust identification of objects being possible threats on a sub-
pixel basis from spectral data, or penetrating obscurant such as vegetation or certain
building construction materials. Hereby we provide building blocks for solutions
to, e.g., detecting unexploded ammunition or mines and identification of suspicious
behavior of persons. Furthermore, examples of detection, recognition, identification
or understanding of small, extended and complex objects, such as humans, will be
included throughout the chapter. We conclude with some remarks on the use of
imaging sensors and collaborative sensor systems in security and surveillance.
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1 Background Motivation

Safety and security applications bring several challenging problems at hand. This
especially becomes apparent when facing the complex task of surveillance in order
to detect and identify any possible threat. Such tasks can, for example, be to detect
a person applying an improvised explosive device (IED) on a bus whilst he is being
recorded by a surveillance camera, or to identify a person placing out surface laid
mines in a remote and desert area without any surveillance capabilities. Thus, both
suspicious objects and abnormal behavior of humans are of interest. To accomplish
capabilities to handle such tasks, we truly need a variety of tools, e.g. spanning from
surveying large areas to providing evidence to be used in the criminal justice system.

The importance of images in security and safety applications needs not to be
questioned. Video cameras producing streams of image sequences usually builds up
the surveillance systems of today. But many additional problems arise from the sur-
veillance system technologies in use. The most commonly used short-range, passive
surveillance systems are not optimal to capture the events and objects in a scene for
further analysis and processing, but these systems will still be in use for many more
years. Reviewing recordings from these systems e.g. surveillance video, is a time
demanding task. It is also very difficult to detect all objects by the human visual
system. Another major problem that the existing surveillance techniques provide,
and that seriously limits the possibilities of identification in the criminal justice sys-
tem, is the lack of images rather than lack of analysis methods [10, 11, 24]. The
task in a forensic situation, for example, is often to handle situations where the
image sequence comes from a single camera, or multiplexed cameras where the
image streams are recorded on the same media. Furthermore, camera parameters
and the characteristics of the imaging devices and recording conditions are usually
unknown or limited, as the circumstances seldom provide calibration procedures
to be performed. Moreover, there are many examples of applications where human
assisted analysis is no alternative and there is a need for automatic or semi-automatic
processing. Hence, we foresee a lot of challenging issues if we want to be able to
detect and identify all kinds of events and objects that could cause a threatening
situation.

The scientific areas of sensor technique and sensor data processing have evolved
significantly. By using sophisticated and existing sensor systems and algorithms,
several problems of conventional surveillance systems can be solved. Nowadays
there are a large number of new sensors and image processing techniques for track-
ing and analyzing moving persons or detecting small objects, see e.g. [25]. We
introduce somewhat more unconventional sensors for means to present complicated
information in a way that can be easily, correctly and quickly understood. Com-
plementary sensors addressed here are gated viewing, full 3-D imaging laser radar,
multi- and hyperspectral sensor and radar systems. These imaging systems brings
new capabilities such as to penetrate vegetation, clothing, building materials, and
can be used despite of poor weather conditions or at long ranges.

But, the nature of the threats against us in our society constantly increases in
complexity. Consequently, there are several situations to be handled and that need
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Fig. 1 Example of multisensors for urban monitoring, [4, 35].

even more complicated sensor systems. A possibility to provide better capability
is to make use of the additional data provided by complementary imaging sensors.
So, in addition to the individual sensors and algorithms, the combination of passive
and active sensors are used. This brings flexibility and the capability to enhance our
possibility to “see” the threats that we usually are unaware of or believe are unlikely
to occur. Not only do we need the capability to “see” the threats, we can also do so
without being “seen” ourselves, illustrated in Figure 1.

The work addressed in this chapter emanates from several ongoing activities at
the Defence Research Agency FOI on the subject of automatic target identification
for command and control in a netcentric defence. The driving force for the research
activities at FOI is strongly motivated by requirements that emanates from defence
applications and law enforcement. Although, the main applications areas of interest
in our research are found in security and safety, there are many other possibilities.
Hence, we give some examples of successful imaging systems that in combination
with image processing and analysis techniques provide means to e.g. to improve
surveillance capacity.

Finally, some concluding remarks on the use of imaging sensors for applications
in security and surveillance rounds off the chapter.

2 Imaging Sensors

We have got the sensors – but what can they accomplish? What we usually strive for
is recommendations and specifications for future sensors systems, and we want the
computer do the “dirty work” for us in the process of identifying objects, events and
phenomena in image sequences by the use of image analysis and image processing
techniques. These methods provides a complement to the human visual system so
that we can use the visual information in a better way.

A key issue is provide good quality data – rather than trying to enhance and
analyze poor data. This does not necessarily mean that the image quality needs to
be of good visual quality. On the contrary, data collected might not make sense
when presented to an operator but are very useful in an automatic image analysis
process. The importance, though, is that the data quality is of high quality. This,
in turn requires knowledge about the sensor in use, regardless being conventional
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or being newly developed. Furthermore, we need knowledge about the problem at
hand, the depicted scene and the objects of interest. Thus, a useful rule of thumb is
to get it right from the start.

The focus here is on laser radar systems (in Section 3), multi- and hyper spectral
systems (in Section 4) and radar systems (in Section 5) that are sensors generat-
ing complementary time resolved or range data and spectral information, in con-
trast to CCD- and IR-cameras that passively images a broad spectra of the visual
or infrared range. After a brief introduction on each of those imaging sensors we
present methodologies and applications by the use of image processing and analysis
techniques. One important computer vision task is the understanding of complicated
structures representing threats, crimes or other events. Here a major part of the prob-
lem originates from the difficulty of understanding and estimating data describing
the events taking place in the imagery.

The main objective for using advanced sensor systems is to provide descrip-
tors related to the problem of understanding complex objects from images, such as
mines and vehicles (in Section 6) or humans (in Section 7). These descriptors can,
for example, be used in a recognition or an identification process. Detection, recog-
nition, identification or understanding of small (covered by a few pixels or sub-pixel
sized), extended (covered by many pixels) and complex objects from images pro-
vides us with a variety of difficult but challenging problems. Here we use the term
complex to denote an object that can simultaneously move, articulate and deform,
while detection is referred to as the level at which object are distinguished from
background and other objects of no interest, i.e., clutter objects such as trees, rocks,
or image processing artifacts. Recognition is used to distinguishing an object class
from all other object classes and identification is used to distinguishing an object
from all other objects.

For any method, either supporting an operator or a fully autonomous method,
the whole chain must be taken into consideration, from the sensor itself to what the
sensor can comprehend. This includes sensor technology, modeling and simulation
of the sensor, signal- and image processing of the sensor data, evaluation and vali-
dation of our models and algorithms e.g. by experiments and field trials with well
known ground truth data to finally obtain the desired data. The outcome can e.g. be
further used for data- and information fusion at higher system levels, such as alert-
ing an operator of the position of a detected suspicious object that, e.g., could be a
surface laid mine.

To investigate the performance bounds to reveal the role of the system parameters
and benefits of sensor performance, we model and simulate each of the individual
sensors. Modeling requires knowledge of the atmosphere, object and background
characteristics and there is a need for characterization at the proper wavelengths.
But, if we get it right, we can use our models to simulate larger scale sensor sys-
tem, including different types events, scenarios, object types, sensor types and data
processing algorithms. Hereby we have a good platform to analyze the performance
of systems of higher levels, as exemplified in Section 6.
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3 Laser Imaging

Laser imaging range from laser illumination systems enabling active spectral imag-
ing to range gated and full 3-D imaging systems. Coherent laser radars will also
provide Doppler and vibration information. We will concentrate on 3-D imaging
systems. Real time 3-D sensing is a reality and can be achieved by stereo vision,
structured light, by the various techniques for estimating depth information or by
range imaging. Laser radar, in contrast to passive imaging systems, provides both
intensity and range information, see e.g. [26, 27, 34, 41, 47]. The 3-D image can be
derived from a few range gated images or from each pixel directly coded in range
and intensity using a focal plane array or a scanning system with one or few detec-
tor elements. Each pixel can generate multiple range values. The range information
provides several advantages and has impact on many military and also civilian appli-
cations. For example, 3-D imaging laser radars have the ability to penetrate scene
elements such as vegetation, windows or camouflage nets. The latter is illustrated in
Figure 2.

3-D imaging systems are predicted to provide the capability of high resolution
3-D imaging at long ranges at full video rate, supporting a broad range of possible
applications.

3.1 Laser radar systems

The majority of the early laser radar systems are based on mechanically scanning
the laser beam to cover a volume. The 3-D “image” (or point cloud) is then built up
by successive scans where each laser pulse (or laser shot) will return intensity and
multiple range values corresponding to the different scene elements within the laser
beam footprint. In many systems, the full return waveform is captured for each laser
shot and stored for further processing. Other systems capture parts of the returning
waveform (e.g. first or last echo). The range information provides several advantages
when compared to conventional passive imaging systems such as CCD and infrared
(IR) cameras. The current development of laser radars, from scanning systems to
fully 3-D imaging systems, provide the capability of high resolution 3-D imaging at

Fig. 2 A camouflage net scanned by a laser radar system (rightmost pictures), revealing a person
inside.
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long ranges with cm resolution at high video rate. For example, 3-D imaging laser
radars have the ability to penetrate scene elements such as vegetation and windows.

The range resolution and the spatial resolution (cross range) depends on the prop-
erties of the receiver and are important in system performance measurements. The
received laser effect can be described by the laser radar equation as

Pm = Psηs
AΔ

π (ΦR/2)2
Am

R2 ηmt2
A , (1)

where Pm is the received laser power [W ], Ps laser power [W ], ηs transmission
of transmitter optics, ηm transmission of receiver optics, Φ laser beam divergence
[rad], R distance transmitter-target [m], AΔ object effective area

[
m2

sr

]
, Am area of

receiver
[

m2

sr

]
and tA represents the atmosphere transmission. The range resolution

varies with different types od laser radar sensors. The spatial resolution depends on
the spatial resolution of the imaging sensor, but also on the atmospherical conditions
and the distance to the target.

There are several concepts for scanner-less 3-D laser radar systems. The tech-
nology which seems to draw the largest attention in 3-D imaging for military appli-
cations is 3-D sensing flash imaging FPAs, which here is in focus. The remaining
techniques are detailed in [34, 41]. A laser flood illuminates a target area with a rel-
atively short pulse (1–10 ns), [45,46]. The time of flight of the pulse is measured in
a per pixel fashion. The position of the detecting pixel yields the angular position of
the object element, and the time of flight yields the range. Hence, with a single laser
shot, the complete 3-D image of an object is captured.

3.2 Modeling and simulation

To model a scene we need to know the characteristics of the system itself and also
gain knowledge about the various scene elements. This especially holds for any
object we want to detect. For a long time, theories for laser beam propagation and
reflection have been developed and adjusted. Many of these theories have been use-
ful to simulate and evaluate parts of a complex laser radar system, but modeling of a
complete system was not possible in the early stage. The laser radar technology has
become more expensive and a system model was desired to reduce the cost of laser
system development and to expand the amount of training data for signal processing
algorithms.

The simulation of the reflected waveform from a laser radar system is based on
the ray-tracing principle and, inspired by [15], divided into four sub problems. Each
sub system contains several parameters controlling the simulation. The abstrac-
tion level of the simulation is often a trade-off between complexity and efficiency.
Too complicated models would require parameters not understandable by the aver-
age user and too simple models would not simulate enough conditions to produce
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accurate results. The laser source is specified by the wavelength and the temporal
and spatial distribution of the light intensity. The atmosphere model is simplified
and controlled only by the aerial attenuation and the turbulence constant, C2

n , as a
function of the altitude. The target is a scenario of polygon models and their corre-
sponding reflection properties at the current laser wavelength. Finally, the receiver
is modeled electronically as a standard receiver from [15]. Since many of these sub-
problems contain complex analytic mathematical expressions, especially when com-
bined, we choose to make the calculations discrete, both in the temporal and spatial
dimension. Another problem is the trade-off between the computational speed and
accuracy. Based on our experience, a reasonable resolution in the spatial domain lies
about 0.1 mrad, and in the temporal domain 0.1–1 ns.

The laser radar system model by FOI combines the theories for laser propagation
and reflection with the geometrical properties of an object and the receiver charac-
teristics such as noise and bandwidth. Our simulation model has been further devel-
oped over the years, through gated viewing (GV) systems and aerial scanning laser
radar, up to the forthcoming 3-D focal plane arrays (3-D FPAs). There are several
publications by FOI on this subject, see for example [9, 13, 19, 37–40, 43, 44, 48].
Another example is [42] also described in [25], that includes atmosphere model-
ing in terms of e.g. aerosols and turbulence, image processing, object recognition
and estimating performance of different gated viewing (range imaging) system con-
cepts. Moreover, we addressed the object/background contrasts of the reflectance
value at eye safe wavelengths to investigate the recognition probabilities in cluttered
backgrounds. An advantage with laser systems is the ability to penetrate vegetation.
A tool is also developed at FOI for the purpose of estimating the laser returns as a
function of distance to the sender/receiver, e.g. useful for detection of hidden vehi-
cles as shown in Figure 3.

3.3 Object recognition

The development of algorithms at FOI for object recognition includes methods that
aim to support an operator in the target identification task and also more autonomous
algorithms. This work is described in [7,8,20,26,27,41–43]. To obtain point clouds
at long ranges, data achieved by an experimental GV system [25, 42] out to 14 km
was used, in combination with a method for reconstruction of the surface structure
[7]. This system, however, initially operated at 532 nm that is not eye safe. Thus, the
simulation model was essential to estimate the performance of a system operating
at an eye safe wavelength, which now is built. Examples of range gated imaging at
1.5 m is found in [47].

A major advantage is that a 3-D cloud often can be directly viewed without any
processing. Furthermore, by visually searching a point cloud by varying the viewing
distance and angle, objects that are not immediately obvious to the human eye can
become easy to detect and recognize, see Figure 4. Fusing data from multiple view-
ing angles enhances this possibility which becomes an effective method to reveal
hidden targets.



172 L. Klasén

Fig. 3 The scene for the laser measurement (upper row). The raw data from the laser radar system
(middle row to the left) and the processed bare earth data (middle row to the right). All data less
than 0.3 m above estimated ground (bottom row to the left) and finally the tree streams and noise
clutter has been removed, reveling the vehicles (bottom row to the right).

Fig. 4 To the left is a laser scanned terrain area viewed from a frontal view. In the middle is a close
up of the point cloud viewed at a different aspect angle to better reveal the target. To the right is a
3-D model of the vehicle, also created from scanned laser radar data of high resolution.

Laser radars also have the ability to penetrate Venetian blinds provided there are
tiny openings, and thus have the ability to see into buildings. A method for matching
3-D sensor data with object models of similar resolution is detailed in [6]. For GV
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data, a combination of a method for 3-D reconstruction and a 3-D range template
matching algorithm is developed.

The current problem tackled is methods on extracting object points based on
detection from hyperspectral data. In parallel, there are ongoing works addressing
methods based on multi sensor approaches for detection of hidden objects, surface
laid mines [49] where the objects can be in vegetation [1, 3, 14] and urban environ-
ments [4, 5], further described in Section 6. The exchange of information between
different sensors, such as CCD, IR, SAR, spectral and laser radar, can provide solu-
tions to problems that are very difficult to solve by using raw data from one single
sensor only. Consequently, our work on 3-D imaging sensors for object recognition
is incorporated in several multi-sensor approaches.

4 Multi- and Hyperspectral Imaging

Multi- and hyperspectral electro-optical sensors sample the incoming light at several
(multispectral sensors) or many (hyperspectral sensors) different wavelength bands,
see e.g. [2, 12]. Compared to a consumer camera that, typically, uses three wave-
length bands corresponding to the red, green and blue colors, hyperspectral sensors
sample the scene in a large number of wavelength (or spectral) bands, often several
hundred. Images providing spectral information give the possibility to detect and
recognize objects from the spectral signatures of the object and the background,
without regarding spatial patterns. The methods used for object detection differ
strongly depending on the characteristics of the used sensor and of the expected
object and its surrounding background. For example, pattern recognition techniques
are used for detection, classification, and recognition of extended objects (covering
many pixels). Multi- or hyperspectral images sequences provides means to detect
objects of sub-pixel size as well. Although, it is important so specify the system per-
formance from the situation at hand e.g. from matching the object- and background
signatures to the spectral bands of the camera (bandwidth, number of bands etc.).
Moreover, the spectral bands can be beyond the visible range, i.e. in the infrared
domain, which opens up a variety of new applications [12].

Here we briefly describes methods for detecting extended or small targets in mul-
tispectral images. In this context we limit the discussion to treat spectral information
only, i.e., spatial correlations are not considered. There are two main types of object
detection methods. Object detection is, in the first context, is about finding pix-
els whose spectral signature do not correspond to some model of the background
spectral signature but do correspond to a object model, if available. The spectral
signature of the target is not assumed to be known, instead spectral anomalies with
respect to the background are searched for. The process of detecting unknown tar-
gets is called anomaly detection. The second case is when a target model is available,
which we call signature-based object detection.
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4.1 Anomaly detection

Anomaly detection, detailed in [2] provides new capabilities in object detection
where the aim is to detect previously unknown objects as shown in Figure 5.

Anomaly detection is the case when we do not know the spectral signature of the
target, and we want to find pixels that significantly differs from the background. We
use a background model B, a distance measure d(·), and a threshold t. We regard
a pixel x as an anomaly if d(B,x) > t. Thus, a model for the background signature
is needed, as well as an update scheme, i.e., a degree of locality of the model. For
example, we could use a local model (estimating the background signature from a
local neighborhood only), a global model (using the entire image), or a combination.
Then, to measure the distance from each pixel signature to the background model,
we need a distance measure. The choice of distance measure is restricted, or even
determined, by the model used for the background and thus the assumptions about
background spectral distribution. Finally, we need to set the threshold t.

A signature-based algorithm for target detection searches for pixels that are sim-
ilar to a target probe. The target probe is a model of a certain target signature T ,
i.e., the spectral signature of the target or target class is known. Basically, we mea-
sure the distance from a pixel signature to the target model and to the background
model, and choose the smaller. That is, we can classify pixel x as a target pixel if
d(T,x) < d(B,x).

The detection methods require spatial and spectral models for targets and back-
ground. The spatial model is used to define background areas to classify any object
areas. The spectral modeling is to represent the properties of the object and back-
ground classes in use, There are several possible methods, with the common goal to
measure a distance from an object class to the modeled background class in order to
classify in what category the pixels belongs to.

Combining anomaly detection with signature based detection can improve detec-
tion performance. Moreover is the detection useful as input e.g. to a 3-D laser radar
for identification.

Fig. 5 Detection of military vehicles by a hyperspectral camera. The targets are in the open and
hidden in the terrain and the targets are detected by the signal processing algorithm applied to the
data. One of the vehicles, which is under camouflage, is enlarged.



Advanced Multifunctional Sensor Systems 175

5 Imaging Radar Systems

Among the many possible radar systems available and found in the literature see
e.g. [50], we will address only a few; SAR and imaging radar systems for penetration
of certain materials.

5.1 Resolution in a radar system

The concept of resolution of a radar system is usually defined as the width of
the impulse response when the signal energy has decreased to half. The impulse
response can be divided into two dimensions, range and azimuth. The range resolu-
tion is determined by the transmitted bandwidth (B) as Xr = c

2B where c is the speed
of light and B = 1

T where T is the length of the transmitted radar pulse; i.e. a short
pulse has a large bandwidth equalling a small resolution cell in range. In reality, the
bandwidth is often created by some kind of frequency modulation of the transmitted
pulse in order to increase the mean power in the system. The return signal is then
compressed in an inverse filter in the system receiver. In azimuth, the resolution is
determined by the attributes of the antenna. A radiation beam is created with an
opening angle depending on the antenna size vs. the wavelength. The opening angle
of the beam will be ϕ = 0.88λ

d where λ is the wave-length and d is the aperture of
the antenna. This implies that the azimuth resolution (measured as the distance in
azimuth between two point targets, which can be resolved by traditional radar) will
depend on the range between the radar and the target area, i.e. the azimuth resolution
performance will decrease with range. For most imaging applications the antenna
will soon become impractically large when trying to keep a good image resolution
at great distances.

5.2 Synthetic Aperture Radar (SAR)

The SAR-technology, [50] is a signal processing method for increasing the azimuth
resolution of a radar system. The first patent was issued already 1951 for Carl A.
Wiley at the Good-year Corporation in the USA but was not widely used until the
modern digital technology became available. SAR has the fantastic characteristics of
being like a camera featuring all-weather capabilities and range independent image
resolution.

With SAR-technology the azimuth resolution is generated in the signal process-
ing and will be independent of the range from the sensor to the target. The trick is to
use a small antenna placed on a moving platform, e.g. an aircraft. The small antenna
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will generate a wide beam of radar illumination. The beam must cover the complete
area of interest, and the signal is received in amplitude and phase during the fly-by
of the platform. By using different mathematical methods, e.g. Fourier methods, the
phase history (Doppler shift) of the signal can be analyzed and a synthetic antenna
aperture equal to half the length of the flight track, the synthetic aperture L, can
be generated.

FOI has, since many years, a diverse research program for low frequency radar
development for ground and airspace supervision. We have developed the foliage
penetration CARABAS system operating in the VHF band (20–90 MHz).

The system is a unique tool for providing information on targets concealed under
foliage. It combines unprecedented wide area stationary target detection capacity
with the capability of penetration of vegetation and camouflage. The VHF band
used, allows target detection at a low surface resolution enabling the large surveil-
lance capacity. The new LORA system, operating in the UHF band (200–800 MHz),
is also capable of moving target detection and will be used as a generic research
tool.

The research at FOI on SAR provides methods for generation of high resolution
radar images. In fact the resolution on ground is independent of the distance from
the radar to the target area. In urban environment there is the problem of detecting
small objects due to the very strong backscattered signal from buildings and other
large structures. The target signal will be obscured by the background clutter in the
image. By separating the transmitter and receiver in the radar system and hence
creating a bi-static situation this problem can be reduced. Furthermore, by placing
receivers on the ground, receiving opportunities are opened for “tomographic” 3-D
imaging of the internal structures of the buildings. This is a relatively new field of
research that in all probability will enhance the situation awareness in future urban
surveillance.

Among the many publications available, we also recommmend [16, 17, 22, 30,
33, 51].

5.3 Radar for penetration of materials

Another very promising upcoming technology [23] is the ability to penetrate certain
materials, such as clothes and construction materials, with radar. This capability lets
us penetrate materials that we cannot visually see through with the human eye. This
opens up possibilities in military situations but also in law enforcement and rescue
situations.

Researchers at FOI have developed imaging radar systems, capable of delivering
through-the wall measurements of a person. Figures 6 and 7 shows the radar images
when measuring a person through three different inner wall types at 94 GHz.
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Fig. 6 Localization of a person behind a wall by measurements carried out at FOI with an in-house
developed imaging radar system.

Fig. 7 Radar images when measuring a person through three different inner wall types at 94 GHz
are shown. A 12.5 mm thick plasterboard (left). Two 12.5 mm thick plasterboards separated by a
45 mm air slit (middle). A 12.5 mm thick chipboard (right).

6 Multisensor Approaches

As mentioned, the complex task of surveillance to detect and identify any possi-
ble threats brings the need for multifunction and multisensor systems to have the
flexibility to meet the environmental subsystems at hand, see e.g. [1, 3, 28, 29].

