Nonlinear Principal Component Analysis

William W. Hsieh

8.1 Introduction

In environmental sciences, one often encounters large
datasets with many variables. For instance, one may
have a dataset of the monthly sea surface tempera-
ture (SST) anomalies (‘“‘anomalies” are the departures
from the mean) collected at / = 1,000 grid locations
over several decades, i.e. the data are of the form

X = [x1, ..., x;], where each variable x; (i = 1,...,1)
has n samples. The samples may be collected at times
t (k =1,...,n),soeachyx; is a time series containing

n observations. Since the SST of neighboring grids are
correlated, and a dataset with 1,000 variables is quite
unwieldy, one looks for ways to condense the large
dataset to only a few principal variables. The most
common approach is via principal component analysis
(PCA), also known as empirical orthogonal function
(EOF) analysis (Jolliffe 2002).

In the example with 1,000 variables, imagine we
have plotted out all the n samples in the 1,000-
dimensional data space, with each sample being a
data point in this space. We then try to fit the best
straight line through the data points. Mathematically,
PCA looks for u, a linear combination of the x;, and
an associated vector e (which gives the direction of the
desired straight line), with

u(t) =e-x(), (8.1)
so that

(Ix(¢) — eu(t)||?) is minimized, (8.2)
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where (- - -) denotes a sample mean or time mean. Here
u, called the first principal component (PC) (or score),
is often a time series, while e, called the first eigen-
vector (also called an empirical orthogonal function,
EOF, or loading), is the first eigenvector of the data
covariance matrix C, with elements C;; given by

n

D D) = (a1 D (6) — (x))].

k=1

Ci =
T =1

(8.3)

Together u and e make up the first PCA mode. In the
above example, e simply describes a fixed spatial SST
anomaly pattern. How strongly this pattern is mani-
fested at a given time is controlled by the time series u.

From the residual, x — eu, the second PCA mode
can similarly be extracted, and so on for the higher
modes. In practice, the common algorithms for
PCA extract all modes simultaneously (Jolliffe 2002;
Preisendorfer 1988). By retaining only the leading
modes, PCA has been commonly used to reduce the
dimensionality of the dataset, and to extract the main
patterns from the dataset.

Principal component analysis (PCA) can be per-
formed using neural network (NN) methods (Oja
1982; Sanger 1989). However, far more interesting is
the nonlinear generalization of PCA, where several
distinct approaches have been developed (Cherkassky
and Mulier 1998). As PCA finds a straight line which
passes through the ‘middle’ of the data cluster, the
obvious next step is to generalize the straight line
to a curve. The multi-layer perceptron (MLP) model
(see Section 1.8) has been adapted to perform non-
linear PCA (Kramer 1991; Hsieh 2004). Alternative
approaches are the principal curves method (Hastie
and Stuetzle 1989; Hastie et al. 2001), the kernel PCA
method (Scholkopf et al. 1998) and the self-organizing
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map (SOM) technique (Kohonen 1982; Cherkassky
and Mulier 1998).

In this chapter, we examine the use of MLP NN
models for nonlinear PCA (NLPCA) in Section 8.2,
the overfitting problem associated with NLPCA in
Section 8.3, and the extension of NLPCA to closed
curve solutions in Section 8.4. MATLAB codes for
NLPCA are downloadable from http://www.ocgy.
ubc.ca/projects/clim.pred/download.html.The discrete
approach by self-organizing maps is presented in
Sections 8.5, and the generalization of NLPCA to
complex variables in Section 8.6.

8.2 Auto-Associative Neural Networks
for NLPCA

The fundamental difference between NLPCA and
PCA is that PCA only allows a linear mapping (u =
e - x) between x and the PC u, while NLPCA allows
a nonlinear mapping. To perform NLPCA, Kramer
(1991) proposed using the MLP NN in Fig. 8.1a where
there are three hidden layers of neurons (i.e. variables)
between the input and output layers. The NLPCA
is basically a standard MLP NN (see Section 1.8)
with four-layers of activation functions (i.e. transfer
functions) mapping from the inputs to the outputs.
One can view the NLPCA network as composed of
two-standard two-layer MLP NNs placed one after
the other. The first two-layer network maps from the
inputs x through a hidden layer to the bottleneck layer
with only one neuron u, i.e. a nonlinear mapping u =
f(x). The next two-layer MLP NN inversely maps
from the nonlinear PC (NLPC) u back to the original
higher dimensional x-space, with the objective that the
outputs X' = g(u) be as close as possible to the inputs
x, where g(u) nonlinearly generates a curve in the
x-space, hence a 1-dimensional approximation of the
original data. Because the target data for the output
neurons X' are simply the input data x, such networks
are called auto-associative NNs. To minimize the MSE
(mean square error) of this approximation, the objec-
tive function (also called cost function or loss func-
tion) J = {||x — x’||?) is minimized to solve for the
parameters of the NN. Squeezing the input informa-
tion through a bottleneck layer with only one neuron
accomplishes the dimensional reduction.

In Fig. 8.1a, the activation function f; maps from
x, the input column vector of length I, to the first

Fig. 8.1 (a) A schematic diagram of the autoassociative feed-
forward multi-layer perceptron NN model for performing
NLPCA. Between the input layer x on the left (the Oth layer)
and the output layer X’ on the far right (the 4th layer), there are
three layers of ‘hidden’ neurons (the 1st, 2nd and 3rd layers).
Layer 2 is the ‘bottleneck’ with a single neuron u giving the
nonlinear principal component (NLPC). Layers 1 and 3, each
with m hidden neurons, are called the encoding and decoding
layers, respectively. (b) The NN model used for extracting a
closed curve NLPCA solution. At the bottleneck, there are now
two neurons p and ¢ constrained to lie on a unit circle in the p-g
plane, giving effectively one free angular variable 6, the NLPC.
This network is suited for extracting a closed curve solution
(Reprinted from Hsieh 2001. With permission from Blackwell)

hidden layer (the encoding layer), represented by h®,
a column vector of length m, with elements
h = fil(WOx +bD)), (8.4)
where W& is an m x [ weight matrix, b%¥), a column
vector of length m containing the offset (i.e. bias) para-
meters, and k = 1, ..., m. Similarly, a second acti-
vation function f, maps from the encoding layer to
the bottleneck layer containing a single neuron, which
represents the nonlinear principal component u,

w= frw® -h® 5%, (8.5)
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The activation function f; is generally nonlinear (usu-
ally the hyperbolic tangent or the sigmoidal function,
though the exact form is not critical), while f; is usu-
ally taken to be the identity function.

