Machine Learning Applications in
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19.1 Introduction

Environmental sciences comprise the scientific disci-
plines, or parts of them, that consider the physical,
chemical and biological aspects of the environment
(Allaby 1996). Environmental sciences are possibly
the largest grouping of sciences, drawing heavily on
life sciences and earth sciences, both of which are
relatively large groupings themselves. Life sciences
deal with living organisms and include (among oth-
ers) agriculture, biology, biophysics, biochemistry, cell
biology, genetics, medicine, taxonomy and zoology.
Earth sciences deal with the physical and chemical
aspects of the solid Earth, its waters and the air that
envelops it. Included are the geologic, hydrologic, and
atmospheric sciences. The latter are concerned with
the structure and dynamics of Earth’s atmosphere and
include meteorology and climatology.

The field of environmental science is very inter-
disciplinary. It exists most obviously as a body of
knowledge on its own right when a team of special-
ists assembles to address a particular issue (Allaby
1996). For instance, a comprehensive study of a par-
ticular stretch of a river would involve determining
the geological composition of the riverbed (geology),
determining the chemical and physical properties of
the water (chemistry, physics), as well as sampling and
recording the species living in and near the water (biol-
ogy). Environmental sciences are highly relevant to
environmental management, which is concerned with
directing human activities that affect the environment.
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The most typical representative of environmental
sciences is ecology, which studies the relationships
among members of living communities and between
those communities and their abiotic (non-living) envi-
ronment. Ecology is frequently defined as the study of
the distribution and abundance of plants and animals
(e.g., Krebs 1972). The distribution can be consid-
ered along the spatial dimension(s) and/or the temporal
dimension.

Within ecology, the topic of ecological modeling
(Joergensen and Bendoricchio 2001) is rapidly gain-
ing importance and attention. Ecological modeling is
concerned with the development of models of the rela-
tionships among members of living communities and
between those communities and their abiotic environ-
ment. These models can then be used to better under-
stand the domain at hand or to predict the behavior
of the studied communities and thus support deci-
sion making for environmental management. Typical
modeling topics are population dynamics of several
interacting species and habitat suitability for a given
species (or higher taxonomic unit).

Machine learning is one of the essential and most
active research areas in the field of artificial intelli-
gence. In short, it studies computer programs that auto-
matically improve with experience (Mitchell 1997).
The most researched type of machine learning is
inductive machine learning, where the experience is
given in the form of learning examples. Supervised
inductive machine learning, sometimes also called pre-
dictive modeling, assumes that each learning example
includes some target property, and the goal is to learn
a model that accurately predicts this property.

Machine learning (and in particular predictive mod-
eling) is increasingly often used to automate the con-
struction of ecological models (DZeroski 2001). Most
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frequently, models of habitat suitability and popula-
tion dynamics are constructed from measured data by
using machine learning techniques. The most popular
machine learning techniques used for modeling habitat
suitability include decision tree induction (Breiman
et al. 1984, see also Chapter 4 of this volume by
Dattatreya), rule induction (Clark and Boswell 1991),
and neural networks (Lek and Guegan 1999, see also
Chapter 2 of this volume by Marzban).

In this chapter, we will focus on applications of
machine learning in ecological modeling, more specif-
ically, applications in habitat suitability modeling.
Habitat-suitability modeling studies the effect of the
abiotic characteristics of the habitat on the presence,
abundance or diversity of a given taxonomic group of
organisms. For example, one might study the influ-
ence of soil characteristics, such as soil temperature,
water content, and proportion of mineral soil on the
abundance and species richness of springtails, the most
abundant insects in soil. To build habitat-suitability
models, machine learning techniques can be applied
to measured data on the characteristics of the envi-
ronment and the abundance of the taxonomic group(s)
studied.

In the remainder of this chapter, we first discuss in
more detail the task of habitat suitability modeling. We
next briefly describe two approaches to machine learn-
ing that are often used in habitat suitability modeling:
decision tree induction and rule induction. We then
give examples of using machine learning to construct
models of habitat suitability for several kinds of organ-
isms. These include habitat models for bioindicator
organisms in a river environment, springtails and other
soil organisms in an agricultural setting, brown bears
in a forest environment, and finally habitat suitabil-
ity models for sea cucumbers in a sustainable fishing
setting.

19.2 Habitat Suitability Modeling

If ecology is defined as the study of the distribution and
abundance of plants and animals, habitat suitability
modeling is concerned with the spatial aspects of the
distribution and abundance. Habitat suitability models
relate the spatially varying characteristics of the envi-
ronment to the presence, abundance or diversity of a

given (taxonomic) group of organisms. For example,
one might study the influence of soil characteristics,
such as soil temperature, water content, and proportion
of mineral soil on the abundance and species richness
of springtails, the most abundant insects in soil.

The input to a habitat model is thus a set of envi-
ronmental characteristics for a given spatial unit of
analysis. The output is a target property of the given
(taxonomic) group of organisms. Note that the size of
the spatial unit, as well as the type of environmen-
tal variables, can vary considerably, depending on the
context, and so can the target property of the popula-
tion (even though to a lesser extent).

The spatial unit considered may be of different size
for different habitat models. For example, in the study
of Collembola habitat, the soil samples taken were of
size 7.8 cm diameter and 5 cm depth (Kampichler et al.
2000), in the study of sea cucumber habitat transects
of 2 by 50 m of the sea bed were considered (DZeroski
and Drumm 2003), and in ongoing studies of potential
habitats for different tree species under varying climate
change scenarios, 1 by 1 km squares are considered
(Ogris and Jurc 2007). Habitat models can thus operate
at very different spatial scales.

