Introduction to Fuzzy Logic

John K. Williams

6.1 Introduction

In the early 1990s, scientists at the National Center for
Atmospheric Research were asked to help the Federal
Aviation Administration objectively determine which
flight service stations throughout the United States
handled the most hazardous weather conditions, and
hence should be spared from congressional budget
cuts. They had access to 15 years of meteorological
data from each location, including winds, temperature,
fog, rain, and snow at 1-min intervals, as well as infor-
mation about the air traffic density and a number of
other factors. However, the level of aviation hazard
was not indicated by any single statistic, but by the
nature, frequency and duration of the conditions and
their combinations. How could the stations be ranked
in a reasonable, objective way?

The scientists began by surveying a group of subject
domain experts — pilots, meteorologists, and airline
dispatchers — quizzing them on what factors, or com-
binations of factors, they considered most dangerous.
Using the results of these surveys along with the repos-
itory of historical data, they then computed a hazard
score for each flight service station, and ranked them.
When the final report was presented to the group of
experts, they opened it and began to laugh — every-
one agreed that the stations with the most hazardous
weather were at the top of the list. Unwittingly, the
NCAR scientists had created a fuzzy logic algorithm,
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efficiently encoding the experts’ knowledge in a set of
rules that reproduced their approach to assessing the
level of hazard presented by each unique set of weather
conditions.

The purpose of artificial intelligence algorithms,
broadly stated, is to perform tasks in a way that mimics
human intelligence. Many of the approaches to creat-
ing artificial intelligence algorithms presented in this
book are machine learning algorithms that automati-
cally recognize patterns or functional relationships in
data. By training on a historical dataset or incremen-
tally adapting as new examples are gathered, these
approaches mimic a human’s ability to draw infer-
ences from data. Of course, a machine doesn’t truly
“learn” as a human does; rather, it uncovers statistical
relationships. To achieve meaningful results, a human
expert is still required to select an appropriate machine
learning technique for a given problem, determine a
representative data set, design data preprocessing or
feature representation, set the evaluation criteria, and
experiment with algorithm parameters to obtain opti-
mal learning behavior.

Fuzzy logic presents an alternative approach to arti-
ficial intelligence by providing a framework for imitat-
ing a human expert’s approach to solving a particular
problem. This approach falls under the class of arti-
ficial intelligence algorithms called “expert systems”
that encode expert knowledge as a set of heuristics,
or rules. For instance, a medical expert system might
help diagnose a disease based on a patient’s answers
to a series of questions. With each answer, the num-
ber of likely possibilities would diminish until finally
the most probable diagnosis was determined. A key
motivation for developing fuzzy logic expert systems
is the recognition that human experts rarely make
decisions based on a sequence of well-defined logical
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statements. For instance, many questions that might
be asked by a doctor diagnosing an illness may not
have clear or definitive answers, and even the questions
themselves might be ambiguous. Rather, humans often
draw inferences from a preponderance of the evidence
available to them — even if it is incomplete — with each
source of information weighed according to its relia-
bility and the strength of its connection to the outcome
being evaluated.

A distinctive contribution of fuzzy logic is that it
provides a conceptual framework for representing nat-
ural language concepts and reasoning by expanding on
the traditional notion of a set, or collection of objects.
For instance, the noun “chair” is in a sense equivalent
to the set of objects identified as chairs. The set of
green chairs is the intersection of the set of objects that
are chairs and objects that are green. A proposition like
“all chairs have legs” is a claim that the set of chairs is
a subset of the set of objects having legs. The “fuzzy”
part of fuzzy logic arises from a recognition that the
sets of objects referred to by words are not “crisp” like
the sets of traditional mathematics in which a given
object is either in a particular set or outside it. Rather,
in everyday language — and, by extension, in human
reasoning — concepts often have “fuzzy” boundaries.
For instance, take the concept of being a chair. Do
thrones, or benches, or bean bags, or step stools, or tree
stumps count as “chairs”? In traditional logic, each of
these objects is either a chair or it isn’t. In fuzzy logic,
on the other hand, set membership is allowed to be
partial. Thus, on a scale of 0 to 1, we might say that
a throne is a chair to the degree 0.9, while a tree stump
might be a chair to the degree 0.1. The proposition “all
chairs have legs” can then be the understood as apply-
ing to different objects only to the degree that they are
members in the set of “chairs”. Reasoning with fuzzy
logic accommodates and even exploits ambiguity, a
feature that turns out to be immensely powerful for
expert systems.

By formally accommodating the ambiguity of nat-
ural language, fuzzy logic makes it possible to encode
human knowledge into relationships between concepts
represented as fuzzy sets. Reasoning involves logical
manipulation of these statements, and multiple lines
of reasoning may be aggregated to form a conclusion.
Thus, fuzzy logic can be viewed as the extension of
classical logic to fuzzy sets and their manipulation.
In addition, in many research communities the term
“fuzzy logic” has come to be applied more broadly

to the theory and practice of computing with fuzzy
sets, or indeed any expert system or set of heuristics
that preserves the uncertainty or ambiguity in data
until a final “decision point.” Fuzzy logic systems have
become increasingly popular, both in industrial and
environmental science applications, because they use
information efficiently, are relatively simple to design
and implement, and often perform impressively well.
They do not require training data, models, or con-
ditional probability distributions; they are robust to
uncertain, missing and corrupted data; they naturally
constrain the possible output to “reasonable” values;
and they often have a “common sense” structure that
makes them relatively easy to interpret and modify.
While they may not always produce the optimal solu-
tion, fuzzy logic algorithms fall within the increasingly
popular domain of “soft computing” methods that pro-
duce very good, practical and relatively inexpensive
solutions to many problems.

This chapter presents a brief history of the devel-
opment of fuzzy logic; describes fuzzy sets, fuzzy set
theory, fuzzy numbers and fuzzy logical operations;
discusses two types of fuzzy inference and a couple
of variants; presents a fuzzy clustering method; and
explains how these pieces can be used to create fuzzy
logic algorithms that may be “tuned” using empirical
data if desired. The field of fuzzy logic theory and
techniques is very broad, though, and this short chapter
is only able to introduce a brief overview of elements
that have been found most useful to the author. Inter-
ested readers are encouraged to consult the texts by
Chi et al. (1996), Klir and Folger (1988), McNiell
and Freiberger (1993), Tanaka (1996), or Zimmer-
man (1996) and the collections of original papers in
Klir and Yuan (1996) or Yager et al. (1987) for a more
thorough exposition.

6.2 A Brief History

Fuzzy logic owes its existence to Lotfi Zadeh, who
in 1965 published an article entitled “Fuzzy Sets”
in a journal he edited, Information and Control,
after having it rejected from several other journals
(Zadeh 1965). Faced with skepticism from his contem-
poraries, Zadeh struggled for years to gain the recog-
nition that his revolutionary ideas deserved. How-
ever, some researchers were quick to see the practical
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utility of his work. In 1973, Ebrahim Mamdami and
Sedrak Assilian successfully used fuzzy logic to build
a controller for a steam engine. In 1978, Laritz Peter
Holmblad and Jens-Jorgen @stergaard developed and
commercialized a fuzzy logic controller for industrial
cement kilns. And in 1979, Hans Berliner’s BKG 9.8
program beat the backgammon world champion by
the convincing score of 7-1. The use of fuzzy logic
developed particularly rapidly in Japan, where a sub-
way system developed by Hitachi using predictive
fuzzy controllers entered service in Sendai in 1987.
These early successes were followed by an explo-
sion of applications in consumer electronics and appli-
ances, finance, and industrial process control, first in
Asia and eventually also in Europe and the United
States.

