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16Automated Analysis of Spatial Grids

Valliappa Lakshmanan

16.1 Introduction

Environmental data are often spatial in nature. In this
chapter, we will examine image processing techniques
which play a key role in artificial applications operat-
ing on spatial data. These AI applications often seek to
extract information from the spatial data and use that
information to aid decision makers.

Consider for example, land cover data. Since dif-
ferent locations have different types and amounts of
forestry, land cover information has to be explicitly
tied to geographic location. Such spatial data may be
collected either through in-situ (in place) measure-
ments or by remote sensing over large areas. An in-
situ measurement of land cover, for example, would
involve visiting, observing and cataloging the type of
land cover at a particular location. A remotely sensed
measurement of land cover might be carried out from
a satellite. The remotely-sensed measurement would
cover a much larger area, but would be indirect (i.e.,
the land coverage would have to be inferred from
the satellite channels) and would be gridded (i.e., one
would get only one land cover value for one pixel of
the satellite image). Users of land-cover data often
wish to use the data to recover higher-level information
such as determining what fraction of a particular coun-
try is wooded – AI applications help provide such an
answer, building on well understood image processing
methods.

In this chapter, we will consider spatial data that
are on grids, or that can be placed in grids. Spatial
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grids are digital in nature and arranged in rows and
columns of approximately equal resolution in space.
Depending on the application, there may be a time
sequence of gridded data (as with weather imagery) or
the temporal nature may be irrelevant (as is often the
case with hazard maps).

In this chapter, we will use the standard matrix
notation because it is the one most commonly used
in image processing. The first dimension is the row
number and the second number is the column number.
Thus, (0,0) is the top-left corner and (0,1) is the first
row, second column. One potentially confusing effect
of the standard matrix notation is that the first dimen-
sion increases southwards. If the images are in a cylin-
drical equidistant projection, then latitude decreases
in the first dimension and longitude increases in the
second dimension.

16.2 Gridding of Point Observations

In-situ measurements may be placed on spatial grids to
enable easier interpretation and analysis by automated
applications. Spatial interpolation (see Fig. 16.1) is
used to place point observations onto a spatial grid.
If the point observations are very close together, so
that the average distance between the observations is
smaller than, or similar in magnitude to, the resolution
of the grid resolution, a technique known as kriging
may be used. If, as is more common, the observations
are far apart, spatial interpolation relies on balancing
the competing concerns of a smooth field and a field
that matches the point observations exactly at the loca-
tions that the in-situ measurements were carried out. A
Cressman analysis favors the creation of smooth fields;
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Fig. 16.1 Spatial interpolation is required to take in situ obser-
vations (shown by the pluses) and place them on to grids

a Barnes analysis is less smooth but attempts to match
the point observations better.

Regardless of the method chosen, care should be
taken that the pixel resolution is reasonable. If the
chosen pixel resolution is too fine, sharp gradients
in the underlying data will be smoothed away by
the interpolation. If the chosen pixel resolution is
too coarse, multiple observations will end up being
averaged to obtain a single pixel value, resulting in
degraded data quality. As a rule of thumb, it is wise
to choose as the pixel resolution a large fraction (typ-
ically half) of the mean distance between the original
observations.

Cressman (1959) introduced a technique of objec-
tive analysis, of interpolating observation data onto
spatial grids. Consider Fig. 16.1. In Cressman analysis,
the value at a pixel (x,y) is given by:

Ixy =
∑

i
Ii

R2−(x−xi )
2−(y−yi )

2

R2+(x−xi )2+(y−yi )2

∑
i

R2−(x−xi )2−(y−yi )2

R2+(x−xi )2+(y−yi )2

The impact of an observation at a pixel falls with its
distance away from the pixel, so that closer observa-
tions have a much impact than observations far away.
The parameter, R, determines the scaling or “the radius
of influence”. The larger the value of R, the more the
effect of far-away points is.

Barnes analysis (Koch et al. 1983) improves on the
Cressman analysis in two ways. Rather than using a
polynomial weighting function, Barnes analysis uses
exponential weighting functions. As our discussion
on convolution filters later in this chapter will show,

Gaussian functions have the nice property of providing
the best possible trade-off between noise-reduction
and spatial fidelity. In a Barnes scheme, the weights
for interpolation are given by: e−r2/σ 2

where r is the
distance between the grid point and the observation.

One problem with interpolation techniques is that
after gridding, even grid points at the same location
as the observations have different values from the
observations. This is because of the impact of farther-
away points, and is often desirable in case the obser-
vation in question is faulty. If a better match to the
observation point is desired, Barnes analysis allows
for successive corrections. The difference between the
observed values and the interpolated values at each of
the observation points is interpolated onto the spatial
grid and subtracted (with a fractional weight) from
the result of the previous iteration. This is carried out
until either a maximum number of iterations is reached
or until the magnitude of the difference field is small
enough. It should be kept in mind that a n-pass Barnes
analysis is very sensitive to incorrect data at any of the
observation points and can lead to non-smooth grids.
However, it can also capture sharp boundaries much
better than a 1-pass filter.

Kriging is an interpolation technique that assumes
that the co-occurrence of data values can be used to
gain a better interpolation. The co-occurrence is esti-
mated by constructing a variogram – a function of
correlation between pixel values against the distance
between the pairs of pixels. The variogram is then
used to make predictions at unobserved locations. See
Oliver and Webster 1990 for more details.

