
000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 103 of 126 November 8, 2008 12:26

5Introduction to Genetic Algorithms

Sue Ellen Haupt

5.1 Motivation

The world is full of optimization problems. Nature
constantly optimizes each of her configurations. Each
ecosystem fits together to use the symbiotic nature
of each element. Species have evolved to have the
characteristics that are most likely to lead to survival.
The wind blows in directions that best alleviate any
imbalances in forces. The planets orbit in ways that
best fulfill the laws of motion. In understanding the
environment, we often have to discern the optimization
problem to fully understand its solution.

Evolution is one of the most interesting optimiza-
tion problems. Why have humans evolved to have
two hands, two eyes, two legs, one head, and a large
brain while other species have not? Does that make
humanity the pinnacle of the optimization problem?
Why do guppies evolve to have different character-
istics in dissimilar environments? Can the process
of evolution be codified to understand these issues
better?

Many problems that we address in environmental
science can be configured into an optimization prob-
lem. As an example, let’s consider guppies evolving
in an environment where they need to survive on
the available food, attract mates for reproduction, and
avoid predators. Figure 5.1 illustrates the pieces of a
general optimization problem. We begin with input
parameters that we wish to optimize. For our guppies,
these variables might include attractiveness (to mates),

Sue Ellen Haupt (*)
Applied Research Laboratory and Meteorology Department,
The Pennsylvania State University, P.O. Box 30, State College,
PA 16802, USA
Phone: 814/863-7135; fax: 814/865-3287;
email: haupts2@asme.org

disease tolerance, food requirements, appeal to their
predators, and ability to hide from predators. The com-
bination of the values of these variables makes the
guppy an individual. There must be some method to
rate the survivability of the guppy based on its specific
variable values. There must be some way to balance
its attractiveness to potential mates with its visibility
to its predators. If the environment is harsh, it must
be hardy. If the current is swift, it must have a long
enough tail to swim fast. The objective, or cost, func-
tion codifies these considerations and weights them
to rate the guppy survivability. The “most fit” gup-
pies survive while those that do not meet the speci-
fications of the objective function are destined to die
off in a harsh environment or are eaten by a preda-
tor. The final piece of the optimization scheme is the
optimization algorithm that finds some way of con-
figuring new guppies so that they evolve into a viable
species for their environment. The optimization algo-
rithm typically minimizes some “cost,” or equivalently,
optimizes the objective.1 Some common optimization
algorithms include Newton’s method for optimiza-
tion, conjugate gradient, and Nelder-Mead downhill
simplex method. Unfortunately, it is difficult to code
guppy coloration, food requirements, and attractive-
ness to either mates or predators in a way to use these
gradient seeking methods. More innovative methods
are required.

A genetic algorithm (GA) is one such versatile opti-
mization method. Figure 5.2 shows the optimization

1 In optimization terminology, an objective function could be
either minimized or maximized. When the name cost function
is applied, we always minimize. In contrast, a fitness function
is maximized. Therefore, we concentrate on minimization prob-
lems. It is trivial to turn a maximization problem into one in
minimization with a negative sign.

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 103
© Springer-Verlag Berlin Heidelberg 2009

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 104 of 126 November 8, 2008 12:26

104 S. E. Haupt

Fig. 5.1 Flowchart of the
optimization process

process of a GA – the two primary operations are
mating and mutation. The GA combines the best of
the last generation through mating, in which parameter
values are exchanged between parents to form off-
spring. Some of the parameters mutate. The objective
function then judges the fitness of the new sets of para-
meters and the algorithm iterates until it converges.
With these two operators, the GA is able to explore
the full cost surface in order to avoid falling into local
minima. At the same time, it exploits the best features
of the last generation to converge to increasingly better
parameter sets. GAs are remarkably robust and have

been shown to solve difficult optimization problems
that more traditional methods can not. Some of the
advantages of GAs include:

• They are able to optimize disparate variables, whe-
ther they are inputs to analytic functions, experi-
mental data, or numerical model output.

• They can optimize either real valued, binary vari-
ables, or integer variables.

• They can process a large number of variables.
• They can produce a list of best variables as well as

the single best solution.

Fig. 5.2 Flowchart of
optimization with a genetic
algorithm

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 105 of 126 November 8, 2008 12:26

5 Genetic Algorithms 105

• They are good at finding a global minimum rather
than local minima.

• They can simultaneously sample various portions of
a cost surface.

• They are easily adapted to parallel computation.

Some disadvantages are the lack of viable convergence
proofs and the fact that they are not known for their
speed. As seen later in this chapter, speed can be
gained by careful choice of GA parameters. Although
mathematicians are concerned with convergence, often
scientists and engineers are more interested in using
a tool to find a better solution than obtained by other
means. The GA is such a tool.

5.2 Genetic Algorithm Overview
and Guppy Evolution

A genetic algorithm combines the concepts of genetics
and evolution into an algorithm to optimize a function
or to search a solution space. GAs were first introduced
by John Holland (1975) at the University of Michigan
(UM). David Goldberg (1989) popularized GAs begin-
ning with his Ph.D. dissertation at UM where he used
it to optimize a gasline piping problem, a problem that
was quite difficult to solve via conventional means.
De Jong (1975) demonstrated the utility of GAs for
function optimization and studied how to best choose
GA parameters. GAs have become a popular tool in
the engineering literature but have thus far found fewer
applications in the environmental sciences. More dis-
cussion of applications can be found in Chapters 14
and 18.

GAs can be configured as either binary or real val-
ued. The GA literature began with the binary version,
so we will start there too. Figure 5.2 depicts the opti-
mization process for the GA. The basic process is the
same as in Fig. 5.1, but now the GA operations of
mating and mutation are specified.

The basic building block of a genetic algorithm is a
gene, which represents each problem variable. For our
guppy problem, the genes encode each characteristic
of the guppy that we wish to consider. Table 5.1 shows
the encoding of eight variables relevant to guppy
evolution into eight genes. Each variable is encoded
into a 2 bit gene, meaning that each variable can have
up to four separate realizations. For instance, there
may be four gradations of attractiveness to mates, in
this case coded as:

11 = drop-dead gorgeous
10 = very handsome
01 = passable
00 = only if females are desperate

The genes are then concatenated to form a chromo-
some. The guppy encoded in Table 5.1 is then rep-
resented by a chromosome: 1001010001001100. The
genetic algorithm is begun by creating a population of
chromosomes using a random number generator. Since
many computer languages generate random numbers
between 0 and 1, for the binary GA the random number
is simply rounded. We generate eight randomly con-
figured guppies, each with eight 2 bit genes, and our
population looks like:

pop =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1001010001001100
0110001001001110
0000111010101110
0101001110010111
0011000111001010
1100011010001101
0001100110100111
0110011001110010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

In this matrix, each row represents a chromosome, or
complete guppy configuration.