The value of fuzzy logic algorithms in the envi-
ronmental sciences gained recognition beginning in
the early 1990s. In 1993, MIT Lincoln Labora-
tory developed a fuzzy logic algorithm for detecting
gust fronts from Doppler radar data (Delanoy and
Troxel 1993). In 1994, researchers at the National
Center for Atmospheric Research created an algorithm
for detecting microbursts — wind events associated
with thunderstorms that had been responsible for a
number of airplane crashes — based on Doppler radar
data (Albo 1994, 1996; see also Merritt 1991). Fuzzy
logic was soon employed in algorithms for process-
ing sensor data, recognizing hazardous weather condi-
tions, producing short-range forecasts, and providing
weather decision support information to aviation, state
departments of transportation, and other users. By the
early 21st century, a large number of the decision sup-
port systems produced by NCAR’s Research Applica-
tions Laboratory incorporated fuzzy logic in one way
or another. Some of these applications are described in
detail in Chapter 17.

6.3 Classical and Fuzzy Sets

A fundamental concept of fuzzy logic is that of the
fuzzy set. As mentioned earlier, a fuzzy set is an exten-
sion of the classical notion of a set: whereas a classical
set divides the universe of objects into two distinct
categories, those in the set and those outside it, a
fuzzy set permits intermediate degrees of membership.
More formally, every classical set is determined by its

characteristic function, a mapping that assigns every
object in the set a membership value of 1, and every
object outside it a value of 0. For instance, the set of
“tall people” might have a characteristic function that
assigns 0 to all people having heights less than 5" 9”
and 1 to those with height 5 9” or greater. The equiv-
alent concept for fuzzy sets is that of a membership
function, which assigns every object a value between
0 and 1 representing its degree of membership in a
set. The membership function for the fuzzy set of “tall
people” might be 0 for people less than 5' 4” tall, then
rise gradually to 0.5 for people 5 9” tall, and then
continue to rise to a value of 1 for people 6’ 3” tall or
taller. Most of us would agree that this representation
more accurately represents the concept of being a “tall
person”: rather than enforcing a discontinuous cutoff
at some particular height, the fuzzy set quantifies the
ambiguity (Fig. 6.1).

The reader may have noticed that the concept of
fuzzy membership is reminiscent of probability theory,
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Fig. 6.1 (Top) A classical set characteristic function (0 or 1)
for “tall” as a function of a person’s height. (Bottom) A fuzzy
set membership function representing continuous “degrees of
tallness” as a function of height.
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Fig. 6.2 Depiction of the

classical set operations
complement, intersection and
union. Black shading
represents elements in the
resultant set.

Set A

Complement (Not A)

Intersection (AND): A~ B

in which “events” are assigned values between 0 and 1
representing their likelihood. Both fuzzy memberships
and probabilities can be interpreted as “measures”
and manipulated mathematically. However, probabil-
ities and fuzzy set memberships are really quite dif-
ferent concepts. While probabilities capture summary
information about random events — for instance, the
likelihood that a person chosen randomly from a crowd
will have a height above 5’ 9” — a fuzzy membership
captures the ambiguity in a concept itself, e.g., what
we mean by the very notion of “being tall”.

Classical set theory defines several important oper-
ations on sets that are useful in formal logic. For
instance, the complement of a set A, denoted A€, is the
set of all objects not in A (Fig. 6.2). The characteristic
function for A° is the binary opposite of that for A;
that is, when the characteristic function for A is 1, the
characteristic function for A€ is 0, and vice versa. Writ-
ing the characteristic function for A in the traditional
fashion as x4 (here x is the Greek letter “Chi”) and
that of A€ as x4, this relationship can be expressed in
an equation as x4c = 1 — x4. (Note that this is a func-
tional equation, that is, one that involves a relationship

Union (OR): Au B

between functions rather than numbers. It is equiv-
alent to saying that the functions x4 and x4 share
the same domain, and that yac(a) = 1 — x4 (a) for all
elements a in that domain.) As an example, suppose
A is the classical set of “tall people” as defined in the
previous paragraph, and suppose Peter is 5’ 8”. Then
xa(Peter) =0 and xac(Peter) = 1 — x4 (Peter) = 1.
The complement of “tall people” is the set of people
who are not tall — a set that includes Peter.

In fuzzy set theory, the binary characteristic func-
tion is replaced by a continuous membership func-
tion that can take on any value between O and
1 (Fig. 6.3). Writing the membership function for
the fuzzy set B as up (u is the Greek letter
“Mu”) and that of its fuzzy complement B¢ as puge,
then wpe =1 — wp. Since fuzzy sets and member-
ship functions are equivalent, this functional equation
defines the fuzzy set complement. Now suppose that
the fuzzy set B of “tall people” is defined so that
up(Peter) = 0.4. Then x g (Peter) = 1 — xp(Peter) =
1 — 0.4 = 0.6. In words, one could say that Peter is
a member of “tall people” to the degree 0.4, and a
member of “not tall people” to degree 0.6. As another
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Fig. 6.3 Depictions of fuzzy
set operations. The degree of
membership in the resultant
set is represented by shades of
gray, with white points having
membership 0 and black
points having membership 1.
Dotted red circles represent
the 0.1 membership contours
of the original fuzzy sets.

Set A

Complement (Not A)

Intersection (AND): A~ B

example, consider colors. When an object is identi-
fied as “blue”, there is really quite a range of fre-
quency values on the electromagnetic spectrum that
could be referred to, ranging from blue-green to almost
purple. Figure 6.4 (top) illustrates membership func-
tions for the concept “blue” and its complement, “not
blue”.

Other elements of classical set theory have similarly
natural analogues for fuzzy sets. The union of two clas-
sical sets A and B, written A U B, is the set of all ele-
ments in either set A or set B, or both. In terms of the
characteristic function, x4up = max(x4, xp); that is,
xaup = 1 wheneither x4 = 1 or xg = 1 (or both). For
fuzzy sets A and B, the union is defined by the mem-
bership function equation wsyp = max(pa, Upg), as
illustrated using the color concepts “blue” and “green”
in Fig. 6.4 (middle). The intersection of two classical
sets A and B, written A N B, is the set of all objects
in both sets A and set B. In terms of the characteris-
tic function, yanp = min(xa, xg); thatis, x4 and xp
must both be 1 for x4np to be 1. The intersection of
two fuzzy sets A and B is defined by the member-
ship function equation psnpg = min(p 4, ppg). This is

Union (OR): AU B

illustrated in Fig. 6.4 (bottom). For two classical sets A
and B, we say that A is a subset of B and write A C B
if all objects (or elements) of A are also in B. That is
the same as saying that the characteristic function of A
can be 1 only when the characteristic function of B is
1, that is, x4 < xp. Similarly, for fuzzy sets A and B,
A is a subset of B if all elements of A are also in B to at
least an equal degree, that is, if u4 < up (see Fig. 6.5).

Several consequences of these definitions that hold
for classical sets also hold for fuzzy sets. For instance,
if ACB and BC C, then A C C since s < up
and pup < puc implies us < pe. And if A C B and
B C A, then A = B because s < up and pup < s
implies @4 = wp. The reader may similarly verify
that many properties of classical set operations also
hold true for fuzzy sets, including idempotency: A U
A=Aand AN A = A, commutativity: AUB = BU
Aand AN B = BN A, associativity: (AU B)UC =
AUBUC)and (ANB)NC=AN(BNC), dou-
ble negation: (A°)° = A, and De Morgan’s Laws: (A U
B) = A°N B¢ and (AN B)° = A°U B°. However,
the law of contradiction, A N A° = J (where ¢ is the
empty set, having membership function 0 everywhere)
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Fig. 6.4 Anillustration of the fuzzy set operations complement,
union and intersection using color concepts. The tables to the
right provide numerical examples for several sample member-

does not hold for fuzzy sets since an element may
have nonzero membership in both a fuzzy set and its
complement.