16.3 Extraction of Information from
Spatial Grids

It is often desired to extract information from spatial
grids. For example, it might be desirable to extract
from an image of land cover data, all tree-covered
areas where drought conditions prevail. Or it might be
desired to identify, from a weather satellite’s visible
channel, where a storm front is. This involves process-
ing the image using automated applications looking for
features that make it likely that an area is tree covered
or undergoing drought or that the pixels of the image
correspond to a storm front.
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Fig. 16.2 The workflow of a typical AI application operating on spatial grids

There is a considerable body of literature and tech-
niques for such automated analysis of images, finding
predetermined objects and patterns and acting on the
analysis. Image processing applies the mathematics of
signal processing to two dimensions. Thus, the con-
cept of filtering an image, reducing noise, accentu-
ating features to make them easier to find, etc. have
been the subject of much research in the electrical
engineering and computer science communities. Pat-
tern recognition follows the same approach to images
but rather than simply filter images, pattern recogni-
tion approaches yield objects as results. Thus, pat-
tern recognition adds to the image processing arsenal
tools for segmentation (finding distinct areas in an
image) and morphological operations (processing data
on shape). Data mining is a larger field of study, of
extracting information from all types of data, including
data in a relational database. Knowledge discovery is a
relatively new sub-discipline that in the context of spa-
tial grids often refers to the extraction of relationships
between objects that have been identified in the grids.

Image processing and pattern recognition are spe-
cific forms of data mining, concerned with processing
and identifying objects in images. Although image
processing and pattern recognition have been the sub-
ject of decades of research and development (and
movies and TV crime shows!), these techniques work
only in highly controlled environments. The pres-
ence of noise, entities that have a variety of shapes
and sizes and incomplete or faulty data, pose signifi-
cant problems for AI techniques. The most successful
implementations of AI techniques are in such environ-
ments as factory floors, where unexpected objects are
unlikely, all parts are within carefully selected para-
meters and incomplete data can be engineered away.
AI applications in environmental science are some
of the most challenging, because in many cases, it

the expected size of objects is unknown, and signifi-
cant artifacts pollute to the imagery presented to these
techniques. The rest of this chapter presents the most
mature sub-disciplines of these fields and highlights a
few applications of these techniques in the automated
analysis of real-time weather images.

16.3.1 Work Flow of a Typical
AI Application

A typical AI application that operates on spatial
imagery to find the presence or absence of some entity
within the image is organized as shown in Fig. 16.2.

Preprocessing typically involves taking the spatial
data and remapping it so that the grid resolution is
locally uniform. If the input data are not in gridded
form preprocessing may even involve placing the data
in a locally uniform grid.

Uniform spatial grids are filtered to remove arti-
facts, noise and features that the system designer
deems unnecessary or potentially disrupting to the rest
of the AI process. Depending on the type of informa-
tion being mined for, the gridded and filtered data are
subject to either edge finding or segmentation. Edge
finding finds strong gradients in the spatial data, con-
nects them up and creates cartoons which are then
subject to feature extraction and/or pattern recogni-
tion. Segmentation finds contiguous data and com-
bines them into objects that are then subject to feature
extraction and/or pattern recognition.

Features are properties computed from either the
edges or the objects. For example, the eccentricity
of the shape and the size and texture of the object
are commonly used features. These features are then
presented to a classifier such as a neural network,
support vector machine or a genetic algorithm. The
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output of the classifier typically indicates the presence
or absence of some feature that is the goal of this AI
application.

16.3.2 Markov Random Process

A basic assumption behind most image processing
operations is that the image pixels can have any
value, but that the value of a pixel is interwoven with
the value of its immediate neighbors. This intuitive
idea is formalized by assuming that the pixels of an
image are generated through first-order Markov ran-
dom processes. Two pixels are correlated if, and only
if, they are adjacent to each other. For example, con-
sider three adjacent pixels:

A B C

The pixels A and B are correlated as are the pixels B
and C. The first-order Markov assumption means that
the correlation between A and C is captured solely by
the correlation between A–B and B–C.

This neighborhood assumption will be seen clearly
in the filtering and segmentation operations. These
image processing operations do not work well on
fields where the pixel values of neighboring pixels
are uncorrelated. Visually, such images are highly
speckled, like that of a television set with no sig-
nal. Most environmental data, however, are relatively
smooth spatially. Such data can be processed with
image processing operations.

Gridding using spatial interpolation methods such
as the Cressman and Barnes operations leads to
extremely smooth fields because pixel values are
obtained through interpolation of the point observa-
tions. Ideally, the grid resolution is chosen to be no
more than half the maximum of the distances between
every point observation and its nearest neighbor. At
higher resolutions, interpolation artifacts can become
evident and the neighborhood size for pattern recog-
nition has to be made larger – a first order Markov
process won’t fit the data anymore. The artifacts and
large neighborhood sizes can make pattern recognition
harder to perform. It is recommended, therefore, that
pattern recognition be performed on data gridded at a
reasonable resolution.