The fitness of each member of the population is then
evaluated via the cost function. For the guppy exam-
ple, the cost function depends on the environment.

Table 5.1 Example guppy encoded into binary genes

Attractiveness
(to other guppies) Tail

Attractiveness
(to predator)

Dappling
(blending into
environment)

Temperature
tolerance

Disease
tolerance

Food
requirements

(amount)

Feeding
requirements

(time between)

Very handsome Short Tasty None Little Hardy Bottomless pit Frequent feeder
10 01 01 00 01 00 11 00

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 106 of 126 November 8, 2008 12:26

106 S. E. Haupt

Each gene of the guppy is first assigned an adapta-
tion value. For instance, the attractiveness gene, which
determines the guppy’s likelihood to attract a mate, is
assigned adaptation values denoted in the MATLAB
code below:

attractive = x(:,1:2); %grabs the first two bits which
form the first gene

%likeliness to mate
%attractiveness (brightness positive)
if attractive(ind,:)==[1 1]
adapt(ind,1)=2.0; %drop dead gorgeous
elseif attractive(ind,:)==[1 0]
adapt(ind,1)=1.5; %very handsome
elseif attractive(ind,:)==[0 1]
adapt(ind,1)=1.0; %passable
else %[0 0]
adapt(ind,1)=0.5; %if the female guppies are

desperate
end

In this case, the more attractive the guppy, the higher
adaptation value is assigned. The second aspect of
the guppy cost function weights the importance of
each gene for survivability in a particular environment.
Each adaptation value is weighted according to how
likely that characteristic will result in the guppy (1)
mating or (2) being eaten by a predator. Specifically,
for a bright, well lighted pool with lots of predators,
weights are assigned as:

%habitat 1
wts(1,:)=[1.0, 0.8, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0];

%probability of mating
wts(2,:)=[0.0, 0.0, 0.5, 0.8, 0.6, 0.2, 0.9, 0.4]

%probability of getting eaten

The final step of judging the adaptability of each guppy
is writing a cost function that multiplies the adaptabil-
ity values for the guppy by the environment weights
and weighting the importance of mating versus getting
eaten for this habitat:

f = − ((wts(1,:)*adapt’)’ + 3*(wts(2,:)*adapt’)’);

Note that a negative sign is applied to the cost func-
tion since the GA routine is configured to look for
minima. Each member of the guppy population is

judged via the cost function and the costs assigned
as:

Cost

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1001010001001100
0110001001001110
0000111010101110
0101001110010111
0011000111001010
1100011010001101
0001100110100111
0110011001110010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.4
−4.7
−2.1
−4.2
−6.7
−7.3
−5.9
−1.8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)

The next step is simply sorting the costs with the small-
est cost (most fit) chromosomes put at the top:

Cost

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1100011010001101
0011000111001010
0001100110100111
1001010001001100
0110001001001110
0101001110010111
0000111010101110
0110011001110010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7.3
−6.7
−5.9
−5.4
−4.7
−4.2
−2.1
−1.8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.3)

Now we are ready for the natural selection to occur. In
terms of the guppies, the less fit half of the population
is eaten by predators or simply dies without reproduc-
ing. We are left with only the top half (most fit four) of
the population matrix above.

The GA operations of mating and mutation come
into play. In mating, we select two members of the
population to exchange information to produce off-
spring. For the guppy problem, we will use tour-
nament selection. Here, three members of the pop-
ulation are randomly selected and the two most fit
individuals (smallest cost function values) of that tour-
nament will then mate. The algorithmic mating pro-
cedure mimics the genetic recombination of meio-
sis. In meiosis, the chromosomes line up and join at
a kinetochore. When the chromosomes separate, the
left portion of the mother chromosome conjoins with
the right portion of the father chromosome to com-
plete the process known as crossover. In our binary
chromosomes, the process is equivalent. A random
kinetochore, or crossover point, is selected and the
genes to the left of this point on parent 1 are con-
catenated with those to the right of that point on
parent 2. In this case, we form two new individu-
als. An example of the guppy chromosomes mating
is:

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 107 of 126 November 8, 2008 12:26

5 Genetic Algorithms 107

1100011011001010
cost

0011000110001101
=

1100011010001101cost =
0011000111001010

−7.3
−6.7

−7.4
−3.7

We see that one of the offspring guppies is more fit
than either parent and one is less fit.

The second GA operation is mutation. Before
mutating, we typically apply elitism and set aside the
most fit (lowest cost) individual of the entire popula-
tion and do not allow it to mutate. Then we go into
the matrix and randomly change the bit value of a
predetermined percentage of bits. After mating and
mutation, the guppy population looks like:

cost

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1100011010001101
0011000111001010
0001100110100111
1001010001001100
1100011011001010
0011000110001101
0001100110100111
0011000111001010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7.3
−6.7
−7.6
−5.4
−5.2
−3.7
−7.7
−2.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

The first row (italics) is the best “elite” guppy chro-
mosome. The next three are the other parents that
remain in the population from the last generation, but
have now been subject to bit changes due to mutation
(bold). The last four rows are the offspring guppy
chromosomes after mutation. The first iteration has
completed. The process is iterated until convergence is
obtained. For the guppies, convergence means a stable
population with all individuals about equally adapted
(i.e. the average population is fairly stable). The low-
est cost individual becomes a prototype for the guppy
population with some variation around it. Figure 5.3
shows the convergence for a run of the guppy problem
using a population size of 16, crossover rate of 0.5,
and mutation rate of 0.2. The “best” guppy is identified
after about 11 generations, but it takes a bit longer for
the population to stabilize. Convergence is both prob-
lem dependent and run dependent. Since the GA relies
on random numbers to generate problems and perform
the mating and mutation operations, each run of the
GA will produce slightly different results. Often, the
primary difference is how many iterations are required
to produce convergence.

This example merely serves as a basic introduc-
tion to GAs. Many variations are possible, often

-24

-26

-28

-30

-32

-34

-36

-38

-40

0 10 20 30 40

population average

best

generation

Fig. 5.3 Convergence of the
GA for the guppy evolution
problem

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 108 of 126 November 8, 2008 12:26

108 S. E. Haupt

interpretable as limiting branches of the basic GA
discussed here. For instance, some GAs are purely
“asexual,” that is, they reproduce without a mating
operator, using only mutation. That scenario is equiv-
alent to using a crossover rate of zero. Tuning the GA
parameters will be discussed in Section 5.5.

