Reinforcement Learning of
Optimal Controls

John K. Williams

15.1 Introduction

As humans, we continually interpret sensory input to
try to make sense of the world around us, that is, we
develop mappings from observations to a useful esti-
mate of the “environmental state”. A number of artifi-
cial intelligence methods for producing such mappings
are described in this book, along with applications
showing how they may be used to better understand
a physical phenomenon or contribute to a decision
support system. However, people don’t want simply to
understand the world around us. Rather, we interact
with it to accomplish certain goals — for instance, to
obtain food, water, warmth, shelter, status or wealth.
Learning how to accurately estimate the state of our
environment is intimately tied to how we then use that
knowledge to manipulate it. Our actions change the
environmental state and generate positive or negative
feedback, which we evaluate and use to inform our
future behavior in a continuing cycle of observation,
action, environmental change and feedback.

In the field of machine learning, this common
human experience is abstracted to that of a “learning
agent” whose purpose is to discover through inter-
acting with its environment how to act to achieve its
goals. In general, no teacher is available to supply
correct actions, nor will feedback always be imme-
diate. Instead, the learner must use the sequence of
experiences resulting from its actions to determine
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which actions to repeat and which to avoid. In doing
S0, it must be able to assign credit or blame to actions
that may be long past, and it must balance the exploita-
tion of knowledge previously gained with the need
to explore untried, possibly superior strategies. Rein-
forcement learning, also called stochastic dynamic
programming, is the area of machine learning devoted
to solving this general learning problem. Although the
term “reinforcement learning” has traditionally been
used in a number of contexts, the modern field is
the result of a synthesis in the 1980s of ideas from
optimal control theory, animal learning, and temporal
difference methods from artificial intelligence. Find-
ing a mapping that prescribes actions based on mea-
sured environmental states in a way that optimizes
some long-term measure of success is the subject
of what mathematicians and engineers call “optimal
control” problems and psychologists call “planning”
problems. There is a deep body of mathematical lit-
erature on optimal control theory describing how to
analyze a system and develop optimal mappings. How-
ever, in many applications the system is poorly under-
stood, complex, difficult to analyze mathematically,
or changing in time. In such cases, a machine learn-
ing approach that learns a good control strategy from
real or simulated experience may be the only practical
approach (Si et al. 2004).

This chapter begins with a brief introduction to
the origins of reinforcement learning, then leads the
reader through the definitions of Markov Decision
Processes (MDPs), policies and value functions and
the formulation of the Bellman Optimality Equation,
which characterizes the solution to an MDP. The
notion of Q-values is presented with a description of
how they can be used to improve policies and how
value functions and Q-values may be estimated from

297



298

J. K. Williams

an agent’s experience with the environment. Optimal
Q-values, which are associated with optimal policies
for MDPs, may be learned through Q-learning or sev-
eral related algorithms, which are described next. Par-
tially observable MDPs, in which only partial state
information is available, are discussed. It is then shown
how reinforcement learning algorithms may be applied
to MDPs for which the state and action spaces are large
or continuous through the use of function approxima-
tion, including neural networks. Finally, three sample
applications are presented: dynamic routing in a wire-
less sensor array, control of a scanning remote sensor,
and optimal aircraft route selection given probabilis-
tic weather forecasts. Some readers may wish to read
the first few sections and then jump to the applica-
tions, returning as needed to the theoretical sections
as needed to understand the notation and techniques
illustrated there.

15.2 History and Background

As mentioned above, the field of reinforcement learn-
ing synthesizes ideas from the fields of mathematics,
engineering, and psychology. A key mathematical con-
cept is dynamic programming, developed in the 1950s
by Richard Bellman (Bellman 1957). Bellman built
on earlier work by Hamilton and Jacobi, including
the formulation of the Hamilton-Jacobi equation for
classical mechanics (Hamilton 1835). Dynamic pro-
gramming addresses how to find optimal controls in
dynamical systems subject to a degree of randomness.
In a standard formulation of the problem, actions drive
transitions from one state of the system, or “environ-
ment,” to another, with each transition accompanied
by a “cost”. Both the transitions and the costs may be
random variables that are functions of the starting state
and the action taken. Bellman showed that the optimal
control strategy in such a problem can be determined
from the solution to a certain equation, now called
the Bellman or Hamilton-Jacobi-Bellman Optimality
Equation (see Section 15.5). Dynamic programming
techniques solve the optimal control problem by solv-
ing this equation, and it is fundamental to the rein-
forcement learning methods described in this chapter.

On the other hand, reinforcement theories of ani-
mal learning are a cornerstone of psychology. It has
long been recognized that an animal’s behavior when
presented with a given situation can be modified by

rewarding or punishing certain actions. Trial-and-error
learning algorithms for computers based on this sort
of feedback or “reinforcement” date back to the work
of A. M. Turing in the 1940s (Turing 1948, 1950).
The idea of temporal difference learning, described in
Section 15.8, may also owe its genesis to psychology
via the concept of a secondary reinforcer. In animal
behavior studies, a secondary reinforcer may be paired
with a primary reinforcer (reward or punishment)
through training. After establishing the association
with the primary reinforcer, the animal may be trained
using the secondary reinforcer in place of the pri-
mary reinforcer. For example, a pigeon may be trained
to perform a task to receive a food reward, where
the food is accompanied by a musical tone. Later,
the pigeon can be taught to learn tasks for which the
“reward” is the tone itself, even if a food treat no longer
accompanies it. Temporal-difference methods provide
a way to propagate feedback information “backward”
in a sequence of experiences so that actions leading to
a successful outcome are reinforced even when their
ultimate payoff is significantly delayed. The success-
ful use of temporal-difference algorithms in artificial
intelligence dates back to Arthur Samuel’s famous
checkers-playing program (Samuel 1959), and has
been used successfully for many game playing and
other practical applications since.

These ideas — dynamic programming, trial-and-
error learning, and temporal differences — were
brought together by Chris Watkins in his 1989
Ph.D. dissertation, Learning from Delayed Rewards,
in which he presented the “Q-learning” algorithm
(Watkins 1989; see also Watkins and Dayan 1992).
The simplicity and versatility of Q-learning quickly
made it one of the most popular and widely used
reinforcement learning algorithms, and its invention
helped spawn the expansion of reinforcement learning
into a broad field of research. Dozens, if not hundreds,
of reinforcement learning algorithms have since been
proposed and applied to a wide variety of optimal
control problems.

In real-world applications, the possible environ-
mental states and actions for an optimal control prob-
lem often cannot reasonably be enumerated, so learn-
ing a “lookup table” that prescribes an action for
each possible state may not be practical. Reinforce-
ment learning algorithms accommodate large or con-
tinuous state and action spaces by using function
approximators, including linear maps and neural net-
works, to represent the information needed to map
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states to actions. Neural networks offer the advan-
tage that well-formulated methods exist for incremen-
tally updating their parameters as new “training” data
become available, and they often work well when
states and actions are encoded in such a way that
similar states and actions reliably lead to similar state
transitions and feedback. Because of the popularity
of this approach, some researchers have coined the
term “neuro-dynamic programming” to describe the
fusion of ideas from neural networks and dynamic pro-
gramming (Bertsekas and Tsitsiklis 1996). However,
reinforcement learning with function approximation
has been shown to be unstable and to fail to converge
for some problems and algorithms. The theory and
methods described in this chapter are presented first for
finite state and action spaces, thereby illustrating many
essential issues in reinforcement learning in this more
straightforward domain. The integration of function
approximation with these algorithms is discussed in
Section 15.12.

Of course, it is only possible to cover a few high-
lights of reinforcement learning theory and its appli-
cations in this single short introductory chapter. For a
more comprehensive treatment, the reader is referred
to the excellent texts Neuro-Dynamic Programming

by Bertsekas and Tsitsiklis (1996) and Reinforcement
Learning by Sutton and Barto (1998).

15.3 Markov Decision Processes

Before reinforcement learning algorithms can be
described in detail, it is first necessary to define
the problems to which they apply, which are called
Markov decision processes or Markov decision prob-
lems (MDPs). In an MDP, the learning agent is able
to interact with its environment in a limited fashion:
it observes the state of the environment, chooses one
of several available actions, and receives feedback, or
reinforcement, in the form of some numerical cost or
reward as a result of the action taken and the resulting
state transition. The goal of the agent is to devise a
policy — a rule for choosing actions based on observed
states — that minimizes some measure of long-term
costs (or, equivalently, maximizes long-term rewards).
This policy could be either a deterministic mapping
from states to actions or a rule specifying a probability
distribution from which an action is to be randomly
chosen in each state. Figure 15.1 shows a diagram of

Learning Agent

« a

Observation

Fig. 15.1 Diagram of a reinforcement learning agent inter-
acting with its environment: observations provide information
about the environmental state that in turn may be used to deter-

mine an action based on the current policy. The action may
result in a change to the environment and a cost or reward
reinforcement signal that can be used to modify the policy.
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this interaction between learning agent and a real or
simulated environment. The key feature of an MDP
(the “Markov property”) is that the probabilities of
state transitions and costs are a function only of the
present state and action taken, not the past history of
actions or states. In other words, the state of the envi-
ronment by itself contains all the information needed
to determine the result of a course of action, at least in
a probabilistic sense.

To be more mathematically precise, the possible
states obtained from observations of the environment
comprise a set S, and from each state i € S there is a
set of available actions that may be denoted U (i). For
the sake of simplicity, we shall initially assume that
both § and U (7) are finite sets, though infinite and even
continuous state and action spaces may be dealt with
via function approximation (see Section 15.12). The
probability of a transition from state i to state j under
action ¥ may be written as P“(i, j) and is assumed
not to change as a function of time. The cost of a state
transition from i to j under action u is a random vari-
able g (i, u, j) that we will assume has a finite expected
(mean) value g(i, u, j) and finite variance. As in the
field of economics, where the same approach is used to
compute the present value of future assets and liabili-
ties, the MDP is equipped with a discount factor, «, a

number between 0 and 1. A cost incurred one time unit
in the future must be multiplied by the discount factor
to compare it to an immediate cost. Thus if o = 1, it
means that future costs are valued the same as present
costs; if o < 1, future costs are less significant than
immediate costs of the same amount. For example,
given an inflation rate of 5% per timestep, « might be
about 0.95, meaning that a future asset or liability of
$1.00 next year is worth only $0.95 in current value,
making it worthwhile to take rewards immediately,
while their values are highest, while delaying the pay-
ment of fixed costs as long as possible. MDPs may
be categorized according to the value of «. If o < 1,
the MDP is called a discounted problem (DCP), since
future costs are discounted. If « = 1 and there is a
“final” state that ends the process (usually denoted as
state 0), it is called a stochastic shortest path problem
(SSPP) since a typical problem of this sort is finding
a shortest path through a maze or a network. For a
thorough exposition of MDPs, the reader is referred
to the text by Puterman (2005). A summary of the
symbols used in this chapter for describing MDPs and
the concepts and reinforcement learning algorithms for
solving them may be found in Table 15.1.

If the transition probability values P“(i, j) and
average costs g(i,u, j) are known to the learning

Table 15.1 Descriptions of some common symbols used in this chapter to describe MDPs and reinforcement learning algorithms.