When changing the geographical projection of a
spatial grid, it is possible that, in the new projection, a
couple of pixels may derive their value from the same

pixel in the original image. Such repetition of pixels
can also lead to spatial artifacts. It is recommended,
therefore, that image processing and pattern recogni-
tion be performed on data as close as possible to the
native format of the data.

Amongst image processing operations, certain
operations operate only on the neighborhood of a
pixel. Other operations act on the image globally or
are greedy – they process as many pixels as do sat-
isfy some predetermined constraints. Global or greedy
operations are unsafe on grids where the size of a
pixel varies dramatically over the image. Consider,
for example, a spatial grid covering the Northern
Hemisphere projected in a Mercator projection. The
area covered by a pixel at the northern extremity of
the image is much smaller than that of a pixel near the
equator. This affects the validity of global or greedy
operations since the pixels at different areas of the
image are quite different. The same problem affects
the processing of radar data in their original polar
(actually a flattened cone, in 3D) format. Pixels closer
to the radar are smaller than pixels farther away. In
such situations, it is preferable to process data in a
format or projection where the area of a pixel is con-
stant. Examples of such area-preserving projections
include the Albers conic and Lambert azimuthal equal-
area projections. Naturally, this recommendation is at
odds with the previous recommendation of perform-
ing image processing in a native format. It might be
necessary to perform the operations in both a native
format and in an area-preserving projection to discover
what works best for a given application. In the case
of radar data, the equal-area projection would be to
map the radar data onto a Cartesian grid, probably
one tangent to the earth’s surface at the location of
the radar. Repeated pixels then become problematic at
long ranges. It may be necessary to try the operation
both in the native polar format and in the Cartesian
grid projection to discover what works best.

16.4 Convolution Filters

Intuitively, one way to reduce the noise in an image is
to replace the value of a pixel with some sort of neigh-
borhood average. Surprisingly, this very simple con-
cept leads to very powerful local operations on images.
Instead of simply using neighborhood average, more
complex mathematical and statistical operations may
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be performed on the set of values in the neighborhood
of a pixel. For example, the median of the neighbor-
hood values is one of the best speckle filters avail-
able. Sorting the neighborhood values and computing
a weighted average of the sorted set is an excellent way
to identify edges in an image. Changing the shape of
the neighborhood and the weight assigned to neigh-
borhood pixels provides the ability to identify differ-
ent types of objects in images. This operation, often
replacing a pixel with a weighted sum of its neighbors,
is termed convolution.

Mathematically, replacing a pixel by a local average
can be written as:

Ixy = 1

(2k + 1) · (2k + 1)

i=x+k∑

i=x−k

j=y+k∑

j=y−k

Iij

where I represents the image, x,y represents the pixel
at row number x and column number y and k is the
half-size of the neighborhood. The above equation
means that for every pixel xy, we need to look in a
two-dimensional neighborhood, up all the values and
divide by the number of pixels. For example, if k were
to be 2, we would be computing a 5 × 5 average
around the pixel and dividing by 25. Figure 16.3 shows
the effect of such local averaging operation on an
infrared satellite image. Note that the jaggedness of the
edges has been considerably reduced. Note also that
the image is considerably smoother. Such an operation,
which reduces high spatial variations in the image, is
termed a smoothing operation.

16.4.1 Gaussian Filters

One need not provide the same weight to all the neigh-
bors of a pixel. Often, a higher weight is assigned to
pixels that are closer in to the center value. The above
equation may be generalized as follows:

Ixy =
i=x+k∑

i=x−k

j=y+k∑

j=y−k

Wij Iij

where the weight W essentially determines the type of
operation that is performed. Technically, this operation
is cross correlation. However, if one is using symmet-
ric matrices (as we almost inevitably will be), cross
correlation and convolution are the same thing. In the
case of a 3 × 3 local average, the weight matrix is

given by:

W = 1

9

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

The local average weight matrix, often called the box-
car kernel, is a poor choice for smoothing because it
can result in large spatial relocations of maxima. A
better convolution kernel for smoothing is one where
the weight matrix has large values in the center and
smaller values around the edges. That way, values far
away from the center pixel have a lesser effect on the
final value than do values closer in. A Gaussian convo-
lution kernel offers the best trade-off between spatial
smoothness and the moderate variability within the
image that are characteristic of local maxima. Because
the features do not smudge as much, one can smooth
a lot more effectively with a Gaussian kernel. In the
Gaussian kernel, the values of the weight matrix are
computed using this equation:

Wxy = 1

σ 2
e

(x)2+(y)2

−2σx 2

where x and y range from −k to k. Since the Gaussian
has infinite range, one needs to be careful to choose an
appropriate value of k – approximately thrice the value
of sigma typically works well. Note that the above
matrix equation does not add up to one within the
neighborhood. Therefore make sure to divide by the
total weight. The higher the value of sigma, the more
smoothing happens. A comparison of smoothing with
the Gaussian kernel and a nearly equivalent boxcar
kernel is shown in Fig. 16.4. Note that the Gaussian
provides a smoother image with less smudging of max-
ima (the smudging of maxima is evident in the figure
(top) in the greenness of the thin vertical line at the
bottom left of image).