6.1 Detection of surface laid mines

Methods for detecting surface laid mines on gravel roads are being investigated in
a national research program at FOI. Among other basic issues, is the idea in [8]
that human-made objects are expected to appear more structured than surrounding
background clutter. Another key issue is to base any detection method on the phe-
nomenology of the surface laid mines, striving for to select the right combination of
sensors to provide optimal data as input to the detection algorithms.

Using data from laser radar has shown some promising results [21]. This method
basically relies on a fusion of intensity and hight features obtained from laser radar
data. Although intensity usually is useful as a feature for separating mines from
background data, is will not be enough for desired system performance. A gravel
road is a relatively flat surface and hence the height above the ground plane is a fea-
ture that improves the separation of mines from the road. However, for more com-
plex environments, such as forest, the height feature worsens the separation of the
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mine from the background, which motivates a search for other features. In [49, 53],
3-D data received from the laser radar is used to extract features relevant for mine
detection in vegetation. These features varies with the nature of the vegetation. By
involving data from an infrared (IR) sensor, synchronized with the 3-D laser radar
data, additional features can be extracted. These features are evaluated to determine
what combination that gives robust anomaly detection. A method based on Gaussian
mixtures is proposed. The method tackles some of the difficulties with Gaussian
mixtures, e.g., the selection of number of initial components, the selection of a good
description of the data set, and the selection of which features that are relevant for a
good description of the current data set. The method was evaluated with laser radar
data and IR data from real scenes.

6.2 Urban monitoring

In recent years, significant research related to tasks in an urban environment has
started, see e.g. [35]. Many sensor systems are, for instance, able to handle detec-
tion, but for classification and especially for identification, there are still many
unanswered questions. Additional research is needed e.g. in sensor technology, data
processing and information fusion. Consequently, there is a broad spectrum of chal-
lenging research topics. Here we present some resent examples from the ongoing
research activities at the Swedish Defence Research Agency FOI that can contribute
to the Swedish Armed Force’s ability to operate in the urban terrain.

It is of importance to handle monitoring of the urban environment in a broad per-
spective, spanning from the everyday civilian surveillance situation to a full-scale
war, bearing in mind that the border between law enforcement and military oper-
ations is somewhat fuzzy especially when considering terrorist activities. During
military operations, surveillance systems are useful for detection of trespassing, tac-
tical decision support, training and documentation to mention a few. The demand for
fast and reliable information sets high requirements for data processing, spanning
from fully automatic processes to visualization of data to support an operator. In the
end, decision-makers from low rank soldiers to high commanders must be given the
support required for different situations. Visual surveillance systems already exist
and are increasingly common in our society today. We can hardly take a walk in
the center of a modern city without being recorded by several surveillance cameras,
even less so inside shops. The rising numbers of surveillance sensors, although being
very useful, also introduces problems. Problems arise on how to get an overview of
the surveillance data, and how to preserve the personal integrity of the people being
watched by the sensors.

Overview is one of the greatest obstacles in a surveillance system with a large
number of sensors. The most common type of surveillance sensor is video camera
networks or other types of cameras. Images and video give rich information about
the world, but are difficult to interpret automatically. Therefore, it is most common
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that the images are interpreted by a human operator of the surveillance system. The
human operator of a surveillance system is not seldomly showered with a large
number of images of micro events that are difficult to position in space and in time.
However, there are upcoming technologies to handle this. In 2004 FOI defined a
number of urban surveillance situations. The purpose was to exploit an approach
to create a framework for surveillance of urban areas. From these scenarios, we
built up a concept for future large area monitoring where situation awareness is
critical. Subsequently, on May 13 2004, we launched a field campaign in an urban
environment, “The Norrkping riot”. A number of our different sensors, being both
off the shelf products and experimental set ups, provided useful data. The sensor
data were fused by projecting them onto a 3-D model of the area of interest. By
combining technologies, methods for data analysis and visualization we introduced
new concepts for surveillance in an urban environment, and suggestions on how to
realize these concepts using technology developed at FOI.

This concept is built around a 3-D model of the urban area to be surveyed. In this
virtual environment, the cameras from the real environment are represented by pro-
jectors that project the camera views onto the 3-D model. This approach has several
advantages. The context in which each camera is placed is visualized and becomes
obvious. The spatial relation between different cameras hereby becomes obvious.
Imagery from several cameras can be studied simultaneously, and an overview of
the entire area is easily acquired. Even if the idea is not completely new, it is not
widely used, and it improves the general situation awareness tremendously. In the
3-D model, all available sensor data can be visualized in such a way that their con-
text and mutual relations are immediately visible. We have developed a research
platform for visualization of the surveyed area. The platform is a visualization tool
built at FOI on open source software that visualizes 3-D models and projects textures
from input video, and is controlled using either a user interface or by commands over
a network.

The actual key to making this into an operational system is that the 3-D model
can be automatically generated, [5].

The key issue with the multiple heterogeneous sensors concept is to make use
of the benefit brought by new capabilities by new and cooperating sensor systems.
Besides conventional acoustic, seismic, electro-optical and infrared sensors, this can
e.g. include range gated imaging, full 3-D imaging laser radar sensors, multispec-
tral imaging, mm-wave imaging or the use of low frequency radars in urban envi-
ronment. Assume, for example, that we have a sensor that can localize gunfire. The
position of the sniper can then immediately be marked in the 3-D model, which
gives several interesting possibilities. If the shooter is within the field of view of a
camera, he is pointed out by marking the location of the shot in the 3-D model. The
shooter can then be tracked forwards and backwards in time, searching for pictures
suitable for identification and also warn others in the area. Regardless if the shooter
is within the field of view of a camera or not, the shooter’s field of view can be
marked in the 3-D model. The marked area is a risk area that should be avoided and
warned for. The same functionality can be used in a deployment scenario, aiding
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the placement of sensors, snipers and people. Other examples are passage detection
sensors, sensors that track or classify vehicles, sensors that detect suspicious events
or behavior.

6.3 Sensor networks for detecting humans

A network of acoustic sensor nodes can also be used to locate gunshots, and also
track sound sources. For example, technology used in military applications for track-
ing ground vehicles in terrain can be modified to fit in with an urban scenario. The
output of the sensor network is synchronized with all other information in the sys-
tem and user specified or general areas can be displayed in the 3-D model with a
classification tag to indicate the type of event, see [4].

Passage detection sensors can be used for determining when people and/or vehi-
cles enter a surveyed area and the other sensors should be activated. Several types
of passage detectors are commercially available. Ground alarms for example, that
react on pressure, i.e., when someone walks on the sensor (that consequently should
be placed slightly below the ground’s surface). Further examples are fibre-optic
pressure-sensitive cables, laser detectors that react when someone breaks an (invis-
ible) laser beam and seismic sensors, e.g., geophones that register vibrations in the
ground. All of these were used in the “Norrköping Riot” supporting the imaging
sensors in situations where these suffer from drawbacks, further described in [4].

6.4 Multisensor simulation

A multisensor simulation (MSS) tool is developed at FOI, systematically incorporat-
ing and synchronizing results from a very large number of sensor research projects.
Detailed terrain-models, e.g. from laser radar data [5], is an important building
block. As is our results from estimating and simulating the signatures of objects
and scene elements in the operating wavelengths of the sensors in use. Hereby we
achieve high realism and quality in signals and signatures. Included is object models
for estimation of realistic target signatures. The MSS lab also integrates a variety of
sensor simulators and signal- and image processing via HLA interface. Finally, we
have developed a tool for verification and validation of the simulated sensor system,
mainly based on the sensor platform, weather condition, sensors, environment, and
the function needed to accomplish a certain task.

Providing high accurate signatures to physically based simulation of the scene
elements in a realistic, high resolution 3-D environment model had resulted in a
very promising resource for various applications. An example of using the MSS lab
is to predict and analyze the performance of a mission by an unmanned airborne
vehicle that performs automatic target recognition, as seen in Figure 8.
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Fig. 8 Simulation of a mission by an unmanned airborne vehicle that performs automatic target
recognition. A high resolution 3-D model from laser data is used, modeled as seen by sensors
operating in the visual range (upper left), IR range (lower left), respectively, and by a SAR (upper
and lower right).

7 Detecting Humans and Analyzing Human Behavior

An important issue, especially in security applications, is to address humans, which
are complex to detect, identify or to analyze behavior and intention of either a
particular individual or a group, [4]. Another strong motivation to our research at
FOI is the need for methods to separate our troops from combatants, non-combatants
and even temporal combatants. The latter can for example be a civilian picking up
a an IED from his back-pack in a mole, throwing it and injuring people. Likewise,
integrity preserving surveillance is a new and important area, stressing the impor-
tance of providing technologies that serve the community, not act against it. This
will be discussed below.

7.1 Preserving integrity

We have introduced the term integrity preserving surveillance to denote various
technologies enabling surveillance that does not reveal people’s identities. The
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implication for integrity preserving surveillance is that people generally do not like
to be watched and/or identified, and, furthermore, the use of surveillance cameras is
often restricted by law. Integrity preserving surveillance systems put high demands
on functionalities like robust classification and tracking of people and vehicles. The
scenario below explains some of its potentials. We want to deploy a surveillance
system in certain areas in a city. The problem is that we know that this is unpopular
among the city’s inhabitants, and the solution can be an integrity preserving sys-
tem. The system maps, as described above, the videos on a 3-D-model of the areas,
but replaces people and vehicles with blobs or symbols. The original and authen-
tic videos are encrypted and stored at an institution that the local population have
trust in. The processed videos can even be publicly displayed, for example on a
web server. The semantic data used for image processing is also used for behavior
analysis and warning, e.g. in case of suspicious activities.

7.2 Automatic analysis of humans

Most environments that are interesting to survey contain humans. Currently, auto-
matic analysis of humans in sensor data is limited to passage detectors and sim-
ple infrared motion detectors. More complex analysis, like interpretation of human
behavior from video, is likely to be performed by human operators. With the recent
rapid development in computing power, image processing and computer vision algo-
rithms are now applicable in an entirely different way than a few years ago, espe-
cially those for looking at humans in images and video. The benefits of automating
analysis of human behavior are mainly robustness. If the video surveillance data is
analyzed by a human, a certain error ratio is to be expected due to the human fac-
tor, i.e., fatigue and information overload. By automating parts of the process, the
human operator can concentrate on interpretation based on the refined information
from the human-aware system.

A basic capability of a human-aware system is the ability to detect and locate
humans and other moving objects in the video images. This could either be used in
a stand-alone manner in the same way a trespassing sensor is used, or for initializing
tracking or recognition systems. A method for detection of human motion in video,
based on the optical flow pattern, has been developed at FOI. For the purpose of
masking out individuals or groups of people from a surveillance video sequence, in
order to reveal their activities to a human observer but not their identity, we present
each individual in the image masked out with a separate color. An advantage with
this technique is that it greatly enhances the human understanding of the activity in
the scene.

Our work now is focused on analyzing human motion, see Figure 9. This is to
train a system to recognize what can be considered as normal, e.g. that a waist paper
basket is emptied every day about 10 o’clock. Hereby, we can detect any deviation
from what we have classified as normal, e.g. that a person puts a suspicious object
in the same waist paper basket, at ten in the evening, that later on explodes.
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Fig. 9 An illustration of the process of localization and classification of humans and vehicles
to recognize human motion. Foreground and background separation (upper row), separating the
foreground into distinct objects (middle row) and activity recognition from shape (bottom row).

Hence, the goal is to understand human motion and human interaction from
images, to be able to detect anomalies. We also want to be able to understand an
classify actions, which has to be considered in the current role and environment.
In the area of analysis of humans in video, the focus has moved from tracking of
humans in video [18], via articulated tracking and tracking in 3-D [25, 31], towards
analysis of human motion on a higher level [52]. Due to the increased computational
power, focus has also shifted from logic-based methods to probabilistic methods
that learn from training data. Tools from probability theory and machine learning
has enabled the development of efficient and robust methods for, e.g. 3-D articu-
lated tracking [31], sign language recognition [36], face expression recognition [32]
and methods for biometric analysis of humans.
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8 Concluding Remarks

Here we have given some insight in FOI’s research on sensor technologies and meth-
ods for advanced multifunctional sensor systems. The driving force is brought by the
defence capability needs for operations in the urban environments. Urban environ-
ment is difficult to monitor, being built up by complex structures and situations to
monitor. Small object like mines and IEDs are difficult to find and identify. More-
over, humans are perhaps even more complex to detect, identify or to analyze behav-
ior and intention of either a particular individual or a group. However, we foresee
that the ongoing research and technical development of new imaging technologies
are important contributions to the Swedish Armed Force’s ability to perform several
tasks in various terrain and conditions. By developing techniques and methods for
object identification and situation analysis, we can provide tools and specifications
for future systems.

Examples of new imaging technologies are 3-D imaging laser radars, multi- and
hyperspectral imaging and new trends in the radar region of the electromagnetic
spectra, such as bi-static SAR. These systems have the ability to penetrate e.g. veg-
etation, clothing material and certain building structures. It also provides detection
and recognition of small or extended target. With the recent rapid development in
computing power, image processing and computer vision algorithms are also being
developed for applications such as looking at humans in images and video. More-
over, we have emphasized the importance of having proper knowledge and informa-
tion on the close environment (weather, turbulence etc.), that brings factors that can
seriously degrades the performance unless handled correctly. Thus, we need to look
at the whole problem at hand in close connection to the sensor/sensors in use. We
have also given some application examples on new and approved capabilities from
using combined sensor and methods.

Conclusively, using advanced multifunctional sensors and considering the whole
chain, from the sensor itself to what the sensor can comprehend, we can provide
means to a variety of new and complementary capabilities of importance, such as
detecting object and abnormal behavior of humans.
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Applications of Luminescence to Fingerprints
and Trace Explosives Detection

Ismail Mekkaoui Alaoui∗

Abstract Fingerprints and trace explosives detection requires great sensitivity,
which is provided by luminescence and appropriate physical and chemical treat-
ments. Ninhydrin, 1,2-indanedione and other chemicals react with the amino acids
present in the fingerprint residue. The chemically treated samples, on which the
prints are to be detected, are excited with the blue lines 476.5 and 488 nm of an
Argon laser, and the sample’s fluorescence is observed under orange filters. The
detection of common explosives including trinitrotoluene (TNT) may also be car-
ried out using luminescence techniques. Trace explosive and fingerprint detection
require sensitivity due to the minute amount of matter left and available on the
samples to be detected. Detection sensitivity can be gained by taking advantage of
luminescence techniques. To increase the sensitivity of such detection luminescent
chemicals are used, and to distinguish among compounds in a mixture of explo-
sives, time-resolved imaging techniques may suppress any unwanted and back-
ground luminescence. Explosives are tagged with europium complexes showing
long lived luminescence (0.4 ms) and appropriate for time-resolved imaging. The
europium luminescence excitation utilizes a laser operating at 355 nm. Compari-
son between photoluminescence fingerprints and trace explosives detection will be
presented and discussed: common difficulties will be exposed.

Keywords: Laser, luminescence, time-resolved, explosives, detection, fingerprints,
1,2-indanedione, europium
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1 Introduction

Luminescence is a process in which energy is emitted from a material at a differ-
ent wavelength from that at which it is absorbed. Luminescence covers photolumi-
nescence, electro luminescence, chemiluminescence, etc. We are interested here in
photoluminescence (fluorescence and phosphorescence). The principle of photolu-
minescence transitions is sketched in Figure 1. Fluorescence is a phenomenon in
which electron de-excitation occurs almost spontaneously (emission lifetime of a
microsecond or less), and in which emission of a photon from a luminescent sub-
stance ceases when the exciting source is removed. In fluorescent materials, the
excited state has the same spin as the ground state. In phosphorescence, light emit-
ted by an atom or molecule persists some time after the exciting source is removed
(emission lifetime of a microsecond or more). It is a quasi stable electron excita-
tion state involving a change of spin state (intersystem crossing) which decays only
slowly.

The emission decay curve is usually expressed by a single exponential when only
one species is emitting.

N(t) = N(0)exp−
( t
τ

)
, (1)

where τ is the lifetime of the emitting species at a given wavelength λ .
Photoluminescence, which includes fluorescence and time-resolved lumines-

cence, has been applied to the detection of explosives [12], and has been used for
fingerprint detection since 1980 [10]. This technique helps in identifying the explo-
sive element from the molecules released by exposing a high power laser beam on it
or in its vicinity. The excited molecules give off photons (light) of the characteristic
wavelength of the material when the light source is removed.

The photoluminescence detection of trace explosives and fingerprints on objects
share the same main problems: often there are only minute quantities available or
left at the crime scene, and the surface to be screened may fluoresce under laser exci-
tation overwhelming the sample’s signal. For explosive detection, there is a broad
range of effective explosives that need to be screened for, and most current detection
technologies require close proximity to the person or object being screened. In fin-
gerprint and trace explosive detection we have the problem of the surface on which
the print/explosive is left: some surfaces are difficult to handle and/or luminesce

Fig. 1 Principle of photolu-
minescence transitions.
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intensely under laser excitation. Trace explosive and fingerprint detection require
sensitivity due to the minute amount of matter left and available on the samples to
be detected. Time resolved luminescence is used to suppress the unwanted lumines-
cence background, and may be used to distinguish between explosives that need to
be screened.

CW argon-ion lasers are used as excitation of the samples. They deliver contin-
uous wave signals. For time-resolved luminescence purposes, we need to modulate
the excitation of the samples as desired depending on the luminescence decay time
and also on the background decay lifetime. Two ways of laser modulation were used
depending on the decay time range of the compounds: mechanical light chopper for
relatively long lifetimes (on the order of milliseconds), and electro-optic modulation
for relatively short lifetime decays (on the order of nanoseconds or microseconds).
For Eu-RP compounds (0.4 ms), a mechanical chopper is sufficient when operating
at 169 Hz (6 ms).

The rare earth (Eu3+) salts are known for their narrow and weak absorption bands
in the UV region coupled with emission bands which have narrow half-widths and
long luminescence lifetimes (on the order of ms) in the visible region. The radiative
transitions of these elements can be enhanced, when Eu3+ is bonded to appropriate
organic ligands, via intramolecular energy transfer from the organic ligands to the
rare earth ions when excited with the right excitation [19]. Rare earth-RP complexes
show emission enhancement of the rare earth ions [1]. RP is the reaction product of
glycine with ninhydrin. So far, the only excitations that lead to energy transfer from
the organic ligands, RP, to the Eu3+ are in the near UV range (200–400 nm) [2].

2 Fingerprint Detection by Photoluminescence

2.1 Procedures not requiring time-resolved luminescence

Fingerprint reagents, such as ninhydrin followed by ZincChloride treatment [6],
DFO [15], 1,2-indanedione, [9], fluoresce under Ar laser and develop fingerprints
without requiring time resolved luminescence imaging. The reaction product of 1,2-
indanedione with glycine [2] emits yellow under blue-green laser excitation. The
emission spectrum is a broad band having its maximum around yellow (560–575
nm). The samples, on which the prints are to be detected, are excited with the
blue lines 476.5 and 488 nm of an Argon laser, and observed under orange filters.
1,2-indanedione is a single-step fluorescence way on porous surfaces; on smooth
surfaces, the potential of 1,2-indanedione to detect fingerprints depends on how
much luminescence is coming from the sample’s surface.

2.2 Cases requiring time-resolved luminescence

When the routine procedures described above fail to give good results, time-resolved
luminescence imaging may be the solution. There are a large number of intensely
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luminescent surfaces for which conventional detection techniques fail. The basic
principle of the time-resolved luminescence technique is described in previous
papers [14] (Alaoui, 2007). Undeveloped fingerprints are then treated with chem-
icals having much longer luminescence lifetimes. The imaging device will only
detect this long-lived luminescence and eventually suppress the background.

3 Photoluminescence Trace Explosive Detection

Explosives are chemicals (molecules) containing at least two nitro groups (NO2).
When exited with appropriate laser light, the photoluminescence spectrum through
a spectrometer will have some peaks characterizing the molecule. Depending on the
nature of the transitions the peaks can be more or less sharp. In case of allowed
transitions the peaks are usually easy to get while in prohibited transitions the peaks
are narrow and hard to find. These electron transitions (peaks) serve as a “finger-
print” for identifying substances. The effectiveness of any trace explosive analysis is
dependent on three distinct steps: sample collection, sample analysis, and compari-
son of results with known standards. All three steps are essential to detect explosives
that are present in a crime scene, for example.

It was found recently [7] that many explosives (TNT, nitroglycerin, etc.) share a
common photoluminescence peak at 705 nm when excited with a UV laser source
emitting at 325 nm. Common non-explosive substances showed no 705 nm peak
under the same experimental conditions [8]. Schllhorn’s research team [16] devel-
oped a portable explosives detector based on photoluminescence. The device shines
ultraviolet, infrared and visible light onto two sample areas at the same time and
then calculates the difference in reflectance between them for each part of the spec-
trum. If explosives are present at one sample area but not the other, the characteristic
signature of reflected light should show up clearly in this difference measurement.
This enables easy identification of the explosive by comparing the signature with
a database stored in the detector. Three ways of detecting trace explosives using
photoluminescence are presented in the following subsections.

3.1 Photoluminescence versus colorimetric trace
explosive detection

Many reactions with trace explosive residue produce a product that is colored and
luminescent. In using a luminescent product for detection, one gains at least one
to three orders of magnitude in detection sensitivity [13]. To compare colorimetric
versus photoluminescence detection of RDX (C3H6N6O6), the following procedure
was used by Menzel’s team. RDX was solvated in a small amount of acetone, then
in a larger amount of methanol and spotted on chromatography paper. The spots
were allowed to air dry for about half an hour. Then reagents from an Explosive
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Fig. 2 Colorimetric versus
photoluminescence detection
of RDX.

Testing Kit were spotted on the RDX. The reaction products were immediately
visible. The colorimetric product was light purple and visible in room light. The
luminescent product was viewed under blue-green laser light using red and orange
filters and appeared as a reddish color (Figure 2). At low concentrations (10−4 M
and lower), the photoluminescence trace explosive detection is superior to the col-
orimetric method due to its sensitivity.

3.2 Trace explosive detection by time-resolved luminescence

The luminescence time-resolved approach records the luminescence intensity in a
specific time at a given delay after the excitation pulse, where both delay and gate
width are carefully chosen based on the characteristic decay of the explosive sig-
nal and the background luminescence, on which the explosive is to be detected.
The photoluminescence trace explosive detection approach may employ Eu3+ lan-
thanide tagging for time-resolved detection due to the fact that the photolumines-
cent properties of its compounds depend slightly on the nature of the ligands [3].
The observed decay time of its main peak (616 nm) is 0.4 ms, which is suitable for
time resolved imaging (Figure 3). The ground state for europium trivalent ions is
an 7F state. The lowest excited states inside the 4f-shell for Eu3+ are 5D0 (about
17,267 cm−1), the main emissive level, and 5D1 (about 19,025 cm−1).

To detect trace explosives on a high background surface, Eu3+ compounds (long
lifetime) are needed, so that time-resolved imaging could be utilized. In the study
done by Menzel’s team [13], several EuCl3 complexes were tested on a variety of
different explosives (NG, RDX, and two kinds of smokeless powder). The explosive
was rubbed on filter paper, then the lanthanide complex was spotted on the explo-
sive. A control, with solvent and no explosive, was also spotted with the lanthanide
complex. The luminescence intensities were then compared between the samples
and the controls. There was a change in luminescent intensity and a slight color
shift for these tests when viewed immediately (under both near and deep UV) after
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Fig. 3 Excitation and emission spectra of Eu3+ compounds.

spotting. There are possible reactions taking place, which is a good sign: Eu3+ is
probably forming complexes with the explosive molecules. But further study and
research would be necessary for Eu3+ and time-resolved luminescence to become a
trace explosives detection method.

