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1 Introduction

Epistemology is concerned with the fundamental laws of thought, belief, or judg-
ment. It may inquire the fundamental relations among the objects or contents of
thought and belief, i.e., among propositions or sentences. Then we enter the vast
realm of formal logic. Or it may inquire the activity of judging or the attitude of
believing itself. Often, we talk as if this would be a yes or no affair. From time
immemorial, though, we know that judgment is firm or less than firm, that belief is
a matter of degree. This insight opens another vast realm of formal epistemology.

Logic received firm foundations already in ancient philosophy. It took much
longer, though, until the ideas concerning the forms of (degrees of) belief acquired
more definite shape. Despite remarkable predecessors in Indian, Greek, Arabic, and
medieval philosophy, the issue seemed to seriously enter the agenda of intellec-
tual history only in the 16th century with the beginning of modern philosophy.
Cohen (1980) introduced the handy, though somewhat tendentious opposition be-
tween Baconian and Pascalian probability. This suggests that the opposition was
already perceivable with the work of Francis Bacon (1561–1626) and Blaise Pascal
(1623–1662). In fact, philosophers were struggling to find the right mould. In that
struggle, Pascalian probability, which is probability simpliciter, was the first to take
a clear and definite shape, viz. in the middle of 17th century (cf. Hacking 1975),
and since then it advanced triumphantly. The extent to which it interweaves with
our cognitive enterprise has become nearly total (cf. the marvelous collection of
Krüger et al. 1987). There certainly were alternative ideas. However, probability
theory was always far ahead; indeed, the distance ever increased. The winner takes
it all!

I use ‘Baconian probability’ as a collective term for the alternative ideas. This
is legitimate since there are strong family resemblances among the alternatives.
Cohen has chosen an apt term since it gives historical depth to ideas that can be
traced back at least to Bacon (1620) and his powerful description of ‘the method
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of lawful induction’. Jacob Bernoulli and Johann Heinrich Lambert struggled with
a non-additive kind of probability. When Joseph Butler and David Hume spoke of
probability, they often seemed to have something else or more general in mind than
our precise explication. In contrast to the German Fries school British 19th century’s
philosophers like John Herschel, William Whewell, and John Stuart Mill elaborated
non-probabilistic methods of inductive inference. And so forth.1

Still, one might call this an underground movement. The case of alternative forms
of belief became a distinct hearing only in the second half of the 20th century. On the
one hand, there were scattered attempts like the ‘functions of potential surprise’ of
Shackle (1949), heavily used and propagated in the epistemology of Isaac Levi since
his (1967), Rescher’s (1964) account of hypothetical reasoning, further developed
in his (1976) into an account of plausible reasoning, or Cohen’s (1970) account of
induction which he developed in his (1977) under the label ‘Non-Pascalian probabil-
ity’, later on called ‘Baconian’. On the other hand, one should think that modern phi-
losophy of science with its deep interest in theory confirmation and theory change
produced alternatives as well. Indeed, Popper’s hypothetical-deductive method pro-
ceeded non-probabilistically, and Hempel (1945) started a vigorous search for a
qualitative confirmation theory. However, the former became popular rather among
scientists than among philosophers, and the latter petered out after 25 years, at least
temporarily.

I perceive all this rather as a prelude, preparing the grounds. The outburst came
only in the mid 70’s, with strong help from philosophers, but heavily driven by
the needs of Artificial Intelligence. Not only deductive, but also inductive reason-
ing had to be implemented in the computer, probabilities appeared intractable,2

and thus a host of alternative models were invented: a plurality of default log-
ics, non-monotonic logics and defeasible reasonings, fuzzy logic as developed by
Zadeh (1975, 1978), possibility theory as initiated by Zadeh (1978) and developed
by Dubois and Prade 1988, the Dempster-Shafer belief functions originating from
Dempster (1967, 1968), but essentially generalized by Shafer (1976), AGM belief
revision theory (cf. Gärdenfors 1988), a philosophical contribution with great suc-
cess in the AI market, Pollock’s theory of defeasible reasoning (summarized in Pol-
lock 1995), and so forth. The field has become rich and complex. There are attempts
at unification like Halpern (2003) and huge handbooks like Gabbay et al. (1994).
One hardly sees the wood for trees. It seems that what had been forgotten for cen-
turies had to be made good for within decades.

Ranking theory, first presented in Spohn (1983, 1988),3 belongs to this field as
well. Since its development, by me and others, is scattered in a number of papers,
one goal of the present paper is to present an accessible survey of the present state

1 This is not the place for a historical account. See, e.g., Cohen (1980) and Shafer (1978) for some
details.
2 Only Pearl (1988) showed how to systematically deal with probabilities without exponential
computational explosion.
3 There I called its objects ordinal conditional functions. Goldszmidt and Pearl (1996) started call-
ing them ranking functions, a usage I happily adapted.
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of ranking theory. This survey will emphasize the philosophical applications, thus
reflecting my bias towards philosophy. My other goal is justificatory. Of course, I
am not so blinded to claim that ranking theory would be the adequate account of
Baconian probability. As I said, ‘Baconian probability’ stands for a collection of
ideas united by family resemblances; and I shall note some of the central resem-
blances in the course of the paper. However, there is a multitude of epistemological
purposes to serve, and it is entirely implausible that there is one account to serve
all. Hence, postulating a reign of probability is silly, and postulating a duumvirate
of probability and something else is so, too. Still, I am not disposed to see ranking
theory as just one offer among many. On many scores, ranking theory seems to me
to be superior to rival accounts, the central score being the notion of conditional
ranks. I shall explain what these scores are, thus trying to establish ranking theory
as one particularly useful account of the laws of thought.

The plan of the paper is simple. In the five subsections of Section 2, I shall outline
the main aspects of ranking theory. This central section will take some time. I expect
the reader to get impatient meanwhile; you will get the strong impression that I
am not presenting an alternative to (Pascalian) probability, as the label ‘Baconian’
suggests, but simply probability itself in a different disguise. This is indeed one
way to view ranking theory, and a way, I think, to understand its virtues. However,
the complex relation between probability and ranking theory, though suggested at
many earlier points, will be systematically discussed only in the two subsections of
Section 3. The two subsections of Section 4 will finally compare ranking theory to
some other accounts of Baconian probability.

2 The Theory

2.1 Basics

We have to start with fixing the objects of the cognitive attitudes we are going to
describe. This is a philosophically highly contested issue, but here we shall stay
conventional without discussion. These objects are pure contents, i.e., propositions.
To be a bit more explicit: We assume a non-empty set W of mutually exclusive and
jointly exhaustive possible worlds or possibilities, as I prefer to say, for avoiding the
grand associations of the term ‘world’ and for allowing to deal with de se attitudes
and related phenomena (where doxastic alternatives are considered to be centered
worlds rather than worlds). And we assume an algebra A of subsets of W , which
we call propositions. All the functions we shall consider for representing doxastic
attitudes will be functions defined on that algebra A.

Thereby, we have made the philosophically consequential decision of treating
doxastic attitudes as intensional. That is, when we consider sentences such as “a
believes (with degree r ) that p”, then the clause p is substitutable salva veritate
by any clause q expressing the same proposition and in particular by any logically
equivalent clause q . This is so because by taking propositions as objects of belief
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we have decided that the truth value of such a belief sentence depends only on
the proposition expressed by p and not on the particular way of expressing that
proposition. The worries provoked by this decision are not our issue.

The basic notion of ranking theory is very simple:

Definition 1 Let A be an algebra over W. Then � is a negative ranking function4 for
A iff � is a function from A into R∗ =R+ ∪ {∞} (i.e., into the set of non-negative
reals plus infinity) such that for all A, B ∈ A:

(1) �(W ) = 0 and �(∅) = ∞,

(2) �(A ∪ B) = min {�(A), �(B)} [the law of disjunction (for negative ranks)].

�(A) is called the (negative) rank of A.

It immediately follows for each A ∈ A:

(3) either � (A) = 0 or �(A) = 0 or both [the law of negation].

A negative ranking function �, this is the standard interpretation, expresses
a grading of disbelief (and thus something negative, hence the qualification). If
�(A) = 0, A is not disbelieved at all; if �(A) > 0, A is disbelieved to some
positive degree. Belief in A is the same as disbelief in A; hence, A is believed
in � iff �(A) > 0. This entails (via the law of negation), but is not equivalent to
�(A) = 0. The latter is compatible also with �(A) = 0, in which case � is neutral or
unopinionated concerning A. We shall soon see the advantage of explaining belief
in this indirect way via disbelief.

A little example may be instructive. Let us look at Tweetie of which default
logic is very fond. Tweetie has, or fails to have, each of the three properties: be-
ing a bird (B), being a penguin (P), and being able to fly (F). This makes for
eight possibilities. Suppose you have no idea what Tweetie is, for all you know
it might even be a car. Then your ranking function may be the following one, for
instance:5

� B & P B & P B & P B & P

F 0 4 0 11
F 2 1 0 8

In this case, the strongest proposition you believe is that Tweetie is either no
penguin and no bird (B & P) or a flying bird and no penguin (F & B & P). Hence,

4 For systematic reasons I am slightly rearranging my terminology from earlier papers. I would be
happy if the present terminology became the official one.
5 I am choosing the ranks in an arbitrary, though intuitively plausible way (just as I would have to
arbitrarily choose plausible subjective probabilities, if the example were a probabilistic one). The
question how ranks may be measured will be taken up in Section 2.3.
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you neither believe that Tweetie is a bird (B) nor that it is not a bird (B). You are
also neutral concerning its ability to fly. But you believe, for instance: if Tweetie is
a bird, it is not a penguin and can fly (B→P & F); and if Tweetie is not a bird, it is
not a penguin (B→P) – each if-then taken as material implication. In this sense you
also believe: if Tweetie is a penguin, it can fly (P→F); and if Tweetie is a penguin,
it cannot fly (P→F) – but only because you believe that it is not a penguin in the
first place; you simply do not reckon with its being a penguin. If we understand
the if-then differently, as we shall do later on, the picture changes. The larger ranks
in the last column indicate that you strongly disbelieve that penguins are not birds.
And so we may discover even more features of this example.

What I have explained so far makes clear that we have already reached the first
fundamental aim ranking functions are designed for: the representation of belief.
Indeed, we may define B� = {A|�(A) > 0} to be the belief set associated with the
ranking function �. This belief set is finitely consistent in the sense that whenever
A1, . . . , An ∈ B�, then A1∩ . . . ∩An �= ∅; this is an immediate consequence of
the law of negation. And it is finitely deductively closed in the sense that whenever
A1, . . . , An ∈ B� and A1∩ . . . ∩An ⊆ B ∈ A, then B ∈ B�; this is an immediate
consequence of the law of disjunction. Thus, belief sets just have the properties they
are normally assumed to have. (The finiteness qualification is a little cause for worry
that will be addressed soon.)

There is a big argument about the rationality postulates of consistency and de-
ductive closure; we should not enter it here. Let me only say that I am disap-
pointed by all the attempts I have seen to weaken these postulates. And let me
point out that the issue was essentially decided at the outset when we assumed
belief to operate on propositions or truth-conditions or sets of possibilities. With
these assumptions we ignore the relation between propositions and their sentential
expressions or modes of presentation; and it is this relation where all the problems
hide.

When saying that ranking functions represent belief I do not want to further
qualify this. One finds various notions in the literature, full beliefs, strong beliefs,
weak beliefs, one finds a distinction of acceptance and belief, etc. In my view, these
notions and distinctions do not respond to any settled intuitions; they are rather
induced by various theoretical accounts. Intuitively, there is only one perhaps not
very clear, but certainly not clearly divisible phenomenon which I exchangeably
call believing, accepting, taking to be true, etc.

However, if the representation of belief were our only aim, belief sets or their log-
ical counterparts as developed in doxastic logic (see already Hintikka 1962) would
have been good enough. What then is the purpose of the ranks or degrees? Just
to give another account of the intuitively felt fact that belief is graded? But what
guides such accounts? Why should degrees of belief behave like ranks as defined?
Intuitions by themselves are not clear enough to provide this guidance. Worse still,
intuitions are usually tainted by theory; they do not constitute a neutral arbiter. In-
deed, problems already start with the intuitive conflict between representing belief
and representing degrees of belief. By talking of belief simpliciter, as I have just
insisted, I seem to talk of ungraded belief.
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The only principled guidance we can get is a theoretical one. The degrees must
serve a clear theoretical purpose and this purpose must be shown to entail their
behavior. For me, the theoretical purpose of ranks is unambiguous; this is why I
invented them. It is the representation of the dynamics of belief ; that is the second
fundamental aim we pursue. How this aim is reached and why it can be reached in
no other way will unfold in the course of this section. This point is essential; as we
shall see, it distinguishes ranking theory from all similarly looking accounts, and it
grounds its superiority.

For the moment, though, let us look at a number of variants of Definition 1.
Above I mentioned the finiteness restriction of consistency and deductive closure.
I have always rejected this restriction. An inconsistency is irrational and to be
avoided, be it finitely or infinitely generated. Or, equivalently, if I take to be true
any number of propositions, I take their conjunction to be true as well, even if the
number is infinite. If we accept this, we arrive at a somewhat stronger notion:

Definition 2 Let A be a complete algebra over W (closed also under infinite
Boolean operations). Then � is a complete negative ranking function for A iff �
is a function from W into N+ = N ∪ {∞} (i.e., into the set of non-negative integers
plus infinity) such that �−1(0) �= ∅ and and �−1(n) ∈ A for each n ∈ N+. � is
extended to propositions by defining �(∅) = ∞ and �(A) = min{�(w)|w ∈ A} for
each non-empty A ∈ A.

