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Summary

Photosynthesis models are now routinely used in many types of global investigations. Much of this work
is driven by global environmental change concerns, with global models seen as key tools with which
to synthesize current understanding, explain paleoclimatic variability in global biogeochemistry and
ecology, and forecast ecosystem responses to climate change and increasing atmospheric CO2 levels. We
discuss the approaches used to model terrestrial and marine photosynthesis at the global scale. Models in
both realms fall into two equivalent categories, one empirical and one mechanistic. Within each category
there are many similarities between terrestrial and marine models. Most empirical approaches estimate
the distribution of photosynthetic capacity (chlorophyll in the oceans, LAI on land) from space and
apply a photosynthetic light-use efficiency approach to obtain an estimate of carbon uptake. Mechanistic
approaches attempt to simulate the distribution of capacity itself, as well as the rate of photosynthesis,
and are thus capable of projecting terrestrial and marine carbon fluxes into the future and distant past.

A completely new state-of the-art global combined simulation of terrestrial and marine production is
presented. Terrestrial photosynthesis is calculated using a mechanistic approach that treats the within-
leaf light gradient, among other improvements over previous methods. Marine production utilizes a
new approach that treats spatial and temporal variation in phytoplankton chlorophyll to C ratio. Mean
contemporary annual net primary productivity is estimated to be 107.3 Pg C year−1, with 51.1% coming
from land and 48.9% from the oceans.

Improvements in prognostic modeling of global photosynthesis will come about through attention
to the same issues in both terrestrial and marine environments. These primarily concern high quality
validation data at scales appropriate to test global models and the development of methodologies to deal
with the variety of physiological and phenological types. In addition, attention needs to be given to both
the potential importance of phenotypic plasticity and better mechanistic approaches for the prediction
of photosynthetic capacity distribution in space and time. Dialogue between modelers, experimental
physiologists, and ecologists needs to improve. Without this there is a very real danger that global models
will assume a shared acceptance of an in silico reality that bears only superficial resemblance to that
in vivo.

Abbreviations: AOD – atmospheric optical depth; APAR –
absorbed PAR; AVHRR – advanced very high resolution
radiometer; CASA – Carnegie Ames Stanford approach;
CbPM – carbon-based production model; Chl – chlorophyll
a concentration; Chl a – chlorophyll a; Cphyto – ocean car-
bon concentration; DGOM – dynamic green ocean model;
DGVM – dynamic global vegetation model; E0 – incident
PAR at the sea surface; fPAR – fraction of PAR; GCM –
global climate model; GPP – gross primary production; LAI
– leaf area index; LUE – light use efficiency; MLD – mixed
layer depth; MODIS – moderate-resolution imaging spectro-

radiometer; NDVI – normalized difference vegetation index;
NIR – near infrared; NOAA – National Oceanic and Atmo-
spheric Administration; NPP – net primary production; PChl

– chlorophyll a-specific photosynthesis rate; P(z, t) – depth
and time resolved net carbon fixation rate per unit volume;
PAR – photosynthetically active radiation; Rubisco – ribu-
lose 1,5-bisphosphate carboxylase/oxygenase; RuBP – ribu-
lose 1,5-bisphosphate; SeaWiFS – sea-viewing wide field-
of-view sensor; SLA – specific leaf area



20 Global-Scale Photosynthesis 467

I. Introduction

All food and fiber on which humanity depends
has its origin in the capture of atmospheric CO2
by photosynthesis, and so quantifying present and
future global spatial and temporal distributions of
this essential process is a key scientific objective.
Recent increases in computing power, together
with the production of key global datasets, have
allowed many researchers to develop methodolo-
gies for modeling photosynthesis at the global
scale in both the terrestrial (Melillo et al., 1993;
Potter et al., 1993; Warnent et al., 1994; Prince and
Goward, 1995; VEMAP Members, 1995; Foley
et al., 1996; Hunt et al., 1996; Kaduk and
Heimann, 1996; Sellers et al., 1996a; Brovkin
etal., 1997;Postetal., 1997;Dickinsonetal., 1998;
Xiao et al., 1998; Cox et al., 2000; Friend
and White, 2000; McGuire et al., 2001; Bonan
et al., 2003; Sitch et al., 2003; Running et al.,
2004; Woodward and Lomas, 2004; Friend and
Kiang, 2005; Krinner et al., 2005; Sato et al., 2007)
and marine (Morel, 1991; Longhurst et al., 1995;
Behrenfeld and Falkowski, 1997a; Behrenfeld
et al., 2005; Carr et al., 2006) environments.
These efforts have been driven by three ambitious
research objectives: (i) synthesis of our under-
standingof thecurrentecologicalandbiogeochem-
ical state of terrestrial and oceanic environments
(e.g. the distribution of ecosystem production and
structure on land and the distribution of nutrients,
dissolved oxygen, and marine biota in the oceans);
(ii) accounting for paleoclimatic variability in
global biogeochemistry and ecology; and (iii)
forecasting the responses of ecosystems to climate
change and altered anthropogenic nutrient loading
(including CO2), and their feedbacks on global
biogeochemistry and climate. Models provide an
efficientmeans to integrateandtestourknowledge,
especially at large spatial scales.

Contemporary concerns regarding global envi-
ronmental change have provided the motivation
for much of the modeling described in this chap-
ter. Understanding controls on plant production
across environmental gradients up to the global
scale is a prerequisite for the development of
capabilities for predicting the impacts of future
environmental change on Earth’s ecosystems. In
addition to the need to predict impacts, the cur-
rent interest in the contemporary behavior of the
global carbon cycle (driven largely by awareness

of the potential consequences of rising concen-
trations of anthropogenic greenhouse gases for
global climate) is responsible for a widening
interest in global plant production models. How-
ever, attribution of observed atmospheric CO2
concentrations and their variability in space and
time is far from straightforward. In particular, it
is currently not possible to unequivocally iden-
tify the process or processes responsible for the
uptake of the major part of the ≈57% of anthro-
pogenic CO2 emissions that does not remain
in the atmosphere on an annual timescale, or
explain why the efficiency of these natural car-
bon sinks appears to have been decreasing since
2000 (Canadell et al., 2007). Photosynthesis is
the primary driver of the contemporary global
carbon cycle and, therefore, understanding the
dynamics of atmospheric CO2, and hence future
climate, requires a detailed understanding of the
global distribution of photosynthesis and how it
responds to environmental forcings. Clearly res-
piration is the other key to determining surface-
atmosphere CO2 fluxes, and the reader is referred
to Trumbore (2006) and Amthor (2000) for the
terrestrial perspective on this complex subject,
and to Geider (1992) and Laws et al. (2000b) for a
marine perspective on phytoplankton respiration.
Recent marine perspectives on community res-
piration are given by Williams et al. (2004) and
Riser and Johnson (2008).

Researchers have approached the challenges
of modeling terrestrial and marine photosynthe-
sis separately; we also briefly consider coastal
ecosystems.

A. Terrestrial Photosynthesis

Most models of terrestrial vegetation have a
photosynthesis-centric approach, treating plant
growth as the carbon balance of photosynthesis,
respiration, and litter turnover, with ecosystem
dynamics resulting from the relative growth (or
productivity) of different physiologies and/or
individuals. Photosynthesis and radiation algo-
rithms tend to be the most sophisticated and best
understood components of these models, partly
because of the relative ease of measuring canopy
processes and partly because of the almost uni-
versal adoption of the leaf-level, mechanistic
model of photosynthesis developed by Graham
Farquhar, Susanne von Caemmerer, and Joseph
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Berry almost 30 years ago (Farquhar et al., 1980;
Chapter 9 of this book by Susanne von Caem-
merer, Graham Farquhar and Joseph Berry).

Global-scale models of terrestrial photosynthe-
sis are now an important component of global cli-
mate models (GCMs) because of the importance
of vegetation processes for soil moisture dynam-
ics and the partitioning of surface energy, pro-
cesses increasingly shown to be important for the
physical climate system (Pitman, 2003). Stom-
atal conductance algorithms in GCMs are usually
based on a representation of photosynthesis (e.g.
Randall et al., 1996; Friend and Kiang, 2005), and
a few GCMs now predict vegetation growth, and
hence surface characteristics, from carbon bal-
ance (e.g. Betts et al., 1997; Bonan et al., 2003).
An increasing number of GCMs also include a
treatment of the global carbon cycle, allowing
diagnosis of atmospheric CO2 concentrations
from anthropogenic emissions and net natural
surface fluxes. This has led to predictions of
future feedbacks between climate and atmo-
spheric CO2 (Fung et al., 2005; Friedlingstein
et al., 2006). However, the outcomes of such
model experiments depend critically on the mod-
eled responses of photosynthesis and respiration
to temperature and rising atmospheric CO2, pro-
cesses poorly constrained in current models.

B. Marine Photosynthesis

Models of marine photosynthesis fall into two
broad categories. First, bio-optical algorithms
calculate net primary production (NPP) from
satellite remote sensing observations of ocean
color, sea surface temperature, and solar radia-
tion incident upon the sea surface (Behrenfeld
et al., 1997a, b; Carr et al., 2006). These algo-
rithms are used to document the seasonal, interan-
nual, and spatial variability of NPP in the ocean
(Behrenfeld et al., 2006; Polovina et al., 2008).
Second, dynamic models of plankton ecology and
ocean biogeochemistry simulate the present state
of the ocean carbon cycle by embedding descrip-
tions of chemical, biogeochemical, and ecologi-
cal processes within an ocean general circulation
model (Doney et al., 2003). These models are
used to assess the effects of changes in external
forcing on ocean ecosystems and the ocean car-
bon cycle (Orr et al., 2005; Moore et al., 2006a),
to simulate the evolution of the ocean carbon

cycle on glacial/interglacial time scales, and to
project the ocean carbon cycle into the future
(Le Quéré et al.,2005; Schmittner et al., 2008).
Accuracy in hindcasting the carbon cycle into the
past and forecasting the carbon cycle into the
future relies on accurate descriptions of ocean
physics, chemistry, ecology, and biogeochemistry
(Doney et al., 2003). Primary productivity esti-
mates obtained from these two approaches are
largely independent. One point of intersection
between the bio-optical algorithms and biogeo-
chemical models is the surface ocean chlorophyll
a (Chl a) field. Satellite derived Chl a can be
exploited in different ways in the two approaches.
The Chl a field is an input to bio-optical calcu-
lations, whereas it is used in validating biogeo-
chemical models. In addition, assimilation of the
Chl a field can be used to improve the output of
biogeochemical models (Gregg, 2008).

C. Coastal Photosynthesis

Our discussion of marine photosynthesis in this
chapter focuses on the phytoplankton, compris-
ing the drifting microscopic algae and cyanobac-
teria, which account for about 90 percent of
marine NPP (Duarte and Cebrián, 1996; Field
et al., 1998). None-the-less, we acknowledge the
importance of the coastal zone to NPP and the
carbon cycle. The coastal zone receives inputs
of organic matter and nutrients from terres-
trial sources and exchanges organic matter and
nutrients with the ocean (Gattuso et al., 1998).
The coastal zone includes estuaries, intertidal
habitats, shallow water subtidal vegetated habi-
tats, and coral reefs. These habitats are rel-
atively small in spatial extent (Duarte and
Cebrián, 1996; Borge et al., 2005), but include
a wide range of distinct plant functional groups
such as mangroves, salt marsh grasses, sea-
grasses, benthic microalgae, macroalgae, and
endosymbiotic algae within corals. Estimates that
these plants contribute about 10% of global
marine NPP are obtained by extrapolation from
local studies to the global scale on the basis of
estimates of the area occupied by these differ-
ent habitats (Duarte and Cebrián, 1996; Field
et al., 1998). As a consequence, NPP of the sub-
tidal benthic communities is poorly quantified. A
step towards improving estimates of the contri-
bution of these communities to NPP on a global
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scale was taken by Gattuso et al. (2006), who used
SeaWiFS imagery to define the surface area of the
sea bed where there is sufficient light to support
net community production.