The logical operations of complement (not), inter-
section (and), and union (or) have been defined above
by a mathematical operation on the sets’ membership
functions, as “one minus”, “min”, and “max”, respec-
tively. This is intriguing, since it suggests that other

ship function values. Note that for the binary (0 or 1) cases, the
fuzzy set operations produce the same results as those used in
classical logic.

mathematical operations on membership functions
may also be interpreted as logical operations on
fuzzy sets. Indeed, the arithmetic mean of two mem-
bership functions, (14 + ©p)/2, or geometric mean,
(s - wp)'/? are both frequently used in fuzzy logic
algorithms, offering “softened” versions of “or” and
“and” as illustrated in Fig. 6.6. Using different expo-
nents and weights can allow further manipulation of
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Fig. 6.5 Illustration of fuzzy

sets A and B defined over a
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Fig. 6.7 An example 2-D membership function for “W-band radar Rayleigh scattering” as a function of reflectivity and linear

depolarization ratio (LDR).

these means’ behavior. Many other manipulations of
fuzzy sets are possible, leading to great flexibility
in the design of fuzzy logic algorithms. However, it
is worth reiterating that for fuzzy sets having only
binary (0 or 1) membership values, fuzzy logic’s stan-
dard logical operations are completely equivalent to
those for classical sets. Thus, fuzzy logic is equiv-
alent to classical logic for “crisp” fuzzy sets, and
fuzzy set theory is truly an extension of classical set
theory.

Finally, it should be noted that while it is con-
venient to illustrate fuzzy membership functions as
being functions of a single variable, they may actu-
ally be functions of arbitrarily many. In environmental
science applications, the variables might be multiple
attributes or measurements of the environmental state.
As an example, consider the problem of determining
whether the droplets in a cloud are small enough that
they produce Rayleigh scattering of a radar signal,
which is important for some remote sensing applica-
tions. A possible membership function for “W-band

Rayleigh scattering” (W-band is a radar frequency
near 95 GHz), based on the radar-measured linear
depolarization ratio (LDR) and reflectivity (dBZ), is
shown in Fig. 6.7. This fuzzy set is most conve-
niently defined in 2-D because of the complicated
interaction of these two quantities (Vivekanandan et al.
1999).

6.4 Fuzzy Numbers

Although we usually think of numbers as being inher-
ently precise, they often actually represent approxi-
mations or are subject to uncertainty. For instance,
someone might say “T’ll be ready at 7 pm” or “it will
take 15 minutes to get there”, but the first sentence
is often understood to be approximate and the second
is an estimate whose accuracy may vary considerably
based on travel conditions. One way to propagate this
sort of “fuzziness” through a calculation or take it into
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account when comparing two quantities is through the
concept of fuzzy numbers.

Before defining fuzzy numbers, it is helpful to
establish some descriptors for different kinds of fuzzy
sets. We say that a fuzzy set A is convex if its
membership function contains no local “dips”, or, for-
mally, if for any elements x; and x, and any num-
ber A between O and 1, 4 ((1 — A)x; 4+ Axp) > (1 —
A) a(xp) + X pa(xz). Afuzzy set A is normal if there
is at least one element x for which p4(x) = 1. Using
these concepts, a fuzzy number is defined to be a con-
vex, normal fuzzy set with a continuous membership
function having the property that {x : was(x) = 1} is
either a single element or a connected region (e.g.,
an interval). Common examples of fuzzy numbers
include “triangle” functions and Gaussian bell-curve
functions.

Any function f that operates on ordinary numbers
may become a mapping of fuzzy numbers through the
extension principle. If f : X — Y, then the image
of a fuzzy set A defined in the space X is a fuzzy
set f(A) in the space Y with membership function
Mgy (y) = sup {pa(x)|f(x) =y} when y is in the
range of f (that is, there is at least one element
x € X for which f(x) =y), or O otherwise. Here
“sup” stands for supremum, the smallest number
that is greater than or equal to every member of
the set of values within the curly brackets; it is
the same as the maximum if the set in brackets is
“closed.” The extension principle basically says that
the membership value of f(A) at a point y is the
biggest of the membership values p4(x) for the
points x that are mapped to y. If f takes multiple
arguments, so that f: X; x X5 x ...X, — Y, then
the fuzzy set A = A; X A X ... A, may be defined
by pa(xi, x2,. .., x,) = min(ua, (x1), na,(x2), ...,
1a,(x,)) and the extension principle says
My (y) = sup{min(ua, (x1), a,(x2), ..., pa, (X2))|

f(x1,x2,...,x,) =y} when y is in the range of f,
and 0 otherwise.

Computing the image of a fuzzy set can be compu-
tationally difficult, particularly for multivariate func-
tions. However, there are some cases in which it is
relatively easy. For instance, if f is an invertible
function, and y is in the range of f, then s (y) =
wa (f7'(»)). In particular, if f is linear (and nonzero)
and A has a piecewise-linear membership function,
then f(A) is a piecewise-linear function determined
by simply mapping the vertices of the membership
function for A via f. For instance, the membership
function for the fuzzy number “about 3” shown in
Fig. 6.8 has vertices (2.5, 0), (2.875, 1), (3.125, 1), and
(4.0, 0); its image under a linear function f is again
piecewise linear with vertices (f(2.5), 0), (f(2.875),
1), (f(3.125), 1), and ( f(4.0), 0). The image of “about
3” under a monotonic but nonlinear map g may not
be piecewise linear, as the example in Fig. 6.8 shows.
Nevertheless, a piecewise linear approximation with
vertices (g(2.5), 0), (g(2.875), 1), (g(3.125), 1), and
(g(4.0), 0) would probably be adequate for many prac-
tical applications.

Computing with fuzzy numbers provides a way
to propagate uncertainty or ambiguity in input val-
ues through a formula or algorithm. For instance,
fuzzy numbers may be used to represent environmen-
tal quantities subject to small-scale spatial or tempo-
ral variability or random measurement noise. If these
are then used as inputs to a mathematical model or
other formula, the answer will be a fuzzy number
whose shape will indicate the spread or uncertainty
in the result. For example, a method for remotely
detecting the liquid water content L in clouds using
measurements from two radars operating at different
frequencies is based on a formula that relates L to
the range derivative of the difference in measured
reflectivity:

(ABZ\(r + Ar) — dBZs(r + Ar)) — (ABZ,(r — Ar) — dBZy(r — Ar))

L(r) =

6.1

2Ar Ap(r)

where r represents a range along the radar beams,
Ar is the range spacing between adjacent measure-
ments along a beam, dBZ denotes reflectivity on
a decibel scale, and A is a differential absorption
coefficient whose value is a function of the two
radar frequencies and the temperature (Williams and

Vivekanandan 2007). The uncertainty in estimating the
temperature at r leads to an uncertainty in A;, and
random noise affects each of the dBZ measurements.
Using fuzzy numbers to represent each of these quan-
tities yields a fuzzy number L(r) that provides infor-
mation about the distribution of possible true values
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Fig. 6.8 (Top) One possible membership function for a fuzzy number “about 3”. (Left) Membership function for f(“about 3”)
where f(x) = —5/3x + 6. (Right) Membership function for g(“about 3”’) where g(x) = 1/(x — 2).

of liquid water content. This characterization of uncer-
tainty might be very important to a decision support
application — for instance, in assessing the risk that
an aircraft flying through the measured region might
experience hazardous icing conditions.