Obviously, the propositional function satisfies the laws of negation and disjunc-
tion. Moreover, we have for any B ⊆ A:

(4) �(
⋃B) = min {�(B)|B ∈ B} [the law of infinite disjunction].

Due to completeness, we could start in Definition 2 with the point function and
then define the set function as specified. Equivalently, we could have defined the
set functions by the conditions (1) and (4) and then reduce the set function to a
point function. Henceforth I shall not distinguish between the point and the set
function. Note, though, that without completeness the existence of an underlying
point function is not guaranteed; the relation between point and set function in this
case is completely cleared up in Huber (2006).

Why are complete ranking functions confined to integers? The reason is condi-
tion (4). It entails that any infinite set of ranks has a minimum and hence that the
range of a complete ranking function is well-ordered. Hence, the natural numbers
are a natural choice. In my first publications (1983) and (1988) I allowed for more
generality and assumed an arbitrary set of ordinal numbers as the range of a ranking
function. However, since we want to calculate with ranks, this meant to engage into
ordinal arithmetic, which is awkward. Therefore I later confined myself to complete
ranking functions as defined above.

The issue about condition (4) was first raised by Lewis (1973, Section 1.4) where
he introduced the so-called Limit Assumption in relation to his semantics of coun-
terfactuals. Endorsing (4), as I do, is tantamount to endorsing the Limit Assumption.
Lewis finds reason against it, though it does not affect the logic of counterfactuals.
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From a semantic point of view, I do not understand his reason. He requests us to
counterfactually suppose that a certain line is longer than an inch and asks how
long it would or might be. He argues in effect that for each � > 0 we should ac-
cept as true: “If the line would be longer than 1 inch, it would not be longer than
1 + � inches”. This strikes me as blatantly inconsistent, even if we cannot derive a
contradiction in counterfactual logic (due to its 
–incompleteness). Therefore, I am
accepting the Limit Assumption and, correspondingly, the law of infinite disjunc-
tion. This means in particular that in that law the minimum must not be weakened
to the infimum.

Though I prefer complete ranking functions for the reasons given, the issue will
have no further relevance here. In particular, if we assume the algebra of proposi-
tions to be finite, each ranking function is complete, and the issue does not arise. In
the sequel, you can add or delete completeness as you wish.

Let me add another observation apparently of a technical nature. It is that we can
mix ranking functions in order to form a new ranking function. This is the content of

Definition 3 Let � be a non-empty set of negative ranking functions for an algebra
A of propositions, and let ρ be a complete negative ranking function over �. Then
� defined by

(5) �(A) = min{�(A)+ �(�)| � ∈ �} for all A ∈ A

is obviously a negative ranking function for A as well and is called the mixture of
� by �.

It is nice that such mixtures make formal sense. However, we shall see in the course
of this paper that the point is more than a technical one; such mixtures will acquire
deep philosophical importance later on.

So far, (degree of) disbelief was our basic notion. Was this necessary? Certainly
not. We might just as well express things in positive terms:

Definition 4 Let A be an algebra over W. Then π is a positive ranking function for
A iff π is a function from A into R∗ such that for all A, B ∈ A:

(6) π(∅) = 0 and π(W ) = ∞,

(7) π(A ∩ B) = min{π(A), π(B)} [the law of conjunction for positive ranks].

Positive ranks express degrees of belief. π(A) > 0 says that A is believed (to some
positive degree), and π(A) = 0 says that A is not believed. Obviously, positive ranks
are the dual to negative ranks; if π(A) = �(A) for all A ∈ A, then π is a positive
function iff � is a negative ranking function.

Positive ranking functions seem distinctly more natural. Why do I still prefer
the negative version? A superficial reason is that we have seen complete negative
ranking functions to be reducible to point functions, whereas it would obviously be
ill-conceived to try the same for the positive version. This, however, is only indica-
tive of the main reason. Despite appearances, we shall soon see that negative ranks
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behave very much like probabilities. In fact, this parallel will serve as our compass
for a host of exciting observations. (For instance, in the finite case probability mea-
sures can also be reduced to point functions.) If we were thinking in positive terms,
this parallel would remain concealed.

There is a further notion that may appear even more natural:

Definition 5 Let A be an algebra over W. Then � is a two-sided ranking function6

for A iff � is a function from A into R ∪ {–∞, ∞} such that there is a negative
ranking function � and its positive counterpart π for which for all A ∈ A:

�(A) = �(A)− �(A) = π(A)− �(A).

Obviously, we have �(A) > 0, < 0, or = 0 according to whether A is believed,
disbelieved, or neither. In this way, the belief values of all propositions are expressed
in a single function. Moreover, we have the appealing law that �(A) = −�(A). For
some purposes this is a useful notion that I shall readily employ. However, its formal
behavior is awkward. Its direct axiomatic characterization would have been cumber-
some, and its simplest definition consisted in its reduction to the other notions.

Still, this notion suggests an interpretational degree of freedom so far unnoticed.7

We might ask: Why does the range of belief extend over all the positive reals in a
two-sided ranking function and the range of disbelief over all the negative reals,
whereas neutrality shrinks to rank 0? This looks unfair. Why may unopinionated-
ness not occupy a much broader range? Indeed, why not? We might just as well
distinguish some positive rank or real z and define the closed interval [−z, z] as the
range of neutrality. Then �(A) > z expresses belief in A and �(A) < −z disbelief
in A. This is a viable interpretation; in particular, consistency and deductive closure
of belief sets would be preserved. However, 0 would still be a distinguished rank in
this interpretation; it marks central neutrality, as it were, since it is the only rank x
for which we may have �(A) = �(A) = x .

The interpretational freedom appears quite natural. After all, the notion of belief
is certainly vague and can be taken more or less strict. We can do justice to this
vagueness with the help of the parameter z. The crucial point, though, is that we al-
ways get the formal structure of belief we want to get, however we fix that parameter.
The principal lesson of this observation is, hence, that it is not the notion of belief
which is of basic importance; it is rather the formal structure of ranks. The study of
belief is the study of that structure. Still, it would be fatal to simply give up talking
of belief in favor of ranks. Ranks express beliefs, even if there is interpretational
freedom. Hence, it is of paramount importance to maintain the intuitive connection.
In the sequel, I shall stick to my standard interpretation and equate belief in A with
�(A) > 0, even though this is a matter of decision.

6 In earlier papers I called this a belief function, obviously an unhappy term which has too many
different uses. This is one reason fort the mild terminological reform proposed in this paper.
7 I am grateful to Matthias Hild for making this point clear to me.
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Let us pause for a moment and take a brief look back. What I have told so far
probably sounds familiar. One has quite often seen all this, in this or a similar form –
where the similar form may also be a comparative one: as long as only the ordering
and not the numerical properties of the degrees of belief are relevant, a ranking func-
tion may also be interpreted as a weak ordering of propositions according to their
plausibility, entrenchment, credibility, etc. Often things are cast in negative terms, as
I primarily do, and often in positive terms. In particular, the law of negation securing
consistency and the law of disjunction somehow generalizing deductive closure (we
still have to look at the point more thoroughly) or their positive counterparts are
pervasive. If one wants to distinguish a common core in that ill-defined family of
Baconian probability, it is perhaps just these two laws.

So, why invent a new name, ‘ranks’, for familiar stuff? The reason lies in the sec-
ond fundamental aim associated with ranking functions: to account for the dynamics
of belief. This aim has been little pursued under the label of Baconian probability,
but it is our central topic for the rest of this section. Indeed, everything stands and
falls with our notion of conditional ranks; it is the distinctive mark of ranking theory.
Here it is:

Definition 6 Let � be a negative ranking function for A and �(A) < ∞. Then the
conditional rank of B ∈ A given A is defined as �(B|A) = �(A ∩ B)− �(A). The
function �A: B )→ �(B|A) is obviously a negative ranking function in turn and
called the conditionalization of � by A.

We might rewrite this definition as a law:

(8) �(A∩ B) = �(A)+�(B|A) [the law of conjunction (for negative ranks)].

This amounts to the highly intuitive assertion that one has to add the degree of
disbelief in B given A to the degree of disbelief in A in order to get the degree of
disbelief in A-and-B .

Moreover, it immediately follows for all A, B ∈ A with �(A) < ∞:

(9) �(B|A) = 0 or �(B|A) = 0 [conditional law of negation].

This law says that even conditional belief must be consistent. If both, �(B|A) and
�(B|A), were >0, both, B and B, would be believed given A, and this ought to be
excluded, as long as the condition A itself is considered possible.

Indeed, my favorite axiomatization of ranking theory runs reversely, it consists
of the definition of conditional ranks and the conditional law of negation. The latter
says that min{�(A|A ∪ B), �(B|A ∪ B)} = 0, and this and the definition of condi-
tional ranks entail that min{�(A), �(B)} = �(A ∪ B), i.e., the law of disjunction.
Hence, the only substantial assumption written into ranking functions is conditional
consistency, and it is interesting to see that this entails deductive closure as well.
Huber (2007) has further improved upon this important idea and shown that rank-
ing theory is indeed nothing but the assumption of dynamic consistency, i.e., the
preservation of consistency under any dynamics of belief. (He parallels, in a way,
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the dynamic Dutch book argument for probabilities by replacing its assumption of
no sure loss by the assumption of consistency under all circumstances.)

It is instructive to look at the positive counterpart of negative conditional ranks.
If � is the positive ranking function corresponding to the negative ranking function
�, Definition 6 simply translates into: �(B|A) = �(A ∪ B)− �(A). Defining A →
B = A ∪ B as set-theoretical ‘material implication’, we may as well write:

(10) �(A → B) = �(B|A)+ �(A) [the law of material implication].

Again, this is highly intuitive. It says that the degree of belief in the material im-
plication A → B is added up from the degree of belief in its vacuous truth (i.e., in
A) and the conditional degree of belief of B given A.8 However, again comparing
the negative and the positive version, one can already sense the analogy between
probability and ranking theory from (8), but hardly from (10). This analogy will
play a great role in the following subsections.

Two-sided ranks have a conditional version as well; it is straightforward. If � is
the two-sided ranking function corresponding to the negative � and the positive �,
then we may simply define:

(11) �(B|A) = �(B|A)− �(B|A) = �(B|A)− �(B|A).

It will sometimes be useful to refer to these two-sided conditional ranks.
For illustration of negative conditional ranks, let us briefly return to our example

of Tweetie. Above, I already mentioned various examples of if-then sentences, some
held vacuously true and some non-vacuously. Now we can see that precisely the if-
then sentences non-vacuously held true correspond to conditional beliefs. According
to the � specified, you believe, e.g., that Tweetie can fly given it is a bird (since
�(F |B) = 1) and also given it is a bird, but not a penguin (since �(F |B & P) = 2),
that Tweetie cannot fly given it is a penguin (since �(F |P) = 3) and even given it
is a penguin, but not a bird (since �(F |B & P) = 3). You also believe that it is not
a penguin given it is a bird (since �(P|B) = 1) and that it is a bird given it is a
penguin (since �(B|P) = 7). And so forth.

Let us now unfold the power of conditional ranks and their relevance to the dy-
namics of belief in several steps.

2.2 Reasons and Their Balance

The first application of conditional ranks is in the theory of confirmation. Basically,
Carnap (1950) told us, confirmation is positive relevance. This idea can be explored
probabilistically, as Carnap did. But here the idea works just as well. A proposition
A confirms or supports or speaks for a proposition B , or, as I prefer to say, A is a
reason for B , if A strengthens the belief in B , i.e., if B is more strongly believed

8 Thanks again to Matthias Hild for pointing this out to me.
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given A than given A, i.e., iff A is positively relevant for B . This is easily translated
into ranking terms:

Definition 7 Let � be a negative ranking function for A and � the associated two-
sided ranking function. Then A ∈ A is a reason for B ∈ A w.r.t. � iff �(B|A) >

�(B|A), i.e., iff �(B|A) > �(B|A) or �(B|A) < �(B|A).

If P is a standard probability measure on A, then probabilistic positive relevance
can be expressed by P(B|A) > P(B) or by P(B|A) > P(B|A). As long as all three
terms involved are defined, the two inequalities are equivalent. Usually, then, the
first inequality is preferred because its terms may be defined while not all terms of
the second inequality are defined. If P is a Popper measure, this argument does not
hold, and then it is easily seen that the second inequality is more adequate, just as
in the case of ranking functions.9

Confirmation or support may take four different forms relative to ranking func-
tions, which are unfolded in

Definition 8 Let � be a negative ranking function for A, � the associated two-sided
ranking function, and A, B ∈ A. Then

A is a

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

additional

sufficient

necessary

insufficient

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

reason for B w.r.t. � iff

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(B| A) > �(B|A) > 0

�(B|A) > 0 ≥ �(B|A)

�(B|A) ≥ 0 > �(B|A)

0 > �(B|A) > �(B|A)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.10

If A is a reason for B , it must obviously take one of these four forms; and
the only way to have two forms at once is by being a necessary and sufficient
reason.