16.4.2 Matched Filters

By changing the weights in the convolution kernel, it
is possible to extract a wide variety of features. For
example, thin vertical lines may be extracted using the
weight matrix shown below:

W = 1

3

⎡

⎣
1 0 −1
1 0 −1
1 0 −1

⎤

⎦
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Fig. 16.3 Top: an infrared satellite image. Bottom: the same image with a 5 × 5 local average applied to it

Note that the above weight matrix when applied to an
image results in high values, wherever there are high
values to the left of low values. In areas where there
is very little change, the positives and negatives can-
celed each other out, resulting in very small and pixel
values in the in the result. The result of this operation

when applied to an infrared image is shown in
Fig. 16.5.

As a general principle, a convolution kernel may
be used to extract features that look like it. In other
words, convolution may be thought of as a matched
filter operation. To avoid simply getting high values in
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Fig. 16.4 Top: The infrared image of Fig. 16.3a smoothed with a box kernel with a half-size of 3. Bottom: The same infrared image
smoothed with a Gaussian kernel with a sigma of 3 (and half-size of 9)

the result wherever there are high values in the input
image, one needs to normalize the kernel result at a
pixel by the smoothed value at that pixel. The kernel
used in Fig. 16.5 returns large magnitudes for thin
vertical lines, because if one were to think off it as a

topographic map, the weight matrix is appears like a
ridge. Of course, as Fig. 16.5 shows, the matched filter
is not perfect – the operation returns large values for
anything where the values of the left are higher than
the values on the right, not just thin lines.
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Fig. 16.5 Bottom: the effect of applying a vertical-line detection kernel to the infrared image on the top

16.4.3 Filter Banks

The matched filter idea may be used to find objects
in an image. Unfortunately, though, convolution fil-
ters are both scale and orientation dependent. Thus,
if one needs to find ridges that are five pixels thick,
the convolution kernel needs to be five pixels thick. If
the boundary of interest is not vertical, but horizontal,

the matched filter needs to have its ones and zeros
oriented horizontally. This makes matched filters
extremely hard to use to find objects whose scale and
orientation are not known in advance.

Most commonly, matched filters to find objects are
used as part of a filter bank, as shown in Fig. 16.6. Sev-
eral filters of different sizes and orientations are used to
filter an image. The final result at a pixel is determined
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Fig. 16.6 A matched filter is typically used as part of a filter bank, with filters of different scales and operations. The best response
from the individual filters is chosen at each pixel to provide the final result

by combining the result of the different convolution
filters at that pixel. The combination method may be to
take the average of the individual filter responses or to
choose the best response, for example the maximum.

A general purpose smoothing convolution filter that
can be used to match regions of different sizes and
orientations is shown below:

Wxy = 1

σx
2 + σ 2

y

e
(x cos θ)2+(y sin θ)2

−(σx 2+σ2
y )

This is a Gaussian, where the two sigmas determine the
vertical and horizontal scales while theta represents the
orientation off the object that could be matched.

A number of boxcar convolution filters at different
orientations (but not scales) are used in a filter bank
to identify storm fronts by Wolfson et al. 1999. They
then choose the maximum filter response to be the final
output of the smoothing operation. Doing so achieves
the nice effect of smoothing along the storm front.

There are several drawbacks to performing multi-
scale or orientation analysis using a matched filter
bank. Because repeat convolutions have to be per-
formed on the original image, filtering can take a very
long time. Also, because the results of the filters are not
related, it may not be possible to perform higher level
operations based on just filter banks. Several simplifi-
cations are possible in order to improve the efficiency
and usability of filter banks. Firstly, as Section 16.3.5
illustrates, convolution itself may be sped up to by
taking advantage of Fourier transforms and separable

filters. If the resulting features are related, it is pos-
sible to first identified the objects, and then combine
them outside the filter bank. If the resulting images
themselves are related, it is possible to use wavelets
to perform higher level operations on the related set of
images.

16.4.4 Missing Data and Image
Boundaries

Often, parts of the domain will not have been mea-
sured. The sensor may have had equipment problems.
The point of view of the sensor may have been such
that some part of the domain is out of range. The beam
may have been blocked. Yet, numerical operations like
image processing operators can not deal properly with
such missing data. If one needs to compute a local
average around the center pixel:

5 2 X
4 3 6
4 2 X

and “X” denotes a pixel that was not measured, how
can a local average be computed? There are two broad
approaches: (a) compute the average only on the non-
missing pixels, in which case, the answer would be
26/6 = 4.3 or (b) assume that a pixel when missing
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is a “typical” value, say 5, in which case, the answer
would be 36/8 = 4.5.

Computing the value using only non-missing data
usually yields better, more representative results with
fewer artifacts. However, the second approach of fill-
ing unmeasured pixels with a default value is con-
ducive to several optimizations, in particular of per-
forming operations in a transform domain. The prob-
lem, of course, is of correctly choosing the default or
“typical” value.

The same problem occurs in a different guise when
the operations lead to the edge of the image. The sim-
plest approach is to add an imaginary row or column,
assuming that the entire row/column is missing and use
one of the above two approaches. The exception is in
the case of radar data where the radials “wrap” back
around, so that the boundary condition is only when
the data go out of radar range.

16.4.5 Speeding Up Convolution
Operations

One problem with using Gaussian filters is that the
scale of the filters tends to get quite large. This trans-
lates directly to filter size. So, the larger the filter,
the more time it takes to compute a local average. If
Gaussian filters are used in a filter bank, this loss of
performance adds up to become a critical bottleneck.
There are two ways to speed up a matched filter bank
made up of Gaussian filters.