Symbol Description

S Set of environmental states for an MDP.

U (i) Set of actions available from state i.

P“(, j) Probability of transition from state i to state j under action u.

g(i,u,j) Random variable cost of transition from state i to state j under action u.
g, u,j) Expected (mean) cost of transition from state i to state j under action u.
o Discount factor between 0 and 1.

i, Uy State and action taken at time ¢.

nw A deterministic policy, which maps states to actions.

b4 A stochastic policy, which maps state-action pairs to probabilities.

JH The value function for the policy u; see (15.1).

J* The optimal value function.

or The action-value function, or Q-value, for the policy u; see (15.13).

o The optimal Q-value.

Ji, O Value function and Q-value iterates for a learning algorithm at time .

y Learning rate or step size parameter.

R,(N) N-step return beginning at time ¢; see (15.22).

R} A-return (average of N-step returns) beginning at time ¢; see (15.23).

8¢ One-step temporal difference at time ¢; see (15.25).

e Eligibility trace for a state or state-action pair.

M Set of messages for a POMDP.
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Action u,

Action u,

Fig. 15.2 A trajectory of an MDP, with a sequence of actions generating state transitions accompanied by feedback signals

(“costs”).

agent for all states 7, j and actions u, we say that a
model of the environment is available. When a model
is not provided, the learning problem is model-free.
Some reinforcement learning algorithms use experi-
ence (e.g., simulation with various choices of actions)
to estimate a model of the environment, then use
dynamic programming methods to solve for the opti-
mal value function and policy. Other algorithms, such
as Q-learning and temporal difference learning, are
model-free, operating directly on the cost and tran-
sition experiences as they are obtained. To refer to
the sequence of states, actions, and costs experienced
by a learning agent in these algorithms, we use sub-
scripts to count the timesteps. So, for instance, i,
refers to the state occupied at the ™ timestep, u;
refers to the ™ action, and the cost incurred in the
transition to the next state is g(i;, u;, i;1+1), which
is sampled from a random variable having mean
value g(i;, u;,i;+1) and finite variance. The trajec-
tory of the MDP is then written as the sequence
of states, actions, and costs: iy, ug, g(io, o, i1), i1,
uy, g, uy,iz),... (see Fig. 15.2). The goal of a
reinforcement learning algorithm is to use such a
sequence of experiences to determine an optimal
policy.

15.4 Policies and Value Functions

Solving an MDP means finding an optimal policy:
a mapping from states to actions which, when used
for action selection, minimizes some measure of long-
term costs. For an MDP, it turns out that there is always
an optimal policy that minimizes the expected sum
of future discounted costs for each state (see below);
this policy is deterministic and does not change as
a function of time. However, in the process of find-
ing an optimal policy, a learning agent must balance

between acting according to the best policy found so
far and exploring new, untried actions that may lead
to even better results. This is the famous “exploitation
vs. exploration” conundrum of reinforcement learning.
One way to perform this balance is to use action selec-
tion that includes some degree of randomness while
learning, that is, a stochastic policy that specifies a
probability distribution over available actions for each
state. Defining these concepts formally, a deterministic
policy u is a mapping from states to actions such that
w(i) € U(@) for all states i € S. A stochastic policy
7 is a mapping from state-action pairs to probabilities
such that (a) 0 < 7 (i, u) < 1 for all states i € S and
actions u € U(i), (b) w(i, u) = 0 whenever u ¢ U (i),
and (¢) ),y 7 (i, u) = 1 for each state i € S. The
sequence of states encountered in the MDP while act-
ing under a fixed policy is called a Markov chain. For
SSPPs, the policies that create a Markov chain that
is guaranteed to terminate (with probability one) are
called proper policies.

In order to evaluate a policy, we must specify an
objective way to measure its success. A common met-
ric, and the main one used in this chapter, is the
“expected” (i.e., mean) total long-term discounted cost
incurred from executing the policy. This long-term
expected cost is a function of the starting state, and is
called the policy’s value function. Formally, the value
function for the deterministic policy p, written J*, is
defined for each state i € S by

o0
JHD = E | Y a'glis, uir), ir) lio = i
t=0

(15.1)

The “E” in (15.1) denotes the expected value — the
mean or average over all the randomness in the state
transitions and costs g resulting from the prescribed
actions — and the vertical line “|” means “such that”.
Thus, this equation defines the value function for state
i as the expected value of the infinite sum of future
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Action 1 (cost 5)

peto® s

Aetiy, 5

(COSTQ)

Action 1 (cost 0)

(0051 )\)

Fig. 15.3 Example MDP with two states, two available actions and deterministic state transitions represented by the arrows. Costs
associated with the state transitions are indicated in parentheses, and o = 0.9, making this a discounted problem (DCP).

discounted costs incurred when beginning in state i and
choosing actions according to the policy w. The value
function for a stochastic policy x is denoted J”™ and is
similarly defined by

[o.¢]
JT (i) = E[Za’g(i,, e i) lip=1; (15.2)
t=0

each u, chosen according to n]

We will make assumptions on the MDPs and policies
that ensure that the value functions defined in (15.1)
and (15.2) are finite; for instance, this will be true in
the common case that the costs g are bounded and the
discount factor & < 1.

Rewriting the expectation in (15.1) by pulling out
the first term of the sum leads to the so-called consis-
tency or Bellman equation:

JHi) = E; [8G, n@i), j) +ad"(j)]

=Y PO, j) (@G, p(i). ) +ad" ()

jes
(15.3)

where the expectation E; is over the (possibly) ran-
dom cost g and random transition to a next state
j. It can be shown that, for any deterministic pol-
icy, u, J* is the umique solution to the consis-
tency equation, that is (15.3) completely character-
izes J* (this is a corollary to the Bellman Optimality
Equation presented in the next section). The consis-
tency equation for stochastic policies may be written
analogously.

An optimal value function is one that has the small-
est achievable value for each state. That is, if we denote
the optimal value function by J*, then for all states
iesS, J*(i) < J™(i) for all policies # and J*(i) =
J7 (i) for some policy 7. It will be shown in the next

section that, under certain reasonable assumptions,
there is at least one deterministic policy p such that
J*(@) = J* (i) for all states i € S. Briefly, this is a
result of the fact that, due to (15.3), any change of
a policy that reduces the expected discounted sum of
future costs from one state can only cause an improve-
ment in other states as well. Naturally, any policy
whose value function is equal to the optimal value
function is called an optimal policy. The next section
characterizes such policies. First, though, we consider
two examples to make these concepts more concrete.
Figure 15.3 shows a representation of a two-state MDP
with discount factor ¢ = 0.9, making it a DCP. In
State 1, two actions are possible: Action 1 causes a
transition to State 2 with a cost of 5, and Action 2
exacts a cost of 2 but doesn’t change the state. In
State 2, Action 1 causes a transition to State 1 with
a cost of 0, and Action 2 loops back to State 2 with
a cost of 2. The four possible policies are given in
Table 15.2 along with their value functions. For exam-
ple, the policy here arbitrarily called Policy 2, given
by {u(l) =1, u(2) =2}, has transition probabili-
ties P (1,1) =0, P*D(1,2) =1, PHP(2,1) =0
and P*®(2,2) =1 with costs g(1, u(1),2) = 5 and
g(2, 1(2),2) = 1. Under this policy, if the initial state
is State 1, the first step will transition to State 2 with

Table 15.2 Policies and value functions for the MDP depicted
in Fig. 15.3

Policy ]l {u(D)=1,u@ =1}  J(1)=500/19 ~ 263
J(2) = 450/19 ~ 23.7
Policy2  {u(l)=1, () =2} J) =14
J(2)=10
Policy3  {u(1)=2,u2) =1} J(1)=20
J(2)=18
Policy4  {u(1)=2, u(2) =2} J(1) =20
J(2)=10
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a cost of 5 and then the Markov chain will remain in
State 2 with an additional cost of 1 per timestep. Thus,
the value function for this policy may be computed via
(15.1) as

JPD=54a- 1+ 1+ 14...

=5+9=14

— o

JMQ)=14a-1+a® 1+a’ 1+4...

oo . 1
t=0 -

or by solving the system of equations given by (15.3):

(15.4)

JE) =5+ ad(2)

JHQ2) = 1+ aJ™(2) (15.5)

which yields the same result. If the transitions had a
random element so that, for instance, Action 2 in State
2 would occasionally cause a transition to State 1, then
(15.1) or (15.3) would become a bit more complicated,
accounting for the cost of all possible trajectories along
with their probabilities, but the main idea remains the
same. As can be seen from Table 15.2, Policy 2 is the
optimal policy since its value function is smallest.

A second problem, a very small “robot maze” SSPP,
is depicted in Fig. 15.4. In both State 1 and State
2, the robot may attempt to move north, south, east
or west, but the only possible transitions to a new
state are from State 1 to State 2 by moving east
or from State 2 to State 0 by moving south. Each
attempted move incurs a cost of 1, representing the
robot’s energy usage or the elapsed time, and the
trajectory ends when State O is reached, represent-
ing escape from the maze. The optimal policy is the
one that leads most quickly out of the maze, which
in this case is {u(l) = East, u(2) = South}. For
this policy, J#(1) = 2 and J*(2) = 1; for any other
deterministic policy u, J*(1) = oo, and J#(2) =
oo unless ©(2) = South, in which case J#(2) = 1.
Thus {(1) = East, u(2) = South} is the optimal pol-
icy, and in fact is the only proper deterministic policy
because it is the only one that produces a trajectory
guaranteed to terminate regardless of the initial state.
Again, these calculations would become more com-
plex if the transitions were not deterministic, e.g., if
there were some chance that the robot could knock
over a wall or trip when passing through a doorway.

Fig. 15.4 Three state “robot maze” problem. Dotted lines rep-
resent open doorways, and solid lines represent walls. The robot
may attempt to move north, south, east or west, but will only be
successful in moving east from State 1 and west or south from
State 2. Each move has a cost of 1, and the discount factor a =
1, making this a stochastic shortest path problem (SSPP).

15.5 The Bellman Optimality Equation

In the 1950s, Richard Bellman formulated an equa-
tion — or, more precisely, a system of equations — that
characterizes the optimal value function for an MDP
(Bellman 1957). This equation forms the cornerstone
of the classical theory of dynamic programming, and
it is essential to reinforcement learning theory as well.
The following version is adapted from those stated and
proved in Bertsekas (1995) for SSPPs and Bertsekas
and Tsitsiklis (1996) for DCPs.

The Bellman Optimality Equation

Suppose that an MDP is either a DCP or an SSPP
such that there exists a proper deterministic policy
and such that, for every improper deterministic pol-
icy, i, J#(i) = oo forsomei € S. Then the optimal
value function J* exists, has finite components, and

is the unique solution to the equations

J(i) = mingepo) E; [gG, u, j) +ad*(j)]
= minyevqy Y PG j)(@G. u. j)
jes

+aJ*(j)) (15.6)

for all states i € S, where the expectation is over the
random cost g and next state j.
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All theoretical results presented in this chapter for
MDPs will assume that the MDP under discussion sat-
isfies the hypotheses of the Bellman Optimality Equa-
tion.