The input to a habitat model is a set of envi-
ronmental variables, which may be of three different
kinds. The first kind concerns abiotic properties of the
environment, e.g., physical and chemical characteristic
thereof. The second kind concerns some biological
aspects of the environment, which may be consid-
ered as en external impact on the group of organisms
under study. Finally, the third kind of variables are
related to human activities and their impacts on the
environment.

The environmental variables that describe the abi-
otic part of the environment can be of different nature,
depending for example on whether we study a terres-
trial or an aquatic group of organisms. Typical groups
of variables concern properties of the terrain (calcu-
lated from a digital elevation model), such as elevation,
slope and exposition; geological composition of the
terrain or the riverbed/seabed; physical and chemical
properties of the soil/water/air, such as moisture, pH,
quantities of pollutants, and so on. An important group
of variables concerns climate and encompasses tem-
perature, precipitation, etc.

Biological aspects of the environment that are con-
sidered in habitat models are typically more specific
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and more directly related to the target group of organ-
isms as compared to the abiotic variables. They may be
rather coarse and refer to the community, e.g., when
modeling brown bear habitat one of the inputs may
be the type of forest at a particular location. They
may also refer to more specific types of organisms
that are related to the target group, e.g., when mod-
eling the habitat of wolves, information on important
prey species such as hare and deer may be taken into
account.

Some environmental variables may involve both
abiotic and biotic aspects. Land cover is a typical
example: possible values for this variable may be for-
est, grassland, water, etc. Finally, some environmental
variables are related to human activity: examples are
proximity to settlements, population density, and prox-
imity to roads/railways.

The output of a habitat model is some property of
the population of the target group of organisms at the
spatial unit of analysis. There are two degrees of free-
dom here: one stems from the target property, the other
from the group of organisms studied. In the simplest
case, the output is just the presence/absence of a single
species (or group). In this case, we simply talk about
habitat models.

An example habitat model for brown bears in
Slovenia (taken from Jerina et al. 2003) is given
in Table 19.1. It has the form of an IF-THEN
rule, which specifies the conditions that define suit-
able habitat for brown bears. The rule uses three
environmental variables PREDOMINANT-LAND-
COVER, FOREST-ABUNDANCE and PROXIMITY-
TO-SETTLEMENTS: it was actually learned by
applying machine learning techniques to observational
data.

We can also be interested in the abundance or den-
sity of the population. If we take these as indicators
of the suitability of the environment for the group of
organisms studied, we talk about habitat suitability
models: the output of these models can be interpreted

Table 19.1 A habitat model for the brown bear (Ursus arctos)
in Slovenia

IF PREDOMINANT-LAND-COVER = Forest
AND FOREST-ABUNDANCE > 60%

AND PROXIMITY-TO-SETTLEMENTS > 1.5 km
THEN BrownBearHabitat = Suitable

ELSE BrownBearHabitat = Unsuitable

as a degree of suitability. The abundance of the pop-
ulation can be measured in terms of the number of
individuals or their total size (e.g., the dry biomass of
a certain species of algae). If the (taxonomic) group is
large enough, we can also consider the diversity of the
group (Shannon index, species richness or such like,
see Krebs 1989).

In the most general case of habitat modeling, we are
interested in the relation between the environmental
variables and the structure of the population at the spa-
tial unit of analysis (absolute and relative abundances
of the organisms in the group studied). One approach
to this is to build habitat models for each of the organ-
isms (or lower taxonomic units) in the group, then
aggregate the outputs of these models to determine
the structure of the population (or the desired target
property). An alternative approach is to build a model
that simultaneously predicts the presence/abundance
of all organisms in the group or directly the desired
target property of the entire group. A comparison
of the two approaches in the context of machine
learning of habitat models is given by DemSar et al.
(20064a).

We should note here that observing the presence or
absence of a species/group (or its abundance/density)
within a given spatial unit can be a nontrivial task.
While most plants and certain animals (such as sea
cucumbers) are relatively immobile, many animals
(including brown bears) can move fast and cover wide
spatial areas. In the latter cases, one might consider
areals of activity (home ranges) and sample from these
to obtain data for learning habitat suitability models:
this is what was done in the study by Jerina et al.
(2003).

Another issue that commonly occurs in habitat
modeling, especially in the context of machine learn-
ing, is the fact that only presence data are often col-
lected (i.e., no absence data are usually available). In
such cases, additional care is necessary when prepar-
ing the data for the modeling task. Examples (spa-
tial units) where the target group can be reasonably
expected not to occur (based on domain knowledge)
may be considered as absence data.

Finally, let us reiterate that habitat modeling
focuses on the spatial aspects of the distribution and
abundance of plants and animals. It studies the rela-
tionships between some environmental variables and
the presence/abundance of plants and animals, under
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the implicit assumption that both are observed at
a single point in time for a given spatial unit. It
mostly ignores the temporal aspects of the distribu-
tion/abundance, the latter being the focus of popula-
tion dynamics modeling. Still, some temporal aspects
may be taken into account, for example, averages of
environmental variables over a period of time preced-
ing the observation are sometimes included in habitat
models (e.g., average winter air temperature).

19.3 Machine Learning for
Habitat Modeling

19.3.1 The Machine Learning Task of
Predictive Modeling

The input to a machine learning algorithm is most
commonly a single flat table comprising a number of
fields (columns) and records (rows). In general, each
row represents an object and each column represents a
property (of the object). In machine learning terminol-
ogy, rows are called examples and columns are called
attributes (or sometimes features). Attributes that have
numeric (real) values are called continuous attributes.
Attributes that have nominal values (are called discrete
attributes.