3.3 Trace explosive detection with luminescent polymers

Luminescent polymers were used (Toal and Trogler, 2006) as sensors for TNT.
When a molecule of an explosive binds to a polymer it can ‘turn off’ the lumi-
nescence of the polymer. This change can be used to sense very low concentrations
of explosives. The Toal team has made a silicon-containing polymer that glows blue
or green under illumination with a UV light, and dims in the presence of TNT. This
could be used to detect trace explosives left by the fingerprints of a bomb maker.
Usually, fingerprint residue does not hold much matter, as stated in the introduction.
Other studies using photoluminescent metallole-containing polymers [18] reported
detection of trace explosives limits observed to be as low as 5 ng for TNT, and 20
ng for DNT (2,4-dinitrotoluene).

4 Conclusion

Even though the chemistry is different, photoluminescence fingerprints and trace
explosive detection share many common difficulties: scarcity of the materials left
at the crime scenes, sensitivity, high power excitation, and high background signal.
When the luminescence signal from explosive materials is strong, luminescence can
be used as a main technique for explosive materials detection and identification.
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In the case of a weak signal and/or high background luminescence under a laser
excitation source, time resolved luminescence and other techniques (Raman spec-
troscopy and laser-induced luminescence spectroscopy) may solve the problem. In
any case luminescence may be used as a complimentary property; it serves as a “fin-
gerprint” for identifying explosive materials. The distinct photo luminescent peak at
705 nm (if confirmed by further studies), common to all explosive materials, opens
new windows: luminescence may become an excellent and extremely sensitive trace
explosive identification tool.
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Electromagnetic Methods for UXO
Discrimination

Kevin O’Neill∗,1 and Juan Pablo Fernández2

Abstract The subsurface remote-sensing technology currently used in the United
States for UXO decontamination is relatively crude, consisting of DC (static)
magnetometry. Ultrawideband electromagnetic induction (EMI) is emerging as a
technology with reasonable discrimination potential. EMI devices operate in the
magneto-quasistatic (MQS) band, usually between tens of Hz and perhaps a cou-
ple hundred kHz, and engage a substantially different phenomenology than that of
wave electromagnetics. Over the relevant space scales, soil, fresh water, and rock
are effectively lossless in the MQS regime, which encourages EMI application.

Here we review the relevant EMI physics and phenomenology and then dis-
cuss state-of-the-art EMI discrimination methods like the Standardized Excitation
Approach (SEA). This can be used in signal matching to decide if an unseen target
belongs to a catalogued set. It can also quickly provide many examples of realis-
tic input to train statistical learning algorithms such as Support Vector Machines
(SVM). SVMs can also use SEA parameters themselves as discriminators. Most
realistic UXO-sensing scenarios are clutter limited. We examine computational
upward continuation as a clutter-mitigation strategy with a rational physical basis.

Keywords: UXO, discrimination, electromagnetic induction, EMI, magneto-
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1 Introduction

Surveying and cleanup of sites with potential contamination by unexploded ord-
nance (UXO) is an extremely high priority environmental objective in the United
States, yet one that is very challenging. The problem is complicated by its sheer size
(millions of hectares); hundreds, probably many hundreds of sites; diverse and often
problematical geological and terrain conditions; and great diversity in the sizes and
types of UXO. A comparable or larger scale problem exists at the international level,
beyond military training grounds to the sites of past conflicts. The problem comes
into focus when one notes that, while some very large UXO may be 10 m deep
underground, by far most UXO are within the top meter of soil, mandating very
shallow surveying. Further, we cannot yet sense what we are in fact most concerned
about, namely the explosive within intact shells. Therefore we have to sense metal
and only thereby characterize the object.

The first priority in UXO surveying is detection—making sure that some suffi-
ciently clear signal is obtained from essentially all UXO in the field. Unfortunately,
in the service of this objective, our sensors record responses from virtually every-
thing in the environment capable of producing a signal. Site remediators frequently
excavate hundreds of objects for each UXO that is found [4]. The resulting costs are
frequently prohibitive. Thus the second crucial requirement is that of discrimination.
Signal anomalies identified in broader surveying must be subjected to close investi-
gation to distinguish the nature of the responding object and to judge how likely it
is to be a UXO. This chapter focuses on discrimination, as opposed to detection.

Electromagnetic sensors of some kind are currently the most logical choice
with which to sense buried metallic bodies. Ground penetrating radar (GPR), while
used in many applications of geophysical, environmental, and infrastructure sur-
veying, has not generally been successful at distinguishing UXO. The combination
of ground surface reflection, signal loss over depth, and signal clutter due to both
metallic fragments and dielectric heterogeneities is simply too great. While holding
some potential as an adjunct to other sensing modes for close discrimination, even
ultrawideband (UWB), fully polarimetric GPR in the 10–810 MHz range coupled
with extensive processing is still challenged in the discrimination realm [6,14]. The
most common sensing mode by far in actual practice in the United States is static
(DC) magnetometry. Magnetometers detect perturbations of the earth’s field caused
by ferrous objects. While relatively reliable at least as detectors of steel, magnetome-
ters produce a rather crude picture by virtue of both current practice and inherent
information content in the signals. Discrimination capability is quite limited, though
progressing [16].

Between DC magnetometry and GPR lies electromagnetic induction (EMI) sens-
ing. One may hope that EMI sensors combine the best of magnetometry and GPR.
Like the former, they are immune to dielectric heterogeneities and, on our scale of
observation, the ground is essentially transparent to them. State-of-the-art sensors
are UWB, with frequencies of operation possibly from tens of Hz up to tens or,
rarely, hundreds of kHz, and some devices register vector response fields. Received
signals have high information content, being sensitive to object distance, shape,
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orientation, and composition. Altogether, whether alone or in tandem with other
kinds of sensors, EMI appears to offer the greatest immediate promise for discrimi-
nation of buried UXO.

2 Relevant Electromagnetic Theory and Phenomenology

To understand both the challenges and the potential of UWB EMI technology, it
is vital to gain some grasp of the fundamental physics and phenomenology in that
domain, particularly if one is approaching from what may be the more familiar realm
of electromagnetic waves.

2.1 Basic relations; waves vs. diffusion and potential fields

All the relevant phenomena are governed by Maxwell’s equations [9,20]. Faraday’s
Law pertains specifically to induction, stating that a time varying magnetic flux is
linked to circulation of E:

∇∇∇×E =

⎧⎪⎨
⎪⎩

−∂B
∂ t

Time domain (TD)

iωμH[e−iωt ] Frequency domain (FD)

⎫⎪⎬
⎪⎭ , (1)

where E is the electric field (V/m) and B (T) is the magnetic flux density, equal
to the magnetic field H (A/m) times the medium magnetic permeability μ (H/m).
Integrating the normal component of this equation over a surface S, e.g. the planar
region within the loop in Figure 1, produces an integral version of (1):

∮
Γ

dγ ·E = − d
dt

∫
S

dS Bn = −dΦ
dt

. (2)

The line integral around the edge of the surface, Γ , constitutes essentially a voltage,
an electromotive force. If there is a conductor surrounding the surface, this implies

Fig. 1 Schematic of a mag-
netic dipole formed by an
electric current loop, with
associated magnetic field
lines passing through the
loop.

Electric
Current

H field
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an electric current loop. Depending on what part of the system is forced, such a
current loop may induce a changing magnetic flux Φ , as in our EMI transmitters;
or, conversely, an imposed change in magnetic flux may induce a current loop, as
when our transmitted magnetic fields encounter a metallic object (see Figure 1).

An infinitesimal magnetic dipole of moment m produces an H field [20]

H(r) =
3r̂r̂− I
4πr3 ·m. (3)

where m is the dipole moment of the current loop. For this ideal dipole approxima-
tion to apply, the distance r from the center of the loop need only be greater than a
couple times the loop diameter.

As all our EMI transmitters and responding objects of interest form finite dipoles,
the relation in (3) is fundamental, at least as an approximation. In particular, the 1/r3

spatial dependency of signals produces crucial limits on applicability and resolution
of the technology. Except rarely, where noted, we will assume in what follows that
the sensor’s transmitters and receivers are co-located. In this case, (3) applies over
the same distance, r, in both directions between transmitter and responding object,
for a total signal falloff proportional to 1/r6. As we shall see below, ground lossiness
does not afflict EMI with signal loss in the same way that it does GPR, where it is a
serious problem. Instead, the 1/r6 signal falloff in EMI is due purely to the inherent
geometry of the quasistatic fields. There is little that can be applied to counteract it.

Ampère’s Law relates the curl of the magnetic field to various currents:

∇∇∇×H =

⎧⎪⎨
⎪⎩

[Jsc]+Jenv +
∂D
∂ t

[Jsc]+σE− iωεE

⎫⎪⎬
⎪⎭ . (4)

The source current Jsc is taken to be non-zero only in isolated, concentrated regions
(e.g., a wire loop as in Figure 1), and we do not analyze it further. The conduction
current density in the environment, Jenv (A/m2), is related to the electric field via
the electrical conductivity σ (S/m); and ∂D/∂ t is the “displacement current,” where
D = εE and ε is the permittivity of the medium (F/m). The exposition that follows
explores the ways in which the magnitudes of the last two terms on the right, relative
to one another and to the quantity on the left, fundamentally determine the nature of
the electromagnetic phenomena at hand.

The divergence law for magnetic fields states, in effect, that there are no isolated
magnetic charges (poles):

∇∇∇ ·B = 0 =∇∇∇ ·μH. (5)

In magnetically homogeneous regions, H will be divergence-free as well. Equa-
tion (5) also means that the magnetic field lines in Figure 1 actually form closed
loops. As a convenient fiction, we may introduce nonzero equivalent magnetic
charges qm on the right in (5), outside of regions of application, in order to gen-
erate mathematically the fields within regions of interest (ROI). This is valid as long
as the source distributions imply fields that satisfy the governing equations within
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the ROI as well as the appropriate conditions on its boundary. A qm-based approach
is used in the clutter-suppressing upward continuation system described below.

Using (5) for H together with (1) in the curl of (4) produces a Helmholtz-type
equation:

∇2H =

⎧⎪⎨
⎪⎩

σμ
∂H
∂ t

+με
∂ 2H
∂ t2 (TD)

(iωσμ+ω2με)H = −k2H (FD)

⎫⎪⎬
⎪⎭ , (6)

where k has different meanings depending on the parameter range that applies.
When the second derivative with respect to time dominates then (6) becomes a wave
equation, possibly with a significant loss term. In that case, k is a true wave num-
ber. When the first derivative with respect to time dominates, then (6) becomes a
diffusion equation and k is no longer a true wave number.

The relative magnitude of the two time-derivative terms in (6) is probably best
apprehended from the ratio of their corresponding frequency-domain expressions,
namely σ/ωε . In the GPR frequency range (107–109 Hz) we may assume that the
fields form waves in air (σ ∼ 0) and that penetration of metallic reflectors is negligi-
ble. They serve as perfect reflectors. The dielectric constant of soil, κ = ε/ε0, ranges
from about 6 for dry soil to a maximum of about 30 for soil completely saturated
with water. For ground, σ ranges from a low of about 10−3 S/m (particularly for dry
and granular soil) up to about 1 S/m for media saturated with seawater. Altogether,
for GPR we have

Diffusion
Wave

∼ σ
ωε

=

{
10−3, lowest σ , highest f
102, highest σ , lowest f

. (7)

In principle, either waves or diffusion may dominate. In the absence of saltwater in
the soil, a more typical maximum of the ratio in (7) is on the order of unity. Thus
wave phenomena are typically dominant or at least highly significant.

Magneto-quasistatics is defined by the condition that the displacement current
∂D/∂ t is negligible. This can occur when the ε term on the right hand side of (6) is
overshadowed by the σ term. It is the case over essentially the entire EMI band in
soil and metal.

Diffusion
Wave

∼ σ
ωε

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Soil ⇒
{
∼101, lowest σ , highest f
∼108, highest σ , lowest f

}

Metal σ ∼ 107 S/m, ⇒ σ/ωε � 1.

(8)

While diffusion can be very important, waves are essentially always negligible. In
the EMI realm there are no true reflections, diffractions, resonances, etc., of the sort
expected in the wave regime.

As explained below, it is possible for both terms on the right hand side of (4)
to be negligible relative to the derivatives in the term on the left. In this case, the
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magnetic field is irrotational and can be represented simply in terms of the gradient
of a scalar potentialΨ [9, 20]:

∇∇∇×H = 0 −→ H = −∇∇∇Ψ . (9)

Combining this with the divergence-free condition on H produces a simple Laplace
governing equation in terms ofΨ :

∇∇∇ ·H = 0 −→ ∇2Ψ = 0. (10)

A scalar potential may be generated most simply via scalar sources, i.e. equivalent
magnetic charges qm situated outside the ROI within which the divergence free con-
dition applies to H:

Ψ(r) =
∫

S0

dS′
qm(r′)

4π |r− r′| . (11)

By construction,Ψ obtained from (11) from any set of qm outside the ROI will sat-
isfy the equations in H within the ROI, as per (9) and (10). To obtain the particular,
realistic field required in any circumstance, one uses the gradient of (11) to enforce
the standard boundary conditions in H [9, 20] on the boundary of the ROI. This is
the strategy we will employ for upward continuation.

2.2 Character of the EMI regime: metal

Metallic targets are significantly penetrable over much of the EMI band (Figure 2).
From the point of view of discrimination of unknown targets, this is both fortunate
and unfortunate: metal type matters. Figure 3, left, shows the frequency response to
a uniform excitation H field by a hypothetical 20-cm diameter metal sphere, a case
for which there is an analytic solution [23]. The response is construed in terms of a
component in phase with the excitation field (real-valued part) and a part in phase
quadrature with it (imaginary part). Around the high-frequency limit, penetration
of the excitation field is so slight that essentially only surface currents exist and
asymptotic behavior is reached, independent of material type. In accordance with
Lenz’s law, these surface currents circulate in such a way as to oppose the primary
field, hence the negative real value of the response there.

At the low-frequency end of the spectrum, approaching magnetostatic condi-
tions, penetration of the object by the excitation field is complete but there are no
induced currents because ∂B/∂ t is negligible. If the metal is permeable (μ > μ0),
as in the example in the figure, a magnetization (polarization) response appears
in the absence of macroscopic induced currents. It is aligned with the excitation
field (positive sign) and is due to microscopic magnetic dipole structures within
the material. For non-permeable materials (μ = μ0), the inphase response will be
zero at the low-frequency limit, descending from there toward the high-frequency
asymptote. Between the low- and high-frequency regimes, over most of the band,
one encounters some mixture of magnetization and induced (macroscopic) current
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Fig. 2 Skin depth vs. frequency for various common metals over the EMI band.
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Fig. 3 Left: Frequency response of a sphere with properties of steel, σ = 4×106 S/m, μr = 100.
Right: Normalized transverse and axial responses by a prolate spheroid of the same material.

responses within the object. The quadrature component is due to induced volume
currents and is delayed relative to the excitation field because of the finite conduc-
tivity of the material. This effect peaks somewhere within the band.

Given that D and its derivatives are negligible in magneto-quasistatic fields,
one can manipulate the equations above to show that induced currents must be
divergence-free. There can be no accumulations of free charge, and all induced cur-
rents must form continuous, closed loops. The current loops induced by impinging
primary (excitation) fields thus effectively form finite-dimensional magnetic dipole
structures. For the special case of a homogeneous sphere, the induced currents and
polarization throughout its volume produce a secondary field outside the object that
is exactly the same as would be produced by an infinitesimal magnetic dipole at its
center.
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While essentially all metallic objects produce some variant of the relaxation-type
curves in Figure 3, left, the particulars are case-dependent. Material type, size, pro-
portions, and orientation all influence the location of the quadrature peak as well as
many specific details in the relations between the two components. Figure 3, right,
shows normalized quadrature response spectra of a hypothetical steel prolate spher-
oid, 20 by 5 cm, with the same material parameters as the sphere on the left and with
its axis oriented parallel and then perpendicular to the excitation field. A new ana-
lytical solution is available for these cases [1]. Note that the peak in this component
shifts much higher in frequency for the transverse orientation. Examining spectral
features such as this is the basis for frequency-domain (FD) discrimination.

These spectral features also correspond to response patterns in time when
the object is subjected to an imposed change in the surrounding magnetic field.
Responses to any such excitations can only decay through the time following the
change, but with patterns of magnitude, temporal gradient, etc., dependent on the
object’s particulars. Time-domain (TD) discrimination examines the features of
such received temporal decay curves. Note that, while responses proceed through
time in TD EMI sensing, signal time does not correspond to distance to a respond-
ing entity, as in radar. On our EMI time and space scales there is no true wave-type
propagation, and all distances sensed respond effectively at the same time.

2.3 Character of the EMI regime: air

One can show that the magnitude of ∂D/∂ t in air in the EMI band is negligible com-
pared to the terms in ∇∇∇×H. Because the electrical conductivity of air is also neg-
ligible, neither displacement nor conduction currents are significant, and the right
hand side of (4) is zero. With an irrotational H field, the simple scalar Laplace equa-
tion (10) governs. Viewed another way, as long as there is time variation of the fields,
they are waves on some scale, but not on our scale of observation (∼1 m). Wave-
lengths range from some kilometers at the top of the band up to perhaps 10,000 km
near the bottom. Over our scale of observation there is no discernible phase dif-
ference between one point and another; no delay. The fields have the structure of
static fields with time dependence imparted only by boundary conditions/forcing
functions.

2.4 The EMI regime in soil

Here σ is finite and one can show that conduction currents will typically have
a larger effect than displacement currents. At the same time, the effect of σ is
negligible: Skin depths are much greater than the scale of observation (Figure 4).
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Fig. 4 Skin depths for dif-
ferent soil conductivities,
assuming a representative
dielectric constant of 16.
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In this sense, the soil is transparent to signals in the EMI band. In the absence of
seawater, the upper two lines probably furnish reasonable bounds under common
circumstances. With induced soil currents negligible and displacement currents even
smaller, once again the H field is irrotational and a scalar Laplace potential equa-
tion governs. Further, note that as tangential E fields are continuous between soil
and buried metal objects, the ratio of induced current magnitudes in each will be
approximately the ratio of their conductivities, which is ∼109. Currents induced in
the metal dominate the response signal within the soil, given that we only sense a
soil volume that is not many orders of magnitude greater than that of a target of
interest. Of course, this situation may not be the case in the absence of metal targets
and when large volumes or depths of ground are sensed, e.g. ∼kilometers in deep
geophysical prospecting. Overall, in our case, for all practical purposes the trans-
mitted field reaches a metallic buried object essentially unaffected by the ground,
and system responses both within the soil and above ground at the receiver are dom-
inated by the response of the target.

While induced soil currents do not produce significant signal responses, magnet-
ically permeable soil can still, however, produce a significant half-space response,
including rough surface effect, which we indeed see in field work. The relative per-
meability μr is unity in free space; for soil it is typically construed in terms of the
(volumetric) magnetic susceptibility as (1+χ). Even though χ magnitudes are gen-
erally on the order of 10−3 or less [4], this can still be enough to produce a half-space
response that is notable relative to that of buried metal targets. Some UXO sites are
particularly problematic, such as volcanic terrains (e.g., Maui and Kaho‘olawe in
Hawai‘i). The nature and character of soil susceptibility are currently an area of
active research. Our recent experience suggests that, for common soil, the instanta-
neous response (real-valued χ , constant over the band) is large relative to a trailing
relaxation response, with only the latter affecting TD instruments [26].
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2.5 The EMI realm, summary

In the MQS EMI band, on our scale of observation:

• There are no waves nor attendant wave phenomena (reflection, diffraction, refrac-
tion. . . ). To emphasize the difference, we speak of the transmitted field impinging
on a target as the “primary” (as opposed to “incident”) field, and the field from
the object’s response as the “secondary” field.

• One can map the vector, UWB subsurface response over an area of ground sur-
face in terms of inphase and quadrature components in the FD, overall using
perhaps five decades of frequency, or using decay time points in the TD.

• Metal targets are penetrable, completely so at the very bottom of the band, with
possibly negligible penetration (surface currents only) at the very top of the band.
Different metal types respond differently, and the magnetic field within the metal
operates by diffusion.

• In both soil and air, both conduction and displacement currents, i.e., both diffu-
sion and wave effects, are negligible. Magnetic fields are irrotational and can be
expressed in terms of a scalar Laplacian potential. The only significant induced
currents are those in metal objects, which dominate the secondary fields in the
soil and air in their vicinity.

• In contrast to GPR, there is no significant delay, travel time, or phase difference
over space – fields have the structure of magnetostatic fields, with time depen-
dence imposed by boundary conditions/forcing functions. In TD EMI, elapsed
signal time corresponds to duration of signal decay in an object at a given depth.
It does not correspond to depth of responding entities. All depths respond essen-
tially at once and a single picture emerges over each portion of the ground sur-
face.

• Soil lossiness has a negligible effect. In that sense the ground is transparent to
EMI signals, though half-space-type magnetic responses from permeable soils
are seen.

3 Standardized Excitation Approach Forward Modeling in EMI

For use in many kinds of discrimination algorithms, we benefit from rigorous but
fast simulations of EMI responses by objects of interest, taking into account the
particular sensor characteristics. The Standardized Excitation Approach (SEA) for-
mulation based on fundamental spheroidal modes can calculate the sensor responses
produced by a geometrically complex, materially heterogeneous object, accounting
for near and far field effects and all internal interactions [7, 19, 21, 25]. The total
response to any excitation is constructed simply as an appropriate superposition
of responses to defined excitation modes. These modes form a sufficient basis to
express any excitation. As the simulations are extremely fast relative to detailed
numerical solution of the governing equations, they can be run many times in the
course of an inversion or classification computation.
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Fig. 5 Schematic of a radar
beam incident upon a UXO,
indicating the beam’s decom-
position into constituent plane
waves.

Plane-wave
constituents

Einc(r)

Radar
beam

Consider an analogy to decomposition of radar beams into constituent plane
waves (Figure 5). At each frequency, an incident radar beam can be decomposed
into a bundle of plane waves, all of the same frequency but with different vector
wave numbers k j depending on the direction of propagation of each:

Einc(r) =∑
j
β jEinc

j (r), Einc
j (r) = eik j ·r. (12)

If, either by computation or experiment on a particular object, one catalogues its
response to a unit magnitude of each of these constituent Einc

j , then one can easily
construct the total response to the bundle of them constituting the complete beam.
One can do this for any sensor-target arrangement as quickly as one can solve for
the β j in (12).

To parallel this procedure in EMI, for magnetic fields, one decomposes the pri-
mary field into fundamental or “standardized” excitations,

HPR(r) =∑
j

b jHPR
j (r), (13)

and constructs the total response Hs as the corresponding sum of responses to each
excitation mode:

HPR
j (r) → Hs

j(r), Hs(r) =∑
j

b jHs
j(r). (14)

Cataloguing the response to each excitation mode means solving for some set of
parameters, S j

k, for each fundamental ( jth) input, i.e., setting Hs
j(r) = ∑k S j

kGk(r).
One can obtain the S j

k from data in controlled measurements on an object of interest
by calculating the b j for various sensor-object configurations via (13), then using
these in the combination of (13) and (14):

Hs(r) =∑
j

b j∑
k

S j
kGk(r). (15)
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With the b j known and a sufficient number of measurements of the left-hand side
of (15), one can solve for the necessary S j

k. For a given object or object type, this
need only be done once. While the data or particular beam composition may be a
function of the sensor position r, the S j

k are not. When their nature or structure is
defined, they are invariant characteristics of the object.