Returning to the examples from the previous sec-
tion, we note that for the DCP the optimal value func-
tion with J*(1) = 14 and J*(2) = 10 does satisfy
(15.6) because

min,cu i) Ej [g(1,u, j) +aJ*(j)]
= min{g(1,1,2) + «J*(2), g(1,2, 1) + aJ*(1)}
= min {5 + (0.9)(10), 2 + (.9)(14)}

min {14, 14.6} = 14 = J*(1)

(15.7)
and

min,ey ) Ej (2. u, j) +at*(j)]
min {g(2, 1, 1) + «J*(1), §(2,2,2) + aJ*(2)}
= min {0 + (0.9)(14), 1 + (.9)(10)}
= min {12.6, 10} = 10 = J*(2)

(15.8)
Similarly, for the SSPP example,
min, ey ) Ej [g(1,u, j) + a*(j)]
= min {g(l, “east”, 2) + aJ*(2), g(1, “south”, 1)
+aJ*(1), g1, “west”, 1) + aJ* (1), }
= min {I + ()(1), 1+ (1)(00), 1 + (1)(00),
I+ (D(e0)}=2=J"1) (15.9)
and
min,ep) E; (82, u, j) +aJ*(j)]
= min {§(2, East, 2) + aJ*(2), g(2, South, 0)
+aJ*(0), g2, West, 1) + aJ*(1), }
= min{l + (1)(1), 1+ (1)(0), I + (1) (2),
I+ M} =1=J"Q2) (15.10)

The Bellman Optimality Equation is important for
several reasons. First, its characterization of the opti-
mal value function is useful for theoretical purposes.
Second, it leads to direct methods for computing the
optimal value function. One procedure, called value
iteration, performs an iteration based on (15.6) to
successively approximate J*. The Bellman Optimal-
ity Equation can also be written as a linear program,
which can be solved by classical methods for small

state and action spaces (Bertsekas and Tsitsiklis 1996,
p. 37):

maximize Z J (@)
ieS
subject to J (i) < ZP”(i,j) &G, u, j)+al(j))
jes (15.11)

Third, the Bellman Optimality Equation provides a
connection between the optimal value function and
optimal policies. It can be shown that a deterministic
policy w is optimal if and only if

E; [gG, n), j) +aJ*(j)]
= min,ey) E; [gG, u, ) +aJ*(j)]  (15.12)

for all states i € S (see Williams 2000). That is, a
policy is optimal if and only if the action it prescribes
for each state is one that achieves the optimal value
function as characterized by the Bellman Optimality
Equation.

If a model of the MDP is available, the transition
probabilities P“(i, j) and expected costs g(i, u, j)
may be substituted into (15.6) and it can be solved
iteratively, or the linear program in (15.11) could be
used. Once J* is found, (15.12) determines an optimal
policy. If a model is not available, a learning agent
could use exploratory actions and their resulting costs
and state transitions to create one by estimating the
transition probabilities and associated expected costs,
then use one of these approaches. Alternatively, the
learning agent could use the same experience to iter-
atively improve an estimate of the optimal value func-
tion, but then an alternative to (15.12) must be found
for determining an optimal policy. This approach to
learning from experience can be achieved via itera-
tive methods that use an extended concept of value
functions that apply to pairs of states and actions, as
described in the following section.

15.6 Q-Values

The total expected future discounted cost obtained
when a certain action is executed in some state and
then a fixed policy is followed thereafter is called an
action value function or, for historical reasons, a Q-
factor or Q-value. Q-values are particularly useful
in determining how to change a policy to improve
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Fig. 15.5 Diagram of the possible transitions from taking
action u in state i, along with their probabilities and expected
costs. The Q-value for a policy p, Q, may be computed
by taking a probability-weighted combination of all the tran-

it. Furthermore, the optimal policy for an MDP can
be determined directly from its optimal Q-value,
denoted Q*, without requiring a model of the envi-
ronment. Formally, we define the Q-value for a policy
u by

0", u) =

o0
E[g(io,U,il)+Zat8(iuu(i:),it+1) lig =z}

t=1

(15.13)

Here the expectation is taken over all possible trajecto-
ries and transition costs under the policy u after action
u is taken in state i. Note that (15.13) is different from
(15.1) only in that the action taken in state i is not nec-
essarily the one prescribed by the policy u; however,
Q" (i, u(i)) = J*(). The Q-value for a stochastic
policy 7 is defined similarly to (15.13), but with all
actions following the first one being chosen according
torm.

As is true for the value function, there is a consis-
tency equation for Q-values that follows immediately
from their definition and the definition of the value

sition costs plus discounted value functions of the resulting
states, J#, as given by (15.14). The optimal Q-value, Q*, is
similarly computed from the optimal value function, J*, in
(15.15).

function. For any deterministic policy u,
Q" (i, u) = E;[gGi.u, j) +aJ"())]

=Y PG, j) (3G, u, j) +aJ"()))

jes
(15.14)

for each state i € § and action u € U (i), where the
expectation is over the random cost g and next state j.
A similar equation holds for stochastic policies. The
right side of (15.14) may be thought of as following
all the possible state transitions and costs that can
result from taking action u in state i and weighting the
results — the transition costs plus the discounted value
function of the resultant state — according to their prob-
abilities. This is diagrammed in Fig. 15.5. Equation
(15.13) could also be represented by an infinitely large
tree of the possible trajectories, where the discounted
costs of each transition weighted by their probabilities
are added up over all the branches.

An optimal Q-value is one which has the small-
est achievable value for each state-action pair. That
is, if we denote the optimal Q-value function by
Q*, then for all states i € § and actions u € U (i),
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O*(i,u) < Q™ (i, u) for all (deterministic or stochas-
tic) policies 7 and Q*(i, u) = Q7 (i, u) for some pol-
icy . It follows from (15.14) and the definition of
the optimal value function that the optimal Q-value
satisfies the equation

Q*(i,u) = E; [gG, u, j) +aJ*(j)]

for all states i € S and actions u € U (i). Thus (15.6)
may be written in terms of the optimal Q-value as

J*(i) = min,ep ) Q" (i, u) (15.16)

The Bellman Optimality Equation for value functions
can also be stated in terms of Q-values. In particu-
lar, under the hypotheses for the Bellman Optimality
Equation, the optimal value function Q* exists, has
finite components, and is the unique solution to the
equations

Q*(i,u) = E; g, u, j) + amingeyy 0*(j, v)]

=2 PG ) @G u. j)

Jjes

(15.15)

+aminyey () Q*(j, v) (15.17)

for all states i € S and actions u € U (i). Furthermore,
it follows from (15.12) and (15.15) that the determin-
istic policy w is optimal if and only if

Q" (i, n(i)) = min, ey Q% (i, u)

for all states i € S. According to this characteriza-
tion, an optimal policy can be determined directly
from the optimal Q-value even in the absence of
a model of the environment by simply selecting an
action in each state that has the smallest value of
Q*. This is a powerful advantage for a wide range of
problems.

In words, (15.15) or (15.17) define Q*(i, u) as the
total of the future discounted costs expected from tak-
ing action u in state i, assuming that the optimal pol-
icy is followed for every action thereafter. The “robot
maze” problem described earlier and illustrated in
Fig. 15.4 allows a particularly concrete interpretation:
Q*(i,u) is the expected minimum number of steps
from state i to the exit (state 0), including the result
of action u. The values of Q* for this problem are
depicted in Fig. 15.6. For example, O*(2, East) = 2
because trying to move east from State 2 (and bounc-
ing off the wall) uses one step, and then moving south
and out of the maze requires a second step. The short-
est path to the exit can be found by simply moving

(15.18)

State 2

Fig. 15.6 The three-state robot maze with optimal Q-values
displayed for each state in the direction of the associated move.
For this problem, the Q* values represent the minimum number
of steps to the “exit” including the given action.

in the direction associated with the smallest value of
Q™ in each state. Thus, finding the optimal Q-value is
tantamount to finding the optimal policy.

15.7 Policy Improvement

Even when a model of the environment is available,
there are various reasons to seek other solution meth-
ods for an MDP than value iteration using (15.6)
or the linear program in (15.11). Value iteration can
be computationally intensive, and other methods may
often be faster. Linear programming techniques are
effective for small state and action spaces, but may
not work well for large problems. And a model of
the MDP that is estimated from experience may have
errors that lead to a poor solution with either approach.
Finally, if something is known a priori about a good
policy, a learning framework that can make use of
that knowledge is desirable. For these reasons, a wide
variety of reinforcement learning algorithms that make
direct use of experience obtained from interacting with
the environment have been proposed. Many of these
use some sort of policy iteration. At the root of this
method is the observation that, from (15.14) and the
fact that J#(i) = Q" (i, u(i)) it follows that for any
two policies u and w/, if Q*(i, u'(i)) < Q" (i, n(@))
for all states i € S, then J# (i) < J*(i) foralli € S;if
in addition Q*(i, u'(i)) < Q*(i, u(i)) for some state
i €8, then J* (i) < J*(i) for that state. This result
is called the Policy Improvement Theorem. Policy
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Fig. 15.7 A high-level
diagram illustrating policy
iteration: the cycle of
improvement may continue
until an optimal policy is
found. Many practical
reinforcement learning
algorithms have this form.

iteration operates by iteratively improving a policy
until it becomes optimal. This is done by evaluat-
ing the Q-value for a policy and then choosing a
new policy that, for each state, uses an action that
appears better (or at least equally good) based on
the Q-value. It may be described more precisely as
follows.

Policy Iteration Algorithm

Select an initial policy pg, either at random or based
on a priori knowledge of a good solution to the
MDP. At each subsequent time ¢ > 0, evaluate Q*
exactly and update the policy according to

pe (@) 1if QFe (i, pe (D))
= min, ey Q" (i, u), or

any element v for which Q" (i, v)
= min,ey) Q" (i, u) otherwise

(15.19)

M1 (i) =

for all states i € S. Repeat this process until u,| =
WU;, then stop. w4 is an optimal policy.

A high-level diagram of the Policy Iteration Algo-
rithm is shown in Fig. 15.7. The Policy Iteration Algo-
rithm will eventually end because there are only a
finite number of possible policies, and at each step the
policy improvement theorem guarantees that J* (i) <
Ji(i) for all i € S and J* (i) < J*(i) for at least
one state i € S, preventing any policy from being
repeated.

Policy iteration provides a method for improving a
policy once its Q-values for all state-action pairs are
known, but it does not address how these values are

Policy evaluation
(compute Q%)

to be obtained. The process of computing the value
function or Q-value for a policy is called policy eval-
uation or prediction. If a model of the environment is
known, computing the value function is sufficient since
each Q-value component can be obtained from a “one-
step lookahead” using (15.14). In this case, there are a
number of classical methods in dynamic programming
for policy evaluation, including the iterative solution
of (15.3). Another possibility is to use a Monte-Carlo
approach: execute the policy many times starting from
each state and average the returns, as suggested by
(15.1); the law of large numbers ensures that this aver-
age eventually converges to the value function. The
temporal difference algorithms discussed in the next
section provide a parameterized combination of these
two approaches that may be used in the model-free
case.