Next, an activation function f3 maps from u to the
third hidden layer (the decoding layer) h®,

B = f((Wu + b)), (8.6)

(k=1,...,m); followed by f, mapping from h® to
X/, the output column vector of length /, with

X = fi((W@h® +B“))). 8.7)

The objective function J = (||x — x'[|?) is mini-
mized by finding the optimal values of W™, b™), w(®),
5. W p®, W and b“. The MSE between the
NN output x’ and the original data x is thus minimized.
The NLPCA was implemented using the hyperbolic
tangent function for f; and f3, and the identity func-

tion for f, and f}, so that

u=w . h® 4%, (8.8)

¥ = (WWh® +5"),. (8.9)

Furthermore, we adopt the normalization condi-
tions that (1) = 0 and (#?) = 1. These conditions are
approximately satisfied by modifying the objective
function to

J = (Ix = X% + (u)* + ((u?) — 1. (8.10)

The total number of (weight and offset) parameters
used by the NLPCA is 2Im 4 4m + [ + 1, though the
number of effectively free parameters is two less due
to the constraints on (#) and (u?).

The choice of m, the number of hidden neurons
in both the encoding and decoding layers, follows a
general principle of parsimony. A larger m increases
the nonlinear modeling capability of the network, but
could also lead to overfitted solutions (i.e. wiggly solu-
tions which fit to the noise in the data). If f; is the
identity function, and m = 1, then (8.9) implies that
all x{ are linearly related to a single hidden neuron,
hence there can only be a linear relation between the
x,f variables. Thus, for nonlinear solutions, we need to
look at m > 2. Actually, one can use different numbers
of neurons in the encoding layer and in the decoding
layer; however, keeping them both at m neurons gives
roughly the same number of parameters in the forward
mapping from x to # and in the inverse mapping from u
to x'. It is also possible to have more than one neuron at

the bottleneck layer. For instance, with two bottleneck
neurons, the mode extracted will span a 2-D surface
instead of a 1-D curve.

Because of local minima in the objective function,
there is no guarantee that the optimization algorithm
reaches the global minimum. Hence a number of runs
with random initial weights and offset parameters was
made. Also, a portion (e.g. 15%) of the data was ran-
domly selected as validation data and withheld from
the training of the NNs. Runs where the MSE was
larger for the validation dataset than for the train-
ing dataset were rejected to avoid overfitted solutions.
Then the run with the smallest MSE was selected as
the solution.

In general, the presence of local minima in the
objective function is a major problem for NLPCA.
Optimizations started from different initial parameters
often converge to different minima, rendering the solu-
tion unstable or nonunique. Adding weight penalty
terms to the objective function (also called “regular-
ization”) is an answer.

The purpose of the weight penalty terms is to
limit the nonlinear power of the NLPCA, which came
from the nonlinear activation functions in the net-
work. The activation function tanh has the property
that given x in the interval [—L, L], one can find a
small enough weight w, so that tanh(wx) ~ wx, i.e.
the activation function is almost linear. Similarly, one
can choose a large enough w, so that tanh approaches
a step function, thus yielding Z-shaped solutions. If
we can penalize the use of excessive weights, we
can limit the degree of nonlinearity in the NLPCA
solution. This is achieved with a modified objective
function

J = (x =X ) + W) + (@) = 1)
+PY (WY,

ki

(8.11)

where P is the weight penalty parameter. A large P
increases the concavity of the objective function, and
forces the weights W™ to be small in magnitude,
thereby yielding smoother and less nonlinear solutions
than when P is small or zero. Hence, increasing P also
reduces the number of effectively free parameters of
the model. We have not penalized other weights in the
network. In principle, w also controls the nonlinear-
ity in the inverse mapping from u to x'. However if
the nonlinearity in the forward mapping from x to u
is already being limited by penalizing W™, then there



176

W. W. Hsieh

is no need to further limit the weights in the inverse
mapping.

In summary, one needs to choose m large enough
so that the NN model has enough flexibility to approx-
imate the true solution well. The weight penalty P can
be regarded as a smoothing parameter, i.e. if P is large
enough, zigzags and wiggles in the curve solution can
be eliminated. How to choose P and m objectively
has only recently been addressed, and is discussed in
Section 8.3.

In effect, the linear relation (1 = e - x) in PCA is
now generalized to u = f(x), where f can be any non-
linear continuous function representable by an MLP
NN mapping from the input layer to the bottleneck
layer; and (||x — g(u)||?) is minimized. Limitations
in the mapping properties of the NLPCA are dis-
cussed by Newbigging et al. (2003). The residual,
X — g(u), can be input into the same network to extract
the second NLPCA mode, and so on for the higher
modes.

That the classical PCA is indeed a linear version of
this NLPCA can be readily seen by replacing all the
activation functions with the identity function, thereby
removing the nonlinear modeling capability of the
NLPCA. Then the forward map to u involves only a
linear combination of the original variables as in the
PCA.

In the classical linear approach, there is a well-
known dichotomy between PCA and rotated PCA
(RPCA) (Richman 1986). In PCA, the linear mode
which accounts for the most variance of the dataset
is sought. However, as illustrated in Preisendorfer
(1988, Fig. 7.3), the resulting eigenvectors may not
align close to local data clusters, so the eigenvec-
tors may not represent actual physical states well.
One application of RPCA methods is to rotate the
PCA eigenvectors, so they point closer to the local
clusters of data points (Preisendorfer 1988). Thus
the rotated eigenvectors may bear greater resem-
blance to actual physical states (though they account
for less variance) than the unrotated eigenvectors,
hence RPCA is also widely used (Richman 1986;
von Storch and Zwiers 1999). As there are many
possible criteria for rotation, there are many RPCA
schemes, among which the varimax (Kaiser 1958)
scheme is perhaps the most popular. We will com-
pare NLPCA with PCA and RPCA in the following
subsection.

8.2.1 Applications of NLPCA

The NLPCA has been applied to the Lorenz (1963)
three-component chaotic system (Monahan 2000;
Hsieh 2001). For the tropical Pacific climate vari-
ability, the NLPCA has been used to study the SST
field (Monahan 2001; Hsieh 2001) and the sea level
pressure (SLP) field (Monahan 2001). The Northern
Hemisphere atmospheric variability (Monahan et al.
2000, 2001) and the subsurface thermal structure of
the Pacific Ocean (Tang and Hsieh 2003) have also
been investigated by the NLPCA. In remote sensing,
Del Frate and Schiavon (1999) applied NLPCA to the
inversion of radiometric data to retrieve atmospheric
profiles of temperature and water vapour.