Talking of reasons here is, I find, natural, but it stirs a nest of vipers. There is
a host of philosophical literature pondering about reasons, justifications, etc. Of
course, this is a field where multifarious philosophical conceptions clash, and it is
not easy to gain an overview over the fighting parties. Here is not the place for
starting a philosophical argument,11 but by using the term ‘reason’ I want at least to
submit the claim that the topic may gain enormously by giving a central place to the
above explication of reasons.

To elaborate only a little bit: When philosophers feel forced to make precise
their notion of a (theoretical, not practical) reason, they usually refer to the notion
of a deductive reason, as fully investigated in deductive logic. The deductive reason

9 A case in point is the so-called problem of old evidence, which has a simple solution in terms of
Popper measures and the second inequality; cf. Joyce (1999, pp. 203ff.).
10 In earlier publications I spoke of weak instead of insufficient reasons. Thanks to Arthur Merin
who suggested the more appropriate term to me.
11 I attempted to give a partial overview and argument in Spohn (2001a).
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relation is reflexive, transitive, and not symmetric. By contrast, Definition 7 captures
the notion of a deductive or inductive reason. The relation embraces the deductive
relation, but it is reflexive, symmetric, and not transitive. Moreover, the fact that
reasons may be additional or insufficient reasons according to Definition 8 has been
neglected by the relevant discussion, which was rather occupied with necessary
and/or sufficient reasons. Pursue, though, the use of the latter terms throughout the
history of philosophy. Their deductive explication is standard and almost always fits.
Often, it is clear that the novel inductive explication given by Definition 8 would be
inappropriate. Very often, however, the texts are open to that inductive explication
as well, and systematically trying to reinterpret these old texts would yield a highly
interesting research program in my view.

The topic is obviously inexhaustible. Let me take up only one further aspect.
Intuitively, we weigh reasons. This is a most important activity of our mind. We
do not only weigh practical reasons in order to find out what to do, we also weigh
theoretical reasons. We are wondering whether or not we should believe B , we are
searching for reasons speaking in favor or against B , we are weighing these reasons,
and we hopefully reach a conclusion. I am certainly not denying the phenomenon of
inference that is also important, but what is represented as an inference often rather
takes the form of such a weighing procedure. ‘Reflective equilibrium’ is a familiar
and somewhat more pompous metaphor for the same thing.

If the balance of reasons is such a central phenomenon the question arises: how
can epistemological theories account for it? The question is less well addressed than
one should think. However, the fact that there is a perfectly natural Bayesian answer
is a very strong and more or less explicit argument in favor of Bayesianism. Let us
take a brief look at how that answer goes:

Let P be a (subjective) probability measure over A and let B be the focal
proposition. Let us look at the simplest case, consisting of one reason A for B
and the automatic counter-reason A against B . Thus, in analogy to Definition 7,
P(B|A) > P(B|A). How does P balance these reasons and thus fit in B? The
answer is simple, we have:

(12) P(B) = P(B |A) · P(A)+ P(B|A) · P(A).

This means that the probabilistic balance of reason is a beam balance in the literal
sense. The length of the lever is P(B|A) − P(B|A); the two ends of the lever are
loaded with the weights P(A) and P(A) of the reasons; P(B) divides the lever into
two parts of length P(B|A)− P(B) and P(B)− P(B|A) representing the strength
of the reasons; and then P(B) must be chosen so that the beam is in balance. Thus
interpreted (12) is nothing but the law of levers.

Ranking theory has an answer, too, and I am wondering who else has. According
to ranking theory, the balance of reasons works like a spring balance. Let � be a
negative ranking function for A, � the corresponding two-sided ranking function,
B the focal proposition, and A a reason for B . So, �(B|A) > �(B|A). Again, it
easily proved that always �(B|A) ≥ �(B) ≥ �(B |A). But where in between is �(B)
located? A little calculation shows the following specification to be correct:
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(13) Let x = �(B|A)− �(B|A) and y = �(B|A)− �(B|A). Then

(a) x, y ≥ 0 and �(B|A)− �(B|A) = x + y,

(b) �(B) = �(B|A), if �(A) ≤ −x,

(c) �(B) = �(B|A), if �(A) ≥ y,

(d) �(B) = �(A)+ �(B|A)+ x, if −x < �(A) < y.

This does not look as straightforward as the probabilistic beam balance. Still, it is
not so complicated to interpret (13) as a spring balance. The idea is that you hook in
the spring at a certain point, that you extend it by the force of reasons, and that �(B)
is where the spring extends. Consider first the case where x , y > 0. Then you hook
in the spring at point 0 (=�(B|A)+ x) and exert the force �(A) on the spring. Either,
this force transcends the lower stopping point −x or the upper stopping point y.
Then the spring extends exactly till the stopping point, as (13b+c) say. Or, the force
�(A) is less. Then the spring extends exactly by �(A), according to (13d). The second
case is that x = 0 and y > 0. Then you fix the spring at �(B|A), the lower point
of the interval in which �(B) can move. The spring cannot extend below that point,
says (13b). But according to (13c+d) it can extend above, by the force �(A), but not
beyond the upper stopping point. For the third case x > 0 and y = 0 just reverse the
second picture. In this way, the force of the reason A, represented by its two-sided
rank �(A), pulls the two-sided rank of the focal proposition B to its proper place
within the interval [�(B|A), �(B|A)] fixed by the relevant conditional ranks.

I do not want to assess these findings in detail. You might prefer the probabilistic
balance of reasons, a preference I would understand. You might be happy to have at
least one alternative model, an attitude I recommend. Or you may search for further
models of the weighing of reasons; in this case, I wish you good luck. What you
may not do is ignoring the issue; your epistemology is incomplete if it does not
take a stance. And one must be clear about what is required for taking a stance. As
long as one considers positive relevance to be the basic characteristic of reasons, one
must provide some notion of conditional degrees of belief, conditional probabilities,
conditional ranks, or whatever. Without some well-behaved conditionalization one
cannot succeed.

2.3 The Dynamics of Belief and the Measurement of Belief

Our next point will be to define a reasonable dynamics for ranking functions that
entails a dynamic for belief. There are many causes which affect our beliefs, for-
getfulness as a necessary evil, drugs as an unnecessary evil, and so on. From a
rational point of view, it is scarcely possible to say anything about such changes.12

The rational changes are due to experience or information. Thus, it seems we have
already solved our task: if � is my present doxastic state and I get informed about the

12 Although there is a (by far not trivial) decision rule telling that costless memory is never bad,
just as costless information; cf. Spohn (1976/1978, Section 4.4).
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proposition A, then I move to the conditionalization �A of � by A. This, however,
would be a bad idea. Recall that we have �A(A) = ∞, i.e., A is believed with
absolute certainty in �A; no future evidence could cast any doubt on the informa-
tion. This may sometimes happen; but usually information does not come so firmly.
Information may turn out wrong, evidence may be misleading, perception may be
misinterpreted; we should provide for flexibility. How?

One point of our first attempt was correct; if my information consists solely in
the proposition A, this cannot affect my beliefs conditional on A. Likewise it cannot
affect my beliefs conditional on A. Thus, it directly affects only how firmly I believe
A itself. So, how firmly should I believe A? There is no general answer. I propose
to turn this into a parameter of the information process itself; somehow the way
I get informed about A entrenches A in my belief state with a certain firmness x .
The point is that as soon as the parameter is fixed and the constancy of the relevant
conditional beliefs is accepted, my posterior belief state is fully determined. This is
the content of

Definition 9 Let � be a negative ranking function for A, A ∈ A such that �(A),
�(A) < ∞, and x ∈ R∗. Then the A→x-conditionalization �A→x of � is defined by

�A→x (B) =
{

�(B|A) forB ⊆ A,

�(B|A)+ x forB ⊆ A
. From this �A→x (B) may be inferred for all

other B ∈ A with the law of disjunction.

Hence, the effect of the A→x-conditionalization is to shift the possibilities in A
(to lower ranks) so that �A→x (A) = 0 and the possibilities in A (to higher ranks) so
that �A→x (A) = x . If one is attached to the idea that evidence consists in nothing but
a proposition, the additional parameter is a mystery. The processing of evidence may
indeed be so automatic that one hardly becomes aware of this parameter. Still, I find
it entirely natural that evidence comes more or less firmly. Consider, for instance,
the proposition: “There are tigers in the Amazon jungle”, and consider six scenarios:
(a) I read a somewhat sensationalist coverage in the yellow press claiming this, (b)
I read a serious article in a serious newspaper claiming this, (c) I hear the Brazilian
government officially announcing that tigers have been discovered in the Amazon
area, (d) I see a documentary in TV claiming to show tigers in the Amazon jungle,
(e) I read an article in Nature by a famous zoologist reporting of tigers there, (f) I
travel there by myself and see the tigers. In all six cases I receive the information
that there are tigers in the Amazon jungle, but with varying and, I find, increasing
certainty.

One might object that the evidence and thus the proposition received is clearly
a different one in each of the scenarios. The crucial point, though, is that we are
dealing here with a fixed algebra A of propositions and that we have nowhere
presupposed that this algebra consists of all propositions whatsoever; indeed, that
would be a doubtful presupposition. Hence A may be course-grained and unable to
represent the propositional differences between the scenarios; the proposition in A
which is directly affected in the various scenarios may be just the proposition that
there are tigers in the Amazon jungle. Still the scenarios may be distinguished by
the firmness parameter.
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So, the dynamics of ranking functions I propose is simply this: Suppose � is
your prior doxastic state. Now you receive some information A with firmness x .
Then your posterior state is �A→x . Your beliefs change accordingly; they are what
they are according to �A→x . Note that the procedure is iterable. Next, you receive
the information B with firmness y, and so you move to (�A→x )B→y. And so on. This
point will acquire great importance later on.

I should mention, though, that this iterability need not work in full generality. Let
us call a negative ranking function � regular iff �(A) < ∞ for all A �= ∅. Then we
obviously have that �A→x is regular if � is regular and x < ∞. Within the realm
of regular ranking functions iteration of changes works without restriction. Outside
this realm you may get problems with the rank∞.

There is an important generalization of Definition 9. I just made a point of the
fact that the algebra A may be too coarse-grained to propositionally represent all
possible evidence. Why assume then that it is just one proposition A in the algebra
that is directly affected by the evidence? Well, we need not assume this. We may
more generally assume that the evidence affects some evidential partition E = {E1,
. . . , En} ⊆ A of W and assigns some new ranks to the members of the partition,
which we may sum up in a complete ranking function � on E . Then we may define
the E→�-conditionalization �E→� of the prior � by �E→�(B) = �(B|Ei )+�(Ei ) for
B ⊆ Ei (i = 1, . . . , n) and infer �E→�(B) for all other B by the law of disjunction.
This is the most general law of doxastic change in terms of ranking functions I can
conceive of. Note that we may describe the E→�-conditionalization of � as the
mixture of all �Ei (i = 1, . . . , n). So, this is a first useful application of mixtures of
ranking functions.

Here, at last, the reader will have noticed the great similarity of my condition-
alization rules with Jeffrey’s probabilistic conditionalization first presented in Jef-
frey (1965, Chapter 11). Indeed, I have completely borrowed my rules from Jeffrey.
Still, let us further defer the comparison of ranking with probability theory. The fact
that many things run similarly does not mean that one can dispense with the one in
favor of the other, as I shall make clear in Section 3.

There is an important variant of Definition 9. Shenoy (1991), and several authors
after him, pointed out that the parameter x as conceived in Definition 9 does not
characterize the evidence as such, but rather the result of the interaction between
the prior doxastic state and the evidence. Shenoy proposed a reformulation with a
parameter exclusively pertaining to the evidence:

Definition 10 Let � be a negative ranking function for A, A ∈ A such that �(A),
�(A) < ∞, and x ∈ R∗. Then the A ↑ x-conditionalization �A↑x of � is defined by

�A↑x (B) =
{

�(B)− y for B ⊆ A,

�(B)+ x − y for B ⊆ A,
where y = min{�(A), x}. Again, �A↑x (B)

may be inferred for all other B ∈ A by the law of disjunction.

The effect of this conditionalization is easily stated. It is, whatever the prior ranks
of A and A are, that the possibilities within A improve by exactly x ranks in com-
parison to the possibilities within A. In other words, we always have �A↑x(A) –
�(A) = x (in terms of the prior and the posterior two-sided ranking function).
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It is thus appropriate to say that in A ↑ x-conditionalization the parameter x
exclusively characterizes the evidential impact. We may characterize the A→ x-
conditionalization of Definition 9 as result-oriented and the A ↑ x-conditionalization
of Definition 10 as evidence-oriented. Of course, the two variants are easily interde-
finable. We always have �A→x = �A↑y , where y = x − �(A) = x + �(A). Still, it is
sometimes useful to change perspective from one variant to the other.13

For instance, the evidence-oriented version helps to some nice observations. We
may note that conditionalization is reversible: (�A↑x ) Ā↑x = �. So, there is always
a possible second change undoing the first. Moreover, changes always commute:
(�A↑x )B↑y = (�B↑y)A↑x . In terms of result-oriented conditionalization this law would
look more awkward. Commutativity does not mean, however, that one could com-
prise the two changes into a single change. Rather, the joint effect of two condi-
tionalizations according to Definition 9 or 10 can in general only be summarized
as one step of generalized E→ �-conditionalization. I think that reversibility and
commutativity are intuitively desirable.