Algorithms that use the framework of policy iter-
ation but do not evaluate the Q-value exactly before
updating the policy are commonly called general-
ized or optimistic policy iteration algorithms. Many
practical reinforcement learning algorithms are of this

type.

15.8 Temporal Difference Learning

Temporal difference (TD) algorithms provide a way
for a learning agent to learn from experience with the
environment. The basic idea is to update an estimate
of the MDP’s value function based on the difference
of successive estimates of the value of a state as new
experience is obtained. For instance, suppose an esti-
mate at time ¢ of the value of state i, for the policy
w is J;(i). Starting in state i, and executing the action
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w(i;) may result in a transition to state j accompanied
by a cost g(i;, u(i;), j), and the new state j will
have an associated value function estimate J;(j). The
quantity g(i,, u(i;), j) + aJ;(j) is an estimate of the
right-hand side of (15.3), called the one-step return. Of
course, this estimate involves only one sample of what
may be a noisy random process, and it is also impacted
by whether or not J;(j) is a good estimate of J*(j).
Therefore, it is not advisable to immediately replace
J;(i;) with this new estimate, but rather to “nudge”
J;(i;) a small step toward it. This may be accomplished
by choosing a small step-size y; between 0 and 1 and
making the assignment

Jip1(i) = (1 =y Ji(Gr)
+ v (gUs, (), Jj) +adi(j))
= Ji() + v (glis, (), j)

+aldi(j) = i) (15.20)

This equation represents moving J,(i;) a fraction
y, of the distance toward g(i,, w(i,), j) + aJ;(j).
The quantity g(i,, n(i;), j) + aJ;(j) — J;(i;) is called
a temporal difference, and the update method just
described is called a one-step temporal difference algo-
rithm, or TD(0). If the iteration (15.20) is performed
repeatedly for all possible initial states i, € S and the
values of y, converge to 0 in an appropriate fashion,
the estimates J; will converge to J*. This iteration
of successive “nudges” is called a stochastic approx-
imation or Robbins-Monro approach to the solution
of the consistency equation (15.3); see Robbins and
Monro (1951) and Kushner and Yin (1997). A famil-
iar example of stochastic approximation is the incre-
mental calculation of a population mean as new sam-
ple values are obtained. For instance, suppose M, =
mean({xi, x2, ..., X; }) and now a new sample x;; has
become available. Then the new mean, M, |, may be
written

t+1
1

t+1

n=1

1
Xy = (t My + Xi1)

My = 1

1
M, + — (xt-H - M)

15.21
t+1 ( )

This equation has the same form as (15.20), with
the sample value x,.; representing a new (though
noisy) estimate for the population mean and the step-
size ¥, = (t + 1)~!. Of course, as t — oo, the law
of large numbers guarantees that the values of M,

defined by (15.21) will converge to the mean of the
distribution from which the x; are drawn (assum-
ing the distribution is well-behaved, e.g., bounded).
In fact, convergence to the mean will occur for any
sequence y; between 0 and 1 so long as Y =)y, =
oo and Y 2, y> < oo. (Note that the second condi-
tion implies that ¥, — 0.) These are standard step-
size conditions for stochastic approximation methods.
For many more results and applications of stochas-
tic approximation, see the text by Kushner and Yin
(1997).

Analogs of (15.20) can be formulated using N-step
returns, that is, results from a sequence of N successive
actions instead of just one, along with the value of
the final state. Formally, an N-step return beginning
at time ¢ in state i, is defined by

N-1
R™ =" o* glipsn i i) + @ Jn Girn)
k=0
(15.22)

As is true for one-step returns, the N-step return pro-
vides a new estimate for the value function of the
initial state. Larger values of N generally will pro-
duce higher variance N-step returns since they involve
more random transitions, but lower bias since the
value function of the final state has less influence.
In fact, if N is allowed to go to infinity, the N-step
return approaches an unbiased Monte-Carlo return. An
algorithm having the form of (15.20) but using N-
step returns under a fixed policy might be called an
N-step temporal difference algorithm. However, such
algorithms are rarely used in practice. Much more
common is to use a weighted average of all the N-
step returns, parameterized by a value A between 0
and 1. The A-return beginning at time ¢ in state i, is
defined by

R =(1 —,\)ZAN—'R}’”
N=1

(15.23)

Recall that (1 —2) > v AV 1=1for 0 <A <1,
so (15.23) represents a weighted average of the R,(N)
terms with coefficients that sum to 1. Of course, the
A-return for a state i, cannot generally be computed
at the original time the state is visited, since future
experience is required to determine the N-step returns.
Fortunately, the A-return update can be decomposed in
a clever way that makes it possible to continue nudging
the value function towards the A-return as that future
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experience is obtained. For A between O and 1, we
may write the A-return temporal difference as shown

o0
R} = JG) =1 =1 aNIRY —
N=1

J (i)

below. (Here the time subscripts on the value function
estimates J have been omitted for conciseness.)

N-1
=1-3) Z)\N : (Za 8k Uigkes Ligky1) T @ J(lz+N)> — J ()

N=1 k=0

:(1—x)i AN

N=1k

=

Il
=}

Tt ik ik brr) + (1= 2) DAY N T Giryw) — T G0)

N=1

= (=0 > A gl ks dvne) + (=2 Y AN e T lirgw) = T G)
k=0 N=k+1 N=1
= > 0 gl s i) + Y AT T )= Y M T (i)
k=0 k=0 k=0
o0
= > 2o (Qlrsk s irpkr1) + o Grgrgr) = J (ir44)) (15.24)
k=0

Thus, the difference between the A-return and the ini-
tial value function estimate for state i, may be written
as a weighted sum of quantities very close to one-step
temporal differences, except that they are based on the
original estimate J instead of the estimate available
when the action is taken. Denoting the one-step tem-
poral difference at time ¢ by

8 = glir, us, ir1) + aJi(irg1) — Ji (i) (15.25)
the formula in (15.24) can be approximated as

o0
RY = Jilin) = ) ka8
k=0

(15.26)

The one-step temporal difference update in (15.20)
may be replaced with one based on A-returns,
o0
Jei (i) = Jii) + v ) o) Sie (15.27)
k=1
The full sequence of one-step temporal differences is
not immediately known when state i, is visited, but
(15.27) can be used to continue adjusting the current
estimate of J (i;) as additional experiences (and hence,
additional terms in the sum) are gathered. The basic
idea of this approach is illustrated in Fig. 15.8: at each
timestep, the latest temporal difference may be used
to adjust the value functions for all states visited so
far. In particular, k steps after time ¢, J;14(i;) can be

incremented by y, (Aa)¥8, 4. In a practical application
of this approach, it is convenient to keep track of
the temporal difference discount factor (Aar)* for each
state using a so-called eligibility trace, which starts
out at one when a state is visited and then “decays”
by a factor A« at each subsequent timestep. These
ideas lead to the formulation of a temporal difference
algorithm known as TD(}), described formally below;
the timestep subscripts on e and y are omitted for
simplicity.

TD(\) Algorithm

Suppose that a stepsize y between 0 and 1 has been
chosen. Initialize Jj arbitrarily, and let e(i) = O for
all states i € S. Simulate the MDP, selecting actions
u, as prescribed by the fixed policy . After each
transition to a new state i, , perform the following
updates:

8 = g, ur, iry1) + adi(ir1) — Ji (i)
e(iry1) = e(iy) +1

(or “replacing traces” variant: e(i;4+1) = 1)
Jip1(D) = J,(i) +ye() s foralli e S

e(i) = rae()foralli € S (15.28)
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Jliy o) J(iy )
Action u(i, ,)
- N

Fig. 15.8 Illustration of temporal difference learning of the
value function for a policy u. The estimate of J for every
state visited so far is updated based on the temporal difference

The variant of TD(X) in which the eligibility trace
for a state is reset to one after each visit is called
a first-visit or replacing traces method, in contrast
to the every-visit or accumulating traces method in
which the eligibility trace is always incremented by
one. If A = 0, this algorithm reduces to the one-step
temporal difference algorithm, TD(0), described ear-
lier. If A = 1, it becomes an on-line Monte-Carlo
algorithm. When the fixed stepsize y is replaced by an
appropriately decreasing sequence y; and every state is
visited infinitely often, TD(X) has been shown to con-
verge to the optimal value function under fairly general
conditions (Bertsekas and Tsitsiklis 1996; Dayan and
Sejnowski 1994; Jaakkola et al. 1994). Several variants
of TD(A) have also been proposed; for instance, A
may be changed or “tuned” during learning to improve
performance, or the eligibility traces may be updated
differently.

One weakness of TD(A) is that it learns the pol-
icy’s value function, J#, not its Q-value. This is a
significant deficiency in the model-free case, since
policy improvement via (15.19) requires knowing the
Q-value. In general, temporal difference methods for
learning Q-values directly in the context of policy iter-
ation can be problematic, both practically and theoret-
ically. However, an algorithm that uses one-step tem-
poral differences to learn the optimal Q-value directly
is described in the next section.

15.9 Q-Learning

The temporal difference algorithms described in
the previous section were stochastic approximation

-2
Action u(i,_,)
- -

O

Ji) Sl

Action u(i)
- -

SEEsssEsEssessnnnnnnnny

L T R LT T )

obtained from the latest timestep, §; = g; + aJ (ir+1) — J(ir),
where g; = g(i;, (iy), ir+1).

methods for solving the consistency equation (15.3)
for a fixed policy. In contrast, Q-learning is a
stochastic approximation to value iteration for solving
(15.17), thus learning the optimal Q-value, QF,
directly. This algorithm, proposed by Chris Watkins
in his 1989 Ph.D. dissertation (Watkins 1989), was
a major breakthrough in reinforcement learning
theory. By learning Q¥ Q-learning immediately
yields the optimal policy via (15.18). Another
powerful feature of Q-learning is that it allows
the learning agent to learn about the optimal
policy while executing a completely arbitrary
policy.

The basic idea of Q-learning is to update an
estimate Q, of Q* at every timestep based on
the one-step temporal difference 8, = g(i;, u;, i;41) +
aminyey,,,) Qr(ii+1,v) — Q;(ir, u;). The quantity
8, Us, ir11) + @ minyey,, ) Qr(ir41, v) from the lat-
est interaction with the environment provides a
new (but noisy and possibly biased) estimate for
Q*(i;, u;), and so the stochastic approximation “nudg-
ing” approach described in the previous section is used
to refine the current Q* estimate based on this new
information. This process is illustrated in Fig. 15.9 and
described formally below.