II. Description of Model Approaches

Global-scale models of photosynthesis have to
confront three major challenges: characterization
of the dependency of CO2 uptake on forcings,
the distribution of capacity (i.e. the amounts of
Rubisco and light-harvesting machinery) in space
and time, and the environmental forcing itself.
A wide range of approaches has been used for
all three, depending on the intended application
and often the background of the researchers.
Approaches to the dependency of terrestrial CO2
uptake on forcings can be classified as either
“top-down” or “bottom-up” (the terms refer to
strategies of model development: either from the
whole to the parts or from the parts to the whole).
Marine bio-optical NPP algorithms are simi-
lar to the “top-down” terrestrial models, treat-
ing NPP as the product of capacity (e.g. Chl a
concentration) and Chl a-specific photosynthesis,
which is related to environmental forcing (Field
et al., 1998). However, unlike in terrestrial mod-
els, marine photosynthesis is rarely treated sepa-
rately from growth because of the rapid turnover
of the phytoplankton.

A. Terrestrial Models

1. CO2 Fixation

a. “Top-down” Approaches

The most widely used “top-down” approach to
modeling terrestrial photosynthesis has its her-
itage in the ideas of Monteith (1972), who found
a linear relationship between absorbed solar radi-
ation and dry matter production of well-watered
herbaceous vegetation. A maximum potential
efficiency of conversion of energy in the form
of radiation to fixed energy in the form of dry
matter is assumed, and then scaled depending
on the influence of various environmental fac-
tors such as temperature and atmospheric vapor
pressure deficit (e.g. Running et al., 2004). This

approach assumes a linear relationship between
total canopy absorbed radiation and photosyn-
thesis, and so can be used with satellite-based
measurements of absorbed solar radiation to esti-
mate the global distribution of photosynthesis
(e.g. Prince and Goward, 1995). One such pho-
tosynthesis product is derived from the MODIS
instrument at 8 day intervals, and has global cov-
erage at 1 km resolution (Zhao et al., 2005).

Light-use efficiency (LUE), or the conver-
sion efficiency between absorbed photosyntheti-
cally active radiation (APAR) and plant growth,
is often given in units of g C (MJ APAR)−1.
Canopy LUE is determined by many biolog-
ical and biophysical factors in addition to
the maximum quantum yield of photosynthe-
sis, including maximum light-saturated photo-
synthetic rates, the fraction of photosynthesis
consumed by autotrophic respiration, and the
diffuse fraction of irradiance (Monteith, 1972,
1977; Prince, 1991; Potter et al., 1993; Field
et al., 1998; Ruimy et al., 1999; Running
and Hunt, 1993; Goetz and Prince, 1998;
Gower et al., 1999; Choudhury, 2001; Running
et al., 2004; Jenkins et al., 2007). The widely used
CASA carbon cycle model (Potter et al., 1993;
Field et al., 1995, 1998; Randerson et al., 1997,
2005) predicts NPP, or gross primary production
(GPP) minus autotrophic respiration, as: NPP =
LUE× APAR, where LUE = ε∗ × T ×W . LUE
is modeled in CASA as departing from a theoreti-
cal universal optimum (ε∗ ) due to climatic varia-
tions given by stress scalar terms for temperature
(T ) and moisture (W) (Potter et al., 1993; Lobell
et al., 2002). Spatial and temporal variations in
APAR are prescribed from surface irradiance and
the fraction of incident photosynthetically active
radiation (fPAR) absorbed by vegetation, derived
from satellite observations (Potter et al., 1993;
Field et al., 1998; Ruimy et al., 1999).

The model of Sato et al. (2007) uses a rather
more complex “top-down” approach than the
standard LUE algorithm. Leaf-level photosynthe-
sis is calculated as a simple saturating function
of incident PAR, with an initial slope of 0.05
mol CO2 (mol quanta)−1 for C3 plants. This ini-
tial slope is assumed to vary with air temper-
ature and intercellular CO2 concentration in C3
leaves, and leaf-level photosynthesis is integrated
across 10 cm deep layers within individual tree
crowns. Kaduk and Heimann (1996) employ a
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similar method to calculate daily canopy light-
dependent photosynthesis, but include a canopy-
depth dependency for the leaf-level maximum
rate and apply linear empirical functions of mean
daily temperature, drought stress, and atmo-
spheric CO2 to the canopy rate; they assume an
LUE of 0.07 mol CO2 (mol quanta)−1.

The “TEM” model (Xiao et al.,1998) also uses
a “top-down” approach to modeling photosyn-
thesis. Monthly GPP at a given location is cal-
culated as a multiplicative function of responses
to incident PAR, leaf area, temperature, atmo-
spheric CO2, water availability, and nitrogen
availability.

b. “Bottom-up” Approaches

C3 Photosynthesis

“Bottom-up” approaches to modeling environ-
mental regulation of C3 terrestrial photosynthe-
sis in global models are usually based on the
biochemical approach of Farquhar et al. (1980).
Instantaneous leaf-level photosynthesis is calcu-
lated as the net rate of Rubisco-catalyzed RuBP
carboxylation. For a given mean intercellular
CO2 concentration, net carboxylation in all leaf
chloroplasts is assumed to be limited either by
the Rubisco content and its turnover rate or by
the rate of production of RuBP. The latter is lim-
ited either by the amount of light absorbed or by
the potential rate of electron transport. At high
rates of photosynthesis, triose phosphate utiliza-
tion is sometimes assumed to become limiting
(Sharkey, 1985; Harley et al., 1992).

Farquhar et al. (1980) concluded that despite
the mechanistic principles of their model, its
application requires empirical specification of
key parameters. These include Rubisco carboxy-
lase capacity, electron transport capacity, and
their respective temperature responses. The situa-
tion is challenging as the parameters specifying
photosynthetic capacity vary by two orders of
magnitude among different species and growth
conditions (Wullschleger, 1993). In response,
parameter estimation techniques have been devel-
oped that utilize observations such as ecosystem
CO2 fluxes measured with the eddy-covariance
technique (Knorr and Kattge, 2005; Friend
et al., 2007; Wang et al., 2007).

A further concern is that insight gained from
the Farquhar et al. (1980) model can be compro-
mised by empirical treatments of the interaction
between limiting processes (Rubisco and elec-
tron transport) and regulation of electron trans-
port by absorbed light (Badeck, 1995; Kull and
Kruijt, 1998). These problems can be overcome
by an explicit treatment of the light gradient
within leaves. Such an approach not only obviates
the need for these empirical functions, but also
provides a framework for the mechanistic treat-
ment of the relationship between photosynthesis
and leaf nitrogen content (Kull and Kruijt, 1998;
Friend, 2001; Friend and Kiang, 2005). Details
of this methodology are elaborated below in
Section III.

C4 Photosynthesis

The photosynthetic pathway composition (C3/C4
fraction) is a fundamental physiological and
ecological distinction in tropical and subtropi-
cal savannas, as well as many temperate grass-
lands (e.g. in the North American Great Plains).
C4 plants have higher photosynthetic rates at
high temperatures and under high light (Collatz
et al., 1992; Long, 1999) and higher water-use
efficiency than do comparable C3 plants (Pearcy
and Ehleringer, 1984; Farquhar et al., 1989;
Sage and Monson, 1999). The lower nitrogen
requirement of C4 plants (due to reduced Rubisco
content and lack of photorespiratory enzymes)
results in a higher photosynthetic nitrogen use
efficiency, or the ratio of photosynthesis to leaf
nitrogen content.

These functional differences can have important
implications for biosphere-atmosphere exchanges
of carbon, water, and energy. For example, C4
plants typically partition more net radiation to
sensible heat than latent heat compared to com-
parable C3 plants operating under identical condi-
tions. This partitioning has important implications
for surface temperature and humidity at regional
scales (Sellers et al., 1992).

A hallmark of C4 plants is their dominance
in high light and high temperature grassland
and savanna environments (Long, 1999; Sage
et al., 1999). The C4 pathway concentrates CO2
around the Rubisco enzyme, effectively eliminat-
ing the wasteful process of photorespiration, but
at the expense of additional energy. This expense
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is less critical when solar radiation is abundant,
which also raises leaf temperatures and photores-
piration in C3 plants. As a result, photosynthesis
in unstressed C4 leaves does not saturate at high
light, unlike the characteristic saturation for most
C3 plants (Collatz et al., 1991, 1992). Canopy
models show that under identical conditions C3
plants are often light saturated while C4 plants
remain light limited under almost all light levels
and temperatures (C.J. Still, unpublished). This is
supported by eddy flux studies that have exam-
ined canopy light responses for different ecosys-
tems (Ruimy et al., 1995; Waring et al., 1995;
Gu et al., 2002; Turner et al., 2003; Schwalm
et al., 2006; Jenkins et al., 2007). For exam-
ple, Turner et al. (2003) studied the relationship
between gross primary production (GPP) and
APAR in a cross-biome comparison. The C4-
dominated tallgrass prairie displayed a nearly lin-
ear relationship between GPP and APAR, unlike
other biomes that exhibited more typical light
saturation (i.e., a hyperbolic relationship between
these variables).

C4 plants will likely respond quite differently
than C3 plants to the suite of anthropogenic global
changes being imposed on the Earth system,
and this will strongly influence C3/C4 distribu-
tions and carbon fluxes. In addition to the well-
known differences imposed by rising atmospheric
CO2 on photosynthesis (Poorter, 1993; Wand
et al., 1999; Morgan et al., 2007), warmer temper-
atures favor C4 grasses, while higher CO2 favors
C3 grasses (Collatz et al., 1998). Changes in the
timing of precipitation will be also important,
with more cool-season rain typically favoring C3
grasses and more warm-season rain favoring C4
grasses. Also, C3 and C4 grasses exhibit different
responses to nitrogen, with deposition generally
favoring C3 grasses (Wedin and Tilman, 1996a,b;
Collins et al., 1998; Brown, 1999). Because of
these differences, it is essential to capture spatial
and temporal variations in photosynthetic path-
way when modeling global photosynthesis and its
responses to environmental forcings.

The C3 photosynthesis model of Farquhar
et al. (1980) has been adapted for C4 phys-
iology by Collatz et al. (1992), who simpli-
fied the biochemical-intercellular transport model
of Berry and Farquhar (1978) to capture the
CO2 concentration mechanism of C4 plants. In
this model, carboxylation is limited by either

light, CO2 concentration in the mesophyll cells,
or Rubisco catalytic activity. Most mechanistic
treatments of C4 photosynthesis in global models
utilize this approach (e.g. Sellers et al., 1996a).