5.3 Binary Genetic Algorithms and
Function Optimization

We saw how GAs can be applied to a problem in evo-
lution where the use of a GA is more “obvious.” More
often, we have some function we wish to optimize,
subject to constraints. Here, we’ll examine solving a
specific function of two variables and use this example
to observe the process of convergence in more detail.
We wish to minimize:

f (x, y) = sin(x)J1(y) (5.5)

where J1 is the Bessel function of the first kind of order
1. We’ll call this function, “Besin.” Equation (5.5) is
solved subject to the constraints:

0 ≤ x ≤ 10

0 ≤ y ≤ 10

Figure 5.4 shows plots of the equation on the given
interval using both a three dimensional view and a
contour plot. The exact solution, (x, y) = (4.71, 1.81),
is indicated on the plots.

The first step of solving our “Besin” optimization
problem with a GA is initializing the population. We
choose to code our binary GA with an 8 bit represen-
tation of each of the two (x, y) variables. For instance,
the 16 bit chromosome with two genes representing x
and y is:

[0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0] = (4.3922, 3.1373)

The initial population of 16 chromosomes is shown in
Fig. 5.5 as asterisks on the contour plot. Costs of each
(x,y) point are computed via (5.5). The minimum cost
of this initial population is −0.46082 and the mean
cost is 0.0096951.

The solution is evolved by the GA using a crossover
rate of 0.5, population size of 16, and mutation rate of
0.2. Figure 5.6 shows the next four iterations of the
GA, the sixth iteration, and the fortieth iteration. We
see that the GA initially explores the entire solution

Table 5.2 Convergence of the GA solution of (5.5)

Iteration Min cost Mean cost x y

Initial −0.46082 0.0096951 5.3333 1.5686
1 −0.46082 −0.064677 5.3333 1.5686
2 −0.46082 −0.084943 5.3333 1.5686
3 −0.50994 −0.12589 4.6275 1.2549
4 −0.50994 −0.044344 4.6275 1.2549
5 −0.57378 −0.023693 4.5490 1.8824

10 −0.58001 −0.23114 4.7843 1.8824
15 −0.58151 −0.11361 4.7059 1.8824

Exact −0.58186 4.71 1.81

space, particularly in the local minima. By the sixth
iteration, the best chromosome is near the exact solu-
tion and by the fortieth iteration many of the popula-
tion members are in the global solution well.

Table 5.2 shows the convergence for this prob-
lem. We see a rather good convergence after only
5 iterations and total convergence after 15 itera-
tions. Notice that although the best solution con-
verges rather quickly, the GA continues to explore the
solution space. Therefore, the mean cost converges
rather slowly. In fact, Fig. 5.7 plots the convergence
of the solution. We see that the population average
cost continues to oscillate. This behavior is due to
the large mutation rate specifically chosen to force
continued exploration of the solution space for this
wildly oscillatory function. Thus we conclude that
the choice of GA population and mutation parameters
affects the performance of the algorithm. This is most
certainly true and will be discussed in more detail
below. But first, let’s look at another way to solve this
problem – directly using the real values of the (x, y)

coordinates.

5.4 Continuous Variable GA –
Application to Optimization

We began with the binary GA because that is where
the field started. This beginning also helps explain why
certain methods are used for the operations of mating
and mutation that we do when working with real num-
bers. Plus there are problems, like the guppy evolution
example, where choices are not in terms of real-valued
variables. Many of the problems that we encounter,
however, involve optimizing real number continuous
variables, so why not work directly with continuous
variables and dispense with coding in binary? In fact,

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 109 of 126 November 8, 2008 12:26

5 Genetic Algorithms 109

1

0.5

0

-0.5

-1
10

5

y(a) x0 0

5

10

10

8

6

4

2

0
0 2 4

x
6 8 10

y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b)

Fig. 5.4 Three dimensional (a) and contour (b) plots of the function of (5.5)

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 110 of 126 November 8, 2008 12:26

110 S. E. Haupt

10

8

6

4

2

2 4 6 8 10
x

0
0

y 0

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Fig. 5.5 Initial population
for the binary GA solution to
(5.5) superimposed on a
contour plot of the function
value

that is precisely what is now done with many real-
valued problems.

The continuous variable GA works much the same
as its binary cousin. Figure 5.8 is a flowchart of the
continuous GA. It looks much the same as the flow-
chart for the binary GA (Fig. 5.2). The only differences
are in the way certain operations are performed. In
particular, chromosome definition, application of the
cost function, and implementation of the operations of
mating and mutation are modified to be appropriate
for real values and are the only substantative changes.
Let’s look at each of these in more depth.

When initializing the population for continuous
optimization with a GA, we must initialize the chro-
mosome for the number of variables that we wish to
find. In particular, given Npar variables to initialize,
we define a chromosome consisting of parameters or
variables each denoted by pi as:

chromosome = [
p1, p2, p3, · · · pNpar

]
(5.6)

Thus, when we define the cost function, it is in terms
of a function of those variables:

cost = F(chromosome) = F
[

p1, p2, p3, · · · pNpar

]

(5.7)

The operations of mating and mutation are also altered
to take into account these real-valued continuous

variables. There are numerous methods of mating and
mutation, but the ones demonstrated here are rather
straightforward and most closely mimic the binary ver-
sions. For mating, the first step is to randomly choose
the crossover point. The parents are then selected
according to some selection criterion and labeled as
m and d (mom and dad):

parentm = [
pm1 pm2 · · · pmα · · · pm Npar

]

parentd = [
pd1 pd2 · · · pdα · · · pd Npar

] (5.8)

The process of crossover then blends the informa-
tion from the two parents. A way that most closely
matches the binary GA swaps the portions of the
chromosome to the right of the crossover point and
blends the variable chosen as the crossover point
(kinetochore):

pnew1 = pmα − β
[

pmα − pdα

]

pnew2 = pdα − β
[

pmα − pdα

] (5.9)

Here, β is the blending parameter between 0 and 1.
The result is offspring of the form:

offspring1 = [
pm1 pm2 · · · pnew1 · · · pd Npar

]

offspring2 = [
pd1 pd2 · · · pnew2 · · · pm Npar

] (5.10)

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 111 of 126 November 8, 2008 12:26

5 Genetic Algorithms 111

10
After 1 iteration

After 3 iteration

After 5 iterations After 40 iterations

After 2 iterations

After 4 iterations

8

6

4

2

0
0 2 4

x x
6 8 10

0 2 4
x

6 8 10

0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

2 4
x

6 8 10

0 2 4
x

6 8 10

0 2 4
x

6 8 10

0 2 4 6 8 10

y

10

8

6

4

2

0

y

10

8

6

4

2

0

y

10

8

6

4

2

0

y

10

8

6

4

2

0

y

10

8

6

4

2

0

y

(a)