Convolution can be performed in Fourier transform
space. The original image and awaiting matrix are both
transformed into Fourier space. In Fourier transform
space, convolution is merely pixel to pixel multiplica-
tion. Thus, convolution even with very large weighting
matrixes takes only as long as the time it takes to com-
pute the two Fourier transforms – the larger the kernel
the more dramatic the speed up (Lakshmanan 2000).
There is one drawback, however, to performing convo-
lution in Fourier transform space. In order to compute
a Fourier transform, it is necessary for the entire image
to consist of valid values. If certain pixels within the
grid went unsensed, Fourier transform methods cannot
be used directly. Instead, in the preprocessing step,
missing pixels have to be set to some default value.
Traditionally, this default value is either zero or the
mean of the entire image.

The following steps will perform convolution in
Fourier transform space:

1. Pad weighting kernel to nearest power of 2 or other
small prime

2. Compute Fourier Transform of weighting kernel
3. Pad image to nearest power of 2 or other small

prime
4. Preprocess the image and fill all missing pixels with

a default value, say zero
5. Compute Fourier Transform of image
6. Multiply the two transforms pixel-by-pixel
7. Compute the inverse transform of image

The reason for padding the image for computing the
Fourier transform is that fast methods (called Fast
Fourier Transforms, FFTs) exist to compute Fourier
transforms on digital data.

Fourier transform methods cannot be used on
images, such as radar data, that commonly have miss-
ing values. A second alternative exists for speeding
up convolution operations. This is to formulate the
weighting matrix as a separable function. For example,
the Gaussian kernel without any orientation can be
written in separable form as:

Wxy = 1

σ 2
e

(x)2+(y)2

−2σ2
x = 1

σ 2
e

(x)2

−2σ2
x e

(y)2

−2σ2
x

Separable convolution filters can be implemented in
a fast manner by first processing the image row by
row, and then processing it column by column. If the
weighting kernel were 25 × 25, convolution using
the inseparable form would require 625 operations at
every pixel. On the other hand, the separable form can
get away with just 50. Therefore, the separable form of
convolution can lead to significant speedups, although
not as dramatic as the Fourier transform methods. For
an approximation to oriented Gaussian filters in a sep-
arable form please see Lakshmanan 2004.

16.4.6 Wavelets

Wavelets are a multiresolution technique. They pro-
vide a way by which images may be broken up
into sub-images such that one of the sub-images is a
smaller but faithful representation of the larger image.
The smooth images in Fig. 16.7 (S0, S1, S2, etc.)
are decomposed to yield three detailed images (D0,
D1, D3, etc.). That sub-image can itself be broken up



000–0–00–000000–0 16-Haupt-c16 SHB0024-Haupt (Typeset by SPi, Delhi) page 339 of 346 September 17, 2008 15:8

16 Automated Analysis of Spatial Grids 339

Fig. 16.7 Using wavelet
analysis, images are
decomposed into detailed
images (left) and a smaller
smoothed image (right)

into the more sub images. At each stage, the four sub
images can be combined to yield the larger image that
was decomposed to yield the sub images.

In order to decompose images such that the
smoothed images have the above relationship, only
specific convolution weight matrices may be used. The
most commonly used convolution filters in wavelet
analysis are the Haar function and the Daubechies p-
functions. If all that is required is to be able to process
images at multiple scales, wavelets are overkill. Sim-
ply filtering the image using Gaussian filters at differ-
ent sigmas may suffice.

16.4.7 Edge Finding

The line finding filter described in Section 9.3.2 is not
a robust way to find edges. Just as using a boxcar
kernel to smooth images leads to abrupt transitions,
using a box-like line finding filter results in smudging
of the lines that are detected. To identify lines in an
image, use the Canny edge-finding filter (Canny 1986).
The Canny filter involves using the weighting matrix
shown below:

Wxy =
(

1

2
− x2 + y2

σ 2

)
e− x2+y2

σ2

After applying the above convolution filter (known as
the Laplacian of a Gaussian because it is obtained by

differentiating the Gaussian equation twice), look for
zero crossings in the convolution result. Connecting up
the zero crossings provides the location of the edges in
the image.

16.4.8 Texture Operations

Convolution involves computing the weighted average
of the pixel in the neighborhood of a central pixel.
Other operations, however, can be performed once the
values of the pixel’s neighbors have been extracted.
In fact, the boxcar kernel may be thought off as a
statistical operation – the mean – on the neighboring
values. Taken together, these statistical operators are
called texture operators.

Texture provides a good way to distinguish different
objects based on something other than just their data
values. Even if two objects have the same mean value,
the distribution of values within the objects may be
different. Texture operators attempt to capture this dif-
ference in the distribution of data values. Commonly
used texture operators include those based on second
and third order statistics. Variance and standard devia-
tion capture the range of values – high values of these
are associated with “noisy” regions. Homogeneity is a
third order statistic that captures how smooth the data
values are in the neighborhood of the pixel. Another
very useful texture operator is the entropy, which is
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Shannon’s measure of information content. It is com-
puted by taking all the data values in the neighborhood
and forming a histogram. If p is the fraction of pixels
in each bin of the histogram, the entropy is given by:

∑
i

pi log(pi )

The entropy is low in regions where all the pixels
fall in the same bin (because the logarithm of one is
zero and the probability in the all other bins is zero as
well). The entropy is highest in regions where there
is a large diversity of pixel values. Typically, very

high entropies are associated with noise while very
low entropies are associated with instrument artifacts.
Of course, the actual thresholds have to be found by
experiment.