Q-Learning Algorithm

Suppose y;(i, u) > 0 for all times ¢, states i € S
and actions u € U (i), and initialize Q arbitrarily.
Simulate the MDP under any policy, not neces-
sarily deterministic or even stationary. After each
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Fig. 15.9 Diagram of the Q-learning algorithm update. A one-step temporal difference based on the latest transition cost and
minimum Q-value in the new state is used to update the optimal Q-value estimate for the action taken in the previous state.

transition from a state i, to a new state i,,; under
action u,, perform the following update:

Qi1 (e, u) =0, (ir, u)+v: (s, ut)(g(itv Ur, ir+1)
+o mi_n )Ql(it-H’ v) — O, ut))

vel L1

(15.29)

If the stepsizes y, get small in an appropriate fashion
as t — oo and each state-action pair (i,u) is visited
infinitely often, then it can be shown that lim,_, -, Q; =
Q*. To guarantee that every action is explored in every
state infinitely often as the learning agent interacts with
the environment, Q-learning requires that a stochastic
or non-stationary policy be used. On the other hand, to
maintain low transition costs and perhaps speed con-
vergence, it is common to give priority to those actions
that appear best under the current Q-estimate (the so-
called greedy actions). One strategy for achieving this
balance between exploration and exploitation is to exe-
cute an e-greedy policy which in state i takes an action
having the smallest Q-value with probability 1 — ¢ and
an action chosen randomly from U (i) with probability
e, where ¢ is between 0 and 1. Another is to use the
Boltzmann policy, defined for all states i € S and all
u e U(i)by

exp (=0: (i, w)/T)
> vevi) &Xp (= Q. (i, v)/T)
where T > 0 is called the temperature. An equivalent

but numerically more stable alternative is to use the
“advantages” A;(i,u) = Q,(i, u) —min,ey) Q/(i, V)

i, u) = (15.30)

in place of the Q-values in (15.30). By taking ¢ — 0
or T — O sufficiently slowly under an e-greedy or
Boltzmann policy, one can ensure that the Q-learning
algorithm converges to Q* while also allowing the
policy being executed to approach the optimal policy
(see Bertsekas and Tsitsiklis 1996, p. 251). Choosing
a schedule for ¢ or T that provides a good rate of
convergence to Q* for a particular MDP may require
experimentation or tuning using a separate optimiza-
tion technique. In some practical on-line applica-
tions, convergence may not be desired: choosing an
appropriate fixed value of ¢ or T allows the learn-
ing agent to continue exploring, which may be quite
useful for adapting to changes when the MDP being
solved isn’t truly stationary. In this case, the choice
of a good fixed value for T depends on the magni-
tude of the values of Q and the desired amount of
exploration.

15.10 Temporal Difference Control

The Q-learning algorithm described in the previous
section is, in a sense, a complete solution to the classi-
cal reinforcement learning problem. It learns the opti-
mal Q-value for an MDP, and hence the optimal pol-
icy, while offering significant flexibility in the policy
actually followed. However, Q-learning uses only a
one-step temporal difference return; not only does this
lead to potentially high bias in an update when the
next state’s Q-estimate is lousy, but it also means that
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only the very next experience following a visit to a
state-action pair is used to improve its Q-estimate.
The rate of convergence of Q-learning is therefore
slower than might be achieved by using more expe-
rience (longer sequences of actions and transitions)
per update. For this reason, a number of algorithms
have been proposed that combine ideas from eligibi-
lity traces, policy iteration, and Q-learning with the
goal of providing faster convergence; among these are
Sarsa()) and several versions of Q()\). The main idea
of these methods is to use eligibility traces and tempo-
ral differences to update the Q-value estimate; some
also use this estimate to attempt to improve the current
policy.

The two Q(X) algorithms described below attempt
to duplicate Q-learning’s ability to learn the opti-
mal Q-value while following an arbitrary policy. The

first of these is due to Watkins (1989). Motivated by
an expansion of (15.17), his algorithm makes use of
all N-step returns beginning from a state-action pair
(i, u) in a manner similar to TD(X). However, these
returns are terminated as soon as a non-greedy action
is selected.

Watkins’ Q (1)

Let the stepsizes y(i,u) be between 0 and 1,
e(i,u) =0, and initialize Q arbitrarily. Simulate
the MDP under any policy, not necessarily deter-
ministic or even stationary. After each transition to
a new state i, and selection of the next action
U1, perform the following updates:

8 =gl up,ip) + minveU(i,H) O (g1, v) — Qs (ir, uy)

e(i;, u;) = e(iy, u;) + 1 (or “replacing traces” variant: e(i;, u,) = 1)

Qi1 u) = Qi(,u)+y(@i,u)e(i,u)d, foralli € Sandu € U(i)

. rae(i,u)if Q; (i1, us1) = miny Q;(iry1, v), Or
e(i,u) =

0 otherwise

foralli € Sandu € U(i)
(15.31)

For the replacing traces variant in this and other algo-
rithms that use eligibility traces to learn Q-values,
a slight enhancement is available. In addition to set-
ting e(i;,u;) = 1, one may set e(i;,u) =0 for all
u # u;, thus terminating all N-step returns when a
state is revisited. This strategy has been shown empir-
ically to outperform both the every-visit and stan-
dard replacing traces methods (Singh and Sutton
1996).

The main weakness of Watkins’ Q()) algorithm
is that the lengths of the backups will be very
short when many exploratory actions are taken. If
actions are selected based on an e-greedy or Boltz-
mann policy with ¢ or T decreasing with time, this
will often be the case early in the learning process.
A second “optimistic” or “naive” Q(X) algorithm,
proposed by Sutton and Barto (1998) as a simpler
alternative to a similar algorithm due to Peng and

Williams (1996), ameliorates this problem by allow-
ing all returns to be used — even those following an
exploratory action. Although this will result in some
technically incorrect updates being performed, the ini-
tial rate of learning should be higher than in Watkins’
Q(A) algorithm, and the algorithms become nearly
identical as the probability of exploratory actions is
decreased.

Naive Q(1)

Let the stepsizes y(i,u) be between 0 and 1,
e(i,u) = 0, and initialize Qg arbitrarily. Simulate
the MDP under any policy, not necessarily deter-
ministic or even stationary. After each transition to
a new state i, |, perform the following updates:
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8 = gl uy, iip1) + Efllll(in ) O (irg1,v) — O; (i, uy)
v L+l
e(i;, u;) = e(iy, u;) + 1 (or “replacing traces” variant: e(i;, u,) = 1)
Qi1(i,u) = Q:G,u)+y(@i,u)e(@,u)d, foralli € Sandu € U (i)
e(i,u) = Aae(i,u)foralli € Sandu € U(i) (15.32)

Note that Q(0) under either Watkins’ or Naive Q(A)
is simply ordinary Q-learning. In order for Q, to
converge to Q¥ it is generally necessary to replace
the stepsizes y (i,u) with sequences decreasing to zero
in an appropriate fashion, and to guarantee that each
state-action pair is visited infinitely often; additional
conditions may also be required. Under any of these
methods, once Q* is found, an optimal policy may be
determined via (15.18).

A final temporal difference control algorithm,
Sarsa(A), is so-named because it uses temporal differ-
ences based on State-action-reward(cost)-state-action
sequences. Unlike the Q-learning or Q(A) algorithms,
its temporal differences do not use the minimum Q-
value of the next state, but rather the Q-value for the
action actually selected. For this reason, Sarsa(}) is
called an on-policy algorithm; it learns the Q-value

of the policy being executed, not the optimal Q-value.
In particular, as in the Naive Q (A) algorithm, returns
are not terminated when non-greedy actions are taken.
Indeed, the N-step returns used by Sarsa(A) can be
thought of as samples of a multi-step version of the
Q-value consistency equation 15.14 rather than of the
Bellman Optimality equation 15.17.

Sarsa(l)

Let the stepsizes y (i,u) be between 0 and 1, e(i,u)
= 0, and initialize Q¢ and m( arbitrarily. Simulate
the MDP, selecting actions u, at each timestep as
prescribed by m,. After each transition to a new
state i, and selection of the next action u,, per-
form the following updates:

8 = gl up, i) + @ Qr(irgr, 1) — Qr(iy, uy)

e(i;, u;) = e(i;, u;) + 1 (or “replacing traces” variant: e(i;, u,) = 1)

01y u) = Q(i,u) + v (i, u)e(i,u) s, foralli € Sandu € U(i)

e(i,u) =Aae(i,u)foralli € Sandu € U (i)

(15.33)

and determine a new policy 7, using some func-
tionof r + 1 and Q,. ;.

There are many ways that the new policy 7, may
be determined; for instance, it may be an e-greedy
or a Boltzmann policy, where ¢ or 7 decreases with
time. In order that lim;—.., Q;, = QF, the step sizes
y should be replaced with an appropriately decreas-
ing sequence. The sequence of policies must even-
tually assign positive probabilities only to actions
that are greedy with respect to the Q-estimate while
ensuring that each state-action pair is visited infi-
nitely often. Such a sequence of policies is called
greedy in the limit with infinite exploration (GLIE)

in Singh et al. (2000), where it is proven that one-
step Sarsa, Sarsa(0), converges under GLIE policy
sequences. Additional results on the convergence of
optimistic policy iteration algorithms may be found in
Tsitsiklis (2002).

15.11 Partially Observable MDPs

The techniques presented in this chapter are effec-
tive for solving MDPs, but in some practical appli-
cations, the exact state of the environment may not
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Fig. 15.10 Example POMDP. The underlying MDP has two
distinct states, two available actions and deterministic state tran-
sitions represented by the arrows; costs associated with the state

easily be determined. With only an estimate of the
state available, the history of past actions may influ-
ence future costs and transition probabilities, violating
the Markov hypothesis. When these effects are small
or the problem is otherwise well-behaved, traditional
reinforcement learning methods such as Q-learning
may still provide good solutions. However, in general
these Partially Observable Markov Decision Processes
(POMDPs) may be much more difficult than MDPs to
solve (Lovejoy 1991).

To formalize the notion of a POMDP, we assume
that the environment has the structure of an MDP but
the learning agent perceives only an observation, or
message, from a set M = {m, my,...my}, with the
message determined according to a conditional proba-
bility distribution P (m|i) for message m given the true
state i. The learner will in general not have a model
for the underlying MDP or even know the number of
true states. Thus, while actions continue to drive state
transitions in the MDP, only the costs incurred and
the current message will be available to the learning
agent.

One approach to solving POMDPs is to use the
history of observations, actions, and costs to try to
obtain an improved estimate of the true, hidden state
(e.g., Chrisman 1992), but such methods can be com-
putationally expensive and may not scale well for large
problems. An alternative approach is to learn the best
stochastic memoryless policy, i.e., a policy that pre-
scribes a probability distribution over available actions
based only on the immediately available message.
Such policies are the natural solution to a wide class of
problems including games and their economic analogs,

Action 2 (cost 0)

(Gos\ 2)

LTTTTTLLIT]

transitions are indicated in parentheses. However, the learning
agent cannot sense the precise states but only a single message
that fails to distinguish them.

since an intelligent opponent could adapt to exploit
any fixed, deterministic policy. A simple example of
a POMDP for which the optimal memoryless policy is
stochastic is depicted in Fig. 15.10. Although there are
two distinct states in the underlying MDP, the learning
agent receives a message that fails to distinguish them.
If action 1 is always taken, a cost of 2 will be incurred
at every timestep following the first one. The same
is true if the policy is to always take action 2. Thus,
either deterministic policy will result in an average
cost per timestep of 2. However, a stochastic policy
that prescribes taking action 1 with probability 0.5 and
action 2 with probability 0.5 will result in an average
cost per timestep of 1; this is the optimal memory-
less policy for the POMDP. Since stochastic policies
include deterministic policies, which simply set the
probability of all but one action in each state to 0, it
always makes sense to look for the optimal memo-
ryless policy for a POMDP in the class of stochastic
policies.