Change through conditionalization is driven by information, evidence, or percep-
tion. This is how I have explained it. However, we may also draw a more philosoph-
ical picture, we may also say that belief change according to Definition 9 or 10 is
driven by reasons. Propositions for which the information received is irrelevant do
not change their ranks, but propositions for which that information is positively or
negatively relevant do change their ranks. The evidential force pulls at the springs
and they must find a new rest position for all the propositions for or against which
the evidence speaks, just in the way I have described in the previous subsection.

This is a strong picture captivating many philosophers. However, I have imple-
mented it in a slightly unusual way. The usual way would have been to attempt to
give some substantial account of what reasons are on which an account of belief
dynamics is thereafter based. I have reversed the order. I have first defined condi-
tionalization in Definition 6 and the more sophisticated form in Definitions 9 and
10. With the help of conditionalization, i.e., from this account of belief dynamics, I
could define the reason relation in a way sustaining this picture. At the same time
this procedure entails dispensing with a more objective notion of a reason. Rather,
what is a reason for what is entirely determined by the subjective doxastic state
as represented by the ranking function at hand. Ultimately, this move is urged by
inductive skepticism as enforced by David Hume and reinforced by Nelson Good-
man. But it does not mean surrender to skepticism. On the contrary, we are about to
unfold a positive theory of rational belief and rational belief change, and we shall
have to see how far it carries us.14

13 Generalized probabilistic conditionalization as originally proposed by Jeffrey was result-
oriented as well. However, Garber (1980) observed that there is also an evidence-oriented
version of generalized probabilistic conditionalization. The relation, though, is not quite
as elegant.
14 Here it does not carry us far beyond the beginnings. In Spohn (1991, 1999) I have argued for
some stronger rationality requirements and their consequences.
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If one looks at the huge literature on belief change, one finds discussed predom-
inantly three kinds of changes: expansions, revisions, and contractions. Opinions
widely diverge concerning these three kinds. For Levi, for instance, revisions are
whatever results form concatenating contractions and expansions according to the
so-called Levi identity, and so he investigates the latter (see his most recent account
in Levi 2004). The AGM approach characterizes both, revisions and contractions,
and claims nice correspondences back and forth by help of the Levi and the Harper
identity (cf., e.g., Gärdenfors 1988, Chapters 3 and 4). Or one might object to the
characterization of contraction, but accept that of revision, and hence reject these
identities. And so forth.

I do not really want to discuss the issue. I only want to point out that we have
already taken a stance insofar as expansions, revisions, and contractions are all spe-
cial cases of our A→ x-conditionalization. This is more easily explained in terms
of result-oriented conditionalization:

If �(A) = 0, i.e., if A is not disbelieved, then �A→x represents an expansion by A
for any x > 0. If �(A) = 0, the expansion is genuine, if �(A) > 0, i.e., if A is already
believed in �, the expansion is vacuous. Are there many different expansions? Yes
and no. Of course, for each x > 0 a different �A→x results. On the other hand, one
and the same belief set is associated with all these expansions. Hence, the expanded
belief set is uniquely determined.

Similarly for revision. If �(A) > 0, i.e., if A is disbelieved, then �A→x represents
a genuine revision by A for any x > 0. In this case, the belief in A must be given
up and along with it many other beliefs; instead, A must be adopted together with
many other beliefs. Again, there are many different revisions, but all of them result
in the same revised belief set.

Finally, if �(A) = 0, i.e., if A is not disbelieved, then �A→0 represents contraction
by A. If �(A) > 0, i.e., if A is even believed, the contraction is genuine; then belief
in A is given up after contraction and no new belief adopted. If �(A) = 0, the
contraction is vacuous; there was nothing to contract in the first place. If �(A) > 0,
i.e., if A is believed, then �A→0 = �A→0 rather represents contraction by A.15

As observed in Spohn (1988, footnote 20) and more fully explained in Gärdenfors
(1988, pp. 73f.), it is easily checked that expansions, revisions, and contractions
thus defined satisfy all of the original AGM postulates (K*1-8) and (K−1-8) (cf.
Gärdenfors 1988, pp. 54–56 and 61–64) (when they are translated from AGM’s
sentential framework into our propositional or set-theoretical one). For those like
me who accept the AGM postulates this is a welcome result.

For the moment, though, it may seem that we have simply reformulated AGM
belief revision theory. This is not so; A→x-conditionalization is much more general
than the three AGM changes. This is clear from the fact that there are many differ-
ent expansions and revisions that cannot be distinguished by the AGM account. It is

15 If we accept the idea in Section 2.1 of taking the interval [–z, z] of two-sided ranks as the
range of neutrality, contraction seems to become ambiguous as well. However, the contraction
just defined would still be distinguishable as a central contraction since it gives the contracted
proposition central neutrality.
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perhaps clearest in the case of vacuous expansion that is no change at all in the AGM
framework, but may well be a genuine change in the ranking framework, a redistri-
bution of ranks which does not affect the surface of beliefs. Another way to state the
same point is that insufficient and additional reasons also drive doxastic changes,
which, however, are inexpressible in the AGM framework. For instance, if A is still
disbelieved in the A↑x-conditionalization �A↑x of � (since �(A) > x), one has ob-
viously received only an insufficient reason for A, and the A↑x-conditionalization
might thus be taken to represent what is called non-prioritized belief revision in the
AGM literature (cf. Hansson 1997).

This is not the core of the matter, though. The core of the matter is iterated belief
change, which I have put into the center of my considerations in Spohn (1983, Sec-
tion 5.3 and 1988). As I have argued there, AGM belief revision theory is essentially
unable to account for iterated belief change. I take 20 years of multifarious, but in
my view unsatisfactory attempts to deal with that problem (see the overview in
Rott 2008) as confirming my early assessment. By contrast, changes of the type
A→x-conditionalization are obviously indefinitely iterable.

In fact, my argument in Spohn (1988) was stronger. It was that if AGM belief re-
vision theory is to be improved so as to adequately deal with the problem of iterated
belief change, ranking theory is the only way to do it. I always considered this to be
a conclusive argument in favor of ranking theory.

This may be so. Still, AGM theorists, and others as well, remained skeptical.
“What exactly is the meaning of numerical ranks?” they asked. One may well ac-
knowledge that the ranking apparatus works in a smooth and elegant way, has a
lot of explanatory power, etc. But all this does not answer this question. Bayesians
have met this challenge. They have told stories about the operational meaning of
subjective probabilities in terms of betting behavior, they have proposed an inge-
nious variety of procedures for measuring this kind of degrees of belief. One would
like to see a comparative achievement for ranking theory.

It exists and is finally presented in Hild and Spohn (2008). There is no space
here to fully develop the argument. However, the basic point can easily be indicated
so as to make the full argument at least plausible. The point is that ranks do not
only account for iterated belief change, but can reversely be measured thereby. This
may at first sound unhelpful. A→x-conditionalization refers to the number x ; so
even if ranks can somehow be measured with the help of such conditionalizations,
we do not seem to provide a fundamental measurement of ranks. Recall, however,
that (central) contraction by A (or A) is just A→0-conditionalization and is thus
free of a hidden reference to numerical ranks; it only refers to rank 0 which has a
clear operational or surface interpretation in terms of belief. Hence, the idea is to
measure ranks by means of iterated contractions; if that works, it really provides a
fundamental measurement of ranks that is based only on the beliefs one now has
and one would have after various iterated contractions.

How does the idea work? Recall our observation above that the positive rank of
a material implication A→B is the sum of the degree of belief in B given A and the
degree of belief in the vacuous truth of A→B , i.e., of A. Hence, after contraction
by A, belief in the material implication A→B is equivalent to belief in B given A,
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i.e., to the positive relevance of A to B . This is how the reason relation, i.e., positive
relevance, manifests itself in beliefs surviving contractions. Similarly for negative
relevance and irrelevance.

Next observe that positive relevance can be expressed by certain inequalities for
ranks that compare certain differences between ranks (similarly for negative rele-
vance and irrelevance). This calls for applying the theory of difference measure-
ment, as paradigmatically presented by Krantz et al. (1971, Chapter 4).

Let us illustrate how this might work in our Tweetie example in Section 2.1.
There we had specified a ranking function � for the eight propositional atoms, en-
tailing ranks for all 256 propositions involved. Focusing on the atoms, we are thus
dealing with a realm X = {x1, . . . , x8} (where x1 = B & P & F , etc.) and a
numerical function f such that

f (x1) = 0, f (x2) = 4, f (x3) = 0, f (x4) = 11,

f (x5) = 2, f (x6) = 1, f (x7) = 0, f (x8) = 8.

This induces a lot of difference comparisons. For instance, we have, f (x6) −
f (x5) < f (x2) − f (x1). It is easily checked that this inequality says that, given
B (being a bird), P (being a penguin) is positively relevant to F (not being able
to fly) and that this in turn is equivalent with P→F or P→F still being believed
after iterated contraction first by B and then by P and P (only one of the latter is
a genuine contraction). Or we have f (x2) − f (x6) = f (x4) − f (x8). Now, this is
an equality saying that, given P , B (and B) is irrelevant to F (and F), and this in
turn is equivalent with none of the four material implications from B or B to F or
F being believed after iterated contraction first by P and then by B and B (again,
only one of the latter is a genuine contraction).

Do these comparisons help to determine f ? Yes, the example was so constructed:
First, we have f (x1) − f (x3) = f (x3) − f (x1) = f (x1) − f (x7). This entails
f (x1) = f (x3) = f (x7). Let us choose this as the zero point of our ranking scale;
i.e., f (x1) = 0. Next, we have f (x5) − f (x6) = f (x6) − f (x1). If we choose
f (x6) = 1 as our ranking unit, this entails f (x5) = 2. Then, we have f (x2) −
f (x5) = f (x5) − f (x1), entailing f (x2) = 4, and f (x8)− f (x2) = f (x2) – f (x1),
entailing f (x8) = 8. Finally, we have f (x4)− f (x8) = f (x2)− f (x6), the equation
I had already explained, so that f (x4) = 11. In this way, the difference comparisons
entailed by our specification of f determine f uniquely up to a unit and a zero point.

The theory of difference measurement tells us how this procedure works in full
generality. The resulting theorem says the following: Iterated contractions behave
thus and thus if and only if differences between ranks behave thus and thus; and
if differences between ranks behave thus and thus, then there is a ranking function
measured on a ratio scale, i.e., unique up to a multiplicative constant, which exactly
represents these differences. (See Theorems 4.12 and 6.21 in Hild and Spohn (2008)
for what “thus and thus” precisely means.)

On the one hand, this provides for an axiomatization of iterated contraction going
beyond Darwiche and Pearl (1997), who presented generally accepted postulates
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of iterated revision and contraction and partially agreeing and partially disagreeing
with further postulates proposed.16 This axiomatization is assessible on intuitive and
other grounds. On the other hand, one knows that if one accepts this axiomatization
of iterated contraction one is bound to accept ranks as I have proposed them. Ranks
do not fall from the sky, then; on the contrary, they uniquely represent contraction
behavior.

2.4 Conditional Independence and Bayesian Nets

It is worthwhile looking a bit more at the details of belief formation and revision.
For this purpose we should give more structure to propositions. They have a Boolean
structure so far, but we cannot yet compose them from basic propositions as we
intuitively do. A common formal way to do this is to generate propositions from
(random) variables. I identify a variable with the set of its possible values. I intend
variables to be specific ones. E.g., the temperature at March 15, 2005, in Konstanz
(not understood as the actual temperature, but as whatever it may be, say, between
–100 and +100 ˚C) is such a variable. Or, to elaborate, if we consider each of the six
general variables temperature, air pressure, wind, humidity, precipitation, cloudiness
at each of the 500 weather stations in Germany twice a day at each of the 366 days
of 2004, we get a collection of 6×500×732 specific variables with which we can
draw a detailed picture of the weather in Germany in 2004.

So, A let V be the set of specific variables considered, where each v ∈ V is
just at least a binary set. A possible course of events or a possibility, for short, is
just a selection function w for V , i.e., a function w on V such that w(v) ∈ v for
all v ∈ V . Hence, each such function specifies a way how the variables in V may
realize. The set of all possibilities then simply is W=×V . As before, propositions
are subsets of W . Now, however, we can say that propositions are about certain
variables. Let X ⊆ V . Then we say that w, w′ ∈ W agree on X iff w(v) = w′(v) for
all v ∈ X . And we define that a proposition A is about X ⊆ V iff, for each w in A,
all w′ agreeing with w on X are in A as well. Let A (X) be the set of propositions
about X . Clearly, A(X) ⊆ A(Y ) for X ⊆ Y , and A = A(V ). In this way, propo-
sitions are endowed with more structure. We may conceive of propositions about
single variables as basic propositions; the whole algebra A is obviously generated
by such basic propositions (at least if V is finite). So much as preparation for the
next substantial step.

This step consists in more closely attending to (doxastic) dependence and inde-
pendence in ranking terms. In a way, we have already addressed this issue: depen-
dence is just positive or negative relevance, and independence is irrelevance. Still,
let me state

Definition 11 Let � be a negative ranking function for A and A, B, C ∈ A. Then
A and B are independent w.r.t. �, i.e., A⊥B, iff �(B|A) = �(B|A), i.e., iff for all

16 For an overview over such proposals see Rott (2008). For somewhat more detailed comparative
remarks see Hild and Spohn (2008, Section 8.5).
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A′ ∈ {A, A} and B ′ ∈ {B, B} �(A′ ∩ B ′) = �(A′) + �(B ′). And A and B are
independent given C w.r.t. �, i.e., A⊥B/C, iff A and B are independent w.r.t. �C .