The tropical Pacific climate system contains the
famous interannual variability known as the El Nifio-
Southern Oscillation (ENSO), a coupled atmosphere-
ocean interaction involving the oceanic phenomenon
El Nifio and the associated atmospheric phenom-
enon, the Southern Oscillation. The coupled interac-
tion results in anomalously warm SST in the eastern
equatorial Pacific during El Nifio episodes, and cool
SST in the central equatorial Pacific during La Nifia
episodes (Philander 1990; Diaz and Markgraf 2000).
ENSO is an irregular oscillation, but spectral analy-
sis does reveal a broad spectral peak at the 4-5 year
period. Hsieh (2001) used the tropical Pacific SST data
(1950-1999) to make a three-way comparison between
NLPCA, RPCA and PCA. The tropical Pacific SST
anomaly (SSTA) data (i.e. the SST data with the cli-
matological seasonal cycle removed) were pre-filtered
by PCA, with only the three leading modes retained.
PCA modes 1, 2 and 3 accounted for 51.4%, 10.1%
and 7.2%, respectively, of the variance in the SSTA
data. Due to the large number of spatially gridded
variables, NLPCA could not be applied directly to the
SSTA time series, as this would lead to a huge NN with
the number of model parameters vastly exceeding the
number of samples. Instead, the first three PCs (PCl1,
PC2 and PC3) were used as the input x for the NLPCA
network.

The data are shown as dots in a scatter plot in the
PC1-PC2 plane (Fig. 8.2), where the cool La Nifia
states lie in the upper left corner, and the warm El Nifio
states in the upper right corner. The NLPCA solution is
a U-shaped curve linking the La Nifia states at one end
(low u) to the El Nifio states at the other end (high u),
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Fig. 8.2 Scatter plot of the SST anomaly (SSTA) data (shown
as dots) in the PC1-PC2 plane, with the EI Nifio states lying in
the upper right corner, and the La Nifa states in the upper left
corner. The PC2 axis is stretched relative to the PC1 axis for bet-
ter visualization. The first mode NLPCA approximation to the
data is shown by the (overlapping) small circles, which traced
out a U-shaped curve. The first PCA eigenvector is oriented
along the horizontal line, and the second PCA, by the vertical

similar to that found originally by Monahan (2001).
In contrast, the first PCA eigenvector lies along the
horizontal line, and the second PCA, along the vertical
line (Fig. 8.2). It is easy to see that the first PCA eigen-
vector describes a somewhat unphysical oscillation,
as there are no dots (data) close to either ends of the
horizontal line. For the second PCA eigenvector, there
are dots close to the bottom of the vertical line, but no
dots near the top end of the line, i.e. one phase of the
mode 2 oscillation is realistic, but the opposite phase is
not. Thus if the underlying data has a nonlinear struc-
ture but we are restricted to finding linear solutions
using PCA, the energy of the nonlinear oscillation is
scattered into multiple PCA modes, many of which
represent unphysical linear oscillations.

For comparison, a varimax rotation (Kaiser 1958;
Preisendorfer 1988), was applied to the first three PCA
eigenvectors. The varimax criterion can be applied to
either the loadings or the PCs depending on one’s
objectives (Richman 1986; Preisendorfer 1988); here
it is applied to the PCs. The resulting first RPCA

20 40 60 80
PC1

line. The varimax method rotates the two PCA eigenvectors
in a counterclockwise direction, as the rotated PCA (RPCA)
eigenvectors are oriented along the dashed lines. (As the varimax
method generates an orthogonal rotation, the angle between the
two RPCA eigenvectors is 90° in the 3-dimensional PC1-PC2-
PC3 space) (Reprinted from Hsieh 2001. With permission from
Blackwell)

eigenvector, shown as a dashed line in Fig. 8.2, spears
through the cluster of El Nifio states in the upper
right corner, thereby yielding a more accurate descrip-
tion of the El Nifio anomalies (Fig. 8.3c) than the
first PCA mode (Fig. 8.3a), which did not fully rep-
resent the intense warming of Peruvian waters. The
second RPCA eigenvector, also shown as a dashed
line in Fig. 8.2, did not improve much on the sec-
ond PCA mode, with the PCA spatial pattern shown
in Fig. 8.3b, and the RPCA pattern in Fig. 8.3d). In
terms of variance explained, the first NLPCA mode
explained 56.6% of the variance, versus 51.4% by
the first PCA mode, and 47.2% by the first RPCA
mode.

With the NLPCA, for a given value of the NLPC u,
one can map from u to the three PCs. This is done
by assigning the value u to the bottleneck neuron and
mapping forward using the second half of the network
in Fig. 8.1a. Each of the three PCs can be multi-
plied by its associated PCA (spatial) eigenvector, and
the three added together to yield the spatial pattern
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Fig. 8.3 The SSTA patterns (in °C) of the PCA, RPCA and the
NLPCA. The first and second PCA spatial modes are shown in
(a) and (b) respectively, (both with their corresponding PCs at
maximum value). The first and second varimax RPCA spatial
modes are shown in (c) and (d) respectively, (both with their
corresponding RPCs at maximum value). The anomaly pattern

for that particular value of u. Unlike PCA which
gives the same spatial anomaly pattern except for
changes in the amplitude as the PC varies, the NLPCA
spatial pattern generally varies continuously as the
NLPC changes. Figure 8.3e, f show respectively the
spatial anomaly patterns when u# has its maximum
value (corresponding to the strongest El Nifio) and
when u has its minimum value (strongest La Nifia).
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as the NLPC u of the first NLPCA mode varies from (e) max-
imum (strong El Nifio) to (f) its minimum (strong La Nifia).
With a contour interval of 0.5°C , the positive contours are
shown as solid curves, negative contours, dashed curves, and the
zero contour, a thick curve (Reprinted from Hsieh 2004. With
permission from American Geophysical Union)

Clearly the asymmetry between El Nifio and La
Nifia, i.e. the cool anomalies during La Nifia episodes
(Fig. 8.3f) are observed to center much further west
than the warm anomalies during El Nifio (Fig. 8.3e)
(Hoerling et al. 1997), is well captured by the first
NLPCA mode — in contrast, the PCA mode 1 gives
a La Nifia which is simply the mirror image of the
El Nifio (Fig. 8.3a). The asymmetry explains why El
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Nifio has been known by Peruvian fishermen for many
centuries due to its strong SSTA off the coast of Peru
and its devastation of the Peruvian fishery, whereas the
La Nifia, with its weak manifestation in the Peruvian
waters, was not appreciated until the last two decades
of the 20th century.