The tasks of classification and regression are the
two most commonly addressed tasks in machine learn-
ing. They are concerned with predicting the value of
one field from the values of other fields. The target
field is called the class (dependent variable in statisti-
cal terminology). The other fields are called attributes
(independent variables in statistical terminology).

If the class is continuous, the task at hand is called
regression. If the class is discrete (it has a finite set of
nominal values), the task at hand is called classifica-
tion. In both cases, a set of data (dataset) is taken as
input, and a predictive model is generated. This model
can then be used to predict values of the class for new
data. The common term predictive modeling refers to
both classification and regression.

Given a set of data (a table), only a part of it is
typically used to generate (induce, learn) a predictive
model. This part is referred to as the training set.
The remaining part is reserved for evaluating the pre-
dictive performance of the learned model and is called

the testing set. The testing set is used to estimate the
performance of the model on unseen data (and some-
times also called validation set, see Chapter 2 of this
volume by Marzbahn).

More reliable estimates of performance on unseen
data are obtained by using cross-validation, which par-
titions the entire data available into N (with N typically
set to 10) subsets of roughly equal size. Each of these
subsets is in turn used as a testing set, with all of
the remaining data used as a training set. The perfor-
mance figures for each of the testing sets are averaged
to obtain an overall estimate of the performance on
unseen data.

19.3.2 A Machine Learning Formulation
of Habitat Modeling

In the case of habitat modeling, examples correspond
to spatial units of analysis. The attributes correspond
to environmental variables describing the spatial units,
as these are the inputs to a habitat model. The class
is a target property of the given (taxonomic) group of
organisms, such as presence, abundance or diversity.

The habitat model from Table 19.1 has been learned
from a dataset which includes the discrete attribute
PREDOMINANT-LAND-COVER (which can have
the value forest, among others) and the continuous
attributes FOREST-ABUNDANCE and PROXIMITY-
TO-SETTLEMENTS. The class BrownBear-Habitat
is discrete, with Suitable and Unsuitable as possi-
ble values. Hence, we are dealing with a classifica-
tion task. An excerpt from the dataset is given in
Table 19.2.

The machine learning task of habitat modeling
is thus defined as follows. Given is a set of data
with rows corresponding to spatial locations (units
of analysis), attributes corresponding to environmen-
tal variables, and the class corresponding to a target
property of the population studied. The goal is to
learn a predictive model that predicts the target prop-
erty from the environmental variables (from the given
dataset). If we are only looking at presence/absence
or suitable/unsuitable as values of the class (as is
the case above), we have a classification problem. If
we are looking at the degree of suitability (density/
abundance), we have a regression problem.
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Table 19.2 An excerpt from the dataset for modeling brown bear habitat in Slovenia. PLC stands for PREDOMINANT-LAND-
COVER, PTS for PROXIMITY-TO-SETTLEMENTS, and BBH for BrownBearHabitat

Location PLC FOREST-ABUNDANCE PTS OtherEnv Variables BBH
11 Forest 80 214 - Yes
12 Forest 66 13.9 - Yes
13 Forest 55 50.0 - No
14 Forest 72 1.2 - No
15 Grassland 6 19.1 - No
16 Grassland 0 11.4 - No
17 Wetland 3 5.8 - No
18 Water 0 3.9 - No

19.3.3 Decision Tree Induction

19.3.3.1 What Are Decision Trees?

Decision trees (Breiman et al. 1984, see also Chapter
4 of this volume by Dattatreya) are hierarchical
structures, where each internal node contains a test on
an attribute, each branch corresponds to an outcome
of the test, and each leaf node gives a prediction for
the value of the class variable. Depending on whether
we are dealing with a classification or a regression
problem, the decision tree is called a classification or a
regression tree, respectively. An example classification
tree modeling the habitat of sea cucumbers is given
in Fig. 19.1. The tree has been derived from actual
data by using machine learning (DZeroski and Drumm
2003).

Regression tree leaves contain constant values as
predictions for the class value. They thus represent
piece-wise constant functions. Model trees, where
leaf nodes can contain linear models predicting the
class value, represent piece-wise linear functions. An
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Fig. 19.1 A classification Present

tree that predicts the
suitability of habitat for the
sea cucumber species
Holothuria Leucospilota on
Rarotonga, Cook Islands
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example model tree that predicts the total abundance of
hemi- and eu-edaphic Collembola is given in Fig. 19.2
(Kampichler et al. 2000).

Note that decision trees represent total partitions
of the data space, where each test corresponds to an
axis-parallel split. Most algorithms for decision tree
induction consider axis-parallel splits. However, there
are a few algorithms that consider splits along lines
that need not be axis-parallel or even consider splits
along non-linear curves.

19.3.3.2 Top-Down Induction of Decision Trees

Finding the smallest decision tree that would fit a
given data set is known to be computationally expen-
sive (NP-hard). Heuristic search, typically greedy, is
thus employed to build decision trees. The common
way to induce decision trees is the so-called Top-
Down Induction of Decision Trees (TDIDT, Quinlan
1986). Tree construction proceeds recursively start-
ing with the entire set of training examples (entire
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Fig. 19.2 A model tree that predicts the total abundance (TA)
of hemi- and eu-edaphic Collembola on the FAM experimental
farm at Scheyern (near Munich), Germany

table). At each step, an attribute is selected as the root
of the (sub)tree and the current training set is split
into subsets according to the values of the selected
attribute.

For discrete attributes, a branch of the tree is typ-
ically created for each possible value of the attribute.
For continuous attributes, a threshold is selected and
two branches are created based on that threshold. For
the subsets of training examples in each branch, the
tree construction algorithm is called recursively. Tree
construction stops when the examples in a node are
sufficiently pure (i.e., all are of the same class) or if
some other stopping criterion is satisfied (e.g., there is
no good attribute to add at that point). Such nodes are
called leaves and are labeled with the corresponding
values of the class.