(Conditional) independence is symmetric. If A is independent from B , A is so
as well. If A is independent from B and A′ disjoint from A, then A′ is independent
from B iff A ∪ A′ is. ∅ and W are independent from all propositions. And so on.

The more interesting notion, however, is dependence and independence among
variables. Look at probability theory where research traditionally and overwhelm-
ingly focused on independent series of random variables and on Markov processes
that are characterized by the assumption that past and future variables are indepen-
dent given the present variable. We have already prepared for explaining this notion
in ranking terms as well.

Definition 12 Let � be a ranking function for A = A(V ), and let X, Y , Z ⊆ V be
sets of variables. Then X and Y are independent w.r.t. �, i.e., X⊥Y , iff A⊥B for all
A ∈ A(X) and all B ∈ A (Y ). Let moreover Z(Z) be the set of atoms of A(Z), i.e.,
the set of the logically strongest, non-empty proposition in A(Z). Then X and Y are
independent given Z w.r.t. �, i.e., X⊥Y / Z, iff A⊥B / C for all A ∈ A(X), B ∈
A(Y ), and C ∈ Z(Z).

In other words, X⊥Y/Z iff all propositions about X are independent from all
propositions about Y given any full specification of the variables in Z . Conditional
independence among sets of variables obey the following laws:

Let � be a negative ranking function for A(V ). Then for any mutually disjoint
X, Y, Z , U ⊆ V :

(14) (a) if X⊥Y/Z , then Y⊥X/Z [Symmetry],
(b) if X⊥Y ∪U/Z , then X⊥Y/Z and X⊥U/Z [Decomposition],
(c) X⊥Y ∪U/Z , then X⊥Y/Z ∪U [Weak Union],
(d) X⊥Y/Z and X⊥U/Z ∪Y, then X⊥Y ∪U/Z [Contraction],
(e) if � is regular and if X⊥Y/Z ∪U and X⊥U/Z ∪ Y,

then X⊥Y∪U/Z [Intersection].

These are nothing but what Pearl (1988, p. 88) calls the graphoid axioms;
the labels are his (cf. p. 84). (Note that law (d), contraction, has nothing to do
with contraction in belief revision theory.) That probabilistic conditional indepen-
dence satisfies these laws was first proved in Spohn (1976/1978, Section 3.2) and
Dawid (1979). The ranking Theorem (2.4) was proved in Spohn (1983, Section 5.3
and 1988, Section 8.6). I conjectured in 1976, and Pearl conjectured, too, that the
graphoid axioms give a complete characterization of conditional independence. We
were disproved, however, by Studeny (1989) w.r.t. probability measures, but the
proof carries over to ranking functions (cf. Spohn 1994a). Under special condi-
tions, though, the graphoid axioms are complete, as was proved by Geiger and
Pearl (1990) for probability measures and by Hunter (1991) for ranking functions
(cf. again, Spohn 1994a).

I am emphasizing all this, because the main purport of Pearl’s path-breaking
book (1988) is to develop what he calls the theory of Bayesian nets, a theory
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that has acquired great importance and is presented in many text books (see, e.g.,
Neapolitan 1990 or Jensen 2001). Pearl makes very clear that the basis of this
theory consists in the graphoid axioms; these allow representing conditional de-
pendence and independence among sets of variables by Bayesian nets, i.e., by
directed acyclic graphs, the nodes of which are variables. A vertex u→v of the
graph then represents the fact that v is dependent on u given all the variables
preceding v in some given order, for instance, temporally preceding v. A ma-
jor point of this theory is that it can describe in detail how probabilistic change
triggered at some node in the net propagates throughout the net. All this is not
merely mathematics, it is intuitively sensible and philosophically highly signifi-
cant; for instance, inference acquires a novel and fruitful meaning in the theory of
Bayesian nets.

Of course, my point now is that all these virtues carry over to ranking theory with
the help of observation (14). The point is obvious, but hardly elaborated; that should
be done. It will thus turn out that ranks and hence beliefs can also be represented
and computationally managed in that kind of structure.

This is not yet the end of the story. Spirtes et al. (1993) (see also Pearl 2000)
have made amply clear that probabilistic Bayesian nets have a most natural causal
interpretation; a vertex u→v then represents that the variable v directly causally
depends on the variable u. Spirtes et al. back up this interpretation, i.e., this con-
nection of probability and causality, by their three basic axioms: the causal Markov
condition, the minimality condition, and, less importantly, the faithfulness condition
(cf. Spirtes et al. 1993, Section 3.4). And they go on to develop a really impressive
account of causation and causal inference on the basis of these axioms and thus
upon the theory of Bayesian nets.

Again, all this carries over to ranking theory. Indeed, this is what ranks were
designed for in the first place. In Spohn (1983) I gave an explication of probabilis-
tic causation that entails the causal Markov condition and the minimality condi-
tion, and also Reichenbach’s principle of the common cause, as I observed later
in Spohn (1994b).17 And I was convinced of the idea that, if the theory of causa-
tion is bound to bifurcate into a deterministic and a probabilistic branch, these two
branches must at least be developed in perfect parallel. Hence, I proposed ranking
theory in Spohn (1983) in order to realize this idea.18 Of course, one has to discuss
how adequate that theory of deterministic causation is, just as the adequacy of the
causal interpretation of Bayesian nets is open to discussion. Here, my point is only
that this deep philosophical perspective lies within reach of ranking theory; it is
what originally drove that theory.

17 I have analyzed the relation between Spirtes’ et al. axiomatic approach to causation and my
definitional approach a bit more thoroughly in Spohn (2001b).
18 For a recent presentation of the account of deterministic causation in terms of ranking functions
and its comparison in particular with David Lewis’ counterfactual approach see Spohn (2006).
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2.5 Objective Ranks?

Now, a fundamental problem of ranking theory is coming into sight. I have empha-
sized that ranking functions represent rational beliefs and their rational dynamics
and are thus entirely subject-bound. You have your ranking function and I have
mine. We may or may not harmonize. In any case, they remain our subjective
property.

I have also emphasized the analogy to probability theory. There, however, we
find subjective and objective probabilities. There are radicals who deny the one or
the other kind of probability; and the nature of objective probabilities may still be ill
understood. So, we certainly enter mined area here. Still, the predominant opinion
is that both, the subjective and the objective notion, are somehow meaningful.

We therefore face a tension. It increases with our remarks about causation. I said
I have provided an analysis of causation in ranking terms. If this analysis were to go
through, the consequence would be that causal relations obtain relative to a ranking
function, i.e., relative to the doxastic state of a subject. David Hume endorsed and
denied this consequence at the same time; he was peculiarly ambiguous. This ambi-
guity must, however, be seen as his great achievement with which all philosophers
after him had and still have to struggle. In any case, it will not do to turn causation
simply into a subjective notion, as I seem to propose. If my strategy is to work at all,
then the actually existing causal relations have to be those obtaining relative to the
objectively correct ranking function. Is there any way to make sense of this phrase?
(It is not even a notion yet.)

Yes, partially. The beginning is easy. Propositions are objectively true or false,
and so are beliefs. Hence, a ranking function may be called objectively true or false
as well, according to the beliefs it embodies. However, this is a very small step.
Ranking functions can agree in their belief sets or in the propositions receiving rank
0, and yet widely diverge in the other ranks and thus in inductive and dynamic
behavior. So, the suggested beginning is a very small step, indeed.

Taking a bigger step is more difficult. In Spohn (1993) I have made a precise
and detailed proposal that I still take to be sound; there is no space to repeat it
here. Let me only briefly explain the basic idea. It is simply this: If propositions
and beliefs are objectively true or false, then other features of ranking functions
can be objectified to the extent to which these features are uniquely reflected in the
associated belief sets. One constructive task is then to precisely define the content
of the phrase ‘uniquely reflected’ and the required presuppositions or restrictions.
The other constructive task is to inquire which specific features can in this sense be
objectified to which specific extent.

Very roughly, the results in my (1993) are this: First, positive relevance, i.e.,
the reason relation, is not objectifiable in this sense, even if restricted to necessary
and/or sufficient reasons. Second, whenever A is a sufficient or necessary direct
cause of B w.r.t. �, there is an associated material implication of the form “if the
relevant circumstances obtain, then if A, then B , or, respectively, if A, then B”.
I call the conjunction of all these material implications the causal law associated
with �. The causal law is a proposition, an objective truth-condition. The point now
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is that there is a rich class of ranking functions which, under certain presuppositions,
can uniquely be reconstructed from their causal laws and which may thus be called
causal laws as well. In this sense and to this extent, causal relations obtaining relative
to a subjective raking function can be objectified and thus do hold objectively.

A special case treated in Spohn (2002, 2005a) is the case of strict or deterministic
laws. A strict law is, by all means, a regularity, an invariable obtaining of a certain
type of state of affairs. But not any regularity is a law. What I have proposed in
Spohn (2002) is that a law is an independent and identically distributed (infinite)
repetition of the type of state in question or, rather, in order for that phrase to make
sense, an independent and identically distributed repetition of a certain ranking as-
sessment of that type of state. Hence, a law is a certain kind of ranking function.
This sounds weird, because a law thus turns into a kind of doxastic attitude. The
literature on lawlikeness shows, however, that this is not so absurd a direction; if,
besides explanatory power or support of counterfactuals, projectibility or induc-
tive behavior are made defining features of laws, they are characterized by their
epistemic role and thus get somehow entangled with our subjective states (see also
Lange 2000, Chapter 7, on the root commitment associated with laws). The main
point, though, is that the ranking functions expressing deterministic laws are again
of the objectifiable kind. So, there is a way of maintaining even within this account
that laws obtain mind-independently.

In fact, according to what I have sketched, a deterministic law is the precise rank-
ing analogue of a statistical law. De Finetti (1937) has proposed an ingenious way
of eliminating objective probabilities and statistical laws by showing, in his famous
representation theorem, that beliefs (i.e., subjective probabilities) about statistical
laws (describing an infinite sequence of independent and identically distributed tri-
als) are strictly equivalent to symmetric or exchangeable subjective probabilities for
these trials and that experience makes these symmetric probabilities converge to
the true statistical law. The eliminativist intention of the story is mostly dismissed
today; rather, objective probabilities are taken seriously. Still, de Finetti’s account
has remained a paradigm story about the relation between subjective and objective
probabilities.

I am mentioning all this because this paradigm story can be directly transferred
to ranking theory. Let � be any ranking function for an infinite sequence of trials
(= variables) which is regular and symmetric and according to which the outcome
of a certain trial is not negatively relevant to the same outcome in the next trial.
Then � is a unique mixture of deterministic laws for that sequence of trials in the
above-mentioned sense, and experience makes � converge to the true deterministic
law. (Cf. Spohn 2005a for all this, where I have treated only the simplest case of the
infinite repetition of a binary variable or a trial having only two possible outcomes.
With an additional condition, however, the results generalize to all variables taking
finitely many values).

This may suffice as an overview over the basics of ranking theory and its elabo-
ration into various directions; it got long enough. In a way, my overall argument in
Section 4 of this essay, when I shall make a bit more detailed comparative remarks
about other members of the Baconian probability family, should be clear by now:
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Bayesian epistemology has enormous powers and virtues and rich details and ram-
ifications. Small wonder that Pascal by far outstripped Bacon. In a nutshell, I have
explained that many essential virtues can be duplicated in ranking theory; indeed,
the duplications can stand on their own, having an independent significance. Bacon
can catch up with Pascal. Of course, my rhetorical question will then be: Which
other version of Baconian probability is able to come up with similar results?

Still, one might suspect that I can claim these successes only by turning Bacon
into a fake Pascal. I have never left the Bayesian home, it may seem. Hence, one
might even suspect that ranking theory is superfluous and may be reduced to the
traditional Bayesian point of view. In other words, it is high time to study more
closely the relation between probability and ranking theory. This will be our task in
the next section.

3 Ranks and Probabilities

The relation between probabilities and ranks is surprisingly complex and fascinat-
ing. I first turn to the more formal aspects of the comparison before discussing the
philosophical aspects.

3.1 Formal Aspects

The reader will have observed since long why ranks behave so much like proba-
bilities. There is obviously a simple translation of probability into ranking theory:
translate the sum of probabilities into the minimum of ranks, the product of prob-
abilities into the sum of ranks, and the quotient of probabilities into the difference
of ranks. Thereby, the probabilistic law of additivity turns into the law of disjunc-
tion, the probabilistic law of multiplication into the law of conjunction (for negative
ranks), and the definition of conditional probabilities into the definition of condi-
tional ranks. If the basic axioms and definitions are thus translated, then it is small
wonder that the translation generalizes; take any probabilistic theorem, apply the
above translation to it, and you are almost guaranteed to get a ranking theorem. This
translation is obviously committed to negative ranks; therefore I always favored
negative over positive ranks. However, the translation is not fool-proof; see, e.g.,
Spohn (1994a) for slight failures concerning conditional independence (between
sets of variables) or Spohn (2005a) for slight differences concerning positive and
non-negative instantial relevance. The issue is not completely cleared up.