In summary, PCA is used for two main purposes: (i)
to reduce the dimensionality of the dataset, and (ii) to
extract features or recognize patterns from the dataset.
It is primarily purpose (ii) where PCA can be improved
upon. Both RPCA and NLPCA take the PCs from PCA
as input. However, instead of multiplying the PCs by
a fixed orthonormal rotational matrix, as performed
in the varimax RPCA approach, NLPCA performs a
nonlinear mapping of the PCs. RPCA sacrifices on the
amount of variance explained, but by rotating the PCA
eigenvectors, RPCA eigenvectors tend to point more
towards local data clusters and are therefore more rep-
resentative of physical states than the PCA eigenvec-
tors.

With a linear approach, it is generally impossi-
ble to have a solution simultaneously (a) explain-
ing maximum global variance of the dataset and (b)
approaching local data clusters, hence the dichotomy
between PCA and RPCA, with PCA aiming for (a)
and RPCA for (b). Hsieh (2001) pointed out that with
the more flexible NLPCA method, both objectives (a)
and (b) may be attained together, thus the nonlinearity
in NLPCA unifies the PCA and RPCA approaches.
It is easy to see why the dichotomy between PCA
and RPCA in the linear approach automatically van-
ishes in the nonlinear approach. By increasing m, the
number of hidden neurons in the encoding layer (and
the decoding layer), the solution is capable of going
through all local data clusters while maximizing the
global variance explained. (In fact, for large enough
m, NLPCA can pass through all data points, though
this will in general give an undesirable, overfitted
solution.)

The tropical Pacific SST example illustrates that
with a complicated oscillation like the El Nifio-La
Nifa phenomenon, using a linear method such as PCA
results in the nonlinear mode being scattered into sev-
eral linear modes (in fact, all three leading PCA modes
are related to this phenomenon) — hence the impor-
tance of the NLPCA as a unifier of the separate linear
modes. In the study of climate variability, the wide use
of PCA methods has created the somewhat misleading
view that our climate is dominated by a number of

spatially fixed oscillatory patterns, which may in fact
be due to the limitation of the linear method. Applying
NLPCA to the tropical Pacific SSTA, we found no
spatially fixed oscillatory patterns, but an oscillation
evolving in space as well as in time.

8.3 Overfitting in NLPCA

When using nonlinear machine learning methods, the
presence of noise in the data can lead to overfitting.
When plentiful data are available (i.e. far more samples
than model parameters), overfitting is not a problem
when performing nonlinear regression on noisy data.
Unfortunately, even with plentiful data, overfitting is a
problem when applying NLPCA to noisy data (Hsieh
2001; Christiansen 2005; Hsieh 2007). As illustrated
in Fig. 8.4, overfitting in NLPCA can arise from the
geometry of the problem, rather than from the scarcity
of data. Here for a Gaussian-distributed data cloud,
a nonlinear model with enough flexibility will find
the zigzag solution of Fig. 8.4b as having a smaller
MSE than the linear solution in Fig. 8.4a. Since the
distance between the point A and a, its projection
on the NLPCA curve, is smaller in Fig. 8.4b than
the corresponding distance in Fig. 8.4a, it is easy to
see that the more zigzags there are in the curve, the
smaller is the MSE. However, the two neighboring
points A and B, on opposite sides of an ambiguity
line, are projected far apart on the NLPCA curve
in Fig. 8.4b. Thus simply searching for the solution
which gives the smallest MSE does not guarantee that
NLPCA will find a good solution in a highly noisy
dataset.

Hsieh (2001) added weight penalty to the Kramer
(1991) NLPCA model to smooth out excessively
wiggly solutions, but did not provide an objective
way to select the optimal weight penalty parameter
P. With NLPCA, if the overfitting arise from the
data geometry (as in Fig. 8.4b) and not from data
scarcity, using independent data to validate the MSE
from the various models is not a viable method for
choosing the appropriate P. Instead, Hsieh (2007)
proposed an “inconsistency” index for detecting the
projection of neighboring points to distant parts of
the NLPCA curve, and use the index to choose the
appropriate P.
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Fig. 8.4 Schematic diagram illustrating overfitting on noisy
data. (a) PCA solution for a Gaussian data cloud, with two
neighboring points A and B shown projecting to the points a
and b on the PCA straight line solution. (b) A zigzag NLPCA
solution found by a flexible enough nonlinear model. Dashed
lines illustrate ambiguity lines where neighboring points (e.g. A
and B) on opposite sides of these lines are projected to a and
b, far apart on the NLPCA curve (Reprinted from Hsieh 2007.
With permission from Elsevier)

For each data point x, find its nearest neighbor X.
The NLPC for x and X are u and i, respectively. With
C(u, u) denoting the (Pearson) correlation between all
the pairs (u, i), the inconsistency index / was defined
in Hsieh (2007) as

I=1-C(u,n). (8.12)
If for some nearest neighbor pairs, # and u are assigned
very different values, C(u, ) would have a lower
value, leading to a larger /, indicating greater incon-
sistency in the NLPC mapping. With « and & standard-
ized to having zero mean and unit standard deviation,
(8.12) is equivalent to

1= Y-y,

> (8.13)

In statistics, various criteria, often in the context of
linear models, have been developed to select the right
amount of model complexity so neither overfitting
nor underfitting occurs. These criteria are often called
“information criteria” (IC) (von Storch and Zwiers
1999). An IC is typically of the form

IC = MSE + complexity term, (8.14)

where MSE is evaluated over the training data and
the complexity term is larger when a model has more
free parameters. The IC is evaluated over a number of
models with different free parameters, and the model
with the minimum IC is selected as the best. As the
presence of the complexity term in the IC penalizes
models which use excessive number of free parame-
ters to attain low MSE, choosing the model with the
minimum IC would rule out complex models with
overfitted solutions.

In Hsieh (2007), the data were randomly divided
into a training data set and a validation set (containing
85% and 15% of the original data, respectively), and
for every given value of P and m, the model was
trained a number of times from random initial weights,
and model runs where the MSE evaluated over the val-
idation data was larger than the MSE over the training
data were discarded. To choose among the model runs
which had passed the validation test, a new holistic IC
to deal with the type of overfitting arising from the
broad data geometry (Fig. 8.4b) was introduced as

(8.15)
(8.16)

H = MSE + inconsistency term
= MSE — C(u, 1) x MSE = MSE x I,

where MSE and C were evaluated over all (training
and validation) data, inconsistency was penalized, and
the model run with the smallest H value was selected
as the best. As the inconsistency term only prevents
overfitting arising from the broad data geometry, val-
idation data are still needed to prevent “local” over-
fitting from excessive number of model parameters,
since H, unlike (8.14), does not contain a complexity
term.