(c)

 (e) (f)

(d)

(b)

Fig. 5.6 Evolution of the GA population for solution of (5.5)

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 112 of 126 November 8, 2008 12:26

112 S. E. Haupt

0.1

population average

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6
0 5 10 15 20 25 30 35 40

co
st

0

best

generation

Fig. 5.7 Plot of convergence
of the solution of (5.5). The
solid line is the single best
solution and the dotted line
depicts the population mean

Altering the mutation operator is even more simple.
For a continuous GA, we merely generate a new ran-
dom number, pinew , to replace the original value. So if
the original chromosome is

chromosome = [
p1, p2, p3, p4, · · · pNvar

]
(5.11)

and we wish to mutate the third parameter, the new
chromosome will look like

mutated chromosome = [
p1, p2, p3new, p4, · · · pNvar

]

(5.12)

Let’s revisit the solution of (5.5) with the continu-
ous GA. We choose to use a population size of 12,

Fig. 5.8 Flow chart of a
continuous parameter GA

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 113 of 126 November 8, 2008 12:26

5 Genetic Algorithms 113

10

8

6

y

4

2

0
0 2 4 6

x
8 10

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

Fig. 5.9 Initial population of
solutions to (5.5) for the
continuous GA problem
superimposed on a contour
plot of the function

Table 5.3 Initial population (guesses) of solutions to (5.5) for
the continuous GA and their associated costs

x y Cost

7.7109 0.4337 0.20967
6.7016 0.7454 0.14116
3.5830 8.9600 −0.10674
9.9596 0.6927 −0.16617
1.0709 3.6673 0.05914
8.9394 6.7496 −0.03752
4.3533 0.8984 −0.37954
6.3978 0.3043 0.01720
7.5431 5.7726 −0.29981
7.0620 0.6602 0.21947
0.3515 6.3859 −0.06386
8.9856 8.0849 0.10452

mutation rate of 0.2 and crossover rate of 0.5. Table 5.3
indicates the initial population which is also plotted on
the contour plot of Fig. 5.9.

Let’s follow the mating process carefully for this
example. The population of Table 5.3 is sorted and
the least fit chromosomes are discarded. This process
leaves the following chromosomes:

4.3533 0.8985
7.5431 5.7726
9.9596 0.6928
3.5830 8.9600
0.3516 6.3859
8.9394 6.7496

These remaining chromosomes are then ranked for
mating. The probability of mating is determined here

by rank weighting. To do that we make a table of prob-
abilities of mating and the cumulative probability as:

probability of mating cum probability

0.28571 0.28571
0.2381 0.52381
0.19048 0.71429
0.14286 0.85714
0.095238 0.95238
0.0476191 1.00000

We now use a roulette wheel selection process where
a random number generator determines

pick1 = 0.26006
pick2 = 0.89538

These correspond to chromosomes ranked 1 and 5.
Now the random number generator is applied again to
choose the crossover point, which is chosen here in the
second variable. The value of β is randomly chosen
as 0.32178. So the new offspring generated and their
associated costs are:

x y cost
Offspring 1: 4.3533 2.6642 −0.2689
Offspring 2: 0.3516 4.6202 −0.2496

The next step is mutation, that is, randomly chang-
ing some of the values of the parameters. Table 5.4
shows the new population. Highlighted values denote

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 114 of 126 November 8, 2008 12:26

114 S. E. Haupt

Table 5.4 The new
population at iteration 1 of
solving (5.5) with a
continuous parameter GA.
Mating and mutation have
altered the population.
Highlighted values denote
mutations. The original six
chromosomes do not mutate,
but 4 out of the 12 values in
the six offspring mutate this
generation

Original x Original y Original cost Mutated x Mutated y Mutated cost

4.3533 0.8985 −0.37954 4.3533 0.8985 −0.37954
7.5431 5.7726 −0.29981 7.5431 5.7726 −0.29981
9.9596 0.6928 −0.16617 9.9596 0.6928 −0.16893
3.5830 8.9600 −0.10674 3.5830 8.9600 −0.10674
0.3516 6.3859 −0.06387 0.3516 6.3859 −0.06387
8.9394 6.7496 −0.03753 8.9394 6.7496 −0.03753
4.3533 2.6642 −0.42353 7.2802 4.9394 −0.26890
0.3516 4.6202 −0.09000 0.8155 4.6202 −0.24959
0.3516 5.7588 −0.10909 0.3516 5.7588 −0.10909
9.9596 1.3199 −0.26825 0.3702 1.3199 0.19042
4.3533 3.5033 −0.12733 4.3533 3.5033 −0.12733
3.5830 6.3552 0.08275 0.3583 6.3552 0.08275

mutations. The original six chromosomes are not
mutated here, but four of the twelve values mutate in
the new generation.

The continuous GA was iterated to complete the
solution process. The correct solution was found after
10 iterations. Figure 5.10 shows the population clus-
tered around the exact solution at the completion of the
tenth iteration. Figure 5.11 denotes convergence. We
see that the cost function value for this particular run
tended to generally decrease for the entire population
rather than just for the best individual.

We must be careful, however, about overinterpret-
ing convergence. We should always remember that,
because the GA uses random numbers for its initial-
ization and operations, every time we run the GA
we’ll obtain a somewhat different result. If we have
carefully chosen our parameters and done enough gen-
erations, we usually converge to the correct solution.
Occasionally, however, our luck will be bad and we
may either not get to the solution in the allowed
number of iterations or convergence will be slow.
Each set of initial parameters, each mating operation,

10
final population

8

6

y

4

2

0
0 2 4 6

x
8 10

0.4

0.3

0.2

0.1

-0.1

0

-0.2

-0.3

-0.4

Fig. 5.10 Final population
after 10 generations cluster
near the exact solution to (5.5)

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 115 of 126 November 8, 2008 12:26

5 Genetic Algorithms 115

population average

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7
0 2 4 6 8 10

co
st

0

best

generation

Fig. 5.11 Convergence of the
continuous GA solution to the
Besin problem (5.5)

and each application of mutation will have different
results: therefore, the convergence plot and behavior
of the solutions will differ with each run. So how do
we assure ourselves that the GA is performing ade-
quately? The answer is that we recognize these issues
and deal with them directly. We never fully believe the
results of a single GA run. Instead, we make a habit
of always doing repeated applications. When we run
the GA 10 times with essentially the same result, we
are assured that the GA is behaving solidly for this
problem and the solution is well optimized.