2. Photosynthetic Capacity

It is helpful to separate local terrestrial photo-
synthetic capacity into two components, foliage
area and the amount of photosynthetic machin-
ery per unit foliage area. Foliage area is usually
quantified as a “leaf area index” (LAI). LAI is
the mean, one-sided foliage area per unit ground
area, and in global models is typically followed
for each vegetation type within each land surface
pixel. Models without dynamic nutrient cycles
prescribe photosynthetic capacity per unit foliage
area from a look-up table of values per biome or
vegetation type (e.g. Sellers et al., 1996b; White
et al., 2000), or assume unlimited N supply and
optimal distribution of N over foliage layers (e.g.
the “LPJ” model of Sitch et al., 2003). Foliage
area can be prescribed from satellite measure-
ments (Randerson et al., 1997), modeled prognos-
tically (Friend and White, 2000; Sitch et al., 2003;
Krinner et al., 2005), or constrained by assim-
ilating measurements into a prognostic model
(Demarty et al., 2007).

Global satellite measurements of LAI at 4 km
resolution have been derived from the AVHRR
sensor, flying on the NOAA series of polar-
orbiting satellites since 1978. This instrument
was designed purely for operational meteoro-
logical applications, but two of the bands have
found increasing use since the early 1980s for
monitoring vegetation type and condition (Tucker
et al., 1985). These two bands are in the vis-
ible and near infrared (NIR) frequencies, with
green leaves having a higher reflectance of NIR
wavelengths and strong absorption of red light
by chlorophyll. A normalized difference vegeta-
tion index (NDVI) is derived as the ratio of the
difference between the measured NIR and visible
reflectances and their sum. This index increases
with LAI and much work has been undertaken
to determine its relationship with vegetation state
(Justice et al., 1985; Myneni et al., 1997) and
rates of photosynthesis (Nemani et al., 2003;
Slayback et al., 2003).

More recently, instruments have been launched
into space specifically to monitor terrestrial
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vegetation activity. The resulting data are used to
calculate indices similar to NDVI, but additional
wavebands have been included to enable
estimates of the effects of atmospheric properties
on individual measurements. A number of
these products are now available (Morisette
et al., 2006), with the most widely used coming
from NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument, which
has been used to produce a global 1 km LAI
product every 8 days since early 2000 (http://
cliveg.bu.edu/modismisr/laifpar/laifpar.html).

Despite their many advantages, all global
satellite-based measurements of LAI suffer
from problems of saturation and contamination.
Particular problems therefore occur in monitor-
ing moist tropical ecosystems. Problems are also
evident where changes in background reflectiv-
ity contaminate the measurements, such as snow
cover. For all these reasons, and for prediction of
vegetation activity in the more distant past and
in the future, it is essential to develop mechanis-
tic predictive capabilities for LAI. In this role,
satellite-based measurements function for model
parameterization and validation. However, our
current understanding of the complex environ-
mental and biological controls on leaf area dis-
play across different species and vegetation types
has not allowed the development of a general
model of vegetation growth dynamics. LAI has
been predicted using fixed C allocation coeffi-
cients (Potter et al., 1993; Kucharik et al., 2000),
dynamic C allocation and turnover in response to
cold and stress factors (Dickinson et al., 1998),
and prescribed allometric relationships (Sitch
et al., 2003). Other approaches use optimality
criteria, such as maximizing NPP with respect
to light and soil water (Woodward et al., 1995;
Kaduk and Heimann, 1996), maximizing LAI
given soil moisture constraints (Neilson, 1995),
or assuming a functional balance between access
to light, water, CO2, and soil nutrients (e.g.
Friedlingstein et al., 1999). Semi-mechanistic
approaches have also been developed, such as
following the annual C balance of leaves at the
base of the crown (Friend et al., 1997).

All of these methods, to a greater or lesser
extent, do well in predicting global relationships
among the distribution of mean and maximum
LAI and major drivers such as soil moisture
and temperature. However, it is unclear if these

parameterizations will also hold in the future,
when increasing atmospheric CO2 and changed
nutrient relations will interact strongly with cli-
mate, hydrological, and species changes and so
likely have significant impacts on foliage area and
activity. Improved predictive ability for global
models will come from knowledge concerning
the physiology of allocation in individual plants,
followed by calibration using high quality in situ
and satellite data at the scales of interest.

Leaf phenology refers to the science of the
annual cycle of leaf area display. Both the
spatial pattern of mean behavior and local inter-
annual variability are key components of terres-
trial ecosystem models. Timing of leaf display
has been the subject of rather more analysis than
absolute values of LAI, particularly in temperate
forests. However, modeling vegetation-specific
phenology at large spatial scales remains a sig-
nificant challenge (Botta et al., 2000; Kucharik
et al., 2006; Kathuroju et al., 2007). Local,
species-specific empirical parameterizations of
inter-annual variability are well characterized for
temperate deciduous forest ecosystems, but their
applicability at scales necessary for global simu-
lations is doubtful (Kathuroju et al., 2007). There
is clearly a conceptual problem in applying local
inter-annual parameterizations to explain mean
spatial variability.

Botta et al. (2000) parameterized biome-
specific empirical phenological models at the
global scale using AVHRR measurements scaled
to a 0.5◦ resolution. Leaf onset is predicted
either from a temperature sum (with an influ-
ence from the number of chilling days for
cool deciduous broadleaf forests) or soil mois-
ture (with a biome-specific time delay from
some critical moisture value), depending on the
biome type. This approach works well for mean
dates in temperature-controlled regions, but is
less effective for water-controlled regions such
as tropical grasslands and savannas because of
greater spatial heterogeneity and data problems.
Improvements should result from the develop-
ment of mechanistic models of grassland growth
dynamics.

As mentioned previously, photosynthetic
capacity per unit of foliage area in global models
of photosynthesis is often prescribed using fixed
values for different vegetation types. However,
growth conditions can have a large influence
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on capacity (Wullschleger, 1993), and so some
global models now include an interactive N
cycle with prognostic foliage N (Friend and
White, 2000; Woodward and Lomas, 2004;
Thornton and Zimmerman, 2007). Foliage
N is then related to photosynthetic capacity
through assumed relationships with Rubisco
and chlorophyll concentrations. A problem
that remains largely unaddressed, however, is
that specific leaf area (SLA), and hence the
relationships between LAI, foliage C and N
contents, and photosynthetic capacity, is highly
variable among species, and even within species
under different growth conditions (Knops and
Reinhart, 2000). Global models almost all
assume a fixed value for each vegetation type,
although some recent efforts have been made to
make SLA a dynamic variable, at least within
canopies (Thornton and Zimmerman, 2007).

Foliage N is thought to limit photosynthe-
sis in many terrestrial ecosystems (Field and
Mooney, 1986), although there is evidence that P
may be more important than N within the trop-
ics (Vitousek, 1984) due to the highly weath-
ered state and high sorption capacity of many
moist tropical forest soils (Lloyd et al., 2001).
Although tropical foliar P levels are often lim-
iting, the importance of P for future responses
of tropical rainforests to environmental change
is unclear given the possibility of desorption
of phosphate ions from their fixation sites in
response to increased rates of plant uptake (Lloyd
et al., 2001). We are not aware of any global
photosynthesis/ecosystem model that contains an
explicit P cycle (cf. Parton et al., 2005).

It is not clear how best to formulate plant N
dynamics in global models. Friend et al. (1997)
calculate allocation of N to foliage as a function
of total plant N content, with fixed relative C:N
ratios among foliage, stem, and fine roots. N is
taken up using a function related to the plant N
status, fine root mass, and soil mineral N concen-
tration. More sophisticated allocation schemes
are being developed in which foliage N dynam-
ics are controlled by the local transpiration rate,
as indicated by experimental results (Pons and
Bergkotte, 1996), a methodology that has inter-
esting implications for the mechanistic modeling
of soil moisture effects on LAI and phenology.

The local foliage N content accounts for only
part of the relation between nutrient availability

and plant photosynthetic capacity. Experimental
evidence indicates that in most species studied,
N supply actually has a greater influence on leaf
area than on capacity per unit leaf area. For exam-
ple, Taub (2002) measured a 37% increase in
mean leaf mass in response to fertilization across
17 C3 grass species, whereas mean growth rate
per unit leaf area increased by only 12%. Studies
such as this demonstrate that allocation shifts in
response to nutrient supply need to be carefully
included in global models.

3. Environmental Forcing

Global-scale models of terrestrial photosynthe-
sis generally treat the supply of CO2 to the
chloroplasts much more simply than controls on
photosynthesis itself. Most approaches explicitly
consider stomatal conductance and leaf and/or
canopy boundary layer conductance. However,
the complexity of stomatal behavior is typically
avoided by assuming that stomata act to main-
tain the intercellular air space concentration of
CO2 (Ci) at some specified ratio to the external
concentration (Ca), thereby allowing calculation
of stomatal conductance directly from the rate of
net photosynthesis (An). This ratio is assumed
fixed as light, temperature, and CO2 concentra-
tion vary, with different values for C3 and C4
leaves. However, changing hydrological factors
such as the leaf-to-air humidity gradient and soil
moisture content change Ci/Ca, and this depen-
dency can be included. Compelling evidence for
the conservative nature of Ci/Ca was provided by
Wong et al. (1979). However, a complication for
practical applications is that An depends on Ci,
requiring an iterative modeling process to obtain
and equilibrium value of Ci under any given set
of forcing conditions.

A frequently used parameterization of leaf-
level stomatal conductance (gsc), derived by Ball
et al. (1987) from their own observations and
subsequently modified by Leuning (1995), is:

gsc = g0 + a1An

(CS − Γ ) ·
(

1+ DS
D0

) , (20.1)

where Ds and Cs are the leaf surface vapor
pressure deficit and CO2 concentration, respec-
tively, g0 is conductance as An→ 0 when light
→ 0, Γ is the CO2 compensation point for
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net photosynthesis, D0 is the value of Ds that
reduces gsc – g0 by 50%, and a1 represents
the slope of the relationship between conduc-
tance and net photosynthesis. It is well known
that stomata close at low soil moisture contents,
but it is not clear how this behavior should be
combined with Eq. (20.1), resulting in a range
of different, albeit simple, approaches. A funda-
mental issue is whether stomata respond directly
to soil moisture, or through changes in photo-
synthetic capacity, as seems likely after suffi-
cient time for adjustments (Wong et al., 1979).
The “SiB2” model of Sellers et al. (1996a) and
the Dynamic Global Vegetation Model (DGVM)
of Krinner et al. (2005) reduce photosynthetic
capacity under soil moisture stress, and then
use the Ball et al. (1987) formulation for stom-
atal conductance, thereby simultaneously reduc-
ing photosynthesis and stomatal conductance.

Methodologies for calculation of atmospheric
forcing and surface energy and water balances
vary greatly depending on the model timestep,
whether or not the aim is to explore climate
feedbacks, and the general interests of the
researchers. Weather generators are frequently
employed to introduce daily weather variability
given long-term mean-monthly climate (Friend,
1998). Sometimes these are extended to sub-
daily timesteps. There is great variation in the
detail with which the canopy boundary layer is
treated, ranging from no explicit treatment (Sitch
et al., 2003), to simple treatment of a canopy
boundary layer (Woodward and Lomas, 2004),
and full coupling to GCMs (Foley et al., 1998;
Friend and Kiang, 2005). The level of detail used
to treat atmospheric processes tends to be repli-
cated for below-ground hydrology and surface
energy balance.