Is there a deeper reason why this translation works so well? Yes, of course. The
translation of products and quotients of probabilities suggests that negative ranks
simply are the logarithm of probabilities (with respect to some base < 1). This does
not seem to fit with the translation of sums of probabilities. But it does fit when
the logarithmic base is taken to be some infinitesimal i (since for two positive reals
x ≤ y i x + i y = i x− j for some infinitesimal j ). That is, we may understand ranks as
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real orders of magnitude of non-standard probabilities. This is the basic reason for
the pervasive analogy.

Does this mean that ranking epistemology simply reduces to non-standard Bayes-
ianism? This may be one way to view the matter. However, I do not particularly
like this perspective. Bayesian epistemology in terms of non-standard reals is really
non-standard. Even its great proponent, David Lewis, mentions the possibility only
in passing (for the first time in 1980, p. 268). It is well known that both, non-standard
analysis and its continuation as hyperfinite probability theory, have their intricacies
of their own, and it is highly questionable from an epistemological point of view
whether one should buy these intricacies. Moreover, even though this understanding
of ranks is in principle feasible, it is nowhere worked out in detail. Such an elabo-
ration should also explain the slight failures of the above translation. Hence, even
formally the relation between ranks and non-standard probabilities is not fully clear.
Finally, there are algebraic incoherencies. As long as the probabilistic law of addi-
tivity and the ranking law of disjunction are finitely restricted, there is no problem.
However, it is very natural to conceive probability measures as �-additive (although
there is an argument about this point), whereas it is very natural to conceive of
ranking functions as complete (as I have argued). This is a further disanalogy, which
is not resolved by the suggested understanding of ranks.

All in all, I prefer to stick to the realm of standard reals. Ranking theory is a
standard theory, and it should be compared to other standard theories. So, let us put
the issue of hyperfinite probability theory to one side.

Let us instead pursue another line of thought. I have heavily emphasized that
the fundamental point of ranking theory is to represent the statics and the dynamics
of belief or of taking-to-be-true; it is the theory of belief. So, instead of inquiring
the relation between ranks and probabilities we might as well ask the more familiar
question about the relation between belief and probability.

This relation is well known to be problematic. One naive idea is that belief
vaguely marks some threshold in probability, i.e., that A is believed iff its subjective
probability is greater than 1 – � for some small �. But this will not do, as is hight-
lighted by the famous lottery paradox (see Kyburg 1961, p. 197 and Hempel 1962,
pp. 163–166). According to this idea you may believe A and believe B , but fail to
believe A & B . However, this amounts to saying that you do not know the truth table
of conjunction, i.e., that you have not grasped conjunction at all. So, this idea is a
bad one, as almost all commentators to the lottery paradox agree. One might think
then about more complicated relations between belief and probability, but I confess
not to have seen any convincing one.

The simplest escape from the lottery paradox is, of course, to equate belief with
probability 1. This proposal faces two further problems, though. First, it seems in-
tuitively inadequate to equate belief with maximal certainty in probabilistic terms;
beliefs need not be absolutely certain. Secondly, but this is only a theoretical version
of the intuitive objection, only belief expansion makes sense according to this pro-
posal, but no genuine belief revision. Once you assign probability 1 to a proposition,
you can never get rid of it according to all rules of probabilistic change. This is
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obviously inadequate; of course, we can give up previous beliefs and easily do so
all the time.

Jeffrey’s radical probabilism (1991) is a radical way out. According to Jeffrey, all
subjective probabilities are regular, and his generalized conditionalization provides
a dynamics moving within regular probabilities. However, Jeffrey’s picture and the
proposal of equating belief with probability 1 do not combine; then we would be-
lieve in nothing but the tautology. Jeffrey did not deny beliefs, but he indeed denied
their relevance for epistemology; this is what the adjective ‘radical’ in effect signi-
fies. He did not believe in any positive relation between belief and probability, and
probability is all you need – a viable conclusion from the lottery paradox perhaps,
though only as a last resort.

The point that probability theory cannot account for belief revision may appar-
ently be dealt with by an expansion of the probabilistic point of view, namely by
resorting to Popper measures. These take conditional probability as the basic no-
tion, and thus probabilities conditional on propositions having absolute probability
0 may be well defined. That is, you may initially believe A, i.e., assign probability
1 to A, and still learn that A, i.e., conditionalize w.r.t. A, and thus move to posterior
probabilities and even beliefs denying A. In this way, one can stick to the equation
of belief with probability 1 and escape the above objection. Have we thus reached a
stable position?

No, we have not. One point of Spohn (1986) was to rigorously show that AGM
belief revision is just the qualitative counterpart of Popper measures. Conversely,
this entails that the inability of AGM belief revision theory to model iterated belief
revision, which I criticized in my (1988), holds for Popper measures as well. In fact,
Harper (1976) was the first to note this problem vis à vis Popper measures, and thus
I became aware of the problem and noticed the parallel.

Harper proposed quite a complicated solution to the problem that is, as far as
I know, not well received; but it may be worth revisiting. My conclusion was a
different one. If AGM belief revision theory is incomplete and has to be evolved
into ranking theory, the probabilistic point of view needs likewise to get further
expanded. We need something like probabilified ranks or ranked probabilities; it
is only in terms of them that we can unrestrictedly explain iterated probabilistic
change.

A ranking function associates with each rank a set of propositions having that
rank. A ranked probability measure associates with each rank an ordinary probabil-
ity measure. The precise definition is straightforward. Hence, I confined myself to
mentioning the idea in my (1988, Section 8.7); only in my (2005b) I took the trouble
to explicitly introduce it. One should note, though, that as soon as one assumes the
probability measures involved to be �-additive, one again forces the ranks to be
well-ordered (cf. Spohn 1986); this is why in my (2005b) only the probabilification
of complete ranking functions is defined.

One may say that ranking theory thus ultimately reduces to probability theory.
I find this misleading, however. What I have just sketched is rather a unification of
probability and ranking theory; after all, we have employed genuine ranking ideas
in order to complete the probabilistic point of view. The unification is indeed a
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powerful one; all the virtues of standard Bayesianism which I have shown to carry
over to ranking theory hold for this unification as well. It provides a unified account
of confirmation, of lawlikeness, even of causation. It appears to be a surprising, but
most desirable wedding of Baconian and Pascalian probability. I shall continue on
the topic in the next subsection.

The previous paragraphs again urge the issue of hyperfinite probability; ranked
probabilities look even more like probabilities in terms of non-standard reals. How-
ever, I cannot say more than I already did; I recommend the issue for further in-
vestigation.19 I should use the occasion for clarifying a possible confusion, though.
McGee (1994, pp. 181ff.) showed that Popper measures correspond to non-standard
probability measures in a specific way. Now, I have suggested that ranked prob-
abilities do so as well. However, my (1986 and 1988) together entail that ranked
probabilities are more general than Popper measures. These three assertions do not
fit together. Yet, the apparent conflict is easily dissolved. The correspondence proved
by McGee is not a unique one. Different non-standard probability measures may
correspond to the same Popper measure, just as different ranked probabilities may.
Hence, if McGee says that the two approaches, Popper’s and the non-standard one,
“amount to the same thing” (p. 181), this is true only for the respects McGee is con-
sidering, i.e., w.r.t. conditional probabilities. It is not true for the wider perspective
I am advocating here, i.e., w.r.t. probability dynamics.

3.2 Philosophical Aspects

The relation between belief and probability is not only a formal issue, it is philo-
sophically deeply puzzling. It would be disturbing if there should be two (or more)
unrelated ways of characterizing our doxastic states. We must somehow come to
grips with their relation.

The nicest option would be reductionism, i.e., reducing one notion to the other.
This can only mean reducing belief to probability. As we have seen, however, this
option seems barred by the lottery paradox. Another option is eliminativism as most
ably defended in Jeffrey’s radical probabilism also mentioned above. This option
is certainly viable and most elegant. Still, I find it deeply unsatisfactory; it is unac-
ceptable that our talk of belief should merely be an excusable error ultimately to be
eliminated. Thus, both versions of monism seem excluded.

Hence, we have to turn to dualism, and then interactionism may seem the most
sensible position. Of course, everything depends on the precise form of interaction
between belief and probability. In Spohn (2005b) I had an argument with Isaac Levi
whom I there described as the champion of interactionism. My general experience,
though, is that belief and probability are like oil and water; they do not mix easily.
Quite a different type of interactionism is represented by Hild (t.a.) who has many

19 For quite a different way of relating probabilities and ranks appealing neither to infinitesimals
nor to Popperian conditional probabilities see Giang and Shenoy (1999).
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interesting things to say about how ranking and probability theory mesh, indeed how
heavily ranking ideas are implicitly used in statistical methodology. I do not have
space to assess this type of interactionism.

When the fate of interactionism is unclear one might hope to return to reduc-
tionism and thus to monism, not in the form of reducing belief to probability, but
in the form of reducing both to something third. This may be hyperfinite proba-
bility, or it may be ranked probabilities as suggested above. However, as already
indicated, I consider this to be at best a formal possibility with admittedly great
formal power of unification. Philosophically, I am not convinced. It is intuitively
simply inadequate to equate belief with (almost) maximal probabilistic certainty,
i.e., with probability 1 (minus an infinitesimal), even if this does not amount to
unrevisability within these unifications. This intuition has systematic counterparts.
For centuries, the behavioral connection of subjective probabilities to gambling and
betting has been taken to be fundamental; many hold that this connection provides
the only explanation of subjective probabilities. This fundamental connection does
not survive these unifications. According to them, I would have to be prepared to
bet my life on my beliefs; but this is true only of very few of my many beliefs. So,
there are grave frictions that should not be plastered by formal means.

In view of all this, I have always preferred separatism, at least methodologically.
If monism and interactionism are problematic, then belief and probability should
be studied as two separate fields of interest. I sense the harshness of this position;
this is why I am recommending it so far only as a methodological one and remain
unsure about its ultimate status. However, the harshness is softened by the formal
parallel which I have extensively exploited and which allows formal unification.
Thus, separatism in effect amounts to parallelism, at least if belief is studied in
ranking terms. Indeed, the effectiveness of the parallel sometimes strikes me as a
pre-established harmony.

Thus, another moral to be drawn may perhaps be structuralism, i.e., the search for
common structures. This is a strategy I find most clearly displayed in Halpern (2003).
He starts with a very weak structure of degrees of belief that he calls plausibility
measures and then discusses various conditions on those degrees that allow use-
ful strengthenings of that structure such as a theory of conditioning, a theory of
independence, a theory of expectation and integration, and so forth. Both, ranking
and probability theory, but not only they are specializations of that structure and its
various strengthenings. Without doubt, this is a most instructive procedure. Struc-
turalism would moreover suggest that it is only those structures and not their specific
realizations that matter. Halpern does not explicitly endorse this, and I think one
should withstand it. For instance, one would thereby miss the essential purpose for
which ranking theory was designed, namely the theory of belief. For this purpose,
no less and no more than the ranking structure is required.

Hence, let me further pursue, in the spirit of methodological separatism, the
philosophical comparison between ranks and standard probabilities. I have already
emphasized the areas in which the formal parallel also makes substantial sense:
inductive inference, confirmation, causation, etc. Let us now focus on three actual
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or apparent substantial dissimilarities, which in one or the other way concern the
issue what our doxastic states have to do with reality.

The first aspect of this issue is the truth connection; ranks are related to truth in
a way in which probabilities are not. This is the old point all over again. Ranks rep-
resent beliefs that are true or false, whereas subjective probabilities do not represent
beliefs and may be assessed in various ways, as well-informed, as reasonable, but
never as true or false. Degrees of belief may perhaps conform to degrees of truth-
likeness; however, it is not clear in the first place whether degrees of truthlikeness
behave like probabilities (cf. Oddie 2001). Or degrees of belief may conform to what
Joyce (1998) calls the norm of gradational accuracy from which he proceeds with
an interesting argument to the effect that degrees of belief then have to behave like
probabilities.20 Such ideas are at best a weak substitute, however; they never yield
an application of truth in probability theory as we have it in ranking theory.

This is a clear point in favor of ranking theory. And it is rich of consequences.
It means that ranking theory, in contrast to probability theory, is able to connect
up with traditional epistemology. For instance, Plantinga (1993, Chapters 6 and 7)
despairs of finding insights in Bayesianism he can use and dismisses it, too swiftly
I find. This would have been different with ranking theory. The reason why ranking
theory is connectible is obvious. Traditional epistemology is interested in knowl-
edge, a category entirely foreign to probability theory; knowledge, roughly, is jus-
tified true belief and thus analyzed by notions within the domain of ranking theory.
Moreover, the notion of justification has become particularly contested in traditional
epistemology; one focal issue was then to give an account of the truth-conduciveness
of reasons, again notions within the domain of ranking theory.

I am not claiming actual epistemological progress here. But I do claim an ad-
vantage of ranking over probability theory, I do claim that traditional epistemology
finds in ranking theory adequate formal means for discussing its issues, and using
such means is something I generally recommend as a formal philosopher.

The second aspect is the behavioral connection. Our doxastic states make some
actions rational and others irrational, and our theories have to say which. Here, prob-
ability theory seems to have a clear advantage. The associated behavioral theory is,
of course, decision theory with its fundamental principle of maximizing conditional
expected utility. The power of this theory need not be emphasized here. Is there
anything comparable on offer for ranking theory?