Consider the test problem in Hsieh (2007): For a
random number ¢ uniformly distributed in the inter-
val (—1, 1), the signal x*) was generated by using a
quadratic relation

. 1
W =1, x55)=5z2. (8.17)
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Isotropic Gaussian noise was added to the signal x*) to
give the noisy data x with 500 samples. NLPCA was
performed on the data using the network in Fig. 8.1a
with m = 4 and with the weight penalty P at vari-
ous values (10, 1, 1071, 1072, 1073, 107, 1073, 0).
For each value of P, the model training was done 30
times starting from random initial weights, and model
runs where the MSE evaluated over the validation data
was larger than the MSE over the training data were
deemed ineligible. In the traditional approach, among
the eligible runs over the range of P values, the one
with the lowest MSE over all (training and validation)
data was selected as the best. Figure 8.5a shows this
solution where the zigzag curve retrieved by NLPCA
is very different from the theoretical parabolic signal
(8.17), demonstrating the pitfall of selecting the lowest
MSE run.

In contrast, in Fig. 8.5b, among the eligible runs
over the range of P values, the one with the lowest
information criterion H was selected. This solution,
which has a much larger weight penalty (P = 0.1)
than that in Fig. 8.5a (P = 10™%), shows less wiggly
behaviour and better agreement with the theoretical
parabolic signal.

Even less wiggly solutions can be obtained by
changing the error norm used in the objective function
from the mean square error to the mean absolute error
(MAE), i.e. replacing (]x —x'||>) by (Zj lx; — x[)
in equation (8.11). The MAE norm is known to be
robust to outliers in the data (Bishop 1995, p. 210).
Figure 8.5c is the solution selected based on minimum
H with the MAE norm used. While wiggles are elimi-
nated, the solution underestimates the curvature in the
parabolic signal. The rest of this paper uses the MSE
norm.

In summary, with noisy data, not having plentiful
samples could cause a flexible nonlinear model to
overfit. In the limit of infinite samples, overfitting can-
not occur in nonlinear regression, but can still occur in
NLPCA due to the geometric shape of the data distri-
bution. A new inconsistency index I for detecting the
projection of neighboring points to distant parts of the
NLPCA curve has been introduced, and incorporated
into a holistic IC H to select the model with the appro-
priate weight penalty parameter and the appropriate
number of hidden neurons. An alternative approach for
model selection was proposed by Webb (1999), who
applied a constraint on the Jacobian in the objective
function.

(a) Min. MSE solution (P =0.0001)

2
1t
<" 0
-1r .
-2 -
3 -2 - 0 1 2 3
X
;
(b) Min. IC solution (P =0.1)
2
1t
<0
-1t -
-2 -
-3 -2 -1 0 1 2 3

Fig. 8.5 The NLPCA solution (shown as densely overlapping
black circles) for the synthetic dataset (dots), with the parabolic
signal curve indicated by “+” and the linear PCA solution by
the dashed line. The solution was selected from the multiple
runs over a range of P values based on (a) minimum MSE,
(b) minimum IC H, and (c) minimum IC together with the
MAE norm (Reprinted from Hsieh 2007. With permission from
Elsevier)
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8.4 NLPCA for Closed Curves

While the NLPCA is capable of finding a continu-
ous open curve solution, there are many phenomena
involving waves or quasi-periodic fluctuations, which
call for a continuous closed curve solution. Kirby and
Miranda (1996) introduced an NLPCA with a circular
node at the network bottleneck [henceforth referred
to as the NLPCA(cir)], so that the nonlinear principal
component (NLPC) as represented by the circular node
is an angular variable 6, and the NLPCA(cir) is capa-
ble of approximating the data by a closed continuous
curve. Figure 8.1b shows the NLPCA(cir) network,
which is almost identical to the NLPCA of Fig. 8.1a,
except at the bottleneck, where there are now two neu-
rons p and g constrained to lie on a unit circle in the
Pp-q plane, so there is only one free angular variable 6,
the NLPC.

At the bottleneck in Fig. 8.1b, analogous to u in
(8.8), we calculate the pre-states p, and g, by

po=w" - h® 1+ 5,

Go = W L hW 4 p™

and

(8.18)

where w®), W) are weight parameter vectors, and %
and b are offset parameters. Let

r=(pi+qH)'?, (8.19)
then the circular node is defined with
p=po/r, and q =gq,/r, (8.20)

satisfying the unit circle equation p? + ¢> = 1. Thus,
even though there are two variables p and g at the
bottleneck, there is only one angular degree of freedom
from 6 (Fig. 8.1b), due to the circle constraint. The
mapping from the bottleneck to the output proceeds as
before, with (8.6) replaced by

B = [ p 4+ Wg £ b)),

When implementing NLPCA(cir), Hsieh (2001)
found that there are actually two possible configura-
tions: (i) A restricted configuration where the con-
straints (p) = 0 = (g) are applied, and (ii) a general
configuration without the constraints. With (i), the con-
straints can be satisfied approximately by adding the
extra terms (p)? and (g)? to the objective function. If
a closed curve solution is sought, then (i) is better than
(ii) as it has effectively two fewer parameters. How-
ever, (ii), being more general than (i), can more readily

(8.21)

model open curve solutions like a regular NLPCA. The
reason is that if the input data mapped onto the p-g
plane covers only a segment of the unit circle instead of
the whole circle, then the inverse mapping from the p-
q space to the output space will yield a solution resem-
bling an open curve. Hence, given a dataset, (ii) may
yield either a closed curve or an open curve solution.
It uses 2Im + 6m 4+ | 4 2 parameters.

Hsieh (2007) found that the IC H not only alleviates
overfitting in open curve solution, but also chooses
between open and closed curve solutions when using
NLPCA(cir) in configuration (ii). The inconsistency
index and the IC are now obtained from

1 - ~
I=1- E[C(p,p)+C(q,q)], and
H = MSE x I, (8.22)
where p and g are from the bottleneck (Fig. 8.1b), and
p and g are the corresponding nearest neighbor values.