Different measures can be used to select an attribute
in the attribute selection step. These also depend
on whether we are inducing classification or regres-
sion trees (Breiman et al. 1984). For classification,
Quinlan (1986) uses information gain, which is the
expected reduction in entropy of the class value caused
by knowing the value of the given attribute. Other
attribute selection measures, however, such as the Gini
index (Breiman et al. 1984) or the accuracy of the
majority class, can and have been used in classifica-
tion tree induction. In regression tree induction, the
expected reduction in variance of the class value can
be used.

An important mechanism used to prevent trees
from over-fitting data is tree pruning. Pruning can
be employed during tree construction (pre-pruning)
or after the tree has been constructed (post-pruning).
Typically, a minimum number of examples in branches
can be prescribed for pre-pruning and a confidence

level in accuracy estimates for leaves
pruning.

for post-

19.3.4 Rule Induction

19.3.4.1 What Are Predictive Rules?

We will use the word rule here to denote pat-
terns of the form “IF Conjunction of conditions
THEN Conclusion.” The individual conditions in
the conjunction will be tests concerning the values
of individual attributes, such as “PROXIMITY-TO-
SETTLEMENTS > 1.5 km” or “PREDOMINANT-
LAND-COVER=Forest”. For predictive rules, the con-
clusion gives a prediction for the value of the target
(class) variable.

If we are dealing with a classification problem, the
conclusion assigns one of the possible discrete values
to the class, e.g., “BrownBearHabitat=Unsuitable”. A
rule applies to an example if the conjunction of con-
ditions on the attributes is satisfied by the particular
values of the attributes in the given example. Each rule
corresponds to a hyper-rectangle in the data space.

Predictive rules can be ordered or unordered.
Unordered rules are considered independently and sev-
eral of them may apply to a new example that we
need to classify. A conflict resolution mechanism is
needed if two rules which recommend different classes
apply to the same example. A default rule typically
exists, whose recommendation is taken if no other rule
applies.

Ordered rules form a so-called decision list. Rules
in the list are considered from the top to the bottom of
the list. The first rule that applies to a given example
is used to predict its class value. Again, a default rule
with an empty precondition is typically found as the
last rule in the decision list and is applied to an exam-
ple when no other rule applies.

An ordered list of rules describing brown bear habi-
tat is given in Table 19.1: the second rule in this list is
the default rule which always applies. An unordered
list of rules that predicts the suitability of habitat for
sea cucumbers is given in Table 19.3. Note that clas-
sification trees can be transcribed into sets of classifi-
cation rules, since each of the leaves of a classification
tree corresponds to a classification rule. Although less
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Table 19.3 A set of unordered rules that predicts the suitability
of habitat for the sea cucumber species Holothuria Leucospilota
on Rarotonga, Cook Islands. The default rule, which predicts the
class Absent is not listed

IF Sand < 7.5
AND Rubble > 62.0
AND Rock_Pave < 15.0
AND Dead_Coral < 13.5
THEN Presence = Present [3 absent, 15 present]

IF Rubble < 54.0
AND 7.5 < Consol_Rubble < 77.5
AND Bould < 25.0
AND Rock_Pave < 30.0
AND Dead_Coral < 45.0
THEN Presence = Present [1 absent, 6 present]

IF Rubble < 9.5 AND Live_Coral < 27.5
THEN Presence = Absent [65 absent]

IF Sand > 8.5 AND Consol_Rubble < 5.0
THEN Presence = Absent [64 absent]

IF Bould > 2.5 AND Rock_Pave > 30.0
THEN Presence = Absent [10 absent]

common in practice, regression rules also exist, and
can be derived, e.g., by transcribing regression trees
into rules.

19.3.4.2 The Covering Algorithm
for Rule Induction

In the simplest case of binary classification, one of
the classes is referred to as positive and the other
as negative. For a classification problem with several
class values, a set of rules is constructed for each class.
When rules for class ¢; are constructed, examples of
this class are referred to as positive, and examples from
all the other classes as negative.

The covering algorithm works as follows. We first
construct a rule that correctly classifies some exam-
ples. We then remove the examples covered by the rule
from the training set and repeat the process until no
more examples remain. When learning ordered rules
we remove all examples covered and when learning
unordered rules only the positive examples covered by
the rule.

Within this outer loop, different approaches can
be taken to find individual rules. One approach is
to heuristically search the space of possible rules
top-down, i.e., from general to specific (in terms of

examples covered this means from rules covering
many to rules covering fewer examples) (Clark and
Boswell 1991). To construct a single rule that classifies
examples into class ¢;, we start with a rule with an
empty antecedent (IF part) and the selected class ¢; as
a consequent (THEN part). The antecedent of this rule
is satisfied by all examples in the training set, and not
only those of the selected class. We then progressively
refine the antecedent by adding conditions to it, until
only examples of class ¢; satisfy the antecedent. To
allow for handling imperfect data, we may construct
a set of rules which is imprecise, i.e., does not classify
all examples in the training set correctly.

19.4 Case Studies of Habitat Modeling
with Machine Learning

In this section, we exemplify the machine learning
approach to habitat modeling through four case stud-
ies. For each case study, we briefly describe the data
available, the machine learning approach used, and
the results obtained. We also give examples of habitat
models learned in the process.

19.4.1 Bioindicator Organisms in
Slovenian Rivers

In this study (DzZeroski et al. 1997), we learned habi-
tat models for 17 organisms that can be found in
Slovenian rivers and are used as indicator organ-
isms when determining the biological quality of river
waters. The habitat models explicate the influence
of physical and chemical parameters of river water
on 10 plant taxa and seven animal taxa. On the
plant side, eight kinds of diatoms (BACILLARIO-
PHYTA) and two kinds of green algae (CHLORO-
PHYTA) were studied. The animal taxa chosen for
study include worms (OLIGOCHAETA), crustaceans
(AMPHIPODA) and five kinds of insects.