Many global photosynthesis models use the so-
called “big-leaf” hypothesis for the scaling of
leaf-level photosynthesis (and stomatal conduc-
tance) to the canopy, despite significant doubts as
its validity (Friend, 2001; Chapter 16 of this book
by Ülo Niinemets and Niels P. R. Anten). More
realistic approaches consider vertical gradients
in photosynthetic capacity and radiation environ-
ment, including direct and diffuse irradiance and
sun and shade leaves (Bonan et al., 2003). It is
perhaps surprising that the radiation environment
is frequently modeled in a somewhat ad hoc fash-
ion, with little justification given for the level of

detail chosen and frequently no use of observa-
tions to constrain the approach, particularly with
respect to different canopy geometries. Neverthe-
less, strong evidence exists that correctly simu-
lating the canopy radiation environment is critical
for accurate simulation of canopy photosynthesis
(Friend, 2001; Baldocchi and Wilson, 2001).

B. Marine Models

1. Photosynthetic Capacity

Primary productivity in the sea is driven by a
combination of physical, chemical, and biologi-
cal factors. The most important is the biomass
of phytoplankton, which is analogous to the
“photosynthetic capacity” as defined in the previ-
ous section on terrestrial photosynthesis. Chloro-
phyll a is the most commonly used index of
phytoplankton biomass because it is specific
to the phytoplankton, and can be readily mea-
sured by a variety of methods on different space
and time scales. In addition to spectrophotomet-
ric and fluorimetric determinations on samples
extracted in polar solvents (Jeffrey et al., 1997),
these methods include in situ sensing of chloro-
phyll fluorescence (Falkowski and Kiefer, 1985)
and remote sensing of ocean color (O’Reilly
et al., 1998; Morel et al., 2007).

Global distributions of chlorophyll concentra-
tion are available from several sensors including
CZCS in the 1980s, and more recently SeaWiFS,
MODIS-Aqua, and MERIS (Antoine et al., 2005;
Morel et al., 2007). Chlorophyll a concentra-
tions derived using these sensors agree over a
wide range (0.1–3 mg m−3), but diverge at the
low Chl a concentrations (<0.1 mg m−3) char-
acteristic of the oligotrophic open ocean regions
(Morel et al., 2007). Satellite estimates compare
favorably with surface observations on discrete
samples (Gregg and Casey, 2004), especially
when issues regarding the validity of these “truth”
observations are taken into account (Marrari
et al., 2006). However, sampling errors may bias
estimates of monthly and annual mean Chl a con-
centrations (Gregg and Casey, 2007b). Overesti-
mates were inferred for regions that are poorly
sampled due to low sun angle or high cloud
cover (Gregg and Casey, 2007b). These are
the times/locations when/where phytoplankton
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growth is reduced (and thus Chl a concentrations
are low) because incident light is low.

Satellite measurements of ocean color provide
estimates of Chl a concentration for the upper
20% of the euphotic zone. However, the Chl a
profile often shows vertical structure with a sub-
surface maximum that lies at depths where photo-
synthesis is limited by light. Surface observations
of Chl a can be extrapolated to the entire euphotic
zone based on typical vertical profiles of Chl
a obtained from a climatology of in situ obser-
vations (Sathyendranath et al., 1995), or from
empirically derived relationships between surface
Chl a and the subsurface vertical distributions
(Uitz et al., 2006).

The Chl a concentration can be reduced when
incident light is low and/or nutrients are lim-
iting. The light environment experienced by
phytoplankton depends on the vertical attenua-
tion of light and the mixed layer depth (MLD).
In the clearest ocean waters, net photosynthesis
can occur to depths of about 150 m. However,
as Chl a concentration increases, light penetra-
tion decreases (Morel and Maritorena, 2001). At
a concentration of 1 mg Chl a m−3, the photic
zone depth declines to about 25 m, whereas at
10 mg m−3 Chl a, the photic zone is only about 10
m deep (Morel and Maritorena, 2001).

The MLD can vary from about 10 to >500 m.
Phytoplankton are redistributed within the mixed
layer by turbulence on time scales <1 day. Dur-
ing seasons when incident solar radiation is low
and the surface layer is deeply mixed, light
limits marine photosynthesis. At mid- and high-
latitudes in winter the Chl a concentration typ-
ically drops to about 0.1 mg m−3 (Ward and
Waniek, 2007). In temperate and polar regions
during winter, the combination of low Chl a and
low incident light limit primary production. Light
limitation may be exacerbated by low Fe avail-
ability leading to Fe-light co-limitation (Boyd
et al., 2001). During spring, Chl a concentration
increases as incident solar radiation increases and
the mixed layer shoals, consistent with critical
depth theory (Follows and Dutkiewicz, 2001).

In the tropics, and in temperate latitudes dur-
ing summer, the mixed layer typically lies within
the euphotic zone and inorganic nutrients are
limiting. In these oligotrophic waters, Chl a
concentration drops below 0.1 mg m−3. Nutrient
limitation can be described either in terms of

Liebig-type limitation of yield (e.g. of Chl a
concentration) or Blackman-type limitation of
growth rate (Cullen et al., 1992). Both types of
limitation operate in the sea. Liebig-type limi-
tation may impose a greater constraint on pri-
mary productivity because, at a given incident
photon flux density, primary productivity is pro-
portional to phytoplankton biomass, and Liebig-
type nutrient availability sets an upper limit to
biomass. Blackman-type limitation of growth rate
may be superimposed on Liebig-type limitation
of biomass to further reduce primary produc-
tivity. For example, the upper limit on phyto-
plankton biomass may be set by the N upwelled
from deep waters, but CO2 and/or Fe may limit
the rate at which inorganic N is converted into
biomass (Moore et al., 2006b), and/or affect the
composition of the phytoplankton assemblage
(Tortell et al., 2002). Finally, co-limitation may
act in several ways to limit the growth rate and/or
affect the community structure of the phytoplank-
ton (Arrigo, 2005).

2. Bio-optical Algorithms

An index of the light utilization efficiency,
widely used in marine systems, is defined
in Eq. (20.2). This efficiency, designated �,
is obtained by dividing the time- and depth-
integrated primary productivity by the product of
the depth-integrated Chl a concentration and the
time-integrated photon flux incident upon the sea
surface (Falkowski and Raven, 2007):

� =
∫ dusk

dawn

∫ ZC

0 NPP (z, t) dzdt
∫ ZC

0 Chl (z) dz · ∫ dusk
dawn E0dt

. (20.2)

In this equation, NPP(z, t) is the net carbon fix-
ation rate, Chl(z) is the Chl a concentration, and
E0 is the incident PAR. The integration in time
(t) is from dawn to dusk, and the integration over
depth (designated z) is from the surface (z = 0)
to the bottom of the euphotic zone (z = zc).
� can be considered to be the product of the
water-column-averaged optical cross-section and
the water-column-averaged quantum efficiency
of photosynthesis (Falkowski and Raven, 2007).
Where the value of � is known, Eq. (20.2) can
be rearranged to calculate the daily water col-
umn integral NPP from the Chl a concentration
and the incident PAR. Based on a review of the
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data available at the time, Platt (1986) suggested
that � varied by about ±40% around a typical
value of 0.48 g C (mol photons)−1 m2 (g Chl a)−1.
More recently, based on more comprehensive
coverage of the global ocean, Falkowski and
Raven (2007) showed that � varies much more
widely (from <0.1–1.5).

To obtain more accurate estimates of marine
primary production, oceanographers employ bio-
optical remote sensing algorithms. These algo-
rithms can be classified into four categories
depending on the whether the algorithm resolves
the depth, time, and/or wavelength dependen-
cies of photosynthetic rate (Behrenfeld and
Falkowski, 1997b). Central to bio-optical algo-
rithms is treatment of NPP as the product of
the Chl a concentration Chl(z, t), g m−3, and the
Chl a-specific net photosynthesis rate P Chl, g C
(g Chl a)−1 h−1:

NPP (z, t) = Chl (z, t) · P Chl (z, t) . (20.3)

There are two basic approaches to parameterizing
the light dependence of P Chl (Sathyendranath and
Platt, 2007). First, P Chl can be specified as a func-
tion of PAR (Sathyendranath and Platt, 1989).
In this case, the photosynthesis light curve is
parameterized in terms of the light-saturated
photosynthesis rate and the light-limited initial
slope. These models are often resolved spec-
trally because the initial slope scales with the
Chl a-specific light absorption coefficient, which
varies with wavelength. A third parameter may
be employed to describe the inhibition of pho-
tosynthesis at supraoptimal PAR. In the sec-
ond approach, primary productivity is calculated
from the product of the rate of light absorp-
tion and the quantum efficiency of photosynthesis
(Morel, 1991). In this case, both the maximum
quantum efficiency and the dependence of quan-
tum efficiency on the rate of light absorption are
specified. Provided that compatible mathemati-
cal formulations are chosen for the photosynthe-
sis versus PAR and quantum yield versus PAR
curves, these approaches are equivalent (Geider,
1990; Morel et al., 1996; Sathyendranath and
Platt, 2007).

The coupling of photosynthesis to light and
the effects of phytoplankton on the attenua-
tion of light in water vary markedly with the
wavelength of PAR. Phytoplankton dominate

the variable component of light attenuation in
open ocean waters where the concentrations
of colored dissolved organic matter and sus-
pended particulate matter are low (Morel and
Maritorena, 2001). Phytoplankton cells absorb a
variable proportion (typically <10–70%) of the
incident photons (Stramski and Mobley, 1997),
and variations in cell size and cellular Chl a
content lead to systematic variations in the Chl
a-specific light absorption coefficient (Bricaud
et al., 2004; 2007). In addition, the composi-
tion of photosynthetic pigments varies widely,
and this variability affects the shape of the
light absorption spectrum and thus NPP in the
light-limited regions of the photosynthesis-PAR
response curve (Sathyendranath and Platt, 2007).
This spectral variability may affect competi-
tion for light in nature (Wood, 1985; Stomp
et al., 2007). These are compelling reasons
for including spectral dependencies in bio-
optical algorithms (Morel et al., 1996; Behren-
feld, 1997b; Smyth et al., 2005; Sathyendranath
and Platt, 2007).

The effects of temperature, photoacclimation,
and nutrient limitation can be introduced by spec-
ifying how these variables affect the parame-
ters of the photosynthesis-PAR relationships. For
example, the light-saturated rate increases with
temperature and declines in response to nutri-
ent limitation or light limitation. Although sea
surface temperature can be estimated directly
using satellite remote sensing, the effects of
these limitations must be obtained indirectly.
Nutrient concentrations (N, P, Si) can be inferred
from their correlation with temperature, although
such correlations are site specific (Kamykowski
et al., 2002; Switzer et al., 2003). The effect of
light limitation can be parameterized in terms
of the optical depth and incident PAR. Although
we have a general understanding of how phyto-
plankton photosynthesis responds to these envi-
ronmental variables based on laboratory studies
(Geider et al., 1998), it is difficult to use this
information directly in bio-optical algorithms.
Instead, we rely on empirical relationships devel-
oped using ship-based observations. Perhaps the
biggest obstacle to accounting for the effects
of environmental variables on the parameters
of the photosynthesis-PAR relationship is under-
sampling in the world ocean (Banse and Postel,
2003; Carr et al., 2006).
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There have been several round-robin compar-
isons of the performance of bio-optical algo-
rithms of pelagic primary productivity. The most
recent of these (Carr et al., 2006) found that
global estimates of annual marine primary pro-
ductivity varied by a factor of two amongst the 24
bio-optical models examined. A common set of
input data consisted of sea surface Chl a concen-
trations, sea surface temperature, incident PAR,
and MLD. The algorithms varied in complexity.
The simplest algorithm estimated NPP directly
from Chl a concentration without considering
any of the other input variables. The most com-
plicated algorithms included depth resolution of
Chl a concentration and spectral resolution of
PAR. The major limitations in the application
of bio-optical algorithms identified were gaps in
the observations of phytoplankton photosynthesis
across the full range of conditions encountered in
the ocean (Carr et al., 2006).