5.5 Optimizing GA Application

We have now observed several applications of a GA.
So far, we have arbitrarily chosen performance para-
meters such crossover rate, crossover methodology,
mutation rate, and population size. Let’s look at these
GA tuning parameters in a bit more detail.

5.5.1 Continuous vs. Binary GA

First, we have used both binary and continuous vari-
able GAs. Which one is better? The answer, of course,

depends on the problem. When we have either/or
choices or choices between a small number of potential
realizations (Is the stream of the guppies’ environment
rocky or smooth? Is the guppy dappled or plain?) then
the binary GA is most appropriate. If we instead are
searching for all real numbers, then one might as well
use a continuous GA. Of course, one can always code
continuous numbers in binary notation, but in general,
the resulting GA is not as efficient as the continuous
form. What if our parameters are mixed – we have
some that are more conducive to binary coding and
others toward continuous? We can always use a binary
GA with the continuous variables coded into binary.
New methods that mix the binary with the continu-
ous have recently been developed and show promise
for very efficient GA application (Haupt 2007, Haupt
et al. 2008).

5.5.2 Variable Normalization

A related issue is whether and how to normalize
our variables. If all of our variables are similar (for
example, if we’re on an (x, y) Cartesian grid from 5
to 10), normalization is irrelevant. The behavior of
the GA does not depend on whether every number in
the problem is divided by the same value. If however,

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 116 of 126 November 8, 2008 12:26

116 S. E. Haupt

we have variables that are wildly disparate in nature,
we may want to normalize them to be on the same
order of magnitude. If we’re on an (x, y) Cartesian
grid where x varies from 10−6 to 10−5 and y varies
from 105 to 106, then we would want to divide all
x’s by the mean x and all y’s by the mean y before
the search and cost function evaluation. One common
technique is to always normalize all variables to a scale
from 0 to 1. This approach has several advantages: (1)
it assures that the behavior of the GA is not biased to
any one variable, (2) it avoids normalizing the variable
each time it is sent to a cost function, and (3) it makes
generating random numbers rather easy since most
random number generators give numbers between 0
and 1. For some problems, it may make more sense
to map a variable with some function before doing
a GA application. An example from air pollution in
Chapter 14 maps the monitored concentrations onto a
logarithmic scale for GA solution.

5.5.3 Mate Selection

The methods of selecting mates vary rather widely.
The simplest methods are random without respect to
any weighting. For instance, one can just randomly
choose two parents to mate. This method is known as
unweighted roulette wheel pairing. The more prevalent
methods are based on either a rank or cost weighting
method. The most basic ranked method is to pair the
sorted chromosomes in order – the first chromosome
mates with the second, the third with the fourth, and
so on. The more refined ranked methods compute the
probability of mating according to the ordering after
the chromosomes are sorted from best to worst. That
was the method demonstrated in Section 5.4. Proba-
bility of mating varies according to cumulative order
of the rank. Cost weighting is computed according to
the actual values of the cost function – a very low cost
chromosome is much more likely to be selected for
mating than the one that may be next in line. The costs
are merely summed, then each cost divided by the total
to obtain its probability of selection.

Once the selection probabilities are computed
via either ranked weighting or cost weighting, the
selection can occur via any of several methods.
A common method is the roulette wheel selection
(demonstrated in Section 5.4) where a random number
is chosen and mapped to the cumulative probability
of the ranked or cost weighted chromosomes.

Another common method is tournament selection
(demonstrated in Section 5.2). Three (or some other
number) potential parents are selected according to
random number selection matched to the computed
probability of mating. The two with the lowest costs
then mate. One can go into much more detail on
the mate selection methods and we refer the reader
to any of the GA books to read more (Goldberg
1989; Mitchell 1996; Davis 1991; Haupt and Haupt
2004).

5.5.4 Mating

Once the mates are selected, the crossover tech-
nique must be specified. The first decision regards the
crossover rate, that is, how many population members
should be replaced with offspring at each generation.
In general, although some investigators have looked at
this sensitivity, it doesn’t make much impact on GA
performance what rate is used. Using a crossover rate
(X rate) of 0.5 so that the number kept (Nkeep) is half of
the population size (Nkeep = X rate × Npop) is as good
as any and is the typical choice.

The next issue is how to perform the crossover. The
examples above used single point crossover. For the
binary GA, it is easy to extend the crossover to two
points, three points, or use three parents in a rather
straightforward way. Uniform crossover can be per-
formed by creating a random mask of 0s and 1s to
determine whether to use the value in the mother or
the father chromosome at each element.

For the continuous parameter GA, equations (5.9)
and (5.10) blend the information along the axes of the
parent chromosomes. When the blending parameter, β,
is less than or equal to 1, the values of the offspring
will be between the parents. When β is allowed to be
greater than 1, then the axes are extended beyond the
magnitude of the parent values, which is sometimes a
good choice. A more simplistic continuous GA mating
scheme merely swaps values of the real-encoded genes
between the parents. If the parents are denoted as in
(5.8), and we choose to swap between genes 2 and 5,
we would obtain

offspring1 =
[pm1, pm2, ↑ pd3, pd4, ↑ pm5, pm6, . . . , pm Nvar]

offspring2 =
[pd1, pd2, ↑ pm3, pm4, ↑pd5, pd6, . . . , pd Nvar]

(5.13)

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 117 of 126 November 8, 2008 12:26

5 Genetic Algorithms 117

The problem with this simple scheme is that no new
values are ever generated. The opposite extreme is
uniform random crossover where each gene is assigned
a random blending parameter βi and the resulting off-
spring are constructed as

offspring1 = parent1 − [β1(pm1 − pd1),

β2(pm2 − pd2), · · · , βNvar(pm Nvar − pd Nvar)]
offspring2 = parent2 + [β1(pm1 − pd1),

β2(pm2 − pd2), · · · , βNvar(pm Nvar − pd Nvar)]
(5.14)

A scheme similar to this was used for extended runs
of the air pollution source characterization problem of
Chapter 14.

5.5.5 Choosing Population Size
and Mutation Rate

The choice of the GA parameters of population size
and mutation rate can make a large impact on algo-
rithm performance. The performance measure that we
will concentrate on here is the number of cost function
evaluations required to meet a pre-specified tolerance
level of accuracy of the solution. We prefer this mea-
sure because: (1) it is easy to keep track of how many
times the cost function has been called, (2) as applied
scientists, we often want to find the “best solution”:
thus, the number of calls to find that best solution is the
relevant quantity in measuring required computer time,
and (3) it is not dependent on the type of computer
being used.2 Of course, measuring function calls does
not represent all aspects of the GA (such as population
generation, mating, mutation, sorting, etc.). For large
problems that are computationally intensive, however,
the number of function evaluations is often the con-
trolling factor for measuring GA speed. Since the GA
begins with random numbers, each new run of the GA
will take a different number of function evaluations to
“solve” the problem.