16.4.9 Morphological Operations

In addition to convolution filters and texture operators,
the neighborhood values may be sorted and operators

Fig. 16.8 Spatial dilation and erosion operations may be performed by replacing a pixel with the maximum or minimum of the
values of its neighbors
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Fig. 16.8 (Continued.)

based on the sorted values may be applied to the
images. The median value off the neighborhood val-
ues is an excellent smoothing filter. The median filter
works especially well, and should be chosen in prefer-
ence over Gaussian filters, when the noise has speckle
characteristics.

Taking the minimum value of the pixel values in
a neighborhood has the effect of eroding the image
spatially, so that regions become smaller and small
regions get removed. Similarly, taking the maximum
has the effect of dilating the image spatially. The
minimum and maximum are affected detrimentally,
if there is noise present in the images. Taking some-
thing like the fifth or 95th percentile may help trade-
off the noise characteristics of the image. Alternately,
taking the second-lowest or the second-highest value
in the neighborhood also helps to reduce the impact
of noise. Spatial erosion and dilation where the sec-
ond lowest and highest values are chosen is shown in
Fig. 16.8.

16.4.10 Filter Banks and Neural Networks

So far, we have looked at the number of operations
that can be performed on the neighborhood values of
the pixel. These include convolution filters (boxcar,

Gaussian, matched filters, orientation detectors), tex-
ture operators (variance, homogeneity, entropy) and
morphological operators (erosion, dilation). Several of
these filters may be applied in to an image, either in
parallel or one after the other, to an image as part of a
filter bank as shown in Fig. 16.9.

For every pixel in the original image, we will obtain
a vector of filter results. A neural network or some
other classifier can take all of these input and clas-
sifying each vector into two or more categories. In
other words, each pixel provides a pattern to the neural
network. Since a 1,000 × 1,000 image will provide one
million patterns, one may have to be selective about
whether all the pixels in an image get presented to
the neural network for training and/or classification.
Because many of the pixels in an image are highly
correlated, one must be careful to not assume that the
patterns from a single image are independent training
samples to the neural network. A good rule of thumb is
to treat all the patterns from a single image as simply
one data case when deciding whether one has enough
of a training or validation set.

As an example of an AI application that pro-
ceeds from images to filters through a neural net-
work towards the classification result, consider the
radar reflectivity quantity control system described in
(Lakshmanan 2006). In that application, radar reflec-
tivity, velocity and the spectrum width polar data are
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Fig. 16.9 The output of a filter bank may be used to provide patterns to a neural network for classifying an image pixel-by-pixel

converted to a uniform resolution and indexed polar
grid. A variety of texture operators are applied to the
three polar grids at each elevation. The results of the
filters at each pixel form the patterns that are pre-
sented to a classification neural network. The output
of the neural network is thresholded at 0.5 to determine
whether the pixel in question corresponds to good data
or to non-meteorological artifacts. Not all the pixels
are presented to the neural network. Instead, a pre-
classification step classifies those pixels that can be
done quite easily based on a rule engine. The pix-
els that are presented to the neural network comprise
the hard to classify pixels. If the pixels are classified
solely by the neural network and the rules engine, the
resulting field will have different classifications even
for adjacent pixels that are part of the same storm or
artifact. In order that regions off the radar image all
get classified the same, it is necessary to average the
results of the classification over objects found in the
images rather than treat the pixels as being indepen-
dent. How to do this is the focus of the next section.

16.5 Segmentation: Images to Objects

So far, we have looked at ways of processing images.
Convolution filters, texture operators, edge detection
and morphological operators all have, as their output,
images. In most applications, however, what is desired
is to be able to identify objects and to classify or track

these objects as entities. Classifying pixels makes no
sense, because pixels are ultimately just an artifact of
the remote sensing instrument. In this section, we will
look at how to identify objects from grids.

16.5.1 Hysterisis, to Convert Digital Data
to Binary Images

The process of identifying self-similar groups of pixels
and combining them into objects is called segmen-
tation. Segmentation algorithms work only on binary
data. Therefore, the pixel values have to be converted
to zeros and ones before segmentation can begin.
Using just one threshold to convert the data into binary
typically results in lots of very tiny objects (if the
threshold is too high), a few very large objects (if the
threshold is too low) or in objects that have lots of
holes (if a moderate threshold is chosen).

To avoid the problems associated using only one
threshold, employ hysteresis to convert pixel values
into zeros and ones. Hysteresis involves picking two
thresholds, say t1 and t2. Pixel values below the first
threshold are always set to zero and pixel values above
the second threshold are always set to one. Pixels with
values between the two thresholds are set to one only if
they are contiguous to a pixel that has already been set
to one – this condition is easily applied during region
growing, discussed in the section. The use of this tech-
nique mitigates, but does not completely prevent, the
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problems associated to with a single threshold – the
choice of the two thresholds t1 and t2 has to be made
through experiment.