(a) Min. MSE solution (m =5, P = 107°)

3

Fig. 8.6 The NLPCA(cir) mode 1 for a Gaussian dataset, with
the solution selected based on (a) minimum MSE and (b) min-
imum IC. The PCA mode 1 solution is shown as a dashed line
(Reprinted from Hsieh 2007. With permission from Elsevier)
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For a test problem, consider a Gaussian data cloud
(with 500 samples) in 2-dimensional space, where the
standard deviation along the x; axis was double that
along the x, axis. The dataset was analyzed by the
NLPCA(cir) model withm =2,...,5and P =10, 1,
107, 1072, 1073, 1074, 107>, 0. From all the runs,
the solution selected based on the minimum MSE has
m =5 (and P = 1075) (Fig. 8.6a), while that selected
based on minimum H has m =3 (and P = 107°)
(Fig. 8.6b). The minimum MSE solution has (normal-
ized) MSE = 0.370, I = 9.50 and H = 3.52, whereas
the minimum H solution has the corresponding val-
ues of 0.994, 0.839 and 0.833, respectively, where
for easy comparison with the linear mode, these val-
ues for the nonlinear solutions have been normalized
upon division by the corresponding values from the
linear PCA mode 1. Thus the IC correctly selected a
nonlinear solution (Fig. 8.6b) which is similar to the

(@)

-20

U(10 hPa)

(€)

U(70 hPa)
o

-10

-20 ‘ : ~

-40 -20 0 20 40
U(10 hPa)

Fig. 8.7 The NLPCA(cir) mode 1 solution for the equatorial

stratospheric zonal wind anomalies. For comparison, the PCA

mode 1 solution is shown by the dashed line. Only three out of

seven dimensions are shown, namely the zonal velocity anomaly

linear solution. It also rejected the closed curve solu-
tion of Fig. 8.6a, in favour of the open curve solution
of Fig. 8.6b, despite its much larger MSE.

For an application of NLPCA(cir) on real data,
consider the quasi-biennial oscillation (QBO), which
dominates over the annual cycle or other variations in
the equatorial stratosphere, with the period of oscil-
lation varying roughly between 22 and 32 months.
Average zonal (i.e. westerly) winds at 70, 50, 40, 30,
20, 15 and 10 hPa (i.e. from about 20 to 30 km altitude)
during 19562006 were studied. After the 51-year
means were removed, the zonal wind anomalies U at
seven vertical levels in the stratosphere became the
seven inputs to the NLPCA(cir) network (Hamilton
and Hsieh 2002; Hsieh 2007). Since the data were
not very noisy (Fig. 8.7), a rather complex model was
used, with m ranging from 5t0 9, and P = 10711072,
1073, 10™*, 107%, 0. The smallest H occurred when

(b)
40
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<
=
o 0
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>
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-40
-40 -20 0 20 40
U(10 hPa)
(d)
20 ‘
10
=
&
O 0
IS
>
-10
-20 : —
~40 -20 0 20 40
U(30 hPa)

U at the top, middle and bottom levels (10, 30 and 70 hPa). Panel
(a) gives a 3-D view, while (b—d) give 2-D views (Reprinted
from Hsieh 2007. With permission from Elsevier)
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pressure (hPa)

0
(in = radians)

9weighted

Fig. 8.8 Contour plot of the NLPCA(cir) mode 1 zonal wind
anomalies as a function of pressure and phase Oyeighted, Where
Oweighted 1S @ weighted by the histogram distribution of 6 (see
Hamilton and Hsieh 2002). Thus Oyejghted is more representative
of actual time during a cycle than 6. Contour interval is 5 m
s~1, with westerly winds indicated by solid lines, easterlies by
dashed lines, and zero contours by thick lines (Reprinted from
Hsieh 2007. With permission from Elsevier)

m =8 and P = 1073, with the closed curve solution
shown in Fig. 8.7. Thus in this example, by choosing a
rather large m and a small P, the H IC justified having
considerable model complexity, including the wiggly
behaviour seen in the 70 hPa wind (Fig. 8.7c). The
wiggly behaviour can be understood by viewing the
phase-pressure contour plot of the zonal wind anom-
alies (Fig. 8.8): As the easterly wind anomaly descends
with time (i.e. as phase increases), wavy behaviour
is seen in the 40, 50 and 70 hPa levels at Oyejghted
around 0.4-0.5. This example demonstrates the benefit
of having an IC to objectively decide on how smooth
or wiggly the fitted curve should be.

The observed strong asymmetries between the east-
erly and westerly phases of the QBO (Hamilton 1998;
Baldwin et al. 2001) are captured by this NLPCA(cir)
mode — e.g. the much more rapid transition from east-
erlies to westerlies than the reverse transition, and
the much deeper descend of the easterlies than the
westerlies (Fig. 8.8). For comparison, Hamilton and
Hsieh (2002) constructed a linear model of 6, which
was unable to capture the observed strong asymmetry
between easterlies and westerlies.

The actual time series of the wind measured at
a particular height level is somewhat noisy and it is
often desirable to have a smoother representation of
the QBO time series which captures the essential fea-
tures at all vertical levels. Also, the reversal of the

wind from westerly to easterly and vice versa occurs
at different times for different height levels, rendering
it difficult to define the phase of the QBO. Hamilton
and Hsieh (2002) found that the phase of the QBO as
defined by the NLPC 6 is more accurate than previ-
ous attempts to characterize the phase, leading to a
stronger link between the QBO and northern hemi-
sphere polar stratospheric temperatures in winter (the
Holton-Tan effect) (Holton and Tan 1980) than previ-
ously found.

The NLPCA(cir) approach has also been used suc-
cessfully in capturing the non-sinusoidal propagation
of underwater sandbars off beaches in the Nether-
lands and Japan (Ruessink et al. 2004). Hsieh and
Wu (2002) developed a nonlinear singular spectrum
analysis method based on the NLPCA(cir) model.

8.5 Self-Organizing Maps

In this section, we examine a discrete version of
NLPCA. The goal of clustering or cluster analysis is to
group the data into a number of subsets or “clusters”,
such that the data within a cluster are more closely
related to each other than data from other clusters. By
projecting all data belonging to a cluster to the cluster
center, data compression can be achieved.

The self-organizing map (SOM) method, intro-
duced by Kohonen (1982, 2001), approximates a
dataset in multidimensional space by a flexible grid
(typically of one or two dimensions) of cluster cen-
ters. Widely used for clustering, SOM can also be
regarded as a discrete version of NLPCA (Cherkassky
and Mulier 1998).

As with many neural network models, self-
organizing maps have a biological background (Rojas
1996). In neurobiology, it is known that many struc-
tures in the cortex of the brain are 2-D or 1-D. In con-
trast, even the perception of color involves three types
of light receptors. Besides color, human vision also
processes information about the shape, size, texture,
position and movement of an object. So the question
naturally arises on how 2-D networks of neurons in
the brain can process higher dimensional signals.