2 Note that we are assuming a serial computer for this discus-
sion. Application on parallel machines is beyond the scope of
this chapter. Application on a parallel machine will change the
performance as a function of mutation rate and population size,
depending on how the GA is adapted to optimize the parallelism
of the type of machine being used.

We present a sensitivity analysis of the number of
function evaluations necessary to solve the Besin prob-
lem (5.5) for both the binary and continuous GA. Since
we know the exact solution for this construed problem,
we can easily determine convergence. Here, we stop
the GA when the error in the solution becomes less
than 5 × 10−3 or we surpass 5,000 iterations. Ten sep-
arate sensitivity runs are completed for each combina-
tion of population size (4, 8, 12, 16, 20, 32, 40, 48, 56,
64, 72, 80, 88, and 96) and mutation rate (0.001, 0.005,
0.01, 0.05, 0.075, 0.1, 0.12, 0.125, 0.15, 0.175, 0.2,
0.225, and 0.25). The number of function evaluations
for each combination of population size and mutation
rate of those 10 runs are then averaged to produce plots
(Fig. 5.12 for the binary GA results and Fig. 5.13 for
the continuous variable GA) of average performance
as a function of population size and mutation rate. Both
plots contour the logarithm (base 10) of the number
of function calls. We see that for both the binary and
continuous GA, using too small of a mutation rate
prolongs the calculation.

Figure 5.12 plots the number of function evalua-
tions required to solve equation (5.5) using a binary
GA. Note that using the smallest mutation rates
requires more calls to the cost function to solve the
problem. This observation implies that a sufficient
number of mutations is required to push the popu-
lation into the global solution basin for this highly
oscillatory cost function. The fewest number of func-
tion evaluations are required when the population size
is relatively small (≤32) and the mutation rate is
moderately large (0.075 to 0.25). For this problem,
mutation is a critical operator that keeps the solution
from prematurely converging toward the wrong local
minimum. The “best” combination for this problem
using the binary GA is a population size of 8 and
mutation rate of 0.15. The results for the continu-
ous GA appear in Fig. 5.13. In this case, in addition
to small mutation rates causing too many function
evaluations, too small a population (≤20) also results
in a very slow convergence. The “best” combination
for the continuous variable GA applied to the Besin
problem is a population size of 12 and mutation rate
of 0.25.

Our prior work confirms this finding that using
relatively small population sizes in combination with
high mutation rates is often effective for minimiz-
ing the number of function evaluations (Haupt and
Haupt 1998, 2000, 2004). One should be careful, how-
ever, to note that this conclusion is problem dependent.

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 118 of 126 November 8, 2008 12:26

118 S. E. Haupt

10-1

10-2

lo
g

(m
ut

at
io

n
ra

te
)

10-3

20 40 60 80

6

7

8

9

10

11

12

population size

Fig. 5.12 Average number of
cost function evaluations over
10 sensitivity runs required to
find the solution for a binary
GA (log of the number of cost
function evaluations)

When there are a large number of unknowns and the
cost function has fewer local minima, larger popula-
tion sizes are sometimes more efficient. We still find,
though, that the mutation rate must be sufficiently
large.

5.5.6 When to Use a GA

How does the GA compare in speed to other methods?
When do we choose to use a GA on our optimization
problem rather than a more traditional technique? In

10-1

10-2

lo
g

(m
ut

at
io

n
ra

te
)

10-3

20 40 60 80

6

5

7

8

9

10

population size

Fig. 5.13 Average number of
cost function evaluations over
10 sensitivity runs required to
find the solution for a
continuous GA (log of the
number of cost function
evaluations)

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 119 of 126 November 8, 2008 12:26

5 Genetic Algorithms 119

general, if we have a well behaved bowl shaped con-
tinuously differentiable function and we wish to find
the minimum, the gradient descent methods can’t be
beat. Such methods were designed for those cases and
work well there. The GA will not match their speed.
In contrast, if we have a very complicated function
with lots of local optima, the gradient algorithms will
typically find the nearest minimum, which is often
local, not global. The usual situation for the practicing
scientist or engineer is that he or she configures a prob-
lem in a rather large solution space and isn’t quite sure
what the function looks like in solution space. In that
case, it is often wise to try the gradient algorithms first
using various different first guesses. If the algorithm
finds a different solution for each initialization, the
cost function likely has local minima and that is what
the algorithm is finding. Then the practitioner knows
that using a more robust technique is merited. Those
cases are where the GA shines.

Many optimization experts prefer to combine the
strengths of the various techniques on their difficult
problems. One strategy is to use a hybrid GA; that
is, to begin the solution process with a GA until the
correct solution basin is discovered, then switch to a
fast gradient descent method. One strategy that this
author uses is to employ the GA for a specified number
of iterations or until a plateau in the convergence plot
is reached, then switch to a descent technique. This
strategy is often successful at using the GA to deter-
mine the basin of attraction then using the ability of the
gradient descent method to zoom to the bottom of that
basin rapidly. Chapter 14 demonstrates this strategy on
a difficult air pollution problem.

5.5.7 Genetic Algorithms on a
Parallel Computer

Everything we have said thus far about the speed
expected of a GA assumes that we are using a serial
computer. There are ways to speed GAs on a par-
allel computer that (1) make them competitive with
other techniques in speed, (2) make efficient use of the
processors, and (3) may even tune the GA to produce
global minima more quickly. It is beyond our scope
to go into too much detail here, but we do want to
point out that for some problems, creating co-evolving
populations not only makes the algorithm amenable to

distributing among processors, but it also helps dis-
cover a more global minimum and speeds the con-
vergence, even if implemented on a single processor
machine. The many brands of parallel GAs can be
characterized grossly into three primary categories:
master-slave, island GA, and cellular GA. Figure 5.14
is a graphical depiction of these three parallel imple-
mentations.

The master-slave implementation of the GA is the
most similar to the serial GAs that we have been dis-
cussing: they merely distribute the cost function eval-
uations to be done by slave processors that report their
results to the master processor. This method is easy to
implement and no subpopulations are required.

The island GA allows simultaneous evolution
of independent populations. There is often a pre-
scription for some periodic migration between these
subpopulations to increase diversity. Although this
method is a bit more difficult to implement, it is
often successful at increasing the diversity of the
overall population while speeding evolution of the
individual populations through independent evolution
that doesn’t need to wait for communication from any
master.