The Chl a-specific net photosynthesis rate
(P Chl), although commonly reported by oceanog-
raphers (MacIntyre et al., 2002) and commonly
employed in bio-optical algorithms, is a poor
index of phytoplankton growth. This is because
there is taxonomic and phenotypic plasticity in
the ratio of Chl a-to-biomass (Geider et al., 1998;
Behrenfeld et al., 2005). For many applications,
the carbon-specific rate of photosynthesis is more
informative. Carbon-specific photosynthesis has
units of inverse time and can be related to the
specific growth rate (μ with units h−1), provided
that growth and net photosynthesis are measured
on the same time scale. μ is related to P Chl (with
units of g C (g Chl a)−1 h−1) as follows:

μ = θ · P Chl, (20.4)

where θ is the Chl a-to-carbon ratio in g Chl a
(g C)−1.

Recently, bio-optical algorithms have been
developed to estimate carbon-specific photosyn-
thesis from satellite data (Behrenfeld et al., 2005;
Westberry et al., 2008). These models also pro-
vide estimates of the carbon-to-Chl a ratio of
the phytoplankton, which can be used as an
index of the degree of light acclimation and
nutrient limitation. This approach predicted a
similar global marine NPP to other bio-optical
approaches. However, the distributions of NPP in
space and time differed significantly between the

Chl a-based and carbon-based algorithms (West-
berry et al., 2008). This approach is used to obtain
a new estimate of marine primary production in
Section III.B.

Most bio-optical algorithms calculate NPP as
the product of a capacity (e.g. the Chl a concen-
tration) and a “conversion efficiency” (e.g. P Chl),
as in Eq. (20.3). However, it is not necessary to
explicitly separate “capacity” from “conversion
efficiency”, because NPP can be expressed as:

NPP (z, t)

= f [Chl (z, t) ,N (z) , T (z) ,E (z) , . . .] ,

(20.5)
where z is the depth, N(z) is the concentra-
tion of a limiting nutrient “N” at depth z, T (z)
the temperature at depth z, E(z) is the photon
flux density at depth z, etc. (Huot et al., 2007).
In Eq. (20.5), remotely sensed Chl a serves
directly as a predictor of NPP, together with other
variables inferred from satellite remote sensing
and/or climatologies (Huot et al., 2007). One can
take this approach a step further by employing
a biomass-independent algorithm that uses esti-
mates of inherent optical properties rather than
Chl a in the calculation of NPP (Sathyendranath
and Platt, 2007).

Processes other than photosynthesis are impor-
tant in determining marine NPP and the role of
marine ecosystems in the carbon cycle. These
processes include export production, calcifica-
tion, and nitrogen fixation.

On land, atmospheric carbon in CO2 can be
sequestered in biomass and/or soil organic matter.
These two compartments are in intimate contact
with the atmosphere. In the oceans, phytoplank-
ton sequester atmospheric carbon by facilitating
its transport to the deep ocean, thus removing it
from intimate contact with the atmosphere. This
biologically driven vertical transport of carbon
is referred to as the “biological pump” (Sigman
and Haug, 2003). The biological pump consists
of uptake of CO2 and nutrients by phytoplank-
ton near the sea surface (typically <150 m deep),
sinking of particulate organic matter to below
the permanent thermocline (>1,000 m deep),
and remineralisation of organic matter to CO2
and nutrients in the deep ocean or burial of
organic carbon in the sediments (Sigman and
Haug, 2003). Primary production removed from
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the surface water by the biological pump is
referred to as export production. Export produc-
tion can be calculated from bio-optical algorithms
of NPP by including further parameterizations
describing the relationship between NPP and
particle sinking (Dunne et al., 2007), which
may be related to food-web structure (Laws
et al., 2000a). For the ocean as a whole, export
production accounts for about 20% of NPP (Laws
et al., 2000a; Dunne et al., 2007).

Many marine organisms have calcium car-
bonate shells or scales. Amongst the important
groups of planktonic calcifiers are coccol-
ithophorids, foraminifera, and pteropods. Calcifi-
cation removes inorganic carbon from the ocean,
but increases the partial pressure of CO2 (pCO2).
This is evident from the stoichiometric equa-
tion for the precipitation of calcium carbonate:
Ca2+ + 2 HCO−3 ↔ CaCO3 + CO2+ 2H+. This
increase of pCO2 due to calcification partially off-
sets the ability of the ocean biota to sequester
atmospheric CO2 by the biological pump. How-
ever, CaCO3 acts as ballast, which accelerates the
sinking of organic matter, potentially increasing
export production. Recently, algorithms for the
remote sensing of suspended calcium carbonate
concentration (Balch et al., 2005) and the rate
of calcification (Balch et al., 2007) have been
developed and applied.

Nitrogen fixation provides up to 50% of the
key limiting resource of fixed nitrogen in large
parts of the oligotrophic open ocean. This new
nitrogen allows increased phytoplankton biomass
and primary productivity. Blooms of the colo-
nial diazotroph Trichodesmium appear to be
superimposed on a low background rate of
N2 fixation. These blooms are considered to
make a major contribution to oceanic N2fixation
(Capone et al., 2005). Recently, algorithms for
detecting Trichodesmium blooms from water-
leaving radiance have been developed (Westberry
and Siegel, 2006). The spatial patterns of Tri-
chodesmium blooms retrieved by these algo-
rithms are largely consistent with previously
reported blooms (Westberry and Siegel, 2006),
with putative Trichodesmium blooms found most
often in the eastern tropical Pacific and the Ara-
bian Sea. The nitrogen cycle is closely coupled to
the carbon cycle in marine systems, and increased
understanding of the sources and sinks of fixed

nitrogen (Deutsch et al., 2007; Duce et al., 2008)
will continue to inform models of marine NPP
and export production.

3. Biogeochemical Models

Whereas the NPP of phytoplankton can be
obtained from bio-optical algorithms, investiga-
tions of the response of the marine carbon cycle to
climate change employ biogeochemical models.
Biogeochemical models examine the coupling of
plankton dynamics to ocean physics. Unlike ter-
restrial vegetation, which is rooted in place, the
oceans are a dynamic fluid. Phytoplankton are
suspended in the water column and drift with
the currents. The nutrients that phytoplankton
need to grow and the grazers that feed on the
phytoplankton also drift with the currents. To
account for these effects, models of ocean ecosys-
tems are embedded within physical models of
ocean circulation and mixing (e.g. Ocean General
Circulation Models). At any point in the ocean,
the rate of change of phytoplankton biomass is
determined by the physical processes of advec-
tion and diffusion, and the ecological processes
of production (e.g. photosynthesis and nutrient
uptake), consumption (e.g. grazing), and dissi-
pation (e.g. respiration and excretion) (Doney
et al., 2003).

Current models of plankton ecology and bio-
geochemistry can be traced to the seminal work
of Fasham et al. (1990). These authors embedded
an ecological model, which represented the state-
of-the-art understanding of plankton processes in
the late 1980s, within a simple physical model of
the annual cycle of incident solar radiation, MLD,
vertical exchange, and vertical nutrient fluxes at
one location in the Sargasso Sea near Bermuda.
Inorganic nitrogen and light were the only lim-
iting factors in the ecological model. The model
included two inorganic forms of nitrogen (nitrate
and ammonium) and five ecological components
(phytoplankton, zooplankton, bacterioplankton,
dissolved organic nitrogen, and detritus). Mod-
els derived from Fasham et al. (1990) are some-
times referred to as NPZD models, indicating that
they describe the dynamics of inorganic Nutri-
ents, Phytoplankton, Zooplankton, and Detritus.
NPZD models have been embedded within 3D
ocean GCMs to study ocean plankton dynamics
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and plankton biogeochemistry at the basin scale
(Sarmiento et al., 1993) and ocean scale (Popova
et al., 2006a, b).

NPZD models were developed to examine the
effects of changes in physical forcing (primarily
seasonal variability of MLD) on seasonal and
spatial variability of chlorophyll concentration
(Fasham et al., 1990). These models lack tax-
onomic resolution, and Chl a is used to repre-
sent the biomass of all phytoplankton groups.
More recently, dynamic green ocean models
(DGOMs) have been developed to study the feed-
backs between climate and the ocean micro-
biota (Le Quéré et al., 2005; Hood et al., 2006;
Gregg and Casey, 2007a). The most sophisticated
of these DGOMs include several phytoplankton
functional groups and several interacting element
cycles. Typically, two of the functional groups
are defined taxonomically, namely the diatoms
and the diazotrophs (which use N2 as a nitrogen
source), and two of the functional groups are
defined by cell size, namely the picophytoplank-
ton (0.2–2 μ m nominal diameter) and nanophyto-
plankton (2–20 μ m diameter). DGOMs may also
include calcifying organisms (coccolithophorids
and foraminifera in the open ocean) as functional
groups because of the importance of calcification
in the marine carbon cycle (Orr et al., 2005). The
element cycles included in the models are those
of C, N, P, Fe, and Si. Of these five elements, N,
P, Fe, or Si can limit phytoplankton growth rate
and yield.

The model of Moore et al. (2004) illustrates
the importance of including different functional
groups in models of upper ocean biogeochem-
istry. Diazotrophs accounted for about 0.5% of
primary production, but fixed enough N2 to pro-
vide the N source that supported about 10% of
primary production and 8% of export production
(Moore et al., 2004). In this work, diatoms dispro-
portionately contributed to export production, but
CaCO3 from the coccolithophores was the key
driver of the export flux to the deep ocean. Unfor-
tunately, different DGOMs may yield widely dif-
ferent assessments of the contributions of key
functional groups, including diatoms and coccol-
ithophores, to NPP (Gregg and Casey, 2007a),
indicating that a consensus model has yet to be
achieved.

4. Environmental Forcing

Models of ocean biogeochemistry typically
divide the ocean into a set of vertical divi-
sions within a latitude/longitude grid (Doney
et al., 2003). The output of the biogeochemical
models is affected by the sizes of the boxes in the
grid and the physical oceanographic model within
which the biogeochemical model is embedded
(Berline et al., 2007). The spatial resolution of
the physical model, both in the vertical and in
the horizontal, affects the fidelity of the physi-
cal model in representing ocean circulation and
mixing. The fidelity of the physical model is also
affected by temporal resolution, especially with
respect to the ability of the model to represent
vertical mixing near the sea surface. Errors in
the physical model will lead to errors in nutrient
fluxes and the light environment, and thus affect
the output of the biogeochemical model (Berline
et al., 2007; Najjar et al., 2007).

A recurrent problem in plankton biogeoche-
mical models is underestimation of primary
productivity in the oligotrophic subtropical
gyres relative to observations (McGillicuddy
et al., 1998; Berline et al., 2007). The problem
applies not only to NPP in models, but also to
accounting for export production (McGillicuddy
et al., 1998). Although underestimation of the
rate of nitrogen fixation may account for some
of the discrepancy, it is also clear that inclusion
of mesoscale processes, which were neglected in
course resolution (>2◦) models, is necessary to
obtain accurate nutrient budgets.