The plant taxa studied were: Coconeis placentula,
Cymbella sp., Cymbella ventricosa, Diatoma vulgare,
Navicula cryptocephala, Navicula gracilis, Nitzschia
palea, Synedra ulna, Cladophora sp., and Oedogo-
nium sp. The animal taxa studied were Tubifex sp.,
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Table 19.4 Example rules
from the habitat models for
bioindicator organisms in
Slovenian rivers (Nitzschia
palea, Elmis sp., and
Plecoptera leuctra sp.)

IF Temperature > 12.75
AND BOD < 0.65
THEN Elmis = Present

IF Temperature < 23

AND 120 < Saturation < 150
AND COD > 10.9

AND BOD < 3.75

IF Hardness > 11.85

AND NO; > 0.095

AND NHy > 0.09

THEN Nitzschia = Present

IF NO, < 0.005

AND NO3 < 7.1

AND PO4 < 0.125

AND Detergents < 0.055
AND BOD <2

THEN Nitzschia = Absent

IF PH > 7.05
AND BOD > 12.15
THEN Elmis = Absent

IF Temperature < 22.25
AND Total Hardness < 18.55
AND BOD > 6.9

THEN Leuctra = Absent

THEN Leuctra = Present

Gammarus fossarum, Baetis sp., Leuctra sp., Chirono-
midae (green), Simulium sp., Elmis sp.

The data used in the study came from the Hydrom-
eteorological Institute of Slovenia (now Environment
Agency of Slovenia) that performs regular water qual-
ity monitoring for most Slovenian rivers and main-
tains a database of water quality samples. The data
used cover a 4 year period, from 1990 to 1993. In
total, 698 water samples were available on which both
physical/chemical and biological analyses were per-
formed: the former provided the environmental vari-
ables for the habitat models, while the latter provided
information on the presence/absence of the studied
organisms.

Plants are more or less influenced by the follow-
ing physical and chemical parameters (water proper-
ties): total hardness, nitrogen compounds (NO, , NOs,
NHy), phosphorus compounds (POj), silica (SiO,),
iron (Fe), surfactants (detergents), chemical oxygen
demand (COD), and biochemical oxygen demand
(BOD). The last two parameters indicate the degree
of organic pollution: the first reflects the total amount
of degradable organic matter, while the second reflects
the amount of biologically degradable matter. Animals
are mostly influenced by a different set of parame-
ters: water temperature, acidity or alkalinity (pH), dis-
solved oxygen (O, saturation of O;), total hardness,
chemical (COD), and biochemical oxygen demand
(BOD).

The habitat models for the plant/animal taxa
used the following environmental variables: Hard-
ness, NO,, NO3;, NHy, POy, SiO,, Fe, Detergents,
COD, BOD for plants and Temperature, PH, O,,

Saturation, COD, BOD for animals. The class is the
presence of the selected taxon (with values Present and
Absent). Seventeen machine learning problems were
thus defined, one for each taxon. Each of the datasets
contained 698 examples.

Rule induction, and in particular the CN2 system
(Clark and Boswell 1991), was used to construct the
habitat models. The rules induced on the complete
data were given to a domain expert (river ecologist)
for inspection. Their accuracy on unseen data was also
estimated by dividing the data into a training set (70%)
and a testing set (30%), repeating this 10 times and
averaging the results (accuracy on the test set).

The accuracy of the 17 models on the whole (train-
ing) dataset ranges between 66% and 85%, while the
default accuracy, i.e., the majority class frequency
ranges from 50% to 70%. The estimated accuracy on
unseen cases ranges from 53% to 71%. In nine of the
17 cases, the models substantially improve upon the
default accuracy and provide interesting knowledge
about the taxa studied.

In several cases, the induced rules are consistent
with and confirm the expert knowledge about the
organism studied. The diatom Nitzschia palea, the
most common species in Slovenian rivers, is very toler-
ant to pollution. The rules confirm that a larger degree
of pollution is beneficial to this species: they indicate
that Nitzschia palea needs nitrogen compounds, phos-
phates, silica, and larger amounts of degradable matter
(COD and BOD). Elmis sp. is known to inhabit clean
waters: the rules demand a low quantity of biodegrad-
able matter (pollution) in order for the taxon to be
present, and predict that the taxon will be absent if the
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water is overly polluted (has high values of BOD, COD
and pH).

Not all of the induced rules agree with existing
expert knowledge. For example, the rules that predict
the presence of the taxon Plecoptera leuctra sp., which
is used as an indicator of clean waters, confirm that
it is indeed found mainly in clean waters. However,
they also state that it can be found in quite polluted
water, provided there is enough oxygen. Thus, they
enhance current knowledge on the bioindicator role of
this taxon.

19.4.2 Soil Insects on an Experimental
Farm in Germany

Kampichler et al. (2000) used machine learning tech-
niques to build habitat models for Collembola (spring-
tails), the most abundant insects in soil, in an agricul-
tural soil environment. They study both the taxonomic
group of Collembola, as well as the dominant species
in the study area, (Folsomia quadrioculata). The habi-
tat models constructed relate the total abundance and
species number of Collembola, as well as the abun-
dance of the dominant species, to habitat characteris-
tics, i.e., properties of the soil.