Unlike in an MDP, where there exists an optimal
policy that simultaneously produces the minimum pos-
sible value function for each state, there may not be
such a policy for a POMDP. Thus, a measure of per-
formance other than the expected sum of discounted
costs (the measure used for MDPs) may be required.
One such measure is given by the asymptotic average
cost per timestep that a stochastic policy 7 achieves,
as described in the example above. A method for com-
puting estimates of Q-values related to this quantity
and using them to incrementally improve a stochastic
policy is described in Jaakkola et al. (1995). A modi-
fied version of this method was used in Williams and
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Singh (1999) to learn stochastic policies for several
problems including a matrix game, a robot navigating
a maze with imperfect state sensor, and the dynamic
assignment of jobs in a server queue. An alternative
approach, which uses the idea of gradient descent in
a parameterized stochastic policy space, may be found
in Baxter and Bartlett (2000).

15.12 Learning with Function
Approximation

Although the theory and algorithms described so far in
this chapter have assumed that the states and actions
are discrete and sufficiently small in number that
their value function or Q-values could be stored and
updated in “table-lookup” fashion, this may not be
true for many practical control problems. For exam-
ple, realistic navigation problems do not take place
within a simple maze in which only four moves are
possible; rather, the locations may be described via
distances from certain landmarks, the terrain may be
variable, and movements in any direction may be pos-
sible. In cases of very large, infinite, or continuous
state and action spaces, it becomes necessary to rep-
resent value functions and Q-values via a parameter-
ized function approximator — e.g., a linear approx-
imation or a neural network. When the reinforce-
ment algorithm being utilized calls for a stochastic
approximation Q-value update, the function approxi-
mator’s parameters are adjusted in such a fashion that
the Q-value it represents for the relevant state and
action is nudged moves in the direction of the new
estimate.

To make this more precise, let us consider on-
line learning algorithms that operate on Q-values and
suppose that Q(i, u) = fw(i, u), where w is a vector
of parameters for the approximation function f. For
instance, if f were a neural network, w might rep-
resent the vector of all connection weights and acti-
vation thresholds; in a polynomial approximation, it
might represent the set of all coefficients. At time ¢,
the vector w; yields a Q-value Q;(i;, u;) = fw, (ir, us)
and the learning algorithm produces a new estimate
Q,H(i,, uy) for Q;y1(;,u;). The vector w, must
now be incrementally changed so that fy,_, (i, u,) is
“nudged” towards Q,+1(i,, u,). Here nudging is used

in place of simply adjusting w; to make f,., (i;, u;) =
Q,H(i,, u,) because the latter could unduly degrade
the Q-value representations of other nearby state-
action pairs. In fact, the manner in which state-action
pairs (i;,u,) are chosen for updates can be quite
important in determining whether the approximation
fw, behaves as desired (Tsitsiklis and Van Roy 1997;
Tadic 2001). Interaction with a real or simulated envi-
ronment while following a GLIE policy seems to be
a good approach to producing a suitable sampling of
state-action pairs, but choosing an appropriate sched-
ule for diminishing exploration may require experi-
mentation.

Once a method for generating actions is chosen,
w, may be adjusted by performing a single step of
gradient descent on the squared difference between
the function approximator output and the new Q-value
estimate:

I . L
Wit = W, — E‘i"t Vw, Iifw,(lrv u;) — Qup1 iy, ut)]

= Wi = & [ fo s 00) = Ot G ) | Vo, fo i )
(15.34)

where & is a stepsize parameter between O and 1
and V,, f is the gradient of f — the vector of partial
derivatives of f with respect to the components of
w. If f is a neural network, the update of w; may
be performed using standard on-line backpropagation,
where the association (i;, u;) Q,+1(i,, u;) is con-
sidered a training example. In a learning algorithm that
produces a new Q estimate of the form Q,H (iy,u;) =
0.y, us) + v &, (15.34) becomes

Wi =W, +& ¥ 6 Vw, fw, (i, ur)  (15.35)

Both &, and y; must diminish towards zero in an appro-
priate fashion as learning continues in order for w,
to converge. If eligibility traces are used in the learning
algorithm, as in Q(X) or Sarsa(A), they must now be
replaced with eligibility traces over the components
of w. A common approach is to update the vector of
eligibility traces, e, as

e = hae, + Vi f(is, u) (15.36)

so that future adjustments via w, | = w, + & ¥, 6,
will continue to update the components of w as new
information is obtained, thus speeding learning.

It should be noted that there are very few the-
oretical results that guarantee the convergence of



316

J. K. Williams

reinforcement learning algorithms when function
approximation is used, and even for the case of lin-
ear function approximation with Q-learning there are
counterexamples for which the Q-values diverge to
infinity (Baird 1995; Precup et al. 2001). Nevertheless,
there are also many success stories demonstrating the
potential usefulness of this approach, and a number of
techniques and rules of thumb have been developed
for handling optimal stopping and other problems that
arise (Bertsekas and Tsitsiklis 1996). As is always the
case in using neural networks or other function approx-
imators, it is very important that a data representation
be carefully chosen. In particular, it is desirable to
derive features of the states and actions for use as
inputs to the function approximator; these should be
chosen so that, to the extent possible, “nearby” features
lead to similar costs and state transitions. Experience
and experimentation will likely be necessary to get the
best results.

15.13 Applications of Reinforcement
Learning

This section presents applications of reinforcement
learning to three sample problems relevant to environ-
mental science: dynamic routing of sensor data in a
wireless array, control of a scanning remote sensor,
and aircraft routing in an environment for which prob-
abilistic weather hazard information is available.

15.13.1 Dynamic Routing in Wireless
Sensor Arrays

Wireless arrays of small, battery or solar-powered in
situ sensors are beginning to provide an exciting new
technology for environmental science research. Unlike
many traditional research deployments, such arrays
can be quickly and easily deployed in an ad hoc fash-
ion to measure biogeochemical and other environmen-
tal processes at a high temporal and spatial resolution.
In order to be most flexible and efficient, the sen-
sors are placed in the locations of scientific interest
and then self-organize their communications to relay
or “hop” measurements back to a base station that
records them. This approach, known as mesh network-

ing, allows the sensor network to work well even when
many of the sensors are out of line-of-sight with the
base station (e.g., behind a tree or over the crest of a
hill); moreover, it allows the use of smaller radios and
lower-power transmissions than would be necessary
for each sensor node to communicate directly with the
base station.

Equipping a wireless sensor array to learn a good
network communications structure and adapt it as con-
ditions change can be accomplished using reinforce-
ment learning techniques. One way to formulate the
problem would be to consider it an SSPP similar to
the “robot maze”, where the goal is to relay a mes-
sage from the originating node to the base station in
the minimum number of steps. However, the sensor
array communications routing problem is not really
an SSPP because the connection strengths between
nodes, available battery power, and network traffic are
all variable and may change over time, and occasion-
ally a node may fail altogether. These changes will
alter the cost of transmission and the probability that a
message will be successfully received. For example, if
the shortest path to the base station is used repeatedly,
some nodes may experience much more traffic than
others and hence greater battery drain and more rapid
failure. In order to ensure a robust network, the routing
scheme should balance the transmission loads on the
different nodes to the extent possible; thus, the perfor-
mance metric to be optimized should incorporate not
only the number of hops a message has to take, but
also the traffic on the most power-limited nodes in the
network.

There are many ways to formulate this problem,
and we will use a fairly simple one. We choose as
“states” the nodes in the network, with actions given by
the choice of which target node to attempt to transmit
to. If the message is received, the receiving node will
include information on its battery power and its current
minimum Q-value in the acknowledgement signal; in
practice, this acknowledgement of reception may be
obtained by “overhearing” the message’s retransmis-
sion. We define the cost of a transmission to be 1/(frac-
tion of battery power remaining) for the receiving
node. If no acknowledgement signal is received in a
certain time period, then the transmission is deemed to
have failed, presumably because the targeted receiving
node is out of range, has insufficient battery power,
or is busy with another transmission. In this case, the
state returns to the sending node, which is then also
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Fig. 15.11 Random deployment of a wireless sensor array con-
sisting of 25 nodes, with the base station at the origin. The size
of the blue circle representing each node is proportional to the
frequency with which messages originate at that node. Nodes are

considered the receiving node for the purpose of deter-
mining the cost of the transmission. This formulation
is not truly an MDP because the transition probabilities
and costs are not stationary; rather, they change in
time based on the history of past transmissions. Nev-
ertheless, we will demonstrate that a straightforward
application of Q-learning is capable of finding good
policies for routing messages through the network and
adapting the policies as conditions change.

We create a scenario for testing this approach via
simulation by randomly placing 25 sensor nodes in a
2 x 2 unit domain with the base station in the cen-
ter, as shown in Fig. 15.11. Each node is assigned a
randomly-chosen probability for producing a message
at each timestep. This probability accounts for the
fact that sensor nodes may employ adaptive reporting
strategies, with each node transmitting measurements
more frequently when “interesting” phenomena are
detected at its location. To model uniform time-based
reporting, these probabilities could be set to 100%,
or a regular reporting schedule could be implemented

numbered in order from closest to farthest from the base station,
and the shortest-path routes (those with the lowest mean number
of transmissions required to get a message to the base station)
are indicated by dotted lines.

for each node. The probability that a message will be
received by a target node and successfully acknowl-
edged is determined by a function of the distance
between the two nodes, as shown in Fig. 15.12. (This
function was chosen for the purpose of this didactical
example and does not necessarily represent the perfor-
mance of any specific radio technology.) Each trans-
mission reduces the sending node’s remaining battery
power by a fixed amount, and we assume that each bat-
tery begins with the capacity for sending 100,000 mes-
sages. Each node maintains a set of Q-values that are
used to determine the transmission policy as described
below and are updated after each transmission based
on information received from the acknowledgment sig-
nal, or from the sending node if no acknowledgment is
received.

The Q-learning algorithm described in Section 15.9
is a good choice for solving this on-line learning
problem because information from the next state
(node) is naturally available via the acknowledg-
ment signal, whereas the multi-step backups needed
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Fig. 15.12 Probability of a successful transmission from one
sensor node to another, including receipt of an acknowledge-
ment, as a function of the distance between them.

by Q(X) or Sarsa(A) would require additional trans-
missions. We use the Boltzmann exploration policy
from (15.30) with advantages A,(i,u) = Q,(i, u) —
minyeyy Qr (i, v) replacing Q-values and a choice of
T = 0.05. Note that smaller values of T'would tend
to lead to fewer random “exploratory” transmissions
and less ability to adapt to changing conditions, while
larger values of T'lead to more exploratory transmis-
sions and lower network efficiency. The learning rate
was chosen as y = 0.2. Smaller values of y would lead
to more stable and possibly more accurate Q-values
and a more consistent transmission strategy, while
larger values allow quicker adaptation to changing
conditions. The best choice of exploration and learning
rates depends in part on the size of the network and the
timescales of the changes that affect sensor reporting
frequencies and transmission success; experimentation
or tuning via simulation may be necessary to obtain
optimal results.