The cellular implementation of parallelism is ideal
for architectures where communication with near-
est neighbor nodes is faster than for more dis-
tant processors. In this case, each individual often
evolves on its own node with options of mating only
with its nearest neighbors. More detail on parallel
GAs can be found in Gordon and Whitley (1993),
Alga and Tomassini (2002), and Haupt and Haupt
(2004).

5.5.8 Cost Function Construction

Finally, we would be negligent if we did not emphasize
the importance of wise construction of the cost func-
tion. This element is, of course, unique to the problem
at hand. The cost function is often the determining
factor for both how much CPU time is required as
well as how quickly the GA converges to the solution.
A few of the typical general programming tips hold
especially true for the GA since the cost function is
called repeatedly – vectorize the code where possi-
ble (taking advantage of the storage order and special
vectorization tools of the language being used) and

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 120 of 126 November 8, 2008 12:26

120 S. E. Haupt

Fig. 5.14 Schematic of the
three general types of parallel
GA configurations

avoid using constructs known to slow down the code
(such as contingencies). In addition, the GA allows
more creative design of cost functions than many tradi-
tional techniques. For instance, many traditional prob-
lems minimize the L2 norm (sum of the squares) of
some difference from a known or previous value. With
a GA, it is easy to explore using other powers of
the difference – in some cases an L1 norm (absolute
value of the differences) is preferable while in oth-
ers, higher powers are useful if we want to weight
the technique to avoid outliers. In yet other problems,
least squares need not play any role. For instance,
in developing contingency tables for occurrences of
a meteorological condition (e.g. predicting whether
or not it will hail), the models are traditionally built
using a least squares methodology, but then judged
using more complex metrics such as Fraction Cor-
rect, Critical Success Index, or Heidke Skill Scores.
The GA is capable of training the model using those
same metrics to optimize agreement with past data
(Marzban and Haupt 2005 and Chapter 18 of this vol-
ume). Therefore, one additional strength of using a
GA to optimize a function is the greater freedom in
designing the function to be optimized. In addition,

it may be appropriate to weight different portions of
a cost function differently. We did this for the initial
guppy problem (Section 5.2) when balancing the com-
peting parameters of the attractiveness to mates versus
the likelihood of being eaten by a predator.3 Finally, in
some cases, constraints can be built directly into cost
functions to avoid specific portions of parameter space.
If such a constraint is necessary, one could simply
add a term to the cost function to increase the cost if
the function value strays too far from that expected –
i.e. impose a penalty for straying too far in parameter
space.

5.6 Application to a Dynamical
Systems Problem

Let’s revisit our initial problem of optimizing a
population of guppies to survive in a particular

3 An alternative approach would be to map the pareto front of
the competing parameters. That technique is beyond the scope
of this chapter but is covered in Haupt and Haupt (2004).

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 121 of 126 November 8, 2008 12:26

5 Genetic Algorithms 121

5.5

nu
m

be
r

of
 in

di
vi

du
al

s
4.5

3.5

2.5

1.5

0.5

5

4

3

2

1

0 5 10 15 20 25 30
time

guppies
predators

Fig. 5.15 Time evolution of the predator-prey equations (5.15)

environment populated by a predator. In Section 5.2
we directly optimized the guppy population using a
binary value GA. Modern population biologists often
instead model population dynamics with differential
equations. For instance, the classic predator-prey prob-
lem, also known as the Lotka-Volterra equations (see
Chapra and Canale 1998 for a brief discussion of these
equations) is formulated as:

dx

dt
= ax − bxy

(5.15)
dy

dt
= −cy + dxy

where

x = number of prey (guppies)
y = number of predators
a = guppy birth rate
c = predator death rate
b,d = interaction coefficients

This is a nonlinear system with coupling of the rate
equations for the change in the number of prey and
predators. It is reasonably trivial to integrate this equa-
tion in time and to characterize it in phase space.

Setting the parameters a = 1.2, b = 0.6, c = 0.8, and d
= 0.3 and doing a Runge-Kutta time integration with
a time step of 0.01 produces a time series as shown
in Fig. 5.15. Figure 5.16 is a plot in the phase space
of guppies versus predators. The egg shaped pattern
denotes a limit cycle that is repeated indefinitely. The
nonlinear coupling of these equations is what makes
this limit cycle occur.

What if we had measured data of the time evolution
of the guppies and their predators but didn’t know the
functional form? What if we wished to come up with a
model for the rate of change of guppies and predators
given this data that we had obtained? For the moment,
let’s assume that this time series we generated through
integrating equations (5.15) is that data. We wish to use
these data to reproduce the time dependent behavior of
the guppy/predator interaction.

The first step in solving such a problem is to
generate a likely form for the solution. The simplest
approach is to assume a linear model, such as:

st = Ls + C (5.16)

where s is the vector of variables (x,y), the subscript
t denotes its time variation, L is the linear matrix

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 122 of 126 November 8, 2008 12:26

122 S. E. Haupt

5.54.53.5

3.5

2.5

2.5

1.5
0.5

54

4

3

3

2

2

1

1

1.5

guppies

pr
ed

at
or

s

Fig. 5.16 Phase space plot of
guppies vs. predators for
equations (5.15)

operator, and C is a constant matrix. One doesn’t need
an optimization algorithm to fit data to this model:
just use standard least squares parameter estimation
to determine the unknown elements of matrices L and
C. Doing that and using equation (5.16) to integrate it
forward in time produces the time series observed in

Fig. 5.17. We see here that this linear model finds a
solution of one predator and a monotonically growing
number of guppies in time. The corresponding phase
space plot appears as Fig. 5.18. It is obvious that this
diverging solution is not a very good match to the
actual solution of Figs. 5.15 and 5.16.