6.5 Fuzzy Logic

In classical logic, many logical statements may be
represented in terms of set relations. For instance, a
common form of reasoning is modus ponens, which
states that if the sentence “if P, then Q” and the state-
ment “P” both hold true, then it necessarily follows
that the statement “Q” must also hold true. The state-
ment “if P, then Q” is equivalent to the set inclusion

A C B, where A is the set of elements for which P
is true and B is the set of elements for which Q
is true. Said another way, suppose x is an element,
e.g., an environmental state, with attributes a(x) and
b(x). Then the statement, “if a(x) € A then b(x) € B”
means that the set of elements x for which a(x) € A is
a subset of the elements x for which b(x) € B, that is,
A C B. In terms of characteristic functions, if x4 <
xs and xa(x) =1, then it follows from this state-
ment that necessarily ypg(x) = 1; on the other hand,
if x4(x) = 0, nothing is known about xg(x). In fact,
it is possible to write an equation for modus ponens
in terms of characteristic functions that expresses the
value of xp(x) given a value for a(x) and the state-
ment “if a(x) € A then b(x) € B” (“A — B” for
short). One such equation is X,(x),4— 5 (b(x)) = min
(1,1 — xa(x) + xg(x)). To see why, note that if
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a(x) € A, then x4 (x)=1 and it follows that
Xa(x).A—B(b(x)) = min(1, xp(x)) = xp(x), that is,
b(x) € B. Otherwise, xa(x) =0 and it follows that
Xa).4—B(b(x)) = min(1, 1 + xp(x)) = 1, represent-
ing the convention in classical logic that a logical state-
ment is always held to be true when the premise is
not satisfied, or, equivalently, that the statement gives
no information about whether b(x) € B in this case.
Thus, the modus ponens equation shows that for each
value a(x) in the domain of A, the classical logic
statement “A — B” produces a set over b(x) in the
domain of B; this set may either be B itself or the
entire domain of B. Since fuzzy logic is an exten-
sion of classical logic, the fuzzy logic equivalent to
modus ponens must be defined to also generate such a
set.

In fuzzy logic, the statements P and Q are not
necessarily either true or false, but may be only par-
tially true. If A and B are fuzzy sets with member-
ship function w4 representing the degree to which
P is true and pp representing the degree to which
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Q is true, then by analogy with classical logic, the
statement “if P, then Q” should mean u, < ugp.
However, this tempting interpretation turns out to be
nonsensical. For instance, it might happen that the
fuzzy set B is not normal, that is, Q is a state-
ment that is never fully true. Then pp is always less
than one, but it should still be possible to form a
meaningful fuzzy logical statement “A — B” where
A is normal, that is, u4 may be 1 and the premise
completely true! For instance, consider the state-
ment “if a dessert includes chocolate, then it is deli-
cious”, so that P = ““a dessert includes chocolate” and
Q = “a dessert is delicious”. The fuzzy set A of
desserts including chocolate certainly has members
with truth value one. On the other hand, the fuzzy
set B of “delicious desserts” may not have any incon-
trovertible members — particularly if a cantankerous
professional food critic is setting the scale. The crux
of the issue is that fuzzy logic gives information about
the consequent Q even when the premise P is not
completely true or the consequent itself is ambiguous.
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Fig. 6.9 Illustration of Mamdami’s fuzzy implication. The top
two plots provide possible definitions of the concepts “raining”
in terms of precipitation rate and “overcast” in terms of solar
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light extinction, respectively; the lower plot illustrates the fuzzy
set resulting from the statement “If it is raining, then it is over-
cast” given a measured precipitation rate value of 1 cm/h.
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There are a number of different definitions for
fuzzy modus ponens that define the resultant fuzzy set
Ma(x),A— g (b(x)) in a way that achieves this. One was
proposed by Mamdami (1974): pa).a—pb(x)) =
min(u4(x), wp(x)). For a given value of a(x), wa(x)
has a specific value between 0 and 1 and the right
hand side of this equation represents a fuzzy set over
attribute b of x that is equal to wp(x) but trun-
cated at an upper bound of p4(x). In words, this
definition of fuzzy logical implication means some-
thing like, “if attribute @ of x is a member of set
A to the extent ua(x) and A — B, then attribute b
of x is a member of set B to at most the extent
HUa(x).” Mamdami-style inference is illustrated in
Fig. 6.9 for the statement, “If it is raining, then it
is overcast.” Other definitions for ) a—p(b(x))
include one proposed by Zadeh: min(1, 1 — w4 (x) +
up(x)); the product: wa(x)upg(x); the bounded prod-
uct: max(0, ua(x) + up(x) —1); and the Boolean
logic implication: max(1 — 4 (x), np(x)).

In most cases, additional pieces of evidence and
associated logical statements are necessary to refine
the fuzzy set resulting from fuzzy modus ponens. The
process of combining different sources of evidence
using logical rules and determining a final “crisp” out-
put is called fuzzy inference.

6.6 Mamdami-Style Fuzzy Inference

The ultimate purpose of an artificial intelligence algo-
rithm is to map a set of inputs to one or more
outputs. In environmental science applications, the
inputs often consist of environmental measurements or
measurement-derived quantities, and the outputs typ-
ically represent an estimate of some attribute of the
system’s state or a recommended action to be taken.
Such mappings may be complex, and will often be
nonlinear. Fuzzy inference provides a way to build up a
mapping of this sort using logical rules like those often
employed in human natural language, as described
in the previous section. Because an “if...then” state-
ment involving fuzzy sets applies for any degree
of truth of the antecedent and provides only weak
information about the consequent, many such fuzzy
rules may need to be combined to provide conclu-
sive evidence. The ability to make use of multiple

sources of ambiguous information is one of the great
strengths of fuzzy logic inference. Not only does it
allow information to be used efficiently, but the fact
that many different rules are employed means that if
some input data are missing, the fuzzy inference sys-
tem can still function using the remaining rules. For
this reason, fuzzy logic algorithms are generally quite
robust.

To explore the structure of a fuzzy inference
system more concretely, suppose that the goal
of the system is to predict a value for a state
parameter u(x) based on a number of environmental
attributes a(x), b(x), ..., d(x). If a number of rules
exist connecting these environmental attributes
(measurements or derived quantities, for instance)
to the state parameter being predicted, then the
antecedents and consequents of these rules must be
fuzzified, i.e., defined as appropriate fuzzy sets over
the domain of the relevant attribute. The rules can
then be expressed as a set of fuzzy logic statements
like those discussed in the previous section, e.g.,
A— R,B— S,...D — T.Using the known values
of the various environmental attributes in conjunction
with these statements and an appropriate definition of
fuzzy implication, each rule will yield a fuzzy set over
the domain of the parameter u(x). These resulting
fuzzy sets may then be aggregated to form a final
resultant fuzzy set over u(x). The most common way
to perform this aggregation is by taking the maximum
of the membership functions resulting from the
various rules. In this case. the membership function
resulting from the input values and fuzzy rules is
given by  a().b)....d(x),A—>R.B—S,...D—>T (U(X)) =
max (La(x),A—R(X)s Ubx),B—>5(X), « . oy hd(x), DT (X)).
If the Mamdami  definition of  fuzzy
implication is used, for example, this
becomes  a(x).bw)....d(x), A= R.B=S,...D—T (U(X)) =
max(min(ua(x), pg(x)), min(ug(x), usx)),...,
min(up(x), ur(x))) and is called Mamdami-style
inference. Other methods for aggregation include
taking the sum of the membership functions resulting
from the various rules and either capping it at 1 or
renormalizing the sum so that the maximum value
is 1.