16.5.2 Region Growing

The segmentation process is done through region
growing. In the region growing algorithm, contiguous
pixels are assigned the same label such that all the pix-
els that have the same label together form a region. The
steps of a region growing algorithm are listed below:

1. Initialize an image called the label image. All of its
pixels are set to zero.

2. Initialize current label to zero.
3. Walk through the image pixel by pixel and check if

the pixel value of the image is greater than t2 (see
Section 16.4.1 on hysteresis) and if the label at this
pixel is zero. If both conditions are true:

(a) Increment current label.
(b) Set label at this pixel to be the current label.
(c) Check all eight neighbors of this pixel. If a

neighbor’s pixel value is greater than t1, repeat
steps b and c at the neighboring pixel.

At the end of the above steps, the label image has a
region number assigned to every pixel. Pixels where
the label image has a value of zero do not belong to any
region. Two pixels with the same label are part of the
same region. Therefore, region properties may be com-
puted from the original image’s pixel values by main-
taining a list of statistics (one for each region), walking
through the pixels of the original image and updating
the statistic for the corresponding region (read out
from the label image) that the pixel belongs to. This
way, a vector of properties or statistical features is
obtained for each region. These features may be pre-
sented to a neural network or other classifier to classify
the identified regions into two or more categories.

16.5.3 Vector and Hierarchical
Segmentation

Although with hysteresis, one uses two thresholds
to reduce the incidence of disconnected regions, the

determination is made ultimately on a single pixel
value. The incidence of disconnected regions could
be reduced even further if the values of neighboring
pixels could be considered when creating the regions.
In other words, it would be better if a filter bank could
be applied to an image, and the results from all the
filters in the filter bank could be used to determine
which region a pixel belongs to. Such a segmentation
technique is called a vector segmentation technique
because it operates on a vector of inputs, not just one
value at every pixel.

Another drawback of using the hysteresis-based
region growing approach is that it is not possible to
obtain hierarchical regions with overlapping thresh-
olds. In real-world AI applications, it helps to be able
to identify regions and place them into larger regions.
Regions, sorted by size, can be used for different
tasks and to evaluate different types of constraints.
Such a segmentation technique is termed a hierarchical
approach.

The classical hierarchical segmentation tech-
nique is the watershed algorithm of (Vincent and
Soille 1991). The technique consists of first sorting
the pixel values within the image in ascending order
of magnitude and then slowly raising a “flood” level.
Connected regions, identified through region grow-
ing, form a hierarchy with the flood level determining
how high up in a hierarchy a region exists before it
is subsumed into a larger region. The saliency of a
region, the maximum “depth” of a region, provides
an indication of how important it is. Unfortunately,
watershed segmentation works very poorly in images
with statistical noise. Watershed segmentation may
work quite well on model fields and other smooth
datasets, so it is worth trying before attempting more
complex techniques. Statistical noise is a given in
most remotely sensed images, so a better hierarchical
technique, ideally one that works on vector data, is
required.

Lakshmanan 2003 describes a technique where an
explicit trade off is made between the self-similarity of
a region and the idea that a region should be compact
and consist of contiguous pixels. A pixel is similar to a
region if the Euclidean distance between the result of a
filter bank applied to the image at that pixel is close to
the mean of the filter bank results of all the pixels that
are already part of the image. This is essentially the K-
Means clustering approach, of arbitrarily choosing K
regions and then updating the regions based on which
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pixels get added or removed from them. When the
set of pixels in a region does not change, or if the
magnitude of those changes is quite small, the clus-
tering is stopped. This vector segmentation approach
is made hierarchical by using steadily relaxing the
allowed inter-cluster distance before regions are
merged.

16.6 Processing Image Sequences

So far, we have considered processing images (or spa-
tial grids) individually. In many applications, the tem-
poral change of spatial data is important. For example,
one might wish to study the change in forest cover
over a decade or the movement of a hurricane over
ocean. In motion picture processing, individual images
are termed “frames” and a set of frames arranged in
temporal order forms a “sequence”. There has been
quite bit of research into techniques for processing
image sequences, mainly for applications such as the
compression of video and for automated security mon-
itoring using video cameras.

16.6.1 Detecting Change

The most common requirement in processing image
sequences is to simply determine whether a change
has occurred. The simplest way of identifying changes
is to compute a pixel-by-pixel difference between
selected frames of a sequence. Pixels where the
absolute maximum of the change is high indicate loca-
tions where a change has occurred.

The differencing technique works well for
sequences where objects suddenly appear or disappear.
For example, in a forestry application, it is possible to
use differencing to monitor whether areas of a forest
have been cleared.

The differencing technique works poorly in appli-
cations where the objects are moving from one loca-
tion to another. This is because the magnitude of the
difference field will be high only in areas where the
object has completely moved to or away. Where there
is an overlap, the magnitude of the difference will be
small. Thus, a single movement might appear to be
two separate areas of change. This limits the utility of

differencing techniques in applications such as storm
tracking.

16.6.2 Tracking by Object Association

One way to mitigate the problems associated with
pixel-by-pixel differencing is to compute differences
on a region-by-region basis. In other words, segment
the frames of a sequence, associate objects between
frames and then tabulate changes in aggregate statistics
(such as size, mean value, etc.) of the regions.