The data used in the study come from an experi-
mental farm at Scheyern (near Munich), Germany, run
by the FAM Research Network on Agroecosystems.
The farm was of size approximately 153 ha, located at
an elevation of 450490 m above sea level, with mean
annual temperature and mean annual precipitation of
7.58°C and 833 mm, respectively. In April 1991, one
soil core was taken at each intersection of a 50 x
50 m mesh-size grid (7.8 cm diameter, 5 cm depth)
and yielded a total of 396 cores. The majority of these
points were situated in arable fields, the remainder in
pastures, meadows and arable fields on former hop
fields. Microarthropods were counted and Collembola
identified by species. Only data of euedaphic (soil-
dwelling) Collembola and hemiedaphic Collembola
(which live near the soil surface) were included in the
analysis.

To measure environmental factors, cores were taken
from the same sampling points, at a distance of
approximately 25 cm from the first cores. The follow-
ing environmental variables were measured: microbial
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Fig. 19.3 A regression (top) and a model tree (bottom) that
predict the number of species (NS) of hemi- and eu-edaphic
Collembola and the number of individuals (NI) of the collem-
bolan species Folsomia quadrioculata, respectively, on the FAM
experimental farm at Scheyern (near Munich), Germany

biomass, microbial respiration, soil moisture, soil acid-
ity, carbon content (Ct) and nitrogen content (Nt). Soil
texture at the sampling points was also determined and
expressed by the (base 10) logarithm of the median
particle size (diameter). From the 396 cores, only those
that had no missing values for any of these variables
were included in the model development, leaving a
dataset of n = 195 samples.

To build habitat models, we used regression trees.
More specifically, the system M5 (Quinlan 1992) for
model tree induction was used. Trees were built sep-
arately for each of the three target variables: the
abundance and diversity (species number) of Collem-
bola, and the abundance of the dominant species
Folsomia quadrioculata. Example trees for the last
two are given in Fig. 19.3, while an example tree
for the first is given in Fig. 19.2. Linear regression
models, as well as neural networks with one hidden
layer, were also constructed for each of the target
variables.

In terms of predictive power, model trees fared bet-
ter than linear regression and worse than neural net-
works. All of them, however, had quite low predictive
power (for unseen cases, the correlation coefficients
were estimated by 10-fold cross-validation at approx.
0.3 for linear regression, 0.4 for model trees and 0.5
for neural networks). The most probable reason for
the low performance is that the aggregated spatial
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distribution of collembolans sets limit to the possibility
of predicting the actual number of collembolans. In
this context, the quality of trees of being transparent
and providing explicit information about the quanti-
tative relationships between the variables proved very
appealing to the domain experts.

The trees clearly identify microbial respiration as
the most important factor influencing the collembolan
community, followed by soil texture and soil acidity.
The same environmental variables seem to be impor-
tant for all three target variables and the structure of
the individual trees is very similar. In this case, simul-
taneous prediction of all target variables seems reason-
able: this can be done by applying predictive clustering
trees (Blockeel et al. 1998), a generalized version of
decision trees. This methodology, also called multi-
objective classification/prediction, has been applied to
habitat modeling for river communities (DZeroski et al.
2001) and for soil insects, including mites and spring-
tails (Demsar et al. 2006b).

19.4.3 Brown Bears in Slovenia

The brown bear (Ursus arctos) occurs today in only a
small part of its historical range: Slovenia is among
the few European countries with a preserved viable
indigenous brown bear population, as well as popula-
tions of other large predator species, such as wolf and
lynx. The Slovenian bear population is a part of the
continuous Alps-Dinaric-Pindos population: its core
habitat (the forests of Kocevska and SneZnik in South-
Western Slovenia) is connected with Gorski Kotar in
Croatia in a unified block of bear habitat. This bear
population is important also because it represents the
source for natural re-colonization or reintroduction of
the bear into Slovenia’s neighboring countries Austria
and Italy.

In their study, Jerina et al. (2003) address three
aspects of the brown bear population in Slovenia: its
size (and its evolution over time), its spatial expan-
sion out of the core area, and its potential habitat
based on natural habitat suitability. The results of the
study include estimates of population size, a picture
of the spatial expansion of the population and maps
of its optimal and maximal potential habitat (based
on natural suitability). All of these are relevant to the
management of the Slovenian brown bear population.

In this section, we summarize the habitat modeling
aspect of the study.

The habitat models built were based on bear sight-
ings data acquired in the last decade of the 20th century
by the Hunters association of Slovenia, as well as data
from a previous radio-tracking project. Since we were
interested in the optimal habitat, best represented by
females with cubs, we selected only such sightings.
Instead of using a cloud of sighting location points as
the basis for the models, we used an estimation of the
inhabited area (IA) constructed by a kernel method:
this method gives as output the frequency/probability
with which individual points in space are occupied by
brown bears.

The spatial unit of analysis was a pixel of size
500 x 500m. Positive examples were sampled from
the inhabited area. Examples for the “optimal” habi-
tat model were sampled from areas that exceeded
a high threshold of the probability of bear occu-
pancy: This threshold was lower when sampling pos-
itive examples for the “maximal” potential habitat
model. Negative examples were randomly sampled
from the rest of the study area (i.e., not the IA), which
presumably is less (or not at all) suitable for bear
habitat.

The explanatory environmental variables were
derived from several GIS (Geographical Information
Systems) layers. These included land cover data, for-
est inventory data, settlements map, road map, and
a digital elevation model. Example variables include
forest abundance and proximity to settlements. A value
of each of these variables was associated with each
500 x 500 m pixel. The method of decision tree induc-
tion, and in particular the See5 commercial product,
based on the C4.5 (Quinlan 1993) algorithm, was
used to build the “optimal” and “maximal” habitat
models.