Once the resultant fuzzy set is obtained by aggre-
gating the results of the fuzzy rules, it is often desirable
to produce a final, “crisp” estimate of the value u(x)
through a process called defuzzification. One way to
perform defuzzification is to compute the centroid of
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Fig. 6.10 Illustration of Mamdami-style inference for deter-
mining a quantity u given four fuzzy rules and input values
a, q, r, and s. Aggregation is performed by taking the

the aggregated fuzzy set:

This is the method illustrated in Fig. 6.10. Other meth-
ods for defuzzification include taking the value of
u(x) for which w, ) b),...dx), 4> R, B—>5...p>T1 @(X))
obtains its maximum, or computing the centroid over
only those values for which it exceeds some threshold.

A concrete example may help clarify the Mam-
dami fuzzy inference procedure. Suppose that a certain
teenager, who is in charge of watering the lawn each
Saturday, appears to need some assistance in knowing
how much to water each week. If you had a soil
moisture sensor, you could devise a formula to pre-
scribe a precise watering time. But without a sensor,
you might come up with the following simple rules as
a guide:

Rule 1: If the weather has been cool or wet, water
a little.
Rule 2: If the weather has been hot or dry, water a lot.

These are precisely the kind of natural language rules
that can be turned into a fuzzy logic expert system.
The first step is fuzzification, that is, defining the
appropriate fuzzy sets for the concepts involved. Cool

maximum of the four truncated sets and defuzzification is
achieved by computing the centroid of the aggregated fuzzy
set.

and hot are weather attributes that might naturally be
defined based on the average temperature measured
over the past week, ¢; see Fig. 6.11. Similarly, dry
and wet are precipitation concepts that could be
defined in terms of the total precipitation over the
past week, p. Finally, watering a little or a lot in
this context could be defined by the number of hours
the water is to be left on, . Now on any given
Saturday, a review of weather records over the past
week will yield ¢ and p. Recalling that the fuzzy set
union (“or”) may be represented by the maximum
of the sets’ membership functions, it follows
that Mecool or wet(week) = max(//l'cool(t)a /‘Lwef(p)) and

Mhot or dry(week) = max(fpe (1), Mdr)(p)) To eva-
luate Rule 1 under Mamdami-style fuzzy inference,

we compute the antecedent, [lcoor or wer(Week),
and use it to “cap” the membership function of
the consequent, (, jime(h), resulting in the fuzzy
set w1 (h) = max(min(eoor or wer(Week), pq tie(h))).
Similarly, evaluating Rule 2 yields the fuzzy set
H/Z(h) = max(min(ﬂhot or dw(week)s Ma Iot(h)))' Next
we must aggregate the results of these two
rules, for instance, by taking their maximum:
max (i (h), up(h)). Finally, we wish to determine
a precise number of hours to water, which
we do through defuzzification. This may be
accomplished, for instance, by taking the centroid

S max(uy(h), po(h))dh / [ max(ui(h), pa(h)) dh,
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Fig. 6.12 Watering time as a
function of the previous
week’s temperature and
precipitation, produced by
substituting pairs of values of
t and p into the example
Mamdami-style fuzzy logic
inference system described in
the text.

215

Watering time, h (hours)

where the integrals are computed via an appropriate
sum or quadrature. The ultimate result of this inference
procedure is the function depicted in Fig. 6.12 that
maps a week’s average temperature ¢ and total
precipitation p into a prescribed number of hours £ to
water the lawn. The function is surprisingly complex
given the simplicity of the rules, and is nonlinear
despite the fact that all the membership functions are
piecewise-linear. The addition of other rules could
help refine it further. For instance, specifying that no
watering is needed if it is cool and wet would allow
the watering time to approach zero in those conditions,
which the initial function does not. And including
linguistic rules involving other factors, such as soil
type, season of year, or type of grass used in the lawn,
could make the function more general. Nevertheless,
the fact that Mamdami-style fuzzy inference based
on two simple rules produces a function having
basically the correct behavior clearly illustrates the
power of this approach.

6.7 Takagi-Sugeno Fuzzy Inference

The language of science is of course not only lin-
guistic, but also mathematical. Thus, another form
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of human scientific reasoning involves determining
when the environmental conditions are those in which
a known physical relationship applies. For example,
photosynthesis in plants may be limited by light,
water, carbon dioxide or nutrient availability, so dif-
ferent models for photosynthesis may be applicable
under different soil, weather and atmospheric con-
ditions. One might apply each of these models to
make a prediction of photosynthesis, then perform
a weighted average of the predictions using weights
that represent their degree of applicability based on
the current environmental conditions. A version of
fuzzy inference that accommodates this form of rea-
soning is called Takagi-Sugeno-style fuzzy inference,
named for the researchers who proposed it (Takagi and
Sugeno 1985).

In Takagi-Sugeno inference, a linguistic rule is used
to determine the degree of applicability of a given for-
mula for determining the variable of interest. The con-
sequent of a Takagi-Sugeno fuzzy rule is not a fuzzy
set as it is for Mamdami-style inference, but instead
a direct estimate of the variable determined by the
formula. So if the goal of the fuzzy inference system is
to predict a value for a state parameter u(x) based on
a number of environmental attributes a(x), b(x),...,
d(x), a fuzzy rule might then have the structure, “If
A, then u(x) = f(a(x), b(x),...,d(x))”, where A is
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a fuzzy set dependent on some number of environmen-
tal attributes. (In a common formulation of Takagi-
Sugeno fuzzy inference, the function f is assumed
to be linear and to use only the variables involved
in the linguistic rule, but these restrictions are not
necessary.) Given n rules of the form, “If A;, then
u(x) = fia(x),b(x),...,d(x))”, the resulting esti-
mate of u(x), denoted #i(x), is then determined by the
weighted average

il pn, () fi(@(), b(x). ... d(x))

ax) ==

m (6.3)
> 1, (x)
i=1
In some cases, there may be some rules which
have greater relevance than others even when their
antecedents are equally true. In this case, a researcher
might assign an importance weight w; to each rule and
compute the estimate of u#(x) via the formula

S Wi pa, (©) fi(@(@), b, . .., d(x))

i(x) = =t

é Wi fa, (X)
- (6.4)

Note that no additional defuzzification step is
needed for Takago-Sugeno fuzzy inference because
the result is the numerical estimate i, not a fuzzy set.

h(t, p) =

This makes Takago-Sugeno fuzzy inference compara-
tively efficient, while the ability to use arbitrary func-
tions f as the consequents of the fuzzy rules makes it
quite flexible. In addition, algorithms using this archi-
tecture are inherently robust because if some data are
missing, the remaining data may still be sufficient to
compute (6.4) with some values of i left out.

A special form of Takagi-Sugeno fuzzy inference
occurs when the functions f; are simply constant
values, that is, when the fuzzy rules have the form, “If
A, then u(x) = ¢.” In this case (6.3) may be interpreted
as averaging a number of numerical predictions, with
the weight of each prediction being given by the degree
of truth of the antecedent to each rule. It is interesting
to note that the final result in this case is the same as
it would be if the consequents are interpreted as fuzzy
sets and Mamdami-style fuzzy inference is employed
along with the centroid method of defuzzification. For
example, Takagi-Sugeno style rules for the watering
time example from the previous section might be writ-
ten as:

Rule 1: If the weather has been cool or wet, watering
time h; = 0.75 h.

Rule 2: If the weather has been hot or dry, watering
time A, = 2.15 h.