Among various possible grids, the rectangular grid
is most commonly used by SOM. For a 2-dimensional
rectangular grid, the grid points i; = ([, m), where
[ and m take on integer values, ie. [=1,...,
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L, m=1,....M, and j=1,...,LM. (f a
1-dimensional grid is desired, simply set M = 1).

To initialize the training process, PCA is usually
first performed on the dataset, and a grid z;(0) is
placed on the plane spanned by the two leading PCA
eigenvectors, with each z;(0) corresponding to i; on
the integer grid. As training proceeded, the initial flat
2D surface of z;(0) is bended to fit the data. The
original SOM was trained in a flow-through manner
(i.e. samples are presented one at a time during train-
ing), though algorithms for batch training are now also
available. In flow-through training, there are two steps
to be iterated, starting with n = 1:

Step (i): At the nth iteration, select a sample x(n)
from the data space, and find among the points z; (n —
1), the one with the closest (Euclidean) distance to
x(n). Call this closest neighbor z;(n), corresponding
to the integer grid point i (n).

Step (ii): Let

zj(n) =z;(n — 1) + nh(li; — ix ()%
x [x(n) —z;(n — 1)1,

where 7 is the learning rate parameter and 4 is a neigh-
borhood or kernel function. The neighborhood func-
tion gives more weight to the grid points i; near i (n),
than those far away, an example being a Gaussian
drop-off with distance. Note the distance of the neigh-
bors are computed for the fixed grid points (i; =
(/, m)), not for their corresponding positions z;(n) in
the data space. Typically, as n increases, the learning
rate n is decreased gradually from the initial value
of 1 towards 0, while the width of the neighborhood
function is also gradually narrowed (Cherkassky and
Mulier 1998).

As an example, consider the famous Lorenz
‘butterfly’-shaped attractor from chaos theory (Lorenz
1963). Describing idealized atmospheric convection,
the Lorenz system is governed by three (nondimen-
sionalized) differential equations:

(8.23)

X=—ax+ay, y=—-xz+bx—y,

z=xy—cz, (8.24)

where the overhead dot denotes a time derivative,
and a, b and c are three parameters. A chaotic sys-
tem is generated by choosing a = 10, b = 28, and
¢ = 8/3. The Lorenz data is fitted by a 2-dimensional
SOM (from the MATLAB neural network toolbox) in
Fig. 8.9, and by a 1-dimensional SOM in Fig. 8.10. The

Fig. 8.9 A 2-dimensional self-organizing map (SOM) where a
7 x 7 mesh is fitted to the Lorenz (1963) attractor data

1-dimensional fit resembles a discrete version of the
NLPCA solution found using auto-associative neural
networks (Monahan 2000).

SOM has been applied to the classification of
satellite-sensed ocean color (Yacoub et al. 2001), sea
surface temperature (Richardson et al. 2003), sea level
height (Hardman-Mountford et al. 2003), scatterome-
ter winds (Richardson et al. 2003) and ocean currents

40
35
30\0 .

N 25+

Fig. 8.10 A 1-dimensional self-organizing map (SOM) where
a curve with seven nodes is fitted to the Lorenz (1963) attractor
data
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(Liu et al. 2006). Villman et al. (2003) applied SOM to
not only clustering low-dimensional spectral data from
the LANDSAT thematic mapper, but also to the high-
dimensional hyperspectral AVIRIS (Airbourn Visible-
Near Infrared Imaging Spectrometer) data where there
are about 200 frequency bands. A 2-D SOM with a
mesh of 40 x 40 was applied to AVIRIS data to clas-
sify the geology of the land surface.

Cavazos (1999) applied a 2 x 2 SOM to cluster
the winter daily precipitation over 20 grid points in
northeastern Mexico and southeastern Texas. From the
wettest and driest clusters, composites of the 500 hPa
geopotential heights and sea level pressure were gen-
erated, yielding the large scale meteorological con-
ditions associated with the wettest and driest clus-
ters. Cavazos (2000) and Cavazos et al. (2002) also
applied SOMs with more clusters to other areas of the
world.

8.6 NLPCA for Complex Variables

Complex principal component analysis (CPCA) is
PCA applied to complex variables. In the first type of
application, a 2-dimensional vector such as the wind
(u, v) can be treated as a complex variable w = u + iv
and analyzed by CPCA. In the second type of appli-
cation, a real time-varying field can be complexified
by the Hilbert transform and analyzed by CPCA, often
called Hilbert PCA (von Storch and Zwiers 1999) to
distinguish from the first type of application.

Earlier in this chapter, we have examined the auto-
associative multi-layer perceptron NN approach of
Kramer (1991) for performing nonlinear PCA. Here
we will discuss how the same approach can be applied
to complex variables, giving rise to nonlinear complex
PCA (NLCPCA).

In the real domain, a common nonlinear activation
function is the hyperbolic tangent function tanh(x),
bounded between —1 and +1 and analytic everywhere.
For a complex activation function to be bounded and
analytic everywhere, it has to be a constant function
(Clarke 1990), as Liouville’s theorem states that entire
functions (i.e. functions that are analytic on the whole
complex plane) which are bounded are always con-
stants. The function tanh(z) in the complex domain has
an infinite number of singularities located at (% +1)
i, I € N. Using functions like tanh(z) (without any

constraint) leads to non-convergent solutions (Nitta
1997).

Traditionally, the complex activation functions used
focussed mainly on overcoming the unbounded nature
of the analytic functions in the complex domain.
Some complex activation functions basically scaled
the magnitude (amplitude) of the complex signals
but preserved their arguments (phases) (Georgiou and
Koutsougeras 1992; Hirose 1992), hence they are
less effective in learning non-linear variations in the
argument. A more traditional approach has been to
use a “split” complex nonlinear activation function
(Nitta 1997), where the real and imaginary compo-
nents are used as separate real inputs for the activation
function. This approach avoids the unbounded nature
of the nonlinear complex function but results in a
nowhere analytic complex function, as the Cauchy-
Riemann equations are not satisfied (Saff and Snider
2003).

Kim and Adali (2002) proposed a set of elementary
activation functions with the property of being almost
everywhere (a.e.) bounded and analytic in the complex
domain. The complex hyperbolic tangent, tanh(z), is
among them, provided the complex optimization is
performed with certain constraints on z. If the magni-
tude of z is within a circle of radius 7, then the singu-
larities do not pose any problem, and the boundedness
property is also satisfied. In reality, the dot product
of the input and weight vectors may be > 7. Thus a
restriction on the magnitudes of the input and weights
is needed.