Figure 15.13 shows comparative results from
the fixed shortest-path routes (those with, on aver-
age, the smallest number of transmissions required to
reach the base station) indicated by the dotted lines in
Fig. 15.11 and the online adaptive Q-learning strategy
described above. For each episode of the simulation,
an originating node is chosen at random according
to the origination probabilities, the message is trans-
mitted through the network according to the current
routing policy, and the episode ends when the message
is received at the base station. The left panels show a

running average of the total number of transmissions
required for each message on a log-log plot, and the
right panel shows the battery power remaining for each
of the 25 sensors as a function of the cumulative num-
ber of messages received at the base station. While the
number of transmissions per message remains constant
over time for the static routing strategy (with some
fluctuation due to the randomness in the simulation)
and the battery power for each node decreases linearly
with time, the results for the adaptive method shows
an initial reduction in the average number of transmis-
sions for each message as the network learns a good
strategy and then an eventual increase as the network
reorganizes to reduce the strain on the most-utilized
nodes. The static routing strategy results in the failure
of node 6 due to exhausted battery power after 213,967
messages are received at the base station, whereas
the adaptive method successfully transmits 507,715
messages before failure. Thus, the adaptive approach
is able to lengthen the lifetime of the entire network
by more than a factor of two for this scenario. Of
course, these results represent only single simulation
runs using each method, and results can be expected
to vary somewhat due to the random elements of the
simulation.

Traditional mesh networks reorganize their rout-
ing topology periodically to adapt to changing con-
ditions or the failure of some of the network nodes,
and so avoid the stark failure illustrated here. A stan-
dard technique for reorganizing is to send a flood
of transmissions, or “beacon”, from the base station
down to the nodes, which results in additional drain
on the node batteries. The adaptive Q-learning method
achieves the same objective while avoiding the extra
transmission costs for periodic wholesale network re-
formation. A precise comparison of the two methods
would require a more realistic simulation or in situ test
for a specific application, but it is clear from this exam-
ple that a technique based on reinforcement learning
has the potential to produce efficient adaptive network
routing strategies.

15.13.2 Adaptive Scanning Strategy
for a Remote Sensor

An optimal control problem that arises frequently
in environmental science research is how to target
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Fig. 15.13 (Top row) Results from using the shortest path
routes indicated by the dotted lines in Fig. 15.11. (Bottom row)
results from using dynamic routing based on Q-learning as
described in the text. The plots on the left show a running aver-
age over 20 messages of the number of transmissions utilized
for the message to reach the base station. The right hand side
shows the remaining battery power in each node as a function of

observations to produce the greatest benefit in under-
standing environmental processes, supplying data for
modeling or forecasting, or providing timely warn-
ing of hazardous conditions. For example, adaptive
scanning is employed by spaceborne remote sen-
sors to improve their ability to capture significant
meteorological phenomena using limited resources
(Atlas 1982). Developers of the National Science
Foundation’s Collaborative Adaptive Sensing of the
Atmosphere (CASA) X-band radar network plan to
use coordinated adaptive sensing techniques to better
capture precipitation events and detect flash floods or
tornadoes (McLaughlin et al. 2005). And the United
States’ operational NEXRAD Doppler radars employ
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the message number. In order from the least to greatest battery
power remaining after message number 2 x 10°, the traces in the
upper plot are for nodes 6, 5, 3, 4, 17, 20, 12, 24, 8, 14, 7, 23,
1,9, 25,21, 16, 18, 15, 13, 10, 11, 19, 2, and 22, respectively,
and in the lower plot are for nodes 5, 6, 2, 1, 3, 17, 14, 7, 4,
8, 20, 24, 9, 16, 12, 23, 25, 21, 10, 15, 18, 13, 11, 19, and 22,
respectively.

a number of volume coverage patterns (VCPs) appro-
priate to different weather scenarios, which may be
selected automatically or by a human operator. Rein-
forcement learning can be used to develop an adap-
tive sampling strategy for a scanning remote sensor
that balances a need for enhanced dwell-times over
significant events with maintaining adequate temporal
or spatial scanning coverage to quickly capture new
developments.

In particular, we consider the problem of control-
ling a scanning remote sensor such as a radar, lidar, or
scanning radiometer capable of taking measurements
in one of four directions: north, east, south or west.
At each timestep, the sensor may rotate clockwise,
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maintain its current orientation, or rotate counterclock-
wise; it then detects the state of the atmosphere in the
new sector, characterized as “clear” (e.g., no clouds),
“developing” (e.g., significant clouds), or “hazardous”
(e.g., tornadic supercell). The sensor memory stores
the most recent observations made in each sector
and the elapsed times since they were last scanned.
This information, coupled with the current observa-
tion, comprise the system state and will be the basis
for the decision of which direction the sensor should
rotate in the next timestep. In order to ensure a min-
imal temporal coverage and also limit the number of
possible states in the MDP, the sensor reverts to a
standard clockwise scan strategy whenever the elapsed
time for any sector reaches 10 or more. Thus, the state
is determined by the last observation in each of the
four directions and the elapsed time in the directions
not currently being observed, for 3* - 123 = 139,968
possible states. Of course, not all of these states are
actually “reachable” — for instance, no two sectors can
have the same elapsed times in practice. Moreover,
symmetry can be used to further reduce the effective
number of states; in essence, we assume that the sensor
only rotates clockwise but the order of the sectors can
be reversed.

Our goal is to train the sensor to quickly detect
significant events (e.g., hazardous weather) and dwell
on them to the degree possible to improve the quality
of their characterization and reduce the lead time for
warnings to the public. To achieve this, we impose a
cost function that at each timestep charges a penalty
for each sector in which there is hazardous weather.
The amount of the penalty is based on the elapsed
time, At, since the sector was scanned: for Ar =0,
1, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12 timesteps,
we define g(Af) =0,1,2,3,4,5,6,8, 10, 12, 14, 17,
20, respectively. Note that Ar is encoded in the
MDP’s state, so the cost function g is a deter-
ministic function of the state. We choose a value
of a close to 1 so that future costs are not dis-
counted too much, say o = 0.995. Finally, the man-
ner in which the weather, w;, changes with time
may be specified via a conditional probability matrix
such as

0.98 0.17 0.00
0.02 0.79 0.08
0.00 0.04 0.92

P(wyi|wy) = (15.37)

which may be interpreted as follows: if w, =1
(“clear”), the probability is 98% that w,1; =1, 2%
that w,4+; = 2 (“developing”), and 0% that w,; =3
(“hazardous”); if w; = 2 the probabilities are 17%,
79%, and 4%; and if w; = 3 the probabilities are 0%,
8%, and 92%, respectively. If the conditional proba-
bility matrix P doesn’t change with time, a standard
result from Markov theory tells us that at any later time
t+k,

P(w;x|w;) = P(w;y1|w)* (15.38)

where the exponent by k, a positive integer, represents
the matrix multiplied by itself k£ times. In fact, as k —
00, We can compute

lim P(wilw,) = lim P(w,q1|w)
k—o0 k—o00

0.85 0.85 0.85
=10.10 0.10 0.10
0.05 0.05 0.05

(15.39)

showing that for the choice of P given by (15.37) the
weather probability distribution will asymptotically
reach the hypothetical climatological averages: “clear”
85% of the time, “developing” 10% of the time, and
“hazardous” 5% of the time, regardless of the initial
weather conditions.

We have now specified a model of the MDP, which
comprises all the information needed to simulate the
sensor observations, actions, state transitions and costs
in order to use Q-learning, Q(A) or Sarsa(A) to find
the optimal Q-value and hence the optimal scanning
policy. However, the large number of states and the
relative rareness of hazardous weather means that
these methods can be quite slow and very sensitive
to the choice of learning rates and exploration strat-
egy. The computational requirements could be reduced
by employing state aggregation — i.e., grouping the
elapsed times into categories such as “short”, “long”
and “very long” — to reduce the effective number of
states, or by using function approximation, but either
reduces the problem to a POMDP and may result in
learning a good but not optimal policy. A faster and
more accurate alternative is to utilize the MDP model
in value iteration, solving (15.6) directly and then
computing the optimal policy using (15.12). For every
initial state and action, we compute the probability
distribution over weather conditions in all four direc-
tions via (15.38) using the last recorded observations
and the elapsed times. These in turn determine the
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Fig. 15.14 Maximum change in the optimal value function
estimate, J, after each cycle of updates during the value iteration
process used to solve the remote sensor adaptive scanning prob-
lem. Because the estimate is initialized as J = 0, the changes
are always positive.

probabilities of the three possible state transitions for
each action (the new state is given by the deterministic
elapsed times and random weather in the new scanning
direction) and the mean cost of each transition (based
on the random weather in all the other sectors). The
value function J is initialized as O for all states, so
that value iteration causes a monotonic increase in J
for all states; if an elapsed time greater than 12 in
any sector occurs, the value of that “state” is taken
as 20(1 — a)~! = 4,000 for the purpose of computing
the right hand side of (15.6). Figure 15.14 shows the
rate of convergence of the value iteration, as mea-
sured by the maximum change in the value function,
maX;cs | J;+1() — J;(i)|, after each pass through all
states. After rapid initial progress, the rate of conver-
gence becomes exponential.

To evaluate the policy obtained from the final J-
iterate via (15.12), separate 107-step simulations were
performed for both the learned policy and a standard
scan that simply rotated clockwise at every timestep.
The average costs per timestep were found to be 0.16
and 0.30, respectively, showing that the learned policy
improved performance by nearly a factor of two over
the standard scan. In addition, for each occurrence of
“hazardous” weather in any sector and at any timestep,
the total number of timesteps elapsed since the sec-
tor containing it was last scanned were tabulated. As
suggested by (15.39), “hazardous” weather occurred
about 5% of the time, meaning that about 2 x 10°

instances occurred in the four sectors over the course
of each simulation. The results in Fig. 15.15 show that
an elapsed time of 0 — the ideal value — was achieved
about 2.5 times more frequently by the learned policy
than the standard scan, while elapsed times of 1, 2
or 3 occurred less frequently. However, the learned
policy did very occasionally, about 2.5% of the time,
yield elapsed times of 4 or greater. The tradeoff
between increased dwell over sectors with hazardous
weather and the potential for occasional instances of
long elapsed times is determined by the cost func-
tion, g, which can be altered to obtain different
behavior.

Of course, this formulation of the scanning prob-
lem solved here is significantly simplified relative to
those often encountered in practice, where weather
or another phenomenon being measured is correlated
from sector to sector and the scan strategy includes
selection of elevations as well as azimuths. Never-
theless, this example provides a suggestion of how
reinforcement learning might be used to help develop
improved observing strategies.

15.13.3 Aircraft Routing Using
Probabilistic Forecasts

An important goal of meteorology and environmen-
tal science is to provide reliable forecasts to aid
planning and decision making. For instance, the
U.S. Federal Aviation Administration’s Joint Plan-
ning and Development Office (JPDO) has devel-
oped a Next Generation Air Transportation System
vision (JPDO 2006) that requires probabilistic fore-
cast grids to guide the routing of aircraft around
potentially hazardous weather and improve the safety
and efficiency of the National Airspace System
(NAS).