The decision tree for optimal habitat (Fig. 19.4a)
takes into account the surrounding forest matrix size,
forest abundance in each pixel, predominant land
cover type, sub-regional density of human popula-
tion, and the predominant forest association within
each forest pixel. The decision tree for maximal habi-
tat (Fig. 19.4b) is much simpler and only takes into
account the predominant land cover type, forest abun-
dance, and proximity to settlement. Note that the clas-
sification rule for predicting “maximal bear habitat”,
given in Table 19.1, is obtained by rewriting the tree in
Fig. 19.4b.
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Fig. 19.4 Two decision trees predicting the (a) optimal and (b) maximal habitat of the brown bear (Ursus arctos) in Slovenia. FA1,
FA2, FA3, and FA4 denote four different groups of forest associations, where FA1 and FA3 contain oak and FA2 and FA4 contain

beech

The learned trees were used to produce the respec-
tive habitat maps. The thematic accuracy for the first
map was estimated by 10-fold cross-validation as 89%,
and 84% for the latter. The optimal habitat covers
12.3% of Slovenias territory, mostly in the south-
ern part, bordering to Croatia. The possible maximal
habitat extent includes additional 26.4% of the terri-
tory, mostly in the alpine region in the northern and
western part of Slovenia, thus totaling 38.7% of the
country.

It can be gleaned both from the decision trees as
well as from the final habitat maps, that the bear habitat
suitability in Slovenia largely depends on the presence
of a dense forest cover, while it depends less upon
food availability. Considering the increasing trend of
forest cover in Slovenia, and assuming a continuation
of high reproduction rates, we could even expect a
further expansion of bear-inhabited areas in the future.
It is furthermore obvious that the six-lane Ljubljana
Trieste highway cuts through the optimal habitat at
two vulnerable bottlenecks, disrupting the dispersion
corridors towards the Alps: This can be seen from

a large number of bear related traffic accidents on
the highway. The habitat maps we constructed were
used to recommend suitable locations for eco-ducts
(wildlife bridges) across this highway to the Highway
authority of Slovenia.

19.4.4 Sea Cucumbers on Rarotonga,
Cook Islands

In the Pacific Islands, invertebrates including sea
cucumbers are among the most valuable and vul-
nerable inshore fisheries resources. The sea cucum-
ber (Holothuria leucospilota) forms an important
part of the traditional subsistence fishery on Raro-
tonga, Cook Islands, yet little is known of this
species present spatial distribution and abundance
around the island. To contribute to the knowledge
about this species, DZeroski and Drumm (2003) apply
machine learning to measured data and build a habi-
tat model that predicts the number of sea cucumber
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Fig. 19.5 A model tree predicting the number of individuals (NI) of the sea cucumber species H. Leucospilota in a 2 x 50 m

transect of the sea bed near Rarotonga, Cook Islands

individuals from environmental characteristics of
a location.

The spatial unit of analysis was a2 x 50 m (100 m?)
strip transect: This size was selected to account for
the patchy distribution of the animals. A total of 128
sites were sampled for environmental and biological
variables. The number of H. leucospilota individu-
als encountered along each transect was recorded. In
addition to the species abundance, 10 environmen-
tal variables that were expected to have an influ-
ence on the habitat preference of the sea cucum-
ber were recorded. These included the exposure of
the site (windward or leeward side of the island),
and the following microhabitat variables, estimated
as a percentage (with possible values from 0% to
100%) of the total 100 m? area sampled: Sand, Rub-
ble, Cons_Rubble (consolidated rubble), Boulder, reef
rock/pavement (Rock_Pave), live coral (Live_Coral),
dead coral (Dead_Coral), mud/silt (Mud_Silt), and
Gravel.

The number of H. leucospilota individuals was the
class variable, while the 10 environmental variables
were the attributes. Model tree induction was used
to build the habitat model. More specifically, M5’, a
re-implementation of the system M5 (Quinlan 1992)
within the software package WEKA (Witten and Frank
1999) was used. The model tree constructed is given in
Fig. 19.5. The correlation coefficient for predictions on
unseen cases was estimated to be 0.5 (by using 10-fold
cross-validation).

The tree identifies the most important influences
of the site characteristics on habitat suitability (rubble
and sand, followed by rock pavement, consolidated
rubble, and live coral). It identifies four types of
sites (one leaf for each) and constructs different lin-

ear models to predict the number of sea cucumbers
at each.

Two of the site types are essentially not very suit-
able as sea cucumber habitat: the first (LM1) does
not have enough rubble, while the second (LM4) does
have enough rubble, but also has too much sand. The
average numbers of individuals recorded at the two
types of sites are 15 and 35, respectively. One site type
(LM2) is very suitable as sea cucumber habitat, as evi-
denced by the average of 236 animals found per site.
This type of site is characterized by enough rubble,
little sand and little rock pavement. The last type of
site (LM3) represents a moderately suitable habitat for
sea cucumbers: it has the same characteristics as the
most suitable habitat, except for too much rock pave-
ment. The sea cucumbers prefer larger percentages of
rubble and consolidated rubble in all four types of sites
(positive coefficients for rubble/consolidated rubble in
each of the four linear models).

19.5 Summary and Discussion

In this chapter, we have introduced the task of habitat
suitability modeling and formulated it as a machine
learning problem. Habitat-suitability modeling studies
the effect of the abiotic characteristics of the habitat
on the presence, abundance or diversity of a given tax-
onomic group of organisms. We have briefly described
two approaches to machine learning that are often used
in habitat suitability modeling: decision tree induction
and rule induction.