The nature of the modal response function Gk(r) just depends on the nature of the
response parameters S j

k that are applied. For example, if the S j
k are equivalent charges

at the object location, then the Gk(r) will just be the appropriate Green function for
that source type, see e.g. (11). The S j

k can be used thereafter for repeated forward
modeling, requiring only that one decompose any excitation at hand, i.e. obtain the
applicable b j for each sensor-object configuration. As we shall see, having obtained
the characteristic S j

k for candidate objects, one can use them within fast forward
models during optimization to determine whether recorded signals are most likely
to have been produced by one of the candidates. Alternatively, one can infer the S j

k
for unknown targets and then use those parameters themselves as discriminators.

The fundamental problem in formulating the SEA approach in EMI resides in
the requirement that one produce some appropriate basis HPR

j (r) for decomposing
the primary fields. In the EMI/MQS regime, there are no plane waves nor, for that
matter, any waves at all. One solution is to apply basic solutions of the Laplace
equation in the spheroidal coordinate system,

HPR(η ,ξ ,φ) = −∑
m,n

bm,n∇∇∇
(

Pm
n (η)Pm

n (ξ )
{

sinmφ
cosmφ

})

= −∑
j

b j∇∇∇ψ PR
j (η ,ξ ,φ),

(16)

where Pm
n is the associated Legendre function of the first kind of order m and degree

n, and j denotes admissible combinations of m and n ( [1] and references therein).
We frequently choose prolate spheroidal systems, with origin at the (possibly hypo-
thetical) object location, because UXO typically have elongated, rotationally sym-
metric shapes, requiring few terms in the series. Figure 6 shows example magnetic
field lines for some of the lowest modes in the series in (16).

pmn = 011 pmn = 001 pmn = 002 pmn = 012

Fig. 6 Any primary field can be considered as the superposition of a set of predefined spheroidal
excitation modes HPR

j (r). Here we see the magnetic field lines corresponding to some of the most
fundamental modes.
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Instead of using responses by equivalent sources (e.g. charges), one can construct
the response to each fundamental excitation using an analytic spheroidal function
series, similar to the one expressing the primary field:

Hs
j(η ,ξ ,φ) = −∑

m,n
B j

m,n∇∇∇
(

Pm
n (η)Qm

n (ξ )
{

sinmφ
cosmφ

})

= −∑
k

B j
k∇∇∇ψ

s
j(η ,ξ ,φ),

(17)

where Qm
n is the associated Legendre function of the second kind of order m and

degree n. In this case, the S j
k in (15) are just the coefficients in the series in (17), i.e.

the B j
k. While this formulation presents its own difficulties relative to a source-based

response parameterization, it is distinguished by the fact that the B j
k are unique. That

is, one can show that they are characteristics of the object, regardless of excitation
or manner of observation, and any object possesses one and only one set of them in
a chosen coordinate system [7, 8].

A crucial feature of EMI SEA decomposition using spheroidal potential func-
tions is that very few of them are required. Figure 7 shows averages over instrument
position of the b j values obtained experimentally for a particular UXO, using a
relatively small FD sensor. The sensor-UXO separation was about one to two char-
acteristic lengths relative to both sensor and target. Also, this sensor produces rather
nonuniform primary fields relative to most other instruments. Even so, only about
four modes dominate the primary field distribution around the UXO. Figure 8 shows
a test in which the UXO response predicted by the SEA is compared to measure-
ments, using either four or eight excitation modes. The measurements proceed in
sweeps along the grid lines, producing peaks in the signal as the sensor moves past
the object. The plots on the right illustrate the character of the overall results. The
eight-mode formulation produces slightly more accurate results than the four-mode
one; however, the difference is not great and probably not justified on the basis
of cost vs. benefit. The reader is referred to the literature [8, 12, 19, 21, 24, 25] for

Fig. 7 The most significant
coefficients in the decom-
position of an example EMI
primary field.
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Fig. 8 SEA parameters for a model of the UXO are obtained from controlled measurements over
the grid, then used (plots on right) to predict the signal at other elevations of the sensor. The results
using 8 excitation modes show only slight benefits from inclusion of the higher-order coefficients.

Object Material Axis (2a) Axis (2b) e = b/a

S2 Steel 30 mm 182 mm 6
S3 Steel 30 mm 90 mm 3
S4 Steel 15 mm 90 mm 6
S7 Steel 30 mm 30 mm 1
A2 Aluminum 30 mm 91 mm 3
A3 Aluminum 15 mm 91 mm 6
C1 S4; S7
C2 A3; S7
U1 UXO of Figure 8, mainly steel
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Fig. 9 In a signal pattern matching test over the grid, optimization using the SEA model of the
mortar indicates correctly that the model is capable of producing the best match when the UXO in
fact produced the data, as opposed to the other objects. The other items produce lowest mismatches
that are roughly an order of magnitude worse [24].

discussion of alternatives in pursuing the modal parameters. Issues include control
of possible ill-conditioning when one seeks to use higher modes or those only mar-
ginally supported by the data.

The SEA model of the same UXO was also used in an optimization over posi-
tion and orientation to determine the best match (lowest mismatch) it can pro-
duce with each recorded signal from a collection of objects. These consisted of
machined metal spheroids, combinations of spheroids, and the UXO (Figure 9).
The SEA rendering of the UXO indeed produces the lowest mismatch to the actual
UXO signal.
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Further developments of the SEA include the Normalized Surface Magnetic
Charge (NSMC) formulation [18]. The NSMC uses a particularly simple breakdown
of the primary field together with synthesis of responses via connected equivalent
source distributions. The integral of the source mechanisms itself furnishes a dis-
tinctive characterization of the object.

4 Support Vector Machines and Their Application

A possible way to avoid time-consuming nonlinear searches during UXO discrim-
ination can be to perform “before the fact” inversion. One can run a trustworthy
model very many times to generate artificial data representative of the expected
parameter space. An algorithm could then take those results, make sense of them by
weighing the available empirical evidence without any reference to the underlying
model, and apply this knowledge to make predictions about unseen cases. In this
section we describe one such method, the Support Vector Machine (SVM) [2, 10].
We describe how an SVM can perform binary classification, a task to which most
classification and regression problems can be reduced, and then show the results of
some SVM experiments related to UXO discrimination.

The “examples” from which an SVM learns to classify are a set {xi} of n-
dimensional vectors. In the UXO problem these can be raw measured fields or
distilled parameters – dipole moments or spheroidal expansion coefficients, for
example – expected to contain evidence of the character of an object. Depending
on the classification we want to make we assign a yes/no attribute to each point:
examples belonging to the desired class have yi = 1 and the others yi = −1. SVMs
carry out the classification by finding a linear surface, a hyperplane, that divides the
parameter space into two distinct regions, each of which hopefully contains points
from only one of the categories (Figure 10). During the learning process the machine
readjusts the hyperplane parameters to accommodate every training vector until it

Fig. 10 Support vector classi-
fication. The weight vector is
perpendicular to the separat-
ing hyperplane. The negative
of the bias divided by the
norm of the weight is the
separation between the hyper-
plane and the origin. The
support vectors are circled.

w

wTx+b=0

wTx+b=−1

wTx+b=+1

origin

−b/||w||
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reaches an optimal compromise. At that point, only those examples whose removal
would significantly change the locus of the hyperplane suffice to specify a predict-
ing function. These points with high information content are the support vectors that
give the method its name.

Most data sets are not linearly separable in the space they occupy, and even bona
fide separable sets may be corrupted into nonseparability by noise. On the other
hand, it should be possible to make any set separable by projecting it into a space of
high enough dimensionality. The separating surface would be flat by construction
in the new space but could be curved – even multiply connected – in the original.
However, there must be a means to limit the capacity of the machine, its ability
to classify any data set without error: a machine with too much capacity is like a
model with too many adjustable parameters in its tendency to overfit data and noise
and concentrate on details rather than on essentials. We must be willing to tolerate
some mistakes if we want to generalize well, and the SVM algorithm incorporates
this in a transparent way [3].

A hyperplane in n dimensions is completely described by the equation

wTx+b = 0, (18)

where the weight vector w is perpendicular to it and the scalar bias b is proportional
to its separation from the origin (see Figure 10). Knowing w and b the machine
classifies any subsequent example z by evaluating f (z) = sgn(wTz+b).

Statistical learning theory [22] proves that the hyperplane that minimizes a prop-
erly defined “expected generalization error” for a given set of points is that with the
smallest norm [2]. An SVM sets out to solve the constrained minimization problem

min
w,b

1
2

wTw

s.t. (xT
i w+b)yi ≥ 1.

(19)

To prevent overfitting, we relax the constraints by introducing slack variables
that measure how far a point strays into the “wrong” side:

min
w,b

1
2

wTw+C∑
i
ξi

s.t. (xT
i w+b)yi ≥ 1−ξi, ξi ≥ 0.

(20)

Note that we also penalize the objective function for each misclassified example;
the proportionality constant C is the capacity we referred to above.

It is more convenient to solve this problem in its dual formulation. To paraphrase
an introductory calculus problem, instead of finding the rectangle with minimum
perimeter when given its area we will fix the perimeter and look for the rectangle
with maximum area. Both problems have the same answer, but the second involves
a simpler constraint and is easier to solve; this advantage is amplified in the multi-
dimensional problem (19), whose inequality constraints become equalities [10]:
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max
ααα

∑iαi − 1
2 ∑i, jαiyixT

i x jy jα j (21)

s.t. ∑iαiyi = 0, 0 ≤ αi ≤C.

The solution to the new problem is a vector of Lagrange multipliers αi, each of
which in a sense measures the information content of its corresponding point. Only
a small fraction of the examples, the support vectors, have nonzero αi. Note that in
this formulation the capacity limits the amount of knowledge that an example can
store; problematic points are eventually “sacrificed” in the interest of good gener-
alization. The symmetric convex quadratic programming problem (21) has no local
minima, and that, along with the sparsity of the solution, make the SVM a viable
and attractive classifier. The weight is given by w = ∑iαiyixi = ∑i∈SVαiyixi, the
bias can be computed by applying the Karush-Kuhn-Tucker conditions to the sup-
port vectors [3, 10], and the machine predicts new cases using

f (x) = sgn
(
∑

i∈SV

αiyixT
i x+b

)
. (22)

Having protected the generalization ability of the machine we are ready to
increase the dimensionality of the space. We use a device that follows from the
realization that in both (21) and (22) the data enter the problem only in the form of
scalar products. It is then possible to have a nonlinear separating surface while still
keeping the linearity of the machine by substituting

xT
1x2 → K(x1,x2) = φ(x1)

Tφ(x2) (23)

for some mapping φ(x). A function K that can be so expressed is called a kernel.
There is no one-to-one correspondence between mapping and kernel, and, more
important, it is not necessary to know φ to find K. The mapping may be into a space
of hundreds of thousands of dimensions, yet to gain access to it we only need the
much smaller and simpler kernel.

Some kernels stretch out the examples into the added dimensions in such a way
that gaps open up between the examples which permit a flat separating surface to
pass through. For example, Figure 11 shows the effect of applying to a nonseparable

Fig. 11 Applying a polynomial kernel to a nonseparable set of points projects it into a higher-
dimensional space and results in a linearly separable distribution. Left: original data in X , with two
classes corresponding to the circles and squares. Right: data projected into (X ,Y,Z) = (x

√
2,x2,1),

shown on the X-Y plane.
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Fig. 12 Two classes of points
interspersed, not linearly
separable, with yi = +1 for
the circles and yi = −1 for the
crosses. Dashed lines show
the Gaussian (RBF) potential
functions around each point;
the solid curve is the sum
of those functions, which
produces the class separator.

one-dimensional set the mapping x → φ(x) = [x
√

2 x2 1]T, which corresponds
to the polynomial kernel K(x1,x2) = (x1

Tx2 + 1)2. A very popular alternative, the
radial basis function (RBF) kernel

K(x1,x2) = exp(−(x1 −x2)
T(x1 −x2)/2σ2), (24)

surrounds every point with a (usually Gaussian) surface that resembles a potential
function in the sense that it “repels” the separating surface, as shown in Figure 12.
The explicit mapping is not known, though in any case in the hyperspace implied
by the kernel the separating surface will become flat. The Gaussian width σ is an
adjustable parameter; the RBF kernel is found to work best when σ is on the order
of the average separation between points.

One view of the RBF kernel, as well as other alternatives, is that it contains some
measure of proximity or similarity between two vectors x1 and x2. The function
attains a maximum when x1 = x2 and declines as the points become more distant
or dissimilar. (In the case of the polynomial kernel the similarity involves paral-
lelism rather than closeness.) This provides some measure by which the system can
determine whether new cases are similar to (i.e., in the same class as) others.

The SVM principle can also be applied to regression problems, where yi ∈ IR
instead of {−1,1}. The machine creates a surface with a surrounding tube of
adjustable width and wiggles it until a given loss function reaches a minimum. The
usual choice for this loss function assigns no penalty to points that rest inside the
tube and penalizes outliers linearly. The resulting optimization problem is similar
to (20): the objective function to be minimized has to strike a balance between fit-
ting accuracy (measured by the capacity and slack variables) and model simplicity
(measured by the norm of the weight vector) [10].

Figure 13 shows the results of an SVM classification experiment using synthetic
dipole parameters. We choose a range of spheroid diameters (from 1.5 to 15 cm)
and a range of elongations (from 0.5 to 4.5) representative of UXO and generate
1,000 spheroids with random diameters and elongations and with conductivities and
permeabilities representative of steel and aluminum. We then compute their induced
dipole moments under unit axial and transverse uniform primary field excitation
using analytic solutions of the EMI equations [1]. Then for given values of the diam-
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Fig. 13 SVM classification example using dipole moments.

Fig. 14 Top: Low-frequency
modal response magnitudes
B j

k corresponding to dipole
responses to uniform excita-
tion fields in the correspond-
ing directions, for a permeable
and a non-permeable spher-
oid. The smaller object pro-
duces larger values. Bottom:
Same, but for two spheroids
of the same material and with
the same volume. With dif-
ferent elongation ratios (1.5
and 2) they produce disparate
dipole responses at 2 kHz.
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eter we train an open-source SVM implementation [17] with 200 examples, telling
the machine which ones are larger than the given diameter and which ones are not.
After that, we test the SVM predictions on the 800 remaining examples. The figure
shows the success rate (defined as the number of correct predictions divided by the
total number of tests) as a function of increasing cutoff diameter. The second panel
displays the results of repeating the experiment using elongation as the classification
parameter. Classification is imperfect, but the results are encouraging [11].

A key discrimination quantity of interest to field workers is the size or vol-
ume of an unseen object. To motivate use of the SVM, as well as SEA parame-
ters, we note first that the basic dipole parameters do not necessarily correspond in
a simple way to volume. Larger objects do not always produce larger dipole val-
ues, especially for composite objects observed over a broad band. Dipole responses
can be extracted from within the lowest orders of excitation and response in the
complete set of B j

k. Figure 14 shows that both different materials and also differ-
ent object proportions can reverse the intuitive ordering of the responses in terms
of dipole magnitudes. Even while, by contrast, the (reasonably truncated) full set
of B j

k expresses all possible response behaviors of the objects, there is again no
simple, intuitively evident correspondence between the parameter magnitudes that
allows ready inference of volume [25]. We need a tool such as the SVM. As a
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test, an SVM was trained on sets of B j
k modal response parameters for spheroids of

different shapes, materials, and volumes. These had been sorted into “small” and
“large” classes based on a chosen volume cutoff. When the trained algorithm was
applied to 200 new (“unknown”) cases it classified them as shown in Table 1 [25].
These excellent results suggest that the limitations on classification in Figure 13 are
due to the shortcomings of the dipole parameters for classification, not to the SVM
itself.

The type of analysis just described becomes problematic when we go to the field
because it is difficult to obtain these intrinsic object characteristics from measured
data. To find the dipole moments – not entirely consistent discriminators anyway –
we first have to determine the target’s location and orientation, which results pre-
cisely in the nonlinear searches that we want to avoid. The spheroidal coefficients
are better discriminators but are nontrivial to determine, even when the location and
orientation are known exactly. On the other hand, practitioners in areas like hand-
writing recognition [2] routinely exploit the statistical, model-independent charac-
ter of the SVM algorithm and apply it to “raw” data that has not been distilled
into simpler or unifying parameters. Encouraged by their results, we have employed
the SEA [21] as a dependable and accurate model to generate synthetic secondary
fields for a collection of UXO at known depths and then used SVM regression to
extract unknown depths for other instances. Figure 15 shows a frequency-domain
example. A similar approach has been tried on measured data, with reasonable suc-
cess [13].

Table 1 SVM classification of spheroids based on their response coefficients.

Predicted large Predicted small

True large 99 1
True small 0 100

Fig. 15 SVM regression for
depth. The machine uses 800
training examples obtained
with the SEA and takes 600
tests, all with normalized
inphase and quadrature data
at f = 390 Hz and 14 spatial
points. Less than 3% of the
tests (highlighted with circles)
have their depth misjudged
outside the 5-cm range shown
by dim gray lines.
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5 Clutter Reduction by Upward Continuation

In most realistic situations, subsurface UXO discrimination is clutter-limited. Phys-
ical clutter causes signal clutter, which lowers the SNR to a point where signals
are unintelligible by any means of processing. This applies particularly to GPR but
afflicts EMI as well. Wherever ordnance has failed to explode other ordnance prob-
ably has exploded, leaving fragments of metal in or on the soil. As a general, order-
of-magnitude rule of thumb, the magnetic response of a metal body is proportional
to its volume. However, fragments are often shallower than a UXO, and thereby
nearer the sensor. The 1/r3 or 1/r6 factors for signal decay cited above can there-
fore make clutter signals quite strong relative to those from UXO, even while the
fragments are inherently much weaker scatterers. If one could observe the scene
from a greater elevation, the ratio of distances to UXO and to clutter would become
similar, eliminating this problem. While actual sensor elevation is impractical – if
only because the overall level of signal might well diminish to the level of the back-
ground – the same advantages can sometimes be obtained by computational upward
continuation of fields that are measured near the ground.

Our strategy here will be to obtain magnetic-field data over a grid near the surface
at some elevation zm. The data are then used to infer a sheet of equivalent sources
over the ground surface that reproduces the measured values. In particular, given the
ê component of H over a surface, we use the gradient of (11) to solve for qm over a
lower surface S0:

He(r) =
∫

S0

dS′ qm(r′)
ê · R̂
4πR2 , (25)

where R = r− r′, r is at elevation zm, and r′ is on the ground surface. For compu-
tational purposes (25) is discretized to form a matrix equation. In this instance, in
contrast to assumptions heretofore, let us assume that the object is responding to a
single broad primary field while the receivers sample the resulting single secondary
field at diverse points (the system depicted in Figure 16, where the survey field is
surrounded by a single large transmitter loop [5]). In effect, He forms a boundary
condition on the field above a plane at zm. The qm solution produces fields through

Fig. 16 Field setup, UXO,
clutter, and sensor.

Clutter
items

UXOUXO

ReceiversReceivers
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objects. The method can also provide large numbers of high fidelity training exam-
ples for statistical learning machines, such as the Support Vector Machine. The SVM
operates by implicitly mapping from an original data space to a hyperspace. In the
latter the originally intermixed classes for discrimination are separated quite sim-
ply by a (hyper)plane. Having trained SVMs using the SEA or analytical solutions,
we show some success in using the method to classify objects geometrically, based
on their dipole moment parameters; to classify them for size based on sets of their
unique SEA parameters themselves; and to estimate their depth using raw signals
instead of distilled parameters.

In realistic situations, UXO discrimination is clutter limited. Computational
upward continuation shows promise as a physics-based method of EMI clutter sup-
pression. A sheet of equivalent sources is inferred from data at one elevation. These
can then predict the signal at greater elevations, at which clutter influences fade.

Acknowledgements We gratefully acknowledge contributions to the work reported here by
Dr. Benjamin E. Barrowes, Prof. Xudong Chen, Ms. Xiang-Xiang Cheng, Mr. Steven M. Griffin,
Prof. Shah A. Haider, Mr. Lynn Helms, Prof. Keith D. Paulsen, Ms. Irma Shamatava, Prof. Fridon
Shubitidze, Dr. Keli Sun, Dr. Bae-Ian Wu, Dr. Beijia Zhang, and the late Prof. Jin-Au Kong.

References

1. Barrowes, B.E., O’Neill, K., Grzegorczyk, T.M., Chen, X., Kong, J.A.: Broadband analyti-
cal magneto-quasistatic electromagnetic induction solution for a conducting and permeable
spheroid. IEEE Trans. Geosci. Remote Sensing 42, 2479–2489 (2004)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In:
D. Haussler (ed.) Proceedings of the 5th Annual ACM Workshop on Computational Learning
Theory, pp. 144–152. ACM Press, New York (1992)

3. Burges, C.J.C.: A tutorial on Support Vector Machines for pattern recognition. Data Min.
Knowl. Disc. 2, 121–167 (1998)

4. Butler, D.K.: Implications of magnetic backgrounds for unexploded ordnance detection. J.
Appl. Geophys. 54, 111–125 (2003)

5. Cattach, M.K., Stanley, J.M., Lee, S.J., Boyd, G.W.: Sub-Audio-Magnetics (SAM): a high-
resolution technique for simultaneously mapping electrical and magnetic properties. Explor.
Geophys. 24, 387–400 (1993). See also http://www.g-tek.biz/library.html

6. Chen, C.C., Higgins, M.B., O’Neill, K., Detsch, R.: Ultrawide-bandwidth fully-polarimetric
ground penetrating radar classification of subsurface unexploded ordnance. IEEE Trans.
Geosci. Remote Sensing 39, 1221–1230 (2001)

7. Chen, X., O’Neill, K., Barrowes, B.E., Grzegorczyk, T.M., Kong, J.A.: Application of a spher-
oidal mode approach with differential evolution in inversion of magnetoquasistatic data for
UXO discrimination. Inv. Prob. 20, 27–40 (2004)

8. Chen, X., O’Neill, K., Grzegorczyk, T.M., Kong, J.A.: Spheroidal mode approach for the
characterization of metallic objects using electromagnetic induction. IEEE Trans. Geosci.
Remote Sensing 45, 697–706 (2007)

9. Cheng, D.K.: Field and Wave Electromagnetics. Addison-Wesley, Reading, MA (1989)
10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
11. Fernández, J.P., Barrowes, B., O’Neill, K., Paulsen, K., Shamatava, I., Shubitidze, F., Sun,

K.: Evaluation of SVM classification of metallic objects based on a magnetic-dipole repre-
sentation. In: J.T. Broach, R.S. Harmon, J.H. Holloway Jr. (eds.) Detection and Remediation



Electromagnetic Methods for UXO Discrimination 221

Technologies for Mines and Minelike Targets XI, Proceedings of SPIE, vol. 6217, pp. 6217–
03. Bellingham, WA (2006)

12. Fernández, J.P., Barrowes, B., O’Neill, K., Shamatava, I., Shubitidze, F., Sun, K.: A data-
derived time-domain SEA for UXO identification using the MPV sensor. In: R.S. Harmon,
J.T. Broach, J.H. Holloway Jr. (eds.) Detection and Sensing of Mines, Explosive Objects, and
Obscured Targets XIII, Proceedings of SPIE, vol. 6953, pp. 6953–1H. Bellingham, WA (2008)

13. Fernández, J.P., Sun, K., Barrowes, B., O’Neill, K., Shamatava, I., Shubitidze, F., Paulsen,
K.: Inferring the location of buried UXO using a Support Vector Machine. In: R.S. Harmon,
J.T. Broach, J.H. Holloway Jr. (eds.) Detection and Remediation Technologies for Mines and
Minelike Targets XII, Proceedings of SPIE, vol. 6553, pp. 6553–0B. Bellingham, WA (2007)

14. O’Neill, K.: Ultra-wideband, fully polarimetric ground penetrating radar for UXO discrimi-
nation. ESTCP Final Technical Report, Project 199902. www.estcp.org (2005)

15. O’Neill, K.: Processing for clutter evasion in UXO discrimination. SERDP Project MM-1590
Final Technical Report. www.serdp.org (2008)

16. Pasion, L.R., Oldenburg, D.W.: A discrimination algorithm for UXO using time domain elec-
tromagnetics. J. Environ. Eng. Geophys. 6, 91–102 (2001)
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Some Advances in UWB GPR

Gennadiy Pochanin∗

Abstract A principle of operation and arrangement of UWB antenna systems
with frequency independent electromagnetic decoupling is discussed. The peculiar
design of the antenna makes it possible to use it in two different modes: horizontal
scanning mode and accurate definition of local object location mode. The technique
for automatic local objects detection on GPR images is considered. It is based on the
Hough transform for detection of hyperbolic curves. Estimation of the accuracy of
the objects′ measured coordinates and evaluation of the detection probability have
been performed for the case of automatic interpretation of GPR sounding results.