Mesoscale eddies (50–100 km diameter)
play an important role in transporting heat,
salinity, momentum, and nutrients in the ocean.
Mesoscale eddies increase nutrient supply
and thus primary production in the nutrient-
impoverished subtropical ocean (McGillicuddy
et al., 1998, 2007). If the perturbation in nutrient
supply is sufficient to change the structure of
the open ocean food web, then the operation
of the biological pump may also be affected
(Laws et al., 2000a; Brix et al., 2006). Associated
with eddies are sub-mesoscale (5–10 km wide)
features. Nutrient transport associated with these
features may be as important as that attributed to
the mesoscale eddies (Lapeyre and Klein, 2006;
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McGillicuddy et al., 2007). With increases in
computing power, the latitudinal and longitudinal
resolution of GCMs has increased from >2◦ to
<0.1◦ (McGillicuddy et al., 2003), providing
enough spatial resolution to represent important
mesoscale oceanographic features.

Vertical mixing and stratification have long
been known to play significant roles in plank-
ton ecology and ocean biogeochemistry (Platt
et al., 2003; Popova et al., 2006b). MLD is
affected by seasonal periodicity (e.g. solar radi-
ation and wind patterns), long-term fluctuations
in the climate system (e.g. ENSO and other tele-
connections), episodic events (e.g. storms), and
the diel cycle of solar radiation. MLD in turn
affects the entrainment of nutrients from deep
waters to the photic zone, the detrainment of
organisms and organic matter from the photic
zone to the deep ocean, and the light environment
encountered by phytoplankton (Platt et al., 2003).
Phytoplankton biomass and productivity respond
primarily to variability in mixing and nutrient
fluxes, and survival of zooplankton through the
winter also depends on the extent of mixing
(Popova et al., 2006b).

Most biogeochemical models used to describe
the current state of the ocean employ a time step
of one day, whereas models designed to examine
the evolution of the ocean carbon cycle on time
scales of 100–1,000 years employ longer time
steps, typically a month. In a recent study, Popova
et al. (2006b) examined how the time step, which
ranged from 6 h to 1 month, affected the simula-
tion of NPP and new production in a global ocean
biogeochemical model. Diel variability of MLD
(Woods and Onken, 1982) appeared to be particu-
larly important in controlling the performance of
the biogeochemical model (Popova et al., 2006b).
The mixed layer shoals during the day as solar
radiation heats the surface waters, trapping plank-
ton near the surface. MLD increases at night as
loss of heat from the sea surface leads to con-
vective mixing, redistributing the plankton into
deeper waters and transporting nutrients to the
surface.

Physical forcing refers not only to ocean
circulation and MLD, which are affected by
incident solar radiation, but also to the input
of nutrients to the sea surface. Inorganic and
organic nitrogen, phosphorus, and trace elements
are deposited to the surface ocean in wet and

dry deposition from the atmosphere (Jickells
et al., 2005; Duce et al., 2008). In particular,
with the recognition that Fe is a limiting nutri-
ent for NPP in about 1/3 of the ocean, desig-
nated as High-Nitrate/Low-Chlorophyll (HNLC)
regions (de Baar et al., 2005), and that Fe may
limit N2 fixation in oligotrophic ocean regions
that account for most of the rest of ocean sur-
face area (Falkowski, 1997), the deposition of
Fe-containing aerosols has been recognized to
play an important role in ocean carbon cycle
(Moore et al., 2006b; Moore and Doney, 2007).
The aeolian supply of nutrients can be spec-
ified from dust deposition fields derived from
atmospheric transport models such as GOCART
(Ginoux et al., 2001), and assumptions regarding
the N, P, and Fe content and solubility in the
atmospheric aerosols.

III. Global Simulation

A simulation is presented here to illustrate the
state-of-the-art of modeling photosynthesis at the
global scale. Mean annual terrestrial and marine
fields of the recent historical period are combined
to give a global picture. The first such combined
assessment was published by Field et al. (1998);
the simulation presented here is designed to be
an update to this. The terrestrial simulation uses
the mechanistic biochemical model described by
Friend and Kiang (2005), with some modifica-
tions, and the marine simulation uses the bio-
optic “Carbon-based Primary Model” (CbPM)
model of Westberry et al. (2008).

A. Terrestrial Photosynthesis

1. CO2 Fixation

Foliage-level C3 photosynthesis is modeled using
the approach of Kull and Kruijt (1998) as
implemented by Friend (2001) and Friend and
Kiang (2005), but with some improvements (e.g.
improved handling of numerical roots when
solving for the intercellular air space CO2 con-
centration). Kull and Kruijt (1998) took as their
starting point the model of Farquhar et al. (1980)
and added a treatment of light extinction over
chloroplasts to separate regions of the leaf that are
light-saturated or light-limited. Photosynthesis in
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the light-saturated region is taken as the min-
imum of the electron transport capacity- and
Rubisco-limited rates. Under many conditions,
light extinction over the light-saturated chloro-
plasts causes the rate of CO2 fixation in deeper
chloroplasts to be limited by the rate of light har-
vesting. Photosynthesis in this region is a linear
function of the total amount of light absorbed by
light-limited chloroplasts and the intrinsic quan-
tum efficiency. All three rates are expressed on an
N basis, enabling straightforward scaling to the
leaf and canopy levels. Kull and Kruijt (1998)
showed that if the chlorophyll to N ratio is
assumed constant throughout the leaf, then the
following analytical solution can be derived:

A =
(

1− Γ ∗

Ci

)
· [msatNsat + αm1Ia] , (20.6)

where A is total leaf photosynthesis, Γ ∗ is the
CO2 partial pressure for the compensation of
oxygenation and carboxylation reactions, Ci is
the partial pressure of CO2 in the intercellu-
lar air space, msat is the N-normalized rate of
light-saturated carboxylation (i.e., the minimum
of the electron transport capacity- and Rubisco-
limited rates), Nsat is the cumulative N at which
limitation by light harvesting occurs, α is the
intrinsic quantum efficiency, m1 is the ratio of the
CO2-controlled RuBP supply-limited carboxyla-
tion rate to its theoretical maximum, and Ia is
the amount of light absorbed by light harvesting-
limited chloroplasts. A single extinction coeffi-
cient is used to calculate light absorption over
chloroplasts, and Nsat is calculated from msat,
total leaf N, and total absorbed light.

This approach has been shown to perform sub-
stantially better than the traditional implementa-
tion of the Farquhar et al. (1980) model for a
wide range of forest canopies (S. Zaehle and A.D.
Friend, unpublished).

The approach of Kull and Kruijt (1998) was
adapted for C4 physiology, with the same over-
all approach of separation of light-saturated and
light-limited regions. However, bundle-sheath
chloroplast CO2 is assumed to be 7,800 Pa –
as calculated from the full intercellular (ICT)
transport model of Collatz et al. (1992) under
peak photosynthetic rates – and an additional
potential limitation to light-saturated photosyn-
thesis from the CO2 concentrating mechanism is

included. This is parameterized as a linear depen-
dence on the CO2 concentration in the intercel-
lular spaces of the mesophyll (after Eq. 4A of
Collatz et al., 1992), with a Q10 = 2 temperature
dependence and a linear scaling factor relating
the PEPcase rate constant for CO2 to foliar pho-
tosynthetic N content (calibrated using the ICT
model to be 3.2 mol CO2 (mol N)−1 s−1). In addi-
tion, the fractional RuBP quantum requirement
for the production of RuBP in the bundle-sheaths
is assumed to be 0.6 (Berry and Farquhar, 1978).

2. Photosynthetic Capacity

Terrestrial vegetation is classed into seven
generalized plant types (GPTs), and each is
assigned typical parameter values related to its
foliage physiology (Table 20.1). These values
were derived from the literature (see legend to
Table 20.1) and in situ measurements at represen-
tative sites compiled in the FLUXNET database
of eddy-covariance CO2 flux sites (Friend and
Kiang, 2005). The natural variation in these
parameters between species and growth condi-
tions within each GPT is very wide, particu-
larly for specific leaf area and foliar N content.
Nevertheless, the use of typical values addresses
the overall broad regional behavior of vegetation
for global-scale studies. More local assessments
would require greater precision in biological (and
physical) parameterization.

Each terrestrial 1/4
◦ pixel is assigned a domi-

nant GPT using the Loveland et al. (2000) land
cover database with the SiB classification system.
This is an AVHRR-based product, and dominant
cover types were each assigned to dominant GPTs
using the mapping given in Table 20.2.

Mean-monthly LAI is prescribed from obser-
vations made by the MODIS instrument and
available through the Department of Geog-
raphy, Boston University (http://cliveg.bu.edu/;
Yang et al., 2006). A complication arose from
misalignment between the original 1/4

◦ dataset
(MOD15_BU) and the actual distribution of
land area, particularly in Oceania, necessitating
adjustments by eye to the original grid. A mean-
monthly LAI climatology was then created from
the original February 2000–December 2006 data.
These data are used to prescribe monthly LAI
in the global photosynthesis simulations without
temporal interpolation.
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Table 20.1. Parameter values assigned to the different generalized plant types (GPTs) used in the global
terrestrial simulations. GPT codes are: NLEV = needleleaf evergreen, BREV = broadleaf evergreen,
NLCD = needleleaf cold deciduous, BRCD = broadleaf cold deciduous, C3GR = C3 herbaceous, and
C4GR = C4 grass. Specific leaf areas (SLAs) come from Bond-Lamberty and Gower (2007) (moss:
mean of min and max measurements); White et al. (2000) (NLEV, NLCD, BRCD, C3GR); McWilliam
et al. (1993) (BREV; mean assuming 0.5 kg [C] kg [DM]−1); and the value for C4GR is assumed
equal to that for C3GR. N (foliar N content as percentage of dry mass) taken from Liu et al. (2007)
(moss), White et al. (2000) (NLEV, NLCD, BRCD, C3GR), Martínez-Sánchez et al. (2003), assuming
SLA used here (BREV), and calibrated against CO2 flux data from Hanan et al. (2005) (C4GR).
fN is relative photosynthetic capacity per unit foliar N, calibrated from eddy-covariance flux data as
described by Friend and Kiang (2005) (NLEV, BREV, BRCD, C3GR); C4GR fN is calibrated against
CO2 flux data from Hanan et al. (2005); moss fN is set to the default value in the original Kull and
Kruijt (1998) model; NLCD fN is set to the value for BRCD. Minimum foliar surface conductance to
water, gmin, is assumed infinite for moss (very thin cuticle); other values come from Vostral et al. (2002)
(NLEV, assumed the same for NLCD); and the rest are calibrated from latent heat flux data (Friend and
Kiang 2005; Hanan et al., 2005)
GPT SLA m2 kg [C]−1 N % [DM] f N fraction gmin mm s−1 gmax mm s−1

Moss 61 2.6 1 ∞ ∞
NLEV 8.2 1.1 0.9 0.04 6
BREV 18 1.8 1.1 0.1 5
NLCD 22 1.7 1.5 0.04 6
BRCD 32 1.8 1.5 0.06 6
C3GR 27 1.8 1.3 0.06 6
C4GR 27 1 2 0.06 15

Table 20.2. Mapping of SiB land cover type (Loveland et al., 2000) to dominant generalized plant
types (GPTs) for use in the global terrestrial simulation
Simple Biosphere (SiB) Classification Dominant GPT
Water Bodies Missing
Evergreen broadleaf trees Broadleaf evergreen (BREV)
Broadleaf deciduous trees Broadleaf cold deciduous (BRCD)
Deciduous and evergreen trees Needleleaf evergreen (NLEV)
Evergreen needleleaf trees Needleleaf evergreen (NLEV)
Deciduous needleleaf trees Needleleaf cold deciduous (NLCD)
Ground cover with trees and shrubs C4 grass (C4GR)
Groundcover only C4 grass (C4GR)
Broadleaf shrubs with perennial ground cover Broadleaf evergreen (BREV)
Broadleaf shrubs with bare soil Broadleaf evergreen (BREV)
Groundcover with dwarf trees and shrubs Broadleaf evergreen (BREV)
Bare soil Bare
Agriculture or C3 grassland C3 herbaceous (C3GR)
Persistent wetland Moss
Ice cap and glacier Missing
Missing data Missing

LAI × mean N content (Table 20.1) gives total
canopy N in each pixel for each month. Foliar N
is distributed over horizontal canopy layers using
a simple exponential decline with canopy depth,
fitted to data collected in a high canopy N trop-
ical rainforest (Carswell et al., 2000). The ratio
of chlorophyll to foliar N is assumed to increase
with depth, with a relationship fitted to the data
of Kull and Kruijt (1998). These relationships are
described fully by Friend and Kiang (2005).