Then the resulting estimate of required watering time
is given by the function:

Mool arwet(tv P) (075) + /’Lhotordry([v P) (215)

Mcoolorwet(tv P) + Mhotordry(ta P)

max(feoor ()5 wer(P))(0.75) + max (wpo (1), Hdry(p) )(2.15)

(6.5)

max(,ucuol(t)’ :ufwet(p)) + max(“hat(t)v I‘Ldry(p) )

where the membership functions for cool, wet, hot,
and dry are again defined by the plots in Fig. 6.11.
This function & is nearly indistinguishable from the
function resulting from the Mamdami-style inference
system described in the previous section and plotted in
Fig. 6.12. Indeed, the Mamdami-style system would
be identical to (6.5) if the fuzzy sets for “water a
little and “water a lot” were replaced by their “typ-
ical” values, that is, the singleton sets p, jime(h) =

1ifth=0.75 1ifh =215 .
Ootherwise  ANd a 1or(h) = { 0otherwice > tUrning the

centroid defuzzification step into the simple weighted
mean. A Mamdami-style inference system can fre-
quently be simplified using this technique without

substantial loss of information, particularly if the con-
sequent fuzzy sets are symmetric or nearly so and do
not overlap substantially.

6.8 Fuzzy Consensus Methods

A somewhat simplified form of Takagi-Sugeno fuzzy
inference may be interpreted as one of the class of arti-
ficial intelligence techniques called consensus meth-
ods or mixtures of experts. In this interpretation, each
member of a group of “experts” evaluates various
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attributes of the environmental state and makes a pre-
diction of some variable of interest. The results are
then averaged, using weights for each expert’s predic-
tion based on some measure of his or her reputation
or past skill. In addition, the experts might accompany
each prediction with a 0 to 1 measure of their confi-
dence in it, with greater confidence being expressed
when the required data are available and of good qual-
ity and the theory or experience being applied by the
expert is judged appropriate to the conditions at hand.
If the reasoning of each expert from evidence to pre-
diction is described by a function f, this procedure
corresponds precisely to that described in (6.4), but
with the fuzzy set membership values 4, (x) replaced
by each expert’s “confidence”, c;:

n

> wici(x) fi(x)
i) =" (6.6)

> wici(x)
i=1

Said another way, the fuzzy consensus reasoning for-
mula (6.6) is a special version of Takagi-Sugeno fuzzy
inference in which the antecedent A; for each rule is
taken to be the fuzzy set, “the required data are of good
quality and the predictive function is appropriate for
this scenario.” Many applications in the environmental
sciences are naturally handled using fuzzy consensus
reasoning, taking as inputs several environmental mea-
surements or features, using an assortment of methods
to predict a variable of interest, and then combining
the results. For instance, in forecasting thunderstorm
initiation, researchers might utilize data from satellite-
measured cloud-top growth rates, numerical weather
models, and radar measurements, each of which can be
used to give a prediction of whether initiation is likely
to occur, and then combine them to obtain a more
reliable forecast than any of the inputs could provide
by themselves.

In many applications, assigning the confidences c;
is a very important part of the fuzzy consensus algo-
rithm. In fact, the confidences are often computed
using data quality values and assessments of relevance
that are themselves determined by separate fuzzy logic
algorithms. The assignment of a confidence to each
prediction also allows the final output given by the
fuzzy logic algorithm to itself be assigned a confidence
value that will aid users in interpreting it for deci-
sion making purposes. For instance, if an atmospheric
turbulence detection algorithm estimates severe turbu-

lence in a region but has low confidence in this assess-
ment, it might not make sense to re-route air traffic
around the area without other confirming information
that a hazard is present. The confidence associated
with the estimate in (6.6) might be computed as

S (i)™
A i=1
c(x) = —;

>owi (ci(x)”

i=1

6.7)

if any product w;c;(x) > 0, and O otherwise, where
m > 0. For example, if one chooses m = 0, the for-
mula (6.7) simply produces the weighted-mean con-
fidence. If m > 0, then the confidences become part
of the averaging weights, and as m — oo, ¢(x) —
max; |w, >0y Ci(x). More generally, since confidences
are equivalent to fuzzy membership function values,
they may also be combined using fuzzy-logical oper-
ations, such as AND (min) or a weighted geometric
average such as

5(x) = ﬁ Ci(x)Wi/ZZ:] Wi

i=1

(6.8)

which yields a large final confidence ¢ only if all of the
input confidences ¢; with w; > 0 are not too small.

Returning to the example of determining the opti-
mal lawn watering time based on the previous week’s
temperature and precipitation, predictive functions or
interest maps based on ¢t and p alone might be cho-
sen as depicted in Fig. 6.13; although these happen
to be piecewise-linear functions, that is for illustrative
purposes and is not a requirement. Suppose that for
a particular week both predictions have equal confi-
dence (say 1), and that the temperature interest map
is given a weight of 0.4 and the precipitation interest
map a weight of 0.6. Then the function resulting from
applying the fuzzy consensus reasoning formula (6.6)
is displayed in Fig. 6.14. Note that Fig. 6.14 is quite
similar to Fig. 6.12 except that it is piecewise linear
(being a linear combination of piecewise linear func-
tions in this example). If the confidence in f and p were
not equal, then the interest map with higher confidence
would begin to dominate. Of course, in a practical
application there would ideally be many inputs pro-
viding somewhat redundant information so that loss of
confidence in one or two input variables would only
slightly degrade performance.

Two applications of the fuzzy consensus reason-
ing technique deserve special mention. The first is an
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Fig. 6.13 Possible interest maps for determining watering time given precipitation (left) or temperature (right) for use in a fuzzy

consensus reasoning system.
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Fig. 6.14 Watering time as a function of ¢ and p from the fuzzy consensus reasoning example described in the text.

application to data smoothing or interpolation. Sup-
pose that a quantity of interest is available over some
domain (usually spatial or spatio-temporal), and each
value x; is assigned a confidence estimate c;, e.g., from
a data quality control procedure. A standard smoothing
or interpolation approach is to convolve a smooth-
ing kernel, say a Gaussian, with the data field. Fuzzy
consensus smoothing additionally makes use of the

confidences to reduce the influence of lower-quality
data, and also produces a confidence estimate for each
smoothed point. For each target location, the smooth-
ing kernel is “centered” at that point and the weight
w; for each data point x; in the neighborhood is deter-
mined by the value of the smoothing kernel there. Then
the smoothed value may be computed via an applica-
tion of (6.6), with f;(x) replaced with the data value x;
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and ¢; (x) replaced with ¢;; the confidence associated
with the smoothed value may be computed via (6.7).
When the quality control procedure is imperfect so that
some outliers are assigned nonzero confidence, then
the data points in the neighborhood may first be sorted
and the top and bottom p% of the corresponding w;c;
set to 0 before (6.6) and (6.7) are applied, where p
is between 0 and 50%. This method may be referred
to as fuzzy confidence-weighted trimmed-mean kernel
smoothing. If p =0, no trimming occurs, while if
p = 50%, the method becomes a confidence-weighted
median.