3.5

2.5

guppies

predators
1.5

0.5

3

2

1

nu
m

be
r

of
 in

di
vi

du
al

s

0
0

5 10 15 20 25 30
time

Fig. 5.17 Time series of
linear empirical model fit
(equation 5.16) to the
Lotka-Volterra equations

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 123 of 126 November 8, 2008 12:26

5 Genetic Algorithms 123

1.015

1.01

1.005

1
2 2.5 3.53

guppies

pr
ed

at
or

s

Fig. 5.18 Phase space plot of
linear empirical model fit
(equation 5.16) to the
Lotka-Volterra equations

The next approach is to try configuring a nonlin-
ear model of the guppy/predator time behavior. We
conjecture (given that we know the solution) that
the nonlinearity is quadratic. Therefore, the simplest
time dependent model that includes both a linear and

quadratic term is:

st= NsTs + Ls + C (5.17)

This nonlinear equation can not be as simply solved
using least squares techniques. An equation to do that

guppies
predators

3

2.5

2

1.5

1

0.5

nu
m

be
r

of
 in

di
vi

du
al

s

0

-0.5

-1.5
0 5 10 15

time
20 25 30

-1

Fig. 5.19 Time series of GA
solved nonlinear empirical
model fit (equation 5.17) to
the Lotka-Volterra equations

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 124 of 126 November 8, 2008 12:26

124 S. E. Haupt

2

1.5

0.5

pr
ed

at
or

s

-0.5

-1.5
-1.5 -1 -0.5 0.5

guppies
1 2 31.5 2.50

-1

0

1

Fig. 5.20 Phase space plot of
GA solved nonlinear
empirical model fit
(equation 5.17) to the
Lotka-Volterra equations

can be found (Haupt 2006), but its solution involves
inverting a fourth order tensor, which is not a trivial
problem. Instead, we choose to configure this problem
as one in optimization where we seek to minimize:

cost = st − (
NsTs + Ls + C

)
(5.18)

Given that we have the data of s and its tendency, st, we
can then directly solve for the elements to the matri-
ces N, L, and C. In addition, we use information on
the symmetries and relations expected between these
matrices to minimize the number of real variables that
we need to find (Haupt 2006). A GA is used to find

population average

-24

-26

-28

-30

-32

co
st

-34

-36

-38

-40

0 10 20 30
generation

40

best

Fig. 5.21 GA convergence
for the nonlinear
guppy/predator empirical
model

000–0–00–000000–0 05-Haupt-c05 SHB0024-Haupt (Typeset by SPi, Delhi) page 125 of 126 November 8, 2008 12:26

5 Genetic Algorithms 125

the solution – the time tendency appears as Fig. 5.19
and phase space plot as Fig. 5.20. The match to the
original data (Figs. 5.15 and 5.16) is not perfect, but
the general shape and oscillatory nature of the behavior
is obtained. Figure 5.21 is the GA convergence curve.
We see that it took very few iterations (10 for this
run) to converge to the optimal solution. Note that
reproducing the exact balance for a nonlinear model
with an empirical model is extremely difficult and
it is amazing that we have come this close with an
optimization algorithm. Chapter 18 further develops
this technique in the context of a chaotic dynamical
system.

5.7 Conclusions

This chapter strives to give a basic introduction to
genetic algorithms. We saw that GAs can be a useful
technique to solve optimization problems. We also saw
that they can be used for building models, whether
of natural processes such as guppy evolution or of
dynamical systems such as the Lotka-Volterra equa-
tions. We have only begun to scratch the surface of
potential GA applications or of how to best apply the
GA. There are entire books on what GAs are and
how to apply them (Holland 1975; Goldberg 1989;
Davis 1991; Mitchell 1996; Haupt and Haupt 1998,
2004). Chapter 18 gives a smattering of examples of
how to configure a problem for a GA and reviews prior
use of GAs in the environmental sciences. Chapter 14
delves into detail on how a GA was used in a specific
problem in source characterization of a source of air
contaminant and how that problem could be reconfig-
ured due to GA robustness to additionally solve for
meteorological variables.

The GA is a useful tool, but it is not always the
first tool to try on an optimization problem. As stated
in Section 5.5, traditional methods may be more time
efficient on easy-to-solve problems. The strength of
the GA is in optimizing difficult problems with lots
of local minima. A carefully configured GA is one
of the most robust tools for finding such solutions. It
may not be as fast, but it is amazingly successful at
identifying the basin of the global minimum. As will
be demonstrated in Chapter 14, a hybrid approach of
using the GA to that point, then switching to a gradient
descent method is often the quickest way to a difficult
solution.

The hope of this author is that we have provided the
reader with enough of a view of GAs to capture his
or her interest and have helped motivate the reader to
apply it to his or her own problems.

Acknowledgements The GA used here was jointly authored
with Randy L. Haupt. The genetics aspects of the guppy evo-
lution problem were brought to my attention by Amy J. Haupt
and her biology teacher, Beth Paterson. Bonny A. Haupt pro-
grammed the cost functions for the guppy evolution problem.

References

Alga, E., & Tomassini, M. (2002). Parallelism and evolutionary
algorithms. IEEE Transactions on Evolutionary Computa-
tion, 6, 443–462.

Chapra, S. C., & Canale, R. P. (1998). Numerical methods for
engineers (3rd ed.). Boston: McGraw-Hill.

Davis, L. (Ed.) (1991). Handbook of genetic algorithms. New
York: Van Nostrand Reinhold.

De Jong, K. A. (1975). Analysis of the behavior of a class of
genetic adaptive systems. Ph.D. dissertation, The University
of Michigan, Ann Arbor, MI.

Goldberg, D. E. (1989). Genetic algorithms in search, opti-
mization, and machine learning. New York: Addison-
Wesley.

Gordon, V. S. & Whitley, D. (1993). Serial and paral-
lel genetic algorithms as function of optimizers. In S.
Forrest (Ed.), ICGA-90: 5th international conference on
genetic algorithms (pp. 177–183). Los Altos, CA: Morgan
Kaufmann.

Haupt, R. (2007). Antenna design with a mixed integer genetic
algorithm. IEEE Transactions on Antennas and Propagation,
55(3), 577–582.

Haupt, R. L., & Haupt, S. E. (1998). Practical genetic algo-
rithms (177 pp.). New York: Wiley.

Haupt, R. L., & Haupt, S. E. (2000). Optimum popula-
tion size and mutation rate for a simple real genetic
algorithm that optimizes array factors. Applied Com-
putational Electromagnetics Society Journal, 15(2), 94–
102.

Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algo-
rithms, second edition with CD (255 pp.). New York:
Wiley.

Haupt, S. E. (2006). Nonlinear empirical models of dynamical
systems. Computers and Mathematics with Applications, 51,
431–440.

Haupt, S. E., Haupt, R. L., & Young, G. S. (2008). A mixed inte-
ger genetic algorithm used in chem-bio defense applications,
accepted by Journal of Soft Computing.

Holland, J. H. (1975). Adaptation in natural and artificial
systems. Ann Arbor, MI: The University of Michigan
Press.

Marzban, C., & Haupt, S. E. (2005). On genetic algorithms
and discrete performance measures. AMS 4th Conference on
Artificial Intelligence, San Diego, CA, paper 1.1.

Mitchell, M. (1996). An introduction to genetic algorithms.
Cambridge, MA: MIT Press.