Keywords: Ground penetrating radar, GPR, impulse signal, transmitting-receiving
antennas, decoupling, Hough transform, detection probability, false alarm probability

1 Introduction

A wide variety of ground penetrating radars (GPR) is considered as possible equip-
ment for mine and UXO detection. There are many reports and scientific papers
discussing different achievement in this area (e.g. [10–12] and others).

However, in practice, the power budget of GPR leaves much to be desired when
experiments on GPR sounding are carried out. The large power budget of GPR
means deeper sounding, higher resolution, higher detection probability and lower
false alarm probability. Taking into account characteristics of an existing short pulse
generator, there is no problem driving a radiating antenna by a power pulse. How-
ever, GPR is a short range radar and it demands that the receiving antenna be close
to the transmitting antenna. Widely known antennas, like “bow-ties”, wideband
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dipoles and TEM horns when used as transmitting–receiving GPR antennas are elec-
tromagnetically coupled. This means that power pulses are induced in the receiving
antenna when the transmitting antenna is excited. It is this coupling phenomena that
limits the power budget of GPR. Quite good GPR antenna systems provide decou-
pling which is about −30 dB.

To overcome this problem the author with his colleagues suggested a way to
achieve full frequency independent electromagnetic decoupling, as described in [9].
Details of the transmitting–receiving (TR) antenna design and operational principles
are given in Section 2.

Usually UXO and land mines are quite small objects. Under these conditions it is
possible to analyze them as local objects. Section 3 considers an approach providing
automatic detection of local objects.

It is well known that the local objects with small dimensions form hyperbolic
curves in a GPR image. The Hough transform is an effective technique for auto-
matically searching for curves in binary images [2]. This technique is applied to
detection of hyperbolic curves in the GPR images as described in [1, 8]. The the-
ory of the Hough transform for fast and precise detection of local objects and for
determination of soil properties has been stated in the papers [4, 6]. This method is
tested using simulated and experimental data. Relations between the object detec-
tion probability and the false alarm probability, and the accuracy of determination
of the objects’ coordinates are obtained [5].

2 High Decoupled Antenna for UWB Pulse GPR

2.1 Principle of operation and arrangement

2.1.1 Principle of operation

Two dipoles which are placed symmetrically with respect to the Y Z plane and
antiphased excited by G1 and G2 (Figure 1) generate an electromagnetic field with
only Ex and Hy components in the Y Z plane. This means that if we place a plane
conductor there, the pair of radiating dipoles does not induce any current in this con-
ductor. Thus, receiving antenna in the Y Z plane does not receive the electromagnetic
field generated by the two dipoles of the transmitting antenna. There is an absolute
mutual compensation of electromagnetic fields Ey, Ez, Hx and Hz generated by
the transmitting dipoles. Moreover, this holds independently of the exciting signal
waveform.

Very high frequency independent electromagnetic decoupling between the TR
modules is possible if a single dipole is the radiating antenna and the receiving
antenna is a pair of dipoles placed symmetrically with respect to the YOZ plane. It
is only necessary to connect the outputs of the receiving dipoles in an appropriate
way (Figure 2).
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Fig. 1 Electric fields
compensation.

Fig. 2 Summation of sig-
nal from the outputs of the
receiving module.

EMFs with the same waveform and amplitude are induced in the receiving
dipoles under the influence of the radiated electromagnetic field. Subtracting the
signals from the outputs of the receiving dipoles, in the summing unit, we achieve a
minimal signal at the antenna output. As a result, we have TR antennas decoupling.

Since the signal at the receiving antenna output is the difference of signals
received by its two elements; the receiving module is a low-cut filter. The lowest
working frequency depends on the relative delay between the signals received by
the elements of the receiving module.

2.1.2 Arrangement

The antenna system (Figure 3) consists of a bow-tie transmitting antenna on the
middle plate and a pair of receiving bow-ties, one above and one below the middle
plate. The distance between the antenna elements of the receiving module is 160
mm. Thus, it effectively receives the electromagnetic field which arrives from the
direction of the X axis, and the typical rise time is less than 0.5 ns. A high volt-
age short pulse generator is used to drive the radiating antenna. The principle of
pulse forming by a drift step-recovery diode [7] provides generation of 450 V in
amplitude, 0.5 ns in rise time, and 25 kHz in repetition rate pulses.
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Fig. 3 The antenna system arrangement.

Under these driving signal parameters and absent reflecting objects near the
antenna system (Figure 3) the pulse amplitude at the output of the receiving antenna
is less than 3 mV. This implies that the decoupling value is better than −103 dB.

2.2 Modes of operation

There is one more advantage of the antenna system. Its radiation pattern is the prod-
uct of those of the transmitting and receiving modules. Thus it has only two peaks
along the perpendicular to the main plate (in Figure 3). The pattern has nulls in the
bow-ties’ plane in any direction. It is unresponsive to clutter coming from objects
and other sources of electromagnetic radiation situated in the antenna symmetry
plane.

GPR with the described antenna system is able to work in two modes:

1. Horizontal scanning mode
2. Accurate definition of local object location mode

Mode 1 is commonly used when the antenna system moves on the ground. The
antenna pattern has two peaks in both the nadir and zenith directions, and a null in
the horizontal plane. In fact, using this GPR system in horizontal scanning mode
is similar to the usual GPR technique. The only advantage is in the power budget,
owing to higher decoupling in comparison with conventional bow-tie GPR antenna
systems.

Mode 2. In order to provide accurate definition of local object location mode it is
necessary to rotate the antenna system around the Z axis (Figure 1) and to perform
sounding moving the antenna along the X axis in Figure 1.
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Fig. 4 Accurate definition of
local object location.

Fig. 5 Output signals.

If the antenna system moves over a local object (Figure 4), the received signal
changes its waveform (Figure 5).

When the object is located far from the antenna system, the output signal ampli-
tude is very small. As the distance between the antenna and object decreases the
output amplitude increases. It reaches its maximum when one of the elements of the
receiving antenna is over the object (Figure 5).

The amplitude goes to zero when the object is in the antenna symmetry (Y Z)
plane. At further antenna displacement the signal amplitude increase again. It
changes its polarity and reaches its maximum when the other element of the receiv-
ing antenna goes directly over the object. Thus, if during movement the signal
amplitude at the output of the antenna system goes through zero and changes polar-
ity, it means that a local object is in the ground and the location of the object corre-
sponds to the location of the antenna symmetry plane where the output signal was
minimal.
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Fig. 6 Experimental profile.

Figure 6 shows results of a test of the antenna working in accurate definition
of local object location mode. The initial GPR profile, without applying any data
processing procedures, is shown. It corresponds to a section of the sounded path
1 m in length.

Accuracy of the object’s horizontal coordinate measurement is about 2 cm. It
should be noted that, in contrast to horizontal scanning mode, the accurate definition
of local object location mode provides high horizontal resolution at shallow depth.

3 Automatic Object Detection with GPR Images Containing
a Response from a Local Object

3.1 Use of the Hough transform for detection of GPR hyperbolic
curves

The Hough transform associates the original binary image of the profile (the so-
called “space of signals”) with another image (the Hough space) where a set of
hyperbolic curves that cross at one point with coordinates x′0,y

′
0 (position of a local

object in the Hough space) corresponds to one hyperbola in the space of signals. In
other words, one pixel that is a component of the source hyperbola drawn in Figure 7
as a dashed curve is the vertex of the hyperbola in the Hough space.
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Fig. 7 The hyperbolic curve in the binary image of the profile and the Hough space.

In the “classical” case [2] for HT calculation the Hough space should be divided
by a rectangular mesh into collecting elements S(i, j) of fixed size. The number of
black points in the original binary image that lie on the curve y0(x0) is calculated
for every collecting element. Thus the spatial accuracy depends on the size of a
collecting element. Then maximal values of S are calculated as a function of three
variables y0,x0 and ε , and a collecting element with the highest value corresponds
to three parameters defining the detected hyperbola in the original binary image.

The standard HT requires long-term computations. The authors have suggested
a way to reduce computation time using the following algorithm:

• The Hough space should be divided into collecting elements – 1× 1 pixels in
size.

• One hyperbola y0(x0) in the Hough space should be plotted for every black point
of the whole original image.

• Coordinates of each point of this hyperbola should be calculated, and the accu-
mulator corresponding to these coordinates should be increased by one.

So, if several hyperbolas fall within one element, the accumulator grows accord-
ing to the number of hyperbolas.

It is obvious that the Hough space should be calculated and plotted only once. All
points in the original image are already taken into consideration. Thus, this reduces
the calculation time considerably. Moreover, this technique precisely determines
coordinates of the hyperbola vertices because the element size is originally 1× 1
pixels.

3.2 Hough space at different permittivity values

Consider the Hough space of a single hyperbola when the value of ε used in calcu-
lations differs from the correct value. The Hough space has been imaged for a test
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Fig. 8 Histograms of collecting elements along the coordinate y0.

hyperbola similar to those shown in Figure 7 when x0 and y0 are fixed and ε takes
several different values. The correct value of ε is 12.

The simulation results are shown in Figure 8. Histograms of collecting elements
along the coordinate y0, i.e., vertical profiles of the accumulator in collecting ele-
ments (VPACE), form a cross-section of the Hough space with the plane along the
straight line x0 = x′0. It is perpendicular to the plane x0y0.

One can see that at the exact matching of the actual value ε the VPACE looks like
a peak at y′0 (Figure 8b). Depending on the value of mismatch and its sign (greater or
less than the actual ε) it shows changes with depth either from zero to fast growing
and then slow drop, or slow growing then peak and the fast drop to zero.

Thus, when ε changes there are phenomena typical for focusing. Therefore, when
a specified value of permittivity does not correspond to its actual value, there is a
defocusing in the Hough space. The defocusing pattern depends on the difference
between the calculated and actual values of ε .

An algorithm for adaptive selection of ε (Figure 9b) has been developed based
on the behavior of S(ε).

This algorithm has been tested using several simulated and experimental GPR
profiles. Two percent error for permittivity estimation can be achieved for the geo-
metrically generated curves. The error increases to 5–10% for simulated images and
to 12% for experimental data because of the presence of clutter. Error in ε calcula-
tion corresponds to error in calculation of coordinates of the local object location.

Thus, the algorithm is applicable for automatic GPR data processing and auto-
matic detection of local objects in GPR profile. It allows minimizing the influence
of the human factor on data processing, and calculates the object coordinates with
accuracy which is not worse than one pixel in the GPR image.
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Setting up the initial values of 
collecting element sizes and of ε

Calculating the Hough
transform

Analyzing the vertical profile 
of collecting elements

Does defocusing
take place ?

Defining the 
direction of
defocusing

Setting the
required increment 

of ε

The correct value
of ε has been
determined

YES

NO

Fig. 9 The algorithm for adaptive selection of ε .

3.3 Performance of automatic object detection method

Usually object detection cannot be done unambiguously. If we deal with a binary
classifier, which divides a set of detected targets into two classes – real (the positive
instances) and false alarms (the negative instances), the ensemble of metrics in [3]
is used for performance measurement.

The second problem that has to be solved while searching for objects is determi-
nation of coordinates of the object’s location and estimation of errors in these coor-
dinates. It is possible to simulate the necessary profiles using the finite-difference
time domain method (FDTD) software.

The automatic object detection method has been tested with

• Geometrically simulated local objects images
• FDTD simulated local objects images
• Experimental data with several local objects [5]

In the first item the classifier marked all true positive instances correctly while
processing the image simulated using hyperbola tracing, though several false alarms
appeared. In the FDTD examples some problems with classification occurred due
to the presence of clutter and to the non-ideal shape of the hyperbolic curves. Com-
parison between coordinates of the detected peaks and coordinates of the hyperbola
vertices shows that the X coordinates of all the vertices in the first example have
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been determined with zero error, while the determined coordinates of vertices for
the second example have a maximal displacement of two pixels from the source
values. This means that it is possibile to determine the horizontal coordinates of the
object with zero error. The absolute error in the determination of the Y coordinate
of the hyperbola vertices did not exceed three pixels for all images.

Experimental data analysis shows that if the separation threshold is selected so
that it provides detection of all objects, the false alarm probability will be 91.6%. If
the threshold is selected so that the false alarm probability equals 0, then only 60%
of all objects (three of five) are detected.

Examples of GPR images with only one clearly visible hyperbola in the binary
image were analyzed as well. Here, if the threshold yields 100% detection probabil-
ity then the false alarm probability will be 33.3%. This is less than in the previous
example.

Thus, the possibility to detect subsurface objects in a GPR image automatically
and to find their coordinates accurately has been shown using examples of simulated
and experimental GPR images. The developed method based on the Hough trans-
form allows this. It has been demonstrated that 100% object detection probability is
achievable, and at the same time the false alarm probability is minimal. Neverthe-
less, it is necessary to optimize the criteria for choosing the optimal threshold for
separating the Hough space peaks. This requires more complete statistical data and
enough simulated and experimental GPR images.

4 Summary

Two ideas regarding an antenna system with high and frequency independent
transmitting–receiving antennas decoupling, and the Hough transform for automatic
detection of local objects in GPR images, were discussed. Improved GPR perfor-
mance was shown.

Acknowledgment The author is grateful to Mr. M.M. Golovko for his contribution to the investi-
gation on automatic object detection with GPR images containing a response from a local object.
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Operational Research Approach to Decision
Making

Oleg Pokrovsky∗

Abstract The decision making (DM) problem is of great practical value in many
areas of human activities. Most widely used DM methods are based on probabilistic
approaches. The well-known Bayesian theorem for a conditional probability density
function (PDF) is a background for such techniques. It is needed due to some uncer-
tainty in many parameters entered in any model which describes the functioning of
many real systems or objects. Uncertainty in our knowledge might be expressed in
an alternative form. We offer to employ appropriate confidence intervals for model
parameters instead of a relevant PDF. Thus one can formulate a prior uncertainty
in model parameters by means of a set of linear constraints. The related cost or
goal function should be defined at a corresponding set of parameters. That leads
us to stating the problem in terms of operational research or mathematical linear
programming. It is more convenient to formulate such optimization problems for
discreet or Boolean variables. A review of relevant problem statements and numer-
ical techniques are presented as well as many examples.

Keywords: Decision making, Bayesian theory, linear and integer programming,
optimal design

1 Introduction

Decision theory is a theory about decisions. The subject is not a very unified one. To
the contrary, there are many different ways to theorize about decisions, and there-
fore also many different research traditions. This chapter attempts to reflect some of
the diversity of the subject. Its emphasis lies on the mathematical aspects of deci-
sion theory. Decision theory focuses on how we use our freedom. In the situations
treated by decision theorists, there are options to choose between, and we choose
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in a non-random way. Our choices, in these situations, are goal-directed activities.
Hence, decision theory is concerned with goal-directed behaviour in the presence of
options. We do not decide continuously. In the history of almost any activity, there
are periods in which most of the decision-making is made, and other periods in
which most of the implementation takes place. Decision theory tries to throw light,
in various ways, on the former type of period. Decision makers divide the decision
process into the following five steps:

• Identification of the problem
• Obtaining necessary information
• Production of possible solutions
• Evaluation of such solutions
• Selection of a strategy for performance

The set of above issues is sequential in the sense that they divide decision
processes into parts that always come in the same order or sequence. This approach
might be criticized. Some empirical material indicates that the “stages” are per-
formed in parallel rather than in sequence. A more realistic model should allow the
various parts of the decision process to come in different order in different decisions.

2 Bayesian Decision Theory

Bayesian decision theory is based on the statistical inference in which evidence or
observations are used to update or to newly infer the probability that a hypothesis
may be true. The name “Bayesian” comes from the frequent use of Bayes’ theo-
rem in the inference process. Bayes’ theorem was derived from the work of the
Reverend Thomas Bayes. Bayesian inference uses aspects of the scientific method,
which involves collecting evidence that is meant to be consistent or inconsistent
with a given hypothesis. As evidence accumulates, the degree of belief in a hypoth-
esis ought to change. With enough evidence, it should become very high or very
low. Thus, proponents of Bayesian inference say that it can be used to discrimi-
nate between conflicting hypotheses: hypotheses with very high support should be
accepted as true and those with very low support should be rejected as false. How-
ever, detractors say that this inference method may be biased due to initial beliefs
that one needs to hold before any evidence is ever collected. Bayesian inference uses
a numerical estimate of the degree of belief in a hypothesis before evidence has been
observed and calculates a numerical estimate of the degree of belief in the hypoth-
esis after evidence has been observed. Bayesian inference usually relies on degrees
of belief, or subjective probabilities, in the induction process and does not necessar-
ily claim to provide an objective method of induction. Nonetheless, some Bayesian
statisticians believe probabilities can have an objective value and therefore Bayesian
inference can provide an objective method of induction.

P(H/E) =
P(E/H)P(H)

P(E)
(1)
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where:

• H represents a specific hypothesis, which may or may not be some null hypo-
thesis.

• P(H) is called the prior probability of H that was inferred before new evidence,
E, became available.

• P(E/H) is called the conditional probability of seeing the evidence E if the
hypothesis H happens to be true. It is also called a likelihood function when
it is considered as a function of H for fixed E.

• P(E) is called the marginal probability of E: the a priori probability of witnessing
the new evidence E under all possible hypotheses. It can be calculated as the
sum of the product of all probabilities of any complete set of mutually exclusive
hypotheses and corresponding conditional probabilities:

P(E) =∑
i

P(E/Hi)P(Hi). (2)

• P(H/E) is called the posterior probability of H given E.

The factor P(E/H)/P(E) represents the impact that the evidence has on the belief
in the hypothesis. If it is likely that the evidence E would be observed when the
hypothesis under consideration is true, but unlikely that E would have been the out-
come of the observation, then this factor will be large. Multiplying the prior proba-
bility of the hypothesis by this factor would result in a larger posterior probability
of the hypothesis given the evidence. Conversely, if it is unlikely that the evidence
E would be observed if the hypothesis under consideration is true, but a priori likely
that E would be observed, then the factor would reduce the posterior probability
for H. Under Bayesian inference, Bayes’ theorem therefore measures how much
new evidence should alter a belief in a hypothesis.

Bayesian statisticians argue that even when people have very different prior sub-
jective probabilities, new evidence from repeated observations will tend to bring
their posterior subjective probabilities closer together. However, others argue that
when people hold widely different prior subjective probabilities their posterior sub-
jective probabilities may never converge even with repeated collection of evidence.
These critics argue that worldviews, which are completely different initially, can
remain completely different over time despite a large accumulation of evidence.

Thus, one applies Bayes theorem (see (1) and (2)), multiplying the prior by the
likelihood function and then normalizing, to get the posterior probability distribu-
tion, which is the conditional distribution of the uncertain quantity given the data.
A prior is often the purely subjective assessment of an experienced expert. Some
will choose a conjugate prior when they can, to make calculation of the posterior
distribution easier. In decision theory, a Bayes estimator is an estimator or decision
rule that maximizes the posterior expected value of a utility function or minimizes
the posterior expected value of a loss function (also called posterior expected loss).
Unfortunately, there are many decision making examples where Bayes theory fails
due to difficulties in determining the prior probability distribution. Standard sta-
tistical practice ignores model uncertainty. Data analysts typically select a model
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from some class of models and then proceed as if the selected model had gener-
ated the data. This approach ignores the uncertainty in model selection, leading to
over-confident inferences and decisions that are more risky than one thinks they are.
Bayesian model averaging (BMA) provides a coherent mechanism for accounting
for this model uncertainty. Several methods for implementing BMA have recently
emerged [6, 13, 14]. Nonetheless, the BMA approach cannot solve the decision
problem entirely [17].

3 Decision Under Severe Uncertainty

It is common to make uncertain decisions [1]. What can be done to make good
(or at least the best possible) decisions under conditions of uncertainty? Info-gap
robustness analysis evaluates each feasible decision by asking: how much deviation
from an estimate of a parameter value, function, or set, is permitted and yet “guar-
antee” acceptable performance? In everyday terms, the “robustness” of a decision is
set by the size of deviation from an estimate that still leads to performance within
requirements when using that decision. It is sometimes difficult to judge how much
robustness is needed or sufficient. However, according to info-gap theory, the rank-
ing of feasible decisions in terms of their degree of robustness is independent of
such judgments. To this end, the following questions must be addressed:

• What are the characteristics of decision problems that are subject to severe uncer-
tainty?

• What difficulties arise in the modelling and solution of such problems?
• What type of robustness is sought?
• How does info-gap theory address these issues?

In what way is info-gap decision theory similar to and/or different from other
theories for decision under uncertainty? Two important points need to be elucidated
in this regard at the outset:

• Considering the severity of the uncertainty that info-gap was designed to tackle,
it is essential to clarify the difficulties posed by severe uncertainty.

• Since info-gap is a non-probabilistic method that seeks to maximize robustness
to uncertainty, it is imperative to compare it to the single most important “non-
probabilistic” model in classical decision theory, namely Wald’s maximin para-
digm.

The maximin rule tells us to rank alternatives by their worst possible outcomes:
we are to adopt the alternative the worst outcome of which is superior to the worst
outcome of the others. After all, this paradigm has dominated the scene in classical
decision theory for well over 60 years. So, first let us clarify the assumptions that
are implied by severe uncertainty:

1. A parameter λ , whose true value is subject to severe uncertainty
2. A region of uncertainty Δ , where the true value of λ lies
3. An estimate λ̃ of the true value of λ
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Two remarks should be made with account to above assumption. First, The region
of uncertainty is relatively large. Second, the estimate is a poor approximation of the
true value of λ . Info-gap decision theory is radically different from all current the-
ories of decision under uncertainty. The difference originates in the modeling of
uncertainty as an information gap rather than as a probability. In general, info-gap’s
robustness model is a mathematical representation of a local worst-case analysis in
the neighborhood of a given estimate of the true value of the parameter of inter-
est. Under severe uncertainty the estimate is assumed to be a poor indication of the
true value of the parameter and is likely to be substantially wrong. The fundamen-
tal question therefore is: given the severity of the uncertainty, the local nature of
the analysis and the poor quality of the estimate, how meaningful and useful are the
results generated by the analysis, and how sound is the methodology as a whole? The
robust optimization literature (see [2]; Kouvelis and Yu, 1997) provides methods
and techniques that take a global approach to robustness analysis. These methods
directly address decision under severe uncertainty, and have been used for this pur-
pose for more than 30 years. Wald’s Maximin model is the main instrument used by
these methods. The principal difference between the Maximin model employed by
info-gap and the various Maximin models employed by robust optimization meth-
ods is in the manner in which the total region of uncertainty is incorporated in the
robustness model. Info-gap takes a local approach that concentrates on the imme-
diate neighborhood of the estimate. In sharp contrast, robust optimization methods
set out to incorporate in the analysis the entire region of uncertainty, or at least an
adequate representation thereof. In fact, some of these methods do not even use an
estimate. The info-gap’s robustness model is an instance of the generic Maximin
model. Therefore, it is instructive to examine the mathematical programming (MP)
formats of these generic models [4, 16, 10].