The specific problem we consider is how to use
probabilistic forecast grids at various lead times to
plan aircraft routes that balance a desire to conserve
fuel use with the need to avoid potential accidents.
We focus on the problem of routing a single aircraft
to a target airport, though in the NAS the safe separa-
tion of multiple aircraft must be considered as well.
For the sake of simplicity, we use only 2-D Carte-
sian probabilistic forecast grids of aviation hazards
(e.g., thunderstorms or turbulence) at a specified flight
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Fig. 15.15 Results from 107-step simulations of the scanning
remote sensor using the optimal policy determined via rein-
forcement learning (blue) and a standard clockwise rotation at
each timestep (red). The histograms show the total number of
occurrences in all sectors and timesteps of the elapsed time since

level, but the approach illustrated here easily gener-
alizes to 3-D grids in an appropriate map projection.
The balance between fuel use and accident risk will
depend on factors like the type of aircraft being flown;
for instance, large aircraft are less fuel efficient but
may be better equipped to mitigate hazards posed by
atmospheric turbulence, icing, lightning or windshear.
For a given flight, the probabilistic weather grids must
be mapped to an assessment of the risk of a signif-
icant hazard to the aircraft’s operation, which may
be naturally quantified in terms of its potential eco-
nomic impact to the airline; this allows it to be com-
pared with other risks and impacts to form a basis for
decision making. The MDP’s state is given by the time
and location of the aircraft. For the purpose of this
example, a timestep is 5 min, the aircraft flies at a
constant speed of 480 knots (40 nautical miles, nmi,
per timestep), the cost of fuel is $500 per timestep,
and the weather forecast grids at each time f are
scaled into the probability f; of an accident costing

Bl L carned policy
I Clockwise sweep

6 7 8 9 10 11 12

hazardous weather was scanned, where lower elapsed times are
better; hazardous weather existed in each sector about 5% of the
time, so the total number of occurrences was about 2 x 10° for
each simulation.

$2,500,000 for every timestep (5 min) spent in those
conditions. For planning purposes, the cost of each
flight segment is estimated as the sum of the fuel cost
and the cost of an accident times its probability (that
is, its “expected cost”). To be precise, the mean cost
incurred at time ¢ along a one-timestep flight segment
from x, along a vector r having length 40 nmi is
given by

g ({x;, t},r, {x, +1,1+5})

1
= $500 + $2,500,000/ fixr+Ttr)dr (15.40)
0

More complex versions of (15.40) could be devel-
oped to incorporate the cost of a delay after the flight
exceeds a certain duration, or probabilities of multiple
types of accidents or incidents and their associated
costs due to, for example, taking an aircraft out of
service for inspection or repair, providing worker’s
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Fig. 15.16 Weather hazard probability forecasts and learned
route vectors for the aircraft routing problem over a period of
3 h. The color scale gives the probability that an accident cost-

compensation for an injured flight attendant, settling
a passenger injury claim, or sustaining damage to the
airline’s reputation that reduces future ticket sales. An
example set of forecasts f; shown for r =0, 1, 2 and
3 h (times 0000, 0100, 0200 and 0300) is given by the
color-scaled grids in Fig. 15.16. This example depicts
a scenario in which a line of thunderstorms is forecast
to develop and block a direct route from the west to
an airport in the east. Grids of f; are available at 5 min
intervals between 0 and 3 h, after which we assume the
forecasts don’t change; that is, we take f;, = fp300 for
t > 0300.

The aircraft routing problem as defined above is
an SSPP with states given by the aircraft’s posi-
tion and the time, actions given by the direction
of travel, and deterministic state transitions accom-
panied by costs prescribed by (15.40). Because the
possible states and actions are not discrete but
occupy a continuum, it is necessary to employ func-

0 500

Distance (nmi)

ing $2.5 million will occur during 5 min of flight through the
conditions forecast at that location and time, and the destination
airport is depicted on the east side of the domain.

tion approximation in solving this MDP. We use a
lookup table representation of the value function on a
grid {(ix, jy)|i=0,...,37;j =0, ...,25}, where
x and y are vectors of length 40 nmi pointing east and
north, respectively; the value function at intermediate
locations is estimated by linear interpolation. More
precisely, the value function for the state {a X + by, t},
where ¢ is a non-negative multiple of 5 min and a and
b are real numbers with 0 <a <37 and 0 < b < 25,
respectively, is approximated by

J(lak+by,1})
= ([a] —a) (b1 —b) J ({lal X+ |b]§.1})
+ (fal —a) (b — b)) J ({lal X+ [b1§.1})
+ (a—la]) (11 = b) J ({Tal X+ |b]§.1})
+ (a—la]) (b= b)) J ({Tal X+ [b1§.1})
(15.41)
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Here J denotes the value function at a grid point,
the ceiling function [a] represents the smallest inte-
ger greater than or equal to a, and the floor func-
tion |a] represents the largest integer less than or
equal to a. The optimal value function, J*, may be
found using value iteration, with the right hand side
of (15.6) approximated by the minimum over direc-
tions 0°, 10°, 20°, 30°, ..., 350°, the transition costs
determined by (15.40), and the value function of the
new state approximated by (15.41). We first perform
value iteration to find J* for the static SSPP with time
“frozen” at t = 0300. In order to speed convergence,
we initialize J as the cost of flying directly to the
destination airport in the absence of weather hazards
(which is easily computed from the distance) and then
update J at grid points chosen in order of increasing
distance from the airport during each iteration. Next
we reduce ¢ by 5 min intervals and perform just one
sweep through all grid points, computing J* for that
time using (15.6). The reason that only one iteration
at each time is now sufficient is that the optimal value
function for the next time — and, therefore, the next
state — has already been determined. These calcula-
tions are continued until + = 0. Finally, the learned
policy for each state (position and time) may be com-
puted using (15.12), that is, we choose a policy p such
that

glax+by 1), n{ak+ by, 1), (aX+by +r,,1+5))
+J* (fak+by+r,.1+5})

- ' §(lax+by. 1) r{aX+by+r1+5
{rl\\rﬁgﬁ)nmi}[g({ax_F y.t}.r {aX+ by +r,1+5})

T ({a§+by+r,r+5})} (15.42)
where J* represents the linear interpolation of the
learned optimal value function and r,, is shorthand
for the displacement traveled in 5 min of flight in the
direction specified by the policy w. The learned policy
© may not strictly be optimal due to the use of function
approximation, under which Bellman’s Equality is not
guaranteed to hold. Nevertheless, the policy should be
near-optimal if the grid on which the value function
J is represented has an appropriate scale. The vectors
in Fig. 15.16 show the learned policy determined via
(15.42) for each point on the 40 nmi grid at ¢+ = 0000,
0100, 0200 and 0300, where again for simplicity we
have limited consideration to directions specified at
10° increments.

The learned policy shown in Fig. 15.16 may be
interpreted as follows. At each time shown, the vec-
tors show the direction that an aircraft starting or
continuing from that location should take based on
the sequence of probabilistic forecasts of future haz-
ards. The optimal route is determined by following
this “flow” as it changes at each subsequent time.
Note that the domain has been chosen so that an air-
craft could nearly traverse its width (1,480 nmi) in
3 h. At time 0000, the vectors in the western 2/3 of
the domain are already adjusting routes to avoid the
weather hazard that is forecast to develop. By time
0100, the western region shows three distinct rout-
ing strategies depending on location: go to the north
of the developing line of storms, south of it or, if
within about 500 nmi, fly through the gap. By 0200,
the area in which aircraft are directed towards the
gap has shrunk as it begins to close, and by 0300
the line of storms has fully developed and aircraft are
directed around it or attempt to exit it as quickly as
possible.

In addition to finding the optimal route, another
important consideration may be whether to fly at
all. Figure 15.17 shows the result of subtracting the
learned value function from the optimal value function
found in the absence of weather, a difference that rep-
resents the expected increased cost due to the weather
hazard of a flight originating or continuing from the
indicated location and time, assuming that it follows
the prescribed optimal route from that point onwards.
At time 0000, a slight increase in cost may be seen,
primarily in the western part of the domain, due to the
slight elongation of the optimal flight path or enhanced
likelihood of an accident. By time 0100 this cost has
grown substantially, particularly in the region in the
west from which the aircraft is routed around the north
or south of the line. The costs increase further at times
0200 and 0300, particularly for aircraft that will have
to deviate substantially to avoid the storm or those that
are already in it. An airline dispatcher might use this
marginal “cost-to-go” information to help determine
whether it would be worthwhile to delay or cancel
a flight, or even divert an en route flight to another
airport.

The method and results presented for this aircraft
routing example can be extended in a straightforward
way to more complicated scenarios. For instance, cur-
rent routing in the NAS requires aircraft to fly along
pre-specified “jetways” or between defined waypoints.
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Fig. 15.17 The added (marginal) flight cost due to the weather
hazard for flights originating or continuing from the indicated
location and time. These values were obtained by subtracting

Restricting routes to certain paths would actually
substantially simplify the MDP by reducing the num-
ber of states and actions, allowing tabular representa-
tion of the value function and obviating the need for
function approximation. As previously mentioned, a
third dimension (altitude) can easily be added to the
forecast grids and routes, and the cost function can be
modified to account for the increased cost of flying
at lower levels where aerodynamics are less favor-
able. The effect of winds, including the jet stream,
can be accommodated by adding the wind vector to
the aircraft’s velocity at each timestep. The cost func-
tion would be specific to each aircraft type, since
models have different capabilities, fuel use and ability
to withstand weather and other hazards. Finally, the
effects of congestion (unsafe density of aircraft) may
be included as an additional hazard whose expected
cost is added in (15.40). Starting with an initial fore-
cast of congestion, the method described above may be

0

0

500 1000
Distance (nmi)

1500

the optimal value function, J*, for a no-hazard situation from
the optimal value function learned for the scenario depicted in
Fig. 15.16 using the method described in the text.

used to find the optimal routes for all aircraft desiring
to occupy the NAS, or to determine that a ground delay
program or cancellation is appropriate. The optimal
paths of all those flights may then be traced to revise
the congestion forecast for each location and time.
Then new optimal routes may be chosen based on
this new cost information, and the process repeated.
If this iteration is done carefully (e.g., as a relaxation
method), a good overall set of routes may be obtained.
Marginal costs like those shown in Fig. 15.17 may
again be used to determine what flights should be
delayed, cancelled or diverted to avoid undue costs and
risks. Thus, reinforcement learning may have a lot to
offer in designing practical solutions to this important
and difficult problem. For a more detailed treatment
of the topic of routing aircraft given weather hazard
information, the reader is invited to consult Bertsimas
and Patterson (1998), Evans et al. (2006), and Krozel
et al. (2006).
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15.14 Conclusion

Reinforcment learning builds on ideas from the
fields of mathematics, engineering and psychology
to develop algorithms that identify optimal or near-
optimal control policies based on simulated or real
interaction with a stochastic environment. Unlike tra-
ditional methods that require the underlying dynamical
system to be modeled by a set of probability transition
matrices or differential equations, reinforcement learn-
ing techniques can be applied to complex problems
for which no model exists, This chapter has presented
an introduction to the theory underlying reinforcement
learning and the Markov Decision Processes (MDPs)
to which they apply, described several practical rein-
forcement learning algorithms, and presented three
sample applications that demonstrated the powerful
potential of reinforcement learning to solve problems
that arise in the environmental sciences.
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