The NLCPCA model proposed by Rattan and Hsieh
(2004, 2005) uses basically the same architecture
(Fig. 8.1a) as the NLPCA model of Kramer (1991),
except all the input and output variables, and the
weight and offset parameters are now complex-valued.
The magnitude of input data are scaled by dividing
each element in the rth row of the / x n data matrix
Z. (with [ the number of variables and »n the number of
observations) by the maximum magnitude of an ele-
ment in that row, so each element of Z has magnitude
<1. The weights at the first hidden layer are randomly
initalized with small magnitude, thus limiting the mag-
nitude of the dot product between the input vector and
weight vector to be about 0.1, and a weight penalty
term is added to the objective function J to restrict
the weights to small magnitude during optimization.
The weights at subsequent layers are also randomly
initialized with small magnitude and penalized during



8 Nonlinear Principal Component Analysis

187

optimization by the objective function

J={lz—21)+ P |w;P, (8.25)
J

where z is the model output, ', the target data, w;, the

individual weights from hidden layers 1, 2 and 3, and

P, the weight penalty parameter.

Since the objective function J is a real function
with complex weights, the optimization of J is equiva-
lent to finding the vanishing gradient of J with respect
to the real and the imaginary parts of the weights
(Rattan and Hsieh 2005). All the weights (and off-
sets) in the model are combined into a single weight
vector w. Hence the gradient of the objective function
with respect to the complex weights can be split into
(Georgiou and Koutsougeras 1992):

0J 8 . dJ

_— = —_— 8.26
ow  owR l(’)WI ( )

where wR and w! are the real and the imaginary com-
ponents of the weight vector. The two components
can be put into a single real parameter vector dur-
ing nonlinear optimization using an algorithm for real
variables.

The tropical Pacific wind anomalies (expressed
as w = u +iv) have been analyzed by NLCPCA in
Rattan and Hsieh (2004), where a comparison between
the first mode of CPCA and that of NLCPCA revealed
a large difference in the spatial anomaly patterns dur-
ing strong El Nifio episodes but a much smaller dif-
ference during strong La Nifia episodes, indicating
stronger nonlinearity was manifested in the El Nifio
side than the La Nifia side of the oscillation.

The second type of NLCPCA application is for
nonlinear Hilbert PCA. In Rattan et al. (2005), evolu-
tion of the offshore bottom topography at three sandy
barred beaches were studied. All three sites were char-
acterized by sandbars with interannual quasi-periodic
offshore propagation. A bar cycle comprises bar birth
in the inner nearshore, followed by up to several years
of net offshore migration and final disappearance in
the outer nearshore zone. CPCA was applied to the
complexified topographic anomaly data, and the five
leading CPCs were retained as inputs for the NLCPCA
NN model. The first NLCPCA mode and the first
CPCA mode of the topographic anomalies at Egmond
aan Zee (The Netherlands) were compared. The topo-
graphic anomalies reconstructed from the nonlinear
and linear mode were divided in 8 6 classes, each 7 /4

in width, where 6 is the phase of the (nonlinear or
linear) complex PC. Figure 8.11 shows how the shape
of the topographic anomalies change with phase. The
CPCA shows sinusoidal-shaped topographic anom-
alies propagating offshore, while the NLCPCA shows
non-sinusoidal anomalies — relatively steep sandbars
and shallow, broad troughs. The percentage variance
explained by the first NLCPCA mode was 81.4% ver-
sus 66.4% by the first CPCA mode. Thus, using the
NLCPCA as nonlinear Hilbert PCA successfully cap-
tures the non-sinusoidal wave properties which were
missed by the linear method.

8.7 Summary and Discussion

The nonlinear generalization of the classical PCA
method has been achieved by a number of different
approaches (neural networks, principal curves, ker-
nel methods, etc.). We have presented nonlinear PCA
(NLPCA) using neural network methods. The tropical
Pacific SST example illustrates that with a compli-
cated oscillation like the El Nifio-La Nifia phenom-
enon, using a linear method such as PCA results in
the nonlinear mode being scattered into several linear
modes. In the study of climate variability, the wide use
of PCA methods has created the somewhat misleading
view that our climate is dominated by a number of
spatially fixed oscillatory patterns, which may in fact
be due to the limitation of the linear method.

By using a curve instead of a straight line to fit
the data, NLPCA is susceptible to overfitting, yield-
ing excessively wiggly curves. The introduction of a
weight penalty parameter P in the objective function
allowed the wiggles to be smoothed, but the lack of an
objective selection criterion for P (hence the amount
of smoothing) has been a weakness in NLPCA, until
recent advances have allowed the objective selection
of P and m (which controls the number of hidden neu-
rons, hence model complexity). While the information
criterion introduced by Hsieh (2007) for model selec-
tion worked well in climate datasets where there is
one dominant signal (e.g. ENSO in the tropical Pacific
SST; QBO in the stratospheric wind), it remains inad-
equate for dealing with datasets which contain two or
more distinct signals of roughly comparable strength —
e.g. in the extratropical N. Hemisphere climate, where
there has been considerable controversy on the use of
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Fig. 8.11 Sequence of topographic anomalies as a function of
the offshore distance at Egmond in 77 /4-wide 6 classes centered
around § = —x to & = 0.757 based on (a) NLCPCA mode 1
and (b) CPCA mode 1. The results for each phase class have

NLPCA (Christiansen 2005, 2007; Monahan and Fyfe
2007), there are two signals of comparable magnitude,
the Arctic Oscillation and the Pacific-North American
teleconnection. The reason is that if there are two com-
parable signals, the total signal forms a 2-D surface
whereas the NLPCA model will be trying to fit a 1-
D curve to this surface, resulting in a hybrid mode
with attributes from both signals. While it is possible to
have two neurons in the bottleneck layer in the NLPCA
network, so that a 2-D solution is extracted, there is no
simple way to separate the two signals. Clearly more
research is needed in developing model selection cri-
teria in NLPCA for such complicated noisy datasets.
NLPCA has also been generalized to closed curve
solutions, and to complex variables. Self-organizing
maps (SOM) provide a discrete version of NLPCA.
Due to space limitation, further generalization to

Offshore distance (m)

been vertically shifted for better visualization. The phase gener-
ally decreases with time, so the anomalies gradually propagate
offshore (Modified from Rattan et al. 2005)

nonlinear singular spectrum analysis and nonlinear
canonical correlation analysis have not been presented
here (see the review by Hsieh 2004).
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