4 Linear programming

A Linear Programming (LP) problem is a special case of a Mathematical Pro-
gramming problem [3, 8]. From an analytical perspective, a mathematical pro-
gram tries to identify an extreme (i.e., minimum or maximum) point of a
function f (x1,x2, ...,xn) , which furthermore satisfies a set of constraints, e.g.,
g(x1,x2, ...,xn) ≥ b. Linear programming is the specialization of mathematical pro-
gramming to the case where both function f, to be called the objective function,
and the problem constraints g are linear. From an applications perspective, mathe-
matical (and therefore, linear) programming is an optimization tool, which allows
the rationalization of many managerial and/or technological decisions required
by contemporary techno-socio-economic applications. An important factor for the
applicability of the mathematical programming methodology in various application
contexts is the computational tractability of the resulting analytical models. Under
the advent of modern computing technology, this tractability requirement translates
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to the existence of effective and efficient algorithmic procedures able to provide a
systematic and fast solution to these models. For Linear Programming problems,
the Simplex algorithm provides a powerful computational tool, able to provide
fast solutions to very large-scale applications, sometimes including hundreds of
thousands of variables (i.e., decision factors). In fact, the Simplex algorithm was
one of the first Mathematical Programming algorithms to be developed [3], and its
subsequent successful implementation in a series of applications significantly con-
tributed to the acceptance of the broader field of Operations Research as a scientific
approach to decision making.

4.1 Illustrative example

Let us consider a simple example of the MP problem formulation [8]. Assume that a
company produces two types of products P1 and P2. Production of these products is
supported by two workstations W1and W2, with each station visited by both product
types. If workstation W1 is dedicated completely to the production of product type
P1, it can process 40 units per day, while if it is dedicated to the production of
product P2, it can process 60 units per day. Similarly, workstation W2 can produce
daily 50 units of product P1 and 50 units of product P2, assuming that it is dedicated
completely to the production of the corresponding product. If the company’s profit
by disposing one unit of product P1 is $200 and that of disposing one unit of P2 is
$400, and assuming that the company can dispose its entire production, how many
units of each product should the company produce on a daily basis to maximize its
profit?

First notice that this problem is an optimization problem. Our objective is to
maximize the company’s profit, which under the problem assumptions is equivalent
to maximizing the company’s daily profit. Furthermore, we are going to maximize
the company profit by adjusting the levels of the daily production for the two items
P1 and P2. Therefore, these daily production levels are the control/decision factors,
the values of which we are asked to determine. In the analytical formulation of
the problem the role of these factors is captured by modeling them as the problem
decision variables:

• X1 = number of units of product P1 to be produced daily
• X2 = number of units of product P2 to be produced daily

In view of the above discussion, the problem objective can be expressed analyti-
cally as:

f (X1,X2) = 200X1 +400X2. (3)

Equation (3) will be called the objective function of the problem, and the coef-
ficients 200 and 400, which multiply the decision variables in it, will be called the
objective function coefficients.
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Furthermore, any decision regarding the daily production levels for items P1 and
P2, in order to be realizable in the company’s operational context, must observe the
production capacity of the two workstations W1 and W2. Hence, our next step in the
problem formulation seeks to introduce these technological constraints. Let’s focus
first on the constraint, which expresses the finite production capacity of workstation
W1. Regarding this constraint, we know that one day’s work dedicated to the pro-
duction of item P1 can result in 40 units of that item, while the same period dedicated
to the production of item P2 will provide 60 units of it. Assuming that production
of one unit of product type Pi(i = 1,2), requires a constant amount of process-
ing time T1i(i = 1,2) at workstation W1, it follows that: T11 = 1

40 and T12 = 1
60 .

Under the further assumption that the combined production of both items has no
side-effects, i.e., does not impose any additional requirements for production capac-
ity of the workstation (e.g., zero set-up times), the total capacity (in terms of time
length) required for producing X1 units of product P1 and X2 units of product P2 is
equal to 1

40 X1 + 1
60 X2. Hence, the technological constraint imposing the condition

that our total daily processing requirements for workstation W1 should not exceed
its production capacity, is analytically expressed by:

1
40

X1 +
1

60
X2 ≤ 1. (4)

Notice that in Equation (4) time is measured in days.
Following the same line of reasoning (and under similar assumptions), the con-

straint expressing the finite processing capacity of workstation W2 is given by:

1
50

X1 +
1

50
X2 ≤ 1. (5)

Constraints (4) and (5) are known as the technological constraints of the problem.
In particular, the coefficients of the variables Xi(i = 1,2), 1

Ti j
(i, j = 1,2) , are known

as the technological coefficients of the problem formulation, while the values on
the right-hand-side of the two inequalities define the right-hand side vector of the
constraints. Finally, to the above constraints we must add the requirement that any
permissible value for variables Xi(i = 1,2) must be nonnegative since these values
express production levels. These constraints are known as the variable sign restric-
tions. Combining Equations (3) to (5), the analytical formulation of our problem is
as follows:

max{ f (X1,X2)} = max{200X1 +400X2} (6)

1
40

X1 +
1

60
X2 ≤ 1

1
50

X1 +
1

50
X2 ≤ 1

Xi ≥ 0(i = 1,2).
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4.2 The general “linear programming” formulation

Generalizing formulation (6), the general form for a Linear Programming problem
is as follows [5]:

Linear Objective Function (LOF) maximization:

max{ f (X1,X2, ...,Xn)} = max{∑ciXi} (7)

under Linear Constraints (LC):

∑
j

ai jXj

≤
or
=
or
≥

bi(i = 1, ...,m). (8)

The LC (8) might be used in important particular cases, when variables signs are
prescribed:

(Xj ≥ 0),or(Xj ≤ 0). (9)

We conclude our discussion on the general LP formulation by formally defining
the solution search space and optimality. Specifically, we shall define as the feasible
region of the LP of Equations (6) to (8), the entire set of vectors X = (X1, ...,Xn)T

that satisfy the LC of (8) and the sign restrictions of (9). An optimal solution to
the problem is any feasible vector that further satisfies the optimality requirements
expressed by (7)–(9). Introducing integrality requirements for some of the variables
in an LP formulation turns the problem to one belonging in the class of (Mixed)
Integer Programming (MIP) or Integer Programming (IP).

4.3 Graphical LP’s interpretation

In this section, we consider a solution approach for LP problems, which is based on
a geometrical representation of the feasible region and the objective function [5]. In
particular, the space to be considered is the n-dimensional space with each dimen-
sion defined by one of the LP variables (X1,X2). Thus we present an illustration for
the two-variable case.

We start our investigation regarding the geometrical representation of two-var
linear constraints by considering first constraints of the equality type, i.e.,

a1X1 +a2X2 = b. (10)

Assuming a2 �= 0, this equation corresponds to a straight line with slope s = −a1
a2

and intercept d = b
a2

. In the special case a2=0 the solution space (locus) of Equation
(10) is a straight line perpendicular to the X1-axis, intersecting it at the point ( b

a1
;0).
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Notice that the presence of an equality constraint restricts the dimensionality of the
feasible solution space by one degree of freedom, i.e., it turns it from a planar area
to a line segment.

Consider the inequality constraint:

a1X1 +a2X2

≤
or
=
or
≥

b. (11)

The solution space of this constraint is one of the closed half-planes defined
by Equation (11). To show this, let us consider a point (X1,X2) , which satisfies
Equation (11) as equality, and another point (X

′
1,X

′
2) for which Equation (11) is also

valid. For any such pair of points, it holds that:

a1(X
′
1 −X1)+a2(X

′
2 −X2)

≤
or
=
or
≥

0. (12)

Let us consider the left side of (12) as the inner (dot) product of the
two vectors a = (a1,a2)T and ΔX = ((X

′
1 − X1),(X

′
2 − X2))T . It is equal to∣∣∣

∣∣∣ΔX
∣∣∣
∣∣∣
∣∣∣
∣∣∣a
∣∣∣
∣∣∣cos(ΔX,a). In this case a line a1X1 + a2X2 = b can be defined by

the point (X1,X2) and the set of points (X
′
1,X

′
2) such that vector a is at right angles

with vector ΔX . Furthermore, the set of points that satisfy the inequality parts
of Equation (12) have the vector forming an acute (obtuse) angle with vector a,
and therefore they are “above” (“below”) the line. Hence, the set of points satis-
fying each of the two inequalities implied by Equation (11) is given by one of the
two half-planes the boundary of which is defined by the corresponding equality
constraint. Figure 1 summarizes the above discussion.

X′: aX′ > b

X′: aX′ = b

X′: aX′ < b

X

a

Fig. 1 Half-planes: the feasible region of a linear inequality.
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An easy way to determine the half-plane depicting the solution space of a lin-
ear inequality is to draw the line depicting the solution space of the corresponding
equality constraint and then test whether the point (0, 0) satisfies the inequality. In
case of a positive answer, the solution space is the half-space containing the origin,
otherwise, it is the other one.

From the above discussion, it follows that the feasible region for the prototype
LP of Equation (6) is the shaded area in the following figure:

The next step is a maximization (minimization) of the objective function. The
most typical way to represent a two-variable function c1X1 + c2X2 is to perceive it
as a surface in an (orthogonal) three-dimensional space, where two of the dimen-
sions correspond to the independent variables X1 and X2 , while the third dimension
provides the function value for any pair (X1,X2). However, in the context of our
discussion, we are interested in expressing the information contained in the two-var
LP objective function c1X1 + c2X2 in the Cartesian plane defined by the two inde-
pendent variables X1 and X2. For this purpose, we shall use the concept of contour
plots. Contour plots depict a function by identifying the set of points (X1,X2) that
correspond to a constant value of the function (c1X1 +c2X2) = a, for any given range
of a’s. The plot obtained for any fixed value of a is a contour of the function. Study-
ing the structure of a contour is expected to identify some patterns that essentially
depict some useful properties of the function. In the case of LP’s, the linearity of the
objective function implies that any contour of it will be of the type:

(c1X1 + c2X2) = a (13)

i.e., a straight line. For a maximization (minimization) problem, this line will be
called an isoprofit (isocost) line. Assuming that c2 �= 0, Equation (13) can be rewrit-
ten as:

X2 = −c1

c2
X1 +

a
c2

which implies that by changing the value of a , the resulting isoprofit/isocost lines
have constant slope and varying intercept, i.e, they are parallel to each other (which
makes sense, since by the definition of this concept, isoprofit/isocost lines cannot
intersect). Hence, if we continuously increase a from some initial value ao, the corre-
sponding isoprofit lines can be obtained by “sliding” the isprofit line corresponding
to (c1X1 + c2X2) = ao parallel to itself, in the direction of increasing or decreasing
intercepts, depending on whether c2 is positive or negative. The “ sliding motion”
suggests a way for identifying the optimal values for, let’s say, a max LP problem.
The underlying idea is to keep “sliding” the isoprofit line(c1X1 + c2X2) = ao in the
direction of increasing a’s until we cross the boundary of the LP feasible region.
The implementation of this idea on the LP of Equation (6) (see also Figure 2) is
depicted in Figure 3.

From Figure 3, it follows that the optimal daily production levels for the protoype
LP are given by the coordinates of the point corresponding to the intersection of
line 1

50 X1 + 1
50 X2 = 0 with the X2-axis, i.e., Xopt

1 = 0,Xopt
2 = 50. The maximal daily

profit is 200 ∗ 0 + 400 ∗ 50 = 20,000$. Notice that the optimal point is one of the
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Fig. 2 The feasible region of
the example LP considered
in 3.1.
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Fig. 3 Graphical solution of the example LP (6).

“corner” points of the feasible region depicted in Figure 3. Can you argue that for
the geometry of the feasible region for two-var LP’s described above, if there is a
bounded optimal solution, then there will be one which corresponds to one of the
corner points? (This argument is developed for the broader context of n-var LP’s in
the next section.)
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Fig. 4 An infeasible LP. X2
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There are two fail options related to LP problem solution. First is absence of any
solution, when the feasible region is empty. Consider again the original example
(6), modified by the additional requirements (imposed by the company’s marketing
department) that the daily production of product X1 must be at least 30 units, and
that of product X2 should exceed 20 units. These requirements introduce two new
constraints into the problem formulation, i.e., X1 ≥ 30,X2 ≥ 20 . Attempting to
plot the feasible region for this new problem, we get Figure 4, which indicates that
there are no points in the (X1,X2)-plane that satisfy all constraints, and therefore our
problem is infeasible (over-constrained).

A second particular option is an unbounded solution. In the LP’s considered
above, the feasible region (if not empty) was a bounded area of the plane. For this
kind of problems it is obvious that all values of the LP objective function (and
therefore the optimal) are bounded. Consider however the following modified LP
problem:

max{2X1 −X2}
under constraints:

X1 −X2 < 1
2X1 +X2 > 6
X1 ≥ 0,X2 ≥ 0.

The feasible region and the direction of improvement for the isoprofit lines for
this problem are given in Figure 5. It is easy to see that the feasible region of this
problem is unbounded, and furthermore, the orientation of the isoprofit lines is such
that no matter how far we “slide” these lines in the direction of increasing the objec-
tive function, they will always share some points with the feasible region. There-
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Fig. 5 An unbounded LP.
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fore, this is an example of a (two-var) LP whose objective function can take arbi-
trarily large values. Such an LP is characterized as unbounded. Notice, however,
that even though an unbounded feasible region is a necessary condition for an LP
to be unbounded, it is not sufficient; to convince yourself, try to graphically iden-
tify the optimal solution for the above LP in the case that the objective function is
changed to:

max{2X1 −X2} = −X2.

Summarizing the above discussion, we have shown that a two-var LP can either:

• Have a unique optimal solution which corresponds to a “corner” point of the
feasible region or

• Have many optimal solutions that correspond to an entire “edge” of the feasible
region or

• Be unbounded, or be infeasible

5 Integer Programming

The use of integer variables in production when only integral quantities can be pro-
duced is the most obvious use of integer programs [7, 9]. In this section, we will
look at some less obvious ones. The text also goes through a number of them (some
are repeated here).
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5.1 Relationship to linear programming

Given is an Integer Program (IP):

max{cT ·x}

subject to constraints:
A ·x = b; x ≥ 0.

Since (LP) is less constrained than (IP), the following are immediate:

If (IP) is a minimization, the optimal objective value for (LP) is less than or equal
to the optimal objective for (IP).

If (IP) is a maximization, the optimal objective value for (LP) is greater than or
equal to that of (IP).

If (LP) is infeasible, then so is (IP).
If (LP) is optimized by integer variables, then that solution is feasible and optimal

for (IP).
If the objective function coefficients are integer, then for minimization, the opti-

mal objective for (IP) is greater than or equal to the “round up” of the optimal
objective for (LP).

For maximization, the optimal objective for (IP) is less than or equal to the “round
down” of the optimal objective for (LP). So solving (LP) does give some informa-
tion: it gives a bound on the optimal value and, if we are lucky, may give the optimal
solution to IP. We saw, however, that rounding the solution of LP will not in general
give the optimal solution of (IP). In fact, for some problems it is difficult to round
and even get a feasible solution.

5.2 Capital budgeting

Let us consider one example of IP having a practical value [7]. Suppose we wish
to invest $14,000. We have identified four investment opportunities. Investment 1
requires an investment of $5,000 and has a present value (a time-discounted value)
of $8,000; investment 2 requires $7,000 and has a value of $11,000; investment 3
requires $4,000 and has a value of $6,000; and investment 4 requires $3,000 and
has a value of $4,000. Into which investments should we place our money so as to
maximize our total present value?

Our first step is to decide on our variables. This can be much more difficult in
integer programming because there are very clever ways to use integrality restric-
tions. In this case, we will use a (0-1) variable xi(i = 1, ..,4) for each investment. If
xi is 1 then we will make investment i. If it is 0, we will not make the investment.
This leads to the 0-1 IP problem:

max{8x1 +11x2 +6x3 +4x4}
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subject to constraints:

5x1 +7x2 +4x3 +3x4 ≤ 14
xi ∈ {0;1},(i = 1, . . .,4).

Now, a straightforward decision suggests that investment 1 is the best choice.
In fact, ignoring integrality constraints, the optimal linear programming solution is
(x1 = 1; x2 = 1; x3 = 0.5; x4 = 0)for a objective value of $22,000. Unfortunately,
this solution is not integral. Rounding down to 0 gives a feasible solution with a
value of $19,000. There is a better integer solution (x1 = 0; x2 = 1; x3 = 1; x4 = 1),
however, for an objective value of $21,000. This example shows that rounding does
not necessarily give an optimal value.

5.3 Branch and bound method

We discuss the branch and bound method by means of the simple IP example con-
sidered above. Our IP problem is as following:

max{z} = max{8x1 +11x2 +6x3 +4x4}

subject to constraints:

5x1 +7x2 +4x3 +3x4 ≤ 14
xi ∈ {0;1},(i = 1, . . .,4).

The linear relaxation solution is (x1 = 1;x2 = 1;x3 = 0.5;x4 = 0) with an objec-
tive function value of 22. We know that no integer solution will have value more
than 22. Unfortunately, since x3 is not integer, we do not have an integer solution
yet. We want to force it to be integral. To do so, we branch on x3, creating two
new problems. In one, we will add the constraint x3 = 0. In the other, we add the
constraint x3 = 1. This is illustrated in Figure 6.

Note that any optimal solution to the overall problem must be feasible to one of
the subproblems. If we solve the LP by linear relaxations of the subproblems, we
get the following solutions:

x3 = 0; z = 21.65; f or x1 = 1,x2 = 1,x3 = 0,x4 = 0.667
x3 = 1; z = 21.85; f or x1 = 1,x2 = 0.714,x3 = 1,x4 = 0.

At this point we know that the optimal integer solution is no more than 21.85,
but we still do not have any feasible integer solution. So, we will take a subproblem
and branch on one of its variables. In general, we will choose the subproblem as
follows:

• We will choose an active subproblem, which so far only means one we have not
chosen before.



250 O. Pokrovsky

x3 = 0

z = 21.65
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x3 = 1

z = 21.85

Fractional

z = 22

Fractional

Fig. 6 First branching.
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x3 = 1, x2 = 0

z = 18
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x3 = 1, x2 = 1

z = 21.8

Fractional

INTEGER

Fig. 7 Second branching.

• We will choose the subproblem with the highest solution value (for maximiza-
tion; lowest for minimization).

In this case, we will choose the subproblem with x3 = 1, and branch on x2. After
solving the resulting subproblems, we have the branch and bound tree in Figure 7.

The solutions are:

x3 = 1; z = 18; f or x1 = 1,x2 = 0,x3 = 1,x4 = 1
x3 = 1; z = 21.8; f or x1 = 0.6,x2 = 1,x3 = 1,x4 = 0.
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We now have a feasible integer solution x3 = 1,x2 = 0 with objective value 18.
Furthermore, since the IP problem gave an integer solution, no further branching on
that problem is necessary. It is not active due to the integrality of solution. There are
still active subproblems that might give values more than 18. Using our rules, we
will branch again to get Figure 8.

The solutions are:

x3 = 1,x1 = 0,x2 = 1; z = 21; f or x1 = 0,x2 = 1,x3 = 1,x4 = 1
x3 = 1,x1 = 1,x2 = 1; in f easible.

Our best integer solution now has objective value 21. The subproblem that gen-
erates that is not active due to integrality of the solution. The other subproblem
generated is not active due to infeasibility. There is still a subproblem that is active.
It is the subproblem with solution value 21.65. By our “round-down” result, there is
no better solution for this subproblem than 21. But we already have a solution with

x3 = 0

z = 21.65

Fractional

x3 = 1

z = 21.85

Fractional

z = 22

Fractional

x3 = 1, x2 v= 0

z = 18

Integer

z = 21

x3 = 1, x2 = 1

z = 21.8

Fractional

x3 = 1, x2 = 1, x1 = 1

Infeasible

INTEGER

INFEASIBLE

x3 = 1, x2 = 1, x1 = 0

Integer

INTEGER

Fig. 8 Third branching.
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value 21. It is not useful to search for another such solution. We can fathom this
subproblem based on the above bounding argument and mark it not active. There
are no longer any active subproblems, so the optimal solution value is 21.

We have seen all parts of the branch and bound algorithm. The essence of the
algorithm is as follows:

• Solve the linear relaxation of the problem. If the solution is integral, then we
are done. Otherwise create two new subproblems by branching on a fractional
variable.

• A subproblem is not active when any of the following occurs:

1. You used the subproblem to branch on.
2. All variables in the solution are integer.
3. The subproblem is infeasible.
4. You can fathom the subproblem by a bounding argument.

Choose an active subproblem and branch on a fractional variable. Repeat until
there are no active subproblems.

6 The Integer Programming Application to Decision Making

We considered several illustrative examples of possible applications of LP and IP.
In this section we present several directions for practical application of IP in deci-
sion making. We will first discuss several examples of combinatorial optimization
problems and their formulation as integer programs. Then we will review a gen-
eral representation theory for integer programs that gives a formal measure of the
expressiveness of this algebraic approach.

6.1 Main application areas

Formulating decision problems as integer or mixed integer programs is often con-
sidered an art form. However, there are a few basic principles which can be used
by a novice to get started. As in all art forms though, principles can be violated to
creative effect. We list below a number of example formulations, the first few of
which may be viewed as principles for translating logical conditions into models.

6.1.1 Capacitated plant location model

This model describes an optimal plan related to production and distribution of pro-
duced wares in accordance to demand sites. Let us introduce the following input
parameters:
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i = {1, ...,m} – possible locations for plants
j = {1, ...,n} – demand sites
ki – a capacity of plant i; if opened
fi – fixed cost of opening plant i
ci j – per unit production cost at i plus transportation cost from plant i to site j
d j – a demand at location j

Our task is to choose the plant locations so as to minimize total cost and meet all
demands. This task might be formulated as the IP problem:

min{∑
j
∑

i
ci jxi j +∑

i
fiyi}

subject to constraints:

∑
i

xi j ≥ d j;( j = 1, ...,n)

∑
j

xi j ≤ kiyi;(i = 1, ...,m)

xi j ≥ 0
yi = {0;1}.

to satisfy demands.
If the demand d j is less than the capacity ki for some “ij” combination, it is useful

to add the constraint
xi j ≤ d jyi

to improve the quality of the linear programming relaxation.

6.1.2 Traveling salesman problem

A recurring theme in IP is that the same decision problem can be formulated in sev-
eral different ways. Principles for sorting out the better ones have been the subject
of some discourse [9]. We now illustrate this with the well known traveling sales-
man problem. Given a complete directed graph with distance ci j of arc (i; j), we
are to find the minimum length tour beginning at node 1 and visiting each node
of this graph exactly once before returning to the start node 1. This task might be
formulated as the IP problem:

min{∑
j
∑

i
ci jxi j}

subject to constraints:

∑
i

xi j = 1,( j = 1, ...,n)

∑
j

xi j = 1,(i = 1, ...,n)
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∑
j
∑

i
ci jxi j ≥ 1

xi j = {0;1}.