This appears excluded, for the formal reason that there is a theory of integration
and thus of expectation in probabilistic, but none in ranking terms; this is at least
what I had thought all along. However, the issue has developed. There are vari-
ous remarkable attempts of stating a decision theory in terms of non-probabilistic
or non-additive representations of degrees of belief employing the more general
Choquet theory of integration.21 Indeed, there is also one especially for ranking

20 Cf., however, Maher’s (2002) criticism of Joyce’s argument.
21 Economists inquired the issue; see, e.g., Gilboa (1987), Schmeidler (1989), Jaffray (1989),
Sarin and Wakker (1992) for early contributions, and Wakker (2005) for a recent one. The AI
side concurs; see, e.g., Dubois and Prade (1995), Brafman and Tennenholtz (2000), and Giang and
Shenoy (2005).
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theory. Giang and Shenoy (2000) translate the axiomatic treatment of utility as it
is given by Luce and Raiffa (1957, Section 2.5) in terms of simple and compound
lotteries directly into the ranking framework, thus developing a notion of utility
fitting to this framework. These attempts doubtlessly deserve further scrutiny (cf.
also Halpern 2003, Chapter 5).

Let me raise, though, another point relating to this behavioral aspect. Linguistic
behavior is unique to humans and a very special kind of behavior. Still, one may
hope to cover it by decision theoretic means, too. Grice’s intentional semantics
employs a rudimentary decision theoretic analysis, and Lewis (1969) theory of con-
ventions uses game (and thus decision) theoretic methods in a very sophisticated
way. However, even Lewis’ account of coordination equilibria may be reduced to a
qualitative theory (in Lewis (1975) he explicitly uses only qualitative terminology).
In fact, the most primitive linguistic behavioral law is the disquotation principle:
if a seriously and sincerely utters “p”, then a believes that p.22 The point is that
these linguistic behavioral laws and in particular the disquotation principle is stated
in terms of belief. There is no probabilistic version of the disquotation principle,
and it is unclear what it could be. The close relation between belief and meaning is
obvious and undoubted, though perhaps not fully understood in the philosophy of
language. I am not suggesting that there is a linguistic pragmatics in terms of ranking
functions; there is hardly anything.23 I only want to point out that the standing of
ranking theory concerning this behavioral aspect is at least promising.

There is a third and final aspect, again apparently speaking in favor of probability
theory. We do not only make decisions with the help of our subjective probabilities,
we also do statistics. That is, we find a lot of relative frequencies in the world,
and they are closely related to probabilities. We need not discuss here the exact na-
ture of this relation. Concerning objective probabilities, it is extensively discussed
in the debate about frequentism, and concerning subjective probabilities it is pre-
sumably best captured in Reichenbach’s principle postulating that our subjective
probabilities should rationally converge to the observed relative frequencies. What
is clear, in any case, is that in some way or other relative frequencies provide a
strong anchoring of probabilities in reality from which the powerful and pervasive
application of statistical methods derives. Subjective probabilities are not simply
free-floating in our minds.

For many years I thought that this is another important aspect in which rank-
ing theory is inferior to probability theory. Recently, though, I have become more
optimistic. Not that there would be any statistics in ranking terms,24 I do not see
ranks related to relative frequencies. However, a corresponding role is played by
the notion of exception and thus by absolute frequencies. In Section 2.5, I left the

22 If a speaks a foreign language, the principle takes a more complicated, but obvious form. There
is also a disquotation principle for the hearer, which, however, requires a careful exchange of the
hearer’s and the speaker’s role.
23 See in particular Merin (2006, Appendix B; 2008) whose relevance-based pragmatics yields
interesting results in probabilistic as well as in ranking-theoretic terms.
24 However, I had already mentioned that Hild (t.a.) finds a much closer connection of probabilities
and ranks within statistical methodology.
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precise account of objectifiable ranking functions in the dark. If one studies that
account more closely, though, one finds that these objectifiable ranking functions,
or indeed the laws as I have indicated them in Section 2.5, are exception or fault
counting functions. The rank assigned to some possible world by such a ranking
function is just the number of exceptions from the law embodied in this function
that occur in this world.

This is a dim remark so far, and here is not the place to elaborate on it. Still, I
find the opposition of exceptions and relative frequencies appealing. Often, we take
a type of phenomenon as more or less frequent, and then we apply our sophisticated
statistical methodology to it. Equally often, we try to cover a type of phenomenon by
a deterministic law, we find exceptions, we try to improve our law, we take recourse
to a usually implicit ceteris paribus condition, etc. As far as I know, the methodology
of the latter perspective is less sophisticated. Indeed, there is little theory. Mill’s
method of relevant variables, e.g., is certainly an old and famous attempt to such a
theory (cf. its reconstruction in Cohen 1977, Chapter 13). Still, both perspectives,
the statistical and the deterministic one, are very familiar to us. What I am sug-
gesting is that the deterministic perspective can be thoroughly described in terms of
ranking theory.25

It would moreover be most interesting to attend to the vague borderline. Some-
where, we switch from one to the other perspective, from exceptions to small relative
frequencies or the other way around. I am not aware of any study of this borderline,
but I am sure it is worth getting inquired. It may have the potential of also illu-
minating the relation of belief and probability, the deterministic and the statistical
attitude.

All these broad implications are involved in a comparison of ranks and probabil-
ities. I would find it rather confusing to artificially combine them in some unified
theory, be it hyperfinite or ranked probabilities. It is more illuminating to keep them
separate. Also, I did not want to argue for any preference. I wanted to present the
rich field of comparison in which both theories can show their great, though partially
diverging virtues. There should be no doubt, however, that the driving force behind
all these considerations is the formal parallelism which I have extensively used in
Section 2 and explained in Section 3.1.

4 Further Comparisons

Let me close the paper with a number of brief comparative remarks about alternative
accounts subsumable under the vague label ‘Baconian probability’. I have already
made a lot of such remarks en passant, but it may be useful to have them collected.
I shall distinguish between the earlier and usually more philosophical contributions

25 I attempted to substantiate this suggestion with my account of strict and ceteris paribus laws in
Spohn (2002) and with my translation of de Finetti’s representation theorem into ranking theory in
Spohn (2005a).
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on the one hand and the more recent, often more technical contributions from the
computer science side on the other hand. The borderline is certainly fuzzy, and I
certainly do not want to erect boundaries. Still, the centuries old tendency of spe-
cialization and of transferring problems from philosophy to special fields may be
clearly observed here as well.

4.1 Earlier and Philosophical Literature

It is perhaps appropriate to start with L. Jonathan Cohen, the inventor of the label.
In particular his (1977) is an impressive document of dualism, indeed separatism
concerning degrees of provability and degrees of probability or inductive (Baconian)
and Pascalian probability. His work is, as far as I know, the first explicit and powerful
articulation of the attitude I have taken here as well.26

However, his functions of inductive support are rather a preform of my ranking
functions. His inductive supports correspond to my positive ranks. Cohen clearly
endorsed the law of conjunction for positive ranks; see his (1970, pp. 21f. and p. 63).
He also endorsed the law of negation; but he noticed its importance only in his
(1977, pp. 177ff.), whereas in his (1970) it is well hidden as Theorem 306 on p. 226.
His presentation is a bit imperspicuous, though, since he is somehow attached to the
idea that �i , i.e., having an inductive support≥ i , behaves like iterable S4-necessity
and since he even brings in first-order predicate calculus.

Moreover, Cohen is explicit on the relationality of inductive support; it is a two-
place function relating evidence and hypothesis. Hence, one might expect to find
a true account of conditionality. This, however, is not so. His conditionals behave
like strict implication,27 a feature Lewis (1973, Section 1.2–1.3) has already warned
against. Moreover, Cohen discusses only laws of support with fixed evidence – with
one exception, the consequence principle, as he calls it (1970, p. 62). Translated into
my notation it says for a positive ranking function � that

(15) �(C|A) ≥ �(C|B) if A ⊆ B,

which is clearly not a theorem of ranking theory. These remarks sufficiently indicate
that the aspect so crucial for ranking functions is scarcely and wrongly developed in
Cohen’s work.

The first clear articulation of the basic Baconian structure is found, however, not
in Cohen’s work, but in Shackle (1949, 1969). His functions of potential surprise
clearly correspond to my negative ranking functions; axiom (9) in (1969, p. 81) is
the law of negation, and axiom (4) and/or (6) in (1969, p. 90) express the law of
disjunction. At least informally, Shackle also recognizes the duality of positive and

26 I must confess, though, that I had not yet noticed his work when I basically fixed my ideas on
ranking functions in 1983.
27 This is particularly obvious from Cohen (1970, p. 219, Definition 5).
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negative ranks. He is explicit that potential surprise expresses certainty of wrong-
ness, i.e., disbelief, and that there is conversely certainty of rightness (1969, p. 74).

His general attitude, however, is not so decidedly dualistic as that of Cohen.
His concern is rather a general account of uncertainty, and he insists that probabil-
ity does not exhaust uncertainty. Probability is an appropriate uncertainty measure
only if uncertainty is ‘distributional’, whereas potential surprise accounts for ‘non-
distributional’ uncertainty. So, he also ends up with an antagonistic structure; but
the intention was to develop two special cases of a general theory.

It is most interesting to see how hard Shackle struggles with an appropriate law
of conjunction for negative ranks. The first version of his axiom 7 (1969, p. 80)
claims, in our terminology, that

(16) �(A ∩ B) = max {�(A), �(B)}.

He accepts the criticism this axiom has met, and changes it into a second version
(1969, p. 83), which I find must be translated into

(17) �(B) = max {�(A), �(B|A)}

(and is hence no law of conjunction at all). He continues that it would be fallacious
to infer that

(18) �(A ∩ B) = min [max {�(A), �(B|A)}, max {�(B), �(A|B)}].

In (1969, Chapter 24) he is remarkably modern in discussing “expectation of change
of own expectations”. I interpret his formula (i) on p. 199 as slightly deviating from
the second version of his axiom 7 in claiming that

(19) �(A ∩ B) = max {�(A), �(B|A)}.

And on pp. 204f. he even considers, and rejects (for no convincing reason), the
equation

(20) �(A ∩ B) = �(A)+ �(B|A),

i.e., our law of conjunction for negative ranks. In all these discussions, conditional
degrees of potential surprise appear to be an unexplained primitive notion. So,
Shackle may have been here on the verge of getting things right. On the whole,
though, it seems fair to say that his struggle has not led to a clear result.

Isaac Levi has always pointed to this pioneering achievement of Shackle, and
he has made his own use of it. In a way he did not develop Shackle’s functions
of potential surprise; he just stuck to the laws of negation and of disjunction for
negative ranks. In particular, there is no hint of any notion of conditionalization.
This is not to say that his epistemology is poorer than the one I have. Rather, he
finds a place for Shackle’s functions in his elaborated doxastic decision theory,
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more precisely, in his account of belief expansion. He adds a separate account
of belief contraction, and with the help of what is called Levi’s identity he can
thus deal with every kind of belief change. He may even claim to come to grips
with iterated change.28 One may thus sense that his edifice is at cross-purposes
with mine.

A fair comparison is hence a larger affair. I have tried to give it in Spohn (2005b).
Let me only mention one divergence specifically related to ranking functions. Since
Levi considers ranking functions as basically identical with Shackle’s functions of
potential surprise and since he sees the latter’s role in expansion, he continuously
brings ranking functions into the same restricted perspective. I find this inadequate.
I rather see the very same structure at work at expansions as well as at contractions,
namely the structure of ranks. Insofar I do not see any need of giving the two kinds
of belief change an entirely different treatment.

This brings me to the next comparison, with AGM belief revision theory (cf.
e.g., Gärdenfors 1988). I have already explained that I came to think of ranking
theory as a direct response to the challenge of iterated belief revision for AGM
belief revision theory, and I have explained how A→x-conditionalization for ranks
unifies and generalizes AGM expansion, revision, and contraction. One may won-
der how that challenge was taken up within the AGM discussion. With a plethora
of proposals (see Rott 2008), that partially ventilated ideas that I thought to have
effectively criticized already in Spohn (1988) and that do not find agreement, as far
as I see, with the exception of Darwiche and Pearl (1997). As mentioned, Hild and
Spohn (2008) gives a complete axiomatization of iterated contraction. Whether it
finds wider acceptance remains to be seen.

By no means, though, one should underestimate the richness of the AGM dis-
cussion, of which, e.g., Rott (2001) or Hansson (1999) give a good impression.
A pertinent point is that ranking theory generalizes and thus simply sides with
the standard postulates for revision and contraction (i.e., (K*1-8) and (K−1-8) in
Gärdenfors 1988, pp. 54–56 and 61–64). The ensuing discussion has shown that
these postulates are not beyond criticism and that many alternatives are worth dis-
cussing (cf., e.g., Rott 2001, pp. 103ff., who lists three alternatives of K*7, nine
of K*8, six of K−7, and ten of K−8). I confess I would not know how to modify
ranking theory in order to do justice to such alternatives. Hence, a fuller comparison
with AGM belief revision theory would have to advance a defense of the standard
postulates against the criticisms related with the alternatives.

The point is, of course, relevant in the debate with Levi, too. He prefers what
he calls mild contraction to standard AGM contraction that can be represented in
ranking theory only as a form of iterated contraction. Again, one would have to
discuss whether this representation is acceptable.