A closely related application is a fuzzy version
of the popular k-nearest neighbor (k-NN) algorithm
for generalizing from examples. In the classical k-
NN, a set of labeled data are used to infer the class
of a new example based on the class occurring most
frequently among the k nearest labeled points. For
instance, the data points might consist of vectors hav-
ing as components measurements from various sensors
(e.g., temperature, pressure, humidity) recorded at 9
am on a number of different days, and the classes could
be what sort of weather was observed that afternoon
(e.g., clear, cloudy, light rain, thunderstorm). Given
a value of k, a distance metric, and a vector of sen-
sor measurements from a subsequent morning, the k-
NN algorithm would determine a weather prediction
based on the historically best-matching observed class
among the k nearest neighbors to that data vector. In
the fuzzy version of k-NN, the class labels of the his-
torical points are replaced by fuzzy class membership
values between 0 and 1, and the membership of the
new example is given by a distance- and membership-
weighted consensus of the k nearest neighbors. More
precisely, suppose a collection of data vectors {x;}
have fuzzy class memberships ji¢, for classes {C;|1 <
i < N}, k is chosen as the number of neighboring
points to consider, and m > 1 (smaller values corre-
spond to “tighter”, more localized influence). A metric
d must be specified so that d(x;, x;) represents the
“distance” between the two vectors x; and x;. Com-
mon choices for d are the standard Euclidean distance
(the square root of the sum of squared differences of
the vector elements) or the Manhattan distance (the
sum of the absolute values of the vector element dif-
ferences). It is sometimes useful to first re-scale the
data so that the range of values for each vector com-
ponent is approximately the same. If {y,|1 <n <k}
are the k points from the set {x;} that are closest

to a new data vector x, then fuzzy k-NN assigns
the class membership of x for each class C; via the
formula

k
3 e, (Yn) d(X, y,) 7T
n=1
e, (X) = p
2
S d(x,y,) "
n=1

(6.9)

If the original class memberships are defined so
that their sum for each data point is 1, that is,
Z,Nz | Mc; (x,) = 1 for each x,, then it can be shown
that Z,N: | M, (x) =1 as well. In contrast to the stan-
dard k-NN algorithm, which yields only the best-
matching class, the class memberships i¢, (X) returned
by fuzzy k-NN provide much richer information about
the ambiguity of the similarities identified between the
new data and the historical examples. In the weather
forecasting example, the historical data class member-
ships could accommodate ambiguities in the observed
weather (e.g., the degree of cloudiness), and the mem-
berships assigned via (6.9) would provide some notion
of the uncertainty in the nearest neighbor prediction.
Moreover, even if the class with the highest mem-
bership is ultimately chosen as the final “defuzzified”
prediction, the fuzzy k-NN method is somewhat more
nuanced than the original version because it weighs
the neighborhood data closest to the point being clas-
sified more strongly than more distant — and hence
potentially less relevant — examples. For instance, in
Fig. 6.15, classical k-NN with k = 5 assigns the point
at “x” to the class “green”, since the three of the
five nearest points (shown in the dotted circle) are
labeled as green. Fuzzy k-NN assigns non-zero mem-
berships to both “blue” and “green”, with the precise
values depending on the distance weighting function
and value of m chosen. If m is small, membership in
“blue” could be greatest since a blue point is closest to
the “x”.

6.9 Fuzzy c-Means Clustering

Fuzzy c-means (FCM) clustering is an algorithm for
partitioning a multivariate dataset into a prespecified
number of fuzzy “clusters”, each represented by a
fuzzy set defined over the points in the dataset. It
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is a fuzzy variant of the familiar classical method
called k-means clustering, which separates data into k
“crisp” sets. While the result of k-means clustering is
a partition of the data points into disjoint classical sets,
under FCM clustering the data points may have partial
membership in several different fuzzy sets. Both clus-
tering methods are unsupervised learning methods that
find patterns in data without the benefit of “labeling”
by a human expert. In environmental science applica-
tions, the points being clustered will usually be vectors
comprised of several measurements or derived quanti-
ties that represent features of the environmental state
at a particular time and location. Clustering can reveal
the different major domains or attractors in a dynam-
ical system — weather patterns, for example — which
may then be analyzed separately to determine their
important characteristics. Using fuzzy sets in place of
classical ones makes for a more robust clustering algo-
rithm and may provide richer information about the
data.

Fuzzy c-means clustering begins with ¢ (a predeter-
mined number) cluster centers, or prototypes, which
may be arbitrarily initialized or chosen based on prior
knowledge of the data. The distance from each of

the dataset points to each of the cluster prototypes is
computed, and each point is assigned a membership
in each of the ¢ clusters based on these distances.
New prototypes for each fuzzy cluster are then com-
puted by taking the cluster-membership-weighted cen-
troid of all the points, and the process is repeated
until the change in the prototypes becomes small. Fig-
ure 6.16 shows an example of fuzzy c-means clus-
tering used to find two clusters in two-dimensional
data.

More formally, suppose that the dataset consists of
N vectors {X1,Xz,...,Xy). As in the k-nearest neigh-
bor technique described earlier, the FCM algorithm
requires that a metric d is specified so that d(x,y)
represents the “distance” between vectors x and y. A
number c is selected for the number of fuzzy clus-
ters desired, and initial prototype points vy, ..., V. are
specified or chosen randomly. A parameter m > 1 is
chosen to represent the “tightness” of the clusters: val-
ues of m near one will produce more distinct or crisp
clusters, while larger values of m will allow more over-
lap or “fuzziness”. Finally, a convergence threshold
¢ > 0is chosen to determine when to stop the iteration,
which proceeds as follows:
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Fig. 6.16 Fuzzy c-means clustering example with two fuzzy in set “A” are colored red and points with low membership in set
sets and six iterations shown. The points are colored accordingto ~ “A” (hence high membership in set “B”) are colored blue. An

Gy

the membership in set “A”, so that points with high membership x”” marks each cluster center.
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1. Define the membership of each data point x; in the
ith cluster, C; by

1
— (d(xs, Vi)>ml
pe, (%) = (— (6.10)
o ; d(x,v,)
2. Compute new cluster prototypes v; via
N m
> Xk (e (%))
k=1
Vi=— - (6.11)
> (e, (x0))

k=1

3. If the absolute value of the change in each clus-
ter prototype is less than ¢ for every vector ele-
ment, then the iteration stops. Otherwise, return to

step (1).

The final result is a set of fuzzy clusters C;
defined in such a way that for each data vector
X, Zf: | M, (X;) = 1, that is, the total membership of
X in all ¢ fuzzy clusters is one.

As is true for many machine learning techniques,
the choice of the number of clusters, ¢, and the “fuzzi-
ness” parameter m is a bit of an art form, and may
require a trial-and-error approach to get meaningful
results. And while there are formulas in the literature
for determining the “goodness” of a given clustering,
its utility may really be dependent on the final appli-
cation. Note also that the FCM algorithm will not nec-
essarily identify the same fuzzy clusters in different
runs unless the initial prototypes are the same each
time; thus, a careful choice of the initial prototypes
or performing a number of independent runs may be
worthwhile.

In addition to identifying structures in data, fuzzy
clustering might also provide an important step to
developing a fuzzy inference system when human
expertise in solving a problem is incomplete. As
an example, using clustering to identify different
“domains” in weather sensor data might aid in creating
a forecast based on those data by training a differ-
ent predictive model (a multilinear fit, for example,
or even a neural network) separately on each cluster.
Then a Takagi-Sugeno-style fuzzy inference system
could be constructed that combines the various models
based on the degree of membership of a point in the
antecedent fuzzy cluster.

Feature
Extraction

Quality
control

Fuzzy Inference Rules

Aggregation

Defuzzification

Output Data

Fig. 6.17 Anatomy of a typical fuzzy logic algorithm.