6.1.3 Covering and packing problems

A wide variety of location and scheduling problems can be formulated as set cover-
ing or set packing or set partitioning problems. The three different types of covering,
partitioning and packing problems can be succinctly stated as follows: Given

(a) A finite set of elements M = {1, ...,m} and
(b) A family F of subsets of M with each member Fj = {1, ...,n} having a profit (or

cost) c j associated with it

find a collection, S, of the members of F that maximizes the profit (or minimizes the
cost) while ensuring that every element of M is in:

(P1): at most one member of S (set packing problem)
(P2): at least one member of S (set covering problem)
(P3): exactly one member of S (set partitioning problem).

The three problems (P1), (P2) and (P3) can be formulated as integer linear pro-
grams as follows: Let A denotes the m*n matrix where

Ai j =
{

1, i f element“i′′belongstoFj
0, otherwise

}
.

The decision variables are x j( j = 1, ...,n), where

x j =
{

1, i f Fj ischosen
0, otherwise

}
.

The set packing problem is (P1)

max{cT ·x}

subject to constraints:

A ·x ≤ em;
xi = {0;1}

where em is an m–dimensional column vector of “1”s. The set covering problem
(P2) is (P1) with less than or equal to constraints replaced by greater than or equal
to constraints and the objective is to minimize rather than maximize. The set par-
titioning problem (P3) is (P1) with the constraints written as equalities. The set
partitioning problem can be converted to a set packing problem or a set covering
problem (see [9]) using standard transformations. If the right hand side vector em
is replaced by a non-negative integer vector b, (P1) is referred to as the generalized
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set packing problem. The airline crew scheduling problem is a classic example of
the set partitioning or the set covering problem. Each element of M corresponds to
a flight segment. Each subset Fj corresponds to an acceptable set of flight segments
of a crew. The problem is to cover, at minimum cost, each flight segment exactly
once. This is a set partitioning problem.

6.2 Environmental application

6.2.1 Multi-user consortium

Requirements for weather forecast products can vary significantly and are typically
oriented to the needs of specific user groups. Nonetheless, in many respects the
requirements are rather similar, such as a common need for information on basic
variables such as temperature, humidity, and precipitation (mean, maximum, mini-
mum). On other hand, it is hard to imagine that every user could provide their own
forecast product because of substantial costs of both inputs and model develop-
ment/maintenance. In the case of a specified forecast some additional observations
might be required to increase prescribed reliability or probability. Therefore, it is
more rational to select a set of a few forecast models and observing systems, which
respond to the correct extent to an optimal set of requirements generated by a multi-
user economical and mathematical model. A consortium of multi-users will get ben-
efits of mathematically optimal decisions under minimal costs. User investments in
a weather forecast system should be proportional to their expected benefits derived
from the early warning of short-term weather fluctuations or extreme events. Under
such circumstances a consortium of multi-users approach would be more likely to
derive benefits from the mathematically optimal decisions for minimum investment.
The meteorological community is interested in such an approach in order to reduce
the number of observing programs and forecasting models [11, 12].

6.2.2 Elementary statement of problem

Let us assume that there are n users of climate forecasting data with their n benefits
of early warning: ci(i = 1, ...,n) (i = 1, ..,n). These users are interested to forecast m
specific meteorological events numerated as j = 1, . . .m. The potential usefulness of
them varies and is described by the matrix of coefficients A = {ai j}. Each magnitude
ai j can be considered as the expense of the i-th user for the j-th meteorological event
delivered by some forecast model. The minimum expected efficiency for the i-th user
is bounded by bmin

i . Let us introduce the decision maker variable:

xi =
{

1, i f user“i′′adopts f orecast data
0, otherwise

}
.
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Now we come to formulation of the optimization problem for {xi}:

max

{
∑

i
cixi

}
(14)

subject to constraints:
∑

j
ai jx j ≥ bmin

i . (15)

Another interpretation of the coefficients and a more complex method to derive
them is possible. A generalization to the forecast multi-model case is evident.

6.2.3 Illustrative example

Let us consider multi-user decision making for many meteorological events. We
used the European Center for Medium Range Weather Forecasting (ECMWF)
Ensemble Prediction System (EPS) forecast for the T850 (air temperature field at the
standard level of 850 mb) anomaly, Europe, Jan–Feb, 1998 (Figure 9) (see details
in [15]) with n = 3 (number of users), m = 4 (number of meteorological events).
The matrix of EPS forecast relative economic values are presented in Table 1, the
minimal efficiency for each user in Table 2. In the case of equal importance of users
we came to the optimal solution xopt for (14) constrained by (15). This solution
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Fig. 9 Ensemble Prediction System forecast relative values (usefullness) responded to multi-user
and multi-event case [15].
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Table 1 Matrix of constraints A = {ai j}.

Users (T<-8K) (T<-4K) (T> +4K) (T> +8K)

1 0.40 0.36 0 0
2 0.32 0.29 0.32 0.19
3 0.22 0.19 0.41 0.46

Table 2 Constraint vector of minimal efficiencies -bmin.

Users bmin
i

1 0.1
2 0.2
3 0.3

Table 3 Optimal decision xopt in the case of priority user “3”:c = (0.5,0.5,1)T .

Users xopt

1 2.26
2 0.36
3 1.99

Table 4 Optimal decision xopt in the case of priority user “3”:c = (0.5,0.5,1)T .

Users xopt

1 2.26
2 0.36
3 1.99

shows that the EPS forecasting system has prior importance for user “2”. The least
contribution is related to user “3” . Let us now enhance the a priori importance
of user “3” by changing values of the target function (1) from c = (1,1,1)T to
c = (0.5,0.5,1)T (Tables 3 and 4). Even in this case user “3” remains at second
place after user “1”. It is interesting to note that the output for user “1” is its insen-
sitivity with account to a priory weights.

7 Conclusion

An approach based on MP and IP finds a wide application area in many branches of
economical sciences. It can be used in decision making related to multidimensional
target functions constrained by many linear cost restrictions. This chapter indicates
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that similar problems arising in many important practical areas might be efficiently
solved by the described approach.
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Recent Advances in Space-Variant Deblurring
and Image Stabilization

Michal Šorel∗,1, Filip Šroubek∗ and Jan Flusser∗

Abstract The blur caused by camera motion is a serious problem in many areas of
optical imaging such as remote sensing, aerial reconnaissance or digital photogra-
phy. As a rule, this problem occurs when low ambient light conditions prevent an
imaging system from using sufficiently short exposure times, resulting in a blurred
image due to the relative motion between a scene and the imaging system. For exam-
ple, the cameras attached to airplanes and helicopters are blurred by the forward
motion of the aircraft and vibrations. Similarly when taking photographs by hand
under dim lighting conditions, camera shake leads to objectionable blur. Producers
of imaging systems introduce compensation mechanisms such as gyroscope gim-
bals in the case of aerial sensing or optical image stabilization systems in the case
of digital cameras. These solutions partially remove the blur at the expense of higher
cost, weight and energy consumption. Recent advances in image processing make it
possible to remove the blur in software. This chapter reviews the image processing
techniques we can use for this purpose, discusses the achievable performance and
presents some promising results achieved by the authors.

Keywords: Camera shake, image stabilization, image registration, space-variant
restoration, deblurring, blind deconvolution, point spread function, regularization

1 Introduction

The blur caused by sensor motion is a serious problem in a large number of applica-
tions from remote sensing to landmine detection to amateur photography. In general,
this problem occurs if the time needed to capture an image is so long that the imag-
ing system moves relative to the scene.
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An example application in landmine detection is the general survey of minefields
in the aftermath of military conflicts using visible light or infrared cameras. The
cameras attached to airplanes and helicopters are blurred by the forward motion
of the aircraft and vibrations. While the vibrations can be dumped to some extent
using gyroscope stabilizers, there is no simple way to do the same with the forward
movement. A similar problem arises in the case of cameras attached to moving
vehicles. For example, thermal infrared cameras attached to armoured vehicles can
be used to detect anti-personnel and anti-tank mines on roads and tracks.

Similarly, when taking photographs under low light conditions, the camera needs
a long exposure time to gather enough light to form the image, which leads to objec-
tionable blur. To mitigate this problem, producers of digital cameras introduced two
types of hardware solutions. The technically simpler one is to increase the sensitiv-
ity of a camera (ISO) by amplifying the signal from the sensor, which permits faster
shutter speed. Unfortunately, especially in the case of compacts, this results in a
decrease of image quality because of more noise. Optical image stabilization (OIS)
systems, containing either a moving image sensor or an optical element to counter-
act camera motion, are technologically more demanding. They help to remove blur
without increasing noise level but at the expense of higher cost, weight and energy
consumption.

A system removing the blur in software would be an elegant solution to the prob-
lem. In this chapter we give an overview to possible approaches to this problem.
The algorithms are explained in connection with photography but the results can be
applied to other cases such as aerial reconnaissance and infrared imaging as well.

We start with an outline of approaches. Then, in Section 3 we describe a math-
ematical model of blurring. For each approach (Sections 4–7), we summarize its
strong and weak points and present a typical state-of-the-art method. Section 8 sum-
marizes results and indicates the potential of individual approaches.

2 Overview of Approaches

An obvious way to avoid camera motion blur is to take a sequence of underexposed
images so that the exposure time is short enough to prevent blurring. After regis-
tration, the whole sequence can be summed to get the original sharp image with a
reasonable noise level. In Section 4 we briefly discuss why this idea turns out to be
impractical for more than a few images. In the rest of this chapter, we discuss situa-
tions where we already have a blurred image (or a sequence of images) and wish to
remove the blur.

To simplify the problem, the blur is usually assumed to be homogenous in the
whole image. In this case the blur can be modeled by convolution. That is why
the reverse problem to find the sharp image is called deconvolution. If the PSF is
not known, which is the case in most real situations, the problem is called blind
deconvolution.
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While non-blind deconvolution problems can be easily solved, solutions of blind
deconvolution problems from a single image are highly ambiguous. To find a stable
solution some additional knowledge is required. This case is treated in Section 5.
The most common approach is regularization, applied both on the image and blur.
Regularization terms mathematically describe a priori knowledge and play the same
role as prior distributions in stochastic models. For the present, probably the best
published blind deconvolution methods are those of Fergus et al. [2] and coming
soon [9].

Another approach, extensively studied in past years, is to use multiple images
capturing the same scene but blurred in a different way (Section 6). The camera
takes two or more successive images and each exhibits different blurring due to the
basically random motion of the photographer’s hand or, for example, aircraft vibra-
tions. Multiple images permit estimation of the blurs without any prior knowledge
of their shape, which is hardly possible in single image blind deconvolution [10].

One particular multi-image setup attracted considerable attention only recently.
Taking images with two different exposure times (long and short) results in a pair of
images, in which one is sharp but underexposed and another is correctly exposed but
blurred. Instead of the underexposed image we can equivalently take an image with
high ISO. Both can be easily achieved in continuous shooting mode by exposure
and ISO bracketing functions of DSLR cameras. For Canon compact cameras these
functions can be written in the scripting language implemented within the scope of
the CHDK project (http://chdk.wikia.com/wiki/CHDK).

To estimate the sharp image, two different ideas were proposed in the literature.
The first adjusts the contrast of the underexposed image to match the histogram
of the blurred one [7]. However, this technique is applicable only if the difference
between exposure times is small. The second way [5, 11] uses the image pair to
estimate the blur and then deconvolves the blurred image. This path was followed by
[15], where the authors show an effective way to suppress ringing artifacts produced
by Richardson-Lucy deconvolution. In Section 7 we give an example of an algorithm
of this type proposed by the authors of this chapter. To be applicable even for wide
angle lenses, we consider space-variant blur.

3 Blur Model

It is well known that homogenous blurring can be described by convolution

z = u∗h [x,y] =
∫

u(x− s,y− t)h(s, t) dsdt, (1)

where u is an original image, h is called the convolution kernel or point-spread
function (PSF) and z is the blurred image. In our case of camera motion blur the
PSF is a plane curve given by an apparent motion of each pixel during the exposure.

If the focal length of the lens is short or camera motion contains a significant
rotational component about the optical axis, this simple model is not valid. The blur
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is then different in different parts of the image and is a complex function of camera
motion and depth of scene [14]. We can see an example in Figure 5, where the
image was divided into 49 (7×7) rectangles and convolution kernels were estimated
within these subimages (by a method described in Section 7). Notice for example
the difference between the upper left and right kernels.

Nevertheless, this spatially varying blur can be described by a more general linear
operation

z = u∗v h [x,y] =
∫

u(x− s,y− t)h(x− s,y− t;s, t) dsdt, (2)

where h is again called the point-spread function as in the case of convolution. Note
that convolution is a special case, with the function h independent of coordinates x
and y, that is h(x,y;s, t) = h(s, t). We can look at (2) as convolution with a kernel that
changes with its position in the image, and speak about space-variant convolution.
The subscript v distinguishes from ordinary space-invariant convolution, denoted by
asterisk.

Because the rotational component of camera motion is usually dominant, the blur
is independent of depth and the PSF changes in a continuous gradual way. Therefore
the blur can be considered locally constant and can be locally approximated by
convolution. This property can be used to efficiently estimate even the space-variant
PSF, as described in Section 7.

4 Summing of Underexposed Images

At first sight, the idea to sum a sequence of underexposed images seems to be very
attractive. It is a well known property of shot (Poisson) noise that an image taken
with an exposure time t has the same level of noise as the sum of N images each
taken with time t/N. So, apparently, the only problem we must solve is to register
images with sufficient precision. There exist many fast image registration methods
and, without doubt, one of them could be used in this case. Registration is made
easier also by the fact that the difference between images is not large as the images
are taken quickly one after another.

Unfortunately, for the present, there is a serious problem that limits the use of this
idea in practice. Images taken by present day digital cameras are huge and it takes
a lot of time to read them out from sensor to camera memory. For consumer level
DSLRs it typically takes about 1/3 of second, for compacts even more. For example,
imagine that we want to replace one 1/4 s image by a sequence of 16 images taken
with exposure time 1/60 s, which corresponds to the use of ISO 1,600 instead of
ISO 100. Now the camera needs 16× 1/3, or more than 5 s. For many situations
this is simply too long.

To summarize, on one hand this approach is computationally simple and can
potentially be implemented inside a camera. On the other hand, to be useful
for really low lighting conditions, the read-out time will have to be significantly
shortened.



Recent Advances in Space-Variant Deblurring and Image Stabilization 263

In the rest of this chapter we will treat blurred images, which is less demanding
with respect to read-out time and can actually be used with present day cameras. On
the other hand, deblurring is computationally more time consuming and assumes
postprocessing on the photographer’s personal computer.

5 Single-Image Blind Deconvolution

There has been a considerable effort in the image processing community in the last
three decades to find a reliable algorithm for single image blind deconvolution. For
a long time, the problem seemed too difficult to be solved for complex blur kernels.
Proposed algorithms usually worked only for special cases such as astronomical
images with uniform (black) background. There was no reliable result applicable to
natural scenes.

Only recently, in 2006, Rob Fergus et al. [2] proposed an interesting Bayesian
method with very impressive results. Another method of this kind should appear
at SIGGRAPH 2008 [9]. The authors claim even better results than [2] with much
simpler and faster computation. In this chapter we briefly describe the method [2].

The method assumes a simple convolution model of blurring

z = u∗h+n, (3)

where n is an independent Gaussian zero mean noise.
The basic idea is to estimate the a posteriori probability distribution of the gra-

dient of the original image and of the blur kernel

p(u,∇∇∇h|∇∇∇z) = p(∇∇∇z|∇∇∇u,h)p(∇∇∇u)p(h), (4)

using knowledge of independent prior distributions of the image gradient p(∇∇∇u) and
of the kernel p(h). The likelihood p(∇∇∇z|∇∇∇u,h) is considered Gaussian with mean
∇∇∇u ∗h and an unknown variance. After estimation of the full posterior distribution
p(u,∇∇∇h|∇∇∇z), it computes the kernel with maximal marginal probability. Finally, the
original image is restored by the classical Richardson-Lucy algorithm. This final
phase could obviously be replaced by an arbitrary non-blind deconvolution method.

The algorithm is quite complex. It approximates the full posterior distribution
by the product p(u|∇∇∇z)p(∇∇∇h|∇∇∇z) in the sense of Kullback-Leibler distance, which
can be efficiently computed by the variational scheme described in [6] for cartoon
images. The image gradient prior is considered in the form of a Gaussian mixture.
In a similar way, the prior on kernel values is expressed as a mixture of exponential
distributions, which reflects the fact that most kernel values for motion blur are zero.
Both types of priors are learned from a typical natural image.

Figure 1 shows an example of an image restored by this method. We can see that
the convolution kernel is recovered surprisingly well. Some artifacts appear because
there are no smoothing constraints in the algorithm. Another problem is the high
number of artifacts produced by non-blind deconvolution in the final phase of the
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(a) Blurred image, 800×600 pixels (b) Deblurred image

(c) Estimated PSF, 35×35 elements

Fig. 1 Example results of single-image blind deconvolution provided by Fergus et al. [2].

algorithm. A typical example is the well known ringing effect. New papers [9,15,16]
seem to deal with this problem successfully.

Bringing this all together, there are reliable methods for estimating the blur kernel
and subsequent restoration from a single blurred image. The main problem is the
need for user assistance to choose a suitable part of the image for kernel inference.

6 Multi-image Blind Deconvolution

In this approach we use multiple images (Fig. 2a) capturing the same scene but
blurred in a different way. We can easily take such a sequence using continuous
shooting modes of present day cameras. Multiple images permit one to estimate the
blurs (Fig. 3) without any prior knowledge of their shape.
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(a) Blurred input images, 1024×768 pixels

(b) Deconvolution from only first image (c) Result of multi-image deconvolution

Fig. 2 Example results achieved by multi image blind deconvolution algorithm [10].

Fig. 3 Convolution kernels corresponding to images in Figure 2a.

Mathematically, the situation is described as convolution of the original image u
with P convolution kernels hp

zp = u∗hp +np, p = 1, ..,P. (5)
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In this section, we describe one of the best working multi-image deblurring algo-
rithms [10].

As in the single image situation, the algorithm can be viewed as a MAP (maxi-
mum a posteriori) estimate of distributions of the sharp image and the blur kernels.
It is equivalent to minimization of the functional

E(u,h1, ...,hp) =
1
2

P

∑
p=1

‖u∗hp − zp‖2 +λuQ(u)+λh∑
i �= j

R(hi,h j) (6)

with respect to the latent image u and blur kernels h1, ...,hp. The first term of (6),
called the error term, is a measure of the difference between input blurred images
zp and the original image u blurred by kernels hk. The size of the difference is
measured by the L2 norm ‖.‖. The inner part of the error term is nothing more than
the matrix of errors at the individual points of image p, which should be close to
zero for the correct image and kernel. Note that kernels hp incorporate a possible
shift of the camera between the images.

The role of regularization terms

Q(u) =
∫

|∇∇∇u| (7)

and
R(hi,h j) = ‖z j ∗hi − zi ∗h j‖ (8)

is to make the problem well-posed and incorporate prior knowledge about the solu-
tion [12].

Thus, Q(u) is an image regularization term which can be chosen to properly rep-
resent the expected character of the image function. For the majority of images a
good choice is total variation (7), where ∇∇∇u denotes the gradient of u. The size of
the gradient is integrated over the whole area of the image. Very good anisotropic
denoising properties of the total variation were shown by Rudin et al. [8]. A rea-
son why total variation works so well for real images is that it favors piecewise
constant functions. In real images object edges create sharp steps that appear as
discontinuities in the intensity function. For a more detailed discussion of image
regularization, see [1, 10, 13]. The kernel regularization term is a constraint useful
for kernels of limited support.

The functional (6) is minimized by alternating minimization in the subspaces
corresponding to the image and the blur kernels.

The main problem of the multi-image approach is speed. For this reason, it is
practically impossible to generalize this approach to space-variant blur. As a result,
this approach can be applied mainly for tele-lens photos if the rotational component
of camera motion about the optical axis is negligible. In general, it usually works
for the central section of an arbitrary blurred image.
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7 Restoration from a Pair of Blurred and Noisy Images

The idea to use two images with two different exposure times appeared only recently
[5, 11, 15]. Most algorithms of this group first estimate the blur from the image pair
and then deconvolve the blurred image. The main problem of the deconvolution
phase is suppression of ringing artifacts. A method of handling this problem for the
Richardson-Lucy algorithm was proposed in [15, 16].

None of the aforementioned methods are general enough to be applicable to full
uncropped photos. The reason is that the blur is not constant throughout the image,
especially in the case of lenses with shorter focal length (<50 mm). In addition, it
often happens that camera motion has a considerable rotational component about the
optical axis and then the blur is space-variant, even for tele-lenses. Another effect
modifying blurs is lens distortion. All these effects are accentuated in regions close
to image borders. Therefore a space-variant approach is necessary for artifact-free
results.

Space-variant restoration was already considered in astronomy and microscopy
but there is almost no work applicable in photography. Only recently, in [14],
is space-variant blur considered for a camera moving without rotation, but this
assumption does not correspond to the real trajectory of a handheld camera.

In the following paragraphs we describe a state-of-the-art algorithm proposed
by the authors. To avoid ringing effects we use a constrained least squares method
with total variation regularization. To be applicable even for wide angle lenses, we
consider space-variant blur.

7.1 Algorithm

For input the algorithm requires a pair of images, one of them blurred and another
noisy but sharp. The algorithm works in three phases:

1. Robust image registration
2. Estimation of convolution kernels on a grid of windows followed by an adjust-

ment at places where estimation failed
3. Restoration of the sharp image

In the first step, we need a robust registration procedure working with precision
significantly better than the considered size of blur kernels. We can assume that
the change of camera position is negligible with respect to scene distance (very
short baseline) and consequently it can be approximated by a projective transform
independent of scene depth. Experiments have also shown that misalignments due to
lens distortion do not harm the algorithm because they are compensated by the shift
of the corresponding part of the space-variant PSF. For the purpose of this algorithm,
we apply the standard RANSAC [3,4] approach to estimate the homography matrix.
Then we transform the blurred image accordingly. The transformed image will be
denoted by zT .
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In the second step of the algorithm we make use of the fact that the blur can
be locally approximated by convolution. We do not estimate the blur kernels in all
pixels. Instead, we divide the image into rectangular windows (a 7× 7 grid in our
example in Figure 6) and estimate only a small set of kernels hi, j (i, j = 1.7 in our
example in Figure 5). The estimated kernels are assigned to centers of the windows
where they were computed. In the rest of the image, the PSF h is approximated by
bilinear interpolation from blur kernels in four adjacent windows.

Thus, we estimate blur kernels on a grid of windows, where the blur can be
approximated by convolution

zT
i, j = (ui, j −ni, j)∗hi, j = ui, j ∗hi, j −ni, j ∗hi, j, (9)

where zT
i, j is a section of the transformed blurred image zT , ui, j the corresponding

part of the noisy image, hi, j the locally valid convolution kernel and ni, j an indepen-
dent Gaussian noise contained in the noisy image.

We estimate the solution of this problem in a least squares sense as

hi, j = argmin
k

‖ui, j ∗k− zT
i, j‖2 +α‖∇k‖2, k(s, t) ≥ 0, (10)

where hi, j(s, t) is an estimate of h(x0,y0,s, t), (x0,y0) being the center of the current
window zi, j, and ‖.‖ is the L2 norm. Regularization helps reduce the noise arising
from the imprecise model.

The kernel estimation procedure (10) can fail. Such kernels must be identified,
removed and replaced by the average of adjacent (valid) kernels. There are basically
two reasons why kernel estimation fails. Therefore we need two different measures
to decide which kernel is wrong. To identify textureless regions we compute entropy
of the kernels and take those with entropy above some threshold. The other, more
serious case of failure is pixel saturation, that is pixel values above the sensor range.
This situation can be identified by computing the sum of kernel values, which should
be close to one for valid kernels. Therefore, we simply remove kernels whose sum
is too different from unity, again above some threshold.