It is worth mentioning that the origins of AGM belief revision theory clearly lie in
conditional logic. Gärdenfors (1978) epistemic semantics for conditionals was a re-
sponse to the somewhat unearthly similarity spheres semantics for counterfactuals in

28 Many aspects of his epistemology are already found in Levi (1967). The most recent statement
is given in Levi (2004), where one also gets a good idea of the development of his thought.
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Lewis (1973), and via the so-called Ramsey test Gärdenfors’ interest more and more
shifted from belief in conditionals to conditional beliefs and thus to the dynamics
of belief. Hence, one finds a great similarity in the formal structures of conditional
logic and belief revision theory. In particular, Lewis’ similarity spheres correspond
to Gärdenfors’ entrenchment relations (1988, Chapter 4). In a nutshell, then, the
progress of ranking theory over Lewis’ counterfactual logic lies in proceeding from
an ordering of counterfactuality (as represented by Lewis’ nested similarity spheres)
to a cardinal grading of disbelief (as embodied in negative ranking functions).

Indeed, the origins reach back farther. Conditional logic also has a history, the
earlier one being somewhat indeterminate. However, the idea of having an ordering
of levels of counterfactuality or of far-fetchedness of hypotheses is explicitly found
already in Rescher (1964). If � is a positive ranking function taking only finitely
many values 0, x1, . . . , xm , ∞, then �−1(∞), �−1(xm), . . . , �−1(x1), �−1(0) is just
a family of modal categories M0, . . . , Mn (n = m+2), as Rescher (1964, pp. 47–50)
describes it. His procedure on pp. 49f. for generating modal categories makes them
closed under conjunction; this is our law of conjunction for positive ranks. And he
observes on p. 47 that all the negations of sentences in modal categories up to Mn−1

must be in Mn = �−1(0); this is our law of negation.
To resume, I cannot find an equivalent to the ranking account of conditionaliza-

tion in all this literature. However, the philosophical fruits I have depicted in Sec-
tion 2 and also in Section 3.2 sprang from this account. Therefore, I am wondering
to which extent this literature can offer similar fruits, and for all I know the answer
tends to be negative.

4.2 More Recent Computer Science Literature

In view of the exploding computer science literature on uncertainty since the 80’s
even the brief remarks in the previous subsection on the earlier times were dis-
proportionate. However, it is important, I think, not to forget about the origins. My
comparative remarks concerning the more recent literature must hence be even more
cursory. This is no neglect, though, since Halpern (2003), in book length, provides
comprehensive comparisons of the various approaches with an emphasis on those
aspects (conditionalization, independence, etc.) that I take to be important, too.
Some rather general remarks must do instead and may nevertheless be illuminating.

In the computer science literature, ranking theory is usually subsumed under the
heading “uncertainty” and “degrees of belief”. This is not wrong. After all, ranks are
degrees, and if (absolute) certainty is equated with unrevisability, revisable beliefs
are uncertain beliefs. Still, the subsumption is also misleading. My concern was not
to represent uncertainty and to ventilate alternative models of doing so. Thus stated,
this would have been an enterprise with too little guidance. My concern was exclu-
sively to statically and dynamically represent ungraded belief, and my observation
was that this necessarily leads to the ranking structure. If this is so, then, as I have
emphasized, all the philosophical benefits of having a successful representation of
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ungraded belief are conferred to ranking theory. By contrast, if one starts modeling
degrees of uncertainty, it is always an issue (raised, for instance, by the lottery para-
dox vis à vis probability) to which extent such a model adequately captures belief
and its dynamics. So, this is a principled feature that sets ranking theory apart from
the entire uncertainty literature.

The revisability of beliefs was directly studied in computer science under head-
ings like “default logic” or “nonmonotonic reasoning”. This is another large and
natural field of comparison for ranking theory. However, let me cut things short. The
relation between belief revision theory and nonmonotonic reasoning is meticulously
investigated by Rott (2001). He proved far-reaching equivalences between many
variants on both sides. This is highly illuminating. At the same time, however, it is
a general indication that the concerns that led me to develop AGM belief revision
theory into ranking theory are not well addressed in these areas of AI. Of course,
such lump-sum statements must be taken with caution.

The uncertainty literature has observed many times that the field of nonmono-
tonic reasoning is within its reach. Among many others, Pearl (1988, Chapter 10)
has investigated the point from the probabilistic side, and Halpern (2003, Chap-
ter 8) has summarized it from his more comprehensive perspective. This direction
of inquiry is obviously feasible, but the reverse line of thought of deriving kinds of
uncertainty degrees from kinds of nonmonotonic reasoning is less clear (though the
results in Hild and Spohn (2008) about the measurement of ranks with via iterated
contractions may be a step in the reverse direction).

So, let me return to accounts of uncertainty in a bit more detail, and let me take
up possibility theory first. It originates from Zadeh (1978), i.e. from fuzzy set the-
ory and hence from a theory of vagueness. Its elaboration in the book by Dubois
and Prade (1988) and many further papers shows its wide applicability, but never
denies its origin. So, it should at least be mentioned that philosophical accounts of
vagueness (cf., e.g., Williamson 1994) have nothing much to do with fuzzy logic.
If one abstracts from this interpretation, though, possibility theory is formally very
similar to ranking theory. If Poss is a possibility measure, then the basic laws are:

(21) Poss(∅) = 0, Poss(W ) = 1, and
Poss(A ∪ B) = max {Poss(A), Poss(B)}.

So far, the difference is merely one of scale. Full possibility 1 is negative rank 0,
(im)possibility 0 is negative rank ∞, and translating the scales translates the char-
acteristic axiom of possibility theory into the law of disjunction for negative ranks.
Indeed, Dubois and Prade often describe their degrees of possibility in such a way
that this translation fits not only formally, but also materially.

Hence, the key issue is again how conditionalization is treated within possibility
theory. There is some uncertainty. First, there is the motive that also dominated
Shackle’s account of the functions of potential surprise, namely to keep possibil-
ity theory as an ordinal theory where degrees of possibility have no arithmetical
meaning. Then the idea is to stipulate that
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(22) Poss(A ∩ B) = min {Poss(A), Poss(B|A)}
= min {Poss(B), Poss(A|B)}.

This is just Shackle’s proposal (4.1). Hisdal (1978) proposed to go beyond (4.1)
just by turning (4.2) into a definition of conditional possibility by additionally as-
suming that conditionally things should be as possible as possible, i.e., by defining
Poss(B|A) as the maximal degree of possibility that makes (4.2) true:

(23) Poss(B|A) =
{

P(A ∩ B), if Poss(A ∩ B) < Poss(A)

1, if Poss(A ∩ B) = Poss(A)

}

.

Halpern (2003, Proposition 3.9.2, Theorem 4.4.5, and Corollary 4.5.8) entails
that Bayesian net theory works also in terms of conditional possibility thus defined.
Many things, though, do not work well. It is plausible that Poss(B|A) is between the
extremes 1 and Poss(A ∩ B). However, (4.2) implies that it can take only those ex-
tremes. This is unintelligible. Condition (4.2) implies that, if neither Poss(B|A) nor
Poss(A|B) is 1, they are equal, a strange symmetry. And so on. Such unacceptable
consequences spread through the entire architecture.

However, there is a second way to introduce conditional possibilities (cf., e.g.,
Dubois and Prade 1998, p. 206), namely by taking numerical degrees of possibility
seriously and defining

(24) Poss(B||A) = Poss(A ∩ B)/Poss(A).

This looks much better. Indeed, if we define �(A) = log Poss(A), the logarithm
taken w.r.t. some positive base <1, then � is a negative ranking function such that
also �(B|A) = log Poss(B||A). Hence, (4.2) renders possibility and ranking theory
isomorphic, and all the philosophical benefits may be gained in either terms. Still,
there remain interpretational differences. If we are really up to degrees of belief
and disbelief, then the ranking scale is certainly more natural; this is particularly
clear when we look at the possibilistic analogue to two-sided ranking functions.
My remarks about objectifiable ranking functions as fault counting functions would
make no sense for a possibilistic scale. And so on. Finally, one must be aware that
the philosophical benefits resulted from adequately representing belief. Hence, it is
doubtful whether the formal structure suffices to maintain the benefits for alternative
interpretations of possibility theory.

Let me turn to some remarks about (Dempster-Shafer) DS belief functions.
Shafer (1976) built on Dempster’s ideas for developing a general theory of evi-
dence. He saw clearly that his theory covered all known conceptions of degrees
of belief. This, and its computational manageability, explains its enormous impact.
However, before entering any formal comparisons the first argument that should be
settled is a philosophical one about the nature of evidence. There is the DS theory
of evidence, and there is a large philosophical literature on observation and confir-
mation, Bayesianism being its dominant formal expression. I have explained why
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ranking theory and its account of reasons is a member of this family, too. Of course,
this argument cannot even be started here. My impression, though, is that it is still
insufficiently fought out, certainly hampered by disciplinary boundaries.

In any case, it is to be expected that DS belief functions and ranking functions are
interpretationally at cross-purposes. This is particularly clear from the fact that neg-
ative ranking functions, like possibility measures or Shackle’s functions of potential
surprise, are formally a special case of DS belief functions; they are consonant belief
functions as introduced in Shafer (1976, Chapter 10). There, p. 219, Shafer says
that consonant belief functions “are distinguished by their failure to betray even a
hint of conflict in the evidence”; they “can be described as ‘pointing in a single
direction’.” From the perspective of Shafer’s theory of evidence this may be an
adequate characterization. As a description of ranking functions, however, it does
not make any sense whatsoever. This emphasizes that the intended interpretations
diverge completely.

Even formally things do not fit together. We saw that the virtues of ranking theory
depend on the specific behavior of conditional ranks. This does not generalize to
DS belief functions. There is again an uncertainty how to conditionalize DS belief
functions; there are two main variants (cf. Halpern 2003, p. 103 and 132, which
I use as my reference book in the sequel). The central tool of Shafer’s theory of
evidence is the rule of combination proposed by Dempster (1967); it is supposed
to drive the dynamics of DS belief functions. Combination with certain evidence is
identical with one of the two variants of conditionalization (cf. Halpern 2003, p. 94).
According to Shafer, other uncertain evidence is also to be processed by this rule.
One might think, though, instead to handle it with Jeffrey’s generalized conditional-
ization, which is indeed definable for both kinds of conditional belief functions (cf.
Halpern 2003, p. 107). However, both kinds of Jeffrey conditionalization diverge
from the rule of combination (cf. Halpern 2003, p. 107 and 114).

Indeed, this was my argument in Spohn (1990, p. 156) against formally equat-
ing ranking functions with consonant belief functions: Ranking dynamics is driven
by a ranking analogue to Jeffrey conditionalization, but it cannot be copied by the
rule of combination since the corresponding combinations move outside the realm
of consonant belief functions. And, as I may add now, it does not help to let the
dynamics of DS belief functions be driven by Jeffrey conditionalization instead of
the rule of combination: Consonant belief functions are not closed under Jeffrey
conditionalization as well, whereas ranking functions are thus closed.29 I conclude
that there is no formal subsumption of ranking functions under DS belief functions.
Hence, their interpretations do not only actually diverge, they are bound to do so.

29 Does this contradict the fact that ranking functions are equivalent to possibility measures (with
their second kind of conditionalization), that possibility measures may be conceived as a special
case of DS belief (or rather: plausibility) functions, and that Jeffrey conditionalization works for
possibility measures as defined by Halpern (2003, p. 107)? No. The reason is that Jeffrey con-
ditionalization for possibility measures is not a special case of Jeffrey conditionalization for DS
belief functions in general. Cf. Halpern (2003, p. 107).
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Smets’ transferable belief model (cf., e.g., Smets 1998) proposes a still more
general model for changing DS belief functions in terms of his so-called special-
izations. One should check whether it offers means for formally subsuming ranking
functions under his model. Even if this would be possible, however, the interpre-
tational concerns remain. Smets’ specializations are so much wedded to Shafer’s
conception of evidence that any subsumption would appear artificial and accidental.
The philosophical argument about the nature of evidence is even more pressing here.

A final remark: There is a bulk of literature treating doxastic uncertainty not in
terms of a specific probability measure, but in terms of convex sets of probability
measures. The basic idea behind this is that one’s uncertainty is so deep that one
is not even able to fix one’s subjective probability. In this case, doxastic states may
be described as sets of measures or in terms of probability intervals or in terms
of lower and upper probabilities. Again, the multiple ways of elaborating this idea
and their relations are well investigated (see again Halpern 2003). Indeed, DS belief
functions, which provide a very general structure, emerges as generalizations of
lower probabilities. Even they, though, do not necessarily transcend the probabilistic
point of view, as Halpern (2003, p. 279) argues; DS belief functions are in a way
tantamount to so-called inner measures. May we say, hence, that the alternative
formal structures mentioned ultimately reduce to probabilism (liberalized in the way
explained)? We may leave the issue open, though it is obvious that the liberal idea
of uncertainty conceived as sets of subjective probabilities is, in substance, a further
step away from the ideas determining ranking theory. Even if probabilism were
successful in this way, as far as ranking theory is concerned we would only be
thrown back to our comparative remarks in Section 3.

We may therefore conclude that ranking theory is a strong independent pillar
in that confusingly rich variety of theories found in the uncertainty literature. This
conclusion is the only point of my sketchy comparative remarks. Of course, it is not
to deny that the other theories serve other purposes well. It is obvious that we are
still far from an all-purpose account of uncertainty or degrees of belief.
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