6.10 Fuzzy Logic Algorithms

A typical fuzzy logic algorithm consists of several
elements in addition to the fuzzy inference component
(see Fig. 6.17). For instance, input data must often
be pre-processed to derive desired features and per-
form appropriate quality control. Extracting features
from the raw data may require complicated compu-
tations, such as convolving a kernel function with an
image to identify boundaries, or computing contours,
curvatures, derivatives or averages. These are then
used to compute fuzzy set memberships or as inputs
to interest maps. In conjunction with this process,
input data should be quality controlled to ensure that
corrupt data are censored or flagged with low confi-
dence values so that their influence can be mitigated
downstream. In environmental science applications,
assessing data quality is often a vital component of
a fuzzy logic algorithm that may even require a full-
fledged fuzzy logic algorithm in its own right. After
features and confidences have been computed, they
may be used as input to fuzzy rules in the form of
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Mamdami, Takagi-Sugeno, or fuzzy consensus reason-
ing. The outcomes of these rules are then aggregated
and, if necessary, the result is “defuzzified” to pro-
duce a “crisp” output prediction or action. Fuzzy logic
algorithms may also involve iterative components that
run several times until a desired level of quality or
certainty is achieved. And fuzzy logic algorithms may
use combinations of different kinds of fuzzy reasoning,
fuzzy numbers or even heuristics developed just for
a particular problem; their common characteristic is
that they mimic the human problem-solving approach
of accommodating and exploiting ambiguity and post-
poning a “crisp” conclusion until the very last possible
moment.

In the end, the fuzzy logic algorithm comprises a
set of computations that provide a mapping from input
data to an output prediction or action, and the methods
described in this chapter are simply efficient ways for
creating an appropriate mapping. If the human expert
knowledge encoded in the fuzzy logic algorithm is of
high quality and the algorithm is implemented cor-
rectly, the algorithm will usually do a good job on
the problem it was designed to solve. On the other
hand, if the human understanding of how to solve a
given problem is inaccurate or incomplete, the fuzzy
logic algorithm might not work as well as it potentially
could.

One solution to this predicament is to use training
data — pairs of input vectors and the associated ideal
output, or “truth” values — to tune the fuzzy logic
algorithm’s parameters to optimize its performance.
For instance, a training dataset might consist of the

data used as input to a forecast algorithm along with
subsequent measurements representing what actually
happened. In this approach, the fuzzy logic algorithm
is considered a function whose behavior can be mod-
ified by changing various parameters, which we may
refer to collectively as the vector «. These might
include values that control data preprocessing, para-
meters that describe each fuzzy set membership func-
tion (e.g., the vertices and values defining a piecewise-
linear function), or the weights used in computing
a fuzzy consensus. Indeed, tuning fuzzy logic algo-
rithms is quite similar to training neural networks. In
neural network case, the architecture of the network
is defined by the number of hidden layers and nodes
and the activation functions, and the parameters are
the connection weights. Training occurs by modifying
the weights to minimize the error between the neural
network’s outputs and the “truth” data, either by the
gradient-descent backpropagation technique or some
other method. A fuzzy logic algorithm has a differ-
ent architecture, but it is still controlled by a set of
parameters that can be adjusted to improve its perfor-
mance (see Fig. 6.18). When fuzzy logic systems are
optimized using training data, the result is sometimes
called a neuro-fuzzy system. This approach to tuning
a fuzzy logic system can be immensely powerful. It
means that if a researcher has a good idea of what fea-
tures are important and what the correct form (archi-
tecture) of an algorithm is but is not sure about some
of the details — e.g., the ideal definition of each interest
map — those details can be “filled in” using training
data.

D (P

Function f

Fig. 6.18 Diagram
illustrating how a fuzzy logic
algorithm, represented as a
function f determined by a
set of parameters a, may be
tuned to improve its
performance when training
data in the form of x;, y; pairs
are available.

with parameters o

[ |
@ —

Adjust a to
reduce error
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Several considerations might inform how the fuzzy
logic algorithm is tuned. First, the error function (e.g.,
sum of squared differences between the predicted and
target values) will be easy to write down in closed form
only for the simplest algorithms, so a gradient-descent
style optimization method would usually require esti-
mating the gradient using multiple evaluations. How-
ever, for some fuzzy logic systems the error function
may not be differentiable or even continuous in the
parameters o, or it might have numerous local minima
besides the global minimum that could trap a gradient
descent technique. Furthermore, minimizing a simple
error metric like the sum of squared errors is not
necessarily what is desired for environmental science
applications. Often, a forecaster might be interested
in maximizing the True Skill Score or another skill
statistic, and a remote sensing system might be eval-
uated based on the area under the Receiver Operating
Characteristic (ROC) curve (see Chapter 2). Evaluat-
ing a decision support system might involve a compli-
cated simulation of the costs and benefits associated
with using the system. Such evaluation functions are
in general not differentiable with respect to the fuzzy
logic algorithm’s parameters. Therefore, a general and
effective way to tune a fuzzy logic algorithm is to
use a genetic algorithm, representing the vector of
parameters as a chromosome (see Chapter 5). Genetic
algorithms do not make any assumptions about the
differentiability or even continuity of the evaluation
function and have been shown to work well for tuning
fuzzy logic algorithms. The most difficult task may be
to define an evaluation function that fully captures the
salient details of performance, carefully treating issues
of rare events, for instance. Sometimes, in fact, the
evaluation function itself might best be implemented
as a fuzzy logic algorithm that appropriately balances
performance tradeoffs in different situations.

When a fuzzy logic algorithm is tuned “on line” as
it is operating, the result is called an adaptive fuzzy
system. For instance, the combination weights w; in a
Takagi-Sugeno system (6.4) or fuzzy consensus sys-
tem (6.6) may be modified based on the recent per-
formance of the associated predictive function, giving
those functions that are doing well a bit more weight
when they are corroborated and reducing the weight
for those that poorly match the verification data. Since
the dynamics of many natural systems tend to tran-
sition between distinct domains (e.g., as they orbit
strange attractors), each of which has different charac-

teristics or phenomenology, this capability allows the
fuzzy algorithm to adapt appropriately as the situation
changes. However, a fuzzy system that relies heavily
on this sort of dynamic tuning may not perform well
when the environmental system being measured transi-
tions suddenly from one domain to another, and it may
mask a problem in a data source that might best be
dealt with directly. Whenever possible, it is probably
preferable to identify the different domains or hidden
variables that underlie the changing performance and
incorporate them into the fuzzy logic algorithm itself.
On the other hand, many environmental systems are
quite complicated, and treating them with an adaptive
fuzzy system may be the only practical approach.

6.11 Conclusion

Fuzzy logic provides a framework for creating expert
systems that use information efficiently, encode human
knowledge and heuristics, and are relative straightfor-
ward to implement. A central concept is that of fuzzy
sets, which may be used to represent unsharp concepts
like those commonly used in human communication
and reasoning. A mathematical definition for fuzzy
sets, accompanied by rules for manipulating them in
analogy to classical sets, has been presented. A dis-
cussion of how fuzzy membership functions may be
formed and combined via logical operations was fol-
lowed by a description of Mamdami, Takagi-Sugeno
and fuzzy consensus methods of inference. The fuzzy
consensus method provides a basis for the confidence-
weighted smoothing of data and the fuzzy k-nearest
neighbor method for classifying data based on a col-
lection of examples. Fuzzy clustering was presented
as a way to discover structure in datasets that could
be used as a step in developing a Takagi-Sugeno style
fuzzy inference system. Fuzzy logic provides a natural
way to integrate data quality control and information
about measurement uncertainty into algorithms. When
training data are available, the performance of a fuzzy
logic algorithm can be optimized by using a genetic
algorithm or another technique to tune the parameters
governing its behavior, though a careful choice of the
objective function is necessary to obtain good results.
If tuning is done during algorithm operation as veri-
fication data become available, the resulting adaptive
fuzzy system can maintain good performance despite
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gradual changes in the environment or data sources.
Fuzzy logic algorithms do not necessarily achieve the
very optimum performance possible; rather, they fall
into the category of “soft computing” methods that are
robust, relatively easy to create and maintain, and per-
form very well on complex problems. These features
make fuzzy logic a valuable tool for many environ-
mental science prediction and decision support appli-
cations.
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