For the restoration step, we use an energy minimization approach with total vari-
ation as an image regularization term, which belongs to the category of constrained
least squares estimators [14]. Notice that it has the same form as (6). Total variation
behaves satisfactorily for most photographs since it removes noise efficiently while
not oversmoothing edges. It also helps to some extent to suppress artifacts caused
by pixel saturation.

The restoration phase of the proposed algorithm can be described as minimiza-
tion of the functional

E(u) =
1
2
‖u∗v h− z‖2 +λ

∫
|∇∇∇u| (11)

with respect to the unknown sharp image u, where the second term is the total vari-
ation of the image.
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Its derivative can be written as

∂E(u) = (u∗v h− z)�v h−λ div
(
∇∇∇u
|∇∇∇u|

)
, (12)

where �v is the operator adjoint to space-variant convolution

u�v h [x,y] =
∫

u(x− s,y− t)h(x,y;−s,−t) dsdt. (13)

To minimize functional (11) we used a half-quadratic iterative approach, reduc-
ing this problem to a sequence of linear subproblems [14].

Alternatively, to speed up the restoration step, we could use a variant of the
Richardson-Lucy algorithm, similar to methods [15,16]. Figures 4–6 show an exam-
ple of a real image restored by this method.

In our opinion, this is the best of the three deblurring approaches. It is quite fast
and reliable. Because of its stability it can be used to estimate the space-variant PSF,
which makes it more applicable for a much larger range of situations. Another plus
is that it can be used to segment moving objects, which is hardly possible from one
image.

Fig. 4 Image of a shopping center taken in an evening with shutter speed 1/2 s (left), results of
our algorithm with PSF adjustment (right). Close-ups are shown in Figure 6.

Fig. 5 Fourty-nine convolution kernels estimated in the shopping center image (left). Notice the
wrong kernels at places of low-contrast texture (upper left corner) and pixel saturation (lights
inside the building). Adjusted kernels on the right.
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Fig. 6 Details of the shopping center image. From left to right – the blurred image, noisy image,
result of deconvolution and our result.

8 Summary

In this chapter, we reviewed approaches to software image stabilization in the sense
of removing blur caused by camera motion (Table 1).

The first possibility is to avoid blur from the beginning by taking a sequence
of underexposed images. This idea is impractical because of the time needed for
sensor read-out. We followed with the description of a deblurring algorithm from a
single image. Although there are usable algorithms for this case, the main disadvan-
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Table 1 Summary of approaches to image stabilization.

Approach Speed Quality Main problem

Multiple underexposed images High High Slow read-out, pre-
cise registration

Single-image deconvolution Slow/medium Medium Homogenous blur
only

Multi-image deconvolution Slow Medium/high Slow computation
One blurred and one noisy image Medium Medium More artifacts than

multi-image decon-
volution

tages are speed and difficulties with the segmentation of moving objects. The third
approach was deconvolution from a sequence of blurred images. The main disad-
vantage of existing algorithms from this category is speed. They are even slower
than single image deconvolution methods.

The last and, in our opinion, most advantageous approach is to use a pair of
images, one blurred and one underexposed. Its main assets are relative speed, reli-
ability, ability to deal with space-variant blur and the potential to segment moving
objects.
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UXO Detection Techniques Using Sonar
and Radar

Edmund J. Sullivan∗

Abstract Several approaches to the detection of Unexploded Ordnance (UXO) in
the ground are discussed. Methods exploiting the coupling of sound into the earth
are shown to have promise. These approaches can use both linear and non-linear
phenomena as clues. Also discussed is the potential of a ground penetrating radar
method that is based on a nonlinear phenomenon.

Keywords: Sonar, acoustic, detection, radar, mines, nonlinear, Laser Doppler
Velocimetry, speckle noise

1 Introduction

The general problem of detecting and identifying buried objects has grown more
difficult with time. During the second world war, the detection of buried mines was
reasonably successful since most mines were metal and thus could be detected with
reasonable success by any of several types of metal detectors [1]. The sophistication
of mines has increased since then, however. Anti-personnel mines are much smaller
than anti-tank mines and many of today’s mines are nonmetallic. Other techniques
have been tried, such as biological (use of dogs, rats and bees), and infrared tech-
niques. For an overview of these approaches, see reference [1].

A large part of the problem is that, when trying to detect a UXO from, say,
a moving vehicle, time is of the essence, so that the issue of false alarms becomes
paramount. There has been some recent work which seeks to overcome this problem.
In this chapter we will concentrate mainly on seismo-acoustic (SA) methods. Also,
a short discussion on a Ground-Penetrating Radar (GPR) method is given.
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2 Detection and Identification

The signal processing practitioner usually separates problems into detection, estima-
tion and identification. The simplest detection problem, the one we will be address-
ing here, is the binary hypothesis test. That is, we wish to indicate the presence or
absence of a target with a reasonably high probability of success. The next level
is the estimation problem. For the UXO problem, the estimation of its location is
not a major issue since, upon detection, its location is fairly well known. For our
purposes, identification is the main issue, since without some means to obtain an
approximation of the nature of the contact, the false alarm problem becomes a major
issue, since in the case of a UXO buried in a roadway, there likely will be objects of
similar size (rocks, discontinuities, etc.) in the same region.

3 Acoustic Methods

The speed of sound for compressional waves in soil is on the order of 200–300 m/s,
as compared to 343 m/s in air. This means that to resolve a target with a charac-
teristic size on the order of, say 0.25 m, would require wavelengths on the order of
0.1 m or less. Thus, frequencies on the order of 2 kHz would be necessary. As it
turns out, these frequencies are already too high to be of any use, as will be seen in
the following.

3.1 Acoustic properties of soils

Sound propagation in porous media is well described by the theory developed by
Biot [2, 3]. This theory predicts that shear waves and two types of compressional
waves are supported in such solids. Of the two compressional waves, sometimes
referred to as “fast” and “slow” compressional waves, the slow wave is rapidly
attenuated, as is the shear wave. The speeds of the fast and slow waves are actu-
ally quite close to each other, differing by only a few 10 s of c/s. There seems to
be no general agreement as to which of these compressional waves plays the major
role in acoustic UXO detection methods.

Since the sound speeds in soil are significantly less than in air, any sound coupled
into the ground can be assumed to refracted downward. Also, since the sound cou-
pling into the soil cannot realistically be thought of as occurring at a well-defined
interface, the concepts of reflection and transmission coefficients cannot always be
considered to be a realistic model. The phenomenon is usually referred to as seismo
acoustic or SA coupling, where the interface is viewed as a region of interaction [7].
Generally speaking, it is not the coupling that hinders SA UXO detection methods,
but the absorption and false alarm problem.
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Fig. 1 Absorption loss in soil. Alpha has units of dB/m/kHz.

A study of the behavior of sound waves is soils was carried out by Oelze et al. [4].
They studied six soil compositions with clay content ranging from 2% to 38%, silt
content ranging from 1% to 82%, sand content ranging from 2% to 97%, and organic
matter ranging from 0.1% to 11.7%. Soils were classified as “loose” to “dense” and
water content from dry to saturated. As might be expected, the results varied over
wide ranges.

Attenuation coefficients α determined over frequencies of 2–6 kHz ranged from
0.12 to 0.96 dB/m/kHz. Lower attenuation tended to be in loose dry samples. Prop-
agation speeds ranged from 86 to 260 m/s.

The two-way attenuation loss can now be estimated. Figure 1 shows the loss as
a function of depth at 2 kHz for α values of 0.2, 0.5, and 0.8. Here, it can be seen
that to expect to detect a buried object at this frequency, at a depth of more than a
few tens of centimeters, is unlikely. To complicate the problem, there will likely be
a great deal of clutter, leading to a high false alarm rate.

3.2 The nonlinear approach

There has been some experimental work done in the field of nonlinear detection. In
2002, Donskoy et al. [5] demonstrated that they could detect the nonlinear response
of a buried mine-like object by detecting its sum and difference frequencies. The
ground was excited with two high-level sound sources, generating acoustic waves
in the ground in the region of the objects of interest. The source power levels were
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on the order of several hundred watts.1 By using two frequencies, the sum and dif-
ference frequencies were detectable by sensing the ground surface vibration with a
Laser Doppler Velocimeter (LDV). Interestingly, the nonlinear response is not from
the object itself, but arises from the fact that the object is more compliant than the
surrounding earth, resulting in a detachment at the interface during the tensile phase
of the oscillation.

These results are interesting, since they rely on inducing a resonance in the
object, which for anti-personnel mines and anti-tank mines, occurs at frequencies
less than a kilohertz, thus ameliorating the absorption problem. In 2004, Korman
and Sabatier [6] carried out a series of experiments essentially verifying the work of
reference [5] and extending the experiments to include the observation of the effects
of nonlinearities on “tuning curves,” i.e., the shift of the resonant frequency of the
object with amplitude. A major importance of this work is that it shows promise for
reducing the false alarm problem, since it is to be expected that the mine will be the
most compliant object in the ground.

This work must be considered to still be at the research level, since it is far from
being applicable as an operational device.

3.3 The linear approach

Another approach, one that also uses a scanning LDV, does show promise of being
applicable as an operational device. In this case, the ground is excited by a broad-
band high-level sound source, which can excite a resonance of the target. Although
such a resonance has a low Q, since the object is in the soil, it appears to be sufficient
to permit detection of the reradiation of the object by sensing the surface displace-
ment. In 2001, Sabatier and Xiang [7] published a method in which they drove the
ground with a broadband signal with a reasonably flat spectrum between 80 and
300 Hz, with a sound pressure level on the order of 90–130 dB(C)2 and interrogated
the surface with a scanning LDV. By using a correlation detector, they were able to
successfully detect VS 2.2 and M21 anti-tank mines at a depth of 7.5 cm. The VS
2.2 is a roughly cylindrical plastic mine with a diameter of 24 cm, and the M21 is
a metallic mine with a diameter of 22 cm. In these cases, surface velocities on the
order of 50 μm/s at frequencies on the order of 150 Hz were encountered. The laser
light has a wavelength of approximately 0.6 μm, so that for vibrational speeds of
this order, Equation (6) indicates displacements on the order of 50 nm. Generally
speaking, the plastic mines showed a greater response than the metallic ones.

In a later work, Valeau et al. [8] were able to improve the detection performance
by using a time-frequency approach which was able to remove much of the speckle
effects.

1 It is difficult to translate these numbers into sound pressure level since the sources are in the near
field.
2 Unlike underwater acoustics, where the sound reference level is 1 μPa, the conventional refer-
ence in air is 20 μPa, which is approximately at the hearing threshold. C refers to the frequency
weighting, which is essentially flat over a band of 63 Hz to 4 kHz.
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The importance of this approach is that it holds promise for the development of
an operational system, since the scanning LDV allows the processing to be carried
out at acceptable speeds, as opposed to the so-called “stop and stare” method, where
the LDV is used in a point by point method.

3.4 Principle of the Laser Doppler Velocimeter

The laser Doppler velocimeter is a device that uses the Doppler shift imparted by
a moving (vibrating) surface on the reflected energy of an incident laser beam to
estimate its instantaneous velocity. The approach used by Sabatier and Xiang [7]
is based on the heterodyne method, where the incident beam is modulated by a
Bragg cell, sometimes called an Acousto-Optic modulator or A/O modulator, which
imparts a frequency shift (usually in the megahertz range) on the optical frequency.
This frequency shift plays the role of a carrier frequency which is then frequency
modulated by the vibratory motion. For example, if the laser frequency is ω0 and the
modulation frequency is ωm, then when a beam of amplitude Ai with this frequency
is scattered from a surface, and mixed in an interferometer with a reference beam of
amplitude Ar and frequency ω0, the intensity of the sum is given by

Is = |Aiei(ω0+ωm)t +Areiω0t |2 = |eiω0t |2|Aieiωmt +Ar|2. (1)

Equation (1) now reduces to

Is = I1 + Ir +2AiArcos(ωmt), (2)

with |Ai|2 = Ii and |Ar|2 = Ir. The result, after removing the DC terms, is simply

Is = AiArcos(ωmt). (3)

Now suppose the reflecting surface is vibrating with amplitude Av at radian fre-
quency ωv. Then there will be a time dependent phase term added to ωmt equal to

φ(t) =
(

2π
λ

)
2Avsin(ωvt), (4)

where λ is the wavelength of the laser light. Thus, Equation (3) becomes

Is = 2AiArcos(ωmt +φ(t)). (5)

The output of the LDV photodetector is a current proportional to Is which can
then be demodulated to extract the velocity. That is,

v(t) =
φ ′(t)

4k
= ωvAvcos(ωv). (6)

The prime indicates the time derivative.
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3.4.1 Speckle noise

The LDV suffers from a limitation commonly referred to as “speckle” noise. This
is a consequence of the fact that the laser light is highly coherent, so that the phase
front of reflected laser light is extremely grainy and non-stationary in time. This can
be viewed as a coherent addition of a multiple of spherical wavefronts, arriving from
different points on the surface, coherently interfering at the observation point. From
a statistical point of view, even though it is deterministic, it can be considered to be
a realization of a random process.

If the undulations of the scattering surface have a characteristic deviation greater
than the laser wavelength, then the phase structure of the wavefront can be consid-
ered to be a zero-mean random process, uniformly distributed from −π to π , and
its autocorrelation function is sharply peaked with a width on the order of a wave-
length. Also, it is reasonable to consider the complex field at an observation point
on an observation plane to be complex Gaussian.

In the case of the LDV, the difficulty is that the speckle noise takes the form of
random spots that are rapidly moving in the observation plane. These spots have a
characteristic size that is strongly dependent on the optical aperture involved. This is
a consequence of the fact that highly localized scatterers are not resolvable beyond
the capability of the viewing aperture. Thus, the narrower this aperture, the larger the
correlation length, and therefore the larger the apparent size of the speckle spots. For
a scanning LDV then, the speckle noise emanating from the LDV has a “bursting”
type behavior as these speckle spots move past. This noise is difficult to remove. As
mentioned above, some progress has been made in dealing with this by Valeau et al.
[8] where a space-time representation of the velocity field is used for the detection
statistic.

An excellent discussion of speckle is in the book by Barrett and Myers [9].

4 Ground-Penetrating Radar

Ground Penetrating Radar (GPR) techniques have been highly developed in the
recent past [10] and have resulted in several commercial devices. It has applica-
tions in a number of fields. It is used to make geological measurements, nondestruc-
tive testing of large structures and pavements, and locating pipes and other buried
objects. It is also extensively used in archaeology.

In spite of its successes however, it has some severe limitations. It performs
poorly in any medium that has a high conductivity, such as clayey and mois-
ture laden soils. Also, there is the fact that absorption of electromagnetic energy
increases with frequency, whereas high frequency is necessary when resolution of
small objects is desired. This means that there are severe depth constraints in such
cases. In the case of mine hunting or UXO detection, as with the SA methods, it can
suffer from poor detection statistics due to clutter. More information on GPR can be
found in reference [10].
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4.1 Nonlinear detection

Here we propose a nonlinear approach that may have application to cases where
some form of electronic circuitry is contained. As an example, a typical cell phone
receives on a carrier on the order of 850 MHz. If we choose a radar signal of this
frequency to drive the input, then we should expect that the circuitry itself will have
induced currents due to the high field strength. Since these circuits are highly non-
linear, we could expect reradiated frequencies to exhibit spectral components that
lie outside of the carrier frequency’s band. This means that, even if the reradiated
field levels are low, they will have a favorable signal to noise ratio.

In the following example, we consider a clipped sine wave. In Figure 2 we show
a 1 kHz unit amplitude sine wave that is clipped to half of its amplitude. Figure 3
depicts the power spectrum of this signal. As can be seen, along with the 1 kHz line,
there are several strong lines at odd multiple frequencies.

The exact nature of the nonlinearities and their ability to produce such spec-
tra would most easily be determined by experiment. Clearly, one drawback of this
approach is that frequencies of 800–900 kHz, depending on the soil makeup, may
not penetrate deeply into the ground. In many cases however, such high frequencies
usually can detect at depths on the order of 1–2 ft. For UXO devices buried at such
depths, this offers an interesting possibility.
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Fig. 2 Sine wave clipped at half amplitude.
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5 Conclusions

The capabilities of seismo-acoustic coupling and ground penetrating radar have
been discussed. Due to the absorption of high-frequency (>1 kHz) sound waves
by the soil, direct imaging of a buried object appears to be out of the question.

The exploitation of nonlinear effects shows promise in mitigating the false alarm
rate, but they are still at the research stage. The linear approach, which uses SA
coupling into the ground to excite the object of interest, shows promise of being
closer to an operational system. Here, the surface vibration induced by the vibrating
buried object is sensed with a scanning LDV.

The possibility of exploiting nonlinear effects in any electronic circuitry used as
a detonator is shown to offer the possibility of detection of the reradiation from such
devices when excited by a GPR source.
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Hölder regularity, 1, 12, 14

image classification, 1, 7, 8
Hough transform (HT), 141, 153–156, 223,

224, 228–229, 231, 232
Hyperbola detection with Hough transform,

153–154
Hyperplane, 211, 212
Hyperspace, 214, 220

I
Image analysis, 3, 165, 167
Image processing, 1–8, 16, 86, 106, 134,

141–142, 154, 163–168, 171, 180, 182,
184, 259, 263

Image stabilization, 259–271
Imaging sensors, 165, 167–168, 170, 173, 180
Impulse signal, 223
Induced currents, 202–203, 205–206, 279
Induction, 89, 90, 97, 107, 110, 113, 197–199,

219, 236
Inequality constraint, 212, 243
Integer programming, 235, 242, 247–257
Intensity, 7, 36, 44–46, 48–50, 56, 65,

154–155, 169, 171, 177, 193–194, 266,
277

Interferometer, 277

K
Kernel, 162, 213–214, 261–269

L
Landmine detection, 89–90, 92, 96–107,

259–260
Landmines, 89–110, 125–129, 136, 139,

259–260
Laser cavity, 48, 50, 54, 56
Laser diode, 23–24



Subject Index 285

Laser Doppler Velocimeter (LDV), 276–278,
280

Laser radar, 165–166, 168–174, 177–180, 184
Likelihood ratio test, 113, 115, 117–119,

121–122
Linear constraint (LC), 235, 242
Linear objective function (LOF), 242
Linear programming (LP), 235, 239–249,

253–254

M
Magnetic diffusion, 197, 206, 219
Magnetic dipole, 114, 197, 199–200, 202–203
Magnetometry, 197–198
Magneto-quasistatics (MQS), 197, 201, 206,

208
Mapping, 63, 66, 133, 213–214, 220
Mathematical programming (MP), 239–240,

257
Maximization, 242, 244, 248, 250
Measures, 1–20, 34–35, 49, 50, 64, 96, 119,

174, 212–214, 237, 252, 266, 268
Metal detector, 89–91, 93, 107, 128, 135, 273
Meteorological event, 255–256
Method branch and bound, 249–252
Minimax, 113, 116, 118
Minimization, 6, 212, 244, 248, 250, 266, 268
Model capacitated plant location, 252–253
Motion blur, 259–263, 267
Multi-and hyper-spectral sensors, 165
Multidimensional data, 165
Multi-event case, 256
Multifractal analysis, 1–20
Multi-sensor systems, 165–184
Multi-user consortium, 255

N
Neyman-Pearson detection, nonparametric

test, 113, 118–121
Noise, 1, 2, 6, 21, 30, 33–35, 63, 76–78,

89–90, 97, 103, 130, 134, 143, 145,
146, 149–151, 154–158, 164, 171–172,
212, 218–219, 260, 262, 263, 268, 273,
278–279

Nonlinearity, 49, 154, 211, 213, 216, 273,
275–276, 279–280

O
Observation plane, 278
Optimality, 242

P
Pattern matching, 197, 210
Photoconductive, 25–27, 35

Photodetector, 26, 277
Photoelastic, 38, 39, 41, 47, 52
Photoluminescence, 189–194

laser excitation, 190–191, 195
time-resolved luminescence, 190–195
trace explosives detection, 189–195

Photovoltaic, 25–27, 35
Platinum, 27, 29, 30, 32
Point spread function (PSF), 259–262, 264,

267–269
Porous media, 274
Power spectrum, 279
Probability of detection (PD), 95–96, 103,

106–109
Probability of false alarm (PFA), 95–96,

108–109
Problem covering and packing, 254–255
Problem traveling salesman, 253–254
Pyroelectric, 25, 28, 31, 35

Q
Quantum cascade, 24
Quantum efficiency, 24, 28
Quantum sensors, 25
Quantum well, 24, 26, 28

R
Radar, 1, 61–67, 69–70, 72, 76, 78, 80–86,

89–110, 113, 114, 125–139, 142,
145–152, 157–159, 165–166, 168–180,
184, 198, 204, 207, 223, 273–280

impulse radar, 125, 131
systems, 61–70, 80, 86, 89–90, 97, 99–102,

104–110, 133, 135, 165–166, 168–172,
175–177

Readout integrated circuit (ROIC), 32
Receiver operating characteristic (ROC), 95,

96, 107–109, 122
Reflective index, 40
Refractive index, 39–42, 46, 53
Resonance, 107, 201, 219, 276
Responsivity, 33–34
Restoration, 259, 264, 267–270

S
Scale invariance, 1–2
Scaling function, 1–3, 7–18
Scanner, 31, 52, 170
Scanning laser doppler velocimeter, 276–278,

280
Scattering process, 42
Seismo-acoustic, 273–274, 278, 280
Seismo-acoustic coupling, 274, 280
Shear wave, 274
Slack variable, 197, 212, 214



286 Subject Index

Soil, 89–91, 97, 99, 101–104, 108, 110, 130,
157–158, 197–198, 201, 204–206, 217,
219, 224, 274–276, 278–280

Soil attenuation loss, 97, 99–101, 275
Sound, 1, 38, 52, 53, 75, 129, 180, 223, 226,

228, 239, 273–276, 280
pressure level, 276
reference level, 276

Speckle noise, 149, 164, 273, 278
Spectrum of singularities, 1, 13
Speed of sound in soil, 274
Stabilization, 259–271
Standardized excitations approach (SEA), 197,

206, 208–211, 215–216, 219–220
Statistical learning algorithm, 197
Stop and stare method, 277
Strain optic tensor, 38
Strain tensor, 39–40
Sum and difference frequencies, 275–276
Support vector machine (SVM), 122, 197,

211–216, 220
Surface velocity, 276

T
Thermal sensors, 25, 28–31
Thermocouple, 25, 31
Thermopile, 25, 28, 31, 35

Time domain (TD), 98, 104, 105, 130, 132,
141–146, 148, 160, 161, 163, 164, 199,
201, 204–206, 231

Tracking Algorithms for Detection and
Estimation in GPR Data; FPGA
Implementations, 161–163

Training, 61, 86, 122, 138, 139, 170, 178, 198,
211, 216, 220

Transmitting-receiving antennas, 98, 102, 146,
223, 224, 232

Tuning curve, 276

U
Ukraine, 223
Unexploded ordnance (UXO), 1, 93, 113–123,

125, 128, 135, 136, 139, 141–164,
197–220, 223, 224, 273–280

Usefulness potential, 255
User, 89–91, 129, 170, 179, 180, 255–257, 264

V
Vibrations, 1, 2, 41, 169, 180, 259–261, 276,

280

W
Wavelet leaders, 1, 3, 4, 14–16, 19
Wavelets, 1–20, 107, 134



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.001 841.997]
>> setpagedevice