This is easier said than done. Several hard prob-
lems arise in the technique outlined above. Segmen-
tation is a notoriously noisy operation – the change
of magnitude in a few pixels can drastically change
the objects that are identified. Since successive frames
in a sequence are slightly different, the results of
segmentation on these frames may result in dramati-
cally different region identification. This makes asso-
ciating regions problematic. Even if the segmentation
problems are resolved satisfactorily so that slightly
different images yield only slightly different regions,
the region association problem is not insignificant. In
storm tracking, for example, individual storm cells
may split or merge – this needs to be accounted for
in the object association.

If the objects are large enough and move slow
enough for them to overlap significantly, the associ-
ation problem is not difficult. A minimum overlap in
terms of spatial correlation may suffice for associating
objects. This is the strategy commonly employed in
tracking mesoscale convective systems. See for exam-
ple Carvalho and Jones 2001.

When there are numerous small features identified,
it can be unclear as to what the optimal assignment
ought to be. A principled way of associating objects
would be to minimize a global measure of fitness,
such as the total Euclidean distance between the vec-
tors of properties between associated objects. This is
the approach followed by Dixon 1993, where a lin-
ear programming approach is employed to minimize
a least squares metric. A less principled approach,
but one that works quite well, is to extrapolate the
movement of regions and then simply choose the
region in the next frame closest to the anticipated loca-
tion. This is the method employed by Johnson et al.
1998.
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16.6.3 Estimating Movement Using
Optical Flow

Object association techniques tend to identify move-
ment only at the scale of the objects. If the objects
are ephemeral or difficult to identify, the quality of
the movement estimated from object tracking methods
suffers.

A better way of estimating movement may be
to ignore object identification altogether. Instead, the
image is considered a fluid field and the movement
at a pixel is assumed to be that movement which
when removed from the current field would result in
the smallest magnitude difference field to the previ-
ous frame. To compute this, a neighborhood of pixels
around a central pixel is moved around in the previous
frame until the point at which the difference is mini-
mal is identified. This movement is the movement at
that pixel. This process is repeated for each of the
pixels in the current frame. Such a technique usually
minimizes the sum of the squares of the differences
in pixel values, and is therefore termed spatial cross-
correlation. Tuttle and Gall (1999), for example, take
rectangular subgrids of radar data, move it around the
previous frame and use the minimal movement to esti-
mate movement of tropical cyclones.

Wolfson et al. 1999 improved the basic cross-
correlation technique by smoothing the images with a
filter bank consisting of elliptical convolution filters (to
smooth along the storm front), added smoothing crite-
ria so that adjacent pixels do not have wildly different
motion estimates and incorporated a global motion
vector to eliminate outliers at the expense of being
unable to track circular movements such as hurricanes.
The Lagrangian technique of Turner et al. 2004 explic-
itly formulates this as a multi-variable optimization
problem but avoids the global motion vector criterion
to retain the ability to track continent-scale flows in
multiple directions.

Object association techniques yield more accurate
wind speeds for small-scale storms, but the movement
of larger-scale features is better predicted by optical
flow methods. One drawback of optical flow meth-
ods is an inability to obtain long-term statistics about
the trends of object properties, because no objects are
identified in these techniques. Lakshmanan et al. 2003
introduced a hybrid technique that estimates move-
ment of objects identified through hierarchical seg-
mentation using optical flow techniques. Because the

optical flow movement is estimated, not on rectangular
subgrids of the image, but on templates the size and
shape of the identified clusters, the clusters can be
displaced through multiple historical frames to yield
object statistics.

16.6.4 Trends of Geographic Information

So far, we have looked at temporal changes in objects,
such as storm systems, that move. How about obtain-
ing the temporal properties from a stationary view-
point, such as the total precipitation that falls within
the boundaries of a city?

The simplistic approach is to map the geographic
data onto the same grid as the remotely sensed data and
then perform the accumulation operation on the pixels
that correspond to the city. However, gridding geo-
graphic information system (GIS) data is not always
practical. Ideally, it would be possible to leave GIS
data in its original vector form and compute spatial
properties that fall within the vector.

To decide whether a pixel falls within a polygon,
simply map the vertices of the polygon to the gridded

Fig. 16.10 Count the number of times an edge of a polygon is
encountered to determine whether a pixel in question falls within
the polygon
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reference i.e. convert the polygon vertices to (x,y)
locations. Assuming, for simplicity that the polygon
is completely within the grid, walk row-wise from
the grid boundary to the pixel of interest, counting
the number of times that the sides of the polygon are
crossed (this can be done by finding the intersection
point of the line corresponding to the row and the line
corresponding to each of the edges of the polygon – see
any geometry book for details on the formulae to do
this). If the total number of crossings is odd both when
walking row-wise (see Fig. 16.10) and when walking
column-wise, the pixel falls inside the polygon and its
pixel value contributes to polygon statistics.

16.7 Summary

In this chapter, we have looked at how image process-
ing plays a key role in artificial applications that oper-
ate on spatial data. We discussed techniques to con-
vert in situ observations into spatial grids. We also
examined ways to reduce noise, find edges and iden-
tify objects from spatial grids. Finally, we looked at
purely image-driven AI applications such as tracking
and the extraction of spatial properties within vector
boundaries.
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