3. Environmental Forcing

The biochemical model is driven by the intercel-
lular partial pressures of CO2 and O2, leaf tem-
perature, and the flux of photosynthetically active
photons penetrating the leaf. Leaf photosynthesis
is integrated across sun and shade foliage in hori-
zontal layers with thicknesses of 0.5 LAI units at
a 30 min timestep to give canopy photosynthesis.
Intercellular O2 is assumed constant at 20.9 kPa,
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but CO2 is calculated from the balance of fixation
in chloroplasts, respiration from mitochondria,
and diffusion through the stomatal pores (perme-
able epidermis in the case of moss). A unique
numerical solution for the mean intercellular
CO2 is obtained for the entire canopy on each
timestep. Canopy stomatal conductance is calcu-
lated using the semi-empirical model described
by Friend and Kiang (2005). This includes empir-
ical responses to soil water potential, intercellular
CO2 partial pressure, intercellular to free air spe-
cific humidity gradient, and the potential rate of
canopy photosynthesis under conditions of satu-
rating CO2 (Friend and Kiang, 2005). An effect
of mean canopy height is also included, but for
the simulations shown here mean canopy height
is fixed at 0.5 m to avoid the need for a global
canopy height dataset. Soil water potential in each
soil layer is calculated from relative water content
as in Friend (1995).

Foliar mitochondrial respiration is required to
balance the CO2 flux, and is calculated as a
function of canopy N and temperature. The tem-
perature response for C3 leaves is taken from
Bernacchi et al. (2001), and the response for
C4 leaves is taken from Collatz et al. (1992).
N dependence of respiration is calibrated from
eddy-covariance sites with different linear rela-
tionships for C3 and C4 physiologies.

Incoming direct and diffuse PAR is distributed
over canopy layers using the scheme of Spitters
et al. (1986), as implemented by Friend (2001).
Canopy temperature, boundary layer transfer
coefficients, and soil moisture are calculated
using the land surface scheme of the NASA God-
dard Institute for Space Studies global climate
model II (Hansen et al., 1983), with the coef-
ficient for CO2 transfer assumed to equal that
for sensible heat. Two soil layers are used, 0.1
and 2 m depth, and the spatial distribution of
field capacity in each is calculated by aggregat-
ing the IGBP-DIS 5’ dataset to 1/4

◦ (Global Soil
Data Task Group, 2000). Canopy temperature is
assumed to equal the temperature of the upper
soil layer, and the intercellular specific humidity
is assumed saturated at that temperature. Poten-
tial soil evaporation uses a soil surface resistance
calculated from the relative moisture content of
the upper soil layer and relative humidity at the
soil surface calculate from its soil water potential

(Xue et al., 1996), and is reduced as a negative
exponential function of LAI. Canopy transpira-
tion is subtracted from the soil layer with the
highest relative water content, with all plant types
assumed to have access to both layers.

Atmospheric forcing at 10 m above canopy top
is created using a weather generator parameter-
ized with mean-monthly fraction of wet days,
precipitation per wet day, 24-h maximum and
minimum temperatures, 24-h shortwave radia-
tion, and water vapor pressure. These values are
derived from the 10’ CRU CL 2.0 1961–1990
mean climatology (New et al., 2002), and aggre-
gated to 1/4

◦. 24-h shortwave radiation is calcu-
lated from relative sunshine duration using the
mean global parameterization of Friend (1998).

The weather generator described by Friend
(1998) generates daily precipitation, minimum
and maximum temperatures, total shortwave irra-
diance, and mean water vapor partial pressure.
Mean daily atmospheric optical depth (AOD) is
calculated from the generated daily shortwave and
potential daily shortwave with no atmosphere.
AOD is then assumed constant during the day
and used with sun angle to estimate 1/2-hr values
of direct and diffuse PAR using the relationships
given by Spitters et al. (1986), assuming a fixed
ratio of PAR to total shortwave. Atmospheric
pressure, wind speed, and atmospheric CO2 con-
centration are assumed constant (viz. 101325 Pa,
2 m s−1, 14.1 mmol m−3). Daily precipitation is
spread evenly across sub-daily timesteps. A linear
regression is calculated for each day between the
temperature extremes and shortwave radiation.
This relationship is then used to calculate air
temperature at each timestep, from which water
vapor mixing ratio is derived from the generated
mean daily water vapor pressure. Downward long-
wave irradiance is parameterized as a function of
cloud cover fraction and air temperature using the
formulation of Pirazzini et al. (1998), with clear-
sky emissivity set to 0.69, and cloud cover fraction
assumed fixed at 0.8.

B. Marine Photosynthesis

Water-column integrated global ocean net pri-
mary production (NPP) was calculated using
the Carbon-based Production Model (CbPM) as
described by Westberry et al. (2008), with only
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minor modifications to input data sets. The CbPM
is a depth-resolved, spectral model that is unique
among ocean NPP algorithms in two signifi-
cant respects. First, the CbPM calculates NPP
as the product of phytoplankton biomass (car-
bon concentration, Cphyto) and growth rate, μ
(i.e., NPP = μ× Cphyto), where Cphyto is derived
from satellite particulate backscattering coeffi-
cients (bbp) and μ is derived from the ratio of
satellite chlorophyll and Cphyto concentrations.
Thus, both phytoplankton biomass and phys-
iological variability are derived directly from
remotely sensed ocean properties. This con-
trasts with traditional chlorophyll-based algo-
rithms where NPP = Chl × P Chl and empirical,
field-based relationships are applied to describe
variability in P Chl. The second innovation of
the CbPM is that information on surface mixing
depth, depth of the nutricline, and physiological
responses to light- and nutrient-conditions are
used to iteratively evolve distributions of chloro-
phyll, light, and NPP through the water column
for each satellite pixel. This approach contrasts
with earlier treatments where empirical Gaus-
sian functions based on surface chlorophyll con-
centration are used to describe depth-variations
in chlorophyll, that are then applied to estimate
water-column light- and NPP distributions.

A complete description of the CbPM approach
is provided by Westberry et al. (2008), while
here only a brief overview is given. Addi-
tional information on the CbPM, model code,
and global products can be found on the
Ocean Productivity Website at: http://science.
oregonstate.edu/ocean.productivity/.

1. Underwater Light Field

Global, gridded 8-day fields of cloud-corrected
PAR (Ein m−2 day−1) incident at the sea surface
and diffuse attenuation coefficients at 490 nm,
Kd(490), (m−1), were obtained from the Ocean-
Color Web (http://oceancolor.gsfc.nasa.gov) and
based on Sea-viewing Wide Field-of-view Sen-
sor (SeaWiFS) measurements between Septem-
ber 1997 and July 2007 (spatial resolution of
∼ 18 km at the equator). PAR was decomposed
spectrally using constant fractions estimated
from an atmospheric radiative transfer model

(Ricchiazzi et al., 1998; Westberry et al., 2008).
Spectral diffuse attenuation coefficients for
the visible waveband, Kd(λ), were calculated
from Kd(490) using the model of Austin and
Petzold (1986). Combining these spectral irradi-
ance and attenuation estimates permits the differ-
ential propagation of light with depth and yields
an accurate characterization of the underwater
light environment.

In the CbPM, Kd(λ) is assumed to be constant
within the mixed layer. Below this surface layer,
chlorophyll concentration varies with depth in
response to changing light and nutrient conditions
(see below), which consequently alters Kd(λ).
This feedback between physiological acclima-
tion and light attenuation is captured by itera-
tively propagating light through the water column
(Westberry et al., 2008). For these calculations,
MLD was obtained from the Ocean Productivity
Website and defined as the depth at which density
is 0.125 kg m−3 greater than the density at 10 m.

2. Phytoplankton Carbon, Chlorophyll, and Net
Primary Production

Global, gridded 8-day fields of SeaWiFS nor-
malized water leaving radiances, nLw(λ), were
obtained from the OceanColor Web and inverted
using a non-linear minimization method that
solves for three unknown quantities: Chl, bbp,
and absorption by colored dissolved matter (acdm)
(Maritorena et al., 2002). Variations in bbp reflect
changes in particle abundance and can be related
to phytoplankton carbon (Cphyto) because (1)
the particle size spectrum in the open ocean is
highly conserved, (2) phytoplankton contribute
directly and significantly to bbp, and (3) the
concentration of individual components of the
particle assemblage covaries with phytoplankton
abundance (Behrenfeld and Boss, 2003, 2006;
Westberry et al., 2008). In the CbPM, mixed layer
Cphyto is calculated as:

Cphyto = 13, 000 · (bbp − bbpNAP
)
, (20.7)

where bbpNAP is a correction for background scat-
tering from non-algal particles (0.00035 m−1,
from Westberry et al., 2008). Below the mixed
layer, the vertical profile of Cphyto is assumed
uniform and equal to the surface value up to
a depth where growth rate (see below) equals
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a constant and low background loss rate (0.1
day−1), after which Cphyto decreases smoothly
with depth (Westberry et al., 2008).

Chlorophyll concentration is a function of both
phytoplankton biomass and physiological vari-
ability in intracellular pigmentation (i.e., Chl:C
ratio). Under nutrient-replete conditions, Chl:C is
a strong function of growth irradiance (Ig) and
can be characterized as a decreasing exponential
function of Ig. In the mixed layer, Ig is the median
daily PAR for the mixing depth. Phytoplankton
growth rates in the mixed layer are first described
as a saturating function of Ig and then adjusted
downward to account for nutrient stress effects.
This adjustment is made using the difference
between satellite-derived Chl:C and the antici-
pated nutrient-replete Chl:C value for the given
mixed layer Ig value (Westberry et al., 2008).