Applications of machine learning to habitat suit-
ability modeling can be grouped along two dimen-
sions. One dimension is the type of environment where
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the studied group of organisms lives, e.g., aquatic
(river or sea) or terrestrial (forest or agricultural fields).
Another dimension is the type of machine learning
approach used, e.g., symbolic (decision trees or clas-
sification rules) or statistical (logistic regression or
neural networks).

In this chapter, we have given examples of using
symbolic machine learning approaches to construct
models of habitat suitability for several kinds of
organisms in the abovementioned environments. These
include habitat models for springtails and other soil
organisms in an agricultural setting, brown bears in
a forest environment, bioindicator organisms in a
river environment, and finally sea cucumbers in a
sustainable fishing setting. Many more examples of
using machine learning for habitat modeling exist,
some of which we point to below. A collection of
papers, devoted specifically to the topic of habitat
modeling, has been edited by Raven et al. (2002)
and describes several applications of machine learning
methods.

The author has been involved in quite a few
other habitat modeling applications of machine learn-
ing, besides those summarized above. These include
another, more realistic application in modeling the
effects of agricultural actions on soil insects, including
mites and collembolans (DemsSar et al. 2006). This has
been also studied in the context of farming with genet-
ically modified crops and their effects on soil fauna,
including earthworms (Debeljak et al. 2005). We have
also studied habitat suitability for red deer in Slovenian
forests using GIS data, such as elevation, slope, and
forest composition (Debeljak et al. 2001).

Neural networks are often used for habitat mod-
eling: several applications are described in (Lek and
Guegan 1999). For example, (Lek-Ang et al. 1999)
use them to study the influence of soil characteristics,
such as soil temperature, water content, and proportion
of mineral soil on the abundance and species richness
of Collembola (springtails). Another study of habitat
suitability modeling by neural networks is given by
Ozesmi and Ozesmi (1999).

Several habitat-suitability modeling applications of
other data mining methods are surveyed by Field-
ing (1999b). Fielding (1999a) applies a number
of methods, including discriminant analysis, logistic
regression, neural networks and genetic algorithms, to
predict nesting sites for golden eagles. Bell (1999) uses

decision trees to describe the winter habitat of prong-
horn antelope. Jeffers (1999) uses a genetic algorithm
to discover rules that describe habitat preferences for
aquatic species in British rivers.

As compared to traditional statistical methods, such
as linear and logistic regression, the use of machine
learning offers several advantages. On one hand,
machine learning methods are capable of approximat-
ing nonlinear relationships (typical for the interactions
between living organisms and the environment) better
than traditional linear approaches. On the other hand,
symbolic learning approaches, such as decision trees
and classification rules, provide understandable mod-
els that can be inspected to give insight into the domain
studied.

Let us conclude by mentioning several recent
research topics related to the use of machine learn-
ing for habitat suitability modeling. These include
machine learning methods for simultaneous prediction
of several target variables, machine learning methods
that are spatially aware and finally the use of habitat
suitability modeling in the context of predicting the
effects of climate change. We discuss each of these
briefly below.

When modeling the habitat of a group of organ-
isms, we are interested in the relation between the
environmental variables and the structure of the pop-
ulation at the spatial unit of analysis (absolute and
relative abundances of the organisms in the group
studied). While one approach to this is to build habi-
tat models for each of the organisms, the alterna-
tive approach of building a model that simultaneously
predicts the presence/abundance of all organisms in
the group is more natural. For this purpose, we can
use a neural network with several output nodes that
share a common hidden layer. Recently, however, sym-
bolic machine learning approaches have been devel-
oped that address this problem, namely predictive
clustering trees (Blockeel et al. 1998) and predictive
clustering rules (Zenko et al. 2006) for multi-target
prediction.

When using machine learning to build habitat mod-
els, individual spatial points are treated as training
examples. These are assumed to be completely inde-
pendent and their relative spatial position (proximity)
is ignored. This can result in unrealistic predictions of
very small patches of habitat: this was, e.g., the case
in the brown bear habitat modeling study described
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earlier in the chapter. This problem is usually dealt in
a post-processing phase, where the prediction of the
habitat model for each spatial unit are corrected by
taking into account (the predictions for) the neighbor-
hood of that unit. However, spatially aware machine
learning methods have recently started to emerge (Lee
et al. 2005, Andrienko et al. 2005), although appli-
cations of such methods in habitat modeling are still
rare.

Finally, let us mention climate change, which is
already causing significant changes in the distribution
of animals and vegetation across the globe. Predicting
future effects along these lines is an emerging area
where the use of machine learning for habitat mod-
eling is likely to increase drastically. The idea in this
context is to build habitat models for the target groups
of organisms, which include climate-related variables,
such as mean annual temperature and precipitation.
By applying the habitat models to the predictions pro-
duced by climate models, one can predict the changes
of the distribution of the target group of organisms.
For example, Ogris and Jurc (2007) study the change
of potential habitats for different tree species under
varying climate change scenarios.

Harrison et al. (2006) conduct a more global study
where the changes of habitat are investigated for a
much larger and more diverse group of organisms. In
their study, the availability of suitable climate space
across Europe for the distributions of 47 species was
modelled. These were chosen to encompass a range
of taxa (including plants, insects, birds and mammals)
and to reflect dominant and threatened species from
10 habitats. Habitat availability was modelled for the
current climate and three climate change scenarios
using a neural network model, showing that the distri-
bution of many species in Europe may be affected by
climate change, but that the effects are likely to differ
between species.

In sum, machine learning methods have been suc-
cessfully used and are increasingly more often used for
habitat modeling, establishing the relations between
abiotic characteristics of the environment and the prop-
erties of a target population of organisms (such as pres-
ence, abundance or diversity). The learned models can
be used as tools for the management of the population
studied. Perhaps even more importantly, the learned
model can enhance our knowledge of the studied
population.
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