Below the mixed layer, an iterative scheme
is employed for calculating the vertical distri-
bution of phytoplankton Chl and μ. With each
vertical increment, the phytoplankton community
acclimates to the slightly lower light level of its
depth horizon by increasing intracellular pigmen-
tation (Chl:C), with μ responding accordingly.
This photoacclimation response is similar to that
employed for the mixed layer, but is also influ-
enced by the vertical distribution of nutrients.
Specifically, depth-dependent relaxation from
surface nutrient stress enhances growth rates for
a given Ig (thus, increased Chl:C). This nutrient
effect is characterized according to distance from
the nitracline, where nitracline depths are pro-
vided from monthly climatological nutrient fields
reported in the World Ocean Atlas (Conkright
et al., 2002; Westberry et al., 2008). The ver-
tical nutrient gradient thus allows chlorophyll
concentration to increase more rapidly from the
surface to the nitracline than would otherwise
occur from photoacclimation alone. Below the
nitracline, phytoplankton are assumed to be nutri-
ent replete, such that continued depth-dependent
changes in chlorophyll are due only to changes
in light and Cphyto. Once this iterative process
is complete, NPP at each depth (z) is calcu-
lated as:

NPP(z) = μ (z) · Cphyto (z) (20.8)

and then integrated over the water column to
achieve an areal NPP estimate (mg C m−2 day−1)
for each satellite pixel.

C. Global Simulation Results

Global fields of NPP were obtained by combining
the terrestrial and marine simulation results, with
terrestrial NPP estimated simply as 50% of GPP.
This ratio is commonly observed and is consistent
with theoretical considerations (Dewar, 1996).
In any case, greater complexity in modeling
autotrophic respiration introduces uncertainties
relative to the better-constrained photosynthesis
model components due to the lack of fundamen-
tal information concerning how respiration and
the processes it supports are physiologically con-
trolled (e.g. Trumbore, 2006).

Figure 20.1 shows mean annual NPP. Global
NPP is 107.3 Pg C year−1, with 54.8 Pg C
year−1 on land and 52.5 Pg C year−1 in the
oceans. Field et al. (1998) estimated 56.4 Pg
C year−1 on land and 48.5 Pg C year−1 in
the oceans, with the latter including a 1 Pg C
year−1 contribution from macroalgae, not con-
sidered here. Differences with our simulation
could be due to the time period and/or the meth-
ods. As expected, the general patterns are sim-
ilar to those found in other studies, such as
Field et al. (1998). However, compared to this
work, boreal forest NPP is around 50% higher
(at 50◦ N) in these new simulations, whereas
tropical forest NPP is lower by ≈40% (e.g.
at −10◦ S). The greatest differences for ocean
NPP are in the southern Ocean, where the new
model estimates fluxes ≈50% below those of
Field et al. (1998). These lower values are com-
pensated by higher NPP towards the equator
(e.g. ≈ 40% higher at 0◦ N). Further work
will be necessary to determine the source of
these large differences, but are likely linked to
improved treatment of leaf-level photosynthesis
on land and of spatial and taxonomic physio-
logical variability in the ocean. Establishing the
accuracy of these simulations will need to utilize
a combination of tower, sea surface, and atmo-
spheric CO2 concentration measurements (Friend
et al., 2007).



486 Andrew D. Friend et al.

Net Primary Productivity (kg Cm−2 yr−1) 

0 0.03 0.1 0.3 0.5 0.8 1.0 1.5

Fig. 20.1. Mean annual net primary productivity (NPP) simulated by Hybrid6.5 (land) and the CbPM (ocean) for the period
2000–2007. Total mean annual NPP is 107.3 Pg C year−1, with 51.1% coming from land and 48.9% from the oceans. Land
pixels simulated with 1/4

◦ resolution and ocean pixels with 1/12
◦ resolution. Land leaf area dynamics prescribed from MODIS

satellite retrievals, ocean production calculated using data from the SeaWiFS instrument. Full simulation details are given in
the text. See also Color Plates, Fig. 7

IV. Concluding Remarks

It is interesting to note that terrestrial and marine
approaches to modelling primary production both
fall into two equivalent categories, one essen-
tially empirical (using remote sensing) and one
mechanistic. Both “top-down” approaches rely on
remote-sensing of the distribution of photosyn-
thetic capacity (Chl a and carbon in the sea, LAI
on land), and in most cases use a linear scaling
with absorbed light. “Bottom-up” approaches are
built using understanding of the environmental
controls on capacity, and have the potential to
evaluate photosynthesis outside of the period of
the satellite record, using DGOMs in the case
of the sea and DGVMs on land. The following
section gives an overview of the issues that need
to be addressed in the future to increase our con-
fidence in this second class of model.

A. Future Challenges

1. Terrestrial Systems

Prognostic global simulations of future terrestrial
photosynthesis will continue to play a major role
in studies of future potential impacts of, and feed-
backs on, global environmental change. How-
ever, validation of existing approaches remains
a major problem. We lack key datasets for

testing canopy-scale simulations of photosynthe-
sis, partly due to the small number of sites with
measurement towers and partly due to inherent
methodological problems resulting in missing
data and difficulty in separating photosynthe-
sis from net ecosystem exchange. High quality
datasets need to be assembled to allow precise
evaluation of models, including identification of
potential sources of bias such as hydrological
feedbacks, canopy temperatures, and physiologi-
cal attributes. It is frustrating that data constraints
mean that model evaluations fail to separate bias
in physics from bias in physiology. Datasets need
to be assembled that contain the full range of
necessary ancillary information, such as canopy
nitrogen contents, temperatures, soil moisture,
radiation profiles, and site history.

Current models are also poorly constrained
with respect to controls on spatial and temporal
variation in capacity (i.e. leaf area and nitrogen
content), contributions of physiological diversity,
and the potential for physiologies, populations,
and species mixes to adapt to environmental
change. Future projections will depend critically
on how well capacity and ecosystem changes are
modeled. However, most models currently treat
these processes very simply, if at all. Aggre-
gation of species into a few functional types
makes parameterization easier, but it is likely
that the system response to changing climate
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and atmospheric CO2 cannot be fully captured
by a few fixed physiological types. The poten-
tial effects of physiological adjustment (pheno-
typic plasticity), competition between individu-
als and species with variable physiologies, and
evolution need to be evaluated. These are the
mechanisms whereby organisms and ecosystems
maintain their viability in the face of environmen-
tal change. Identification of trade-offs between
key physiological traits will make the problem of
parameterization of a large number of plant types
substantially easier. All these developments will
require close collaborations among experimental-
ists and modelers.

2. Marine Systems

Development and application of ocean biogeo-
chemical models are driven by the desire to
understand how the ocean carbon cycle has
responded to climate change in the past (glacial
to interglacial) and how it will respond to global
warming in the future. By necessity, the param-
eterization of biogeochemistry included in an
ocean GCM must be highly simplified when
compared with reality, and there will always
be a tradeoff between realism and tractability.
A major step forward in ocean biogeochemi-
cal models was subdividing generic phytoplank-
ton used in early NPZD models into a small
number of phytoplankton functional types used
in DGOMs. However, even DGOMs employ a
small number of trophic interactions, a lim-
ited amount of metabolic diversity (genotypes
present), and typically neglect physiological plas-
ticity (phenotypic response) (Hood et al., 2007).
Increasing the number of phytoplankton types
has raised important problems including how to
validate model performance (Anderson, 2005)
and how to specify parameter values (Friedrichs
et al., 2007). The data needed to validate multi-
group biogeochemical models may not be avail-
able, and more complex ecological models do
not necessarily perform better at accounting
for the variability that is seen in the existing
datasets than simpler models with much more
highly aggregated ecology (Anderson, 2005).
Data assimilation, typically using an adjoint
method, can improve estimates of parameter
values (Friedrichs et al., 2007). However, the
predictive skill of a tuned model depends criti-
cally upon the availability of appropriate datasets

for parameter estimation and model validation
(Friedrichs et al., 2007). The lack of appropriate
data for calibrating bio-optical NPP algorithms
has also been emphasized (Carr et al., 2006;
Sathyendranath and Platt, 2007). It is likely that
parameter estimation and model validation will
be improved with increased use of the expanding
range of products that can be retrieved from satel-
lite observations. These include initial attempts to
map pelagic calcium carbonate production (Balch
et al., 2007), Trichodesmium blooms (Westberry
and Siegel, 2006), and phytoplankton groups
(Alvain et al., 2005, 2008).

Another important issue, which has not
received equal attention, is how much physi-
ological detail to include for each functional
type (Flynn, 2005, 2006; Hood et al., 2007).
It can be argued that the simple parameteriza-
tions of phytoplankton physiology, such as the
Monod equation for limitation of growth rate
by the concentration of a single limiting nutri-
ent, need to be replaced by models that include
more sophisticated treatments of the interactions
amongst limiting factors and physiological accli-
mation (Flynn, 2005; Hood et al., 2007). Alterna-
tively, better parameterizations of phytoplankton
functional types may arise by explicitly model-
ing the costs and benefits of trade-offs amongst
functional traits (Litchman et al., 2007) and by
conducting competition experiments in silico in
ocean GCMs (Follows et al., 2007).

New processes may need to be included in
the parameterizations of phytoplankton func-
tional types. One significant difference between
marine and terrestrial models is that marine
models ignore CO2 limitation. The historical
reason for this is that dissolved inorganic carbon
(DIC) in seawater is not a limiting factor in the
sense of Liebig’s Law of the Minimum. How-
ever, the potential for CO2 limitation of marine
phytoplankton photosynthesis in the sense of
Blackman’s Law arises because CO2 accounts for
only about 1% of the DIC in seawater (Wolf-
Gladrow et al., 1999). Although CO2 limita-
tion is suppressed in many algae and cyanobac-
teria by biophysical CO2 concentration mech-
anisms (Giordano et al., 2005), reductions of
growth rate with reductions of pCO2 below
ambient levels have been reported for some
diatoms (Riebesell et al., 1993). There is also
evidence that CO2 availability affects competi-
tion within the phytoplankton community (Tortell
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et al., 2002). Perhaps the most significant recent
finding is that N2 fixation and growth of Tri-
chodesmium is sensitive to the increases in pCO2
that are expected to occur over the next 100 years
(Hutchins et al., 2007).

In light of our rapidly increasing knowledge
of the diversity of marine microbes afforded by
genomic approaches, Hood et al. (2007) have
concluded that “traditional modeling tools . . .
to simulate marine-ecosystem dynamics and bio-
geochemical cycles will be insufficient to allow
an informed synthesis of this information. . .”.
They suggest increased use of overarching eco-
logical theories based on thermodynamic con-
straints or concepts of resilience, continued
development and application of physiological
models, increased use of simulations of natural
selection, and increased use of individual-based
models to study microbial interactions. Some of
these approaches can be employed within ocean
GCMs, whereas others can be used to develop
new parameterizations of the role of microbes
in ocean biogeochemistry. However, increasing
model complexity in this way will compound
concerns with respect to obtaining the appropri-
ate data for model validation.

New functional types may need to be included
in models. For example, anoxygenic photo-
heterotrophic bacteria (Kolber et al., 2001) have
been shown to be abundant and active in
oligotrophic waters, which account for about
60% of the open ocean surface area (Koblizek
et al., 2007; Lami et al., 2007). These organ-
isms contain bacteriochlorophyll and have a sim-
ilar photosynthetic efficiency and spectral light
utilization to oxygenic phytoplankton. However,
they rely on an organic carbon source, instead of
water, as an electron donor. Bacteriochlorophyll
is present at concentrations considerably lower
than Chl a (Lami et al., 2007), so it is unlikely
that anoxygenic photosynthesis makes a major
direct contribution to marine primary production,
although these photoheterotrophic bacteria may
be important in other ways (Kolber et al., 2001).
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